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Accelerated C# 2010
Dear Reader,

In your hands is a guide to creating effective C# 4.0 code. This book focuses precisely 
on the C# language, showing you how to write programs that are robust, fault-toler-
ant, and ready to be put into widely available libraries. 

I won’t burden your time with endless discussions of libraries: Accelerated C# 
2010 instead presents you with a well organized, focused and easy to read text about 
C# and all of the tried and true idioms, patterns, and design principles accrued in the 
object oriented arena and during the lifetime of the .NET Framework. With many 
short examples, I will show you how common design patterns are used routinely in 
the .NET Framework and how you should employ them in your own designs.

I cover with you all the newer features of the C# language in detail - including 
the dynamic type, co- and contra-variance, extension methods, lambda expres-
sions, and Language Integrated Query (LINQ) among others. The new dynamic 
type facilitates interoperability possibilities that were previously cumbersome to 
implement. Extension methods, lambda expressions, and LINQ foster a functional 
programming model within a traditionally imperative programming language and 
you’ll find that they expand your horizons and open up new possibilities of solu-
tions using functional programming techniques!

Another area of particular interest for C# developers is how we can write excep-
tion-safe and fault-tolerant code. The .NET Framework includes several facilities, 
including Critical Execution Regions, to help protect the state of your application 
in the event of an asynchronous exception. In this book, I explain how to use these 
facilities to your advantage.

Have fun programming and remember, defining contract before implementa-
tion, striving to be exception neutral, applying performance analysis and optimiza-
tion, and being frugal with your resource usage are all keys to a successful product.
 
Trey Nash
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Preface 

Visual C# .NET (C#) is relatively easy to learn for anyone familiar with another object-oriented language. 
Even someone familiar with Visual Basic 6.0, who is looking for an object-oriented language, will find C# 
easy to pick up. However, though C#, coupled with the .NET Framework, provides a quick path for 
creating simple applications, you still must know a wealth of information and understand how to use it 
correctly in order to produce sophisticated, robust, fault-tolerant C# applications. I teach you what you 
need to know and explain how best to use your knowledge so that you can quickly develop true C# 
expertise. 

Idioms and design patterns are invaluable for developing and applying expertise, and I show you 
how to use many of them to create applications that are efficient, robust, fault-tolerant, and exception-
safe. Although many are familiar to C++ and Java programmers, some are unique to .NET and its 
Common Language Runtime (CLR). I show you how to apply these indispensable idioms and design 
techniques to seamlessly integrate your C# applications with the .NET runtime, focusing on the new 
capabilities of C# 3.0 

Design patterns document best practices in application design that many different programmers 
have discovered and rediscovered over time. In fact, the .NET Framework itself implements many well-
known design patterns. Similarly, over the past three versions of the .NET Framework and the past two 
versions of C#, many new idioms and best practices have come to light. You will see these practices 
detailed throughout this book. Also, it is important to note that the invaluable tool chest of techniques is 
evolving constantly. 

With the arrival of C# 3.0, you can easily incorporate functional programming techniques using 
lambda expressions, extension methods, and Language Integrated Query (LINQ). Lambda expressions 
make is easy to declare and instantiate function delegates at one point. Additionally, with lambda 
expressions, it’s trivial to create functionals, which are functions that accept functions as arguments and 
typically return another function. Even though you could implement functional programming 
techniques in C# (albeit with some difficulty), the new language features in C# 3.0 foster an environment 
where functional programming can flourish interweaved with the typical imperative programming style 
of C#. LINQ allows you to express data query operations (which are typically functional in nature) using 
a syntax that is native to the language. Once you see how LINQ works, you realize you can do much more 
than simple data query and use it to implement complex functional programs. 

.NET and the CLR provide a unique and stable cross-platform execution environment. C# is only 
one of the languages that target this powerful runtime. You will find that many of the techniques 
explored in this book are also applicable to any language that targets the .NET runtime. 

For those of you who have significant C++ experience and are familiar with such concepts as C++ 
canonical forms, exception safety, Resource Acquisition Is Initialization (RAII), and const correctness, 
this book explains how to apply these concepts in C#. If you’re a Java or Visual Basic programmer who 
has spent years developing your toolbox of techniques and you want to know how to apply them 
effectively in C#, you’ll find out how to here. 

As you’ll see, it doesn’t take years of trial-and-error experience to become a C# expert. You simply 
need to learn the right things and the right ways to use them. That’s why I wrote this book for you. 
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About This Book 
I assume that you already have a working knowledge of some object-oriented programming language, 
such as C++, Java, or Visual Basic .NET. Since C# derives its syntax from both C++ and Java, I don’t spend 
much time covering C# syntax, except where it differs starkly from C++ or Java. If you already know some 
C#, you may find yourself skimming or even skipping Chapters 1 through 3. 

Chapter 1, “C# Preview,” gives a quick glimpse of what a simple C# application looks like, and it 
describes some basic differences between the C# programming environment and the native C++ 
environment. 

Chapter 2, “C# and the CLR,” expands on Chapter 1 and quickly explores the managed environment 
within which C# applications run. I introduce you to assemblies, the basic building blocks of 
applications, into which C# code files are compiled. Additionally, you’ll see how metadata makes 
assemblies self-describing. 

Chapter 3, “C# Syntax Overview,” surveys the C# language syntax. I introduce you to the two 
fundamental kinds of types within the CLR: value types and reference types. I also describe namespaces 
and how you can use them to logically partition types and functionality within your applications. 

Chapters 4 through 13 provide in-depth descriptions on how to employ useful idioms, design 
patterns, and best practices in your C# programs and designs. I’ve tried hard to put these chapters in 
logical order, but occasionally one chapter may reference a technique or topic covered in a later chapter. 
It is nearly impossible to avoid this situation, but I tried to minimize it as much as possible. 

Chapter 4, “Classes, Structs, and Objects,” provides details about defining types in C#. You’ll learn 
more about value types and reference types in the CLR. I also touch upon the native support for 
interfaces within the CLR and C#. You’ll see how type inheritance works in C#, as well as how every 
object derives from the System.Object type. This chapter also contains a wealth of information regarding 
the managed environment and what you must know in order to define types that are useful in it. I 
introduce many of these topics in this chapter and discuss them in much more detail in later chapters. 

Chapter 5, “Interfaces and Contracts,” details interfaces and the role they play in the C# language. 
Interfaces provide a functionality contract that types may choose to implement. You’ll learn the various 
ways that a type may implement an interface, as well as how the runtime chooses which methods to call 
when an interface method is called.  

Chapter 6, “Overloading Operators,” details how you may provide custom functionality for the 
built-in operators of the C# language when applied to your own defined types. You’ll see how to 
overload operators responsibly, because not all managed languages that compile code for the CLR are 
able to use overloaded operators. 

Chapter 7, “Exception Handling and Exception Safety,” shows you the exception-handling 
capabilities of the C# language and the CLR. Although the syntax is similar to that of C++, creating 
exception-safe and exception-neutral code is tricky—even more tricky than creating exception-safe code 
in native C++. You’ll see that creating fault-tolerant, exception-safe code doesn’t require the use of try, 
catch, or finally constructs at all. I also describe some of the new capabilities added with the .NET 2.0 
runtime that allow you to create more fault-tolerant code. 

Chapter 8, “Working with Strings,” describes how strings are a first-class type in the CLR and how to 
use them effectively in C#. A large portion of the chapter covers the string-formatting capabilities of 
various types in the .NET Framework and how to make your defined types behave similarly by 
implementing IFormattable. Additionally, I introduce you to the globalization capabilities of the 
framework and how to create custom CultureInfo for cultures and regions that the .NET Framework 
doesn’t already know about. 

Chapter 9, “Arrays, Collection Types, and Iterators,” covers the various array and collection types 
available in C#. You can create two types of multidimensional arrays, as well as your own collection 
types while utilizing collection-utility classes. You’ll see how to define forward, reverse, and bidirectional 
iterators using the new iterator syntax introduced in C# 2.0, so that your collection types will work well 
with foreach statements. 
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Chapter 10, “Delegates, Anonymous Functions, and Events,” shows you the mechanisms used 
within C# to provide callbacks. Historically, all viable frameworks have always provided a mechanism to 
implement callbacks. C# goes one step further and encapsulates callbacks into callable objects called 
delegates. Additionally, C# 2.0 allows you to create delegates with an abbreviated syntax called 
anonymous functions. Anonymous functions are similar to lambda functions in functional 
programming. Also, you’ll see how the framework builds upon delegates to provide a publish/subscribe 
event notification mechanism, allowing your design to decouple the source of the event from the 
consumer of the event. 

Chapter 11, “Generics,” introduces you to probably the most exciting feature added to C# 2.0 and 
the CLR. Those familiar with C++ templates will find generics somewhat familiar, though many 
fundamental differences exist. Using generics, you can provide a shell of functionality within which to 
define more specific types at run time. Generics are most useful with collection types and provide great 
efficiency compared to the collections of previous .NET versions. Starting with C# 4.0, generic type usage 
became even more intuitive with the support of co- and contravariance. Assigning from one generic type 
to another when it makes intuitive type-sense is now possible, thus reducing the clutter of conversion 
methods needed prior to that. 

Chapter 12, “Threading in C#,” covers the tasks required in creating multithreaded applications in 
the C# managed virtual execution environment. If you’re familiar with threading in the native Win32 
environment, you’ll notice the significant differences. Moreover, the managed environment provides 
much more infrastructure for making the job easier. You’ll see how delegates, through use of the I Owe 
You (IOU) pattern, provide an excellent gateway into the process thread pool. Arguably, synchronization 
is the most important concept when getting multiple threads to run concurrently. This chapter covers 
the various synchronization facilities available to your applications. In today’s world, concurrency is at 
the forefront because, rather than spending exorbitant amount of time and money to create faster 
processors, the industry has gravitated to creating processors with multiple cores. Therefore, I introduce 
the new Parallel Extensions and the Task Parallel Library (TPL) added to .NET 4.0. 

Chapter 13, “In Search of C# Canonical Forms,” is a dissertation on the best design practices for 
defining new types and how to make them so you can use them naturally and so consumers won’t abuse 
them inadvertently. I touch upon some of these topics in other chapters, but I discuss them in detail in 
this chapter. This chapter concludes with a checklist of items to consider when defining new types using 
C#. 

Chapter 14, “Extension Methods,” are new since C# 3.0. Because you can invoke them like instance 
methods on a type they extend, they can appear to augment the contract of types. But they are much 
more than that. In this chapter, I show you how extension methods can begin to open up the world of 
functional programming in C#. 

Chapter 15, “Lambda Expressions,” are another feature added to C# 3.0. You can declare and 
instantiate delegates using lambda expressions using a syntax that is brief and visually descriptive. 
Although anonymous functions can serve the same purpose just mentioned, they are much more 
verbose and less syntactically elegant. However, in C# 3.0 and beyond, you can convert lambda 
expressions into expression trees. That is, the language has a built-in capability to convert code into data 
structures. By itself, this capability is useful, but not nearly as useful as when coupled with Language 
Integrated Query (LINQ). Lambda expressions, coupled with extension methods, really bring functional 
programming full circle in C#. 

Chapter 16, “LINQ: Language Integrated Query,” is the culmination of all of the new features added 
to C# 3.0. Using LINQ expressions via the LINQ-oriented keywords, you can seamlessly integrate data 
queries into your code. LINQ forms a bridge between the typically imperative programming world of C# 
programming and the functional programming world of data query. LINQ expressions can be used to 
manipulate normal objects as well as data originating from SQL databases, Datasets, and XML just to 
name a few. 

Chapter 17, “Dynamic Types,” covers the new dynamic type added in C# 4.0. Along with the 
dynamic type comes easier integration with dynamic .NET languages, including COM Automation 
objects. Gone are the days of coding unnatural-looking and hard-to-read code purely in efforts to 
integrate with these components because the dynamic type implementation handles all of that rote 



■ PREFACE 

 

 

xxvii

 

work for you. The implementation of the dynamic type utilizes the Dynamic Language Runtime (DLR) 
which is the same foundation for dynamic languages such as IronRuby and IronPython, among others. 
And while using the dynamic type in conjunction with DLR types such as ExpandoObject, you can create 
and implement truly dynamic types in C#. 
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C# Preview 

This is a book for experienced object-oriented developers; therefore, I assume that you already have 
some familiarity with the .NET runtime. Essential .NET Volume 1: The Common Language Runtime by 
Don Box (Boston, MA: Addison-Wesley, 2002) is an excellent book specifically covering the .NET 
runtime. Additionally, it’s important to look at some of the similarities and differences between C# and 
C++, and then go through an elementary “Hello World!” example for good measure. If you already have 
experience building .NET applications, you may want to skip this chapter. However, you may want to 
read the section “Overview of New C# 4.0 Features.” 

Differences Between C# and C++ 
C# is a strongly typed object-oriented language whose code visually resembles C++ (and Java). This 
decision by the C# language designers allows C++ developers to easily leverage their knowledge to 
quickly become productive in C#. C# syntax differs from C++ in some ways, but most of the differences 
between these languages are semantic and behavioral, stemming from differences in the runtime 
environments in which they execute. 

C# 
C# source code compiles into managed code. Managed code, as you may already know, is an 
intermediate language (IL) because it is halfway between the high-level language (C#) and the lowest-
level language (assembly/machine code). At runtime, the Common Language Runtime (CLR) compiles 
the code on the fly by using Just In Time (JIT) compiling. As with just about anything in engineering, this 
technique comes with its pros and cons. It may seem that an obvious con is the inefficiency of compiling 
the code at runtime. This process is different from interpreting, which is typically used by scripting 
languages such as Perl and JScript. The JIT compiler doesn’t compile a function or method each and 
every time it’s called; it does so only the first time, and when it does, it produces machine code native to 
the platform on which it’s running. An obvious pro of JIT compiling is that the working set of the 
application is reduced, because the memory footprint of intermediate code is smaller. During the 
execution of the application, only the needed code is JIT-compiled. If your application contains printing 
code, for example, that code is not needed if the user never prints a document, and therefore the JIT 
compiler never compiles it. Moreover, the CLR can optimize the program’s execution on the fly at 
runtime. For example, the CLR may determine a way to reduce page faults in the memory manager by 
rearranging compiled code in memory, and it could do all this at runtime. Once you weigh all the pros 
together, you find that they outweigh the cons for most applications. 
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■ Note Actually, you can choose to code your programs in raw IL while building them with the IL Assembler 

(ILASM). However, it will likely be an inefficient use of your time. High-level languages can nearly always provide 

any capability that you can achieve with raw IL code. 

C++ 
Unlike C#, C++ code traditionally compiles into native code. Native code is the machine code that’s 
native to the processor for which the program was compiled. For the sake of discussion, assume that 
we’re talking about natively compiled C++ code rather than managed C++ which can be achieved by 
using C++/CLI. If you want your native C++ application to run on different platforms, such as on both a 
32-bit platform and a 64-bit platform, you must compile it separately for each. The native binary output 
is generally not compatible across platforms. 

IL, on the other hand, is compatible across platforms, because it, along with the Common Language 
Infrastructure (CLI) upon which the CLR is built, is a defined international standard.1 This standard is 
rapidly gaining traction and being implemented beyond the Microsoft Windows platform. 

■ Note I recommend you check out the work the Mono team has accomplished toward creating alternate, open 

source Virtual Execution Systems (VESs) on other platforms.2 

Included in the CLI standard is the Portable Executable (PE) file format for managed modules. 
Therefore, you can actually compile a C# program on a Windows platform and execute the output on 
both Windows and Linux without having to recompile, because even the file format is standardized.3 
This degree of portability is extremely convenient and was in the hearts and minds of the COM/DCOM 
designers back in the day, but for various reasons, it failed to succeed across disparate platforms at this 
level.4 One of the major reasons for that failure is that COM lacked a sufficiently expressive and 
extensible mechanism for describing types and their dependencies. The CLI specification solves this 
nicely by introducing metadata, which I’ll describe in Chapter 2.  

                                                 

 
1 You can find the CLI standard document Ecma-335 at http://www.ecma-international.org. Additionally, Ecma-
334 is the standard document for the C# language. 

2 You can find the Mono project on the Internet at http://www.mono-project.com. 
3 Of course, the target platform must also have all of the dependent libraries installed. This is quickly becoming a 
reality, considering the breadth of the .NET Standard Library. For example, check out http://www.go-
mono.com/docs/ to see how much coverage the Mono project libraries have. 
4 For all the gory details, I recommend reading Essential .NET, Volume I: The Common Language Runtime by Don Box 
and Chris Sells (Boston, MA: Addison-Wesley Professional, 2002). (The title leads one to believe that Volume II is due 
out any time now, so let’s hope it’s not titled in the same vein as Mel Brooks’ History of the World: Part I.) 

http://www.ecma-international.org
http://www.mono-project.com
http://www.go-mono.com/docs
http://www.go-mono.com/docs
http://www.go-mono.com/docs


CHAPTER 1 ■ C# PREVIEW 

 

 

3 

 

CLR Garbage Collection 
One of the key facilities in the CLR is the garbage collector (GC). The GC frees you from the burden of 
handling memory allocation and deallocation, which is where many software errors can occur. However, 
the GC doesn’t remove all resource-handling burdens from your plate, as you’ll see in Chapter 4. For 
example, a file handle is a resource that must be freed when the consumer is finished with it, just as 
memory must be freed in the same way. The GC handles only memory resources directly. To handle 
resources other than memory, such as database connections and file handles, you can use a finalizer (as 
I’ll show you in Chapter 13) to free your resources when the GC notifies you that your object is being 
destroyed. However, an even better way is to use the Disposable pattern for this task, which I’ll 
demonstrate in Chapters 4 and 13. 

■ Note The CLR references all objects of reference type indirectly, similar to the way you use pointers and references 

in C++, except without the pointer syntax. When you declare a variable of a reference type in C#, you actually reserve 

a storage location that has a type associated with it, either on the heap or on the stack, which stores the reference to 

the object. So when you copy an object reference in one variable into another variable, you end up with two variables 

referencing the same object. All reference type instances live on the managed heap. The CLR manages the location of 

these objects, and if it needs to move them around, it updates all the outstanding references to the moved objects to 

point to the new location. Also, value types exist in the CLR, and instances of them live on the stack or as a field of an 

object on the managed heap. Their usage comes with many restrictions and nuances. You normally use them when 

you need a lightweight structure to manage some related data. Value types are also useful when modeling an 

immutable chunk of data. I cover this topic in much more detail in Chapter 4. 

C# allows you to develop applications rapidly while dealing with fewer mundane details than in a 
C++ environment. At the same time, C# provides a language that feels familiar to either C++ or Java 
developers. 

Example of a C# Program 
Let’s take a close look at a very simple C# program. Consider the venerable “Hello World!” program that 
everyone knows and loves. A console version of it looks like this in C#: 

class EntryPoint { 
    static void Main() { 
        System.Console.WriteLine( "Hello World!" ); 
    } 
} 

Note the structure of this C# program. It declares a type (a class named EntryPoint) and a member 
of that type (a method named Main). This differs from C++, where you declare a type in a header and 
define it in a separate compilation unit, usually a .cpp file. Also, metadata (which describes all of the 
types in a module and is generated transparently by the C# compiler) removes the need for the forward 
declarations and inclusions as required in C++. In fact, forward declarations don’t even exist in C#. 
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C++ programmers will find the static Main method familiar, except for the fact that its name begins 
with a capital letter. Every program requires an entry point, and in the case of C#, it is the static Main 
method. There are some further differences. For example, the Main method is declared within a class (in 
this case, named EntryPoint). In C#, you must declare all methods within a type definition. There is no 
such thing as a static, free function as there is in C++. The return type for the Main method may be either 
of type int or void, depending on your needs. In my example, Main has no parameters, but if you need 
access to the command-line parameters, your Main method can declare a parameter (an array of strings) 
to access them. 

■ Note If your application contains multiple types with a static Main method, you can select which one to use via 

the /main compiler switch. 

You may notice that the call to WriteLine seems verbose. I had to qualify the method name with the 
class name Console, and I also had to specify the namespace that the Console class lives in (in this case, 
System). .NET (and therefore C#) supports namespaces to avoid name collisions in the vast global 
namespace. However, instead of having to type the fully qualified name, including the namespace, every 
time, C# provides the using directive, which is analogous to Java’s import and C++’s using namespace. So 
you could rewrite the previous program slightly, as Listing 1-1 shows. 

Listing 1-1. hello_world.cs 

using System; 
 
class EntryPoint { 
    static void Main() { 
        Console.WriteLine( "Hello World!" ); 
    } 
} 

With the using System; directive, you can omit the System namespace when calling 
Console.WriteLine. 

To compile this example, execute the following command from a Windows command prompt: 

csc.exe /r:mscorlib.dll /target:exe hello_world.cs 

Let’s take a look at exactly what this command line does: 

• csc.exe is the Microsoft C# compiler. 

• The /r option specifies the assembly dependencies this program has. Assemblies 
are similar in concept to DLLs in the native world. mscorlib.dll is where the 
System.Console object is defined. In reality, you don’t need to reference the 
mscorlib assembly because the compiler will reference it automatically, unless 
you use the /nostdlib option.  
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• The /target:exe option tells the compiler that you’re building a console 
application, which is the default if not specified. Your other options here are 
/target:winexe for building a Windows GUI application, /target:library for 
building a DLL assembly with the .dll extension, and /target:module for 
generating a DLL with the .netmodule extension. /target:module generated 
modules don’t contain an assembly manifest, so you must include it later into an 
assembly using the assembly linker al.exe. This provides a way to create multiple-
file assemblies. 

• hello_world.cs is the C# program you’re compiling. If multiple C# files exist in the 
project, you could just list them all at the end of the command line.  

Once you execute this command line, it produces hello_world.exe, and you can execute it from the 
command line and see the expected results. If you want, you can rebuild the code with the /debug 
option. Then you may step through the execution inside of a debugger. To give an example of C# 
platform independence, if you happen to have a Linux OS running and you have the Mono VES installed 
on it, you can copy this hello_world.exe directly over in its binary form and it will run as expected, 
assuming everything is set up correctly on the Linux box. 

Overview of Features Added in C# 2.0 
Since its initial release in late 2000, the C# language has evolved considerably. This evolution has likely 
been accelerated thanks to the wide adoption of C#. With the release of Visual Studio 2005 and the .NET 
Framework 2.0, the C# compiler supported the C# 2.0 enhancements to the language. This was great 
news, since C# 2.0 included some handy features that provided a more natural programming experience 
as well as greater efficiency. This section provides an overview of what those features are and what 
chapters of the book contain more detailed information. 

Arguably, the meatiest addition to C# 2.0 was support for generics. The syntax is similar to C++ 
templates, but the main difference is that constructed types created from .NET generics are dynamic in 
nature—that is, they are bound and constructed at runtime. This differs from C++ concrete types created 
from templates, which are static in the sense that they are bound and created at compile time.5 Generics 
are most useful when used with container types such as vectors, lists, and hash tables, where they 
provide the greatest efficiency gains. Generics can treat the types that they contain specifically by their 
type, rather than by using the base type of all objects, System.Object. I cover generics in Chapter 11, and 
I cover collections in Chapter 9. 

C# 2.0 added support for anonymous methods. An anonymous method is sometimes referred to as a 
lambda function, which comes from functional programming disciplines. C# anonymous methods are 
extremely useful with delegates and events. Delegates and events are constructs used to register callback 
methods that are called when triggered. Normally, you wire them up to a defined method somewhere. 
But with anonymous methods, you can define the delegate’s or event’s code inline, at the point where 
the delegate or event is set up. This is handy if your delegate merely needs to perform some small 
amount of work for which an entire method definition would be overkill. What’s even better is that the 
anonymous method body has access to all variables that are in scope at the point it is defined.6 I cover 

                                                 

 
5 Using C++/CLI, standardized in Ecma-372 and first made available with Visual Studio 2008, you can use generics 
and templates together. 
6 This is referred to as either a closure or variable capture. 
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anonymous methods in Chapter 10. Lambda expressions, which are new to C# 3.0, supersede 
anonymous methods and make for more readable code. 

C# 2.0 added support for iterator blocks. Anyone familiar with the C++ Standard Template Library 
(STL) knows about iterators and their usefulness. In C#, you typically use the foreach statement to 
iterate over an object that behaves as a collection. That collection object must implement the 
IEnumerable interface, which includes the GetEnumerator method. Implementing the GetEnumerator 
method on container types is typically very tedious. However, when using C# iterators, implementing 
the GetEnumerator method is a snap. You can find more information regarding iterators in Chapter 9. 

Finally, C# 2.0 added support for partial types. Prior to C# 2.0, you had to define each C# class 
entirely in one file (also called a compilation unit). This requirement was relaxed with the support for 
partial types. This was great news for those who rely upon code generators to provide skeleton code. For 
example, you can use the Visual Studio wizards to generate such useful things as System.Data.DataSet 
derived types for accessing data in a database. Prior to C# 2.0, it was problematic if you needed to make 
modifications to the generated code. You either had to derive from or contain the generated type in a 
new type while specializing its implementation, or you had to edit the generated code. Editing the 
generated code was risky because you normally lost those changes when the wizard was forced to 
regenerate the type for some reason. Partial types solve this problem, because now you can augment the 
generated code in a separate file so that your changes aren’t lost when the wizard regenerates the code. 
For a great example of how partial types are used, look at the code automatically generated when you 
create a Windows Forms application using Visual Studio. You can find more information regarding 
partial types in Chapter 4. 

Overview of Features Added in C# 3.0 
C# 3.0 included some great new features. Most of the new features are stepping stones designed to 
support Language Integrated Query (LINQ). Nevertheless, all of them are extremely useful when used 
individually outside of the context of LINQ. Many of them allow programmers to employ functional 
programming techniques more easily. 

C# now supports implicitly typed local variables by making use of a new keyword var. It’s important 
to note that these variables are not typeless; rather, their type is inferred at compile time. You can read 
more about them in Chapter 3. 

Have you ever wanted to create a simple type to hold some related data but been annoyed at having 
to create an entire new class? In many cases, the support for anonymous types helps relieve you of this 
burden. Using anonymous types, you can define and instantiate a type all in one compound statement. I 
cover anonymous types in Chapter 4. 

Auto-implemented properties are another helpful feature to save us some typing and reduce the 
potential to introduce bugs. How many times have you simply declared a class to hold a few pieces of 
data and been annoyed with the amount of typing required to create property accessors for that data? 
After all, doing so follows good encapsulation practices. Thankfully, auto-implemented properties 
greatly reduce the amount of typing necessary to define properties on types. You can read more about 
them in Chapter 4.  

While we’re on the subject of conveniences, C# 3.0 also introduced two new features that help when 
instantiating and initializing object instances. Using object and collection initializers, you can 
instantiate and initialize either an object or a collection in one compound statement. I cover object 
initializers in Chapter 4 and collection initializers in Chapter 9. 

C# 2.0 introduced partial class definitions to facilitate using code generators. C# 3.0 adds to that by 
introducing partial methods. Using partial methods, a code generator can declare a method signature, 
and the consumer of that generated code, the one that creates the rest of the partial class definition, can 
choose to implement it or not. You can read more about partial methods in Chapter 4. 

Extension methods are one of the most exciting new features. Taken from the surface view, they are 
merely static methods that can be called as if they were instance methods. They do not get any special 
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access into the instance they are operating on, so in that respect, they are just like static methods. 
However, the syntax they foster allows us to program in a more functional manner, usually resulting in 
clearer and more readable code. I devote the entire Chapter 14 to extension methods and what you can 
do with them. 

Probably more compelling than extension methods is support for lambda expressions. Lambda 
expressions supersede support for anonymous methods. That is, if lambda expressions had existed in C# 
2.0, there would have been no need for anonymous methods at all. However, lambda expressions offer 
much more than anonymous methods as they can be converted into both delegates and expression 
trees. Lambda expressions are covered in Chapter 15. 

The granddaddy of all new C# 3.0 features has to be LINQ, which builds upon all of the new features, 
especially extension methods, lambda expressions, and anonymous types. It also adds some new 
language keywords to allow us to code intuitive query statements, thus seamlessly bridging the gap 
between the object-oriented world and the data world. You can use LINQ to access data from multiple 
sources. Visual Studio provides the capability to use LINQ on native object collections, SQL data stores, 
and XML. Support for many other data sources is coming soon from both Microsoft and third parties. 
For example, you’ll be able to use LINQ to connect to Windows Management Instrumentation (WMI), 
the Document Object Model (DOM), and the Web. Additionally, there are implementations in the works 
to use LINQ against popular web sites such as Google and Flickr. Chapter 16 is devoted to LINQ. 

Overview of New C# 4.0 Features 
Arguably, the theme of the new features of C# 4.0 centers on interoperability. The biggest feature in that 
respect is the new dynamic type. By using dynamic, the cumbersome rigmarole of interoperating with 
COM objects or types created by .NET dynamic languages is a thing of the past. Visual Basic has had a 
leg up on C# for quite some time with respect to interoperability. But with C# 4.0, the playing field has 
been leveled. Chapter 17 is devoted entirely to the dynamic type. 

Each time the C# development team embarks on a new feature cycle, they must choose from a list of 
feature ideas and requests. For some time, default method argument values has been on that list, but 
prior to C# 4.0, has never been implemented. However, interoperability is just the compelling reason 
needed to reach the tipping point. With default argument values, interoperating with COM types 
becomes even easier. However, there is another feature that goes hand-in-hand with default arguments 
values and that is named arguments. In C# 4.0, you can pass arguments to methods as named arguments 
such that ordering of arguments in the argument list is irrelevant. As nice as that sounds, it is even more 
powerful when you couple it with default argument values and COM interoperability. Often, COM 
automation interfaces contain methods with many parameters that are often optional. Using default 
arguments, you do not have to provide values for all of them. And by using named arguments, you can 
pick and choose which of the arguments in the default list of arguments you want to provide. 

Rounding out the new features of C# 4.0 is that of variance. New contextual keyword support was 
added to allow one to declare covariant and contravariant generic interfaces and delegates. By 
decorating the generic arguments with the in and out keywords, you can declare the interface as co- or 
contravariant. This allows such intuitive implicit covariant conversions from IEnumerable<string> 
references to IEnumerable<object> references. This is something that was not possible prior to C# 4.0. 
This type of covariance has always been supported for arrays, however, it is broken. Chapter 11 includes 
a section detailing the intricacies of co- and contravariance support added in C# 4.0. 

Summary 
In this chapter, I’ve touched upon the high-level characteristics of programs written in C#. That is, all 
code is compiled into IL rather than the native instructions for a specific platform. Additionally, the CLR 
implements a GC to manage raw memory allocation and deallocation, freeing you from having to worry 
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about one of the most common errors in software development: improper memory management. 
However, as with most engineering trade-offs, there are other aspects (read: complications) of memory 
and resource management that the GC can introduce in certain situations. 

Using the venerable “Hello World!” example, I was able to quickly show the usefulness of 
namespaces as well as the fact that C# is devoid of any kind of inclusion syntax as available in C++. 
Instead, all other external types are brought into the compilation unit via metadata, which is a rich 
description format of the types contained within an assembly. Therefore, the metadata and the 
compiled types are always contained in one neat package. 

Generics open up such a huge area of development that you’ll probably still be learning handy tricks 
of applying them over the next several years. Some of those tricks can be borrowed from the C++ 
template world, but not all of them, since the two concepts are fundamentally different. Iterators and 
anonymous methods offer a concise way of expressing common idioms such as enumeration and 
callback methods, while support for partial type declarations within C# makes it easier to work with tool-
generated code. 

C# 3.0 and C# 4.0 offered many new and exciting features that allow one to employ functional 
programming techniques very easily with little overhead. Some of the features add convenience to 
programming in C#. LINQ provides a seamless mechanism to bridge to the data storage world from the 
object-oriented world. 

In the next chapter, I’ll briefly cover more details regarding the JIT compilation process. 
Additionally, I’ll dig into assemblies and their contained metadata a bit more. Assemblies are the basic 
building blocks of C# applications, analogous to DLLs in the native Windows world. 
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C# and the CLR 

As mentioned in the previous chapter, managed applications and native applications have many 
differences, mainly because managed applications run inside the Microsoft CLR. The CLR is a Virtual 
Execution System (VES) that implements the CLI. The CLR provides many useful facilities to managed 
applications, including a highly tuned GC for memory management, a code access security layer, and a 
rich self-describing type system, among others. In this chapter, I’ll show you how the CLR compiles, 
packages, and executes C# programs. 

■ Note In-depth coverage of the CLR is outside the scope of this book, because I focus closely on C# concepts 

and usage. However, I recommend that you become familiar with the CLR. It’s always best to know and 

understand your target platform, and in the case of managed applications such as C#, the platform is the .NET 

CLR. For further, in-depth coverage of the CLR and everything covered in this chapter, see Essential .NET, Volume 

I: The Common Language Runtime by Don Box and Chris Sells (Addison-Wesley Professional, 2002) and Pro C# 

2005 and the .NET 2.0 Platform, Third Edition by Andrew Troelsen (Apress, 2005). After that, you may find many of 

the other, more specific books on the CLR more informative. For complete coverage of the CLR layer that provides 

complete interoperability with native environments such as COM objects and the underlying platform, I recommend 

.NET and COM: The Complete Interoperability Guide by Adam Nathan (Sams, 2002). For topics dealing with .NET 

code access security, I recommend .NET Framework Security by Brian A. LaMacchia, et al. (Pearson Education, 

2002). Because no developer should ever ignore platform security when designing new systems, I recommend The 

.NET Developer’s Guide to Windows Security by Keith Brown (Addison-Wesley Professional, 2004). 

This chapter provides a high-level and cursory description of the mechanisms involved with 
compiling C# and loading code for execution. Once the code is loaded, it must be compiled into native 
machine code for the platform it’s running on. Therefore, you need to understand the concept of JIT 
compilation. 
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The JIT Compiler in the CLR 
C# is compiled into IL, and IL is what the CLR processes. The IL specification is contained in the CLI 
standard. You can see what IL looks like by loading the “Hello World!” application (from Chapter 1) into 
the Intermediate Language Disassembler (ILDASM) provided with the .NET SDK. 1 ILDASM shows you a 
tree view of the type data from the assembly, and you can open up individual methods and see the IL 
code that the C# compiler generated for them. As shown in Listing 2-1, IL looks similar to assembly 
language. In essence, it’s the assembly language of the CLR. It’s called IL because it acts as an 
intermediate step between a specific language and a specific platform. 

Listing 2-1. HelloWorld.exe Main Method IL 

.method private hidebysig static void Main() cil managed 
{ 
  .entrypoint 
  // Code size       13 (0xd) 
  .maxstack  8 
  IL_0000:  nop 
  IL_0001:  ldstr      "Hello World! " 
  IL_0006:  call       void [mscorlib]System.Console::WriteLine(string) 
  IL_000b:  nop 
  IL_000c:  ret 
} // end of method EntryPoint::Main 

The CLR is not an interpreter. It doesn’t retranslate the IL code each time it executes it. Although 
interpreters provide many flexible solutions (as in the JScript interpreter for the Windows Scripting Host, 
for example), they’re generally not efficient run-time platforms. The CLR actually compiles IL code into 
machine code before it executes it—called JIT compiling. This process takes some time, but for each part 
of a program, it generally means only a one-time performance hit per process. Once the code is 
compiled, the CLR holds on to it and simply executes the compiled version the next time it’s needed, just 
as quickly as traditionally compiled code. 

Although the JIT compilation phase adds some complexity and has an initial run time performance 
penalty associated with it, the benefits of a JIT compiler coupled with the CLR can outweigh the time 
penalty of JIT compiling and actually create more efficient code than native compiled applications 
because of the following: 

• Managed applications can consume far less memory: In general, IL code has a 
smaller footprint than native code. In other words, the working set of managed 
applications—that is, the number of memory pages the application consumes—is 
normally smaller than native applications. With a fair amount of work, you can 
reduce the working set of native applications to be comparable to managed 
applications, but with the CLR, you get this for free. Your mileage may vary with 
this regard because there is also the added overhead of CLR management 
structures, assembly metadata, and other constructs loaded in memory. For very 

                                                 

 
1 If you have Visual Studio 2010 installed, you can easily launch ILDASM.exe from a Visual Studio 2010 command 
prompt. 
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small applications, managed code along with the CLR can consume more memory 
than the native counterpart. 

• Only IL code that is executed ever gets JIT-compiled: IL code is generally more 
compact than machine code, so keeping the compiled code to a minimum 
reduces the memory footprint of the application. 

• JIT-compiled code is highly optimized: When compiling typical native applications, 
code is optimized based on generalizations such as what the typical computer 
system topology looks like. JIT compiled code is optimized directly for the 
platform it is running on at that moment. Therefore, it can consider very specific 
parameters of the platform when optimizing compiled code and often generates 
far more performant code than statically compiled native applications. 

• The CLR can keep track of the frequency of calls: If it sees that a JIT-compiled code 
section has not been called in a long time, it can free the space occupied by it. The 
code will be recompiled if it’s called again. 

The CLR also may perform optimizations at run time. In native applications, you define the 
optimizations at compile time. But, because compilation occurs at run time in the CLR, it can apply 
optimizations at any time. It may be the case that a CLR implementation can compile code faster with 
fewer optimizations, and it may default to doing it that way. However, for code that it sees getting called 
frequently, it could recompile such code with more optimizations turned on so that it executes faster. 
For example, the CLR efficiency model can be vastly different depending on how many CPUs are on the 
target platform or even what architecture family the CPUs belong to. For native applications, you have to 
do more manual work—either at run time or compile time—to accommodate such a situation. But the 
CLR provides facilities so you can create multi-CPU performance enhancements more readily. 
Additionally, if the CLR determines that different parts of code scattered all over the application are 
called rather frequently, it has the liberty to move them in memory so that they are all within the same 
group of memory pages, thus minimizing the number of page faults and increasing the cache hits as the 
application runs. Additionally, the CLR could perform branch optimization at any time by re-JIT 
compiling code whereas in native applications, one must perform Profile-Guided Optimization where 
those optimizations are based on what the developer assumes is the most likely platform configuration 
on which the user is running the application. In other words, in the native application case optimization 
is based on guesses and assumptions whereas in the CLR case, the optimizations are based on real data 
for the exact platform on which it is running. 

These are only a few of the reasons why the CLR is a flexible platform to target, and why its benefits 
quickly outweigh the initial perceived performance hit of JIT compiling. 

Assemblies and the Assembly Loader 
An assembly is a discrete unit of reusable code within the CLR, similar in nature to a DLL in the 
unmanaged world, but that’s where the similarities end. An assembly can consist of multiple modules all 
linked together by a manifest, which describes the contents of the assembly. With respect to the 
operating system, a module is identical to a DLL. Assemblies can have a version attached to them so that 
multiple assemblies with the same name but different versions are identifiable separately. Assemblies 
also contain metadata describing the contained types. When you distribute a native DLL, you typically 
include a header file and/or documentation describing the exported functions. Metadata fulfills this 
requirement, completely describing the types contained within the assembly. In short, assemblies are 
versioned, self-describing units of reuse within the CLR environment. 

As discussed in Chapter 1, when you compile the “Hello World!” program, the result is an .exe file 
that is, in fact, an assembly. You can create managed assemblies using any managed language. 
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Moreover, in most cases, any other managed language can consume managed assemblies. Therefore, 
you can easily create complex systems developed with multiple managed languages. For example, when 
creating some low-level types, C++/CLI may be the most natural language to get the job done, but it may 
make more sense to code the top-level user interface using either C# or Visual Basic and complex 
arithmetic code using F#. To provide interoperability between the various languages, the CLI defines a 
subset of the Common Type System (CTS) known as the Common Language Specification (CLS). If you 
use only CLS-compliant types in your assemblies, you are guaranteed that any managed language can 
consume them. 

Minimizing the Working Set of the Application 
In the “Hello World!” example, the resulting assembly consists of only one file. However, assemblies can 
consist of multiple files. These files can include compiled modules, resources, and any other 
components listed in the assembly manifest. The assembly manifest is typically included in the main 
assembly module and contains essential identification information, including which pieces belong to 
the assembly. By using this information, the assembly loader can determine, among other things, if an 
assembly is incomplete or has been tampered with. Assemblies are either strongly named or not strongly 
named. A strongly named assembly has a hash code built into its manifest that the loader can use to test 
the integrity of the assembly to ensure it has not been tampered with. Assemblies can also be digitally 
signed in order to identify their producer. 

When a C# executable launches, the CLR loads the assembly and starts executing the entry-point 
method. Of course, before it can do that, it must JIT-compile the entry-point method. At that stage, the 
CLR may have to resolve some external references to be able to JIT-compile the code. For example, if 
your Main method creates an instance of a class named Employee, the CLR must find and load the 
assembly that contains the Employee type before the JIT compiler can continue. However, the great thing 
is that the CLR loads assemblies on demand. So, if you have a type that provides a method to print a 
document, and it lives in a separate assembly from the one containing the main application, but the 
application never exercises the dependency, then the separate assembly never gets loaded. This keeps 
the working set of the application from growing unnecessarily large. Therefore, when designing 
applications, it makes sense to segregate less commonly used features into separate assemblies so that 
the CLR loads them only when needed. Any time you can trim the working set of the application, you 
speed up start-up time as well as shrink the memory footprint of the running application. The key is to 
partition your code into cohesive units, or assemblies. There’s no point in creating multi-assembly 
applications if code executed in common code paths is scattered across various assemblies, because 
you’ll lose the benefit of multiple assemblies. 

Naming Assemblies 
You can name assemblies in two main ways: 

• Strongly (fully) named: This assembly has a name that consists of four parts: the 
short assembly name, a version number, a culture identifier in ISO format, and a 
hash token. If an assembly is named with all four parts, it is considered to be 
strongly named. 

• Partially named: This assembly has a name that’s missing some of the detail in 
strongly named assemblies. 

To get a good idea of what assembly names look like, open up Windows Explorer and navigate to 
your Global Assembly Cache (GAC), which is in the %systemroot%\assembly directory. In reality, the 
directory structure is very complex, but the GAC Explorer plug-in presents what you see in your browser. 
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If you navigate to the same directory by using a command prompt, you see the encoded directory names 
that the GAC uses to store the assemblies. Do not tamper with this directory structure, or you may cause 
serious damage to your GAC. Focusing on the view in Explorer, you can see the assemblies’ four-part 
names. If the Culture entry is blank for an assembly, it means that it is culture-neutral, which is common 
for assemblies that contain only code. I recommend that you isolate all of your resources in separate 
assemblies called satellite assemblies, so you can tag them as culture-specific and easily swap them out 
based on the platform culture settings without affecting your code. Similar guidelines have existed in 
native Win32 programming for years and greatly facilitate easy localization of your application to other 
languages. 

The benefit of strongly named assemblies is that they can be registered in the GAC and become 
available for use by all applications on the system. Registering an assembly in the GAC is analogous to 
registering a COM server in the registry. If the assembly is not strongly named, the application may only 
use it locally. In other words, the assembly must reside somewhere in the directory of the application 
using it or in a subdirectory thereof. Such assemblies are commonly referred to as private assemblies. 

Loading Assemblies 
The assembly loader goes through a detailed process to load an assembly. Part of this process 
determines which version of the assembly to load. By using application configuration files, you can give 
the loader some hints during version resolution. The CLR can load assemblies on an as-needed basis, or 
you can load assemblies explicitly via AppDomain.Load(). The loader looks for partially named assemblies 
in the same directory as the running application or in a subdirectory. The loader can also reference the 
GAC when searching for the assembly—for example, when loading an assembly with a fully qualified 
name, the loader searches the GAC before probing the local directories. 

Versioning plays a key role at assembly load time, and all assemblies are versioned. Versioning was 
built into the CLR loader from the beginning and removes the affliction known as DLL Hell, where 
replacing a shared DLL with a newer version breaks applications that use the older version. You veterans 
out there who have developed software on Windows throughout the past 15 years or so definitely have 
felt this pain. In the CLR, multiple versions of the same assembly can exist simultaneously on the same 
machine without conflicting with each other. Moreover, applications can choose to default to using the 
most recent version of an assembly on the machine, or they can specify the exact version they prefer by 
applying a version policy in their configuration files. 

■ Note Assembly loading and versioning is a fairly complex topic that is outside the scope of this book. Before 

loading an assembly, the loader uses various heuristics to determine which version to load. Once it knows the 

version, it passes the information down to the low-level assembly loading method. For more detailed information 

regarding assembly loading, reference Essential .NET, Volume I: The Common Language Runtime by Don Box and 

Chris Sells (Addison-Wesley Professional, 2002). 

Metadata 
Let’s look closely at the “Hello World!” example back in Listing 1-1 and compare it to what you may be 
used to if you come from the native C++ world. First, notice that it doesn’t include any headers. That’s 
because C# does not need to include headers. Instead, it uses something much more reliable and 
descriptively rich: metadata. By using metadata, managed modules are self-describing. In the C++ world, 
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to consume a library in your application, you would need two things: a static library or a DLL, and, 
normally, a header file. They exist as two separate entities that you must treat as a whole; therefore, it’s 
entirely possible that the header file and the library could get out of sync if you’re not careful. That could 
spell disaster. Managed modules, on the other hand, contain all necessary information inside the 
metadata that is contained in the module itself. The unit of reuse in the managed world is an assembly, 
and assemblies can consist of multiple modules. So it is the assembly that is, in fact, self-describing. 

Metadata is also extensible, allowing you to define new types and attributes that can be contained in 
the metadata. To top it all off, you can access metadata at run time. For example, at run time, you can 
iterate over all the fields of an arbitrary class type without having to know its declaration ahead of time 
or at compile time. Astute readers may recognize that this power opens up the possibility of entire 
programs and types being generated at run time, which is also something that is impossible with native 
C++ unless you integrate a full C++ compiler into your application. 

Metadata is an extensible description format for describing the contents of assemblies. Also, if it’s 
not expressive enough for your needs, you can define new custom “attributes” that are easily included in 
the metadata for a type. In the managed world, just about every entity in a program with a type can have 
metadata attached to it, including classes, methods, parameters, return values, assemblies, and so on. 
You can define custom attributes by deriving from the System.Attribute class, and then you can easily 
associate an instance of your custom attribute to just about any entity in your assembly. 

With metadata, you can access and examine type definitions and the attributes attached to them. 
Metadata can tell you if a particular object’s class supports a given method before attempting to call it, 
or if a given class is derived from another. The process of inspecting metadata is called reflection. 
Typically, you start with a System.Type object when you reflect upon types in the assembly. You can get 
hold of one of these type instances by using the typeof keyword in C#, by calling 
System.Assembly.GetType(), and a few other ways. Generally, the typeof keyword is more efficient 
because it is computed at compile time, whereas GetType(), although more flexible because you can 
pass it an arbitrary string, is executed at run time. Once you have a type object, you can find out if it is a 
class, an interface, a struct, or so on, what methods it has, and the number and types of fields it contains. 

■ Note If you’re wondering, “Why metadata?,” COM/DCOM employ some other techniques. If you’ve ever created 

COM components, you may be familiar with the Interface Description Language (IDL), which is a platform-

independent description language for interfaces and components. Typically, you provide your consumer with the 

COM component packaged in either a DLL or an executable along with the IDL. Again, it serves the same purpose 

as the header file for C++ libraries or the documentation for DLL exports. You typically take the IDL and pass it 

through an IDL compiler to produce native code that you can then interface with. A Type Library (TLB) serves much 

the same purpose as IDL, but it is a binary format that high-level languages, such as Visual Basic, typically 

consume. Unfortunately, IDL and TLBs don’t overlap entirely. Some things can be described in IDL but not in TLBs, 

and vice versa. 

Because assemblies are self-describing, the only thing the C# compiler needs in order to resolve type 
usages is a list of referenced assemblies as it compiles and builds the program. Once it has a list of the 
referenced assemblies, it can access the metadata contained inside them to resolve the dependencies. 
It’s a beautiful system, and it removes some typically error-prone mundane details from the C# coding 
process. 

In the managed world, you no longer have to carry around any extra baggage in the form of header 
files or IDL files. I won’t go so far as to say you don’t have to provide any documentation, because 
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documentation is always useful. But with an assembly, you have a nicely packaged entity that contains 
both the code and the descriptions needed to use its contents. If your assembly consists of a single file, 
as most do, that one file contains everything needed to consume the code in the assembly. 

Cross-Language Compatibility 
Because assemblies are self-describing and contain portable IL code, they are easily shared across 
multiple languages. Finally, you have a viable solution to put together complex systems, where some 
components are coded using one language and others are coded using different languages. For example, 
in a complex system used for engineering analysis, you may have a group of C# developers coding the 
system infrastructure and a group of engineers developing the mathematical components. Many 
engineers still program in languages such as Fortran. That’s OK, because Fortran compilers are available 
that emit IL and create managed assemblies. Thus, each development group can work in a language that 
is more natural to it and to its problem domains. 

Metadata is essential to such sharing. Jim Miller and Susann Ragsdale describe the metadata format 
completely in The Common Language Infrastructure Annotated Standard (Addison-Wesley Professional, 
2003). I recommend that you read this book or the CLI Ecma standards documents2 to get the best 
understanding of the CLR and how metadata is generated and consumed. 

Summary 
This chapter briefly covered the essentials of how C# is compiled, packaged, and executed. 

I discussed how JIT compiling can actually outperform traditionally compiled applications. One of 
the requirements for optimizing JIT compilation is an expressive and extensible-type mechanism that 
the compiler can understand. By packaging IL into assemblies that are self-documenting, both the CLR 
and the JIT compiler have all the information they need to manage code execution. Additionally, you can 
explicitly load an assembly on demand by providing either its strong name or a partial name. Assemblies 
make it possible to run distinct versions of code without experiencing DLL Hell, and they also provide 
the basis for developing and sharing components across languages. 

In the next chapter, I’ll lead you on a whirlwind 20,000-foot view of the C# language syntax. Because 
I don’t have the space to cover every minute syntactic detail, I recommend that you also reference the C# 
language specification as well. 

                                                 

 
2 The Ecma-335 document covers the Ecma CLI standard, and the Ecma-334 document found at http://www.ecma-
international.org covers the C# language. ISO/IEC 23271 also covers the CLI, and ISO/IEC 23270 at 
http://www.iso.org also covers the C# language. However, the Ecma standards are generally more current, and 
you can download them freely. 

http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.iso.org
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C# Syntax Overview 

This chapter introduces you to the syntax of the C# language. It’s assumed that you have a reasonable 
amount of experience with C++ or Java, because C# shares a similar syntax. This is no accident. The 
designers of C# clearly meant to leverage the knowledge of those who have already developed with C++ 
and Java, which are arguably the dominant languages in object-oriented (OO) software development. 

I’ve noted nuances and differences that are specific to the C# language. But, if you’re familiar with 
either C++ or Java, you’ll feel right at home with C# syntax. 

C# Is a Strongly Typed Language 
Like C++ and Java, C# is a strongly typed language, which means that every variable and object instance 
in the system is of a well-defined type. This enables the compiler to check that the operations you try to 
perform on variables and object instances are valid. For example, suppose you have a method that 
computes the average of two integers and returns the result. You could declare the C# method as follows: 

double ComputeAvg( int param1, int param2 ) 
{ 
   return (param1 + param2) / 2.0; 
} 

This tells the compiler that this method accepts two integers and returns a double. Therefore, if the 
compiler attempts to compile code where you inadvertently pass an instance of type Apple, it will 
complain and stop. Suppose you wrote the method slightly differently: 

object ComputeAvg( object param1, object param2 ) 
{ 
   return ((int) param1 + (int) param2) / 2.0; 
} 

The second version of ComputeAvg is still valid, but you have forcefully stripped away the type 
information. Every object and value in C# implicitly derives from System.Object. The object keyword in 
C# is an alias for the class System.Object. So it is perfectly valid to declare these parameters as type 
object. However, object is not a numeric type. In order to perform the calculation, you must first cast 
the objects into integers. After you’re done, you return the result as an instance of type object. Although 
this version of the method can seem more flexible, it’s a disaster waiting to happen. What if some code in 
the application attempts to pass an instance of type Apple into ComputeAvg? The compiler won’t 
complain, because Apple derives from System.Object, as every other class does. However, you’ll get a 
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nasty surprise at runtime when your application throws an exception declaring that it cannot convert an 
instance of Apple to an integer. The method will fail, and unless you have an exception handler in place, 
it could terminate your application. That’s not something you want to happen in your code that is 
running on a production server somewhere. 

It is always best to find bugs at compile time rather than runtime. That is the moral of this story. If 
you were to use the first version of ComputeAvg, the compiler would have told you how ridiculous it was 
that you were passing an instance of Apple. This is much better than hearing it from an angry customer 
whose e-commerce server just took a dirt nap. The compiler is your friend, so let it be a good one and 
provide it with as much type information as possible to strictly enforce your intentions. 

Expressions 
Expressions in C# are practically identical to expressions in C++ and Java. The important thing to keep in 
mind when building expressions is operator precedence. C# expressions are built using operands, 
usually variables or types within your application, and operators. Many of the operators can be 
overloaded as well. Operator overloading is covered in Chapter 6. Table 3-1 lists the precedence of the 
operator groups. Entries at the top of the table have higher precedence, and operators within the same 
category have equal precedence. 

Table 3-1. C# Operator Precedence 

Operator Group Operators Included Description 

x.m Member access 

x(...) Method invocation 

x[...] Element access 

x++, x-- Postincrement and 
postdecrement 

Primary 

new T(...), new T[...] Creation expressions 

typeof(T) Gets System.Type object for T 

Object and array creation checked(x), unchecked(x) Evaluates expression while 
controlling the overflow 
checking context 
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Table 3-1. C# Operator Precedence (continued) 

default(T) Produces default value for type T1  

delegate {…} Anonymous function/method  

+x, -x Identity and negation 

!x Logical negation 

~x Bitwise negation 

++x, --x Preincrement and 
predecrement 

Unary 

(T) x Casting operation 

Multiplicative x*y, x/y, x%y Multiplication, division, and 
remainder 

Additive x+y, x-y Addition and subtraction 

Shift x<<y, x>>y Left and right shift 

x<y, x>y, x<=y, x>=y Less than, greater than, less 
than or  

x is T True if x is convertible to T; false 
otherwise Relational and type testing 

x as T Returns x converted to T, or null 
if conversion is not possible 

Equality x == y, x != y Equal and not equal 

Logical AND x & y Integer bitwise AND, Boolean 
logical AND 

Logical XOR x ^ y Integer bitwise XOR, Boolean 
logical XOR 

                                                 

 
1 You can learn more about default value expressions in the section titled “Default Value Expression” in Chapter 11. 
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Table 3-1. C# Operator Precedence (continued) 

Logical OR x | y Integer bitwise OR, Boolean 
logical OR 

Conditional AND x && y Evaluates y only if x is true 

Conditional OR x || y Evaluates y only if x is false 

Null coalescing x ?? y If x is non-null, evaluates to x; 
otherwise, y 

Conditional x ? y : z Evaluates y if x is true; 
otherwise, evaluates z 

x = y Simple assignment 

Assignment or anonymous 
function x op= y Compound assignment; could 

be any of *=, /=, %=, +=, -=, <<=, 
>>=, &=, ^=, or |= 

(T x) => y Lambda expression (anonymous 
function/method) 

 

■ Note These operators can have different meanings in different contexts. Regardless, their precedence never 

changes. For example, the + operator can mean string concatenation if you’re using it with string operands. By 

using operator overloading when defining your own types, you can make some of these operators perform 

whatever semantic meaning makes sense for the type. But again, you may never alter the precedence of these 

operators except by using parentheses to change the grouping of operations. 

In expressions, operators with the same precedence are processed based upon their associativity. All binary 

operators except assignment operators are left-associative whereas assignment operators and the conditional 

operator (the ternary operator) are right-associative. 

Statements and Expressions 
Statements in C# are identical in form to those of C++ and Java. A semicolon terminates one-line 
expressions. However, code blocks, such as those in braces in an if or a while statement, do not need to 
be terminated with a semicolon. Adding the semicolon is optional at the end of a block. 

Most of the statements that are available in C++ and Java are available in C#, including variable 
declaration statements, conditional statements, control flow statements, try/catch statements, and so 
on. However, C# (like Java) has some statements that are not available in C++. For example, C# provides 
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a try/finally statement, which I discuss in detail in Chapter 7. In Chapter 12, I’ll show you the lock 
statement, which synchronizes access to code blocks. C# also overloads the using keyword, so you can 
use it either as a directive or a statement. You can use a using statement in concert with the Disposable 
pattern I describe in Chapters 4 and 13. The foreach statement, which makes iterating through 
collections easier, also deserves mention. You’ll see more of this statement in Chapter 9, when I discuss 
collection types. 

Types and Variables 
Every entity in a C# program is an object that lives on either the stack or the managed heap. Every 
method is defined in a class or struct declaration. There are no such things as free functions, defined 
outside the scope of class or struct declarations, as there are in C++. Even the built-in value types, such 
as int, long, double, and so on, have methods associated with them implicitly. So, in C#, it’s perfectly 
valid to write a statement such as the following: 

System.Console.WriteLine( 42.ToString() ); 

A statement like this, where a method is invoked on the immediate value 42, will feel unfamiliar if 
you’re used to C++ or Java. But, it emphasizes how everything in C# is an object, even down to the most 
basic types. In fact, the built-in type keywords in C# are actually mapped directly into types in the System 
namespace that represent them. You can even elect not to use the C# built-in types and explicitly use the 
types in the System namespace that they map to (but this practice is discouraged as a matter of style). 
Table 3-2 describes the built-in types, showing their size and what type they map to in the System 
namespace. 

Table 3-2. C# Built-In Types 

C# Type Size in Bits System Type CLS-Compliant 

sbyte 8 System.SByte No 

short 16 System.Int16 Yes 

int 32 System.Int32 Yes 

long 64 System.Int64 Yes 

byte 8 System.Byte Yes 

ushort 16 System.UInt16 No 

uint 32 System.UInt32 No 

ulong 64 System.UInt64 No 
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Table 3-2. C# Built-In Types (continued) 

char 16 System.Char Yes 

bool 8 System.Boolean Yes 

float 32 System.Single Yes 

double 64 System.Double Yes 

decimal 128 System.Decimal Yes 

string N/A System.String Yes 

object N/A System.Object Yes 

dynamic N/A System.Object Yes 

For each entry in the table, the last column indicates whether the type is compliant with the 
Common Language Specification (CLS). The CLS is defined as part of the CLI standard to facilitate 
multilanguage interoperability. The CLS is a subset of the Common Type System (CTS). Even though the 
CLR supports a rich set of built-in types, not all languages that compile into managed code support all of 
them. However, all managed languages are required to support the types in the CLS. For example, Visual 
Basic hasn’t supported unsigned types traditionally. The designers of the CLI defined the CLS to 
standardize types in order to facilitate interoperability between the languages. If your application will be 
entirely C#-based and won’t create any components consumed from another language, then you don’t 
have to worry about adhering to the strict guidelines of the CLS. But if you work on a project that builds 
components using various languages, then conforming to the CLS will be much more important to you. 

In the managed world of the CLR, there are two kinds of types: 

Value types: Defined in C# using the struct keyword. Instances of value types are the only kind of 
instances that can live on the stack. They live on the heap if they’re members of reference types or if 
they’re boxed, which I discuss later. They are similar to structures in C++ in the sense that they are 
copied by value by default when passed as parameters to methods or assigned to other variables. 
Although C#’s built-in value types represent the same kinds of values as Java’s primitive types, there 
are no Java counterparts. 

Reference types: Often defined in C# using the class keyword. They are called reference types 
because the variables you use to manipulate them are actually references to objects on the managed 
heap. In fact, in the CLR reference-type variables are like value types variables that have an 
associated type and contain a pointer to an object on the heap. You, as the programmer, use the 
class definition to define those objects that are created on the heap. In this way, C# and Java are 
identical. C++ programmers can think of reference type variables as pointers that you don’t have to 
dereference to access objects. Some C++ programmers like to think of these as smart pointers. 
Often, when one refers to reference types in C#, one means objects that live on the managed heap. 
However, a reference type variable is used to interact with the objects on the managed heap. 
Reference type variables have a type associated with them and contain a pointer to the object they 
reference. For example, the reference type variable’s type could be the same as the object’s class 
that it points to, a base type for the object, or its type could be that of an interface that the object 
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implements. Naturally, several reference type variables could reference the same object instance at 
the same time. In contrast, value types contain their data rather than a pointer to the data. Figure 3-
1 is a diagram describing the scenario of two reference type variables that reference the same object 
on the managed heap. The diagram depicts how each reference type variable has a type associated 
with it. 

Object
on heap

referenceA

referenceB
  

Figure 3-1. Reference Variable Types 

Value Types 
Value types can live on either the stack or the managed heap. You use them commonly when you need 
to represent some immutable data that is generally small in its memory footprint. You can define user-
defined value types in C# by using the struct keyword. 

■ Note The next subsection covers enumerations which are declared with the enum keyword. The enum keyword 

also allows one to declare a value type. 

User-defined value types behave in the same way that the built-in value types do. When you create a 
value during the flow of execution, the value is typically created on the stack unless it is a member of a 
reference type. Consider this code snippet: 

int theAnswer = 42; 
System.Console.WriteLine( theAnswer.ToString() ); 

Not only is the theAnswer instance created on the stack, but if it gets passed to a method, the method 
will receive a copy of it. Value types are typically used in managed applications to represent lightweight 
pieces or collections of data, similar to the way built-in types and structs are sometimes used in C++, and 
primitive types are used in Java. 

Values can also live on the managed heap, but not by themselves. The only way this can happen is if 
a reference type has a field that is a value type. Even though a value type inside an object lives on the 
managed heap, it still behaves the same as a value type on the stack when it comes to passing it into a 
method; that is, the method will receive a copy by default. Any changes made to the value instance are 
only local changes to the copy unless the value was passed by reference. The following code illustrates 
these concepts: 

public struct Coordinate  //this is a value type 
{ 
    public int x; 
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    public int y; 
} 
 
public class EntryPoint //this is a reference type 
{ 
    public static void AttemptToModifyCoord( Coordinate coord ) { 
        coord.x = 1; 
        coord.y = 3; 
    } 
 
    public static void ModifyCoord( ref Coordinate coord ) { 
        coord.x = 10; 
        coord.y = 10; 
    } 
 
    static void Main() { 
        Coordinate location; 
        location.x = 50; 
        location.y = 50; 
 
        AttemptToModifyCoord( location ); 
        System.Console.WriteLine( "( {0}, {1} )", location.x, location.y ); 
 
        ModifyCoord( ref location ); 
        System.Console.WriteLine( "( {0}, {1} )", location.x, location.y ); 
    } 
} 

In the Main method, the call to AttemptToModifyCoord actually does nothing to the location value. 
This is because AttemptToModifyCoord modifies a local copy of the value that was made when the 
method was called. On the contrary, the location value is passed by reference into the ModifyCoord 
method. Thus, any changes made in the ModifyCoord method are actually made on the location value in 
the calling scope. It’s similar to passing a value by a pointer in C++. The output from the example is as 
follows: 

( 50, 50 ) 
( 10, 10 ) 

Enumerations 

Enumerations (enums) in C# are similar to enumerations in C++, and the defining syntax is almost 
identical. At the point of use, however, you must fully qualify the values within an enumeration using the 
enumeration type name. All enumerations are based upon an underlying integral type, which if not 
specified, defaults to int. Thus, enumerations are also value types. 
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■ Note The underlying type of the enum must be an integral type that is one of the following: byte, sbyte, short, 

ushort, int, uint, long, or ulong. 

Each constant that is defined in the enumeration must be defined with a value within the range of 
the underlying type. If you don’t specify a value for an enumeration constant, the value takes the default 
value of 0 (if it is the first constant in the enumeration) or 1 plus the value of the previous constant. This 
example is an enumeration based upon a long: 

public enum Color : long 
{ 
   Red, 
   Green = 50, 
   Blue 
} 

In this example, if I had left off the colon and the long keyword after the Color type identifier, the 
enumeration would have been of int type. Notice that the value for Red is 0, the value for Green is 50, and 
the value for Blue is 51. 

To use this enumeration, write code such as the following: 

static void Main() { 
   Color color = Color.Red; 
   System.Console.WriteLine( "Color is {0}", color.ToString() ); 
} 

If you compile and run this code, you’ll see that the output actually uses the name of the 
enumeration rather than the ordinal value 0. The System.Enum type’s implementation of the ToString 
method performs this magic. 

Flags Enumerations 

Many times, you may use enumeration constants to represent bit flags. You can attach an attribute 
in the System namespace called System.FlagsAttribute to the enumeration to make this explicit. The 
attribute is stored in the metadata, and you can reference it at design time to determine whether 
members of an enumeration are intended to be used as bit flags.  

Note that System.FlagsAttribute doesn’t modify the behavior of the values defined by the 
enumeration. At runtime, however, certain components can use the metadata generated by the attribute 
to process the value differently. This is a great example of how you can use metadata effectively in an 
aspect-oriented programming (AOP) manner. 

■ Note AOP, also called aspect-oriented software development (AOSD), is a concept originally developed by 

Gregor Kiczales and his team at Xerox PARC. Object-oriented methodologies generally do a great job of partitioning 

the functionality, or concerns, of a design into cohesive units. However, some concerns, called cross-cutting 

concerns, cannot be modeled easily with standard OO designs. For example, suppose you need to log entry into 
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and exit from various methods. It would be a horrible pain to modify the code for each and every method that you 

need to log. It would be much easier if you could simply attach a property—or in this case, an attribute—to the 

method itself, so that the runtime would log the method’s call when it happens. This keeps you from having to 

modify the method, and the requirement is applied out-of-band from the method’s implementation. Microsoft 

Transaction Server (MTS) was one of the first widely known examples of AOP.  

Using metadata, and the fact that you can attach arbitrary, custom attributes to types, methods, properties, and so 

on, you can use AOP in your own designs. 

The following is an example of a bit flag enumeration: 

[Flags] 
public enum AccessFlags 
 
{ 
   NoAccess = 0x0, 
   ReadAccess = 0x1, 
   WriteAccess = 0x2, 
   ExecuteAccess = 0x4 
} 

The following is an example of using the AccessFlags enumeration: 

static void Main() { 
   AccessFlags access = AccessFlags.ReadAccess | 
      AccessFlags.WriteAccess; 
 
   System.Console.WriteLine( "Access is {0}", access ); 
} 

If you compile and execute the previous example, you’ll see that the Enum.ToString method 
implicitly invoked by WriteLine does, in fact, output a comma-separated list of all the bits that are set in 
this value. 

Reference Types 
The garbage collector (GC) inside the CLR manages everything regarding the placement of objects. It can 
move objects at any time. When it moves them, the CLR makes sure that the variables that reference 
them are updated. Normally, you’re not concerned with the exact location of the object within the heap, 
and you don’t have to care if it gets moved around or not. There are rare cases, such as when interfacing 
with native DLLs, when you may need to obtain a direct memory pointer to an object on the heap. It is 
possible to do that using unsafe (or unmanaged) code techniques, but that is outside the scope of this 
book. 
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■ Note Conventionally, the term object refers to an instance of a reference type, whereas the term value refers to 

an instance of a value type, but all instances of any type (reference type or value type) are also derived from type 

object.  

Variables of a reference type are either initialized by using the new operator to create an object on 
the managed heap, or they are initialized by assignment from another variable of a compatible type. The 
following code snippet points two variables at the same object: 

object o1 = new object(); 
object o2 = o1; 

Like the Java runtime, the CLR manages all references to objects on the heap. In C++, you must 
explicitly delete heap-based objects at some carefully chosen point. But in the managed environment of 
the CLR, the GC takes care of this for you. This frees you from having to worry about deleting objects 
from memory and minimizes memory leaks. The GC can determine, at any point in time, how many 
references exist to a particular object on the heap. If it determines there are none, it is free to start the 
process of destroying the object on the heap. (Chapter 13 discusses at length the intricacies of this 
process and the factors that influence it.) The previous code snippet includes two references to the same 
object. You initialize the first one, o1, by creating a new object. You initialize the second one, o2, from o1. 
The GC won’t collect the object on the heap until both of these references are outside any usable scope. 
Had the method containing this code returned a copy of the reference to whatever called it, then the GC 
would still have a reference to track even when the method was no longer in scope. 

■ Note For those coming from a C++ background, the fundamental way in which objects are treated in the C++ 

world is reversed in the C# world. In C++, objects are allocated on the stack unless you create them explicitly with 

the new operator, which then returns a pointer to the object on the native heap. In C#, you cannot create objects of 

a reference type on the stack. They can only live on the heap. So, it’s almost as if you were writing C++ code, 

where you create every object on the heap without having to worry about deleting the objects explicitly to clean up. 

Default Variable Initialization 
By default, the C# compiler produces what is called safe code. One of the safety concerns is making sure 
the program doesn’t use uninitialized memory. The compiler wants every variable to be set to a value 
before you use it, so it is useful to know how many different types of variables are initialized. 

The default value for references to objects is null. At the point of declaration, you can optionally 
assign references from the result of a call to the new operator; otherwise, they will be set to null. When 
you create an object, the runtime initializes its internal fields. Fields that are references to objects are 
initialized to null, of course. Fields that are value types are initialized by setting all bits of the value type 
to zero. Basically, you can imagine that all the runtime is doing is setting the bits of the underlying 
storage to 0. For references to objects, that equates to a null reference, and for value types, that equates 
to a value of zero (or false for a Boolean). 
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For value types that you declare on the stack, the compiler does not zero-initialize the memory 
automatically. However, it does make sure that you initialize the memory before the value is used. 

■ Note Enumerations are actually value types and even though 0 is implicitly convertible to any enumeration type, 

it is good design practice to always declare an enumeration member that equates to zero, even if the name of the 

member is InvalidValue or None and is otherwise meaningless. If an enumeration is declared as a field of a 

class, instances of that class will have the field set to zero upon default initialization. Declaring a member that 

equates to zero allows users of your enumeration to deal with this case easily and, one could argue, creates more 

readable code. 

Implicitly Typed Local Variables 
Because C# is a strongly typed language, every variable declared in the code must have an explicit type 
associated with it. Starting with C# 4.0, that rule is relaxed a bit with the dynamic type that I introduce in 
Chapter 17. When the CLR stores the contents of the variable in a memory location, it also associates a 
type with that location. But sometimes, when writing code for strongly typed languages, the amount of 
typing needed to declare such variables can be tedious, especially if the type is a generic one. For 
complex types, such as query variables created using Language Integrated Query (LINQ), discussed in 
Chapter 16, the type names can be downright unwieldy. Enter implicitly typed variables. 

By declaring a local variable using the new var keyword, you effectively ask the compiler to reserve a 
local memory slot and attach an inferred type to that slot. At compilation time, there is enough 
information available at the point the variable is initialized for the compiler to deduce the actual type of 
that variable without your having to tell it the type explicitly. Let’s have a look at what these look like. 

Here you see an example of what an implicitly typed variable declaration looks like: 

using System; 
using System.Collections.Generic; 
 
public class EntryPoint 
{ 
    static void Main() { 
        var myList = new List<int>(); 
 
        myList.Add( 1 ); 
        myList.Add( 2 ); 
        myList.Add( 3 ); 
 
        foreach( var i in myList ) { 
            Console.WriteLine( i ); 
        } 
    } 
} 

The first things you should notice are the keywords in bold that show the usage of the new var 
keyword. In the first usage, I have declared a variable named myList, asking the compiler to set the type 
of the variable based upon the type from which it is assigned. It’s important to note that an implicitly 
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typed variable declaration must include an initializer. If you tried to state the following in code, you 
would be greeted with the compiler warning CS0818, stating that “Implicitly typed locals must be 
initialized”: 

var newValue;    // emits error CS0818 

Similarly, if you try to declare a class field member as an implicitly typed variable, even if it has an 
initializer, you will get the compiler error CS0825, stating that “The contextual keyword ‘var’ may only 
appear within a local variable declaration.” 

Finally, you may be used to declaring multiple variables in one line by separating each identifier 
with a comma, as in the following two examples: 

int a = 2, b = 1; 
int x, y = 4; 

However, you cannot do this with implicitly typed variables. The compiler gives you the error 
CS0819, stating “Implicitly typed locals cannot have multiple declarators.” 

THE COMPLEXITY OF ADDING NEW KEYWORDS TO THE LANGUAGE 

Adding new features like implicitly typed variables to the compiler is not as trivial as it may appear at first. 
That’s because any time you introduce a new keyword to the language, you have to be concerned about 
breaking existing code and not allowing backward compatibility. For example, imagine what would happen if 
you had a huge code base written with C# 1.0 or C# 2.0 that had a type, say a class, named var. Now, you 
are in the process of making the switch to C# 3.0 or later and you compile your application using the new 
compiler. Clearly, you will most likely have some variable declarations that create instances of your var 
class. What should the compiler do? This is a very difficult question to answer. 

In my tests with the compiler, the compiler does nothing. But should it do nothing? It could choose to 
emit a compiler warning stating something such as, “declared type has same name as built-in ‘var’ keyword.” 
But in reality, that’s not necessary, as I will show. In fact, it’s probably best that the compiler does not emit a 
warning. Good development teams use the /WARNASERRORS+ compiler option to halt compilation if there is a 
warning in the code. If the compiler emitted a warning, your application would fail to compile as you migrated 
to C# 3.0 or later and Microsoft would take the blame for being so flagrant as to ignore backward 
compatibility. 

The bottom line is that if you have a type defined using the name var, you simply cannot use implicitly 
typed variables in any C# code where that type’s namespace is imported into the local scope. If you do, you’ll 
typically get the CS0029 compiler error, which says in essence that the type you are trying to assign to an 
implicitly typed variable cannot be implicitly converted to your custom var type. Whew! What a mouthful. For 
example, the following code exhibits this behavior: 

using System; 
using System.Collections.Generic; 
 
public class var 
{ 
} 
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public class EntryPoint 
{ 
    static void Main() { 
        var myList = new List<int>();    // Won't compile!  Error CS0029 
    } 
} 

Compiler developers typically take this problem extremely seriously and sometimes won’t even 
introduce a new keyword if it could possibly break existing code. However, the C# compiler developers 
have a trump card. If you follow the recommended conventions for naming .NET types with an initial capital 
letter, you’ll never find yourself in this situation. Additionally, if you use Visual Studio code analysis or 
FxCop (the stand-alone version of code analysis) during the development of your application, you will 
never encounter this problem. These rules and guidelines are also covered in detail in Framework Design 
Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries by Krzysztof Cwalina and Brad 
Abrams (Boston, MA: Addison-Wesley Professional, 2005). I highly recommend you read their book if you 
have not already. 

Type Conversion 
Many times, it’s necessary to convert instances of one type to another. In some cases, the compiler does 
this conversion implicitly whenever a value of one type is assigned from another type that, when 
converted to the assigned type, will not lose any precision or magnitude. In cases where precision could 
be lost, an explicit conversion is required. For reference types, the conversion rules are analogous to the 
pointer conversion rules in C++. 

The semantics of type conversion are similar to both C++ and Java. Explicit conversion is 
represented using the familiar casting syntax that all of them inherited from C—that is, the type to 
convert to is placed in parentheses before whatever needs to be converted: 

int defaultValue = 12345678; 
long value = defaultValue; 
int smallerValue = (int) value; 

In this code, the (int) cast is required to be explicit since the underlying size of an int is smaller 
than a long. Thus, it’s possible that the value in the long may not fit into the space available to the int. 
The assignment from the defaultValue variable to the value variable requires no cast, since a long has 
more storage space than an int. If the conversion will lose magnitude, it’s possible that the conversion 
may throw an exception at runtime. The general rule is that implicit conversions are guaranteed never to 
throw an exception, whereas explicit conversions may throw exceptions. 

The C# language provides the facilities to define custom implicit and explicit conversion operators 
to various types for your user-defined types. Chapter 6 covers these in more detail. The exception 
requirements for built-in conversion operators apply to user-defined conversion operators. Namely, 
implicit conversion operators are guaranteed never to throw. 

Conversion to and from reference types models that of Java and of conversions between pointers in 
C++. For example, a reference to type DerivedType can be implicitly converted to a reference to type 
BaseType if DerivedType is derived from BaseType. However, you must explicitly cast a conversion in the 
opposite direction. Also, an explicit cast may throw a System.InvalidCastException if the CLR cannot 
perform the conversion at runtime. 
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Array Covariance 

One kind of implicit cast is available in C# that is not easily available in C++, mainly because of the 
default value semantics of C++. It is possible to implicitly convert from an array of one reference type to 
an array of another reference type, as long as the target reference type is one that can be implicitly 
converted from the source reference type and the arrays are of the same dimension. This is called array 
covariance. For example, the following conversion is valid: 

public class EntryPoint 
{ 
    static void Main() { 
        string[] names = new string[4]; 
        object[] objects = names;  //implicit conversion statement 
 
        string[] originalNames =  
            (string[]) objects;  // explicit conversion statement 
    } 
} 

Because System.String derives from System.Object and, therefore, is implicitly convertible to 
System.Object, this implicit conversion of the string array names into the object array objects variable is 
valid. However, to go in the other direction, as shown, requires an explicit cast that may throw an 
exception at runtime if the conversion fails. 

Keep in mind that implicit conversions of arguments may occur during method invocation if 
arguments must be converted to match the types of parameters. If you cannot make the conversions 
implicitly, you must cast the arguments explicitly. 

Boxing Conversion 

Finally, another type of common conversion is a boxing conversion. Boxing conversions are required 
when you must pass a value type as a reference type parameter to a method or assign it to a variable that 
is a reference type. What happens is that an object is allocated dynamically on the heap that contains a 
field of the value’s type. The value is then copied into this field. I cover boxing in C# extensively in 
Chapter 4. The following code demonstrates boxing: 

public class EntryPoint 
{ 
    static void Main() { 
        int employeeID = 303; 
        object boxedID = employeeID; 
         
        employeeID = 404; 
        int unboxedID = (int) boxedID; 
 
        System.Console.WriteLine( employeeID.ToString() ); 
        System.Console.WriteLine( unboxedID.ToString() ); 
    } 
} 

At the point where the object variable boxedID is assigned from the int variable employeeID, boxing 
occurs. A heap-based object is created and the value of employeeID is copied into it. This bridges the gap 
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between the value type and the reference type worlds within the CLR. The boxedID object actually 
contains a copy of the employeeID value. I demonstrate this point by changing the original employeeID 
value after the boxing operation. Before printing out the values, I unbox the value and copy the value 
contained in the object on the heap back into another int on the stack. Unboxing requires an explicit 
cast in C#. 

as and is Operators 
Because explicit conversion can fail by throwing exceptions, times arise when you may want to test the 
type of a variable without performing a cast and seeing if it fails or not. Testing type via casting is tedious 
and inefficient, and exceptions are generally expensive at runtime. For this reason, C# has two operators 
that come to the rescue, and they are guaranteed not to throw an exception: 

• is 

• as 

The is operator results in a Boolean that determines whether you can convert a given expression to 
the given type as either a reference conversion or a boxing or unboxing operation. For example, consider 
the following code: 

using System; 
 
public class EntryPoint 
{ 
    static void Main() { 
        String derivedObj = "Dummy"; 
        Object baseObj1 = new Object(); 
        Object baseObj2 = derivedObj; 
 
        Console.WriteLine( "baseObj2 {0} String", 
                           baseObj2 is String ? "is" : "isnot" ); 
        Console.WriteLine( "baseObj1 {0} String", 
                           baseObj1 is String ? "is" : "isnot" ); 
        Console.WriteLine( "derivedObj {0} Object", 
                           derivedObj is Object ? "is" : "isnot" ); 
 
        int j = 123; 
        object boxed = j; 
        object obj = new Object(); 
 
        Console.WriteLine( "boxed {0} int", 
                           boxed is int ? "is" : "isnot" ); 
        Console.WriteLine( "obj {0} int", 
                           obj is int ? "is" : "isnot" ); 
        Console.WriteLine( "boxed {0} System.ValueType", 
                           boxed is ValueType ? "is" : "isnot" ); 
 
    } 
} 

The output from this code is as follows: 

v@v
Text Box
Download at WoweBook.com
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baseObj2 is String 

baseObj1 isnot String 

derivedObj is Object 

boxed is int 

obj isnot int 

boxed is System.ValueType 

As mentioned previously, the is operator considers only reference conversions. This means that it 
won’t consider any user-defined conversions that are defined on the types. 

The as operator is similar to the is operator, except that it returns a reference to the target type. 
Because it is guaranteed never to throw an exception, it simply returns a null reference if the conversion 
cannot be made. Similar to the is operator, the as operator only considers reference conversions or 
boxing/unboxing conversions. For example, look at the following code: 

using System; 
 
public class BaseType {} 
 
public class DerivedType : BaseType {} 
 
public class EntryPoint { 
    static void Main() { 
        DerivedType derivedObj = new DerivedType(); 
        BaseType baseObj1 = new BaseType(); 
        BaseType baseObj2 = derivedObj; 
 
        DerivedType derivedObj2 = baseObj2 as DerivedType; 
        if( derivedObj2 != null ) { 
            Console.WriteLine( "Conversion Succeeded" ); 
        } else { 
            Console.WriteLine( "Conversion Failed" ); 
        } 
         
        derivedObj2 = baseObj1 as DerivedType; 
        if( derivedObj2 != null ) { 
            Console.WriteLine( "Conversion Succeeded" ); 
        } else { 
            Console.WriteLine( "Conversion Failed" ); 
        } 
         
        BaseType baseObj3 = derivedObj as BaseType; 
        if( baseObj3 != null ) { 
            Console.WriteLine( "Conversion Succeeded" ); 
        } else { 
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            Console.WriteLine( "Conversion Failed" ); 
        } 
    } 
} 

The output from this code is as follows: 

Conversion Succeeded 

Conversion Failed 

Conversion Succeeded 

Sometimes you need to test whether a variable is of a certain type and, if it is, then do some sort of 
operation on the desired type. You could test the variable for the desired type using the is operator and 
then, if true, cast the variable to the desired type. However, doing it that way is inefficient. The better 
approach is to follow the idiom of applying the as operator to obtain a reference of the variable with the 
desired type, and then test whether the resulting reference is null, which would mean that the 
conversion succeeded. That way, you perform only one type lookup operation instead of two. 

Generics 
Support for generics is one of the most exciting evolutions to the C# language. Using the generic syntax, 
you can define a type that depends upon another type that is not specified at the point of definition, but 
rather at the point of usage of the generic type. For example, imagine a collection type. Collection types 
typically embody things such as lists, queues, and stacks. The collection types that have been around 
since the .NET 1.0 days are adequate for containing any type in the CLR, since they contain Object 
instances and everything derives from Object. However, all of the type information for the contained 
type is thrown away, and the compiler’s power to catch type errors is rendered useless. You must cast 
every type reference that you obtain from these collections into the type you think it should be, and that 
could fail at runtime. Also, the original collection types can contain a heterogeneous blend of types 
rather than force the user to insert only instances of a certain type. You could go about fixing this 
problem by writing types such as ListOfIntegers and ListOfStrings for each type you want to contain 
in a list. However, you will quickly find out that most of the management code of these lists is similar, or 
generic, across all of the custom list types. The keyword is generic. Using generic types, you can declare 
an open (or generic) type and only have to write the common code once. The users of your type can then 
specify which type the collection will contain at the point they decide to use it. 

Additionally, using generics involves efficiency gains. The concept of generics is so large that I’ve 
devoted Chapter 11 entirely to their declaration and usage. However, I believe it’s important to give you 
a taste of how to use a generic type now, since I mention them several times prior to Chapter 11. 

■ Note The generic syntax will look familiar to those who use C++ templates. However, it’s important to note that 

there are significant behavioral differences, which I’ll explain in Chapter 11. 
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The most common use of generics is during the declaration of collection types. For example, take a 
look at the following code: 

using System; 
using System.Collections.Generic; 
using System.Collections.ObjectModel; 
 
class EntryPoint 
{ 
    static void Main() { 
        Collection<int> numbers = 
            new Collection<int>(); 
        numbers.Add( 42 ); 
        numbers.Add( 409 ); 
 
        Collection<string> strings = 
            new Collection<string>(); 
        strings.Add( "Joe" ); 
        strings.Add( "Bob" ); 
 
        Collection< Collection<int> > colNumbers 
            = new Collection<Collection<int>>(); 
        colNumbers.Add( numbers ); 
 
        IList<int> theNumbers = numbers; 
        foreach( int i in theNumbers ) { 
            Console.WriteLine( i ); 
        } 
    } 
} 

This example shows usage of the generic Collection type. The telltale sign of generic type usage is 
the angle brackets surrounding a type name. In this case, I have declared a collection of integers, a 
collection of strings, and, to show an even more complex generic usage, a collection of collections of 
integers. Also, notice that I’ve shown the declaration for a generic interface, namely, IList<>. 

When you specify the type arguments for a generic type by listing them within the angle brackets, as 
in Collection<int>, you are declaring a closed type. In this case, Collection<int> only takes one type 
parameter, but had it taken more, then a comma would have separated the type arguments. When the 
CLR first encounters this type declaration, it will generate the closed type based on the generic type and 
the provided type arguments. Using closed types formed from generics is no different than using any 
other type, except that the type declaration uses the special angle bracket syntax to form the closed type. 

Now that you’ve seen a glimpse of what generics look like, you should be prepared for the casual 
generic references mentioned prior to Chapter 11. 

Namespaces 
C#, like C++ and analogous to Java packages, supports namespaces for grouping components logically. 
Namespaces help you avoid naming collisions between your identifiers.  

Using namespaces, you can define all of your types such that their identifiers are qualified by the 
namespace that they belong to. You have already seen namespaces in action in many of the examples so 
far. For instance, in the “Hello World!” example from Chapter 1, you saw the use of the Console class, 
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which lives in the .NET Framework Class Library’s System namespace and whose fully qualified name is 
System.Console. You can create your own namespaces to organize components. The general 
recommendation is that you use some sort of identifier, such as your organization’s name, as the top-
level namespace, and then more specific library identifiers as nested namespaces. 

Namespaces provide an excellent mechanism with which you can make your types more 
discoverable, especially if you’re designing libraries meant for consumption by others. For example, you 
can create a general namespace such as MyCompany.Widgets, where you put the most commonly used 
types of widgets. Then you can create a MyCompany.Widgets.Advanced namespace where you place all of 
the less commonly used, advanced types. Sure, you could place them all in one namespace. However, 
users could become confused when browsing the types and seeing all of the types they least commonly 
use mixed in with the ones they use the most. 

■ Note When picking a name for your namespace, the general guideline suggests that you name it using the 

formula <CompanyName>.<Technology>.*, such that the first two dot-separated portions of the namespace name 

start with your company name followed by your company’s technology. Then you can further subclassify the 

namespace. You can see examples of this in the .NET Framework—for example, the Microsoft.Win32 

namespace. 

Defining Namespaces 
The syntax for declaring a namespace is simple. The following code shows how to declare a namespace 
named Acme: 

namespace Acme 
{ 
   class Utility {} 
} 

Namespaces don’t have to live in only one compilation unit (i.e., the C# source code file). In other 
words, the same namespace declaration can exist in multiple C# files. When everything is compiled, the 
set of identifiers included in the namespace is a union of all of the identifiers in each of the namespace 
declarations. In fact, this union spans across assemblies. If multiple assemblies contain types defined in 
the same namespace, the total namespace consists of all of the identifiers across all the assemblies that 
define the types. 

It’s possible to nest namespace declarations. You can do this in one of two ways. The first way is 
obvious: 

namespace Acme 
{ 
   namespace Utilities 
   { 
      class SomeUtility {} 
   } 
} 
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Given this example, to access the SomeUtility class using its fully qualified name, you must identify 
it as Acme.Utilities.SomeUtility. The following example demonstrates an alternate way of defining 
nested namespaces: 

namespace Acme 
{ 
} 
 
namespace Acme.Utilities 
{ 
   class SomeUtility {} 
} 

The effect of this code is exactly the same as the previous code. In fact, you may omit the first empty 
namespace declaration for the Acme namespace. I left it there only for demonstration purposes to point 
out that the Utilities namespace declaration is not physically nested within the Acme namespace 
declaration. 

Any types that you declare outside a namespace become part of the global namespace. 

■ Note You should always avoid defining types in the global namespace. Such practice is known as “polluting the 

global namespace” and is widely considered poor programming practice. This should be obvious since there 

would be no way to protect types defined by multiple entities from potential naming collisions. 

Using Namespaces 
In the “Hello World!” example in Chapter 1, I quickly touched on the options available for using 
namespaces. Let’s examine some code that uses the SomeUtility class I defined in the previous section: 

public class EntryPoint 
{ 
   static void Main() { 
      Acme.Utilities.SomeUtility util = 
         new Acme.Utilities.SomeUtility(); 
   } 
} 

This practice of always qualifying names fully is rather verbose and might eventually lead to a bad 
case of carpal tunnel syndrome. The using namespace directive avoids this. It tells the compiler that 
you’re using an entire namespace in a compilation unit or another namespace. What the using keyword 
does is effectively import all of the names in the given namespace into the enclosing namespace, which 
could be the global namespace of the compilation unit. The following example demonstrates this: 

using Acme.Utilities; 
 
public class EntryPoint 
{ 
   static void Main() { 
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      SomeUtility util = new SomeUtility(); 
   } 
} 

The code is now much easier to deal with and somewhat easier to read. The using directive, because 
it is at the global namespace level, imports the type names from Acme.Utilities into the global 
namespace. Sometimes when you import the names from multiple namespaces, you may still have 
naming conflicts if both imported namespaces contain types with the same name. In this case, you can 
import individual types from a namespace, creating a naming alias. This technique is available via 
namespace aliasing in C#. Let’s modify the usage of the SomeUtility class so that you alias only the 
SomeUtility class rather than everything inside the Acme.Utilities namespace: 

namespace Acme.Utilities 
{ 
   class AnotherUtility() {} 
} 
 
using SomeUtility = Acme.Utilities.SomeUtility; 
 
public class EntryPoint 
{ 
   static void Main() { 
      SomeUtility util = new SomeUtility(); 
      Acme.Utilities.AnotherUtility = 
            new Acme.Utilities.AnotherUtility(); 
   } 
} 

In this code, the identifier SomeUtility is aliased as Acme.Utilities.SomeUtility. To prove the 
point, I augmented the Acme.Utilities namespace and added a new class named AnotherUtility. This 
class must be fully qualified in order for you to reference it, since no alias is declared for it. Incidentally, 
it’s perfectly valid to give the previous alias a different name than SomeUtility. Although giving the alias 
a different name may be useful when trying to resolve a naming conflict, it’s generally better to alias it 
using the same name as the original class name in order to avoid maintenance confusion in the future. 

■ Note If you follow good partitioning principles when defining your namespaces, you shouldn’t have to deal with 

this problem. It is bad design practice to create namespaces that contain a grab bag of various types covering 

different groups of functionality. Instead, you should create your namespaces with intuitively cohesive types 

contained within them to make it easier for developers to discover your types. In fact, at times in the .NET 

Framework, you’ll see a namespace with some general types for the namespace included in it, with more 

advanced types contained in a nested namespace named Advanced. For example, you will see the namespace 

System.Xml.Serialization.Advanced defined in the .NET Framework. In many respects, for creating libraries, 

these guidelines mirror the principle of discoverability applied when creating intuitive user interfaces. In other 

words, name and group your types intuitively and make them easily discoverable. 
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Control Flow 
Like C, C++, and Java, the C# language contains all the usual suspects when it comes to control flow 
structure. C# even implements the dastardly goto statement. 

if-else, while, do-while, and for 
The if-else construct within C# is identical to those in C++ and Java. As a stylistic recommendation, I’m 
a proponent of always using blocks in if statements, or any other control flow statement as described in 
the following sections, even when they contain only one statement, as in the following example: 

if( <test condition> ) { 
   Console.WriteLine( "You are here." ); 
} 

The while, do, and for statements are identical to those in C++ and Java. 

switch 
The syntax of the C# switch statement is very similar to the C++ and Java switch syntax. The main 
difference is that the C# switch doesn’t allow falling through to the next section. It requires a break (or 
other transfer of control) statement to end each section. I believe this is a great thing. Countless hard-to-
spot bugs exist in C++ and Java applications because developers forgot a break statement or rearranged 
the order of sections within a switch when one of them falls through to another. In C#, the compiler will 
immediately complain with an error if it finds a section that falls through to the next. The one exception 
to this rule is that you can have multiple switch labels (using the case keyword) per switch section, as 
shown in the following code snippet. You can also simulate falling through sections with the goto 
statement: 

switch( k ) { 
   case 0: 
      Console.WriteLine( "case 0" ); 
      goto case 1; 
   case 1: 
   case 2: 
      Console.WriteLine( "case 1 or 2" ); 
      break; 
} 

■ Note The use of the goto statement is generally considered bad programming practice as it can create code 

that is very hard to maintain, among other things. Even though it is available in the language does not mean that 

you should use it frivolously. That said, there are very rare cases where it is applicable, however, any time you find 

yourself using a goto statement, I advise you to scrutinize your design and evaluate whether the introduction of 

goto reveals a design flaw. 
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Notice that each one of the cases has a form of jump statement that terminates it. Even the last case 
must have one. Many C++ and Java developers would omit the break statement in the final section, 
because it would just fall through to the end of the switch anyway. Again, the beauty of the “no fall-
through” constraint is that even if a developer maintaining the code at a later date whimsically decides 
to switch the ordering of the labels, no bugs can be introduced, unlike in C++ and Java. Typically, you 
use a break statement to terminate switch sections, and you can use any statement that exits the section. 
These include throw and return, as well as continue if the switch is embedded within a for loop where 
the continue statement makes sense. 

foreach 
The foreach statement allows you to iterate over a collection of objects in a syntactically natural way. 
Note that you can implement the same functionality using a while loop. However, this can be ugly, and 
iterating over the elements of a collection is such a common task that foreach syntax is a welcome 
addition to the language. If you had an array (or any other type of collection) of strings, for example, you 
could iterate over each string using the following code: 

static void Main() { 
   string[] strings = new string[5]; 
   strings[0] = "Bob"; 
   strings[1] = "Joe"; 
   foreach( string item in strings ) { 
      Console.WriteLine( "{0}", item ); 
   } 
} 

Within the parentheses of the foreach loop, you can declare the type of your iterator variable. In this 
example, it is a string. Following the declaration of the iterator type is the identifier for the collection to 
iterate over. You may use any object that implements the Collection pattern.2 Chapter 9 covers 
collections in greater detail, including what sorts of things a type must implement in order to be 
considered a collection. Naturally, the elements within the collection used in a foreach statement must 
be convertible, using an explicit conversion, to the iterator type. If they’re not, the foreach statement will 
throw an InvalidCastException at runtime. If you’d like to experience this inconvenience yourself, try 
running this modification to the previous example: 

static void Main() { 
   object[] strings = new object[5]; 
   strings[0] = 1; 
   strings[1] = 2; 
   foreach( string item in strings ) { 
      Console.WriteLine( "{0}", item ); 
   } 
} 

                                                 

 
2 A type implements the Collection pattern if it either implements the IEnumerable (or IEnumerable<>) interface or 
implements the public methods GetEnumerator and MoveNext as well as the public property Current. In other 
words, a type need not implement IEnumerable in order to work with the foreach statement although one typically 
implement the Collection pattern by implementing IEnumerable (or IEnumerable<>) in one’s types. 
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Note, however, that it’s invalid for the code embedded in a foreach statement to attempt to modify 
the iterator variable at all. It should be treated as read-only. That means you cannot pass the iterator 
variable as an out or a ref parameter to a method, either. If you try to do any of these things, the 
compiler will quickly alert you to the error of your ways. 

break, continue, goto, return, and throw 
C# includes a set of familiar statements that unconditionally transfer control to another location. These 
include break, continue, goto, return, and throw. Their syntax should be familiar to any C++ or Java 
developer (though Java has no goto). Their usage is essentially identical in all three languages. 

Summary 
This chapter introduced the C# syntax, emphasizing that C#, like similar object-oriented languages, is a 
strongly typed language. For these languages, you want to utilize the type-checking engine of the 
compiler to find as many errors as possible at compile time rather than find them later at runtime. In the 
CLR, types are classified as either value types or reference types, and each category comes with its own 
stipulations, which I’ll continue to dig into throughout this book. I also introduced namespaces and 
showed how they help keep the global namespace from getting polluted with too many types whose 
names could conflict. Finally, I showed how control statements work in C#, which is similar to how they 
work in C++ and Java. 

In the next chapter, I’ll dig deeper into the structure of classes and structs, while highlighting the 
behavioral differences of instances of them. 
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Classes, Structs, and Objects 

Everything is an object! At least, that is the view from inside the CLR and the C# programming language. 
This is no surprise, because C# is, after all, an object-oriented language. The objects that you create 
through class definitions in C# have all the same capabilities as the other predefined objects in the 
system. In fact, keywords in the C# language such as int and bool are merely aliases to predefined value 
types within the System namespace, in this case System.Int32 and System.Boolean, respectively. 

■ Note This chapter is rather long, but don’t allow it to be intimidating. In order to cater to a wider audience, this 

chapter covers as much C# base material as reasonably possible. If you’re proficient with either C++ or Java, you 

may find yourself skimming this chapter and referencing it as you read subsequent chapters. Some of the topics 

touched upon in this chapter are covered in more detail in later chapters. 

The first section of this chapter covers class (reference type) definitions, which is followed by a section discussing 

structure (value type) definitions. These are the two most fundamental classifications of types in the .NET runtime. 

Then you’ll learn about System.Object (the base type of all types), the nuances of creating and destroying 

instances of objects, expressions for initializing objects, and the topic of boxing and unboxing. I then cover newer 

C# features such as anonymous types and named and optional arguments. Finally, I cover inheritance and 

polymorphism, and the differences between inheritance and containment with regard to code reuse. 

The ability to invent your own types is paramount to object-oriented systems. The cool thing is that 
because even the built-in types of the language are plain-old CLR objects, the objects you create are on a 
level playing field with the built-in types. In other words, the built-in types don’t have special powers 
that you cannot muster in user-defined types. The cornerstone for creating these types is the class 
definition. Class definitions, using the C# class keyword, define the internal state and the behaviors 
associated with the objects of that class’s type. The internal state of an object is represented by the fields 
that you declare within the class, which can consist of references to other objects, or values. Sometimes, 
but rarely, you will hear people describe this as the “shape” of the object, because the instance field 
definitions within the class define the memory footprint of the object on the heap. 

The objects created from a class encapsulate the data fields that represent the internal state of the 
objects, and the objects can tightly control access to those fields. The behavior of the objects is defined 
by implementing methods, which you declare and define within the class definition. By calling one of 
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the methods on an object instance, you initiate a unit of work on the object. That work can possibly 
modify the internal state of the object, inspect the state of the object, or anything else for that matter. 

You can define constructors, which the system executes whenever a new object is created. You can 
also define a method called a finalizer, which works when the object is garbage-collected. As you’ll see in 
Chapter 13, you should avoid finalizers if at all possible. This chapter covers construction and 
destruction in detail, including the detailed sequence of events that occur during the creation of an 
object. 

Objects support the concept of inheritance, whereby a derived class inherits the fields and methods 
of a base class. Inheritance also allows you to treat objects of a derived type as objects of its base type. For 
example, a design in which an object of type Dog derives from type Animal is said to model an is-a 
relationship (i.e., Dog is-a(n) Animal). Therefore, you can implicitly convert references of type Dog to 
references of type Animal. Here, implicit means that the conversion takes the form of a simple 
assignment expression. Conversely, you can explicitly convert references of type Animal, through a cast 
operation, to references of type Dog if the particular object referenced through the Animal type is, in fact, 
an object created from the Dog class. This concept, called polymorphism, whereby you can manipulate 
objects of related types as though they were of a common type, should be familiar to you. Computer 
wonks always try to come up with fancy five-dollar words for things such as this, and polymorphism is no 
exception, when all it means is that an object can take on multiple type identities. This chapter discusses 
inheritance as well as its traps and pitfalls. 

The CLR tracks object references. This means each variable of reference type actually contains a 
reference to an object on the heap (or is null, if it doesn’t currently refer to an object). When you copy 
the value of a reference-type variable into another reference-type variable, another reference to the 
same object is created—in other words, the reference is copied. Thus, you end up with two variables that 
reference the same object. In the CLR, you have to do extra work to create copies of objects—e.g., you 
must implement the ICloneable interface or a similar pattern. 

All objects created from C# class definitions reside on the system heap, which the CLR garbage 
collector manages. The GC relieves you from the task of cleaning up your objects’ memory. You can 
allocate them all day long without worrying about who will free the memory associated with them. The 
GC is smart enough to track all of an object’s references, and when it notices that an object is no longer 
referenced, it marks the object for deletion. Then, the next time the GC compacts the heap, it destroys 
the object and reclaims the memory. 

■ Note In reality, the process is much more complex than this. There are many hidden nuances to how the GC 

reclaims the memory of unused objects. I talk about this in the section titled “Destroying Objects” later this 

chapter. Consider this: The GC removes some complexity in one area, but introduces a whole new set of 

complexities elsewhere. 

Along with classes, the C# language supports the definition of new value types through the struct 
keyword. Value types are lightweight objects that typically don’t live on the heap, but instead live on the 
stack. To be completely accurate, a value type can live on the heap, but only if it is a field inside an object 
on the heap. Value types cannot be defined to inherit from another class or value type, nor can another 
value type or class inherit from them.  

Value types can have constructors, but they cannot have a finalizer. By default, when you pass value 
types into methods as parameters, the method receives a copy of the value. I cover the many details of 
value types, along with their differences from reference types, in this chapter and in Chapter 13. 

That said, let’s dive in and get to the details. Don’t be afraid if the details seem a little overwhelming 
at first. The fact is you can start to put together reasonable applications with C# without knowing every 
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single detailed behavior of the language. That’s a good thing, because C#, along with the Visual Studio 
IDE, is meant to facilitate rapid application development. However, the more details you know about the 
language and the CLR, the more effective you’ll be at developing and designing robust C# applications. 

Class Definitions 
Class definitions in C# look similar to class definitions in C++ and Java. Let’s look at a simple class now, 
so you can get a feel for things. In the following code, I’ve shown the basic pieces for creating a class 
definition: 

//NOTE: This code is not meant to be compiled as-is 
[Serializable] 
public class Derived : Base, ICloneable 
{ 
    private Derived( Derived other ) { 
        this.x = other.x; 
    } 
 
    public object Clone() {  //implement the IClonable.Clone interface 
        return new Derived( this ); 
    } 
 
    private int x; 
} 

This class declaration defines a class Derived, which derives from the class Base and also 
implements the ICloneable interface. 

■ Note If this is the first time you’ve encountered the interface concept, don’t worry. Chapter 5 is devoted entirely 

to interfaces and contract-based programming. 

The access modifier in front of the class keyword controls the visibility of the type from outside the 
assembly (I describe assemblies in Chapter 2). The class Derived is publicly accessible, which means that 
consumers of the assembly that contains this class can create instances of it. This type contains a private 
constructor that is used by the public method Clone, which implements the ICloneable interface. When 
a class implements an interface, you are required to implement all of the methods of the interface. 

You can apply attributes to just about any nameable entity within the CLR type system. In this case, 
I’ve attached the Serializable attribute to the class to show an example of attribute usage syntax. These 
attributes become part of the metadata that describes the type to consumers. In addition, you can create 
custom attributes to attach to various entities, such as classes, parameters, return values, and fields, 
which easily exercise the capabilities of Aspect Oriented Programming (AOP). 
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Fields 
Fields are the bread and butter that make up the state of objects. Typically, you declare a new class only 
if you need to model some new type of object with its own custom internal state, represented by its 
instance fields. 

You declare fields with a type, just like all other variables in C. The possible field modifiers are as 
follows: 

new 
public 
protected 
internal 
private 
static 
readonly 
volatile 

Many of these are mutually exclusive. Those that are mutually exclusive control the accessibility of 
the field and consist of the modifiers public, protected, internal, and private. I discuss these in more 
detail in the “Accessibility” section. However, for now, I’ll detail the remaining modifiers. 

The static modifier controls whether a field is a member of the class type or a member of objects 
instantiated from the type. In the absence of the static modifier, a field is an instance field, and thus 
each object created from the class has its own copy of the field. This is the default. When decorated with 
the static modifier, the field is shared among all objects of a class on a per-application-domain basis. 

Note that static fields are not included in the memory footprint of the object instances. In other 
words, objects don’t encapsulate the static fields; rather, types encapsulate the static fields. It would be 
inefficient for all instances of the object to contain a copy of the same static variable in their memory 
footprint. And worse than that, the compiler would have to generate some sort of code under the hood 
to make sure that when the static field is changed for one instance, it would change the field in all 
instances. For this reason, the static fields actually belong to the class and not to the object instances. In 
fact, when a static field is publicly accessible outside the class, you use the class name and not the object 
instance variable to access the field. 

■ Note Static fields have another important quality: They are global to the application domain within which their 

containing types are loaded. Application domains are an abstraction that is an isolation mechanism similar to the 

process abstraction within an operating system, but they are more lightweight. You can have multiple application 

domains in one operating system process. If your CLR process contains multiple application domains, each will 

have a copy of the class’s static fields. A static field’s value in one application domain can be different from the 

same static field in another application domain. Unless you create extra application domains yourself, your 

application will have only one application domain that your code runs in: the default application domain. However, 

it’s important to note this distinction when working in environments such as ASP.NET, where the concept of the 

application domain is used as the isolation mechanism between two ASP.NET applications. In fact, you can easily 

jump to the conclusion that ASP.NET was the driving motivation behind the application domain notion. 



CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS 

 

 

47 

 

You can initialize fields during object creation in various ways. One straightforward way of 
initializing fields is through initializers. You use these initializers at the point where the field is defined, 
and they can be used for either static or instance fields—for example: 

   private int x = 789; 
   private int y; 
   private int z = A.InitZ(); 

The field x is initialized using an initializer. The notation is rather convenient. Note that this 
initialization occurs at run time and not at compile time. Therefore, this initialization statement could 
have used something other than a constant. For example, the variable z is initialized by calling a method, 
A.InitZ. At first, this field initialization notation may seem like a great shortcut, saving you from having 
to initialize all of the fields inside the body of the constructor. However, I suggest that you initialize 
instance fields within the instance constructor body for complex type definitions. I cover static and 
instance initialization in all of its gory detail in the “Creating Objects” section later in this chapter, and 
you’ll see why initializing fields in the constructor can facilitate code that’s easier to maintain and 
debug. 

Another field modifier that comes in handy from time to time is the readonly modifier. As you can 
guess, it defines the field so that you can only read from it. You can write to it only during object 
creation. You can emulate the same behavior with greater flexibility using a read-only property, which I 
discuss in the section titled “Properties.” Static readonly fields are initialized in a static constructor, 
while instance readonly fields are initialized in an instance constructor. Alternatively, you can initialize 
readonly fields using initializers at the point of their declaration in the class definition, just as you can do 
with other fields. Within the constructor, you can assign to the readonly field as many times as 
necessary. Only within the constructor can you pass the readonly field as a ref or out parameter to 
another function. Consider the following example: 

public class A 
{ 
   public A() 
   { 
      this.y = 456; 
 
      // We can even set y again. 
      this.y = 654; 
 
      // We can use y as a ref param. 
      SetField( ref this.y ); 
   } 
 
   private void SetField( ref int val ) 
   { 
      val = 888; 
   } 
 
   private readonly int x = 123; 
   private readonly int y; 
   public const     int z = 555; 
 
   static void Main() 
   { 
      A obj = new A(); 
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      System.Console.WriteLine( "x = {0}, y = {1}, z = {2}", 
                                obj.x, obj.y, A.z ); 
   } 
} 

You should note one important nuance here: The z field is declared using the const keyword. At 
first, it may seem that it has the same effect as a readonly field, but it does not. First, a const field such as 
this is known and used at compile time. This means that the code generated by the compiler in the Main 
routine can be optimized to replace all uses of this variable with its immediate const value. The compiler 
is free to use this performance trick, simply because the value of the field is known at compile time. Also, 
note that you access the const field using the class name rather than the instance name. This is because 
const values are implicitly static and don’t affect the memory footprint, or shape, of the object instances. 
Again, this makes sense because the compiler would optimize away access to that memory slot in the 
object instance anyway, because it would be the same for all instances of this object. 

But one more detail is lurking here with regard to the difference between readonly and const fields. 
readonly fields are guaranteed to be computed at run time. Therefore, suppose you have one class with 
both a readonly field and a const field that lives in assembly A, and code in assembly B creates and uses 
an instance of that class in assembly A. Now, suppose you rebuild assembly A at a later date, and you 
modify the field initializers for the readonly field and the const field. The consumer in assembly B would 
see the change in the const field only after you recompile the code in assembly B. This behavior is 
expected, because when assembly B was built referencing the initial incarnation of assembly A, the 
compiler optimized the use of the const values by inserting the literal value into the generated IL code. 
Because of this, you need to be careful when deciding whether to use a readonly field or a const value 
and, if you choose to use a readonly field, you need to choose carefully between using a readonly field or 
a read-only property, which I introduce in a later section titled “Properties.” Properties provide greater 
design-time and maintenance-time flexibility over readonly fields. 

Lastly, the volatile modifier indicates, as its name implies, that the field is sensitive to read and 
write timing. Technically, the modifier indicates to the compiler that the field may be accessed or 
modified by the operating system or hardware running on that system, or more likely, by another thread 
at any time. The latter case is the most typical. Normally, access to a field by multiple threads only 
becomes a problem when you don’t use any synchronization techniques, such as when not using the C# 
lock statement or OS synchronization objects. This is typically called lock free programming. When a 
field is marked as volatile, it tells the implementation—and by that, I mean the CLR JIT compiler—that 
it must not apply optimizations to that field’s access. The fact is, you’ll rarely ever need the volatile 
modifier or come into contact with it. 

I’ve already covered some of the ways that field initialization can occur within an object instance 
during class initialization. I cover many more nuances of field initialization in the “Field Initialization” 
section. However, note that C# has rules about default field initialization that are applied before any field 
initialization code that occurs in the constructor method’s code block. C#, by default, creates verifiably 
type-safe code, which is guaranteed not to use uninitialized variables and fields. The compiler goes to 
great lengths to ensure that this requirement is satisfied. For example, it initializes all fields, whether 
they’re instance or static fields, to a default value before any of your variable initializers execute. The 
default value for just about anything can easily be represented by either the value 0 or null. For example, 
you can initialize an integer or any other similar value type by setting all of the bits in its storage space to 
0. For reference types, you set the initial default value to null. Again, this is usually the result of the 
implementation setting all of the bits of the reference to 0. These default initializations occur before any 
code executes on the instance or class. Therefore, it’s impossible to inspect the uninitialized values of an 
object or a class during initial construction. 
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Constructors 
Constructors are called when a class is first loaded by the CLR or an object is created. There are two 
types of constructors: static constructors and instance constructors. 

A class can have only one static constructor which is called when the type is loaded by the CLR, and 
it can have no parameters. The name of the static constructor must match the name of the class it 
belongs to. As with any other class member, you can attach metadata attributes to the static constructor. 

Instance constructors, on the other hand, are called when an instance of a class is created. They 
typically set up the state of the object by initializing the fields to a desired predefined state. You can also 
do any other type of initialization work, such as connecting to a database and opening a file. A class can 
have multiple instance constructors that can be overloaded (i.e., have different parameter types). As with 
the static constructor, instance constructor names must match the name of the defining class. One 
notable capability of an instance constructor is that of the optional constructor initializer clause. Using 
the initializer, which follows a colon after the parameter list, you can call a base class constructor or 
another constructor in the same class through the keywords base and this, respectively. I have more to 
say about the base keyword in the section titled “base Keyword.” Consider the following sample code 
and the two comments: 

class Base 
{ 
   public int x = InitX(); 
 
   public Base( int x ) 
   { 
      this.x = x;    // disambiguates the parameter and the instance variable 
   }    
} 
 
class Derived : Base 
{ 
   public Derived( int a ) 
      :base( a )    // calls the base class constructor 
   { 
   } 
} 

Methods 
A method defines a procedure that you can perform on an object or a class. If the method is an instance 
method, you can call it on an object. If the method is a static method, you can call it only on the class. 
The difference is that instance methods have access to both the instance fields of the object instance and 
the static fields of the class, whereas static methods don’t have access to instance fields or methods. 
Static methods can only access static class members. 

Methods can have metadata attributes attached to them, and they can also have optional modifiers 
attached. I discuss them throughout this chapter. These modifiers control the accessibility of the 
methods, as well as facets of the methods that are germane to inheritance. Every method either does or 
does not have a return type. If a method doesn’t have a return type, the declaration must declare the 
return type as void. Methods may or may not have parameters. 
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Static Methods 
You call static methods on the class rather than on instances of the class. Static methods only have 
access to the static members of the class. You declare a method as static by using the static modifier, as 
in the following example: 

public class A 
{ 
   public static void SomeFunction() 
   { 
      System.Console.WriteLine( "SomeFunction() called" ); 
   } 
 
   static void Main() 
   { 
      A.SomeFunction(); 
      SomeFunction(); 
   } 
} 

Notice that both methods in this example are static. In the Main method, I first access the 
SomeFunction method using the class name. I then call the static method without qualifying it. This is 
because the Main and SomeFunction methods are both defined in the same class and are both static 
methods. Had SomeFunction been in another class, say class B, I would have had no choice but to 
reference the method as B.SomeFunction. 

Instance Methods 
Instance methods operate on objects. In order to call an instance method, you need a reference to an 
instance of the class that defines the method. The following example shows the use of an instance 
method: 

public class A 
{ 
   private void SomeOperation() 
   { 
      x = 1; 
      this.y = 2; 
      z = 3; 
 
      // assigning this in objects is an error. 
      // A newinstance = new A(); 
      // this = newinstance; 
   } 
 
   private int x; 
   private int y; 
   private static int z; 
 
   static void Main() 
   { 
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      A obj = new A(); 
 
      obj.SomeOperation(); 
 
      System.Console.WriteLine( "x = {0}, y = {1}, z= {2}", 
                                obj.x, obj.y, A.z ); 
   } 
} 

In the Main method, you can see that I create a new instance of the A class and then call the 
SomeOperation method through the instance of that class. Within the method body of SomeOperation, I 
have access to the instance and static fields of the class, and I can assign to them simply by using their 
identifiers. Even though the SomeOperation method can assign the static field z without qualifying it, as I 
mentioned before, I believe it makes for more readable code if the assignment of static fields is qualified 
by the class name even in the methods of the same class. Doing so is helpful for whoever comes after you 
and has to maintain your code— that someone could even be you! 

Notice that when I assign to y, I do so through the this identifier. You should note a few important 
things about this when used within an instance method body. It is treated as a read-only reference 
whose type is that of the class. Using this, you can access the fields of the instance, as I did when 
assigning the value of y in the previous code example. Because the this value is read-only, you may not 
assign it, which would make it reference a different instance. If you try to do so, you’ll hear about it when 
the compiler complains to you and fails to compile your code. 

Properties 
Properties are one of the nicest mechanisms within C# and the CLR that enable you to enforce 
encapsulation better. In short, you use properties for strict control of access to the internal state of an 
object.  

A property, from the point of view of the object’s client, looks, smells, and behaves just like a public 
field. The notation to access a property is the same as that used to access a public field on the instance. 
However, a property doesn’t have any associated storage space within the object, as a field does. Rather, 
a property is a shorthand notation for defining accessors used to read and write fields. The typical pattern 
is to provide access to a private field in a class through a public property. C# 3.0 made this even easier 
with its introduction of auto-implemented properties. 

Properties significantly enhance your flexibility as a class designer. For example, if a property 
represents the number of table rows in a database table object, the table object can defer the 
computation of the value until the point where it is queried through a property. It knows when to 
compute the value, because the client will call an accessor when it accesses the property.  

Declaring Properties 
The syntax for declaring properties is straightforward. As with most class members, you can attach 
metadata attributes to a property. Various modifiers that are valid for properties are similar to ones for 
methods. Other modifiers include the ability to declare a property as virtual, sealed, override, 
abstract, and so on. I also cover these in detail in the section titled “Inheritance and Virtual Methods” 
later in this chapter. 

The following code defines a property, Temperature, in class A: 

public class A 
{ 
   private int temperature; 
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   public int Temperature 
   { 
      get 
      { 
         System.Console.WriteLine( "Getting value for temperature" ); 
         return temperature; 
      } 
 
      set 
      { 
         System.Console.WriteLine( "Setting value for temperature" ); 
         temperature = value; 
      } 
   } 
} 
 
public class MainClass 
{ 
   static void Main() 
   { 
      A obj = new A(); 
 
      obj.Temperature = 1; 
      System.Console.WriteLine( "obj.Temperature = {0}", 
                                obj.Temperature ); 
   } 
} 

First I defined a property named Temperature, which has a type of int. Each property declaration 
must define the type that the property represents. That type should be visible to the compiler at the 
point where it is declared in the class, and it should have at least the same accessibility as the property 
being defined. By that, I mean that if a property is public, the type of the value that the property 
represents must at least be declared public in the assembly within which it is defined. In the example, 
the int type is an alias for Int32. That class is defined in the System namespace, and it is public. So, you 
can use int as a property type in this public class A. 

The Temperature property merely returns the private field temperature from the internal state of the 
object instance. This is the universal convention. You name the private field with a leading lowercase 
character, while naming the property with a leading uppercase character. Of course, you’re not obligated 
to follow this convention, but there is no good reason not to and C# programmers expect it. 

■ Note If it looks like a lot of typing simply to expose a field value as a property, don’t worry. The C# team 

recognized this and added auto-implemented properties to the languages in C# 3.0, which I cover shortly in the 

section titled “Auto-Implemented Properties.” 
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Accessors 
In the previous example, you can see that there are two blocks of code within the property block. These 
are the accessors for the property, and within the blocks of the accessors, you put the code that reads 
and writes the property. As you can see, one is named get and the other is named set. It should be 
obvious from their names what each one does. 

The get block is called when the client of the object reads the property. As you would expect, this 
accessor must return a value or an object reference that matches the type of the property declaration. It 
can also return an object that is implicitly convertible to the type of the property declaration. For 
example, if the property type is a long and the getter returns an int, the int will be implicitly converted 
to a long without losing precision. Otherwise, the code in this block is just like a parameterless method 
that returns a value or reference of the same type as the property. 

The set accessor is called when the client attempts to write to the property. Note that there is no 
return value. Note also that a special variable named value is available to the code within this block, and 
it’s the same type as that of the property declaration. When you write to the property, the value variable 
will have been set to the value or object reference that the client has attempted to assign to the property. 
If you attempt to declare a local variable named value in the set accessor, you’ll receive a compiler error. 
The set accessor is like a method that takes one parameter of the same type as the property and returns 
void. 

Read-Only and Write-Only Properties 
If you define a property with only a get accessor, that property will be read-only. Likewise, if you define a 
property with only a set accessor, you’ll end up with a write-only property. And lastly, a property with 
both accessors is a read-write property.  

You may be wondering why a read-only property is any better or worse than a readonly public field. 
At first thought, it may seem that a read-only property is less efficient than a readonly public field. 
However, given the fact that the CLR can inline the code to access the property during JIT compilation, 
in the case where the property simply returns a private field, this argument of inefficiency does not hold. 
Now, of course, writing the code is not as efficient. However, because programmers aren’t lazy and auto-
implemented properties make it so simple, that’s really no argument either. 

The fact is, in 99% of all cases, a read-only property is more flexible than a readonly public field. One 
reason is that you can defer a read-only property’s computation until the point where you need it (a 
technique known as lazy evaluation, or deferred execution). So, in reality, it could provide for more 
efficient code, when the property is meant to represent something that takes significant time to 
compute. If you’re using a readonly public field for this purpose, the computation would have to happen 
in the block of the constructor. All the necessary data to make the computation may not even be 
available at that point. Or, you may waste time in the constructor computing the value, when the user of 
the object may not ever access the value. 

Also, read-only properties help enforce encapsulation. If you originally had a choice between a 
read-only property and a readonly public field, and you chose the read-only property, you would have 
had greater flexibility in future versions of the class to do extra work at the point where the property is 
accessed without affecting the client. For example, imagine if you wanted to do some sort of logging in 
debug builds each time the property is accessed. The client would effectively be calling a method 
implicitly, albeit one of the special property methods, to access the data. The flexibility of things that you 
can do in that method is almost limitless. Had you accessed the value as a public readonly field, you 
wouldn’t call a method or be able to do anything without switching it over to a property and forcing the 
client code to recompile. This discussion leads directly into the discussion regarding encapsulation in 
the later section titled “Encapsulation.” 



CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS 

 

54 

 

Auto-Implemented Properties 
Many times, you need a type, say a class, which contains a few fields that are treated as a cohesive unit. 
For example, imagine an Employee type that contains a full name and an identification number but, for 
the sake of example, manages this data using strings as shown below: 

public class Employee 
{ 
    string fullName; 
    string id; 
} 

As written, this class is essentially useless. The two fields are private and must be made accessible. 
For the sake of encapsulation, we don’t want to just make the fields public. However, for such a simple 
little type, it sure is painful to code up basic property accessors as the following code shows: 

public class Employee 
{ 
    public string FullName { 
        get { return fullName; } 
        set { fullName = value; } 
    } 
 
    public string Id { 
        get { return id; } 
        set { id = value; } 
    } 
 
    string fullName; 
    string id; 
} 

What a lot of code just to get a type with a couple of read/write properties!  

■ Note I’d be willing to bet that there are many developers out there who have simply avoided properties and 

used public fields in these kinds of helper types simply because of the typing overhead alone. The problem with 

that short-sighted approach is that you cannot do any sort of validation upon setting the field or perform any lazy 

evaluation during property access if that requirement becomes necessary as your application evolves. 

Thankfully, C# 3.0 added a new feature called auto-implemented properties that reduce this burden 
significantly. Look how the previous Employee type changes after using auto-implemented properties: 

public class Employee 
{ 
    public string FullName { get; set; } 
    public string Id { get; set; } 
} 
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That’s it! Basically, what you’re telling the compiler is, “I want a string property named FullName 
and I want it to support get and set.” Behind the scenes the compiler generates a private field in the 
class for the storage and implements the accessors for you. The beauty of this is that it’s just a little more 
typing than declaring public fields, but at the same time because they are properties you can change the 
underlying implementation without having to modify the public contract of the type. That is, if you later 
decided you wanted to customize the accessors for Id, you could do so without forcing the clients of 
Employee to recompile. 

■ Note If you’re curious about the private field that the compiler declares in your type for auto-implemented 

properties, you can always look at the field using ILDASM. Using my current implementation, the private field 

providing storage for FullName in the Employee class is named <>k__AutomaticallyGeneratedPropertyField0 

and is of type string. Notice that the field name is “unspeakable,” meaning that you cannot type it into code and 

compile without getting syntax errors. The C# compiler implementers do this on purpose so we don’t use the type 

name directly. After all, the name of the field is a compiler implementation detail that is subject to change in the 

future. 

You can also create a read-only auto-implemented property by inserting the private keyword as 
shown below: 

public class Employee 
{ 
    public string FullName { get; private set; } 
    public string Id { get; set; } 
} 

At this point, you may be wondering how the FullName field ever gets set. After all, it’s read-only and 
the private field representing the underlying storage has a compiler-generated name that we cannot use 
in a constructor to assign to it. The solution is to use a conventional constructor or a factory method. The 
example below shows the use of a conventional instance constructor: 

using System; 
 
public class Employee 
{ 
    public Employee( string fullName, string id ) { 
        FullName = fullName; 
        Id = id; 
    } 
 
    public string FullName { get; private set; } 
    public string Id { get; set; } 
} 
 
public class AutoProps 
{ 
    static void Main() { 
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        Employee emp = new Employee( 
            "John Doe", 
            "111-11-1111" ); 
    } 
} 

Encapsulation 
Arguably, one of the most important concepts in object-oriented programming is that of encapsulation. 
Encapsulation is the discipline of tightly controlling access to internal object data and procedures. It 
would be impossible to consider any language that does not support encapsulation as belonging to the 
set of object-oriented languages. 

You always want to follow this basic concept: Never define the data fields of your objects as publicly 
accessible. It’s as simple as that. However, you would be surprised how many programmers still declare 
their data fields as public. Typically, this happens when a small utility object is defined and the creators 
are either lazy or think they are in too much of a hurry. There are some things, though, you should just 
not do, and cutting corners like this is one of them. 

You want the clients of your object to speak to it only through controlled means. This normally 
means controlling communication to your object via methods on the object (or properties which, under 
the covers, are method calls). In this way, you treat the internals of the object as if they are inside a black 
box. No internals are visible to the outside world, and all communications that could modify those 
internals are done through controlled channels. Through encapsulation, you can engineer a design 
whereby the integrity of the object’s state is never compromised. 

A simple example of what I’m talking about is in order. In this example, I create a dummy helper 
object to represent a rectangle. The example itself is a tad contrived, but it’s a good one for the sake of 
argument because of its minimal complexity: 

class MyRectangle 
{ 
   public uint width; 
   public uint height; 
} 

You can see a crude example of a custom rectangle class. Currently, I’m only interested in the width 
and the height of the rectangle. Of course, a useful rectangle class for a graphics engine would contain an 
origin as well, but for the sake of this example, I’ll only be interested in the width and height. So, I 
declare the two fields for width and height as public. Maybe I did that because I was in a hurry as I was 
designing this basic little class. But as you’ll soon see, just a little bit more work up front will provide 
much greater flexibility.  

Now, let’s say that time has passed, and I have merrily used my little rectangle class for many uses. 
Never mind the fact that my little rectangle class is not very useful in and of itself, but let’s say I have 
come up with a desire to make it a little more useful. Suppose I have some client code that uses my 
rectangle class and needs to compute the area of the rectangle. Back in the days of ANSI C and other 
purely procedural imperative programming languages, you would have created a function named 
something like ComputeArea, which would take, as a parameter, a pointer to an instance of MyRectangle. 
Good object-oriented principles guide me to consider that the best way to do this is to let the instances 
of MyRectangle tell the client what their area values are. So, let’s do it: 

class MyRectangle 
{ 
   public uint width; 
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   public uint height; 
 
   public uint GetArea() 
   { 
      return width * height; 
   } 
} 

As you can see, I’ve added a new member: the GetArea method. When called on an instance, the 
trusty MyRectangle will compute the area of itself and return the result. Now, I’ve still just got a basic little 
rectangle class that has one helper function defined on it to make clients’ lives a little bit easier if they 
need to know the area of the rectangle. But let’s suppose I have some reason to precompute the value of 
the area, so that each time the GetArea method is called, I don’t have to recompute it every time. Maybe I 
want to do this because I know, for some reason, that GetArea will be called many times on the same 
instance during its lifetime. Ignoring the fact that early optimization is foolish, let’s say that I decide to 
do it. Now, my new MyRectangle class could look something like this: 

class MyRectangle 
{ 
   public uint width; 
   public uint height; 
 
   public uint area; 
 
   public uint GetArea() 
   { 
      return area; 
   } 
} 

If you look closely, you can start to see my errors. Notice that all of the fields are public. This allows 
the consumer of my MyRectangle instances to access the internals of my rectangle directly. What would 
be the point of providing the GetArea method if the consumer can simply access the area field directly? 
Well, you say, maybe I should make the area field private. That way, clients are forced to call GetArea to 
get the area of the rectangle. This is definitely a step in the right direction, as shown in the following 
code: 

class MyRectangle 
{ 
   public uint width; 
   public uint height; 
 
   private uint area; 
 
   public uint GetArea() 
   { 
      if( area == 0 ) { 
         area = width * height; 
      } 
 
      return area; 
   } 
} 
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I’ve made the area field private, forcing the consumer to call GetArea in order to obtain the area. 
However, in the process, I realized that I have to compute the area of the rectangle at some point. So, 
because I’m lazy to begin with, I decide to check the value of the area field before returning it, and if it’s 
0, I assume that I need to compute the area before I return it. This is a crude attempt at an optimization. 
But now, I only compute the area if it is needed. Suppose a consumer of my rectangle instance never 
needed to know the area of the rectangle. Then, given the previous code, that consumer wouldn’t have 
to lose the time it takes to compute the area. Of course, in my contrived example, this optimization will 
most likely be extremely negligible. But if you think for just a little bit, I’m sure you can come up with an 
example where it may be beneficial to use this lazy evaluation technique. Think about database access 
across a slow network where only certain fields in a table may be needed at run time. Or, for the same 
database access object, it may be expensive to compute the number of rows in the table. You should only 
use this technique when necessary. 

A glaring problem still exists with my rectangle class.  The width and height fields are public, so what 
happens if consumers change one of the values after they’ve called GetArea on the instance? Well, then 
I’ll have a really bad case of inconsistent internals. The integrity of the state of my object would be 
compromised. This is definitely not a good situation to be in. So, now you see the error of my ways yet 
again. I must make the width and height fields of my rectangle private as well: 

class MyRectangle 
{ 
   private uint width; 
   private uint height; 
   private uint area; 
 
   public uint Width 
   { 
      get 
      { 
         return width; 
      } 
 
      set 
      { 
         width = value; 
         ComputeArea(); 
      } 
   } 
 
   public uint Height 
   { 
      get 
      { 
         return height; 
      } 
 
      set 
      { 
         height = value; 
         ComputeArea(); 
      } 
   } 
 
   public uint Area 
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   { 
      get 
      { 
         return area; 
      } 
   } 
 
   private void ComputeArea() 
   { 
      area = width * height; 
   } 
} 

Now, in my latest incarnation of MyRectangle, I have become really wise. After making the width and 
height fields private, I realized that the consumer of the objects needs some way to get and set the values 
of the width and the height. That’s where I use C# properties. Internally, I now handle the changes to the 
internal state through a method body, and the methods called belong to the set of specially named 
methods on the class. I have more to say about special—sometimes called reserved—member names in 
the section titled “Reserved Member Names.” Now, I have tight control over access to the internals, and 
along with that control comes the most essential value of encapsulation. I can effectively manage the 
state of the internals so that they never become inconsistent. It’s impossible to guarantee the integrity of 
the object’s state when foreign entities have access to the state through back-door means. 

In this example, my object knows exactly when the width and height fields change. Therefore, it can 
take the necessary action to compute the new area. If the object had used the approach of lazy 
evaluation, such that it contained a cached value of the area computed during the first call of the Area 
property getter, then I would know to invalidate that cache value as soon as either of the setters on the 
Width or Height properties is called. 

The moral of the story is, a little bit of extra work up front to foster encapsulation goes a long way as 
time goes on. One of the greatest properties of encapsulation that you need to burn into your head and 
take to the bank is that, when used properly, the object’s internals can change to support a slightly 
different algorithm without affecting the consumers. In other words, the interface visible to the 
consumer (also known as the contract) does not change. For example, in the final incarnation of the 
MyRectangle class, the area is computed up front as soon as either of the Width or Height properties is set. 
Maybe once my software is nearing completion, I’ll run a profiler and determine that computing the 
area early is really sapping the life out of the processor as my program runs. No problem. I can change 
the model to use a cached area value that is only computed when first needed, and because I followed 
the tenets of encapsulation, the consumers of my objects don’t even need to know about it. They don’t 
even know a change internal to the object occurred. That’s the power of encapsulation. When the 
internal implementation of an object can change, and the clients that use it don’t have to change, then 
you know encapsulation is working as it should. 

■ Note Encapsulation helps you achieve the age-old guideline of strong cohesion of objects with weak coupling 

between objects. 

Accessibility 
I’ve mentioned access modifiers several times up to this point. Their use may seem intuitive to you if you 
have any experience with any other object-oriented language, such as C++ or Java. However, certain 
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nuances of C# and CLI member access modifiers bear mentioning. Before I discuss the various types of 
modifiers, let’s talk a little bit about where you can apply them. 

Essentially, you can use access modifiers on just about any defined entity in a C# program, 
including classes and any member within the class. Access modifiers applied to a class affect its visibility 
from outside the containing assembly. Access modifiers applied to class members, including methods, 
fields, properties, events, and indexers, affect the visibility of the member from outside of the class. 
Table 4-1 describes the various access modifiers available in C#. 

Table 4-1. Access Modifiers in C# 

Access Modifier Meaning 

public Member is completely visible outside both the defining scope and the internal 
scope. In other words, access to a public member is not restricted at all. 

protected Member is visible only to the defining class and any class that derives from the 
defining class. 

internal Member is visible anywhere inside the containing assembly. This includes the 
defining class and any scope within the assembly that is outside the defining class. 

protected 
internal 

Member is visible within the defining class and anywhere else inside the assembly. 
This modifier combines protected and internal using a Boolean OR operation. 
The member is also visible to any class that derives from the defining class, 
whether it’s in the same assembly or not. 

private Member is visible only within the defining class, with no exceptions. This is the 
strictest form of access and is the default access for class members.  

Note that the CLR supports one more form of accessibility that the C# language designers felt 
strongly was unnecessary to implement. Within the CLR, it is known as family-and-assembly 
accessibility. In C# parlance, that equates to protected and internal. If, for some reason, you absolutely 
must use this accessibility modifier, then you need to use a different language, such as C++/CLI or raw 
IL. 

Now, let’s examine the allowed usage of these modifiers on various defined entities within C#. Class 
members can use all five variants of the C# access modifiers. The default access of the class members, in 
the absence of any modifiers at all, is private. Types defined either within or outside a namespace can 
only have one of two access modifiers; they can either be public or internal. By default, they are 
internal. 

You can apply only public, private, and internal to struct member definitions. I cover struct 
definitions in greater detail later in the chapter in the section titled “Value Type Definitions.” Notice the 
absence of protected and protected internal. They aren’t needed, because structs are implicitly 
sealed, meaning they cannot be base classes. I cover the sealed modifier in more detail in the section 
titled “Sealed Classes.” 
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■ Note One more important note is in order for those used to coding in C++: struct members are private by 

default, just like in class definitions, whereas they are public by default in C++. 

Lastly, members of interfaces, which I describe fully in Chapter 5, and enums, which I covered in 
Chapter 3, are implicitly public by their very nature. Interfaces are meant to define a set of operations, or 
a contract, that a class can implement. It makes no sense for an interface to have any restricted access 
members, because restricted access members are normally associated with a class implementation, and 
interfaces, by their definition, contain no implementation. Enumerations, on the other hand, are 
normally used as a named collection of constants. Enumerations have no internal implementation 
either, so it makes no sense for enumeration members to have any restricted access. In fact, you get an 
error if you specify an access modifier, even public, on an interface member or an enumeration 
member. 

As you can see, access for just about anything defaults to the strictest form of access that makes 
sense for that entity. In other words, you have to do work to allow others access to classes or class 
members. The only exception is the access for a namespace, which is implicitly public and cannot have 
any access modifiers applied to it. 

Interfaces 
Even though I devote much of Chapter 5 to the topic of interfaces, it is worth introducing interfaces at 
this point for the purpose of discussion in the rest of this chapter. Generally speaking, an interface is a 
definition of a contract. Classes can choose to implement various interfaces, and by doing so, they 
guarantee to adhere to the rules of the contract. When a class inherits from an interface, it is required to 
implement the members of that interface. A class can implement as many interfaces as it wants by listing 
them in the base class list of the class definition. 

In general terms, an interface’s syntax closely resembles that of a class. However, each member is 
implicitly public. In fact, you’ll get a compile-time error if you declare any interface member with any 
modifiers. Interfaces can only contain instance methods; therefore, you can’t include any static methods 
in the definition. Interfaces don’t include an implementation; therefore, they are semantically abstract 
in nature. If you’re familiar with C++, you know that you can create a similar sort of construct by creating 
a class that contains all public, pure virtual methods that have no default implementations.  

The members of an interface can only consist of members that ultimately boil down to methods in 
the CLR. This includes methods, properties, events, and indexers. I cover indexers in the “Indexers” 
section, and I cover events in Chapter 10. 

■ Note If you’re a stickler for terminology, the C# specification actually calls properties, events, indexers, 

operators, constructors, and destructors function members. It’s actually a misnomer to call them methods. 

Methods contain executable code, so they’re also considered function members. 

The following code shows an example of an interface and a class that implements the interface: 

public interface IMusician 
//Note:A standard practice is that you preface interface names with a capital "I" 
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{ 
   void PlayMusic(); 
} 
 
public class TalentedPerson : IMusician 
{ 
   public void PlayMusic() {} 
   public void DoALittleDance() {} 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      TalentedPerson dude = new TalentedPerson(); 
      IMusician musician = dude; 
 
      musician.PlayMusic(); 
      dude.PlayMusic(); 
      dude.DoALittleDance(); 
   } 
} 

In this example, I’ve defined an interface named IMusician. A class, TalentedPerson, indicates that it 
wants to support the IMusician interface. The class declaration is basically saying, “I would like to enter 
into a contract to support the IMusician interface, and I guarantee to support all the methods of that 
interface.” The requirement of that interface is merely to support the PlayMusic method, which the 
TalentedPerson class does so faithfully. As a final note, it is customary to name an interface type with a 
leading uppercase I. When reading code, this stands as a marker to indicate that the type in question is, 
in fact, an interface. 

Now, clients can access the PlayMusic method in one of two ways. They can either call it through the 
object instance directly, or they can obtain an interface reference onto the object instance and call the 
method through it. Because the TalentedPerson class supports the IMusician interface, references to 
objects of that class are implicitly convertible to references of IMusician. The code inside the Main 
method in the previous example shows how to call the method both ways. 

The topic of interfaces is broad enough to justify devoting an entire chapter to them, which I do in 
Chapter 5. However, the information regarding interfaces that I’ve covered in this section is enough to 
facilitate the discussions in the rest of this chapter. 

Inheritance 
If you ask around, many developers will tell you that inheritance is the backbone of object-oriented 
programming. Although inheritance is a really slick concept to those who first encounter it, I beg to 
differ that inheritance is the backbone. I’m a firm believer that encapsulation is the strongest feature of 
object-oriented programming. Inheritance is an important concept and a useful tool. However, like 
many powerful tools, it can be dangerous when misused. My goal in this section is to introduce you to 
inheritance in a way that makes you respect its power and that helps you to avoid abusing it. 

Earlier, I covered the syntax for defining a class. You specify the base class after a colon that follows 
the class name. In C#, a class can have only one base class. (Some other languages, such as C++, support 
multiple inheritance.) 



CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS 

 

 

63 

 

Accessibility of Members 
Accessibility of members plays an important aspect in inheritance, specifically with respect to accessing 
members of the base class from the derived class. Any public members of the base class become public 
members of the derived class.  

Any members marked as protected are only accessible internally to the declaring class and to the 
classes that inherit from it. Protected members are never accessible publicly from outside the defining 
class or any class deriving from the defining class. Private members are never accessible to anything 
except the defining class. So even though a derived class inherits all the members of the base class, 
including the private ones, the code in the derived class cannot access the private members inherited 
from the base class. In addition, protected internal members are visible to all types that are defined 
within the containing assembly and to classes that derive from the class defining the member. The 
reality is that the derived class inherits every member of a base class, except instance constructors, static 
constructors, and destructors. 

As you’ve seen, you can control the accessibility of the entire class itself when you define it. The only 
possibilities for the class type’s accessibility are internal and public. When using inheritance, the rule is 
that the base class type must be at least as accessible as the deriving class. Consider the following code: 

class A 
{ 
   protected int x; 
} 
 
public class B : A 
{ 
} 

This code doesn’t compile, because the A class is internal and is not at least as accessible as the 
deriving class B. Remember that in the absence of an access modifier, class definitions default to 
internal access—hence, the reason class A is internal. In order for the code to compile, you must either 
promote class A to public access or demote class B to internal access. Also note that it is legal for class A 
to be public and class B to be internal. 

Implicit Conversion and a Taste of Polymorphism 
You can view inheritance and what it does for you in several ways. First and most obvious, inheritance 
allows you to borrow an implementation. In other words, you can inherit class D from class A and reuse 
the implementation of class A in class D. It potentially saves you from having to do some work when 
defining class D. Another use of inheritance is specialization, where class D becomes a specialized form of 
class A. For example, consider the class hierarchy, as shown in Figure 4-1. 
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Figure 4-1. Inheritance specialization 

As you can see, classes Rectangle and Circle derive from class GeometricShape. In other words, they 
are specializing the GeometricShape class. Specialization is meaningless without polymorphism and 
virtual methods. I cover the topic of polymorphism in more detail in the “Inheritance and Virtual 
Methods” section of this chapter. For the moment, I’ll define basically what it means for the purpose of 
this conversation.  

Polymorphism describes a situation in which a type referenced with a particular variable can 
behave like, and actually be, a different (more specialized) type instance. Chapter 5 examines the 
differences and similarities between interfaces and contracts. Figure 4-1 shows a method in 
GeometricShape named Draw. This same method appears in both Rectangle and Circle. You can 
implement the model with the following code: 

public class GeometricShape 
{ 
   public virtual void Draw() 
   { 
      // Do some default drawing stuff. 
   } 
} 
 
public class Rectangle : GeometricShape 
{ 
   public override void Draw() 
   { 
      // Draw a rectangle 
   } 
} 
 
public class Circle : GeometricShape 
{ 
   public override void Draw() 
   { 
      // Draw a circle 
   } 
} 
 
public class EntryPoint 
{ 
   private static void DrawShape( GeometricShape shape ) 
   { 
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      shape.Draw(); 
   } 
    
   static void Main() 
   { 
      Circle circle = new Circle(); 
      GeometricShape shape = circle; 
 
      DrawShape( shape ); 
      DrawShape( circle ); 
   } 
} 

You create a new instance of Circle in the Main method. Right after that, you obtain a 
GeometricShape reference on the same object. This is an important step to note. The compiler has 
implicitly converted the reference into a GeometricShape type reference by allowing you to use a simple 
assignment expression. Underneath the covers, however, it’s really still referencing the same Circle 
object. This is the gist of type specialization and the automatic conversion that goes along with it. 

Now let’s consider the rest of the code in the Main method. After you get a GeometricShape reference 
on the Circle instance, you can pass it to the DrawShape method, which does nothing but call the Draw 
method on the shape. However, the shape object reference really points to a Circle, the Draw method is 
defined as virtual, and the Circle class overrides the virtual method, so calling Draw on the 
GeometricShape reference actually calls Circle.Draw. That is polymorphism in action. The DrawShape 
method doesn’t need to care at all about what specific type of shape the object is. All it cares about is 
whether it is, in fact, a GeometricShape. And Circle is a GeometricShape. This is why inheritance is often 
referred to as an is-a relationship. In the given example, Rectangle is-a GeometricShape, and Circle is-a 
GeometricShape. The key to determining whether inheritance makes sense or not is to apply the is-a 
relationship, along with some good old common sense, to your design. If a class D inherits from a class B, 
and class D semantically is-not-a class B, then inheritance is not the correct tool for that relationship. 

One last important note about inheritance and convertibility is in order. I’ve said that the compiler 
implicitly converts the Circle instance reference into a GeometricShape instance reference. Implicit, in 
this case, means that the code doesn’t have to do anything special to do the conversion, and by 
something special, I typically mean a cast operation. Because the compiler has the ability to do this 
based upon its knowledge of the inheritance hierarchy, it would seem to make sense that you don’t have 
to get a GeometricShape reference before you can call DrawShape with the Circle object instance. In fact, 
this is exactly true. The last line of the Main method demonstrates this. You can simply pass the Circle 
instance reference directly into the DrawShape method, and because the compiler can implicitly convert 
the type to a GeometricShape reference based upon the inheritance, it does all of the work for you. Again, 
you can see the power of this mechanism. 

Now, you can pass any object instance that derives from GeometricShape. After the software is 
shrink-wrapped and labeled version 1, someone can come along later in version 2 and define new shapes 
that derive from GeometricShape, and the code for DrawShape does not need to change. It doesn’t even 
need to know what the new specializations are. They could be Trapezoid, Square (a specialization of 
Rectangle), or Ellipse. It does not matter, as long as they derive from GeometricShape. 

Member Hiding 
From the previous section’s discussion, you can see how the concept of inheritance, although a powerful 
one, can be overused. When programmers are first introduced to inheritance, they have a tendency to 
use it too much, creating designs and hierarchical structures that are hard to maintain. It’s important to 
note that there are alternatives to using inheritance that in many cases make more sense. Among the 
various types of associations between classes in a software system design, inheritance is the strongest 
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bond of them all. I uncover many more issues with regards to inheritance near the end of the chapter. 
However, let’s go ahead and cover some basic effects of inheritance here. 

Note that inheritance extends functionality but cannot remove functionality. For example, the 
public methods available on a base class are available through instances of the derived class and classes 
derived from that class. You cannot remove these capabilities from the derived class. Consider the 
following code: 

public class A 
{ 
   public void DoSomething() 
   { 
      System.Console.WriteLine( "A.DoSomething" ); 
   } 
} 
 
public class B : A 
{ 
   public void DoSomethingElse() 
   { 
      System.Console.WriteLine( "B.DoSomethingElse" ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      B b = new B(); 
 
      b.DoSomething(); 
      b.DoSomethingElse(); 
   } 
} 

In Main, you create a new instance of class B, which derives from class A. Class B inherits from class A, 
therefore class B gets a union of the members of both class A and class B. That is why you can call both 
DoSomething and DoSomethingElse on the instance of class B. This is pretty obvious, because inheritance 
extends functionality. 

But what if you want to inherit from class A but hide the DoSomething method? In other words, what 
if you just want to extend part of A’s functionality? This is impossible with inheritance. However, you 
have the option of member hiding, as shown in the following code, which is a modified form of the 
previous example: 

public class A 
{ 
   public void DoSomething() 
   { 
      System.Console.WriteLine( "A.DoSomething" ); 
   } 
} 
 
public class B : A 
{ 
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   public void DoSomethingElse() 
   { 
      System.Console.WriteLine( "B.DoSomethingElse" ); 
   } 
 
   public new void DoSomething() 
   { 
      System.Console.WriteLine( "B.DoSomething" ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      B b = new B(); 
 
      b.DoSomething(); 
      b.DoSomethingElse(); 
 
      A a = b; 
      a.DoSomething(); 
   } 
} 

You can see that in this version I’ve introduced a new method on class B named DoSomething. Also 
notice the addition of the new keyword to the declaration of B.DoSomething. If you don’t add this 
keyword, the compiler will complain with a warning. This is the compiler’s way of telling you that you 
need to be more explicit about the fact that you’re hiding a method in the base class. Arguably, the 
compiler does this because hiding members this way is generally considered bad design. Let’s see why. 
The output from the previous code is as follows: 

B.DoSomething 

B.DoSomethingElse 

A.DoSomething 

First notice that which DoSomething method gets called depends on the type of reference it is being 
called through. This is rather nonintuitive, because B is-an A, and you know that inheritance models an 
is-a relationship. If that’s the case, shouldn’t the entire public interface for A be available to consumers 
of the instance of class B? The short answer is yes. If you really want the method to behave differently in 
subclasses, then at the point class A is defined, you would declare the DoSomething method as virtual. 
That way, you could utilize polymorphism to do the right thing. Then, the most derived DoSomething 
would get called no matter which type of reference it is called through. 

I have more to say about virtual methods later on, but think about this for a moment. In order to 
declare DoSomething as virtual, you need to think about the future at the point you define it. That is, you 
have to anticipate the possibility that someone could inherit from your class and possibly may want to 
override this functionality. This is just one reason why inheritance can be more complicated during the 
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design process than it initially seems. As soon as you employ inheritance, you have to start thinking 
about a lot more things like this. And we all know that nobody can predict the future. 

Even though class B now hides class A’s implementation of DoSomething, remember, it does not 
remove it. It hides it when calling the method through a B reference on the object. However, in the Main 
method, you can see that you can easily get around this by using implicit conversion to convert the B 
instance reference into an A instance reference and then calling the A.DoSomething implementation 
through the A reference. So, A.DoSomething is not gone—it’s just hidden. You have to do a little more 
work to get to it. 

Suppose you passed the B instance reference to a method that accepted an A instance reference, 
similar to the DrawShape example. The B instance reference would be implicitly converted to an A 
instance reference, and if that method called DoSomething on that A instance reference passed to it, it 
would get to A.DoSomething rather than B.DoSomething. That’s probably not what the caller of the method 
would expect. 

This is a classic demonstration that just because the language allows you to do something like this 
doesn’t mean that doing so fosters good design. Just about any language available out there, including 
C++, has features in the backwaters of its spec that, when used (or used improperly), really just add 
unnecessary complexity and result in bad designs. 

The base Keyword 
When you derive from a class, often you need to call a method or access a field, a property, or an indexer 
on the base class from within a method on the derived class. The base keyword exists for this purpose. 
You can use the base keyword just like any other instance variable, but you can use it only within the 
block of an instance constructor, instance method, or instance property accessor. You cannot use it in 
static methods. This makes complete sense, because base allows access to base class implementations of 
an instance, much like this allows access to the instance owning the method. Let’s look at the following 
code block: 

public class A 
{ 
   public A( int var ) 
   { 
      this.x = var; 
   } 
 
   public virtual void DoSomething() 
   { 
      System.Console.WriteLine( "A.DoSomething" ); 
   } 
 
   private int x; 
} 
 
public class B : A 
{ 
   public B() 
      : base( 123 ) 
   { 
   } 
 
   public override void DoSomething() 
   { 
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      System.Console.WriteLine( "B.DoSomething" ); 
      base.DoSomething(); 
   } 
    
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      B b = new B(); 
 
      b.DoSomething(); 
   } 
} 

In this example, you can see two uses of the base keyword. The first is in the constructor for class B. 
Remember that the base class doesn’t inherit instance constructors. However, when initializing the 
object, it is sometimes necessary to call one of the base class constructors explicitly during initialization 
of the derived class. This explains the notation in the class B instance constructor. The base class 
initialization occurs after the declaration of the derived class constructor’s parameter list, but before the 
constructor code block. I discuss the ordering of constructor calls and object initialization in greater 
detail later, in the section titled “Creating Objects.” 

The second use of the base keyword is in the B.DoSomething implementation. I have decided that, in 
my implementation of class B, I want to borrow the DoSomething implementation in class A while 
implementing B.DoSomething. I can call the A.DoSomething implementation directly from within the 
B.DoSomething implementation by going through the base keyword. 

If you’re familiar with virtual methods, you may have raised an eyebrow at this point. If the 
DoSomething method is virtual, and the base keyword acts like an instance variable on the base class, 
wouldn’t the call to base.DoSomething actually end up calling B.DoSomething? After all, that’s how 
polymorphism works, and base.DoSomething is equivalent to doing ((B)this).DoSomething, which is just 
casting the this reference into a class B reference on this and then calling B.DoSomething, isn’t it? Well, if 
that were the case, then the code in B.DoSomething would introduce an infinite loop. 

The answer to the question is that no infinite loop has been introduced. The base keyword is treated 
specially when used inside an instance member to call a virtual method. Normally, calling a virtual 
method on an instance calls the most derived implementation of the virtual method, which in this case 
is B.DoSomething. However, when it’s called through the base keyword, the most derived method with 
respect to the base class is called. Because A is the base class and A.DoSomething is the most derived 
version of DoSomething with respect to class A, then base.DoSomething calls A.DoSomething. Thus, this is 
how you can implement an override method while borrowing the implementation of the base class. If 
you’re curious about the details, the fact is that the generated IL code calls through the base reference 
using the call instruction rather than callvirt. 

sealed Classes 
I hinted previously that inheritance is such a powerful tool that it’s easily abused. In fact, this is so true 
that I devote an entire discussion to the pitfalls of inheritance in the section titled “Inheritance, 
Containment, and Delegation” later in this chapter. When you create a new class, sometimes you create 
it with the express intent for it to serve as a base class or to allow for specialization. Often, though, 
classes are designed with no knowledge or foresight about whether they will be used as base classes or 
not. In fact, it’s likely that a class you design today will be used as a base class tomorrow, even though 
you never intended for it to be used as a base class. 
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C# offers the sealed keyword for the occasions when you never want a client to derive from a class. 
When applied to the entire class, the sealed keyword indicates that this class is a leaf class. By that, I 
mean that nothing can inherit from this class. If you visualize your inheritance diagrams in your design 
as trees, then it makes sense to call sealed classes leaf classes. At first, you might think that you should 
rarely use the sealed keyword. However, I believe that the contrary is true. You should use the sealed 
keyword as often as possible when designing new classes. In fact, use it by default. 

Inheritance is such a tricky beast that, in order for a class to serve as a good base class, you must 
design it with that goal in mind. If not, you should mark it as sealed. It’s as simple as that. Now, you may 
be thinking, “Shouldn’t I leave it unsealed so that someone can possibly derive from it in the future, thus 
retaining maximum flexibility?” The answer is no, in a good design. Again, a class that is meant to serve 
as a base class must be designed with that in mind from the start. If it is not, then it’s likely that you’ll hit 
pitfalls while trying to derive from the class effectively. 

■ Note In many cases, classes that are meant to serve as extendable base classes are contained in consumable 

libraries. Creating libraries is a detail-oriented business that you must focus lots of time on for your library to be 

maximally useful. Additionally, once you publish a library, you may be stuck with supporting it for a long time; 

therefore, you want to get it right the first time. I suggest you reference  Framework Design Guidelines: 

Conventions, Idioms, and Patterns for Reusable .NET Libraries by Krzysztof Cwalina and Brad Abrams (Addison-

Wesley Professional, 2005) if you’re planning to create libraries; the book originated from the internal design 

guidelines that the .NET Base Class Library team used while developing the framework. 

abstract Classes 
At the  opposite end of the spectrum from sealed classes are abstract classes. Sometimes, you need to 
design a class whose only purpose is to serve as a base class. You should mark classes such as these with 
the abstract keyword. 

The abstract keyword tells the compiler that this class is meant to be used only as a base class, and 
therefore it does not allow code to create instances of that class. Let’s revisit the GeometricShape example 
from earlier in the chapter: 

public abstract class GeometricShape 
{ 
   public abstract void Draw(); 
} 
 
public class Circle : GeometricShape 
{ 
   public override void Draw() 
   { 
      // Do some drawing. 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
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   { 
      Circle shape = new Circle(); 
 
      // This won't work! 
      // GeometricShape shape2 = new GeometricShape(); 
 
      shape.Draw(); 
   } 
} 

It makes no sense to create a GeometricShape object all by itself, so I’ve marked the GeometricShape 
class as abstract. Therefore, if the code in Main attempts to create an instance of GeometricShape, a 
compiler error will be emitted. You may have also noted the use of the abstract keyword on the 
GeometricShape.Draw method. I cover this usage of the keyword in more detail in the “Virtual and 
Abstract Methods” section. In short, using the abstract keyword is a way of saying to the compiler that 
the deriving classes must override the method. The method must be overridden by the derived classes, 
thus it makes no sense for GeometricShape.Draw to have an implementation when you can’t ever create 
an instance of GeometricShape anyway. Therefore, abstract methods don’t need to have an 
implementation. If you come from the C++ world, you may be exclaiming that C++ allows an abstract 
method to have an implementation. This is true, but the designers of C# considered the idea 
unnecessary. In my experience, I’ve rarely found the need to use a default implementation of an abstract 
method except in debug builds. 

As you can see, there can be times in a design when you use a base class to define a sort of template 
of behavior by providing an implementation to inherit. The leaf classes can inherit from this base 
template of an implementation and flesh out the details. 

Nested Classes 
You define nested classes within the scope of another class definition. Classes that are defined within the 
scope of a namespace, or outside the scope of a namespace but not inside the scope of another class, are 
called non-nested classes. Nested classes have some special capabilities and lend themselves well to 
situations where you need a helper class that works on behalf of the containing class. 

For example, a container class might maintain a collection of objects. Imagine that you need some 
facility to iterate over those contained objects and also allow external users who are doing the iteration 
to maintain a marker, or a cursor of sorts, representing their place during the iteration. This is a common 
design technique. Preventing the users from holding on to direct references to the contained objects 
gives you much greater flexibility to change the internal behavior of the container class without breaking 
code that uses the container class. Nested classes provide a great solution to this problem for several 
reasons. 

First, nested classes have access to all of the members that are visible to the containing class, even if 
they’re private. Consider the following code, which represents a container class that contains instances 
of GeometricShape: 

using System.Collections; 
 
public abstract class GeometricShape 
{ 
   public abstract void Draw(); 
} 
 
public class Rectangle : GeometricShape 
{ 
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   public override void Draw() 
   { 
      System.Console.WriteLine( "Rectangle.Draw" ); 
   } 
} 
 
public class Circle : GeometricShape 
{ 
   public override void Draw() 
   { 
      System.Console.WriteLine( "Circle.Draw" ); 
   } 
} 
 
public class Drawing : IEnumerable 
{ 
   private ArrayList shapes; 
 
   private class Iterator : IEnumerator 
   { 
      public Iterator( Drawing drawing ) 
      { 
         this.drawing = drawing; 
         this.current = -1; 
      } 
 
      public void Reset() 
      { 
         current = -1; 
      } 
 
      public bool MoveNext() 
      { 
         ++current; 
         if( current < drawing.shapes.Count ) { 
            return true; 
         } else { 
            return false; 
         } 
      } 
 
      public object Current 
      { 
         get 
         { 
            return drawing.shapes[ current ]; 
         } 
      } 
 
      private Drawing   drawing; 
      private int       current; 
   } 
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   public Drawing() 
   { 
      shapes = new ArrayList(); 
   } 
 
   public IEnumerator GetEnumerator() 
   { 
      return new Iterator( this ); 
   } 
 
   public void Add( GeometricShape shape ) 
   { 
      shapes.Add( shape ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      Rectangle rectangle = new Rectangle(); 
      Circle circle = new Circle(); 
 
      Drawing drawing = new Drawing(); 
      drawing.Add( rectangle ); 
      drawing.Add( circle ); 
       
      foreach( GeometricShape shape in drawing ) { 
         shape.Draw(); 
      } 
   } 
} 

This example introduces a few new concepts, such as the IEnumerable and IEnumerator interfaces, 
which I detail in Chapter 9. For now, let’s focus primarily on the nested class usage. As you can see, the 
Drawing class supports a method called GetEnumerator, which is part of the IEnumerable implementation. 
It creates an instance of the nested Iterator class and returns it. 

Here’s where it gets interesting. The Iterator class takes a reference to an instance of the containing 
class, Drawing, as a parameter to its constructor. It then stores away this instance for later use so that it 
can get at the shapes collection within the drawing object. However, notice that the shapes collection in 
the Drawing class is private. It doesn’t matter, because nested classes have access to the containing 
class’s private members. 

Also, notice that the Iterator class itself is declared private. Non-nested classes can only be 
declared as either public or internal, and they default to internal. You can apply the same access 
modifiers to nested classes as you can to any other member of the class. In this case, you declare the 
Iterator class as private so that external code, such as in the Main routine, cannot create instances of 
the Iterator directly. Only the Drawing class itself can create instances of Iterator. It doesn’t make sense 
for anyone other than Drawing.GetEnumerator to be able to create an Iterator instance. 

Nested classes that are declared public can be instantiated by code external to the containing class. 
The notation for addressing the nested class is similar to that of namespace qualification. In the 
following example, you can see how to create an instance of a nested class: 

public class A 
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{ 
   public class B 
   { 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      A.B b = new A.B(); 
   } 
} 

Sometimes when you introduce a nested class, its name may hide a member name within a base 
class using the new keyword, similar to the way method hiding works. This is extremely rare, and can, for 
the most part, be avoided. Let’s take a look at an example: 

public class A 
{ 
   public void Foo() 
   { 
   } 
} 
 
public class B : A 
{ 
   public new class Foo 
   { 
   } 
} 

In this case, you define a nested class Foo inside the class B definition. The name is the same as the 
Foo method in class A, therefore you must use the new keyword, or else the compiler will let you know 
about the collision in names. Again, if you get into a situation like this, it’s probably time to rethink your 
design or simply rename the nested class unless you really meant to hide the base member. Hiding base 
members like this is questionable design and not something you should generally do just because the 
language  allows it. 

Indexers 
Indexers allow you to treat an object instance as if it were an array or a collection. This allows for a more 
natural usage of objects that are meant to behave as a collection, such as instances of the Drawing class 
from the previous section. 

Generally, indexers look a little bit like a method whose name is this. As with just about every entity 
in the C# type system, you can apply metadata attributes to indexers. You can also apply the same 
modifiers to them that just about every other class member can have, except one: Indexers may not be 
static. Indexers are, therefore, always instance-based and work on a specific instance of an object of the 
defining class. Following the modifiers in the declaration is the type of the indexer. The indexer will 
return this type of the object to the caller. Then you put the this keyword, followed by the parameter list 
in square brackets, which I show in the next example. 
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Essentially, an indexer behaves a lot like a hybrid between a property and a method. After all, under 
the covers, it is one of the special methods defined by the compiler when you define an indexer. 
Conceptually, an indexer is similar to a method, in that it can take a set of parameters when used. 
However, it also behaves like a property, as you define the accessors with a similar syntax. You can apply 
many of the same modifiers to indexers as you can to a method. For example, indexers can be virtual, 
they can be an override of a base class indexer, or they can be overloaded based on the parameter list, 
just as methods can. Following the parameter list is the code block for the indexer, which is just like a 
property code block in its syntax. The main difference is that the accessors for the indexer can access the 
parameter list variables, whereas the accessors of a property don’t have user-defined parameters. Let’s 
add an indexer to the Drawing object and see how you can use it: 

using System.Collections; 
 
public abstract class GeometricShape 
{ 
   public abstract void Draw(); 
} 
 
public class Rectangle : GeometricShape 
{ 
   public override void Draw() 
   { 
      System.Console.WriteLine( "Rectangle.Draw" ); 
   } 
} 
 
public class Circle : GeometricShape 
{ 
   public override void Draw() 
   { 
      System.Console.WriteLine( "Circle.Draw" ); 
   } 
} 
 
public class Drawing 
{ 
   private ArrayList shapes; 
 
   public Drawing() 
   { 
      shapes = new ArrayList(); 
   } 
 
   public int Count 
   { 
      get 
      { 
         return shapes.Count; 
      } 
   } 
 
   public GeometricShape this[ int index ] 
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   { 
      get 
      { 
         return (GeometricShape) shapes[index]; 
      } 
   } 
 
   public void Add( GeometricShape shape ) 
   { 
      shapes.Add( shape ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      Rectangle rectangle = new Rectangle(); 
      Circle circle = new Circle(); 
 
      Drawing drawing = new Drawing(); 
      drawing.Add( rectangle ); 
      drawing.Add( circle ); 
       
      for( int i = 0; i < drawing.Count; ++i ) { 
         GeometricShape shape = drawing[i]; 
         shape.Draw(); 
      } 
   } 
} 

As you can see, you can access the elements of the Drawing object in the Main method as if they were 
inside a normal array. Most collection types support some type of indexer such as this. Also, because this 
indexer only has a get accessor, it is read-only. However, keep in mind that if the collection maintains 
references to objects, the client code can still change the state of the contained object through that 
reference. But because the indexer is read-only, the client code cannot swap out the object reference at a 
specific index with a reference to a completely different object. 

One difference is worth noting between a real array and an object that provides an indexer. You 
cannot pass the results of calling an indexer on an object as an out or ref parameter to a method as you 
can do with a real array. A similar restriction is placed on properties. 

partial Classes 
Classes defined as partial were a new addition to C# 2.0. So far, I’ve shown you how to define classes in 
one single file. This was a requirement in C# 1.0. It was impossible to split the definition of a class across 
multiple files. 

At first, such a convenience may not seem worthwhile. After all, if a class has become so large that 
the file is hard to manage, that may be an indication of poor design. But arguably, the main reason 
partial classes were introduced is to support code-generation tools. 

Normally, when you work within the confines of the IDE, the IDE tries to help you out by generating 
some code for you. For example, a wizard generates helpful DataSet-derived classes when using 
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ADO.NET facilities. The classic problem has always been editing the resulting code generated by the 
tool. It was always a dangerous proposition to edit the output from the tool, because any time the 
parameters to the tool change, the tool regenerates the code, thus overwriting any changes made. This is 
definitely not desired. Previously, the only way to work around this was to use some form of reuse, such 
as inheritance or containment, thus inheriting a class from the class produced by the code-generation 
tool. Many times these were not natural solutions to the problem. And many times, the code generated 
by these tools was not designed to take inheritance into consideration. 

Now, you can slip the partial keyword into the class definition right before the class keyword, and 
voilà—you can split the class definition across multiple files. One requirement is that each file that 
contains part of the partial class must use the partial keyword, and all of the partial pieces must be 
defined within the same namespace, if you declare them in a namespace at all. Now, with the addition of 
the partial keyword, the code generated from the code-generation tool can live in a separate file from 
the additions to that generated class, and when the tool regenerates the code, you don’t lose your 
changes. 

You should know some things about the process the compiler goes through to assemble partial 
classes into a whole class. You must compile all the partial pieces of a class together at once so the 
compiler can find all of the pieces. For the most part, all of the members and aspects of the class are 
merged together using a union operation. Therefore, they must coexist together as if you had declared 
and defined them all in the same file. Base interface lists are unioned together. However, because a class 
can have one base class at most, if the partial pieces list a base class, they must all list the same base 
class. Other than those obvious restrictions, I think you’ll agree that partial classes are a welcome 
addition to the C# language. 

partial Methods 
C# 3.0 introduced the partial keyword for methods to complement partial classes. A partial method is 
simply a method whose signature is declared without a body in one piece of the partial class and defined 
in another piece of the partial class. Just like partial classes, partial methods come in really handy when 
you are consuming code created by wizards and code generators. But the beauty of partial methods is 
that if a generator creates a declaration for a partial method in one part of the class declaration and you 
don’t implement it in your part, then the method is not included as part of the final assembled class. 
Moreover, any code in the generated piece that calls the partial method will not break. It will simply not 
call the partial method at all. There are several restrictions on partial methods necessary to provide this 
behavior. 

• Partial methods must have a return type of void. 

• Partial methods may not accept out parameters but may accept ref parameters. 

• Partial methods may not be extern as well. 

• Partial methods cannot be marked virtual and may not be decorated with access 
modifiers because they are implicitly private. 

• Partial methods can be marked either static or unsafe1. 

                                                 

 
1 Unsafe coding within C# is outside of the scope of this book. For more information, I suggest that you reference the 
MSDN documentation. 
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• Partial methods can be generic and may be decorated with constraints, although 
repeating the constraints in the declaration of the implementation is optional. 

• Delegates may not be wired up to call partial methods because they are not 
guaranteed to exist in the final compiled code. 

With all of that in mind, let’s look at a short example of partial methods. Imagine one partial class 
that is, for the sake of this example, a result of some code generator and is shown below: 

public partial class DataSource 
{ 
    // Some useful methods 
    // ... 
 
    partial void ResetSource(); 
} 

Let’s pretend from this DataSource class that the generator created represents some sort of back-end 
data store that, in order to satisfy some design requirement, needs to be able to be reset from time to 
time. Moreover, let’s assume that the steps required to reset the data source are only known by the one 
who completes and consumes this partial class and implements the partial method. With that in mind, a 
possible completion of this partial class by the consumer could look like the following: 

using System; 
 
public partial class DataSource 
{ 
    partial void ResetSource() { 
        Console.WriteLine( "Source was reset" ); 
    } 
 
    public void Reset() { 
        ResetSource(); 
    } 
} 
 
public class PartialMethods 
{ 
    static void Main() { 
        DataSource ds = new DataSource(); 
 
        ds.Reset(); 
    } 
} 

You can see that I had to add a public method named Reset in order for Main to be able to reset 
instances of DataSource. That’s because the ResetSource method is implicitly private. If you inspect the 
resultant executable with ILDASM, you will see the private method DataSource.ResetSource and if you 
inspect the IL generated for DataSource.Reset, you will see it calling through to ResetSource. If you were 
to comment out, or remove, the partial implementation of ResetSource and recompile, ILDASM would 
show that the DataSource.ResetSource method does not exist and the call to ResetSource within the 
Reset method is simply removed. 
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Static Classes 
C# 2.0 introduced a new class modifier that allows you to designate that a class is nothing more than a 
collection of static members and cannot have objects instantiated from it. The way you do this is by 
decorating the class declaration with the static modifier. Once you do that, several restrictions are 
placed upon the class, as follows: 

• The class may not derive from anything other than System.Object, and if you don’t 
specify any base type, derivation from System.Object is implied. 

• The class may not be used as a base class of another class. 

• The class can only contain static members, which can be public or private. 
However, they cannot be marked protected or protected internal, because the 
class cannot be used as a base class. 

• The class may not have any operators, because defining them would make no 
sense if you cannot create instances of the class. 

Even though the entire class is marked static, you still must mark each individual member as 
static as well. Although it would be nice for the compiler to just assume that any member within a static 
class is static itself, it would add unnecessary complexity to an already complex compiler. If you put the 
static modifier on a nested class, it too will be a static class just as the containing class is, but you’ll be 
able to instantiate nested classes not decorated with static. 

■ Note In essence, declaring a class static is just the same as declaring it sealed and abstract at the same 

time, but the compiler won’t let you do such a thing. However, if you look at the IL code generated for a static 

class, you’ll see that this is exactly what the compiler is doing—that is, the class is decorated with the abstract 

and sealed modifiers in the IL. 

The following code shows an example of a static class: 

using System; 
 
public static class StaticClass 
{ 
    public static void DoWork() { 
        ++callCount; 
        Console.WriteLine( "StaticClass.DoWork()" ); 
    } 
 
    public class NestedClass { 
        public NestedClass() { 
            Console.WriteLine( "NestedClass.NestedClass()" ); 
        } 
    } 
 
    private static long callCount = 0; 
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    public static long CallCount { 
        get { 
            return callCount; 
        } 
    } 
} 
 
public static class EntryPoint 
{ 
    static void Main() { 
        StaticClass.DoWork(); 
 
        // OOPS! Cannot do this! 
        // StaticClass obj = new StaticClass(); 
 
        StaticClass.NestedClass nested = 
            new StaticClass.NestedClass(); 
 
        Console.WriteLine( "CallCount = {0}", 
                           StaticClass.CallCount ); 
    } 
} 

The StaticClass type contains one method, a field, a property, and a nested class. Notice that 
because the NestedClass is not declared static, you can instantiate it just like any other class. Also, 
because the EntryPoint class merely contains the static Main method, it too is marked as static to 
prevent anyone from instantiating it inadvertently. 

Static classes are useful when you need a logical mechanism to partition a collection of methods. An 
example of a static class within the Base Class Library is the venerable System.Console class. It contains 
static methods, properties, and events, which are all static because only one console can be attached to 
the process at a single time. 

THE SINGLETON PATTERN 

Probably the most popular design pattern is the Singleton pattern, which typically models a situation in 
which you can create only one instance of a class at one time. Historically, you implement the Singleton 
pattern with private constructors and with a static method named something like GetInstance to obtain a 
reference to the one possible running instance. Although you can use this technique in C#, the static class 
provides an excellent tool for implementing the Singleton pattern in certain situations, as you see with 
System.Console. 

If your Singleton is not required to be an instance of a class, then the static class is an excellent tool 
for implementing it. For example, if you don’t ever need to destroy and recreate your class, and if you 
won’t use your Singleton with .NET Remoting, then each application domain has its own instance of the 
Singleton, because static fields are application-domain-specific. In fact, such a Singleton will not live on 
the heap, and all of the bookkeeping involved with managing the single instance is unnecessary. What’s 
even better is that because it’s not an actual object instance, you can use the static class effectively within 
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an object’s finalizer body safely. In Chapter 13, I describe why using objects in finalizers is so dangerous 
and how you cannot guarantee in what order finalizers for multiple objects will be called.  

Reserved Member Names 
Several of the capabilities provided by the C# language are really just syntactic sugar that boils down to 
methods and method calls in the IL code that you never see, unless you open the generated assembly 
with a tool such as ILDASM. It’s important to be aware of this, just in case you attempt to declare a 
method whose name conflicts with one of these underlying reserved method names. These syntactic 
shortcuts include properties, events, and indexers. If you try to declare a method with one of these 
special internal names and you also have a property, an event, or an indexer already defined that 
declares the same method names internally, the compiler will complain about duplicate symbols. 

■ Note If you follow the conventions in Framework Design Guidelines: Conventions, Idioms, and Patterns for 

Reusable .NET Libraries by Krzysztof Cwalina and Brad Abrams (Addison-Wesley Professional, 2005) or you use 

FxCop to regularly analyze your code, you should never encounter a name conflict between one of your class 

members and a reserved member name. 

Reserved Names for Properties 
For a property named Prop of type T, the following signatures are reserved for the implementation of the 
property: 

T get_Prop(); 
void set_Prop( T value ); 

Reserved Names for Indexers 
If the class contains an indexer that is of type T and takes a parameter list represented by Params, it will 
contain the following reserved method names: 

T get_Item( Params ); 
void set_Item( Params, T value ); 

Reserved Names for Destructors 
If the class is defined with a finalizer (using the destructor syntax), it will contain a definition of the 
following method: 

void Finalize(); 
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I have a lot more to say about destructors and the Finalize method later in this chapter and in 
Chapter 13. 

Reserved Names for Events 
If the class contains an event definition of type T that is named Event, the following methods are reserved 
on the class: 

void add_Event( T callback ); 
void remove_Event( T callback ); 

I discuss events in Chapter 10, when I cover delegates and anonymous methods. 

Value Type Definitions 
A value type is a lightweight type that you typically don’t create on the heap. The only exception to this 
rule is a value type that is a field in a reference object that lives on the heap. A value type is a type that 
behaves with value semantics. That is, when you assign a value-type variable to another value-type 
variable, the contents of the source are copied into the destination and a full copy of the instance is 
made. This is in contrast to reference types, or object instances, where the result of copying one 
reference-type variable to another is that there is now a new reference to the same object. Also, when 
you pass a value type as a parameter to a method, the method body receives a local copy of the value, 
unless the parameter was declared as a ref or an out parameter. All of the C# built-in types except 
string, arrays, and delegates are value types. In C#, you declare a value type using the struct keyword 
rather than the class keyword. 

On the whole, the syntax of defining a struct is the same as for a class—with some notable 
exceptions, as you’ll soon see. A struct cannot declare a base class. Also, a struct is implicitly sealed. That 
means that nothing else can derive from a struct. Internally, a struct derives from System.ValueType, 
which in turn extends System.Object. This is so that ValueType can provide implementations of 
Object.Equals and Object.GetHashCode, among others, which are meaningful for value types. In the 
section titled “System.Object,” I cover the nuances involved with implementing the methods inherited 
from System.Object for a value type. Like classes, structs can be declared in partial pieces, and the same 
rules for partial pieces apply to structs as they do to classes. 

Constructors 
Types defined as structs can have static constructors just like classes. Structs can also have instance 
constructors, with one notable exception. They cannot have a user-defined default, parameterless 
constructor, nor can they have instance field initializers in the struct definition. Static field initializers 
are permitted, though. Parameterless constructors are not necessary for value types, because the system 
provides one, which simply sets the fields of the value to their default values. In all cases, that amounts 
to setting the bits of the field’s storage to 0. So, if a struct contains an int, the default value will be 0. If a 
struct contains a reference type field, the default value will be null. Each struct gets this implicit, 
parameterless constructor, which takes care of this initialization. It’s all part of the language’s endeavor 
to create verifiably type-safe code. However, it’s completely possible for a user to declare a variable of a 
value type without calling a constructor on it at all—that is also without using the new keyword. If that 
happens, the coder is responsible for setting up the struct appropriately before any methods on it can be 
called. Consider the following code: 
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using System; 
 
public struct Square 
{ 
   // Not a good idea to have public fields, but I use them 
   // here only for the sake of example.  Prefer to expose 
   // these with properties instead. 
   public int width; 
   public int height; 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      Square sq; 
      sq.width = 1; 
       
      // Can’t do this yet. 
      // Console.WriteLine( "{0} x {1}", sq.width, sq.height ); 
 
      sq.height = 2; 
       
      Console.WriteLine( "{0} x {1}", sq.width, sq.height ); 
   } 
}  

In Main, I’ve allocated space on the stack for a Square object. However, immediately after, I only 
assign to the width field. I’ve commented out a call to Console.WriteLine immediately after that because 
it won’t compile. The reason is that you can’t call methods on a struct before it is fully initialized. 
Properties are really method calls under the covers. After I initialize the height field, I can successfully 
use the Square instance to send the width and height to the console. Can you spot the problem in the 
following code? 

using System; 
 
public struct Square 
{ 
   public int Width 
   { 
      get 
      { 
         return width; 
      } 
 
      set 
      { 
         width = value; 
      } 
   } 
 
   public int Height 
   { 
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      get 
      { 
         return height; 
      } 
 
      set 
      { 
         height = value; 
      } 
   } 
    
   private int width; 
   private int height; 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      Square sq; 
      sq.Width = 1; 
      sq.Height = 1; 
   } 
} 

The problem is in the Main method. If you try to compile this code, the compiler will fail with an 
error. You cannot initialize the fields because they’re now private. Also, you cannot initialize them with 
the properties, because properties are really methods, and it’s illegal to call methods on a value that is 
not fully initialized. One way to get out of this pickle is to use the new keyword when you declare the new 
Square instance. You can either call one of the constructors on the struct or the default constructor. In 
this case, I’ll call the default constructor so the Main method will change to the following: 

public class EntryPoint 
{ 
   static void Main() 
   { 
      Square sq = new Square(); 
      sq.Width = 1; 
      sq.Height = 1; 
   } 
} 

Because a struct cannot derive from another struct or class, it is not permitted to call any base 
constructor through the base keyword while inside the constructor block. Even though you know that a 
struct derives from System.ValueType internally, you may not invoke the constructor of the base type 
explicitly. 

The Meaning of this 
Previously, I said that the this keyword within class methods behaves as a constant, read-only value that 
contains a reference to the current object instance. In other words, it’s a read-only object reference in 
class methods. However, with value types, this behaves like a regular ref parameter. In instance 
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constructors that don’t have an initializer clause, the this value behaves as an out parameter. That 
means that you can actually assign a value to this, as in the following example: 

public struct ComplexNumber 
{ 
   public ComplexNumber( double real, double imaginary ) 
   { 
      this.real = real; 
      this.imaginary = imaginary; 
   } 
 
   public ComplexNumber( ComplexNumber other ) 
   { 
      this = other; 
   } 
 
   private double real; 
   private double imaginary; 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      ComplexNumber valA = new ComplexNumber( 1, 2 ); 
      ComplexNumber copyA = new ComplexNumber( valA ); 
   } 
} 

Notice that the second constructor takes, as a parameter, another ComplexNumber value. This 
constructor behaves similarly to a copy constructor in C++. But instead of having to assign each field 
individually, you can simply assign to this, thus making a copy of the parameter’s state in one line of 
code. Again, the this keyword acts like an out parameter in this case. 

Remember that out parameters behave similarly to ref parameters, with one special difference. 
When a parameter is marked as an out parameter, the compiler knows that the value is uninitialized at 
the point the method body starts executing. Therefore, the compiler must make sure that every field of 
the value is initialized before the constructor exits. For example, consider the following code, which 
doesn’t compile: 

public struct ComplexNumber 
{ 
   public ComplexNumber( double real, double imaginary ) 
   { 
      this.real = real; 
      this.imaginary = imaginary; 
   } 
 
   public ComplexNumber( double real ) 
   { 
      this.real = real; 
   } 
 
   private double real; 
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   private double imaginary; 
} 

The problem with this code lies in the second constructor. Because value types typically are created 
on the stack, the allocation of such values merely requires adjustment of the stack pointer. Of course, an 
allocation of this sort says nothing about the state of the memory. The odds are that the memory 
reserved on the stack for the value contains random garbage. The CLR could elect to zero-initialize these 
blocks of memory, but that would defeat half the purpose of value types. Value types are meant to be 
lightweight and fast. If the CLR has to zero-initialize the stack memory for a value type each time the 
memory is reserved, that’s hardly a fast operation. Of course, the default parameterless constructor 
generated by the system does exactly this. But you must call it explicitly by creating the instance with the 
new keyword. Because the this keyword is treated as an out parameter in the instance constructors, the 
instance constructor must initialize each field of the value before it exits. And it is the duty of the C# 
compiler, which is supposed to generate verifiably type-safe code, to make sure you do so. That’s why 
the previous code example produces a compiler error. 

Even though instance constructors in value types cannot use the base keyword to call base class 
constructors, they can have an initializer. It is valid for the initializer to use the this keyword to call other 
constructors on the same struct during initialization. So you can make one minor modification to the 
preceding code example to make it compile: 

public struct ComplexNumber 
{ 
   public ComplexNumber( double real, double imaginary ) 
   { 
      this.real = real; 
      this.imaginary = imaginary; 
   } 
 
   public ComplexNumber( double real ) 
      :this( real, 0 ) 
   { 
      this.real = real; 
   } 
 
   private double real; 
   private double imaginary; 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      ComplexNumber valA = new ComplexNumber( 1, 2 ); 
   } 
} 

Notice the difference in the second constructor. I’ve now introduced an initializer that calls the first 
constructor from the second one. Even though the single line of code in the second constructor’s body is 
redundant, I left it there to prove a point. Notice that it only assigns the real value as in the previous 
example, but the compiler doesn’t complain. That’s because when an instance constructor contains an 
initializer, the this keyword behaves as a ref parameter in that constructor’s body rather than an out 
parameter. And, because it is a ref parameter, the compiler can assume that the value has been 
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initialized properly before entry into the method’s code block. In essence, the initialization burden is 
deferred to the first constructor, whose duty it is to make sure it initializes all fields of the value. 

One last note to consider is that even though the system generates a default, parameterless 
initializer, you can’t call it using the this keyword. For example, the following code doesn’t compile: 

public struct ComplexNumber 
{ 
   public ComplexNumber( double real, double imaginary ) 
   { 
      this.real = real; 
      this.imaginary = imaginary; 
   } 
 
   public ComplexNumber( double real ) 
      :this() 
   { 
      this.real = real; 
   } 
 
   private double real; 
   private double imaginary; 
} 

If you had a struct that had quite a few fields in it and you wanted to initialize all but one of them to 
0 or null, it would save you a little bit of typing to be able to do this. But, alas, the compiler doesn’t allow 
it. 

Finalizers 
Value types are not allowed to have a finalizer. The concept of finalization, or nondeterministic 
destruction, is reserved for instances of classes, or objects. If structs had finalizers, the runtime would 
have to manage the calling of the finalizer each time the value goes out of scope. 

Keep in mind that you want to be careful about initializing resources within constructors of value 
types. Just don’t do it. Consider a value type that has a field, which is a handle to some sort of low-level 
system resource. Suppose this low-level resource is allocated, or acquired, in a special constructor that 
accepts parameters. You now have a couple of problems to deal with. Because you cannot create a 
default, parameterless constructor, how can you possibly acquire the resource when the user creates an 
instance of the value without using one of the custom constructors? The answer is, you cannot. The 
second problem is that you have no automatic trigger to clean up and release the resource, because you 
have no finalizer. You would have to force the user of the value to call some special method to clean up 
before the value goes out of scope. Requiring the user to remember to do something like that in order to 
avoid resource leaks is poor design. 

Interfaces 
Although it’s illegal for a struct to derive from another class, it can still implement interfaces. Supported 
interfaces are listed in the same way as they are for classes, in a base interface list after the struct 
identifier. Generally, supporting interfaces for structs is the same as supporting interfaces for classes. I 
cover interfaces in much more detail in Chapter 5. There are performance implications of implementing 
interfaces on structs, in that doing so incurs a boxing operation to call methods through an interface 
reference on the struct value instances. I talk more about that in Chapter 13. 
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Anonymous Types 
How many times have you needed a lightweight class to hold a handful of related values for use within a 
particular method and you lamented having to type a whole type definition complete with private fields 
and public property accessors? Enter anonymous types. C# allows you to introduce these types using 
implicitly typed local variables together with an extended syntax of the new operator. Let’s see what this 
looks like: 

using System; 
 
public class EntryPoint 
{ 
    static void Main() { 
        var employeeInfo = new { Name = "Joe", Id = 42 }; 
        var customerInfo = new { Name = " Jane", Id = "AB123" }; 
 
        Console.WriteLine( "Name: {0}, Id: {1}", 
                           employeeInfo.Name, 
                           employeeInfo.Id ); 
 
        Console.WriteLine( "employeeInfo Type is actually: {0}", 
                           employeeInfo.GetType() ); 
        Console.WriteLine( "customerInfo Type is actually: {0}", 
                           customerInfo.GetType() ); 
    } 
} 

Notice the interesting syntax within the braces after the new keyword while declaring employeeInfo. 
The name/value pairs declare a property name within the anonymous type and initialize it to the given 
value. In this case, two anonymous types are created with two properties. In the first anonymous type, 
the first property is a System.String called Name, and the second is a System.Int32 called Id. It’s 
important to note that the underlying type of the instance created is a strong type, it’s just compiler 
generated and you don’t know the name of it. But as you can see from the following output from the 
code above, you can figure out the name of the type: 

Name: Joe, Id: 42 

employeeInfo Type is actually: <>f__AnonymousType0`2[System.String,System.Int32] 

customerInfo Type is actually: <>f__AnonymousType0`2[System.String,System.String] 

■ Note The compiler-generated type names are implementation specific, so you should never rely on them. 

Additionally, you’ll notice that they are “unspeakable” to the compiler; if you were to attempt to declare an 

instance using that type name, the compiler would complain with a syntax error. 
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You do not know the compiler-generated name of the type, therefore you are forced to declare the 
variable instance as an implicitly typed local variable using the var keyword, as I did in the code. 

Also, notice that the compiler-generated type is a generic type that takes two type parameters. It 
would be inefficient for the compiler to generate a new type for every anonymous type that contains two 
types with the same field names. The output above indicates that the actual type of employeeInfo looks 
similar to the type name below: 

<>f__AnonymousType0<System.String, System.Int32> 

And because the anonymous type for customerInfo contains the same number of fields with the 
same names, the generated generic type is reused and the type of customerInfo looks similar to the type 
below: 

<>f__AnonymousType0<System.String, System.String> 

Had the anonymous type for customerInfo contained different field names than those for 
employeeInfo, then another generic anonymous type would have been declared. 

Now that you know the basics about anonymous types, I want to show you an abbreviated syntax 
for declaring them. Pay attention to the bold statements in the following example: 

using System; 
 
public class ConventionalEmployeeInfo 
{ 
    public ConventionalEmployeeInfo( string Name, int Id ) { 
        this.name = Name; 
        this.id = Id; 
    } 
 
    public string Name { 
        get { 
            return name; 
        } 
 
        set { 
            name = value; 
        } 
    } 
 
    public int Id { 
        get { 
            return id; 
        } 
 
        set { 
            id = value; 
        } 
    } 
 
    private string name; 
    private int id; 
} 
 
public class EntryPoint 
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{ 
    static void Main() { 
        ConventionalEmployeeInfo oldEmployee = 
            new ConventionalEmployeeInfo( "Joe", 42 ); 
         
        var employeeInfo = new { oldEmployee.Name, 
                                 oldEmployee.Id }; 
 
        string Name = "Jane"; 
        int Id = 1234; 
 
        var customerInfo = new { Name, Id }; 
 
        Console.WriteLine( "employeeInfo Name: {0}, Id: {1}", 
                           employeeInfo.Name, 
                           employeeInfo.Id ); 
        Console.WriteLine( "customerInfo Name: {0}, Id: {1}", 
                           customerInfo.Name, 
                           customerInfo.Id ); 
 
        Console.WriteLine( "Anonymous Type is actually: {0}", 
                           employeeInfo.GetType() ); 
    } 
} 

For illustration purposes, I have declared a type named ConventionalEmployeeInfo that is not an 
anonymous type. Notice that at the point where I instantiate the anonymous type for employeeInfo, I do 
not provide the names of the fields as before. In this case, the compiler uses the names of the properties 
of the ConventionalEmployeeInfo type, which is the source of the data. This same technique works using 
local variables, as you can see when I declare the customerInfo instance. In this case, customerInfo is an 
anonymous type that implements two read/write properties named Name and Id. Member declarators for 
anonymous types that use this abbreviated style are called projection initializers.2 

If you inspect the compiled assembly in ILDASM, you’ll notice that the generated types for 
anonymous types are of class type. The class is also marked private and sealed. However, the class is 
extremely basic and does not implement anything like a finalizer or IDisposable. 

■ Note Anonymous types, even though they are classes, do not implement the IDisposable interface. As I 

mention in Chapter 13, the general guideline for types that contain disposable types is that they, too, should be 

disposable. But because anonymous types are not disposable, you should avoid placing instances of disposable 

types within them. 

                                                 

 
2 Projection initializers are very handy when used together with LINQ (Language-Integrated Query) which I cover in 
Chapter 16. 
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Be careful not to strip the type off of anonymous types. For example, if you put instances of 
anonymous types in a System.List, how are you supposed to cast those instances back into the 
anonymous type when you reference them later? Remember, System.List stores references to 
System.Object. And even though the anonymous types derive from System.Object, how are you going to 
cast them back into their concrete types to access their properties? You could attempt to use reflection to 
overcome this. But then you introduce so much work that you lose any benefit from using anonymous 
types in the first place. Similarly, if you want to pass instances of anonymous types out of functions via 
out parameters or via a return statement, you must pass them out as references to System.Object, thus 
stripping the variables of their useful type information. In the previous example, if you need to pass 
instances out of a method, then you really should be using an explicitly defined type such as 
ConventionalEmployeeInfo instead of anonymous types. 

After all of these restrictions placed on anonymous types, you may be wondering how they are 
useful except in rare circumstances within the local scope. It turns out that they are extremely useful 
when used with projection operators in LINQ (Language Integrated Query), which I will show you in 
Chapter 16. 

Object Initializers 
C# 3.0 introduced a shorthand you can use while instantiating new instances of objects. How many 
times have you written code similar to this? 

Employee developer = new Employee(); 
developer.Name = "Fred Blaze"; 
developer.OfficeLocation = "B1"; 

Right after creating an instance of Employee, you immediately start initializing the accessible 
properties of the instance. Wouldn’t it be nice if you could do this all in one statement? Of course, you 
could always create a specialized overload of the constructor that accepts the parameters to use while 
initializing the new instance. However, there may be times where it is more convenient not to do so. 

The new object initializer syntax is shown below: 

using System; 
 
public class Employee 
{ 
    public string Name { 
        get; set; 
    } 
 
    public string OfficeLocation { 
        get; set; 
    } 
} 
 
public class InitExample 
{ 
    static void Main() { 
        Employee developer = new Employee { 
            Name = "Fred Blaze", 
            OfficeLocation = "B1" 
        }; 
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    } 
} 

 
Notice how the developer instance is initialized in the Main method. Under the hood, the compiler 

generates the same code it would have if you had initialized the properties manually after creating the 
Employee instance. Therefore, this technique only works if the properties, in this case Name and 
OfficeLocation, are accessible at the point of initialization. 

You can even nest object initializers as shown in the example below: 

using System; 
 
public class Employee 
{ 
    public string Name { get; set; } 
    public string OfficeLocation { get; set; } 
} 
 
public class FeatureDevPair 
{ 
    public Employee Developer { get; set; } 
    public Employee QaEngineer { get; set; } 
} 
 
public class InitExample 
{ 
    static void Main() { 
        FeatureDevPair spellCheckerTeam = new FeatureDevPair { 
            Developer = new Employee { 
                Name = "Fred Blaze", 
                OfficeLocation = "B1" 
            }, 
            QaEngineer = new Employee { 
                Name = "Marisa Bozza", 
                OfficeLocation = "L42" 
            } 
        }; 
    } 
} 

Notice how the two properties of spellCheckerTeam are initialized using the new syntax. Each of the 
Employee instances assigned to those properties is itself initialized using an object initializer, too. Finally, 
let me show you an even more abbreviated way to initialize the object above that saves a bit more typing 
at the expense of hidden complexity: 

using System; 
 
public class Employee 
{ 
    public string Name { get; set; } 
    public string OfficeLocation { get; set; } 
} 

v@v
Text Box
Download at WoweBook.com
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public class FeatureDevPair 
{ 
    private Employee developer = new Employee(); 
    private Employee qaEngineer = new Employee(); 
 
    public Employee Developer { 
        get { return developer; } 
        set { developer = value; } 
    } 
 
    public Employee QaEngineer { 
        get { return qaEngineer; } 
        set { qaEngineer = value; } 
    } 
} 
 
public class InitExample 
{ 
    static void Main() { 
        FeatureDevPair spellCheckerTeam = new FeatureDevPair { 
            Developer = { 
                Name = "Fred Blaze", 
                OfficeLocation = "B1" 
            }, 
            QaEngineer = { 
                Name = "Marisa Bozza", 
                OfficeLocation = "L42" 
            } 
        }; 
    } 
} 

Notice that I was able to leave out the new expressions when initializing the Developer and 
QaEngineer properties of spellCheckerTeam. However, this abbreviated syntax requires that the fields of 
spellCheckerTeam exist before the properties are set, that is, the fields cannot be null. Therefore, you see 
that I had to change the definition of FeatureDevPair to create the contained instances of the Employee 
type at the point of initialization. 

■ Note If you do not initialize fields exposed by properties during object initialization, and then later write code 

that initializes instances of those objects using the abbreviated syntax shown above, you will get a nasty surprise 

at run time. You might have guessed that your code will generate a NullReferenceException in those cases. 

Unfortunately, the compiler cannot detect this potential disaster at compile time. So be very careful when using the 

abbreviated syntax previously shown. For example, if you are using this syntax to initialize instances of objects that 

you did not write, then you should be even more careful because unless you look at the implementation of that 
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third-party class using ILDASM or Reflector, you have no way of knowing if the fields are initialized at object 

initialization time or not. 

Boxing and Unboxing 
Allow me to introduce boxing and unboxing. All types within the CLR fall into one of two categories: 
reference types (objects) or value types (values). You define objects using classes, and you define values 
using structs. A clear divide exists between these two. Objects live on the garbage collected heap. Values 
normally live in temporary storage spaces, such as on the stack. The one notable exception already 
mentioned is that a value type can live on the heap as long as it is contained as a field within an object. 
However, it is not autonomous, and the GC doesn’t control its lifetime directly. Consider the following 
code: 

public class EntryPoint 
{ 
   static void Print( object obj ) 
   { 
      System.Console.WriteLine( "{0}", obj.ToString() ); 
   } 
   static void Main() 
   { 
      int x = 42; 
      Print( x ); 
   } 
} 

It looks simple enough. In Main, there is an int, which is a C# alias for System.Int32, and it is a value 
type. You could have just as well declared x as type System.Int32. The space allocated for x is on the local 
stack. You then pass it as a parameter to the Print method. The Print method takes an object reference 
and simply sends the results of calling ToString on that object to the console. Let’s analyze this. Print 
accepts an object reference, which is a reference to a heap-based object. Yet, you’re passing a value type 
to the method. What’s going on here? How is this possible? 

The key is a concept called boxing. At the point where a value type is defined, the CLR creates a 
runtime-created wrapper class to contain a copy of the value type. Instances of the wrapper live on the 
heap and are commonly called boxing objects. This is the CLR’s way of bridging the gap between value 
types and reference types. In fact, if you use ILDASM to look at the IL code generated for the Main 
method, you’ll see the following: 

.method private hidebysig static void  Main() cil managed 
{ 
  .entrypoint 
  // Code size       15 (0xf) 
  .maxstack  1 
  .locals init (int32 V_0) 
  IL_0000:  ldc.i4.s   42 
  IL_0002:  stloc.0 
  IL_0003:  ldloc.0 
  IL_0004:  box        [mscorlib]System.Int32 
  IL_0009:  call       void EntryPoint::Print(object) 



CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS 

 

 

95 

 

  IL_000e:  ret 
} // end of method EntryPoint::Main 

Notice the IL instruction, box, which takes care of the boxing operation before the Print method is 
called. This creates an object, which Figure 4-2 depicts. 

 

Figure 4-2. Result of boxing operation 

Figure 4-2 depicts the action of copying the value type into the boxing object that lives on the heap. 
The boxing object behaves just like any other reference type in the CLR. Also, note that the boxing type 
implements the interfaces of the contained value type. The boxing type is a class type that is generated 
internally by the virtual execution system of the CLR at the point where the contained value type is 
defined. The CLR then uses this internal class type when it performs boxing operations as needed. 

The most important thing to keep in mind with boxing is that the boxed value is a copy of the 
original. Therefore, any changes made to the value inside the box are not propagated back to the original 
value. For example, consider this slight modification to the previous code: 

public class EntryPoint 
{ 
   static void PrintAndModify( object obj ) 
   { 
      System.Console.WriteLine( "{0}", obj.ToString() ); 
      int x = (int) obj; 
      x = 21; 
   } 
   static void Main() 
   { 
      int x = 42; 
      PrintAndModify( x ); 
      PrintAndModify( x ); 
   } 
} 

The output from this code might surprise you: 
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42 
42 

The fact is, the original value, x, declared and initialized in Main, is never changed. As you pass it to 
the PrintAndModify method, it is boxed, because the PrintAndModify method takes an object as its 
parameter. Even though PrintAndModify takes a reference to an object that you can modify, the object it 
receives is a boxing object that contains a copy of the original value. The code also introduces another 
operation called unboxing in the PrintAndModify method. Because the value is boxed inside an instance 
of an object on the heap, you can’t change the value because the only methods supported by that object 
are methods that System.Object implements. Technically, it also supports the same interfaces that 
System.Int32 supports. Therefore, you need a way to get the value out of the box. In C#, you can 
accomplish this syntactically with casting. Notice that you cast the object instance back into an int, and 
the compiler is smart enough to know that what you’re really doing is unboxing the value type and using 
the unbox IL instruction, as the following IL for the PrintAndModify method shows: 

.method private hidebysig static void  PrintAndModify(object obj) cil managed 
{ 
  // Code size       28 (0x1c) 
  .maxstack  2 
  .locals init (int32 V_0) 
  IL_0000:  ldstr      "{0}" 
  IL_0005:  ldarg.0 
  IL_0006:  callvirt   instance string [mscorlib]System.Object::ToString() 
  IL_000b:  call       void [mscorlib]System.Console::WriteLine(string, 
                                                                object) 
  IL_0010:  ldarg.0 
  IL_0011:  unbox      [mscorlib]System.Int32 
  IL_0016:  ldind.i4 
  IL_0017:  stloc.0 
  IL_0018:  ldc.i4.s   21 
  IL_001a:  stloc.0 
  IL_001b:  ret 
} // end of method EntryPoint::PrintAndModify 

Let me be very clear about what happens during unboxing in C#. The operation of unboxing a value 
is the exact opposite of boxing. The value in the box is copied into an instance of the value on the local 
stack. Again, any changes made to this unboxed copy are not propagated back to the value contained in 
the box. Now, you can see how boxing and unboxing can really become confusing. As shown, the code’s 
behavior is not obvious to the casual observer who is not familiar with the fact that boxing and unboxing 
are going on internally. What’s worse is that two copies of the int are created between the time the call 
to PrintAndModify is initiated and the time that the int is manipulated in the method. The first copy is 
the one put into the box. The second copy is the one created when the boxed value is copied out of the 
box. 

Technically, it’s possible to modify the value that is contained within the box. However, you must do 
this through an interface. The box generated at run time that contains the value also implements the 
interfaces that the value type implements and forwards the calls to the contained value. So, you could do 
the following: 

public interface IModifyMyValue 
{ 
   int X 
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   { 
      get; 
      set; 
   } 
} 
 
public struct MyValue : IModifyMyValue 
{ 
   public int x; 
 
   public int X 
   { 
      get 
      { 
         return x; 
      } 
 
      set 
      { 
         x = value; 
      } 
   } 
 
   public override string ToString() 
   { 
      System.Text.StringBuilder output = 
          new System.Text.StringBuilder(); 
      output.AppendFormat( "{0}", x ); 
      return output.ToString(); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      // Create value 
      MyValue myval = new MyValue(); 
      myval.x = 123; 
 
      // box it 
      object obj = myval; 
      System.Console.WriteLine( "{0}", obj.ToString() ); 
 
      // modify the contents in the box. 
      IModifyMyValue iface = (IModifyMyValue) obj; 
      iface.X = 456; 
      System.Console.WriteLine( "{0}", obj.ToString() ); 
 
      // unbox it and see what it is. 
      MyValue newval = (MyValue) obj; 
      System.Console.WriteLine( "{0}", newval.ToString() ); 
   } 
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} 

You can see that the output from the code is as follows: 

123 

456 

456 

As expected, you’re able to modify the value inside the box using the interface named 
IModifyMyValue. However, it’s not the most straightforward process. And keep in mind that before you 
can obtain an interface reference to a value type, it must be boxed. This makes sense if you think about 
the fact that references to interfaces are object reference types. 

■ Caution I cannot think of a good design reason as to why you would want to define a special interface simply so 

you can modify the value contained within a boxed object. 

When Boxing Occurs 
C# handles boxing implicitly for you, therefore it’s important to know the instances when C# boxes a 
value. Basically, a value gets boxed when one of the following conversions occurs: 

• Conversion from a value type to an object reference 

• Conversion from a value type to a System.ValueType reference 

• Conversion from a value type to a reference to an interface implemented by the 
value type 

• Conversion from an enum type to a System.Enum reference 

In each case, the conversion normally takes the form of an assignment expression. The first two 
cases are fairly obvious, because the CLR is bridging the gap by turning a value type instance into a 
reference type. The third one can be a little surprising. Any time you implicitly cast your value into an 
interface that it supports, you incur the penalty of boxing. Consider the following code: 

public interface IPrint 
{ 
   void Print(); 
} 
 
public struct MyValue : IPrint 
{ 
   public int x; 
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   public void Print() 
   { 
      System.Console.WriteLine( "{0}", x ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      MyValue myval = new MyValue(); 
      myval.x = 123; 
 
      // no boxing 
      myval.Print(); 
 
      // must box the value 
      IPrint printer = myval; 
      printer.Print(); 
   } 
} 

The first call to Print is done through the value reference, which doesn’t incur boxing. However, the 
second call to Print is done through an interface. The boxing takes place at the point where you obtain 
the interface. At first, it looks like you can easily sidestep the boxing operation by not acquiring an 
explicit reference typed on the interface type. This is true in this case, because Print is also part of the 
public contract of MyValue. However, had you implemented the Print method as an explicit interface, 
which I cover in Chapter 5, then the only way to call the method would be through the interface 
reference type. So, it’s important to note that any time you implement an interface on a value type 
explicitly, you force the clients of your value type to box it before calling through that interface. The 
following example demonstrates this: 

public interface IPrint 
{ 
   void Print(); 
} 
 
public struct MyValue : IPrint 
{ 
   public int x; 
 
   void IPrint.Print() 
   { 
      System.Console.WriteLine( "{0}", x ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      MyValue myval = new MyValue(); 
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      myval.x = 123; 
 
      // must box the value 
      IPrint printer = myval; 
      printer.Print(); 
   } 
} 

As another example, consider that the System.Int32 type supports the IConvertible interface. 
However, most of the IConvertible interface methods are implemented explicitly. Therefore, even if you 
want to call an IConvertible method, such as IConvertible.ToBoolean on a simple int, you must box it 
first. 

■ Note Typically, you want to rely upon the external class System.Convert to do a conversion like the one 

mentioned previously. I only mention calling directly through IConvertible as an example. 

Efficiency and Confusion 
As you might expect, boxing and unboxing are not the most efficient operations in the world. What’s 
worse is that the C# compiler silently does the boxing for you. You really must take care to know when 
boxing is occurring. Unboxing is usually more explicit, because you typically must do a cast operation to 
extract the value from the box, but there is an implicit case I’ll cover soon. Either way, you must pay 
attention to the efficiency aspect of things. For example, consider a container type, such as a 
System.Collections.ArrayList. It contains all of its values as references to type object. If you were to 
insert a bunch of value types into it, they would all be boxed! Thankfully, generics, which were 
introduced in C# 2.0 and .NET 2.0 and are covered in Chapter 11, can solve this inefficiency for you. 
However, note that boxing is inefficient and should be avoided as much as possible. Unfortunately, 
because boxing is an implicit operation in C#, it takes a keen eye to find all of the cases of boxing. The 
best tool to use if you’re in doubt whether boxing is occurring or not is ILDASM. Using ILDASM, you can 
examine the IL code generated for your methods, and the box operations are clearly identifiable. You 
can find ILDASM.exe in the .NET SDK \bin folder. 

As mentioned previously, unboxing is normally an explicit operation introduced by a cast from the 
boxing object reference to a value of the boxed type. However, unboxing is implicit in one notable case. 
Remember how I talked about the differences in how the this reference behaves within methods of 
classes vs. methods of structs? The main difference is that, for value types, the this reference acts as 
either a ref or an out parameter, depending on the situation. So when you call a method on a value type, 
the hidden this parameter within the method must be a managed pointer rather than a reference. The 
compiler handles this easily when you call directly through a value-type instance. However, when calling 
a virtual method or an interface method through a boxed instance—thus, through an object—the CLR 
must unbox the value instance so that it can obtain the managed pointer to the value type contained 
within the box. After passing the managed pointer to the contained value type’s method as the this 
pointer, the method can modify the fields through the this pointer, and it will apply the changes to the 
value contained within the box. Be aware of hidden unboxing operations if you’re calling methods on a 
value through a box object. 
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■ Note Unboxing operations in the CLR are not inefficient in and of themselves. The inefficiency stems from the 

fact that C# typically combines that unboxing operation with a copy operation on the value. 

System.Object 
Every object in the CLR derives from System.Object. Object is the base type of every type. In C#, the 
object keyword is an alias for System.Object. It can be convenient that every type in the CLR and in C# 
derives from Object. For example, you can treat a collection of instances of multiple types 
homogenously simply by casting them to Object references.  

Even System.ValueType derives from Object. However, some special rules govern obtaining an 
Object reference. On reference types, you can turn a reference of class A into a reference of class Object 
with a simple implicit conversion. Going the other direction requires a run time type check and an 
explicit cast using the familiar cast syntax of preceding the instance to convert with the new type in 
parentheses. Obtaining an Object reference directly on a value type is, technically, impossible. 
Semantically, this makes sense, because value types can live on the stack. It can be dangerous for you to 
obtain a reference to a transient value instance and store it away for later use if, potentially, the value 
instance is gone by the time you finally use the stored reference. For this reason, obtaining an Object 
reference on a value type instance involves a boxing operation, as described in the previous section. 

The definition of the System.Object class is as follows: 

public class Object 
{ 
   public Object(); 
 
   public virtual void Finalize(); 
 
   public virtual bool Equals( object obj ); 
   public static bool Equals( object obj1, 
                              object obj2 ); 
    
   public virtual int GetHashCode(); 
   public Type GetType(); 
   protected object MemberwiseClone(); 
   public static bool ReferenceEquals( object obj1, 
                                       object obj2 ); 
   public virtual string ToString(); 
} 

Object provides several methods, which the designers of the CLI/CLR deemed to be important and 
germane for each object. The methods dealing with equality deserve an entire discussion devoted to 
them; I cover them in detail in the next section. Object provides a GetType method to obtain the runtime 
type of any object running in the CLR. Such a capability is extremely handy when coupled with 
reflection—the capability to examine types in the system at run time. GetType returns an object of type 
Type, which represents the real, or concrete, type of the object. Using this object, you can determine 
everything about the type of the object on which GetType is called. Also, given two references of type 
Object, you can compare the result of calling GetType on both of them to find out if they’re actually 
instances of the same concrete type. 
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System.Object contains a method named MemberwiseClone, which returns a shallow copy of the 
object. I have more to say about this method in Chapter 13. When MemberwiseClone creates the copy, all 
value type fields are copied on a bit-by-bit basis, whereas all fields that are references are simply copied 
such that the new copy and the original both contain references to the same object. When you want to 
make a copy of an object, you may or may not desire this behavior. Therefore, if objects support copying, 
you could consider supporting ICloneable and do the correct thing in the implementation of that 
interface. Also, note that MemberwiseClone is declared as protected. The main reason for this is so that 
only the class for the object being copied can call it, because MemberwiseClone can create an object 
without calling its instance constructor. Such behavior could potentially be destabilizing if it were made 
public. 

■ Note Be sure to read more about ICloneable in Chapter 13 before deciding whether to implement this 

interface. 

Four of the methods on Object are virtual, and if the default implementations of the methods inside 
Object are not appropriate, you should override them. ToString is useful when generating textual, or 
human-readable, output and a string representing the object is required. For example, during 
development, you may need the ability to trace an object out to debug output at run time. In such cases, 
it makes sense to override ToString so that it provides detailed information about the object and its 
internal state. The default version of ToString simply calls the ToString implementation on the Type 
object returned from a call to GetType, thus providing the name of the object’s type. It’s more useful than 
nothing, but it’s probably not useful enough for you if you need to call ToString on an object in the first 
place. 3 Try to avoid adding side effects to the ToString implementation, because the Visual Studio 
debugger can call it to display information at debug time. In fact, ToString is most useful for debugging 
purposes and rarely useful otherwise due to its lack of versatility and localization as I describe in Chapter 
8. 

The Finalize method deserves special mention. C# doesn’t allow you to explicitly override this 
method. Also, it doesn’t allow you to call this method on an object. If you need to override this method 
for a class, you can use the destructor syntax in C#. I have much more to say about destructors and 
finalizers in Chapter 13. 

Equality and What It Means 
Equality between reference types that derive from System.Object is a tricky issue. By default, the equality 
semantics provided by Object.Equals represent identity equivalence. What that means is that the test 
returns true if two references point to the same instance of an object. However, you can change the 
semantic meaning of Object.Equals to value equivalence. That means that two references to two entirely 
different instances of an object may equate to true as long as the internal states of the two instances 
match. Overriding Object.Equals is such a sticky issue that I’ve devoted several sections within Chapter 
13 to the subject. 

                                                 

 
3 Be sure to read Chapter 8, where I give reasons why Object.ToString is not what you want when creating software 
for localization to various locales and cultures. 
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The IComparable Interface 
The System.IComparable interface is a system-defined interface that objects can choose to implement if 
they support ordering. If it makes sense for your object to support ordering in collection classes that 
provide sorting capabilities, then you should implement this interface. For example, it may seem 
obvious, but System.Int32, aliased by int in C#, implements IComparable. In Chapter 13, I show how you 
can effectively implement this interface and its generic cousin, IComparable<T>. 

Creating Objects 
Object creation is a topic that looks simple on the surface, but in reality is relatively complex under the 
hood. You need to be intimately familiar with what operations take place during creation of a new object 
instance or value instance in order to write constructor code effectively and use field initializers 
effectively. Also, in the CLR, not only do object instances have constructors, but so do the types they’re 
based on. By that, I mean that even the struct and the class types have a constructor, which is 
represented by a static constructor definition. Static constructors allow you to get work done at the point 
the type is loaded and initialized into the application domain. 

The new Keyword 
The new keyword lets you create new instances of objects or values. However, it behaves slightly different 
when used with value types than with object types. For example, new doesn’t always allocate space on 
the heap in C#. Let’s discuss what it does with value types first. 

Using new with Value Types 
The new keyword is only required for value types when you need to invoke one of the constructors for the 
type. Otherwise, value types simply have space reserved on the stack for them, and the client code must 
initialize them fully before you can use them. I covered this in the “Value Type Definitions” section on 
constructors in value types. 

Using new with Class Types 
You need the new operator to create objects of class type. In this case, the new operator allocates space on 
the heap for the object being created. If it fails to find space, it will throw an exception of type 
System.OutOfMemoryException, thus aborting the rest of the object-creation process. 

After it allocates the space, all of the fields of the object are initialized to their default values. This is 
similar to what the compiler-generated default constructor does for value types. For reference-type 
fields, they are set to null. For value-type fields, their underlying memory slots are filled with all zeros. 
Thus, the net effect is that all fields in the new object are initialized to either null or 0. Once this is done, 
the CLR calls the appropriate constructor for the object instance. The constructor selected is based upon 
the parameters given and is matched using the overloaded method parameter matching algorithm in C#. 
The new operator also sets up the hidden this parameter for the subsequent constructor invocation, 
which is a read-only reference that references the new object created on the heap, and that reference’s 
type is the same as the class type. Consider the following example: 

public class MyClass 
{ 
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   public MyClass( int x, int y ) 
   { 
      this.x = x; 
      this.y = y; 
   } 
 
   public int x; 
   public int y; 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      // We can't do this! 
      // MyClass objA = new MyClass(); 
 
      MyClass objA = new MyClass( 1, 2 ); 
      System.Console.WriteLine( "objA.x = {0}, objA.y = {1}", 
                                objA.x, objA.y ); 
   } 
} 

In the Main method, notice that you cannot create a new instance of MyClass by calling the default 
constructor. The C# compiler doesn’t create a default constructor for a class unless no other 
constructors are defined. The rest of the code is fairly straightforward. I create a new instance of MyClass 
and then output its values to the console. Shortly, in the section titled “Instance Constructor and 
Creation Ordering,” I cover the minute details of object instance creation and constructors. 

Field Initialization 
When defining a class, it is sometimes convenient to assign the fields a value at the point where the field 
is declared. The fact is, you can assign a field from any immediate value or any callable method as long 
as the method is not called on the instance of the object being created. For example, you can initialize 
fields based upon the return value from a static method on the same class. Let’s look at an example: 

using System; 
 
public class A 
{ 
   private static int InitX() 
   { 
      Console.WriteLine( "A.InitX()" ); 
      return 1; 
   } 
   private static int InitY() 
   { 
      Console.WriteLine( "A.InitY()" ); 
      return 2; 
   } 
   private static int InitA() 
   { 
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      Console.WriteLine( "A.InitA()" ); 
      return 3; 
   } 
   private static int InitB() 
   { 
      Console.WriteLine( "A.InitB()" ); 
      return 4; 
   } 
 
   private int y = InitY(); 
   private int x = InitX(); 
 
   private static int a = InitA(); 
   private static int b = InitB(); 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      A a = new A(); 
   } 
} 

Notice that you’re assigning all of the fields using field initializers and setting the fields to the return 
value from the methods called. All of those methods called during field initialization are static, which 
helps reinforce a couple of important points regarding field initialization. The output from the preceding 
code is as follows: 

A.InitA() 

A.InitB() 

A.InitY() 

A.InitX() 

Notice that two of the fields, a and b, are static fields, whereas the fields x and y are instance fields. 
The runtime initializes the static fields before the class type is used for the first time in this application 
domain. In the next section, “Static (Class) Constructors,” I show how you can relax the CLR’s timing of 
initializing the static fields. 

During construction of the instance, the instance field initializers are invoked. As expected, proof of 
that appears in the console output after the static field initializers have run. Note one important point: 
Notice the ordering of the output regarding the instance initializers and compare that with the ordering 
of the fields declared in the class itself. You’ll see that field initialization, whether it’s static or instance 
initialization, occurs in the order in which the fields are listed in the class definition. Sometimes this 
ordering can be important if your static fields are based on expressions or methods that expect other 
fields in the same class to be initialized first. You should avoid writing such code at all costs. In fact, any 
code that requires you to think about the ordering of the declaration of your fields in your class is bad 
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code. If initialization ordering matters, you should consider initializing all of your fields in the body of 
the static constructor. That way, people maintaining your code at a later date won’t be unpleasantly 
surprised when they reorder the fields in your class for some reason. 

Static (Class) Constructors 
I already touched upon static constructors in the “Fields” section, but let’s look at them in a little more 
detail. A class can have at most one static constructor, and that static constructor cannot accept any 
parameters. Static constructors can never be invoked directly. Instead, the CLR invokes them when it 
needs to initialize the type for a given application domain. The static constructor is called before an 
instance of the given class is first created or before some other static fields on the class are referenced. 
Let’s modify the previous field initialization example to include a static constructor and examine the 
output: 

using System; 
 
public class A 
{ 
   static A() 
   { 
      Console.WriteLine( "static A::A()" ); 
   } 
 
   private static int InitX() 
   { 
      Console.WriteLine( "A.InitX()" ); 
      return 1; 
   } 
   private static int InitY() 
   { 
      Console.WriteLine( "A.InitY()" ); 
      return 2; 
   } 
   private static int InitA() 
   { 
      Console.WriteLine( "A.InitA()" ); 
      return 3; 
   } 
   private static int InitB() 
   { 
      Console.WriteLine( "A.InitB()" ); 
      return 4; 
   } 
 
   private int y = InitY(); 
   private int x = InitX(); 
 
   private static int a = InitA(); 
   private static int b = InitB(); 
} 
 
public class EntryPoint 
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{ 
   static void Main() 
   { 
      A a = new A(); 
   } 
} 

I’ve added the static constructor and want to see that it has been called in the output. The output 
from the previous code is as follows: 

A.InitA() 

A.InitB() 

static A::A() 

A.InitY() 

A.InitX() 

Of course, the static constructor was called before an instance of the class was created. However, 
notice the important ordering that occurs. The static field initializers are executed before the body of the 
static constructor executes. This ensures that the instance fields are initialized properly before possibly 
being referenced within the static constructor body. 

It is the default behavior of the CLR to call the type initializer (implemented using the static 
constructor syntax) before any member of the type is accessed. By that, I mean that the type initializers 
will execute before any code accesses a field or a method on the class or before an object is created from 
the class. However, you can apply a metadata attribute defined in the CLR, beforefieldinit, to the class 
to relax the rules a little bit. In the absence of the beforefieldinit attribute, the CLR is required to call 
the type initializer before any member on the class is touched. With the beforefieldinit attribute, the 
CLR is free to defer the type initialization to the point right before the first static field access and not any 
time sooner. This means that if beforefieldinit is set on the class, you can call instance constructors 
and methods all day long without requiring the type initializer to execute first. But as soon as anything 
tries to access a static field on the class, the CLR invokes the type initializer first. Keep in mind that the 
beforefieldinit attribute gives the CLR this leeway to defer the type initialization to a later time, but the 
CLR could still initialize the type long before the first static field is accessed. 

The C# compiler sets the beforefieldinit attribute on all classes that don’t specifically define a 
static constructor. To see this in action, you can use ILDASM to examine the IL generated for the 
previous two examples. For the example in the previous section, where I didn’t specifically define a static 
constructor, the class A metadata looks like the following: 

.class public auto ansi beforefieldinit A 
       extends [mscorlib]System.Object 
{ 
} // end of class A 

For the class A metadata in the example in this section, the metadata looks like the following: 
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.class public auto ansi A 
       extends [mscorlib]System.Object 
{ 
} // end of class A 

This behavior of the C# compiler makes good sense. When you explicitly define a type initializer, 
you usually want to guarantee that it will execute before anything in the class is utilized or before any 
instance of the class is created. However, if you don’t provide an explicit type initializer and you do have 
static field initializers, the C# compiler will create a type initializer of sorts that merely initializes all of 
the static fields. Because you didn’t provide user code for the type initializer, the C# compiler can let the 
class defer the static field initializers until one of the static fields is accessed. 

After all of this discussion regarding beforefieldinit, you should make note of one important point. 
Suppose you have a class similar to the ones in the examples, where a static field is initialized based 
upon the result of a method call. If your class doesn’t provide an explicit type initializer, it would be 
erroneous to assume that the code called during the static field initialization will be called prior to an 
object creation based on this class. For example, consider the following code: 

using System; 
 
public class A 
{ 
   public A() 
   { 
      Console.WriteLine( "A.A()" ); 
   } 
    
   static int InitX() 
   { 
      Console.WriteLine( "A.InitX()" ); 
      return 1; 
   } 
    
   public int x = InitX(); 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      // No guarantee A.InitX() is called before this! 
      A a = new A(); 
   } 
} 

If your implementation of InitX contains some side effects that are required to run before an object 
instance can be created from this class, then you would be better off putting that code in a static 
constructor so that the compiler will not apply the beforefieldinit metadata attribute to the class. 
Otherwise, there’s no guarantee that your code with the side effect in it will run prior to a class instance 
being created. 
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Instance Constructor and Creation Ordering 
Instance constructors follow a lot of the same rules as static constructors, except they’re more flexible 
and powerful, so they have some added rules of their own. Let’s examine those rules. 

Instance constructors can have what’s called an initializer expression. An initializer expression 
allows instance constructors to defer some of their work to other instance constructors within the class, 
or more importantly, to base class constructors during object initialization. This is important if you rely 
on the base class instance constructors to initialize the inherited members. Remember, constructors are 
never inherited, so you must go through explicit means such as this in order to call the base class 
constructors during initialization of derived types if you need to. 

If your class doesn’t implement an instance constructor at all, the compiler will generate a default 
parameterless instance constructor for you, which really only does one thing—it merely calls the base 
class default constructor through the base keyword. If the base class doesn’t have an accessible default 
constructor, a compiler error is generated. For example, the following code doesn’t compile: 

public class A 
{ 
   public A(int x) { 
      this.x = x; 
   } 
 
   private int x; 
} 
 
public class B : A 
{ 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      B b = new B(); 
   } 
} 

Can you see why it won’t compile? The problem is that a class with no explicit constructors is given 
a default parameterless constructor by the compiler; this constructor merely calls the base class 
parameterless constructor, which is exactly what the compiler tries to do for class B. However, the 
problem is that, because class A does have an explicit instance constructor defined, the compiler doesn’t 
produce a default constructor for class A. So, there is no accessible default constructor available on class 
A for class B’s compiler-provided default constructor to call. Therein lies another caveat to inheritance. 
In order for the previous example to compile, either you must explicitly provide a default constructor for 
class A, or class B needs an explicit constructor. Now, let’s look at an example that demonstrates the 
ordering of events during instance initialization: 

using System; 
 
class Base 
{ 
   public Base( int x ) 
   { 
      Console.WriteLine( "Base.Base(int)" ); 
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      this.x = x; 
   } 
    
   private static int InitX() 
   { 
      Console.WriteLine( "Base.InitX()" ); 
      return 1; 
   } 
    
   public int x = InitX(); 
} 
 
class Derived : Base 
{ 
   public Derived( int a ) 
      :base( a ) 
   { 
      Console.WriteLine( "Derived.Derived(int)" ); 
      this.a = a; 
   } 
 
   public Derived( int a, int b ) 
      :this( a ) 
   { 
      Console.WriteLine( "Derived.Derived(int, int)" ); 
      this.a = a; 
      this.b = b; 
   } 
 
   private static int InitA() 
   { 
      Console.WriteLine( "Derived.InitA()" ); 
      return 3; 
   } 
 
   private static int InitB() 
   { 
      Console.WriteLine( "Derived.InitB()" ); 
      return 4; 
   } 
 
   public int a = InitA(); 
   public int b = InitB(); 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      Derived b = new Derived( 1, 2 ); 
   } 
} 
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Before I start detailing the ordering of events here, look at the output from this code: 

Derived.InitA() 

Derived.InitB() 

Base.InitX() 

Base.Base(int) 

Derived.Derived(int) 

Derived.Derived(int, int) 

Are you able to determine why the ordering is the way it is? It can be quite confusing upon first 
glance, so let’s take a moment to examine what’s going on here. The first line of the Main method creates 
a new instance of class Derived. As you see in the output, the constructor is called. But, it’s called in the 
last line of the output! Clearly, a lot of things are happening before the constructor body for class Derived 
executes. 

At the bottom, you see the call to the Derived constructor that takes two int parameters. Notice that 
this constructor has an initializer using the this keyword. This delegates construction work to the 
Derived constructor that takes one int parameter. 

The Derived constructor that takes one int parameter also has an initialization list, except it uses the 
base keyword, thus calling the constructor for the class Base, which takes one int parameter. However, if 
a constructor has an initializer that uses the base keyword, the constructor will invoke the field 
initializers defined in the class before it passes control to the base class constructor. And remember, the 
ordering of the initializers is the same as the ordering of the fields in the class definition. This behavior 
explains the first two entries in the output. The output shows that the initializers for the fields in Derived 
are invoked first, before the initializers in Base. 

After the initializers for Derived execute, control is then passed to the Base constructor that takes 
one int parameter. Notice that class Base has an instance field with an initializer, too. The same behavior 
happens in Base as it does in Derived, so before the constructor body for the Base constructor is 
executed, the constructor implicitly calls the initializers for the class. I have more to say about why this 
behavior is defined in this way later in this section, and it involves virtual methods. This is why the third 
entry in the output trace is that of Base.InitX. 

After the Base initializers are done, you find yourself in the block of the Base constructor. Once that 
constructor body runs to completion, control returns to the Derived constructor that takes one int 
parameter, and execution finally ends up in that constructor’s code block. Once it’s done there, it finally 
gets to execute the body of the constructor that was called when the code created the instance of Derived 
in the Main method. Clearly, a lot of initialization work is going on under the covers when an object 
instance is created. 

As promised, I’ll explain why the field initializers of a derived class are invoked before the 
constructor for the base class is called through an initializer on the derived constructor, and the reason 
is subtle. Virtual methods, which I cover in more detail in the section titled “Inheritance and Virtual 
Methods,” work inside constructors in the CLR and in C#. 



CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS 

 

112 

 

■ Note If you’re coming from a C++ programming environment, you should recognize that this behavior of calling 

virtual methods in constructors is completely different. In C++, you’re never supposed to rely on virtual method 

calls in constructors, because the vtable is not set up while the constructor body is running. 

Let’s look at an example: 

using System; 
 
public class A 
{ 
   public virtual void DoSomething() 
   { 
      Console.WriteLine( "A.DoSomething()" ); 
   } 
 
   public A() 
   { 
      DoSomething(); 
   } 
} 
 
public class B : A 
{ 
   public override void DoSomething() 
   { 
      Console.WriteLine( "B.DoSomething()" ); 
      Console.WriteLine( "x = {0}", x ); 
   } 
 
   public B() 
      :base() 
   { 
   } 
 
   private int x = 123; 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      B b = new B(); 
   } 
} 

The output from this code is as follows: 
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B.DoSomething() 
x = 123 

As you can see, the virtual invocation works just fine from the constructor of A. Notice that 
B.DoSomething uses the x field. Now, if the field initializers were not run before the base invocation, 
imagine the calamity that would ensue when the virtual method is invoked from the class A constructor. 
That, in a nutshell, is why the field initializers are run before the base constructor is called if the 
constructor has an initializer. The field initializers are also run before the constructor’s body is entered, 
if there is no initializer defined for the constructor. 

Destroying Objects 
If you thought object creation was complicated, hold onto your hats. As you know, the CLR environment 
contains a garbage collector, which manages memory on your behalf. You can create new objects as 
much as you want, but you never have to worry about freeing their memory explicitly. A huge majority of 
bugs in native applications come from memory allocation/deallocation mismatches, otherwise known 
as memory leaks. Garbage collection is a technique meant to avoid that type of bug, because the 
execution environment now handles the tracking of object references and destroys the object instances 
when they’re no longer in use. 

The CLR tracks every single managed object reference in the system that is just a plain-old object 
reference that you’re already used to. During a heap compaction, if the CLR realizes that an object is no 
longer reachable via a reference, it flags the object for deletion. As the garbage collector compacts the 
heap, these flagged objects either have their memory reclaimed or are moved over into a queue for 
deletion if they have a finalizer. It is the responsibility of another thread, the finalizer thread, to iterate 
over this queue of objects and call their finalizers before freeing their memory. Once the finalizers have 
completed, the memory for the object is freed on the next collection pass, and the object is completely 
dead, never to return. 

Finalizers 
There are many reasons why you should rarely write a finalizer. When used unnecessarily, finalizers can 
degrade the performance of the CLR, because finalizable objects live longer than their nonfinalizable 
counterparts. Even allocating finalizable objects is more costly. Additionally, finalizers are difficult to 
write, because you cannot make any assumptions about the state that other objects in the system are in. 

When the finalization thread iterates through the objects in the queue of finalizable objects, it calls 
the Finalize method on each object. The Finalize method is an override of a virtual method on 
System.Object; however, it’s illegal in C# to explicitly override this method. Instead, you write a 
destructor that looks like a method that has no return type, cannot have access modifiers applied to it, 
accepts no parameters, and whose identifier is the class name immediately prefixed with a tilde. 
Destructors cannot be called explicitly in C#, and they are not inherited, just as constructors are not 
inherited. A class can have only one destructor. 

When an object’s finalizer is called, each finalizer in an inheritance chain is called, from the most 
derived class to the least derived class. Consider the following example: 

using System; 
 
public class Base 
{ 
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   ~Base() 
   { 
      Console.WriteLine( "Base.~Base()" ); 
   } 
} 
 
public class Derived : Base 
{ 
   ~Derived() 
   { 
      Console.WriteLine( "Derived.~Derived()" ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      Derived derived = new Derived(); 
   } 
} 

As expected, the result of executing this code is as follows: 

Derived.~Derived() 
Base.~Base() 

Although the garbage collector now handles the task of cleaning up memory so that you don’t have 
to worry about it, you have a whole new host of concerns to deal with when it comes to the destruction 
of objects. I’ve mentioned that finalizers run on a separate thread in the CLR. Therefore, whatever 
objects you use inside your destructor must be thread-safe, but the odds are you should not even be 
using other objects in your finalizer, because they may have already been finalized or destroyed. This 
includes objects that are fields of the class that contains the finalizer. You have no guaranteed way of 
knowing exactly when your finalizer will be called or in what order the finalizer will be called between 
two independent or dependent objects. This is one more reason why you shouldn’t introduce 
interdependencies on objects in the destructor code block. After all this dust has settled, it starts to 
become clear that you shouldn’t do much inside a finalizer except basic housecleaning, if anything. 

Essentially, you only need to write a finalizer when your object manages some sort of unmanaged 
resource. However, if the resource is managed through a standard Win32 handle, I highly recommend 
that you use the SafeHandle type to manage it. Writing a wrapper such as SafeHandle is tricky business, 
mainly because of the finalizer and all of the things you must do to guarantee that it will get called in all 
situations, even the diabolical ones such as an out-of-memory condition or in the face of unexpected 
exceptions. Finally, any object that has a finalizer must implement the Disposable pattern, which I cover 
in the forthcoming section titled “Disposable Objects.” 

Deterministic Destruction 
So far, everything that you’ve seen regarding destruction of objects in the garbage-collected 
environment of the CLR is known as nondeterministic destruction. That means that you cannot predict 



CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS 

 

 

115 

 

the timing of the execution of the destructor code for an object. If you come from a native C++ world, 
you’ll recognize that this is completely different. 

In C++, heap object destructors are called when the user explicitly deletes the object. With the CLR, 
the garbage collector handles that for you, so you don’t have to worry about forgetting to do it. However, 
for a C++-based stack object, the destructor is called as soon as the execution scope in which that object 
is created is exited. This is known as deterministic destruction and is extremely useful for managing 
resources.  

Let’s examine the case of an object that holds a system file handle. You can use such a stack-based 
object in C++ to manage the lifetime of the file handle. When the object is created, the constructor of the 
object acquires the file handle, and as soon as the object goes out of scope, the destructor is called and 
its code closes the file handle. This frees the client code of the object from having to manage the 
resource explicitly. It also prevents resource leaks, because if an exception is thrown from that code 
block where the object is used, C++ guarantees that the destructors for all stack-based objects will be 
called no matter how the block is exited. 

This idiom is called Resource Acquisition Is Initialization (RAII), and it’s extremely useful for 
managing resources. C# has almost completely lost this capability of automatic cleanup in a timely 
manner. Of course, if you had an object that held a file open and closed it in the destructor, you wouldn’t 
have to worry about whether the file gets closed or not, but you will definitely have to consider when it 
gets closed. The fact is, you don’t know exactly when it will get closed if the code to close it is in the 
finalizer, which is fallout from nondeterministic finalization. For this very reason, it would be bad design 
to put resource management code, such as closing file handles, in the finalizer. What if the object is 
already marked for finalization but has not had its finalizer called yet, and you try to create a new 
instance of the object whose constructor tries to open the resource? Well, with an exclusive-access 
resource, the code will fail in the constructor for the new instance. I’m sure you’ll agree that this is not 
desired, and most definitely would not be expected by the client of your object. 

Let’s revisit the finalization ordering problem mentioned a little while ago. If an object contains 
another finalizable object, and the outer object is put on the finalization queue, the internal objects 
possibly are, too. However, the finalizer thread just goes through the queue finalizing the objects 
individually. It doesn’t care who was an internal object of whom. So clearly, it’s possible that if 
destructor code accesses an object reference in a field, that object could already have been finalized. 
Accessing such a field produces the dreaded undefined behavior. 

This is a perfect example of how the garbage collector removes one bit of complexity but replaces it 
with another. In reality, you should avoid finalizers if possible. Not only do they add complexity, but they 
hamper memory management, because they cause objects to live longer than objects with no finalizer. 
This is because they’re put on the finalization list, and it is the responsibility of an entirely different 
thread to clean up the finalization list. In the “Disposable Objects” section and in Chapter 13, I describe 
an interface, IDisposable, that was included in the Framework Class Library in order to facilitate a form 
of deterministic destruction. 

Exception Handling 
It’s important to note the behavior of exceptions when inside the scope of a finalizer. If you come from a 
native C++ world, you know that it is bad behavior to allow exceptions to propagate out from a 
destructor, because in certain situations, that may cause your application to abort. In C#, an exception 
thrown in a finalizer that leaves the finalizer uncaught will be treated as an unhandled exception, and by 
default, the process will be terminated after notifying you of the exception. 
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■ Note This behavior starting with .NET 2.0 is a breaking change from .NET 1.1. Before .NET 2.0, unhandled 

exceptions in the finalization thread were swallowed after notifying the user, and the process was allowed to 

continue. The danger with this behavior is that the system could be running in a half-baked or inconsistent state. 

Therefore, it’s best to kill the process rather than run the risk of it causing more damage. In Chapter 7, I show you 

how you can force the CLR to revert to the pre-2.0 behavior if you absolutely must. 

Disposable Objects 
In the previous section on finalizers, I discussed the differences between deterministic and 
nondeterministic finalization, and you also saw that you lose a lot of convenience along with 
deterministic finalization. For that reason, the IDisposable interface exists, and in fact, it was only added 
during beta testing of the first release of the .NET Framework when developers were shouting about not 
having any form of deterministic finalization built into the framework. It’s not a perfect replacement for 
deterministic finalization, but it does get the job done at the expense of adding complexity to the client 
of your objects. 

The IDisposable Interface 
The IDisposable definition is as follows: 

public interface IDisposable 
{ 
   void Dispose(); 
} 

Notice that it has only one method, Dispose, and it is within this method’s implementation that the 
dirty work is done. Thus, you should completely clean up your object and release all resources inside 
Dispose. Even though the client code rather than the system calls Dispose automatically, it’s the client 
code’s way of saying, “I’m done with this object and don’t intend to use it ever again.” 

Even though the IDisposable pattern provides a form of deterministic destruction, it is not a perfect 
solution. Using IDisposable, the onus is thrown on the client to ensure that the Dispose method is 
called. There is no way for the client to rely upon the system, or the compiler, to call it for them 
automatically. C# makes this a little easier to manage in the face of exceptions by overloading the using 
keyword, which I discuss in the next section. 

When you implement Dispose, you normally implement the class in such a way that the finalizer 
code reuses Dispose. This way, if the client code never calls Dispose, the finalizer code will take care of it 
at finalization time. Another factor makes implementing IDisposable painful for objects, and that is that 
you must chain calls of IDisposable if your object contains references to other objects that support 
IDisposable. This makes designing classes a little more difficult, because you must know whether a class 
that you use for a field type implements IDisposable, and if it does, you must implement IDisposable 
and you must make sure to call its Dispose method inside yours. 

Given all of this discussion regarding IDisposable, you can definitely start to see how the garbage 
collector adds complexity to design, even though it reduces the chance for memory bugs. I’m not trying 
to say the garbage collector is worthless; in fact, it’s very valuable when used appropriately. However, as 
with any design, engineering decisions typically have pros and cons in both directions. 

Let’s look at an example implementation of IDisposable: 
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using System; 
 
public class A : IDisposable 
{ 
   private bool disposed = false; 
   private void Dispose( bool disposing ) 
   { 
      if( !disposed ) { 
         if( disposing ) { 
            // It is safe to access other objects here. 
         } 
          
         Console.WriteLine( "Cleaning up object" ); 
         disposed = true; 
      } 
   } 
   public void Dispose() 
   { 
      Dispose( true ); 
      GC.SuppressFinalize( this ); 
   } 
 
   public void DoSomething() 
   { 
      Console.WriteLine( "A.SoSomething()" ); 
   } 
 
   ~A() 
   { 
      Console.WriteLine( "Finalizing" ); 
      Dispose( false ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      A a = new A(); 
      try { 
         a.DoSomething(); 
      } 
      finally { 
         a.Dispose(); 
      } 
   } 
} 

Let’s go over this code in detail to see what’s really going on. The first thing to notice in the class is 
an internal Boolean field that registers whether or not the object has been disposed. It’s there because 
it’s perfectly legal for client code to call Dispose multiple times. Therefore, you need some way to know 
that you’ve done the work already. 
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You’ll also see that I’ve implemented the finalizer in terms of the Dispose implementation. Notice 
that I have two overloads of Dispose. I’ve done this so that I know inside the Dispose(bool) method 
whether I got here through IDisposable.Dispose or through the destructor. It tells me whether I can 
safely access contained objects inside the method. 

One last point: The Dispose method makes a call to GC.SuppressFinalize. This method on the 
garbage collector allows you to keep the garbage collector from finalizing an object. If the client code 
calls Dispose, and if the Dispose method completely cleans up all resources, including all the work a 
finalizer would have done, then there is no need for this object to ever be finalized. You can call 
SuppressFinalize to keep this object from being finalized. This handy optimization helps the garbage 
collector get rid of your object in a timely manner when all references to it cease to exist. 

Now, let’s take a look at how to use this disposable object. Notice the try/finally block within the 
Main method. I cover exceptions in Chapter 7. For now, understand that this try/finally construct is a 
way of guaranteeing that certain code will be executed no matter how a code block exits. In this case, no 
matter how the execution flow leaves the try block—whether normally, through a return statement, or 
even by exception—the code in the finally block will execute. View the finally block as a sort of safety 
net. It is within this finally block that you call Dispose on the object. No matter what, Dispose will get 
called. 

This is a perfect example of how nondeterministic finalization throws the onus on the client code, or 
the user, to clean up the object, whereas deterministic finalization doesn’t require the user to bother 
typing these ugly try/finally blocks or to call Dispose. This definitely makes life harder on the user, as it 
makes it much more tedious to create exception-safe and/or exception-neutral code. The designers of 
C# have tried to lessen this load by overloading the using keyword. Although it lessens the load, it 
doesn’t remove the burden put on the client code altogether. 

■ Note C++/CLI allows you to use RAII in a way familiar to C++ developers without requiring you to call Dispose 

explicitly or use a using block. It would be nice if C# could do the same, but it would cause too much of a calamity 

to introduce such a breaking change in the language at this point. 

The using Keyword 
The using keyword was overloaded to support the IDisposable pattern, and the general idea is that the 
using statement acquires the resources within the parentheses following the using keyword, while the 
scope of these local variables is confined to the declaration scope of the following curly braces. 

Let’s look at a modified form of the previous example: 

using System; 
 
public class A : IDisposable 
{ 
   private bool disposed = false; 
   private void Dispose( bool disposing ) 
   { 
      if( !disposed ) { 
         if( disposing ) { 
            // It is safe to access other objects here. 
         } 
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         Console.WriteLine( "Cleaning up object" ); 
         disposed = true; 
      } 
   } 
   public void Dispose() 
   { 
      Dispose( true ); 
      GC.SuppressFinalize( this ); 
   } 
 
   public void DoSomething() 
   { 
      Console.WriteLine( "A.SoSomething()" ); 
   } 
 
   ~A() 
   { 
      Console.WriteLine( "Finalizing" ); 
      Dispose( false ); 
   } 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      using( A a = new A() ) { 
         a.DoSomething(); 
      } 
 
      using( A a = new A(), b = new A() ) { 
         a.DoSomething(); 
         b.DoSomething(); 
      } 
   } 
} 

The meat of the changes is in the Main method. Notice that I’ve replaced the ugly try/finally 
construct with the cleaner using statement. Under the covers, the using statement expands to the 
try/finally construct I already had. Now, granted, this code is much easier to read and understand. 
However, it still doesn’t remove the burden from the client code of having to remember to use the using 
statement in the first place. 

The using statement requires that all resources acquired in the acquisition process be implicitly 
convertible to IDisposable. That is, they must implement IDisposable. If they don’t, you’ll see a 
compiler warning. 

Method Parameter Types 
Method parameters follow the same general rules as those of C/C++. That is, by default, parameters 
declare a variable identifier that is valid for the duration and scope of the method itself. There are no 
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const parameters as in C++, and method parameters may be reassigned at will. Unless the parameter is 
declared a certain way as a ref or an out parameter, such reassignment will remain local to the method. 

I have found that one of the biggest stumbling blocks for C++ developers in C# is dealing with the 
semantics of variables passed to methods. The dominant type of type instance within the CLR is a 
reference, so variables to such objects merely point to their instances on the heap—i.e., arguments are 
passed to the method using reference semantics. C++ developers are used to copies of variables being 
made as they’re passed into methods by default, unless they’re passed by reference or as pointers. In 
other words, arguments are passed using value semantics. 

In C#, arguments are actually passed by value. However, for references, the value that is copied is 
the reference itself and not the object that it references. Changes in state that are made to the reference 
object within the method are visible to the caller of the method. 

There is no notion of a const parameter within C#, thus you should create immutable objects to pass 
where you would have wanted to pass a const parameter. I have more to say about immutable objects in 
Chapter 13. 

■ Note Those C++ developers who are used to using handle/body idioms to implement copy-on-write semantics 

must take these facts into consideration. It doesn’t mean that you cannot employ those idioms in C#; rather, it just 

means that you must implement them differently.  

Value Arguments 
In reality, all parameters passed to methods are value arguments, assuming they’re normal, plain, 
undecorated parameters that get passed to a method. By undecorated, I mean they don’t have special 
keywords such as out, ref, and params attached to them. They can, however, have metadata attributes 
attached to them just as almost everything else in the CLR type system can. As with all parameters, the 
identifier is in scope within the method block following the parameter list (i.e., within the curly braces), 
and the method receives a copy of the passed variable at invocation time. Be careful about what this 
means, though. If the passed variable is a struct, or value type, then the method receives a copy of the 
value. Any changes made locally to the value are not seen by the caller. If the passed variable is a 
reference to an object on the heap, as any variable for a class instance is, then the method receives a 
copy of the reference. Thus, any changes made to the object through the reference are seen by the caller 
of the method. 

ref Arguments 
Passing parameters by reference is indicated by placing the ref modifier ahead of the parameter type in 
the parameter list for the method. When a variable is passed by reference, a new copy of the variable is 
not made, and the caller’s variable is directly affected by any actions within the method. As is usually the 
case in the CLR, this means two slightly different things, depending on whether the variable is an 
instance of a value type (struct) or an object (class). 

When a value instance is passed by reference, a copy of the caller’s value is not made. It’s as if the 
parameter were passed as a C++ pointer, even though you access the methods and fields of the variable 
in the same way as value arguments. When an object (reference) instance is passed by reference, again, 
no copy of the variable is made, which means that a new reference to the object on the heap is not 
created. In fact, the variable behaves as if it were a C++ pointer to the reference variable, which could be 
viewed as a C++ pointer to a pointer. Additionally, the verifier ensures that the variable referenced by the 
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ref parameter has been definitely assigned before the method call. Let’s take a look at some examples to 
put the entire notion of ref parameters into perspective: 

using System; 
 
public struct MyStruct 
{ 
    public int val; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        MyStruct myValue = new MyStruct(); 
        myValue.val = 10; 
 
        PassByValue( myValue ); 
        Console.WriteLine( "Result of PassByValue: myValue.val = {0}", 
                           myValue.val ); 
 
        PassByRef( ref myValue ); 
        Console.WriteLine( "Result of PassByRef: myValue.val = {0}", 
                           myValue.val ); 
    } 
 
    static void PassByValue( MyStruct myValue ) { 
        myValue.val = 50; 
    } 
 
    static void PassByRef( ref MyStruct myValue ) { 
        myValue.val = 42; 
    } 
} 

This example contains two methods: PassByValue and PassByRef. Both methods modify a field of the 
value type instance passed in. However, as the following output shows, the PassByValue method 
modifies a local copy, whereas the PassByRef method modifies the caller’s instance as you would expect: 

Result of PassByValue: myValue.val = 10 
Result of PassByRef: myValue.val = 42 

Also, pay attention to the fact that the ref keyword is required at the point of call into the PassByRef 
method. This is necessary because the method could be overloaded based upon the ref keyword. In 
other words, another PassByRef method could just as well have taken a MyStruct by value rather than by 
ref. Plus, the fact that you have to put the ref keyword on at the point of call makes the code easier to 
read in my opinion. When programmers read the code at the point of call, they can get a pretty clear idea 
that the method could make some changes to the object being passed by ref. 

Now, let’s consider an example that uses an object rather than a value type: 

using System; 
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public class EntryPoint 
{ 
    static void Main() { 
        object myObject = new Object(); 
 
        Console.WriteLine( "myObject.GetHashCode() == {0}", 
                           myObject.GetHashCode() ); 
        PassByRef( ref myObject ); 
        Console.WriteLine( "myObject.GetHashCode() == {0}", 
                           myObject.GetHashCode() ); 
    } 
 
    static void PassByRef( ref object myObject ) { 
        // Assign a new instance to the variable. 
        myObject = new Object(); 
    } 
} 

In this case, the variable passed by reference is an object. But, as I said, instead of the method 
receiving a copy of the reference, thus creating a new reference to the same object, the original reference 
is referenced instead. Yes, this can be confusing. In the previous PassByRef method, the reference passed 
in is reassigned to a new object instance. The original object is left with no references to it, so it is now 
available for collection. To illustrate that the myObject variable references two different instances 
between the point before it is called and the point after it is called, I sent the results of 
myObject.GetHashCode to the console to prove it and you can see the output that I got below. 

myObject.GetHashCode() == 46104728 
myObject.GetHashCode() == 12289376 

out Parameters 
Out parameters are almost identical to ref parameters, with two notable differences. First, instead of 
using the ref keyword, you use the out keyword, and you still have to provide the out keyword at the 
point of call as you do with the ref keyword. Second, the variable referenced by the out variable is not 
required to have been definitely assigned before the method is called as it is with ref parameters. That’s 
because the method is not allowed to use the variable for anything useful until it has assigned the 
variable. For example, the following is valid code: 

public class EntryPoint 
{ 
    static void Main() { 
        object obj; 
        PassAsOutParam( out obj ); 
    } 
 
    static void PassAsOutParam( out object obj ) { 
        obj = new Object(); 
    } 
} 
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Notice that the obj variable in the Main method is not directly assigned before the call to 
PassAsOutParam. That’s perfectly fine, because it is marked as an out parameter. The PassAsOutParam 
method won’t be referencing the variable unless it has already assigned it. If you were to replace the two 
occurrences of out with ref in the previous code, you would see a compiler error similar to the following: 

error CS0165: Use of unassigned local variable 'obj' 

param Arrays 
C# makes it a snap to pass a variable list of parameters. Simply declare the last parameter in your 
parameter list as an array type and precede the array type with the params keyword. Now, if the method 
is invoked with a variable number of parameters, those parameters are passed to the method in the form 
of an array that you can easily iterate through, and the array type that you use can be based on any valid 
type. Here’s a short example: 

using System; 
 
public class EntryPoint 
{ 
    static void Main() { 
        VarArgs( 42 ); 
        VarArgs( 42, 43, 44 ); 
        VarArgs( 44, 56, 23, 234, 45, 123 ); 
    } 
 
    static void VarArgs( int val1, params int[] vals ) { 
        Console.WriteLine( "val1: {0}", val1 ); 
        foreach( int i in vals ) { 
            Console.WriteLine( "vals[]: {0}", 
                               i ); 
        } 
        Console.WriteLine(); 
    } 
} 

In each case, VarArgs is called successfully, but in each case, the array referenced by the vals 
parameter is different. As you can see, referencing a variable number of parameters is pretty easy in C#. 
You can code an efficient Add method to a container type using parameter arrays where only one call is 
necessary to add a variable number of items. 

Method Overloading 
C# overloading is a compile-time technique in which, at a call point, the compiler chooses a method 
from a set of methods with the same name. The compiler uses the argument list of the method to choose 
the method that fits best. The argument types and the ref, out, and param parameter modifiers play a 
part in method overloading, because they form part of the method signature. Methods without variable-
length parameter arrays get preference over those that have them. Similar to C++, the method return 
type is not part of the signature (except in one rare case of conversion operators, which I cover in 
Chapter 6). So you cannot have methods within an overloaded class where the only difference is the 
return type. Finally, if the compiler gets to a point where multiple methods are ambiguous with respect 
to overloading, it stops with an error. 
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Overall, there’s really nothing different about method overloading in C# compared to C++. 
Normally, it can’t possibly cause any runtime exceptions, because the entire algorithm is applied at 
compile time. When the compiler fails to find an exact match based on the parameters given, it then 
starts hunting for a best match based on implicit convertibility of the instances in the parameter list. 
Thus, if a single parameter method accepts an object of type A, and you have passed an object of type B 
that is derived from type A, in the absence of a method that accepts type B, the compiler will implicitly 
convert your instance into a type A reference to satisfy the method call. Depending on the situation and 
the size of the overloaded method set, the selection process can still be a tricky one. I’ve found that it’s 
best to minimize too many confusing overloads where implicit conversion is necessary to satisfy the 
resolution. Too many implicit conversions can make code difficult to follow, requiring you to actually 
execute it in a debugger to see what happens. That makes it hard on maintenance engineers who need to 
come in behind you and figure out what you were doing. It’s not to say that implicit conversion is bad 
during overload resolution, but just use it judiciously and sparingly to minimize future surprises. 

Starting with C# 4.0, overload resolution can generate exceptions at run time when using the new 
dynamic type. You can reference Chapter 17 for all of the details on dynamic types. 

Optional Arguments 
The C# designers always consider a list of feature requests when designing the next version of the 
language. Over the years, optional method arguments has been near the top of that list. But until C# 4.0, 
there were never enough compelling reasons to add it to the language. In the spirit of greater 
interoperability, C# 4.0 introduced optional arguments as well as named arguments (covered in the next 
section) and the dynamic type (covered in Chapter 17). These three features greatly enhance the 
interoperability experience between C# and other technologies such as COM and bring C# up to the 
same level of interoperability convenience as Visual Basic. 

Optional arguments in C# work very similarly to the way they work in C++. In the method 
declaration, you may provide a default value for a method parameter at the point where the parameter is 
declared. Any parameter without a default value is considered a required parameter. Additionally, no 
required parameters may follow default parameters in the method declaration. This has the effect of 
placing all of the default parameters at the end of the parameter list for a method. Consider the following 
contrived example: 

using System; 
 
class TeamMember 
{ 
    public TeamMember( string     fullName, 
                       string     title = "Unknown", 
                       string     team = "Unknown", 
                       bool       isFullTime = false, 
                       TeamMember manager = null ) { 
        FullName = fullName; 
        Title = title; 
        Team = team; 
        IsFullTime = isFullTime; 
        Manager = manager; 
    } 
 
    public string FullName { get; private set; } 
    public string Title { get; private set; } 
    public string Team { get; private set; } 
    public bool IsFullTime{ get; private set; } 
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    public TeamMember Manager { get; private set; } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        TeamMember tm = new TeamMember( "Milton Waddams" ); 
    } 
}  

In this example, I am using optional parameters in the constructor declaration and you can see in 
the Main method, I rely on the associated optional arguments when initializing an instance of 
TeamMember. Notice that all of the default parameter values are constants. It is not permitted to provide 
anything other than a compile-time constant for a default parameter value. If you do, you will be greeted 
with the following compiler error: 

error CS1736: Default parameter value for 'title' must be a compile-time constant 

Named Arguments 
Named arguments are a new feature that was introduced in C# 4.0 and actually complements optional 
arguments. Consider the TeamMember example class from the previous section. Suppose you wanted to 
create an instance of TeamMember and accept all of the default arguments, except the isFullTime 
argument to the constructor. In order to do so, you must utilize named arguments as shown in the 
following example: 

using System; 
 
class TeamMember 
{ 
    public TeamMember( string     fullName, 
                       string     title = "Unknown", 
                       string     team = "Unknown", 
                       bool       isFullTime = false, 
                       TeamMember manager = null ) { 
        FullName = fullName; 
        Title = title; 
        Team = team; 
        IsFullTime = isFullTime; 
        Manager = manager; 
    } 
 
    public string FullName { get; private set; } 
    public string Title { get; private set; } 
    public string Team { get; private set; } 
    public bool IsFullTime{ get; private set; } 
    public TeamMember Manager { get; private set; } 
} 
 
static class EntryPoint 
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{ 
    static void Main() { 
        TeamMember tm = new TeamMember( "Peter Gibbons", 
                                        isFullTime : true ); 
    } 
} 

Notice how I have provided the isFullTime argument to the constructor. Using named arguments is 
easy. Simply provide the name of the argument followed by a colon and then the value you want to be 
passed for that argument. The rest of the arguments will contain their default values when the 
constructor is invoked. In fact, I could have used a named argument for the required argument in the 
constructor above. If I had done that, I could have swapped the order of the arguments in the argument 
list entirely as shown below: 

    static void Main() { 
        TeamMember tm = new TeamMember(  
                               isFullTime : true, 
                               fullName : "Peter Gibbons" ); 
    } 

Named arguments have a minor effect on method overloading. Essentially, a positional list of 
arguments is constructed by combining the given positional arguments together with the named 
arguments and any applicable default arguments. Once this positional list of arguments is constructed, 
overload resolution proceeds as normal. About the only place where named arguments get tricky is with 
virtual overrides. Consider the following contrived example: 

using System; 
 
class A 
{ 
    public virtual void DoSomething( int x, int y ) { 
        Console.WriteLine( "{0}, {1}", x, y ); 
    } 
} 
 
class B : A 
{ 
    public override void DoSomething( int y, int x ) { 
        base.DoSomething( y, x ); 
    } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        B b = new B(); 
        b.DoSomething( x : 1, y : 2 ); 
 
        A a = b; 
        a.DoSomething( x : 1, y : 2 ); 
    } 
}  
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This example is completely diabolical and something that should be avoided entirely! If you execute 
the code above, you will see the following output: 

2, 1 
1, 2 

When you override a virtual method in a derived type, the only requirement is that the parameter 
types and their positions must match the base method’s declaration. The actual names of the arguments 
can change as I have shown above. The problem is that the compiler must have a reliable methodology 
for mapping a named argument to the positional argument of virtual methods. The way it does this is it 
uses the method declaration of the static type of the variable reference. 

In the example above, the two references, a and b, both reference the same instance of B. However, 
when DoSomething is called with named arguments, it’s the declaration of DoSomething associated with 
the static type of the reference that matters. In the first call to DoSomething via the b variable, because the 
static type of the variable is B, the named arguments are resolved using the B.DoSomething definition. But 
in the second call to DoSomething via the a variable, because the variable is of static type A, then the 
named arguments are deduced by referencing the definition for A.DoSomething. As you can see, this must 
be avoided at all costs and certainly introduce some unnecessary confusion into the code. 

Finally, one more thing to consider is that any time you have expressions in an argument list, they 
are evaluated in the order in which they appear even if that order is different from the positional 
parameters of the method being called. Consider the following example: 

using System; 
 
class A 
{ 
    public void DoSomething( int x, int y ) { 
        Console.WriteLine( "{0}, {1}", x, y ); 
    } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        A a = new A(); 
 
        a.DoSomething( GenerateValue1(), 
                       GenerateValue2() ); 
 
        // Now use named arguments 
        a.DoSomething( y : GenerateValue2(), 
                       x : GenerateValue1() ); 
 
    } 
 
    static int GenerateValue1() { 
        Console.WriteLine( "GenerateValue1 called" ); 
        return 1; 
    } 
 
    static int GenerateValue2() { 
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        Console.WriteLine( "GenerateValue2 called" ); 
        return 2; 
    } 
} 

When you run the code above, you will get the following output sent to the console: 

GenerateValue1 called 

GenerateValue2 called 

1, 2 

GenerateValue2 called 

GenerateValue1 called 

1, 2 

Notice that the order of calling the GenerateValue1 and GenerateValue2 methods depends on the 
order in which they appear in the argument list, regardless of which positional parameter they are 
associated with. After the expressions are evaluated, in this case, after GenerateValue1 and 
GenerateValue2 are called, then the arguments are placed in their respective positions in order to find 
the best method. 

■ Caution Prior to the existence of named arguments, you could create code where the order of expression 

evaluation in parameter lists could be relied upon. Doing so is poor design with or without named arguments. In 

the previous example, imagine the methods were coded with side effects such that GenerateValue2 always 

assumed GenerateValue1 was called prior to it executing. And suppose you called a method such as 

A.DoSomething using positional arguments back when C# 3.0 was current. Later on, once named arguments 

exist, a maintenance engineer decides to change the code and pass the arguments in the opposite order using 

named arguments simply because it produces prettier looking code. Now you have a serious problem! The moral 

of the story is to avoid the situation entirely by not relying on the order of expression evaluation in argument lists. 

Inheritance and Virtual Methods 
C# implements the notion of virtual methods just as the C++ and Java languages do. That’s no surprise at 
all, because C# is an object-oriented language, and virtual methods are the primary mechanism for 
implementing dynamic polymorphism. That said, some notable differences from those languages 
deserve special mention. 
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Virtual and Abstract Methods 
You declare a virtual method using either the virtual or abstract modifiers on the method at the point 
of declaration. They both introduce the method into the declaration space as one that a deriving class 
can override. The difference between the two is that abstract methods are required to be overridden, 
whereas virtual methods are not. Abstract methods are similar to C++ pure virtual methods, except that 
C++ pure virtual methods may have an implementation associated with them, whereas C# abstract 
methods may not. Additionally, classes that contain abstract methods must also be marked abstract 
themselves. Virtual methods, in contrast to abstract methods, are required to have an implementation 
associated with them. Virtual methods, along with interfaces, are the only means of implementing 
polymorphism within C#. 

■ Note Under the hood, the CLR implements virtual methods differently from C++. Whereas C++ can create 

multiple vtables (dynamic method tables pointing to virtual methods) for an individual object of a class depending 

on its static hierarchical structure, CLR objects have only one method table that contains both virtual and 

nonvirtual methods. Additionally, the table in the CLR is built early on in the lifetime of the object. Not only does the 

creation order of objects affect the ordering of static initializers and constructor calls in a hierarchy, but it also 

gives C# a capability that C++ lacks. In C#, virtual method calls work when called inside constructor bodies, 

whereas they don’t in C++. For more information on how the CLR manages method tables for object instances, 

read  Essential .NET, Volume 1: The Common Language Runtime by Don Box and Chris Sells (Addison-Wesley 

Professional, 2002). 

override and new Methods 
To override a method in a derived class, you must tag the method with the override modifier. If you 
don’t, you’ll get a compiler warning telling you that you need to provide either the new modifier or the 
override modifier in the derived method declaration. The compiler defaults to using the new modifier, 
which probably does the exact opposite of what you intended. This behavior is different than C++, 
because in C++, once a method is marked as virtual, any derived method of the same name and 
signature is automatically an override of the virtual method, and the virtual modifier on those derived 
methods is completely optional. Personally, I prefer the fact that C# requires you to tag the overriding 
method simply for the purpose of code readability. I cannot tell you how many poorly designed C++ 
code bases I’ve worked on with deep hierarchies where developers were too lazy to keep tagging the 
virtual override methods with the virtual keyword. I had no way of knowing if a method overrides a 
virtual in a base class without looking at the base class declaration. These terribly designed code bases 
had such deep hierarchies that they forced me to rifle through a whole plethora of files just to find the 
answer. C# drives a stake through the heart of this problem. Check out the following code: 

using System; 
 
public class A 
{ 
    public virtual void SomeMethod() { 
        Console.WriteLine( "A.SomeMethod" ); 
    } 
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} 
 
public class B : A 
{ 
    public void SomeMethod() { 
        Console.WriteLine( "B.SomeMethod" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        B b = new B(); 
        A a = b; 
 
        a.SomeMethod(); 
    } 
} 

This code compiles, but not without the following warning: 

test.cs(12,17): warning CS0114: 'B.SomeMethod()' hides inherited member 'A.SomeMethod()'.  

To make the current member override that implementation, add the override keyword.  

Otherwise add the new keyword. 

When the code is executed, A.SomeMethod gets called. So what does the new keyword do? It breaks the 
virtual chain at that point in the hierarchy. When a virtual method is called through an object reference, 
the method called is determined from the method tables at run time. If a method is virtual, the runtime 
searches down through the hierarchy looking for the most derived version of the method, and then it 
calls that one. However, during the search, if it encounters a method marked with the new modifier, it 
backs up to the method of the previous class in the hierarchy and uses that one instead. That is why 
A.SomeMethod is the method that gets called. Had B.SomeMethod been marked as override, then the code 
would have called B.SomeMethod instead. Because C# defaults to using the new modifier when none of 
them are present, it throws off the warning possibly to get the attention of those of us who are used to 
the C++ syntax. Finally, the new modifier is orthogonal to the virtual modifier in meaning, in the sense 
that the method marked new could either also be virtual or not. In the previous example, I did not also 
attach the virtual modifier to B.SomeMethod, so there cannot be a class C derived from B that overrides 
B.SomeMethod, because it’s not virtual. Thus, the new keyword not only breaks the virtual chain, but it 
redefines whether the class and the derived classes from class B will get a virtual SomeMethod. 

Another issue to consider with regard to overriding methods is whether to call the base class version 
of the method and when. In C#, you call the base class version using the base identifier as shown: 

using System; 
 
public class A 
{ 
    public virtual void SomeMethod() { 
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        Console.WriteLine( "A.SomeMethod" ); 
    } 
} 
 
public class B : A 
{ 
    public override void SomeMethod() { 
        Console.WriteLine( "B.SomeMethod" ); 
        base.SomeMethod(); 
    } 
} 
 
 
public class EntryPoint 
{ 
    static void Main() { 
        B b = new B(); 
        A a = b; 
 
        a.SomeMethod(); 
    } 
} 

As expected, the output of the previous code prints A.SomeMethod on the line after it prints 
B.SomeMethod. Is this the correct ordering of events? Should it not be the other way around? Shouldn’t 
B.SomeMethod call the base class version before it does its work? The point is that you don’t have enough 
information to answer this question. Therein lies a problem with inheritance and virtual method 
overrides. How do you know when and if to call the base class method? The answer is that the method 
should be well documented so that you know how to do the right thing. Thus, inheritance with virtual 
methods increases your documentation load, because now you must provide the consumers of your 
class with information above and beyond just the public interface. For example, if you follow the Non-
Virtual Interface (NVI) pattern that I describe in Chapter 13, the virtual method in question is protected, 
so now you must document both public methods and some protected methods, and the virtual methods 
must clearly state whether the base class should call them and when. Ouch! 

sealed Methods 
For the reasons stated previously, I believe you should seal your classes by default and only make classes 
inheritable in well-thought-out circumstances. Many times I see hierarchies where the developer was 
thinking, “I’ll just mark all of my methods as virtual to give my deriving classes the most flexibility.” All 
this does is create a rat’s nest of bugs later down the line. This thought pattern is typical of less-
experienced designers who are grappling with the complexities of inheritance and virtual methods. The 
fact is that inheritance coupled with virtual methods is so surprisingly complex that it’s best to explicitly 
turn off the capability rather than leave it wide open for abuse. Therefore, when designing classes, you 
should prefer to create sealed, noninheritable classes, and you should document the public interface 
well. Consumers who need to extend the functionality can still do so, but through containment rather 
than inheritance. Extension through containment coupled with crafty interface definitions is far more 
powerful than class inheritance. 

In rare instances, you’re deriving from a class with virtual methods and you want to force the virtual 
chain for a specific method to end at your override. In other words, you don’t want further derived 
classes to be able to override the virtual method. To do so, you also mark the method with the sealed 
modifier. As is obvious from the name, it means that no further derived classes can override the method. 
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They can, however, provide a method with the same signature, as long as the method is marked with the 
new modifier, as discussed in the previous section. In fact, you could mark the new method as virtual, 
thus starting a new virtual chain in the hierarchy. This is not the same as sealing the entire class, which 
doesn’t even allow a class to derive from this one in the first place. Therefore, if the deriving class is 
marked as sealed, then marking override methods within that class with sealed is redundant. 

A Final Few Words on C# Virtual Methods 
Clearly, C# provides a lot of flexible keywords to make some interesting things happen when it comes to 
inheritance and virtual methods. However, just because the language provides them does not mean that 
it’s wise to use them. Over the past decade, many experts have published countless books describing 
how to design C++- and Java-based applications safely and effectively. Many times, those works indicate 
things that you should not do rather than things that you should do. That’s because C++, along with C#, 
provides you with the power to do things that don’t necessarily fall within the boundaries of what’s 
considered good design. In the end, you want to strive for classes and constructs that are intuitive to use 
and carry few hidden surprises. 

The savvy reader probably noticed that the new modifier is the quickest way to introduce some 
serious surprises into a class hierarchy. If you ever find yourself using that modifier on a method, you’re 
most likely using a class in a way it was not intended to be used. You could be deriving from a class that 
should have been marked sealed in the first place. And you may be cursing the developer of that class for 
not marking a particular method virtual so you can easily override it. Therefore, you resort to using the 
new modifier. Just because it exists, don’t assume it’s wise to use it. The designer of the class you’re 
deriving from probably never intended you to derive from it and just forgot to mark it sealed. And if the 
designer intentionally left it unsealed, he probably did not intend for you to replace the method you’re 
trying to override. Therefore, always strive to follow time-tested design techniques and avoid the whiz-
bang features of the language that go against that grain of good design. 

Inheritance, Containment, and Delegation 
When many people started programming in object-oriented languages some years ago, they thought 
inheritance was the greatest thing since sliced bread. In fact, many people consider it an integral, 
important part of object-oriented programming. Some argue that a language that doesn’t support 
inheritance is not an object-oriented language at all. This arguing point for many people over the years 
has almost taken on the form of a religious war at times. As time went on, though, some astute designers 
started to notice the pitfalls of inheritance. 

Choosing Between Interface and Class Inheritance 
When you first discover inheritance, you have a tendency to overuse it and abuse it. This is easy to do. 
Misuse can make software designs hard to understand and maintain, especially in languages such as 
C++ that support multiple inheritance. It can also make it hard for those designs to adapt to future 
needs, thus forcing them to be thrown out and replaced with a completely new design. In languages that 
only support single inheritance, such as C# and Java, you’re forced to apply more diligence to your use of 
inheritance. 

For example, when modeling a human-resources system at company XYZ, one naïve designer could 
be inclined to introduce classes such as Payee, BenefitsRecipient, and Developer. Then, using multiple 
inheritance, he could build or compose a full-time developer, represented by the class 
FulltimeDeveloper, by inheriting from all three, as in Figure 4-3. 
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Figure 4-3. Example of bad inheritance 

As you can see, this forces our designer to create a new class for contract developers, where the 
concrete class doesn’t inherit from BenefitsRecipient. After the system grows by leaps and bounds, you 
can quickly see the flaw in the design when the inheritance lattice becomes complex and deep. Now he 
has two classes for types of developers, thus making the design hard to manage. Now, let’s look at a bad 
attempt of the same problem with a language that supports only single inheritance. Figure 4-4 shows 
you that this solution is hardly a good one. 

 

Figure 4-4. Example of bad single-inheritance hierarchy 

If you look closely, you can see the ambiguity that is present. It’s impossible that the Developer class 
can be derived from both Payee and BenefitsRecipient in an environment where only single inheritance 
is allowed. Because of that, these two hierarchies cannot live within the same design. You could create 
two different variants of the Developer class—one for FulltimeDeveloper to derive from, and one for 
ContractDeveloper to derive from. However, that would be a waste of time. More importantly, code 
reuse—the main benefit of inheritance—is gone if you have to create two versions of essentially the 
same class. 

A better approach is to have a Developer class that contains various properties that represent these 
qualities of developers within the company. For example, the support of a specific interface could 
represent the support of a certain property. An inheritance hierarchy that is multiple levels deep is a 
telltale sign that the design needs some rethinking. 

To see what’s really going on here, let’s take a moment to analyze what inheritance does for you. In 
reality, it allows you to get a little bit of work for free by inheriting an implementation. There is an 
important distinction between inheritance and interface implementation. Although the object-oriented 
languages, including C#, typically use a similar syntax for the two, it’s important to note that classes that 
implement an interface don’t get any implementation at all. When using inheritance, not only do you 
inherit the public contract of the base class, but you also inherit the layout, or the guts. 

A good rule of thumb is that when your purpose is primarily to inherit a contract, choose interface 
implementation over inheritance. This will guarantee that your design has the greatest flexibility. To 
understand more why that’s the case, let’s investigate more pitfalls of inheritance. 
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Delegation and Composition vs. Inheritance 
Another very important aspect of inheritance that is unfavorable: Inheritance can break encapsulation 
and always increases coupling. I’m sure we all agree, or at least we should all agree, that encapsulation is 
the most fundamental and important object-oriented concept. If that’s the case, then why would you 
want to break it? Yet any time you use encapsulation where the base type contains protected fields, 
you’re cracking the shell of encapsulation and exposing the internals of the base class. This cannot be 
good. Let me explain why it’s not and what sorts of alternatives you have at your disposal that can create 
better designs. 

Many describe inheritance as white-box reuse. A better form of reuse is black-box reuse, meaning 
that the internals of the object are not exposed to you. You can achieve this by using containment. Yes, 
that’s correct. Instead of inheriting your new class from another, you can contain an instance of the 
other class in your new class, thus reusing the class of the contained type without cracking the 
encapsulation. The downside to this technique is that in most languages, including C#, it requires a little 
more coding work, but not too much. In the end, it can provide a much more adaptable design. 

For a simple example of what I’m talking about, consider a problem domain where a class handles 
some sort of custom network communications. Let’s call this class NetworkCommunicator, and let’s say it 
looks like this: 

public class NetworkCommunicator 
{ 
   public void SendData( DataObject obj ) 
   { 
      // Send the data over the wire. 
   } 
 
   public DataObject ReceiveData() 
   { 
      // Receive data over the wire. 
   } 
} 

Now, let’s say that you come along later and decide it would be nice to have an 
EncryptedNetworkCommunicator object, where the data transmission is encrypted before it is sent. A 
common approach would be to derive EncryptedNetworkCommunicator from NetworkCommunicator. Then, 
the implementation could look like this: 

public class EncryptedNetworkCommunicator : NetworkCommunicator 
{ 
   public override void SendData( DataObject obj ) 
   { 
      // Encrypt the data. 
      base.SendData( obj ); 
   } 
 
   public override DataObject ReceiveData() 
   { 
      DataObject obj = base.ReceiveData(); 
 
      // Decrypt data. 
       
      return obj; 
   } 



CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS 

 

 

135 

 

} 

There is a major drawback here. First of all, good design dictates that if you’re going to modify the 
functionality of the base class methods, you should override them. To override them properly, you need 
to declare them as virtual in the first place. This requires you to be able to tell the future when you 
design the NetworkCommunicator class and mark the methods as virtual, but since we could not tell the 
future we did not mark it virtual and therefore EncryptedNetworkCommunicator above will not compile. 
Yes, you can hide them in C# using the new keyword when you define the method on the derived class. 
But if you do that, you’re breaking the tenet that the inheritance relationship models an is-a 
relationship. Now, let’s look at the containment solution: 

public class EncryptedNetworkCommunicator 
{ 
   public EncryptedNetworkCommunicator() 
   { 
      contained = new NetworkCommunicator(); 
   } 
    
   public void SendData( DataObject obj ) 
   { 
      // Encrypt the data. 
      contained.SendData( obj ); 
   } 
 
   public DataObject ReceiveData() 
   { 
      DataObject obj = contained.ReceiveData(); 
 
      // Decrypt data 
 
      return obj; 
   } 
 
   private NetworkCommunicator contained; 
} 

As you can see, it’s only slightly more work. But the good thing is, you’re able to reuse the 
NetworkCommunicator as if it were a black box. The designer of NetworkCommunicator could have created 
the thing sealed, and you would still be able to reuse it. Had it been sealed, you definitely could not have 
inherited from it. While reusing NetworkCommunicator via containment, one could even provide a public 
contract on the container such that it looks slightly different than the one NetworkCommunicator 
implements. Such a technique is commonly referred to as the Facade pattern.   

Another downfall of using inheritance is that it is not dynamic. It is static by the very fact that it is 
determined at compile time. This can be very limiting, to say the least. You can remove this limitation by 
using containment. However, in order to do that, you have to also employ your good friend, 
polymorphism. By doing so, the contained type can be, say, an interface type. Then, the contained 
object merely has to support the contract of that interface in order to be reused by the container. 
Moreover, you can change this object at run time. Think about this for a moment and let it sink in. 
Consider an object that represents a container of sortable objects. Let’s say that this container type 
comes with a default sort algorithm. If you implement this default algorithm as a contained type that you 
can swap at run time, then if the problem domain required it, you could replace it with a custom sort 
algorithm as long as the new sort algorithm object implements the required interface that the container 
type expects. This technique is known as the Strategy design pattern. 
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In conclusion, you can see that designs are much more flexible if you favor dynamic rather than 
static constructs. This includes favoring containment over inheritance in many reuse cases. This type of 
reuse is also known as delegation, because the work is delegated to the contained type. Containment 
also preserves encapsulation, whereas inheritance breaks encapsulation. One word of caution is in 
order, though. As with just about anything, you can overdo containment. For smaller utility classes, it 
may not make sense to go to too much effort to favor containment. And in some cases, you need to use 
inheritance to implement specialization. But, in the grand scheme of things, designs that favor 
containment over inheritance as a reuse mechanism are magnitudes more flexible and stand the test of 
time much better. Always respect the power of inheritance, including the damage it can cause through 
its misuse. 

Summary 
In this very long chapter, I’ve covered the important points regarding the C# type system, which allows 
you to create new types that have all of the capabilities of implicit types defined by the runtime. I started 
out by covering class definitions used to define new reference types, then I followed that with struct 
definitions used to create instances of new value types within the CLR, and I described the major 
differences between the two. Related to the topic of value types is that of boxing and unboxing, which I 
showed can introduce unintended inefficiencies when you don’t understand all of the places boxing can 
be introduced by the compiler. (In Chapter 11, which covers generics, you’ll see how you can eliminate 
boxing and unboxing entirely in some cases.) 

I then turned to the complex topics of object creation and initialization, as well as object 
destruction. Destruction is a rather tricky topic in the CLR, because your reference types can support 
either deterministic or nondeterministic destruction. (I cover destruction in more detail with more 
examples in Chapter 13.) Then, I quickly discussed method overloading in C# and the various modifiers 
you can place on methods to control whether they’re modified as virtual, override, or sealed. Finally, I 
spent some time discussing inheritance, polymorphism, and containment, and I provided some 
pointers for choosing when to use them. 

The last sections in this chapter lead right into the next chapter, where I’ll cover the all-important 
topic of interface-based, or contract-based, programming and how to use it in the CLR. 
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Interfaces and Contracts 

During your years as a software developer, you’ve likely come across the notion of interface-based 
programming. If you’re familiar with the seminal book, Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (known as the 
“Gang of Four”), 1 then you know that many design patterns employ interface-style “contracts.” If you’re 
not familiar with that book and its concepts, I urge you to read it. In this chapter, it is my goal to show 
you how you can model well-defined, versioned contracts using interfaces. In this context, a contract is 
an agreement by a type to support a set of functionality. 

If you’ve done any COM or CORBA development over the years, then you’ve most definitely been 
doing interface-based development. In fact, the interface is the only form of communication between 
components in COM. Therefore, much of the design complexity rests in developing solid interfaces 
before you write any lines of implementation code. Failure to follow this paradigm has been the source 
of many problems. For example, Visual Studio 2003 offered an easy environment from which you could 
create web services. By simply annotating methods of a class a certain way, you could expose those 
methods as methods of the web service. However, the IDE fostered an approach whereby the interface 
was the result of annotating methods on a class rather than the other way around. Thus, the cart was put 
before the horse. Instead, you should clearly define the web service interface before doing any coding, 
and then code the implementation to implement the interface. To name just one benefit of this 
approach, you can code the client and the server concurrently rather than one after the other. Another 
part of the problem is that once an interface is published to the world, you cannot change it. Doing so 
would break all implementations based upon it. Unfortunately, the Visual Studio environment 
encourages you to break this rule by making it easy for you to add a new method to a class and annotate 
it as a web service method. 

In a well-designed, interface-based system, such as in service-oriented architecture (SOA) systems, 
you should always design the interface first, as it’s the contract between components. The contract 
drives the implementation rather than the implementation driving, or defining, the contract. 
Unfortunately, too many tools in the past and even up to the present have promoted this backward 
development. But just because they promote it does not mean you need to follow their erroneous lead. 
After all, a contract, when applied to a type, imposes a set of requirements on that type. It makes no 
sense for the requirements to be driven by the types themselves. In the .NET environment, interfaces are 
types.  

                                                 

 
1 Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and 
John Vlissides (Boston, MA: Addison-Wesley Professional, 1995) is cited in the references at the end of this book. 



CHAPTER 5 ■ INTERFACES AND CONTRACTS 

 

138 

 

Interfaces Define Types 
An interface declaration defines a reference type. Within variables of this type, you can store a reference 
to an object on the garbage collected heap that implements the contract of the interface type. Each 
variable in the CLR is stored in a storage location, whether it be on the heap or on the stack. Each of 
these storage locations has a type associated with it. Therefore, an interface type can describe the type 
associated with a specific storage location. When a variable—say, a reference to an object—is stored in 
that location, it must be the same type as the location, or it must be convertible to the type attached to 
the location. If it can be converted automatically to the type of the location, then it is implicitly 
convertible to the storage location type. If it requires a specific cast syntax to perform the conversion, 
then it is explicitly convertible to the storage location type. 

Many examples use a fictitious GUI framework as their basis for demonstration purposes, so I’ll do 
the same here. Take a look at the following code snippet: 

public interface IUIControl 
{ 
   void Paint(); 
} 
 
public class Button : IUIControl 
{ 
   public void Paint() { 
      // Paint the Button 
   } 
} 
 
public class ListBox : IUIControl 
{ 
   public void Paint() { 
      // Paint the Listbox 
   } 
} 

This example declares an interface named IUIControl that simply exposes one method, Paint. This 
interface defines a contract, which states that any type that implements this interface must implement 
the Paint method. Of course, some documentation describing the semantic meaning of what Paint is 
supposed to do would be nice. For example, you can imagine that an interface named IArtist could 
have a method named Paint, but the meaning would probably not be reflexive as it is in the previous 
example—i.e., IUIControl.Paint likely asks a control to paint itself, while IArtist.Paint likely means 
that the artist should paint something. 

■ Note I’ve found it useful to name methods according to both the action they perform and where the action is 

directed. For example, suppose the IUIControl.Paint method takes a Graphics object as a parameter telling it 

where to paint itself. In my opinion, it makes the code more readable if the method is named 

IUIControl.PaintSelfTo. This way, the method call reads like a spoken language in the sense that a method 

call that looks like control.PaintSelfTo( myGraphicsObject ) is saying, “control, please paint yourself to 

myGraphicsObject.” 
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Once the classes ListBox and Button in the previous example implement the interface, they can 
both be treated as type IUIControl. It’s handy to consider how the CLR manages the situation. If you 
were to attempt to store any instance of either Button or ListBox into a variable declared as IUIControl, 
the operation would succeed. The reference to those concrete types is implicitly convertible to the 
IUIControl interface type because they both implement the interface. However, to cast an IUIControl 
reference back into a ListBox or Button reference requires an explicit cast, and that explicit cast could fail 
at runtime if, in fact, the IUIControl reference does not point to an instance of the desired concrete type. 

Defining Interfaces 
In the previous section, you got a taste of what a C# interface declaration looks like. It looks similar to a 
class declaration where the keyword class is simply replaced with the word interface and the methods 
have no body. Note some important things, though. If you follow the recommended convention, your 
interface names will start with the letter I. Thus, you can spot interface types in code easily. Interfaces 
can have an access modifier attached to them. This determines whether the interface type declaration is 
visible outside the assembly. Most interfaces represent contracts of communication between consumers 
and providers, so interface declarations are typically declared as public. 

Interface members cannot have any access modifiers attached to them. However, they can be 
decorated with the new modifier, which I discuss later on. Interface members are implicitly public. What 
would be the point of having a nonpublic interface member when the purpose of the interface is to allow 
two objects to talk to each other? 

INTERFACES DEFINE CONTRACTS 

To stress the fact that an interface only specifies a contract, I like to draw an analogy between interface 
declarations and IDL and Web Services Description Language (WSDL). Both COM and CORBA use IDL to 
define interfaces. The syntax is similar to C++. It is typically passed through a translator, such as midl.exe 
for COM, to generate wrappers—and possibly proxies and stubs—for whatever language you desire. WSDL 
is another example, although it is much more expressive than IDL. An XML schema defines the format of 
WSDL, and a WSDL document is used to describe a contract, or interface, into a network service. The usage 
pattern is similar to IDL. Once you have a WSDL document, you pass it through a translator for whatever 
language you’re using to implement or consume the service. The translator helps you out by generating a 
shell of an implementation, or interfaces that are native to the language you’re using. Declaring and 
consuming interfaces in the .NET environment should follow the same pattern. 

In practice, it usually make sense to house your interface declarations in a separate assembly that 
contains only interface definitions and constants, so that the consumer and the provider can base their 
implementations on exactly the same version of the interfaces. A great example of this is the Managed 
AddIn Framework (MAF) made available in .NET 3.5. 

What Can Be in an Interface? 
Interface declarations may declare zero or more methods, properties, events, and indexers. All are 
implicitly public and cannot be static. Interfaces may inherit from one or more other interfaces. The 
syntax is the same as that of class inheritance. When it comes to interfaces, I prefer to think of interface B 
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deriving from interface A as meaning that if you implement interface B, you must also implement 
interface A. Class inheritance implies an is-a relationship, where the base implementation is also 
inherited. Even though interface inheritance borrows the same syntax as class inheritance, which is an 
is-a relationship, it’s not completely accurate to consider them one and the same, because interface 
inheritance merely declares a generalization and no implementation is inherited. Therefore, whenever 
you say interface inheritance, try to think of it more in terms of an implements relationship. This 
becomes clearer when I discuss how a derived class can reimplement interfaces and how the compiler 
does interface implementation mapping in the concrete types that implement the interface. 

Here’s an example of what you can declare in an interface: 

public delegate void DBEvent( IMyDatabase sender );2 
 
public interface IMyDatabase : ISerializable, IDisposable 
{ 
   void Insert( object element ); 
   int  Count { get; } 
   object this[ int index ] { get; set; } 
   event DBEvent Changed; 
} 

In this example, IMyDatabase also implements ISerializable and IDisposable. Therefore, any 
concrete type that implements IMyDatabase must also implement ISerializable and IDisposable; 
otherwise, the concrete type will not compile. If you were to compile this code snippet into an assembly 
and look at it with ILDASM, you would see that the IMyDatabase type contains nothing more than 
instance method declarations. Of course, some of those will have special names based on the fact that 
they’re accessors for the property, indexer, or event. 

Interface Inheritance and Member Hiding 
As mentioned previously, interfaces support multiple inheritance from other interfaces in the syntactic 
sense. As with multiple inheritance in C++, you may also have diamond-lattice hierarchies, such as in 
the following code: 

public interface IUIControl 
{ 
    void Paint(); 
} 
 
public interface IEditBox : IUIControl 
{ 
} 
 
public interface IDropList : IUIControl 
{ 
} 

                                                 

 
2 If you’re unfamiliar with the delegate keyword and how delegates are used to declare events, don’t worry. You’ll 
find a thorough discussion of delegates and events in Chapter 10. 



CHAPTER 5 ■ INTERFACES AND CONTRACTS 

 

 

141 

 

 
public class ComboBox : IEditBox, IDropList 
{ 
    public void Paint() { 
        // paint implementation for ComboBox 
    } 
} 

In this example, both the IEditBox and IDropList interfaces implement the IUIControl interface. 
And because ComboBox implements both of those interfaces, it must implement the union of all the 
methods declared in the interfaces it directly implements, plus the methods for the interfaces those 
interfaces implement, etc. In this case, that only includes the IUIControl.Paint method. 

Quite simply, all of the methods from all of the interfaces are merged together into one big union to 
form the set of methods that the concrete class or structure must implement. Therefore, the ComboBox 
class gets only one implementation of the Paint method. If you were to cast a ComboBox instance into 
both an IEditBox reference and an IDropList reference, then calling Paint through both of those would 
call into exactly the same implementation. 

■ Note If you come from a native C++ background, you might know all of the intricacies of multiple inheritance 

and diamond-lattice inheritance diagrams and how they relate to virtual inheritance in C++ and the multiple 

compiler-generated vtables involved. To understand how C# differs, imagine that C# flattens all of those vtables 

into one table at compile time. 

Sometimes—although extremely rarely—you need to declare a method in an interface that hides a 
method in an inherited interface. You must use the new keyword if you want to keep the compiler from 
complaining about it with a warning. 

■ Note Traditionally, Object-Oriented Analysis and Design (OOA-D) considers it bad design to hide a non-virtual 

inherited member. The implementation that actually gets called depends on the type of reference held, even if the 

two references point to the same instance. For example, if A.DoWork isn’t virtual, and B derives from A and 

introduces a new B.DoWork that hides the base method, then calling DoWork on a reference to B will call 

B.DoWork, and calling DoWork on a reference to A obtained by casting a B reference to an A reference will call 

A.DoWork. This behavior is nonintuitive in object-oriented systems. Just because the language allows you to do 

something does not mean that it’s the correct thing to do. Now you see why the compiler warning exists in the first 

place. 

In the following example, IEditBox, for one reason or another, needs to declare a Paint method 
whose signature is exactly that of the one in IUIControl. Therefore, it must use the new keyword: 

using System; 
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public interface IUIControl 
{ 
    void Paint(); 
} 
 
public interface IEditBox : IUIControl 
{ 
    new void Paint(); 
} 
 
public interface IDropList : IUIControl 
{ 
} 
 
public class ComboBox : IEditBox, IDropList 
{ 
    public void Paint() { 
        Console.WriteLine( "ComboBox.IEditBox.Paint()" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        ComboBox cb = new ComboBox(); 
        cb.Paint(); 
        ((IEditBox)cb).Paint(); 
        ((IDropList)cb).Paint(); 
        ((IUIControl)cb).Paint(); 
    } 
} 

In all calls to the Paint method in the Main method, it always boils down to a call on ComboBox.Paint. 
That’s because the set of required methods that ComboBox must implement are merged together into one 
set. Both signatures from Paint—the one from IEditBox and the one from IUIControl—are merged into 
one slot in the requirements list. In the end, they both map to ComboBox.Paint. You can change this 
behavior by using explicit interface implementation (which I discuss in the section “Explicit Interface 
Implementation”), where ComboBox can elect to implement two different versions of Paint—one for 
IEditBox and one for IUIControl. 

When the IEditBox interface declares the Paint method using the new keyword, it is said to hide the 
Paint method declared in IUIControl. When you call ComboBox.Paint, it will invoke the IEditBox.Paint 
method as if it chose the IEditBox path in the inheritance hierarchy over the IDropList path. In essence, 
any time any path hides a method, it hides the method for all paths. This will become clearer when I 
discuss how the compiler matches up a concrete method with an interface method when you call an 
interface method. That process is called interface mapping, and I cover it in the section titled “Interface 
Member Matching Rules” later in this chapter. 
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Implementing Interfaces 
When implementing interfaces in C#, you have the choice of implementing them one of two ways. By 
default, interface implementations are said to be implicit implementations. The method 
implementations are part of the public contract of the class but also implement the interface implicitly. 
Alternatively, you can implement the interface explicitly, whereby the method implementations are 
private to the implementing class and don’t become part of the public interface of the class. Explicit 
implementation provides some flexibility, especially when implementing two interfaces that have 
methods with the same name in them. 

Implicit Interface Implementation 
When a concrete type implements the methods in inherited interfaces, and those methods are marked 
public, it’s known as implicit interface implementation. What good is it to say that a concrete type 
implements the contract of a specific interface if a consumer of the objects of that type cannot call the 
methods in that contract? For example, the following is not valid: 

public interface IUIControl 
{ 
   void Paint(); 
} 
 
public class StaticText : IUIControl 
{ 
   void Paint();   // !!! WON'T COMPILE !!! 
} 

If you try to compile this, the compiler will immediately complain that the StaticText class doesn’t 
implement all of the methods of the derived interfaces—in this case, IUIControl. In order for this to 
work, you could rewrite it as in the following: 

public interface IUIControl 
{ 
   void Paint(); 
} 
 
public class StaticText : IUIControl 
{ 
   public void Paint();   //Notice that we’ve added ‘public’ to the method declaration 
} 

Now, not only will the code compile, but when you call Paint through a reference to StaticText or 
through a reference to IUIControl, the StaticText.Paint method will be called. Thus, consumers can 
treat instances of StaticText polymorphically as instances of type IUIControl. 

Explicit Interface Implementation 
When a concrete type implements an interface implicitly, the interface methods also become part of the 
public contract of the concrete type itself. However, you might not always want the interface method 
implementations to become part of the public contract of the class that implements the interface. For 
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example, the System.IO.FileStream class implements IDisposable, but you cannot call Dispose through 
an instance of FileStream. Instead, you must first cast the reference to the FileStream object to an 
IDisposable interface, and then you may call Dispose. When you need this behavior in your own types, 
you must implement the interfaces using explicit interface implementation. 

■ Note To achieve the same result as Dispose using a reference to a FileStream object, you must call 

FileStream.Close. In the implementation of FileStream.Close calls straight through to the internal 

implementation of the Dispose method. Why did the designers of FileStream do this? Most likely because it 

makes more linguistic sense to “close” a file rather than “dispose of” it. 

You can also use explicit implementation to provide separate implementations for overlapping 
methods in inherited interfaces. Let’s look again at the ComboBox example from the previous section. If 
you want to provide a separate implementation for IEditBox.Paint and IUIControl.Paint inside 
ComboBox, you can do that using explicit interface implementation, as shown here: 

using System; 
 
public interface IUIControl 
{ 
    void Paint(); 
} 
 
public interface IEditBox : IUIControl 
{ 
    new void Paint(); 
} 
 
public interface IDropList : IUIControl 
{ 
} 
 
public class ComboBox : IEditBox, IDropList 
{ 
    void IEditBox.Paint() { 
        Console.WriteLine( "ComboBox.IEditBox.Paint()" ); 
    } 
 
    void IUIControl.Paint() { 
        Console.WriteLine( "ComboBox.IUIControl.Paint()" ); 
    } 
 
    public void Paint() { 
        ((IUIControl)this).Paint(); 
    } 
} 
 
public class EntryPoint 
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{ 
    static void Main() { 
        ComboBox cb = new ComboBox(); 
        cb.Paint(); 
        ((IEditBox)cb).Paint(); 
        ((IDropList)cb).Paint(); 
        ((IUIControl)cb).Paint(); 
    } 
} 

Pay attention to the change in syntax. Now, ComboBox has three implementations for Paint. One is 
specific for the IEditBox interface, the other is specific to the IUIControl interface, and the last one is 
simply there for convenience to provide a Paint method for the public contract of the ComboBox class. 
When you implement interface methods explicitly, not only do you add the interface name followed by a 
dot before the method name, but you also remove the access modifier. This keeps it from being in the 
public contract for ComboBox. However, the explicit interface implementations aren’t exactly private in 
the sense that you can call them after you cast the instance of the ComboBox to the required interface type. 
In my implementation of ComboBox.Paint—the one that contributes to the ComboBox public contract—I 
get to choose which version of Paint to call. In this case, I chose to call IUIControl.Paint. I could just as 
easily have chosen to implement IEditBox.Paint explicitly and IUIControl.Paint implicitly, and then I 
wouldn’t have needed the third implementation of Paint. But in this case, I believe it adds more 
flexibility and makes more sense for ComboBox to implement its own Paint method so that it can reuse the 
other and add value to it at the same time. If you compile and run the previous example, you’ll see 
output similar to the following: 

ComboBox.IUIControl.Paint() 

ComboBox.IEditBox.Paint() 

ComboBox.IUIControl.Paint() 

ComboBox.IUIControl.Paint() 

Granted, this example is rather contrived, but it’s meant to exhibit the intricacies of explicit 
interface implementation and member hiding during multiple interface inheritance. 

Overriding Interface Implementations in Derived Classes 
Suppose you have a handy implementation of ComboBox, as in the previous section, and the implementer 
decided not to seal the class so that you can inherit from it. 

■ Note I suggest that you declare all classes sealed unless the designer explicitly intends them to be inherited 

from. In Chapter 4, I explain in detail why this is desired. In short, it’s impossible to tell the future. 
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Now, suppose you create a new class, FancyComboBox, and you want it to paint itself better, maybe 
with some new psychedelic theme. You could try something like this: 

using System; 
 
public interface IUIControl 
{ 
    void Paint(); 
    void Show(); 
} 
 
public interface IEditBox : IUIControl 
{ 
    void SelectText(); 
} 
 
public interface IDropList : IUIControl 
{ 
    void ShowList(); 
} 
 
public class ComboBox : IEditBox, IDropList 
{ 
    public void Paint() { } 
    public void Show() { } 
 
    public void SelectText() { } 
 
    public void ShowList() { } 
} 
 
public class FancyComboBox : ComboBox 
{ 
    public void Paint() { } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        FancyComboBox cb = new FancyComboBox(); 
    } 
} 

However, the compiler will promptly warn you that FancyComboBox.Paint hides ComboBox.Paint and 
that you probably meant to use the new keyword. This will surprise you if you were assuming that 
methods that implement interface methods are automatically virtual. They are not in C#. 

■ Note Under the covers, interface method implementations are called as if they are virtual methods within the 

CLR. Any interface method implementations not marked virtual in the C# code are marked as virtual and 
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final (sealed) in the generated IL. If the method is marked virtual in the C# code, then the method is marked 

with virtual and newslot (new) in the generated IL. This can be the source of some confusion. 

When faced with a problem such as this, you have a couple of options. One option is to have 
FancyComboBox reimplement the IUIControl interface: 

using System; 
 
public interface IUIControl 
{ 
    void Paint(); 
    void Show(); 
} 
 
public interface IEditBox : IUIControl 
{ 
    void SelectText(); 
} 
 
public interface IDropList : IUIControl 
{ 
    void ShowList(); 
} 
 
public class ComboBox : IEditBox, IDropList 
{ 
    public void Paint() { 
        Console.WriteLine( "ComboBox.Paint()" ); 
    } 
    public void Show() { } 
 
    public void SelectText() { } 
 
    public void ShowList() { } 
} 
 
public class FancyComboBox : ComboBox, IUIControl 
{ 
    public new void Paint() {  
        Console.WriteLine( "FancyComboBox.Paint()" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        FancyComboBox cb = new FancyComboBox(); 
        cb.Paint(); 
        ((IUIControl)cb).Paint(); 
        ((IEditBox)cb).Paint(); 



CHAPTER 5 ■ INTERFACES AND CONTRACTS 

 

148 

 

    } 
} 

In this example, note a couple of things. First, FancyComboBox lists IUIControl in its inheritance list. 
That’s how you indicate that FancyComboBox is planning to reimplement the IUIControl interface. Had 
IUIControl inherited from another interface, FancyComboBox would have had to reimplement the 
methods from those inherited interfaces as well. I also had to use the new keyword for 
FancyComboBox.Paint, because it hides CombBox.Paint. This wouldn’t have been a problem had ComboBox 
implemented the IUIControl.Paint method explicitly, because it wouldn’t have been part of the 
ComboBox public contract. When the compiler matches class methods to interface methods, it also 
considers public methods of base classes. In reality, FancyComboBox could have indicated that it 
reimplements IUIControl but without redeclaring any methods, as the compiler would have just wired 
up the interface to the base class methods. Of course, doing so would be pointless, because the reason 
you reimplement an interface in a derived class is to modify behavior. 

■ Note The ability to reimplement an interface is a powerful one. It highlights the vast differences between the 

way C# and the CLR handle interfaces and the C++ treatment of interfaces as abstract class definitions. Gone are 

the intricacies of C++ vtables, as well as the question of when you should use C++ virtual inheritance. As I’ve said 

before, and don’t mind saying again, C#/CLR interfaces are nothing more than contracts that say, “You, Mr. 

Concrete Class, agree to implement all of these methods in said contract, a.k.a. interface.” 

When you implement methods in an interface contract implicitly, they must be publicly accessible. 
As long as they meet those requirements, they can also have other attributes, including the virtual 
keyword. In fact, implementing the IUIControl interface in ComboBox using virtual methods as opposed 
to nonvirtual methods would make the previous problem a lot easier to solve, as demonstrated in the 
following: 

using System; 
 
public interface IUIControl 
{ 
    void Paint(); 
    void Show(); 
} 
 
public interface IEditBox : IUIControl 
{ 
    void SelectText(); 
} 
 
public interface IDropList : IUIControl 
{ 
    void ShowList(); 
} 
 
public class ComboBox : IEditBox, IDropList 
{ 
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    public virtual void Paint() { 
        Console.WriteLine( "ComboBox.Paint()" ); 
    } 
    public void Show() { } 
 
    public void SelectText() { } 
 
    public void ShowList() { } 
} 
 
public class FancyComboBox : ComboBox 
{ 
    public override void Paint() {  
        Console.WriteLine( "FancyComboBox.Paint()" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        FancyComboBox cb = new FancyComboBox(); 
        cb.Paint(); 
        ((IUIControl)cb).Paint(); 
        ((IEditBox)cb).Paint(); 
    } 
} 

In this case, FancyComboBox doesn’t have to reimplement IUIControl. It merely has to override the 
virtual ComboBox.Paint method. It’s much cleaner for ComboBox to declare Paint virtual in the first place. 
Any time you have to use the new keyword to keep the compiler from warning you about hiding a 
method, consider whether the method of the base class should be virtual. 

■ Caution Hiding methods causes confusion and makes code hard to follow and debug. Again, just because the 

language allows you to do something does not mean that you should. 

Of course, the implementer of ComboBox would have had to think ahead and realize that someone 
might derive from ComboBox, and anticipated these issues. In my opinion, it’s best to seal the class and 
avoid any surprises by people who attempt to derive from your class when you never meant for it to be 
derived from. Imagine who they will scream at when they encounter a problem. Have you ever used 
Microsoft Foundation Classes (MFC) in the past and come to a point where you’re pulling your hair out 
because you’re trying to derive from an MFC class and wishing a particular method were virtual? In that 
case, it’s easy to blame the designers of MFC for being so flagrantly thoughtless and not making the 
method virtual when, in reality, it’s more accurate to consider the fact that they probably never meant 
for you to derive from the class in the first place. Chapter 13 describes how containment rather than 
inheritance is the key in situations like these. 
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Beware of Side Effects of Value Types Implementing Interfaces 
All the examples so far have shown how classes may implement interface methods. In fact, value types 
can implement interfaces as well. However, there’s one major side effect to doing so. If you cast a value 
type to an interface type, you’ll incur a boxing penalty. Even worse, if you modify the value via the 
interface reference, you’re modifying the boxed copy and not the original. Given the intricacies of boxing 
that I cover in Chapters 4 and 13, you may consider that to be a bad thing. 

As an example, consider System.Int32. I’m sure you’ll agree that it is one of the most basic types in 
the CLR. However, you may or may not have noticed that it also implements several interfaces: 
IComparable, IFormattable, and IConvertible. Consider System.Int32’s implementation of IConvertible, 
for example. All of the methods are implemented explicitly. IConvertible has quite a few methods 
declared within it. However, none of those are in the public contract of System.Int32. If you want to call 
one of those methods, you must first cast your Int32 value type into an IConvertible interface reference. 
Only then may you call one of the IConvertible methods. And of course, because interface-typed 
variables are references, the Int32 value must be boxed. 

PREFER THE CONVERT CLASS OVER ICONVERTIBLE 

Even though I use the IConvertible interface implemented by a value type as an example to prove a point, 
the documentation urges you not to call the methods of IConvertible on Int32; rather, it recommends 
using the Convert class instead. The Convert class provides a collection of methods with many overloads of 
common types for converting a value to just about anything else, including custom types (by using 
Convert.ChangeType), and it makes your code easier to change later. For example, if you have the 
following 

int i = 0; 
double d = Int32.ToDouble(i); 

and you want to change the type of i to long, you have to also change the Int32 type to Int64. On 
the other hand, if you write 

int i = 0; 
double d = Convert.ToDouble(i); 

then all you have to do is change the type of i. 

Interface Member Matching Rules 
Each language that supports interface definitions has rules about how it matches up method 
implementations with interface methods. The interface member matching rules for C# are pretty 
straightforward and boil down to some simple rules. However, to find out which method actually gets 
called at runtime, you need to consider the rules of the CLR as well. These rules are only relevant at 
compile time. Suppose you have a hierarchy of classes and interfaces. To find the implementation for 
SomeMethod on ISomeInterface, start at the bottom of the hierarchy and search for the first type that 
implements the interface in question. In this case, that interface is ISomeInterface. This is the level at 
which the search for a matching method begins. Once you find the type, recursively move up through 
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the type hierarchy and search for a method with the matching signature, while first giving preference to 
explicit interface member implementations. If you don’t find any, look for public instance methods that 
match the same signature. 

The C# compiler uses this algorithm when matching up method implementations with interface 
implementations. The method that it picks must be a public instance method or an explicitly 
implemented instance method, and it may or may not be tagged in C# as virtual. However, when the IL 
code is generated, all interface method calls are made through the IL callvirt instruction. So, even 
though the method is not necessarily marked as virtual in the C# sense, the CLR treats interface calls as 
virtual. Be sure that you don’t confuse these two concepts. If the method is marked as virtual in C# and 
has methods that override it in the types below it, the C# compiler will generate vastly different code at 
the point of call. Be careful, as this can be quite confusing, as shown by the following contrived example: 

using System; 
 
public interface IMyInterface 
{ 
    void Go(); 
} 
 
public class A : IMyInterface 
{ 
    public void Go() { 
        Console.WriteLine( "A.Go()" ); 
    } 
} 
 
public class B : A 
{ 
} 
 
public class C : B, IMyInterface 
{ 
    public new void Go() { 
        Console.WriteLine( "C.Go()" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        B b1 = new B(); 
 
        C c1 = new C(); 
        B b2 = c1; 
 
        b1.Go(); 
        c1.Go(); 
        b2.Go(); 
        ((I)b2).Go(); 
    } 
} 

The output from this example is as follows: 
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A.Go() 

C.Go() 

A.Go() 

C.Go() 

The first call, on b1, is obvious, as is the second call on c1. However, the third call, on b2, is not 
obvious at all. Because the A.Go method is not marked as virtual, the compiler generates code that calls 
A.Go. The fourth and final call is almost equally confusing, but not if you consider the fact that the CLR 
handles virtual calls on class type references and calls on interface references significantly differently. 
The generated IL for the fourth call makes a call to IMyInterface.Go, which, in this case, boils down to a 
call to C.Go, because b2 is actually a C, and C reimplements IMyInterface. 

You have to be careful when searching for the actual method that gets called, because you must 
consider whether the type of your reference is a class type or an interface type. The C# compiler 
generates IL virtual method calls in order to call through to interfaces methods, and the CLR uses 
interface tables internally to achieve this.  

■ Note C++ programmers must realize that interface tables are different from C++ vtables. Each CLR type only 

has one method table, whereas a C++ instance of a type may have multiple vtables. 

The contents of these interface tables are defined by the compiler using its method-matching rules. 
For more detailed information regarding these interface tables, see Essential .NET, Volume I: The 
Common Language Runtime by Don Box and Chris Sells (Boston, MA: Addison-Wesley Professional, 
2002), as well as the CLI standard document itself. 

The C# method-matching rules explain the situation I discussed previously in the section “Interface 
Inheritance and Member Hiding.” Hiding a method in one hierarchical path of a diamond-shaped 
hierarchy hides the method in all inheritance paths. The rules state that when you walk up the hierarchy, 
you short-circuit the search once you find a method at a particular level. These simple rules also explain 
how interface reimplementation can greatly affect the method-matching process, thus short-circuiting 
the compiler’s search during its progression up the hierarchy. Let’s consider an example of this in action: 

using System; 
 
public interface ISomeInterface 
{ 
    void SomeMethod(); 
} 
 
public interface IAnotherInterface : ISomeInterface 
{ 
    void AnotherMethod(); 
} 
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public class SomeClass : IAnotherInterface 
{ 
    public void SomeMethod() { 
        Console.WriteLine( "SomeClass.SomeMethod()" ); 
    } 
 
    public virtual void AnotherMethod() { 
        Console.WriteLine( "SomeClass.AnotherMethod()" ); 
    } 
} 
 
public class SomeDerivedClass : SomeClass 
{ 
    public new void SomeMethod() { 
        Console.WriteLine( "SomeDerivedClass.SomeMethod()" ); 
    } 
 
    public override void AnotherMethod() { 
        Console.WriteLine( "SomeDerivedClass.AnotherMethod()" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        SomeDerivedClass  obj = new SomeDerivedClass(); 
        ISomeInterface    isi = obj; 
        IAnotherInterface iai = obj; 
 
        isi.SomeMethod(); 
        iai.SomeMethod(); 
        iai.AnotherMethod(); 
    } 
} 

Let’s apply the search rules to each method call in Main in the previous example. In all cases, I’ve 
implicitly converted an instance of SomeDerivedClass to references of the two interfaces, ISomeInterface 
and IAnotherInterface. I place the first call to SomeMethod through ISomeInterface. First, walk up the 
class hierarchy, starting at the concrete type of the reference, looking for the first class that implements 
this interface or an interface derived from it. Doing so leaves us at the SomeClass implementation, 
because, even though it does not implement ISomeInterface directly, it implements IAnotherInterface, 
which derives from ISomeInterface. Thus, we end up calling SomeClass.SomeMethod. You may be 
surprised that SomeDerivedClass.SomeMethod was not called. But if you follow the rules, you’ll notice that 
you skipped right over SomeDerivedClass, looking for the bottom-most class in the hierarchy that 
implements the interface. In order for SomeDerivedClass.SomeMethod to be called instead, 
SomeDerivedClass would need to reimplement ISomeInterface. The second call to SomeMethod through 
the IAnotherInterface reference follows exactly the same path when finding the matching method. 

Things get interesting in the third call in Main, where you call AnotherMethod through a reference to 
IAnotherInterface. As before, the search begins at the bottom-most class in the hierarchy that 
implements this interface, inside SomeClass. Because SomeClass has a matching method signature, your 
search is complete. However, the twist is that the matching method signature is declared virtual. So 
when the call is made, the virtual method mechanism places execution within 
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SomeDerivedClass.AnotherMethod. It’s important to note that AnotherMethod doesn’t change the rules for 
interface method matching, even though it is implemented virtually. It’s not until after the interface 
method has been matched that the virtual nature of the method has an impact on exactly which 
implementation gets called at runtime. 

■ Note Interface method matching is applied statically at compile time. Virtual method dispatching happens 

dynamically at runtime. You should note the difference between the two when trying to determine which method 

implementation gets invoked. 

The output from the previous example code is as follows: 

SomeClass.SomeMethod() 

SomeClass.SomeMethod() 

SomeDerivedClass.AnotherMethod() 

Explicit Interface Implementation with Value Types 
Many times, you’ll encounter general-use interfaces that take parameters in the form of a reference to 
System.Object. These interfaces are typically general usage, nongeneric interfaces. For example, 
consider the IComparable interface, which looks like the following: 

public interface IComparable 
{ 
      int CompareTo( object obj ); 
} 

■ Note NET 2.0 added support for IComparable<T>, which you should always consider using along with 

IComparable in order to offer greater type safety. 

It makes sense that the CompareTo method accepts such a general type, because it would be nice to 
be able to pass it just about anything to see how the object passed in compares to the one that 
implements CompareTo. When dealing strictly with reference types, there’s really no loss of efficiency 
here, because conversion to and from System.Object on reference types is free for all practical purposes. 
But things get a little sticky when you consider value types. Let’s look at some code to see the gory 
details: 
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using System; 
 
public struct SomeValue : IComparable 
{ 
    public SomeValue( int n ) { 
        this.n = n; 
    } 
 
    public int CompareTo( object obj ) { 
        if( obj is SomeValue ) { 
            SomeValue other = (SomeValue) obj; 
 
            return n - other.n; 
        } else { 
            throw new ArgumentException( "Wrong Type!" ); 
        } 
    } 
 
    private int n; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        SomeValue val1 = new SomeValue( 1 ); 
        SomeValue val2 = new SomeValue( 2 ); 
 
        Console.WriteLine( val1.CompareTo(val2) ); 
    } 
} 

In the innocuous call to WriteLine in Main, you see val1 being compared to val2. But look closely at 
how many boxing operations are required. First, because CompareTo takes an object reference, val2 must 
be boxed at the point of the method call. Had you implemented the CompareTo method explicitly, you 
would have needed to cast the val1 value into an IComparable interface, which would incur a boxing 
penalty. But once you’re inside the CompareTo method, the boxing nightmare is still not overdue to the 
amount of unboxing necessary. Ouch. 

Thankfully, you can employ an optimization when SomeValue is compared to certain types. Take, for 
example, the case where an instance of SomeValue is compared to another SomeValue instance. You can 
provide a type-safe version of the CompareTo method to get the job done, as shown in the following code: 

using System; 
 
public struct SomeValue : IComparable 
{ 
    public SomeValue( int n ) { 
        this.n = n; 
    } 
 
    int IComparable.CompareTo( object obj ) { 
        if( obj is SomeValue ) { 
            SomeValue other = (SomeValue) obj; 
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            return n - other.n; 
        } else { 
            throw new ArgumentException( "Wrong Type!" ); 
        } 
    } 
 
    public int CompareTo( SomeValue other ) { 
        return n - other.n; 
    } 
 
    private int n; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        SomeValue val1 = new SomeValue( 1 ); 
        SomeValue val2 = new SomeValue( 2 ); 
 
        Console.WriteLine( val1.CompareTo(val2) ); 
    } 
} 

In this example, there is absolutely no boxing in the call to CompareTo. That’s because the compiler 
picks the one with the best match for the type. In this case, because you implement 
IComparable.CompareTo explicitly, there is only one overload of CompareTo in the public contract of 
SomeValue. But even if IComparable.CompareTo had not been implemented explicitly, the compiler would 
have still chosen the type-safe version. The typical pattern involves hiding the typeless versions from 
casual use so that the user must do a boxing operation explicitly. This operation converts the value to an 
interface reference in order to get to the typeless version. 

The bottom line is that you’ll definitely want to follow this idiom any time you implement an 
interface on a value type where you determine that you can define overloads with better type safety than 
the ones listed in the interface declaration. Avoiding unnecessary boxing is always a good thing, and 
your users will appreciate your attention to detail and commitment to efficiency. 

Versioning Considerations 
The concept of versioning is essentially married to the concept of interfaces. When you create, define, 
and publish an interface, you’re defining a contract—or viewed in more rigid terms—a standard. Any 
time you have a standard form of communication, you must adhere to it so as not to break any clients of 
that contract. For example, consider the 802.11 standard upon which WiFi devices are based. It’s 
important that access points from one vendor work with devices from as many vendors as possible. This 
works as long as all of the vendors agree and follow the standard. Can you imagine the chaos that would 
erupt if a single vendor’s WiFi card were the only one that worked at your favorite Pacific Northwest-
based coffee shops? It would be pandemonium. Therefore, we have standards. 

Now, nothing states that the standard cannot be augmented. Certain manufacturers do just that. In 
some cases, if you use Manufacturer A’s access point with the same manufacturer’s wireless card, you 
can achieve speeds greater than those supported by the standard. However, note that those 
augmentations only augment, and don’t alter, the standard. Similarly, nothing states that a standard 
cannot be revised. Standards normally have version numbers attached to them, and when they are 
revised, the version number is modified. Most of the time, devices that implement the new version also 
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support the previous version. Although not required, it’s a good move for those manufacturers who want 
to achieve maximum market saturation. In the 802.11 example, 802.11a, 802.11b, and 802.11g represent 
the various revisions of the standard. 

The point of this example is that you should apply these same rules to your interfaces once you 
publish them. You don’t normally create interfaces unless you’re doing so to allow entities to interact 
with each other using a common contract. So, once you’re done with creating that contract, do the right 
thing and slap a version number on it. You can create your version number in many ways. For new 
revisions of your interface, you could simply give it a new name—the key point being that you never 
change the original interface. You’ve probably already seen exactly the same idiom in use in the COM 
world. Typically, if someone such as Microsoft, decides they have a good reason to augment the 
behavior of an interface, you’ll find a new interface definition ending with either an Ex suffix or a 
numeric suffix. At any rate, it’s a completely different interface than the previous one, even though the 
contract of the new interface could inherit the original interface, and the implementations may be 
shared. 

■ Note Current design guidelines in wide use suggest that if you need to create an augmented interface based 

upon another, you shouldn’t use the suffix Ex as COM does. Instead, you should follow the interface name with an 

ordinal. So, if the original interface is ISomeContract, then you should name the augmented interface 

ISomeContract2. 

In reality, if your interface definitions live within a versioned assembly, you may define a newer 
version of the same interface, even with the same name, in an assembly with the same name but with a 
new version number. The assembly loader will resolve and load the proper assembly at runtime. 
However, this practice can become confusing to the developers using your interface, because they now 
have to be more explicit about which assembly to reference at build time.  

Contracts 
Many times, you need to represent the notion of a contract when designing an application or a system. A 
programming contract is no different than any other contract. You usually define a contract to facilitate 
communication between two types in your design. For example, suppose you have a virtual zoo, and in 
your zoo, you have animals. Now, an instance of your ZooKeeper needs a way to communicate to the 
collection of these ZooDweller objects that they should fly to a specific location. Ignoring the fact that 
they had all better be fairly obedient, they had also better be able to fly. However, not all animals can fly, 
so clearly not all of the types in the zoo can support this flying contract. 

Contracts Implemented with Classes 
Let’s consider one way to manage the complexity of getting these creatures to fly from one location to 
the next. First, consider the assumptions that you can make here. Let’s say that this Zoo can have only 
one ZooKeeper. Second, let’s assume that you can model the locations within this Zoo by using a simple 
two-dimensional Point structure. It starts to look as though you can model this system by the following 
code: 

using System; 
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using System.Collections.ObjectModel; 
 
namespace CityOfShanoo.MyZoo 
{ 
 
public struct Point 
{ 
    public double X; 
    public double Y; 
} 
 
public abstract class ZooDweller 
{ 
    public void EatSomeFood() { 
        DoEatTheFood(); 
    } 
 
    protected abstract void DoEatTheFood(); 
} 
 
public sealed class ZooKeeper 
{ 
    public void SendFlyCommand( Point to ) { 
        // Implementation removed for clarity. 
    } 
} 
 
public sealed class Zoo 
{ 
    private static Zoo theInstance = new Zoo(); 
    public static Zoo GetInstance() { 
        return theInstance; 
    } 
 
    private Zoo() { 
        creatures = new Collection<ZooDweller>();3 
        zooKeeper = new ZooKeeper(); 
    } 
 
    public ZooKeeper ZooKeeper { 
        get { 
            return zooKeeper; 
        } 
    } 
 
    private ZooKeeper zooKeeper; 
    private Collection<ZooDweller> creatures; 

                                                 

 
3 If the syntax of Collection<ZooDweller> looks foreign to you, don’t worry. It is a declaration of a collection based on 
a generic collection type. I will cover generics in detail in Chapter 11. 
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} 
     
} 

There can only be one zoo in the CityOfShanoo, thus the Zoo is modeled as a singleton object, and 
the only way to obtain the instance of the one and only Zoo is to call Zoo.GetInstance. Also, you can get a 
reference to the ZooKeeper via the Zoo.ZooKeeper property. It is common practice in the .NET Framework 
to name the property after the custom type that it represents. 

■ Note The Singleton design pattern is one of the most widely used and well-known design patterns. Essentially, 

the pattern allows only one instance of its type to exist at one time. Many people still argue about the best way to 

implement it. Implementation difficulty varies depending on the language you’re using. But in general, some 

static private instance within the type declaration is lazily initialized at the point of first access. The previous 

implementation of the Zoo class does that, it creates only one instance per application domain, because the static 

initializer is not called until the type is first accessed through the GetInstance method. 

This initial design defines the ZooDweller as an abstract class that implements a method 
EatSomeFood. The ZooDweller uses the Non-Virtual Interface (NVI) pattern described in Chapter 13, 
where the virtual method that the concrete type overrides is declared protected rather than public. 

It’s important to note that the ZooDweller type does, in fact, define a contract even though it is not 
an interface. The contract, as written, states that any type that derives from ZooDweller must implement 
EatSomeFood. Any code that uses a ZooDweller instance can be guaranteed that this method is supported. 

■ Note Notice that an interface is not required in order to define a contract. 

So far, this design is missing a key operation, and that is the one commanding the creatures to fly to 
a destination within the zoo. Clearly, you cannot put a Fly method on the ZooDweller type, because not 
all animals in the zoo can fly. You must express this contract in a different way. 

Interface Contracts 
Because not all creatures in the zoo can fly, an interface provides an excellent mechanism for defining 
the flying contract. Consider the following modifications to the example from the previous section: 

public interface IFly 
{ 
    void FlyTo( Point destination ); 
} 
 
public class Bird : ZooDweller, IFly 
{ 
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    public void FlyTo( Point destination ) { 
        Console.WriteLine( "Flying to ({0}. {1}).", 
                           destination ); 
    } 
 
    protected override void DoEatTheFood() { 
        Console.WriteLine( "Eating some food." ); 
    } 
} 

Now, using the interface IFly, Bird is defined such that it derives from ZooDweller and implements 
IFly. 

■ Note If you intend to have various bird types derive from Bird, and those various birds have different 

implementations of ToFly, consider using the NVI pattern. You could introduce a protected virtual method 

named DoFlyTo that the base types override, while having Bird.FlyTo call through to DoFlyTo. Read the section 

titled “Use the Non-Virtual Interface (NVI) Pattern” in Chapter 13 for more information on why this is a good idea. 

Choosing Between Interfaces and Classes 
The previous section on contracts shows that you can implement a contract in multiple ways. In the C# 
and .NET environments, the two main methods are interfaces and classes, where the classes may even 
be abstract. In the zoo example, it’s pretty clear as to when you should use an interface rather than an 
abstract class to define an interface. However, the choice is not always so clear, so let’s consider the 
ramifications of both methods. 

■ Note If the zoo example is not as clear with regard to when to use inheritance vs. interface implementation, 

consider the following. One could just as easily declare a class ZooFlyer derived from ZooDweller and then 

derive Bird from ZooFlyer. However, what if we were to introduce ZooInsect derived from ZooDweller. How 

would we then declare ZooFruitFly? After all, C# does not allow multiple inheritance so ZooFruitFly cannot 

derive from both ZooInsect and ZooFlyer. When you find situations such as these, it is time to reevaluate your 

class hierarchy as it is probably too complex. 

C# supports abstract classes, therefore, you can easily model a contract using abstract classes. But 
which method is more powerful? And which is more appropriate? These are not easy questions to 
answer, although the guideline tends to be that you should prefer a class if possible. Let’s explore this. 
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■ Note Since COM became so popular, some developers have a false notion that the only way to define a contract 

is by defining an interface. It’s easy to jump to that conclusion when moving from the COM environment to the C# 

environment, simply because the basic building block of COM is the interface, and C# and .NET support interfaces 

natively. However, jumping to that conclusion would be perilous to your designs. 

If you’re familiar with COM and you’ve created any serious COM projects in the past, you most certainly 

implemented the COM objects using C++. You probably even used the Active Template Library (ATL) to shield 

yourself from the intricacies of the mundane COM development tasks. But at the core of it all, how does C++ 

model COM interfaces? The answer is with abstract classes. 

When you implement a contract by defining an interface, you’re defining a versioned contract. That 
means that the interface, once released, must never change, as if it were cast into stone. Sure, you could 
change it later, but you would not be very popular when all of your clients’ code fails to compile with the 
modified interface. Consider the following example: 

public interface IMyOperations 
{ 
    void Operation1(); 
    void Operation2(); 
} 
 
// Client class 
public class ClientClass : IMyOperations 
{ 
    public void Operation1() { } 
    public void Operation2() { } 
} 

Now, you’ve released this wonderful IMyOperations interface to the world, and thousands of clients 
have implemented it. Then, you start getting requests from your clients asking for Operation3 support in 
your library. It seems like it would be easy enough to simply add Operation3 to the IMyOperations 
interface, but that would be a terrible mistake. If you add another operation to IMyOperations, then all of 
a sudden your clients’ code won’t compile until they implement the new operation. Also, code in 
another assembly that knows about the newer IMyOperations could attempt to cast a ClientClass 
instance into an IMyOperations reference and then call Operation3, thus creating a runtime failure. 
Clearly, you shouldn’t modify an already published interface. 

■ Caution Never modify an already publicly published interface declaration. 

You could also address this problem by defining a completely new interface, say IMyOperations2. 
However, ClientClass would need to implement both interfaces in order to get the new behavior, as 
shown in the following code: 
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public interface IMyOperations 
{ 
    void Operation1(); 
    void Operation2(); 
} 
 
public interface IMyOperations2 
{ 
    void Operation1(); 
    void Operation2(); 
    void Operation3(); 
} 
 
// Client class 
public class ClientClass : IMyOperations, 
                           IMyOperations2 
{ 
    public void Operation1() { } 
    public void Operation2() { } 
    public void Operation3() { } 
} 
 
public class AnotherClass 
{ 
    public void DoWork( IMyOperations ops ) { 
    } 
} 

Modifying ClientClass to support the new operation from IMyOperations2 isn’t terribly difficult, but 
what about the code that already exists, such as what is shown in AnotherClass? The problem is that the 
DoWork method accepts a type of IMyOperations. In order to make it to where the new Operation3 method 
can be called, the prototype of DoWork must change, or the code within it must do a cast to IOperations2, 
which could fail at runtime. Because you want the compiler to be able to catch as many type bugs as 
possible, it would be better if you change the prototype of DoWork to accept a type of IMyOperations2. 

■ Note If you define your original IMyOperations interface within a fully versioned, strongly named assembly, 

then you can get away with creating a new interface with the same name in a new assembly, as long as the 

version of the new assembly is different. Although the .NET Framework supports this explicitly, it doesn’t mean 

you should do it without careful consideration, because introducing two IMyOperations interfaces that differ only 

by version number of the containing assembly could be confusing to your clients. 

That was a lot of work just to make a new operation available to clients. Let’s examine the same 
situation, except using an abstract class: 

public abstract class MyOperations 
{ 
    public virtual void Operation1() { 
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    } 
 
    public virtual void Operation2() { 
    } 
} 
 
// Client class 
public class ClientClass : MyOperations 
{ 
    public override void Operation1() { } 
    public override void Operation2() { } 
} 
 
public class AnotherClass 
{ 
    public void DoWork( MyOperations ops ) { 
    } 
} 

MyOperations is a base class of ClientClass. One advantage is that MyOperations can contain default 
implementations if it wants to. Otherwise, the virtual methods in MyOperations could have been declared 
abstract. The example also declares MyOperations abstract, because it makes no sense for clients to be 
able to create instances of MyOperations. Now, let’s suppose you want to add a new Operation3 method 
to MyOperations, and you don’t want to break existing clients. You can do this as long as the added 
operation is not abstract, such that it forces changes on derived types, as shown here: 

public abstract class MyOperations 
{ 
    public virtual void Operation1() { 
    } 
 
    public virtual void Operation2() { 
    } 
 
    public virtual void Operation3() { 
        // New default implementation 
    } 
} 
 
// Client class 
public class ClientClass : MyOperations 
{ 
    public override void Operation1() { } 
    public override void Operation2() { } 
} 
 
public class AnotherClass 
{ 
    public void DoWork( MyOperations ops ) { 
        ops.Operation3(); 
    } 
} 
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Notice that the addition of MyOperations.Operation3 doesn’t force any changes upon ClientClass, 
and AnotherClass.DoWork can make use of Operation3 without making any changes to the method 
declaration. This technique doesn’t come without its drawbacks, though. You’re restricted by the fact 
that the managed runtime only allows a class to have one base class. ClientClass has to derive from 
MyOperations to get the functionality, therefore, it uses up its only inheritance ticket. This may put 
complicated restrictions upon your client code. For example, what if one of your clients needs to create 
an object for use with .NET Remoting? In order to do so, the class must derive from MarshalByRefObject. 

Sometimes, it’s tricky to find a happy medium when deciding between interfaces and classes. I use 
the following rules of thumb: 

• If modeling an is-a relationship, use a class: If it makes sense to name your 
contract with a noun, then you should probably model it with a class. 

• If modeling an IMPLEMENTS relationship, use an interface: If it makes sense to 
name your contract with an adjective, as if it is a quality, then you should probably 
model it as an interface. 

• Consider wrapping up your interface and abstract class declarations in a separate 
assembly: Implementations in other assemblies can then reference this separate 
assembly. 

• If possible, prefer classes over interfaces: This can be helpful for the sake of 
extensibility. 

You can see examples of these techniques throughout the .NET Framework Base Class Library 
(BCL). Consider using them in your own code as well. 

Summary 
This chapter introduced you to interfaces and how you can model a well-defined, versioned contract 
using an interface. Along with showing you the various ways that classes can implement interfaces, I also 
described the process that the C# compiler follows when matching up interface methods to 
implementations in the implementing class. I described interfaces from the perspective of reference 
types and value types—specifically, how expensive boxing operations can cause you pain when using 
interfaces on value types. Finally, I spent some time comparing and contrasting the use of interfaces and 
classes when modeling contracts between types in your design. 

In the next chapter, I’ll explain the intricacies of operator overloading in the C# language and why 
you may want to avoid it when creating code used by other .NET languages. 
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Overloading Operators 

C# adopted the capability of operator overloading from C++. Just as you can overload methods, you can 
overload operators such as +, -, *, and so on. In addition to overloading arithmetic operators, you can 
also create custom conversion operators to convert from one type to another. You can overload other 
operators to allow objects to be used in Boolean test expressions. 

Just Because You Can Doesn’t Mean You Should 
Overloading operators can make certain classes and structs more natural to use. However, overloading 
operators in a slipshod way can make code much more difficult to read and understand. You must be 
careful to consider the semantics of a type’s operators. Be careful not to introduce something that is 
hard to decipher. Always aim for the most readable code, not only for the next fortunate soul who claps 
eyes with your code, but also for yourself. Have you ever looked at code and wondered, “Who in their 
right mind wrote this stuff?!” only to find out it was you? I know I have.  

Another reason not to overload operators is that not all .NET languages support overloaded 
operators, because overloading operators is not part of the CLS. Languages that target the CLI aren’t 
required to support operator overloading. For example, Visual Basic 2005 was the first .NET version of 
the language to support operator overloading. Therefore, it’s important that your overloaded operators 
be syntactic shortcuts to functionality provided by other methods that perform the same operation and 
can be called by CLS-compliant languages. In fact, I recommend that you design types as if overloaded 
operators don’t exist. Then, later on, you can add overloaded operators in such a way that they simply 
call the methods you defined that carry the same semantic meaning. 

Types and Formats of Overloaded Operators 
You define all overloaded operators as public static methods on the classes they’re meant to augment. 
Depending on the type of operator being overloaded, the method may accept either one or two 
parameters, and it always returns a value. For all operators except conversion operators, one of the 
parameter types must be of the same type as the enclosing type for the method. For example, it makes 
no sense to overload the + operator on class Complex if it adds two double values together, and, as you’ll 
see shortly, it’s impossible. 

A typical + operator for a class Complex could look like the following: 

public static Complex operator+( Complex lhs, Complex rhs ) 

Even though this method adds two instances of Complex together to produce a third instance of 
Complex, nothing says that one of the parameters cannot be that of type double, thus adding a double to a 
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Complex instance. Now, how you add a double value to a Complex instance and produce another Complex 
instance is for you to decipher. In general, operator overloading syntax follows the previous pattern, with 
the + replaced with the operator du jour, and of course, some operators accept only one parameter. 

■ Note When comparing C# operators with C++ operators, note that C# operator declarations are more similar to 

the friend function technique of declaring C++ operators because C# operators are not instance methods. 

There are essentially three different groups of overloadable operators. 

• Unary operators: Unary operators accept only one parameter. Familiar unary 
operators include the ++ and -- operators. 

• Binary operators: As the name implies, binary operators accept two parameters 
and include familiar mathematical operators such as +, -, /, and *, as well as the 
familiar comparison operators. 

• Conversion operators: Conversion operators define a user-defined conversion. 
They must have either the operand or the return value type declared the same as 
the containing class or struct type. 

Even though operators are static and public, and thus are inherited by derived classes, operator 
methods must have at least one parameter in their declaration that matches the enclosing type, making 
it impossible for the derived type’s operator method to match the signature of the base class operator 
method exactly. For example, the following is not valid: 

public class Apple 
{ 
    public static Apple operator+( Apple lhs, Apple rhs ) { 
        // Method does nothing and exists only for example. 
        return rhs; 
    } 
} 
 
public class GreenApple : Apple 
{ 
    // INVALID!! — Won't compile. 
    public static Apple operator+( Apple lhs, Apple rhs ) { 
        // Method does nothing and exists only for example. 
        return rhs; 
    } 
} 

If you attempt to compile the previous code, you’ll get the following compiler error: 

error CS0563: One of the parameters of a binary operator must be the containing type 



CHAPTER 6 ■ OVERLOADING OPERATORS 

 

 

167 

 

Operators Shouldn’t Mutate Their Operands 
You already know that operator methods are static. Therefore, it is highly recommended (read: required) 
that you do not mutate the operands passed into the operator methods. Instead, you should create a 
new instance of the return value type and return the result of the operation. Structs and classes that are 
immutable, such as System.String, are perfect candidates for implementing custom operators. This 
behavior is natural for operators such as boolean operators, which usually return a type different from 
the types passed into the operator. 

■ Note “Now wait just a minute!” some of you from the C++ community may be saying. “How in the world can 

you implement the postfix and prefix operators ++ and -- without mutating the operand?” The answer lies in the 

fact that the postfix and prefix operators as implemented in C# are somewhat different than those of C++. All C# 

operators are static, and that includes the postfix and prefix operators, whereas in C++ they are instance methods 

that modify the object instance through the this pointer. The beauty of the C# approach is that you don’t have to 

worry about implementing two different versions of the ++ operator in order to support both postfix and prefix 

incrementing, as you do in C++. The compiler handles the task of making temporary copies of the object to handle 

the difference in behavior between postfix and prefix. This is yet another reason why your operators must return 

new instances while never modifying the state of the operands themselves. If you don’t follow this practice, you’re 

setting yourself up for some major debugging heartbreak. 

Does Parameter Order Matter? 
Suppose you create a struct to represent simple complex numbers—say, struct Complex—and you need 
to add instances of Complex together. It would also be convenient to be able to add a plain old double to 
the Complex instance. Adding this functionality is no problem, because you can overload the operator+ 
method such that one parameter is a Complex and the other is a double. That declaration could look like 
the following: 

static public Complex operator+( Complex lhs, double rhs ) 

With this operator declared and defined on the Complex struct, you can now write code such as the 
following: 

Complex cpx1 = new Complex( 1.0, 2.0 ); 
Complex cpx2 = cpx1 + 20.0; 

This saves you the time of having to create an extra Complex instance with just the real part set to 
20.0 in order to add it to cpx1. However, suppose you want to be able to reverse the operands on the 
operator and do something like the following instead: 

Complex cpx2 = 20.0 + cpx1; 
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If you want to support different orderings of operands of different types, you must provide separate 
overloads of the operator. If you overload a binary operator that uses different parameter types, you can 
create a mirror overload—that is, another operator method that reverses the parameters.  

Overloading the Addition Operator 
Let’s take a look at a cursory example of a Complex struct, which is by no means a complete 
implementation, but merely a demonstration of how to overload operators. Throughout this chapter, I’ll 
build upon this example and add more operators to it: 

using System; 
 
public struct Complex 
{ 
    public Complex( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    static public Complex Add( Complex lhs, 
                               Complex rhs ) { 
        return new Complex( lhs.real + rhs.real, 
                            lhs.imaginary  + rhs.imaginary ); 
    } 
 
    static public Complex Add( Complex lhs, 
                               double rhs ) { 
 
        return new Complex( rhs + lhs.real, 
                            lhs.imaginary ); 
    } 
 
    public override string ToString() { 
        return String.Format( "({0}, {1})", 
                              real, 
                              imaginary ); 
    } 
 
    static public Complex operator+( Complex lhs, 
                                     Complex rhs ) { 
        return Add( lhs, rhs ); 
    } 
 
    static public Complex operator+( double lhs, 
                                     Complex rhs ) { 
        return Add( rhs, lhs ); 
    } 
 
    static public Complex operator+( Complex lhs, 
                                     double rhs ) { 
        return Add( lhs, rhs ); 
    } 
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    private double real; 
    private double imaginary; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex cpx1 = new Complex( 1.0, 3.0 ); 
        Complex cpx2 = new Complex( 1.0, 2.0 ); 
 
        Complex cpx3 = cpx1 + cpx2; 
        Complex cpx4 = 20.0 + cpx1; 
        Complex cpx5 = cpx1 + 25.0; 
 
        Console.WriteLine( "cpx1 == {0}", cpx1 ); 
        Console.WriteLine( "cpx2 == {0}", cpx2 ); 
        Console.WriteLine( "cpx3 == {0}", cpx3 ); 
        Console.WriteLine( "cpx4 == {0}", cpx4 ); 
        Console.WriteLine( "cpx5 == {0}", cpx5 ); 
    } 
} 

Notice that, as recommended, the overloaded operator methods call methods that perform the 
same operation. In fact, doing so makes supporting both orderings of operator+ that add a double to a 
Complex a snap.  

■ Tip If you’re absolutely sure that your type will only be used in a C# environment or in a language that supports 

overloaded operators, then you can forgo this exercise and simply stick with the overloaded operators. 

Operators That Can Be Overloaded 
Let’s take a quick look at which operators you can overload. Unary operators, binary operators, and 
conversion operators are the three general types of operators. It’s impossible to list all of the conversion 
operators here, because the set is limitless. Additionally, you can use the one ternary operator—the 
familiar ?: operator—for conditional statements, but you cannot overload it directly. Later, in the 
“Boolean Operators” section, I describe what you can do to play nicely with the ternary operator. Table 
6-1 lists all of the operators except the conversion operators. 
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Table 6-1. Unary and Binary Operators 

Unary Operators Binary Operators 

+ + 

- - 

! * 

~ / 

++ % 

-- 
&  

true and false | 

 
^ 

 
<< 

 
>> 

 
== and != 

 
> and <  

 
>= and <= 

Comparison Operators 
The binary comparison operators == and !=, < and >, and >= and <= are all required to be implemented as 
pairs. Of course, this makes perfect sense, because I doubt there would ever be a case where you would 
like to allow users to use operator== and not operator!=. Moreover, if your type allows ordering via 
implementation of the IComparable interface or its generic counterpart IComparable<T>, then it makes 
the most sense to implement all comparison operators. Implementing these operators is trivial if you 
follow the canonical guidelines given in Chapters 4 and 13 by overriding Equals and GetHashCode and 
implementing IComparable (and optionally IComparable<T> and IEquatable<T>) appropriately. Given 
that, overloading the operators merely requires you to call those implementations. Let’s look at a 
modified form of the Complex number that follows this pattern to implement all of the comparison 
operators: 

using System; 
 
public struct Complex : IComparable, 
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                        IEquatable<Complex>, 
                        IComparable<Complex> 
{ 
    public Complex( double real, double img ) { 
        this.real = real; 
        this.img = img; 
    } 
 
    // System.Object override 
    public override bool Equals( object other ) { 
        bool result = false; 
        if( other is Complex ) { 
            result = Equals( (Complex) other ); 
        } 
        return result; 
    } 
 
    // Typesafe version 
    public bool Equals( Complex that ) { 
        return (this.real == that.real && 
                this.img == that.img); 
    } 
 
    // Must override this if overriding Object.Equals() 
    public override int GetHashCode() { 
        return (int) this.Magnitude; 
    } 
 
    // Typesafe version 
    public int CompareTo( Complex that ) { 
        int result; 
        if( Equals( that ) ) { 
            result = 0; 
        } else if( this.Magnitude > that.Magnitude ) { 
            result = 1; 
        } else { 
            result = -1; 
        } 
 
        return result; 
    } 
 
    // IComparable implementation 
    int IComparable.CompareTo( object other ) { 
        if( !(other is Complex) ) { 
            throw new ArgumentException( "Bad Comparison" ); 
        } 
 
        return CompareTo( (Complex) other ); 
    } 
 
    // System.Object override 
    public override string ToString() { 
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        return String.Format( "({0}, {1})", 
                              real, 
                              img ); 
    } 
 
    public double Magnitude { 
        get { 
            return Math.Sqrt( Math.Pow(this.real, 2) + 
                              Math.Pow(this.img, 2) ); 
        } 
    } 
 
    // Overloaded operators 
    public static bool operator==( Complex lhs, Complex rhs ) { 
        return lhs.Equals( rhs ); 
    } 
 
    public static bool operator!=( Complex lhs, Complex rhs ) { 
        return !lhs.Equals( rhs ); 
    } 
 
    public static bool operator<( Complex lhs, Complex rhs ) { 
        return lhs.CompareTo( rhs ) < 0; 
    } 
 
    public static bool operator>( Complex lhs, Complex rhs ) { 
        return lhs.CompareTo( rhs ) > 0; 
    } 
 
    public static bool operator<=( Complex lhs, Complex rhs ) { 
        return lhs.CompareTo( rhs ) <= 0; 
    } 
 
    public static bool operator>=( Complex lhs, Complex rhs ) { 
        return lhs.CompareTo( rhs ) >= 0; 
    } 
 
    // Other methods omitted for clarity. 
 
    private double real; 
    private double img; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex cpx1 = new Complex( 1.0, 3.0 ); 
        Complex cpx2 = new Complex( 1.0, 2.0 ); 
 
        Console.WriteLine( "cpx1 = {0}, cpx1.Magnitude = {1}", 
                           cpx1, cpx1.Magnitude ); 
        Console.WriteLine( "cpx2 = {0}, cpx2.Magnitude = {1}\n", 
                           cpx2, cpx2.Magnitude ); 
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        Console.WriteLine( "cpx1 == cpx2 ? {0}", cpx1 == cpx2 ); 
        Console.WriteLine( "cpx1 != cpx2 ? {0}", cpx1 != cpx2 ); 
        Console.WriteLine( "cpx1 <  cpx2 ? {0}", cpx1 < cpx2 ); 
        Console.WriteLine( "cpx1 >  cpx2 ? {0}", cpx1 > cpx2 ); 
        Console.WriteLine( "cpx1 <= cpx2 ? {0}", cpx1 <= cpx2 ); 
        Console.WriteLine( "cpx1 >= cpx2 ? {0}", cpx1 >= cpx2 ); 
    } 
} 

Notice that the operator methods merely call the methods that implement Equals and CompareTo. 
Also, I’ve followed the guideline of providing type-safe versions of the two methods introduced by 
implementing IComparable<Complex> and IEquatable<Complex>, because the Complex type is a value type 
and I want to avoid boxing if possible. 1 Additionally, I implemented the IComparable.CompareTo method 
explicitly to give the compiler a bigger type-safety hammer to wield by making it harder for users to call 
the wrong one (the type-less one) inadvertently. Anytime you can utilize the compiler’s type system to 
sniff out errors at compile time rather than runtime, you should do so. Had I not implemented 
IComparable.CompareTo explicitly, then the compiler would have happily compiled a statement where I 
attempt to compare an Apple instance to a Complex instance. Of course, you would expect an 
InvalidCastException at runtime if you were to attempt something so silly, but again, always prefer 
compile-time errors over runtime errors. 

Conversion Operators 
Conversion operators are, as the name implies, operators that convert objects of one type into objects of 
another type. Conversion operators can allow implicit conversion as well as explicit conversion. Implicit 
conversion is done with a simple assignment, whereas explicit conversion requires the familiar casting 
syntax with the target type of the conversion provided in parentheses immediately preceding the 
instance being assigned from. 

There is an important restriction on implicit operators. The C# standard requires that implicit 
operators do not throw exceptions and that they’re always guaranteed to succeed with no loss of 
information. If you cannot meet that requirement, then your conversion must be an explicit one. For 
example, when converting from one type to another, there’s always the possibility for loss of information 
if the target type is not as expressive as the original type. Consider the conversion from long to short. 
Clearly, it’s possible that information could be lost if the value in the long is greater than the highest 
value a short can represent (short.MaxValue). Such a conversion must be an explicit one and require the 
user to use the casting syntax. Now, suppose you were going the other way and converting a short into a 
long. Such a conversion will always succeed, so therefore it can be implicit. 

■ Note Performing explicit conversions from a type with larger storage to a type with smaller storage may result 

in a truncation error if the original value is too large to be represented by the smaller type. For example, if you 

explicitly cast a long into a short, you may trigger an overflow situation. By default, your compiled code will 

                                                 

 
1 I describe this guideline in more detail in Chapter 5 in the section, “Explicit Interface Implementation with Value 
Types.” 
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silently perform the truncation. If you compile your code with the /checked+ compiler option, it actually would 

throw a System.OverflowException if your explicit conversion from a long to a short caused an overflow. I 

recommend that you lean toward building with /checked+ turned on. 

Let’s see what kind of conversion operators you should provide for Complex. I can think of at least 
one definite case, and that’s the conversion from double to Complex. Definitely, such a conversion should 
be an implicit one. Another consideration is from Complex to double. Clearly, this conversion requires an 
explicit conversion. (Casting a Complex to double makes no sense anyway and is only shown here for the 
sake of example, thus you can choose to return the magnitude rather than just the real portion of the 
complex number when casting to a double.) Let’s look at an example of implementing conversion 
operators: 

using System; 
 
public struct Complex 
{ 
    public Complex( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    // System.Object override 
    public override string ToString() { 
        return String.Format( "({0}, {1})", real, imaginary ); 
    } 
 
    public double Magnitude { 
        get { 
            return Math.Sqrt( Math.Pow(this.real, 2) + 
                              Math.Pow(this.imaginary, 2) ); 
        } 
    } 
 
    public static implicit operator Complex( double d ) { 
        return new Complex( d, 0 ); 
    } 
 
    public static explicit operator double( Complex c ) { 
        return c.Magnitude; 
    } 
 
    // Other methods omitted for clarity. 
 
    private double real; 
    private double imaginary; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
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        Complex cpx1 = new Complex( 1.0, 3.0 ); 
        Complex cpx2 = 2.0;         // Use implicit operator. 
 
        double d = (double) cpx1;   // Use explicit operator. 
 
        Console.WriteLine( "cpx1 = {0}", cpx1 ); 
        Console.WriteLine( "cpx2 = {0}", cpx2 ); 
        Console.WriteLine( "d = {0}", d ); 
    } 
} 

The syntax in the Main method uses conversion operators. However, be careful when implementing 
conversion operators to make sure that you don’t open up users to any surprises or confusion with your 
implicit conversions. It’s difficult to introduce confusion with explicit operators when the users of your 
type must use the casting syntax to get it to work. After all, how can users be surprised when they must 
provide the type to convert to within parentheses? On the other hand, inadvertent use or misguided use 
of implicit conversion can be the source of much confusion. If you write a bunch of implicit conversion 
operators that make no semantic sense, I guarantee your users will find themselves in a confusing spot 
one day when the compiler decides to do a conversion for them when they least expect it. For example, 
the compiler could do an implicit conversion when trying to coerce an argument on a method call 
during overload resolution. Even if the conversion operators do make semantic sense, they can still 
provide plenty of surprises, because the compiler will have the liberty of silently converting instances of 
one type to another when it feels it’s necessary. 

Unlike C++ where single parameter constructors behave like implicit conversion operators by 
default, C# requires that you explicitly write an implicit operator on the types that you define. 2 However, 
in order to provide these conversions, you must bend the rules of method overloading ever so slightly for 
this one case. Consider the case where Complex provides another explicit conversion operator to convert 
to an instance of Fraction as well as to an instance of double. This would give Complex two methods with 
the following signatures: 

public static explicit operator double( Complex d ) 
public static explicit operator Fraction( Complex f ) 

These two methods take the same type, Complex, and return another type. However, the overload 
rules clearly state that the return type doesn’t participate in the method signature. Going by those rules, 
these two methods should be ambiguous and result in a compiler error. In fact, they are not ambiguous, 
because a special rule exists to allow the return type of conversion operators to be considered in these 
signatures. Incidentally, the implicit and explicit keywords don’t participate in the signature of 
conversion operator methods. Therefore, it’s impossible to have both implicit and explicit conversion 
operators with the same signature. Naturally, at least one of the types in the signature of a conversion 
operator must be the enclosing type. It is invalid for a type Complex to implement a conversion operator 
from type Apples to type Oranges. 

 

                                                 

 
2 Yes, I realize the implications of my explicit, and possible confusing, use of the words implicit and explicit. I 
explicitly hope that I have not implicitly confused anyone. 
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THE FLOATING POINT ENIGMA 

Jon Skeet provided to me an excellent example that shows, in some cases when dealing with floating point 
numbers, implicit conversions can actually lose data. Jon provides the following example to illustrate the 
point: 

using System; 
 
public class Test { 
    static void Main() { 
        long l1 = long.MaxValue - 5; 
        long l2 = long.MaxValue - 4; 
        double d1 = l1; 
        double d2 = l2; 
        Console.WriteLine(d1); 
        Console.WriteLine(d2); 
        Console.WriteLine(l1 == l2); 
        Console.WriteLine(d1 == d2); 
    } 
} 

In fact, if you execute the previous code, you get the surprising result shown in the following code: 

9.22337203685478E+18 
9.22337203685478E+18 
False 
True 

Before, you cry foul, I would like to point out that floating point numbers are one of those very tricky, 
but often trivialized areas of programming. Moreover, when dealing with floating point numbers, comparison 
often only considers the significant digits of the floating point numbers leaving the rest within the acceptable 
margin of error. Many dissertations have been written on the proper representation of floating point numbers 
in inherently fixed point machines. I invite you to read Appendix D of the Numerical Computation Guide titled 
What Every Computer Scientist Should Know About Floating-Point Arithmetic hosted at the following link: 
http://docs.sun.com/source/806-3568/ncg_goldberg.html. 

Incidentally, if you change the type double to type decimal in the previous example, you will get a 
less surprising result due to the fact that decimal can represent more significant digits than double. 

Boolean Operators 
It makes sense for some types to participate in Boolean tests, such as within the parentheses of an if 
block or with the ternary operator ?:. In order for this to work, you have two alternatives. The first is that 
you can implement two conversion operators, known as operator true and operator false. You must 
implement these two operators in pairs to allow the Complex number to participate in Boolean test 
expressions. Consider the following modification to the Complex type, where you now want to use it in 
expressions where a value of (0, 0) means false and anything else means true: 

http://docs.sun.com/source/806-3568/ncg_goldberg.html
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using System; 
 
public struct Complex 
{ 
    public Complex( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    // System.Object override 
    public override string ToString() { 
        return String.Format( "({0}, {1})", 
                              real, 
                              imaginary ); 
    } 
 
    public double Magnitude { 
        get { 
            return Math.Sqrt( Math.Pow(this.real, 2) + 
                              Math.Pow(this.imaginary, 2) ); 
        } 
    } 
 
    public static bool operator true( Complex c ) { 
        return (c.real != 0) || (c.imaginary != 0); 
    } 
 
    public static bool operator false( Complex c ) { 
        return (c.real == 0) && (c.imaginary == 0); 
    } 
 
    // Other methods omitted for clarity. 
 
    private double real; 
    private double imaginary; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex cpx1 = new Complex( 1.0, 3.0 ); 
        if( cpx1 ) { 
            Console.WriteLine( "cpx1 is true" ); 
        } else { 
            Console.WriteLine( "cpx1 is false" ); 
        } 
 
        Complex cpx2 = new Complex( 0, 0 ); 
        Console.WriteLine( "cpx2 is {0}", cpx2 ? "true" : "false" ); 
    } 
} 



CHAPTER 6 ■ OVERLOADING OPERATORS 

 

178 

 

You can see the two operators for applying the true and false tests to the Complex type. Notice the 
syntax looks almost the same as regular operators, except that it includes the return type of bool. I’m not 
quite sure why this is necessary, because you can’t provide a type other than bool as the return type. If 
you do, the compiler will quickly tell you that the only valid return type from operator true or operator 
false is a bool. Nevertheless, you must supply the return type for these two operators. Also, notice that 
you cannot mark these operators explicit or implicit, because they’re not conversion operators. Once 
you define these two operators on the type, you can use instances of Complex in Boolean test expressions, 
as shown in the Main method. 

Alternatively, you can choose to implement a conversion to type bool to achieve the same result. 
Typically, you’ll want to implement this operator implicitly for ease of use. Consider the modified form 
of the previous example using the implicit bool conversion operator rather than operator true and 
operator false: 

using System; 
 
public struct Complex 
{ 
    public Complex( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    // System.Object override 
    public override string ToString() { 
        return String.Format( "({0}, {1})", 
                              real, 
                              imaginary ); 
    } 
 
    public double Magnitude { 
        get { 
            return Math.Sqrt( Math.Pow(this.real, 2) + 
                              Math.Pow(this.imaginary, 2) ); 
        } 
    } 
 
    public static implicit operator bool( Complex c ) { 
        return (c.real != 0) || (c.imaginary != 0); 
    } 
 
    // Other methods omitted for clarity. 
 
    private double real; 
    private double imaginary; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex cpx1 = new Complex( 1.0, 3.0 ); 
        if( cpx1 ) { 
            Console.WriteLine( "cpx1 is true" ); 
        } else { 
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            Console.WriteLine( "cpx1 is false" ); 
        } 
 
        Complex cpx2 = new Complex( 0, 0 ); 
        Console.WriteLine( "cpx2 is {0}", cpx2 ? "true" : "false" ); 
    } 
} 

The end result is the same with this example. Now, you may be wondering why you would ever want 
to implement operator true and operator false rather than just an implicit bool conversion operator. 
The answer lies in whether it is valid for your type to be converted to a bool type or not. With the latter 
form, where you implement the implicit conversion operator, the following statement would be valid: 

bool f = cpx1; 

This assignment would work because the compiler would find the implicit conversion operator at 
compile time and apply it. However, if you were extremely tired the night you coded this line and really 
meant to assign f from a completely different variable, it might be a long time before you find the bug. 
This is one example of how gratuitous use of implicit conversion operators can get you in trouble. 

The rule of thumb is this: Provide only enough of what is necessary to get the job done and no more. 
If all you want is for your type—in this case, Complex—to participate in Boolean test expressions, only 
implement operator true and operator false. Do not implement the implicit bool conversion operator 
unless you have a real need for it. If you do happen to have a need for it, and thus implement the implicit 
bool conversion operator, you don’t have to implement operator true and operator false, because 
they would be redundant. If you do provide all three, the compiler will go with the implicit conversion 
operator rather than operator true and operator false, because invoking one is not more efficient than 
the other, assuming you code them the same. 

Summary 
In this chapter, I covered some useful guidelines for overloading operators, including unary, binary, and 
conversion operators. Operator overloading is one of the features that makes C# such a powerful and 
expressive .NET language. However, just because you can do something doesn’t mean that you should. 
Misuse of implicit conversion operators and improperly defined semantics in other operator overloads 
has proven time and time again to be the source of great user confusion (and that user could be the 
author of the type) as well as unintended behavior. When it comes to overloading operators, provide 
only enough of what is necessary, and don’t go counter to the general semantics of the various 
operators. The CLS doesn’t require overloaded operator support, thus not all .NET languages support 
overloaded operators. Therefore, it’s important to always provide explicitly named methods that provide 
the same functionality. Sometimes, those methods are already defined in system interfaces, such as 
IComparable or IComparable<T>. Never isolate functionality strictly within overloaded operators unless 
you’re 100% sure that your code will be consumed by .NET languages that do support operator 
overloading. 

In the next chapter, I’ll cover the intricacies and tricks involved in creating exception-safe and 
exception-neutral code in the .NET Framework. 
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Exception Handling and  
Exception Safety 

The CLR contains strong support for exceptions. Exceptions can be created and thrown at a point where 
code execution cannot continue because of some exceptional condition (usually a method failure or an 
invalid state). Writing exception-safe code is a difficult art to master. It would be a mistake to assume 
that the only tasks required when writing exception-safe code are simply throwing exceptions when an 
error occurs and catching them at some point. Such a view of exception-safe code is shortsighted and 
will lead you down a path of despair. Instead, exception-safe coding means guaranteeing the integrity of 
the system in the face of exceptions. When an exception is thrown, the runtime will iteratively unwind 
the stack while cleaning up. Your job as an exception-safe programmer is to structure your code in such 
a way that the integrity of the state of your objects is not compromised as the stack unwinds. That is the 
true essence of exception-safe coding techniques. 

In this chapter, I will show you how the CLR handles exceptions and the mechanics involved with 
handling exceptions. However, there is more to exception handling than just that. For example, I’ll 
describe which areas of code should handle exceptions as well as pitfalls to avoid when implementing 
exception handling. Most importantly, I will show you how writing exception-safe code may not even 
involve handling exceptions at all. Such code is typically called exception-neutral code. It may sound 
surprising, but read on for all of the details. 

How the CLR Treats Exceptions 
Once an exception is thrown, the CLR begins the process of unwinding the execution stack iteratively, 
frame by frame.1 As it does so, it cleans up any objects that are local to each stack frame. At some point, a 
frame on the stack could have an exception handler registered for the type of exception thrown. Once 
the CLR reaches that frame, it invokes the exception handler to remedy the situation. If the stack 
unwinds completely and a handler is not found for the exception thrown, then the unhandled-exception 
event for the current application domain may be fired and the application could be aborted. 
                                                 

 
1 If you’re not familiar with the term stack frame, you may want to reference 
http://en.wikipedia.org/wiki/Stack_frame. In short, as each method is called throughout the execution of a 
program, a frame is built on the stack that contains the passed parameters and any local parameters to the method. 
The frame is deleted upon return from the method. However, as the method calls other methods, and so on, new 
frames are stacked on top of the current frame, thus implementing a nested call-frame structure. 

http://en.wikipedia.org/wiki/Stack_frame
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Mechanics of Handling Exceptions in C# 
If you’ve ever used exceptions in other C-style languages such as C++, Java, or even C/C++ using the 
Microsoft structured exception-handling extensions (__try/__catch/__finally), then you’re already 
familiar with the basic syntax of exceptions in C#. In that case, you may find yourself skimming the next 
few sections or treating the material as a refresher. I’ve tried to point out any areas that are significantly 
different from the other C-style languages in the process. 

Throwing Exceptions 
The act of throwing an exception is actually quite easy. You simply execute a throw statement whose 
parameter is the exception you would like to throw. For example, suppose you have written a custom 
collection class that allows users to access items by index, and you would like to notify users when an 
invalid index is passed as a parameter. You could throw an ArgumentOutOfRange exception, as in the 
following code: 

public class MyCollection 
{ 
    public object GetItem( int index ) { 
        if( index < 0 || index >= count ) { 
            throw new ArgumentOutOfRangeException(); 
        } 
 
        // Do other useful stuff here 
    } 
 
    private int count; 
} 

The runtime can also throw exceptions as a side effect to code execution. An example of a system-
generated exception is NullReferenceException, which occurs if you attempt to access a field or call a 
method on an object when, in fact, the reference to the object doesn’t exist. 

Changes with Unhandled Exceptions Starting with .NET 2.0 
When an exception is thrown, the runtime begins to search up the stack for a matching catch block for 
the exception. As it walks up the execution stack, it unwinds the stack at the same time, cleaning up each 
frame along the way. 

If the search ends in the last frame for the thread, and it still finds no handler for the exception, the 
exception is considered unhandled at that point. What happens next depends on what version of the 
.NET Framework your code uses.  

■ Note You can install an unhandled-exception filter by registering a delegate with 

AppDomain.UnhandledException. When an unhandled exception comes up through the stack, this delegate will 

be called and will receive an instance of UnhandledExceptionEventArgs. 



CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY 

 

 

183 

 

■ Note The CLR translates unhandled exceptions passing through static constructors. I’ll cover that in more detail 

in the section titled “Exceptions Thrown in Static Constructors.” 

In .NET 1.1, the CLR designers decided to swallow certain unhandled exceptions in the pursuit of 
greater stability. For example, if a finalizer throws an exception in .NET 1.1 instead of aborting the 
finalizer thread and the process, the exception is swallowed and not allowed to kill the finalizer thread or 
terminate the process. Similarly, if an unhandled exception percolates up in a thread other than the 
main thread, that thread is terminated without affecting the rest of the process. In a thread-pool thread, 
the exception is swallowed and the thread is returned to the pool, which is behavior that is similar to 
exception handling in the finalizer thread. If an unhandled exception propagates up from the main 
thread, then it behaves as expected, and either the process is terminated or the JIT debugging dialog is 
displayed, asking the user what to do. 

This behavior sounds good in concept, but, in reality, it gives the opposite of the desired result. 
Instead of providing greater stability, systems become unstable because code runs in a nondeterministic 
state. For example, consider a finalizer that does some crucial work. Suppose that halfway through that 
work, an exception is thrown. The second half of the work in the finalizer never runs. Now, the system is 
in a potentially unstable, half-baked state. Everything continues to run normally, although the state of 
the system could be far from normal. In practice, this causes great instability because the sources of the 
errors are hard to find because the exceptions are swallowed. Debugging these problems is extremely 
difficult because the point in time where the exceptional condition occurred is long before you typically 
notice the resulting instability. 

.NET 2.0 solves this problem by requiring that any unhandled exception, except 
AppDomainUnloadException and ThreadAbortException, causes the thread to terminate. It sounds rude, 
but, in reality, this is the behavior you should want from an unhandled exception. After all, it’s an 
unhandled exception. Now that the thread terminates as it should, a big red flag is raised at the point of 
the exception that allows you to find the problem immediately and fix it. This is always a good thing. You 
always want errors to present themselves as soon as possible; never swallow exceptions and just let the 
system keep running as if everything were normal. 

■ Note If you really want the unhandled-exception behavior to emulate the .NET 1.1 behavior, you can request 

that by adding the following option to the application’s configuration file. 

<system> 
    <runtime> 
        <legacyUnhandledExceptionPolicy enabled="1"/> 
    </runtime> 
</system> 

Syntax Overview of the try, catch, and finally Statements 
The code within a try block is guarded against exceptions such that, if an exception is thrown, the 
runtime searches for a suitable catch block to handle the exception. Whether a suitable catch block 
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exists or not, if a finally block is provided, the finally block is always executed no matter how 
execution flow leaves the try block. Let’s look at an example of a C# try statement: 

using System; 
using System.Collections; 
using System.Runtime.CompilerServices; 
 
// Disable compiler warning: CS1058 
[assembly: RuntimeCompatibility(WrapNonExceptionThrows = false)] 
 
public class EntryPoint 
{ 
    static void Main() { 
        try { 
            ArrayList list = new ArrayList(); 
            list.Add( 1 ); 
 
            Console.WriteLine( "Item 10 = {0}", list[10] ); 
        } 
        catch( ArgumentOutOfRangeException x ) { 
            Console.WriteLine( "=== ArgumentOutOfRangeException"+ 
                               " Handler ===" ); 
            Console.WriteLine( x ); 
            Console.WriteLine( "=== ArgumentOutOfRangeException"+ 
                               " Handler ===\n\n" ); 
        } 
        catch( Exception x ) { 
            Console.WriteLine( "=== Exception Handler ===" ); 
            Console.WriteLine( x ); 
            Console.WriteLine( "=== Exception Handler ===\n\n" ); 
        } 
        catch { 
            Console.WriteLine( "=== Unexpected Exception" + 
                               " Handler ===" ); 
            Console.WriteLine( "An exception I was not" + 
                               " expecting..." ); 
            Console.WriteLine( "=== Unexpected Exception" + 
                               " Handler ===" ); 
        } 
        finally { 
            Console.WriteLine( "Cleaning up..." ); 
        } 
    } 
} 

Once you see the code in the try block, you know it is destined to throw an ArgumentOutOfRange 
exception. Once the exception is thrown, the runtime begins searching for a suitable catch clause that is 
part of this try statement and matches the type of the exception as best as possible. Clearly, the first 
catch clause is the one that fits best. Therefore, the runtime will immediately begin executing the 
statements in the first catch block. Had I not been interested in the actual exception contents, I could 
have left off the declaration of the exception variable x in the catch clause and only declared the type. 
But in this case, I wanted to demonstrate that exception objects in C# produce a nice stack trace, among 
other data, that can be useful during debugging. While generating the output for this chapter, I compiled 
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the samples without debugging symbols turned on. However, if you turn on debugging symbols, you’ll 
notice that the stack trace also includes file and line numbers of the various levels in the stack. 

The second catch clause will catch exceptions of the general Exception type. Should the code in the 
try block throw an exception derived from System.Exception other than ArgumentOutOfRangeException, 
then this catch block would handle it. In C#, multiple catch clauses associated with a single try block 
must be ordered such that more specific exception types are listed first. The C# compiler will simply not 
compile code in which more general catch clauses are listed before more specific catch clauses. You can 
verify this by swapping the order of the first two catch clauses in the previous example in which case you 
would get the following compiler error: 

error CS0160: A previous catch clause already catches all exceptions of this or of a super 
type ('System.Exception') 

In C#, every exception that you can possibly throw must derive from System.Exception. I declared a 
catch clause that traps exceptions of type System.Exception specifically, but what’s the story with the 
third and last catch clause? Even though it is impossible to throw an exception of any type not derived 
from System.Exception in the C# language, it is not impossible in the CLR. (For example, you can throw 
an exception of any type in C++.) Therefore, if you wrote ArrayList in a language that allows this, it’s 
possible that the code could throw a not-very-useful type, such as System.Int32. It sounds strange, but it 
is possible. In this case, you can catch such an exception in C# by using a catch clause with neither an 
explicit exception type nor a variable. Unfortunately, there’s no easy way to know what type the thrown 
exception is. Also, a try statement can have, at most, one such general catch clause. 

■ Note Starting with .NET 2.0, the situation regarding general catch clauses is a little different than in .NET 1.1. It 

features a new attribute, RuntimeCompatibilityAttribute, that you can attach to your assembly. The C# and 

Visual Basic compilers that target .NET 2.0 apply this property by default. It tells the runtime to wrap exceptions 

that are not derived from System.Exception inside an exception of type RuntimeWrappedException, which is 

derived from System.Exception. This is handy, because it allows your C# code to access the thrown exception. 

Previously, you could not access the thrown exception, because it was caught by a general, parameterless catch 

clause. You can access the actual thrown exception type via the RuntimeWrappedException.WrappedException 

property. If your code contains a parameterless catch clause, the compiler emits a warning of type CS1058 by 

default, unless you disable the attribute as I did in the previous example. 

Last of all, there is the finally block. No matter how the try block is exited, whether by reaching the 
end point of the block or via an exception or a return statement, the finally block will always execute. If 
there is a suitable catch block and a finally block associated with the same try block, the catch block 
executes before the finally block. You can see this by looking at the output of the previous code 
example, which looks like the following: 

=== ArgumentOutOfRangeException Handler === 
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System.ArgumentOutOfRangeException: Index was out of range.  Must be  

non-negative and less than the size of the collection. 

Parameter name: index 

   at System.Collections.ArrayList.get_Item(Int32 index) 

   at Entrypoint.Main() 

=== ArgumentOutOfRangeException Handler === 

 

 

Cleaning up... 

Rethrowing Exceptions and Translating Exceptions 
Within a particular stack frame, you may find it necessary to catch all exceptions, or a specific subset of 
exceptions, long enough to do some cleanup and then rethrow the exception in order to let it continue 
to propagate up the stack. To do this, you use the throw statement with no parameter: 

using System; 
using System.Collections; 
 
public class Entrypoint 
{ 
    static void Main() { 
        try { 
            try { 
                ArrayList list = new ArrayList(); 
                list.Add( 1 ); 
 
                Console.WriteLine( "Item 10 = {0}", list[10] ); 
            } 
            catch( ArgumentOutOfRangeException ) { 
                Console.WriteLine( "Do some useful work and" + 
                                   " then rethrow" ); 
 
                // Rethrow caught exception. 
                throw; 
            } 
            finally { 
                Console.WriteLine( "Cleaning up..." ); 
            } 
        } 
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        catch { 
            Console.WriteLine( "Done" ); 
        } 
    } 
} 

Note that any finally blocks associated with the exception frame that the catch block is associated 
with will execute before any higher-level exception handlers are executed. You can see this in the output 
from the code: 

Do some useful work and then rethrow 

Cleaning up... 

Done 

In the “Achieving Exception Neutrality” section, I introduce some techniques that can help you 
avoid having to catch an exception, do cleanup, and then rethrow the exception. Such a work flow is 
cumbersome, because you must be careful to rethrow the exception appropriately. If you accidentally 
forget to rethrow, things could get ugly, because you would not likely be remedying the exceptional 
situation. The techniques that I show you will help you to achieve a goal where the only place to 
introduce a catch block is at the point where correctional action can occur. 

Sometimes, you may find it necessary to “translate” an exception within an exception handler. In 
this case, you catch an exception of one type, but you throw an exception of a different, possibly more 
precise, type in the catch block for the next level of exception handlers to deal with. Consider the 
following example: 

using System; 
using System.Collections; 
 
public class MyException : Exception 
{ 
    public MyException( String reason, Exception inner )  
        :base( reason, inner ) { 
    } 
} 
 
public class Entrypoint 
{ 
    static void Main() { 
        try { 
            try { 
                ArrayList list = new ArrayList(); 
                list.Add( 1 ); 
 
                Console.WriteLine( "Item 10 = {0}", list[10] ); 
            } 
            catch( ArgumentOutOfRangeException x ) { 
                Console.WriteLine( "Do some useful work" + 
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                                   " and then rethrow" ); 
                throw new MyException( "I'd rather throw this", 
                                       x ) ; 
            } 
            finally { 
                Console.WriteLine( "Cleaning up..." ); 
            } 
        } 
        catch( Exception x ) { 
            Console.WriteLine( x ); 
            Console.WriteLine( "Done" ); 
        } 
    } 
} 

One special quality of the System.Exception type is its ability to contain an inner exception reference 
via the Exception.InnerException property. This way, when the new exception is thrown, you can 
preserve the chain of exceptions for the handlers that process them. I recommend you use this useful 
feature of the standard exception type of C# when you translate exceptions. The output from the 
previous code is as follows: 

Do some useful work and then rethrow 

Cleaning up... 

MyException: I’d rather throw this —-> System.ArgumentOutOfRangeException: ~CCC 

Index was out of range. ~CCC 

Must be non-negative and less than the size of the collection. 

Parameter name: index 

   at System.Collections.ArrayList.get_Item(Int32 index) 

   at Entrypoint.Main() 

   —- End of inner exception stack trace —- 

   at Entrypoint.Main() 

Done 

Keep in mind that you should avoid translating exceptions if possible. The more you catch and then 
rethrow within a stack, the more you insulate the code that handles the exception from the code that 
throws the exception. That is, it’s harder to correlate the point of catch to the original point of throw. 
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Yes, the Exception.InnerException property helps mitigate some of this disconnect, but it still can be 
tricky to find the root cause of a problem if there are exception translations along the way. 

Exceptions Thrown in finally Blocks 
It is possible, but highly inadvisable, to throw exceptions within a finally block. The following code 
shows an example: 

using System; 
using System.Collections; 
 
public class Entrypoint 
{ 
    static void Main() { 
        try { 
            try { 
                ArrayList list = new ArrayList(); 
                list.Add( 1 ); 
 
                Console.WriteLine( "Item 10 = {0}", list[10] ); 
            } 
            finally { 
                Console.WriteLine( "Cleaning up..." ); 
                throw new Exception( "I like to throw" ); 
            } 
        } 
        catch( ArgumentOutOfRangeException ) { 
            Console.WriteLine( "Oops!  Argument out of range!" ); 
        } 
        catch { 
            Console.WriteLine( "Done" ); 
        } 
    } 
} 

The first exception, ArgumentOutOfRangeException in this case, is simply lost, and the new exception 
is propagated up the stack. Clearly, this is not desirable. You never want to lose track of exceptions, 
because it becomes virtually impossible to determine what caused an exception in the first place. 

Exceptions Thrown in Finalizers 
C# destructors are not really deterministic destructors, but rather CLR finalizers. Finalizers are run in the 
context of the finalizer thread, which is effectively an arbitrary thread context. If the finalizer were to 
throw an exception, the CLR might not know how to handle the situation and might simply shut down 
the thread (and the process). Consider the following code: 

using System; 
 
public class Person 
{ 
    ~Person() { 
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        Console.WriteLine( "Cleaning up Person..." ); 
        Console.WriteLine( "Done Cleaning up Person..." ); 
    } 
} 
 
public class Employee : Person 
{ 
    ~Employee() { 
        Console.WriteLine( "Cleaning up Employee..." ); 
        object obj = null; 
 
        // The following will throw an exception. 
        Console.WriteLine( obj.ToString() ); 
        Console.WriteLine( "Done cleaning up Employee..." ); 
    } 
} 
 
public class Entrypoint 
{ 
    static void Main() { 
        Employee emp = new Employee(); 
        emp = null; 
    } 
} 

The output from executing this code is as follows: 

Cleaning up Employee... 

 

Unhandled Exception: System.NullReferenceException: Object reference not set ~CCC 

to an instance of an object. 

   at Employee.Finalize() 

Cleaning up Person... 

Done Cleaning up Person... 

You will notice slightly different behavior with this example between the .NET 1.1 and .NET 2.0 and 
later runtimes. In .NET 1.1, the exception is swallowed while it is logged in the console, and execution 
then continues. Starting with .NET 2.0, your development environment presents you with the familiar 
JIT debugger dialog, asking if you would like to debug the application. The problem is, you have a limited 
amount of time within which to respond before the runtime aborts your application. If you haven’t 
already, be sure to read about how .NET 1.1 and .NET 2.0 and later treat unhandled exceptions 
differently in this chapter’s previous section, “Changes with Unhandled Exceptions in .NET 2.0.” 
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You should avoid knowingly throwing exceptions in finalizers at all costs, because you could abort 
the process. As a final note, be sure to read about all of the pros and cons of creating a finalizer in the 
first place in Chapter 13. 

Exceptions Thrown in Static Constructors 
If an exception is thrown and there is no handler in the stack, so that the search for the handler ends up 
in the static constructor for a type, the runtime handles this case specially. It translates the exception 
into a System.TypeInitializationException and throws that instead. Before throwing the new 
exception, it sets the InnerException property of the TypeInitializationException instance to the 
original exception. That way, any handler for type initialization exceptions can easily find out exactly 
why things failed. 

Translating such an exception makes sense because constructors cannot, by their very nature, have 
a return value to indicate success or failure. Exceptions are the only mechanism you have to indicate 
that a constructor has failed. More importantly, because the system calls static constructors at system-
defined times,2 it makes sense for them to use the TypeInitializationException type in order to be more 
specific about when something went wrong. For example, suppose you have a static constructor that can 
potentially throw an ArgumentOutOfRangeException. Now, imagine the frustration users would have if 
your exception propagated out to the enclosing thread at some seemingly random time, because the 
exact moment of a static constructor call is system-defined. It could appear that the ArgumentOutOfRange 
exception materialized out of thin air. Wrapping your exception inside a TypeInitializationException 
takes a little of the mystery out of it and tips off users, or hopefully the developer, that the problem 
happened during type initialization. 

The following code shows an example of what a TypeInitializationException with an inner 
exception looks like: 

using System; 
using System.IO; 
 
class EventLogger 
{ 
    static EventLogger() { 
        eventLog = File.CreateText( "logfile.txt" ); 
 
        // Statement below will throw an exception. 
        strLogName = (string) strLogName.Clone(); 
    } 
 
    static public void WriteLog( string someText ) { 
        eventLog.Write( someText ); 
    } 
 
    static private StreamWriter eventLog; 
    static private string       strLogName; 
} 

                                                 

 
2 The system could call static constructors at type load time or just prior to a static member access, depending on how 
the CLR is configured for the current process. 
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public class EntryPoint 
{ 
    static void Main() { 
        EventLogger.WriteLog( "Log this!" ); 
    } 
} 

When you run this example, the output looks like the following: 

Unhandled Exception: System.TypeInitializationException: 

The type initializer for ‘EventLogger’ threw 

an exception. —-> System.NullReferenceException: Object reference not set ~CCC 

to an instance of an object. 

   at EventLogger..cctor() 

   —- End of inner exception stack trace —- 

   at EntryPoint.Main() 

Notice that along with describing that the outermost exception is of type 
TypeInitializationException, the output also shows that the inner exception, which started it all, is a 
NullReferenceException. 

Who Should Handle Exceptions? 
Where should you handle exceptions? You can find the answer by applying a variant of the Expert 
pattern, which states that work should be done by the entity that is the expert with respect to that work. 
That is a circuitous way of saying that you should catch the exception at the point where you can actually 
handle it with some degree of knowledge available to remedy the exceptional situation. Sometimes, the 
catching entity could be close to the point of the exception generation within the stack frame. The code 
could catch the exception, then take some corrective action, and then allow the program to continue to 
execute normally. In other cases, the only reasonable place to catch an exception is at the entry-point 
Main method, at which point you could either abort the process after providing some useful data, or reset 
the process as if the application were just restarted. The bottom line is that you should figure out the 
best way to recover from exceptions, if that is possible, and the best place to do so based upon where it 
makes the most sense to do it. Always keep in mind that, in many cases, it is impossible to recover from 
an exceptional condition within the scope of the running application. 
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Avoid Using Exceptions to Control Flow 
It can be tempting to use exceptions to manage the flow of execution in complex methods. This is never 
a good idea, for a couple of reasons. First, exceptions are generally expensive to generate and handle. 
Therefore, if you were to use them to control execution flow within a method that is at the heart of your 
application, your performance would likely degrade. Second, it trivializes the exceptional nature of 
exceptions in the first place. The whole point of exceptions is to indicate an exceptional condition in a 
way that can be handled or reported cleanly. 

Historically, programmers have been rather lazy when it comes to handling error conditions. How 
many times have you seen code where the programmer never even bothered to check the return value of 
an API function or a method call? Such lackadaisical approaches to error handling can lead to headaches 
in a hurry. Exceptions provide a syntactically succinct and uniform way to indicate and handle error 
conditions without littering your code with a plethora of if blocks and other traditional (nonexception-
based) error-handling constructs. At the same time, the runtime supports exceptions, and it does a lot of 
work on your behalf when exceptions are thrown. Unwinding the stack is no trivial task in itself. Lastly, 
the point where an exception is thrown and the point where it’s handled can be disjointed and have no 
connection to each other. Thus, it can be difficult when reading code to determine where an exception 
will be caught and handled. These reasons alone are enough for you to stick to traditional techniques 
when managing normal execution flow. 

■ Note You can find an article, “The Cost of Exceptions,” on Rico Mariani’s blog at 

http://blogs.msdn.com/ricom/archive/2003/12/19/44697.aspx. Rico is an expert on performance-related 

issues in the CLR. 

Achieving Exception Neutrality 
When exceptions were first added to C++, many developers were excited to be able to throw them, catch 
them, and handle them. In fact, a common misconception at the time was that exception handling 
simply consisted of strategically placing try statements throughout the code and tossing in an 
occasional throw when necessary. Over time, the developer community realized that dropping try 
statements all over the place made their code difficult to read when, most of the time, the only thing they 
wanted to do was clean up gracefully when an exception was thrown and allow the exception to keep 
propagating up the stack. Even worse, it made the code hard to write and difficult to maintain. Code that 
doesn’t handle exceptions but is expected to behave properly in the face of exceptions is generally called 
exception-neutral code. 

Clearly, there had to be a better way to write exception-neutral code without having to rely on 
writing try statements all over the place. In fact, the only place you need a try statement is the point at 
which you perform any sort of system recovery or logging in response to an exception. Over time, 
everyone started to realize that writing try statements was, in fact, the least significant part of writing 
exception-safe and exception-neutral code. Generally, the only code that should catch an exception is 
code that knows specifically how to remedy the situation. That code could even be in the main entry 
point and could merely reset the system to a known start state, effectively restarting the application. 

By exception-neutral code, I mean code that doesn’t really have the capability to specifically handle 
the exception but that must be able to handle exceptional conditions gracefully. Usually, this code sits 
somewhere on the stack in between the code that throws the exception and the code that catches the 
exception, and it must not be adversely affected by the exception passing through on its way up the 

http://blogs.msdn.com/ricom/archive/2003/12/19/44697.aspx
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stack. At this point, some of you are probably starting to think about the throw statement with no 
parameters that allows you to catch an exception, do some work, and then rethrow the exception. 
However, I want to introduce you to an arguably cleaner technique that allows you to write exception-
neutral code without using a single try statement and that also produces code that is easier to read and 
more robust. 

Basic Structure of Exception-Neutral Code 
The general idea behind writing exception-neutral code is similar to the idea behind creating 
commit/rollback code. You write such code with the guarantee that if it doesn’t finish to completion, the 
entire operation is reverted with no change in state to the system. The changes in state are committed 
only if the code reaches the end of its execution path. You should code your methods like this in order 
for them to be exception-neutral. If an exception is thrown before the end of the method, the state of the 
system should remain unchanged. The following shows how you should structure your methods in order 
to achieve these goals: 

void ExceptionNeutralMethod() 
{ 
   //—————————— 
   // All code that could possibly throw exceptions is in this 
   // first section. In this section, no changes in state are 
   // applied to any objects in the system including this. 
   //—————————— 
 
   //—————————— 
   // All changes are committed at this point using operations 
   // strictly guaranteed not to throw exceptions. 
   //—————————— 
} 

As you can see, this technique doesn’t work unless you have a set of operations that are guaranteed 
never to throw exceptions. Otherwise, it would be impossible to implement the commit/rollback 
behavior as illustrated. Thankfully, the .NET runtime does provide quite a few operations that the 
specification guarantees will never throw exceptions. 

Let’s start by building an example to describe what I mean. Suppose you have a system or an 
application where you’re managing employees. For the sake of argument, say that once an employee is 
created and represented by an Employee object, it must exist within one and only one collection in the 
system. Currently, the only two collections in the system are one to represent active employees and one 
to represent terminated employees. Additionally, the collections exist within an EmployeeDatabase 
object, as shown in the following example: 

using System.Collections; 
 
class EmployeeDatabase 
{ 
    private ArrayList activeEmployees; 
    private ArrayList terminatedEmployees; 
} 

The example uses collections of the ArrayList type, which is contained in the System.Collections 
namespace. A real-world system would probably use something more useful, such as a database. 
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Now, let’s see what happens when an employee quits. Naturally, you need to move that employee 
from the activeEmployees to the terminatedEmployees collection. A naïve attempt at such a task could 
look like the following: 

using System.Collections; 
 
class Employee 
{ 
} 
 
class EmployeeDatabase 
{ 
    public void TerminateEmployee( int index ) { 
        object employee = activeEmployees[index]; 
        activeEmployees.RemoveAt( index ); 
        terminatedEmployees.Add( employee ); 
    } 
 
    private ArrayList activeEmployees; 
    private ArrayList terminatedEmployees; 
} 

This code looks reasonable enough. The method that does the move assumes that the calling code 
somehow figured out the index for the current employee in the activeEmployees list prior to calling 
TerminateEmployee. It copies a reference to the designated employee, removes that reference from 
activeEmployees, and adds it to the terminatedEmployees collection. So what’s so bad about this method? 

Look at the method closely, and think about where exceptions could be generated. The fact is, an 
exception could be thrown upon execution of any of the method calls in this method. If the index is out 
of range, you would expect to see ArgumentOutOfRange exceptions thrown from the first two lines. Of 
course, if the range exception is thrown from the first line, execution would never see the second line, 
but you get the idea. And, if memory is scarce, it’s possible that the call to Add could fail with an 
exception. The danger comes from the possibility of the exception being thrown after the state of the 
system is modified. Suppose the index passed in is valid. The first two lines will likely succeed. However, 
if an exception is thrown while trying to add the employee to terminatedEmployees, then the employee 
will get lost in the system. So, what can you do to fix the glitch? 

An initial attempt could use try statements to avoid damage to the system state. Consider the 
following example. 

using System.Collections; 
 
class Employee 
{ 
} 
 
class EmployeeDatabase 
{ 
    public void TerminateEmployee( int index ) { 
        object employee = null; 
        try { 
            employee = activeEmployees[index]; 
        } 
        catch { 
            // oops!  We must be out of range here. 
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        } 
 
        if( employee != null ) { 
            activeEmployees.RemoveAt( index ); 
 
            try { 
                terminatedEmployees.Add( employee ); 
            } 
            catch { 
                // oops! Allocation may have failed. 
                activeEmployees.Add( employee ); 
            } 
        } 
    } 
 
    private ArrayList activeEmployees; 
    private ArrayList terminatedEmployees; 
} 

Look how quickly the code becomes hard to read and understand, thanks to the try statements. You 
have to pull the employee variable declaration to outside of the try statement and initialize it to null. 
Once you attempt to get the reference to the employee instance, you have to check the reference for null 
to make sure you actually got a valid reference. Once that succeeds, you can proceed to add the employee 
to the terminatedEmployees list. However, if that fails for some reason, you need to put the employee back 
into the activeEmployees list. Also, notice that the call to RemoveAt is not inside of a try block. That’s ok, 
because if that fails, no state has been modified at that point and we have no need to catch that. 

You may have already spotted a multitude of problems with this approach. First of all, what happens 
if you have a failure to add the employee back into the activeEmployees collection? Do you just fail at that 
point? That’s unacceptable, because the state of the system has changed already. Second, you probably 
need to return an error code from this method to indicate why it may have failed. That’s something I 
didn’t do in the previous code. The method can’t just return happily as if everything went smoothly 
when, in fact, the action failed to complete. Third, the code is just plain ugly and hard to read. Lastly, a 
variety of problems still exist with this code that I won’t waste time going into. 

So what’s the solution? Well, think of what you attempted to do with the try statements. You want to 
do the actions that possibly throw exceptions, and if they fail, revert to the previous state. You can 
actually perform a variation on this theme without try statements that goes like this: Attempt all of the 
actions in the method that could throw exceptions up front, and once you get past that point, commit 
those actions using operations that can’t throw exceptions. 

■ Note The C++ community has accepted these techniques, thanks, in part, to the excellent works published by 

Herb Sutter in his Exceptional C++ series (Boston, MA: Addison-Wesley Professional). There is no good reason 

why you cannot apply the same techniques wholesale in the C# world.  

Let’s see what this method would look like: 

using System.Collections; 
 
class Employee 
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{ 
} 
 
class EmployeeDatabase 
{ 
    public void TerminateEmployee( int index ) { 
        // Clone sensitive objects. 
        ArrayList tempActiveEmployees = 
            (ArrayList) activeEmployees.Clone()3; 
        ArrayList tempTerminatedEmployees = 
            (ArrayList) terminatedEmployees.Clone(); 
 
        // Perform actions on temp objects. 
        object employee = tempActiveEmployees[index]; 
        tempActiveEmployees.RemoveAt( index ); 
        tempTerminatedEmployees.Add( employee ); 
 
        // Now commit the changes. 
        ArrayList tempSpace = null; 
        ListSwap( ref activeEmployees, 
                  ref tempActiveEmployees, 
                  ref tempSpace ); 
        ListSwap( ref terminatedEmployees, 
                  ref tempTerminatedEmployees, 
                  ref tempSpace ); 
    } 
 
    void ListSwap( ref ArrayList first, 
                   ref ArrayList second, 
                   ref ArrayList temp ) { 
        temp = first; 
        first = second; 
        second = temp; 
        temp = null; 
    } 
 
    private ArrayList activeEmployees; 
    private ArrayList terminatedEmployees; 
} 

First, notice the absence of any try statements. The nice thing about their absence is that the 
method doesn’t need to return a result code. The caller can expect the method to either work as 
advertised or throw an exception otherwise. The only two lines in the method that affect the state of the 
system are the last two calls to ListSwap. ListSwap was introduced to allow you to swap the references of 
the ArrayList objects in the EmployeeDatabase with the references to the temporary modified copies that 
you made. 

                                                 

 
3 Be sure to read the section in Chapter 13 regarding ICloneable and how you probably should avoid it in the first 
place. 
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How is this technique so much better when it appears to be so much less efficient? There are two 
tricks here. The obvious one is that, no matter where in this method an exception is thrown, the state of 
the EmployeeDatabase will remain unaffected. But what if an exception is thrown inside ListSwap? Ah! 
Here you have the second trick: ListSwap will never throw an exception. One of the most important 
features required in order to create exception-neutral code is that you have a small set of operations that 
are guaranteed not to fail under normal circumstances. No, I’m not including the case of some bozo 
pulling the plug on the computer in the middle of a ListSwap call, nor am I considering the case of a 
catastrophic earthquake or tornado at that point either. Let’s see why ListSwap won’t throw any 
exceptions. 

In order to create exception-neutral code, it’s imperative that you have a handful of operations, 
such as an assignment operation, that are guaranteed not to throw. Thankfully, the CLR provides such 
operations. The assignment of references, when no conversion is required, is one example of a 
nonthrowing operation. Every reference to an object is stored in a location, and that location has a type 
associated with it. However, once the locations exist, copying a reference from one to the other is a 
simple memory copy to already allocated locations, just like a regular pointer copy in C++, and that 
cannot fail. That’s great for when you’re copying references of one type to references of the same type. 

But what happens when a conversion is necessary? Can that throw an exception? The C# standard 
specifies that conforming implicit conversion operators will never throw an exception. If your 
assignment invokes an implicit conversion, you’re covered, assuming that any custom implicit 
conversion operators don’t throw. 4 If you find a custom implicit conversion that throws an exception, I 
suggest you throw the C# specification at the author immediately. However, explicit conversions, in the 
form of casts, can throw. The bottom line is, a simple assignment from one reference to another, 
whether it requires implicit conversion or not, will not throw. 

Simple assignment from one reference location to another is all that ListSwap is doing. After you set 
up the temporary ArrayList objects with the desired state, and you’ve gotten to the point of even 
executing the ListSwap calls, you’ve arrived at a point where you know that no more exceptions in the 
TerminateEmployee method are possible. Now you can make the switch safely. The ArrayList objects in 
the EmployeeDatabase object are swapped with the temporary ones. Once the method completes, the 
original ArrayList objects are free to be collected by the GC. 

One more thing that you may have noticed regarding ListSwap is that the temporary location to 
store an ArrayList instance during the swap is allocated outside the ListSwap method and passed in as a 
ref parameter. I did this in order to avoid a StackOverflowException inside ListSwap. It’s remotely 
possible that, when calling ListSwap, the stack could be running on vapors, and the mere allocation of 
another stack slot could fail and generate an exception. Thus, I performed that step outside of the 
confines of the ListSwap method. Once execution is inside ListSwap, all the locations are allocated and 
ready for use. 

This technique, when applied liberally in a system that requires rigid stability, will quickly point out 
methods that may be too complex and need to be broken up into smaller functional units. In essence, 
this idiom amplifies the complexity of a particular method it is applied to. Therefore, if you find that it 
becomes unwieldy and difficult to make the method bulletproof, you should analyze the method and 
make sure it’s not trying to do too much work that you could break up into smaller units. 

Incidentally, you may find it necessary to make swap operations, similar to ListSwap, atomic in a 
multithreaded environment. You could modify ListSwap to use some sort of exclusive lock object, such 
as a mutex or a System.Threading.Monitor object. However, you may find yourself inadvertently making 
ListSwap capable of throwing exceptions, and that violates the requirements on ListSwap. Thankfully, 
the System.Threading namespace offers the Interlocked class to perform these swap operations 
atomically, and best of all, the methods are guaranteed never to throw exceptions. The Interlocked class 

                                                 

 
4 The C# reference explicitly states that custom implicit conversion operators must not throw exceptions. 
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provides a generic overload of all of the useful methods, making them very efficient. The generic 
Interlocked methods come with a constraint that they only work with reference types. Chapter 12 
contains more information on the use of the Interlocked class. 

The bottom line is, you should do everything that can possibly throw an exception before modifying 
the state of the object being operated on. Once you know you’re past the point of possibly causing any 
exceptions, commit the changes using operations that are guaranteed not to throw exceptions. 

If you’re tasked to create a robust, real-world system where many people rely on the integrity of the 
system, I cannot stress how much this idiom is a must. Sure, it’s not as efficient at runtime as the naïve 
approach, and it requires more system resources to succeed effectively, but your clients will prefer the 
inefficiency over corrupt data any day. Your colleagues will thank you, too, because resource leaks and 
other related glitches caused as a side effect of a thrown exception are tricky to find due to their out-of-
band nature. 

Constrained Execution Regions 
The example in the previous section demonstrates some of the level of paranoia you must endure in 
order to write bulletproof, exception-neutral code. I was so paranoid that a stack overflow would occur 
that I allocated the extra space needed by ListSwap before I called the method. You would think that 
would take care of all of the issues. Unfortunately, you’d be wrong. In the CLR environment, other 
asynchronous exceptions could occur, such as a ThreadAbortException (which I cover in Chapter 12) and 
OutOfMemoryException and StackOverflowException exceptions. 

For example, what if, during the commit phase of the TerminateEmployee method, the application 
domain is shut down, forcing a ThreadAbortException? Or what if, during the first call to ListSwap, the JIT 
compiler fails to allocate enough memory to compile the method in the first place? Clearly, these bad 
situations are difficult to deal with. In fact, in the .NET 1.1 days, you couldn’t do much to handle these 
diabolical situations. However, starting in .NET 2.0, you can use a constrained execution region (CER) or 
a critical finalizer. 

A CER is a region of code that the CLR prepares prior to executing, so that when the code is needed, 
everything is in place and the failure possibilities are mitigated. Moreover, the CLR postpones the 
delivery of any asynchronous exceptions, such as ThreadAbortException exceptions, if the code in the 
CER is executing. You can perform the magic of CERs using the RuntimeHelpers class in the 
System.Runtime.CompilerServices namespace. To create a CER, simply call 
RuntimeHelpers.PrepareConstrainedRegions prior to a try statement in your code. The CLR then 
examines the catch and finally blocks and prepares them by walking through the call graph and 
making sure all methods in the execution path are JIT-compiled and sufficient stack space is available.5 
Even though you call PrepareConstrainedRegions prior to a try statement, the actual code within the try 
block is not prepared. Therefore, you can use the following idiom for preparing arbitrary sections of 
code by wrapping the code in a finally block within a CER: 

RuntimeHelpers.PrepareConstrainedRegions(); 
try {} finally 
{ 

                                                 

 
5 Incidentally, virtual methods and delegates pose a problem, because the call graph is not deducible at preparation 
time. However, if you know the target of the virtual method or delegate, you can prepare it explicitly by calling 
RuntimeHelpers.PrepareDelegate. I recommend reading Stephen Toub’s Keep Your Code Running with the 
Reliability Features of the .NET Framework, available at 
http://msdn.microsoft.com/msdnmag/issues/05/10/Reliability/default.aspx. 

http://msdn.microsoft.com/msdnmag/issues/05/10/Reliability/default.aspx
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    // critical code goes here 
} 

Let’s look at how you can modify the previous example using a CER to make it even more reliable: 

using System.Collections; 
using System.Runtime.CompilerServices; 
using System.Runtime.ConstrainedExecution; 
 
class Employee 
{ 
} 
 
class EmployeeDatabase 
{ 
    public void TerminateEmployee( int index ) { 
        // Clone sensitive objects. 
        ArrayList tempActiveEmployees = 
            (ArrayList) activeEmployees.Clone(); 
        ArrayList tempTerminatedEmployees = 
            (ArrayList) terminatedEmployees.Clone(); 
 
        // Perform actions on temp objects. 
        object employee = tempActiveEmployees[index]; 
        tempActiveEmployees.RemoveAt( index ); 
        tempTerminatedEmployees.Add( employee ); 
 
        RuntimeHelpers.PrepareConstrainedRegions(); 
        try {} finally { 
            // Now commit the changes. 
            ArrayList tempSpace = null; 
            ListSwap( ref activeEmployees, 
                      ref tempActiveEmployees, 
                      ref tempSpace ); 
            ListSwap( ref terminatedEmployees, 
                      ref tempTerminatedEmployees, 
                      ref tempSpace ); 
        } 
    } 
 
    [ReliabilityContract( Consistency.WillNotCorruptState, 
                          Cer.Success )] 
    void ListSwap( ref ArrayList first, 
                   ref ArrayList second, 
                   ref ArrayList temp ) { 
        temp = first; 
        first = second; 
        second = temp; 
        temp = null; 
    } 
 
    private ArrayList activeEmployees; 
    private ArrayList terminatedEmployees; 
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} 

Notice that the commit section of the TerminateEmployee method is wrapped inside a CER. At 
runtime, prior to executing that code, the CLR prepares the code by also preparing the ListSwap method 
and ensuring that the stack can handle the work. Of course, this preparation operation may fail, and 
that’s OK, because you’re not yet into the code that commits the changes. Notice the addition of the 
ReliabilityContractAttribute to the ListSwap method. This informs the runtime of what sorts of 
guarantees the ListSwap method adheres to so that the CER can be formed properly. You could also 
attach a ReliabilityContractAttribute to the TerminateEmployee method, but it really is only useful for 
code executed inside a CER. If you want to attach this attribute to the TerminateEmployee method so that 
you can use it in a CER created elsewhere, you could add the following attribute: 

[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] 

This ReliabilityContractAttribute expresses the goal that you set out to achieve with 
TerminateEmployee in the first place. Because the Consistency is set to 
Consistency.WillNotCorruptState, then even though the method may fail, if it does, the state of the 
system won’t be corrupted. Other values you could provide are Consistency.MayCorruptProcess, 
Consistency.MayCorruptAppDomain, and Consistency.MayCorruptInstance. Their names are self 
descriptive of what they mean and you can read more about these in the MSDN documentation, but for 
the most robust software, it should be obvious that you will want your methods to adhere to the 
Consistency.WillNotCorruptState reliability contract. 

■ Note Even though the CLR guarantees that asynchronous exceptions won’t be injected into the thread while 

inside a CER, it doesn’t provide any guarantee about suppressing all exceptions. It only suppresses the ones that 

are outside of your control. That means that if you create objects within a CER, you must be prepared to deal with 

OutOfMemoryException or any other such code-induced exception. 

Critical Finalizers and SafeHandle 
Critical finalizers are similar to CERs, in that the code within them is protected from asynchronous 
exceptions and other such dangers caused by running in a virtual execution system that are outside your 
control. To mark your object as having a critical finalizer, simply derive from CriticalFinalizerObject. 
By doing so, you guarantee your object to have a finalizer that runs within the context of a CER, and 
therefore, must abide by all of the rules imposed by a CER. Additionally, the CLR will execute critical 
finalizers after it finishes dealing with all other noncritical finalizable objects. 

In reality, it’s rare that you’ll ever need to create a critical finalizable object. Critical finalizable 
objects are used most commonly in interop code. You can usually get the behavior you need by deriving 
from SafeHandle because often you end up holding on to native handles in interop code. SafeHandle is a 
critical tool when creating native interop code through P/Invoke or COM interop, because it allows you 
to guarantee that you won’t leak any unmanaged resources from within the CLR. Prior to .NET 2.0, this 
was not possible. In the .NET 1.1 days, you would typically represent an opaque native handle type with 
a managed IntPtr type. This works just fine, except that you cannot guarantee that the underlying 
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resource will be cleaned up in the event of an asynchronous exception such as a ThreadAbortException. 
As usual, by adding an extra level of indirection6 in the form of a SafeHandle, you can mitigate these 
problems in .NET 2.0. 

■ Caution Before you jump to the conclusion that you need to create a SafeHandle derivative, be sure to check if 

one of the supplied SafeHandle derivatives in the .NET Framework will work for you. For example, if you’re 

creating code to talk directly to a device driver by calling the Win32 DeviceIoControl function via P/Invoke, then 

the SafeFileHandle type is sufficient for holding the handle that you open directly on the driver. 

When creating your own SafeHandle derived class, you must follow a short list of steps. As an 
example, let’s create a SafeHandle derived class, SafeBluetoothRadioFindHandle, to enumerate through 
the Bluetooth radios on a system, assuming there are any. The pattern for enumerating Bluetooth radios 
in native code is quite simple and a common theme used throughout the Win32 API. You call the Win32 
BluetoothFindFirstRadio function, and if it succeeds, it returns the first radio handle through an out 
parameter and an enumeration handle through the return value. You can find any additional radios by 
calling the Win32 function BluetoothFindNextRadio while passing the enumeration handle obtained 
from BluetoothFindFirstRadio. When finished, you must be sure to call the Win32 function 
BluetoothFindRadioClose on the enumeration handle. Consider the following code: 

using System; 
using System.Runtime.InteropServices; 
using System.Runtime.ConstrainedExecution; 
using System.Security; 
using System.Security.Permissions; 
using System.Text; 
using Microsoft.Win32.SafeHandles; 
 
 
// 
// Matches Win32 BLUETOOTH_FIND_RADIO_PARAMS 
// 
[StructLayout( LayoutKind.Sequential )] 
class BluetoothFindRadioParams 
{ 
    public BluetoothFindRadioParams() { 
        dwSize = 4; 
    } 
    public UInt32 dwSize; 
} 
 
// 

                                                 

 
6 Andrew Koenig of C++ fame likes to call this the Fundamental Theorem of Software Engineering—that is, that any 
software engineering problem can be solved by adding a level of indirection. 
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// Matches Win32 BLUETOOTH_RADIO_INFO 
// 
[StructLayout( LayoutKind.Sequential, 
               CharSet = CharSet.Unicode )] 
struct BluetoothRadioInfo 
{ 
    public const int BLUETOOTH_MAX_NAME_SIZE = 248; 
 
    public UInt32 dwSize; 
    public UInt64 address; 
    [MarshalAs( UnmanagedType.ByValTStr, 
                SizeConst = BLUETOOTH_MAX_NAME_SIZE )] 
    public string szName; 
    public UInt32 ulClassOfDevice; 
    public UInt16 lmpSubversion; 
    public UInt16 manufacturer; 
} 
 
// 
// Safe Bluetooth Enumeration Handle 
// 
[SecurityPermission( SecurityAction.Demand, 
                     UnmanagedCode = true )] 
sealed public class SafeBluetoothRadioFindHandle 
    : SafeHandleZeroOrMinusOneIsInvalid 
{ 
    private SafeBluetoothRadioFindHandle() : base( true ) { } 
 
    override protected bool ReleaseHandle() { 
        return BluetoothFindRadioClose( handle ); 
    } 
 
    [DllImport( "Irprops.cpl" )] 
    [ReliabilityContract( Consistency.WillNotCorruptState, 
                          Cer.Success )] 
    [SuppressUnmanagedCodeSecurity] 
    private static extern bool BluetoothFindRadioClose( 
                                              IntPtr hFind ); 
} 
 
public class EntryPoint 
{ 
    private const int ERROR_SUCCESS = 0; 
 
    static void Main() { 
        SafeFileHandle radioHandle; 
        using( SafeBluetoothRadioFindHandle radioFindHandle 
            = BluetoothFindFirstRadio(new BluetoothFindRadioParams(), 
                                      out radioHandle) ) { 
            if( !radioFindHandle.IsInvalid ) { 
                BluetoothRadioInfo radioInfo = new BluetoothRadioInfo(); 
                radioInfo.dwSize = 520; 
                UInt32 result = BluetoothGetRadioInfo( radioHandle, 
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                                                       ref radioInfo ); 
 
                if( result == ERROR_SUCCESS ) { 
                    // Let's send the contents of the radio info to the 
                    // console. 
                    Console.WriteLine( "address = {0:X}", 
                                       radioInfo.address ); 
                    Console.WriteLine( "szName = {0}", 
                                       radioInfo.szName ); 
                    Console.WriteLine( "ulClassOfDevice = {0}", 
                                       radioInfo.ulClassOfDevice ); 
                    Console.WriteLine( "lmpSubversion = {0}", 
                                       radioInfo.lmpSubversion ); 
                    Console.WriteLine( "manufacturer = {0}", 
                                       radioInfo.manufacturer ); 
                } 
 
                radioHandle.Dispose(); 
            } 
        } 
    } 
 
    [DllImport( "Irprops.cpl" )] 
    private static extern SafeBluetoothRadioFindHandle 
        BluetoothFindFirstRadio( [MarshalAs(UnmanagedType.LPStruct)] 
                                 BluetoothFindRadioParams pbtfrp, 
                                 out SafeFileHandle phRadio ); 
 
    [DllImport( "Irprops.cpl" )] 
    private static extern UInt32 
        BluetoothGetRadioInfo( SafeFileHandle hRadio, 
                               ref BluetoothRadioInfo pRadioInfo ); 
} 

The crux of this example is SafeBluetoothRadioFindHandle. You could have derived it directly from 
SafeHandle, but the runtime provides two helper classes, SafeHandleZeroOrMinusOneIsInvalid and 
SafeHandleMinusOneIsInvalid, to derive from in order to make things easier. 

■ Caution Be careful when dealing with Win32 functions via P/Invoke, and always read the documentation 

carefully to see what constitutes an invalid handle value. The Win32 API is notorious for making this confusing. For 

example, the Win32 CreateFile function returns -1 to represent a failure. The CreateEvent function returns a 

NULL handle in the event of an error. In both cases, the return type is HANDLE. 

Take several things into consideration when providing your own SafeHandle derivative: 
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• Apply a code access security demand on the class requiring the ability to call 
unmanaged code: Of course, you don’t need to do this unless you really do call 
unmanaged code, but the odds of your ever creating a SafeHandle derivative and 
not calling unmanaged code are very slim. 

• Provide a default constructor that initializes the SafeHandle derivative: Notice that 
SafeBluetoothRadioFindHandle declares a private default constructor. The 
P/Invoke layer possesses special powers, thus it can create instances of the object 
even though the constructor is private. The private constructor keeps clients from 
creating instances without calling the Win32 functions that create the underlying 
resource. 

• Override the virtual IsInvalid property: In this case, that was not necessary 
because the base class SafeHandleZeroOrMinusOneIsInvalid handles that for you. 

• Override the virtual ReleaseHandle method, which is used to clean up the resource: 
Typically, this is where you’ll make your call through P/Invoke to release the 
unmanaged resource. In the example, you make a call to 
BluetoothFindRadioClose. Note that when declaring the method for P/Invoke, you 
apply a reliability contract, because the ReleaseHandle method is called within the 
context of a CER. Additionally, it’s wise to apply the 
SuppressUnmanagedCodeSecurityAttribute to the method to prevent the Code 
Access Security (CAS) feature of the CLR from walking the stack checking security 
each time it is called. Keep in mind that doing so implies that your code is secure. 

Once you define your SafeHandle derivative, you’re ready to use it in your P/Invoke declarations. In 
the preceding example, you declare the BluetoothFindFirstRadio method to be called through P/Invoke. 
If you look up this function in the Microsoft Developer Network (MSDN), you’ll see that it returns a 
BLUETOOTH_RADIO_FIND type, which is a handle to an internal radio enumeration object. In the .NET 1.1 
days, you would have declared the method as returning an IntPtr. Starting with .NET 2.0, you indicate 
that it returns a SafeBluetoothRadioFindHandle type, and the P/Invoke marshaling layer handles the rest. 
Now, the enumeration handle is safe from being leaked by the runtime in the event of some 
asynchronous exception introduced by the virtual execution system. 

■ Caution When marshaling between a COM method or Win32 function that returns a handle contained within a 

structure (as opposed to simply returning a handle), the interop layer doesn’t provide support for dealing with 

SafeHandle derivatives. In these rare cases, you’ll need to call SetHandle on the SafeHandle derivative after 

getting the structure back from the function or COM method so that the SafeHandle instance can manage the 

lifetime of the unmanaged resource.. However, if you have to do such a thing, you want to make sure that the 

operation that creates the handle and the subsequent SetHandle method call occurs within a CER so that nothing 

can interrupt the process of allocating the resource and assigning the handle to the SafeHandle object; otherwise, 

your application could leak resources. 
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Creating Custom Exception Classes 
System.Exception has three public constructors and one protected constructor. The first is the default 
constructor, which doesn’t really do much of anything. The second is a constructor that accepts a 
reference to a string object. This string is a general, programmer-defined message that you can consider 
a more user-friendly description of the exception. The third is a constructor that takes a message string, 
like the second constructor, but it also accepts a reference to another Exception. The reference to the 
other exception allows you to keep track of originating exceptions when one exception is translated into 
another exception within a try block. A good example of that is when an exception is not handled and 
percolates up to the stack frame of a static constructor. In that case, the runtime throws a 
TypeInitializationException, but only after it sets the inner exception to that of the original exception 
so that the one who catches the TypeInitializationException will at least know why this exception 
occurred in the first place. Finally, the protected constructor allows creation of an exception from a 
SerializationInfo object. You always want to create serializable exceptions so you can use them across 
context boundaries—for example, with .NET Remoting. That means you’ll also want to mark your 
custom exception classes with the SerializableAttribute as well. 

The System.Exception class is very useful with these three public constructors. However, it would 
constitute a bad design to simply throw objects of type System.Exception any time anything goes wrong. 
Instead, it would make much more sense to create a new, more specific, exception type that derives from 
System.Exception. That way, the type of the exception is much more expressive about the problem at 
hand. Even better than that is the fact that your derived exception class could contain data that is 
germane to the reason the exception was thrown in the first place. And remember, in C#, all exceptions 
must derive from System.Exception. Let’s see what it takes to define custom exceptions effectively. 

Consider the previous EmployeeDatabase example. Suppose that in order to add an employee to the 
database, the employee’s data must be validated. If an employee’s data does not validate, the Add 
method will throw an exception of type EmployeeVerificationException. Notice that I’m ending the new 
exception’s type name with the word Exception. This is a good habit to get into, and a recommended 
convention, because it makes it easy to spot exception types within your type system. It’s also 
considered good style within the C# programming community. Let’s see what such an exception type 
could look like: 

using System; 
using System.Runtime.Serialization; 
 
[Serializable()] 
public class EmployeeVerificationException : Exception 
{ 
    public enum Cause { 
        InvalidSSN, 
        InvalidBirthDate 
    } 
 
    public EmployeeVerificationException( Cause reason ) 
        :base() { 
        this.Reason = reason; 
    } 
 
    public EmployeeVerificationException( Cause reason, 
                                          String msg ) 
        :base( msg ) { 
        this.Reason = reason; 
    } 
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    public EmployeeVerificationException( Cause reason, 
                                          String msg, 
                                          Exception inner ) 
        :base( msg, inner ) { 
        this.Reason = reason; 
    } 
 
    protected EmployeeVerificationException( 
                   SerializationInfo info, 
                   StreamingContext  context ) 
                :base( info, context ) { } 
 
    public Cause Reason { get; private set; } 
} 

In the EmployeeDatabase.Add method, you can see the simple call to Validate on the emp object. This 
is a rather crude example, where you force the validation to fail by throwing an 
EmployeeVerificationException. But the main focus of the example is the creation of the new exception 
type. Many times, you’ll find that just creating a new exception type is good enough to convey the extra 
information you need to convey. In this case, I wanted to illustrate an example where the exception type 
carries more information about the validation failure, so I created a Reason property whose backing field 
must be initialized in the constructor. Also, notice that EmployeeVerificationException derives from 
System.Exception. At one point, the school of thought was that all .NET Framework-defined exception 
types would derive from System.Exception, while all user-defined exceptions would derive from 
ApplicationException, thus making it easier to tell the two apart. This goal has been lost partly due to 
the fact that some .NET Framework-defined exception types derive from ApplicationException. 7 

You may be wondering why I defined four exception constructors for this simple exception type. 
The traditional idiom when defining new exception types is to define the same four public constructors 
that System.Exception exposes. Had I decided not to carry the extra reason data, then the 
EmployeeVerificationException constructors would have matched the System.Exception constructors 
exactly in their form. If you follow this idiom when defining your own exception types, users will be able 
to treat your new exception type in the same way as other system-defined exceptions. Plus, your derived 
exception will be able to leverage the message and inner exception already encapsulated by 
System.Exception. 

Working with Allocated Resources and Exceptions 
If you’re a seasoned C++ pro, then one thing you have most definitely been grappling with in the C# 
world is the lack of deterministic destruction. C++ developers have become accustomed to using 
constructors and destructors of stack-based objects to manage precious resources. This idiom even has 
a name: Resource Acquisition Is Initialization (RAII). This means that you can create objects on the C++ 
stack where some precious resource is allocated in the constructor of those objects, and if you put the 
deallocation in the destructor, you can rely upon the destructor getting called at the proper time to clean 

                                                 

 
7 For more on this subject and many other useful guidelines, reference Krzysztof Cwalina and Brad Abrams’ 
Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries (2nd Edition) (Boston, 
MA: Addison-Wesley Professional, 2008). 



CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY 

 

208 

 

up. For example, no matter how the stack-based object goes out of scope—whether it’s through normal 
execution while reaching the end of the scope or via an exception—you can always be guaranteed that 
the destructor will execute, thus cleaning up the precious resource. 

When C# and the CLR were first introduced to developers during the beta program, many 
developers immediately became very vocal about this omission in the runtime. Whether you view it as 
an omission or not, it clearly was not addressed to its fullest extent until after the beta developer 
community applied a gentle nudge. The problem stems, in part, from the garbage-collected nature of 
objects in the CLR, coupled with the fact that the friendly destructor in the C# syntax was reused to 
implement object finalizers. It’s also important to remember that finalizers are very different from 
destructors. Using the destructor syntax for finalizers only added to the confusion of the matter. There 
were also other technical reasons, some dealing with efficiency, why deterministic destructors as we 
know them were not included in the runtime. 

After knocking heads for some time, the solution put on the table was the Disposable pattern that 
you utilize by implementing the IDisposable interface. For more detailed discussions relating to the 
Disposable pattern and your objects, refer to Chapter 4 and Chapter 13. Essentially, if your object needs 
deterministic destruction, it obtains it by implementing the IDisposable interface. However, you have to 
call your Dispose method explicitly in order to clean up after the disposable object. If you forget to, and 
your object is coded properly, then the resource won’t be lost—rather, it will just be cleaned up when the 
GC finally gets around to calling your finalizer. Within C++, you only have to remember to put your 
cleanup code in the destructor, and you never have to remember to clean up after your local objects, 
because cleanup happens automatically once they go out of scope. 

Consider the following contrived example that illustrates the danger you can face: 

using System; 
using System.IO; 
using System.Text; 
 
public class EntryPoint 
{ 
    public static void DoSomeStuff() { 
        // Open a file. 
        FileStream fs = File.Open( "log.txt", 
                                   FileMode.Append, 
                                   FileAccess.Write, 
                                   FileShare.None ); 
        Byte[] msg = new UTF8Encoding(true).GetBytes("Doing Some"+ 
                                                     " Stuff"); 
        fs.Write( msg, 0, msg.Length ); 
    } 
 
    public static void DoSomeMoreStuff() { 
        // Open a file. 
        FileStream fs = File.Open( "log.txt", 
                                   FileMode.Append, 
                                   FileAccess.Write, 
                                   FileShare.None ); 
        Byte[] msg = new UTF8Encoding(true).GetBytes("Doing Some"+ 
                                                     " More Stuff"); 
        fs.Write( msg, 0, msg.Length ); 
    } 
 
    static void Main() { 
        DoSomeStuff(); 
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        DoSomeMoreStuff(); 
    } 
} 

This code looks innocent enough. However, if you execute this code, you’ll most likely encounter an 
IOException. The code in DoSomeStuff creates a FileStream object with an exclusive lock on the file. Once 
the FileStream object goes out of scope at the end of the function, it is marked for collection, but you’re 
at the mercy of the GC and when it decides to do the cleanup. Therefore, when you find yourself opening 
the file again in DoSomeMoreStuff, you’ll get the exception, because the precious resource is still locked by 
the unreachable FileStream object. Clearly, this is a horrible position to be in. And don’t even think 
about making an explicit call to GC.Collect in Main before the call to DoSomeMoreStuff. Fiddling with the 
GC algorithm by forcing it to collect at specific times is a recipe for poor performance. You cannot 
possibly help the GC do its job better, because you have no specific idea how it is implemented. 

So what is one to do? One way or another, you must ensure that the file gets closed. However, here’s 
the rub: No matter how you do it, you must remember to do it. This is in contrast to C++, where you can 
put the cleanup in the destructor and then just rest assured that the resource will get cleaned up in a 
timely manner. One option would be to call the Close method on the FileStream in each of the methods 
that use it. That works fine, but it’s much less automatic and something you must always remember to 
do. However, even if you do, what happens if an exception is thrown before the Close method is called? 
You find yourself back in the same boat as before, with a resource dangling out there that you can’t get to 
in order to free it. 

Those who are savvy with exception handling will notice that you can solve the problem using some 
try/finally blocks, as in the following example: 

using System; 
using System.IO; 
using System.Text; 
 
public class EntryPoint 
{ 
    public static void DoSomeStuff() { 
        // Open a file. 
        FileStream fs = null; 
        try { 
            fs = File.Open( "log.txt", 
                            FileMode.Append, 
                            FileAccess.Write, 
                            FileShare.None ); 
            Byte[] msg = 
                new UTF8Encoding(true).GetBytes("Doing Some"+ 
                                                " Stuff\n"); 
            fs.Write( msg, 0, msg.Length ); 
        } 
        finally { 
            if( fs != null ) { 
                fs.Close(); 
            } 
        } 
    } 
 
    public static void DoSomeMoreStuff() { 
        // Open a file. 
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        FileStream fs = null; 
        try { 
            fs = File.Open( "log.txt", 
                            FileMode.Append, 
                            FileAccess.Write, 
                            FileShare.None ); 
            Byte[] msg = 
                new UTF8Encoding(true).GetBytes("Doing Some"+ 
                                                " More Stuff\n"); 
            fs.Write( msg, 0, msg.Length ); 
        } 
        finally { 
            if( fs != null ) { 
                fs.Close(); 
            } 
        } 
    } 
 
    static void Main() { 
        DoSomeStuff(); 
 
        DoSomeMoreStuff(); 
    } 
} 

The try/finally blocks solve the problem. But, yikes! Notice how ugly the code just got. Plus, let’s 
face it, many of us are lazy typists, and that was a lot of extra typing. Moreover, more typing means more 
places for bugs to be introduced. Lastly, it makes the code difficult to read. As you’d expect, there is a 
better way. Many objects, such as FileStream, that have a Close method also implement the IDisposable 
pattern. Usually, calling Dispose on these objects is the same as calling Close. Of course, calling Close 
over Dispose or vice versa is arguing over apples and oranges, if you still have to explicitly call one or the 
other. Thankfully, there’s a good reason why most classes that have a Close method implement 
Dispose—so you can use them effectively with the using statement, which is typically used as part of the 
Disposable pattern in C#. Therefore, you could change the code to the following: 

using System; 
using System.IO; 
using System.Text; 
 
public class EntryPoint 
{ 
    public static void DoSomeStuff() { 
        // Open a file. 
        using( FileStream fs = File.Open( "log.txt", 
                                          FileMode.Append, 
                                          FileAccess.Write, 
                                          FileShare.None ) ) { 
            Byte[] msg = 
                new UTF8Encoding(true).GetBytes("Doing Some" + 
                                                " Stuff\n"); 
            fs.Write( msg, 0, msg.Length ); 
        } 
    } 
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    public static void DoSomeMoreStuff() { 
        // Open a file. 
        using( FileStream fs = File.Open( "log.txt", 
                                          FileMode.Append, 
                                          FileAccess.Write, 
                                          FileShare.None ) ) { 
            Byte[] msg = 
                new UTF8Encoding(true).GetBytes("Doing Some" + 
                                                " More Stuff\n"); 
            fs.Write( msg, 0, msg.Length ); 
        } 
    } 
 
    static void Main() { 
        DoSomeStuff(); 
 
        DoSomeMoreStuff(); 
    } 
} 

As you can see, the code is much easier to follow, and the using statement takes care of having to 
type all those explicit try/finally blocks. You probably won’t be surprised to notice that if you look at 
the generated code in ILDASM, the compiler has generated the try/finally blocks in place of the using 
statement. You can also nest using statements within their compound blocks, just as you can nest 
try/finally blocks. 

Even though the using statement solves the “ugly code” symptom and reduces the chances of typing 
in extra bugs, it still requires that you remember to use it in the first place. It’s not as convenient as the 
deterministic destruction of local objects in C++, but it’s better than littering your code with try/finally 
blocks all over the place, and it’s definitely better than nothing. The end result is that C# does have a 
form of deterministic destruction via the using statement, but it’s only deterministic if you remember to 
make it deterministic. 

Providing Rollback Behavior 
When producing exception-neutral methods, as covered in the “Achieving Exception Neutrality” section 
of this chapter, you’ll often find it handy to employ a mechanism that can roll back any changes if an 
exception happens to be generated. You can solve this problem by using the classic technique of 
introducing one more level of indirection in the form of a helper class. For the sake of discussion, let’s 
use an object that represents a database connection, and that has methods named Commit and Rollback. 

In the C++ world, a popular solution to this problem involves the creation of a helper class that is 
created on the stack. The helper class also has a method named Commit. When called, it just passes 
through to the database object’s method, but before doing so, it sets an internal flag. The trick is in the 
destructor. If the destructor executes before the flag is set, there are only a couple of ways that is 
possible. First, the user might have forgotten to call Commit. That’s a bug in the code, so let’s not consider 
that option. The second way to get into the destructor without the flag set is if the object is being cleaned 
up because the stack is unwinding as it looks for a handler for a thrown exception. Depending on the 
state of the flag in the destructor code, you can instantly tell if you got here via normal execution or via 
an exception. If you got here via an exception, all you have to do is call Rollback on the database object, 
and you have the functionality you need. 
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Now, this is all great in the land of native C++, where you can use deterministic destruction. 
However, you can get the same end result using the C# form of deterministic destruction, which is the 
marriage between IDisposable and the using keyword. Remember, a destructor in native C++ maps into 
an implementation of the IDisposable interface in C#. All you have to do is take the code that you would 
have put into the destructor in C++ into the Dispose method of the C# helper class. Let’s take a look at 
what this C# helper class could look like: 

using System; 
using System.Diagnostics; 
 
public class Database 
{ 
    public void Commit() { 
        Console.WriteLine( "Changes Committed" ); 
    } 
 
    public void Rollback() { 
        Console.WriteLine( "Changes Abandoned" ); 
    } 
} 
 
public class RollbackHelper : IDisposable 
{ 
    public RollbackHelper( Database db ) { 
        this.db = db; 
    } 
 
    ~RollbackHelper() { 
        Dispose( false ); 
    } 
 
    public void Dispose() { 
        Dispose( true ); 
    } 
 
    public void Commit() { 
        db.Commit(); 
        committed = true; 
    } 
 
    private void Dispose( bool disposing ) { 
        // Don't do anything if already disposed.  Remember, it is 
        // valid to call Dispose() multiple times on a disposable 
        // object. 
        if( !disposed ) { 
            disposed = true; 

            // Remember, we don't want to do anything to the db if 
            // we got here from the finalizer, because the database 
            // field could already be finalized!   
            if( disposing ) { 
                if( !committed ) { 
                    db.Rollback(); 
                } 
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            } else { 
                Debug.Assert( false, "Failed to call Dispose()" + 
                                     " on RollbackHelper" ); 
            } 
        } 
    } 
 
    private Database db; 
    private bool     disposed = false; 
    private bool     committed = false; 
} 
 
public class EntryPoint 
{ 
    static private void DoSomeWork() { 
        using( RollbackHelper guard = new RollbackHelper(db) ) { 
            // Here we do some work that could throw an exception. 
             
            // Comment out the following line to cause an 
            // exception. 
            // nullPtr.GetType(); 
             
            // If we get here, we commit. 
            guard.Commit(); 
        } 
         
    } 
 
    static void Main() { 
        db = new Database(); 
        DoSomeWork(); 
    } 
 
    static private Database db; 
    static private Object   nullPtr = null; 
} 

Inside the DoSomeWork method is where you’ll do some work that could fail with an exception. 
Should an exception occur, you’ll want any changes that have gone into the Database object to be 
reverted. Inside the using block, you’ve created a new RollbackHelper object that contains a reference to 
the Database object. If control flow gets to the point of calling Commit on the guard reference, all is well, 
assuming the Commit method does not throw. Even if it does throw, you should code it in such a way that 
the Database remains in a valid state. However, if your code inside the guarded block throws an 
exception, the Dispose method in the RollbackHelper will diligently roll back your database. 

No matter what happens, the Dispose method will be called on the RollbackHelper instance, thanks 
to the using block. If you forget the using block, the finalizer for the RollbackHelper will not be able to do 
anything for you, because finalization of objects goes in random order, and the Database referenced by 
the RollbackHelper could be finalized prior to the RollbackHelper instance. To help you find the places 
where you brain-froze, you can code an assertion into the helper object as I have previously done. The 
whole use of this pattern hinges on the using block, so, for the sake of the remaining discussion, let’s 
assume you didn’t forget it. 

Once execution is safely inside the Dispose method, and it got there via a call to Dispose rather than 
through the finalizer, it simply checks the committed flag, and if it’s not set, it calls Rollback on the 
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Database instance. That’s all there is to it. It’s almost as elegant as the C++ solution except that, as in 
previous discussions in this chapter, you must remember to use the using keyword to make it work. If 
you’d like to see what happens in a case where an exception is thrown, simply uncomment the attempt 
to access the null reference inside the DoSomeWork method. 

You may have noticed that I haven’t addressed what happens if Rollback throws an exception. 
Clearly, for robust code, it’s optimal to require that whatever operations RollbackHelper performs in the 
process of a rollback should be guaranteed never to throw. This goes back to one of the most basic 
requirements for generating strong exception-safe and exception-neutral code: In order to create robust 
exception-safe code, you must have a well-defined set of operations that are guaranteed not to throw. In 
the C++ world, during the stack unwind caused by an exception, the rollback happens within a 
destructor. Seasoned C++ salts know that you should never throw an exception in a destructor, because 
if the stack is in the process of unwinding during an exception when that happens, your process is 
aborted very rudely. And there’s nothing worse than an application disappearing out from under users 
without a trace. But what happens if such a thing happens in C#? Remember, a using block is expanded 
into a try/finally block under the covers. And you may recall that when an exception is thrown within a 
finally block that is executing as the result of a previous exception, that previous exception is simply 
lost and the new exception gets thrown. What’s worse is that the finally block that was executing never 
gets to finish. That, coupled with the fact that losing exception information is always bad and makes it 
terribly difficult to find problems, means that it is strongly recommended that you never throw an 
exception inside a finally block. I know I’ve mentioned this before in this chapter, but it’s so important 
it deserves a second mention. The CLR won’t abort your application, but your application will likely be 
in an undefined state if an exception is thrown during execution of a finally block, and you’ll be left 
wondering how it got into such an ugly state. 

Summary 
In this chapter, I covered the basics of exception handling along with how you should apply the Expert 
pattern to determine the best place to handle a particular exception. I touched upon the differences 
between .NET 1.1 and later versions of the CLR when handling unhandled exceptions and how .NET 2.0 
and later respond in a more consistent manner. The meat of this chapter described techniques for 
creating bulletproof exception-safe code that guarantees system stability in the face of unexpected 
exceptional events. I also described constrained execution regions that you can use to postpone 
asynchronous exceptions during thread termination. Creating bulletproof exception-safe and exception-
neutral code is no easy task. Unfortunately, the huge majority of software systems in existence today flat-
out ignore the problem altogether. It’s an extremely unfortunate situation, given the wealth of resources 
that have become available ever since exception handling was added to the C++ language years ago. 

Sadly, for many developers, exception safety is an afterthought. They erroneously assume they can 
solve any exceptional problems during testing by sprinkling try statements throughout their code. In 
reality, exception safety is a crucial issue that you should consider at software design time. Failure to do 
so will result in substandard systems that will do nothing but frustrate users and lose market share to 
those companies whose developers spent a little extra time getting exception safety right. Moreover, 
there’s always the possibility, as computers integrate more and more into people’s daily lives, that 
government regulations could force systems to undergo rigorous testing in order to prove they are 
worthy for society to rely upon. Don’t think you may be the exception, either (no pun intended). I can 
envision an environment where a socialist government could force such rules on any commercially sold 
software (shudder). Have you ever heard stories about how, for example, the entire integrated air traffic 
control system in a country or continent went down because of a software glitch? Wouldn’t you hate to 
be the developer who skimped on exception safety and caused such a situation? I rest my case.  

In the next chapter, I’ll cover the main facets of dealing with strings in C# and the .NET Framework. 
Additionally, I’ll cover the important topic of globalization. 
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Working with Strings 

Within the .NET Framework base class library, the System.String type is the model citizen of how to 
create an immutable reference type that semantically acts like a value type. 

String Overview 
Instances of String are immutable in the sense that once you create them, you cannot change them. 
Although it may seem inefficient at first, this approach actually does make code more efficient. If you call 
the ICloneable.Clone method on a string, you get an instance that points to the same string data as the 
source. In fact, ICloneable.Clone simply returns a reference to this. This is entirely safe because the 
String public interface offers no way to modify the actual String data. Sure, you can subvert the system 
by employing unsafe code trickery, but I trust you wouldn’t want to do such a thing. In fact, if you 
require a string that is a deep copy of the original string, you may call the Copy method to do so. 

■ Note Those of you who are familiar with common design patterns and idioms may recognize this usage pattern 

as the handle/body or envelope/letter idiom. In C++, you typically implement this idiom when designing reference-

based types that you can pass by value. Many C++ standard library implementations implement the standard 

string this way. However, in C#’s garbage-collected heap, you don’t have to worry about maintaining reference 

counts on the underlying data. 

In many environments, such as C++ and C, the string is not usually a built-in type at all, but rather a 
more primitive, raw construct, such as a pointer to the first character in an array of characters. Typically, 
string-manipulation routines are not part of the language but rather a part of a library used with the 
language. Although that is mostly true with C#, the lines are somewhat blurred by the .NET runtime. The 
designers of the CLI specification could have chosen to represent all strings as simple arrays of 
System.Char types, but they chose to annex System.String into the collection of built-in types instead. In 
fact, System.String is an oddball in the built-in type collection, because it is a reference type and most of 
the built-in types are value types. However, this difference is blurred by the fact that the String type 
behaves with value semantics. 

You may already know that the System.String type represents a Unicode character string, and 
System.Char represents a 16-bit Unicode character. Of course, this makes portability and localization to 
other operating systems—especially systems with large character sets—easy. However, sometimes you 
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might need to interface with external systems using encodings other than UTF-16 Unicode character 
strings. For times like these, you can employ the System.Text.Encoding class to convert to and from 
various encodings, including ASCII, UTF-7, UTF-8, and UTF-32. Incidentally, the Unicode format used 
internally by the runtime is UTF-16.1 

String Literals 
When you use a string literal in your C# code, the compiler creates a System.String object for you that it 
then places into an internal table in the module called the intern pool. The idea is that each time you 
declare a new string literal within your code, the compiler first checks to see if you’ve declared the same 
string elsewhere, and if you have, then the code simply references the one already interned. Let’s take a 
look at an example of a way to declare a string literal within C#: 

using System; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        string lit1 = "c:\\windows\\system32"; 
        string lit2 = @"c:\windows\system32"; 
 
        string lit3 = @" 
Jack and Jill 
Went up the hill... 
"; 
        Console.WriteLine( lit3 ); 
 
        Console.WriteLine( "Object.RefEq(lit1, lit2): {0}", 
                           Object.ReferenceEquals(lit1, lit2) ); 
 
        if( args.Length > 0 ) { 
            Console.WriteLine( "Parameter given: {0}", 
                               args[0] ); 
 
            string strNew = String.Intern( args[0] ); 
 
            Console.WriteLine( "Object.RefEq(lit1, strNew): {0}", 
                               Object.ReferenceEquals(lit1, strNew) ); 
        } 
    } 
} 

First, notice the two declarations of the two literal strings lit1 and lit2. The declared type is string, 
which is the C# alias for System.String. The first instance is initialized via a regular string literal that can 
contain the familiar escaped sequences that are used in C and C++, such as \t and \n. Therefore, you 
must escape the backslash itself as usual—hence, the double backslash in the path. You can find more 

                                                 

 
1 For more information regarding the Unicode standard, visit www.unicode.org. 

http://www.unicode.org
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information about the valid escape sequences in the MSDN documentation. However, C# offers a type of 
string literal declaration called verbatim strings, where anything within the string declaration is put in 
the string as is. Such declarations are preceded with the @ character as shown. Specifically, pay attention 
to the fact that the strange declaration for lit3 is perfectly valid. The newlines within the code are taken 
verbatim into the string, which is shown in the output of this program. Verbatim strings can be useful if 
you’re creating strings for form submission and you need to be able to lay them out specifically within 
the code. The only escape sequence that is valid within verbatim strings is "", and you use it to insert a 
quote character into the verbatim string. 

Clearly, lit1 and lit2 contain strings of the same value, even though you declare them using 
different forms. Based upon what I said in the previous section, you would expect the two instances to 
reference the same string object. In fact, they do, and that is shown in the output from the program, 
where I test them using Object.ReferenceEquals. 

Finally, this example demonstrates the use of the String.Intern static method. Sometimes, you may 
find it necessary to determine if a string you’re declaring at run time is already in the intern pool. If it is, 
it may be more efficient to reference that string rather than create a new instance. The code accepts a 
string on the command line and then creates a new instance from it using the String.Intern method. 
This method always returns a valid string reference, but it will either be a string instance referencing a 
string in the intern pool, or the reference passed in will be added to the intern pool and then simply 
returned. Given the string of “c:\windows\system32” on the command line, this code produces the 
following output: 

Jack and Jill 

Went up the hill... 

 

Object.RefEq(lit1, lit2): True 

Parameter given: c:\windows\system32 

Object.RefEq(lit1, strNew): True 

Format Specifiers and Globalization 
You often need to format the data that an application displays to users in a specific way. For example, 
you may need to display a floating-point value representing some tangible metric in exponential form or 
in fixed-point form. In fixed-point form, you may need to use a culture-specific character as the decimal 
mark. Traditionally, dealing with these sorts of issues has always been painful. C programmers have the 
printf family of functions for handling formatting of values, but it lacks any locale-specific capabilities. 
C++ took further steps forward and offered a more robust and extensible formatting mechanism in the 
form of standard I/O streams while also offering locales. The .NET standard library offers its own 
powerful mechanisms for handling these two notions in a flexible and extensible manner. However, 
before I can get into the topic of format specifiers themselves, let’s cover some preliminary topics. 



CHAPTER 8 ■ WORKING WITH STRINGS 

 

218 

 

■ Note It’s important to address any cultural concerns your software may have early in the development cycle. 

Many developers tend to treat globalization as an afterthought. But if you notice, the .NET Framework designers 

put a lot of work into creating a rich library for handling globalization. The richness and breadth of the globalization 

API is an indicator of how difficult it can be. Address globalization concerns at the beginning of your product’s 

development cycle, or you’ll suffer from heartache later. 

Object.ToString, IFormattable, and CultureInfo 
Every object derives a method from System.Object called ToString that you’re probably familiar with 
already. It’s extremely handy to get a string representation of your object for output, even if only for 
debugging purposes. For your custom classes, you’ll see that the default implementation of ToString 
merely returns the type of the object itself. You need to implement your own override to do anything 
useful. As you’d expect, all of the built-in types do just that. Thus, if you call ToString on a System.Int32, 
you’ll get a string representation of the value within. But what if you want the string representation in 
hexadecimal format? Object.ToString is of no help here, because there is no way to request the desired 
format. There must be another way to get a string representation of an object. In fact, there is a way, and 
it involves implementing the IFormattable interface, which looks like the following: 

public interface IFormattable 
{ 
   string ToString( string format, IFormatProvider formatProvider ) 
} 

You’ll notice that all built-in numeric types as well as date-time types implement this interface. 
Using this method, you can specify exactly how you want the value to be formatted by providing a 
format specifier string. Before I get into exactly what the format strings look like, let me explain a few 
more preliminary concepts, starting with the second parameter of the IFormattable.ToString method. 

An object that implements the IFormatProvider interface is—surprise—a format provider. A format 
provider’s common task within the .NET Framework is to provide culture-specific formatting 
information, such as what character to use for monetary amounts, for decimal separators, and so on. 
When you pass null for this parameter, the format provider that IFormattable.ToString uses is typically 
the CultureInfo instance returned by System.Globalization.CultureInfo.CurrentCulture. This instance 
of CultureInfo is the one that matches the culture that the current thread uses. However, you have the 
option of overriding it by passing a different CultureInfo instance, such as one obtained by creating a 
new instance of CultureInfo by passing into its constructor a string representing the desired locale 
formatted as described in the RFC 1766 standard such as en-US for English spoken in the United States. 
For more information on culture names, consult the MSDN documentation for the CultureInfo class. 
Finally, you can even provide a culture-neutral CultureInfo instance by passing the instance provided 
by CultureInfo.InvariantCulture. 

■ Note Instances of CultureInfo are used as a convenient grouping mechanism for all formatting information 

relevant to a specific culture. For example, one CultureInfo instance could represent the cultural-specific 

qualities of English spoken in the United States, while another could contain properties specific to English spoken 



CHAPTER 8 ■ WORKING WITH STRINGS 

 

 

219 

 

in the United Kingdom. Each CultureInfo instance contains specific instances of DateTimeFormatInfo, 

NumberFormatInfo, TextInfo, and CompareInfo that are germane to the language and region represented. 

Once the IFormattable.ToString implementation has a valid format provider—whether it was 
passed in or whether it is the one attached to the current thread—then it may query that format provider 
for a specific formatter by calling the IFormatProvider.GetFormat method. The formatters implemented 
by the .NET Framework are the NumberFormatInfo and DateTimeFormatInfo types. When you ask for one 
of these objects via IFormatProvider.GetFormat, you ask for it by type. This mechanism is extremely 
extensible, because you can provide your own formatter types, and other types that you create that know 
how to consume them can ask a custom format provider for instances of them. 

Suppose you want to convert a floating-point value into a string. The execution flow of the 
IFormattable.ToString implementation on System.Double follows these general steps: 

1.  The implementation gets a reference to an IFormatProvider type, which is 
either the one passed in or the one attached to the current thread if the one 
passed in is null. 

2. It asks the format provider for an instance of the type NumberFormatInfo via a 
call to IFormatProvider.GetFormat. The format provider initializes the 
NumberFormatInfo instance’s properties based on the culture it represents. 

3. It uses the NumberFormatInfo instance to format the number appropriately 
while creating a string representation of this based upon the specification of 
the format string. 

Creating and Registering Custom CultureInfo Types 
The globalization capabilities of the .NET Framework have always been strong. However, there was 
room for improvement, and much of that improvement came with the .NET 2.0 Framework. Specifically, 
with .NET 1.1, it was always a painful process to introduce cultural information into the system if the 
framework didn’t know the culture and region information. The .NET 2.0 Framework introduced a new 
class named CultureAndRegionInfoBuilder in the System.Globalization namespace. 

Using CultureAndRegionInfoBuilder, you have the capability to define and introduce an entirely 
new culture and its region information into the system and register them for global usage as well. 
Similarly, you can modify preexisting culture and region information on the system. And if that’s not 
enough flexibility for you, you can even serialize the information into a Locale Data Markup Language 
(LDML) file, which is a standard-based XML format. Once you register your new culture and region with 
the system, you can then create instances of CultureInfo and RegionInfo using the string-based name 
that you registered with the system. 

When naming your new cultures, you should adhere to the standard format for naming cultures. 
The format is generally [prefix-]language[-region][-suffix[...]], where the language identifier is the 
only required part and the other pieces are optional. The prefix can be either of the following: 

• i- for culture names registered with the Internet Assigned Numbers Authority 
(IANA) 

• x- for all others 
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Additionally, the prefix portion can be in uppercase or lowercase. The language part is the lowercase 
two-letter code from the ISO 639-1 standard, while the region is a two-letter uppercase code from the 
ISO 3166 standard. For example, Russian spoken in Russia is ru-RU. The suffix component is used to 
further subidentify the culture based on some other data. For example, Serbian spoken in Serbia could 
be either sr-SP-Cyrl or sr-SP-Latn—one for the Cyrillic alphabet and the other for the Latin alphabet. If 
you define a culture specific to your division within your company, you could create it using the name x-
en-US-MyCompany-WidgetDivision. 

To see how easy it is to use the CultureAndRegionInfoBuilder object, let’s create a fictitious culture 
based upon a preexisting culture. In the United States, the dominant measurement system is English 
units. Let’s suppose that the United States decided to switch to the metric system at some point, and you 
now need to modify the culture information on some machines to match. Let’s see what that code would 
look like: 

using System; 
using System.Globalization; 
 
public class EntryPoint 
{ 
    static void Main() { 
        CultureAndRegionInfoBuilder cib = null; 
        cib = new CultureAndRegionInfoBuilder( 
                         "x-en-US-metric", 
                         CultureAndRegionModifiers.None ); 
 
        cib.LoadDataFromCultureInfo( new CultureInfo("en-US") ); 
        cib.LoadDataFromRegionInfo( new RegionInfo("US") ); 
 
        // Make the change. 
        cib.IsMetric = true; 
 
        // Create an LDML file. 
        cib.Save( "x-en-US-metric.ldml" ); 
 
        // Register with the system. 
        cib.Register(); 
    } 
} 

■ Note In order to compile the previous example, you’ll need to reference the sysglobl.dll assembly 

specifically. If you build it using the command line, you can use the following: 

csc /r:sysglobl.dll example.cs 
You can see that the process is simple, because the CultureAndRegionInfoBuilder has a well-

designed interface. For illustration purposes, I’ve sent the LDML to a file so you can see what it looks 
like, although it’s too verbose to list in this text. One thing to consider is that you must have proper 
permissions in order to call the Register method. This typically requires that you be an administrator, 
although you could get around that by adjusting the accessibility of the %WINDIR%\Globalization 
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directory and the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CustomLocale registry 
key. Once you register the culture with the system, you can reference it using the given name when 
specifying any culture information in the CLR. For example, to verify that the culture and information 
region is registered properly, you can build and execute the following code to test it: 

using System; 
using System.Globalization; 
 
public class EntryPoint 
{ 
    static void Main() { 
        RegionInfo ri = new RegionInfo("x-en-US-metric"); 
        Console.WriteLine( ri.IsMetric ); 
    } 
} 

Format Strings 
You must consider what the format string looks like. The built-in numeric objects use the standard 
numeric format strings or the custom numeric format strings defined by the .NET Framework, which 
you can find in the MSDN documentation by searching for “standard numeric format strings.” The 
standard format strings are typically of the form Axx, where A is the desired format requested and xx is an 
optional precision specifier. Examples of format specifiers for numbers are "C" for currency, "D" for 
decimal, "E" for scientific notation, "F" for fixed-point notation, and "X" for hexadecimal notation. Every 
type also supports "G" for general, which is the default format specifier and is also the format that you 
get when you call Object.ToString, where you cannot specify a format string. If these format strings 
don’t suit your needs, you can even use one of the custom format strings that allow you to describe what 
you’d like in a more-or-less picture format. 

The point of this whole mechanism is that each type interprets and defines the format string 
specifically in the context of its own needs. In other words, System.Double is free to treat the G format 
specifier differently than the System.Int32 type. Moreover, your own type—say, type Employee—is free to 
implement a format string in whatever way it likes. For example, a format string of "SSN" could create a 
string based on the Social Security number of the employee. 

■ Note Allowing your own types to handle a format string of "DBG" is of even more utility, thus creating a detailed 

string that represents the internal state to send to a debug output log. 

Let’s take a look at some example code that exercises these concepts: 

using System; 
using System.Globalization; 
using System.Windows.Forms; 
 
public class EntryPoint 
{ 
    static void Main() { 
        CultureInfo current  = CultureInfo.CurrentCulture; 
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        CultureInfo germany  = new CultureInfo( "de-DE" ); 
        CultureInfo russian  = new CultureInfo( "ru-RU" ); 
 
        double money = 123.45; 
 
        string localMoney = money.ToString( "C", current ); 
        MessageBox.Show( localMoney, "Local Money" ); 
 
        localMoney = money.ToString( "C", germany ); 
        MessageBox.Show( localMoney, "German Money" ); 
 
        localMoney = money.ToString( "C", russian ); 
        MessageBox.Show( localMoney, "Russian Money" ); 
    } 
} 

In this example, I display the strings using the MessageBox type defined in System.Windows.Forms, 
because the console isn’t good at displaying Unicode characters. The format specifier that I’ve chosen is 
“C” to display the number in a currency format. For the first display, I use the CultureInfo instance 
attached to the current thread. For the following two, I’ve created a CultureInfo for both Germany and 
Russia. Note that in forming the string, the System.Double type has used the CurrencyDecimalSeparator, 
CurrencyDecimalDigits, and CurrencySymbol properties, among others, of the NumberFormatInfo instance 
returned from the CultureInfo.GetFormat method. Had I displayed a DateTime instance, then the 
DateTime implementation of IFormattable.ToString would have utilized an instance of 
DateTimeFormatInfo returned from CultureInfo.GetFormat in a similar way. 

Console.WriteLine and String.Format 
Throughout this book, you’ve seen me using Console.WriteLine extensively in the examples. One of the 
forms of WriteLine that is useful and identical to some overloads of String.Format allows you to build a 
composite string by replacing format tags within a string with a variable number of parameters passed 
in. In practice, String.Format is similar to the printf family of functions in C and C++. However, it’s 
much more flexible and safer, because it’s based upon the .NET Framework string-formatting 
capabilities covered previously. Let’s look at a quick example of string format usage: 

using System; 
using System.Globalization; 
using System.Windows.Forms; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 3 ) { 
            Console.WriteLine( "Please provide 3 parameters" ); 
            return; 
        } 
 
        string composite = 
            String.Format( "{0} + {1} = {2}", 
                           args[0], 
                           args[1], 
                           args[2] ); 
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        Console.WriteLine( composite ); 
    } 
} 

You can see that a placeholder is contained within curly braces and that the number within them is 
the index within the remaining arguments that should be substituted there. The String.Format method, 
as well as the Console.WriteLine method, has an overload that accepts a variable number of arguments 
to use as the replacement values. In this example, the String.Format method’s implementation replaces 
each placeholder using the general formatting of the type that you can get via a call to the parameterless 
version of ToString on that type. If the argument being placed in this spot supports IFormattable, the 
IFormattable.ToString method is called on that argument with a null format specifier, which usually is 
the same as if you had supplied the “G”, or general, format specifier. Incidentally, within the source 
string, if you need to insert actual curly braces that will show in the output, you must double them by 
putting in either {{ or }}. 

The exact format of the replacement item is {index[,alignment][:formatString]}, where the items 
within square brackets are optional. The index value is a zero-based value used to reference one of the 
trailing parameters provided to the method. The alignment represents how wide the entry should be 
within the composite string. For example, if you set it to eight characters in width and the string is 
narrower than that, then the extra space is padded with spaces. Lastly, the formatString portion of the 
replacement item allows you to denote precisely what formatting to use for the item. The format string is 
the same style of string that you would have used if you were to call IFormattable.ToString on the 
instance itself, which I covered in the previous section. Unfortunately, you can’t specify a particular 
IFormatProvider instance for each one of the replacement strings. Recall that the IFormatter.ToString 
method accepts an IFormatProvider, however, when using String.Format and the placeholder string as 
previously shown, String.Format simply passes null for the IFormatProvider when it calls 
IFormatter.ToString resulting in it utilizing the default formatters associated with the culture of the 
thread. If you need to create a composite string from items using multiple format providers or cultures, 
you must resort to using IFormattable.ToString directly. 

Examples of String Formatting in Custom Types 
Let’s take a look at another example using the venerable Complex type that I’ve used throughout this 
book. This time, let’s implement IFormattable on it to make it a little more useful when generating a 
string version of the instance: 

using System; 
using System.Text; 
using System.Globalization; 
 
public struct Complex : IFormattable 
{ 
    public Complex( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    // IFormattable implementation 
    public string ToString( string format, 
                     IFormatProvider formatProvider ) { 
        StringBuilder sb = new StringBuilder(); 
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        if( format == "DBG" ) { 
            // Generate debugging output for this object. 
            sb.Append( this.GetType().ToString() + "\n" ); 
            sb.AppendFormat( "\treal:\t{0}\n", real ); 
            sb.AppendFormat( "\timaginary:\t{0}\n", imaginary ); 
        } else { 
            sb.Append( "( " ); 
            sb.Append( real.ToString(format, formatProvider) ); 
            sb.Append( " : " ); 
            sb.Append( imaginary.ToString(format, formatProvider) ); 
            sb.Append( " )" ); 
        } 
 
        return sb.ToString(); 
    } 
 
    private double real; 
    private double imaginary; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        CultureInfo local = CultureInfo.CurrentCulture; 
        CultureInfo germany = new CultureInfo( "de-DE" ); 
 
        Complex cpx = new Complex( 12.3456, 1234.56 ); 
 
        string strCpx = cpx.ToString( "F", local ); 
        Console.WriteLine( strCpx ); 
 
        strCpx = cpx.ToString( "F", germany ); 
        Console.WriteLine( strCpx ); 
 
        Console.WriteLine( "\nDebugging output:\n{0:DBG}", 
                           cpx ); 
    } 
} 

The real meat of this example lies within the implementation of IFormattable.ToString. I’ve 
implemented a “DBG” format string for this type that will create a string that shows the internal state of 
the object and may be useful for debug purposes. I’m sure you can think of a little more information to 
display to a debugger output log that is specific to the instance, but you get the idea. If the format string 
is not equal to “DBG”, then you simply defer to the IFormattable implementation of System.Double. 
Notice my use of StringBuilder, which I cover in the later section of this chapter called “StringBuilder,” 
to create the string that I eventually return. Also, I chose to use the Console.WriteLine method and its 
format item syntax to send the debugging output to the console just to show a little variety in usage. 

ICustomFormatter 
ICustomFormatter is an interface that allows you to replace or extend a built-in or already existing 
IFormattable interface for an object. Whenever you call String.Format or StringBuilder.AppendFormat 
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to convert an object instance to a string, before the method calls through to the object’s implementation 
of IFormattable.ToString, or Object.ToString if it does not implement IFormattable, it first checks to 
see if the passed-in IFormatProvider provides a custom formatter. If it does, it calls 
IFormatProvider.GetFormat while passing a type of ICustomFormatter. If the formatter returns an 
implementation of ICustomFormatter, then the method will use the custom formatter. Otherwise, it will 
use the object’s implementation of IFormattable.ToString or the object’s implementation of 
Object.ToString in cases where it doesn’t implement IFormattable. 

Consider the following example where I’ve reworked the previous Complex example, but I’ve 
externalized the debugging output capabilities outside of the Complex struct. I’ve bolded the code that 
has changed: 

using System; 
using System.Text; 
using System.Globalization; 
 
public class ComplexDbgFormatter : ICustomFormatter, IFormatProvider 
{ 
    // IFormatProvider implementation 
    public object GetFormat( Type formatType ) { 
        if( formatType == typeof(ICustomFormatter) ) { 
            return this; 
        } else { 
            return CultureInfo.CurrentCulture. 
                GetFormat( formatType ); 
        } 
    } 
 
    // ICustomFormatter implementation 
    public string Format( string format, 
                          object arg, 
                          IFormatProvider formatProvider ) { 
        if( arg.GetType() == typeof(Complex) &&  
            format == "DBG" ) { 
            Complex cpx = (Complex) arg; 
 
            // Generate debugging output for this object. 
            StringBuilder sb = new StringBuilder(); 
            sb.Append( arg.GetType().ToString() + "\n" ); 
            sb.AppendFormat( "\treal:\t{0}\n", cpx.Real ); 
            sb.AppendFormat( "\timaginary:\t{0}\n", cpx.Imaginary ); 
            return sb.ToString(); 
        } else { 
            IFormattable formattable = arg as IFormattable; 
            if( formattable != null ) { 
                return formattable.ToString( format, formatProvider ); 
            } else { 
                return arg.ToString(); 
            } 
        } 
    } 
} 
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public struct Complex : IFormattable 
{ 
    public Complex( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    public double Real { 
        get { return real; } 
    } 
 
    public double Imaginary { 
        get { return imaginary; } 
    } 
 
    // IFormattable implementation 
    public string ToString( string format, 
                     IFormatProvider formatProvider ) { 
        StringBuilder sb = new StringBuilder(); 
 
        sb.Append( "( " ); 
        sb.Append( real.ToString(format, formatProvider) ); 
        sb.Append( " : " ); 
        sb.Append( imaginary.ToString(format, formatProvider) ); 
        sb.Append( " )" ); 
 
        return sb.ToString(); 
    } 
 
    private double real; 
    private double imaginary; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        CultureInfo local = CultureInfo.CurrentCulture; 
        CultureInfo germany = new CultureInfo( "de-DE" ); 
 
        Complex cpx = new Complex( 12.3456, 1234.56 ); 
 
        string strCpx = cpx.ToString( "F", local ); 
        Console.WriteLine( strCpx ); 
 
        strCpx = cpx.ToString( "F", germany ); 
        Console.WriteLine( strCpx ); 
 
        ComplexDbgFormatter dbgFormatter = 
            new ComplexDbgFormatter(); 
        strCpx = String.Format( dbgFormatter, 
                                "{0:DBG}", 



CHAPTER 8 ■ WORKING WITH STRINGS 

 

 

227 

 

                                cpx ); 
        Console.WriteLine( "\nDebugging output:\n{0}", 
                           strCpx ); 
    } 
} 

Of course, this example is a bit more complex (no pun intended). But if you were not the original 
author of the Complex type, then this may be your only way to provide custom formatting for that type. 
Using this technique, you can provide custom formatting to any of the other built-in types in the system. 

Comparing Strings 
When it comes to comparing strings, the .NET Framework provides quite a bit of flexibility. You can 
compare strings based on cultural information as well as without cultural consideration. You can also 
compare strings using case sensitivity or not, and the rules for how to do case-insensitive comparisons 
vary from culture to culture. There are several ways to compare strings offered within the Framework, 
some of which are exposed directly on the System.String type through the static String.Compare 
method. You can choose from a few overloads, and the most basic of them use the CultureInfo attached 
to the current thread to handle comparisons. 

You often need to compare strings, and you don’t need to worry about, or want to carry, the 
overhead of culture-specific comparisons. A perfect example is when you’re comparing internal string 
data from, say, a configuration file, or when you’re comparing file directories. In the .NET 1.1 days, the 
main tool of choice was to use the String.Compare method while passing the InvariantCulture property. 
This works fine in most cases, but it still applies culture information to the comparison even though the 
culture information it uses is neutral to all cultures, and that is usually an unnecessary overhead for such 
comparisons. The .NET 2.0 Framework introduced a new enumeration, StringComparison, that allows 
you to choose a true nonculture-based comparison. The StringComparison enumeration looks like the 
following: 

public enum StringComparison 
{ 
   CurrentCulture, 
   CurrentCultureIgnoreCase, 
   InvariantCulture, 
   InvariantCultureIgnoreCase, 
   Ordinal, 
   OrdinalIgnoreCase 
} 

The last two items in the enumeration are the items of interest. An ordinal-based comparison is the 
most basic string comparison; it simply compares the character values of the two strings based on the 
numeric value of each character compared (i.e., it actually compares the raw binary values of each 
character). Doing comparisons this way removes all cultural bias from the comparisons and increases 
the efficiency tremendously. On my computer, I ran some crude timing loops to compare the two 
techniques when comparing strings of equal length. The speed increase was almost nine times faster. Of 
course, had the strings been more complex with more than just lowercase Latin characters in them, the 
gain would have been even higher. 

The .NET 2.0 Framework introduced a new class called StringComparer that implements the 
IComparer interface. Things such as sorted collections can use StringComparer to manage the sort. With 
regards to locale support, the System.StringComparer type follows the same idiom as the IFormattable 
interface. You can use the StringComparer.CurrentCulture property to get a StringComparer instance 
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specific to the culture of the current thread. Additionally, you can get the StringComparer instance from 
StringComparer.CurrentCultureIgnoreCase to do case-insensitive comparison. Also, you can get culture-
invariant instances using the InvariantCulture and InvariantCultureIgnoreCase properties. Lastly, you 
can use the Ordinal and OrdinalIgnoreCase properties to get instances that compare based on ordinal 
string comparison rules. 

As you may expect, if the culture information attached to the current thread isn’t what you need, 
you can create StringComparer instances based upon explicit locales simply by calling the 
StringComparer.Create method and passing the desired CultureInfo representing the locale you want as 
well as a flag denoting whether you want a case-sensitive or case-insensitive comparer. 

When choosing between the various comparison techniques, take care to choose the appropriate 
choice for the job. The general rule of thumb is to use the culture-specific or culture-invariant 
comparisons for any user-facing data—that is, data that will be presented to end users in some form or 
fashion—and ordinal comparisons otherwise. However, it’s rare that you’d ever use InvariantCulture 
compared strings to display to users. Use the ordinal comparisons when dealing with data that is 
completely internal. In fact, ordinal-based comparisons render InvariantCulture comparisons almost 
useless. 

■ Note Prior to version 2.0 of the .NET Framework, it was a general guideline that if you were comparing strings 

to make a security decision, you should use InvariantCulture rather than base the comparison on 

CultureInfo.CurrentCulture. In such comparisons, you want a tightly controlled environment that you know 

will be the same in the field as it is in your test environment. If you base the comparison on CurrentCulture, this 

is impossible to achieve, because end users can change the culture on the machine and introduce a probably 

untested code path into the security decision, since it’s almost impossible to test under all culture permutations. 

Naturally, in .NET 2.0 and onward, it is recommended that you base these security comparisons on ordinal 

comparisons rather than InvariantCulture for added efficiency and safety. 

Working with Strings from Outside Sources 
Within the confines of the .NET Framework, all strings are represented using Unicode UTF-16 character 
arrays. However, you often might need to interface with the outside world using some other form of 
encoding, such as UTF-8. Sometimes, even when interfacing with other entities that use 16-bit Unicode 
strings, those entities may use big-endian Unicode strings, whereas the typical Intel platform uses little-
endian Unicode strings. The .NET Framework makes this conversion work easy with the 
System.Text.Encoding class. 

In this section, I won’t go into all of the details of System.Text.Encoding, but I highly suggest that 
you reference the documentation for this class in the MSDN for all of the finer details. Let’s take a look at 
a cursory example of how to convert to and from various encodings using the Encoding objects served up 
by the System.Text.Encoding class: 

using System; 
using System.Text; 
 
public class EntryPoint 
{ 
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    static void Main() { 
        string leUnicodeStr =   // "What's up!" 
 
        Encoding leUnicode = Encoding.Unicode; 
        Encoding beUnicode = Encoding.BigEndianUnicode; 
        Encoding utf8 = Encoding.UTF8; 
 
        byte[] leUnicodeBytes = leUnicode.GetBytes(leUnicodeStr); 
        byte[] beUnicodeBytes = Encoding.Convert( leUnicode, 
                                                  beUnicode, 
                                                  leUnicodeBytes); 
        byte[] utf8Bytes = Encoding.Convert( leUnicode, 
                                             utf8, 
                                             leUnicodeBytes ); 
 
        Console.WriteLine( "Orig. String: {0}\n", leUnicodeStr ); 
        Console.WriteLine( "Little Endian Unicode Bytes:" ); 
        StringBuilder sb = new StringBuilder(); 
        foreach( byte b in leUnicodeBytes ) { 
            sb.Append( b ).Append(" : "); 
        } 
        Console.WriteLine( "{0}\n", sb.ToString() ); 
 
        Console.WriteLine( "Big Endian Unicode Bytes:" ); 
        sb = new StringBuilder(); 
        foreach( byte b in beUnicodeBytes ) { 
            sb.Append( b ).Append(" : "); 
        } 
        Console.WriteLine( "{0}\n", sb.ToString() ); 
 
        Console.WriteLine( "UTF Bytes: " ); 
        sb = new StringBuilder(); 
        foreach( byte b in utf8Bytes ) { 
            sb.Append( b ).Append(" : "); 
        } 
        Console.WriteLine( sb.ToString() ); 
    } 
} 

The example first starts by creating a System.String with some Russian text in it. As mentioned, the 
string contains a Unicode string, but is it a big-endian or little-endian Unicode string? The answer 
depends on what platform you’re running on. On an Intel system, it is normally little-endian. However, 
because you’re not supposed to access the underlying byte representation of the string because it is 
encapsulated from you, it doesn’t matter. In order to get the bytes of the string, you should use one of 
the Encoding objects that you can get from System.Text.Encoding. In my example, I get local references 
to the Encoding objects for handling little-endian Unicode, big-endian Unicode, and UTF-8. Once I have 
those, I can use them to convert the string into any byte representation that I want. As you can see, I get 
three representations of the same string and send the byte sequence values to standard output. In this 
example, because the text is based on the Cyrillic alphabet, the UTF-8 byte array is longer than the 
Unicode byte array. Had the original string been based on the Latin character set, the UTF-8 byte array 
would be shorter than the Unicode byte array usually by half. The point is, you should never make any 
assumption about the storage requirements for any of the encodings. If you need to know how much 
space is required to store the encoded string, call the Encoding.GetByteCount method to get that value. 
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■ Caution Never make assumptions about the internal string representation format of the CLR. Nothing says that 

the internal representation cannot vary from one platform to the next. It would be unfortunate if your code made 

assumptions based upon an Intel platform and then failed to run on a Sun platform running the Mono CLR. 

Microsoft could even choose to run Windows on another platform one day, just as Apple has chosen to start using 

Intel processors. Also, just because Encoding.Unicode is not named Encoding.LittleEndianUnicode should not 

lead you to believe that the CLR forces all string data to be represented as little-endian internally. In fact, the CLI 

standard clearly states that for all data types greater than 1 byte in memory, the byte ordering of the data is 

dependent on the target platform. 

Usually, you need to go the opposite way with the conversion and convert an array of bytes from the 
outside world into a string that the system can then manipulate easily. For example, the Bluetooth 
protocol stack uses big-endian Unicode strings to transfer string data. To convert the bytes into a 
System.String, use the GetString method on the encoder that you’re using. You must also use the 
encoder that matches the source encoding of your data. 

This brings up an important note to keep in mind. When passing string data to and from other 
systems in raw byte format, you must always know the encoding scheme used by the protocol you’re 
using. Most importantly, you must always use that encoding’s matching Encoding object to convert the 
byte array into a System.String, even if you know that the encoding in the protocol is the same as that 
used internally to System.String on the platform where you’re building the application. Why? Suppose 
you’re developing your application on an Intel platform and the protocol encoding is little-endian, 
which you know is the same as the platform encoding. So you take a shortcut and don’t use the 
System.Text.Encoding.Unicode object to convert the bytes to the string. Later on, you decide to run the 
application on a platform that happens to use big-endian strings internally. You’ll be in for a big surprise 
when the application starts to crumble because you falsely assumed what encoding System.String uses 
internally. Efficiency is not a problem if you always use the encoder, because on platforms where the 
internal encoding is the same as the external encoding, the conversion will essentially boil down to 
nothing. 

In the previous example, you saw use of the StringBuilder class in order to send the array of bytes 
to the console. Let’s now take a look at what the StringBuilder type is all about. 

StringBuilder 
System.String objects are immutable; therefore, they create efficiency bottlenecks when you’re trying to 
build strings on the fly. You can create composite strings using the + operator as follows: 

string space = " "; 
string compound = "Vote" + space + "for"  + space + "Pedro"; 

However, this method isn’t efficient, because this code creates several strings to get the job done. 
Creating all those intermediate strings could increase memory pressure. Although this line of code is 
rather contrived, you can imagine that the efficiency of a complex system that does lots of string 
manipulation can quickly go downhill due to memory usage. Consider a case where you implement a 
custom base64 encoder that appends characters incrementally as it processes a binary file. The .NET 
library already offers this functionality in the System.Convert class, but let’s ignore that for the sake of 
this example. If you repeatedly used the + operator in a loop to create a large base64 string, your 



CHAPTER 8 ■ WORKING WITH STRINGS 

 

 

231 

 

performance would quickly degrade as the source data increased in size. For these situations, you can 
use the System.Text.StringBuilder class, which implements a mutable string specifically for building 
composite strings efficiently. 

I won’t go over each of the methods of StringBuilder in detail, because you can get all the details of 
each method within the MSDN documentation. However, I’ll cover more of the salient points of note. 
StringBuilder internally maintains an array of characters that it manages dynamically. The workhorse 
methods of StringBuilder are Append, Insert, and AppendFormat. If you look up the methods in the 
MSDN, you’ll see that they are richly overloaded in order to support appending and inserting string 
forms of the many common types. When you create a StringBuilder instance, you have various 
constructors to choose from. The default constructor creates a new StringBuilder instance with the 
system-defined default capacity. However, that capacity doesn’t constrain the size of the string that it 
can create. Rather, it represents the amount of string data the StringBuilder can hold before it needs to 
grow the internal buffer and increase the capacity. If you know a ballpark figure of how big your string 
will likely end up being, you can give the StringBuilder that number in one of the constructor overloads, 
and it will initialize the buffer accordingly. This could help the StringBuilder instance from having to 
reallocate the buffer too often while you fill it. 

You can also define the maximum-capacity property in the constructor overloads. By default, the 
maximum capacity is System.Int32.MaxValue, which is currently 2,147,483,647, but that exact value is 
subject to change as the system evolves. If you need to protect your StringBuilder buffer from growing 
over a certain size, you may provide an alternate maximum capacity in one of the constructor overloads. 
If an append or insert operation forces the need for the buffer to grow greater than the maximum 
capacity, an ArgumentOutOfRangeException is thrown. 

For convenience, all of the methods that append and insert data into a StringBuilder instance 
return a reference to this. Thus, you can chain operations on a single string builder as shown: 

using System; 
using System.Text; 
 
public class EntryPoint 
{ 
    static void Main() { 
        StringBuilder sb = new StringBuilder(); 
 
        sb.Append("StringBuilder ").Append("is ") 
            .Append("very... "); 
 
        string built1 = sb.ToString(); 
 
        sb.Append("cool"); 
 
        string built2 = sb.ToString(); 
 
        Console.WriteLine( built1 ); 
        Console.WriteLine( built2 ); 
    } 
} 

In this example, you can see that I converted the StringBuilder instance sb into a new 
System.String instance named built1 by calling sb.ToString. For maximum efficiency, the 
StringBuilder simply hands off a reference to the underlying string so that a copy is not necessary. If you 
think about it, part of the utility of StringBuilder would be compromised if it didn’t do it this way. After 
all, if you create a huge string—say, some megabytes in size, such as a base64-encoded large image—you 
don’t want that data to be copied in order to create a string from it. However, once you call 
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StringBuilder.ToString, you now have the string variable and the StringBuilder holding references to 
the same string. Because string is immutable, StringBuilder then switches to using a copy-on-write 
idiom with the underlying string. Therefore, at the place where I append to the StringBuilder after 
having assigned the built1 variable, the StringBuilder must make a new copy of the internal string. It’s 
important for you to keep this behavior in mind if you’re using StringBuilder to work with large string 
data. 

Searching Strings with Regular Expressions 
The System.String type itself offers some rudimentary searching methods, such as IndexOf, IndexOfAny, 
LastIndexOf, LastIndexOfAny, and StartsWith. Using these methods, you can determine if a string 
contains certain substrings and where. However, these methods quickly become cumbersome and are a 
bit too primitive to do any complex searching of strings effectively. Thankfully, the .NET Framework 
library contains classes that implement regular expressions (regex). If you’re not already familiar with 
regular expressions, I strongly suggest that you learn the regular-expression syntax and how to use it 
effectively. The regular-expression syntax is a language in and of itself. Excellent sources of information 
on the syntax include Mastering Regular Expressions, Third Edition, Jeffrey E. F. Friedl (Sebastopol, CA: 
O’Reilly Media, 2006) and the material under “Regular Expression Language Elements” within the 
MSDN documentation. The capabilities of the .NET regular-expression engine are on par with those of 
Perl 5 and Python. Full coverage of the capabilities of regular expressions with regard to their syntax is 
beyond the scope of this book. However, I’ll describe the ways to use regular expressions that are specific 
to the .NET Framework. 

There are really three main types of operations for which you employ regular expressions. The first 
is when searching a string just to verify that it contains a specific pattern, and if so, where. The search 
pattern can be extremely complex. The second is similar to the first, except, in the process, you save off 
parts of the searched expression. For example, if you search a string for a date in a specific format, you 
may choose to break the three parts of the date into individual variables. Finally, regular expressions are 
often used for search-and-replace operations. This type of operation builds upon the capabilities of the 
previous two. Let’s take a look at how to achieve these three goals using the .NET Framework’s 
implementation of regular expressions. 

Searching with Regular Expressions 
As with the System.String class itself, most of the objects created from the regular expression classes are 
immutable. The workhorse class at the bottom of it all is the Regex class, which lives in the 
System.Text.RegularExpressions namespace. One of the general patterns of usage is to create a Regex 
instance to represent your regular expression by passing it a string of the pattern to search for. You then 
apply it to a string to find out if any matches exist. The results of the search will include whether a match 
was found, and if so, where. You can also find out where all subsequent instances of the match occur 
within the searched string. Let’s go ahead and look at an example of what a basic Regex search looks like 
and then dig into more useful ways to use Regex: 

using System; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
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            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @"\d\d?\d?\.\d\d?\d?.\d\d?\d?.\d\d?\d?"; 
        Regex regex = new Regex( pattern ); 
        Match match = regex.Match( args[0] ); 
        while( match.Success ) { 
            Console.WriteLine( "IP Address found at {0} with " + 
                               "value of {1}", 
                               match.Index, 
                               match.Value ); 
 
            match = match.NextMatch(); 
        } 
 
    } 
} 

This example searches a string provided on the command line for an IP address. The search is 
crude, but I’ll refine it a bit as I continue. Regular expressions can consist of literal characters to search 
for, as well as escaped characters that carry a special meaning. The familiar backslash is the method 
used to escape characters in a regular expression. In this example, \d means a numeric digit. The ones 
that are suffixed with a ? mean that there can be one or zero occurrences of the previous character or 
escaped expression. Notice that the period is escaped, because the period by itself carries a special 
meaning: An unescaped period matches any character in that position of the match. Lastly, you’ll see 
that it is much easier to use the verbatim string syntax when declaring regular expressions in order to 
avoid the gratuitous proliferation of backslashes. If you were to invoke the previous example passing the 
following quoted string on the command line 

"This is an IP address:123.123.1.123" 

the output would look like the following: 

IP Address found at 22 with value of 123.123.1.123 

The previous example creates a new Regex instance named regex and then, using the Match method, 
applies the pattern to the given string. The results of the match are stored in the match variable. That 
match variable represents the first match within the searched string. You can use the Match.Success 
property to determine if the regex found anything at all. Next, you see the code using the Index and Value 
properties to find out more about the match. Lastly, you can go to the next match in the searched string 
by calling the Match.NextMatch method, and you can iterate through this chain until you find no more 
matches in the searched string. 

Alternatively, instead of calling Match.NextMatch in a loop, you can call the Regex.Matches method to 
retrieve a MatchCollection that gives you all of the matches at once rather than one at a time. Also, all of 
the examples using Regex in this chapter are calling instance methods on a Regex instance. Many of the 
methods on Regex, such as Match and Replace, also offer static versions where you don’t have to create a 
Regex instance first and you can just pass the regular expression pattern in the method call. 
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Searching and Grouping 
From looking at the previous match, really all that is happening is that the pattern is looking for a series 
of four groups of digits separated by periods, where each group can be from one to three digits in length. 
The reason I say this is a crude search is that it will match an invalid IP address such as 999.888.777.666. 
A better search for the IP address would look like the following: 

using System; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @"([01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])"; 
        Regex regex = new Regex( pattern ); 
        Match match = regex.Match( args[0] ); 
        while( match.Success ) { 
            Console.WriteLine( "IP Address found at {0} with " + 
                               "value of {1}", 
                               match.Index, 
                               match.Value ); 
 
            match = match.NextMatch(); 
        } 
 
    } 
} 

Essentially, four groupings of the same search pattern [01]?\d\d?|2[0-4]\d|25[0-5] are separated 
by periods, which of course, are escaped in the preceding regular expression. Each one of these 
subexpressions matches a number between 0 and 255.2 This entire expression for searching for regular 
expressions is better, but still not perfect. However, you can see that it’s getting closer, and with a little 
more fine-tuning, you can use it to validate the IP address given in a string. Thus, you can use regular 
expressions to effectively validate input from users to make sure that it matches a certain form. For 
example, you may have a web server that expects US telephone numbers to be entered in a pattern such 
as (xxx) xxx-xxxx. Regular expressions allow you to easily validate that the user has input the number 
correctly. 

                                                 

 
2 Breaking down the specifics of how this regular expression works is beyond the scope of this book. I encourage you 
to reference one of the many fine resources in print or on the Internet detailing the grammar of regular expressions. 
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You may have noticed the addition of parentheses in the IP address search expression in the 
previous example. Parentheses are used to define groups that group subexpressions within regular 
expressions into discrete chunks. Groups can contain other groups as well. Therefore, the IP address 
regular-expression pattern in the previous example forms a group around each part of the IP address. In 
addition, you can access each individual group within the match. Consider the following modified 
version of the previous example: 

using System; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @"([01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])\ " + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])\ " + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])"; 
        Regex regex = new Regex( pattern ); 
        Match match = regex.Match( args[0] ); 
        while( match.Success ) { 
            Console.WriteLine( "IP Address found at {0} with " + 
                               "value of {1}", 
                               match.Index, 
                               match.Value ); 
            Console.WriteLine( "Groups are:" ); 
            foreach( Group g in match.Groups ) { 
                Console.WriteLine( "\t{0} at {1}", 
                                   g.Value, 
                                   g.Index ); 
            } 
 
            match = match.NextMatch(); 
        } 
 
    } 
} 

Within each match, I’ve added a loop that iterates through the individual groups within the match. 
As you’d expect, there will be at least four groups in the collection, one for each portion of the IP address. 
In fact, there is also a fifth item in the group—the entire match. So, one of the groups within the groups 
collection returned from Match.Groups will always contain the entire match itself. Given the following 
input to the previous example 

"This is an IP address:123.123.1.123" 

the result would look like the following: 
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IP Address found at 22 with value of 123.123.1.123 

Groups are: 

        123.123.1.123 at 22 

        123 at 22 

        123 at 26 

        1 at 30 

        123 at 32 

Groups provide an excellent means of picking portions out of a given input string. For example, at 
the same time that you validate that a user has input a phone number of the required format, you could 
also capture the area code into a group for use later. Collecting substrings of a match into groups is 
handy. But what’s even handier is being able to give those groups a name. Check out the following 
modified example: 

using System; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @"(?<part1>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part2>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part3>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part4>[01]?\d\d?|2[0-4]\d|25[0-5]) "; 
        Regex regex = new Regex( pattern ); 
        Match match = regex.Match( args[0] ); 
        while( match.Success ) { 
            Console.WriteLine( "IP Address found at {0} with " + 
                               "value of {1}", 
                               match.Index, 
                               match.Value ); 
            Console.WriteLine( "Groups are:" ); 
            Console.WriteLine( "\tPart 1: {0}", 
                               match.Groups["part1"] ); 
            Console.WriteLine( "\tPart 2: {0}", 
                               match.Groups["part2"] ); 

v@v
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            Console.WriteLine( "\tPart 3: {0}", 
                               match.Groups["part3"] ); 
            Console.WriteLine( "\tPart 4: {0}", 
                               match.Groups["part4"] ); 
 
            match = match.NextMatch(); 
        } 
 
    } 
} 

In this variation, I’ve captured each part into a group with a name, and when I send the result to the 
console, I access the group by name through an indexer on the GroupCollection returned by 
Match.Groups that accepts a string argument. 

With the ability to name groups comes the ability to back-reference groups within searches. For 
example, if you’re looking for an exact repeat of a previous match, you can reference a previous group in 
what’s called a back-reference by including \k<name>, where name is the name of the group to back-
reference. For example, consider the following example that looks for IP addresses where all four parts 
are the same: 

using System; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @"(?<part1>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"\k<part1>\." + 
                         @"\k<part1>\." + 
                         @"\k<part1>"; 
        Regex regex = new Regex( pattern ); 
        Match match = regex.Match( args[0] ); 
        while( match.Success ) { 
            Console.WriteLine( "IP Address found at {0} with " + 
                               "value of {1}", 
                               match.Index, 
                               match.Value ); 
 
            match = match.NextMatch(); 
        } 
    } 
} 

The following output shows the results of running this code on the string “My IP address is 
123.123.123.123”: 
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IP Address found at 17 with value of 123.123.123.123 

Replacing Text with Regex 
If you’ve ever used Perl to do any text processing, you know that the regular-expression engine within it 
is indispensable. But one of the greatest powers within Perl is the regular-expression text-substitution 
capabilities. You can do the same thing using .NET regular expressions via the Regex.Replace method 
overloads. Suppose that you want to process a string looking for an IP address that a user input, and you 
want to display the string. However, for security reasons, you want to replace the IP address with 
xxx.xxx.xxx.xxx. You could achieve this goal, as in the following example: 

using System; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @"([01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"([01]?\d\d?|2[0-4]\d|25[0-5])"; 
        Regex regex = new Regex( pattern ); 
        Console.WriteLine( "Input given —> {0}", 
                           regex.Replace(args[0], 
                                         "xxx.xxx.xxx.xxx") ); 
    } 
} 

Thus, given the following input 

"This is an IP address:123.123.123.123" 

the output would look like the following: 

Input given —> This is an IP address:xxx.xxx.xxx.xxx 

Of course, when you find a match within a string, you may want to replace it with something that 
depends on what the match is. The previous example simply replaces each match with a static string. In 
order to replace based on the match instance, you can create an instance of the MatchEvaluator delegate 
and pass it to the Regex.Replace method. Then, whenever it finds a match, it calls through to the 
MatchEvaluator delegate instance given while passing it the match. Thus, the delegate can create the 
replacement string based upon the actual match. The MatchEvaluator delegate has the following 
signature: 
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public delegate string MatchEvaluator( Match match ); 

Suppose you want to reverse the individual parts of an IP address. Then you could use a 
MatchEvaluator coupled with Regex.Replace to get the job done, as in the following example: 

using System; 
using System.Text; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @"(?<part1>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part2>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part3>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part4>[01]?\d\d?|2[0-4]\d|25[0-5])"; 
        Regex regex = new Regex( pattern ); 
 
        MatchEvaluator eval = new MatchEvaluator( 
                                    EntryPoint.IPReverse ); 
        Console.WriteLine( regex.Replace(args[0], 
                                         eval) ); 
    } 
 
    static string IPReverse( Match match ) { 
        StringBuilder sb = new StringBuilder(); 
        sb.Append( match.Groups["part4"] + "." ); 
        sb.Append( match.Groups["part3"] + "." ); 
        sb.Append( match.Groups["part2"] + "." ); 
        sb.Append( match.Groups["part1"] ); 
        return sb.ToString(); 
    } 
} 

Whenever a match is found, the delegate is called to determine what the replacement string should 
be. However, because all you’re doing is changing the order, the job is not too complex for what are 
called regular-expression substitutions. If, in the example prior to this one, you had chosen to use the 
overload of Replace that doesn’t use a MatchEvaluator delegate, you could have achieved the same result, 
because the regex lets you reference the group variables in the replacement string. To reference one of 
the named groups, you can use the syntax shown in the following example: 

using System; 
using System.Text; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
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{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @"(?<part1>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part2>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part3>[01]?\d\d?|2[0-4]\d|25[0-5])\." + 
                         @"(?<part4>[01]?\d\d?|2[0-4]\d|25[0-5])"; 
        Regex regex = new Regex( pattern ); 
        Match match = regex.Match( args[0] ); 
 
        string replace = @"${part4}.${part3}.${part2}.${part1}" + 
                         @" (the reverse of $&)"; 
        Console.WriteLine( regex.Replace(args[0], 
                                         replace) ); 
    } 
} 

To include one of the named groups, simply use the ${name} syntax, where name is the name of the 
group. You can also see that I reference the full text of the match using $&. Other substitutions strings are 
available, such as $`, which substitutes the part of the input string prior to and up to the match, and $’, 
which substitutes all text after the match. Others are documented in the MSDN documentation. 

As you can imagine, you can craft complex string-replacement capabilities using the regular-
expression implementation within .NET Framework just as you can using Perl. 

Regex Creation Options 
One of the constructor overloads of a Regex allows you to pass various options of type RegexOptions 
during creation of a Regex instance. Likewise, the methods on Regex, such as Match and Replace, have a 
static overload allowing you to pass RegexOptions flags. I’ll discuss some of the more commonly used 
options in this section, but for a description of all of the options and their behavior, consult the 
RegexOptions documentation within the MSDN. 

By default, regular expressions are interpreted at run time. Complex regular expressions can chew 
up quite a bit of processor time while the regex engine is processing them. For times like these, consider 
using the Compiled option. This option causes the regular expression to be represented internally by IL 
code that is JIT-compiled. This increases the latency for the first use of the regular expression, but if it’s 
used often, it will pay off in the end. Also, don’t forget that JIT-compiled code increases the working set 
of the application. 

Many times, you’ll find it useful to do case-insensitive searches. You could accommodate that in the 
regular-expression pattern, but it makes your pattern much more difficult to read. It’s much easier to 
pass the IgnoreCase flag when creating the Regex instance. When you use this flag, the Regex engine will 
also take into account any culture-specific, case-sensitivity issues by referencing the CultureInfo 
attached to the current thread. If you want to do case-insensitive searches in a culture-invariant way, 
combine the IgnoreCase flag with the CultureInvariant flag. 

The IgnorePatternWhitespace flag is also useful for complex regular expressions. This flag tells the 
regex engine to ignore any white space within the match expression and to ignore any comments on 
lines following the # character. This provides a nifty way to comment regular expressions that are really 
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complex. For example, check out the IP address search from the previous example rewritten using 
IgnorePatternWhitespace: 

using System; 
using System.Text.RegularExpressions; 
 
public class EntryPoint 
{ 
    static void Main( string[] args ) { 
        if( args.Length < 1 ) { 
            Console.WriteLine( "You must provide a string." ); 
            return; 
        } 
 
        // Create regex to search for IP address pattern. 
        string pattern = @" 
# First part match 
([01]?\d\d?         # At least one digit, 
                    # possibly prepended by 0 or 1 
                    # and possibly followed by another digit 
# OR 
 |2[0-4]\d          # Starts with a 2, after a number from 0-4 
                    # and then any digit 
# OR 
 |25[0-5])          # 25 followed by a number from 0-5 
 
\.                  # The whole group is followed by a period. 
 
# REPEAT 
([01]?\d\d?|2[0-4]\d|25[0-5])\. 
 
# REPEAT 
([01]?\d\d?|2[0-4]\d|25[0-5])\. 
 
# REPEAT 
([01]?\d\d?|2[0-4]\d|25[0-5]) 
"; 
        Regex regex = new Regex( pattern, 
                       RegexOptions.IgnorePatternWhitespace ); 
        Match match = regex.Match( args[0] ); 
        while( match.Success ) { 
            Console.WriteLine( "IP Address found at {0} with " + 
                               "value of {1}", 
                               match.Index, 
                               match.Value ); 
 
            match = match.NextMatch(); 
        } 
 
    } 
} 
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Notice how expressive you can be in the comments of your regular expression. Indeed, given how 
complex regular expressions can become, this is never a bad thing. 

Summary 
In this chapter, I’ve touched the tip of the iceberg on the string-handling capabilities of the .NET 
Framework and C#. Because the string type is such a widely used type, rather than merely include it in 
the base class library, the CLR designers chose to annex it into the set of built-in types. This is a good 
thing considering how common string usage is. Furthermore, the library provides a thorough 
implementation of cultural-specific patterns, via CultureInfo, that you typically need when creating 
global software that deals with strings heavily. 

I showed how you can create your own cultures easily using the CultureAndRegionInfoBuilder class. 
Essentially, any software that interacts directly with the user and is meant to be used on a global basis 
needs to be prepared to service locale-specific needs. Finally, I gave a brief tour of the regular-expression 
capabilities of the .NET Framework, even though a full treatment of the regular-expression language is 
outside the scope of this book. I think you’ll agree that the string and text-handling facilities built into 
the CLR, the .NET Framework, and the C# language are well-designed and easy to use. 

In Chapter 9, I cover arrays and other, more versatile, collection types in the .NET Framework. Also, 
I spend a fair amount of time covering the new support for iterators in C#. 
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Arrays, Collection Types,  
and Iterators 

Collection types have been around in various forms since the dawn of programming. I’m sure you 
remember the linked list exercises when you were learning to write programs. In this chapter, I’ll give a 
brief overview of arrays but won’t go into much detail, as arrays have not changed much between the 
various .NET releases. 

However, I’ll spend more time explaining the major generic collection interfaces and iterators along 
with what sorts of cool things you can do with them. Traditionally, creating enumerators for collection 
types has been tedious and annoying. Iterators make this task a breeze, while making your code a lot 
more readable in the process. 

Introduction to Arrays 
C# arrays, as well as arrays in the CLR, are highly evolved from C/C++ arrays. In C/C++, you typically 
access an array by offsetting a pointer that points to the beginning of a contiguous range of items in a 
memory block somewhere. C/C++ arrays have no built-in range checking, which is the root of more bugs 
than you can shake a stick at. C# and the CLR solve this problem elegantly by making the array type a 
built-in, implicit type to the runtime. 

When you declare a type—whether it’s a class or struct—the runtime reserves the right to silently 
generate an array type based upon that new type. The array type that it generates is a reference type—
thus, all array instances are of class type. The reference type that it generates is derived from 
System.Array, and ultimately from System.Object. Therefore, you can treat all C# arrays polymorphically 
through a reference to System.Array. Of course, that means that each array, no matter what concrete 
type of array it is, implements all of the methods and properties of System.Array. 

The way that you declare an array within C# is similar to C/C++, except the designers of the 
language took the liberty to make the syntax a tad more intuitive in their minds, in that the square 
brackets in the declaration follow the type and not the array variable name. The following example 
shows three ways to create an array: 

using System; 
 
public class EntryPoint 
{ 
    static void Main() { 
        int[] array1 = new int[ 10 ]; 
        for( int i = 0; i < array1.Length; ++i ) { 
            array1[i] = i*2; 
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        } 
 
        int[] array2 = new int[] { 2, 4, 6, 8 }; 
 
        int[] array3 = { 1, 3, 5, 7 }; 
    } 
} 

The longhand way to create an array instance and fill it with initial values is shown where array1 is 
initialized. Items are indexed using an indexer that is typically greater than or equal to 0. You may know 
that arrays in the CLR can have a user-defined lower bound. However, in C#, the lower bound is always 0 
in order to meet the CLS restriction that arrays have a 0 lower bound. The initialization techniques used 
for array2 and array3 show a shorter notation for doing the same thing. Notice that in most cases, you 
must first allocate the array instances on the heap using the new operator. The same thing happens with 
the array3 instance, but the compiler does it for you in order to facilitate the notational shorthand. It’s 
interesting to note that an array of type object—thus, System.Object[]—is itself of type System.Object. 

One of the conveniences of .NET arrays is that they are range-checked. Therefore, if you step off the 
end of one of them, thus going out of bounds, the runtime will throw an IndexOutOfRangeException 
instead of changing random memory, as in native C/C++. So you can say goodbye to those lurking, hard-
to-find range bugs, because the CLR won’t allow them to lurk too long, and they definitely won’t go 
unnoticed for long periods of time anymore. 

Lastly, notice that you can conveniently iterate through the items in the array using the C# foreach 
statement. This works because System.Array implements IEnumerable. I have more to say about 
IEnumerable and its cousin IEnumerator later on, in the section titled “IEnumerable<T>, 
IEnumerator<T>, IEnumerable, and IEnumerator.” 

■ Note The compiler actually uses an optimization while compiling the foreach loop which I mention in Chapter 

13. Instead of actually converting the array to an IEnumerable instance and then calling 

IEnumerable.GetEnumerator, it instead simply calls any public GetEnumerator method that matches the 

required signature. This optimization is a form of what is known as duck typing, which I speak more about in 

Chapter 17. Even though foreach uses this optimization, it is always a good idea to implement IEnumerable and 

IEnumerable<T> because a consumer may wish to iterate over your collection without using foreach such as with 

LINQ. 

Implicitly Typed Arrays 
C# 3.0 introduced an abbreviated way of initializing arrays when the type of the array can be inferred at 
runtime. Let’s have a look at the new syntax in the following code snippet:  

using System; 
 
public class EntryPoint 
{ 
    static void Main() { 
        // A conventional array 
        int[] conventionalArray = new int[] { 1, 2, 3 }; 
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        // An implicitly typed array 
        var implicitlyTypedArray = new [] { 4, 5, 6 }; 
        Console.WriteLine( implicitlyTypedArray.GetType() ); 
 
        // An array of doubles 
        var someNumbers = new [] { 3.1415, 1, 6 }; 
        Console.WriteLine( someNumbers.GetType() ); 
 
        // Won't compile! 
        // var someStrings = new [] { "int", 
        //                            someNumbers.GetType() }; 
    } 
} 

For comparison purposes, the first array variable, named conventionalArray, uses one of the 
conventional syntaxes for declaring and instantiating an array. However, the next variable, 
implicitlyTypedArray, uses the new and shorter syntax, and so it is devoid of any type information. 
Instead of providing the compiler with type information, I instead rely on the compiler to deduce that 
each item in the array is of type int. And to save even more keystrokes and make my life a bit easier, 
implicitlyTypedArray is declared as an implicitly typed local variable. If you execute this code, you will 
see that the WriteLine method call right below it shows that the implicitly typed variable is of type 
System.Int32[]. In fact, you could have expressed the same line of code as follows: 

int[] implicitlyTypedArray = new [] { 4, 5, 6 }; 

However, because you’ve already got the compiler figuring out the type of the array elements, you 
may as well go a little further and let it deduce the entire array type, especially if the variable remains 
local to the scope of this method. But what happens if you declare the array using multiple types in the 
initialization list? 

When the compiler is presented with multiple types within the initialization list of an implicitly 
typed array, it determines a type that all the given types are implicitly convertible to. And, of course, for 
all practical purposes, any type instance is convertible to its own type. Therefore, in the declaration of 
the someNumbers instance in the example, the compiler determines that all of the types within the braces 
are convertible to System.Double. Not surprisingly, the following WriteLine method call confirms this. 
But what if the types are not all implicitly convertible to a single type? 

When the compiler cannot find a common type that all of the array variables are convertible to, it 
will present the compiler warning CS0826, stating  

No best type found for implicitly typed array 

If you uncomment the line where I have declared the someStrings variable, you will see this 
behavior, because System.Type instances are not implicitly convertible to System.String. 

■ Note All objects in .NET are implicitly convertible to System.Object; therefore, you may be wondering why the 

compiler won't settle on using System.Object as the common type in the previous assignment to someStrings. 
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That is because the compiler may only use types that are present in the implicitly typed array expression. Since 

System.Object is not one of the types listed in the assignment of someStrings, it is not considered. 

But what happens if you declare an array with two items and both types are convertible to each 
other? Getting into a situation like this is very rare and usually has to be induced by having two custom 
types that both contain implicit conversion operators to each other’s type.1 Just to see what happened, I 
did just that. When I attempted to declare an implicitly typed array with an item of each type, I was 
greeted with the CS0826 compiler error again, which I expected. 

You may already be thinking about many useful applications for implicitly typed arrays. But in most 
cases, they merely save you some typing.2 This is handy if your array contains closed generic types that 
require a lot of typing to specify their type. So, in that respect, implicitly typed arrays can make more 
readable code. But in other cases, they can actually make code harder to follow for a maintenance 
engineer if knowing the type of the array at the point of declaration is essential to easily reading and 
understanding what the code is doing.  

■ Note Implicitly typed variables are actually implicitly typed local variables, so unless the method you are 

reading is overly complex and huge, you should have no trouble deducing the type yourself. If you have trouble 

deducing the type from looking at the code, it may mean that the function is too complex and in need of some 

refactoring. Additionally, if you’re using implicitly typed local variables in your code, be sure the name the variables 

logically so that a maintenance engineer can deduce the type of the variable easily. 

All of that said, implicitly typed arrays are great for instantiating n-tuples of items. For example, the 
following code snippet shows a succinct way to declare a matrix of integers: 

using System; 
 
public class EntryPoint { 
    static void Main() { 
        var threeByThree = new [] { 
            new [] { 1, 2, 3 }, 
            new [] { 4, 5, 6 }, 
            new [] { 7, 8, 9 } 
        }; 
 
        foreach( var i in threeByThree ) { 

                                                 

 
1 I cover how you can define your own custom implicit and explicit conversion operators in Chapter 6. 
2 Implicitly typed arrays are also very useful when used with LINQ. In fact, that’s true of most of the features 
introduced in C# 3.0. Taken individually, they provide minimal added convenience, but taken as a whole and used 
with LINQ, they provide the ability to create incredibly expressive expressions. I cover LINQ in Chapter 16. 
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            foreach( var j in i ) { 
                Console.Write( "{0}, ", j ); 
            } 
            Console.Write( "\n" ); 
        } 
    } 
} 

Type Convertibility and Covariance 
When you declare an array to contain instances of a certain reference type, the instances that you may 
place in that array can actually be instances of a more derived type, or any other reference type implicitly 
convertible to the contained type. For example, if you create an array that contains instances of type 
Animal, then you can feasibly insert an instance of Dog or Cat if both of them derive from Animal. 

■ Note In C/C++, storing instances of type Dog or Cat into arrays as type Animal is strongly discouraged because 

the objects, if held by value, would get sheared off, the Cat-ness and Dog-ness would get chopped off, and all 

you’d end up with is Animal-ness. Not so in C#, because the array merely references the objects on the heap. If 

you want to make an analogy to C/C++ arrays, C# arrays are similar to C/C++ arrays holding pointers to Cat and 

Dog through pointers to type Animal. 

You can coerce array types in another, even more interesting way: 

using System; 
 
public class Animal { } 
public class Dog : Animal { } 
public class Cat : Animal { } 
 
public class EntryPoint 
{ 
    static void Main() { 
        Dog[] dogs = new Dog[ 3 ]; 
        Cat[] cats = new Cat[ 2 ]; 
 
        Animal[] animals = dogs; 
        Animal[] moreAnimals = cats; 
    } 
} 

The assignment from dogs to animals and from cats to animals is something that you definitely can’t 
do in native C/C++. Arrays in C# are assignable as long as their rank matches and the contained type is a 
reference type that is implicitly convertible from one to the other. This capability of array assignment in 
the CLR is provided by the fact that arrays are covariant as opposed to invariant. Both arrays in the 
previous example have a rank of 1, and Dog and Cat are type-convertible to Animal, thus the assignment 
works. The C# creators included covariant array support in the CLR primarily to support the Java 
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language. Incidentally, this feature of the language is inherently broken and allows you to insert an 
instance of Table into an array of Dogs. For more details, refer to the section titled “Co- and 
Contravariance” in Chapter 11. 

■ Note The full type information of an array comprises its rank (how many dimensions it has) and the type that it 

contains. 

Sortability and Searchability 
If you take a look at the entire System.Array interface as documented in the MSDN documentation, 
you’ll notice that several methods have to do with sorting the items within the array. These methods are 
usable when the contained type implements IComparable, the standard interface through which items of 
a particular type are compared.3 Naturally, you cannot sort a multidimensional array, and if you try, 
you’ll need to be ready to catch an exception of type RankException. So, always be cognizant of what 
types of things could go wrong when you’re calling methods on arrays to do what could appear to be fail-
proof operations. 

Using the static methods Index and LastIndexOf, you can locate a specific value within an array. If 
the method fails to find the requested value, it returns –1. No particular search algorithm is involved with 
these methods other than the fact that the former starts searching from the beginning of the array and 
the latter starts at the end. If you’d like to perform a faster search, you can use the BinarySearch static 
method. However, before you can do so, you must sort your array, and of course, that requires that the 
items within the array implement IComparable/IComparable<T> or you must provide a type that 
implements IComparer/IComparer<T> which is passed to the Sort method. 

■ Note The difference between whether your type implements IComparable/IComparable<T> or whether you 

provide another type which implements IComparer/IComparer<T> to perform the comparison of two instances is 

a subtle but important one. As Jon Skeet points out, separating the comparison logic from the type itself facilitates 

greater flexibility. Sort methods should provide an overload that accepts a type that implements 

IComparer/IComparer<T> which the Sort method then delegates to in order to compare two instances. This 

design whereby one can provide the algorithm at the time of the sort is a form of the Strategy pattern. 

                                                 

 
3 IComparable<T>, the generic form of IComparable, is also available. 
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Synchronization 
Many times, you’ll find it necessary to synchronize access to an array or a collection type that 
implements ICollection.4 The System.Array type implements ICollection as well as IList. One of the 
properties of ICollection is IsSynchronized, which always returns false for regular arrays. That’s 
because regular arrays aren’t synchronized by default, because enforcing such a rule would cause those 
who don’t need synchronization to pay a penalty. Therefore, you must manage synchronization 
yourself. 

■ Tip If you are going to need synchronization within collections used in multithreaded systems, I highly suggest 

that you use the collection types in System.Collections.Concurrent. These types were added to .NET 4.0 by 

the Parallel Computing Platform team at Microsoft and their locking techniques are finely tuned for efficiency in 

concurrent multithreaded environments. 

The easiest way to manage synchronization is via the System.Monitor class, which you normally use 
via the C# lock keyword. The class allows you to acquire the built-in synchronization lock on an object.5 
However, instead of acquiring a lock on the array object itself, you should acquire a lock on the 
ICollection.SyncRoot object instead. 

■ Note You can acquire a lock on any object referenced in the CLR. Each object has a lazily created sync block, 

which contains the lock variable that the CLR manages internally when System.Monitor attempts to acquire the 

lock. 

Many array and collection implementations are free to return a reference to the actual container via 
the ICollection.SyncRoot property, but they might not for various reasons. ICollection.SyncRoot 
provides a common way for synchronizing access to both arrays and collections. I have more to say 
about synchronization when I cover the ICollection interface in the “Collection Synchronization” 
section. 

Vectors vs. Arrays 
It’s interesting to note that the CLR supports two special types to deal with arrays in C# code. If your 
array happens to be single-dimensional, and it happens to have a lower bound of 0, which is usually true 

                                                 

 
4 Chapter 12 covers synchronization and concurrency in detail, along with the subject of threading in the .NET 
Framework. 

5 You can find out more about System.Monitor and other synchronization techniques in Chapter 12. 
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for C# arrays,6 then the CLR uses a special built-in type called a vector, which is actually a subtype of 
System.Array. The CLR supports special IL instructions defined to work directly with vectors. If your 
array is multidimensional, then a CLR vector type is not used and an array object is used instead. To 
demonstrate this, let’s take a quick look at some IL code generated by the following short example: 

public class EntryPoint 
{ 
    static void Main() { 
        int val = 123; 
        int newVal; 
 
        int[] vector = new int[1]; 
        int[,] array = new int[1,1]; 
        vector[0] = val; 
        array[0,0] = val; 
 
        newVal = vector[0]; 
        newVal = array[0,0]; 
    } 
} 

Take a look at the generated IL for the Main method: 

.method private hidebysig static void  Main() cil managed 
{ 
  .entrypoint 
  // Code size       46 (0x2e) 
  .maxstack  4 
  .locals init ([0] int32 val, 
           [1] int32 newVal, 
           [2] int32[] 'vector', 
           [3] int32[0...,0...] 'array') 
  IL_0000:  nop 
  IL_0001:  ldc.i4.s   123 
  IL_0003:  stloc.0 
  IL_0004:  ldc.i4.1 
  IL_0005:  newarr     [mscorlib]System.Int32 
  IL_000a:  stloc.2 
  IL_000b:  ldc.i4.1 
  IL_000c:  ldc.i4.1 
  IL_000d:  newobj     instance void int32[0...,0...]::.ctor(int32, 
                                                             int32) 
  IL_0012:  stloc.3 
  IL_0013:  ldloc.2 
  IL_0014:  ldc.i4.0 
  IL_0015:  ldloc.0 

                                                 

 
6 Arrays declared with the C# array syntax always have a zero lower bound. If you need an array with a nonzero lower 
bound, you must create the instance via the System.Array.CreateInstance() method. 
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  IL_0016:  stelem.i4 
  IL_0017:  ldloc.3 
  IL_0018:  ldc.i4.0 
  IL_0019:  ldc.i4.0 
  IL_001a:  ldloc.0 
  IL_001b:  call       instance void int32[0...,0...]::Set(int32, 
                                                           int32, 
                                                           int32) 
  IL_0020:  ldloc.2 
  IL_0021:  ldc.i4.0 
  IL_0022:  ldelem.i4 
  IL_0023:  stloc.1 
  IL_0024:  ldloc.3 
  IL_0025:  ldc.i4.0 
  IL_0026:  ldc.i4.0 
  IL_0027:  call       instance int32 int32[0...,0...]::Get(int32, 
                                                            int32) 
  IL_002c:  stloc.1 
  IL_002d:  ret 
} // end of method EntryPoint::Main 

Notice the difference between usages of the two C# arrays. On line IL_0005, the newarr IL instruction 
creates the instance represented by the vector variable. The multidimensional array held in the variable 
array is created on line IL_000d. In the first case, a native IL instruction handles the operation, whereas a 
regular constructor call handles the operation in the second case. Similarly, when accessing the 
elements, the IL instructions stelem and ldelem, on lines IL_0016 and IL_0022 respectively, are used for 
the vector, whereas regular method calls handle the access to the elements of the multidimensional 
array. 

Because vector support is handled by specific IL instructions tailored specifically for vectors, it’s safe 
to assume that vector use tends to be more efficient than multidimensional array use, even though 
instances of both derive from System.Array. 

Multidimensional Rectangular Arrays 
C# and the CLR contain direct support for multidimensional arrays, also known as rectangular arrays. 
You can easily declare an array with multiple rank within C#. Simply introduce a comma into the square 
brackets to separate the rank, as shown in the following example: 

using System; 
 
public class EntryPoint 
{ 
    static void Main() { 
        int[,] twoDim1 = new int[5,3]; 
 
        int[,] twoDim2 = { {1, 2, 3}, 
                           {4, 5, 6}, 
                           {7, 8, 9} }; 
 
        foreach( int i in twoDim2 ) { 
            Console.WriteLine( i ); 
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        } 
    } 
} 

There are several things to note when using rectangular arrays. All usage of these arrays boils down 
to method calls on a CLR-generated reference type, and the built-in vector types don’t come into play 
here. Notice the two declarations. In each case, you don’t need the size of each dimension when 
declaring the type. Again, that’s because arrays are typed based on their containing type and rank. 
However, once you create an instance of the array type, you must provide the size of the dimensions. I 
did this in two different ways in this example. In creating twoDim1, I explicitly said what the dimension 
sizes are, and in the creation of twoDim2, the compiler figured it out based upon the initialization 
expression. 

In the example, I listed all of the items in the array using the foreach loop as shown. foreach iterates 
over all items in the array in a row-major fashion. I could have achieved the same goal using two nested 
for loops, and I definitely would have needed to do that if I needed to iterate over the array elements in 
any other order. When doing so, keep in mind that the Array.Length property returns the total amount 
of items in the array. In order to get the count of each dimension, you must call the Array.GetLength 
method supplying the dimension that you’re interested in. For example, I could have iterated over the 
items in the array using the following syntax, and the results would have been the same: 

using System; 
 
public class EntryPoint 
{ 
    static void Main() { 
        int[,] twoDim = { {1, 2, 3}, 
                          {4, 5, 6}, 
                          {7, 8, 9} }; 
 
        for( int i = 0; i != twoDim.GetLength(0); ++i ) { 
            for( int j = 0; j != twoDim.GetLength(1); ++j ) { 
                Console.WriteLine( twoDim[i,j] ); 
            } 
        } 
 
        for( int i = twoDim.GetLowerBound(0); 
             i <= twoDim.GetUpperBound(0); 
             ++i ) { 
            for( int j = twoDim.GetLowerBound(1); 
                 j <= twoDim.GetUpperBound(1); 
                 ++j ) { 
                Console.WriteLine( twoDim[i,j] ); 
            } 
        } 
    } 
} 

For good measure, I’ve shown how to iterate over the dimensions of the array using two methods. 
The first method assumes that the lower bound of each dimension is 0, and the second does not. In all of 
the calls to GetLength, GetUpperBound, and GetLowerBound, you must supply a zero-based dimension of 
the Array that you’re interested in. 
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■ Note All arrays created within C# using the standard C# array declaration syntax will have a lower bound of 0. 

However, if you’re dealing with arrays used for mathematical purposes, as well as arrays that come from 

assemblies written in other languages, you may need to consider that the lower bound may not be 0. 

When you access the items of a multidimensional array, the compiler generates calls to Get and Set 
methods, which are similar to GetValue and SetValue. These methods are overloaded to accept a variable 
list of integers to specify the ordinal of each dimension within the array. 

When mapping multidimensional arrays to mathematical concepts, the rectangular array is the 
most natural and preferred way to go. However, creating methods where an argument may be an array 
of varying rank is tricky, because you must accept the argument as type System.Array and dynamically 
deal with the rank of the array. You can access the rank of an array using the Array.Rank property. Thus, 
creating rank-general code is tricky due to the syntactical burden of accessing all array items through 
method calls to System.Array, but it is entirely possible. Moreover, the most general array-manipulation 
code should also handle the case of nonzero lower bounds in the individual ranks. 

Multidimensional Jagged Arrays 
If you come from a C/C++ or Java background, you’re probably already familiar with jagged arrays, 
because those languages don’t support rectangular multidimensional arrays like C# does. The only way 
to implement multidimensional arrays is to create arrays of arrays, which is precisely what a jagged array 
is. However, because each element of the top-level array is an individual array instance, each array 
instance in the top-level array can be any size. Therefore, the array isn’t necessarily rectangular—hence, 
the name jagged arrays. 

The syntactical pattern for declaring a jagged array in C# is similar to its cousins C++ and Java. The 
following example shows how to allocate and use a jagged array: 

using System; 
using System.Text; 
 
public class EntryPoint 
{ 
    static void Main() { 
        int[][] jagged = new int[3][]; 
 
        jagged[0] = new int[] {1, 2}; 
        jagged[1] = new int[] {1, 2, 3, 4, 5}; 
        jagged[2] = new int[] {6, 5, 4}; 
 
        foreach( int[] ar in jagged ) { 
            StringBuilder sb = new StringBuilder(); 
            foreach( int n in ar ) { 
                sb.AppendFormat( "{0} ", n ); 
            } 
            Console.WriteLine( sb.ToString() ); 
        } 
        Console.WriteLine(); 
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        for( int i = 0; i < jagged.Length; ++i ) { 
            StringBuilder sb = new StringBuilder(); 
            for( int j = 0; j < jagged[i].Length; ++j ) { 
                sb.AppendFormat( "{0} ", jagged[i][j] ); 
            } 
            Console.WriteLine( sb.ToString() ); 
        } 
    } 
} 

As you can see, allocating and creating a jagged array is a bit more complex than rectangular arrays 
because you must handle all of the subarray allocations individually, whereas a rectangular array gets 
allocated all at once. Notice how the output provides a jagged-looking output, because each subarray 
has a different size: 

1 2 

1 2 3 4 5 

6 5 4 

In the example, I show two ways to iterate through the array just to show the syntax for accessing the 
individual items within a jagged array and how that syntax differs from accessing items within a 
rectangular array. The syntax is similar to that of C++ and Java. The foreach method of iterating through 
the array is more elegant, and as I’ll cover later on, using foreach allows you to use the same code to 
iterate through collections that may not be arrays. 

■ Note It’s preferable to use foreach to iterate through arrays and collections. That way, you can change the type 

of the container later and the foreach block won’t have to change. If you use a for loop instead, you may have to 

change the method used to access each individual element. Additionally, foreach handles cases where the array 

has a nonzero lower bound. 

It often makes sense to use jagged arrays rather than rectangular arrays. For example, you may be 
reading in information from a database, and each entry in the top-level array may represent a collection 
where each subcollection may have a widely varying amount of items in it. If most of the subcollections 
contain just a handful of items and then one of them contains 100 items, a rectangular array would 
waste a lot of space because it would allocate 100 entries for each subcollection no matter what. Jagged 
arrays are generally more space efficient, but the trade-off is that accessing items within a jagged array 
requires more care, because you cannot assume that each subarray has the same number of items in it. 
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■ Note Jagged arrays can potentially be more computationally efficient, because jagged arrays are typically 

arrays of single-dimension, zero-lower-bound arrays, which the CLR represents with vectors, as described 

previously in this chapter. 

Collection Types 
Ever since its inception, the .NET Framework has offered a host of collection types for managing 
everything from an expandable array via ArrayList, a Queue, a Stack, or even a dictionary via the 
HashTable class. Over the years, newer versions of the .NET Framework expanded these types. Generally, 
a collection is any type that holds on to a set of objects and implements IEnumerable or IEnumerable<T>. 
The objects in the set are typically related to each other in some way defined by the problem domain. 

I’m assuming that you’re already familiar with the nongeneric collection types and collection 
interfaces available in .NET 1.1—specifically, those defined in the System.Collections and 
System.Collections.Specialized namespaces. You can find plenty of documentation on these in the 
MSDN. Throughout this discussion, I’ll call the old collection types the nongeneric collection types in 
order to distinguish them from the new collection types and interfaces defined within the 
System.Collections.Generic and System.Collections.ObjectModel namespaces. 

Comparing ICollection<T> with ICollection 
The most obvious additions to the collection types starting within the .NET 2.0 Framework are the types 
defined within the System.Collections.Generic namespace. You can read much more about generics in 
Chapter 11. These types are strongly typed, thus giving the compiler a bigger type-safety hammer to 
wield when ferreting out type-mismatch bugs at compile time. In addition, when used to contain value 
types, they are much more efficient, because there is no gratuitous boxing. Arguably, the root type of all 
the generic collection types is ICollection<T>. I have included the declaration for it here: 

public interface ICollection<T> : IEnumerable<T>, IEnumerable 
{ 
   int Count { get; } 
   bool IsReadOnly { get; } 
   void Add( T item ); 
   void Clear(); 
   bool Contains( T item ); 
   void CopyTo( T[] array, int arrayIndex ); 
   bool Remove( T item ); 
} 

For the sake of comparison, I’ve included the nongeneric ICollection interface definition as well: 

public interface ICollection : IEnumerable 
{ 
   int Count { get; } 
   bool IsSynchronized { get; } 
   object SyncRoot { get; } 
   void CopyTo( Array array, int index ); 
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} 

Now, let’s take a look at the differences and what that means for your code. One thing that has been 
missing with the nongeneric collections is a uniform interface for managing the contents of the 
collection. For example, the nongeneric Stack and Queue types both have a Clear method to erase their 
contents. As expected, they both implement ICollection. However, because ICollection doesn’t 
contain any modifying methods, you generally can’t treat instances of these two types polymorphically 
within code. Thus, you would always have to cast an instance variable to type Stack in order to call 
Stack.Clear, and cast to type Queue in order to call Queue.Clear. 

ICollection<T> helps this problem by declaring some methods for modifying the collection. As with 
most general-use solutions, it does not necessarily apply to all situations. For example, ICollection<T> 
also declares an IsReadOnly property, because sometimes you need to introduce an immutable 
collection in your design. For those instances, you would expect calls to Add, Clear, and Remove to throw 
an InvalidOperationException. 

■ Note For better performance, it’s recommended that calling code determines if such operations are forbidden 

by first checking the IsReadOnly property, thus avoiding the exception altogether. Of course, if the end result of 

IsReadOnly returning true is that you throw an exception, then there is no gain. 

Since a main purpose of ICollection<T> is to provide stronger type safety, it only makes sense that 
ICollection<T> provides its own version of CopyTo that is strongly typed. Whereas ICollection.CopyTo 
knows that the first parameter is an array and accepts a System.Array reference as its first parameter, 
ICollection<T>.CopyTo is given the concrete array type in its first parameter. Clearly, you can only pass a 
single dimension array to ICollection<T>.CopyTo. The fact is that the nongeneric ICollection.CopyTo 
only accepts an array of single dimension as well, but because the compiler cannot determine the rank 
of a System.Array type at compile time, you get a runtime exception of the type ArgumentException if you 
pass an array with more than one dimension to a proper implementation of ICollection.CopyTo. Notice 
that I said “a proper implementation.” Not only is the caller of ICollection.CopyTo supposed to know 
this rule, but so is the type implementing ICollection. The added type information in 
ICollection<T>.CopyTo not only protects both the caller and the implementer from making this mistake, 
it also provides greater efficiency. 

You’ll notice that all of the generic collection types implement both ICollection<T> and 
ICollection. Both interfaces provide useful utility to the container type. Any methods in ICollection 
that overlap with ICollection<T> should be implemented explicitly. 

■ Note When defining your own collection types, you should derive from Collection<T> in the 

System.Collections.ObjectModel namespace unless there is a good reason not to do so. For instance, 

Collection<T> might have some functionality that you don’t want, or you must be explicit about how the items 

are stored in the collection and has protected virtual methods that you can override to control its behavior. When 

you don’t derive from Collection<T>, your job is much more laborious, because you must reimplement most of 

what Collection<T> already implements. If you are creating your own custom dictionary type, derive from 
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KeyedCollection<TKey, TItem> instead. Incidentally, List<T> is not designed to be used as a base class 

because it does not have any ways for one to override its behavior. 

Collection Synchronization 
One capability present in ICollection that is missing from its generic counterpart is the provision for 
handling multithreaded synchronization generally across all collections. By default, most collection 
types are not synchronized. You can access the IsSynchronized property to determine whether the 
collection is synchronized. Most of the time, including with System.Array, the answer will be false. 
However, sometimes you’ll require synchronization while accessing these collections from multiple 
threads. 

There are a couple of ways to control synchronization to collections that return false from 
ICollection.IsSynchronized. The most basic way is to use the ICollection.SyncRoot property, which 
returns an object that you can subsequently use with the System.Monitor—usually via the C# lock 
statement—to guard access to the collection. Handling it this way gives you much greater flexibility 
when accessing the collection, because you control the granularity of exactly when the lock is acquired 
and released. However, the burden is on you to make sure that locking is handled appropriately, because 
the collection doesn’t attempt to acquire the lock internally. 

■ Note Choosing how to implement synchronization is a classic engineering trade-off decision to make when 

designing new collections that implement ICollection. You can implement synchronization internally to the 

collection, but clients that don’t need it pay a performance penalty. You also can externalize the synchronization by 

implementing ICollection.SyncRoot, but then you rely on the clients to manage the synchronization correctly. 

You should consider your application domain thoroughly when choosing between the two. 

In some cases, collection types simply return this for ICollection.SyncRoot. It is best practice that 
you never synchronize access to a collection by passing its reference directly to the System.Monitor. 
Instead, always use the object obtained through the SyncRoot property, even though it may actually 
return this. 

As an alternative to managing the SyncLock manually, most of the nongeneric collection types in the 
standard library implement a Synchronized method, which returns an object that wraps the collection 
and manages the synchronization lock for you. You may want to consider applying this same pattern 
when creating collection types of your own. By using the wrapper returned by the Synchronized method, 
client code that uses the collection doesn’t have to change in order to work in a multithreaded 
environment. When implementing your own collections, always allow clients to choose whether 
synchronization is used and never force it upon them. 

■ Tip If you are going to need synchronization within collections used in multithreaded systems, I highly suggest 

that you use the collection types in System.Collections.Concurrent. These types were added to .NET 4.0 by 
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the Parallel Computing Platform team at Microsoft and their locking techniques are finely tuned for efficiency in 

concurrent multithreaded environments. 

Lists 
One thing that is missing from ICollection<T>, and for good reason, is an index operator that allows you 
to access the items within the collection using the familiar array-access syntax. The fact is that not all 
concrete types that implement ICollection<T> need to have an index operator, and in some of those 
cases, it makes no sense for them to have an index operator. For example, an index operator for a list of 
integers would probably accept a parameter of type int, whereas a dictionary type would accept a 
parameter type that is the same as the key type in the dictionary. 

If you’re defining a collection where it makes sense to index the items, then you want that collection 
to implement IList<T>. Concrete generic list collection types typically implement the IList<T> and 
IList interfaces. IList<T> implements ICollection<T>, and IList implements ICollection, so any type 
that is a list is also a collection. The IList<T> interface looks like the following: 

public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable 
{ 
   T this[ int index ] { get; set; } 
   int IndexOf( T item ); 
   void Insert( int index, T item ); 
   void RemoveAt( int index ); 
} 

The IList interface is a bit larger: 

public interface IList : ICollection, IEnumerable 
{ 
   bool IsFixedSize { get; } 
   bool IsReadOnly { get; } 
   object this[ int index ] { get; } 
   int Add( object value ); 
   void Clear(); 
   bool Contains( object value ); 
   int IndexOf( object value ); 
   void Insert( int index, object value ); 
   void Remove( object value ); 
   void RemoveAt( int index ); 
} 

As you can see, there is some overlap between IList<T> and IList, but there are plenty of useful 
properties and methods in IList that a generic container such as List<T>, or any other generic list that 
you create, would want. As with ICollection<T> and ICollection, the typical pattern is to implement 
both interfaces. You should explicitly implement the methods of IList that overlap in functionality with 
those of IList<T>, so that the only way to get to them is to convert the instance reference to the IList 
type first. 
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■ Note Generally, when implementing your own list types, you should derive your implementation from 

Collection<T> in the System.Collections.ObjectModel namespace. 

Dictionaries 
The .NET 2.0 Framework introduced the IDictionary<TKey, TValue> type as a generic and thus strongly 
typed counterpart to IDictionary. As usual, concrete types that implement IDictionary<TKey, TValue> 
should implement IDictionary as well. There is a lot of overlap, and the generic interface declares more 
type-safe versions of some properties and methods declared in IDictionary. However, there is also a 
new method available on IDictionary<TKey, TValue> called TryGetValue, which you can use to attempt 
to get a value based on the given key. The method returns the value through an out parameter, and the 
actual return value from the method indicates whether the item was in the dictionary. Although you can 
do this same thing using the index operator and catching the KeyNotFoundException when the item is not 
in there, it is always more efficient to avoid exceptions if you know the item is probably not there. Using 
exceptions for the purpose of control flow is a practice to avoid for two reasons. First, using exceptions 
for control flow is inefficient, because exceptions are expensive. Second, it trivializes the fact that an 
exception is a truly exceptional event. When using exceptions for control flow, you’re using exceptions to 
handle an expected event. You’ll find more cases of this Try... method call pattern throughout the .NET 
Framework, because the .NET team made a concerted effort to avoid efficiency bottlenecks such as 
these. 

■ Note When implementing generic dictionaries, you have a couple of choices from which to derive 

implementations. First, you can use SortedDictionary<TKey, TValue>, which provides O(log n) retrieval and 

implements IDictionary<TKey, TValue> as well as the collection interfaces. However, you can also choose to 

use KeyedCollection<TKey, TValue> in the System.Collections.ObjectModel namespace. Although it 

doesn’t actually implement the dictionary interfaces, it does provide O(1) retrieval most of the time. For more 

details, see the MSDN documentation. 

Sets 
The .NET 3.5 Framework introduced yet another useful collection class, known as HashSet, which is 
defined in the System.Collections.Generic namespace. HashSet implements the typical set operations 
that you would expect. For example, you can call the IntersectWith method to modify the current set so 
that it will contain an intersection of the current items and the items contained in the IEnumerable<T> 
type given. Conversely, UnionWith modifies the current set to contain the union of two sets. Other useful 
methods include IsSubsetOf, IsSupersetOf, ExceptWith, SymmetricExceptWith, Contains, etc. These are 
just a few of the useful methods available for sets. 
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■ Note Notice that the various set operation methods implemented by HashSet accept parameters of type 

IEnumerable<T>. This is very handy because it allows you to use any collection type as the parameter to these 

methods rather than only HashSet instances. 

As is typical with set operations, you can only add unique values to instances of HashSet. For 
example, if you have already added the values 1, 2, and 3 to a HashSet<int> instance, then you cannot 
add another integer corresponding to one of those values. This is the reason the Add method returns a 
Boolean indicating whether the operation succeeded or not. It would be inefficient to throw an 
exception in such cases, so the result is indicated via the return value from Add. 

System.Collections.ObjectModel 
For those of you who need to define your own collection types, you’ll find the types defined in the 
System.Collection.ObjectModel namespace most useful. In fact, you should derive your 
implementations from the objects in this namespace, if at all possible. This namespace contains only 
five types, and the fact that this namespace exists has been the source of some controversy. There were 
two main reasons these types were broken out into their own namespace. First, the Visual Basic 
environment already contains a Collection type that is implemented by a namespace it imports by 
default, and the Visual Basic team was concerned that VB users could become confused by seeing two 
types with similar names and drastically different behaviors popping up in IntelliSense. Second, the Base 
Class Libraries (BCL) team thought that users would rarely need the types in this namespace. Whether 
that is true will be shown over time. My opinion is that these types are extremely useful for writing 
libraries or for code consumed by others. One of Microsoft’s guidelines even suggests that you should 
consider creating a subclass of these types when exposing collections, even if only to provide a richer 
type name describing the collection and an easily accessible extensibility point. 

These types are extremely useful if you’re defining collection types of your own. You can derive your 
type from Collection<T> easily in order to get default collection behavior, including implementation of 
ICollection<T>, IList<T>, and IEnumerable<T>. Collection<T> also implements the nongeneric 
interfaces ICollection, IList, and IEnumerable. However, you may have to cast the type to one of these 
interfaces explicitly to access the properties and methods of them, because many of them are 
implemented explicitly. Moreover, the Collection<T> type uses the NVI pattern7 to provide the derived 
type with a set of protected virtual methods that you can override. I won’t list the entire public interface 
to Collection<T> here, because you can find the details in the MSDN documentation. However, the 
protected virtual methods that you may override are shown in the following code: 

public class Collection<T> : ICollection<T>, IList<T>, IEnumerable<T>, 
                             ICollection, IList, IEnumerable 
{ 
   ... 
   protected virtual void ClearItems(); 
   protected virtual void InsertItem( int index, T item ); 
   protected virtual void RemoveItem( int index ); 

                                                 

 
7 I describe the NVI pattern in Chapter 13. 
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   protected virtual void SetItem( int index, T item ); 
   ... 
} 

You cannot modify the storage location of the collection by overriding these methods. 
Collection<T> manages the storage of the items, and the items are held internally through a private field 
of type IList<T>. However, you can override these methods to manage extra information triggered by 
these operations. Just be sure to call through to the base class versions in your overrides. 

Finally, the Collection<T> type offers two constructors: one creates an empty instance, and the 
other accepts an IList<T>. The constructor copies the passed-in contents of the IList<T> instance into 
the new collection in the order that they are provided by the enumerator returned from 
IList<T>.GetEnumerator. This ordering is important to note, as you’ll see a way to control it in the 
following section on enumerators and iterator blocks. The implementation of the source list’s 
enumerator can do such things as reverse the order of the items as they’re put into the collection, simply 
by providing a proper enumerator implementation. Personally, I believe there should be more 
constructors on Collection<T> that accept an interface of type IEnumerator<T> and IEnumerable<T> in 
order to provide more flexible ways to fill a collection. You can solve this problem by introducing the 
extra constructors into a type that derives from Collection<T>, as I’ve shown here: 

using System; 
using System.Collections.Generic; 
using System.Collections.ObjectModel; 
 
public class MyCollection<T> : Collection<T> 
{ 
   public MyCollection() : base() { 
    } 
 
    public MyCollection( IList<T> list ) 
        : base(list) { } 
 
    public MyCollection( IEnumerable<T> enumerable ) 
        : base() { 
        foreach( T item in enumerable ) { 
            this.Add( item ); 
        } 
    } 
 
    public MyCollection( IEnumerator<T> enumerator ) 
        : base() { 
        while( enumerator.MoveNext() ) { 
            this.Add( enumerator.Current ); 
        } 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        MyCollection<int> coll = 
            new MyCollection<int>( GenerateNumbers() ); 
 
        foreach( int n in coll ) { 
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            Console.WriteLine( n ); 
        } 
    } 
 
    static IEnumerable<int> GenerateNumbers() { 
        for( int i = 4; i >= 0; —i ) { 
            yield return i; 
        } 
    } 
} 

In Main, you can see the instance of MyCollection<int> created by passing in an IEnumerable<int> 
type returned from the GenerateNumbers method. If the yield keyword in the GenerateNumbers method 
looks foreign to you, it may be because it’s a feature added in C# 2.0. I’ll explain this keyword a little later 
on in this chapter. Essentially, it defines what’s called an iterator block, which creates a compiler-
generated enumerator from the code. After creating a MyCollection<T> constructed type, you can still 
hold on to it and use it solely through a Collection<T> reference. After all, MyCollection<T> is-a 
Collection<T>. Incidentally, I didn’t bother creating constructors that accept the nongeneric 
IEnumerable and IEnumerator, simply because I want to favor stronger type safety. 

You may have noticed the existence of List<T> in the System.Collections.Generic namespace. It 
would be tempting to use List<T> in your applications whenever you need to provide a generic list type 
to consumers. However, instead of using List<T>, consider Collection<T>. List<T> doesn’t implement 
the protected virtual methods that Collection<T> implements. Therefore, if you derive your list type 
from List<T>, your derived type has no way to respond when modifications are made to the list. On the 
other hand, List<T> serves as a great tool to use when you need to embed a raw list-like storage 
implementation within a type, because it is devoid of virtual method calls such as Collection<T> and is 
more efficient as a result. 

Another useful type within the System.Collections.ObjectModel namespace is the type 
ReadOnlyCollection<T>, which is a wrapper you can use to implement read-only collections. Since the 
C# language lacks any notion of using the const keyword for const-correctness like in C++, it is essential 
to create immutable types when necessary and pass those to methods in lieu of const parameters. The 
constructor for ReadOnlyCollection<T> accepts an IList<T> parameter type. Thus, you can use a 
ReadOnlyCollection<T> to wrap any type that implements IList<T>, including Collection<T>. Naturally, 
if users access the ICollection<T>.IsReadOnly property, the answer will be true. Any time users call a 
modifying method such as ICollection<T>.Clear, an exception of type NotSupportedException will be 
thrown. Moreover, in order to call modifying methods, the ReadOnlyCollection<T> reference must be 
cast to the interface containing the method, because ReadOnlyCollection<T> implements all modifying 
methods explicitly. The biggest benefit of implementing these methods explicitly is to help you avoid 
their use at compile time. 

Efficiency 
When given a choice, you should always prefer the generic collection types over the nongeneric versions 
because of added type safety and higher efficiency. Let’s consider the efficiency standpoint a little more 
closely. When containing value types, the generic types avoid any unnecessary boxing and unboxing. 
Boxing is definitely a much more expensive operation than unboxing, because boxing requires a heap 
allocation but an unboxing operation doesn’t. Rico Mariani pinpoints many other efficiency bottlenecks 
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in his blog, Rico Mariani’s Performance Tidbits.8 He indicates that the development teams spent a lot of 
time focusing specifically on performance issues and simplifying things to make them better. One 
excellent example that he provides illustrates how List<T> is remarkably faster than ArrayList when 
used in many foreach iterations. However, the speed is not because of the obvious boxing/unboxing 
reasons, but rather because ArrayList uses a gratuitous amount of virtual methods, especially during 
enumeration. ArrayList.GetEnumerator is virtual, and the nested enumerator type 
ArrayListEnumeratorSimple also implements the MoveNext method and the Current property virtually. 
That adds up to many costly virtual methods to call during enumeration. Unless you’re enumerating an 
ArrayList like a crazed demon, you won’t notice this performance penalty, but it just goes to show how 
much attention the BCL development team has been putting on efficiency lately. 

This is a great example of why you want to analyze your class designs clearly to ensure that you’re 
making your classes inheritable for a good reason. Don’t make a method virtual unless you’re positive 
someone will need to override it, and if you do, make sure you use the NVI pattern covered in Chapter 
13. It is my firm belief that you should tend toward creating sealed classes, unless you’re absolutely sure 
that there is a good reason why people would want to inherit from your class. If you can’t think of a 
reason why they would want to, don’t leave it unsealed just because you think someone may come up 
with a good reason in the future. If you don’t come up with a good reason, then it’s unlikely that you 
created your class with inheritance in mind, and it may not work as expected for whatever derives from 
your class. Inheritability should be a conscious decision and not a subconscious one. 

■ Note Even if your class derives from a class that uses virtual methods, it will be more efficient if you declare it 

sealed, because the compiler can then call those virtual methods nonvirtually when calling through a reference to 

the derived type. 

There is one caveat to everything mentioned so far: Gratuitous use of generics, or any feature for 
that matter, without knowing the ramifications is never good. Whenever a fully constructed type is 
created, the runtime must generate that code within memory. Also, fully constructed types created from 
generic types with static fields will each get their own copy of the static fields. Moreover, they’ll all get 
their own version of the static constructor. So, if the generic contains a field like this: 

public class MyGeneric<T> 
{ 
   public static int staticField; 
} 

then MyGeneric<int>.staticField and MyGeneric<long>.staticField will both reference different 
storage locations. 

The moral of the story is that you must consider the engineering trade-off. Although generics help 
avoid boxing and generally create more efficient code, they can also increase the size of your 
application’s working set. If in doubt, measure the results using performance-analysis tools to determine 
the proper route to take. 

                                                 

 
8 You can find Rico’s blog at http://blogs.msdn.com/ricom/. 

http://blogs.msdn.com/ricom
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IEnumerable<T>, IEnumerator<T>, IEnumerable, and 
IEnumerator 
You’ve seen how you can use the C# foreach statement to conveniently iterate over a collection of 
objects, including a System.Array, ArrayList, List<T>, and so on. How does this work? The answer is that 
each collection that expects to work with foreach must implement the IEnumerable<T> or IEnumerable 
interface that foreach uses to obtain an object that knows how to enumerate, or iterate over, the items in 
the collection. The iterator object obtained from IEnumerable<T> must implement the IEnumerator<T> or 
IEnumerator interface. Generic collection types typically implement IEnumerable<T>, and the enumerator 
object implements IEnumerator<T>. IEnumerable<T> derives from IEnumerable, and IEnumerator<T> 
derives from IEnumerator. This allows you to use generic collections in places where nongeneric 
collections are used. Strictly speaking, your collection types are not required to implement enumerators, 
and users can iterate through the collection using a for loop if you provide an index operator by 
implementing IList<T>, for example. However, you won’t make many friends that way, and once I show 
you how easy it is to create enumerators using iterator blocks, you’ll see that it’s a piece of cake to 
implement IEnumerable<T> and IEnumerator<T>. 

Many of you may already be familiar with the nongeneric enumerator interfaces and how to 
implement enumerators on your collection types. In the rest of this section, I’ll quickly go over the 
salient points of creating enumerators from scratch, and I’ll quickly transition to how to create 
enumerators the new and improved way using iterator blocks. If you’d like, you may skip to the next 
section on iterators. Or if you want a refresher on implementing enumerators, go ahead and read the rest 
of this section. 

The IEnumerable<T> interface exists so that clients have a well-defined way to obtain an enumerator 
on the collection. The following code defines the IEnumerable<T> and IEnumerable interfaces: 

public interface IEnumerable<T> : IEnumerable 
{ 
   IEnumerator<T> GetEnumerator(); 
} 
 
public interface IEnumerable 
{ 
   IEnumerator GetEnumerator(); 
} 

Since both interfaces implement GetEnumerator with the same overload signature (remember, the 
return value doesn’t take part in overload resolution), any collection that implements IEnumerable<T> 
needs to implement one of the GetEnumerator methods explicitly. It makes the most sense to implement 
the non-generic IEnumerable.GetEnumerator method explicitly to make the compiler happy. 

The IEnumerator<T> and IEnumerator interfaces are shown here: 

public interface IEnumerator<T> : IEnumerator, IDisposable 
{ 
   T Current { get; } 
} 
 
public interface IEnumerator 
{ 
   object Current { get; } 
   bool MoveNext(); 
   void Reset(); 
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} 

Again, the two interfaces implement a member that has the same signature, which, in this case, is 
the Current property. When implementing IEnumerator<T>, you should implement IEnumerator.Current 
explicitly. Also, notice that IEnumerator<T> implements the IDisposable interface. Later, I’ll explain why 
this is a good thing. 

Now I’m going to show you how to implement IEnumerable<T> and IEnumerator<T> for a home-
grown collection type. Good teachers always show you how to do something the “hard way” before 
introducing you to the “easy way.” I think this technique is useful because it forces you to understand 
what is happening under the covers. When you know what’s happening underneath, you’re more adept 
at dealing with the technicalities that may come from using the “easy way.” Let’s look at an example of 
implementing IEnumerable<T> and IEnumerator<T> the hard way by introducing a home-grown 
collection of integers. I’ll show how to implement the generic versions, because that implies that you 
must also implement the nongeneric versions as well. In this example, I haven’t implemented 
ICollection<T> so as not to clutter the example, because I’m focusing on the enumeration interfaces: 

using System; 
using System.Threading; 
using System.Collections; 
using System.Collections.Generic; 
 
public class MyColl<T> : IEnumerable<T> 
{ 
    public MyColl( T[] items ) { 
        this.items = items; 
    } 
 
    public IEnumerator<T> GetEnumerator() { 
        return new NestedEnumerator( this ); 
    } 
 
    IEnumerator IEnumerable.GetEnumerator() { 
        return GetEnumerator(); 
    } 
 
    // The enumerator definition. 
    class NestedEnumerator : IEnumerator<T> 
    { 
        public NestedEnumerator( MyColl<T> coll ) { 
            Monitor.Enter( coll.items.SyncRoot ); 
            this.index = -1; 
            this.coll = coll; 
        } 
 
        public T Current { 
            get { return current; } 
        } 
 
        object IEnumerator.Current { 
            get { return Current; } 
        } 
 
        public bool MoveNext() { 
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            if( ++index >= coll.items.Length ) { 
                return false; 
            } else { 
                current = coll.items[index]; 
                return true; 
            } 
        } 
 
        public void Reset() { 
            current = default(T); 
            index = 0; 
        } 
 
        public void Dispose() { 
            try { 
                current = default(T); 
                index = coll.items.Length; 
            } 
            finally { 
                Monitor.Exit( coll.items.SyncRoot ); 
            } 
        } 
 
        private MyColl<T> coll; 
        private T current; 
        private int index; 
    } 
 
    private T[] items; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        MyColl<int> integers = 
            new MyColl<int>( new int[] {1, 2, 3, 4} ); 
 
        foreach( int n in integers ) { 
            Console.WriteLine( n ); 
        } 
    } 
} 

■ Note In most real-world cases, you would derive your custom collection class from Collection<T> and get the 

IEnumerable<T> implementation for free. 

This example initializes the internal array within MyColl<T> with a canned set of integers, so that the 
enumerator will have some data to play with. Of course, a real container should implement 
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ICollection<T> to allow you to populate the items in the collection dynamically. The foreach statements 
expand into code that obtains an enumerator by calling the GetEnumerator method on the 
IEnumerable<T> interface. The compiler is smart enough to use IEnumerator<T>.GetEnumerator rather 
than IEnumerator.GetEnumerator in this case. Once it gets the enumerator, it starts a loop, where it first 
calls MoveNext and then initializes the variable n with the value returned from Current. If the loop 
contains no other exit paths, the loop will continue until MoveNext returns false. At that point, the 
enumerator finishes enumerating the collection, and you must call Reset on the enumerator in order to 
use it again. 

Even though you could create and use an enumerator explicitly, I recommend that you use the 
foreach construct instead. You have less code to write, which means fewer opportunities to introduce 
inadvertent bugs. Of course, you might have good reasons to manipulate the enumerators directly. For 
example, your enumerator could implement special methods specific to your concrete enumerator type 
that you need to call while enumerating collections. If you must manipulate an enumerator directly, be 
sure to always do it inside a using block, because IEnumerator<T> implements IDisposable. 

Notice that there is no synchronization built into enumerators by default. Therefore, one thread 
could enumerate over a collection, while another thread modifies it. If the collection is modified while 
an enumerator is referencing it, the enumerator is semantically invalid, and subsequent use could 
produce undefined behavior. If you must preserve integrity within such situations, then you may want 
your enumerator to lock the collection via the object provided by the SyncRoot property. The obvious 
place to obtain the lock would be in the constructor for the enumerator. However, you must also release 
the lock at some point. You already know that in order to provide such deterministic cleanup, you must 
implement the IDisposable interface. That’s exactly one reason why IEnumerator<T> implements the 
IDisposable interface. Moreover, the code generated by a foreach statement creates a try/finally block 
under the covers that calls Dispose on the enumerator within the finally block. You can see the 
technique in action in my previous example. 

Types That Produce Collections 
I’ve already touched upon the fact that a collection’s contents can change while an enumerator is 
enumerating the collection. If the collection changes, it could invalidate the enumerator. In the 
following sections on iterators, I show how you can create an enumerator that locks access to the 
container while it is enumerating. Although that’s possible, it may not be the best thing to do from an 
efficiency standpoint. For example, what if it takes a long time to iterate over all of the items in the 
collection? The foreach loop could do some lengthy processing on each item, during which time anyone 
else could be blocked from modifying the collection. 

In cases like these, it may make sense for the foreach loop to iterate over a copy of the collection 
rather than the original collection itself. If you decide to do this, you need to make sure you understand 
what a copy of the collection means. If the collection contains value types, then the copy is a deep copy, 
as long as the value types within don’t hold on to reference types internally. If the collection contains 
reference types, you need to decide if the copy of the collection must clone each of the contained items. 
Either way, it would be nice to have a design guideline to follow in order to know when to return a copy. 

The current rule of thumb when returning collection types from within your types is to always 
return a copy of the collection from methods, and return a reference to the actual collection if accessed 
through a property on your type. Although this rule is not set in stone, and you’re in no way obligated to 
follow it, it does make some semantic sense. Methods tend to indicate that you’re performing some sort 
of operation on the type and you may expect results from that operation. On the other hand, property 
access tends to indicate that you need direct access to the state of the object itself. Therefore, this rule of 
thumb makes good semantic sense. In general, it makes sense to apply this same semantic separation to 
all properties and methods within your types. 
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Iterators 
In the previous section, I showed you a cursory and lightweight example of creating an enumerator for a 
collection type. After you do this a few times, the task becomes mundane. And any time a task becomes 
mundane, we as humans are more likely to introduce silly mistakes. C# introduces a new construct 
called an iterator block to make this task much easier. Before I go into the gory details of iterators, let’s 
quickly look at how to accomplish the same task as the example in the previous section. This is the “easy 
way” that I was talking about: 

using System; 
using System.Collections; 
using System.Collections.Generic; 
 
public class MyColl<T> : IEnumerable<T> 
{ 
    public MyColl( T[] items ) { 
        this.items = items; 
    } 
 
    public IEnumerator<T> GetEnumerator() { 
        foreach( T item in items ) { 
            yield return item; 
        } 
    } 
 
    IEnumerator IEnumerable.GetEnumerator() { 
        return GetEnumerator(); 
    } 
 
    private T[] items; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        MyColl<int> integers = 
            new MyColl<int>( new int[] {1, 2, 3, 4} ); 
 
        foreach( int n in integers ) { 
            Console.WriteLine( n ); 
        } 
    } 
} 

It doesn’t get much easier than that. Notice that the enumerator implementation from the example 
in the previous section has boiled down to three lines within the GetEnumerator method. The key to the 
whole thing is the yield keyword. The presence of the yield keyword defines this block of code as a yield 
block. When you see it for the first time, it can be a little confusing to figure out exactly what’s going on. 
When GetEnumerator is called, the code in the method that contains the yield statement is not actually 
executed at that point in time. Instead, the compiler generates an enumerator class, and that class 
contains the yield block code. It is an instance of that class that is returned. Thus, when the foreach 
statement in Main calls through to the IEnumerator<T> methods, the code in the yield block is utilized. 
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One thing missing that was in the example from the previous section is synchronization. Let’s 
explore how to add synchronization to the enumerator returned by the yield block. The following is a 
replacement for the previous GetEnumerator method: 

    public IEnumerator<T> GetEnumerator() { 
        lock( items.SyncRoot ) { 
            for( int i = 0; i < items.Length; ++i ) { 
                yield return items[i]; 
            } 
        } 
    } 

How amazingly simple is that? For the sake of variety, I’ve changed the way I iterate over the 
collection using a for loop rather than foreach. Now, let me explain what magic the compiler is doing 
here. As before, the yield block code isn’t executed immediately. Rather, an enumerator object is 
returned. Internally, the enumerator can be in one of several states. The first time MoveNext is called on 
the enumerator, the block of code is executed up until the first yield statement is reached. Each 
subsequent call to MoveNext continues execution of the loop until either a yield break statement is 
reached or the loop falls through to the end of the method. Once that happens, the enumerator goes into 
its final state, and you cannot use it to enumerate the collection anymore. In fact, the Reset method isn’t 
available for use on enumerators generated from yield blocks, and if you call it, a NotSupportedException 
is thrown. At the end of enumeration, any finally blocks within the yield block are executed as 
expected. In this case, that means releasing the lock, because the C# lock statement boils down to a 
try/finally construct under the covers. Also, if the enumerator is disposed of before it reaches the end 
of the loop, the compiler is smart enough to put the code within the finally block into the 
implementation of Dispose on the enumerator so that the lock always gets released. 

As you can see, the compiler is doing a lot of work for you under the covers when you use iterators. 
As a final example, I’ve shown yet another way to iterate through the items in this collection: 

    public IEnumerator<T> GetEnumerator( bool synchronized ) { 
        if( synchronized ) { 
            Monitor.Enter( items.SyncRoot ); 
        } 
        try { 
            int index = 0; 
            while( true ) { 
                if( index < items.Length ) { 
                    yield return items[index++]; 
                } else { 
                    yield break; 
                } 
            } 
        } 
        finally { 
            if( synchronized ) { 
                Monitor.Exit( items.SyncRoot ); 
            } 
        } 
    } 
 
    public IEnumerator<T> GetEnumerator() { 
        return GetEnumerator( false ); 
    } 
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It is not a pretty way to iterate over the items, but I wanted to show you an example of using the 
yield break statement. Also, notice that I created a new GetEnumerator method that accepts a bool 
denoting whether the caller wants a synchronized or nonsynchronized enumerator. The important thing 
to note here is that the enumerator object created by the compiler now has a public field named 
synchronized. Any parameters passed to the method containing the yield block are added as public fields 
to the generated enumerator class. 

■ Note The enumerator generated from the yield block captures local variables and parameters; therefore, it is 

invalid to attempt to declare ref or out parameters on methods that implement a yield block. 

You could argue that the added fields should be private rather than public, because you can really 
mess up the enumerator if you access the fields and modify those public fields during enumeration. In 
this case, if you modify the synchronized field during enumeration and change it to false, other entities 
will have a hard time gaining access to the collection because the lock will never be released. Even 
though you have to use reflection to access the public fields of an enumerator generated from a yield 
block, it’s easy and dangerous to do so if used improperly. That’s not to say that this technique cannot be 
useful, as I show in an example in the section “Forward, Reverse, and Bidirectional Iterators,” when I 
demonstrate how to create a bidirectional iterator. 

You can mitigate this whole can of worms by introducing the proverbial extra level of indirection. 
Instead of returning the enumerator resulting from the yield block, put it inside of a wrapper enumerator 
and return the wrapper instead. This technique is shown in the following example: 

using System; 
using System.Threading; 
using System.Reflection; 
using System.Collections; 
using System.Collections.Generic; 
 
public class EnumWrapper<T> : IEnumerator<T> 
{ 
    public EnumWrapper( IEnumerator<T> inner ) { 
        this.inner = inner; 
    } 
 
    public void Dispose() { inner.Dispose(); } 
 
    public bool MoveNext() { return inner.MoveNext(); } 
 
    public void Reset() { inner.Reset(); } 
 
    public T Current { 
        get { return inner.Current; } 
    } 
 
    object IEnumerator.Current { 
        get { return inner.Current; } 
    } 
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    private IEnumerator<T> inner; 
} 
 
public class MyColl<T> : IEnumerable<T> 
{ 
    public MyColl( T[] items ) { 
        this.items = items; 
    } 
 
    public IEnumerator<T> GetEnumerator( bool synchronized ) { 
        return( new EnumWrapper<T>(GetPrivateEnumerator(synchronized)) ); 
    } 
 
    private IEnumerator<T> GetPrivateEnumerator( bool synchronized ) { 
        if( synchronized ) { 
            Monitor.Enter( items.SyncRoot ); 
        } 
        try { 
            foreach( T item in items ) { 
                yield return item; 
            } 
        } 
        finally { 
            if( synchronized ) { 
                Monitor.Exit( items.SyncRoot ); 
            } 
        } 
    } 
 
    public IEnumerator<T> GetEnumerator() { 
        return GetEnumerator( false ); 
    } 
 
    IEnumerator IEnumerable.GetEnumerator() { 
        return GetEnumerator(); 
    } 
 
    private T[] items; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        MyColl<int> integers = 
            new MyColl<int>( new int[] {1, 2, 3, 4} ); 
 
        IEnumerator<int> enumerator = 
            integers.GetEnumerator( true ); 
 
        // Try to get a reference to synchronized field. 
        //  



CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS 

 

272 

 

        // Throws an exception!!! 
        object field = enumerator.GetType(). 
            GetField("synchronized").GetValue( enumerator ); 
    } 
} 

In Main, you can see that I’m playing the part of the nefarious developer who wants to change the 
enumerator’s state during enumeration. You can see that I attempt to change the value of the property 
on enumerator using reflection. This throws an exception, because the property does not exist on the 
wrapper. 

■ Note Those of you familiar with the intricacies of reflection will recognize that it is technically possible for the 

code to modify the private field within the EnumWrapper<T> instance. That, however, requires that the code pass 

the ReflectionPermission code access security (CAS) demand. This demand fails unless the person running this 

code has granted it explicitly, and that’s unlikely. CAS is beyond the scope of this book, but for all the nitty-gritty 

details on CAS, including how to extend it to meet your needs, I recommend reading .NET Framework Security by 

Brian A. LaMacchia, et al. (Upper Saddle River, NJ: Pearson Education, 2002). 

So far, you’ve seen how iterator blocks are handy for creating enumerators. However, you can also 
use them to generate the enumerable type as well. For example, suppose you want to iterate through the 
first few powers of 2. You could do the following: 

using System; 
using System.Collections.Generic; 
 
public class EntryPoint 
{ 
    static public IEnumerable<int> Powers( int from, 
                                           int to ) { 
        for( int i = from; i <= to; ++i ) { 
            yield return (int) Math.Pow( 2, i ); 
        } 
    } 
 
    static void Main() { 
        IEnumerable<int> powers = Powers( 0, 16 ); 
        foreach( int result in powers ) { 
            Console.WriteLine( result ); 
        } 
    } 
} 

In this example, the compiler generates a single type that implements the four interfaces 
IEnumerable<int>, IEnumerable, IEnumerator<int>, and IEnumerator. Therefore, this type serves as both 
the enumerable and the enumerator. The bottom line is that any method that contains a yield block 
must return a type of IEnumerable<T>, IEnumerable, IEnumerator<T>, or IEnumerator, where T is the yield 
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type of the method. The compiler will handle the rest. I recommend that you strive to use the generic 
versions, because they will avoid unnecessary boxing for value types and give the type-safety engine 
more muscle. In the previous example, the from and to values are stored as public fields in the 
enumerable type, as shown earlier in this section. So, you may want to consider wrapping them up 
inside an immutable type if you want to prevent users from modifying them during enumeration. 

■ Tip Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries by Krzysztof 

Cwalina and Brad Abrams (Boston, MA: Addison-Wesley Professional, 2005) suggests that a type should never 

implement both IEnumerable<T> and IEnumerator<T>, because a single type should semantically be either a 

collection or an enumerator but not both. However, the objects generated by yield blocks violate this rule. For 

hand-coded collections, you should try to adhere to the rule, even though it’s clear that C# does this to make yield 

blocks more useful. 

Forward, Reverse, and Bidirectional Iterators 
Many libraries that support iterators on their container types support three main flavors of iterators in 
the form of forward, reverse, and bidirectional iterators. Forward iterators are analogous to regular 
enumerators implementing IEnumerator<T>, which the GetEnumerator methods of the container types in 
the .NET library typically expose. However, what if you need a reverse iterator or a bidirectional iterator? 
C# iterators make creating such things nice and easy. 

To get a reverse iterator for your container, all you need to do is create a yield block that loops 
through the items in the collection in reverse order. Even more convenient, you can typically declare 
your yield block external to your collection, as shown in the following example: 

using System; 
using System.Collections.Generic; 
 
public class EntryPoint 
{ 
    static void Main() { 
        List<int> intList = new List<int>(); 
        intList.Add( 1 ); 
        intList.Add( 2 ); 
        intList.Add( 3 ); 
        intList.Add( 4 ); 
 
        foreach( int n in CreateReverseIterator(intList) ) { 
            Console.WriteLine( n ); 
        } 
    } 
 
    static IEnumerable<T> CreateReverseIterator<T>( IList<T> list ) { 
        int count = list.Count; 
        for( int i = count-1; i >= 0; --i ) { 
            yield return list[i]; 
        } 
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    } 
} 

The meat of the example is in the CreateReverseIterator<T> method. This method only works on 
collections of type IList<T>, but you could easily write another form of CreateReverseIterator<T> that 
takes some other collection type. When you create utility methods of this sort, it’s always best to be as 
generic as possible in the types that you accept. For example, would it be possible to make 
CreateReverseIterator<T> more general-purpose by accepting a type of ICollection<T>? No, because 
ICollection<T> doesn’t declare an index operator. IList<T> does declare an index operator, though. 

Now let’s turn our attention to a bidirectional iterator. In order to make a bidirectional iterator out 
of an enumerator, you need to be able to toggle its direction. As I showed previously, enumerators 
created from methods that accept parameters and contain a yield block have public fields that you can 
modify. Although you must use reflection to access these fields, you can still do it nevertheless. First, let’s 
look at a possible usage scenario for a bidirectional iterator: 

    static void Main() { 
        LinkedList<int> intList = new LinkedList<int>(); 
        for( int i = 1; i < 6; ++i ) { 
            intList.AddLast( i ); 
        } 
 
        BidirectionalIterator<int> iter = 
            new BidirectionalIterator<int>(intList, 
                                           intList.First, 
                                           TIteratorDirection.Forward); 
 
        foreach( int n in iter ) { 
            Console.WriteLine( n ); 
 
            if( n == 5 ) { 
                iter.Direction = TIteratorDirection.Backward; 
            } 
        } 
    } 

You need a way to create an iterator object that supports IEnumerable<T> and then use it within a 
foreach statement to start the enumeration. At any time within the foreach block, you want the ability to 
reverse the direction of iteration. The following example shows a BidirectionalIterator class that 
facilitates the previous usage model: 

public enum TIteratorDirection { 
    Forward, 
    Backward 
}; 
 
public class BidirectionalIterator<T> : IEnumerable<T> 
{ 
    public BidirectionalIterator( LinkedList<T> list, 
                                  LinkedListNode<T> start, 
                                  TIteratorDirection dir ) { 
        enumerator = CreateEnumerator( list, 
                                       start, 
                                       dir ).GetEnumerator(); 
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        enumType = enumerator.GetType(); 
    } 
 
    public TIteratorDirection Direction { 
        get { 
            return (TIteratorDirection) enumType.GetField("dir") 
                            .GetValue( enumerator ); 
        } 
        set { 
            enumType.GetField("dir").SetValue( enumerator, 
                                               value ); 
        } 
    } 
 
    private IEnumerator<T> enumerator; 
    private Type enumType; 
 
    private IEnumerable<T> CreateEnumerator( LinkedList<T> list, 
                                             LinkedListNode<T> start, 
                                             TIteratorDirection dir ) { 
        LinkedListNode<T> current = null; 
        do { 
            if( current == null ) { 
                current = start; 
            } else { 
                if( dir == TIteratorDirection.Forward ) { 
                    current = current.Next; 
                } else { 
                    current = current.Previous; 
                } 
            } 
 
            if( current != null ) { 
                yield return current.Value; 
            } 
        } while( current != null ); 
    } 
 
    public IEnumerator<T> GetEnumerator() { 
        return enumerator; 
    } 
 
    IEnumerator IEnumerable.GetEnumerator() { 
        return GetEnumerator(); 
    } 
} 

Technically speaking, I didn’t have to wrap the enumerator inside the BidirectionalIterator class. 
I could have accessed the direction variable via reflection from within the foreach block directly. 
However, in order to do that, the code within the foreach block would have needed the name of the 
parameter passed into the BidirectionalIterator.CreateEnumerator method with the yield block. In 
order to avoid such disjoint coupling, I tidied it up within the BidirectionalIterator wrapper class and 
provided a Direction property to access the public field on the enumerator. 
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Finally, the following example shows how you can use the same technique to implement a circular 
iterator. You could use this for things such as game loops, where you must iterate indefinitely through a 
collection of entities, updating their state with each pass until requested to quit: 

using System; 
using System.Collections; 
using System.Collections.Generic; 
 
public class EntryPoint 
{ 
    static void Main() { 
        LinkedList<int> intList = new LinkedList<int>(); 
        for( int i = 1; i < 6; ++i ) { 
            intList.AddLast( i ); 
        } 
 
        CircularIterator<int> iter = 
            new CircularIterator<int>(intList, 
                                      intList.First); 
 
        int counter = 0; 
        foreach( int n in iter ) { 
            Console.WriteLine( n ); 
 
            if( counter++ == 100 ) { 
                iter.Stop(); 
            } 
        } 
    } 
} 
 
public class CircularIterator<T> : IEnumerable<T> 
{ 
    public CircularIterator( LinkedList<T> list, 
                             LinkedListNode<T> start ) { 
        enumerator = CreateEnumerator( list, 
                                       start, 
                                       false ).GetEnumerator(); 
        enumType = enumerator.GetType(); 
    } 
 
    public void Stop() { 
        enumType.GetField("stop").SetValue( enumerator, true ); 
    } 
 
    private IEnumerator<T> enumerator; 
    private Type enumType; 
 
    private IEnumerable<T> CreateEnumerator( LinkedList<T> list, 
                                             LinkedListNode<T> start, 
                                             bool stop ) { 
        LinkedListNode<T> current = null; 
        do { 
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            if( current == null ) { 
                current = start; 
            } else { 
                current = current.Next; 
                if( current == null ) { 
                    current = start; 
                } 
            } 
 
            yield return current.Value; 
        } while( !stop ); 
    } 
 
    public IEnumerator<T> GetEnumerator() { 
        return enumerator; 
    } 
 
    IEnumerator IEnumerable.GetEnumerator() { 
        return GetEnumerator(); 
    } 
} 

I’ve included a Stop method on CircularIterator<T> so that you can easily tell it to stop iterating. Of 
course, as with the bidirectional iterator example, the Stop method uses reflection to set the public field 
stop on the compiler-generated enumerator. I’m sure that you’ll agree that there are many more creative 
uses for yield blocks for creating complex iteration paths. 

Collection Initializers 
C# 3.0 introduced a new abbreviated syntax for initializing collections, similar to the object initializer 
syntax shown in the section titled “Object Initializers.” If the collection type instance you are initializing 
implements IEnumerable or IEnumerable<T> and contains a public Add method that accepts one 
parameter of the contained type, you can utilize this new syntax. Alternatively, your type could just 
implement ICollection<T> from the System.Collections.Generic namespace because it also 
implements IEnumerable<T>. The collection initializer syntax is shown in the following: 

using System; 
using System.Collections.Generic; 
 
public class Employee 
{ 
    public string Name { get; set; } 
} 
 
public class CollInitializerExample 
{ 
    static void Main() { 
        var developmentTeam = new List<Employee> { 
            new Employee { Name = "Michael Bolton" }, 
            new Employee { Name = "Samir Nagheenanajar" }, 
            new Employee { Name = "Peter Gibbons" } 
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        }; 
 
        Console.WriteLine( "Development Team:" ); 
        foreach( var employee in developmentTeam ) { 
            Console.WriteLine( "\t" + employee.Name ); 
        } 
    } 
} 

Under the covers the compiler generates a fair amount of code to help you out here. For each item 
in the collection initialization list, the compiler generates a call to the collection’s Add method. Notice 
that I have also used the new object initializer syntax to initialize each of the instances in the initializer 
list. 

As I’ve mentioned, the collection type must implement ICollection<T> or implement 
IEnumerable<T> and a public Add method. If it does not, you will receive compile-time errors. 
Additionally, the collection must implement only one specialization of ICollection<T>; that is, it can 
only implement ICollection<T> for one type T. And finally, each item in the collection initialization list 
must be implicitly convertible to the type T. 

Summary 
In this chapter, I gave a brief overview of how arrays work in the CLR and in C#, in preparation for the 
discussion of generic collection types. After reviewing the generic collection types defined in 
System.Collections.Generic, I covered efficiency and usage concerns and introduced you to the useful 
types defined in System.Collections.ObjectModel. I then turned the spotlight on enumerators and 
showed you how to create effective enumerators efficiently by employing iterator yield blocks added in 
the C# 2.0 language. Finally, I showed you the syntax added in C# 3.0 that streamlines initializing a 
collection at instantiation time. 

Although this chapter didn’t delve into the minute details of each of the collection types, after 
reading the chapter, you should be effectively armed with the information you need to make informed 
choices about which generic collection types to use and when. I encourage you to reference the MSDN 
documentation often for all of the finer details regarding the APIs for the collection types. 

In the next chapter, I cover delegates, anonymous methods, and events. Anonymous methods are 
useful for creating callable code inline at the point where you register the callback with the caller. 
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Delegates, Anonymous Functions, 
and Events 

Delegates provide a built-in, language-supported mechanism for defining and executing callbacks. Their 
flexibility allows you to define the exact signature of the callback, and that information becomes part of 
the delegate type. Anonymous functions are forms of delegates that allow you to shortcut some of the 
delegate syntax that, in many cases, is overkill and mundane1. Building on top of delegates is the support 
for events in C# and the .NET platform. Events provide a uniform pattern for hooking up callback 
implementations—and possibly multiple instances thereof—to the code that triggers the callback. 

Overview of Delegates 
The CLR provides a runtime that explicitly supports a flexible callback mechanism. From the beginning 
of time, or at least from the beginning of Windows time, there has always been the need for a callback 
function that the system, or some other entity, calls at specific times to notify you of something 
interesting. After all, callbacks provide a convenient mechanism whereby users can extend functionality 
of a component. Even the most basic component of a Win32 GUI application—the window procedure—
is a callback function that is registered with the system. The system calls the function any time it needs 
to notify you that a message for the window has arrived. This mechanism works just fine in a C-based 
programming environment. 

Things became a little trickier with the widespread use of object-oriented languages such as C++. 
Developers immediately wanted the system to be able to call back into instance methods on objects 
rather than global functions or static methods. Many solutions to this problem exist. But no matter 
which solution you use, the bottom line is that somewhere, someone must store an instance pointer to 
the object and call the instance method through that instance pointer. Implementations typically consist 
of a thunk, which is nothing more than an adapter, such as an intermediate block of data or code that 
calls the instance method through the instance pointer2. This thunk is the actual function registered with 
the system. Many creative thunk solutions have been developed in C++ over the years. Your trusty 
author can recall many iterations of such designs with sentimental fondness. 

                                                 

 
1 Even better than anonymous functions are lambda expressions, which deserve an entire chapter and are covered in 
Chapter 15. 
2 You can find out more about various styles of thunks at the following link: 
http://www.wikipedia.org/wiki/Thunk. 

http://www.wikipedia.org/wiki/Thunk
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Delegates are the preferred method of implementing callbacks in the CLR. I find it helpful to 
imagine a delegate as simply a glorified pointer to a function, and that function can be either a static 
method or an instance method. A delegate instance is exactly the same as a thunk, but at the same time 
it is a first-class citizen of the CLR. In fact, when you declare a delegate in your code, the C# compiler 
generates a class derived from MulticastDelegate, and the CLR implements all the interesting methods 
of the delegate dynamically at run time. That’s why you won’t see any IL code behind those delegate 
methods if you examine the compiled module with ILDASM. 

The delegate contains a couple of useful fields. The first one holds a reference to an object, and the 
second holds a method pointer. When you invoke the delegate, the instance method is called on the 
contained object reference. However, if the object reference is null, the runtime understands that the 
method is a static method. One delegate type can handle callbacks to either an instance or a static 
method. Moreover, invoking a delegate syntactically is the same as calling a regular function. Therefore, 
delegates are perfect for implementing callbacks. 

As you can see, delegates provide an excellent mechanism to decouple the method being called 
from the actual caller. In fact, the caller of the delegate has no idea (or necessity to know) whether it is 
calling an instance method or a static method, or on what exact instance it is calling. To the caller, it is 
calling arbitrary code. The caller can obtain the delegate instance through any appropriate means, and it 
can be decoupled completely from the entity it actually calls. Think for a moment about UI elements in a 
dialog, such as a Commit button, and how many external parties might be interested in knowing when 
that button is selected. If the class that represents the button must call directly to the interested parties, 
it needs to have intimate knowledge of the layout of those parties, or objects, and it must know which 
method to call on each one of them. Clearly, this requirement adds way too much coupling between the 
button class and the interested parties, and with coupling come complexity and code maintenance 
nightmares. Delegates come to the rescue and break this link. Now, interested parties only need to 
register a delegate with the button, and that delegate is preconfigured to call whatever method they 
want. This decoupling mechanism describes events as supported by the CLR. I have more to say about 
CLR events later in this chapter in the “Events” section. Let’s go ahead and see how to create and use 
delegates in C#. 

Delegate Creation and Use 
Delegate declarations look almost exactly like abstract method declarations, except they have one added 
keyword: the delegate keyword. The following is a valid delegate declaration: 

public delegate double ProcessResults( double x, double y ); 

When the C# compiler encounters this line, it defines a type derived from MulticastDelegate, which 
also implements a method named Invoke that has exactly the same signature as the method described in 
the delegate declaration. For all practical purposes, that class looks like the following: 

public class ProcessResults : System.MulticastDelegate 
{ 
    public double Invoke( double x, double y ); 
 
    // Other stuff omitted for clarity 
} 

Even though the compiler creates a type similar to that listed, the compiler also abstracts the use of 
delegates behind syntactical shortcuts. Typically, you use a syntax that looks similar to a function call to 
invoke the delegate rather than call Invoke directly, which I’ll show shortly. 

When you instantiate an instance of a delegate, you must wire it up to a method to call when it is 
invoked. The method that you wire it up to could be either a static or an instance method that has a 
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signature compatible with that of the delegate. Thus, the parameter types and the return type must 
either match the delegate declaration or be implicitly convertible to the types in the delegate 
declaration. 

■ Note In .NET 1.x, the signature of the methods wired up to delegates had to match the delegate declaration 

exactly. In .NET 2.0, this requirement was relaxed to allow methods with compatible types in the declaration. 

Single Delegate 
The following example shows the basic syntax of how to create a delegate: 

using System; 
 
public delegate double ProcessResults( double x, 
                                       double y ); 
 
public class Processor 
{ 
    public Processor( double factor ) { 
        this.factor = factor; 
    } 
 
    public double Compute( double x, double y ) { 
        double result = (x+y)*factor; 
        Console.WriteLine( "InstanceResults: {0}", result ); 
        return result; 
    } 
 
    public static double StaticCompute( double x, 
                                        double y ) { 
        double result = (x+y)*0.5; 
        Console.WriteLine( "StaticResult: {0}", result ); 
        return result; 
    } 
 
    private double factor; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Processor proc1 = new Processor( 0.75 ); 
        Processor proc2 = new Processor( 0.83 ); 
 
        ProcessResults delegate1 = new ProcessResults( proc1.Compute ); 
        ProcessResults delegate2 = new ProcessResults( proc2.Compute ); 
        ProcessResults delegate3 = Processor.StaticCompute; 
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        double combined = delegate1( 4, 5 ) + 
                          delegate2( 6, 2 ) + 
                          delegate3( 5, 2 ); 
 
        Console.WriteLine( "Output: {0}", combined ); 
    } 
} 

In this example, I’ve created three delegates. Two of them point to instance methods, and one 
points to a static method. Notice that the first two delegates are created by creating instances of the 
ProcessResults type, which is the type created by the delegate declaration, and passing the target 
method in the constructor argument list. However, the delegate3 instance uses an abbreviated syntax 
where I simply assign the method to the delegate instance. Although it looks like 
Processor.StaticCompute is simply the name of the method, it’s actually called a method group because 
the method could be overloaded and this name could refer to a group of methods. In this case, the 
method group Processor.StaticCompute has one method in it. And to make life easier, C# allows you to 
directly assign a delegate from a method group. When you create the delegate instances via new, you pass 
the method group in the constructor. Take note of the format of the method groups. In the first two 
cases, you pass an instance method on the proc1 and proc2 instances. However, in the third case, you 
pass a method group on the type rather than an instance. This is the way you create a delegate that 
points to a static method rather than an instance method. You could have just as well assigned an 
instance method group to delegate3 too. At the point where the delegates are called, the syntax is 
identical and independent of whether the delegate points to an instance method or a static method. Of 
course, this example is rather contrived, but it gives a clear indication of the basic usage of delegates 
within C#. 

In all the cases in the previous code, a single action takes place when the delegate is called. It is 
possible to chain delegates together so that multiple actions take place and we will investigate this in the 
next section. 

Delegate Chaining 
Delegate chaining allows you to create a linked list of delegates such that when the delegate at the head 
of the list is called, all the delegates in the chain are called. The System.Delegate class provides a few 
static methods to manage lists of delegates. To create delegate lists, you ultimately rely on the following 
methods declared inside of the System.Delegate type: 

public class Delegate : ICloneable, ISerializable 
{ 
    public static Delegate Combine( Delegate[] ); 
    public static Delegate Combine( Delegate first, Delegate second ); 
} 

Notice that the Combine methods take the delegates to combine and return another Delegate. The 
Delegate returned is a new instance of a MulticastDelegate, which derives from Delegate, because 
Delegate instances are immutable. 

Notice that the first version of Combine listed previously takes an array of delegates to form the 
constituents of the new delegate list, and the second form takes just a pair of delegates. However, in both 
cases, any one of the Delegate instances could itself already be a delegate chain. So, you can see that 
some fairly complex nesting can take place here. 

To remove delegates from a list, you ultimately rely upon the following two static methods on 
System.Delegate: 
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public class Delegate : IClonable, ISerializable 
{ 
    public static Delegate Remove( Delegate source, Delegate value ); 
    public static Delegate RemoveAll( Delegate source, Delegate value ); 
} 

As with the Combine methods, the Remove and RemoveAll methods return a new Delegate instance 
created from the previous two. The Remove method removes the last occurrence of the invocation list 
represented by the parameter value from the source delegate list, whereas RemoveAll removes all 
occurrences of the invocation list represented by the parameter value from the source delegate list. 
Notice that I said that the value parameter can represent a delegate list rather than just a single delegate. 
Again, these methods have the capability to meet any complex delegate list management needs. 

If the preceding methods seem cumbersome, C# overloads operators for combining and removing 
delegates from a chain. To combine two delegates or delegate lists, simply use the addition operator; and 
to remove a delegate or delegate list from a chain, use the subtraction operator. Let’s look at a modified 
form of the code example in the last section to see how you can combine the delegates: 

using System; 
 
public delegate double ProcessResults( double x, 
                                       double y ); 
 
public class Processor 
{ 
    public Processor( double factor ) { 
        this.factor = factor; 
    } 
 
    public double Compute( double x, double y ) { 
        double result = (x+y)*factor; 
        Console.WriteLine( "InstanceResults: {0}", result ); 
        return result; 
    } 
 
    public static double StaticCompute( double x, 
                                        double y ) { 
        double result = (x+y)*0.5; 
        Console.WriteLine( "StaticResult: {0}", result ); 
        return result; 
    } 
 
    private double factor; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Processor proc1 = new Processor( 0.75 ); 
        Processor proc2 = new Processor( 0.83 ); 
 
        ProcessResults[] delegates = new ProcessResults[] { 
            proc1.Compute, 
            proc2.Compute, 
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            Processor.StaticCompute 
        }; 
 
        // Chain the delegates now. 
        ProcessResults chained = delegates[0] + 
                                 delegates[1] + 
                                 delegates[2]; 
 
        double combined = chained( 4, 5 ); 
         
        Console.WriteLine( "Output: {0}", combined ); 
    } 
} 

Notice that instead of calling all the delegates, this example chains them together and then calls 
them by calling through the head of the chain. This example features some major differences from the 
previous example, which I have listed as follows: 

• The resultant double that comes out of the chained invocation is the result of the 
last delegate called, which, in this case, is the delegate pointing to the static 
method StaticCompute. The return values from the other delegates in the chain are 
simply lost. 

• If any of the delegates throws an exception, processing of the delegate chain will 
terminate, and the CLR will begin to search for the next exception-handling frame 
on the stack. 

• Finally, be aware that if you declare delegates that take parameters by reference, 
each delegate that uses the reference parameter will see the changes made by the 
previous delegate in the chain. This could be a desired effect or it could be a 
surprise, depending on what your intentions are. 

Iterating Through Delegate Chains 
Sometimes you have to call a chain of delegates, but you need to harvest the return values from each 
invocation, or you might need to specify the ordering of the calls in the chain. For these times, the 
System.Delegate type, from which all delegates derive, offers the GetInvocationList method to acquire 
an array of delegates in which each element in the array corresponds to a delegate in the invocation list. 
Once you obtain this array, you can call the delegates in any order you please and you can process the 
return value from each delegate appropriately. You could also put an exception frame around each entry 
in the list so that an exception in one delegate invocation will not abort the remaining invocations. This 
modified version of the previous example shows how to call each delegate in the chain explicitly: 

using System; 
 
public delegate double ProcessResults( double x, 
                                       double y ); 
 
public class Processor 
{ 
    public Processor( double factor ) { 
        this.factor = factor; 
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    } 
 
    public double Compute( double x, double y ) { 
        double result = (x+y)*factor; 
        Console.WriteLine( "InstanceResults: {0}", result ); 
        return result; 
    } 
 
    public static double StaticCompute( double x, 
                                        double y ) { 
        double result = (x+y)*0.5; 
        Console.WriteLine( "StaticResult: {0}", result ); 
        return result; 
    } 
 
    private double factor; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Processor proc1 = new Processor( 0.75 ); 
        Processor proc2 = new Processor( 0.83 ); 
 
        ProcessResults[] delegates = new ProcessResults[] { 
            proc1.Compute, 
            proc2.Compute, 
            Processor.StaticCompute 
        }; 
 
        ProcessResults chained = delegates[0] + 
                                 delegates[1] + 
                                 delegates[2]; 
 
        Delegate[] chain = chained.GetInvocationList(); 
        double accumulator = 0; 
        for( int i = 0; i < chain.Length; ++i ) { 
            ProcessResults current = (ProcessResults) chain[i]; 
            accumulator += current( 4, 5 ); 
        } 
         
        Console.WriteLine( "Output: {0}", accumulator ); 
    } 
} 

Unbound (Open Instance) Delegates 
All the delegate examples so far show how to wire up a delegate to a static method on a specific type or to 
an instance method on a specific instance. This abstraction provides excellent decoupling, but the 
delegate doesn’t really imitate or represent a pointer to a method per se because it is bound to a method 
on a specific instance. What if you want to have a delegate represent an instance method and then you 
want to invoke that same instance method, via the delegate, on a collection of instances? 
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For this task, you need to use an open instance delegate. When you call a method on an instance, 
there is a hidden parameter at the beginning of the parameter list known as this, which represents the 
current instance.3 When you wire up a closed instance delegate to an instance method on an object 
instance, the delegate passes the object instance as the this reference when it calls the instance method. 
With open instance delegates, the delegate defers this action to whatever invokes the delegate. Thus, you 
can provide the object instance to call on at delegate invocation time. 

Let’s look at an example of what this would look like. Imagine a collection of Employee types, and the 
company has decided to give everyone a 10% raise at the end of the year. All the Employee objects are 
contained in a collection type, and now you need to iterate over each employee, applying the raise by 
calling the Employee.ApplyRaiseOf method: 

using System; 
using System.Reflection; 
using System.Collections.Generic; 
 
delegate void ApplyRaiseDelegate( Employee emp, 
                                  Decimal percent ); 
 
public class Employee 
{ 
    private Decimal salary; 
 
    public Employee( Decimal salary ) { 
        this.salary = salary; 
    } 
 
    public Decimal Salary { 
        get { 
            return salary; 
        } 
    } 
 
    public void ApplyRaiseOf( Decimal percent ) { 
        salary *= (1 + percent); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        List<Employee> employees = new List<Employee>(); 
 
        employees.Add( new Employee(40000) ); 
        employees.Add( new Employee(65000) ); 
        employees.Add( new Employee(95000) ); 
 
        // Create open instance delegate. 

                                                 

 
3 Refer to Chapter 4 for more details on this with regards to reference and value types. 
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        MethodInfo mi = 
            typeof(Employee).GetMethod( "ApplyRaiseOf", 
                                        BindingFlags.Public | 
                                        BindingFlags.Instance ); 
        ApplyRaiseDelegate applyRaise = (ApplyRaiseDelegate ) 
            Delegate.CreateDelegate( typeof(ApplyRaiseDelegate), 
                                     mi ); 
 
        // Apply raise. 
        foreach( Employee e in employees ) { 
            applyRaise( e, (Decimal) 0.10 ); 
 
            // Send new salary to console. 
            Console.WriteLine( e.Salary ); 
        } 
    } 
} 

First, notice that the declaration of the delegate has an Employee type declared at the beginning of 
the parameter list. This is how you expose the hidden instance pointer so that you can bind it later. Had 
you used this delegate to represent a closed instance delegate, the Employee parameter would have been 
omitted. Unfortunately, the C# language doesn’t have any special syntax for creating open instance 
delegates. Therefore, you must use one of the more generalized Delegate.CreateDelegate overloads to 
create the delegate instance as shown. Before you can do that, you must use reflection to obtain the 
MethodInfo instance representing the method to bind to. 

The key point is that nowhere during the instantiation of the delegate do you provide a specific 
object instance. You won’t provide that until the point of delegate invocation. The foreach loop shows 
how you invoke the delegate and provide the instance to call upon at the same time. Even though the 
ApplyRaiseOf method that the delegate is wired to takes only one parameter, the delegate invocation 
requires two parameters, so that you can provide the instance on which to make the call. 

The previous example shows how to create and invoke an open instance delegate; however, the 
delegate could still be more general and more useful in a broad sense. In that example, you declared the 
delegate so that it knew it was going to be calling a method on a type of Employee. Thus, at invocation 
time, you could have placed the call only on an instance of Employee or a type derived from Employee. 
You can use a generic delegate to declare the delegate so that the type on which it is called is unspecified 
at declaration time.4 Such a delegate is potentially much more useful. It allows you to state the following: 
“I want to represent a method that matches this signature supported by an as-of-yet unspecified type.” 
Only at the point of instantiation of the delegate are you required to provide the concrete type that will 
be called. Examine the following modifications to the previous example: 

delegate void ApplyRaiseDelegate<T>( T instance, 

                                     Decimal percent ); 
 
public class EntryPoint 
{ 
    static void Main() { 

                                                 

 
4 I cover generics in Chapter 11. 
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        List<Employee> employees = new List<Employee>(); 
 
        employees.Add( new Employee(40000) ); 
        employees.Add( new Employee(65000) ); 
        employees.Add( new Employee(95000) ); 
 
        // Create open instance delegate 
        MethodInfo mi = 
            typeof(Employee).GetMethod( "ApplyRaiseOf", 
                                        BindingFlags.Public | 
                                        BindingFlags.Instance ); 
        ApplyRaiseDelegate<Employee> applyRaise = 
            (ApplyRaiseDelegate<Employee> ) 
            Delegate.CreateDelegate( 
                         typeof(ApplyRaiseDelegate<Employee>), 
                         mi ); 
 
        // Apply raise. 
        foreach( Employee e in employees ) { 
            applyRaise( e, (Decimal) 0.10 ); 
 
            // Send new salary to console. 
            Console.WriteLine( e.Salary ); 
        } 
    } 
} 

Now, the delegate is much more generic. You can imagine that this delegate could be useful in some 
circumstances. For example, consider an imaging program that supports applying filters to various 
objects on the canvas. Suppose that you need a delegate to represent a generic filter type that, when 
applied, is provided a percentage value to indicate how much of an effect it should have on the object. 
Using generic, open instance delegates, you could represent such a general notion. 

Events 
In many cases, when you use delegates as a callback mechanism, you might just want to notify someone 
that some event happened, such as a button press in a UI. Suppose that you’re designing a media player 
application. Somewhere in the UI is a Play button. In a well-designed system, the UI and the control 
logic are separated by a well-defined abstraction, commonly implemented using a form of the Bridge 
pattern. This abstraction facilitates slapping on an alternate UI later, or even better, because UI 
operations are normally platform-specific, it facilitates porting the application to another platform. For 
example, the Bridge pattern works well in situations in which you want to decouple your control logic 
from the UI. 

■ Note The purpose of the Bridge pattern, as defined in Design Patterns: Elements of Reusable Object-Oriented 

Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Boston: Addison-Professional, 1995), 

is to decouple an abstraction from an implementation so that the two can vary independently. 
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By using the Bridge pattern, you can facilitate the scenario in which changes that occur in the core 
system don’t force changes in the UI and, most importantly, in which changes in the UI don’t force 
changes in the core system. One common way of implementing this pattern is by creating well-defined 
interfaces into the core system that the UI then uses to communicate with it, and vice versa. However, in 
these situations, defining interface types are cumbersome and less than ideal. Delegates, on the other 
hand, are an excellent mechanism to use in this scenario. With a delegate, you can begin to say things as 
abstract as, “When the user wants to play, I want you to call registered methods passing any information 
germane to the action.” The beauty here is that the core system doesn’t care how the user indicates to 
the UI that he wants the player to start playing media. It could be a button press, or there could be some 
sort of brain wave detection device that recognizes what the user is thinking. To the core system, it 
doesn’t matter, and you can change and interchange both independently without breaking the other. 
Both sides adhere to the same agreed-upon contract, which in this case include a specifically formed 
delegate and a means to register that delegate with the event-generating entity.5 

This pattern of usage, also known as publish/subscribe, is so common, even outside the realm of UI 
development, that the .NET runtime designers were so generous as to define a formalized built-in event 
mechanism. When you declare an event within a class, internally the compiler implements some hidden 
methods that allow you to register and unregister delegates, which are called when a specific event is 
raised. In essence, an event is a shortcut that saves you the time of having to write the register and 
unregister methods that manage a delegate chain yourself. Let’s take a look at a simple event sample 
based on the previous discussion: 

using System; 
 
// Arguments passed from UI when play event occurs. 
public class PlayEventArgs : EventArgs 
{ 
    public PlayEventArgs( string filename ) { 
        this.filename = filename; 
    } 
 
    private string filename; 
    public string Filename { 
        get { return filename; } 
    } 
} 
 
public class PlayerUI 
{ 
    // define event for play notifications. 
    public event EventHandler<PlayEventArgs> PlayEvent; 
 
    public void UserPressedPlay() { 
        OnPlay(); 
    } 
 
    protected virtual void OnPlay() { 
        // fire the event. 

                                                 

 
5 In Chapter 5, I cover the topic of contracts and interfaces in detail. 
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        EventHandler<PlayEventArgs> localHandler 
            = PlayEvent; 
        if( localHandler != null ) { 
            localHandler( this, 
                    new PlayEventArgs("somefile.wav") ); 
        } 
    } 
} 
 
public class CorePlayer 
{ 
    public CorePlayer() { 
        ui = new PlayerUI(); 
 
        // Register our event handler. 
        ui.PlayEvent += this.PlaySomething; 
    } 
 
    private void PlaySomething( object source, 
                                PlayEventArgs args ) { 
        // Play the file. 
    } 
 
    private PlayerUI ui; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        CorePlayer player = new CorePlayer(); 
    } 
} 

Even though the syntax of this simple event might look complicated, the overall idea is that you’re 
creating a well-defined contract through which to notify interested parties that the user wants to play a 
file. That well-defined contract is encapsulated inside the PlayEventArgs class, which derives from 
System.EventArgs (as described in the following text). 

Events put certain rules upon how you use delegates. The delegate must not return anything and it 
must accept two arguments as shown in the PlaySomething method in the previous example. The first 
argument is an object reference representing the party generating the event. The second argument must 
be a type derived from System.EventArgs. Your EventArgs derived class is where you define any event-
specific arguments. 

■ Note In .NET 1.1, you had to explicitly define the delegate type behind the event. Starting in .NET 2.0, you can 

use the new generic EventHandler<T> delegate to shield you from this mundane chore. 

Notice the way that the event is defined within the PlayerUI class using the event keyword. The 
event keyword is first followed by the defined event delegate, which is then followed by the name of the 
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event—in this case, PlayEvent. Also notice that I declared the event member using the generic 
EventHandler<T> delegate. 

When registering handlers using the += operator, as a shortcut you can provide only the name of the 
method to call, and the compiler will create the EventHandler<T> instance for you using the method 
group to delegate assignment rules I mentioned in a previous section. You could optionally follow the += 
operator with a new expression creating a new instance of EventHandler<T>, just as you could when 
creating delegate instances, but if the compiler provides the shortcut shown, why type more syntax that 
makes the code harder to read? 

The PlayEvent identifier means two entirely different things, depending on what side of the 
decoupling fence you’re on. From the perspective of the event generator—in this case, PlayerUI—the 
PlayEvent event is used just like a delegate. You can see this usage inside the OnPlay method. Typically, a 
method such as OnPlay is called in response to a UI button press. It notifies all the registered listeners by 
calling through the PlayEvent event (delegate). 

■ Note The popular idiom when raising events is to raise the event within a protected virtual method named 

On<event>, where <event> is replaced with the name of the event—in this case, OnPlay. This way, derived 

classes can easily modify the actions taken when the event needs to be raised. In C#, you must test the event for 

null before calling it; otherwise, the result could be a NullReferenceException. The OnPlay method makes a 

local copy of the event before testing it for null. This avoids the race condition where the event is set to null from 

another thread after the null check passes and before the event is raised. 

From the event consumer side of the fence, the PlayEvent identifier is used completely differently, 
as you can see in the CorePlayer constructor. 

That’s the basic structure of events. As I alluded to earlier, .NET events are a shortcut to creating 
delegates and the contracts with which to register those delegates. As proof of this, you can examine the 
IL generated from compiling the previous example. Under the covers, the compiler has generated two 
methods, add_OnPlay and remove_OnPlay, which are called when you use the overloaded += and -= 
operators. These methods manage the addition and removal of delegates from the event delegate chain. 
In fact, the C# compiler doesn’t allow you to call these methods explicitly, so you must use the operators. 
You might be wondering whether there is some way to control the body of those function members as 
you can with properties. The answer is yes, and the syntax is similar to that of properties. I modified the 
PlayerUI class to show the way to handle event add and remove operations explicitly: 

public class PlayerUI 
{ 
    // define event for play notifications. 
    private EventHandler<PlayEventArgs> playEvent; 
    public event EventHandler<PlayEventArgs> PlayEvent { 
        add { 
            playEvent = (EventHandler<PlayEventArgs>) 
                        Delegate.Combine( playEvent, value ); 
        } 
        remove { 
            playEvent = (EventHandler<PlayEventArgs>) 
                        Delegate.Remove( playEvent, value ); 
        } 
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    } 
 
    public void UserPressedPlay() { 
        OnPlay(); 
    } 
 
    protected virtual void OnPlay() { 
        // fire the event. 
        EventHandler<PlayEventArgs> localHandler 
            = playEvent; 
        if( localHandler != null ) { 
            localHandler( this, 
                    new PlayEventArgs("somefile.wav") ); 
        } 
    } 
} 

Inside the add and remove sections of the event declaration, the delegate being added or removed is 
referenced through the value keyword, which is identical to the way property setters work. This example 
uses Delegate.Combine and Delegate.Remove to manage an internal delegate chain named playEvent. 
This example is a bit contrived because the default event mechanism does essentially the same thing, 
but I show it here for the sake of example. 

■ Note You would want to define custom event accessors explicitly if you needed to define some sort of custom 

event storage mechanism, or if you needed to perform any other sort of custom processing when events are 

registered or unregistered. 

One final comment regarding design patterns is in order. As described, you can see that events are 
ideal for implementing a publish/subscribe design pattern, in which many listeners are registering for 
notification (publication) of an event. Similarly, you can use .NET events to implement a form of the 
Observer pattern, in which various entities register to receive notifications that some other entity has 
changed. These are merely two design patterns that events facilitate. 

Anonymous Methods 
Many times, you might find yourself creating a delegate for a callback that does something very simple. 
Imagine that you’re implementing a simple engine that processes an array of integers. Let’s say that you 
design the system flexibly, so that when the processor works on the array of integers, it uses an algorithm 
that you supply at the point of invocation. This pattern of usage is called the Strategy pattern. In this 
pattern, you can choose to use a different computation strategy by providing a mechanism to specify the 
algorithm to use at run time. A delegate is the perfect tool for implementing such a system. Let’s see 
what an example looks like: 

using System; 
 
public delegate int ProcStrategy( int x ); 
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public class Processor 
{ 
    private ProcStrategy strategy; 
    public ProcStrategy Strategy { 
        set { 
            strategy = value; 
        } 
    } 
 
    public int[] Process( int[] array ) { 
        int[] result = new int[ array.Length ]; 
        for( int i = 0; i < array.Length; ++i ) { 
            result[i] = strategy( array[i] ); 
        } 
        return result; 
    } 
} 
 
public class EntryPoint 
{ 
    private static int MultiplyBy2( int x ) { 
        return x*2; 
    } 
 
    private static int MultiplyBy4( int x ) { 
        return x*4; 
    } 
 
    private static void PrintArray( int[] array ) { 
        for( int i = 0; i < array.Length; ++i ) { 
            Console.Write( "{0}", array[i] ); 
            if( i != array.Length-1 ) { 
                Console.Write( ", " ); 
            } 
        } 
        Console.Write( "\n" ); 
    } 
 
    static void Main() { 
        // Create an array of integers. 
        int[] integers = new int[] { 
            1, 2, 3, 4 
        }; 
 
        Processor proc = new Processor(); 
        proc.Strategy = new ProcStrategy( EntryPoint.MultiplyBy2 ); 
        PrintArray( proc.Process(integers) ); 
 
        proc.Strategy = new ProcStrategy( EntryPoint.MultiplyBy4 ); 
        PrintArray( proc.Process(integers) ); 
    } 
} 
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Conceptually, the idea sounds really easy. However, in practice, you must do a few complicated 
things to make this work. First, you have to define a delegate type to represent the strategy method. In 
the previous example, that’s the ProcStrategy delegate type. Then you have to write the various strategy 
methods. After that, the delegates are created and bound to those methods and registered with the 
processor. In essence, these actions feel disjointed in their flow. It would feel much more natural to be 
able to define the delegate method in a less verbose way. Many times, the infrastructure required with 
using delegates makes the code hard to follow because the pieces of the mechanism are sprinkled 
around various different places in the code. 

Anonymous methods provide an easier and more compact way to define simple delegates such as 
these. In short, anonymous methods (introduced in C# 2.0) allow you to define the method body of the 
delegate at the point where you instantiate the delegate. Let’s look at how you can modify the previous 
example to use anonymous methods. The following is the revised portion of the example: 

public class EntryPoint 
{ 
    private static void PrintArray( int[] array ) { 
        for( int i = 0; i < array.Length; ++i ) { 
            Console.Write( "{0}", array[i] ); 
            if( i != array.Length-1 ) { 
                Console.Write( ", " ); 
            } 
        } 
        Console.Write( "\n" ); 
    } 
 
    static void Main() { 
        // Create an array of integers. 
        int[] integers = new int[] { 
            1, 2, 3, 4 
        }; 
 
        Processor proc = new Processor(); 
        proc.Strategy = delegate(int x) { 
            return x*2; 
        }; 
        PrintArray( proc.Process(integers) ); 
 
        proc.Strategy = delegate(int x) { 
            return x*4; 
        }; 
        PrintArray( proc.Process(integers) ); 
 
        proc.Strategy = delegate { 
            return 0; 
        }; 
        PrintArray( proc.Process(integers) ); 
    } 
} 

Notice that the two methods, MultiplyBy2 and MultiplyBy4, are gone. Instead, a delegate is created 
using a special syntax for anonymous methods at the point where it is assigned to the 
Processor.Strategy property. You can see that the syntax is almost as if you took the delegate 
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declaration and the method you wired the delegate to and then mashed them together into one. 
Basically, anywhere that you can pass a delegate instance as a parameter, you can pass an anonymous 
method instead. 

When you pass an anonymous method in a parameter list that accepts a delegate, or when you 
assign a delegate type from an anonymous method, you must be concerned with anonymous method 
type conversion. Behind the scenes, your anonymous method is turned into a regular delegate that is 
treated just like any other delegate instance. 

When you assign an anonymous method to a delegate instance storage location, a number of rules 
must apply. 

• First, the parameter types of the delegate must be compatible with those of the 
anonymous method. In the previous example’s first two delegate usages, I showed 
you the long way to declare an anonymous method. Some of you might have 
noticed the different syntax in the third usage in the example. I left out the 
parameter list because the body of the method doesn’t even use it. Yet, I was still 
able to set the Strategy property based upon this anonymous method, so clearly 
some type conversion has occurred. Basically, if the anonymous method has no 
parameter list, it is convertible to a delegate type that has a parameter list, as long 
as the list doesn’t include any out or ref parameters. If there are out parameters, 
the anonymous method is forced to list them in its parameter list at the point of 
declaration. 

• Second, if the anonymous method does list any parameters in its declaration, it 
must list the same count of parameters as the delegate type, and each one of those 
types must be the same types in the delegate declaration. 

• Finally, the return type returned from the anonymous method must be implicitly 
convertible to the declared return type of the delegate type it is being assigned to. 
Because the anonymous method declaration syntax doesn’t explicitly state what 
the return type is, the compiler must examine each return statement within the 
anonymous method and make sure that it returns a type that matches the 
convertibility rules. 

Captured Variables and Closures 
So far, anonymous methods have saved a small amount of typing and made the code more readable. But 
let’s look at the scoping rules involved with anonymous methods. With C#, you already know that curly 
braces define units of nested scope. The braces delimiting anonymous methods are no different. Take a 
look at the following modifications to the previous example: 

using System; 
 
public delegate int ProcStrategy( int x ); 
 
public class Processor 
{ 
    private ProcStrategy strategy; 
    public ProcStrategy Strategy { 
        set { strategy = value; } 
    } 
 
    public int[] Process( int[] array ) { 
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        int[] result = new int[ array.Length ]; 
        for( int i = 0; i < array.Length; ++i ) { 
            result[i] = strategy( array[i] ); 
        } 
        return result; 
    } 
} 
 
public class Factor 
{ 
    public Factor( int fact ) { 
        this.fact = fact; 
    } 
 
    private int fact; 
 
    public ProcStrategy Multiplier { 
        get { 
            // This is an anonymous method. 
            return delegate(int x) { 
                return x*fact; 
            }; 
        } 
    } 
 
    public ProcStrategy Adder { 
        get { 
            // This is an anonymous method. 
            return delegate(int x) { 
                return x+fact; 
            }; 
        } 
    } 
} 
 
public class EntryPoint 
{ 
    private static void PrintArray( int[] array ) { 
        for( int i = 0; i < array.Length; ++i ) { 
            Console.Write( "{0}", array[i] ); 
            if( i != array.Length-1 ) { 
                Console.Write( ", " ); 
            } 
        } 
        Console.Write( "\n" ); 
    } 
 
    static void Main() { 
        // Create an array of integers. 
        int[] integers = new int[] { 
            1, 2, 3, 4 
        }; 
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        Factor factor = new Factor( 2 ); 
        Processor proc = new Processor(); 
        proc.Strategy = factor.Multiplier; 
        PrintArray( proc.Process(integers) ); 
 
        proc.Strategy = factor.Adder; 
        factor = null; 
        PrintArray( proc.Process(integers) ); 
    } 
} 

In particular, pay close attention to the Factor class in this example. I have made this example more 
flexible so that I can apply the factor differently, using either multiplication or addition. Notice that the 
anonymous methods in the Factor class are using a variable that is accessible within the scope they are 
defined in—namely, the fact instance field. You can do this because the regular scoping rules apply 
even to the block of the anonymous method. There’s something tricky going on here, though. See where 
I set the factor instance variable in Main to null? Notice that I did it before the delegate obtained from 
the Factor.Adder property is invoked. That’s fine because the Adder property returns a delegate instance, 
even though I decided to declare the delegate as an anonymous method rather than the original way. 
But what about that Factor.fact instance field? If I set the factor variable to null in Main, the GC can 
collect the factor object even before the delegate, which uses the field, is done with it, right? Could this 
actually be a volatile race condition if the GC collects the Factor.fact instance before the delegate is 
finished with it? The answer is no because the delegate has captured the variable. 

Within anonymous method declarations, any variables defined outside the scope of the anonymous 
method but accessible to the anonymous method’s scope, including the this reference, are considered 
outer variables. And whenever an anonymous method body references one of these variables, it is said 
that the anonymous method has “captured” the variable. In this case, this has been captured. Thus, the 
Factor.fact field in the previous example will continue to live as it is still referenced in active delegates. 

The ability of anonymous method bodies to access variables within their containing definition 
scope is enormously useful. In computer science circles, this is commonly referred to as a closure. 
Imagine how much more difficult it would have been to achieve the same mechanism as in the example 
if you’d used regular delegates. You would have to create a mechanism, external to the delegate, to 
maintain the instance that you want the delegate to use. One solution when using standard delegates is 
to introduce another level of indirection in the form of a class, as is so often done when solving problems 
like these. However, I’m sure you’ll agree that anonymous methods can save a fair amount of work, not 
to mention that they can make your code significantly briefer and more readable. 

Beware the Captured Variable Surprise 
When a variable is captured by an instance of an anonymous method, you have to be careful of the 
implications that can have. Keep in mind that a captured variable’s representation lives on the heap 
somewhere, and the variable in a delegate instance is merely a reference to that data. Therefore, it’s 
entirely possible that two delegate instances created from an anonymous method can hold references to 
the same variable. Let me show an example of what I’m talking about: 

using System; 
 
public delegate void PrintAndIncrement(); 
 
public class EntryPoint 
{ 
    public static PrintAndIncrement[] CreateDelegates() { 
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        PrintAndIncrement[] delegates = new PrintAndIncrement[3]; 
        int someVariable = 0; 
        int anotherVariable = 1; 
        for( int i = 0; i < 3; ++i ) { 
            delegates[i] = delegate { 
                Console.WriteLine( someVariable++ );  
            }; 
        } 
        return delegates; 
    } 
 
    static void Main() { 
        PrintAndIncrement[] delegates = CreateDelegates(); 
        for( int i = 0; i < 3; ++i ) { 
            delegates[i](); 
        } 
    } 
} 

The anonymous method inside the CreateDelegates method captures someVariable, which is a local 
variable in the CreateDelegates method scope. However, because three instances of the anonymous 
method are put into the array, three anonymous method instances have now captured the same 
instance of the same variable. Therefore, when the previous code is run, the result looks like this: 

0 

1 

2 

As each delegate is called, it prints and increments the same variable. Now, consider what effect a 
small change in the CreateDelegates method can have. If you move the someVariable declaration into 
the loop that creates the delegate array, a fresh instance of the local variable is instantiated every time 
you go through the loop, thus mimicking the semantics of when variables are allocated on the stack. 
Notice the following change to the CreateDelegates method: 

    public static PrintAndIncrement[] CreateDelegates() { 
        PrintAndIncrement[] delegates = new PrintAndIncrement[3]; 
        for( int i = 0; i < 3; ++i ) { 
            int someVariable = 0; 
            delegates[i] = delegate { 
                Console.WriteLine( someVariable++ ); 
            }; 
        } 
        return delegates; 
    } 

This time, the output is as follows: 
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0 

0 

0 

This is why you need to be careful when you use variable capture in anonymous delegates. In the 
first case, the three delegates all captured the same variable. In the second case, they all captured 
separate instances of the variable because each iteration of the for loop creates a new (separate) 
instance of someVariable. Although you should keep this powerful feature handy in your bag of tricks, 
you must know what you’re doing so you don’t end up shooting yourself in the foot. 

Savvy readers might be wondering how the code can possibly work without blowing up because the 
captured variables in this example are value types that live on the stack by default. Remember that value 
types are created on the stack unless they happen to be declared as a field in a reference type that is 
created on the heap, which includes the case when they are boxed. However, someVariable is a local 
variable, so under normal circumstances, it is created on the stack. But these are not normal 
circumstances. Clearly, it’s not possible for an instance of an anonymous method to capture a local 
variable on the stack and expect it to be there later when it needs to reference it. It must live on the heap. 
Local value type variables that are captured must have different lifetime rules than such variables that 
are not captured. Therefore, the compiler does quite a bit of magic under the covers when it encounters 
local value type captured variables. 

■ Note Although the previous discussion uses a captured value type as an example, the compiler employs the 

same capture mechanism for reference type variables as well. 

When the compiler encounters a captured value type variable, it silently creates a class behind the 
scenes. Where the code initializes the local variable, the compiler generates IL code that creates an 
instance of this transparent class and initializes the field, which represents someVariable in this case. 
You can verify this with the first example if you open the compiled code in ILDASM or Reflector. I 
included the dummy variable anotherVariable so you could see the difference in how the IL treats them. 
Because anotherVariable is not captured, it is created on the stack, as you’d expect. The following code 
contains a portion of the IL for the CreateDelegates call after compiling the example with debugging 
symbols turned on: 

  // Code size       85 (0x55) 
  .maxstack  5 
  .locals init ([0] class PrintAndIncrement[] delegates, 
           [1] int32 anotherVariable, 
           [2] int32 i, 
           [3] class PrintAndIncrement '<>9__CachedAnonymousMethodDelegate1', 
           [4] class EntryPoint/'<>c__DisplayClass2' '<>8__locals3', 
           [5] class PrintAndIncrement[] CS$1$0000, 
           [6] bool CS$4$0001) 
  IL_0000:  ldnull 
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  IL_0001:  stloc.3 
  IL_0002:  newobj     instance void EntryPoint/'<>c__DisplayClass2'::.ctor() 
  IL_0007:  stloc.s    '<>8__locals3' 
  IL_0009:  nop 
  IL_000a:  ldc.i4.3 
  IL_000b:  newarr     PrintAndIncrement 
  IL_0010:  stloc.0 
  IL_0011:  ldloc.s    '<>8__locals3' 
  IL_0013:  ldc.i4.0 
  IL_0014:  stfld      int32 EntryPoint/'<>c__DisplayClass2'::someVariable 
  IL_0019:  ldc.i4.1 
  IL_001a:  stloc.1 
  IL_001b:  ldloc.1 
  IL_001c:  call       void [mscorlib]System.Console::WriteLine(int32) 

Note the two variables’ usages. In line IL_0002, a new instance of the hidden class is created. In this 
case, the compiler named the class <>c__DisplayClass2. That class contains a public instance field 
named someVariable, which is assigned in IL_0014. The compiler has transparently inserted the 
proverbial extra level of indirection in the form of a class to solve this sticky wicket of local value types 
captured by anonymous methods. Also, note that anotherVariable is treated just like a normal stack-
based variable, as can be shown by the fact that it is declared in the local variables portion of the 
method. 

Anonymous Methods as Delegate Parameter Binders 
Anonymous methods, coupled with variable capture, can provide a convenient means of implementing 
parameter binding on delegates. Parameter binding is a technique in which you want to call a delegate, 
typically with more than one parameter, so that one or more parameters are fixed while the others can 
vary per delegate invocation. For example, if you have a delegate that takes two parameters, and you 
want to convert it into a delegate that takes one parameter where the other parameter is fixed, you could 
use parameter binding to accomplish this feat. This technique is sometimes called currying6. Those of 
you C++ programmers who are familiar with the STL or the Boost Library might be familiar with 
parameter binders. Here’s an example: 

using System; 
 
public delegate int Operation( int x, int y ); 
 
public class Bind2nd 
{ 
    public delegate int BoundDelegate( int x ); 
 
    public Bind2nd( Operation del, int arg2 ) { 
        this.del = del; 
        this.arg2 = arg2; 

                                                 

 
6 I talk more about currying in Chapter 15 when I cover lambda expressions, which are a more syntactically expressive 
way of achieving the same goals as anonymous methods. 
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    } 
 
    public BoundDelegate Binder { 
        get { 
            return delegate( int arg1 ) { 
                return del( arg1, arg2 ); 
            }; 
        } 
    } 
 
    private Operation del; 
    private int arg2; 
} 
 
public class EntryPoint 
{ 
    static int Add( int x, int y ) { 
        return x + y; 
    } 
 
    static void Main() { 
        Bind2nd binder = new Bind2nd( 
                new Operation(EntryPoint.Add), 
                4 ); 
 
        Console.WriteLine( binder.Binder(2) ); 
    } 
} 

In this example, the delegate of type Operation with two parameters, which calls back into the static 
EntryPoint.Add method, is converted into a delegate that takes only one parameter. The second 
parameter is fixed using the Bind2nd class. Basically, the instance field Bind2nd.arg2 is set to the value 
that you want the second parameter fixed to. Then the Bind2nd.Binder property returns a new delegate 
in the form of an anonymous method instance, which captures the instance field and applies it along 
with the first parameter that is applied at the point of invocation. 

Readers familiar with the C++ STL are probably exclaiming that this example would be infinitely 
more useful if Bind2nd was generic so it could support a generic two-parameter delegate, much as the 
binder in STL does. This would be nice indeed, but some language barriers make it a bit tricky. Let’s start 
with an attempt to make the delegate type generic in the Bind2nd class. You could try the following: 

// WILL NOT COMPILE !!! 
public class Bind2nd< DelegateType > 
{ 
    public delegate int BoundDelegate( int x ); 
 
    public Bind2nd( DelegateType del, int arg2 ) { 
        this.del = del; 
        this.arg2 = arg2; 
    } 
 
    public BoundDelegate Binder { 
        get { 
            return delegate( int arg1 ) { 
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                return this.del( arg1, arg2 );  // OUCH! 
            }; 
        } 
    } 
 
    private DelegateType del; 
    private int arg2; 
} 

This is a noble attempt, but unfortunately it fails miserably because the compiler gets confused 
inside the anonymous method body and complains that an instance field is being used like a method. 
The exact error looks like the following: 

error CS1955: Non-invocable member 'Bind2nd<DelegateType>.del' cannot be used like a method. 

The compiler is correct. What it is saying you cannot do is exactly what you want to do, even though 
the compiler cannot make heads or tails of it. What’s a programmer to do? 

Another attempt involves generic constraints. Using constraints, you can say that even if the type is 
generic, it must derive from a certain base class or implement a specific interface. Fair enough! Let’s just 
help the compiler out and tell it that DelegateType will derive from System.Delegate, as follows: 

// STILL WILL NOT COMPILE !!! 
public class Bind2nd< DelegateType > 
    where DelegateType : Delegate 
{ 
    public delegate int BoundDelegate( int x ); 
 
    public Bind2nd( DelegateType del, int arg2 ) { 
        this.del = del; 
        this.arg2 = arg2; 
    } 
 
    public BoundDelegate Binder { 
        get { 
            return delegate( int arg1 ) { 
                return this.del( arg1, arg2 );  // OUCH! 
            }; 
        } 
    } 
 
    private DelegateType del; 
    private int arg2; 
} 

Alas, you’re stuck again! This time, the compiler says that a constraint of type Delegate is not 
allowed as shown in the following error: 

error CS0702: Constraint cannot be special class 'System.Delegate' 
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It turns out that the solution lies with using generic delegates to get the job done. The following is a 
solution to the problem: 

using System; 
 
public class Bind2nd<Arg1Type, Arg2Type, ReturnType> 
{ 
    public Bind2nd( Func<Arg1Type, Arg2Type, ReturnType> del, 
                    Arg2Type arg2 ) { 
        this.del = del; 
        this.arg2 = arg2; 
    } 
 
    public Func<Arg1Type, ReturnType> Binder { 
        get { 
            return delegate( Arg1Type arg1 ) { 
                return del( arg1, arg2 ); 
            }; 
        } 
    } 
 
    private Func<Arg1Type, Arg2Type, ReturnType> del; 
    private Arg2Type arg2; 
} 
 
public class EntryPoint 
{ 
    static int Add( int x, int y ) { 
        return x + y; 
    } 
 
    static void Main() { 
        Bind2nd<int,int,int> binder = new Bind2nd<int,int,int>( 
                EntryPoint.Add, 
                4 ); 
 
        Console.WriteLine( binder.Binder(2) ); 
    } 
} 

First, in order for the anonymous method to be able to use the del field as a method, the compiler 
must know that it is a delegate. Also, it cannot simply be of type System.Delegate. In order to call 
through to a delegate using the method call syntax, it must be a concrete delegate type. To make things 
simple, I used the Func<> generic delegate type to avoid having to declare my own generic delegates. We 
now have a working generic binder. 

The Bind2nd type in the previous example provides an excellent segue into generics, disussed in 
Chapter 11. 
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The Strategy Pattern 
Delegates offer up a handy mechanism to implement the Strategy pattern. In a nutshell, the Strategy 
pattern allows you to swap computational algorithms dynamically, based on the runtime situation. For 
example, consider the common case of sorting a group of items. Let’s suppose that you want the sort to 
occur as quickly as possible. Because of system circumstances, however, more temporary memory is 
required in order to achieve this speed. This works great for collections of reasonably manageable size, 
but if the collection grows to be huge, it’s possible that the amount of memory needed to perform the 
quick sort could exceed the system resource capacity. For those cases, you can provide a sort algorithm 
that is much slower but taxes the system resources far less. The Strategy pattern allows you to swap out 
these algorithms at run time depending on the conditions. This example, although a tad contrived, 
illustrates the purpose of the Strategy pattern perfectly. 

Typically, you implement the Strategy pattern using interfaces. You declare an interface that all 
implementations of the strategy implement. Then, the consumer of the algorithm doesn’t have to care 
which concrete implementation of the strategy it is using. Figure 10-1 features a diagram that describes 
this typical usage. 

«interface»
Strategy

ConcreteStrategy1 ConcreteStrategy2

Consumer

* *

 

Figure 10-1. Typical interface-based implementation of the Strategy pattern 

Delegates offer a more lightweight alternative to using interfaces to implement a simple strategy. 
Interfaces are merely a mechanism to implement a programming contract. Instead, imagine that your 
delegate declaration is used to implement the contract, and any method that matches the delegate 
signature is a potential concrete strategy. Now, instead of the consumer holding on to a reference to the 
abstract strategy interface, it simply retains a delegate instance. The following example illustrates this 
scenario: 

using System; 
using System.Collections; 
 
public delegate Array SortStrategy( ICollection theCollection ); 
 
public class Consumer 
{ 
    public Consumer( SortStrategy defaultStrategy ) { 
        this.strategy = defaultStrategy; 
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    } 
 
    private SortStrategy strategy; 
    public SortStrategy Strategy { 
        get { return strategy; } 
        set { strategy = value; } 
    } 
 
    public void DoSomeWork() { 
        // Employ the strategy. 
        Array sorted = strategy( myCollection ); 
 
        // Do something with the results. 
    } 
 
    private ArrayList myCollection; 
} 
 
public class SortAlgorithms 
{ 
    static Array SortFast( ICollection theCollection ) { 
        // Do the fast sort. 
    } 
 
    static Array SortSlow( ICollection theCollection ) { 
        // Do the slow sort. 
    } 
} 

When the Consumer object is instantiated, it is passed a sort strategy, which is nothing more than a 
method that implements the SortStrategy delegate signature. Depending on the run time conditions, 
the appropriate delegate is provided to the Consumer instance, and the Consumer.DoSomeWork method 
automatically calls into the desired strategy. Using the SortStrategy property, one could even change 
which strategy is used at run time. You could argue that implementing a strategy pattern this way is even 
more flexible than using interfaces because delegates can bind to both static methods and instance 
methods. Therefore, you could create a concrete implementation of the strategy that also contains some 
state data that is needed for the operation, as long as the delegate points to an instance method on a 
class that contains that state data. Similarly, the delegate could be an anonymous method returned by a 
property of that class. 

Summary 
Delegates offer a first-class, system-defined, and system-implemented mechanism for uniformly 
representing callbacks. In this chapter, you saw various ways to declare and create delegates of different 
types, including single delegates; chained delegates; open instance delegates; and anonymous methods, 
which are delegates. Additionally, I showed how to use delegates as the building blocks of events. You 
can use delegates to implement a wide variety of design patterns because delegates are a great means for 
defining a programming contract. And at the heart of just about all design patterns is a well-defined 
contract. 

The next chapter covers the details of generics, which is arguably one of the most powerful features 
of the CLR and the C# language for creating type safe code. 
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Generics 

Support for generics is one of the nicest features of C# and .NET. Generics allow you to create open-
ended types that are converted into closed types at runtime. Each unique closed type is a unique type. 
Only closed types can be instantiated. When you declare a generic type, you specify a list of type 
parameters in the declaration for which type arguments are given to create closed types, as in the 
following example: 

public class MyCollection<T> 
{ 
    public MyCollection() { 
    } 
 
    private T[] storage; 
} 

In this case, I declared a generic type, MyCollection<T>, which treats the type within the collection as 
an unspecified type. In this example, the type parameter list consists of only one type, and it is described 
with syntax in which the generic types are listed, separated by commas, between angle brackets. The 
identifier T is really just a placeholder for any type. At some point, a consumer of MyCollection<T> will 
declare what’s called a closed type, by specifying the concrete type that T is supposed to represent. For 
example, suppose that some other assembly wants to create a MyCollection<T> constructed type that 
contains members of type int. Then it would do so as shown in the following code: 

public void SomeMethod() { 
    MyCollection<int> collectionOfNumbers = new MyCollection<int>(); 
} 

MyCollection<int> in this example is the closed type. MyCollection<int> can be used just like any 
other declared type, and it also follows all the same rules that other nongeneric types follow. The only 
difference is that it was born from a generic type. At the point of instantiation, the IL code behind the 
implementation of MyCollection<T> is JIT-compiled in a way that all the usages of type T in the 
implementation of MyCollection<T> are replaced with type int. 

Note that all unique constructed types created from the same generic type are, in fact, completely 
different types that share no implicit conversion capabilities. For example, MyCollection<long> is a 
completely different type than MyCollection<int>, and you cannot do something like the following: 

// THIS WILL NOT WORK!!! 
public void SomeMethod( MyCollection<int> intNumbers ) { 
    MyCollection<long> longNumbers = intNumbers;       // ERROR! 
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} 

If you’re familiar with the array covariance rules that allow you to do the following, you’ll be happy 
to know that C# 4.0 adds new syntax to let you do this with generics: 

public void ProcessStrings( string[] myStrings ) { 
    object[] objs = myStrings; 
    foreach( object o in objs ) { 
        Console.WriteLine( o ); 
    } 
} 

The difference is that with array covariance, the source and the destination of the assignment are of 
the same type: System.Array. The array covariance rules simply allow you to assign one array from 
another, as long as the declared type of the elements in the array is implicitly convertible at compile 
time. However, in the case of two constructed generic types, they are completely separate types. 

Starting with C# 4.0, the language supports covariance and contravariance between generic 
interfaces and delegates with reference-based type arguments. This helps relax the restrictions on 
implicit convertibility for some generic types and helps to create code that simply makes sense without a 
lot of extra conversion baggage. I will have more to say about the topic of variance in the section titled 
“Co- and Contravariance” later in the chapter. 

Difference Between Generics and C++ Templates 
It’s no accident that the syntax of generics is similar to that of C++ templates, when the syntax for every 
other element in C# is based on the corresponding C++ syntax. This approach makes the language look 
familiar to many. As is typical throughout C#, the designers have streamlined the syntax and removed 
some of the verbosity. However, the similarities end there because C# generics behave very differently 
from C++ templates, and if you come from the C++ world, you must make sure that you understand the 
differences. Otherwise, you might find yourself attempting to apply your C++ template knowledge in 
ways that simply won’t work with generics. 

The main difference between the two is that expansion of generics is dynamic, whereas expansion 
of C++ templates is static. In other words, C++ templates are always expanded at compile time. 
Therefore, the C++ compiler must have access to all template types—generally through header files—
and any types used to create the closed types from the template types at compile time. For this reason 
alone, it is impossible to package C++ templates into libraries. I know that many developers become 
confused by this fact when learning C++ templates for the first time. I remember plenty of times when it 
would have been nice to be able to package a C++ template into a static library or a DLL. Unfortunately, 
that is not possible. That’s why all the code for C++ template types usually lives in headers. This makes it 
difficult to package proprietary library code within C++ templates because you must essentially give your 
code away to anyone who needs to consume it. The STL is a perfect example: notice that almost every bit 
of your favorite STL implementation exists in header files. 

Generics, on the other hand, can be packaged in assemblies and consumed later. Instead of being 
formed at compile time, constructed types are formed at runtime, or more specifically, at JIT-compile 
time. In many ways, this makes generics more flexible. However, as with just about anything in the 
engineering world, advantages come with disadvantages. You must treat generics significantly 
differently at design time from C++ templates, as you’ll see at the end of this chapter. 



CHAPTER 11 ■ GENERICS 

 

 

309 

 

■ Note Each time the JIT compiler forms a closed type, a new type is initialized for the application domain that 

uses it. Naturally, this places a demand on the memory consumption of the application, also known as the working 

set. Once a type is initialized and loaded into an application domain, you cannot uninitialize and unload it without 

destroying the application domain as well. Under some rare circumstances, you might need to consider these 

ramifications when designing systems that use generics. In general, though, such concerns are typically minimal. 

If your generic type declares a lot of static fields, creating many closed types from it could place pressure on 

memory because each closed type gets its own copy of those static fields. Additionally, if those closed types are 

used in multiple application domains, there will be a copy of that static data for each application domain the type 

is loaded into. 

Efficiency and Type Safety of Generics 
Arguably, the added efficiency when using value types in collections is one of the greatest gains from 
generics in C#. Whereas a regular array based on System.Array can contain a heterogeneous collection of 
instances created from many types as long as it holds references to a common base type such as 
System.Object, it does come with its drawbacks. Take a look at the following usage: 

public void SomeMethod( ArrayList col ) { 
    foreach( object o in col ) { 
        ISomeInterface iface = (ISomeInterface) o; 
        o.DoSomething(); 
    } 
} 

Because everything in the CLR is derived from System.Object, the ArrayList passed in via the col 
variable could possibly contain a hodgepodge of things. Some of those things might not actually 
implement ISomeInterface. As you’d expect, an InvalidCastException could erupt from this code. 
However, wouldn’t it be nice to be able to utilize the C# compiler’s type engine to help sniff out such 
things at compile time? That’s exactly what generics allow you to do. Using generics, you can devise 
something like the following: 

public void SomeMethod( IList<ISomeInterface> col ) { 
    foreach( ISomeInterface iface in col ) { 
        o.DoSomething(); 
    } 
} 

Here, the method accepts an interface of IList<T>. Because the type parameter to the constructed 
type is of type ISomeInterface, the only objects the list can hold are those of type ISomeInterface. 
Instantly, the compiler has a bigger stick to wield while enforcing type safety. 
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■ Note Added type safety at compile time is always a good thing because it’s much better to capture bugs based 

on type mismatches earlier at compile time rather than later at runtime. 

You could have solved the same problem without using generics, but it would have required writing 
a class by hand that would have served the same purpose as the List<ISomeInterface> constructed type. 
Thus, another beauty of generics is similar to that of C++ templates: They provide an easy-to-specialize 
shell for new types to be built from thus increasing code re-use. 

The compiler is your friend, and you should always provide it with as much type information as 
possible to help it do its job. Because everything in C# and the CLR derives from System.Object one way 
or another, you can easily cast away all type information from objects, thus crippling the compiler. If you 
come from a C++ environment, just imagine how ugly things could get if you preferred to pass around 
pointers to objects as void*. And that’s not even mentioning the hard-to-find bugs that would come 
from such madness. 

The example you’ve just seen shows how to use generics for better type safety. However, you 
haven’t really gained much yet from an efficiency standpoint. The real efficiency gain comes into play 
when the type argument is a value type. Remember that a value type inserted into a collection in the 
System.Collections namespace, such as ArrayList, must first be boxed because the ArrayList maintains 
a collection of System.Object types. An ArrayList meant to hold nothing but a bunch of integers suffers 
from severe efficiency problems because the integers must be boxed and unboxed each time they are 
inserted and referenced or extracted from the ArrayList, respectively. Also, an unboxing operation in C# 
is normally formed with an IL unbox operation paired with a copy operation on the value type’s data. 
Additionally, all that boxing puts more pressure on the managed heap. Generics come to the rescue to 
stop this madness. As an example, compile the following code and then load the assembly into ILDASM 
to compare the IL generated for each of the methods that accept a Stack instance: 

using System; 
using System.Collections; 
using System.Collections.Generic; 
 
public class EntryPoint 
{ 
    static void Main() { 
    } 
 
    public void NonGeneric( Stack stack ) { 
        foreach( object o in stack ) { 
            int number = (int) o; 
            Console.WriteLine( number ); 
        } 
    } 
 
    public void Generic( Stack<int> stack ) { 
        foreach( int number in stack ) { 
            Console.WriteLine( number ); 
        } 
    } 
} 
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Notice that the IL code generated by the NonGeneric method has at least ten more instructions than 
the generic version. Most of this is attributed to the type coercing and unboxing that the NonGeneric 
method must do. Furthermore, the NonGeneric method could possibly throw an InvalidCastException if 
it encounters an object that cannot be explicitly cast and unboxed into an integer at runtime. 

Clearly, generics offer the compiler much greater latitude to help it do its job by not stripping away 
precious type information at compile time. However, you could argue that the efficiency gain is so high 
that the primary motivator for generics in the CLR was to avoid unnecessary boxing operations. Either 
way, both gains are extremely significant and worth utilizing to the fullest extent. 

GENERIC TYPE PLACEHOLDER NAMING CONVENTIONS 

Although there are no hard-and-fast rules for naming generic parameter placeholders, it is recommended 
that you at least provide a name that is somewhat descriptive of how the type will be used. Additionally, 
placeholder identifiers conventionally make the first letter a capital T to denote it as a type.  

Naming conventions like these, similar to the convention that interface names start with a capital I, 
provide for code that is generally easier to read. If the generic type definition has only one type parameter 
and it’s simple to understand, it’s conventional to name it T. 

Generic Type Definitions and Constructed Types 
As I touched upon previously, a generic type is a compiled type that is unusable until a closed type is 
created from it. A nongeneric type is also known as a closed type, whereas a generic type is known as an 
open type. It is possible to define a new open type via a generic, as shown in the following example: 

public class MyClass<T> 
{ 
    private T innerObject; 
} 
 
public class Consumer<T> 
{ 
    private MyClass< Stack<T> > obj; 
} 

In this case, a generic type, Consumer<T>, is defined and also contains a field that is based on another 
generic type. When declaring the type of the Consumer<T>.obj field, MyClass< Stack<T> > remains open 
until someone declares a constructed type based on Consumer<T>, thus creating a closed type for the 
contained field. 

Generic Classes and Structs 
So far, all the examples I’ve shown you have been generic classes; in fact, the most common types of 
generic declaration you will use are generic classes and structs. Also, I’ve been running pretty fast and 
loose with my terminology, so I’ll be more explicit from now on. 
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Overall, declarations of all generic struct and class types follow the same rules as those for regular 
struct and class types. Any time a class declaration contains a type parameter list within angle brackets, 
it is a generic type from that point on. Likewise, any nested class declaration—whether it’s generic or 
not—that is declared within the scope of a generic type is a generic type because the nested type’s fully 
qualified name requires a type argument to completely specify the nested type. 

Generic types are overloaded based upon the number of arguments in their type argument lists. The 
following example illustrates what I mean: 

public class Container {} 
public class Container<T> {} 
public class Container<T, R> {} 

Each of these declarations is valid within the same namespace. You can declare as many generic 
types based on the Container identifier as you want, as long as each one has a different count of type 
parameters. Within the scope of the definitions shown previously, you cannot declare another type 
named Container<X, Y>, even though the identifiers used in the type parameters list have different 
names. The name-overloading rules for generic declarations are based on the count of type parameters 
instead of the names given to their placeholders. 

When you declare a generic type, you’re declaring what is called an open type. It’s called that 
because its fully specified type is not yet known. When you declare another type based upon the generic 
type definition, you’re declaring what’s called a constructed type, as shown here: 

public class MyClass<T> 
{ 
    private Container<int> field1; 
    private Container<T>   field2; 
} 

Both fields in the previous declaration of MyClass<T> are constructed types because they declare a 
new type based upon the generic type Container<T>. Container<int> is a closed type because all given 
type arguments are themselves closed; that is, nongeneric. However, not every constructed type is a 
closed type. Only field1 is of a closed type, whereas field2 is of an open type because its final type must 
still be determined at runtime based on the type arguments from MyClass<T>. 

In C#, all identifiers are declared and are valid within a specific scope. Within the confines of a 
method, for example, any local variable identifiers declared within the curly braces of the method are 
available only within that scope. Similar rules exist for type parameter identifiers within generics. In the 
previous example, the identifier T is valid only within the scope of the class declaration itself. Consider 
the following nested class example: 

public class MyClass<T> 
{ 
    public class MyNestedClass<R> 
    { 
    } 
} 

The identifier R is valid only within the scope of the nested class, and you cannot use it within the 
outer scope of the declaration for MyClass<T>. However, you can use T in the nested class because the 
nested class is defined within the scope within which T is valid. It is generally considered to be bad form 
to hide outer argument identifiers within nested scopes, just as it is with variable name identifiers within 
nested execution scopes. For example, try to follow this confusing code: 
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public class MyClass<T> 
{ 
    public class MyNestedClass<T> 
    { 
    } 
 
    private Container<T> field1; 
 
    static void Main() { 
        // What does this mean for MyNestedClass? 
        MyClass<int> closedTypeInstance = null; 
    } 
} 

When the closed type MyClass<int> is declared in Main, what does it mean for the nested type? The 
answer is nothing. Even though the MyNestedClass<T> declaration uses the same type argument, it does 
not expand into the following: 

// This is NOT what happens! 
public class MyClass<int> 
{ 
    public class MyNestedClass<int> 
    { 
    } 
 
    private Container<int> field1; 
} 

Just because the type parameter for the MyClass<T> type has been specified, it does not mean that 
the MyNestedClass<T> has been specified as well. In fact, it would be more accurate to describe the 
resultant MyClass<int> as follows: 

public class MyClass<int> 
{ 
    public class MyNestedClass<T> 
    { 
    } 
 
    private Container<int> field1; 
} 

MyNestedClass<T> still remains open, even though it used the same identifier in its parameter list as 
the containing type. What’s actually happening is that within the curly braces of MyNestedClass<T>, the 
outer type argument to MyClass<T> is hidden from access by the identifier of the inner scope. It is better 
to declare it as follows: 

public class MyClass<T> 
{ 
    public class MyNestedClass<R> 
    { 
        private T innerfield1; 
        private R innerfield2; 
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    } 
 
    private Container<T> field1; 
 
    static void Main() { 
        MyClass<int> closedTypeInstance = null; 
    } 
} 

Now the declaration scope of MyNestedClass<R> has access to both the T and R type parameters, as 
illustrated. One thing worth pointing out is that even though the variable of type MyClass<int>, a closed 
type, is declared, it does not imply that any closed types from MyNestedClass<R> have been declared. 

Generic structs and classes, just like normal structs and classes, can contain static types. However, 
each closed type based on the generic type contains its own instances of those static types. When you 
consider that each closed type is a separate concrete type, this fact makes perfect sense. For example, if 
MyClass<T> declares a static field named MyValue, then MyClass<int>, a closed type, has its own static 
field MyClass<int>.MyValue, which is unrelated to the static field MyClass<long>.MyValue. Therefore, if 
you need to share static data between different closed types based on the same generic type, you must 
devise some other means to do so. One technique involves a separate, nongeneric type that contains 
static data that is referenced by the generic types. Such a device is typically implemented with the 
Singleton pattern. You could also achieve this by having the generic type derive from a nongeneric type 
and put the shared statics in the nongeneric type. 

■ Note Keep in mind that generic types with static initializers require that the initialization code be run each and 

every time the CLR creates a closed type based upon the generic type. Complex type initializers, or static 

constructors, can possibly increase the working set of the application if too many closed types are created based 

upon such a generic type. For example, if you create a sizable per-type data structure in a generic type initializer, 

you could create a hidden source of memory consumption if many types are formed from it. 

Generic Interfaces 
Along with classes and structs, you can also create generic interface declarations. This concept is a 
natural progression from struct and class generics. Naturally, a whole host of interfaces declared within 
the .NET 1.1 base class library make excellent candidates to have generic versions fashioned after them. 
A perfect example is IEnumerable<T>. Generic containers create much more efficient code than 
nongeneric containers when they contain value types because they avoid any unnecessary boxing. It’s 
only natural that any generic enumerable interface must have a means of enumerating the generic items 
within. Thus, IEnumerable<T> exists, and any enumerable containers you implement yourself should 
implement this interface. Alternatively, you could get it for free by deriving your custom containers from 
Collection<T>. 

■ Note When creating your own custom collection types, you should derive them from Collection<T> in the 

System.Collections.ObjectModel namespace. Other types, such as List<T>, are not meant to be derived from 
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and are intended as a lower-level storage mechanism. Collection<T> implements protected virtual methods that 

you can override to customize its behavior, whereas List<T> does not. 

Generic Methods 
C# supports generic methods. Any method declaration that exists within a struct, a class, or an interface 
can be declared as a generic method. That includes static as well as virtual or abstract methods. Also, you 
can declare generic methods on either generic or nongeneric types. To declare a generic method, simply 
append a type parameter list within angle brackets to the end of the method name but before the 
parameter list for the method. You can declare any of the types in the method parameter list, including 
the method return type, using one of the generic parameters. As with nested classes, it is bad form to 
hide outer type identifiers by reusing the same identifier in the nested scope, which in this case, is the 
scope of the generic method. Let’s consider an example in which a generic method might be useful. In 
the following code, I created a container to which I want to add the contents of another generic 
container: 

using System; 
using System.Collections.Generic; 
 
public class MyContainer<T> : IEnumerable<T> 
{ 
    public void Add( T item ) { 
        impl.Add( item ); 
    } 
 
    // Converter<TInput, TOutput> is a new delegate type introduced 
    // in the .NET Framework 2.0 that can be wired up to a method that 
    // knows how to convert the TInput type into a TOutput type. 
    public void Add<R>( MyContainer<R> otherContainer, 
                        Converter<R, T> converter ) { 
        foreach( R item in otherContainer ) { 
            impl.Add( converter(item) ); 
        } 
    } 
 
    public IEnumerator<T> GetEnumerator() { 
        foreach( T item in impl ) { 
            yield return item; 
        } 
    } 
 
    System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() { 
        return GetEnumerator(); 
    } 
 
    private List<T> impl = new List<T>(); 
} 
 
public class EntryPoint 
{ 
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    static void Main() { 
        MyContainer<long> lContainer = new MyContainer<long>(); 
        MyContainer<int> iContainer = new MyContainer<int>(); 
 
        lContainer.Add( 1 ); 
        lContainer.Add( 2 ); 
        iContainer.Add( 3 ); 
        iContainer.Add( 4 ); 
 
        lContainer.Add( iContainer, 
                        EntryPoint.IntToLongConverter ); 
 
        foreach( long l in lContainer ) { 
            Console.WriteLine( l ); 
        } 
    } 
 
    static long IntToLongConverter( int i ) { 
        return i; 
    } 
} 

First of all, take note of the syntax of the generic Add<R> method, and also notice that there are two 
overloads of Add in MyContainer<T>. Clearly, you need to have a method to add instances of type T—thus, 
the need for Add( T ). However, it would be really handy to be able to add an entire range of objects 
from another closed type formed from MyContainer<T>, as long as the enclosed type of the source 
container is convertible to the enclosed type of the target. If you look at Main, you can see the intent here. 
I want to place the objects contained within an instance of MyContainer<int> into an instance of 
MyContainer<long>. Therefore, I created a generic method, Add<R>, to allow me to accept another 
container that contains any arbitrary type. Because the generic class uses T in its argument list, the 
generic method uses R to avoid any type parameter hiding. 

This technique involves a twist, though. Logically, what I’m trying to do makes perfect type sense. I 
want to add a collection of ints to a collection of longs, and I know that an int is easily implicitly 
convertible to a long, so I should be able to do this. Although this is true, you have to take into 
consideration that generics are formed dynamically at runtime. And at runtime, there is no guarantee 
what closed type formed from MyContainer<T> the Add<R> method will see. It could be 
MyContainer<Apples>, and an Apple might not be implicitly convertible to a long, assuming it was passed 
to MyContainer<long>.Add<Apples>. Those of you who are used to C++ templates will recognize that the 
compiler will let you know if you’re trying to perform an invalid conversion at compile time. However, 
generics don’t have this compile-time luxury, so more restrictions are in place during compile time to 
disallow such a thing. Therefore, you must seek out a different solution, and a good one is to provide a 
conversion delegate to get the job done. 

The base class library provides the System.Converter<TInput, TOutput> delegate specifically for this 
case. The syntax for this delegate might seem a bit foreign, but it’s simply a generic delegate declaration, 
which I cover in detail in the section “Generic Delegates.” When callers call Add<R>, they must also 
provide an instance of the generic Converter<T, R> delegate pointing to a method that knows how to 
convert from the source type to the target type. This explains the need for the IntToLongConverter 
method in the previous example. The Add<R> method then uses this delegate to do the actual conversion 
from one type to another. In this case, the conversion is an implicit one, but it still must be externalized 
this way because the compiler must accommodate the fact that the Add<R> method can have any type 
thrown at it at compile time. 
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■ Note Staring with C# 4.0, there is a new syntax for marking an interface or delegate as covariant or 

contravariant. (I cover this new syntax in detail in the section “Co- and Contravariance” later in this chapter.) 

Depending on the situation, if your types T and R are implicitly convertible to one or the other, you might not have 

to implement a converter delegate as shown previously. 

To facilitate enumeration of the container, I have also declared MyContainer<T> such that it 
implements IEnumerable<T>. This allows you to use the syntactically intuitive foreach construct. You’ll 
notice some syntax that might look foreign to you if you’re not familiar with C# iterators, specifically the 
yield statement.1 However, notice how easy it is to create an enumerator for this class using the yield 
keyword. This was a welcome addition to the language because declaring and constructing objects that 
enumerate containers without it is a laborious task. 

Generic Delegates 
Quite often, generics are used in the context of container types, in which a closed type’s field or internal 
array is based on the type argument given. Generic methods extend the capability of generic types by 
providing a finer granularity of generic scope. I have yet to discuss the power of generic delegates. 

You’re already familiar with the venerable delegate. If you were to declare a delegate that takes two 
parameters—the first being a long, and the second being an object—you could declare a delegate such 
as the following: 

public delegate void MyDelegate( long l, object o ); 

In the previous section, you got a preview of a generic delegate when I showed the use of the generic 
converter delegate. The declaration for the generic converter delegate looks like this: 

public delegate TOutput Converter<TInput, TOutput>( 
    TInput input 
); 

It looks just like any other delegate, except that it has the telltale form of a generic with a type 
parameter list immediately following the name of the delegate. Just as nongeneric delegates look similar 
to method declarations without a body, generic delegate declarations look almost identical to generic 
method declarations without a body. The type parameter list follows the name of the delegate, but it 
precedes the parameter list of the delegate. 

The generic converter uses the placeholder identifiers TInput and TOutput within its type parameter 
list, and those types are used elsewhere in the declaration for the delegate. In generic delegate 
declarations, the types in the type parameter list are in scope for the entire declaration of the delegate, 
including the return type as shown in the previous declaration for the generic converter delegate. 

Creating an instance of the Converter<TInput, TOutput> delegate is the same as creating an instance 
of any other delegate. When you create an instance of the generic delegate, you can use the new operator, 

                                                 

 
1 I covered iterators fully in Chapter 9. Also, if you’re wondering why there is an explicitly implemented version of 
GetEnumerator that returns a nongeneric IEnumerator, it is because IEnumerable<T> derives from IEnumerable. 
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and you can explicitly provide the type list at compile time. Or, you might simply use the abbreviated 
syntax that I used in the MyContainer<T> example in the previous section, in which case the compiler 
deduces the type parameters. For convenience, I have reprinted the Main method of that example: 

    static void Main() { 
        MyContainer<long> lContainer = new MyContainer<long>(); 
        MyContainer<int> iContainer = new MyContainer<int>(); 
 
        lContainer.Add( 1 ); 
        lContainer.Add( 2 ); 
        iContainer.Add( 3 ); 
        iContainer.Add( 4 ); 
 
        lContainer.Add( iContainer, 
                        EntryPoint.IntToLongConverter ); 
 
        foreach( long l in lContainer ) { 
            Console.WriteLine( l ); 
        } 
    } 

Notice that the second parameter to the last Add method is simply a reference to the method rather 
than an explicit creation of the delegate itself. This works because of the method group conversion rules 
defined by the C# language. When the actual delegate is created from the method, the closed type of the 
generic is inferred using a complex pattern-matching algorithm from the parameter types of the 
IntToLongConverter method itself. In fact, the call to Add<R> is devoid of any explicit type parameter list 
at the point of invocation. The compiler can do the exact same type of pattern matching to infer the 
closed form of the Add<R> method called, which in this case is Add<int>. You could just as well have 
written the code as follows, in which every type is provided explicitly: 

    static void Main() { 
        MyContainer<long> lContainer = new MyContainer<long>(); 
        MyContainer<int> iContainer = new MyContainer<int>(); 
 
        lContainer.Add( 1 ); 
        lContainer.Add( 2 ); 
        iContainer.Add( 3 ); 
        iContainer.Add( 4 ); 
 
        lContainer.Add<int>( iContainer, 
            new Converter<int, long>( EntryPoint.IntToLongConverter) ); 
 
        foreach( long l in lContainer ) { 
            Console.WriteLine( l ); 
        } 
    } 

In this example, all types are given explicitly, and the compiler is not left with the task of inferring 
them at compile time. Either way, the generated IL code is the same. Most of the time, you can rely on 
the type inference engine of the compiler. However, depending on the complexity of your code, you 
occasionally might find yourself needing to throw the compiler a bone by providing an explicit type list. 

Along with providing a way to externalize type conversions from a container type, as in the previous 
examples, generic delegates help solve a specific problem that I demonstrate in the following code: 
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// THIS WON'T WORK AS EXPECTED!!! 
using System; 
using System.Collections.Generic; 
 
public delegate void MyDelegate( int i ); 
 
public class DelegateContainer<T> 
{ 
    public void Add( T del ) { 
        imp.Add( del ); 
    } 
 
    public void CallDelegates( int k ) { 
        foreach( T del in imp ) { 
//          del( k ); 
        } 
    } 
 
    private List<T> imp = new List<T>(); 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        DelegateContainer<MyDelegate> delegates = 
            new DelegateContainer<MyDelegate>(); 
 
        delegates.Add( EntryPoint.PrintInt ); 
    } 
 
    static void PrintInt( int i ) { 
        Console.WriteLine( i ); 
    } 
} 

As written, the previous code will compile. However, notice the commented line within the 
CallDelegates method. If you uncomment this line and attempt to recompile with the Microsoft 
compiler, you’ll get the following error: 

error CS0118: 'del' is a 'variable' but is used like a 'method' 

The problem is that the compiler has no way of knowing that the type represented by the 
placeholder T is a delegate. Those of you who have been jumping ahead in this chapter might be 
wondering why there is no form of constraint (I cover constraints shortly) to give the compiler the hint 
that it is a delegate. Well, even if there were, the compiler could not possibly know how to call the 
delegate. The constraint would not carry the information about how many parameters the delegate 
accepts. Remember, unlike C++ templates, generics are dynamic, and closed types are formed at 
runtime rather than at compile time. So, at runtime, the delegate represented by del could take an 
arbitrary number of parameters. I can only imagine the headache caused by trying to devise a way to 
push a dynamic count of parameters onto the stack before calling the delegate. For all these reasons, it 
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rarely makes sense to create a closed type from a generic, in which one of the type arguments is a 
delegate type because, after all, you cannot call through to it normally. 

What you can do to help in this situation is apply a generic delegate to give the compiler a bit more 
information about what you want to do with this delegate. As in this example, using a generic delegate, 
you can effectively say, “I want you to use delegates that accept only one parameter of a generic type and 
return void.” That’s enough information to get the compiler past the block and allow it to generate code 
that makes sense for the generic. After all, if you give the compiler this amount of information, at least it 
knows how many parameters to push onto the stack before making the call through the delegate.  

The following code shows how you could remedy the previous situation: 

using System; 
using System.Collections.Generic; 
 
public delegate void MyDelegate<T>( T i ); 
 
public class DelegateContainer<T> 
{ 
    public void Add( MyDelegate<T> del ) { 
        imp.Add( del ); 
    } 
 
    public void CallDelegates( T k ) { 
        foreach( MyDelegate<T> del in imp ) { 
            del( k ); 
        } 
    } 
 
    private List<MyDelegate<T> > imp = new List<MyDelegate<T> >(); 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        DelegateContainer<int> delegates = 
            new DelegateContainer<int>(); 
 
        delegates.Add( EntryPoint.PrintInt ); 
        delegates.CallDelegates( 42 ); 
    } 
 
    static void PrintInt( int i ) { 
        Console.WriteLine( i ); 
    } 
} 

Generic Type Conversion 
As I covered earlier in this chapter, there is no implicit type conversion for different constructed types 
formed from the same generic type. The same rules that apply when determining if an object of type X is 
implicitly convertible to an object of type Y apply equally when determining whether an object of type 
List<int> is convertible to an object of type List<object>. When such conversion is desired, you must 
create a custom implicit conversion operator, just as in the case of converting objects of type X to objects 
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of type Y when they share no inheritance relationship. Otherwise, you need to create a conversion 
method to go from one type to another.  

For example, the following code is invalid: 

// INVALID CODE!!! 
public void SomeMethod( List<int> theList ) { 
   List<object> theSameList = theList; // Ooops!!! 
} 

■ Note This is not entirely true now because C# 4.0 introduced syntax to declare generic interfaces and delegates 

as variant. But for the sake of this section, everything is true as long as you treat all generic types as invariant, 

which is what you get by default if the generic declaration is not decorated with the variance syntax. 

If you looked at the documentation of List<T>, you might have noticed a generic method named 
ConvertAll<TOutput>. Using this method, you can convert a generic list of type List<int> to 
List<object>. However, you must pass the method an instance of a conversion delegate as described in 
the previous section. So, to convert List<int> to List<object>, you must provide a delegate that knows 
how to convert an int instance into an object instance. By using the given delegate, it is the only way 
that ConvertAll<TOutput> can possibly know how to convert each contained instance from the source 
type to the destination type.  

Those familiar with the Strategy pattern might find this a familiar notion. In essence, you can 
provide the ConvertAll<TOutput> method at runtime with a means of doing the conversion on the 
contained instances that, depending on the complexity of the conversion, can be tuned for the platform 
it is running on. In other words, if you were converting List<Apples> to List<Oranges>, you could 
provide a few different conversion methods to select from, depending on the circumstances. For 
example, maybe one of them is highly tuned for an environment with lots of resources, so it runs faster 
in those environments. Another version might be optimized for minimal resource usage but is much 
slower. At runtime, the proper conversion delegate is built to bind to the conversion method that is 
logical for the job at hand. 

Default Value Expression 
Sometimes when working with generic type definitions and generic method definitions, you need to 
initialize an object or a value instance of a parameterized type to its default value. Recall that the default 
value for a reference variable is the same as setting it to null, whereas the default value for a value type 
variable is equivalent to setting all its underlying bits to 0. You need an expression for generics to 
account for these two semantic differences; for that task, you can use the default value expression 
shown in the following code example: 

using System; 
 
public class MyContainer<T> 
{ 
    public MyContainer() { 
        // Create initial capacity. 
        imp = new T[ 4 ]; 



CHAPTER 11 ■ GENERICS 

 

322 

 

        for( int i = 0; i < imp.Length; ++i ) { 
            imp[i] = default(T); 
        } 
    } 
 
    public bool IsDefault( int i ) { 
        if( i < 0 || i >= imp.Length ) { 
            throw new ArgumentOutOfRangeException(); 
        } 
 
        if( imp[i] == null ) { 
            return true; 
        } else { 
            return false; 
        } 
    } 
 
    private T[] imp; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        MyContainer<int> intColl = 
            new MyContainer<int>(); 
 
        MyContainer<object> objColl =  
            new MyContainer<object>(); 
 
        Console.WriteLine( intColl.IsDefault(0) ); 
        Console.WriteLine( objColl.IsDefault(0) ); 
    } 
} 

Pay attention to the syntax within the MyContainer<T> constructor, in which each item in the array is 
initialized explicitly to its default value. At runtime, the type of T might be a value type or a reference 
type, so you cannot simply set the value to null and expect it to work for value types. In fact, if you 
attempt to assign imp[i] to null, the compiler will give you a friendly reminder with the following error: 

error CS0403: Cannot convert null to type parameter 'T' because it could be   
a non-nullable value type. Consider using 'default(T)' instead. 

You should also use the default expression when testing a variable for its default value because it has 
a different meaning depending on whether it is a value type or a reference type. However, in this case, 
the compiler cannot help you sniff out when you should do this, as you can see in the example. If you 
run the previous code, you get the output as follows: 

False 
True 
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This is not the intended result because they should both return true. If you modify the code so that 
the IsDefault method looks like the following example, you’ll get output that is more in line with the 
intended result: 

    public bool IsDefault( int i ) { 
        if( i < 0 || i >= imp.Length ) { 
            throw new ArgumentOutOfRangeException(); 
        } 
 
        if( Object.Equals(imp[i], default(T)) ) { 
            return true; 
        } else { 
            return false; 
        } 
    } 

Nullable Types 
Related to the previous discussion is the concept of null values and what semantic meaning they carry. 
The null state for reference types is easily representable. If the value of the reference is set to null, it 
typically means that the variable has no value. This is much different, semantically, than saying that the 
value is 0. Semantically, a variable set to null has no value, not even the value of 0. With respect to value 
types, it has traditionally been much more cumbersome to represent the semantic meaning of null. If 
you set the value to 0, it could mean that the value is null. Then what do you do to represent the case 
when the value is actually 0, not null? Many techniques involve maintaining another Boolean value to 
indicate that the value type actually conveys meaning, such as a bool value named isNull. 

To help you avoid having to manage such a mundane, error-prone mechanism, the .NET base class 
library provides you with the System.Nullable<T> type, as demonstrated in the following code where I 
show two ways to use nullable types: 

using System; 
 
public class Employee 
{ 
    public Employee( string firstName, 
                     string lastName ) { 
        this.firstName = firstName; 
        this.lastName = lastName; 
 
        this.terminationDate = null; 
        this.ssn = default(Nullable<long>); 
    } 
 
    public string firstName; 
    public string lastName; 
 
    public Nullable<DateTime> terminationDate; 
    public long? ssn;   // Shorthand notation 
} 
 
public class EntryPoint 
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{ 
    static void Main() { 
        Employee emp = new Employee( "Vasya", 
                                     "Pupkin" ); 
        emp.ssn = 1234567890; 
 
        Console.WriteLine( "{0} {1}", 
                           emp.firstName, 
                           emp.lastName ); 
        if( emp.terminationDate.HasValue ) { 
            Console.WriteLine( "Start Date: {0}", 
                               emp.terminationDate ); 
        } 
 
        long tempSSN = emp.ssn ?? -1; 
        Console.WriteLine( "SSN: {0}", 
                           tempSSN ); 
    } 
} 

This code demonstrates two ways to declare a nullable type. The first nullable field within type 
Employee is the terminationDate field, which is declared using the System.Nullable<DateTime> type. The 
second nullable value within Employee is the ssn field; however, this time I chose to use a C# shorthand 
notation for nullable types, in which you simply follow the field’s type declaration with a question mark. 
Internally, the compiler handles this in exactly the same way as with the declaration for the 
terminationDate field.  

■ Tip Personally, I feel that even though using Nullable<T> explicitly requires more typing, it’s definitely a lot 

harder to overlook than the little question mark at the end of the field type when you’re reading code. Always 

prefer to write clearly readable code rather than trite cute code. No offense to the question mark syntax! It’s just 

my preference. 

One last thing to consider when using nullable types is how you assign to and from them. In the 
constructor for Employee, you can see that I assign null to the nullable types at first. The compiler uses 
an implicit conversion for the null value to do the right thing. In fact, when I assign the ssn field in the 
constructor, I use the default expression syntax, which is the same thing the compiler does when I 
assign the terminationDate nullable value to null. 

One of the properties of Nullable<T> is HasValue, which returns true when the nullable value is non-
null and returns false otherwise. Finally, you must consider what it means to assign a nullable type to a 
non-nullable type. For example, in the Main method, I want to assign tempSSN based upon the value of 
emp.ssn. However, because emp.ssn is nullable, what should tempSSN be assigned to if emp.ssn happens to 
have no value? This is when you must use the null coalescing operator ??. This operator allows you to 
designate what you want the non-nullable value to be set to in the event that the nullable value you’re 
assigning from has no value. So, in the previous example, I’m saying, “Set the value of tempSSN to 
emp.ssn, and if emp.ssn has no value, set tempSSN to –1 instead.” Armed with these tools, it’s a snap to 
represent values within a system that might be semantically null, which is handy when you’re using 
values to represent fields within a database field that is nullable. 
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Constructed Types Control Accessibility 
When you build constructed types from generic types, you must consider the accessibility of both the 
generic type and the types provided as the type arguments, in order to determine the accessibility of the 
whole constructed type.  

For example, the following code is invalid and will not compile: 

public class Outer 
{ 
    private class Nested 
    { 
    } 
 
    public class GenericNested<T> 
    { 
    } 
 
    private GenericNested<Nested> field1; 
    public GenericNested<Nested> field2; // Ooops! 
} 

The problem is with field2. The Nested type is private, so how can GenericNested<Nested> possibly 
be public? Of course, the answer is that it cannot. With constructed types, the accessibility is an 
intersection of the accessibility of the generic type and the types provided in the argument list. 

Generics and Inheritance 
C# generic types cannot directly derive from a type parameter. However, you can use the following type 
parameters to construct the base types they do derive from: 

// This is invalid!! 
public class MyClass<T> : T 
{ 
} 
 
// But this is valid. 
public class MyClass<T> : Stack<T> 
{ 
} 

■ Tip With C++ templates, deriving directly from a type parameter provides a special flexibility. If you’ve ever 

used the Active Template Library (ATL) to do COM development, you have no doubt come across this technique 

because ATL employs it extensively to avoid the need for virtual method calls. The same technique is used with 

C++ templates to generate entire hierarchies at compile time. For more examples, I suggest you read Andrei 

Alexandrescu’s Modern C++ Design: Generic Programming and Design Patterns Applied (Boston, MA: Addison-
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Wesley Professional, 2001). This is yet another example showing how C++ templates are static in nature, whereas 

C# generics are dynamic. 

Let’s examine techniques that you can use to emulate the same behavior to some degree. As is often 
the case, you can add one more level of indirection to achieve something similar. In C++, when a 
template type derives directly from one of the type arguments, it is often assumed that the type specified 
for the type argument exhibits a certain desired behavior.  

For example, you can do the following using C++ templates: 

// NOTE: This is C++ code used for the sake of example 

 
class Employee 
{ 
    public: 
        long get_salary() { 
            return salary; 
        } 
        void set_salary( long salary ) { 
            this->salary = salary; 
        } 
 
    private: 
        long salary; 
}; 
 
template< class T > 
class MyClass : public T 
{ 
}; 
 
void main() 
{ 
    MyClass<Employee> myInstance; 
    myInstance.get_salary(); 
} 

In the main function, pay attention to the call to get_salary. Even though it looks odd at first, it 
works just fine because MyClass<T> inherits the implementation of whatever type is specified for T at 
compile time. In this case, that type, Employee, implements get_salary, and MyClass<Employee> inherits 
that implementation. Clearly, an assumption is being placed on the type that is provided for T in 
MyClass<T> that the type will support a method named get_salary. If it does not, the C++ compiler will 
complain at compile time. This is a form of static polymorphism or policy-based programming. In 
traditional cases, polymorphism is explained within the context of virtual methods known as dynamic 
polymorphism. You cannot implement static polymorphism with C# generics. However, you can require 
that the type arguments given when forming a closed type support a specific contract by using a 
mechanism called constraints, which I cover in the following section. 
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Constraints 
So far, the majority of generics examples that I’ve shown involve some sort of collection-style class that 
holds a bunch of objects or values of a specific type. But you’ll often need to create generic types that not 
only contain instances of various types but also use those objects directly by calling methods or 
accessing properties on them. For example, suppose that you have a generic type that holds instances of 
arbitrary geometric shapes that all implement a property named Area. Also, you need the generic type to 
implement a property—say, TotalArea—in which all the areas of the contained shapes are accumulated. 
The guarantee here is that each geometric shape in the generic container will implement the Area 
property. You might be inclined to write code like the following: 

using System; 
using System.Collections.Generic; 
 
public interface IShape 
{ 
    double Area { 
        get; 
    } 
} 
 
public class Circle : IShape 
{ 
    public Circle( double radius ) { 
        this.radius = radius; 
    } 
 
    public double Area { 
        get { 
            return 3.1415*radius*radius; 
        } 
    } 
 
    private double radius; 
} 
 
public class Rect : IShape 
{ 
    public Rect( double width, double height ) { 
        this.width = width; 
        this.height = height; 
    } 
 
    public double Area { 
        get { 
            return width*height; 
        } 
    } 
 
    private double width; 
    private double height; 
} 
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public class Shapes<T> 
{ 
    public double TotalArea { 
        get { 
            double acc = 0; 
            foreach( T shape in shapes ) { 
                // THIS WON'T COMPILE!!! 
                acc += shape.Area; 
            } 
            return acc; 
        } 
    } 
 
    public void Add( T shape ) { 
        shapes.Add( shape ); 
    } 
 
    private List<T> shapes = new List<T>(); 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Shapes<IShape> shapes = new Shapes<IShape>(); 
 
        shapes.Add( new Circle(2) ); 
        shapes.Add( new Rect(3, 5) ); 
 
        Console.WriteLine( "Total Area: {0}", 
                           shapes.TotalArea ); 
    } 
} 

There is one major problem, as the code won’t compile. The offending line of code is inside the 
TotalArea property of Shapes<T>. The compiler complains with the following error: 

error CS0117: 'T' does not contain a definition for 'Area' 

All this talk of requiring the contained type T to support the Area property sounds a lot like a 
contract because it is! C# generics are dynamic as opposed to static in nature, so you cannot achieve the 
desired effect without some extra information. Whenever you hear the word contract within the C# 
world, you might start thinking about interfaces. Therefore, I chose to have both of my shapes 
implement the IShape interface. Thus, the IShape interface defines the contract, and the shapes 
implement that contract. However, that still is not enough for the C# compiler to be able to compile the 
previous code. 

C# generics must have a way to enforce the rule that the type T supports a specific contract at 
runtime. A naïve attempt to solve the problem could look like the following: 

public class Shapes<T> 
{ 



CHAPTER 11 ■ GENERICS 

 

 

329 

 

    public double TotalArea { 
        get { 
            double acc = 0; 
            foreach( T shape in shapes ) { 
                // DON'T DO THIS!!! 
                IShape theShape = (IShape) shape; 
                acc += theShape.Area; 
            } 
            return acc; 
        } 
    } 
 
    public void Add( T shape ) { 
        shapes.Add( shape ); 
    } 
 
    private List<T> shapes = new List<T>(); 
} 

This modification to Shapes<T> indeed does compile and work most of the time. However, this 
generic has lost some of its innocence due to the type cast within the foreach loop. Just imagine that if 
during a late-night caffeine-induced trance, you attempted to create a constructed type Shapes<int>. 
The compiler would happily oblige. But what would happen if you tried to get the TotalArea property 
from a Shapes<int> instance? As expected, you would be treated to a runtime exception as the TotalArea 
property accessor attempted to cast an int into an IShape. One of the primary benefits of using generics 
is better type safety, but in this example I tossed type safety right out the window. So, what are you 
supposed to do? The answer lies in a concept called generic constraints. Check out the following correct 
implementation: 

public class Shapes<T> 
    where T: IShape 
{ 
    public double TotalArea { 
        get { 
            double acc = 0; 
            foreach( T shape in shapes ) { 
                acc += shape.Area; 
            } 
            return acc; 
        } 
    } 
 
    public void Add( T shape ) { 
        shapes.Add( shape ); 
    } 
 
    private List<T> shapes = new List<T>(); 
} 

Notice the extra line under the first line of the class declaration using the where keyword. This says, 
“Define class Shapes<T> where T must implement IShape.” Now the compiler has everything it needs to 
enforce type safety, and the JIT compiler has everything it needs to build working code at runtime. The 
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compiler has been given a hint to help it notify you, with a compile-time error, when you attempt to 
create constructed types where T does not implement IShape. 

The syntax for constraints is pretty simple. There can be one where clause for each type parameter. 
Any number of constraints can be listed following the type parameter in the where clause. However, only 
one constraint can name a class type (because the CLR has no concept of multiple inheritance), so that 
constraint is known as the primary constraint. Additionally, instead of specifying a class name, the 
primary constraint can list the special words class or struct, which are used to indicate that the type 
parameter must be any class or any struct. The constraint clause can then include as many secondary 
constraints as possible, such as a list of interfaces that the parameterized type must implement. Finally, 
you can list a constructor constraint that takes the form new() at the end of the constraint list. This 
constrains the parameterized type so it is required to have a default parameterless constructor. Class 
types must have an explicitly defined default constructor to satisfy this constraint, whereas value types 
have a system-generated default constructor. 

It is customary to list each where clause on a separate line in any order under the class header. A 
comma separates each constraint following the colon in the where clause. That said, let’s take a look at 
some constraint examples: 

using System.Collections.Generic; 
 
public class MyValueList<T> 
    where T: struct 
// But can't do the following 
//  where T: struct, new() 
{ 
    public void Add( T v ) { 
        imp.Add( v ); 
    } 
 
    private List<T> imp = new List<T>(); 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        MyValueList<int> intList = 
            new MyValueList<int>(); 
 
        intList.Add( 123 ); 
 
        // CAN'T DO THIS. 
        // MyValueList<object> objList = 
        //  new MyValueList<object>(); 
    } 
} 

In this code, you can see an example of the struct constraint in the declaration for a container that 
can contain only value types. The constraint prevents one from declaring the objList variable that I have 
commented out in this example because the result of attempting to compile it presents the following 
error: 
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error CS0453: The type 'object' must be a non-nullable value type in order  to use it as 
parameter 'T' in the generic type or method 'MyValueList<T>' 

Alternatively, the constraint could have also claimed to allow only class types. Incidentally, in the 
Visual Studio version of the C# compiler, I can’t create a constraint that includes both class and struct. 
Of course, doing so is pointless because the same effect comes from including neither struct nor class 
in the constraints list. Nevertheless, the compiler complains with an error if you try to do so, claiming 
the following: 

error CS0449: The 'class' or 'struct' constraint must come before any   
other constraints 

This looks like the compiler error could be better stated by saying that only one primary constraint 
is allowed in a constraint clause. You’ll also see that I commented out an alternate constraint line, in 
which I attempted to include the new() constraint to force the type given for T to support a default 
constructor. Clearly, for value types, this constraint is redundant and should be harmless to specify. 
Even so, the compiler won’t allow you to provide the new() constraint together with the struct 
constraint. Now let’s look at a slightly more complex example that shows two constraint clauses: 

using System; 
using System.Collections.Generic; 
 
public interface IValue 
{ 
    // IValue methods. 
} 
 
public class MyDictionary<TKey, TValue> 
    where TKey: struct, IComparable<TKey> 
    where TValue: IValue, new() 
{ 
    public void Add( TKey key, TValue val ) { 
        imp.Add( key, val ); 
    } 
 
    private Dictionary<TKey, TValue> imp 
        = new Dictionary<TKey, TValue>(); 
} 

I declared MyDictionary<TKey, TValue> so that the key value is constrained to value types. I also 
want those key values to be comparable, so I’ve required the TKey type to implement IComparable<TKey>. 
This example shows two constraint clauses, one for each type parameter. In this case, I’m allowing the 
TValue type to be either a struct or a class, but I do require that it support the defined IValue interface as 
well as a default constructor. 

Overall, the constraint mechanism built into C# generics is simple and straightforward. The 
complexity of constraints is easy to manage and decipher with few if any surprises. As the language and 
the CLR evolve, I suspect that this area will see some additions as more and more applications for 
generics are explored. For example, the ability to use the class and struct constraints within a 
constraint clause was a relatively late addition to the standard. 
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Finally, the format for constraints on generic interfaces is identical to that of generic classes and 
structs. 

Constraints on Nonclass Types 
So far, I’ve discussed constraints within the context of classes, structs, and interfaces. In reality, any 
entity that you can declare generically is capable of having an optional constraints clause. For generic 
method and delegate declarations, the constraints clauses follow the formal parameter list to the 
method or delegate. Using constraint clauses with method and delegate declarations does provide for 
some odd-looking syntax, as shown in the following example: 

using System; 
 
public delegate R Operation<T1, T2, R>( T1 val1, 
                                        T2 val2 ) 
    where T1: struct 
    where T2: struct 
    where R:  struct; 
 
public class EntryPoint 
{ 
    public static double Add( int val1, float val2 ) { 
        return val1 + val2; 
    } 
 
    static void Main() { 
        var op = 
            new Operation<int, float, double>( EntryPoint.Add ); 
 
        Console.WriteLine( "{0} + {1} = {2}", 
                           1, 3.2, op(1, 3.2f) ); 
    } 
} 

I declared a generic delegate for an operator method that accepts two parameters and has a return 
value. My constraint is that the parameters and the return value all must be value types. Similarly, for 
generic methods, the constraints clauses follow the method declaration but precede the method body. 

Co- and Contravariance 
Variance is all about convertibility and being able to do what makes type-sense. For example, consider 
the following code, which demonstrates array covariance that has been possible in C# since the 1.0 days: 

using System; 
 
static class EntryPoint 
{ 
    static void Main() { 
        string[] strings = new string[] { 
            "One", 
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            "Two", 
            "Three" 
        }; 
 
        DisplayStrings( strings ); 
 
        // Array covariance rules allow the following 
        // assignment 
        object[] objects = strings; 
 
        // But what happens now? 
        objects[1] = new object(); 
        DisplayStrings( strings ); 
    } 
 
    static void DisplayStrings( string[] strings ) { 
        Console.WriteLine( "----- Printing strings -----" ); 
        foreach( var s in strings ) { 
            Console.WriteLine( s ); 
        } 
    } 
} 

At the beginning of the Main method, I create an array of strings and then immediately pass it to 
DisplayStrings to print them to the console. Then, I assign a variable of type objects[] from the variable 
strings. After all, because strings and objects are reference type variables, at first glance it makes 
logical sense to be able to assign strings to objects because a string is implicitly convertible to an 
object. However, notice right after doing so, I modify slot one and replace it with an object instance. 
What happens when I call DisplayStrings the second time passing the strings array? As you might 
expect, the runtime throws an exception of type ArrayTypeMismatchException shown as follows: 

Unhandled Exception: System.ArrayTypeMismatchException: Attempted to access an  
element as a type incompatible with the array. 

Array covariance in C# has been in the language since the beginning for Java compatibility. But 
because it is flawed, and some say broken, then how can we fix this problem? There are a few ways 
indeed. Those of you familiar with functional programming will naturally suggest invariance as the 
solution. That is, if an array is invariant similar to System.String, a copy is made typically in a lazy 
fashion at the point where one is assigned into another variable. However, let’s see how we might fix this 
problem using generics: 

using System; 
using System.Collections.Generic; 
 
static class EntryPoint 
{ 
    static void Main() { 
        List<string> strings = new List<string> { 
            "One", 
            "Two", 
            "Three" 
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        }; 
 
        // THIS WILL NOT COMPILE!!! 
        List<object> objects = strings; 
    } 
} 

The spirit of the preceding code is identical to the array covariance example, but it will not compile. 
If you attempt to compile this, you will get the following compiler error: 

error CS0029: Cannot implicitly convert type   

'System.Collections.Generic.List<string>' to   

'System.Collections.Generic.List<object>' 

The ultimate problem is that each constructed type is an individual type, and even though they 
might originate from the same generic type, they have no implicit type relation between them. For 
example, there is no implicit relationship between List<string> and List<object>, and just because 
they both are constructed types of List<T> and string is implicitly convertible to object does not imply 
that they are convertible from one to the other. 

Don’t lose hope, though. There is a syntax added in C# 4.0 that allows you to achieve the desired 
result. Using this new syntax, you can notate a generic interface or delegate indicating whether it 
supports covariance or contravariance. Additionally, the new variance rules apply only to constructed 
types in which reference types are passed for the type arguments to the generic type. 

Covariance 
Within strongly typed programming languages such as C#, an operation is covariant if it reflects and 
preserves the ordering of types so they are ordered from more specific types to more generic types. To 
illustrate, I’ll borrow from the example in the previous section to show how array assignment rules in C# 
are covariant: 

string s = "Hello"; 
object o = s; 
 
string[] strings = new string[3]; 
object[] objects = strings; 

The first two lines make perfect sense; after all, variables of type string are implicitly convertible to 
type object because string derives from object. The second set of lines shows that variables of type 
string[] are implicitly convertible to variables of type object[]. And because the ordering of types 
between the two implicit assignments is identical that is, from a more specialized type (string) to a 
more generic type (object) the array assignment operation is said to be covariant. 

Now, to translate this concept to generic interface assignment, an interface of type IOperation<T> is 
covariance-convertible to IOperation<R> if there exists an implicit reference conversion from T to R and 
IOperation<T> to IOperation<R>. Simply put, if for the two conversion operations just mentioned, T and R 
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are on the same sides of the conversion operations, the conversion operation is covariant. For example, 
let the arrow shown following represent the operation. And because T and R appear on the same sides of 
the operation in both cases, the operation is covariant in nature. 

T  R 
IOperation<T>  IOperation<R> 

■ Note C# variance rules do not apply to value types; that is, types that are not reference convertible. In other 

words, IOperation<int> is not covariance-convertible to IOperation<double>, even though int is implicitly 

convertible to double. 

Let’s consider an example of a custom collection called MyCollection<T> that implements the 
interface IMyCollection<T>: 

using System; 
using System.Collections.Generic; 
 
interface IMyCollection<T> 
{ 
    void AddItem( T item ); 
    T GetItem( int index ); 
} 
 
class MyCollection<T> : IMyCollection<T> 
{ 
    public void AddItem( T item ) { 
        collection.Add( item ); 
    } 
 
    public T GetItem( int index ) { 
        return collection[index]; 
    } 
 
    private List<T> collection = new List<T>(); 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        var strings = new MyCollection<string>(); 
        strings.AddItem( "One" ); 
        strings.AddItem( "Two" ); 
 
        IMyCollection<string> collStrings = strings; 
        PrintCollection( collStrings, 2 ); 
    } 
 
    static void PrintCollection( IMyCollection<string> coll, 
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                                 int count ) { 
        for( int i = 0; i < count; ++i ) { 
            Console.WriteLine( coll.GetItem(i) ); 
        } 
    } 
} 

Of course, the collection MyCollection<T> is extremely contrived and we would never author a real 
collection type like this, but I have written it this way to keep the example brief and to focus on 
covariance. The preceding code compiles and runs just fine while printing out the two strings in the 
MyCollection<string> instance to the console. But now, let’s imagine that we want PrintCollection to 
accept an instance of type IMyCollection<object> rather than IMyCollection<string>. After all, it is 
logical that a collection of strings is a collection of objects as well. If you simply just change the 
signature of PrintCollection to accept IMyCollection<object>, you will get a compiler error at the point 
of invocation. That’s because what is logical to you and me is not necessarily logical to the compiler 
because, by default, constructed generic types are invariant and there is no implicit conversion from one 
to the other. Something else is needed. Check out the following modification that compiles and works as 
expected. I have bolded the differences to pay attention to: 

using System; 
using System.Collections.Generic; 
 
interface IMyCollection<T> 
{ 
    void AddItem( T item ); 
} 
 
interface IMyEnumerator<out T> 
{ 
    T GetItem( int index ); 
} 
 
class MyCollection<T> : IMyCollection<T>, 
                        IMyEnumerator<T> 
{ 
    public void AddItem( T item ) { 
        collection.Add( item ); 
    } 
 
    public T GetItem( int index ) { 
        return collection[index]; 
    } 
 
    private List<T> collection = new List<T>(); 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        var strings = new MyCollection<string>(); 
        strings.AddItem( "One" ); 
        strings.AddItem( "Two" ); 
 



CHAPTER 11 ■ GENERICS 

 

 

337 

 

        IMyEnumerator<string> collStrings = strings; 
 
        // Covariance in action! 
        IMyEnumerator<object> collObjects = collStrings; 
 
        PrintCollection( collObjects, 2 ); 
    } 
 
    static void PrintCollection( IMyEnumerator<object> coll, 
                                 int count ) { 
        for( int i = 0; i < count; ++i ) { 
            Console.WriteLine( coll.GetItem(i) ); 
        } 
    } 
} 

First, notice that I split the previous implementation of IMyCollection into two interfaces named 
IMyCollection and IMyEnumerator. I’ll explain why in a moment. Also, notice that PrintCollection 
accepts a variable of type IMyEnumerator<object> rather than IMyCollection<string>. But most 
importantly, look very closely at the IMyEnumerator<T> declaration and pay attention to the way the 
generic parameter is decorated with the out keyword. 

The out keyword in the generic parameter list is how you denote that a generic interface is covariant 
in T. In other words, it’s how you tell the compiler that if R is implicitly convertible to S, IMyEnumerator<R> 
is implicitly convertible to IMyEnumerator<S>. Why is the keyword named out? Because it just so happens 
that generic interfaces that are covariant in T typically have T in an output position of the methods 
within. Now you can see why I had to split the original IMyCollection interface into two interfaces 
because the IMyCollection.AddItem method does not have T in the output position. 

■ Note The keywords in and out were likely chosen by the compiler team because, as shown previously, 

covariant interfaces have the variant type in the output position and vice versa for contravariance. However, I will 

show in a later section that this oversimplified view becomes rather confusing when higher-order functions (or 

functionals) via delegates are involved. 

The venerable IEnumerable<T> and IEnumerator<T> types are denoted as covariant with the out 
keyword starting with the release of C# 4.0. This is a tremendous help, especially when using LINQ. 

Contravariance 
As you might expect, contravariance is the opposite of covariance. That is, for generic interface 
assignment, an interface of type IOperation<T> is contravariance-convertible to IOperation<R> if there 
exists an implicit reference conversion from R to T and IOperation<T> to IOperation<R>. Simply put, if T 
and R are on opposite sides of the conversion operation for both conversions, the conversion operation 
is contravariant. For example, let the following arrow represent the operation. And because T and R 
appear on opposite sides of the operation in both cases, the operation is contravariant in nature. 

R  T 
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IOperation<T>  IOperation<R> 

Contravariant generic parameters in generic interfaces and delegates are notated using the new in 
generic parameter decoration. To illustrate, let’s revisit the contrived MyCollection<T> class in the 
previous section and imagine that we want the ability to remove items from the collection (the areas of 
interest are in bold): 

using System; 
using System.Collections.Generic; 
 
class A { } 
class B : A { } 
 
interface IMyCollection<T> 
{ 
    void AddItem( T item ); 
} 
 
interface IMyTrimmableCollection<in T> 
{ 
    void RemoveItem( T item ); 
} 
 
class MyCollection<T> : IMyCollection<T>, 
                        IMyTrimmableCollection<T> 
{ 
    public void AddItem( T item ) { 
        collection.Add( item ); 
    } 
 
    public void RemoveItem( T item ) { 
        collection.Remove( item ); 
    } 
 
    private List<T> collection = new List<T>(); 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        var items = new MyCollection<A>(); 
        items.AddItem( new A() ); 
 
        B b = new B(); 
        items.AddItem( b ); 
 
        IMyTrimmableCollection<A> collItems = items; 
 
        // Contravariance in action! 
        IMyTrimmableCollection<B> trimColl = collItems; 
        trimColl.RemoveItem( b ); 
    } 
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} 

I have trimmed some of the code from the covariance example in order to focus squarely on the 
contravariance case. Notice the use of the in keyword in the declaration for the 
IMyTrimmableCollection<T> interface. This tells the compiler that with respect to the desired operation 
in this example (trimming in this case), there exists an implicit contravariance-conversion from 
IMyTrimmableCollection<A> to IMyTrimmableCollection<B> because there is an implicit conversion from 
B to A. At first glance, the conversion and the assignment of collItems into the trimColl might feel 
foreign. But if for MyCollection<A> I can invoke RemoveItem passing an A instance, I should be able to 
invoke RemoveItem passing a B instance because B is an A based on the inheritance rules. 

Up to this point, I have shown examples of both covariance and contravariance using modifications 
to the same contrived collection class. You have seen how enumeration on the collection is covariant 
and how removal from the collection is contravariant. What about addition to the collection? Which 
flavor of variance is it? We already have the IMyCollection<T> interface, which is repeated here for 
convenience: 

interface IMyCollection<T> 
{ 
    void AddItem( T item ); 
} 

If you have an IMyCollection<A> reference, you should be able to add instances of B if B derives from 
A. So calling AddItem on IMyCollection<A> passing a B instance should be equivalent to calling 
IMyCollection<B> passing a B instance. Therefore, the operation of adding an instance to the collection is 
contravariant based on the definition. That is, if B is convertible to A and IMyCollection<B> is convertible 
to IMyCollection<A>, the operation is contravariant. 

Now that you have discovered that the operation of adding an item to the collection is 
contravariant, you should decorate our interface accordingly: 

interface IMyCollection<in T> 
{ 
    void AddItem( T item ); 
} 

Invariance 
A generic interface or delegate type in which the generic parameters are not decorated at all is invariant. 
Naturally, all such interfaces and delegates were invariant prior to C# 4.0 because the in and out 
decorations to generic parameters did not exist before then. Remember from an earlier section, the 
contrived IMyCollection<T> interface looked like the following: 

interface IMyCollection<T> 
{ 
    void AddItem( T item ); 
    T GetItem( int index ); 
} 

If we must keep these two methods in the same interface, we have no choice but to leave the 
interface as invariant. If the compiler were to allow us to decorate the generic parameter T with the out 
keyword, then we would be in the same broken boat that the array covariance is in. That is, we would be 
allowed to compile code that would appear to allow us to add instances of incompatible types to a 
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collection. Why is that? Well, let’s imagine for a moment that we could mark the preceding interface as 
covariant: 

// This won't work! 
interface IMyCollection<out T> 
{ 
    void AddItem( T item ); 
    T GetItem( int index ); 
} 

Then, based on the definition of covariance, a variable of type IMyCollection<string> would be 
assignable to a variable of type IMyCollection<object>. And then, through the latter variable, we would 
be able to do something like the following: 

// Nothing but pure evil! 
MyCollection<string> strings = …; 
IMyCollection<object> objects = strings; 
objects.AddItem( new MonkeyWrench() ); 

Therefore, much of the pain associated with array invariance in C# is avoided by using generics 
coupled with the variance syntax added to the language in C# 4.0. In other words, the variance rules for 
generics are type safe whereas the variance rules for plain old arrays are not. 

Variance and Delegates 
In general, generic delegates follow the same rules as generic interfaces when applying variance 
decorations to generic parameters. The .NET Base Class Library (BCL) contains handy generic delegate 
types such as Action<> and Func<>, which are applicable in many instances saving you from having to 
define your own custom delegate types. The Action<> delegates can be used to hold methods that accept 
up to 16 parameters and have no return value, and the Func<> delegates can be used to hold methods 
that accept up to 16 parameters and do return a value. 

■ Note Prior to the .NET 4.0 BCL, the Action<> and Func<> delegates only accepted up to four parameters. 

Currently, they support up to 16. 

Starting with .NET 4.0, these generic delegates have also been marked appropriately for variance. 
Thus, the two parameter versions of these will look like the following: 

public delegate void Action< in T1, in T2 >( T1 arg1, T2 arg2 ); 
public delegate TResult Func< in T1, in T2, out TResult>( T1 arg1, T2 arg2 ); 

Now for an example of delegate variance, let’s consider a type hierarchy: 

class Animal 
{ 
} 
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class Dog : Animal 
{ 
} 

Suppose that you had a couple of methods like the following defined in some class: 

static void SomeFuntion( Animal animal ); 
static void AnotherFunction( Dog dog ); 

Then because the function signature matches the delegate signature, it makes sense that you could 
assign SomeFunction to an instance of Action<Animal> like the following: 

Action<Animal> action1 = SomeFunction; 

When one invokes action1, one can pass a Dog or an Animal because Dog is implicitly convertible to 
Animal. Let’s suppose that you later create an Action<Dog> instance such as the following: 

Action<Dog> action2 = AnotherFunction; 

When one invokes action2, one can pass a Dog instance. But also notice that because one can also 
pass a Dog instance to SomeFunction, it would have been possible to create action2 as shown here: 

Action<Dog> action2 = SomeFunction; 

This type of variance-assignment (contravariance in this case) from method group to delegate 
instance has been supported in C# for quite some time. So, if the preceding is possible, it makes sense to 
be able to do the following, which one can do starting in C# 4.0: 

Action<Dog> action2 = action1; 

Now, let’s see a short example of contravariance-assignment with Action<T> at work using the same 
object hierarchy shown in the previous example: 

using System; 
 
class Animal 
{ 
    public virtual void ShowAffection() { 
        Console.WriteLine( "Response unknown" ); 
    } 
} 
 
class Dog : Animal 
{ 
    public override void ShowAffection() { 
        Console.WriteLine( "Wag Tail..." ); 
    } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        Action<Animal> petAnimal = (Animal a) => { 
            Console.Write( "Petting animal and response is: " ); 
            a.ShowAffection(); 
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        }; 
 
        // Contravariance rule in action! 
        // 
        // Since Dog -> Animal and 
        // Action<Animal> -> Action<Dog> 
        // then the following assignment is contravariant 
        Action<Dog> petDog = petAnimal; 
 
        petDog( new Dog() ); 
    } 
} 

In the Main method, I have created an instance of Action<Animal> that holds a reference to a 
function that accepts an Animal instance and calls the ShowAffection method on the instance. 

■ Note I use the lambda syntax to assign a function to the Action<Animal> instance for brevity. If you are 

unfamiliar with this syntax and you are itching to learn more, you can jump to Chapter 15 soon to read all about it. 

The next line of code in Main is where the fun begins. This is where I assign the instance of 
Action<Animal> into a reference to Action<Dog>. And because Dog is implicitly convertible to Animal, yet 
Action<Animal> is implicitly convertible to Action<Dog>, the assignment is contravariant. If at this point 
you are struggling to get your head wrapped around how Action<Animal> is implicitly convertible to 
Action<Dog> when Animal is not implicitly convertible to Dog, try to keep in mind that the action is the 
focal point. If an action can operate on Animal instances, it can certainly operate on Dog instances. 

But now let’s kick it up a notch! In functional programming disciplines, it is common to pass actual 
functions as parameters to other functions. This has always been easy in C# using delegates (and in 
Chapter 15, you’ll see that it’s even easier using lambda expressions). Functions that accept functions as 
parameters are often called higher-level functions or functionals. So what sort of variance is involved 
when assigning compatible instances of higher-order functions to each other? Let’s investigate by 
introducing a new delegate definition that looks like the following: 

delegate void Task<T>( Action<T> action ); 

Here we have defined a delegate, Task<T>, which will reference a function that accepts another 
delegate of type Action<T>. 

■ Note Please don’t confuse the Task type in this example with the Task type in the Task Parallel Library (TPL). 

If we were to mark this delegate as variant, would we notate the type parameter with in or out? Let’s 
investigate by looking at the following example: 

static class EntryPoint 
{ 
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    static void Main() { 
        Action<Animal> petAnimal = (Animal a) => { 
            Console.Write( "Petting animal and response is: " ); 
            a.ShowAffection(); 
        }; 
 
        // Contravariance rule in action! 
        // 
        // Since Dog -> Animal and 
        // Action<Animal> -> Action<Dog> 
        // then the following assignment is contravariant 
        Action<Dog> petDog = petAnimal; 
 
        petDog( new Dog() ); 
 
        Task<Dog> doStuffToADog = BuildTask<Dog>(); 
        doStuffToADog( petDog ); 
 
        // But a task that accepts an action to a dog can also 
        // accept an action to an animal 
        doStuffToADog( petAnimal ); 
 
        // Therefore, it is logical for Task<Dog> to be implicitly 
        // convertible to Task<Animal> 
        // 
        // Covariance in action! 
        // 
        // Since Dog -> Animal and 
        // Task<Dog> -> Task<Animal> 
        // then the following assignment is covariant 
        Task<Animal> doStuffToAnAnimal = doStuffToADog; 
        doStuffToAnAnimal( petAnimal ); 
        doStuffToADog( petAnimal ); 
    } 
 
    static Task<T> BuildTask<T>() where T : new() { 
        return (Action<T> action) => action( new T() ); 
    } 
} 

First, notice that I created a BuildTask<T> generic helper method to make my code a little more 
readable. In Main, I create an instance of Task<Dog> and assign it to the doStuffToADog variable. 
doStuffToADog holds a reference to a delegate that accepts an Action<Dog> instance as a parameter. I 
then invoke doStuffToADog passing petDog, which is an instance of Action<Dog>. But in the previous 
example we discovered that Action<Animal> is implicitly convertible to Action<Dog>, so that’s how I can 
get away with passing petAnimal in the second invocation of doStuffToADog. 

Now let’s follow the same thought pattern as the previous example, in which you discovered that 
Action<Animal> is contravariance-assignable to an Action<Dog>. In Main, I create an instance of 
Task<Animal> and assign it to the doStuffToAnAnimal variable. When I invoke doStuffToAnAnimal, I can 
certainly pass an instance of Action<Animal>. But because Action<Animal> can also be passed to 
Task<Dog> at invocation time, it implies that an instance of Task<Dog> can be assigned to an instance of 
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Task<Animal>. Indeed, that is what I am demonstrating in this example. But is it contravariance or 
covariance? 

At first glance, because T is used on the right side in the declaration of the Task<T> delegate, one 
might be inclined to say that we must decorate the type parameter T with the in keyword. However, let’s 
analyze the situation. Because Dog is implicitly convertible to Animal, and Task<Dog> is implicitly 
convertible to Task<Animal>, the assignment is covariant because the direction of conversion with 
respect to T is the same direction in both operations. Therefore, the type parameter must be decorated 
with the out keyword, thus making the declaration for Task<T> look like the following: 

delegate void Task<out T>( Action<T> action ); 

The point to understand here is that you cannot choose the in or out keyword based solely on which 
side of the delegate declaration the generic parameter is used. You must analyze the conversion to 
determine whether it is covariant or contravariant, and then make your choice accordingly. Of course, if 
you choose the wrong one, the compiler will certainly let you know about it. 

Generic System Collections 
It seems that the most natural use of generics within C# and the CLR is for collection types. Maybe that’s 
because you can gain a huge amount of efficiency when using generic containers to hold value types 
when compared with the collection types within the System.Collections namespace. Of course, you 
cannot overlook the added type safety that comes with using the generic collections. Any time you get 
added type safety, you’re guaranteed to reduce runtime type conversion exceptions because the 
compiler can catch many of them at compile time. 

I encourage you to look at the .NET Framework documentation for the System.Collections.Generic 
namespace. There you will find all the generic collection classes made available by the Framework. 
Included in the namespace are Dictionary<TKey, TValue>, LinkedList<T>, List<T>, Queue<T>, 
SortedDictionary<TKey, TValue>, SortedList<T>, HashSet<T>, and Stack<T>. 

Based on their names, the uses of these types should feel familiar compared to the nongeneric 
classes under System.Collections. Although the containers within the System.Collections.Generic 
namespace might not seem complete for your needs, you have the possibility to create your own 
collections, especially given the extendable types in System.Collections.ObjectModel. 

When creating your own collection types, you’ll often find the need to be able to compare the 
contained objects. When coding in C#, it feels natural to use the built-in equality and inequality 
operators to perform the comparison. However, I suggest that you stay away from them because the 
support of operators by classes and structs—although possible—is not part of the CLS. Some languages 
have been slow to pick up support for operators. Therefore, your container must be prepared for the 
case when it contains types that don’t support operators for comparison. This is one of the reasons why 
interfaces such as IComparer and IComparable exist. 

When you create an instance of the SortedList type within System.Collections, you have the 
opportunity to provide an instance of an object that supports IComparer. The SortedList then utilizes 
that object when it needs to compare two key instances that it contains. If you don’t provide an object 
that supports IComparer, the SortedList looks for an IComparable interface on the contained key objects 
to do the comparison. Naturally, you’ll need to provide an explicit comparer if the contained key objects 
don’t support IComparable. The overloaded versions of the constructor that accept an IComparer type 
exist specifically for that case. 

The generic version of the sorted list, SortedList<TKey, TValue>, follows the same sort of pattern. 
When you create a SortedList<TKey, TValue>, you have the option of providing an object that 
implements the IComparer<T> interface so it can compare two keys. If you don’t provide one, the 
SortedList<TKey, TValue> defaults to using what’s called the generic comparer. The generic comparer is 
simply an object that derives from the abstract Comparer<T> class and can be obtained through the static 
property Comparer<T>.Default. Based upon the nongeneric SortedList, you might think that if the 
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creator of SortedList<TKey, TValue> did not provide a comparer, it would just look for IComparable<T> 
on the contained key type. This approach would cause problems because the contained key type could 
either support IComparable<T> or the nongeneric IComparable. Therefore, the default comparer acts as an 
extra level of indirection. The default comparer checks to see whether the type provided in the type 
parameter implements IComparable<T>. If it does not, looks to see whether it supports IComparable, thus 
using the first one that it finds. Using this extra level of indirection provides greater flexibility with regard 
to the contained types. Let’s look at an example to illustrate what I’ve just described: 

using System; 
using System.Collections.Generic; 
 
public class EntryPoint 
{ 
    static void Main() { 
        SortedList<int, string> list1 = 
            new SortedList<int, string>(); 
 
        SortedList<int, string> list2 = 
            new SortedList<int, string>( Comparer<int>.Default ); 
 
        list1.Add( 1, "one" ); 
        list1.Add( 2, "two" ); 
        list2.Add( 3, "three" ); 
        list2.Add( 4, "four" ); 
    } 
} 

I declared two instances of SortedList<TKey, TValue>. In the first instance, I used the parameterless 
constructor; in the second instance, I explicitly provided a comparer for integers. In both cases, the 
result is the same because I provided the default generic comparer in the list2 constructor. I did this 
mainly so you could see the syntax used to pass in the default generic comparer. You could have just as 
easily provided any other type in the type parameter list for Comparer as long as it supports either 
IComparable or IComparable<T>. 

Generic System Interfaces 
Given the fact that the runtime library provides generic versions of container types, it should be no 
surprise that it also provides generic versions of commonly used interfaces. This is a great thing for those 
trying to achieve maximum type safety. For example, your classes and structs can implement 
IComparable<T> and/or IComparable as well as IEquatable<T>. Naturally, IComparable<T> is a more type-
safe version of IComparable and should be preferred whenever possible. 

■ Note IEquatable<T> was added in .NET 2.0 and provides a type-safe interface through which you can perform 

equality comparisons on value types or reference types. 

The System.Collections.Generic namespace also defines a whole host of interfaces that are generic 
versions of the ones in System.Collections. These include ICollection<T>, IDictionary<TKey, TValue>, 
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and IList<T>. Two of these interfaces deserve special mention: IEnumerator<T> and IEnumerable<T>.2 
The development team at Microsoft decided it would be a good idea for IEnumerator<T> to derive from 
IEnumerator and for IEnumerable<T> to derive from IEnumerable. This decision has proven to be a 
controversial one. Anders Hejlsberg, the father of the C# language, indicates that IEnumerable<T> inherits 
from IEnumerable because it can.  

His argument goes something like this: you can imagine that it would be nice if the container that 
implements IList<T> also implemented IList. If IList<T> inherits from IList, it would be forced upon 
the author of the container to implement two versions of the Add method: Add<T> and Add. If the end user 
can call the nongeneric Add, the whole benefit of added type safety through IList<T> would be lost 
because the very existence of Add opens up the container implementation for runtime cast exceptions. 
So deriving IList<T> from IList is a bad idea. IEnumerable<T> and IEnumerator<T>, on the other hand, 
differ from the other generic interfaces in that the type T is used only in return value positions. 
Therefore, no type safety is lost when implementing both. 

■ Note This is also another example of covariance. 

That is the basis of the justification for saying that IEnumerable<T> can derive from IEnumerable and 
that IEnumerator<T> can derive from IEnumerator because they can. One of the developers at Microsoft 
working on the Framework library indicated that IEnumerable<T> and IEnumerator<T> are implemented 
this way in order to work around the lack of covariance with regard to generics. Yes, it’s dizzying indeed. 
However, that point is moot because C# 4.0 introduced syntax that allows one to implement covariant 
generic interfaces. 

Coding a type that implements IEnumerable<T> requires a bit of a trick in that you must implement 
the IEnumerable method using explicit interface implementation. Moreover, in order to keep the 
compiler from becoming confused, you might have to fully qualify IEnumerable with its namespace, as in 
the following example: 

using System; 
using System.Collections.Generic; 
 
public class MyContainer<T> : IEnumerable<T> 
{ 
    public void Add( T item ) { 
        impl.Add( item ); 
    } 
 
    public void Add<R>( MyContainer<R> otherContainer, 
                        Converter<R, T> converter ) { 
        foreach( R item in otherContainer ) { 
            impl.Add( converter(item) ); 
        } 
    } 

                                                 

 
2 Chapter 9 covers the facilities provided by IEnumerator<T> and IEnumerable<T> and how you can implement them 
easily by using C# iterators. 
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    public IEnumerator<T> GetEnumerator() { 
        foreach( T item in impl ) { 
            yield return item; 
        } 
    } 
 
    System.Collections.IEnumerator 
        System.Collections.IEnumerable.GetEnumerator() { 
        return GetEnumerator(); 
    } 
 
    private List<T> impl = new List<T>(); 
} 

Select Problems and Solutions 
In this section, I want to illustrate some examples of creating generic types that show some useful 
techniques when creating generic code. I assure you that the pathway to learning how to use generics 
effectively will contain many surprises from time to time because you must sometimes develop an 
unnatural or convoluted way of doing something that conceptually is very natural. 

■ Note Many of you will undoubtedly get that unnatural feeling if you’re transitioning from the notion of C++ 

templates to generics, as you discover the constraints that the dynamic nature of generics places upon you. 

Conversion and Operators within Generic Types 
Converting from one type to another or applying operators to parameterized types within generics can 
prove to be tricky. To illustrate, let’s develop a generic Complex struct that represents a complex number. 
Suppose that you want to be able to designate what value type is used internally to represent the real and 
imaginary portions of a complex number. This example is a tad contrived because you would normally 
represent the components of an imaginary number using something such as System.Double. However, 
for the sake of example, let’s imagine that you might want to be able to represent the components using 
System.Int64. (Throughout this discussion, in order to reduce clutter and focus on the issues regarding 
generics, I’m going to ignore all the canonical constructs that the generic Complex struct should 
implement.) 

You could start out by defining the Complex number as follows: 

using System; 
 
public struct Complex<T> 
    where T: struct 
{ 
    public Complex( T real, T imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
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    } 
 
    public T Real { 
        get { return real; } 
        set { real = value; } 
    } 
 
    public T Img { 
        get { return imaginary; } 
        set { imaginary = value; } 
    } 
 
    private T real; 
    private T imaginary; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex<Int64> c =  
            new Complex<Int64>( 4, 5 ); 
    } 
} 

This is a good start, but now let’s make this value type a little more useful. You could benefit from 
having a Magnitude property that returns the square root of the two components multiplied together. 
Let’s attempt to create such a property: 

using System; 
 
public struct Complex<T> 
    where T: struct 
{ 
    public Complex( T real, T imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    public T Real { 
        get { return real; } 
        set { real = value; } 
    } 
 
    public T Img { 
        get { return imaginary; } 
        set { imaginary = value; } 
    } 
 
    public T Magnitude { 
        get { 
            // WON'T COMPILE!!! 
            return Math.Sqrt( real * real + 
                              imaginary * imaginary ); 
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        } 
    } 
 
    private T real; 
    private T imaginary; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex<Int64> c =  
            new Complex<Int64>( 3, 4 ); 
 
        Console.WriteLine( "Magnitude is {0}", 
                           c.Magnitude ); 
    } 
} 

If you attempt to compile this code, you might be surprised to get the following compiler error: 

error CS0019: Operator '*' cannot be applied to operands of type 'T' and 'T' 

This is a perfect example of the problem with using operators in generic code. The compilation 
problem stems from the fact that you must compile generic code in a generic way because constructed 
types formed at runtime can be formed from a value type that might not support the operator. In this 
case, it’s impossible for the compiler to know whether the type given for T in a constructed type at some 
point in the future even supports the multiplication operator. What are you to do? A common technique 
is to externalize the operation from the Complex<T> definition and then require the user of Complex<T> to 
provide the operation. A delegate is the perfect tool for doing this. Let’s look at an example of Complex<T> 
that does that: 

using System; 
 
public struct Complex<T> 
    where T: struct, IConvertible 
{ 
    // Delegate for doing multiplication. 
    public delegate T BinaryOp( T val1, T val2 ); 
 
    public Complex( T real, T imaginary, 
                    BinaryOp mult, 
                    BinaryOp add, 
                    Converter<double, T> convToT ) { 
        this.real = real; 
        this.imaginary = imaginary; 
        this.mult = mult; 
        this.add = add; 
        this.convToT = convToT; 
    } 
 
    public T Real { 
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        get { return real; } 
        set { real = value; } 
    } 
 
    public T Img { 
        get { return imaginary; } 
        set { imaginary = value; } 
    } 
 
    public T Magnitude { 
        get { 
            double magnitude = 
                Math.Sqrt( Convert.ToDouble(add(mult(real, real), 
                                                mult(imaginary, imaginary))) ); 
            return convToT( magnitude ); 
        } 
    } 
 
    private T real; 
    private T imaginary; 
    private BinaryOp mult; 
    private BinaryOp add; 
    private Converter<double, T> convToT; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex<Int64> c =  
            new Complex<Int64>( 
                    3, 4, 
                    EntryPoint.MultiplyInt64, 
                    EntryPoint.AddInt64, 
                    EntryPoint.DoubleToInt64 ); 
 
        Console.WriteLine( "Magnitude is {0}", 
                           c.Magnitude ); 
    } 
 
    static Int64 MultiplyInt64( Int64 val1, Int64 val2 ) { 
        return val1 * val2; 
    } 
 
    static Int64 AddInt64( Int64 val1, Int64 val2 ) { 
        return val1 + val2; 
    } 
 
    static Int64 DoubleToInt64( double d ) { 
        return Convert.ToInt64( d ); 
    } 
} 
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You’re probably looking at this code and wondering what went wrong and why the complexity 
seems so much higher when all you’re trying to do is find the contrived definition of the magnitude of a 
complex number. As mentioned previously, you had to provide a delegate to handle the multiplication 
external to the generic type. Thus, I’ve defined the Complex<T>.Multiply delegate. At construction time, 
the Complex<T> constructor must be passed a third parameter that references a method for the 
multiplication delegate to refer to. In this case, EntryPoint.MultiplyInt64 handles multiplication. So, 
when the Magnitude property needs to multiply the components, it must use the delegate rather than the 
multiplication operator. Naturally, when the delegate is called, it boils down to a call to the 
multiplication operator. However, the application of the operator is now effectively external to the 
generic type Complex<T>. And as you can see, I applied the same technique for the add operation. 

No doubt you have noticed the extra complexities in the property accessor. First, Math.Sqrt accepts 
a type of System.Double. This explains the call to the Convert.ToDouble method. And to make sure things 
go smoothly, I added a constraint to T so that the type supplied supports IConvertible. But you’re not 
done yet. Math.Sqrt returns a System.Double, and you have to convert that value type back into type T. In 
order to do so, you cannot rely on the System.Convert class because you don’t know what type you’re 
converting to at compile time. Yet again, you have to externalize an operation, which in this case is a 
conversion. This is precisely one reason why the Framework defines the Converter<TInput, TOuput> 
delegate. In this case, Complex<T> needs a Converter<double, T> conversion delegate. At construction 
time, you must pass a method for this delegate to call through to, which in this case is 
EntryPoint.DoubleToInt64. Now, after all this, the Complex<T>.Magnitude property works as expected, but 
not without an extra amount of work. 

■ Note The complexity of using Complex<T>, as shown in the previous example, is greatly reduced by using 

lambda expressions, which are covered fully in Chapter 15. By using lambda expressions, you can completely 

bypass the need to define the operation methods such as MultiplyInt64, AddInt64, and DoubeToInt64, as 

shown in the example. 

Let’s say you want instances of Complex<T> to be able to be used as key values in a SortedList<TKey, 
TValue> generic type. In order for that to work, Complex<T> needs to implement IComparable<T>. Let’s see 
what you need to do to make that a reality: 

using System; 
 
public struct Complex<T> : IComparable<Complex<T> > 
    where T: struct, IConvertible, IComparable 
{ 
    // Delegate for doing multiplication. 
    public delegate T BinaryOp( T val1, T val2 ); 
 
    public Complex( T real, T imaginary, 
                    BinaryOp mult, 
                    BinaryOp add, 
                    Converter<double, T> convToT ) { 
        this.real = real; 
        this.imaginary = imaginary; 
        this.mult = mult; 
        this.add = add; 
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        this.convToT = convToT; 
    } 
 
    public T Real { 
        get { return real; } 
        set { real = value; } 
    } 
 
    public T Img { 
        get { return imaginary; } 
        set { imaginary = value; } 
    } 
 
    public T Magnitude { 
        get { 
            double magnitude = 
                Math.Sqrt( Convert.ToDouble(add(mult(real, real), 
                                                mult(imaginary, imaginary))) ); 
            return convToT( magnitude ); 
        } 
    } 
 
    public int CompareTo( Complex<T> other ) { 
        return Magnitude.CompareTo( other.Magnitude ); 
    } 
 
    private T real; 
    private T imaginary; 
    private BinaryOp mult; 
    private BinaryOp add; 
    private Converter<double, T> convToT; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex<Int64> c =  
            new Complex<Int64>( 
                    3, 4, 
                    EntryPoint.MultiplyInt64, 
                    EntryPoint.AddInt64, 
                    EntryPoint.DoubleToInt64 ); 
 
        Console.WriteLine( "Magnitude is {0}", 
                           c.Magnitude ); 
    } 
 
    static Int64 MultiplyInt64( Int64 val1, Int64 val2 ) { 
        return val1 * val2; 
    } 
 
    static Int64 AddInt64( Int64 val1, Int64 val2 ) { 
        return val1 + val2; 
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    } 
 
    static Int64 DoubleToInt64( double d ) { 
        return Convert.ToInt64( d ); 
    } 
} 

My implementation of the IComparable<Complex<T>> interface considers two Complex<T> types to be 
equivalent if they have the same magnitude. Therefore, most of the work required to do the comparison 
is done already. However, instead of being able to rely upon the inequality operator of the C# language, 
again you need to use a mechanism that doesn’t rely upon operators. In this case, I used the CompareTo 
method. Of course, this requires me to force another constraint on type T: it must support the 
nongeneric IComparable interface because the type provided for T might not even be generic at all, thus it 
might support only IComparable rather than IComparable<T>. 

One thing worth noting is that the previous constraint on the nongeneric IComparable interface 
makes it a little bit difficult for Complex<T> to contain generic structs because generic structs might 
implement IComparable<T> instead. In fact, given the current definition, it is impossible to define a type 
of Complex<Complex<int>>. It would be nice if Complex<T> could be constructed from types that might 
implement either IComparable<T> or IComparable, or even both. Let’s see how you can do this: 

using System; 
using System.Collections.Generic; 
 
public struct Complex<T> : IComparable<Complex<T> > 
    where T: struct 
{ 
    // Delegate for doing multiplication. 
    public delegate T BinaryOp( T val1, T val2 ); 
 
    public Complex( T real, T imaginary, 
                    BinaryOp mult, 
                    BinaryOp add, 
                    Converter<double, T> convToT ) { 
        this.real = real; 
        this.imaginary = imaginary; 
        this.mult = mult; 
        this.add = add; 
        this.convToT = convToT; 
    } 
 
    public T Real { 
        get { return real; } 
        set { real = value; } 
    } 
 
    public T Img { 
        get { return imaginary; } 
        set { imaginary = value; } 
    } 
 
    public T Magnitude { 
        get { 
            double magnitude = 
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                Math.Sqrt( Convert.ToDouble(add(mult(real, real), 
                                                mult(imaginary, imaginary))) ); 
            return convToT( magnitude ); 
        } 
    } 
 
    public int CompareTo( Complex<T> other ) { 
        return Comparer<T>.Default.Compare( this.Magnitude, other.Magnitude ); 
    } 
 
    private T real; 
    private T imaginary; 
    private BinaryOp mult; 
    private BinaryOp add; 
    private Converter<double, T> convToT; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex<Int64> c =  
            new Complex<Int64>( 
                    3, 4, 
                    EntryPoint.MultiplyInt64, 
                    EntryPoint.AddInt64, 
                    EntryPoint.DoubleToInt64 ); 
 
        Console.WriteLine( "Magnitude is {0}", 
                           c.Magnitude ); 
    } 
 
    static void DummyMethod( Complex<Complex<int> > c ) { 
    } 
 
    static Int64 AddInt64( Int64 val1, Int64 val2 ) { 
        return val1 + val2; 
    } 
 
    static Int64 MultiplyInt64( Int64 val1, Int64 val2 ) { 
        return val1 * val2; 
    } 
 
    static Int64 DoubleToInt64( double d ) { 
        return Convert.ToInt64( d ); 
    } 
} 

In this example, I had to remove the constraint on T requiring implementation of the IComparable 
interface. Instead, the CompareTo method relies upon the default generic comparer defined in the 
System.Collections.Generic namespace. 
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■ Note The generic comparer class Comparer<T> introduces one more level of indirection in the form of a class 

with regard to comparing two instances. In effect, it externalizes the comparability of the instances. If you need a 

custom implementation of IComparer, you should derive from Comparer<T>. 

Additionally, I had to remove the IConvertible constraint on T to get DummyMethod to compile. That’s 
because Complex<T> doesn’t implement IConvertible, and when T is replaced with Complex<T> (thus 
forming Complex<Complex<T>>), the result is that T doesn’t implement IConvertible. 

■ Note When creating generic types, try not to be too restrictive by forcing too many constraints on the contained 

types. For example, don’t force all the contained types to implement IConvertible. Many times, you can 

externalize such constraints by using a helper object coupled with a delegate. 

Think about the removal of this constraint for a moment. In the Magnitude property, you rely on the 
Convert.ToDouble method. However, because you removed the constraint, the possibility of getting a 
runtime exception exists—for example, when the type represented by T doesn’t implement 
IConvertible. Because generics are meant to provide better type safety and help you avoid runtime 
exceptions, there must be a better way. In fact, there is and you can do better by giving Complex<T> yet 
another converter in the form of a Convert<T, double> delegate in the constructor, as follows: 

using System; 
using System.Collections.Generic; 
 
public struct Complex<T> : IComparable<Complex<T> > 
    where T: struct 
{ 
    // Delegate for doing multiplication. 
    public delegate T BinaryOp( T val1, T val2 ); 
 
    public Complex( T real, T imaginary, 
                    BinaryOp mult, 
                    BinaryOp add, 
                    Converter<T, double> convToDouble, 
                    Converter<double, T> convToT ) { 
        this.real = real; 
        this.imaginary = imaginary; 
        this.mult = mult; 
        this.add = add; 
        this.convToDouble = convToDouble; 
        this.convToT = convToT; 
    } 
 
    public T Real { 
        get { return real; } 



CHAPTER 11 ■ GENERICS 

 

356 

 

        set { real = value; } 
    } 
 
    public T Img { 
        get { return imaginary; } 
        set { imaginary = value; } 
    } 
 
    public T Magnitude { 
        get { 
            double magnitude = 
                Math.Sqrt( convToDouble(add(mult(real, real), 
                                            mult(imaginary, imaginary))) ); 
            return convToT( magnitude ); 
        } 
    } 
 
    public int CompareTo( Complex<T> other ) { 
        return Comparer<T>.Default.Compare( this.Magnitude, other.Magnitude ); 
    } 
 
    private T real; 
    private T imaginary; 
    private BinaryOp mult; 
    private BinaryOp add; 
    private Converter<T, double> convToDouble; 
    private Converter<double, T> convToT; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Complex<Int64> c =  
            new Complex<Int64>( 
                    3, 4, 
                    EntryPoint.MultiplyInt64, 
                    EntryPoint.AddInt64, 
                    EntryPoint.Int64ToDouble, 
                    EntryPoint.DoubleToInt64 ); 
 
        Console.WriteLine( "Magnitude is {0}", 
                           c.Magnitude ); 
    } 
 
    static void DummyMethod( Complex<Complex<int> > c ) { 
    } 
 
    static Int64 MultiplyInt64( Int64 val1, Int64 val2 ) { 
        return val1 * val2; 
    } 
 
    static Int64 AddInt64( Int64 val1, Int64 val2 ) { 
        return val1 + val2; 
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    } 
 
    static Int64 DoubleToInt64( double d ) { 
        return Convert.ToInt64( d ); 
    } 
 
    static double Int64ToDouble( Int64 i ) { 
        return Convert.ToDouble( i ); 
    } 
} 

Now, the Complex<T> type can contain any kind of struct, whether it’s generic or not. However, you 
must provide it with the necessary means to be able to convert to and from double as well as to multiply 
and add constituent types. This Complex<T> struct is by no means meant to be a reference for complex 
number representation at all. Rather, it is a somewhat contrived example meant to illustrate many of the 
concerns you must deal with in order to create effective generic types. 

You’ll see some of these techniques in practice as you deal with the generic containers that exist in 
the BCL. 

Creating Constructed Types Dynamically 
Given the dynamic nature of the CLR and the fact that you can actually generate classes and code at 
runtime, it is only natural to consider the possibility of constructing closed types from generics at 
runtime. Until now, all the examples in this book have dealt with creating closed types at compile time. 

This functionality stems from a natural extension of the metadata specification to accommodate 
generics. System.Type is the cornerstone of functionality whenever you need to work with types 
dynamically within the CLR, so it has been extended to deal with generics as well. Some of the generic-
centric methods on System.Type are self-explanatory by name and include GetGenericArguments, 
GetGenericParameterConstraints, and GetGenericTypeDefinition. These methods are helpful when you 
already have a System.Type instance representing a closed type. However, the method that makes things 
interesting is MakeGenericType, which allows you to pass an array of System.Type objects that represent 
the types that are to be used in the argument list for the resultant constructed type. 

Those coming from a C++ template background have probably become frustrated from time to time 
with generics because they lack the static compile-time capabilities of templates. However, I think you’ll 
agree that the dynamic capabilities of generics make up for that in the end. Imagine how handy it is to be 
able to create closed types from generics at runtime. For example, creating a parsing engine for some 
sort of XML-based language that defines new types from generics is a snap. Let’s take a look at an 
example of how to use the MakeGenericType method: 

using System; 
using System.Collections.Generic; 
 
public class EntryPoint 
{ 
    static void Main() { 
        IList<int> intList = 
            (IList<int>) CreateClosedType<int>( typeof(List<>) ); 
 
        IList<double> doubleList = 
            (IList<double>) 
                CreateClosedType<double>( typeof(List<>) ); 
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        Console.WriteLine( intList ); 
        Console.WriteLine( doubleList ); 
    } 
 
    static object CreateClosedType<T>( Type genericType ) { 
        Type[] typeArguments = { 
            typeof( T ) 
        }; 
 
        Type closedType = 
            genericType.MakeGenericType( typeArguments ); 
 
        return Activator.CreateInstance( closedType ); 
    } 
} 

The meat of this code is inside the generic method CreateClosedType<T>. All the work is done in 
general terms via references to Type created from the available metadata. First, you need to get a 
reference to the generic open type List<>, which is passed in as a parameter. After that, you simply 
create an array of Type instances to pass to MakeGenericType to obtain a reference to the closed type. 
Once that stage is complete, the only thing left to do is to call CreateInstance on the System.Activator 
class. System.Activator is the facility that you must use to create instances of types that are known only 
at runtime. In this case, I’m calling the default constructor for the closed type. However, Activator has 
overloads of CreateInstance that allow you to call constructors that require parameters. 

■ Note I used the C# typeof operator rather than the Type.GetType method to obtain the Type instance for the 

types. If the type is known at compile time, the typeof operator performs the metadata lookup then rather than at 

runtime—therefore, it is more efficient. 

When you run the previous example, you’ll see that the closed types are streamed to the console 
showing their fully qualified type names, thus proving that the closed types were created properly after 
all. 

The ability to create closed types at runtime is yet another powerful tool in your toolbox for creating 
highly dynamic systems. Not only can you declare generic types within your code so that you can write 
flexible code, but you can also create closed types from those generic definitions at runtime. Take a 
moment to consider the extent of problems you could solve with these techniques, and it’s easy to see 
that generics are extremely potent. 

Summary 
This chapter has discussed how to declare and use generics using C#, including generic classes, structs, 
interfaces, methods, and delegates. I discussed generic constraints, which are necessary for the compiler 
to create code where certain functional assumptions are placed upon the type arguments provided for 
the generic type arguments at runtime. Collection types enjoy a real and measurable gain in efficiency 
and safety with generics. 
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Not only do generics allow you to generate more efficient code when using value types with 
containers but they also give the compiler much more power when enforcing type safety. As a rule, you 
should always prefer compile-time type safety over runtime type safety. You can fix a compile-time 
failure before software is deployed, but a runtime failure usually results in an InvalidCastException 
thrown in a production environment. Such a runtime failure could cost the end user huge sums of 
money, depending on the situation, and it could cause large amounts of embarrassment for you as the 
developer. Therefore, always provide the compiler with as much power as possible to enforce type 
safety, so it can do what it’s meant to do best—and that’s to be your friend. 

The next chapter tackles the topic of threading in C# and the .NET runtime. Along with threading 
comes the ever-so-important topic of synchronization. 
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Threading in C# 

The mere mention of multithreading can strike fear in the hearts of some programmers. For others, it 
fires them up for a good challenge. No matter how you react to the subject, multithreading is an area 
riddled with minefields. Unless you show due diligence, a threading bug can jump up and bite you—and 
bite you in a place where you cannot seem to find it easily. Threading bugs can be among the hardest to 
find and they are hard enough to find on a single-processor machine,; add more processors and cores, 
and the bugs can become even harder to find. In fact, some threading bugs don’t even rear their ugly 
head until you run your application on a multiprocessor machine, because that’s the only way to get true 
concurrent multithreading. For this reason, I always advise anyone developing a multithreaded 
application to test, and test often, on a multiprocessor machine. Otherwise, you run the risk of sending 
your product out the door with lurking threading bugs. 

I remember it as if it were a meal ago: At a former employer of mine, we were soon to ship our gold 
master to the manufacturer and have hundreds of thousands of disks made, and then someone finally 
happened to test the application on a multiprocessor machine in the lab. Back in those days, 
multiprocessor desktops were few and far between. Needless to say, a great lesson was learned across 
the entire team, and a nasty bug was sniped before it got out the door. 

Threading in C# and .NET 
Even though threading environments have presented many challenges and hurdles over the years, and 
will continue to do so, the CLR and the .NET base class library mitigate many of these risks and provide a 
clean model to build upon. It’s still true that the greatest challenge of creating high-quality threaded 
code is that of synchronization. The .NET Framework makes it easier than ever to create new threads or 
utilize a system-managed pool of threads, and it provides intuitive objects that help you synchronize 
those threads with each other. However, it’s still your duty to make sure you use those objects properly. 

Managed threads are virtual threads in the sense that they don’t necessarily map one-to-one to OS 
threads. Managed threads do actually run concurrently, but it would be erroneous to assume that the OS 
thread currently running a particular managed thread’s code will only run managed code for that thread 
only. In fact, an OS thread could run managed code for multiple managed threads in multiple 
application domains in an implementation of the CLR. The bottom line is, don’t make any assumptions 
about the correlation between OS threads and managed threads. If you burrow down to the OS thread 
using the P/Invoke layer to make direct Win32 calls, be sure that you only use platform thread 
information for debugging purposes and base no program logic on it at all. Otherwise, you’ll end up with 
something that may break as soon as you run it on another CLR implementation. 

It would be erroneous to conclude that multithreaded programming is just about creating extra 
threads to do something that can take a long time to do. Sure, that’s part of the puzzle. And when you 
create a desktop application, you definitely want to use threading techniques to ensure that the UI stays 
responsive during a long computational operation, because we all know what impatient users tend to do 



CHAPTER 12 ■ THREADING IN C# 

 

362 

 

when desktop applications become unresponsive: They kill them! But it’s important to realize that there 
is much more to the threading puzzle than creating an extra thread to run some random code. That task 
is actually quite easy in the C# environment, so let’s take a look and see how easy it really is. 

Starting Threads 
As I said, creating a thread is very simple. Take a look at the following example to see what I mean: 

using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    private static void ThreadFunc() { 
        Console.WriteLine( "Hello from new thread {0}!", 
                           Thread.CurrentThread.GetHashCode() ); 
    } 
     
    static void Main() { 
        // Create the new thread. 
        Thread newThread = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc) ); 
 
        Console.WriteLine( "Main Thread is {0}", 
                           Thread.CurrentThread.ManagedThreadId ); 
        Console.WriteLine( "Starting new thread..." ); 
 
        // Start the new thread. 
        newThread.Start(); 
 
        // Wait for new thread to finish. 
        newThread.Join(); 
 
        Console.WriteLine( "New thread has finished" ); 
    } 
}  

All you have to do is create a new System.Thread object and pass an instance of the ThreadStart 
delegate as the parameter to the constructor. The ThreadStart delegate references a method that takes 
no parameters and returns no parameters. In the previous example, I chose to use the static ThreadFunc 
method as the start of execution for the new thread. I could have just as easily chosen to use any other 
method visible to the code creating the thread, as long as it neither accepted nor returned parameters. 
Notice that the code also outputs the managed thread identifier in two different ways to demonstrate 
how you can identify threads in the managed world. In the unmanaged C++ world, you would use the 
thread ID obtained via the Win32 API. In the managed world of .NET 1.1, you instead use the value 
returned by GetHashCode. As long as this thread is alive, it is guaranteed never to collide with any other 
thread in any application domain of this process. The thread hash code is not globally unique on the 
entire system. Starting with .NET 2.0, you can get the managed thread id by accessing the 
Thread.ManagedThreadId property. Also, you can see how you can get a reference to the current thread by 
accessing the static property Thread.CurrentThread. Finally, notice the call to the Join method on the 
newThread object. In native Win32 code, you normally wait for a thread to finish by waiting on its handle. 
When the thread finishes running, the operating system signals its handle and the wait completes. The 
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Thread.Join method encapsulates this functionality. In this case, the code waits forever for the thread to 
finish. Thread.Join also provides a few overloads that allow you to specify a timeout period on the wait. 

■ Note There is some confusion in the MSDN documentation regarding whether one should call 

Thread.GetHashCode or access the Thread.ManagedThreadId property. If you read the MSDN documentation 

carefully, the summary page for System.Thread indicates that GetHashCode is what you should use to obtain the 

unique managed thread identifier during the duration the thread is alive. But if you look at the documentation for 

Thread.GetHashCode, it states that you should use the ManagedThreadId property instead. By debugging into the 

example application above using windbg in the Debugging Tools for Windows package in concert with the sos.dll 

debugger extension, I was able to determine that the results of GetHashCode and the ManagedThreadId property 

accessor both harvest the value from the same location within an internal structure of the Thread object instance. 

Arguably, ManagedThreadId makes the code easier to read because it’s more obvious what it is. Additionally, 

ManagedThreadId was introduced in .NET 2.0 and if you are targeting .NET 1.1, then you must use GetHashCode. I 

expect this confusion in the MSDN documentation to go away at some point soon, as it is a documentation bug. 

You should always rely upon ManagedThreadId even though GetHashCode returns the same value for the 

purposes of backwards compatibility. Throughout the rest of this chapter, I will be using ManagedThreadId rather 

than GetHashCode. 

When you create a separate thread, it is subject to the rules of the thread scheduler on the system, 
just like any other thread. However, sometimes you need to create threads that carry a little more or a 
little less weight when the scheduler algorithm is deciding which thread to execute next. You can control 
the priority of a managed thread via the Thread.Priority property. You can adjust this value as 
necessary during execution of the thread. It’s actually a rare occurrence that you’ll need to adjust this 
value. All threads start out with the priority of Normal from the ThreadPriority enumeration. 

Passing Data to New Threads 

In the managed environment, the System.Thread class nicely encapsulates all of the operations that you 
may perform on a thread. If you have some sort of state data that you must transmit to the new thread so 
that it has that data available when it starts execution, you can simply create a helper object and 
initialize the ThreadStart delegate to point to an instance method on that object. Yet again, you solve 
another problem by introducing another level of indirection in the form of a class. Suppose you have a 
system where you fill multiple queues with tasks, and then at some point you want to create a new 
thread to process the items in a specific queue that you pass into it. The following code demonstrates 
one way you can achieve such a goal: 

using System; 
using System.Threading; 
using System.Collections; 
 
public class QueueProcessor 
{ 
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    public QueueProcessor( Queue theQueue ) { 
        this.theQueue = theQueue; 
        theThread = new Thread( new ThreadStart(this.ThreadFunc) ); 
    } 
  
    private Queue theQueue; 
 
    private Thread theThread; 
    public Thread TheThread { 
        get { 
            return theThread; 
        } 
    } 
 
    public void BeginProcessData() { 
        theThread.Start(); 
    } 
 
    public void EndProcessData() { 
        theThread.Join(); 
    } 
 
    private void ThreadFunc() { 
        // ... drain theQueue here. 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Queue queue1 = new Queue(); 
        Queue queue2 = new Queue(); 
 
        // ... operations to fill the queues with data. 
 
        // Process each queue in a separate thread. 
        QueueProcessor proc1 = new QueueProcessor( queue1 ); 
        proc1.BeginProcessData(); 
 
        QueueProcessor proc2 = new QueueProcessor( queue2 ); 
        proc2.BeginProcessData(); 
 
        // ... do some other work in the meantime. 
 
        // Wait for the work to finish. 
        proc1.EndProcessData(); 
        proc2.EndProcessData(); 
    } 
} 

There are some potential synchronization problems here if anyone were to access the queues after 
the new threads begin their work. But I’ll save synchronization issues until later in the chapter. The class 
adding the extra level of indirection is the QueueProcessor class. It cleanly encapsulates the worker 
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thread and exposes a lightweight interface to get the work done. In this example, the main thread waits 
for the work to finish by calling EndProcessData. That method merely calls Join on the encapsulated 
thread. However, had you required some sort of status regarding the completion of the work, the 
EndProcessData method could have returned it to you. 

Using ParameterizedThreadStart 

For those of you familiar with and accustomed to starting native threads in Win32, you know that you 
can provide a thread function that accepts a single parameter through which you can pass the start-up 
state for the thread. In System.Threading.Thread, there is an overloaded version of the constructor that 
allows you to provide it with a delegate of type ParameterizedThreadStart which is a delegate that 
accepts a single object reference and returns void. Note however, that because the parameter passed in 
is an object instance, you must cast it to the expected type in order to use it and that may expose you to 
run-time cast exceptions if you are not careful. Using the constructor that accepts a 
ParameterizedThreadStart delegate, the example above would then become the following: 

using System; 
using System.Threading; 
using System.Collections; 
 
public class EntryPoint 
{ 
    static void Main() { 
        Queue queue1 = new Queue(); 
        Queue queue2 = new Queue(); 
 
        // ... operations to fill the queues with data. 
 
        // Process each queue in a separate threda. 
        Thread proc1 = new Thread( EntryPoint.ThreadFunc ); 
        proc1.Start( queue1 ); 
 
        Thread proc2 = new Thread( EntryPoint.ThreadFunc ); 
        proc2.Start( queue2 ); 
 
        // ... do some other work in the meantime. 
 
        // Wait for the work to finish. 
        proc1.Join(); 
        proc2.Join(); 
    } 
 
    static private void ThreadFunc( object obj ) { 
        // We must cast the incoming object into a Queue. 
        Queue theQueue = (Queue) obj; 
 
        // ... drain the queue 
    } 
} 
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The IOU Pattern and Asynchronous Method Calls 
In a later section titled “Asynchronous Method Calls,” where I discuss asynchronous I/O and thread 
pools, you’ll see that the BeginProcessData/EndProcessData is a common pattern of asynchronous 
processing used throughout the .NET Framework. The BeginMethod/EndMethod pattern of asynchronous 
programming in the .NET Framework is similar to the IOU pattern described by Allan Vermeulen in his 
article, “An Asynchronous Design Pattern” (Dr. Dobb’s Journal, June 1996). In that pattern, a function is 
called to start the asynchronous operation and in return, the caller is given an “I owe you” (IOU) object. 
Later, the caller can use that object to retrieve the result of the asynchronous operation. The beauty of 
this pattern is that it completely decouples the caller wanting to get the asynchronous work done from 
the mechanism used to actually do the work. This pattern is used extensively in the .NET Framework, 
and I suggest that you employ it for asynchronous method calls, as it will give your clients a familiar look 
and feel. 

States of a Thread 
The states of a managed thread are well defined by the runtime. Although the state transitions may seem 
confusing at times, they aren’t much more confusing than the state transitions of an OS thread. There 
are other considerations to address in the managed world, so the allowable states and state transitions 
are naturally more complex. Figure 12-1 shows a state diagram for managed threads. 
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Figure 12-1. State diagram of managed threads 
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The states in the state diagram are based upon the states defined by the CLR for managed threads, 
as defined in the ThreadState enumeration. Every managed thread starts life in the Unstarted state. As 
soon as you call Start on the new thread, it enters the Running state. OS threads that enter the managed 
runtime start immediately in the Running state, thus bypassing the Unstarted state. Notice that there is 
no way to get back to the Unstarted state. The dominant state in the state diagram is the Running state. 
This is the state of the thread when it is executing code normally, including any exception handling and 
execution of any finally blocks. If the main thread method, passed in via an instance of the ThreadStart 
delegate during thread creation, finishes normally, then the thread enters the Finished state, as shown in 
Figure 12-1. Once in this state, the thread is completely dead and will never wake up again. If all of the 
foreground threads in your process enter the Finished state, the process will exit normally. 

The three states mentioned previously cover the basics of managed thread state transition, 
assuming you have a thread that simply executes some code and exits. Once you start to add 
synchronization constructs in the execution path or wish to control the state of the thread, whether from 
another thread or the current thread, things become more complicated.  

For example, suppose you’re writing code for a new thread and you want to put it to sleep for a 
while. You would call Thread.Sleep and provide it a timeout, such as how many milliseconds to sleep. 
This is similar to how you put an OS thread to sleep. When you call Sleep, the thread enters the 
WaitSleepJoin state, where its execution is suspended for the duration of the timeout. Once the sleep 
expires, the thread reenters the running state. 

Synchronization operations can also put the thread into the WaitSleepJoin state. As may be obvious 
by the name of the state, calling Thread.Join on another thread in order to wait for it to finish puts the 
calling thread into the WaitSleepJoin state. Calling Monitor.Wait also enters the WaitSleepJoin state. 
Now you know the three factors that went into naming the state in the first place. You can use other 
synchronization methods with a thread, and I’ll cover those later in the chapter in the “Synchronizing 
Work Between Threads” section. As before, once the thread’s wait requirements have been met, it 
reenters the Running state and continues execution normally. 

It’s important to note that any time the thread is sitting in the WaitSleepJoin state, it can be 
forcefully pushed back into the Running state when another thread calls Thread.Interrupt on the waiting 
thread. Win32 programmers will recognize that this behavior is similar to alertable wait states in the 
operating system. Beware that when a thread calls Thread.Interrupt on another thread, the interrupted 
thread receives a thrown ThreadInterruptedException. So, even though the interrupted thread reenters 
the Running state, it won’t stay there for long unless an appropriate exception-handling frame is in place. 
Otherwise, the thread will soon enter the Finished state once the exception boils its way up to the top of 
the thread’s stack unhandled. 

Another way that the thread state can transition out of the WaitSleepJoin state is when another 
thread calls Thread.Abort on the current thread. Technically, a thread could call Abort on itself. 
However, I consider that a rare execution flow and have not shown it in Figure 12-1. Once Thread.Abort 
is called, the thread enters the AbortRequested state. This state is actually a form of a running state, 
because the thread is thrown a ThreadAbortException and must handle the exception. However, as I 
explain later on, the managed thread treats this exception in a special way, such that the next state will 
be the final Aborted state unless the thread that called Thread.Abort manages to call Thread.ResetAbort 
before that happens. Incidentally, there’s nothing to stop the thread that is aborting from calling 
ResetAbort. However, you must refrain from doing such a thing because it could create some ill 
behavior. For example, if a foreground thread can never be aborted because it keeps resetting the abort, 
the process will never exit. 
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■ Note Beginning in .NET 2.0, the host has the ability to forcefully kill threads during application domain shutdown 

by using what’s called a rude thread abort. In such a situation, it is impossible for the thread to keep itself alive by 

using Thread.ResetAbort. 

Finally, a running thread enters the SuspendRequested state after calling Thread.Suspend on itself, or 
after another thread calls Suspend on it. Very shortly after that, the thread automatically enters the 
Suspended state. Once a thread enters the SuspendRequested state, there is no way to keep it from 
eventually entering the Suspended state. Later on, in the section titled “Halting Threads and Waking 
Sleeping Threads,” I discuss why this intermediate state is needed when a thread is suspended. But for 
now, it’s important to realize that the SuspendRequested state is a form of a running state in the sense 
that it is still executing managed code. 

That wraps up the big picture regarding managed-thread state transitions. Be sure to refer to Figure 
12-1 throughout the rest of the chapter when reading about topics that affect the state of the thread. 

Terminating Threads 
When you call Thread.Abort, the thread in question eventually receives a ThreadAbortException. So, 
naturally, in order to handle this situation gracefully, you must process the ThreadAbortException if 
there is anything specific you must do when the thread is being aborted. There is also an overload of 
Abort that accepts an arbitrary object reference, which is then encapsulated in the subsequent 
ThreadAbortException. This allows the code that is aborting the thread to pass some sort of context 
information to the ThreadAbortException handler, such as a reason why Abort was called in the first 
place. 

The CLR doesn’t deliver a ThreadAbortException unless the thread is running within the managed 
context. If your thread has called out to a native function via the P/Invoke layer, and that function takes 
a long time to complete, then a thread abort on that thread is pended until execution returns to 
managed space. 

■ Note In .NET 2.0 and later, if a finally block is executing, delivery of a ThreadAbortException is pended until 

execution leaves the finally block. In .NET 1.x, the abort exception is delivered anyway. 

Calling Abort on a thread doesn’t forcefully terminate the thread, so if you need to wait until the 
thread is truly finished executing, you must call Join on that thread to wait until all of the code in the 
ThreadAbortException exception handler is finished. During such a wait, it is wise to wait with a timeout 
so that you don’t get stuck waiting forever for a thread to finish cleaning up after itself. Even though the 
code in the exception handler should follow other exception-handler coding guidelines, it’s still possible 
for the handler to take a long time or, gasp, forever to complete its work. Let’s take a look at a 
ThreadAbortException handler and see how this works: 

using System; 
using System.Threading; 
 
public class EntryPoint 
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{ 
    private static void ThreadFunc() { 
        ulong counter = 0; 
        while( true ) { 
            try { 
                Console.WriteLine( "{0}", counter++ ); 
            } 
            catch( ThreadAbortException ) { 
                // Attempt to swallow the exception and continue. 
                Console.WriteLine("Abort! " ); 
            } 
        } 
    } 
 
    static void Main() { 
        Thread newThread = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc) ); 
        newThread.Start(); 
        Thread.Sleep( 2000 ); 
 
        // Abort the thread. 
        newThread.Abort(); 
 
        // Wait for thread to finish. 
        newThread.Join(); 
    } 
} 

From a cursory glance at the code, it would appear that the call to Join on the newThread instance 
will block forever. However, that’s not what happens. It would appear that because the 
ThreadAbortException is handled within the loop of the thread function, the exception will be swallowed 
and the loop will continue no matter how many times the main thread attempts to abort the thread. As it 
turns out, the ThreadAbortException thrown via the Thread.Abort method is special. When your thread 
finishes processing the abort exception, the runtime implicitly rethrows it at the end of your exception 
handler. It’s the same as if you had rethrown the exception yourself. Therefore, any outer exception 
handlers or finally blocks will still execute normally. In the example, the call to Join won’t be waiting 
forever as initially expected. 

There is a way to keep the system from rethrowing the ThreadAbortException, by calling the 
Thread.ResetAbort static method. However, the general recommendation is that you only call 
ResetAbort from the thread that called Abort. This would require some sort of tricky intrathread 
communication technique if you wanted to cause this to happen from within the abort handler of the 
thread being aborted. If you find yourself trying to implement such a technique to abort a thread abort, 
then maybe it’s time to reassess the design of the system in the first place. In other words, bad design 
alert! 

Even though the runtime provides a much cleaner mechanism for aborting threads such that you 
can inform interested parties when the thread is aborting, you still have to implement a 
ThreadAbortException handler properly. 
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■ Note The fact that ThreadAbortException instances can be thrown asynchronously into a random managed 

thread makes it tricky to create robust exception-safe code. Be sure to read the “Constrained Execution Regions” 

section in Chapter 7. 

Halting Threads and Waking Sleeping Threads 
Similar to native threads, there are mechanisms in place for putting a thread to sleep for a defined period 
of time or actually halting execution until it is explicitly released again. If a thread just wants to suspend 
itself for a prescribed period of time, it may call the static method Thread.Sleep to enter the 
WaitSleepJoin state. The only parameter to the Sleep method is the number of milliseconds the thread 
should sleep. When called, this method causes the thread to relinquish the rest of its time slice with the 
processor and go to sleep. After the time has expired, the thread may be considered for scheduling again. 
Naturally, the time duration you pass to Sleep is reasonably accurate, but not exact. That’s because, at 
the end of the duration, the thread is not immediately given time on the processor. There could be other, 
higher-priority threads in the queue before it. Therefore, using Sleep to synchronize execution between 
two threads is strongly discouraged. 

■ Caution If you find yourself solving synchronization problems by introducing calls to Sleep within your code, 

you’re not solving the problems at all. You’re merely covering them up even more. 

There is even a special value, Timeout.Infinite, that you can pass to Sleep to make the thread go to 
sleep forever. You can wake a sleeping thread by interrupting it via the Thread.Interrupt instance 
method. Interrupt is similar to Abort in that it wakes up the target thread and throws a 
ThreadInterruptedException. Therefore, if your thread function is not equipped to handle the exception, 
the exception will percolate all the way up the call stack until the runtime ends the thread’s execution 
because of an unhandled exception. If you really do want to implement an alertable sleep state using 
this mechanism, then to be safe, you should make your call to Sleep within a try block and catch the 
ThreadInterruptException. Unlike the ThreadAbortException, the ThreadInterruptException is not 
automatically rethrown by the runtime at the end of the exception handler. Note, however, that you 
should never have to implement an alertable sleep mechanism because the Monitor type, introduced 
shortly, provides a more efficient way to achieve the same goal. 

■ Note Another special parameter value for Thread.Sleep is 0. If you pass 0, Thread.Sleep will cause the thread 

to relinquish the rest of its time slice. The thread will then be allowed to run again once the system thread 

scheduler comes back around to it. If you are running on the .NET 4.0 platform or later, you should use the new 

method Thread.Yield instead. 
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Another way to put a thread to sleep for an indefinite time is via the Thread.Suspend instance 
method. Calling Suspend will suspend execution of the thread until it is explicitly resumed. You can 
resume the thread by calling the Resume instance method or Interrupt. However, with Interrupt, the 
target thread needs to have a proper exception handler around the Suspend call; otherwise, the thread 
could exit. Technically, calling Abort on the thread will resume the thread, but only to send it a 
ThreadAbortException ultimately causing the thread to exit. Keep in mind that any thread with sufficient 
privileges can call Suspend on a thread—even the current thread can call Suspend. If the current thread 
calls Suspend, it blocks at that point, waiting for the next Resume call. 

It’s important to note that when you call Suspend on a thread, the thread is not suspended 
immediately in its tracks. Instead, the thread is allowed to execute to what’s called a safe point. Once it 
reaches the safe point, the thread is suspended. A safe point is a place in the managed code where it is 
safe to allow garbage collection. For instance, if the CLR determines it is time to perform a garbage 
collection, it must suspend all threads temporarily while it performs the collection. However, as you can 
imagine, if a thread is in the middle of a multi-instruction operation that accesses an object on the heap, 
and then the GC comes along and moves that object to a different place in system memory, only bad 
things will happen. For that reason, when the GC suspends threads for collection, it must wait until they 
all have reached a safe point where it is OK to move things around on the heap. For this reason, the call 
to Suspend allows the thread to reach a safe point before actually suspending it. I also want to stress that 
you should never use Suspend and Resume to orchestrate thread synchronization. Of course, the fact that 
the system allows the thread to continue running until it reaches a safe point is a good enough reason 
not to rely on this mechanism, but it’s also a bad design practice. 

Waiting for a Thread to Exit 
In this chapter’s previous examples, I’ve used the Join method to wait for a specific thread to exit. In 
fact, that is exactly what it is used for. In an unmanaged Win32 application, you may have been 
accustomed to waiting for the thread handle to become signaled to indicate the completion of the 
thread. The Join method is the same mechanism indeed. The name of the method is suggestive of the 
fact that you’re joining the current thread’s execution path to that of the thread you’re calling Join on, 
and you cannot proceed until your joined thread arrives. 

Naturally, you’ll want to avoid calling Join on the current thread. The effect is similar to calling 
Suspend from the current thread. The thread is blocked until it is interrupted. Even when a thread is 
blocked from calling Join, it can be awoken via a call to Interrupt or Abort as described in the previous 
section. 

Sometimes, you’ll want to call Join to wait for another thread to complete, but you won’t want to get 
stuck waiting forever. Join offers overloads that allow you to designate the amount of time you’re willing 
to wait. Those overloads return a Boolean value that returns true to indicate that the thread actually 
terminated, or false to indicate that the timeout expired. 

Foreground and Background Threads 
When you create a thread in the .NET managed environment, it exists as a foreground thread by default. 
This means that the managed execution environment, and thus the process, will remain alive as long as 
the thread is alive. Consider the following code: 

using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    private static void ThreadFunc1() { 
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        Thread.Sleep( 5000 ); 
        Console.WriteLine( "Exiting extra thread" ); 
    } 
 
    static void Main() { 
        Thread thread1 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc1) ); 
 
        thread1.Start(); 
 
        Console.WriteLine( "Exiting main thread" ); 
    } 
} 

If you run this code, you’ll see that Main exits before the extra thread finishes, as shown in the 
following output.  

Exiting main thread 
Exiting extra thread 

C++ developers will find that very different from the behavior they’re used to, where the process 
normally terminates once the main routine in the application exits. 

At times, you might want the process to terminate when the main thread finishes, even when there 
are extra threads in the background. You can accomplish this in the runtime by turning the extra thread 
into a background thread by setting the Thread.IsBackground property to true. You’ll want to consider 
doing this for threads that do stuff such as listen on a port for network connections, or some other 
background task such as that. Keep in mind, though, that you always want to make sure that your 
threads get a proper chance to clean up if they need to before they are shut down. When a background 
thread is shut down as the process exits, it doesn’t receive an exception of any type as it does when 
someone calls Interrupt or Abort. So, if the thread has persistent data in some sort of half-baked state, 
shutting down the process will definitely not be good for that persistent data. Therefore, when creating 
background threads, make sure they are coded so that they can be terminated rudely at any point 
without any adverse effects. You can also implement some sort of mechanism to notify the thread that 
the process is to shut down soon. Creating such a mechanism will prove messy, because the main thread 
will need to wait a reasonable amount of time after firing the notification for the extra thread to do its 
cleanup work. At that point, it almost becomes reasonable to turn the thread back into a foreground 
thread. 

Thread-Local Storage 
You can create thread-local storage in the managed environment. Depending on your application, it 
may be necessary for you to have a static field of a class that is unique for each thread that the class is 
used in. Doing so is trivially easy in the majority of the cases in C#. If you have a static field that must be 
thread-relative, simply adorn it with the ThreadStaticAttribute attribute. Once you do that, the field will 
be initialized for each thread that accesses it. Under the covers, each thread is given its own thread-
relative location to save the value or reference. However, when using references to objects, be careful 
with your assumptions about object creation. The following code shows a pitfall to avoid: 

using System; 
using System.Threading; 
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public class TLSClass 
{ 
    public TLSClass() { 
        Console.WriteLine( "Creating TLSClass" ); 
    } 
} 
 
public class TLSFieldClass 
{ 
    [ThreadStatic] 
    public static TLSClass tlsdata = new TLSClass(); 
} 
 
public class EntryPoint 
{ 
    private static void ThreadFunc() { 
        Console.WriteLine( "Thread {0} starting...", 
                           Thread.CurrentThread.ManagedThreadId ); 
        Console.WriteLine( "tlsdata for this thread is \"{0}\"", 
                           TLSFieldClass.tlsdata ); 
        Console.WriteLine( "Thread {0} exiting", 
                           Thread.CurrentThread.ManagedThreadId ); 
    } 
 
    static void Main() { 
        Thread thread1 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc) ); 
        Thread thread2 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc) ); 
 
        thread1.Start(); 
        thread2.Start(); 
    } 
} 

This code creates two threads that access a thread-relative static member of TLSFieldClass. To 
illustrate the trap, I’ve made that thread-specific slot of type TLSClass, and the code attempts to initialize 
that slot with an initializer in the class definition that simply calls new on the default constructor of the 
class. Now, look how surprising the output is: 

Thread 3 starting... 

Thread 4 starting... 

Creating TLSClass 

tlsdata for this thread is "TLSClass" 

Thread 3 exiting 
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tlsdata for this thread is ""  

Thread 4 exiting 

■ Caution Always remember that ordering of execution in multithreaded programs is never guaranteed unless you 

employ specific synchronization mechanisms. This output was generated on a single-processor system. If you run 

the same application on a multiprocessor system, you’ll likely see that the output executes in a completely 

different order. Nevertheless, the purpose of the example does not change. 

The important thing to take note of is that the constructor for TLSClass was only called once. The 
constructor was called for the first thread, but not for the second thread. For the second thread, the field 
is initialized to null. tlsdata is static, therefore its initialization is actually done at the time the static 
constructor for the TLSFieldClass is called. However, static constructors can only be called once per 
class per application domain. For this reason, you want to avoid assigning thread-relative slots at the 
point of declaration. That way, they will always be assigned to their default values. For reference types, 
that means null, and for value types, it means the equivalent of setting all of the bits in the value’s 
underlying storage to 0. Then, upon first access to the thread-specific slot, you can test the value for null 
and create an instance as appropriate. The cleanest way to achieve this is always to access the thread-
local slot via a static property. 

As an added note, don’t think that you can outsmart the compiler by adding a level of indirection, 
such as assigning the thread-relative slot based on the return value of a static method. You’ll find that 
your static method will only get called once. If the CLR were to “fix” this problem for you, it would 
undoubtedly be less efficient because it would have to test whether the field is being accessed for the 
first time and call the initialization code if that is the case. If you think about it, you’ll find that task is a 
lot harder than it sounds, because it will be impossible to do the right thing 100% of the time. 

There is another way to use thread-local storage that doesn’t involve decorating a static variable 
with an attribute. You can allocate thread-specific storage dynamically by using either of the 
Thread.AllocateDataSlot or Thread.AllocateNamedDataSlot methods. You’ll want to use these methods 
if you won’t know how many thread-specific slots you’ll need to allocate until runtime. Otherwise, it’s 
generally much easier to use the static field method. When you call AllocateDataSlot, a new slot is 
allocated in all threads to hold a reference to an instance of type System.Object. The method returns a 
handle of sorts in the form of a LocalDataStoreSlot object instance. You can access this location using 
the GetData and SetData methods on the thread. Let’s look at a modification of the previous example: 

using System; 
using System.Threading; 
 
public class TLSClass 
{ 
    static TLSClass() { 
        tlsSlot = Thread.AllocateDataSlot(); 
    } 
 
    private TLSClass() { 
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        Console.WriteLine( "Creating TLSClass" ); 
    } 
 
    public static TLSClass TlsSlot { 
        get { 
            Object obj = Thread.GetData( tlsSlot ); 
            if( obj == null ) { 
                obj = new TLSClass(); 
                Thread.SetData( tlsSlot, obj ); 
            } 
            return (TLSClass) obj; 
        } 
    } 
 
    private static LocalDataStoreSlot tlsSlot = null; 
} 
 
public class EntryPoint 
{ 
    private static void ThreadFunc() { 
        Console.WriteLine( "Thread {0} starting...", 
                           Thread.CurrentThread.ManagedThreadId ); 
        Console.WriteLine( "tlsdata for this thread is \"{0}\"", 
                           TLSClass.TlsSlot ); 
        Console.WriteLine( "Thread {0} exiting", 
                           Thread.CurrentThread.ManagedThreadId ); 
    } 
 
    static void Main() { 
        Thread thread1 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc) ); 
        Thread thread2 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc) ); 
 
        thread1.Start(); 
        thread2.Start(); 
    } 
} 

As you can see, using dynamic slots is a little more involved than using the static field method. 
However, it does provide some extra flexibility. Notice that the slot is allocated in the type initializer, 
which is the static constructor you see in the example. That way, the slot is allocated for all threads at the 
point where the runtime initializes the type for use. Notice that I’m testing the slot for null in the 
property accessor of the TLSClass. When you allocate the slot using AllocateDataSlot, the slot is 
initialized to null for each thread. 

You may find it convenient to access your thread-specific storage via a string name rather than with 
a reference to a LocalDataStoreSlot instance. You can do that if you create your TLS slot using 
Thread.AllocateNamedDataSlot. However, you must be careful to use a reasonably unique name so that 
use of that same name elsewhere in the code won’t cause adverse effects. You may consider naming 
your slot using a string representation of a GUID, so that you can reasonably assume that nobody will 
attempt to create one with the same name. When you need to access the slot, you can call 
GetNamedDataSlot, which will simply translate your string into a LocalDataStoreSlot instance. I urge you 
to read the MSDN documentation regarding named thread-local storage slots to get more details. 
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Most of this will be familiar to those developers who have used thread-local storage in Win32. There 
is one improvement, though: Because managed TLS slots are implemented in a different way, the 
limitation on the number of Win32 TLS slots doesn’t apply.  

How Unmanaged Threads and COM Apartments Fit In 
It is possible for unmanaged threads to enter the managed environment from the outside. For example, 
managed objects can be exposed to native code via the COM interop layer. When the native thread calls 
through to the object, it enters the managed environment. When this happens, the CLR makes note of 
that fact, and if it is the first time the unmanaged thread has called into the CLR, it sets up the necessary 
bookkeeping structures allowing it to run as a managed thread within the managed runtime. As I 
mentioned before, threads that enter the managed environment this way initially start their managed 
thread existence in the Running state, as shown in Figure 12-1. Once this bookkeeping is set up, then 
each time the same unmanaged thread enters the runtime, it is associated with the same managed 
thread. 

Just as managed objects can be exposed to the native world as COM objects, COM objects can be 
exposed to the managed world as managed objects. When a managed thread calls out to a COM object in 
this way, the runtime relinquishes control over the thread’s state until it reenters the managed 
environment.  

Suppose a COM object, written in native C++, calls the WaitForSingleObject Win32 API function to 
wait for a particular synchronization object to become signaled. Then, if a managed thread calls 
Thread.Abort or Thread.Interrupt to wake up the thread, the wakeup will be pended until the thread 
reenters the managed environment. In other words, it will have no effect while the thread is executing 
unmanaged code. Therefore, you want to be reasonably cognizant of what sorts of synchronization 
mechanisms are being used by native COM objects that your managed code is calling out to. 

Finally, if you’ve ever done an extensive amount of COM development in the past, then you’re 
familiar with the notion of a COM apartment and the proxies and stubs that go along with them.1 When 
managed code calls out into COM objects, it is important that the managed code be set up to call the 
unmanaged COM object through either a single-threaded apartment (STA) or a multithreaded 
apartment (MTA). You can set this property on a new managed thread by calling the 
Thread.SetApartmentState method. Once the thread starts, the apartment state gets locked in. In other 
words, you cannot change it afterwards. When you call out to COM objects from managed code, it’s best 
to know the type of apartment the COM objects will run in. That way, you can judiciously choose which 
type of COM apartment you want your thread to run in. Choosing the wrong type may introduce 
inefficiencies by forcing calls to go through proxies and stubs. In even worse cases, COM objects may not 
be callable from other apartment types. 

Using Thread.SetApartmentState, you can control the COM apartment property for new managed 
threads that you create. But what about the main thread of an application? The fact is that once the main 
thread of a managed application is running, it’s already too late to set the apartment state. That’s 
because the managed runtime initializes the main thread to the MTA state as the managed application is 
initialized. If you need to change the apartment state of the main thread to STA, the only way to do so is 
by decorating the Main method with the STAThreadAttribute attribute. Incidentally, you could also 
decorate it with the MTAThreadAttribute attribute, but that would be redundant because that’s the CLR’s 
default choice. The following code shows an example of what I’m talking about: 

                                                 

 
1 For a detailed description of COM apartments and how they work, I suggest you read Don Box’s Essential COM 
(Boston, MA: Addison-Wesley Professional, 1997). 
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public class EntryPoint 
{ 
    [STAThread] 
    static void Main() { 
    } 
} 

If you’ve ever worked with Windows Forms applications, especially those generated by the wizards 
of Visual Studio, you probably have already seen this attribute and wondered what it was all about. By 
decorating the main UI thread of GUI applications with this attribute, you can integrate native ActiveX 
controls more easily in the GUI, because those normally run in an STA. 

The apartment state of a managed thread only pertains to COM interop situations. Note that the 
apartment state of a managed thread has no effect on the execution of managed code. And more 
importantly, when managed objects are consumed by native applications via the COM interop layer, the 
apartment state doesn’t control what apartment the object appears to live in from the perspective of the 
native application. From the native side of the fence, all managed objects appear as COM objects that 
live in the MTA and integrate the Free Threaded Marshaller (FTM). Also, all threads created in the CLR’s 
thread pool always live in the MTA for the process. 

Synchronizing Work Between Threads 
Synchronization is arguably the most difficult part of creating multithreaded applications. You can 
create extra threads to do work all day long without having to worry about synchronization, as long as 
those threads do not concurrently access data that other threads access. Nobody needs to know when 
they finish or what the results of their operations are. Obviously, it’s a rare case that you’ll create such a 
thread. In most cases, you need to communicate with the running thread, wait for it to reach a defined 
state in the code, or possibly work on the same object or value instances that other threads are working 
on. 

In all of those cases, and more, you must rely upon synchronization techniques to synchronize the 
threads to avoid race conditions and deadlocks. With race conditions, two threads may need to access 
the same piece of memory and only one can safely do so at a time. In these cases, you must use a 
synchronization mechanism that will only allow one thread at a time to access the data and lock out the 
other thread, making it wait until the first one is done. Multithreaded environments are stochastic in 
nature, and you never know when the scheduler will take away control from the thread. The classic 
example is where one thread gets halfway through changing a block of memory, loses control, and then 
the other thread is given control and starts reading the memory, assuming that it is in a valid state. An 
example of a deadlock is when two threads are waiting for each other to release a resource. Both threads 
end up waiting for each other, and because neither one of them can run until the wait is satisfied, they 
will end up waiting forever. 

In all synchronization tasks, you should use the most lightweight sync mechanism that you can get 
away with and no heavier. For example, if you’re trying to share a data block between two threads in the 
same process and you must gate access between the two, use something such as a Monitor (discussed 
shortly) lock rather than a Mutex. Why? Because a Mutex is meant to gate access to a shared resource 
between processes, and therefore, is a heavyweight OS object that slows down the process when 
acquiring and releasing the lock. If no interprocess locking is necessary, use the Monitor instead. Even 
more lightweight than the Monitor is a set of methods in the Interlocked class. These are ideal when you 
know that the likelihood of actually having to wait a good while when acquiring a lock is low. 
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■ Note Any type of wait on a kernel object—such as waiting on a Mutex, Semaphore, EventWaitHanldle, or any 

other wait that boils down to waiting on a Win32 kernel object—requires a transition to kernel mode. Transitions 

to kernel mode are expensive, and you should avoid them if at all possible. For example, if the threads you are 

synchronizing live in the same process, kernel synchronization objects are probably too heavy. The lightest 

synchronization technique involves crafty use of the Threading.Interlocked class. Its methods are all 

implemented completely in user mode, thus allowing you to avoid the user-to-kernel mode transition. However, 

using the Threading.Interlocked class can be tricky, so moving up to a slightly higher level locking mechanism 

such as Monitor (or any other mechanism that does not require transitions to and from kernel mode) is often 

desired when synchronizing threads within the same process. 

When using synchronization objects in a multithreaded environment, you want to hold the lock for 
as little time as possible. For example, if you acquire a synchronization lock to read a shared structure 
instance, and code within the method that acquires the lock uses that instance of the structure for some 
purpose, it’s best to make a local copy of the structure on the stack and then release the lock 
immediately, unless it is logically impossible or degrading to performance. That way, you don’t tie up 
other threads in the system that need to access the guarded variable. 

When you need to synchronize thread execution, never rely upon methods such as Thread.Suspend 
or Thread.Resume to control thread synchronization. If you recall from a previous section in this chapter, 
calling Thread.Suspend doesn’t actually suspend the thread immediately. Instead, it must get to a safe 
point within the managed code before it can suspend execution. And never use Thread.Sleep to 
synchronize threads. Thread.Sleep is appropriate when you’re doing some sort of polling loop on an 
entity, such as device hardware that has just been reset and has no way of notifying anyone that it is back 
online. In that case, you don’t want to check the state in a loop repeatedly. Instead, it’s much nicer to 
sleep a little bit between polling, to allow the scheduler to let other threads run. I’ve said this in a 
previous section, but I’ll say it again because it’s so important: If you ever find yourself solving a 
synchronization bug by introducing a call to Thread.Sleep at some seemingly random point in the code, 
you’re not solving the problem at all. Rather, you’re hiding it even deeper. Just don’t do it! 

Lightweight Synchronization with the Interlocked Class 
Those of you who come from the unmanaged world of programming against the Win32 API probably 
already know about the Interlocked... family of functions. Thankfully, those functions have been 
exposed to managed C# developers via static methods on the Interlocked class in the System.Threading 
namespace. Sometimes, when running multiple threads, it’s necessary to maintain a simple variable—
typically, a value, but possibly an object—between the multiple threads. For example, suppose you have 
some reason to track the number of running threads in a static integer somewhere. When a thread 
begins, it increments that value, and when it finishes, it decrements that value. Obviously, you must 
synchronize access to that value somehow, because the scheduler could take away control from one 
thread and give it to another when the first one is in the process of updating the value. Even worse, the 
same code could be executing concurrently on a multiprocessor machine. For this task, you can use 
Interlocked.Increment and Interlocked.Decrement. These methods are guaranteed to modify the value 
atomically across all processors in the system. Take a look at the following example: 

using System; 
using System.Threading; 
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public class EntryPoint 
{ 
    static private volatile int numberThreads = 0; 
 
    static private Random rnd = new Random(); 
 
    private static void RndThreadFunc() { 
        // Manage thread count and wait for a 
        // random amount of time between 1 and 12 
        // seconds. 
        Interlocked.Increment( ref numberThreads ); 
        try { 
            int time = rnd.Next( 1000, 12000 ); 
            Thread.Sleep( time ); 
        } 
        finally { 
            Interlocked.Decrement( ref numberThreads ); 
        } 
    } 
 
    private static void RptThreadFunc() { 
        while( true ) { 
            int threadCount = 0; 
            threadCount = 
                Interlocked.CompareExchange( ref numberThreads, 
                                             0, 0 ); 
            Console.WriteLine( "{0} thread(s) alive", 
                               threadCount ); 
            Thread.Sleep( 1000 ); 
        } 
    } 
 
    static void Main() { 
        // Start the reporting threads. 
        Thread reporter = 
            new Thread( new ThreadStart( 
                               EntryPoint.RptThreadFunc) ); 
        reporter.IsBackground = true; 
        reporter.Start(); 
 
        // Start the threads that wait random time. 
        Thread[] rndthreads = new Thread[ 50 ]; 
        for( uint i = 0; i < 50; ++i ) { 
            rndthreads[i] = 
                new Thread( new ThreadStart( 
                                  EntryPoint.RndThreadFunc) ); 
            rndthreads[i].Start(); 
        } 
    } 
} 
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This little program creates 50 foreground threads that do nothing but wait a random period of time 
between 1 and 12 seconds. It also creates a background thread that reports how many threads are 
currently alive. If you look at the RndThreadFunc method, which is the thread function that the 50 threads 
use, you can see it increment and decrement the integer value using the Interlocked methods. Notice 
that I use a finally block to ensure that the value gets decremented no matter how the thread exits. You 
could use the disposable trick with the using keyword by wrapping the increment and decrement in a 
separate class that implements IDisposable. That would get rid of the ugly finally block. But, in this 
case, it wouldn’t help you at all, because you’d also have to create a reference type to contain the integer 
count variable, as you cannot store a ref to the integer as a field in the helper class. 

■ Note Jon Skeet makes an excellent point regarding the previous sample code that underscores the importance 

of knowing how types behave in concurrent situations. The static instance of Random in the sample code above is 

not thread aware. Thus, if two threads call methods on it at just the right time, the internal state of the Random 

instance could theoretically become inconsistent thus sending it into the land of undefined behavior. Jon suggests 

wrapping Random within another type that provides the necessary synchronization. However, for the purposes of 

this example code above, doing so would clutter the real message. 

You’ve already seen Interlocked.Increment and Interlocked.Decrement in action. But what about 
Interlocked.CompareExchange, which the reporter thread uses? Remember, because multiple threads are 
attempting to write to the threadCount variable, the reporter thread must read the value in a 
synchronized way as well. That’s where Interlocked.CompareExchange comes in. 
Interlocked.CompareExchange, as its name implies, allows you to exchange the value of a variable if the 
current value is equal to the comparand with that of another in an atomic fashion, and it returns the 
value that was stored previously in that location. I’m not so interested in replacing the value with zero, 
which is why I only do so if it is already zero, but I’m more interested in the side effect that the 
Interlocked.ComapreExchange method returns to me the value that was in the slot. 

INTERLOCKED METHODS ON SMP SYSTEMS 

On Intel symmetric multiprocessing (SMP) platforms and most other SMP systems, simple reads and writes 
to memory slots that are of the native size are synchronized automatically. On an IA-32 system, for example, 
reads and writes to properly aligned 32-bit values are synchronized. Therefore, in the previous example 
where I showed the use of Interlocked.CompareExchange merely to read an Int32 value, it would not 
have been necessary if the variable were aligned properly. 

By default, the CLR works hard to make sure that values are aligned properly on natural boundaries. 
However, you can override the placement of values within a class or structure using the 
FieldOffsetAttribute on fields, thus forcing a misaligned data field. If an Int32 is not aligned, the 
guarantee mentioned in the previous paragraph is lost. In such a case, you must use 
Interlocked.CompareExchange to read the value reliably. 

The Interlocked... methods are all implemented on IA-32 systems using the lock prefix. This 
prefix causes the processor LOCK# signal to be asserted. This prevents the other processors in the system 
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from accessing the value concurrently, which is necessary for complex operations where values are 
incremented and so on. One handy quality of the lock prefix is that the misaligned data field does not 
adversely affect the integrity of the lock. In other words, it works perfectly fine with misaligned data. That’s 
why Interlocked.CompareExchange is the ticket for reading misaligned data atomically. 

Finally, consider the fact that the Interlocked class implements overloads of some of the methods 
so that they work with 64-bit values, floating-point numbers, and object references. In fact, Interlocked... 
even offers generic overloads for working with object references of any type. Consider what it means to work 
with 64-bit values atomically on a 32-bit system. Naturally, there is no possible way to read such values 
atomically without resorting to the Interlocked class. In fact, for this very reason, the .NET 2.0 version of 
the Interlocked class introduced Interlocked.Read for Int64 values. Naturally, such a beast is not 
necessary on 64-bit systems and should simply boil down to a regular read. However, the CLR is meant to 
work on multiple platforms, so you should always use Interlocked.Read when working with 64-bit values. 

For these reasons, it would be better safe than sorry to always use Interlocked.CompareExchange 
for reading and writing values atomically, because it could prove troublesome to validate that the data is not 
misaligned and no bigger than the native size prior to reading or writing it in a raw manner. Determining the 
native size on the platform and basing code conditionally on such data goes against the grain of the cross-
platform spirit of managed code. 

And one final thing I would like to point out is the use of the volatile keyword in the examples. When 
you are accessing variables in a lock-free manner, thus relying on the processor’s automatic synchronization 
in a multithreaded environment, you must decorate those variables with the volatile keyword. Otherwise, 
the compiler is given various latitudes during optimization of code such that it may break the intentions of the 
code. The volatile keyword prevents these sorts of optimizations, among others, and ensures that the full 
intentions of code ordering are preserved as written. 

When you use the Interlocked class methods with values marked volatile, the compiler will issue 
a warning CS0420 stating “a reference to a volatile field will not be treated as volatile.” If you read the 
documentation for the warning in MSDN, you will also see that one of the exceptions to the rule is calling the 
Interlocked methods in this way. Therefore, in this case, you can safely suppress those warnings using 
#pragma warning. 

Moreover, imagine you had two 32-bit integers representing two locks named lock1 and lock2. 
Additionally, suppose your system requires lock1 to be acquired before lock2. Your code may be written 
with that intention in mind, yet at run time, the processor could find a reason to reorder those operations for 
the sake of efficiently because it may assume that they are completely independent of each other and maybe 
it found out that operating on them in the opposite order is more efficient. To solve this problem, you must 
introduce a call to Thread.MemoryBarrier in between accesses of those two variables. 
Thread.MemoryBarrier forces the ordering to be preserved. 

The last method to cover in the Interlocked class is CompareExchange. As you have already seen, this 
little method is handy indeed. It’s similar to Interlocked.Exchange, in that it allows you to exchange the 
value of a location or slot in an atomic fashion. However, it only does the exchange if the original value 
compares equal to a provided comparand and all of these operations are collectively performed 
atomically. In any event, the method always returns the original value. One extremely handy use of the 
CompareExchange method is to create a lightweight spin lock. A spin lock gets its name from the fact that if 
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it cannot acquire the lock, it will spin in a tight loop until it can. Typically, when implementing a spin 
lock, you put your thread to sleep for a very brief slice of time with each failed attempt to acquire the 
lock. That way, the thread scheduler can give processor time to another thread while you wait. If you 
don’t want the thread to sleep but only to release its time slice, you can pass a value of 0 to Thread.Sleep. 
Let’s look at an example: 

using System; 
using System.IO; 
using System.Threading; 
 
public class MySpinLock 
{ 
    public MySpinLock( int spinWait ) { 
        this.spinWait = spinWait; 
    } 
 
    public void Enter() { 
        while( Interlocked.CompareExchange(ref theLock, 
                                           1, 
                                           0) == 1 ) { 
            // The lock is taken, spin. 
            Thread.Sleep( spinWait ); 
        } 
    } 
 
    public void Exit() { 
        // Reset the lock. 
        Interlocked.Exchange( ref theLock, 
                              0 ); 
    } 
 
    private volatile int theLock = 0; 
    private int          spinWait; 
} 
 
public class MySpinLockManager : IDisposable 
{ 
    public MySpinLockManager( MySpinLock spinLock ) { 
        this.spinLock = spinLock; 
        spinLock.Enter(); 
    } 
 
    public void Dispose() { 
        spinLock.Exit(); 
    } 
 
    private MySpinLock spinLock; 
} 
 
public class EntryPoint 
{ 
    static private Random rnd = new Random(); 
    private static MySpinLock logLock = new MySpinLock( 10 ); 
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    private static StreamWriter fsLog = 
        new StreamWriter( File.Open("log.txt", 
                                    FileMode.Append, 
                                    FileAccess.Write, 
                                    FileShare.None) ); 
 
    private static void RndThreadFunc() { 
        using( new MySpinLockManager(logLock) ) { 
            fsLog.WriteLine( "Thread Starting" ); 
            fsLog.Flush(); 
        } 
 
        int time = rnd.Next( 10, 200 ); 
        Thread.Sleep( time ); 
 
        using( new MySpinLockManager(logLock) ) { 
            fsLog.WriteLine( "Thread Exiting" ); 
            fsLog.Flush(); 
        } 
    } 
 
    static void Main() { 
        // Start the threads that wait random time. 
        Thread[] rndthreads = new Thread[ 50 ]; 
        for( uint i = 0; i < 50; ++i ) { 
            rndthreads[i] = 
                new Thread( new ThreadStart( 
                                  EntryPoint.RndThreadFunc) ); 
            rndthreads[i].Start(); 
        } 
    } 
} 

This example is similar to the previous one. It creates 50 threads that wait a random amount of time. 
However, instead of managing a thread count, it outputs a line to a log file. This writing is happening 
from multiple threads, and instance methods of StreamWriter are not thread-safe, therefore you must do 
the writing in a safe manner within the context of a lock. That is where the MySpinLock class comes in. 

Internally, it manages a lock variable in the form of an integer, and it uses 
Interlocked.CompareExchange to gate access to the lock. The call to Interlocked.CompareExchange in 
MySpinLock.Enter is saying 

1. If the lock value is equal to 0, replace the value with 1 to indicate that the lock 
is taken; otherwise, do nothing. 

2. If the value of the slot already contains 1, it’s taken, and you must sleep and 
spin. 

Both of those items occur in an atomic fashion via the Interlocked class, so there is no possible way 
that more than one thread at a time can acquire the lock. When the MySpinLock.Exit method is called, all 
it needs to do is reset the lock. However, that must be done atomically as well—hence, the call to 
Interlocked.Exchange. 
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■ Note Because the internal lock is represented by an int (which is an Int32), one could simply set the value to 

zero in MySpinLock.Exit. However, as mentioned in the previous sidebar, you must be careful if the lock were a 

64-bit value and you are running on a 32-bit platform. Therefore, for the sake of example, I err on the side of 

caution. What if a maintenance engineer came along and changed the underlying storage from an int to an 

IntPtr (which is a pointer sized type, thus storage size is dependent on the platform) and didn’t change the place 

where theLock is reset as well? 

In this example, I decided to illustrate the use of the disposable/using idiom to implement 
deterministic destruction, where you introduce another class—in this case, MySpinLockManager—to 
implement the RAII idiom. This saves you from having to remember to write finally blocks all over the 
place. Of course, you still have to remember to use the using keyword, but if you follow the idiom more 
closely than this example, you would implement a finalizer that could assert in the debug build if it ran 
and the object had not been disposed.2 

Keep in mind that spin locks implemented in this way are not reentrant. In other words, the lock 
cannot be acquired more than once like a critical section or a mutex can, for example. This doesn’t mean 
that you cannot use spin locks with recursive programming techniques. It just means that you must 
release the lock before recursing, or else suffer a deadlock. 

■ Note If you require a reentrant wait mechanism, you can use wait objects that are more structured, such as the 

Monitor class, which I cover in the next section, or kernel-based wait objects. 

Incidentally, if you’d like to see some fireworks, so to speak, try commenting out the use of the spin 
lock in the RndThreadFunc method and run the result several times. You’ll most likely notice the output in 
the log file gets a little ugly. The ugliness should increase if you attempt the same test on a 
multiprocessor machine. 

SpinLock Class 
The .NET 4.0 BCL introduced a new type, System.Threading.SpinLock. You should certainly use SpinLock 
rather than the MySpinLock class that I used for the sake of the example in the previous section. SpinLock 
should be used when you have a reasonable expectation that the thread acquiring it will rarely have to 
wait. If the threads using SpinLock have to wait often, efficiency will suffer due to the excessive spinning 
these threads will perform. Therefore, when a thread holds a SpinLock, it should hold it for as little time 
as possible and avoid blocking on another lock while it holds the SpinLock at all costs. Also, just like 
MySpinLock in the previous section, SpinLock cannot be acquired reentrantly. That is, if a thread already 

                                                 

 
2 Check out Chapter 13 for more information on this technique. 
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owns the lock, attempting to acquire the lock again will throw an exception if you passed true for the 
enableThreadOwnerTracking parameter of the SpinLock constructor or it will introduce a deadlock. 

■ Note Thread owner tracking in SpinLock is really intended for use in debugging. 

There is an old adage in software development that states that early optimization is the root of all 
evil. Although this statement is rather harsh sounding and does have notable exceptions, it is a good rule 
of thumb to follow. Therefore, you should probably start out using a higher level or heavier, more flexible 
locking mechanism that trades efficiency for flexibility. Then, if you determine during testing and 
profiling that a fast, lighter weight locking mechanism should be used, then investigate using SpinLock. 

■ Caution SpinLock is a value type. Therefore, be very careful to avoid any unintended copying or boxing. Doing 

so may introduce unforeseen surprises. If you must pass a SpinLock as a parameter to a method, for example, be 

sure to pass it by ref to avoid the extra copy. 

To demonstrate how to use SpinLock, I have modified the previous example removing MySpinLock 
and replacing it with SpinLock as shown below: 

using System; 
using System.IO; 
using System.Threading; 
 
public class EntryPoint 
{ 
    static private Random rnd = new Random(); 
    private static SpinLock logLock = new SpinLock( false ); 
    private static StreamWriter fsLog = 
        new StreamWriter( File.Open("log.txt", 
                                    FileMode.Append, 
                                    FileAccess.Write, 
                                    FileShare.None) ); 
 
    private static void RndThreadFunc() { 
        bool lockTaken = false; 
        logLock.Enter( ref lockTaken ); 
        if( lockTaken ) { 
            try { 
                fsLog.WriteLine( "Thread Starting" ); 
                fsLog.Flush(); 
            } 
            finally { 
                logLock.Exit(); 
            } 
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        } 
 
        int time = rnd.Next( 10, 200 ); 
        Thread.Sleep( time ); 
 
        lockTaken = false; 
        logLock.Enter( ref lockTaken ); 
        if( lockTaken ) { 
            try { 
                fsLog.WriteLine( "Thread Exiting" ); 
                fsLog.Flush(); 
            } 
            finally { 
                logLock.Exit(); 
            } 
        } 
    } 
 
    static void Main() { 
        // Start the threads that wait random time. 
        Thread[] rndthreads = new Thread[ 50 ]; 
        for( uint i = 0; i < 50; ++i ) { 
            rndthreads[i] = 
                new Thread( new ThreadStart( 
                                  EntryPoint.RndThreadFunc) ); 
            rndthreads[i].Start(); 
        } 
    } 
} 

There are some very important things I want to point out here. First, notice that the call to 
SpinLock.Enter takes a ref to a bool. This bool is what indicates whether the lock was taken or not. 
Therefore, you much check it after the call to Enter. But most importantly, you must initialize the bool to 
false before calling Enter. The SpinLock does not implement IDisposable, therefore, you cannot use it 
with a using block, therefore you can see I am using a try/finally construct instead to guarantee proper 
clean-up. Had the BCL team implemented IDisposable on SpinLock, it would have been a disaster 
waiting to happen. That’s because any time you cast a value type into an instance of an interface it 
implements, the value type is boxed. Boxing is highly undesirable for SpinLock instances and should be 
avoided. 

Monitor Class 
In the previous section, I showed you how to implement a spin lock using the methods of the 
Interlocked class. A spin lock is not always the most efficient synchronization mechanism, especially if 
you use it in an environment where a wait is almost guaranteed. The thread scheduler keeps having to 
wake up the thread and allow it to recheck the lock variable. As I mentioned before, a spin lock is ideal 
when you need a lightweight, non-reentrant synchronization mechanism and the odds are low that a 
thread will have to wait in the first place. When you know the likelihood of waiting is high, you should 
use a synchronization mechanism that allows the scheduler to avoid waking the thread until the lock is 
available. .NET provides the System.Threading.Monitor class to allow synchronization between threads 
within the same process. You can use this class to guard access to certain variables or to gate access to 
code that should only be run on one thread at a time.  
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■ Note The Monitor pattern provides a way to ensure synchronization such that only one method, or a block of 

protected code, executes at one time. A Mutex is typically used for the same task. However, Monitor is much 

lighter and faster. Monitor is appropriate when you must guard access to code within a single process. Mutex is 

appropriate when you must guard access to a resource from multiple processes. 

One potential source of confusion regarding the Monitor class is that you cannot instantiate an 
instance of this class. The Monitor class, much like the Interlocked class, is merely a containing 
namespace for a collection of static methods that do the work. If you’re used to using critical sections in 
Win32, you know that at some point you must allocate and initialize a CRITICAL_SECTION structure. Then, 
to enter and exit the lock, you call the Win32 EnterCriticalSection and LeaveCriticalSection functions. 
You can achieve exactly the same task using the Monitor class in the managed environment. To enter 
and exit the critical section, you call Monitor.Enter and Monitor.Exit. Whereas you pass a 
CRITICAL_SECTION object to the Win32 critical section functions, in contrast, you pass an object reference 
to the Monitor methods. 

Internally, the CLR manages a sync block for every object instance in the process. Basically, it’s a flag 
of sorts, similar to the integer used in the examples of the previous section describing the Interlocked 
class. When you obtain the lock on an object, this flag is set. When the lock is released, this flag is reset. 
The Monitor class is the gateway to accessing this flag. The versatility of this scheme is that every object 
instance in the CLR potentially contains one of these locks. I say potentially because the CLR allocates 
them in a lazy fashion, because not every object instance’s lock will be utilized. To implement a critical 
section, all you have to do is create an instance of System.Object. Let’s look at an example using the 
Monitor class by borrowing from the example in the previous section: 

using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    static private readonly object theLock = new Object(); 
    static private int numberThreads = 0; 
    static private Random rnd = new Random(); 
 
    private static void RndThreadFunc() { 
        // Manage thread count and wait for a 
        // random amount of time between 1 and 12 
        // seconds. 
        Monitor.Enter( theLock ); 
        try { 
            ++numberThreads; 
        } 
        finally { 
            Monitor.Exit( theLock ); 
        } 
 
        int time = rnd.Next( 1000, 12000 ); 
        Thread.Sleep( time ); 
 
        Monitor.Enter( theLock ); 
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        try { 
            --numberThreads; 
        } 
        finally { 
            Monitor.Exit( theLock ); 
        } 
    } 
 
    private static void RptThreadFunc() { 
        while( true ) { 
            int threadCount = 0; 
            Monitor.Enter( theLock ); 
            try { 
                threadCount = numberThreads; 
            } 
            finally { 
                Monitor.Exit( theLock ); 
            } 
 
            Console.WriteLine( "{0} thread(s) alive", 
                               threadCount ); 
            Thread.Sleep( 1000 ); 
        } 
    } 
 
    static void Main() { 
        // Start the reporting threads. 
        Thread reporter =  
            new Thread( new ThreadStart( 
                               EntryPoint.RptThreadFunc) ); 
        reporter.IsBackground = true; 
        reporter.Start(); 
 
        // Start the threads that wait random time. 
        Thread[] rndthreads = new Thread[ 50 ]; 
        for( uint i = 0; i < 50; ++i ) { 
            rndthreads[i] = 
                new Thread( new ThreadStart( 
                                  EntryPoint.RndThreadFunc) ); 
            rndthreads[i].Start(); 
        } 
    } 
} 

Notice that I perform all access to the numberThreads variable within a critical section in the form of 
an object lock. Before each access, the accessor must obtain the lock on the theLock object instance. The 
type of theLock field is of type object simply because its actual type is inconsequential. The only thing 
that matters is that it is a reference type—that is, an instance of object rather than a value type. You only 
need the object instance to utilize its internal sync block, therefore you can just instantiate an object of 
type System.Object. 
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■ Tip As a safeguard, you may want to mark the internal lock object readonly as I have done above. This may 

prevent you or another developer from inadvertently reassigning theLock with another instance thus wreaking 

havoc in the system. 

One thing you’ve probably also noticed is that the code is uglier than the version that used the 
Interlocked methods. Whenever you call Monitor.Enter, you want to guarantee that the matching 
Monitor.Exit executes no matter what. I mitigated this problem in the examples using the MySpinLock 
class by wrapping the usage of the Interlocked class methods within a class named MySpinLockManager. 
Can you imagine the chaos that could ensue if a Monitor.Exit call was skipped because of an exception? 
Therefore, you always want to utilize a try/finally block in these situations. The creators of the C# 
language recognized that developers were going through a lot of effort to ensure that these finally 
blocks were in place when all they were doing was calling Monitor.Exit. So, they made our lives easier by 
introducing the lock keyword. Consider the same example again, this time using the lock keyword: 

using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    static private readonly object theLock = new Object(); 
    static private int numberThreads = 0; 
    static private Random rnd = new Random(); 
 
    private static void RndThreadFunc() { 
        // Manage thread count and wait for a 
        // random amount of time between 1 and 12 
        // seconds. 
        lock( theLock ) { 
            ++numberThreads; 
        } 
 
        int time = rnd.Next( 1000, 12000 ); 
        Thread.Sleep( time ); 
 
        lock( theLock ) { 
            —numberThreads; 
        } 
    } 
 
    private static void RptThreadFunc() { 
        while( true ) { 
            int threadCount = 0; 
            lock( theLock ) { 
                threadCount = numberThreads; 
            } 
 
            Console.WriteLine( "{0} thread(s) alive", 
                               threadCount ); 
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            Thread.Sleep( 1000 ); 
        } 
    } 
 
    static void Main() { 
        // Start the reporting threads. 
        Thread reporter = 
            new Thread( new ThreadStart( 
                              EntryPoint.RptThreadFunc) ); 
        reporter.IsBackground = true; 
        reporter.Start(); 
 
        // Start the threads that wait random time. 
        Thread[] rndthreads = new Thread[ 50 ]; 
        for( uint i = 0; i < 50; ++i ) { 
            rndthreads[i] = 
                new Thread( new ThreadStart( 
                                   EntryPoint.RndThreadFunc) ); 
            rndthreads[i].Start(); 
        } 
    } 
} 

Notice that the code is much cleaner now, and in fact, there are no more explicit calls to any Monitor 
methods at all. Under the hood, however, the compiler is expanding the lock keyword into the familiar 
try/finally block with calls to Monitor.Enter and Monitor.Exit. You can verify this by examining the 
generated IL code using ILDASM. 

In many cases, synchronization implemented internally within a class is as simple as implementing 
a critical section in this manner. But when only one lock object is needed across all methods within the 
class, you can simplify the model even more by eliminating the extra dummy instance of System.Object 
by using the this keyword when acquiring the lock through the Monitor class. You’ll probably come 
across this usage pattern often in C# code. Although it saves you from having to instantiate an object of 
type System.Object—which is pretty lightweight, I might add—it does come with its own perils. For 
example, an external consumer of your object could actually attempt to utilize the sync block within 
your object by passing your instance to Monitor.Enter before even calling one of your methods that will 
try to acquire the same lock. Technically, that’s just fine, because the same thread can call Monitor.Enter 
multiple times. In other words, Monitor locks are reentrant, unlike the spin locks of the previous section. 
However, when a lock is released, it must be released by calling Monitor.Exit a matching number of 
times. So, now you have to rely upon the consumers of your object to either use the lock keyword or a 
try/finally block to ensure that their call to Monitor.Enter is matched appropriately with Monitor.Exit. 
Any time you can avoid such uncertainty, do so. Therefore, I recommend against locking via the this 
keyword, and I suggest instead using a private instance of System.Object as your lock. You could achieve 
the same effect if there were some way to declare the sync block flag of an object private, but alas, that is 
not possible.  

Beware of Boxing 
When you’re using the Monitor methods to implement locking, internally Monitor uses the sync block of 
object instances to manage the lock. Because every object instance can potentially have a sync block, 
you can use any reference to an object, even an object reference to a boxed value. Even though you can, 
you should never pass a value type instance to Monitor.Enter, as demonstrated in the following code 
example: 
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using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    static private int counter = 0; 
 
    // NEVER DO THIS !!! 
    static private int theLock = 0; 
 
    static private void ThreadFunc() { 
        for( int i = 0; i < 50; ++i ) { 
            Monitor.Enter( theLock ); 
            try { 
                Console.WriteLine( ++counter );  
            } 
            finally { 
                Monitor.Exit( theLock ); 
            } 
        } 
    } 
 
    static void Main() { 
        Thread thread1 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc) ); 
        Thread thread2 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc) ); 
        thread1.Start(); 
        thread2.Start(); 
    } 
} 

If you attempt to execute this code, you will immediately be presented with a 
SynchronizationLockException, complaining that an object synchronization method was called from an 
unsynchronized block of code. Why does this happen? In order to find the answer, you need to 
remember that implicit boxing occurs when you pass a value type to a method that accepts a reference 
type. And remember, passing the same value type to the same method multiple times will result in a 
different boxing reference type each time. Therefore, the reference object used within the body of 
Monitor.Exit is different from the one used inside of the body of Monitor.Enter. This is another example 
of how implicit boxing in the C# language can cause you grief. You may have noticed that I used the old 
try/finally approach in this example. That’s because the designers of the C# language created the lock 
statement such that it doesn’t accept value types. So, if you just stick to using the lock statement for 
handling critical sections, you’ll never have to worry about inadvertently passing a boxed value type to 
the Monitor methods. 

Pulse and Wait 
I cannot overstate the utility of the Monitor methods to implement critical sections. However, the 
Monitor methods have capabilities beyond that of implementing simple critical sections. You can also 
use them to implement handshaking between threads, as well as for implementing queued access to a 
shared resource. 
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When a thread has entered a locked region successfully, it can give up the lock and enter a waiting 
queue by calling one of the Monitor.Wait overloads where the first parameter to Monitor.Wait is the 
object reference whose sync block represents the lock being used and the second parameter is a timeout 
value. Monitor.Wait returns a Boolean that indicates whether the wait succeeded or if the timeout was 
reached. If the wait succeeded, the result is true; otherwise, it is false. When a thread that calls 
Monitor.Wait completes the wait successfully, it leaves the wait state as the owner of the lock again. 

■ Note You may want to consult the MSDN documentation for the Monitor class to become familiar with the 

various overloads available for Monitor.Wait. 

If threads can give up the lock and enter into a wait state, there must be some mechanism to tell the 
Monitor that it can give the lock back to one of the waiting threads as soon as possible. That mechanism 
is the Monitor.Pulse method. Only the thread that currently holds the lock is allowed to call 
Monitor.Pulse. When it’s called, the thread first in line in the waiting queue is moved to a ready queue. 
Once the thread that owns the lock releases the lock, either by calling Monitor.Exit or by calling 
Monitor.Wait, the first thread in the ready queue is allowed to run. The threads in the ready queue 
include those that are pulsed and those that have been blocked after a call to Monitor.Enter. 
Additionally, the thread that owns the lock can move all waiting threads into the ready queue by calling 
Monitor.PulseAll. 

There are many fancy synchronization tasks that you can accomplish using the Monitor.Pulse and 
Monitor.Wait methods. For example, consider the following example that implements a handshaking 
mechanism between two threads. The goal is to have both threads increment a counter in an alternating 
manner: 

using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    static private int counter = 0; 
 
    static private object theLock = new Object(); 
 
    static private void ThreadFunc1() { 
        lock( theLock ) { 
            for( int i = 0; i < 50; ++i ) { 
                Monitor.Wait( theLock, Timeout.Infinite ); 
                Console.WriteLine( "{0} from Thread {1}", 
                          ++counter, 
                          Thread.CurrentThread.ManagedThreadId ); 
                Monitor.Pulse( theLock ); 
            } 
        } 
    } 
 
    static private void ThreadFunc2() { 
        lock( theLock ) { 
            for( int i = 0; i < 50; ++i ) { 
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                Monitor.Pulse( theLock ); 
                Monitor.Wait( theLock, Timeout.Infinite ); 
                Console.WriteLine( "{0} from Thread {1}", 
                          ++counter, 
                          Thread.CurrentThread.ManagedThreadId ); 
            } 
        } 
    } 
 
    static void Main() { 
        Thread thread1 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc1) ); 
        Thread thread2 = 
            new Thread( new ThreadStart(EntryPoint.ThreadFunc2) ); 
        thread1.Start(); 
        thread2.Start(); 
    } 
} 

You’ll notice that the output from this example shows that the threads increment counter in an 
alternating fashion. If you’re having trouble understanding the flow from looking at the code above, the 
best way to get a feel for it is to actually step through it in a debugger. 

As another example, you could implement a crude thread pool using Monitor.Wait and 
Monitor.Pulse. It is unnecessary to actually do such a thing, because the .NET Framework offers the 
ThreadPool object, which is robust and uses optimized I/O completion ports of the underlying OS. For 
the sake of this example, however, I’ll show how you could implement a pool of worker threads that wait 
for work items to be queued: 

using System; 
using System.Threading; 
using System.Collections; 
 
public class CrudeThreadPool 
{ 
    static readonly int MaxWorkThreads = 4; 
    static readonly int WaitTimeout = 2000; 
 
    public delegate void WorkDelegate(); 
 
    public CrudeThreadPool() { 
        stop = false; 
        workLock = new Object(); 
        workQueue = new Queue(); 
        threads = new Thread[ MaxWorkThreads ]; 
 
        for( int i = 0; i < MaxWorkThreads; ++i ) { 
            threads[i] = 
                new Thread( new ThreadStart(this.ThreadFunc) ); 
            threads[i].Start(); 
        } 
    } 
 
    private void ThreadFunc() { 
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        lock( workLock ) { 
            do { 
                if( !stop ) { 
                    WorkDelegate workItem = null; 
                    if( Monitor.Wait(workLock, WaitTimeout) ) { 
                        // Process the item on the front of the 
                        // queue 
                        lock( workQueue.SyncRoot ) { 
                            workItem = 
                                (WorkDelegate) workQueue.Dequeue(); 
                        } 
                        workItem(); 
                    } 
                } 
            } while( !stop ); 
        } 
    } 
 
    public void SubmitWorkItem( WorkDelegate item ) { 
        lock( workLock ) { 
            lock( workQueue.SyncRoot ) { 
                workQueue.Enqueue( item ); 
            } 
 
            Monitor.Pulse( workLock ); 
        } 
    } 
 
    public void Shutdown() { 
        stop = true; 
    } 
 
    private Queue         workQueue; 
    private Object        workLock; 
    private Thread[]      threads; 
    private volatile bool stop; 
} 
 
public class EntryPoint 
{ 
    static void WorkFunction() { 
        Console.WriteLine( "WorkFunction() called on Thread {0}", 
                           Thread.CurrentThread.ManagedThreadId ); 
    } 
 
    static void Main() { 
        CrudeThreadPool pool = new CrudeThreadPool(); 
        for( int i = 0; i < 10; ++i ) { 
            pool.SubmitWorkItem( 
              new CrudeThreadPool.WorkDelegate( 
                                     EntryPoint.WorkFunction) ); 
        } 
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        // Sleep to simulate this thread doing other work. 
        Thread.Sleep( 1000 ); 
 
        pool.Shutdown(); 
    } 
} 

In this case, the work item is represented by a delegate of type WorkDelegate that neither accepts nor 
returns any values. When the CrudeThreadPool object is created, it creates a pool of four threads and 
starts them running the main work item processing method. That method simply calls Monitor.Wait to 
wait for an item to be queued. When SubmitWorkItem is called, an item is pushed into the queue and it 
calls Monitor.Pulse to release one of the worker threads. Naturally, access to the queue must be 
synchronized. In this case, the reference type used to sync access is the object returned from the queue’s 
SyncRoot property. Additionally, the worker threads must not wait forever, because they need to wake up 
periodically and check a flag to see if they should shut down gracefully. Optionally, you could simply 
turn the worker threads into background threads by setting the IsBackground property inside the 
Shutdown method. However, in that case, the worker threads may be shut down before they’re finished 
processing their work. Depending on your situation, that may or may not be favorable. 

There is a subtle flaw in the example above that prevents CrudeThreadPool from being used widely. 
For example, what would happen if items were put into the queue prior to the threads being created in 
CrudeThreadPool? As currently written, CrudeThreadPool would lose track of those items in the queue. 
That’s because Monitor does not maintain state indicating that Pulse has been called. Therefore, if Pulse 
is called before any threads call Wait, then the item will be lost. In this case, it would be better to use an 
Semaphore which I cover in a later section. 

■ Note Another useful technique for telling threads to shut down is to create a special type of work item that tells 

a thread to shut down. The trick is that you need to make sure you push as many of these special work items onto 

the queue as there are threads in the pool. 

Locking Objects 
The .NET Framework offers several high-level locking objects that you can use to synchronize access to 
data from multiple threads. I dedicated the previous section entirely to one type of lock: the Monitor. 
However, the Monitor class doesn’t implement a kernel lock object; rather, it provides access to the sync 
lock of every .NET object instance. Previously in this chapter, I also covered the primitive Interlocked 
class methods that you can use to implement spin locks. One reason spin locks are considered so 
primitive is that they are not reentrant and thus don’t allow you to acquire the same lock multiple times. 
Other higher-level locking objects typically do allow that, as long as you match the number of lock 
operations with release operations. In this section, I want to cover some useful locking objects that the 
.NET Framework provides. 

No matter what type of locking object you use, you should always strive to write code that keeps the 
lock for the least time possible. For example, if you acquire a lock to access some data within a method 
that could take quite a bit of time to process that data, acquire the lock only long enough to make a copy 
of the data on the local stack, and then release the lock as soon as possible. By using this technique, you 
will ensure that other threads in your system don’t block for inordinate amounts of time to access the 
same data. 
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ReaderWriterLock 
When synchronizing access to shared data between threads, you’ll often find yourself in a position 
where you have several threads reading, or consuming, the data, while only one thread writes, or 
produces, the data. Obviously, all threads must acquire a lock before they touch the data to prevent the 
race condition in which one thread writes to the data while another is in the middle of reading it, thus 
potentially producing garbage for the reader. However, it seems inefficient for multiple threads that are 
merely going to read the data rather than modify it to be locked out from each other. There is no reason 
why they should not be able to all read the data concurrently without having to worry about stepping on 
each other’s toes. 

The ReaderWriterLock elegantly avoids this inefficiency. In a nutshell, it allows multiple readers to 
access the data concurrently, but as soon as one thread needs to write the data, everyone except the 
writer must get their hands off. ReaderWriterLock manages this feat by using two internal queues. One 
queue is for waiting readers, and the other is for waiting writers. Figure 12-2 shows a high-level block 
diagram of what the inside of a ReaderWriterLock looks like. In this scenario, four threads are running in 
the system, and currently, none of the threads are attempting to access the data in the lock. 

 

Figure 12-2. Unutilized ReaderWriterLock 
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To access the data, a reader calls AcquireReaderLock. Given the state of the lock shown in Figure 12-
2, the reader will be placed immediately into the Lock Owners category. Notice the use of plural here, 
because multiple read lock owners can exist. Things get interesting as soon as one of the threads 
attempts to acquire the write lock by calling AcquireWriterLock. In this case, the writer is placed into the 
writer queue because readers currently own the lock, as shown in Figure 12-3. 

 

Figure 12-3. The writer thread is waiting for ReaderWriterLock 

As soon as all of the readers release their lock via a call to ReleaseReaderLock, the writer—in this 
case, Thread B—is allowed to enter the Lock Owners region. But, what happens if Thread A releases its 
reader lock and then attempts to reacquire the reader lock before the writer has had a chance to acquire 
the lock? If Thread A were allowed to reacquire the lock, then any thread waiting in the writer queue 
could potentially be starved of any time with the lock. In order to avoid this, any thread that attempts to 
require the read lock while a writer is in the writer queue is placed into the reader queue, as shown in 
Figure 12-4. 
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Figure 12-4. Reader attempting to reacquire lock 

Naturally, this scheme gives preference to the writer queue. That makes sense given the fact that 
you’d want any readers to get the most up-to-date information. Of course, had the thread that needs the 
writer lock called AcquireWriterLock while the ReaderWriterLock was in the state shown in Figure 12-2, it 
would have been placed immediately into the Lock Owners category without having to go through the 
writer queue. 

The ReaderWriterLock is reentrant. Therefore, a thread can call any one of the lock-acquisition 
methods multiple times, as long as it calls the matching release method the same number of times. Each 
time the lock is reacquired, an internal lock count is incremented. It should seem obvious that a single 
thread cannot own both the reader and the writer lock at the same time, nor can it wait in both queues in 
the ReaderWriterLock.  

■ Caution If a thread owns the reader lock and then calls AcquireWriterLock with an infinite timeout, that 

thread will deadlock waiting on itself to release the reader lock. 

It is possible, however, for a thread to upgrade or down-grade the type of lock it owns. For example, 
if a thread currently owns a reader lock and calls UpgradeToWriterLock, its reader lock is released no 
matter what the lock count is, and then it is placed into the writer queue. The UpgradeToWriterLock 
returns an object of type LockCookie. You should hold on to this object and pass it to 
DowngradeFromWriterLock when you’re done with the write operation. The ReaderWriterLock uses the 
cookie to restore the reader lock count on the object. Even though you can increase the writer lock count 
once you’ve acquired it via UpgradeToWriterLock, your call to DowngradeFromWriterLock will release the 
writer lock no matter what the write lock count is. Therefore, it’s best that you avoid relying on the writer 
lock count within an upgraded writer lock. 
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As with just about every other synchronization object in the .NET Framework, you can provide a 
timeout with almost every lock acquisition method. This timeout is given in milliseconds. However, 
instead of the methods returning a Boolean to indicate whether the lock was acquired successfully, these 
methods throw an exception of type ApplicationException if the timeout expires. So, if you pass in any 
timeout value other than Timeout.Infinite to one of these functions, be sure to make the call inside a 
try block to catch the potential exception. 

ReaderWriterLockSlim 
.NET 3.5 introduced a new style of reader/writer lock called ReaderWriterLockSlim. It brings a few 
enhancements to the table, including better deadlock protection, efficiency, and disposability. It also 
does not support recursion by default, which adds to its efficiency. If you need recursion, 
ReaderWriterLockSlim provides an overloaded constructor that accepts a value from the 
LockRecursionPolicy enumeration. Microsoft recommends using ReaderWriterLockSlim rather than 
ReaderWriterLock for any new development. 

With respect to ReaderWriterLockSlim, there are four states that the thread can be in: 

• Unheld 

• Read mode 

• Upgradeable mode 

• Write mode 

Unheld means that the thread is not attempting to read or write to the resource at all. If a thread is 
in read mode, it has read access to the resource after successfully calling the EnterReadLock method. 
Likewise, if a thread is in write mode, it has write access to the thread after successfully calling 
EnterWriteLock. Just as with ReaderWriterLock, only one thread can be in write mode at a time and while 
any thread is in write mode, all threads are blocked from entering read mode. Naturally, a thread 
attempting to enter write mode is blocked while any threads still remain in read mode. Once they all exit, 
the thread waiting for write mode is released. So what is upgradeable mode? 

Upgradeable mode is useful if you have a thread that needs read access to the resource but may also 
need write access to the resource. Without upgradeable mode, the thread would need to exit read mode 
and then attempt to enter write mode sequentially. During the time when it is in the unheld mode, 
another thread could enter read mode, thus stalling the thread attempting to gain the write lock. Only 
one thread at a time may be in upgradeable mode, and it enters upgradeable mode via a call to 
EnterUpgradeableReadLock. Upgradeable threads may enter read mode or write mode recursively, even 
for ReaderWriterLockSlim instances that were created with recursion turned off. In essence, upgradeable 
mode is a more powerful form of read mode that allows greater efficiency when entering write mode. If a 
thread attempts to enter upgradeable mode and another thread is in write mode or threads are in a 
queue to enter write mode, the thread calling EnterUpgradeableReadLock will block until the other thread 
has exited write mode and the queued threads have entered and exited write mode. This is identical 
behavior to threads attempting to enter read mode. 

ReaderWriterLockSlim may throw a LockRecursionException in certain circumstances. 
ReaderWriterLockSlim instances don’t support recursion by default, therefore attempting to call 
EnterReadLock, EnterWriteLock, or EnterUpgradeableReadLock multiple times from the same thread will 
result in one of these exceptions. Additionally, whether the instance supports recursion or not, a thread 
that is already in upgradeable mode and attempts to call EnterReadLock or a thread that is in write mode 
and attempts to call EnterReadLock could deadlock the system, so a LockRecursionException is thrown in 
those cases too. 
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If you’re familiar with the Monitor class, you may recognize the idiom represented in the method 
names of ReaderWriterLockSlim. Each time a thread enters a state, it must call one of the 
Enter...methods, and each time it leaves that state, it must call one of the corresponding Exit... 
methods. Additionally, just like Monitor, ReaderWriterLockSlim provides methods that allow you to try to 
enter the lock without potentially blocking forever with methods such as TryEnterReadLock, 
TryEnterUpgradeableReadLock, and TryEnterWriteLock. Each of the Try... methods allows you to pass in 
a timeout value indicating how long you are willing to wait. 

The general guideline when using Monitor is not to use Monitor directly, but rather indirectly 
through the C# lock keyword. That’s so that you don’t have to worry about forgetting to call 
Monitor.Exit and you don’t have to type out a finally block to ensure that Monitor.Exit is called under 
all circumstances. Unfortunately, there is no equivalent mechanism available to make it easier to enter 
and exit locks using ReaderWriterLockSlim. Always be careful to call the Exit... method when you are 
finished with a lock, and call it from within a finally block so that it gets called even in the face of 
exceptional conditions. 

Mutex 
The Mutex object is a heavier type of lock that you can use to implement mutually exclusive access to a 
resource. The .NET Framework supports two types of Mutex implementations. If it’s created without a 
name, you get what’s called a local mutex. But if you create it with a name, the Mutex is usable across 
multiple processes and implemented using a Win32 kernel object, which is one of the heaviest types of 
lock objects. By that, I mean that it is the slowest and carries the most overhead when used to guard a 
protected resource from multiple threads. Other lock types, such as the ReaderWriterLock and the 
Monitor class, are strictly for use within the confines of a single process. Therefore, for efficiency, you 
should only use a Mutex object when you really need to synchronize execution or access to some 
resource across multiple processes. 

As with other high-level synchronization objects, the Mutex is reentrant. When your thread needs to 
acquire the exclusive lock, you call the WaitOne method. As usual, you can pass in a timeout value 
expressed in milliseconds when waiting for the Mutex object. The method returns a Boolean that will be 
true if the wait is successful, or false if the timeout expired. A thread can call the WaitOne method as 
many times as it wants, as long as it matches the calls with the same amount of ReleaseMutex calls. 

You can use Mutex objects across multiple processes, but each process needs a way to identify the 
Mutex. Therefore, you can supply an optional name when you create a Mutex instance. Providing a name 
is the easiest way for another process to identify and open the mutex. Because all Mutex names exist in 
the global namespace of the entire operating system, it is important to give the mutex a sufficiently 
unique name, so that it won’t collide with Mutex names created by other applications. I recommend 
using a name that is based on the string form of a GUID generated by GUIDGEN.exe. 

■ Note I mentioned that the names of kernel objects are global to the entire machine. That statement is not 

entirely true if you consider Windows fast user switching and Terminal Services. In those cases, the namespace 

that contains the name of these kernel objects is instanced for each logged-in user (session). For times when you 

really do want your name to exist in the global namespace, you can prefix the name with the special string 

“Global\”. For more information, reference Microsoft Windows Internals, Fifth Edition: Including Windows Server 

2008 and Windows Vista by Mark E. Russinovich, David A. Solomon, and Alex Ionescu (Microsoft Press, 2009). 
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If everything about the Mutex object sounds strikingly familiar to those of you who are native Win32 
developers, that’s because the underlying mechanism is, in fact, the Win32 Mutex object. In fact, you can 
get your hands on the actual OS handle via the SafeWaitHandle property inherited from the WaitHandle 
base class. I have more to say about the WaitHandle class in the “Win32 Synchronization Objects and 
WaitHandle” section, where I discuss its pros and cons. It’s important to note that because you 
implement the Mutex using a kernel mutex, you incur a transition to kernel mode any time you 
manipulate or wait upon the Mutex. Such transitions are extremely slow and should be minimized if 
you’re running time-critical code. 

■ Tip Avoid using kernel mode objects for synchronization between threads in the same process if at all possible. 

Prefer more lightweight mechanisms, such as the Monitor class or the Interlocked class. When effectively 

synchronizing threads between multiple processes, you have no choice but to use kernel objects. On my current 

test machine, a simple test showed that using the Mutex took more than 44 times longer than the Interlocked 

class and 34 times longer than the Monitor class. 

Semaphore 
The .NET Framework supports semaphores via the System.Threading.Semaphore class. They are used to 
allow a countable number of threads to acquire a resource simultaneously. Each time a thread enters the 
semaphore via WaitOne (or any of the other Wait...methods on WaitHandle discussed shortly), the 
semaphore count is decremented. When an owning thread calls Release, the count is incremented. If a 
thread attempts to enter the semaphore when the count is zero, it will block until another thread calls 
Release. 

Just as with Mutex, when you create a semaphore, you may or may not provide a name by which 
other processes may identify it. If you create it without a name, you end up with a local semaphore that 
is only useful within the same process. Either way, the underlying implementation uses a Win32 
semaphore kernel object. Therefore, it is a very heavy synchronization object that is slow and inefficient. 
You should prefer local semaphores over named semaphore unless you need to synchronize access 
across multiple processes for security reasons. 

Note that a thread can acquire a semaphore multiple times. However, it or some other thread must 
call Release the appropriate number of times to restore the availability count on the semaphore. The 
task of matching the Wait...method calls and subsequent calls to Release is entirely up to you. There is 
nothing in place to keep you from calling Release too many times. If you do, then when another thread 
later calls Release, it could attempt to push the count above the allowable limit, at which point it will 
throw a SemaphoreFullException. These bugs are very difficult to find because the point of failure is 
disjoint from the point of error. 

In the previous section titled “Monitor Class,” I introduced a flawed thread pool named 
CrudeThreadPool and described how Monitor is not the best synchronization mechanism to use to 
represent the intent of the CrudeThreadPool. Below, I have slightly modified CrudeThreadPool using 
Semaphore to demonstrate a more correct CrudeThreadPool. Again, I only show CrudeThreadPool for the 
sake of example. You should prefer to use the system thread pool described shortly. 

using System; 
using System.Threading; 
using System.Collections; 
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public class CrudeThreadPool 
{ 
    static readonly int MaxWorkThreads = 4; 
    static readonly int WaitTimeout = 2000; 
 
    public delegate void WorkDelegate(); 
 
    public CrudeThreadPool() { 
        stop = false; 
        semaphore = new Semaphore( 0, int.MaxValue ); 
        workQueue = new Queue(); 
        threads = new Thread[ MaxWorkThreads ]; 
 
        for( int i = 0; i < MaxWorkThreads; ++i ) { 
            threads[i] = 
                new Thread( new ThreadStart(this.ThreadFunc) ); 
            threads[i].Start(); 
        } 
    } 
 
    private void ThreadFunc() { 
        do { 
            if( !stop ) { 
                WorkDelegate workItem = null; 
                if( semaphore.WaitOne(WaitTimeout) ) { 
                    // Process the item on the front of the 
                    // queue 
                    lock( workQueue ) { 
                        workItem = 
                            (WorkDelegate) workQueue.Dequeue(); 
                    } 
                    workItem(); 
                } 
            } 
        } while( !stop ); 
    } 
 
    public void SubmitWorkItem( WorkDelegate item ) { 
        lock( workQueue ) { 
            workQueue.Enqueue( item ); 
        } 
 
        semaphore.Release(); 
    } 
 
    public void Shutdown() { 
        stop = true; 
    } 
 
    private Semaphore     semaphore; 
    private Queue         workQueue; 
    private Thread[]      threads; 
    private volatile bool stop; 
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} 
 
public class EntryPoint 
{ 
    static void WorkFunction() { 
        Console.WriteLine( "WorkFunction() called on Thread {0}", 
                           Thread.CurrentThread.ManagedThreadId ); 
    } 
 
    static void Main() { 
        CrudeThreadPool pool = new CrudeThreadPool(); 
        for( int i = 0; i < 10; ++i ) { 
            pool.SubmitWorkItem( 
              new CrudeThreadPool.WorkDelegate( 
                                     EntryPoint.WorkFunction) ); 
        } 
 
        // Sleep to simulate this thread doing other work. 
        Thread.Sleep( 1000 ); 
 
        pool.Shutdown(); 
    } 
} 

I have highlighted the differences above showing the use of Semaphore.Release to indicate when an 
item is in the queue. Release increments the Semaphore count whereas a worker thread successfully 
completing a call to WaitOne decrements the semaphore count. By using Sempahore, CrudeThreadPool is 
not susceptible to losing work items if they are placed into the queue prior to the threads starting up. 
The Semaphore may not go higher than Int32.MaxValue, however, if you have that many items in your 
queue and you have enough memory on the machine to support that, then it may indicate an 
inefficiently elsewhere. 

Events 
In the .NET Framework, you can use two types to signal events: ManualResetEvent, AutoResetEvent, and 
EventWaitHandle. As with the Mutex object, these event objects map directly to Win32 event objects. If 
you’re familiar with using Win32 events, you’ll feel right at home with the .NET event objects. Similar to 
Mutex objects, working with event objects incurs a slow transition to kernel mode. Both event types 
become signaled when someone calls the Set method on an event instance. At that point, a thread 
waiting on the event will be released. Threads wait for an event by calling the inherited WaitOne method, 
which is the same method you call to wait on a Mutex to become signaled. 

I was careful in stating that a waiting thread is released when the event becomes signaled. It’s 
possible that multiple threads could be released when an event becomes signaled. That, in fact, is the 
difference between ManualResetEvent and AutoResetEvent. When a ManualResetEvent becomes signaled, 
all threads waiting on it are released. It stays signaled until someone calls its Reset method. If any thread 
calls WaitOne while the ManualResetEvent is already signaled, then the wait is immediately completed 
successfully. On the other hand, AutoResetEvent objects only release one waiting thread and then 
immediately reset to the unsignaled state automatically. You can imagine that all threads waiting on the 
AutoResetEvent are waiting in a queue, where only the first thread in the queue is released when the 
event becomes signaled. However, even though it’s useful to assume that the waiting threads are in a 
queue, you cannot make any assumptions about which waiting thread will be released first. 
AutoResetEvents are also known as sync events based on this behavior. 
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Using the AutoResetEvent type, you could implement a crude thread pool where several threads wait 
on an AutoResetEvent signal to be told that some piece of work is available. When a new piece of work is 
added to the work queue, the event is signaled to turn one of the waiting threads loose. Implementing a 
thread pool this way is not efficient and comes with its problems. For example, things become tricky to 
handle when all threads are busy and work items are pushed into the queue, especially if only one thread 
is allowed to complete one work item before going back to the waiting queue. If all threads are busy and, 
say, five work items are queued in the meantime, the event will be signaled but no threads will be 
waiting. The first thread back into the waiting queue will be released once it calls WaitOne, but the others 
will not, even though four more work items exist in the queue. One solution to this problem is not to 
allow work items to be queued while all of the threads are busy. That’s not really a solution, because it 
defers some of the synchronization logic to the thread attempting to queue the work item by forcing it to 
do something appropriate in reaction to a failed attempt to queue a work item. In reality, creating an 
efficient thread pool is tricky business, to say the least. Therefore, I recommend you utilize the 
ThreadPool class before attempting such a feat. I cover the ThreadPool class in detail in the “Using 
ThreadPool” section. 

.NET event objects are based on Win32 event objects, thus you can use them to synchronize 
execution between multiple processes. Along with the Mutex, they are also more inefficient than an 
alternative, such as the Monitor class, because of the kernel mode transition involved. However, the 
creators of ManualResetEvent and AutoResetEvent did not expose the ability to name the event objects in 
their constructors, as they do for the Mutex object. Therefore, if you need to create a named event, you 
should use the EventWaitHandle class introduced in .NET 2.0 instead. 

■ Note A new type was introduced in the .NET 4.0 BCL called ManualResetEventSlim, which is a lightweight 

lock-free implementation of a manual reset event. However, it may only be used in inter-thread communication 

within the same process, that is, intra-process communication. If you must synchronize across multiple processes, 

you must use ManualResetEvent or AutoResetEvent instead. 

Win32 Synchronization Objects and WaitHandle 
In the previous sections, I covered the Mutex, ManualResetEvent, and AutoResetEvent objects, among 
others. Each one of these types is derived from WaitHandle, a general mechanism that you can use in the 
.NET Framework to manage any type of Win32 synchronization object that you can wait upon. That 
includes more than just events and mutexes. No matter how you obtain the Win32 object handle, you 
can use a WaitHandle object to manage it. I prefer to use the word manage rather than encapsulate, 
because the WaitHandle class doesn’t do a great job of encapsulation, nor was it meant to. It’s simply 
meant as a wrapper to help you avoid a lot of direct calls to Win32 via the P/Invoke layer when dealing 
with OS handles. 

■ Note Take some time to understand when and how to use WaitHandle, because many APIs have yet to be 

mapped into the .NET Framework, and many of them may never be. 
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I’ve already discussed the WaitOne method used to wait for an object to become signaled. However, 
the WaitHandle class has two handy static methods that you can use to wait on multiple objects. The first 
is WaitHandle.WaitAny. You pass it an array of WaitHandle objects, and when any one of the objects 
becomes signaled, the WaitAny method returns an integer indexing into the array to the object that 
became signaled. The other method is WaitHandle.WaitAll, which, as you can imagine, won’t return 
until all of the objects becomes signaled. Both of these methods have defined overloads that accept a 
timeout value. In the case of a call to WaitAny that times out, the return value will be equal to the 
WaitHandle.WaitTimeout constant. In the case of a call to WaitAll, a Boolean is returned, which is either 
true to indicate that all of the objects became signaled, or false to indicate that the wait timed out. 

Prior to the existence of the EventWaitHandle class in .NET 2.0, in order to get a named event, one 
had to create the underlying Win32 object and then wrap it with a WaitHandle, as I’ve done in the 
following example: 

using System; 
using System.Threading; 
using System.Runtime.InteropServices; 
using System.ComponentModel; 
using Microsoft.Win32.SafeHandles; 
 
public class NamedEventCreator 
{ 
    [DllImport( "KERNEL32.DLL", EntryPoint="CreateEventW", 
                SetLastError=true )] 
    private static extern SafeWaitHandle CreateEvent( 
                                   IntPtr lpEventAttributes, 
                                   bool   bManualReset, 
                                   bool   bInitialState, 
                                   string lpName ); 
 
    public static AutoResetEvent CreateAutoResetEvent( 
                                         bool initialState, 
                                         string name ) { 
        // Create named event. 
        SafeWaitHandle rawEvent = CreateEvent( IntPtr.Zero, 
                                       false, 
                                       initialState, 
                                       name ); 
        if( rawEvent.IsInvalid ) { 
            throw new Win32Exception( 
                            Marshal.GetLastWin32Error() ); 
        } 
 
        // Create a managed event type based on this handle. 
        AutoResetEvent autoEvent = new AutoResetEvent( false ); 
 
        // Must clean up handle currently in autoEvent 
        // before swapping it with the named one. 
        autoEvent.SafeWaitHandle = rawEvent; 
 
        return autoEvent; 
    } 
} 
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Here I’ve used the P/Invoke layer to call down into the Win32 CreateEventW function to create a 
named event. Several things are worth noting in this example. For instance, I’ve completely punted on 
the Win32 handle security, just as the rest of the .NET Framework standard library classes tend to do. 
Therefore, the first parameter to CreateEvent is IntPtr.Zero, which is the best way to pass a NULL pointer 
to the Win32 error for the LPSECURITY_ATTRIBUTES parameter. Notice that you detect the success or 
failure of the event creation by testing the IsInvalid property on the SafeWaitHandle. When you detect 
this value, you throw a Win32Exception type. You then create a new AutoResetEvent to wrap the raw 
handle just created. WaitHandle exposes a property named SafeWaitHandle, whereby you can modify the 
underlying Win32 handle of any WaitHandle derived type.  

■ Note You may have noticed the legacy Handle property in the documentation. You should avoid this property, 

because reassigning it with a new kernel handle won’t close the previous handle, thus resulting in a resource leak 

unless you close it yourself. You should use SafeHandle derived types instead. The SafeHandle type also uses 

constrained execution regions to guard against resource leaks in the event of an asynchronous exception such as 

ThreadAbortException. You can read more about constrained execution regions in Chapter 7. 

In the previous example, you can see that I declared the CreateEvent method to return a SafeWaitHandle. 

Although it’s not obvious from the documentation of SafeWaitHandle, it has a private default constructor that the 

P/Invoke layer is capable of using to create and initialize an instance of this class. 

Be sure to check out the rest of the SafeHandle derived types in the Microsoft.Win32.SafeHandles namespace. 

Specifically, the .NET 2.0 Framework introduced SafeHandleMinusOneIsInvalid and 

SafeHandleZeroOrMinusOneIsInvalid for convenience when defining your own Win32-based SafeWaitHandle 

derivatives. These are useful because, unfortunately, various subsections of the Win32 API use different return 

handle values to represent failure conditions. 

Be aware that the WaitHandle type implements the IDisposable interface. Therefore, you want to 
make judicious use of the using keyword in your code whenever using WaitHandle instances or instances 
of any of the classes that derive from it, such as Mutex, AutoResetEvent, and ManualResetEvent. 

One last thing that you need to be aware of when using WaitHandle objects and those objects that 
derive from the type is that you cannot abort or interrupt managed threads in a timely manner when 
they’re blocked via a method to WaitHandle. Because the actual OS thread that is running under the 
managed thread is blocked inside the OS—thus outside of the managed execution environment—it can 
only be aborted or interrupted as soon as it reenters the managed environment. Therefore, if you call 
Abort or Interrupt on one of those threads, the operation will be pended until the thread completes the 
wait at the OS level. You want to be cognizant of this when you block using a WaitHandle object in 
managed threads. 

Using ThreadPool 
A thread pool is ideal in a system where small units of work are performed regularly in an asynchronous 
manner. A good example is a web server or any other kind of server listening for requests on a port. 
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When a request comes in, a new thread is given the request and processes it. The server achieves a high 
level of concurrency and optimal utilization by servicing these requests in multiple threads. Typically, 
the slowest operation on a computer is an I/O operation. Storage devices, such as hard drives, are very 
slow in comparison to the processor and its ability to access memory. Therefore, to make optimal use of 
the system, you want to begin other work items while it’s waiting on an I/O operation to complete in 
another thread. Creating a thread pool to manage such a system is an amazing task fraught with many 
details and pitfalls. However, the .NET environment exposes a prebuilt, ready-to-use thread pool via the 
ThreadPool class. 

The ThreadPool class is similar to the Monitor and Interlocked classes in the sense that you cannot 
actually create instances of the ThreadPool class. Instead, you use the static methods of the ThreadPool 
class to manage the thread pool that each process gets by default in the CLR. In fact, you don’t even have 
to worry about creating the thread pool. It gets created when it is first used. If you have used thread 
pools in the Win32 world, whether it be via the system thread pool that was introduced in Windows 2000 
or via I/O completion ports, you’ll notice that the .NET thread pool is the same beast with a managed 
interface placed on top of it. 

To queue an item to the thread pool, you simply call ThreadPool.QueueUserWorkItem, passing it an 
instance of the WaitCallback delegate. The thread pool gets created the first time your process calls this 
function. The callback method that is represented by the WaitCallback delegate accepts a reference to a 
System.Object instance and has a return type of void. The object reference is an optional context object 
that the caller can supply to an overload of QueueUserWorkItem. If you don’t provide a context, the 
context reference will be null. Once the work item is queued, a thread in the thread pool will execute the 
callback as soon as it becomes available. Once a work item is queued, it cannot be removed from the 
queue except by a thread that will complete the work item. So if you need to cancel a work item, you 
must craft a way to let your callback know that it should do nothing once it gets called.  

The thread pool is tuned to keep the machine processing work items in the most efficient way 
possible. It uses an algorithm based upon how many CPUs are available in the system to determine how 
many threads to create in the pool. However, even once it computes how many threads to create, the 
thread pool may, at times, contain more threads than originally calculated. For example, suppose the 
algorithm decides that the thread pool should contain four threads. Then, suppose the server receives 
four requests that access a backend database that takes some time. If a fifth request comes in during this 
time, no threads will be available to dispatch the work item. What’s worse, the four busy threads are just 
sitting around waiting for the I/O to complete. In order to keep the system running at peak performance, 
the thread pool will actually create another thread when it knows all of the others are blocking. After the 
work items have all been completed and the system is in a steady state again, the thread pool will then 
kill off any extra threads created like this. Even though you cannot easily control how many threads are 
in a thread pool, you can easily control the minimum number of threads that are idle in the pool waiting 
for work via calls to GetMinThreads and SetMinThreads. 

I urge you to read the details of the System.Threading.ThreadPool static methods in the MSDN 
documentation if you plan to deal directly with the thread pool. In reality, it’s rare that you’ll ever need 
to insert work items directly into the thread pool. There is another, more elegant, entry point into the 
thread pool via delegates and asynchronous procedure calls, which I cover in the next section. 

Asynchronous Method Calls 
Although you can manage the work items put into the thread pool directly via the ThreadPool class, a 
more popular way to employ the thread pool is via asynchronous delegate calls. When you declare a 
delegate, the CLR defines a class for you that derives from System.MulticastDelegate. One of the 
methods defined is the Invoke method, which takes exactly the same function signature as the delegate 
definition. The C# language, of course, offers a syntactical shortcut to calling the Invoke method. But 
along with Invoke, the CLR also defines two methods, BeginInvoke and EndInvoke, that are at the heart of 
the asynchronous processing pattern used throughout the CLR. This pattern is similar to the IOU pattern 
introduced earlier in the chapter. 
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The basic idea is probably evident from the names of the methods. When you call the BeginInvoke 
method on the delegate, the operation is pended to be completed in another thread. When you call the 
EndInvoke method, the results of the operation are given back to you. If the operation has not completed 
at the time you call EndInvoke, the calling thread blocks until the operation is complete. Let’s look at a 
short example that shows the general pattern in use. Suppose you have a method that computes your 
taxes for the year, and you want to call it asynchronously because it could take a reasonably long amount 
of time to do: 

using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    // Declare the delegate for the async call. 
    private delegate Decimal ComputeTaxesDelegate( int year ); 
 
    // The method that computes the taxes. 
    private static Decimal ComputeTaxes( int year ) { 
        Console.WriteLine( "Computing taxes in thread {0}", 
                           Thread.CurrentThread.ManagedThreadId ); 
 
        // Here's where the long calculation happens. 
        Thread.Sleep( 6000 ); 
 
        // You owe the man. 
        return 4356.98M; 
    } 
 
    static void Main() { 
        // Let's make the asynchronous call by creating 
        // the delegate and calling it. 
        ComputeTaxesDelegate work = 
            new ComputeTaxesDelegate( EntryPoint.ComputeTaxes ); 
        IAsyncResult pendingOp = work.BeginInvoke( 2004, 
                                                   null, 
                                                   null ); 
 
        // Do some other useful work. 
        Thread.Sleep( 3000 ); 
 
        // Finish the async call. 
        Console.WriteLine( "Waiting for operation to complete." ); 
        Decimal result = work.EndInvoke( pendingOp ); 
 
        Console.WriteLine( "Taxes owed: {0}", result ); 
    } 
} 

The first thing you will notice with the pattern is that the BeginInvoke method’s signature does not 
match that of the Invoke method. That’s because you need some way to identify the particular work item 
that you just pended with the call to BeginInvoke. Therefore, BeginInvoke returns a reference to an object 
that implements the IAsyncResult interface. This object is like a cookie that you can hold on to so that 
you can identify the work item in progress. Through the methods on the IAsyncResult interface, you can 
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check on the status of the operation, such as whether it is completed. I’ll discuss this interface in more 
detail in a bit, along with the extra two parameters added onto the end of the BeginInvoke method 
declaration for which I’m passing null. When the thread that requested the operation is finally ready for 
the result, it calls EndInvoke on the delegate. However, because the method must have a way to identify 
which asynchronous operation to get the results for, you must pass in the object that you got back from 
the BeginInvoke method. In this example, you’ll notice the call to EndInvoke blocking for some time as 
the operation completes. 

■ Note If an exception is generated while the delegate’s target code is running asynchronously in the thread pool, 

the exception is rethrown when the initiating thread makes a call to EndInvoke. 

Part of the beauty of the IOU asynchronous pattern that delegates implement is that the called code 
doesn’t even need to be aware of the fact that it’s getting called asynchronously. Of course, it’s rarely 
practical to call a method asynchronously when it was never designed to be, if it touches data in the 
system that other methods touch without using any synchronization mechanisms. Nonetheless, the 
headache of creating an asynchronous calling infrastructure around the method has been mitigated by 
the delegate generated by the CLR, along with the per-process thread pool. Moreover, the initiator of the 
asynchronous action doesn’t even need to be aware of how the asynchronous behavior is implemented. 

Now let’s look a little closer at the IAsyncResult interface for the object returned from the 
BeginInvoke method. The interface declaration looks like the following: 

public interface IAsyncResult 
{ 
  Object AsyncState { get; } 
  WaitHandle AsyncWaitHandle { get; } 
  bool CompletedSynchronously { get; } 
  bool IsCompleted { get; } 
} 

In the previous example, I chose to wait for the computation to finish by calling EndInvoke. I could 
have instead waited on the WaitHandle returned by the IAsyncResult.AsyncWaitHandle property before 
calling EndInvoke. The end result would have been the same in this case. However, the fact that the 
IAsyncResult interface exposes the WaitHandle allows you to have multiple threads in the system wait for 
this one action to complete if they needed to. 

Two other properties allow you to query whether the operation has completed. The IsCompleted 
property simply returns a Boolean representing the fact. You could construct a polling loop that checks 
this flag repeatedly. However, that would be much more inefficient than just waiting on the WaitHandle. 
Nonetheless, it is there if you need it. Another Boolean property is CompletedSynchronously. The 
asynchronous processing pattern in the .NET Framework provides for the option that the call to 
BeginInvoke could actually choose to process the work synchronously rather than asynchronously. The 
CompletedSynchronously property allows you to determine if this happened. As it is currently 
implemented, the CLR will never do such a thing when delegates are called asynchronously, but this 
could change at any time. However, because it is recommended that you apply this same asynchronous 
pattern whenever you design a type that can be called asynchronously, the capability was built into the 
pattern. For example, suppose you have a class where a method to process generalized operations 
synchronously is supported. If one of those operations simply returns the version number of the class, 
then you know that operation can be done quickly, and you may choose to perform it synchronously. 
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Finally, the AsyncState property of IAsyncResult allows you to attach any type of specific context 
data to an asynchronous call. This is the last of the extra two parameters added at the end of the 
BeginInvoke signature. In my previous example, I passed in null because I didn’t need to use it. 

Although I chose to harvest the result of the operation via a call to EndInvoke, thus blocking the 
thread, I could have chosen to be notified via a callback. Consider the following modifications to the 
previous example: 

using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    // Declare the delegate for the async call. 
    private delegate Decimal ComputeTaxesDelegate( int year ); 
 
    // The method that computes the taxes. 
    private static Decimal ComputeTaxes( int year ) { 
        Console.WriteLine( "Computing taxes in thread {0}", 
                           Thread.CurrentThread.ManagedThreadId ); 
 
        // Here's where the long calculation happens. 
        Thread.Sleep( 6000 ); 
 
        // You owe the man. 
        return 4356.98M; 
    } 
 
    private static void TaxesComputed( IAsyncResult ar ) { 
        // Let' get the results now. 
        ComputeTaxesDelegate work = 
            (ComputeTaxesDelegate) ar.AsyncState; 
 
        Decimal result = work.EndInvoke( ar ); 
        Console.WriteLine( "Taxes owed: {0}", result ); 
    } 
 
    static void Main() { 
        // Let's make the asynchronous call by creating 
        // the delegate and calling it. 
        ComputeTaxesDelegate work = 
            new ComputeTaxesDelegate( EntryPoint.ComputeTaxes ); 
        work.BeginInvoke( 2004, 
                          new AsyncCallback( 
                                EntryPoint.TaxesComputed), 
                          work ); 
 
        // Do some other useful work. 
        Thread.Sleep( 3000 ); 
 
        Console.WriteLine( "Waiting for operation to complete." ); 
 
        // Only using sleep for the sake of example!!! 
        // In reality, you would want to wait for an event 
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        // to get set or something similar. 
        Thread.Sleep( 4000 ); 
    } 
} 

Now, instead of calling EndInvoke from the thread that called BeginInvoke, I’m requesting that the 
thread pool call the TaxesComputed method via an instance of the AsyncCallback delegate that I passed in 
as the second-to-last parameter of BeingInvoke. The IAsyncCallback delegate references a method that 
accepts a single parameter of type IAsyncResult and returns void. Using a callback to process the result 
completes the asynchronous processing pattern by allowing the thread that started the operation to 
continue to work without ever having to explicitly wait on the worker thread. Notice that the 
TaxesComputed callback method must still call EndInvoke to harvest the results of the asynchronous call. 
In order to do that, though, it must have an instance of the delegate. That’s where the 
IAsyncResult.AsyncState context object comes in handy. 

In my example, I initialize it to point to the delegate by passing the delegate as the last parameter to 
BeginInvoke. The main thread that calls BeginInvoke has no need for the object returned by the call, 
because it never actively polls the state of the operation, nor does it wait explicitly for the operation to 
complete. The added sleep at the end of the Main method is there for the sake of the example. 
Remember, all threads in the thread pool run as background threads. Therefore, if you don’t wait at this 
point, the process would exit long before the operation completes. If you need asynchronous work to 
occur in a foreground thread, it is best to create a new class that implements the asynchronous pattern 
of BeingInvoke/EndInvoke and use a foreground thread to do the work. Never change the background 
status of a thread in the thread pool via the IsBackground property on the current thread. Even if you try, 
you’ll find that it has no effect. 

■ Note It’s important to realize that when your asynchronous code is executing and when the callback is 

executing, you are running in an arbitrary thread context. You cannot make any assumptions about which thread is 

running your code. In many respects, this technique is similar to driver development on Windows platforms. 

Using a callback to handle the completion of a work item is very handy when creating a server 
process that will handle incoming requests. For example, suppose you have a process that listens on a 
specific TCP/IP port for an incoming request. When it receives one, it replies with the requested 
information. To achieve high utilization, you definitely want to pend these operations asynchronously. 
Consider the following example that listens on port 1234 and when it receives anything at all, it simply 
replies with “Hello World!”: 

using System; 
using System.Text; 
using System.Threading; 
using System.Net; 
using System.Net.Sockets; 
 
public class EntryPoint { 
    private const int ConnectQueueLength = 4; 
    private const int ListenPort = 1234; 
 
    static void ListenForRequests() { 
        Socket listenSock = 
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            new Socket( AddressFamily.InterNetwork, 
                        SocketType.Stream, 
                        ProtocolType.Tcp ); 
        listenSock.Bind( new IPEndPoint(IPAddress.Any, 
                                        ListenPort) ); 
        listenSock.Listen( ConnectQueueLength ); 
 
        while( true ) { 
            using( Socket newConnection = listenSock.Accept() ) { 
                // Send the data. 
                byte[] msg = 
                    Encoding.UTF8.GetBytes( "Hello World!" ); 
                newConnection.Send( msg, SocketFlags.None ); 
            } 
        } 
    } 
 
    static void Main() { 
        // Start the listening thread. 
        Thread listener = new Thread( 
                            new ThreadStart( 
                                EntryPoint.ListenForRequests) ); 
        listener.IsBackground = true; 
        listener.Start(); 
 
        Console.WriteLine( "Press <enter> to quit" ); 
        Console.ReadLine(); 
    } 
} 

This example creates an extra thread that simply loops around listening for incoming connections 
and servicing them as soon as they come in. The problems with this approach are many. First, only one 
thread handles the incoming connections. If the connections are flying in at a rapid rate, it will quickly 
become overwhelmed. Think about a web server that could easily see thousands of requests per second. 

As it turns out, the Socket class implements the asynchronous calling pattern of the .NET 
Framework. Using the pattern, you can make the server a little bit better by servicing the incoming 
requests using the thread pool, as follows: 

using System; 
using System.Text; 
using System.Threading; 
using System.Net; 
using System.Net.Sockets; 
 
public class EntryPoint { 
    private const int ConnectQueueLength = 4; 
    private const int ListenPort = 1234; 
 
    static void ListenForRequests() { 
        Socket listenSock = 
            new Socket( AddressFamily.InterNetwork, 
                        SocketType.Stream, 
                        ProtocolType.Tcp ); 
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        listenSock.Bind( new IPEndPoint(IPAddress.Any, 
                                        ListenPort) ); 
        listenSock.Listen( ConnectQueueLength ); 
 
        while( true ) { 
            Socket newConnection = listenSock.Accept(); 
            byte[] msg = Encoding.UTF8.GetBytes( "Hello World!" ); 
            newConnection.BeginSend( msg, 
                                     0, msg.Length, 
                                     SocketFlags.None, 
                                     null, null ); 
        } 
    } 
 
    static void Main() { 
        // Start the listening thread. 
        Thread listener = new Thread( 
                            new ThreadStart( 
                                EntryPoint.ListenForRequests) ); 
        listener.IsBackground = true; 
        listener.Start(); 
 
        Console.WriteLine( "Press <enter> to quit" ); 
        Console.ReadLine(); 
    } 
} 

The server is becoming a little more efficient, because it is now sending the data to the incoming 
connection from a thread in the thread pool. This code also demonstrates a fire-and-forget strategy 
when using the asynchronous pattern. The caller is not interested in the return object that implements 
IAsyncResult, nor is it interested in setting a callback method to get called when the work completes. 
This fire-and-forget call is a valiant attempt to make the server more efficient. However, the result is less 
than satisfactory, because the using statement from the previous incarnation of the server is gone. The 
Socket is not closed in a timely manner, and the remote connections are held open until the GC gets 
around to finalizing the Socket objects. Therefore, the asynchronous call needs to include a callback in 
order to close the connection. It wouldn’t make sense for the listening thread to wait on the EndSend 
method, as that would put you back in the same inefficiency boat you were in before. 

■ Note When you get an object that implements IAsyncResult back from starting an asynchronous operation, 

that object must implement the IAsyncResult.AsyncWaitHandle property to allow users to obtain a handle they 

can wait on. In the case of Socket, an instance of OverlappedAsyncResult is returned. That class ultimately 

derives from System.Net.LazyAsyncResult. It doesn’t actually create the event to wait on until someone 

accesses it via the IAsyncResult.AsyncWaitHandle property. This lazy creation spares the burden of creating a 

lock object that goes unused most of the time. Also, it is the responsibility of the OverlappedAsyncResult object 

to close the OS handle when it is finished with it. 
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However, before getting to the callback, consider the listening thread for a moment. All it does is 
spin around listening for incoming requests. Wouldn’t it be more efficient if the server were to use the 
thread pool to handle the listening too? Of course it would! So, now, let me present the new and 
improved “Hello World!” server that makes full use of the process thread pool: 

using System; 
using System.Text; 
using System.Threading; 
using System.Net; 
using System.Net.Sockets; 
 
public class EntryPoint { 
    private const int ConnectQueueLength = 4; 
    private const int ListenPort = 1234; 
    private const int MaxConnectionHandlers = 4; 
 
    private static void HandleConnection( IAsyncResult ar ) { 
        Socket listener = (Socket) ar.AsyncState; 
 
        Socket newConnection = listener.EndAccept( ar ); 
        byte[] msg = Encoding.UTF8.GetBytes( "Hello World!" ); 
        newConnection.BeginSend( msg, 
                                 0, msg.Length, 
                                 SocketFlags.None, 
                                 new AsyncCallback( 
                                      EntryPoint.CloseConnection), 
                                 newConnection ); 
 
        // Now queue another accept. 
        listener.BeginAccept( 
            new AsyncCallback(EntryPoint.HandleConnection), 
            listener ); 
    } 
 
    static void CloseConnection( IAsyncResult ar ) { 
        Socket theSocket = (Socket) ar.AsyncState; 
        theSocket.Close(); 
    } 
 
    static void Main() { 
        Socket listenSock = 
            new Socket( AddressFamily.InterNetwork, 
                        SocketType.Stream, 
                        ProtocolType.Tcp ); 
        listenSock.Bind( new IPEndPoint(IPAddress.Any, 
                                        ListenPort) ); 
        listenSock.Listen( ConnectQueueLength ); 
 
        // Pend the connection handlers. 
        for( int i = 0; i < MaxConnectionHandlers; ++i ) { 
            listenSock.BeginAccept( 
                new AsyncCallback(EntryPoint.HandleConnection), 
                listenSock ); 
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        } 
 
        Console.WriteLine( "Press <enter> to quit" ); 
        Console.ReadLine(); 
    } 
} 

Now, the “Hello World” server is making full use of the process thread pool and can handle 
incoming client requests with the best concurrency. Incidentally, testing the connection is fairly simple 
using the built-in Windows Telnet client. Simply run Telnet from a command prompt or from the 
Start~TRA Run dialog, and at the prompt enter the following command to connect to port 1234 on the 
local machine while the server process is running in another command window: 

Microsoft Telnet> open 127.0.0.1 1234 

Timers 
Yet another entry point into the thread pool is via Timer objects in the System.Threading namespace. As 
the name implies, you can arrange for the thread pool to call a delegate at a specific time as well as at 
regular intervals. Let’s look at an example of how to use a Timer object: 

using System; 
using System.Threading; 
 
public class EntryPoint 
{ 
    private static void TimerProc( object state ) { 
        Console.WriteLine( "The current time is {0} on thread {1}", 
                           DateTime.Now, 
                           Thread.CurrentThread.ManagedThreadId ); 
        Thread.Sleep( 3000 ); 
    } 
 
    static void Main() { 
        Console.WriteLine( "Press <enter> when finished\n\n" ); 
 
        Timer myTimer = 
            new Timer( new TimerCallback(EntryPoint.TimerProc), 
                       null, 
                       0, 
                       2000 ); 
 
        Console.ReadLine(); 
        myTimer.Dispose(); 
    } 
} 

When the timer is created, you must give it a delegate to call at the required time. Therefore, I’ve 
created a TimerCallback delegate that points back to the static TimerProc method. The second parameter 
to the Timer constructor is an arbitrary state object that you can pass in. When your timer callback is 
called, this state object is passed to the timer callback. In my example, I have no need for a state object, 
so I just pass null. The last two parameters to the constructor define when the callback gets called. The 
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second-to-last parameter indicates when the timer should fire for the first time. In my example, I pass 0, 
which indicates that it should fire immediately. The last parameter is the period at which the callback 
should be called. In my example, I’ve asked for a two-second period. If you don’t want the timer to be 
called periodically, pass Timeout.Infinite as the last parameter. Finally, to shut down the timer, simply 
call its Dispose method. 

In my example, you may wonder why I have the Sleep call inside the TimerProc method. It’s there 
just to illustrate a point, and that is that an arbitrary thread calls the TimerProc. Therefore, any code that 
executes as a result of your TimerCallback delegate must be thread-safe. In my example, the first thread 
in the thread pool to call TimerProc sleeps longer than the next timeout, so the thread pool calls the 
TimerProc method two seconds later on another thread, as you can see in the generated output. You 
could really cause some strain on the thread pool if you were to notch up the sleep in the TimerProc. 

■ Note If you’ve ever used the Timer class in the System.Windows.Forms namespace, you must realize that it’s a 

completely different beast than the Timer class in the System.Threading namespace. For one, the Forms.Timer 

is based upon Win32 Windows messaging—namely, the WM_TIMER message. One handy quality of the 

Forms.Timer is that its timer callback is always called on the same thread. However, the only way that happens in 

the first place is if the UI thread that the timer is a part of has an underlying UI message pump. If the pump stalls, 

so do the Forms.Timer callbacks. So, naturally, the Threading.Timer is more powerful in the sense that it 

doesn’t suffer from this dependency. However, the drawback is that you must code your Threading.Timer 

callbacks in a thread-safe manner. 

Concurrent Programming 
During the 1990s, most personal computers typically had only one processor and processor speeds were 
increasing at a steady clip as each newer processor was released. With that speed increase came faster 
response times whether or not the software running on them was multithreaded. However, today, that 
processor speed curve has slowed and instead, processor power increases come in the form of multiple 
cores. At the time of this writing, Intel has a consumer processor on the market with eight cores. 

To realize a speed gain via the addition of processors or cores requires a different style of software 
development where the emphasis is on concurrency. Naturally, concurrent applications are highly 
multithreaded and are therefore tremendously complex. Development takes more time and attention to 
detail as does the testing of those systems. In order to mitigate the added complexity, a flexible and 
highly tuned library is necessary in order to facilitate concurrent programming. The Parallel Computing 
Platform team at Microsoft delivered with the Parallel Extensions and the Task Parallel Library (TPL) 
which are incorporated into the .NET 4.0 BCL. 

■ Note If you are interested in becoming familiar with the intricacies of concurrent and lock-free programming for 

both native and .NET development, I highly recommend Concurrent Programming on Windows by Joe Duffy 

(Boston, MA: Addison Wesley, 2009). 
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You really should become familiar with the TPL because it greatly reduces the amount of work you 
need to do to interact with the thread pool and create robust concurrent programs. Concurrent 
programs written against the TPL also scale automatically to platforms that contain many processors 
without having to be recompiled. The TPL is spread across the System.Threading and 
System.Threading.Tasks namespaces. 

Full coverage of the Parallel Extensions and TPL are beyond the scope of this book, however, I want 
to give you enough to whet your appetite for them. 

■ Note When using the Parallel Extensions and TPL, it feels more natural and programmatically expressive to use 

lambda expressions to define the various delegates passed into the library. Therefore, if you are not comfortable 

with lambda expressions in code, you may want to skip this section and its subsections until you get a chance to 

read Chapter 15. 

Task Class 
The Task class is arguably the workhorse of the TPL. In the section titled “Asynchronous Method Calls” 
previously in this chapter, I explained how to use BeginInvoke and EndInvoke to schedule work to be 
completed asynchronously in the CLR thread pool. The Task class makes that job even easier and it is 
even more efficient than using the CLR thread pool. The Parallel Computing Platform team has put quite 
a bit of work into the TPL to remove as many locks as possible relying on lock-free synchronization 
techniques.  The results are impressive indeed. 

To get an idea of what you can do with the Task class, I will borrow from the socket example from 
previous sections. Consider the following modification to the asynchronous socket example that only 
accepts one connection and simply sends “Hello World!” to the client when it connects. 

using System; 
using System.Text; 
using System.Threading; 
using System.Threading.Tasks; 
using System.Net; 
using System.Net.Sockets; 
 
public class EntryPoint { 
    private const int ConnectQueueLength = 4; 
    private const int ListenPort = 1234; 
 
    static void Main() { 
        var doneEvent = new ManualResetEventSlim(); 
 
        // Create task to listen on a socket. 
        Socket listenSock = new Socket( AddressFamily.InterNetwork, 
                                        SocketType.Stream, 
                                        ProtocolType.Tcp ); 
        Socket connection = null; 
 
        try { 
            Task listenTask = null; 
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            listenTask = Task.Factory.StartNew( () => { 
                listenSock.Bind( new IPEndPoint(IPAddress.Any, 
                                                ListenPort) ); 
                listenSock.Listen( ConnectQueueLength ); 
                connection = listenSock.Accept(); 
 
                listenTask.ContinueWith( (previousTask) => { 
                    byte[] msg = Encoding.UTF8.GetBytes( "Hello World!" ); 
                    connection.Send( msg, SocketFlags.None ); 
                    connection.Close(); 
                    doneEvent.Set(); 
                } ); 
            } ); 
 
            Console.WriteLine( "Waiting for task to complete..." ); 
            doneEvent.Wait(); 
        } 
        catch( AggregateException e ) { 
            Console.WriteLine( e ); 
        } 
 
        listenSock.Close(); 
    } 
}  

There are many things to point out in this example. 

• Notice how the lambda expressions allow you to fluidly express what it is you want 
the task to do by allowing you to easily create a delegate on the fly and pass it into 
the TaskFactory.StartNew() method. 

• The first Task, listenTask handles the operation of listening for the incoming 
connection and I created it using the TaskFactory accessed through the static 
property Task.Factory. I could have created the Task in stages and then called 
Start on it, however, if you have no reason to do so, TaskFactory.StartNew is more 
efficient. But notice how I have chained a task with ContinueWith on the initial task 
and passed yet another Task. ContinueWith allows you to easily chain Tasks. 
There are overloads of ContinueWith that you should explore in MSDN, but by 
default, it will only schedule the continuation task once the previous task has 
completed. Also, notice how ContinueWith passes the previousTask to the 
continuation Task instance’s delegate. In this case, I want the continuation task to 
send “Hello World!” through the socket once the connection is made. 
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• Finally, notice how I have wrapped the Task usage within a try/catch block where 
the catch block catches exceptions of type AggregateException. 
AggregateException is a new type introduced with the TPL for catching exceptions 
from multiple asynchronous and related tasks. This is because both listenTask 
and the continuation could both generate exceptions. So AggregateException 
allows you to catch a collection of exceptions3. 

Parallel Class 
The System.Threading.Parallel class consists of a collection of static methods where you can easily 
transform a traditionally non-parallel task into a parallel one. For example, the Parallel class contains 
methods one can use to replace for loops or foreach loops with concurrent for loops where instead of 
iterating over each item in a serialized manner, each iteration is dispatched to the thread pool where it is 
performed concurrently. There is actually much more to it than that, but going into the finer details of 
how the Parallel Extensions library for .NET performs its work is beyond the scope of this book. 
Naturally, not all for and foreach loops can be blindly replaced with concurrent for loops. The code 
within the for loop must be capable of being parallelized and each iteration must be sufficiently 
independent from other iterations. 

Let me show an example, while at the same time describing how enabling concurrency is not as easy 
as flipping a switch.  Consider the following example code which is not parallel. This is the code we will 
be parallelizing later in this section. 

using System; 
using System.Numerics; 
using System.Threading; 
using System.Threading.Tasks; 
using System.Collections.Concurrent; 
 
class EntryPoint 
{ 
    const int FactorialsToCompute = 2000; 
 
    static void Main() { 
        var numbers = new ConcurrentDictionary<BigInteger, BigInteger>(4, 
FactorialsToCompute); 
 
        // Create a factorial delegate. 
        Func<BigInteger, BigInteger> factorial = null; 
        factorial = (n) => ( n == 0 ) ? 1 : n * factorial(n-1); 
 
        // Now compute the factorial of the list. 
        for( ulong i = 0; i < FactorialsToCompute; ++i ) { 
            numbers[i] = factorial(i); 
        } 

                                                 

 
3 For more information on AggregateException, I encourage you to read Stephen Toub’s article “Aggregating 
Exceptions” in the August 2009 MSDN Magazine. 
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    } 
} 

This example code computes the first 2000 factorials and stores the results in a dictionary.  The 
factorial operation is a sufficiently complex algorithm for demonstration and, in this example, we should 
not blow out the stack during the recursive computation. 

■ Caution Be wary of recursive computations such as these because you can inadvertently blow out the stack 

leading to a StackOverflowException. In Chapter 15, I cover a concept known as Memoization that one can use 

to avoid that situation in recursive functions like factorial. 

The factorial computations above will quickly overflow any of the native integer types, therefore, I 
must use the BigInteger type introduced in .NET 4.0 for this example. Also, notice that I have created an 
instance of ConcurrentDictionary to store the results. ConcurrentDictionary is one of the collection 
types in the System.Collections.Concurrent namespace introduced in .NET 4.0. The concurrent 
collections are optimized for concurrency as they use locks very conservatively and only if necessary, 
thus maximizing performance and reducing contention in concurrent environments. Even though the 
code above is not concurrent, I am using ConcurrentDictionary in anticipation of what is to come. 

If you run the example above, you will see that it runs as expected, however, upon further 
examination, we can see that each iteration of the for loop is independent from the other, thus making it 
a prime candidate for parallelization. Below is the same code, but parallelized using Parallel.For: 

using System; 
using System.Numerics; 
using System.Threading; 
using System.Threading.Tasks; 
using System.Collections.Concurrent; 
 
class EntryPoint 
{ 
    const int FactorialsToCompute = 2000; 
 
    static void Main() { 
        var numbers = new ConcurrentDictionary<BigInteger, BigInteger>(4, 
FactorialsToCompute); 
 
        // Create a factorial delegate. 
        Func<BigInteger, BigInteger> factorial = null; 
        factorial = (n) => ( n == 0 ) ? 1 : n * factorial(n-1); 
 
        // Now compute the factorial of the list 
        // concurrently. 
        Parallel.For( 0, 
                      FactorialsToCompute, 
                      (i) => { 
                        numbers[i] = factorial(i); 
                      } ); 
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    } 
} 

As you can see, the Parallel.For method makes the transformation easy. The first two arguments 
are the range of the iteration, and the third argument is a delegate, in this case provided in the form of a 
lambda expression, which represents the body of the original for loop. That was easy, right? Not so fast! 

Once you execute the code above, you may see that it executes much slower than the serialized 
version. For example, after compiling the two previous code examples, I ran them both consecutively on 
a quad core Hyper-V hosted Windows 7 installation while performing an analysis with xperf4 and saw the 
following: 

 

 

Figure 12-5. Xperf analysis of serialized and parallel factorial computation 

The two graphs in figure 12-5 represent CPU usage by process and CPU usage by thread. In the 
bottom graph, the square pulse on the left represents the single thread that computes the 2000 factorials 
in the serialized version of the code. Following that, the part of the graph that looks like noise represents 

                                                 

 
4 If you are unfamiliar with xperf, I highly recommend that you become familiar with it by visiting the Windows 
Performance Tools (WPT) Kit site at http://msdn.microsoft.com/performance. Xperf is an extremely powerful Event 
Tracing for Windows (ETW) controller and viewer. 

http://msdn.microsoft.com/performance
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the multiple threads of the parallelized version of the code. Although there are multiple threads 
computing the factorials now, this behavior is certainly not what we expected! After all, the concurrent 
version should have performed better, right? In the graph above, you can see that the parallel version not 
only took longer than the serialized version, but it actually took more than four times longer! Also, notice 
that the CPU utilization by both versions, shown on the top graph, was relatively low. What is going on 
here? 

Any time you encounter a situation like this, you should gravitate to using tools such as xperf and 
System Performance Monitor (perfmon) to get a clearer picture. In fact, the CLR exposes quite a few 
performance counters for diagnosing problems like these. So, to get a better idea of what was going on, I 
ran the parallel version of the code while capturing a perfmon log and you can see the results below in 
Figure 12-6. 

 

 

Figure 12-6. Perfmon analysis of parallel factorial code 

 
In Figure 12-6 above, the solid line at the top of the graph represents the percentage of time spent in 

the CLR garbage collector while the dotted line represents the amount of generation 0 collections. So, 
you can conclude that the performance problems in the parallel version of the code are caused by the 
GC. This makes sense if you think about how you are heavily using the BigInteger type and creating and 
releasing a lot of BigInteger instances with each iteration, thus putting pressure on the GC. And because 
the parallel version of the code has multiple threads placing this pressure on the GC rather than just one, 
the problem is exacerbated. So, what can you do about this situation? 

The solution is surprisingly simple. Given that the problem is in the GC, you need to tune the GC to 
be more performant for concurrent code. You can do just that by using the server version of the GC 
rather than the default workstation version of the GC. The garbage collector is one of those areas within 
the CLR that is always under constant development in order to make it more efficient and versatile. The 
server GC is the result of much of that effort and maximizes concurrency, which is often desired in server 
applications. In fact, the server GC is the default GC for ASP.NET applications. So, how do you turn it on? 
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All you need to do is create an application configuration XML file named <application>.config where 
the <application> is replaced with the entire executable name including the extension. For example, the 
configuration file for parallel.exe would be parallel.exe.config. Using the gcServer element, we can 
turn on the server GC as shown below: 

<configuration> 
    <runtime> 
        <gcServer enabled="true" /> 
    </runtime> 
</configuration> 

After turning on the server GC, you will see a substantial improvement in performance in the 
parallel version of the code. This is because the server GC creates per-processor GC heaps that better 
facilitate concurrency. Additionally, the Windows operating system strives to schedule threads to the 
same processor as often as possible. This will reduce the amount of locks that must be taken during GC 
operations. Figure 12-7 below shows the xperf output captured while running the serialized and 
concurrent versions of the factorial test with the configuration file in place. 

 

 

Figure 12-7. Xperf analysis of serialized and parallel factorial computation with server GC 
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Notice that the parallel version performs as expected once server GC is enabled and, as desired, 
takes a lot less time to perform the computation. Additionally, notice that the parallel process achieves 
much higher CPU utilization than the serialized version, which is also desired because that is typically 
one of the goals of concurrent programming.  

The take-away from this experiment is that introducing concurrency to your applications is rarely as 
easy as simply flipping a switch. Instead, you must take environmental factors into account and you 
must be prepared to execute performance analysis tests to verify that you are getting the intended 
performance boost. 

Easy Entry to the Thread Pool 
In previous sections under “Using ThreadPool,” I demonstrated how you can schedule asynchronous 
work to the CLR thread pool by utilizing ThreadPool.QueueUserWorkItem and showed how you can use 
BeginInvoke and EndInvoke on delegates to gain entry to the thread pool. However, starting with .NET 
4.0, for fire-and-forget units of work, there is an easier entry into the thread pool by way of 
Parallel.Invoke. 

You can very easily and succinctly schedule asynchronous work to be performed by the CLR thread 
pool threads by passing an array of Action delegates to Parallel.Invoke. Parallel.Invoke will then block 
until all of the actions have run to completion. Consider the following example: 

using System; 
using System.Numerics; 
using System.Threading; 
using System.Threading.Tasks; 
using System.Collections.Concurrent; 
 
class EntryPoint 
{ 
    const int FactorialsToCompute = 100; 
 
    static void Main() { 
        var numbers = new ConcurrentDictionary<BigInteger, BigInteger>(); 
 
        // Create a factorial delegate. 
        Func<BigInteger, BigInteger> factorial = null; 
        factorial = (n) => ( n == 0 ) ? 1 : n * factorial(n-1); 
 
        // Build the array of actions 
        var actions = new Action[FactorialsToCompute]; 
        for( int i = 0; i < FactorialsToCompute; ++i ) { 
            int x = i; 
            actions[i] = () => { 
                numbers[x] = factorial(x); 
            }; 
        } 
 
        // Now compute the values. 
        Parallel.Invoke( actions ); 
 
        // Print out the results. 
        for( int i = 0; i < FactorialsToCompute; ++i ) { 
            Console.WriteLine( numbers[i] ); 
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        } 
    } 
} 

This example is a variant of the Parallel.For example, except instead of using Parallel.For, I am 
creating an array of Actions and passing them to Parallel.Invoke. Keep in mind, however, that 
Parallel.For typically performs better in cases like this and I only do this for the sake of example. In fact, 
I encourage you to do some performance analysis, comparing the performance of Parallel.Invoke and 
Parallel.For to see the difference. I build one action for each factorial computation and put it into the 
array, then I pass that array of actions to Parallel.Invoke. Once all of those tasks have completed and 
the call to Parallel.Invoke returns, I then dump out the resulting values just so I can see that it 
performed all of the work I requested. 

One last point I would like to make is that you have no guarantees regarding the ordering of the 
tasks executed by Parallel.Invoke nor do you have any guarantee that they will be performed in parallel 
either. It all depends on the platform upon which the code executes and the environmental parameters 
considered by Parallel.Invoke. 

Thread-Safe Collection Classes 
I hope I have impressed upon you the complexities and difficulties involved with creating correct 
thread-safe code. There are a lot of traps and pitfalls to look out for. Moreover, your code will be more 
efficient if you strive to use the lightest weight synchronization mechanism possible. However, lock-free 
concurrent programming, that is, without using locks explicitly and instead relying on the 
synchronization guaranteed by the platform is not for the faint at heart.  Also, such code requires a heavy 
amount of testing in all sorts of environments to ferret out any synchronization bugs. 

Therefore, any time you can use a library provided mechanism to get your job done, you should.  
For example, you should avoid coding your own thread pool implementations and instead use the 
system thread pool. Likewise, if you need synchronized collection classes, you should rely upon the 
classes in the System.Collections.Concurrent namespace introduced in .NET 4.0. 

The collections in System.Collections.Concurrent use the most efficient locking mechanism 
possible and you don’t even have to bother with creating your own. They will use allow lock-free access 
to contents when possible and they use lightweight, fine-grained locking when appropriate. I highly 
recommend you become familiar with the types defined within the System.Collections.Concurrent 
namespace and prefer them when you are working in concurrent applications. In there, you will find 
such types as ConcurrentQueue<T>, ConcurrentStack<T>, ConcurrentBag<T>, etc. 

Summary 
In this chapter, I’ve covered the intricacies of managed threads in the .NET environment. I covered the 
various mechanisms in place for managing synchronization between threads, including the Interlocked, 
Monitor, AutoResetEvent, ManualResetEvent, WaitHandle-based objects, and so on. I then described the 
IOU pattern and how the .NET Framework uses it extensively to get work done asynchronously. That 
discussion centered around the CLR’s usage of the ThreadPool based upon the Windows thread pool 
implementation. Then, you got a taste of how the Parallel Extension and the TPL introduced in .NET 4.0 
can make concurrent programming much easier. 

Threading and concurrency always adds complexity to applications. However, when used properly, 
it can make applications more responsive to user commands and more efficient. Although 
multithreading development comes with its pitfalls, the .NET Framework and the CLR mitigate many of 
those risks and provide a model that shields you from the intricacies of the operating system—most of 
the time. For example, thread pools have always been difficult to implement, even after a common 
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implementation was added to the Windows operating system. Not only does the .NET environment 
provide a nice buffer between your code and the Windows thread pool intricacies, but it also allows your 
code to run on other platforms that implement the .NET Framework, such as the Mono runtime running 
on Linux. If you understand the details of the threading facilities provided by.NET and are familiar with 
multithreaded synchronization techniques, as covered in this chapter, then you’re well on your way to 
producing effective multithreaded applications. 

In the next chapter, I go in search of a C# canonical form for types. I investigate the checklist of 
questions you should ask yourself when designing any type using C# for the .NET Framework. 
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In Search of C# Canonical Forms 

Many object-oriented languages—C# included—don’t offer anything to force developers to create well-
designed software. There is no better example of this than when using C++ to implement an OO design. 
C# is a little more structured than C++; for example, you cannot create free static functions that exist 
outside the context of a defined type. Still, C# doesn’t force you to create software that adheres to well-
known practices of good software design. 

The C++ community quickly identified some canonical forms useful for designing types to meet a 
specific purpose. Really and truly, these canonical forms are merely checklists, or recipes, you can use 
while designing new classes. Before a pilot can clear an airplane to back out of the gate, he must go 
through a strict checklist. The goal of this chapter is to identify such checklists for creating robust types 
in the C# world. 

When you explore these checklists, you need to consider what sorts of behaviors are required of 
objects of the new type you’re creating. For example, is your new type going to be cloneable? In other 
words, can it be copied? If instances of your new type are placed in a collection, can they be ordered? 
What does it mean to compare two references of this object’s type for equality? In other words, do you 
want to know if the two references refer to the same instance? Or do you want to know if two instances 
referred to have exactly the same state? These are the types of questions you should ask yourself when 
you create a new type. 

■ Note This chapter is rather long, but it’s important to keep so much useful and related information together. 

Overall, the chapter is sectioned into two partitions. The first partition covers reference types, and the second 

covers value types. I cover reference types first and at greater length, because some material applies to both 

reference types and value types. Finally, the chapter concludes with a pair of checklists to go through when 

designing new types. 

Reference Type Canonical Forms 
First, let’s explore canonical forms for reference types in C#. In C#, objects live on the managed heap and 
are accessed through value types containing references to them, such as reference type variables. 
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■ Note In C++ terms, you can envision a similar system in which all objects are created dynamically using new, 

and you only reference them through the pointer returned by new. This is essentially what is happening in the CLR, 

except that the CLR tracks all these “pointers,” or references, and it knows when the objects on the heap have no 

more references to them and thus when they can be destroyed. 

To be a little more specific, consider this: over the years, the C++ community has utilized a vast array of idioms 

that rely upon the stack to help manage resources. If you create your C++ object on the stack, the compiler will 

make sure that your object’s constructors and destructor get called at the appropriate times, thus giving you a 

controlled point at which to put your resource cleanup code. The dominant idiom here is called Resource 

Acquisition Is Initialization (RAII), and it’s used extensively in C++ and any other object-oriented language with 

deterministic destruction of objects. Basically, the idea behind the idiom is that any resource that requires 

allocation is acquired in a constructor body, and the release of the resource is in the matching destructor. This 

idiom is so entrenched that in order to write robust, exception-safe, and exception-neutral C++ code, you must 

use this idiom extensively and contain just about every usage of new and delete inside constructors and 

destructors. In the C# domain, this idiom is not available so easily because C# destructors are not deterministic. 

Therefore, you must approach the problems solved by this idiom in a different way, as discussed throughout this 

section. 

Default to sealed Classes 
When you create a new class, I firmly believe you should automatically mark that class sealed and 
remove the sealed keyword only if you can think of a bona fide reason why someone would need to 
derive from your class. Why not go the other way around and make the class unsealed by default and 
seal it when you know someone should not derive from it? Because it’s impossible to predict how 
someone will attempt to derive from your class if you don’t put in specific design measures to support 
inheritance. I’ve seen many designs over the years where someone attempted to derive from a class that 
was never meant to be derived from. For example, in a good design, classes that have no virtual methods 
are not normally intended to be derived from. The lack of virtual methods most likely indicates that the 
author of the class didn’t consider whether anyone would even want to inherit from the type and 
probably should have marked the class sealed. If your class is not sealed and you intend to allow others 
to inherit from it, be sure to include adequate documentation so the person deriving from your class 
doesn’t shoot himself in the foot. 

■ Note As hard as you might try to create self-explanatory base classes, it’s nearly impossible to escape 

documenting them as long as you have at least one overrideable virtual method in them. Read on for more 

information why. 
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Even classes that do have virtual methods and are purposely meant to be derived from can be 
problematic. For example, if you derive from a class that provides a virtual method DoSomething, and you 
want to extend that method by overriding it, do you call the base class version in your override? If so, do 
you call it before or after you get your derived work done? Does the ordering matter? Maybe it does if 
protected fields are declared in the base class.1 If you don’t have really good documentation for the class 
you’re deriving from, you might never know the answers to these questions. In fact, this is one reason 
why extension through containment is generally more flexible, and thus more powerful, at design time 
than extension through inheritance. Extension through containment is dynamic and performed at run 
time, whereas inheritance-based extension is more restrictive because it is static and wired up at 
compile time. And better yet, you can do containment-based extension even if the class you want to 
extend is marked sealed. 

Unless you can come up with a really good reason why your class should serve as a base class, mark 
your class sealed. Otherwise, be prepared to offer very detailed documentation on how to best derive 
from your class. I guarantee that you can produce a different design using interface inheritance together 
with containment rather than implementation (class) inheritance that can do the same job. Because that 
is the case, there’s almost no reason why almost all the classes you design should not be marked sealed. 
Don’t misunderstand: I’m not saying that all inheritance is bad. On the contrary, it is useful when used 
properly. Unfortunately, it is greatly misused. A deep hierarchy tree, as opposed to a shallow flat one, is a 
common sign that you should rethink the design. 

■ Note When leaf classes that derive from other classes with virtual methods are marked sealed, or when 

individual override methods are marked sealed, the runtime can turn calls to those methods into nonvirtual calls 

because no more derived implementations of those methods can exist. Naturally, this is a performance gain. 

Use the Non-Virtual Interface (NVI) Pattern 
Many times, when you design a class specifically capable of acting as a base class in a hierarchy, you 
declare methods that are virtual so that deriving classes can modify the behavior. A first pass at such a 
base class might look something like the following: 

using System; 
 
public class Base 
{ 
    public virtual void DoWork() { 
        Console.WriteLine( "Base.DoWork()" ); 
    } 
} 
 
public class Derived : Base 
{ 

                                                 

 
1 In Chapter 4, I discussed encapsulation and its importance in object-oriented design. It’s important to note that 
protected fields break encapsulation. 
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    public override void DoWork() { 
        Console.WriteLine( "Derived.DoWork()" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Base b = new Derived(); 
        b.DoWork(); 
    } 
} 

Not surprisingly, the output from the example looks like this: 

Derived.DoWork() 

However, the design could be subtly more robust. Imagine that you’re the writer of Base, and you 
have deployed Base to millions of users. Many people are happily using Base all over the world when you 
decide, for some good reason, that you should do some pre- and postprocessing within DoWork. For 
example, suppose thatyou would like to provide a debug version of Base that tracks how many times the 
DoWork method is called. As the code was written previously, you cannot do such a thing without forcing 
breaking changes onto the millions of users who have used your class Base. For example, you could 
introduce two more methods, named PreDoWork and PostDoWork, and ask kindly that your users 
reimplement their overrides so that they call these methods at the correct time. Ouch! Now, let’s 
consider a minor modification to the original design that doesn’t even change the public interface of 
Base: 

using System; 
 
public class Base 
{ 
    public void DoWork() { 
        CoreDoWork(); 
    } 
 
    protected virtual void CoreDoWork() { 
        Console.WriteLine( "Base.DoWork()" ); 
    } 
} 
 
public class Derived : Base 
{ 
    protected override void CoreDoWork() { 
        Console.WriteLine( "Derived.DoWork()" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
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        Base b = new Derived(); 
        b.DoWork(); 
    } 
} 

This nifty little pattern is called the Non-Virtual Interface (NVI) pattern, and it does exactly that: it 
makes the public interface to the base class nonvirtual, but the overrideable behavior is moved into 
another protected method named CoreDoWork, thus adding the required level of indirection. The NVI 
pattern is similar to the Template Method pattern, as described by Erich Gamma, Richard Helm, Ralph 
Johnson, and John Vlissides in Design Patterns: Elements of Reusable Object-Oriented Software (Boston: 
Addison-Wesley Professional, 1995). .NET Framework libraries use the NVI pattern widely, and it’s 
circulated in library design guidelines at Microsoft for obviously good reasons. In order to add some 
metering to the DoWork method, you only need to modify Base and the assembly that contains it. Any of 
the other classes that derive from assembly don’t even have to change. 

Another technique that is typically used with NVI in the C++ world is that of actually declaring the 
virtual method private, as in the following code that unfortunately won’t compile in C# for reasons I’ll 
explain shortly: 

// WILL NOT COMPILE!!!!! 
using System; 
 
public class Base 
{ 
    public void DoWork() { 
        CoreDoWork(); 
    } 
 
    // WILL NOT COMPILE!!!!! 
    private virtual void CoreDoWork() { 
        Console.WriteLine( "Base.DoWork()" ); 
    } 
} 
 
public class Derived : Base 
{ 
    // WILL NOT COMPILE!!!!! 
    private override void CoreDoWork() { 
        Console.WriteLine( "Derived.DoWork()" ); 
    } 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        Base b = new Derived(); 
        b.DoWork(); 
    } 
} 

This code would actually compile in the initial .NET 1.0 release of C#, and the technique was 
perfectly valid in the CLR, reflecting the fact that the CLI spec at the time and C# wanted to match the 
C++ semantics as closely as possible. Before I explain why this won’t work in C# now, let me explain why 
you would want to do it in the first place. 
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There is a fundamental difference between a method’s visibility and its accessibility. If the method 
is in the declaration of a class or struct, no matter what its protection level is, it is visible. And 
traditionally, in order for a derived class to override a method, it merely has to be visible and not 
accessible. 

■ Note The only thing private means on a C++ private virtual method is that the derived class might not call 

the base class’s implementation. If you don’t believe me, try this example in native C++. You’ll find that it works 

as expected. 

The beauty of being able to declare private virtual methods is that you don’t have to worry about 
derived classes misusing your Base class. For example, maybe you require that they don’t call your base 
class implementation of the virtual method. Fine, just make it private virtual. In fact, using such a 
technique, you should make your method protected virtual only if you know there is a good reason 
why the base class would need to call it. And if you do that, you must strictly document at what point the 
override should call the base implementation. Many people believe that just because the method is 
declared private, it cannot be overridden. But in the strict sense, restricted accessibility doesn’t make it 
invisible to overriding. 

Now let me explain why this feature was turned off in the .NET 1.1 release of C#. This was a mystery 
to me until Brandon Bray from the Microsoft Visual C++ team explained it neatly. The fact that you can 
inherit across assembly boundaries turns this feature into a sort of security hole. With native C++, it was 
never an issue. Consider this: if a private virtual method can be overridden, so can an internal 
virtual method. And therein lies the problem. It would allow you to override the behavior of an 
internal virtual method on some random class in a particular assembly, and that is the source of the 
security hole. So, a trade-off was made, and every release starting with 1.1 has this feature disabled. 
Incidentally, this same fix was added to C++/CLI. Although native C++ classes can use the private 
virtual method feature effectively, ref C++ classes cannot. And that, of course, is because ref C++ 
classes represent .NET ref types that can be inherited across assembly boundaries. How about that! 

Is the Object Cloneable? 
As you know, objects in C# and in the CLR live on the heap and are accessed through references. You’re 
not actually making a copy of the object when you assign one object variable to another, as in the 
following code. 

Object obj = new Object(); 
Object objCopy = obj; 

After this code executes, objCopy doesn’t refer to a copy of obj; rather, you now have two references 
to the same Object instance. 

However, sometimes it makes sense to be able to make a copy of an object. For that purpose, the 
Standard Library defines the ICloneable interface. When your object implements this interface, it is 
saying that it supports the ability to have copies of itself made. In other words, it claims that it can be 
used as a prototype to create new instances of objects. Objects of this type could participate in a 
prototype factory design pattern. Before I go any further, let’s have a look at the ICloneable interface: 

public interface ICloneable 
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{ 
   object Clone(); 
} 

As you can see, the interface defines only one method, Clone, which returns an object reference. 
That object reference is intended to be the copy. All you have to do is return a copy of the object and 
you’re done, right? Well, not so fast. 

You see, there’s a not-so-subtle problem with the definition of this interface. The documentation for 
the interface doesn’t indicate whether the copy returned should be a deep copy or a shallow copy. In 
fact, the documentation leaves it open for the class designer to decide. The difference between a shallow 
copy and a deep copy is only relevant if the object contains references to other objects. 

• A shallow copy of an object creates a copy whose contained object references refer to the same 
objects as the prototype’s references. 

• A deep copy, on the other hand, creates a copy of the prototype where all the contained objects 
are copied as well. In a deep copy, the object containment tree is traversed all the way down to 
the bottom, and copies of each of those objects are made. Therefore, the result of a deep copy 
shares no underlying objects with the prototype. 

This is enough to drive a good software designer insane. It seems only logical that if you really want 
to make a copy of an object, then a deep copy is the only true way to go. Fine! From this point onward, 
when I say “clone,” I mean a deep copy. 

In order for an object to effectively implement a clone of itself, remember that I’m saying that a 
clone is a deep copy, so all its contained objects must provide a means of creating a deep copy of 
themselves. You can quickly see the problem that comes with that requirement. You cannot guarantee a 
deep copy if your object contains references to objects that themselves cannot be deep-copied. This is 
precisely why we suffer from the documentation for the ICloneable interface and its lack of specification 
of copy semantics. Plus, and importantly, this lack of specification forces you to clearly document the 
ICloneable implementation on any object that implements it so that consumers will know if the object 
supports a shallow or deep copy. 

Let’s consider options for implementing the ICloneable interface on objects. If your object contains 
only value types such as int, long, or values based on struct definitions where the structs contain no 
reference types you can use a shortcut to implement the Clone method by using 
Object.MemberwiseClone, as in the following code: 

using System; 
 
public sealed class Dimensions : ICloneable 
{ 
    public Dimensions( long width, long height ) { 
        this.width = width; 
        this.height = height; 
    } 
 
    // ICloneable implementation 
    public object Clone() { 
        return this.MemberwiseClone(); 
    } 
 
    private long width; 
    private long height; 
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} 

MemberwiseClone is a protected method implemented on System.Object that an object can use to 
create a shallow copy of itself. However, it’s important to note one caveat: MemberwiseClone creates a 
copy of the object without calling any constructors on the new object. It’s an object-creation shortcut. If 
your object relies upon the constructor being called during creation—for example, if you send debug 
traces to the console during object construction—then MemberwiseClone is not for you. If you absolutely 
must use MemberwiseClone, and your object requires work to be done during the constructor call, you 
must factor that work out into a separate method. Then you can call that method from the constructor, 
and, in your Clone method, you can call that worker method on the new object after calling 
MemberwiseClone to create the new instance. Although doable, it’s a tedious approach. An alternative way 
to implement the clone is to make use of a private copy constructor, as in the following code: 

using System; 
 
public sealed class Dimensions : ICloneable 
{ 
    public Dimensions( long width, long height ) { 
        Console.WriteLine( "Dimensions( long, long) called" ); 
 
        this.width = width; 
        this.height = height; 
    } 
 
    // Private copy constructor used when making a copy of this object. 
    private Dimensions( Dimensions other ) { 
        Console.WriteLine( "Dimensions( Dimensions ) called" ); 
 
        this.width = other.width; 
        this.height = other.height; 
    } 
 
    // ICloneable implementation 
    public object Clone() { 
        return new Dimensions(this); 
    } 
 
    private long width; 
    private long height; 
} 

This method of cloning an object is the safest way in the sense that you have full control over how 
the copy is made. Any changes that need to be done regarding the way the object is copied can be made 
in the copy constructor. You must take care to consider what happens when you declare a constructor in 
a class. Any time you do so, the compiler will not emit the default constructor that it normally does when 
you don’t provide a constructor. If the private copy constructor listed here was the only constructor 
defined in the class, users of the class would never be able to create instances of it. That’s because the 
default constructor is now gone, and no other publicly accessible constructor would exist. In this 
example, you have nothing to worry about because you also defined a public constructor that takes two 
parameters. Nevertheless, it’s an important point to consider during class design. 

Now, let’s also consider objects that themselves contain references to other objects. Suppose that 
you have an employee database, and you represent each employee with an object of type Employee. This 
Employee type contains vital information such as the employee’s name, title, and ID number. The name 
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and possibly the formatted ID number are represented by strings, which are themselves reference type 
objects. For the sake of example, let’s implement the employee title as a separate class named Title. If 
you follow the guideline I stated previously (you always do a deep copy on a clone), then you could 
implement the following clone method: 

using System; 
 
// Title class 
// 
public sealed class Title : ICloneable 
{ 
    public enum TitleNameEnum { 
        GreenHorn, 
        HotshotGuru 
    } 
 
    public Title( TitleNameEnum title ) { 
        this.title = title; 
 
        LookupPayScale(); 
    } 
 
    private Title( Title other ) { 
        this.title = other.title; 
 
        LookupPayScale(); 
    } 
 
    // ICloneable implementation 
    public object Clone() { 
        return new Title(this); 
    } 
 
    private void LookupPayScale() { 
        // Looks up the pay scale in a database. Payscale is 
        // based upon the title. 
    } 
 
    private TitleNameEnum title; 
    private double minPay; 
    private double maxPay; 
} 
 
// Employee class 
// 
public sealed class Employee : ICloneable 
{ 
    public Employee( string name, Title title, string ssn ) { 
        this.name = name; 
        this.title = title; 
        this.ssn = ssn; 
    } 
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    private Employee( Employee other ) { 
        this.name = String.Copy( other.name ); 
        this.title = (Title) other.title.Clone(); 
        this.ssn = String.Copy( other.ssn ); 
    } 
 
    // ICloneable implementation 
    public object Clone() { 
        return new Employee(this); 
    } 
 
    private string name; 
    private Title title; 
    private string ssn; 
} 

Notice that you cannot copy the Title object with MemberwiseClone because a side effect of the 
constructor is to call LookupPayScale on the new object to retrieve the pay scale for the title from the 
database. Let’s assume it’s possible that the pay scale for the position can change between the 
prototype’s creation and the clone operation, so you always want to look that up in the database. Also, 
note that copies of the contained objects are made using their respective ICloneable methods. For the 
Title object, you merely call its implementation of Clone. It turns out that System.String implements 
ICloneable. However, you cannot use the Clone method to create a deep copy of Employee. If you read 
the fine print on the String.Clone implementation, you’ll see that it just returns a reference to itself. This 
is a perfect example of the issues I was talking about regarding the inconsistencies of the Clone 
implementations out there. Instead, you have to use the static String.Copy method in order to get a real 
copy of the source string. 

The fact that System.String returns a reference to itself when its ICloneable.Clone method is called 
is an optimization that its implementors introduced. Even though the implementation bars you from 
making a true deep clone of any object that contains string object references, the optimization is valid 
for two reasons. First, the documentation doesn’t specify whether you need to implement a deep or 
shallow copy. I’ve already discussed the pros and cons of that omission in the contract specification. 
Second, System.String is an immutable object. Immutability in objects is a powerful concept that I cover 
in the later section “Prefer Type Safety at All Times.” The general idea is that once you create a string 
object, you can never change it for as long as it lives. Therefore, it becomes an efficiency burden to 
implement String.Clone so that it always performs a deep copy. Clients of System.String work the same 
way, whether String.Clone performs a deep or shallow copy, because of its immutability. 

In efforts to make the ICloneable implementation document itself, you can use a custom attribute 
to mark the Clone method. This way, consumers of your object can determine at design time or at run 
time whether your object supports a deep copy or a shallow copy. Consider the following custom 
attribute:2 

using System; 
 
namespace CloneHelpers 

                                                 

 
2 Full coverage of custom attributes in the .NET Framework is beyond the scope of this book. For more information, 
consult the MSDN Library documentation or any one of the fine books covering the CLR, such as Andrew Troelsen’s 
Pro C# with .NET 3.0 (Berkeley, CA: Apress, 2007). 
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{ 
 
    public enum CloneStyle { 
        Deep, 
        Shallow 
    } 
 
    [AttributeUsageAttribute(AttributeTargets.Method)] 
    public sealed class CloneStyleAttribute : Attribute 
    { 
        public CloneStyleAttribute( CloneStyle clonestyle ) { 
            this.clonestyle = clonestyle; 
        } 
 
        public CloneStyle Style { 
            get { 
                return clonestyle; 
            } 
        } 
 
        private CloneStyle clonestyle; 
    } 
     
} 

Using this attribute, you can tag your clone implementations such that they are explicit about what 
type of clone operation they perform. But keep in mind that, as shown, the attribute is only a marker and 
doesn’t enforce anything at run time. That’s not to say that you cannot create some other type that 
enforces a policy at run time based on attached custom attributes. Let’s revisit the Dimensions class and 
apply this attribute appropriately: 

using System; 
using CloneHelpers; 
 
public sealed class Dimensions : ICloneable 
{ 
    public Dimensions( long width, long height ) { 
        this.width = width; 
        this.height = height; 
    } 
 
    // ICloneable implementation 
    [CloneStyleAttribute(CloneStyle.Deep)] 
    public object Clone() { 
        return this.MemberwiseClone(); 
    } 
 
    private long width; 
    private long height; 
} 

There is no question as to how the Clone method is implemented, and consumers of this object will 
be well informed. 
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After this discussion, I’m sure you’ll agree that implementing something so seemingly innocuous as 
ICloneable is not so simple after all. 

■ Caution Avoid implementing ICloneable. As alarming as that sounds, Microsoft is actually making this 

recommendation. The problem stems from the fact that the contract doesn’t specify whether the copy should be 

deep or shallow. In fact, as noted in Krzysztof Cwalina and Brad Abrams’ Framework Design Guidelines: 

Conventions, Idioms, and Patterns for Reusable .NET Libraries (Boston: Addison-Wesley Professional, 2005), 

Cwalina searched the entire code base of the .NET Framework and couldn’t find any code that uses ICloneable. 

Had the Framework designers and developers been using this interface, they probably would have stumbled 

across the omission in the ICloneable specification and fixed it. 

However, this recommendation is not to say that you shouldn’t implement a Clone method if you need one. If your 

class needs a clone method, you can still implement one on the public contract of the class without actually 

implementing ICloneable. 

Is the Object Disposable? 
I’ve already covered the ins and outs of disposable objects, but let’s cover more of the effects they can 
have on your design. First, you need to determine whether your object should be disposable in the first 
place. Generally, if it manages some sort of unmanaged resource, such as a chunk of virtual memory (or 
any other native resource), the object needs to be disposable. Stated another way, if your object has a 
finalizer, then it most likely should be disposable as well. If your object contains other objects that are 
themselves disposable, then your object also should be disposable. For example, an object that holds a 
reference to a file opened with exclusive read/write privileges should be disposable so that the client of 
the object can control when the underlying resource is closed or cleaned up. 

An object is declared to be disposable if it implements the IDisposable interface. The IDisposable 
interface is another one of those simplistic-looking interfaces, but similar to ICloneable, that has a lot of 
issues lurking under the covers. Let’s have a look at the interface itself: 

public interface IDisposable 
{ 
   void Dispose(); 
} 

It looks simple enough. Just implement the Dispose method so that it cleans up the resource, and 
you’re done, right? Well, maybe. 

If you create a disposable object that contains other objects that are disposable, then in your 
Dispose implementation, you should call the Dispose method on the contained objects. Also, it’s 
perfectly valid for clients to call Dispose multiple times. So, instead of throwing an exception on 
subsequent calls, which is invalid based upon the documentation for IDisposable, you should simply do 
nothing. Therefore, you’ll need to maintain some sort of internal flag so that your code doesn’t explode if 
Dispose gets called multiple times. This internal flag can be used for another purpose, too. It is normally 
invalid to call a method on a disposed object, so in those cases, you can check the flag and if it indicates 
that the object has been disposed previously, you can throw an ObjectDisposedException. You can 
already see that the requirements for implementing IDisposable are mounting, and what appeared to be 
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a simple interface is becoming more and more difficult to implement properly. Let’s look at an example 
of implementing IDisposable.  

■ Note This example does not represent good unmanaged resource-management practices. It is purely for the 

sake of the IDisposable discussion. For reasons why, please reference the “Contained Execution Regions” and 

“Critical Finalizers and Safe Handle” sections of Chapter 7. 

The following code consists of a custom heap object that uses Win32 functions to manage a local 
heap: 

using System; 
using System.Runtime.InteropServices; 
 
public sealed class Win32Heap : IDisposable 
{ 
    [DllImport("kernel32.dll")] 
    static extern IntPtr HeapCreate(uint flOptions, UIntPtr dwInitialSize, 
                                    UIntPtr dwMaximumSize); 
 
    [DllImport("kernel32.dll")] 
    static extern bool HeapDestroy(IntPtr hHeap); 
 
    public Win32Heap() { 
        theHeap = HeapCreate( 0, (UIntPtr) 4096, UIntPtr.Zero ); 
    } 
 
    // IDisposable implementation 
    public void Dispose() { 
        if( !disposed ) { 
            HeapDestroy( theHeap ); 
            theHeap = IntPtr.Zero; 
            disposed = true; 
        } 
    } 
 
    private IntPtr theHeap; 
    private bool disposed = false; 
} 

This object doesn’t contain any objects that implement IDisposable, so you don’t need to iterate 
through the containment tree calling Dispose. 
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■ Caution It’s important to note that in the Disposable pattern, the implementation of the contained objects 

shapes the container object by forcing it to implement IDisposable if the contained objects implement 

IDisposable. It’s an inside-out relationship. 

Because the IDisposable pattern requires the user to call the Dispose method explicitly, the onus is 
thrown on the user to make sure that it is called, even in the face of exceptions. This makes the client 
code tedious to produce. For example, consider the following code, which opens a file for writing: 

using System; 
using System.IO; 
 
public sealed class WriteStuff 
{ 
    static void Main(){ 
        StreamWriter sw = new StreamWriter("Output.txt"); 
        try { 
            sw.WriteLine( "This is a test of the emergency dispose mechanism" ); 
        } 
        finally { 
            if( sw != null ) { 
                ((IDisposable)sw).Dispose(); 
            } 
        } 
    } 
} 

The C# designers recognized that writing code like this can be a royal pain, so at the same time the 
.NET Framework introduced the IDisposable interface, the C# designers overloaded the using keyword 
to provide a using statement to help out. In a using statement, you declare the disposable variables 
within a pair of parentheses and then, when the scope leaves the following code block, the objects are 
disposed of. Internally, the using statement does essentially the same thing as the try/finally construct. 
You can look at the generated IL code to prove this. The using statement definitely does help; however, 
the client of the object is still required to remember to use it in the first place. Let’s modify the previous 
example with a using statement: 

using System; 
using System.IO; 
 
public sealed class WriteStuff 
{ 
    static void Main(){ 
        using( StreamWriter sw = new StreamWriter("Output.txt") ) { 
            sw.WriteLine( "This is a test of the emergency dispose mechanism" ); 
        } 
    } 
} 
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Now, can you think of what happens if the client of your object forgets to call Dispose or doesn’t use 
a using statement? Clearly, there is the chance that you will leak the resource. And that’s why the 
Win32Heap example type needs to also implement a finalizer, as I describe in the next section. 

■ Note In the previous examples, I have not considered what would happen if multiple threads were to call 

Dispose concurrently. Although the situation seems diabolical, you must plan for the worst if you’re a developer of 

library code that unknown clients will consume. 

Does the Object Need a Finalizer? 
A finalizer is a method that you can implement on your class and that is called prior to the GC cleaning 
up your unused object from the heap. Let’s get one important concept clear up front: Finalizers are not 
destructors, nor should you view them as destructors. 

Destructors usually are associated with deterministic destruction of objects. Finalizers are 
associated with nondeterministic destruction of objects. Unfortunately, much of the confusion between 
finalizers and destructors comes from the fact that the C# language designers chose to map finalizers 
into the C# destructor syntax, which is identical to the C++ destructor syntax. In fact, you’ll find that it’s 
impossible to overload Object.Finalize explicitly in C#. You overload it implicitly by using the 
destructor syntax that you’re used to if you come from the C++ world. The only good thing that comes 
from C# implementing finalizers this way is that you never have to worry about calling the base class 
finalizer from derived classes. The compiler does that for you. 

Most of the time, when your object needs some sort of cleanup code (for example, an object that 
abstracts a file in the file system), it needs to happen deterministically; for example, when manipulating 
unmanaged resources. In other words, it needs to happen explicitly when the user is finished with the 
object and not when the GC finally gets around to disposing of the object. In these cases, you need to 
implement this functionality using the Disposable pattern by implementing the IDisposable interface. 
Don’t be fooled into thinking that the destructor you wrote for the class using the familiar destructor 
syntax will get called when the object goes out of scope as it does in C++. In fact, if you think about it, 
you’ll see that it is extremely rare that you’ll need to implement a finalizer. It’s difficult to think of a 
cleanup task that you cannot do using IDisposable. 

■ Note In reality, it’s rare that you’ll ever need to write a finalizer. Most of the time, you should implement the 

Disposable pattern to do any resource cleanup code in your object. However, finalizers can be useful for cleaning 

up unmanaged resources in a guaranteed way—that is, when the user has forgotten to call 

IDisposable.Dispose. 

In a perfect world, you could simply implement all your typical destructor code in the 
IDisposable.Dispose method. However, there is one serious side effect of the C# language’s not 
supporting deterministic destruction. The C# compiler doesn’t call IDisposable.Dispose on your object 
automatically when it goes out of scope. C#, as I have mentioned previously, throws the onus on the user 
of the object to call IDisposable.Dispose. The C# language does make it easier to guarantee this behavior 
in the face of exceptions by overloading the using keyword, but it still requires the client of your object 
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not to forget the using keyword in the first place. This is important to keep in mind and it’s what can ruin 
your “perfect world” dream. 

We don’t live in a perfect world, so in order to clean up directly held resources reliably, it’s wise for 
any objects that implement the IDisposable interface to also implement a finalizer that merely defers to 
the Dispose method.3 This way, you can catch those errant mistakes where users forget to use the 
Disposable pattern and don’t dispose of the object properly. Of course, the cleanup of undisposed 
objects will now happen at the discretion of the GC, but at least it will happen. Beware; the GC calls the 
finalizer for the objects being cleaned up from a separate thread. Now, all of a sudden, you might have to 
worry about threading issues in your disposable objects. It’s unlikely that threading issues will bite you 
during finalization, because, in theory, the object being finalized is not being referenced anywhere. 
However, it could become a factor depending on what you do in your Dispose method. For example, if 
your Dispose method uses an external, possibly unmanaged, object to get work done that another entity 
might hold a reference to, then that object needs to be thread-hot—that is, it must work reliably in 
multithreaded environments. It’s better to be safe than sorry and consider threading issues when you 
implement a finalizer. 

There is one more important thing to consider that I touched on in a previous chapter. When you 
call your Dispose method via the finalizer, you should not use reference objects contained in fields 
within this object. It might not sound intuitive at first, but you must realize that there is no guaranteed 
ordering of how objects are finalized. The objects in the fields of your object could have been finalized 
before your finalizer runs. Therefore, it would elicit the dreaded undefined behavior if you were to use 
them and they just happened to be destroyed already. I think you’ll agree that could be a tough bug to 
find. Now, it’s becoming clear that finalizers can drag you into a land of many pitfalls. 

■ Caution Be wary of any object used during finalization, even if it’s not a field of your object being finalized, 

because it, too, might already be marked for finalization and might or might not have been finalized already. Using 

object references within a finalizer is a slippery slope indeed. In fact, many schools of thought recommend against 

using any external objects within a finalizer. But the fact is that any time an object that supports a finalizer is 

moved to the finalization queue in the GC, all objects in the object graph are rooted and reachable, whether they 

are finalizable or not. So if your finalizable object contains a private, nonfinalizable object, then you can touch the 

private contained object in the containing type’s finalizer because you know it’s still alive, and it cannot have been 

finalized before your object because it has no finalizer. However, see the next Note in the text! 

Let’s revisit the Win32Heap example from the previous section and modify it with a finalizer. Follow 
the recommended Disposable pattern, and see how it changes: 

using System; 
using System.Runtime.InteropServices; 
 

                                                 

 
3 Objects that implement IDisposable only because they are forced to due to contained types that implement 
IDisposable should not have a finalizer. They don’t directly manage resources, and the finalizer will impose undue 
stress on the finalizer thread and the GC. 
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public class Win32Heap : IDisposable 
{ 
    [DllImport("kernel32.dll")] 
    static extern IntPtr HeapCreate(uint flOptions, UIntPtr dwInitialSize, 
                                    UIntPtr dwMaximumSize); 
 
    [DllImport("kernel32.dll")] 
    static extern bool HeapDestroy(IntPtr hHeap); 
 
    public Win32Heap() { 
        theHeap = HeapCreate( 0, (UIntPtr) 4096, UIntPtr.Zero ); 
    } 
 
    // IDisposable implementation 
    protected virtual void Dispose( bool disposing ) { 
        if( !disposed ) { 
            if( disposing ) { 
                // It's ok to use any internal objects here. This class happens 
                //  not to have any, though. 
            } 
 
            // If using objects that you know do still exist, such as objects 
            // that implement the Singleton pattern, it is important to make 
            // sure those objects are thread-safe. 
 
            HeapDestroy( theHeap ); 
            theHeap = IntPtr.Zero; 
            disposed = true; 
        } 
    } 
 
    public void Dispose() { 
        Dispose( true ); 
        GC.SuppressFinalize( this ); 
    } 
 
    ~Win32Heap() { 
        Dispose( false ); 
    } 
 
    private IntPtr theHeap; 
    private bool disposed = false; 
} 

Let’s analyze the changes made to support a finalizer. First, notice that I’ve added the finalizer using 
the familiar destructor syntax.4 Also, notice that I’ve added a second level of indirection in the Dispose 
implementation. This is so you know whether the private Dispose method was called from a call to 
Dispose or through the finalizer. Also, in this example, Dispose(bool) is implemented virtually, so that 
                                                 

 
4 But keep telling yourself that it’s not a destructor! 
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any deriving type merely has to override this method to modify the dispose behavior. If the Win32Heap 
class was marked sealed, you could change that method from protected to private and remove the 
virtual keyword. As I mentioned before, you cannot reliably use subobjects if your Dispose method was 
called from the finalizer. 

■ Note Some people take the approach that all object references are off limits inside the Dispose method that is 

called by the finalizer. There’s no reason you cannot use objects that you know to be alive and well. However, 

beware if the finalizer is called as a result of the application domain shutting down; objects that you assume to be 

alive might not actually be alive. In reality, it’s almost impossible to determine if an object reference is still valid in 

100% of the cases. So, it’s best just to not reference any reference types within the finalization stage if you can 

avoid it. 

The Dispose method features a performance boost; notice the call to GC.SuppressFinalize. The 
finalizer of this object merely calls the private Dispose method, and you know that if the public Dispose 
method gets called because the user remembered to do so, the finalizer doesn’t need to be invoked any 
longer. So you can tell the GC to remove the object instance from the finalization queue when the 
IDisposable.Dispose method is called. This optimization is more than trivial once you consider the fact 
that objects that implement a finalizer live longer than those that don’t. When the GC goes through the 
heap looking for dead objects to collect, it normally just compacts the heap and reclaims their memory. 
However, if an object has a finalizer, instead of reclaiming the memory immediately, the GC moves the 
object over to a finalization list that gets handled by the separate finalization thread. This forces the 
object to be promoted to the next GC generation if it is not already in the highest generation. Once the 
finalization thread has completed its job on the object, the object is remarked for deletion, and the GC 
reclaims the space during a subsequent pass. That’s why objects that implement a finalizer live longer 
than those that don’t. If your objects eat up lots of heap memory, or your system creates lots of those 
objects, finalization starts to become a huge factor. Not only does it make the GC inefficient, but it also 
chews up processor time in the finalization thread. This is why you suppress finalization inside Dispose if 
possible. 

■ Note When an object has a finalizer, it is placed on an internal CLR queue to keep track of this fact, and clearly 

GC.SuppressFinalize affects that status. During normal execution, as previously mentioned, you cannot 

guarantee that other object references are reachable. However, during application shutdown, the finalizer thread 

actually finalizes the objects right off of this internal finalizable queue, so those objects are reachable and can be 

referenced in finalizers. You can determine whether this is the case by using Environment.HasShutdownStarted 

or AppDomain.IsFinalizingForUnload. However, just because you can do it does not mean that you should do 

so without careful consideration. For example, even though the object is reachable, it might have been finalized 

prior to you accessing it. Don’t be surprised if this behavior changes in future versions of the CLR. 
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Let’s consider the performance impact of finalizers on the GC a little more closely. The CLR GC is 
implemented as a generational GC. This means that allocated objects that live in higher generations are 
assumed to live longer than those that live in lower generations and are collected less frequently than the 
generation below them. The fine details of the GC’s collection algorithm are beyond the scope of this 
book. However, it’s beneficial to touch upon them at a high level. For example, the GC normally 
attempts to allocate any new objects in generation 0. Moreover, the GC assumes that objects in 
generation 0 will live a relatively short lifespan. So when the GC attempts to allocate space for an object, 
and it sees that the heap must be compacted, it releases space held by dead generation 0 objects, and 
objects that are not dead get promoted to generation 1 during the compaction. Upon completion of this 
stage, if the GC is able to find enough space for the allocation, it stops compacting the heap. It won’t 
attempt to compact generation 1 unless it needs even more space or it sees that the generation 1 heap is 
full and likely needs to be compacted. It will iterate through all the generations as necessary. However, 
during the entire pass of the garbage collector, an object can be promoted only one level. So, if an object 
is promoted from generation 0 to generation 1 during a collection, and the GC must subsequently 
continue compacting generation 1 in the same collection pass, the object just promoted stays in 
generation 1. Currently, the CLR heap consists of only three generations. So if an object lives in 
generation 2, it cannot be promoted to a higher generation. The CLR also contains a special heap for 
large object allocation, which in the current release contains objects greater than 80 KB in size. That 
number might change in future releases, though, so don’t rely on it staying static. 

Now, consider what happens when a generation 0 object gets promoted to generation 1 during a 
compaction. Even if all root references to an object in generation 1 are out of scope, the space might not 
be reclaimed for a while because the GC will not compact generation 1 very often. 

Objects that implement finalizers get put on what is called the freachable queue during a GC pass. 
That reference in the freachable queue counts as a root reference. Therefore, the object will be promoted 
to generation 1 if it currently lives in generation 0. But you already know that the object is dying. In fact, 
once the freachable queue is drained, the object most likely will be dead unless it is resurrected during 
the finalization process. So, there’s the rub. This object with the finalizer is dying, but because it was put 
on the freachable queue and thus promoted to a higher generation, its shell will likely lie around rotting 
in the GC until a higher-generation compaction occurs. 

For this reason, it’s important that you implement a finalizer only if you have to. Typically, this 
means implementing a finalizer only if your object directly contains an unmanaged resource. For 
example, consider the System.IO.FileStream type through which one manipulates operating system 
files. FileStream contains a handle to an unmanaged resource, specifically an operating system file 
handle, and therefore must have a finalizer in case one forgets to call Dispose or Close on the FileStream 
instance. However, if you implement a type that contains a single instance of FileStream, you should 
consider the following: 

• Your containing type should implement IDisposable because it contains a 
FileStream instance, which implements IDisposable. Remember that IDisposable 
forces an inside-out requirement. After all, if your type contains a private 
FileStream instance, unless you implement IDisposable as well, clients of your 
type cannot control when the FileStream closes its underlying unmanaged file 
handle. 

• Your containing type should not implement a finalizer because the contained 
instance of FileStream will close the underlying operating system file handle. Your 
containing type should implement a finalizer only if it directly contains an 
unmanaged resource. 

I want to focus a little more on the fact that Dispose is never called automatically and how your 
finalizer can help point out potential efficiency problems to your client. Let’s suppose that you create an 
object that allocates a nontrivial chunk of unmanaged system resources. And suppose that the client of 
your object has created a web site that takes many hits per minute, and the client creates a new instance 
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of your object with each hit. The client’s system’s performance will degrade significantly if the client 
forgets to dispose of these objects in a timely manner before all references to the object are gone. Of 
course, if you implement a finalizer as shown previously, the object will eventually be disposed of. 
However, disposal happens only when the GC feels it necessary, so resources will probably run dry and 
cripple the system. Moreover, failing to call Dispose will likely result in more finalization, which will 
cripple the GC even more. Client code can force GC collection through the GC.Collect method. 
However, it is strongly recommended that you never call it because it interferes with the GC’s 
algorithms. The GC knows how to manage its memory better than you do 99.9% of the time. 

It would be nice if you could inform the clients of your object when they forget to call Dispose in 
their debug builds. Well, in fact, you can log an error whenever the finalizer for your object runs and it 
notices that the object has not been disposed of properly. You can even point clients to the exact 
location of the object creation by storing off a stack trace at the point of creation. That way, they know 
which line of code created the offending instance. Let’s modify the Win32Heap example with this 
approach: 

using System; 
using System.Runtime.InteropServices; 
using System.Diagnostics; 
 
public sealed class Win32Heap : IDisposable 
{ 
    [DllImport("kernel32.dll")] 
    static extern IntPtr HeapCreate(uint flOptions, 
                                    UIntPtr dwInitialSize, 
                                    UIntPtr dwMaximumSize); 
 
    [DllImport("kernel32.dll")] 
    static extern bool HeapDestroy(IntPtr hHeap); 
 
    public Win32Heap() { 
        creationStackTrace = new StackTrace(1, true); 
 
        theHeap = HeapCreate( 0, (UIntPtr) 4096, UIntPtr.Zero ); 
    } 
 
    // IDisposable implementation 
    private void Dispose( bool disposing ) { 
      if( !disposed ) { 
         if( disposing ) { 
            // It's ok to use any internal objects here.  This 
            // class happens not to have any, though. 
         } else { 
            // OOPS!  We're finalizing this object and it has not 
            // been disposed.  Let's let the user know about it if 
            // the app domain is not shutting down. 
            AppDomain currentDomain = AppDomain.CurrentDomain; 
            if( !currentDomain.IsFinalizingForUnload() && 
               !Environment.HasShutdownStarted ) { 
               Console.WriteLine( 
                            "Failed to dispose of object!!!" ); 
               Console.WriteLine( "Object allocated at:" ); 
               for( int i = 0; 
                    i < creationStackTrace.FrameCount; 
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                    ++i ) { 
                  StackFrame frame = 
                      creationStackTrace.GetFrame(i); 
                  Console.WriteLine( "   {0}", 
                                     frame.ToString() ); 
               } 
            } 
         } 
 
         // If using objects that you know do still exist, such 
         // as objects that implement the Singleton pattern, it 
         // is important to make sure those objects are thread- 
         // safe. 
 
         HeapDestroy( theHeap ); 
         theHeap = IntPtr.Zero; 
         disposed = true; 
      } 
    } 
 
    public void Dispose() { 
        Dispose( true ); 
        GC.SuppressFinalize( this ); 
    } 
 
    ~Win32Heap() { 
        Dispose( false ); 
    } 
 
    private IntPtr theHeap; 
    private bool disposed = false; 
    private StackTrace creationStackTrace; 
} 
 
public sealed class EntryPoint 
{ 
    static void Main() 
    { 
        Win32Heap heap = new Win32Heap(); 
        heap = null; 
        GC.Collect(); 
        GC.WaitForPendingFinalizers(); 
    } 
} 

In the Main method, notice that I allocate a new Win32Heap object, and then I immediately force it to 
be finalized. Because the object was not disposed, this triggers the stack dumping code inside the private 
Dispose method. Because you probably don’t care about objects being finalized as a result of the app 
domain getting unloaded, I wrapped the stack-dumping code inside a block conditional on the result of 
AppDomain.IsFinalizingForUnload && Environment.HasShutdownStarted. Had I called Dispose prior to 
setting the reference to null in Main, the stack trace would not be sent to the console. Clients of your 
library might thank you for pointing out undisposed objects. I know I would. 
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■ Note When you compile the previous example, you’ll get much more meaningful and readable output if you 

compile with the /debug+ compiler switch because more symbol and line number information will be available at 

run time as a result. You might even want to consider turning on such reporting only in debug and testing builds. 

After this discussion, I hope, you can see the perils of implementing finalizers. They are potential 
tremendous resource sinks because they make objects live longer, and yet they are hidden behind the 
innocuous syntax of destructors. The one redeeming quality of finalizers is the ability to point out when 
objects are not disposed of properly, but I advise using that technique only in debug builds. Be aware of 
the efficiency implications you impose on your system when you implement a finalizer on an object. I 
recommend that you avoid writing a finalizer if at all possible. 

Developers familiar with finalizers are also familiar with the cost incurred by the finalization thread 
that walks through the freachable queue calling the objects’ finalizers. However, many more hidden 
costs are easy to miss. For example, the creation of finalizable objects takes a little bit longer due to the 
bookkeeping that the CLR must maintain to denote the object as finalizable. Of course, for a single 
object instance, this cost is extremely minimal, but if you’re creating tens of thousands of small 
finalizable objects very quickly, the cost will add up. Also, some incarnations of the CLR create only one 
finalization thread, so if you’re running code on a multiprocessor system and several processors are 
allocating finalizable objects quicker than the finalization thread can clean them up, you’ll have a 
resource problem. What’s worse is if you can imagine what would happen if one of your finalizers 
blocked the thread for a long period of time or indefinitely. Additionally, even though you can introduce 
dependencies between finalizable objects using some crafty techniques, be aware that the CLR team is 
actively considering moving finalization to the process thread pool rather than using a single finalization 
thread. That would mean that those crafty finalization techniques would need to be thread-safe. Be 
careful out there, and avoid finalizers if at all possible. 

What Does Equality Mean for This Object? 
Object.Equals is the virtual method that you call to determine, in the most general way, if two objects 
are equivalent. On the surface, overriding the Object.Equals method might seem trivial. However, 
beware that it is yet another one of those simplistic-looking things that can turn into a semantic hair 
ball. The key to understanding Object.Equals is to understand that there are generally two semantic 
meanings of equivalence in the CLR. The default meaning of equivalence for reference types—a.k.a. 
objects—is identity equivalence. This means that two separate references are considered equal if they 
both reference the same object instance on the heap. So, with identity equality, even if you have two 
references each referencing different objects that just happen to have completely identical internal 
states, Object.Equals will return false for those. 

The other form of equivalence in the CLR is that of value equality. Value equality is the default 
equivalence for value types, or structs, in C#. The default version of Equals, which is provided by the 
override of Equals inside the ValueType class that all value types derive from, sometimes uses reflection 
to iterate over the internal fields of two values, comparing them for value equality. With two semantic 
meanings of Equals in the CLR possible, some confusion can come from the fact that both value types 
and reference types have different default semantic meanings for Equals. In this section, I’ll concentrate 
on implementing Object.Equals for reference types. I’ll save value types for a later section. 
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Reference Types and Identity Equality 
What does it mean to say that a type is a reference type? Basically, it means that every variable of that 
type that you manipulate is actually a pointer to the actual object on the heap. When you make a copy of 
this reference, you get another reference that points to the same object. Consider the following code: 

public class EntryPoint 
{ 
   static void Main() 
   { 
      object referenceA = new System.Object(); 
      object referenceB = referenceA; 
   } 
} 

In Main, I create a new instance of type System.Object, and then I immediately make a copy of the 
reference. What I end up with is something that resembles the diagram in Figure 13-1. 

 

Figure 13-1. Reference variables 

In the CLR, the variables that represent the references are actually value types that embody a 
storage location (for the pointer to the object they represent) and an associated type. However, note that 
once a reference is copied, the actual object pointed to is not copied. Instead, you have two references 
that refer to the same object. Operations on the object performed through one reference will be visible to 
the client using the other reference. 

Now, let’s consider what it means to compare these references. What does equality mean between 
two reference variables? The answer is, it depends on what your needs are and how you define equality. 
By default, equality of reference variables is meant to be an identity comparison. What that means is that 
two reference variables are equal if they refer to the same object, as in Figure 13-1. Again, this referential 
equality, or identity, is the default behavior of equality between two references to a heap-based object. 

From the client code standpoint, you have to be careful about how you compare two object 
references for equality. Consider the following code: 

public class EntryPoint 
{ 
   static bool TestForEquality( object obj1, object obj2 ) 
   { 
      return obj1.Equals( obj2 ); 
   } 
 
   static void Main() 
   { 
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      object obj1 = new System.Object(); 
      object obj2 = null; 
 
      System.Console.WriteLine( "obj1 == obj2 is {0}", 
                                TestForEquality(obj1, obj2) ); 
   } 
} 

Here I create an instance of System.Object, and I want to find out if the variables obj1 and obj2 are 
equal. Because I’m comparing references, the equality test determines if they are pointing to the same 
object instance. From looking at the code, you can see that the obvious result is that obj1 != obj2 
because obj2 is null. This is expected. However, consider what would happen if you swapped the order 
of the parameters in the call to TestForEquality. You would quickly find that your program crashes with 
an unhandled exception where TestForInequality tries to call Equals on a null reference. Therefore, you 
should modify the code to account for this: 

public class EntryPoint 
{ 
   static bool TestForEquality( object obj1, object obj2 ) 
   { 
      if( obj1 == null && obj2 == null ) { 
         return true; 
      } 
 
      if( obj1 == null ) 
      { 
         return false; 
      } 
 
      return obj1.Equals( obj2 ); 
   } 
 
   static void Main() 
   { 
      object obj1 = new System.Object(); 
      object obj2 = null; 
 
      System.Console.WriteLine( "obj1 == obj2 is {0}", 
                                TestForEquality(obj2, obj1) ); 
      System.Console.WriteLine( "null == null is {0}", 
                                TestForEquality(null, null) ); 
   } 
} 

Now, the code can swap the order of the arguments in the call to TestForEquality, and you get the 
expected result. Notice that I also put a check in there to return the proper result if both arguments are 
null. Now, TestForEquality is complete. It sure seems like a lot of work to test two references for 
equality. Well, the designers of the .NET Framework Standard Library recognized this problem and 
introduced the static version of Object.Equals that does this exact comparison. Thankfully, as long as 
you call the static version of Object.Equals, you don’t have to worry about creating the code in 
TestForEquality in this example. 
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You’ve seen how equality tests on references to objects test identity by default. However, there 
might be times when an identity equivalence test makes no sense. Consider an immutable object that 
represents a complex number: 

public class ComplexNumber 
{ 
   public ComplexNumber( int real, int imaginary ) 
   { 
      this.real = real; 
      this.imaginary = imaginary; 
   } 
 
   private int real; 
   private int imaginary; 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
      ComplexNumber referenceA = new ComplexNumber( 1, 2 ); 
      ComplexNumber referenceB = new ComplexNumber( 1, 2 ); 
 
      System.Console.WriteLine( "Result of Equality is {0}", 
                                referenceA == referenceB ); 
   } 
} 

The output from that code looks like this: 

Result of Equality is False 

Figure 13-2 shows the diagram representing the in-memory layout of the references. 

 

Figure 13-2. References to ComplexNumber 

This is the expected result based upon the default meaning of equality between references. 
However, this is hardly intuitive to the user of these ComplexNumber objects. It would make better sense 
for the comparison of the two references in the diagram to return true because the values of the two 
objects are the same. To achieve such a result, you need to provide a custom implementation of equality 
for these objects. I’ll show how to do that shortly, but first, let’s quickly discuss what value equality 
means. 
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Value Equality 
From the preceding section, it should be obvious what value equality means. Equality of two values is 
true when the actual values of the fields representing the state of the object or value are equivalent. In 
the ComplexNumber example from the previous section, value equality is true when the values for the real 
and imaginary fields are equivalent between two instances of the class. 

In the CLR, and thus in C#, this is exactly what equality means for value types defined as structs. 
Value types derive from System.ValueType, and System.ValueType overrides the Object.Equals method. 
ValueType.Equals sometimes uses reflection to iterate through the fields of the value type while 
comparing the fields. This generic implementation will work for all value types. However, it is much 
more efficient if you override the Equals method in your struct types and compare the fields directly. 
Although using reflection to accomplish this task is a generally applicable approach, it’s very inefficient. 

■ Note Before the implementation of ValueType.Equals resorts to using reflection, it makes a couple of quick 

checks. If the two types being compared are different, it fails the equality. If they are the same type, it first checks 

to see if the types in the contained fields are simple data types that can be bitwise-compared. If so, the entire type 

can be bitwise-compared. Failing both of these conditions, the implementation then resorts to using reflection. 

Because the default implementation of ValueType.Equals iterates over the value’s contained fields using 

reflection, it determines the equality of those individual fields by deferring to the implementation of 

Object.Equals on those objects. Therefore, if your value type contains a reference type field, you might be in for 

a surprise, depending on the semantics of the Equals method implemented on that reference type. Generally, 

containing reference types within a value type is not recommended. 

Overriding Object.Equals for Reference Types 
Many times, you might need to override the meaning of equivalence for an object. You might want 
equivalence for your reference type to be value equality as opposed to referential equality, or identity. 
Or, as you’ll see in a later section, you might have a custom value type where you want to override the 
default Equals method provided by System.ValueType in order to make the operation more efficient. No 
matter what your reason for overriding Equals, you must follow several rules: 

• x.Equals(x) == true. This is the reflexive property of equality. 

• x.Equals(y) == y.Equals(x). This is the symmetric property of equality. 

• x.Equals(y) && y.Equals(z) implies x.Equals(z) == true. This is the transitive 
property of equality. 

• x.Equals(y) must return the same result as long as the internal state of x and y has 
not changed. 

• x.Equals(null) == false for all x that are not null. 

• Equals must not throw exceptions. 
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An Equals implementation should adhere to these hard-and-fast rules. You should follow other 
suggested guidelines in order to make the Equals implementations on your classes more robust. 

As already discussed, the default version of Object.Equals inherited by classes tests for referential 
equality, otherwise known as identity. However, in cases like the example using ComplexNumber, such a 
test is not intuitive. It would be natural and expected that instances of such a type are compared on a 
field-by-field basis. It is for this very reason that you should override Object.Equals for these types of 
classes that behave with value semantics. 

Let’s revisit the ComplexNumber example once again to see how you can do this: 

public class ComplexNumber 
{ 
   public ComplexNumber( int real, int imaginary ) 
   { 
      this.real = real; 
      this.imaginary = imaginary; 
   } 
 
   public override bool Equals( object obj ) 
   { 
      ComplexNumber other = obj as ComplexNumber; 
 
      if( other == null ) 
      { 
         return false; 
      } 
 
      return (this.real == other.real) && 
             (this.imaginary == other.imaginary); 
   } 
 
   public override int GetHashCode() 
   { 
      return (int) real ^ (int) imaginary; 
   } 
 
   public static bool operator==( ComplexNumber me, ComplexNumber other ) 
   { 
      return Equals( me, other ); 
   } 
 
   public static bool operator!=( ComplexNumber me, ComplexNumber other ) 
   { 
      return Equals( me, other ); 
   } 
 
   private double real; 
   private double imaginary; 
} 
 
public class EntryPoint 
{ 
   static void Main() 
   { 
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      ComplexNumber referenceA = new ComplexNumber( 1, 2 ); 
      ComplexNumber referenceB = new ComplexNumber( 1, 2 ); 
 
      System.Console.WriteLine( "Result of Equality is {0}", 
                                referenceA == referenceB ); 
 
      // If we really want referential equality. 
      System.Console.WriteLine( "Identity of references is {0}", 
                                (object) referenceA == (object) referenceB ); 
      System.Console.WriteLine( "Identity of references is {0}", 
                                ReferenceEquals(referenceA, referenceB) ); 
   } 
} 

In this example, you can see that the implementation of Equals is pretty straightforward, except that 
I do have to test some conditions. I must make sure that the object reference I’m comparing to is both 
not null and does, in fact, reference an instance of ComplexNumber. Once I get that far, I can simply test 
the fields of the two references to make sure they are equal. You could introduce an optimization and 
compare this with other in Equals. If they’re referencing the same object, you could return true without 
comparing the fields. However, comparing the two fields is a trivial amount of work in this case, so I’ll 
skip the identity test. 

In the majority of cases, you won’t need to override Object.Equals for your reference type objects. It 
is recommended that your objects treat equivalence using identity comparisons, which is what you get 
for free from Object.Equals. However, there are times when it makes sense to override Equals for an 
object. For example, if your object represents something that naturally feels like a value and is 
immutable, such as a complex number or the System.String class, then it could very well make sense to 
override Equals in order to give that object’s implementation of Equals() value equality semantics. 

In many cases, when overriding virtual methods in derived classes, such as Object.Equals, it makes 
sense to call the base class implementation at some point. However, if your object derives directly from 
System.Object, it makes no sense to do this. This is because Object.Equals likely carries a different 
semantic meaning from the semantics of your override. Remember, the only reason to override Equals 
for objects is to change the semantic meaning from identity to value equality. Also, you don’t want to 
mix the two semantics together. But there’s an ugly twist to this story. You do need to call the base class 
version of Equals if your class derives from a class other than System.Object and that other class does 
override Equals to provide the same semantic meaning you intend in your derived type. This is because 
the most likely reason a base class overrode Object.Equals is to switch to value semantics. This means 
that you must have intimate knowledge of your base class if you plan on overriding Object.Equals, so 
that you will know whether to call the base version. That’s the ugly truth about overriding Object.Equals 
for reference types. 

Sometimes, even when you’re dealing with reference types, you really do want to test for referential 
equality, no matter what. You cannot always rely on the Equals method for the object to determine the 
referential equality, so you must use other means because the method can be overridden as in the 
ComplexNumber example. 

Thankfully, you have two ways to handle this job, and you can see them both at the end of the Main 
method in the previous code sample. The C# compiler guarantees that if you apply the == operator to 
two references of type Object, you will always get back referential equality. Also, System.Object supplies 
a static method named ReferenceEquals that takes two reference parameters and returns true if the 
identity test holds true. Either way you choose to go, the result is the same. 

If you do change the semantic meaning of Equals for an object, it is best to document this fact 
clearly for the clients of your object. If you override Equals for a class, I would strongly recommend that 
you tag its semantic meaning with a custom attribute, similar to the technique introduced for 
iCloneable implementations previously. This way, people who derive from your class and want to 
change the semantic meaning of Equals can quickly determine if they should call your implementation 
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in the process. For maximum efficiency, the custom attribute should serve a documentation purpose. 
Although it’s possible to look for such an attribute at run time, it would be very inefficient. 

■ Note You should never throw exceptions from an implementation of Object.Equals. Instead of throwing an 

exception, return false as the result instead. 

Throughout this entire discussion, I have purposely avoided talking about the equality operators 
because it is beneficial to consider them as an extra layer in addition to Object.Equals. Support of 
operator overloading is not a requirement for languages to be CLS-compliant. Therefore, not all 
languages that target the CLR support them thoroughly. Visual Basic is one language that has taken a 
while to support operator overloading, and it only started supporting it fully in Visual Basic 2005. Visual 
Basic .NET 2003 supports calling overloaded operators on objects defined in languages that support 
overloaded operators, but they must be called through the special function name generated for the 
operator. For example, operator== is implemented with the name op_Equality in the generated IL code. 
The best approach is to implement Object.Equals as appropriate and base any operator== or operator!= 
implementations on Equals while only providing them as a convenience for languages that support 
them. 

■ Note Consider implementing IEquatable<T> on your type to get a type-safe version of Equals. This is 

especially important for value types, because type-specific versions of methods avoid unnecessary boxing. 

If You Override Equals, Override GetHashCode Too 
GetHashCode is called when objects are used as keys of a hash table. When a hash table searches for an 
entry after given a key to look for, it asks the key for its hash code and then uses that to identify which 
hash bucket the key lives in. Once it finds the bucket, it can then see if that key is in the bucket. 
Theoretically, the search for the bucket should be quick, and the buckets should have very few keys in 
them. This occurs if your GetHashCode method returns a reasonably unique value for instances of your 
object that support value equivalence semantics. 

Given the previous discussion, you can see that it would be very bad if your hash code algorithm 
could return a different value between two instances that contain values that are equivalent. In such a 
case, the hash table might fail to find the bucket your key is in. For this reason, it is imperative that you 
override GetHashCode if you override Equals for an object. In fact, if you override Equals and not 
GetHashCode, the C# compiler will let you know about it with a friendly warning. And because we’re all 
diligent with regard to building our release code with zero warnings, we should take the compiler’s word 
seriously. 
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■ Note The previous discussion should be plenty of evidence that any type used as a hash table key should be 

immutable. After all, the GetHashCode value is normally computed based upon the state of the object itself. If that 

state changes, the GetHashCode result will likely change with it. 

GetHashCode implementations should adhere to the following rules: 

• If, for two instances, x.Equals(y) is true, then x.GetHashCode() == 
y.GetHashCode(). 

• Hash codes generated by GetHashCode need not be unique. 

• GetHashCode is not permitted to throw exceptions. 

If two instances return the same hash code value, they must be further compared with Equals to 
determine whether they’re equivalent. Incidentally, if your GetHashCode method is very efficient, you can 
base the inequality code path of your operator!= and operator== implementations on it because 
different hash codes for objects of the same type imply inequality. Implementing the operators this way 
can be more efficient in some cases, but it all depends on the efficiency of your GetHashCode 
implementation and the complexity of your Equals method. In some cases, when using this technique, 
the calls to the operators could be less efficient than just calling Equals, but in other cases, they can be 
remarkably more efficient. For example, consider an object that models a multidimensional point in 
space. Suppose that the number of dimensions (rank) of this point could easily approach into the 
hundreds. Internally, you could represent the dimensions of the point by using an array of integers. Say 
you want to implement the GetHashCode method by computing a CRC32 on the dimension points in the 
array. This also implies that this Point type is immutable. This GetHashCode call could potentially be 
expensive if you compute the CRC32 each time it is called. Therefore, it might be wise to precompute the 
hash and store it in the object. In such a case, you could write the equality operators as shown in the 
following code: 

sealed public class Point 
{ 
    // other methods removed for clarity 
     
    public override bool Equals( object other ) { 
        bool result = false; 
        Point that = other as Point; 
        if( that != null ) { 
            if( this.coordinates.Length != 
                that.coordinates.Length ) { 
                result = false; 
            } else { 
                result = true; 
                for( long i = 0; 
                     i < this.coordinates.Length; 
                     ++i ) { 
                    if( this.coordinates[i] != 
                        that.coordinates[i] ) { 
                        result = false; 
                        break; 
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                    } 
                } 
            } 
        } 
 
        return result; 
    } 
 
    public override int GetHashCode() { 
        return precomputedHash; 
    } 
 
    public static bool operator ==( Point pt1, Point pt2 ) { 
        if( pt1.GetHashCode() != pt2.GetHashCode() ) { 
            return false; 
        } else { 
            return Object.Equals( pt1, pt2 ); 
        } 
    } 
 
    public static bool operator !=( Point pt1, Point pt2 ) { 
        if( pt1.GetHashCode() != pt2.GetHashCode() ) { 
            return true; 
        } else { 
            return !Object.Equals( pt1, pt2 ); 
        } 
    } 
 
    private float[] coordinates; 
    private int precomputedHash; 
} 

In this example, as long as the precomputed hash is sufficiently unique, the overloaded operators 
will execute quickly in some cases. In the worst case, one more comparison between two integers—the 
hash values—is executed along with the function calls to acquire them. If the call to Equals is expensive, 
then this optimization will return some gains on a lot of the comparisons. If the call to Equals is not 
expensive, then this technique could add overhead and make the code less efficient. It’s best to apply the 
old adage that premature optimization is poor optimization. You should only apply such an 
optimization after a profiler has pointed you in this direction and if you’re sure it will help. 

Object.GetHashCode exists because the developers of the Standard Library felt it would be 
convenient to be able to use any object as a key to a hash table. The fact is, not all objects are good 
candidates for hash keys. Usually, it’s best to use immutable types as hash keys. A good example of an 
immutable type in the Standard Library is System.String. Once such an object is created, you can never 
change it. Therefore, calling GetHashCode on a string instance is guaranteed to always return the same 
value for the same string instance. It becomes more difficult to generate hash codes for objects that are 
mutable. In those cases, it’s best to base your GetHashCode implementation on calculations performed on 
immutable fields inside the mutable object. 

Detailing algorithms for generating hash codes is outside the scope of this book. I recommend that 
you reference Donald E. Knuth’s The Art of Computer Programming, Volume 3: Sorting and Searching, 
Second Edition (Boston: Addison-Wesley Professional, 1998). For the sake of example, suppose that you 
want to implement GetHashCode for a ComplexNumber type. One solution is to compute the hash based on 
the magnitude of the complex number, as in the following example: 
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using System; 
 
public sealed class ComplexNumber 
{ 
    public ComplexNumber( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    public override bool Equals( object other ) { 
        bool result = false; 
        ComplexNumber that = other as ComplexNumber; 
        if( that != null ) { 
            result = (this.real == that.real) && 
                     (this.imaginary == that.imaginary); 
        } 
 
        return result; 
    } 
 
    public override int GetHashCode() { 
        return (int) Math.Sqrt( Math.Pow(this.real, 2) * 
                                Math.Pow(this.imaginary, 2) ); 
    } 
 
    public static bool operator ==( ComplexNumber num1, ComplexNumber num2 ) { 
        return Object.Equals(num1, num2); 
    } 
 
    public static bool operator !=( ComplexNumber num1, ComplexNumber num2 ) { 
        return !Object.Equals(num1, num2); 
    } 
 
    // Other methods removed for clarity 
 
    private readonly double real; 
    private readonly double imaginary; 
} 

The GetHashCode algorithm is not meant as a highly efficient example. In fact, it’s not efficient at all 
because it is based on nontrivial floating-point mathematical routines. Also, the rounding could 
potentially cause many complex numbers to fall within the same bucket. In that case, the efficiency of 
the hash table would degrade. I’ll leave a more efficient algorithm as an exercise to the reader. Notice 
that I don’t use the GetHashCode method to implement operator!= because of the efficiency concerns. 
But more importantly, I rely on the static Object.Equals method to compare them for equality. This 
handy method checks the references for null before calling the instance Equals method, saving you from 
having to do that. Had I used GetHashCode to implement operator!=, I would have had to check the 
references for null values before calling GetHashCode on them. Also, note that both fields used to 
calculate the hash code are immutable. Thus, this instance of this object will always return the same 
hash code value as long as it lives. In fact, you might consider caching the hash code value once you 
compute it the first time to gain greater efficiency. 
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Does the Object Support Ordering? 
Sometimes you’ll design a class for objects that are meant to be stored within a collection. When the 
objects in that collection need to be sorted, such as by calling Sort on an ArrayList, you need a well-
defined mechanism for comparing two objects. The pattern that the Base Class Library designers 
provided hinges on implementing the following IComparable interface:5 

public interface IComparable 
{ 
   int CompareTo( object obj ); 
} 

Again, another one of these interfaces merely contains one method. Thankfully, IComparable doesn’t 
contain the same depth of pitfalls as ICloneable and IDisposable. The CompareTo method is fairly 
straightforward. It can return a value that is either positive, negative, or zero. Table 13-1 lists the return 
value meanings. 

Table 13-1. Meaning of Return Values of IComparable.CompareTo 

CompareTo Return Value Meaning 

Positive this > obj 

Zero this == obj 

Negative this < obj 

You should be aware of a few points when implementing IComparable.CompareTo. First, notice that 
the return value specification says nothing about the actual value of the returned integer. It only defines 
the sign of the return values. So, to indicate a situation where this is less than obj, you can simply return 
-1. When your object represents a value that carries an integer meaning, an efficient way to compute the 
comparison value is by subtracting one from the other. It can be tempting to treat the return value as an 
indication of the degree of inequality. Although this is possible, I don’t recommend it because relying on 
such an implementation is outside the bounds of the IComparable specification, and not all objects can 
be expected to do that. Keep in mind that the subtraction operation on integers might incur an overflow. 
If you want to avoid that situation, you can simply defer to the IComparable.CompareTo implemented by 
the integer type for greater safety. 

Second, keep in mind that CompareTo provides no return value definition for when two objects 
cannot be compared. Because the parameter type to CompareTo is System.Object, you could easily 
attempt to compare an Apple instance to an Orange instance. In such a case, there is no comparison, and 
you’re forced to indicate such by throwing an ArgumentException object. 

Finally, semantically, the IComparable interface is a superset of Object.Equals. If you derive from an 
object that overrides Equals and implements IComparable, you’re wise to override Equals and 

                                                 

 
5 You should consider using the generic IComparable<T> interface, as shown in Chapter 11 for greater type safety. 
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reimplement IComparable in your derived class, or do neither. You want to make certain that your 
implementation of Equals and CompareTo are aligned with each other. 

Based upon all of this information, a compliant IComparable interface should adhere to the 
following rules: 

• x.CompareTo(x) must return 0. This is the reflexive property. 

• If x.CompareTo(y) == 0, then y.CompareTo(x) must equal 0. This is the symmetric 
property. 

• If x.CompareTo(y) == 0, and y.CompareTo(z) == 0, then x.CompareTo(z) must 
equal 0. This is the transitive property. 

• If x.CompareTo(y) returns a value other than 0, then y.CompareTo(x) must return a 
non-0 value of the opposite sign. In other terms, this statement says that if x < y, 
then y > x, or if x > y, then y < x. 

• If x.CompareTo(y) returns a value other than 0, and y.CompareTo(z) returns a value 
other than 0 with the same sign as the first, then x.CompareTo(y) is required to 
return a non-0 value of the same sign as the previous two. In other terms, this 
statement says that if x < y and y < z, then x < z, or if x > y and y > z, then x > 
z. 

The following code shows a modified form of the ComplexNumber class that implements IComparable 
and consolidates some code at the same time in private helper methods: 

using System; 
 
public sealed class ComplexNumber : IComparable 
{ 
    public ComplexNumber( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    public override bool Equals( object other ) { 
        bool result = false; 
        ComplexNumber that = other as ComplexNumber; 
        if( that != null ) { 
            result = InternalEquals( that ); 
        } 
 
        return result; 
    } 
 
    public override int GetHashCode() { 
        return (int) this.Magnitude; 
    } 
 
    public static bool operator ==( ComplexNumber num1, ComplexNumber num2 ) { 
        return Object.Equals(num1, num2); 
    } 
 
    public static bool operator !=( ComplexNumber num1, ComplexNumber num2 ) { 
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        return !Object.Equals(num1, num2); 
    } 
 
    public int CompareTo( object other ) { 
        ComplexNumber that = other as ComplexNumber; 
        if( that == null ) { 
            throw new ArgumentException( "Bad Comparison!" ); 
        } 
 
        int result; 
        if( InternalEquals(that) ) { 
            result = 0; 
        } else if( this.Magnitude > that.Magnitude ) { 
            result = 1; 
        } else { 
            result = -1; 
        } 
 
        return result; 
    } 
 
    private bool InternalEquals( ComplexNumber that ) { 
        return (this.real == that.real) && 
               (this.imaginary == that.imaginary); 
    } 
 
    public double Magnitude { 
        get { 
            return Math.Sqrt( Math.Pow(this.real, 2) + 
                              Math.Pow(this.imaginary, 2) ); 
        } 
    } 
 
    // Other methods removed for clarity 
 
    private readonly double real; 
    private readonly double imaginary; 
} 

Is the Object Formattable? 
When you create a new object, or an instance of a value type for that matter, it inherits a method from 
System.Object called ToString. This method accepts no parameters and simply returns a string 
representation of the object. In all cases, if it makes sense to call ToString on your object, you’ll need to 
override this method. The default implementation provided by System.Object merely returns a string 
representation of the object’s type name, which of course is not useful for an object requiring a string 
representation based upon its internal state. You should always consider overriding Object.ToString for 
all your types, even if only for the convenience of logging the object state to a debug output log. 

Object.ToString is useful for getting a quick string representation of an object, but it’s sometimes 
not useful enough. For example, consider the previous ComplexNumber example. Suppose that you want 
to provide a ToString override for that class. An obvious implementation would output the complex 
number as an ordered pair within a pair of parentheses (for example, “(1, 2)”. However, the real and 
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imaginary components of ComplexNumber are of type double. Also, floating-point numbers don’t always 
appear the same across all cultures. Americans use a period to separate the fractional element of a 
floating-point number, whereas most Europeans use a comma. This problem is solved easily if you 
utilize the default culture information attached to the thread. By accessing the 
System.Threading.Thread.CurrentThread.CurrentCulture property, you can get references to the default 
cultural information detailing how to represent numerical values, including monetary amounts, as well 
as information on how to represent time and date values. 

■ Note I cover globalization and cultural information in greater detail in Chapter 8. 

By default, the CurrentCulture property gives you access to 
System.Globalization.DateTimeFormatInfo and System.Globalization.NumberFormatInfo. Using the 
information provided by these objects, you can output the ComplexNumber in a form that is appropriate 
for the default culture of the machine the application is running on. Check out Chapter 8 for an example 
of how this works. 

That solution seems easy enough. However, you must realize that there are times when using the 
default culture is not sufficient, and a user of your objects might need to specify which culture to use. 
Not only that; the user might want to specify the exact formatting of the output. For example, a user 
might prefer to say that the real and imaginary portions of a ComplexNumber instance should be displayed 
with only five significant digits while using the German cultural information. If you develop software for 
servers, you know that you need this capability. A company that runs a financial services server in the 
United States and services requests from Japan will want to display Japanese currency in the format 
customary for the Japanese culture. You need to specify how to format an object when it is converted to 
a string via ToString without having to change the CurrentCulture on the thread beforehand. 

In fact, the Standard Library provides an interface for doing just that. When a class or struct needs 
the capability to respond to such requests, it implements the IFormattable interface. The following code 
shows the simple-looking IFormattable interface. However, don’t be fooled by its simplistic looks 
because depending on the complexity of your object, it might be tricky to implement: 

public interface IFormattable 
{ 
   string ToString( string format, IFormatProvider formatProvider ); 
} 

Let’s consider the second parameter first. If the client passes null for formatProvider, you should 
default to using the culture information attached to the current thread as previously described. 
However, if formatProvider is not null, you’ll need to acquire the formatting information from the 
provider via the IFormatProvider.GetFormat method, as discussed in Chapter 8. IFormatProvider looks 
like this: 

public interface IFormatProvider 
{ 
   object GetFormat( Type formatType ); 
} 

In an effort to be as generic as possible, the designers of the Standard Library designed GetFormat to 
accept an object of type System.Type. Thus, it is extensible as to what types the object that implements 
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IFormatProvider can support. This flexibility is handy if you intend to develop custom format providers 
that need to return as-of-yet-undefined formatting information. 

The Standard Library provides a System.Globalization.CultureInfo type that will most likely suffice 
for all of your needs. The CultureInfo object implements the IFormatProvider interface, and you can 
pass instances of it as the second parameter to IFormattable.ToString. Soon, I’ll show an example of its 
usage when I make modifications to the ComplexNumber example, but first, let’s look at the first parameter 
to ToString. 

The format parameter of ToString allows you to specify how to format a specific number. The 
format provider can describe how to display a date or how to display currency based upon cultural 
preferences, but you still need to know how to format the object in the first place. All the types within the 
Standard Library, such as Int32, support the standard format specifiers, as described under “Standard 
Numeric Format Strings” in the MSDN library. In a nutshell, the format string consists of a single letter 
specifying the format, and then an optional number between 0 and 99 that declares the precision. For 
example, you can specify that a double be output as a five-significant-digit floating-point number with 
F5. Not all types are required to support all formats except for one—the G format, which stands for 
“general.” In fact, the G format is what you get when you call the parameterless Object.ToString on most 
objects in the Standard Library. Some types will ignore the format specification in special circumstances. 
For example, a System.Double can contain special values that represent NaN (Not a Number), 
PositiveInfinity, or NegativeInfinity. In such cases, System.Double ignores the format specification 
and displays a symbol appropriate for the culture as provided by NumberFormatInfo. 

The format specifier can also consist of a custom format string. Custom format strings allow the user 
to specify the exact layout of numbers as well as mixed-in string literals and so on by using the syntax 
described under “Custom Numeric Format String” in the MSDN library. The client can specify one 
format for negative numbers, another for positive numbers, and a third for zero values. I won’t spend 
any time detailing these various formatting capabilities. Instead, I encourage you to reference the MSDN 
material for detailed information regarding them. 

As you can see, implementing IFormattable.ToString can be quite a tedious experience, especially 
because your format string could be highly customized. However, in many cases—and the 
ComplexNumber example is one of those cases—you can rely upon the IFormattable implementations of 
standard types. Because ComplexNumber uses System.Double to represent its real and imaginary parts, you 
can defer most of your work to the implementation of IFormattable on System.Double. Let’s look at 
modifications to the ComplexNumber example to support IFormattable. Assume that the ComplexNumber 
type will accept a format string exactly the same way that System.Double does and that each component 
of the complex number will be output using this same format. Of course, a better implementation might 
provide more capabilities such as allowing you to specify whether the output should be in Cartesian or 
polar format, but I’ll leave that to you as an exercise: 

using System; 
using System.Globalization; 
 
public sealed class ComplexNumber : IFormattable 
{ 
    public ComplexNumber( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    public override string ToString() { 
        return ToString( "G", null ); 
    } 
 
    // IFormattable implementation 
    public string ToString( string format, 
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                            IFormatProvider formatProvider ) { 
        string result = "(" + 
            real.ToString(format, formatProvider) + 
            " " + 
            real.ToString(format, formatProvider) + 
            ")"; 
        return result; 
    } 
 
    // Other methods removed for clarity 
 
    private readonly double real; 
    private readonly double imaginary; 
} 
 
public sealed class EntryPoint 
{ 
    static void Main() { 
        ComplexNumber num1 = new ComplexNumber( 1.12345678, 
                                                2.12345678 ); 
 
        Console.WriteLine( "US format: {0}", 
                           num1.ToString( "F5", 
                                  new CultureInfo("en-US") ) ); 
        Console.WriteLine( "DE format: {0}", 
                           num1.ToString( "F5", 
                                  new CultureInfo("de-DE") ) ); 
        Console.WriteLine( "Object.ToString(): {0}", 
                           num1.ToString() ); 
    } 
} 

Here’s the output from running this example: 

US format: (1.12346 2.12346) 

DE format: (1,12346 2,12346) 

Object.ToString(): (1.12345678 2.12345678) 

In Main, notice the creation and use of two different CultureInfo instances. First, the ComplexNumber 
is output using American cultural formatting; second, using German cultural formatting. In both cases, I 
specify to output the string using only five significant digits. You will see that System.Double’s 
implementation of IFormattable.ToString even rounds the result as expected. Finally, you can see that 
the Object.ToString override is implemented to defer to the IFormattable.ToString method using the G 
(general) format. 

IFormattable provides the clients of your objects with powerful capabilities when they have specific 
formatting needs for your objects. However, that power comes at an implementation cost. 
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Implementing IFormattable.ToString can be a very detail-oriented task that takes a lot of time and 
attentiveness. 

Is the Object Convertible? 
The C# compiler provides support for converting instances of simple built-in value types, such as int 
and long, from one type to another via casting by generating IL code that uses the conv IL instruction. 
The conv instruction works well for the simple built-in types, but what do you do when you want to 
convert a string to an integer, or vice versa? The compiler cannot do this for you automatically because 
such conversions are potentially complex and even require parameters, such as cultural information. 

The .NET Framework provides several ways to get the job done. For nontrivial conversions that you 
cannot do with casting, you should rely upon the System.Convert class. I won’t list the functions that 
Convert implements here, as the list is extremely long. I encourage you to look it up in the MSDN library. 
The Convert class contains methods to convert from just about any built-in type to another as long as it 
makes sense. So, if you want to convert a double to a String, you would simply call the ToString static 
method, passing it the double as follows: 

static void Main() 
{ 
   double d = 12.1; 
   string str = Convert.ToString( d ); 
} 

In similar form to IFormattable.ToString, Convert.ToString has various overloads that also allow 
you to pass a CultureInfo object or any other object that supports IFormatProvider, in order to specify 
cultural information when doing the conversion. You can use other methods as well, such as ToBoolean 
and ToUInt32. The general pattern of the method names is obviously ToXXX, where XXX is the type you’re 
converting to. System.Convert even has methods to convert byte arrays to and from base64-encoded 
strings. If you store any binary data in XML text or any other text-based medium, you’ll find these 
methods very handy. 

Convert will generally serve most of your conversion needs between built-in types. It’s a one-stop 
shop for converting an object of one type to another. You can see this just by looking at the wealth of 
methods that it supports. However, what happens when your conversion involves a custom type that 
Convert doesn’t know about? The answer lies in the Convert.ChangeType method. 

ChangeType is System.Convert’s extensibility mechanism. It has several overloads, including some 
that take a format provider for cultural information. However, the general idea is that it takes an object 
reference and converts it to the type represented by the passed-in System.Type object. Consider the 
following code, which uses the ComplexNumber from previous examples and tries to convert it into a string 
using System.Convert.ChangeType: 

using System; 
 
public sealed class ComplexNumber 
{ 
    public ComplexNumber( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    // Other methods removed for clarity 
 
    private readonly double real; 
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    private readonly double imaginary; 
} 
 
public sealed class EntryPoint 
{ 
    static void Main() { 
        ComplexNumber num1 = new ComplexNumber( 1.12345678, 2.12345678 ); 
 
        string str = 
            (string) Convert.ChangeType( num1, typeof(string) ); 
    } 
} 

You’ll find that the code compiles just fine. However, you’ll get a surprise at run time when you find 
that it throws an InvalidCastException with the message, “Object must implement IConvertible.” Even 
though ChangeType is System.Convert’s extensibility mechanism, extensibility doesn’t come for free. You 
must do some work to make ChangeType work with ComplexNumber. And as you probably guessed, the 
work required is to implement the IConvertible interface. 

The IConvertible interface is the last defense when it comes to converting objects. If you want your 
custom objects to play nice with System.Convert and the types of conversions the user might desire to 
perform, you had better implement IConvertible. As with System.Convert, I won’t list the IConvertible 
methods here because there are quite a few of them. I encourage you to look them up in the MSDN 
documentation. You’ll see one method for converting to each of the built-in types. In addition, Convert 
uses a catch-all method, IConvertible.ToType, to convert one custom type to another custom type. Also, 
the IConvertible methods accept a format provider so that you can provide cultural information to the 
conversion method. 

Remember, when you implement an interface, you’re required to provide implementations for all 
the interface’s methods. However, if a particular conversion makes no sense for your object, then you 
can throw an InvalidCastException in the implementation for that method. Naturally, your 
implementation will most definitely throw an exception inside IConvertible.ToType for any type that it 
doesn’t support conversion to. 

To sum up, it might appear that there are many ways to convert one type to another in C#, and in 
fact, there are. However, the general rule of thumb is to rely on System.Convert when casting won’t do 
the trick. Moreover, your custom objects, such as the ComplexNumber class, should implement 
IConvertible so they can work in concert with the System.Convert class. 

■ Note C# offers conversion operators that allow you to do essentially the same thing you can do by implementing 

IConvertible. However, C# implicit and explicit conversion operators aren’t CLS-compliant. Therefore, not every 

language that consumes your C# code might call them to do the conversion. It is recommended that you not rely 

on them exclusively to handle conversion. Of course, if your project is coded using .NET languages that do support 

conversion operators, then you can use them exclusively, but it’s recommended that you also support 

IConvertible. 

The .NET Framework offers yet another type of conversion mechanism, which works via the 
System.ComponentModel.TypeConverter. It is another converter that is external to the class of the object 
instance that needs to be converted, such as System.Convert. The advantage of using TypeConverter is 
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that you can use it at design time within the IDE as well as at run time. You create your own special type 
converter for your class that derives from TypeConverter, and then you associate your new type 
converter to your class via the TypeConverterAttribute. At design time, the IDE can examine the 
metadata for your type and, from the information gleaned from the metadata, create an instance of your 
type’s converter. That way, it can convert your type to and from representations that it sees fit to use. I 
won’t go into the details of creating a TypeConverter derivative, but if you’d like more information, look 
up the “Generalized Type Conversion” topic in the MSDN documentation. 

Prefer Type Safety at All Times 
You already know that C# is a strongly typed language. A strongly typed language and its compiler form a 
dynamic duo capable of sniffing out bugs before they strike. Even though every object in the managed 
world derives from System.Object, it’s a bad idea to treat every object generically via a System.Object 
reference. One reason is efficiency; for example, if you were to maintain a collection of Employee objects 
via references to System.Object, you would always have to cast instances of them to type Employee before 
you can call the Evaluate method on them. This inefficiency is amplified by magnitudes with value types 
because unnecessary boxing operations are generated in the IL code. I’ll cover the boxing inefficiencies 
in the following sections dealing with value types. The biggest problem with all of this casting when 
using reference types is when the cast fails and an exception is thrown. By using strong types, you can 
catch these problems and deal with them at compile time. 

Another prominent reason to prefer strong type usage is associated with catching errors. Consider 
the case when implementing interfaces such as ICloneable. Notice that the Clone method returns an 
instance as type Object. Clearly, this is done so that the interface will work generically across all types. 
However, it can come at a price. 

C++ and C# are both strongly typed languages where every variable is declared with a type. Along 
with this comes type safety, which the compiler supplies to help you avoid errors. For example, it keeps 
you from assigning an instance of class Apple from an instance of class MonkeyWrench. However, C# (and 
C++) allows you to work in a less-type-safe way. You can reference every object through the type Object; 
however, doing so throws away the type safety, and the compiler will allow you to assign an instance of 
type Apple from an instance of type MonkeyWrench as long as both references are of type Object. 
Unfortunately, even though the code will compile, you run the risk of generating a runtime error once 
the CLR executes code that realizes what sort of craziness you’re attempting to do. So the more you 
utilize the type safety of the compiler, the more error detection it can do at compile time, and catching 
errors at compile time is always more desirable than catching errors at run time. 

Let’s have a closer look at the efficiency facet of the problem. Treating objects generically can 
impose a run-time inefficiency when you need to downcast to the actual type. In reality, this efficiency 
hit is very minor with managed reference types in C# unless you’re doing it many times within a loop. 

In some situations, the C# compiler will generate much more efficient code if you provide a type-
safe implementation of a well-defined method. Consider this typical foreach statement in C#: 

foreach( Employee emp in collection ) { 
   // Do Something 
} 

Quite simply, the code loops over all the items in collection. Within the body of the foreach 
statement, a variable emp of type Employee references the current item in the collection during iteration. 
One of the rules enforced by the C# compiler for the collection is that it must implement a public 
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method named GetEnumerator, which returns a type used to enumerate the items in the collection. This 
method is typically implemented as a result of the collection type implementing the IEnumerable 
interface and often returns a forward iterator on the collection of contained objects.6 One of the rules for 
the enumerator type is that it must implement a public property named Current, which allows access to 
the current element. This property is part of the IEnumerator interface; however, notice that 
IEnumerator.Current is typed as System.Object. This leads to another rule with regard to the foreach 
statement. It states that the object type of IEnumerator.Current, the real object type, must be explicitly 
castable to the type of the iterator in the foreach statement, which in this example is type Employee. If 
your collection’s enumerator types its Current property as System.Object, the compiler must always 
perform the cast to type Employee. However, you can see that the compiler can generate much more 
efficient code if your Current property on your enumerator is typed as Employee. 

So, what can you do to remedy this situation in the C# world? Basically, whenever you implement an 
interface that contains methods with essentially non-typed return values, consider using explicit 
interface implementation to hide those methods from the public contract of the class, while 
implementing more type-safe versions as part of the public contract of the class. Let’s look at an example 
using the IEnumerator interface: 

using System; 
using System.Collections; 
 
public class Employee 
{ 
    public void Evaluate() { 
        Console.WriteLine( "Evaluating Employee..." ); 
    } 
} 
 
public class WorkForceEnumerator : IEnumerator 
{ 
    public WorkForceEnumerator( ArrayList employees ) { 
        this.enumerator = employees.GetEnumerator(); 
    } 
 
    public Employee Current { 
        get { 
            return (Employee) enumerator.Current; 
        } 
    } 
 
    object IEnumerator.Current { 
        get { 
            return enumerator.Current; 
        } 
    } 
 
    public bool MoveNext() { 

                                                 

 
6 I use the word often here because the iterators could be reverse iterators. In Chapter 9, I show how you can easily 
create reverse and bidirectional iterators that implement IEnumerator. 
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        return enumerator.MoveNext(); 
    } 
 
    public void Reset() { 
        enumerator.Reset(); 
    } 
 
    private IEnumerator enumerator; 
} 
 
public class WorkForce : IEnumerable 
{ 
    public WorkForce() { 
        employees = new ArrayList(); 
 
        // Let's put an employee in here for demo purposes. 
        employees.Add( new Employee() ); 
    } 
 
    public WorkForceEnumerator GetEnumerator() { 
        return new WorkForceEnumerator( employees ); 
    } 
 
    IEnumerator IEnumerable.GetEnumerator() { 
        return new WorkForceEnumerator( employees ); 
    } 
 
    private ArrayList employees; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        WorkForce staff = new WorkForce(); 
        foreach( Employee emp in staff ) { 
            emp.Evaluate(); 
        } 
    } 
} 

Look carefully at the example and notice how the typeless versions of the interface methods are 
implemented explicitly. Remember that in order to access those methods, you must first cast the 
instance to the interface type. However, the compiler doesn’t do that when it generates the foreach loop. 
Instead, it simply looks for methods that match the rules already mentioned.7 So, it will find the strongly 
typed versions and use them. I encourage you to step through the code using a debugger to see it in 
action. In fact, these types aren’t even required to implement the interfaces that they implement—
namely, IEnumerable and IEnumerator. You can comment the interface names out and simply implement 

                                                 

 
7 This technique is commonly referred to as duck typing. 
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the methods that match the signatures of the ones in the interfaces. Also, you can make this code 
considerably more efficient by using generics, which I covered in Chapter 11. 

Let’s take a closer look at the foreach loop generated by the compiler to get a better idea of what 
sorts of efficiency gains you get. In the following code, I’ve removed the strongly typed versions of the 
interface methods, and as expected, the example runs pretty much the same as before from an outside 
perspective: 

using System; 
using System.Collections; 
 
public class Employee 
{ 
    public void Evaluate() { 
        Console.WriteLine( "Evaluating Employee..." ); 
    } 
} 
 
public class WorkForceEnumerator : IEnumerator 
{ 
    public WorkForceEnumerator( ArrayList employees ) { 
        this.enumerator = employees.GetEnumerator(); 
    } 
 
    public object Current { 
        get { 
            return enumerator.Current; 
        } 
    } 
 
    public bool MoveNext() { 
        return enumerator.MoveNext(); 
    } 
 
    public void Reset() { 
        enumerator.Reset(); 
    } 
 
    private IEnumerator enumerator; 
} 
 
public class WorkForce : IEnumerable 
{ 
    public WorkForce() { 
        employees = new ArrayList(); 
 
        // Let's put an employee in here for demo purposes. 
        employees.Add( new Employee() ); 
    } 
 
    public IEnumerator GetEnumerator() { 
        return new WorkForceEnumerator( employees ); 
    } 
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    private ArrayList employees; 
} 
 
public class EntryPoint 
{ 
    static void Main() { 
        WorkForce staff = new WorkForce(); 
        foreach( Employee emp in staff ) { 
            emp.Evaluate(); 
        } 
    } 
} 

Of course, the generated IL is not as efficient. To see the efficiency gains within the foreach loop, 
you must load the compiled versions of each example into ILDASM and open up the IL code for the Main 
method. You’ll see that the weakly typed example has extra castclass instructions that are not present in 
the strongly typed example. On my development machine, I ran the foreach loop 20,000,000 times in a 
tight loop to create a crude benchmark. The typed version of the enumerator was 15% faster than the 
untyped version. That’s a considerable gain if you’re working on the game loop in the next best-selling 
Managed DirectX game. 

Using Immutable Reference Types 
When creating a well-designed contract or interface, you should always consider the mutability or 
immutability of types declared in the contract. For example, if you have a method that accepts a 
parameter, you should consider whether it is valid for the method to modify the parameter. Suppose 
that you want to ensure that the method body cannot modify a parameter. If the parameter is a value 
type that is passed without the ref keyword, the method receives a copy of the parameter, and you’re 
guaranteed that the source value is not modified. However, for reference types, it’s much more 
complicated because only the reference is copied rather than the object the reference points to. 

■ Note If you come from a C++ background, you’ll recognize that immutability is implemented via the const 

keyword. To follow this technique is to be const-correct. Even though C++ might seem superior to those who are 

upset that C# doesn’t support const, keep in mind that in C++, you can cast away the const-ness using 

const_cast. Therefore, an immutable implementation is actually superior to the C++ const keyword, because 

you can’t simply cast it away. 

A great example of an immutable class within the Standard Library is System.String. Once you 
create a String object, you can’t ever change it. There’s no way around it; that’s the way the class is 
designed. You can create copies, and those copies can be modified forms of the original, but you simply 
cannot change the original instance for as long as it lives, without resorting to unsafe code. If you 
understand that, you’re probably starting to get the gist of where I’m going here: For a reference-based 
object to be passed into a method, such that the client can be guaranteed that it won’t change during the 
method call, it must itself be immutable. 
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In a world such as the CLR where objects are held by reference by default, this notion of 
immutability becomes very important. Let’s suppose that System.String was mutable, and let’s suppose 
that you could write a method such as the following fictitious method: 

public void PrintString( string theString ) 
{ 
   // Assuming following line does not create a new 
   // instance of String but modifies theString 
   theString += ": there, I printed it!"; 
   Console.WriteLine( theString ); 
} 

Imagine the callers’ dismay when they get further along in the code that called this method and now 
their string has this extra stuff appended onto the end of it. That’s what could happen if System.String 
were mutable. You can see that String’s immutability exists for a reason, and maybe you should 
consider adding the same capability to your design. 

There are many ways to solve the C# const parameter problem for objects that must be mutable. 
One general solution is to create two classes for each mutable class you create if you’ll ever want your 
clients to be able to pass a const version of the object to a parameter. As an example, let’s revisit the 
previous ComplexNumber class. If implemented as an object rather than a value type, ComplexNumber is a 
perfect candidate to be an immutable type, similar to String. In such cases, an operation such as 
ComplexNumber.Add would need to produce a new instance of ComplexNumber rather than modify the 
object referenced by this. But for the sake of argument, let’s consider what you would want to do if 
ComplexNumber were allowed to be mutable. You could allow access to the real and imaginary fields via 
read-write properties. But how would you be able to pass the object to a method and be guaranteed that 
the method won’t change it by accessing the setter of the one of the properties? One answer, as in many 
other object-oriented designs, is the technique of introducing another class. Consider the following 
code: 

using System; 
 
public sealed class ComplexNumber 
{ 
    public ComplexNumber( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    public double Real { 
        get { 
            return real; 
        } 
 
        set { 
            real = value; 
        } 
    } 
 
    public double Imaginary { 
        get { 
            return imaginary; 
        } 
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        set { 
            imaginary = value; 
        } 
    } 
 
    // Other methods removed for clarity 
 
    private double real; 
    private double imaginary; 
} 
 
public sealed class ConstComplexNumber 
{ 
    public ConstComplexNumber( ComplexNumber pimpl ) { 
        this.pimpl = pimpl; 
    } 
 
    public double Real { 
        get { 
            return pimpl.Real; 
        } 
    } 
 
    public double Imaginary { 
        get { 
            return pimpl.Imaginary; 
        } 
    } 
 
    private readonly ComplexNumber pimpl8; 
} 
 
public sealed class EntryPoint 
{ 
    static void Main() { 
        ComplexNumber someNumber = new ComplexNumber( 1, 2 ); 
        SomeMethod( new ConstComplexNumber(someNumber) ); 
 
        // We are guaranteed by the contract of ConstComplexNumber that 
        // someNumber has not been changed at this point. 
    } 
 
    static void SomeMethod( ConstComplexNumber number ) { 
        Console.WriteLine( "( {0}, {1} )", 
                           number.Real, 
                           number.Imaginary ); 

                                                 

 
8 For those of you curious about the curious name of this field, read about the Pimpl Idiom in Herb Sutter’s 
Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Exception-Safety Solutions (Boston: Addison-
Wesley Professional, 1999). 
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    } 
} 

Notice that I’ve introduced a shim class named ConstComplexNumber. When a method wants to 
accept a ComplexNumber object but guarantee that it won’t change that parameter, it accepts a 
ConstComplexNumber rather than a ComplexNumber. Of course, for the case of ComplexNumber, the best 
solution would have been to implement it as an immutable type in the first place.9 But, you can easily 
imagine a class much more complex than ComplexNumber (no pun intended . . . really!) that might require 
a technique similar to this to guarantee that a method won’t modify an instance of it. 

As with many problems in software design, you can achieve the same goal in many ways. Before you 
write these techniques off as academic exercises, please take time to consider and understand the power 
of immutability in robust software designs. So many articles on const-correctness exist in the C++ 
community for good reason. And there is no good reason that you shouldn’t apply these same 
techniques to your C# designs. 

Value Type Canonical Forms 
While investigating the notions of canonical forms for value types, you’ll find that some of the concepts 
that apply to reference types might be applied here as well. However, there are many notable 
differences. For example, it makes no sense to implement ICloneable on a value type. Technically you 
could, but because ICloneable returns an instance of type Object, your value type’s implementation of 
ICloneable.Clone would most likely just be returning a boxed copy of itself. You can get exactly the same 
behavior by simply casting a value type instance into a reference to System.Object, as long as your value 
type doesn’t contain any reference types. In fact, you could argue that value types that contain mutable 
reference types are bordering on poor design. Value types are best used for immutable, lightweight data 
chunks. So, as long as the reference types your value type does contain are immutable—similar to 
System.String, for example—you don’t have to worry about implementing ICloneable on your value 
type. If you find yourself being forced to implement ICloneable on your value type, take a closer look at 
the design. It’s possible that your value type should be a reference type. 

Value types don’t need a finalizer, and, in fact, C# won’t let you create a finalizer via the destructor 
syntax on a struct. Similarly, value types have no need to implement the IDisposable interface unless 
they contain objects by reference, which implement IDisposable, or if they hold onto scarce system 
resources. In those cases, it’s important that value types implement IDisposable. In fact, you can use the 
using statement with value types that implement IDisposable. 

■ Tip Because value types cannot implement finalizers, they cannot guarantee that the cleanup code in Dispose 

executes even if the user forgets to call it explicitly. Therefore, declaring fields of reference type within value types 

should be discouraged. If the field is a value type that requires disposal, you cannot guarantee that disposal 

happens. 

                                                 

 
9 To avoid this complex ball of yarn, many of the value types defined by the .NET Framework are, in fact, immutable. 
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Value types and reference types do share many implementation idioms. For example, it makes 
sense for both to consider implementing IComparable, IFormattable, and possibly IConvertible. 

In the rest of this section, I’ll cover the different canonical concepts that you should apply while 
designing value types. Specifically, you’ll want to override Equals for greater run-time efficiency, and 
you’ll want to be cognizant of what it means for a value type to implement an interface. Let’s get started. 

Override Equals for Better Performance 
You’ve already seen the main differences between the two types of equivalence in the CLR and in C#. For 
example, you now know that reference types (class instances) define equality as a referential or identity 
test by default, and value types (struct instances) use value equality as an equivalence test. Reference 
types get their default implementation from Object.Equals, whereas value types get their default 
implementation from System.ValueType’s override of Equals. All struct types (and enum types) implicitly 
derive from System.ValueType. 

You should implement your own override of Equals for each struct that you define. You can 
compare the fields of your object more efficiently, because you know their types and what they are at 
compile time. Let’s update the ComplexNumber example from previous sections, converting it to a struct 
and implementing a custom Equals override: 

using System; 
 
public struct ComplexNumber : IComparable 
{ 
    public ComplexNumber( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    public override bool Equals( object other ) { 
        bool result = false; 
        if( other is ComplexNumber ) { 
            ComplexNumber that = (ComplexNumber) other ; 
 
            result = InternalEquals( that ); 
        } 
 
        return result; 
    } 
 
    public override int GetHashCode() { 
        return (int) this.Magnitude; 
    } 
 
    public static bool operator ==( ComplexNumber num1, 
                                    ComplexNumber num2 ) { 
        return num1.Equals(num2); 
    } 
 
    public static bool operator !=( ComplexNumber num1, 
                                    ComplexNumber num2 ) { 
        return !num1.Equals(num2); 
    } 
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    public int CompareTo( object other ) { 
        if( !(other is ComplexNumber) ) { 
            throw new ArgumentException( "Bad Comparison!" ); 
        } 
 
        ComplexNumber that = (ComplexNumber) other; 
 
        int result; 
        if( InternalEquals(that) ) { 
            result = 0; 
        } else if( this.Magnitude > that.Magnitude ) { 
            result = 1; 
        } else { 
            result = -1; 
        } 
 
        return result; 
    } 
 
    private bool InternalEquals( ComplexNumber that ) { 
        return (this.real == that.real) && 
               (this.imaginary == that.imaginary); 
    } 
 
    public double Magnitude { 
        get { 
            return Math.Sqrt( Math.Pow(this.real, 2) + 
                              Math.Pow(this.imaginary, 2) ); 
        } 
    } 
 
    // Other methods removed for clarity 
 
    private readonly double real; 
    private readonly double imaginary; 
} 
 
public sealed class EntryPoint 
{ 
    static void Main() 
    { 
        ComplexNumber num1 = new ComplexNumber( 1, 2 ); 
        ComplexNumber num2 = new ComplexNumber( 1, 2 ); 
 
        bool result = num1.Equals( num2 ); 
    } 
} 

Looking at the example code, you can see that it has only minimal changes compared with the 
reference type version. The type is now declared as a struct rather than a class, and notice that it also still 
supports IComparable. I’ll have more to say about structs implementing interfaces later, in the section 
titled “Do Values of This Type Support Any Interfaces?” The keen reader might notice that the efficiency 
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still stands to improve by a fair amount. The trick lies in the concept of boxing and unboxing. Remember 
that any time a value type instance is passed as an object in a method parameter list, it must be 
implicitly boxed if it is not boxed already. That means that when the Main method calls the Equals 
method, it must first box the num2 value. What’s worse is that the method will typically unbox the value in 
order to use it. Thus, in the process of comparing two values for equality, you’ve made two more copies 
of one of them. 

To solve this problem, you can define two overloads of Equals. You want a type-safe version that 
takes a ComplexNumber as its parameter type, and you still need to override the Object.Equals method as 
before. 

■ Note The .NET 2.0 Framework formalized this concept with the generic interface IEquatable<T>, which 

declares one method that is the type-safe version of Equals. 

Let’s take a look at how the code changes: 

using System; 
 
public struct ComplexNumber : IComparable, 
                              IComparable<ComplexNumber>, 
                              IEquatable<ComplexNumber> 
{ 
    public ComplexNumber( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
    } 
 
    public bool Equals( ComplexNumber other ) { 
        return (this.real == other.real) && 
               (this.imaginary == other.imaginary); 
    } 
 
    public override bool Equals( object other ) { 
        bool result = false; 
        if( other is ComplexNumber ) { 
            ComplexNumber that = (ComplexNumber) other ; 
 
            result = Equals( that ); 
        } 
 
        return result; 
    } 
 
    public override int GetHashCode() { 
        return (int) this.Magnitude; 
    } 
 
    public static bool operator ==( ComplexNumber num1, 
                                    ComplexNumber num2 ) { 
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        return num1.Equals(num2); 
    } 
 
    public static bool operator !=( ComplexNumber num1, 
                                    ComplexNumber num2 ) { 
        return !num1.Equals(num2); 
    } 
 
    public int CompareTo( object other ) { 
        if( !(other is ComplexNumber) ) { 
            throw new ArgumentException( "Bad Comparison!" ); 
        } 
 
        return CompareTo( (ComplexNumber) other ); 
    } 
 
    public int CompareTo( ComplexNumber that ) { 
        int result; 
        if( Equals(that) ) { 
            result = 0; 
        } else if( this.Magnitude > that.Magnitude ) { 
            result = 1; 
        } else { 
            result = -1; 
        } 
 
        return result; 
    } 
 
    public double Magnitude { 
        get { 
            return Math.Sqrt( Math.Pow(this.real, 2) + 
                              Math.Pow(this.imaginary, 2) ); 
        } 
    } 
 
    // Other methods removed for clarity 
 
    private readonly double real; 
    private readonly double imaginary; 
} 
 
public sealed class EntryPoint 
{ 
    static void Main() 
    { 
        ComplexNumber num1 = new ComplexNumber( 1, 2 ); 
        ComplexNumber num2 = new ComplexNumber( 1, 2 ); 
 
        bool result = num1.Equals( num2 ); 
    } 
} 
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Now, the comparison inside Main is much more efficient because the value doesn’t need to be 
boxed. The compiler chooses the closest match of the two overloads, which, of course, is the strongly 
typed overload of Equals that accepts a ComplexNumber rather than a generic object type. Internally, the 
Object.Equals override delegates to the type-safe version of Equals after it checks the type of the object 
and unboxes it. It’s important to note that the Object.Equals override first checks the type to see if it is a 
ComplexNumber, or more specifically a boxed ComplexNumber, before it unboxes it to avoid throwing an 
exception. The Standard Library documentation for Object.Equals clearly states that overrides of 
Object.Equals must not throw exceptions. Finally, notice that the same rule of thumb for GetHashCode 
exists for structs as well as classes. If you override Object.Equals, you must also override 
Object.GetHashCode, or vice versa. 

Note that I also implemented IComparable<ComplexNumber>, which uses the same technique as 
IEquatable<ComplexNumber> to provide a type-safe version of IComparable. You should always consider 
implementing these generic interfaces so the compiler has greater latitude when enforcing type safety. 

Do Values of This Type Support Any Interfaces? 
The difference in behavior between value types and reference types within the CLR can sometimes cause 
headaches and confusion, especially to those who are new to the CLR and C#. Those headaches usually 
derive from the tricky nature of bridging the two worlds between reference types and value types. 
Consider the fact that all value types (structs) implicitly derive from System.ValueType. Also, consider the 
fact that System.ValueType derives from System.Object. You might be inclined to think that you could 
simply cast a value type, such as an instance of ComplexNumber, into Object and thus bridge the gap 
between the value-type world and the reference-type world. This is what happens, but probably not as 
you might expect. 

What actually happens is that the CLR creates a new object for you, and that new object contains a 
copy of your value type. You have already seen this concept defined as boxing. Under the covers, when 
the CLR encounters a definition for a struct, or value type, it also internally defines a reference type, 
which is the box I’m talking about when I talk about a boxing operation. You can’t create an instance of 
that type explicitly, but that’s what you’re doing when you incur a boxing operation on a value instance. 

When the CLR creates this internal boxing type at run time, it has access to all the information it 
needs to effectively implement all the methods that your value type supports, and the method 
implementations simply forward the calls to the contained copy of your value type. By the same token, 
the dynamically generated boxing type also implements any interfaces that the value type implements. 
Thus, references to instances of the dynamic box type, which is a reference type, can be cast to 
references of the implemented interface types, as is natural for reference types. But what do you think 
happens when you cast a value type instance into an interface type? The answer is that the value must be 
boxed first. It makes sense when you consider that an interface reference always references a reference 
type. 

You’ve already seen how boxing can be a nuisance in C#. This is because boxing happens 
automatically, as if to help you out. But unless you know what’s going on behind the scenes, it can cause 
more confusion than not, because you can inadvertently modify a value within a box and then throw it 
away without propagating those changes back into the original value from the boxed value. Dizzying, 
isn’t it? 

Can you think of a way whereby you can modify a value that lives inside a box? If you cast the box 
instance back to its value type, you get a new copy of the value in the box. So, that cannot do the trick. 
What you need is a way to touch the internal boxed value. Interfaces are the answer. As I said before, the 
internally created boxing reference type that you never see implements all the interfaces that the struct 
implements. Because interface references refer to objects, they can modify the state of the value inside 
the box, if you make calls through the interface. Thus, the only way you can modify the contents of a 
value within a box is through an interface reference. I can’t think of a good design reason for why you 
would want to do that in the first place, though! 
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In closing, it’s important to note that value types that implement interfaces will incur implicit 
boxing if you cast one of those types to an interface type that it implements. At the same time, interfaces 
are the only mechanism through which you can change the value inside a box. For an example of how to 
do this, check out the “Boxing and Unboxing” section in Chapter 4. 

Implement Type-Safe Forms of Interface Members and Derived 
Methods 
I already covered this topic with respect to reference types in the “Prefer Type Safety at All Times” 
section. Most of the same points are applicable to value types, along with some added efficiency 
considerations. These efficiency problems stem from explicit conversion operations from value types to 
reference types, and vice versa. As you know, these conversions produce hidden boxing and unboxing 
operations in the generated IL code. Boxing operations can easily kill your efficiency in many situations. 
The points made previously about how type-safe versions of the enumeration methods help the C# 
compiler create much more efficient code in a foreach loop apply tenfold to value types. That is because 
boxing operations from conversions to and from value types take much more processor time when 
compared to a typecast of a reference type, which is relatively quick. 

You’ve already seen how the ComplexNumber value type implements an interface—in this case, 
IComparable. That is because you still want value types to be sortable if they’re stored within a container. 
You’ll notice that core types within the CLR, such as System.Int32, also support interfaces such as 
IComparable. However, from an efficiency standpoint, you don’t want to box a value type each time you 
want to compare it to another. In fact, as it is currently written, the following code boxes both values: 

public void Main() 
{ 
   ComplexNumber num1 = new ComplexNumber( 1, 3 ); 
   ComplexNumber num2 = new ComplexNumber( 1, 2 ); 
 
   int result = ((IComparable)num1).CompareTo( num2 ); 
} 

Can you see both of the boxing operations? As was shown in the previous section, the num1 instance 
must be boxed in order to acquire a reference to the IComparable interface on it. Secondly, because 
CompareTo accepts a reference of type System.Object, the num2 instance must be boxed. This is terrible for 
efficiency. Technically, I didn’t have to box num1 in order to call through IComparable. However, if the 
previous ComplexNumber example had implemented the IComparable interface explicitly, I would have 
had no choice. 

To solve this problem, you want to implement a type-safe version of the CompareTo method, while at 
the same time implementing the IComparable.CompareTo method. Using this technique, the comparison 
call in the previous code will incur absolutely no boxing operations. Let’s look at how to modify the 
ComplexNumber struct to do this: 

using System; 
 
public struct ComplexNumber : IComparable, 
                              IComparable<ComplexNumber>, 
                              IEquatable<ComplexNumber> 
{ 
    public ComplexNumber( double real, double imaginary ) { 
        this.real = real; 
        this.imaginary = imaginary; 
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    } 
 
    public bool Equals( ComplexNumber other ) { 
        return (this.real == other.real) && 
               (this.imaginary == other.imaginary); 
    } 
 
    public override bool Equals( object other ) { 
        bool result = false; 
        if( other is ComplexNumber ) { 
            ComplexNumber that = (ComplexNumber) other ; 
 
            result = Equals( that ); 
        } 
 
        return result; 
    } 
 
    public override int GetHashCode() { 
        return (int) this.Magnitude; 
    } 
 
    public static bool operator ==( ComplexNumber num1, 
                                    ComplexNumber num2 ) { 
        return num1.Equals(num2); 
    } 
 
    public static bool operator !=( ComplexNumber num1, 
                                    ComplexNumber num2 ) { 
        return !num1.Equals(num2); 
    } 
 
    public int CompareTo( ComplexNumber that ) { 
        int result; 
        if( Equals(that) ) { 
            result = 0; 
        } else if( this.Magnitude > that.Magnitude ) { 
            result = 1; 
        } else { 
            result = -1; 
        } 
 
        return result; 
    } 
 
    int IComparable.CompareTo( object other ) { 
        if( !(other is ComplexNumber) ) { 
            throw new ArgumentException( "Bad Comparison!" ); 
        } 
 
        return CompareTo( (ComplexNumber) other ); 
    } 
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    public double Magnitude { 
        get { 
            return Math.Sqrt( Math.Pow(this.real, 2) + 
                              Math.Pow(this.imaginary, 2) ); 
        } 
    } 
 
    // Other methods removed for clarity 
     
    private readonly double real; 
    private readonly double imaginary; 
} 
 
public sealed class EntryPoint 
{ 
    static void Main() 
    { 
        ComplexNumber num1 = new ComplexNumber( 1, 3 ); 
        ComplexNumber num2 = new ComplexNumber( 1, 2 ); 
 
        int result = num1.CompareTo( num2 ); 
 
        // Now, try the type-generic version 
        result = ((IComparable)num1).CompareTo( num2 ); 
    } 
} 

After the modifications, the first call to CompareTo in Main will incur no boxing operations. You’ll also 
notice that I went one step further and implemented the IComparable.CompareTo method explicitly; this 
makes it harder to call the typeless version of CompareTo inadvertently without first explicitly casting the 
value instance to a reference of type IComparable. For good measure, the Main method demonstrates how 
to call the typeless version of CompareTo. Now, the idea is that clients who use the ComplexNumber value 
can write code in a natural-looking way and get the benefits of better performance. Clients who require 
going through the interface, such as some nongeneric container types, can use the IComparable 
interface, albeit with some boxing. If you’re curious, go ahead and open up the compiled executable 
with the previous example code inside ILDASM and examine the Main method. You’ll see that the first 
call to CompareTo results in no superfluous boxing, whereas the second call to CompareTo does, in fact, 
result in two boxing operations as expected. 

As a general rule of thumb, you can apply this idiom to just about any value type’s methods that 
accept or return a boxed instance of the value type. So far, you’ve seen two such examples of the idiom 
in use. The first was while implementing Equals for the ComplexNumber type, and the second was while 
implementing IComparable.CompareTo. 

Summary 
This entire chapter can be summarized into a pair of handy checklists that you can use whenever you 
design a new type in C#. When you design a new class or struct, it is good design practice to go through 
the checklist for each type, just as a pilot does before the plane leaves the gate. If you take this approach, 
you can always feel confident about your designs. 

These checklists have been a work in progress for some time. They are by no means meant to be 
complete. You might find the need to augment them or create new entries for new scenarios where you 
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might use classes or structs. These checklists are meant to address the most common scenarios that 
you’re likely to encounter in a C# design process. 

Checklist for Reference Types 

• Should this class be unsealed? Classes should be declared sealed by default unless 
they’re clearly intended to be used as a base class. Even then, you should well 
document how to use them as a base class. Choose sealed classes over unsealed 
classes. 

• Is an object cloneable? 

• Implement ICloneable while defaulting to a deep copy: If an object is 
mutable, default to a deep copy. Otherwise, if it’s immutable, consider a 
shallow copy as an optimization. 

• Avoid use of MemberwiseClone: Calling MemberwiseClone creates a new object 
without calling any constructors. This practice can be dangerous. 

• Is an object disposable? 

• Implement IDisposable: If you find the need to implement a conventional 
destructor, use the IDispose pattern instead. 

• Implement a finalizer: Disposable objects should implement a finalizer to 
either catch objects that clients forgot to dispose of or to warn clients that 
they forgot to do so. Don’t do deterministic destruction work in the C# 
destructor, which is the finalizer. Only do that kind of work in the Dispose 
method. 

• Suppress finalization during a call to Dispose: This will make the GC 
perform much more efficiently. Otherwise, objects live on the heap longer 
than they need to. 

•  Should object equivalence checks carry value semantics? 

• Override Object.Equals: Before changing the semantic meaning of Equals, 
be sure you have a solid argument to do so; otherwise, leave the default 
identity equivalence in place for objects. It is an error to throw exceptions 
from within your Equals override. 

• Know when to call the base class Equals implementation: If your object 
derives from a type whose version of Equals differs in semantic meaning 
from your implementation, don’t call the base class version in the override. 
Otherwise, be sure to do so and include its result with yours. 

• Override GetHashCode, too: This is a required step to ensure that you can use 
objects of this type as a hash code key. If you override Equals, always 
override GetHashCode too. 

•  Are objects of this type comparable? 

• Implement IComparable and IComparable<T>, and override Equals and 
GetHashCode: You’ll want to override these as a group, because they have 
intertwined implementations. 
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• Is the object convertible to System.String, or vice versa? 

• Override Object.ToString: The implementation inherited from 
Object.ToString merely returns a string name of the object’s type. 

• Implement IFormattable if users need finer control over string formatting: 
Implement the Object.ToString override by calling IFormattable.ToString 
with a format string of G and a null format provider. 

• Is an object convertible? 

• Override IConvertible so the class will work with System.Convert: In C#, you 
must implement all methods of the interface. However, for conversion 
methods that don’t make sense for your class, simply throw an 
InvalidCastException object. 

• Should this object be immutable? 

• Consider making fields read-only and provide only read-only properties: 
Objects that fundamentally represent a simple value, such as a string or a 
complex number, are excellent candidates to be immutable objects. 

• Do you need to pass this object as a constant immutable method parameter? 

• Consider implementing an immutable shim class that contains a reference to 
a mutable object, which can be passed a method parameter: First, see if it 
makes sense for your class to be immutable. If so, then there’s no need for 
this action. If you do need to be able to pass your mutable objects to 
methods as immutable objects, you can achieve the same effect by using 
interfaces. 

Checklist for Value Types 

• Do you desire greater efficiency for your value types? 

• Override Equals and GetHashCode: The generic version of ValueType.Equals 
is not efficient because it relies upon reflection to do the job. Generally, it’s 
best to provide a type-safe version of Equals by implementing 
IEquatable<T> and then have the typeless version call it. Don’t forget to 
override GetHashCode, too. 

• Provide type-safe overloads of inherited typeless methods and interface 
methods: For any method that accepts or returns a parameter of type 
System.Object, provide an overload that uses the concrete value type in its 
place. That way, clients of the value type can avoid unnecessary boxing. For 
interfaces, consider hiding the typeless implementation behind an explicit 
interface implementation, if desired. 

• Need to modify boxed instances of value? 

• Implement an interface to do so: Calling through an interface member 
implemented by a value type is the only way to change a value type within a 
boxed instance. 

• Are values of this type comparable? 
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• Implement IComparable and IComparable<T>, and override Equals and 
GetHashCode: You’ll want to implement and override all these, because they 
have intertwined implementations. If you override Equals, take the previous 
advice and create a type-safe version as well. 

• Is the value convertible to System.String, or vice versa? 

• Override ValueType.ToString: The implementation inherited from 
ValueType merely returns a string name of the value’s type. 

• Implement IFormattable if users need finer control over string formatting: 
Implement a ValueType.ToString override that calls IFormattable.ToString 
with a format string of G and a null format provider. 

• Is the value convertible? 

• Override IConvertible so struct will work with System.Convert: In C#, all 
methods of the interface must be implemented. However, for conversion 
methods that don’t make sense for your struct, simply throw an 
InvalidCastException object. 

• Should this struct be immutable? 

• Consider making fields read-only, and provide only read-only properties: 
Values are excellent candidates to be immutable types. 
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Extension Methods 

Using extension methods, you can declare methods that appear to augment the public interface, or 
contract, of a type. At first glance, they may appear to provide a way to extend classes that are not meant 
to be extended. However, it’s very important to note that extension methods cannot break 
encapsulation. That’s because they’re not really instance methods at all and thus cannot crack the shell 
of encapsulation on the type they are extending. 

Introduction to Extension Methods 
As previously mentioned, extension methods make it appear that you can modify the public interface of 
any type. Let’s take a quick look at a small example showing extension methods in action: 

using System; 
 
namespace ExtensionMethodDemo 
{ 
 
    public static class ExtensionMethods 
    { 
        public static void SendToLog( this String str ) { 
            Console.WriteLine( str ); 
        } 
    } 
 
    public class ExtensionMethodIntro 
    { 
        static void Main() { 
            String str = "Some useful information to log"; 
 
            // Call the extension method 
            str.SendToLog(); 
 
            // Call the same method the old way. 
            ExtensionMethods.SendToLog( str ); 
        } 
    } 
 
} 
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Take a look at the Main method first. Notice that I declared a System.String first and then called the 
method SendToLog on the str instance. But wait! There is no method named SendToLog in the 
System.String type definition. That’s because SendToLog is an extension method declared in the previous 
class, named ExtensionMethods. 

At first glance, it appears that ExtensionMethods.SendToLog is just like any other plain static method. 
But notice two things. It is declared inside a static class, namely ExtensionMethods, and the first 
parameter to the static method SendToLog has its type prefixed with the keyword this. Using the this 
keyword in this way on a static method declared in a static class is how you tell the compiler that the 
method is an extension method. 

Notice that in the end of the Main method, I demonstrate that you can still call the SendToLog method 
just like any other normal static method. In fact, extension methods do not give you any more 
functionality over regular static methods. Extension methods add a certain amount of syntactic sugar to 
the language to allow you to call them as if they were an instance method of the type instance you are 
operating on. But just like any other feature of the language, they can be abused. Therefore, I present 
some best practices and guidelines when using extension methods later in the “Recommendations for 
Use” section. 

How Does the Compiler Find Extension Methods? 
When you call an instance method on a type instance, the compiler must deduce which method you are 
actually calling by considering things such as the instance’s type, its base type (if there is one), any 
interfaces it and its base type may implement, and so on. As shown in Chapter 5, the steps the compiler 
goes through to determine which method to call can be quite complex. So how does the compiler handle 
the added complexity of finding an extension method to call? 

Extension methods are typically imported into the current compilation unit via namespaces with 
the using keyword. When you use the using keyword to import the types from a particular namespace 
into the current scope, you also make all the extension methods implemented in static classes in that 
namespace available for call via the new syntax. If you don’t import the namespace with the static 
classes implementing the extension methods you need, you can only call them as static methods using 
their fully qualified names. Remember that it is not required that you import a namespace in order to 
use the types within it. For example, you can use the System.Console type in your application without 
actually importing the types of the System namespace as long as you use its fully qualified name. But you 
typically do it for convenience. Similarly, in order to call extension methods using the instance method 
call syntax, you must import the namespace. 

■ Note Starting with C# 3.0, importing a namespace as a more convenient way to address the types within it has 

a side effect if that namespace also contains extension methods. I discuss this more fully in the 

“Recommendations for Use” section later on. 

When you invoke an instance method, the compiler searches the type for the matching instance 
method. If the search yields no matching methods, the compiler proceeds to look for matching 
extension methods. It starts by searching all the extension methods declared in the innermost 
containing namespace of the method invocation including its imported namespaces, and if it does not 
find a match, it searches the next outer enclosing namespace recursively up to the global namespace as 
it looks for a match. If it fails to find a match, the compiler will stop with a compilation error. Conversely, 
if the current namespace has more than one extension method imported that matches, the compiler will 
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issue an error complaining about the ambiguity. In such cases, you must fall back to calling the method 
as a static method while specifying the fully qualified method name. 

■ Note Technically, this name lookup process is a little more complicated than this. If the instance you are trying 

to call an extension method on contains a property with the same name, the property will be found by the compiler 

and then it will stop with an error claiming that you are attempting to call a property as a method. 

Consider the following example that illustrates all these points: 

using System; 
 
public static class ExtensionMethods 
{ 
    static public void WriteLine( this String str ) { 
        Console.WriteLine( "Global Namespace: " + str ); 
    } 
} 
 
namespace A 
{ 
    public static class ExtensionMethods 
    { 
        static public void WriteLine( this String str ) { 
            Console.WriteLine( "Namespace A: " + str ); 
        } 
    } 
} 
 
namespace B 
{ 
    public static class ExtensionMethods 
    { 
        static public void WriteLine( this String str ) { 
            Console.WriteLine( "Namespace B: " + str ); 
        } 
    } 
} 
 
namespace C 
{ 
    using A; 
 
    public class Employee 
    { 
        public Employee( String name ) { 
            this.name = name; 
        } 
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        public void PrintName() { 
            name.WriteLine(); 
        } 
 
        private String name; 
    } 
} 
 
namespace D 
{ 
    using B; 
 
    public class Dog 
    { 
        public Dog( String name ) { 
            this.name = name; 
        } 
 
        public void PrintName() { 
            name.WriteLine(); 
        } 
 
        private String name; 
    } 
} 
 
namespace E 
{ 
    public class Cat 
    { 
        public Cat( String name ) { 
            this.name = name; 
        } 
 
        public void PrintName() { 
            name.WriteLine(); 
        } 
 
        private String name; 
    } 
} 
 
namespace Demo 
{ 
    using A; 
    using B; 
 
    public class EntryPoint 
    { 
        static void Main() { 
            C.Employee fred = new C.Employee( "Fred" ); 
            D.Dog thor = new D.Dog( "Thor" ); 
            E.Cat sylvester = new E.Cat( "Sylvester" ); 
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            fred.PrintName(); 
            thor.PrintName(); 
            sylvester.PrintName(); 
 
            // String str = "Etouffe"; 
            // str.WriteLine(); 
        } 
    } 
} 

In this example, the same extension method, WriteLine, is declared in three different namespaces 
(namespace A, namespace B, and the global namespace). Additionally, three types are defined, each in its 
own namespace: Employee, Dog, and Cat. In the Main method, an instance of each is created, and then the 
PrintName method is called on each instance. The body of each type’s PrintName method then calls the 
WriteLine extension method on the field of type String, and this is where things get interesting. If you 
compile and execute the code, you will see the following output on the console: 

Namespace A: Fred 

Namespace B: Thor 

Global Namespace: Sylvester 

Notice that in this case the exact implementation of the extension method that gets called is 
governed by which namespace is imported into the namespace where the type (either Employee, Dog, or 
Cat) is defined. Because namespace C imports namespace A, it follows that Employee will end up calling 
the WriteLine defined in namespace A. Similarly, because namespace D imports namespace B, the 
WriteLine extension method in namespace B will get called. Because namespace E imports neither 
namespaces A nor B, the search proceeds out to the global namespace, which also includes an 
implementation of the WriteLine extension method. Finally, notice the commented code at the end of 
the Main method. If you uncomment these lines and attempt to compile, you will see the compiler 
complain that it cannot figure out which WriteLine to call because the Demo namespace imports both 
namespaces A and B. This example highlights the dangers of improperly using this new syntax.  

Under the Covers 
How does the compiler implement extension methods? Because extension methods are just a syntactic 
shortcut, no modifications were needed to the runtime to support extension methods. Instead, the 
compiler implements extension methods completely with metadata. Following is the IL code for the 
ExtensionMethods.WriteLine method from the default namespace generated by compiling the previous 
example: 

.method public hidebysig static void  WriteLine(string str) cil managed 
{ 
  .custom instance void [System.Core]System.Runtime.CompilerServices. ~CCC 
ExtensionAttribute::.ctor() = ( 01 00 00 00 ) 
  // Code size       19 (0x13) 
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  .maxstack  8 
  IL_0000:  nop 
  IL_0001:  ldstr      "Default Namespace: " 
  IL_0006:  ldarg.0 
  IL_0007:  call       string [mscorlib]System.String::Concat(string, 
                                                              string) 
  IL_000c:  call       void [mscorlib]System.Console::WriteLine(string) 
  IL_0011:  nop 
  IL_0012:  ret 
} // end of method ExtensionMethods::WriteLine 

The bold text is wrapped to fit the page width, but what it shows you is that the method has a new 
attribute applied to it. That attribute is ExtensionAttribute and it is defined in the 
System.Runtime.CompilerServices namespace. The compiler also applies the attribute to the containing 
class, which is ExtensionMethods in this case. At compile time, it references this information when 
searching for potential extension methods to call. This is a perfect example of the power of metadata and 
the kinds of things you can achieve with custom attributes in metadata. 

If you look at the generated IL at the call site of an extension method, you will see that the extension 
method is called as a normal static method. 

Code Readability versus Code Understandability 
Let’s face it. There are too many companies out there that provide very little documentation of their 
applications’ code. Many companies may have high-level design documents that essentially show the 
big components of the application and some vague lines joining them together to express the 
relationships between them. But all too often, companies are in such a hurry to get to market that once 
they start coding the app, and the design makes a few turns here and there, they never bother to update 
the original design documents. Give the product a few versions for the code and documentation to 
diverge further, and then you might as well just send the documents to the recycle bin. At the other end 
of the spectrum, you very occasionally see organizations that document everything, even up to the point 
of designing every piece of the application with a UML modeling tool, and so on, before coding. 

Most successful projects fall somewhere in between. You typically have just enough documentation 
so that if the lead developer who conjured up the guts of a rendering engine meets an unfortunate fate, 
the next developer can come in behind him and couple the information in the documentation with the 
information in the code and move forward. One key to this puzzle is easily readable code, but it should 
also be easy-to-understand code. 

What’s the difference? Code that’s easily readable makes the programmer’s intentions at the place 
you are reading easy to absorb. For example, imagine that you are reading someone’s code and they 
have a need to send some string to some log file. You could come across something like the following: 

String info = "tasty information"; 
Logger.LogOutput( info ); 

For the most part, it’s easy to see what is going on. Or is it? What does LogOutput do? Does it write 
the string to a file? Does it send it to the console? Does it send it to the debug output stream? It’s 
impossible to tell from looking at this code. Instead, we have to look at the Logger.LogOutput method’s 
code to understand what’s going on. So one may argue that the key to understandable code is code that 
is easy to navigate, thus making it easy to follow. 

Consider what that code might look like with extension methods in play: 

String info = "tasty information"; 
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info.WriteTo( logFile ); 

Instantly, the code is much easier to read. It almost reads like a written sentence. This is a technique 
you see used all throughout the .NET Framework. In the second line, it starts with a subject, in the 
middle there is a verb, and at the end is an indirect object. You could read it as if it were an imperative 
command given to the info object. 

But what if WriteTo is implemented as an extension method? Is the code just as easy to understand 
as it is to read? It actually might depend on your tools. IntelliSense in Visual Studio definitely can help 
here because it can help you find which static class implements the WriteTo extension method. But if 
your favorite editor is Emacs or Vim without appropriate plug-ins, you are stuck having to determine 
which namespaces have been imported into the current scope, and then you must start searching those 
namespaces for a class that implements the extension method. Depending on the complexity of the 
application code and how many namespaces the current compilation unit imports, that could be a 
nightmare! 

So the moral of the story is this. Just as with any other language feature, be sure to use extension 
methods correctly, sparingly, and only when needed. Just because you can implement something with 
an extension method doesn’t mean that you always should. The entire engineering discipline is built 
around making engineering decisions whereby we gather information and make the best decision based 
upon the data, even if none of the options may be perfect.1 

Recommendations for Use 
The following sections detail some best-use practices and guidelines for using extension methods. Of 
course, as extension method use evolves in the language, this set will grow. 

Consider Extension Methods Over Inheritance 
When one first encounters extension methods, it’s natural to view the feature as a way to extend the 
public contract of a single type or a group of types. That’s an obvious conclusion given the fact that 
extension methods can be invoked through the instance method call syntax. However, I think it’s much 
more effective to view extension methods as a way to provide operations that you can apply to a given 
type, or multiple types, in a more attractive syntactic, or general way—because again, they do not 
actually extend a type’s contract at all. 

Previously, I showed trivial examples of using extension methods to be able to call WriteLine on 
instances of type String. Alternatively, one could have attempted to inherit from String in order to 
provide the same behavior. In this case, you’ll find that such a technique is impossible because String is 
sealed. In Chapter 13, I explain why I believe it is best to prefer sealing the types you create by default. 
You should unseal them only after you put in the extra thought and design (and documentation) 
required to make them suitable as base classes. The designers of System.String clearly had good reason 
to keep us from using it as a base type. 

Additionally, gratuitous use of inheritance for this purpose unnecessarily complicates your design. 
Chapter 4 describes how you should use inheritance sparingly and how using containment is generally 
more flexible than inheritance. Inheritance is one of the strongest forms of static binding between two 
types. Overuse of that glue creates a monolith that’s extremely difficult to work with. 

                                                 

 
1 Some people in the jaded crowd call this choosing between the lesser of two evils.  
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For example, you might have the need to apply your WriteLine operation, or some other useful 
extension method, on a type instance that you do not create. Consider an instance of a type that’s 
returned from some factory method, as in the following code: 

public class MyFactory 
{ 
    public Widget CreateWidget() { 
        … 
    } 
} 

Here CreateWidget is the method that is creating the instance of the returned Widget. It’s what is 
called a factory method. Typically, you’ll have a hierarchy of type specializations derived from Widget, 
and CreateWidget might take some parameters telling it exactly what type of Widget to create. Regardless 
of that, we don’t have control over how or when the object is created. Therefore, it’s impossible for us to 
use inheritance to extend the Widget type’s contract unless we also control the CreateWidget method. 
And even if we do, maybe that method is already published in some other assembly that’s been signed 
and certified and cannot be easily changed. Clearly inheritance is not the correct approach to add the 
WriteLine functionality to types of Widget in this situation. 

Extension methods also allow you to provide an operation that one can apply to an entire hierarchy 
of types’ instances. For example, consider an extension method whose first parameter is of type 
System.Object. That extension method can be called on any type. You can’t achieve that with 
inheritance. To do so would require that you have some ability to create a derived type from 
System.Object, say MyObject, and then somehow get every type in the CLR to derive from MyObject rather 
than System.Object. Clearly, there’s no reason to think too much about the impossible. But just because 
you can create an extension method that is callable on all objects does not mean you should. Unless the 
extension method operates only on the public interface of System.Object, you’ll most likely have some 
code in the extension method to determine type at run time so that you can perform some type-specific 
operation. Such a coding style defeats the strongly typed nature of C# and its compiler. 

■ Note You can also use generics to apply extension methods to multiple types. You can declare generic 

extension methods just as easily as declaring generic instance methods or generic delegates. In the section titled 

“The Visitor Pattern,” I show an example of using a generic extension method. 

Isolate Extension Methods in Separate Namespace 
One of the fundamental disciplines in writing methods is that you should avoid side effects. What that 
means is that, if you create a method such as LogToFile and within its implementation you decide to 
modify some global state that is used by other components in the application, you have just introduced 
a potentially dangerous side effect. Side effects such as these are usually the cause of many hard-to-find 
bugs because, in this case, the modification of the global state might not be intuitive based on the 
method name. 

In the same regard, try to avoid introducing side effects to your clients when they import 
namespaces. Specifically, it’s best if you declare any extension methods in their own namespace 
separate from the namespace of the types they extend. Typically, the extension methods are in a nested 
namespace. Not giving your clients this granularity can cause confusion when the compiler attempts to 
look up a method for an instance method call.  
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Imagine, for a moment, the confusion that could come from defining your extension methods in the 
System namespace. There’s no mechanism that keeps you from doing so. Just about everyone imports 
the System namespace into their code. Thus, if you define your extensions that way, most everyone will 
import them, and the only way to keep it from happening is for them to live with the inconvenience of 
not importing the System namespace at all! 

If you think this is no big deal, allow me to paint a scenario. Imagine that you have an application 
that uses a library from Acme Widgets. The developers of Acme Widgets thought that it would be handy 
to introduce an extension method named WriteToLog so that you can have another debugging tool in 
your toolbox when using their library. Being good designers, they defined the extension method in a 
namespace called AcmeWidgetExtensions. Now, two versions later, you come across a library from Ace 
Objects that you just must have. Before making any changes to your code, you reference their assembly 
and include their namespace in your project. All of a sudden, your code won’t build: the compiler is 
complaining with error CS0121 that calls to WriteToLog are ambiguous! Further investigation reveals that 
Ace Objects also thought it would be handy to provide an extension method called WriteToLog. 
Unfortunately, they defined it in the System namespace, which all your code files import. Ouch! 

Thus, the moral of the story is to always define your extension methods in a separate namespace in 
order to allow your clients the granularity they need when importing them into their scope. Moreover, if 
you are offering a large set of extension methods, consider whether it would be appropriate to further 
partition them into multiple namespaces to offer greater granularity to your clients. 

Changing a Type’s Contract Can Break Extension Methods 
When the compiler looks for a name that matches an instance method call, extension methods are the 
last place it looks. This makes sense because if you have a class that already implements an instance 
method named WriteToLog, you don’t want an extension method to replace that functionality. However, 
consider the following scenario. 

You have an application that uses a library from Acme Widgets. To further help debug your system 
and to produce a rich logging mechanism, you created an extension method named WriteToLog that you 
can use to send information about a particular widget to a log file. Time passes, and now you have 
decided to upgrade to version 2 of the Acme Widgets library. But in the meantime, the creators of the 
Acme Widgets library decided to extend the public contract of some of their types and add a WriteToLog 
method because, before you implemented your own WriteToLog extension method, you sent them a 
feature request expressing how valuable such a thing would be. Without knowing that they added this 
method to their types, you recompile your code. There are no errors because the new instance method’s 
signature just happens to match your extension method’s signature exactly. But then the next time you 
run your application, you see some different behavior, and all of a sudden, the formatting in your log file 
is completely different! This happens because now the compiler prefers the instance method over the 
extension method. It turns out that similar bad things can happen if the type definition includes a new 
property with the same name as your extension method. But in that case, you get a compiler error as it 
complains that you are attempting to call a property as if it were a method. 

The only real solution to this problem, if you ever come across it, is to switch to calling the extension 
method through the classic static method call syntax rather than the extension method instance call 
syntax. But if you’re unlucky enough to have the switch happen silently, as in the previous scenario, it 
might be a little while before you realize that you need to start calling the extension method differently. 

Transforms 
Even though extension methods are merely syntactic shortcuts for calling static methods using the 
standard method call syntax, sometimes even such seemingly insignificant features can trigger a 
different thought process, thus opening up a plethora of new ideas. For example, imagine that you have 
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a collection of data. Let’s say that collection implements IEnumerable<T>. Now, let’s say that we want to 
apply an operation to each item in the collection and produce a new collection. For the sake of example, 
let’s assume that we have a collection of integers and that we want to transform them into a collection of 
doubles that are one-third of the original value. You could approach the problem as shown in this 
example: 

using System; 
using System.Collections.Generic; 
 
public class TransformExample 
{ 
    static void Main() { 
        var intList = new List<int>() { 1, 2, 3, 4, 5 }; 
 
        var doubleList = new List<double>(); 
 
        // Compute the new list. 
        foreach( var item in intList ) { 
            doubleList.Add( (double) item / 3 ); 
            Console.WriteLine( item ); 
        } 
        Console.WriteLine(); 
 
        // Display the new list. 
        foreach( var item in doubleList ) { 
            Console.WriteLine( item ); 
        } 
        Console.WriteLine(); 
    } 
} 

The technique here is a typical imperative programming style and a valid solution to the problem. 
Unfortunately, it’s not very scalable or reusable. For example, imagine if you wanted to apply some other 
operation to the result of the first one, or maybe three operations chained together. Or maybe you want 
to make as much of this code reusable as possible. 

There are really at least two fundamental operations taking place in this example. The first is that of 
iterating over the input collection and producing a new collection. Another operation, which is 
fundamentally orthogonal to the first, is that of dividing each item by 3. Wouldn’t it be nice to decouple 
these two? Then, if coded correctly, the transformation code can be reused with a variety of operations. 
So, first, let’s break out the operation from the transformation and see what the code may look like: 

using System; 
using System.Collections.Generic; 
 
public class TransformExample 
{ 
    delegate double Operation( int item ); 
 
    static List<double> Transform( List<int> input, Operation op ) { 
        List<double> result = new List<double>(); 
        foreach( var item in input ) { 
            result.Add( op(item) ); 
        } 
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        return result; 
    } 
 
    static double DivideByThree( int n ) { 
        return (double)n / 3; 
    } 
 
    static void Main() { 
        var intList = new List<int>() { 1, 2, 3, 4, 5 }; 
 
        // Compute the new list. 
        var doubleList = Transform( intList, DivideByThree ); 
 
        foreach( var item in intList ) { 
            Console.WriteLine( item ); 
        } 
        Console.WriteLine(); 
 
        // Display the new list. 
        foreach( var item in doubleList ) { 
            Console.WriteLine( item ); 
        } 
        Console.WriteLine(); 
    } 
} 

The new code is better. Now, the operation has been factored out and is passed via a delegate to the 
Transform static method. 

As you can imagine, we can convert the Transform method to an extension method. But that’s not 
all! We can also use generics to make the code even more reusable. But wait, there’s even more! We can 
use iterators to make the Transform method calculate its items in a lazy fashion. Check out the next 
example for a more reusable version of Transform: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public static class MyExtensions 
{ 
    public static IEnumerable<R> Transform<T, R>( 
                     this IEnumerable<T> input, 
                     Func<T, R> op ) { 
        foreach( var item in input ) { 
            yield return op( item ); 
        } 
    } 
} 
 
public class TransformExample 
{ 
    static double DivideByThree( int n ) { 
        return (double)n / 3; 
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    } 
 
    static void Main() { 
        var intList = new List<int>() { 1, 2, 3, 4, 5 }; 
 
        // Compute the new list. 
        var doubleList = 
            intList.Transform( DivideByThree ); 
 
        foreach( var item in intList ) { 
            Console.WriteLine( item ); 
        } 
        Console.WriteLine(); 
 
        // Display the new list. 
        foreach( var item in doubleList ) { 
            Console.WriteLine( item ); 
        } 
    } 
} 

Now we’re getting there! First, notice that Transform<T> is now a generic extension method. 
Moreover, it takes and returns IEnumerable<T> types. Now Transform<T> can be used on any generic 
collection and accepts a delegate describing how to transform each item. The Func<> type is defined in 
the System namespace and makes it easier to declare delegates. Because an iterator block is used to 
return items from Transform<T> via the yield keyword, each item is only processed each time the 
returned IEnumerable<T> type’s cursor is advanced. In this example, the computational savings are 
trivial, but this sort of lazy evaluation is one of the cornerstones of LINQ. 

However, you can easily imagine a situation where the passed-in operation can take quite a bit of 
time to process each item in the input collection. The input collection could contain long strings and the 
operation could be an encryption operation, for example. 

Another reason lazy evaluation is so handy is that the input collection could even be an infinite 
series. How? Check out the next example, which also shows a teaser for lambda expressions, covered in 
Chapter 15: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public static class MyExtensions 
{ 
    public static IEnumerable<R> Transform<T, R>( 
                     this IEnumerable<T> input, 
                     Func<T, R> op ) { 
        foreach( var item in input ) { 
            yield return op( item ); 
        } 
    } 
} 
 
public class TransformExample 
{ 
    static IEnumerable<int> CreateInfiniteSeries() { 
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        int n = 0; 
        while( true ) { 
            yield return n++; 
        } 
    } 
 
    static void Main() { 
        var infiniteSeries1 = CreateInfiniteSeries(); 
 
        var infiniteSeries2 = 
            infiniteSeries1.Transform( x => (double)x / 3 ); 
 
        IEnumerator<double> iter = 
            infiniteSeries2.GetEnumerator(); 
 
        for( int i = 0; i < 25; ++i ) { 
            iter.MoveNext(); 
            Console.WriteLine( iter.Current ); 
        } 
    } 
} 

How cool is that? It’s so easy to create an infinite series with an iterator block. Of course, in my loop I 
could not use foreach; otherwise, the program would never finish and you would have to terminate it 
forcefully. The funny syntax within the Transform<T> method call is a lambda expression. A lambda 
expression used this way defines a function (passed as a delegate in this case). You can envision lambda 
expressions as a terse syntax for defining anonymous methods. If you just can’t wait to see what lambda 
expressions are all about, jump to Chapter 15. 

Used this way, extension methods allow us to implement more of a functional programming style.2 
After all, the Transform<T> method just shown fits into that category. In fact, you will find that most of 
the new additions introduced in C# 3.0 facilitate the functional programming paradigm. Those features 
include extension methods, lambda expressions, and LINQ. Each of these features places the emphasis 
on the computational operation rather than the structure of the computation. The benefits of functional 
programming are numerous, and one could fill the pages of an entire book describing them. For 
example, functional programming facilitates parallelism because variables are typically never changed 
after initial assignment; thus, fewer locks and sync blocks are necessary. 

■ Note C++ developers familiar with template metaprogramming, as described in the excellent book C++ 

Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond, by David Abrahams and 

Aleksey Gurtovoy (Boston, MA: Addison-Wesley Professional, 2004), will be right at home with this style of 

functional programming. In fact, template metaprogramming provides a more purely functional programming 

environment because once a variable (or symbol, in functional programming lingo) is assigned, it can never be 

                                                 

 
2 For more on functional programming, search “functional programming” on http://www.wikipedia.org. 

http://www.wikipedia.org
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changed. C#, on the other hand, offers a hybrid environment in which you are free to implement functional 

programming if you choose. Also, those familiar with the Standard Template Library (STL) will get a familiar feeling 

from this style of programming. STL swept through the C++ programming community back in the early 1990s and 

encouraged a more functional programming thought process. 

Operation Chaining 
Using extension methods, operation chaining becomes a more natural process. Again, it’s nothing that 
you could not have done in the C# 2.0 days using plain static methods and anonymous methods. 
However, with the streamlined syntax, chaining actually removes the clutter and can trigger some 
innovative thinking. Let’s start with the example from the previous section, in which we took a list of 
integers and transformed them into a list of doubles. This time, we’ll look at how we can actually chain 
operations in a fluid way. Let’s suppose that after dividing the integers by 3, we want to then compute 
the square of the result. The following code shows how to do that: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public static class MyExtensions 
{ 
    public static IEnumerable<R> Transform<T, R>( 
                     this IEnumerable<T> input, 
                     Func<T, R> op ) { 
        foreach( var item in input ) { 
            yield return op( item ); 
        } 
    } 
} 
 
public class TransformExample 
{ 
    static IEnumerable<int> CreateInfiniteList() { 
        int n = 0; 
        while( true ) yield return n++; 
    } 
 
    static double DivideByThree( int n ) { 
        return (double)n / 3; 
    } 
 
    static double Square( double r ) { 
        return r * r; 
    } 
 
    static void Main() { 
        var divideByThree = 
            new Func<int, double>( DivideByThree ); 
        var squareNumber =  
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            new Func<double, double>( Square ); 
 
        var result = CreateInfiniteList(). 
                        Transform( divideByThree ). 
                        Transform( squareNumber ); 
 
        var iter = result.GetEnumerator(); 
        for( int i = 0; i < 25; ++i ) { 
            iter.MoveNext(); 
            Console.WriteLine( iter.Current ); 
        } 
    } 
} 

Isn’t that cool? In one statement of code, I took an infinite list of integers and applied a divisor 
followed by a squaring operation, and the end result is a lazy-evaluated IEnumerable<double> type that 
computes each element as needed. Functional programming is actually pretty useful when you look at it 
this way. Of course, you could chain as many operations as necessary. For example, you might want to 
append a rounding operation at the end. Or maybe you want to append a filtering operation so that only 
the results that match a certain criteria are considered. To do that, you could create a generic Filter<T> 
extension method, similar to Transform<T>, that takes a predicate delegate as a parameter and uses it to 
filter the items in the collection. 

At this point, I’m sure that you’re thinking of all the really useful extension methods you could 
create to manipulate data. You might be wondering if a host of these extension methods already exists. 
Check out the System.Linq.Enumerable class. This class provides a whole host of extension methods that 
are typically used with LINQ, which I cover in Chapter 16. All these extension methods operate on types 
of IEnumerable<T>. Also, the System.Linq.Queryable class provides the same extension methods for types 
that implement IQueryable<T>, which derives from IEnumerable<T>. 

Custom Iterators 
Chapter 9 covered iterators, which were added to the language in C# 2.0. I described some ways you 
could create custom iterators. Extension methods offer even more flexibility to create custom iterators 
for collections in a very expressive way. By default, every collection that implements IEnumerable or 
IEnumerable<T> has a forward iterator, so a custom iterator would be necessary to walk through a 
collection in a different way than its default iterator. Also, you will need to create a custom iterator for 
types that don’t support IEnumerable<T>, as I’ll show in the next section, “Borrowing from Functional 
Programming.” Let’s look at how you can use extension methods to implement custom iterators on 
types implementing IEnumerable<T>. 

For example, imagine a two-dimensional matrix implemented as a List<List<int>> type. When 
performing some operations on such matrices, it’s common to require an iterator that walks through the 
matrix in row-major fashion. What that means is that the iterator walks all the items of the first row, then 
the second row, and so on until it reaches the end of the last row. 

You could iterate through the matrix in row-major form as shown here: 

using System; 
using System.Collections.Generic; 
 
public class IteratorExample 
{ 
    static void Main() { 
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        var matrix = new List<List<int>> { 
            new List<int> { 1, 2, 3 }, 
            new List<int> { 4, 5, 6 }, 
            new List<int> { 7, 8, 9 } 
        }; 
 
        // One way of iterating the matrix. 
        foreach( var list in matrix ) { 
            foreach( var item in list ) { 
                Console.Write( "{0}, ", item ); 
            } 
        } 
 
        Console.WriteLine(); 
    } 
} 

Yes, this code gets the job done, but it is not very reusable. Let’s see one way this can be redone 
using an extension method: 

using System; 
using System.Collections.Generic; 
 
public static class CustomIterators 
{ 
    public static IEnumerable<T> GetRowMajorIterator<T>( 
                                      this List<List<T>> matrix ) { 
        foreach( var row in matrix ) { 
            foreach( var item in row ) { 
                yield return item; 
            } 
        } 
    } 
} 
 
public class IteratorExample 
{ 
    static void Main() { 
        var matrix = new List<List<int>> { 
            new List<int> { 1, 2, 3 }, 
            new List<int> { 4, 5, 6 }, 
            new List<int> { 7, 8, 9 } 
        }; 
 
        // A more elegant way to enumerate the items. 
        foreach( var item in matrix.GetRowMajorIterator() ) { 
            Console.Write( "{0}, ", item ); 
        } 
 
        Console.WriteLine(); 
    } 
} 
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In this version, I have externalized the iteration into the GetRowMajorIterator<T> extension method. 
At the same time, I made the extension method generic so it will accept two-dimensional nested lists 
that contain any type, thus making it a bit more reusable. 

Borrowing from Functional Programming 
You might have already noticed that many of the new features added in C# 3.0 facilitate a functional 
programming model. You’ve always been able to implement functional programming models in C#, but 
the new language features make it easier syntactically by making the language more expressive. 
Sometimes, the functional model facilitates easier solutions to various problems. Various languages are 
categorized as functional languages, and Lisp is one of them. 

If you’ve ever programmed using Lisp, you know that the list is one of the core constructs in that 
language. In C#, we can model such a list using the following interface definition at the core: 

public interface IList<T> 
{ 
    T Head { get; } 
    IList<T> Tail { get; } 
} 

■ Caution Although I have named this type IList<T> for this example, be sure not to confuse it with IList<T> in 

the System.Collections.Generic namespace. If one were to implement this type as written, it would be best to 

define it within one’s own namespace to avoid name conflict. After all, that is one of the benefits of using 

namespaces. 

The structure of this list is a bit different from the average linked list implementation. Notice that 
instead of one node containing a value and a pointer to the next node, it instead contains the value at 
the node and then a reference to the rest of the list. In fact, it’s rather recursive in nature. That’s no 
surprise because recursive techniques are part of the functional programming model. For example, if 
you were to represent a list on paper by writing values within parentheses, a traditional list might look 
like the following: 

(1 2 3 4 5 6) 

Whereas a list defined using the IList<T> interface above could look like this: 

(1 (2 (3 (4 (5 (6 (null null))))))) 

Each set of parentheses contains two items: the value of the node and then the remainder of the list 
within a nested set of parentheses. So, to represent a list with just one item in it, such as just the number 
1, we could represent it this way: 

(1 (null null)) 

And of course, the empty list could be represented this way: 

(null null) 
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In the following example code, I create a custom list called MyList<T> that implements IList<T>. The 
way it is built here is not very efficient, and I’ll have more to say about that shortly. 

using System; 
using System.Collections.Generic; 
 
public interface IList<T> 
{ 
    T Head { get; } 
    IList<T> Tail { get; } 
} 
 
public class MyList<T> : IList<T> 
{ 
    public static IList<T> CreateList( IEnumerable<T> items ) { 
        IEnumerator<T> iter = items.GetEnumerator(); 
        return CreateList( iter ); 
    } 
 
    public static IList<T> CreateList( IEnumerator<T> iter ) { 
        if( !iter.MoveNext() ) { 
            return new MyList<T>( default(T), null ); 
        } 
 
        return new MyList<T>( iter.Current, CreateList(iter) ); 
    } 
 
    private MyList( T head, IList<T> tail ) { 
        this.head = head; 
        this.tail = tail; 
    } 
 
    public T Head { 
        get { 
            return head; 
        } 
    } 
 
    public IList<T> Tail { 
        get { 
            return tail; 
        } 
    } 
 
    private T        head; 
    private IList<T> tail; 
} 
 
public static class CustomIterators 
{ 
    public static IEnumerable<T> 
        LinkListIterator<T>( this IList<T> theList ) { 
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        for( var list = theList; 
             list.Tail != null; 
             list = list.Tail ) { 
            yield return list.Head; 
        } 
    } 
} 
 
public class IteratorExample 
{ 
    static void Main() { 
        var listInts = new List<int> { 1, 2, 3, 4 }; 
        var linkList = 
            MyList<int>.CreateList( listInts ); 
 
        foreach( var item in linkList.LinkListIterator() ) { 
            Console.Write( "{0}, ", item ); 
        } 
 
        Console.WriteLine(); 
    } 
} 

First, notice in Main that I am initializing an instance of MyList<int> using a List<int>. The 
CreateList static method recursively populates MyList<int> using these values. Once CreateList is 
finished, we have an instance of MyList<int> that can be visualized as follows: 

(1 (2 (3 (4 (null null))))) 

You’re probably wondering why the list is not represented using the following: 

(1 (2 (3 (4 null)))) 

You could do that; however, you will find that it is not as easy to use either when composing the list 
or consuming it. 

Speaking of consuming the list, you can imagine that there are times when you need to iterate over 
one of these lists. In that case, you need a custom iterator, which I have highlighted in the example. The 
code in Main uses this iterator to send all the list items to the console. The output is as follows: 

1, 2, 3, 4, 

In the example, notice that the LinkListIterator<T> method creates a forward iterator by making 
some assumptions about how to determine whether it has reached the end of the list and how to 
increment the cursor during iteration. That is, it starts at the head and assumed it has finished iterating 
once the current node’s tail is null. What if we externalized this information? For example, what if we 
wanted to allow the user to parameterize what it means to iterate, such as iterate forwards, backwards, 
circularly, and so on? How could we do that? If the idea of delegates pops into your mind, you’re right on 
track. Check out the following revised version of the iterator extension method and the Main method: 

public static class CustomIterators 
{ 
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    public static IEnumerable<T> 
        GeneralIterator<T>( this IList<T> theList, 
                            Func<IList<T>, bool> finalState, 
                            Func<IList<T>, IList<T>> incrementer ) { 
        while( !finalState(theList) ) { 
            yield return theList.Head; 
            theList = incrementer( theList ); 
        } 
    } 
} 
 
public class IteratorExample 
{ 
    static void Main() { 
        var listInts = new List<int> { 1, 2, 3, 4 }; 
        var linkList = 
            MyList<int>.CreateList( listInts ); 
 
        var iterator = linkList.GeneralIterator( delegate( IList<int> list ) { 
                                                    return list.Tail == null; 
                                                 }, 
                                                 delegate( IList<int> list ) { 
                                                    return list.Tail; 
                                                 } ); 
        foreach( var item in iterator ) { 
            Console.Write( "{0}, ", item ); 
        } 
 
        Console.WriteLine(); 
    } 
} 

Notice that the GeneralIterator<T> method accepts two more delegates, one of which is then called 
upon to check whether the cursor is at the end of the list, and the other to increment the cursor. In the 
Main method, I am passing two delegates in the form of anonymous methods. Now the 
GeneralIterator<T> method can be used to iterate over every other item in the list simply by modifying 
the delegate passed in through the incrementer parameter. 

■ Note Some of you might already be familiar with lambda expressions, which were introduced in C# 3.0. Indeed, 

when using lambda expressions, you can clean up this code considerably by using the lambda expression syntax 

to replace the previous anonymous delegates. I cover lambda expressions in Chapter 15. 

As a final extension method example for operations on the IList<T> type, consider how we could 
create an extension method to reverse the list and return a new IList<T>. There are several ways one 
could consider doing this, and some are much more efficient than others. However, I want to show you 
an example that uses a form of recursion. Consider the following Reverse<T> custom method 
implementation: 
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public static class CustomIterators 
{ 
    public static IList<T> Reverse<T>( this IList<T> theList ) { 
        var reverseList = new List<T>(); 
        Func<IList<T>, List<T>> reverseFunc = null; 
 
        reverseFunc = delegate(IList<T> list) { 
            if( list != null ) { 
                reverseFunc( list.Tail ); 
                if( list.Tail != null ) { 
                    reverseList.Add( list.Head ); 
                } 
            } 
            return reverseList; 
        }; 
 
        return MyList<T>.CreateList( reverseFunc(theList) ); 
    } 
} 

If you’ve never encountered this style of coding, it can surely make your brain twist inside your 
head. The key to the work lies in the fact that there is a delegate defined that calls itself and captures 
variables along the way.3 In the preceding code, the anonymous method is assigned to the reverseFunc 
variable. And as you can see, the anonymous method body calls reverseFunc, or more accurately, itself! 
In a way, the anonymous method captures itself! The trigger to get all the work done is in the last line of 
the Reverse<> method. It initiates the chain of recursive calls to the anonymous method and then passes 
the resulting List<T> to the CreateList method, thus creating the reversed list. 

Those who pay close attention to efficiency are likely pointing out the inefficiency of creating a 
temporary List<T> instance that is then passed to CreateList in Main. After all, if the original list is 
huge, creating a temporary list to just throw away moments later will put pressure on the garbage 
collected heap, among other things. For example, if the constructor to MyList<T> is made public, you can 
eliminate the temporary List<T> entirely and build the new MyList<T> using a captured variable as 
shown here: 

public static class CustomIterators 
{ 
    public static IList<T> Reverse<T>( this IList<T> theList ) { 
        var reverseList = new MyList<T>(default(T), null); 
        Func<IList<T>, MyList<T>> reverseFunc = null; 
 
        reverseFunc = delegate(IList<T> list) { 
            if( list.Tail != null ) { 
                reverseList = new MyList<T>( list.Head, reverseList ); 
                reverseFunc( list.Tail ); 
            } 
 

            return reverseList; 

                                                 

 
3 Computer science wonks like to call a delegate that captures variables a closure, which is a construct in which a 
function is packaged with an environment (such as variables). 
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        }; 
 

        return reverseFunc(theList); 
    } 
} 

The previous Reverse<T> method first creates an anonymous function and stores it in the local 
variable reverseFunc. It then returns the results of calling the anonymous method to the caller of 
Reverse<T>. All the work of building the reversed list is encapsulated into the closure created by the 
anonymous method and the captured local variables reverseList and reverseFunc. reverseFunc simply 
calls itself recursively until it is finished building the reversed list into the reverseList captured variable. 

Those of you who are more familiar with functional programming are probably saying that the 
preceding Reverse<T> extension method can be cleaned up by eliminating the captured variable and 
using the stack instead. In this case, it’s more of a stylistic change, but I want to show it to you for 
completeness’ sake. Instead of having the captured variable reverseList, as in the previous 
implementation of Reverse<T>, I instead pass the reference to the list I am building as an argument to 
each recursion of the anonymous method reverseFunc. Why would you want to do this? By eliminating 
the captured variable reverseList, you eliminate the possibility that the reference could be 
inadvertently changed outside of the scope of the anonymous method. Therefore, my final example of 
the Reverse<T> method uses only the stack as a temporary storage location while building the new 
reversed list: 

public static class CustomIterators 
{ 
    public static IList<T> Reverse<T>( this IList<T> theList ) { 
        Func<IList<T>, IList<T>, IList<T>> reverseFunc = null; 
 
        reverseFunc = delegate(IList<T> list, IList<T> result) { 
            if( list.Tail != null ) { 
                return reverseFunc( list.Tail, new MyList<T>(list.Head, result) ); 
            }  
 
            return result; 
        }; 
 
        return reverseFunc(theList, new MyList<T>(default(T), null)); 
    } 
} 

■ Note This code uses the Func<> definition, which is a generic delegate that is defined in the System 

namespace. Using Func<> is a shortcut you can employ to avoid having to declare delegate types all over the 

place. You use the Func<> type parameter list to declare what the parameter types (if any) and return type of the 

delegate are. If the delegate you need has no return value, you can use the Action<> generic delegate type. 

The MyList<T> class used in the previous examples builds the linked list from the IEnumerable<T> 
type entirely before the MyList<T> object can be used. I used a List<T> as the seed data, but I could have 
used anything that implements IEnumerable<T> to fill the contents of MyList<T>. But what if 
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IEnumerable<T> were an infinite iterator similar to the one created by CreateInfiniteList in the 
“Operation Chaining” section of this chapter? If you fed the result of CreateInfiniteList to 
MyList<T>.CreateList, you would have to kill the program forcefully or wait until your memory runs out 
as it tries to build the MyList<T>. If you are creating a library for general use that contains a type such as 
MyList<T>, which builds itself given some IEnumerable<T> type, you should do your best to accommodate 
all scenarios that could be thrown at you. The IEnumerable<T> given to you could take a very long time to 
calculate each item of the enumeration. For example, it could be enumerating over a database of live 
data in which database access is very costly. For an example of how to create the list in a lazy fashion, in 
which each node is created only when needed, check out Wes Dyer’s excellent blog, specifically the entry 
titled “Why all the love for lists?”4 The technique of lazy evaluation while iterating is a fundamental 
feature of LINQ, which I cover in Chapter 16. 

The Visitor Pattern 
The Visitor pattern, as described in the seminal pattern book Design Patterns: Elements of Reusable 
Object-Oriented Software by the Gang of Four,5 allows you to define a new operation on a group of 
classes without changing the classes. Extension methods present a handy option for implementing the 
Visitor pattern. 

For example, consider a collection of types that might or might not be related by inheritance, and 
imagine that you want to add functionality to validate instances of them at some point in your 
application. One option, although very unattractive, is to modify the public contract of all the types, 
introducing a Validate method on each of them. One might even jump to the conclusion that the easiest 
way to do it is to introduce a new base type that derives from System.Object, implements Validate as an 
abstract method, and then makes all the other types derive from the new type instead of System.Object. 
That would be nothing more than a maintenance nightmare in the end. 

By now, you should agree that an extension method or a collection of extension methods will do the 
trick nicely. Given a collection of unrelated types, you will probably implement a host of extension 
methods. But the beauty is that you don’t have to change the already defined types. In fact, if they’re not 
your types to begin with, you cannot change them anyway. Consider the following code: 

using System; 
using ValidatorExtensions; 
 
namespace ValidatorExtensions 
{ 
    public static class Validators 
    { 
        public static void Validate( this String str ) { 
            // Do something to validate the String instance. 
             
            Console.WriteLine( "String with \"" + 
                               str + 
                               "\" Validated." ); 

                                                 

 
4 You can find Wes Dyer’s blog titled “Yet Another Language Geek” at blogs.msdn.com/wesdyer/. 
5 Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, 
and John Vlissides (Boston, MA: Addison-Wesley Professional, 1995), is cited in the references at the end of this book. 
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        } 
 
        public static void Validate( this SupplyCabinet cab ) { 
            // Do something to validate the SupplyCabinet instance. 
 
            Console.WriteLine( "Supply Cabinet Validated." ); 
        } 
 
        public static void Validate( this Employee emp ) { 
            // Do something to validate the Employee instance. 
 
            Console.WriteLine( "** Employee Failed Validation! **" ); 
        } 
    } 
} 
 
public class SupplyCabinet 
{ 
} 
 
public class Employee 
{ 
} 
 
public class MyApplication 
{ 
    static void Main() { 
        String data = "some important data"; 
 
        SupplyCabinet supplies = new SupplyCabinet(); 
 
        Employee hrLady = new Employee(); 
 
        data.Validate(); 
        supplies.Validate(); 
        hrLady.Validate(); 
    } 
} 

Notice that for each type of object we want to validate (in this example there are three), I have 
defined a separate Validate extension method. The output from the application shows that the proper 
Validate method is being called for each instance and is as follows: 

String with "some important data" Validated. 

Supply Cabinet Validated. 

** Employee Failed Validation! ** 
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In this example, it’s important to note that the visitors, in this case the extension methods named 
Validate, must treat the instance that they are validating as black boxes. By that I mean that they do not 
have the validation capabilities of a true instance method because only true instance methods have 
access to the internal state of the objects. Nevertheless, in this example, it might make sense to validate 
the instances from a client’s perspective. 

■ Note Keep in mind that if the extension methods are defined in the same assembly as the types they are 

extended, they can still access internal members. 

Using generics and constraints, you can slightly extend the previous example and provide a generic 
form of the Validate extension method that can be used if the instance supports a well-known interface. 
In this case, the well-known interface is named IValidator. Therefore, it would be nice to create a 
special Validate method that will be called if the type implements the IValidator interface. Consider the 
following code, which shows the changes marked in bold: 

using System; 
using ValidatorExtensions; 
 
namespace ValidatorExtensions 
{ 
    public static class Validators 
    { 
        public static void Validate( this String str ) { 
            // Do something to validate the String instance. 
             
            Console.WriteLine( "String with \"" + 
                               str + 
                               "\" Validated." ); 
        } 
 
        public static void Validate( this Employee emp ) { 
            // Do something to validate the Employee instance. 
 
            Console.WriteLine( "** Employee Failed Validation! **" ); 
        } 
 
        public static void Validate<T>( this T obj ) 
                            where T: IValidator { 
            obj.DoValidation(); 
            Console.WriteLine( "Instance of following type" + 
                               " validated: " + 
                               obj.GetType() ); 
        } 
    } 
} 
 
public interface IValidator 
{ 
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    void DoValidation(); 
} 
 
public class SupplyCabinet : IValidator 
{ 
    public void DoValidation() { 
        Console.WriteLine( "\tValidating SupplyCabinet" ); 
    } 
} 
 
public class Employee 
{ 
} 
 
public class MyApplication 
{ 
    static void Main() { 
        String data = "some important data"; 
 
        SupplyCabinet supplies = new SupplyCabinet(); 
 
        Employee hrLady = new Employee(); 
 
        data.Validate(); 
        supplies.Validate(); 
        hrLady.Validate(); 
    } 
} 

Now, if the instance that we’re calling Validate on happens to implement IValidator, and there is 
not a version of Validate that specifically takes the type as its first parameter, the generic form of 
Validate will be called, which then passes through to the DoValidation method on the instance. 

Notice that I removed the extension method whose first parameter was of type SupplyCabinet, so 
that the compiler would choose the generic version. If I had left it in, the code as written in Main would 
call the version that I removed. However, even if I had not removed the nongeneric extension method, I 
could have forced the compiler to call the generic one by changing the syntax at the point of call, as 
shown here: 

public class MyApplication 
{ 
    static void Main() { 
        String data = "some important data"; 
 
        SupplyCabinet supplies = new SupplyCabinet(); 
 
        Employee hrLady = new Employee(); 
 
        data.Validate(); 
 
        // Force generic version 
        supplies.Validate<SupplyCabinet>(); 
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        hrLady.Validate(); 
    } 
} 

In the Main method, I have given the compiler more information to limit its search of the Validate 
method to generic forms of the extension method that accept one generic type parameter. 

Summary 
In this chapter, I introduced you to extension methods, including how to declare them, how to call them, 
and how the compiler implements them under the covers. Additionally, you saw how they really are just 
syntactic sugar and don’t require any changes to the underlying runtime in order to work. Extension 
methods can cause confusion when defined inappropriately, so we looked at some caveats to avoid. I 
showed you how they can be used to create useful things such as iterators (IEnumerable<T> types) on 
containers that are not enumerable by default. Even for types that do have enumerators, you can define 
enumerators that iterate in a custom way. As you’ll see in Chapter 15, when they are combined with 
lambda expressions, extension methods provide a certain degree of expressiveness that is extremely 
useful. While showing how to create custom iterators, I took a slight detour (using anonymous functions 
rather than lambda expressions) to show you the world of functional programming that the features 
added to C# 3.0 unlock. The code for those examples will become much cleaner when you use lambda 
expressions instead of anonymous methods. 

In the next chapter, I’ll introduce you to lambda expressions, which really make functional 
programming in C# syntactically succinct. Additionally, they allow you to convert a functional 
expression into either code or data in the form of IL code or an expression tree, respectively. 

v@v
Text Box
Download at WoweBook.com
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Lambda Expressions 

Most of the new features of C# 3.0 opened up a world of expressive functional programming to the C# 
programmer. Functional programming, in its pure form, is a programming methodology built on top of 
immutable variables (sometimes called symbols), functions that can produce other functions, and 
recursion, just to name a few of its foundations. Some prominent functional programming languages 
include Lisp, Haskell, F#,1 and Scheme.2 However, functional programming does not require a pure 
functional language, and one can use and implement functional programming disciplines in 
traditionally imperative languages such as the C-based languages (including C#). The features added in 
C# 3.0 transformed the language into a more expressive hybrid language in which both imperative and 
functional programming techniques can be utilized in harmony. Lambda expressions are arguably the 
biggest piece of this functional programming pie. 

Introduction to Lambda Expressions 
Using lambda expressions, you can succinctly define function objects for use at any time. C# has always 
supported this capability via delegates, whereby you create a function object (in the form of a delegate) 
and wire it up to the backing code at the time of creation. Lambda expressions join these two actions—
creation and connection—into one expressive statement in the code. Additionally, you can easily 
associate an environment with function objects using a construct called a closure. A functional is a 
function that takes functions in its parameter list and operates on those functions, possibly even 
returning another function as the result. For example, a functional could accept two functions, one 
performing one mathematical operation and the other performing a different mathematical operation, 
and return a third function that is a composite function built from the two. Lambda expressions provide 
a more natural way to create and invoke functionals. 

In simple syntactic terms, lambda expressions are a syntax whereby you can declare anonymous 
functions (delegates) in a more fluid and expressive way. At the same time, they are very much more 
than that, as you will see. Just about every use of an anonymous method can be replaced with a lambda 

                                                 

 
1 F# is an exciting new functional programming language for the .NET Framework. For more information, I invite you 
to read Robert Pickering’s Foundations of F# (Berkeley, CA: Apress, 2007). 
2 One of the languages that I use often is C++. Those of you that are familiar with metaprogramming in C++ are 
definitely familiar with functional programming techniques. If you do use C++ and you’re curious about 
metaprogramming, I invite you to check out David Abrahams’ and Alexey Gurtovoy’s most excellent book C++ 
Template Metaprogramming (Boston: Addison-Wesley Professional, 2004). 
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expression. That said, there’s no reason you can’t utilize functional programming techniques in C# 2.03. 
At first, the syntax of lambda expressions might take some time to get used to. Overall, the syntax is very 
straightforward when you are looking at a lambda expression all by itself. However, when embedded in 
code, they can be a little tricky to decipher and it might take some time to get used to their syntax. 

Lambda expressions really take two forms. The form that most directly replaces anonymous 
methods in syntax includes a statement block within braces. I like to refer to these as lambda statements. 
These lambda statements are a direct replacement for anonymous methods. Lambda expressions, on 
the other hand, provide an even more abbreviated way to declare an anonymous method and do not 
require code within braces nor a return statement. Both types of lambda expressions can be converted 
to delegates. However, lambda expressions without statement blocks offer something truly impressive. 
You can convert them into expression trees based on the types in the System.Linq.Expressions 
namespace. In other words, the function described in code is turned into data. I cover the topic of 
creating expression trees from lambda expressions in the section titled “Expression Trees” later in this 
chapter. 

Lambda Expressions and Closures 
First, let’s look at the simpler form of lambda expressions; that is, the ones without a statement block. As 
mentioned in the previous section, a lambda expression is a shorthand way of declaring a simple 
anonymous method. The following lambda expression can be used as a delegate that accepts one 
parameter and returns the result of performing division by 2 on that parameter: 

x => x / 2 

What this says is “take x as a parameter and return the result of following operation on x.” Notice that the 
lambda expression is devoid of any type information. It does not mean that the expression is typeless. 
Instead, the compiler will deduce the type of the argument x and the type of the result depending on the 
context where it is used. It means that if you are assigning a lambda expression to a delegate, the types of 
the delegate definition are used to determine the types within the lambda expression. The following 
code shows what happens when a lambda expression is assigned to a delegate type: 

using System; 
using System.Linq; 
 
public class LambdaTest 
{ 
    static void Main() { 
        Func<int, double> expr = x => x / 2; 
 
        int someNumber = 9; 
        Console.WriteLine( "Result: {0}", expr(someNumber) ); 
    } 
} 

I have marked the lambda expression in bold so that it stands out. The Func<> type is a helper type 
provided by the System namespace that you can use to declare simple delegates that take up to four 
arguments and return a result. In this case, I am declaring a variable expr that is a delegate that accepts 

                                                 

 
3 I covered some examples of functional programming with anonymous methods in Chapter 14. 
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an int and returns a double. When the compiler assigns the lambda expression to the expr variable, it 
uses the type information of the delegate to determine that the type of x must be int, and the type of the 
return value must be double. 

Now, if you execute that code, you’ll notice that the result is not entirely accurate. That is, the result 
has been rounded. This is expected because the result of x/2 is represented as an int, which is then cast 
to a double. You can fix this by specifying different types in the delegate declaration, as shown here: 

using System; 
using System.Linq; 
 
public class LambdaTest 
{ 
    static void Main() { 
        Func<double, double> expr = (double x) => x / 2; 
 
        int someNumber = 9; 
        Console.WriteLine( "Result: {0}", expr(someNumber) ); 
    } 
} 

For the sake of demonstration, this lambda expression has what’s called an explicitly typed 
parameter list, and in this case, x is declared as type double. Also notice that the type of expr is now 
Func<double, double> rather than Func<int, double>. The compiler requires that any time you use a 
typed parameter list in a lambda expression and assign it to a delegate, the delegate’s argument types 
must match exactly. However, because an int is explicitly convertible to a double, you can pass 
someNumber to expr at call time as shown. 

■ Note When using typed parameter lists, notice that the parameter list must be enclosed in parentheses. 

Parentheses are also required when declaring a delegate that accepts either more than one parameter or no 

parameters, as I’ll show later on. In fact, you can use parentheses at any time; they are optional in lambda 

expressions of only one implicitly typed parameter. 

When the lambda expression is assigned to a delegate, the return type of the expression is generally 
derived from the argument types. So, in the following code statement, the return type of the expression 
is double because the inferred type of the parameter x is double: 

Func<double, int> expr = (x) => x / 2;   // Compiler Error!!!! 

However, because double is not implicitly convertible to int, the compiler will complain: 

error CS1662: Cannot convert 'lambda expression' to 

        delegate type 'System.Func<double,int>' because some of the return 
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        types in the block are not implicitly convertible to the delegate return 

        type 

You can “fix” this by casting the result of the lambda expression body to int: 

Func<double, int> expr = (x) => (int) x / 2; 

■ Note Explicit types in lambda expression parameter lists are required if the delegate you are assigning them to 

has out or ref parameters. One could argue that fixing the parameter types explicitly within a lambda expression 

defeats some of the elegance of their expressive power. It definitely can make the code harder to read. 

Now I want to show you a simple lambda expression that accepts no parameters: 

using System; 
using System.Linq; 
 
public class LambdaTest 
{ 
    static void Main() { 
        int counter = 0; 
 
        WriteStream( () => counter++ ); 
 
        Console.WriteLine( "Final value of counter: {0}", 
                           counter ); 
    } 
 
    static void WriteStream( Func<int> generator ) { 
        for( int i = 0; i < 10; ++i ) { 
            Console.Write( "{0}, ", generator() ); 
        } 
        Console.WriteLine(); 
    } 
} 

Notice how simple it was to pass a function as a parameter into the WriteStream method using this 
lambda expression. Moreover, the function passed in captures an environment within which to run, 
namely, the counter value in Main. This captured environment and the function together are commonly 
referred to as a closure. 

Finally, I want to show you an example of a lambda expression that accepts more than one 
parameter: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
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public class LambdaTest 
{ 
    static void Main() { 
        var teamMembers = new List<string> { 
            "Lou Loomis", 
            "Smoke Porterhouse", 
            "Danny Noonan", 
            "Ty Webb" 
        }; 
 
        FindByFirstName( teamMembers, 
                         "Danny", 
                         (x, y) => x.Contains(y) ); 
    } 
 
    static void FindByFirstName( 
                        List<string> members, 
                        string firstName,  
                        Func<string, string, bool> predicate ) { 
        foreach( var member in members ) { 
            if( predicate(member, firstName) ) { 
                Console.WriteLine( member ); 
            } 
        } 
    } 
} 

In this case, the lambda expression is used to create a delegate that accepts two parameters of type 
string and returns a bool. As you can see, lambda expressions provide a nice, succinct way of creating 
predicates. In a later section, “Iterators Revisited,” I’ll build upon an example from Chapter 14 showing 
how to use lambda expressions as predicates to create flexible iterators. 

Closures in C# 1.0 

Back in the “good old days” of C# 1.0, creating closures was a painful process indeed, and one needed to 
do something like the following: 

using System; 
 
unsafe public class MyClosure 
{ 
    public MyClosure( int* counter ) 
    { 
        this.counter = counter; 
    } 
 
    public delegate int IncDelegate(); 
    public IncDelegate GetDelegate() { 
        return new IncDelegate( IncrementFunction ); 
    } 
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    private int IncrementFunction() { 
        return (*counter)++; 
    } 
 
    private int* counter; 
} 
 
public class LambdaTest 
{ 
    unsafe static void Main() { 
        int counter = 0; 
         
        MyClosure closure = new MyClosure( &counter ); 
 
        WriteStream( closure.GetDelegate() ); 
 
        Console.WriteLine( "Final value of counter: {0}", 
                           counter ); 
    } 
 
    static void WriteStream( MyClosure.IncDelegate incrementor ) { 
        for( int i = 0; i < 10; ++i ) { 
            Console.Write( "{0}, ", incrementor() ); 
        } 
        Console.WriteLine(); 
    } 
} 

Look at all the work involved without lambda expressions. I have bolded the extra work and other 
changes in the code. The first order of business is to create an object to represent the delegate and its 
environment. In this case, the environment is a pointer to the counter variable in the Main method. I 
decided to use a class to encapsulate the function and its environment. Notice the use of unsafe code in 
the MyClosure class to accomplish this. Unsafe code is required when using pointers in C# because the 
safety of the code cannot be verified by the CLR.4 Then, in the Main method, I created an instance of 
MyClosure and passed a delegate created by calling GetDelegate to WriteStream. 

What a lot of work! And on top of that, it sure makes for some hard-to-follow code. 

■ Note You might be wondering why I used a pointer in the preceding longhand example, thus forcing one to 

compile using the /unsafe compiler option. The reason was simply to emphasize the fact that the captured 

variable can be changed out of band from the code consuming it. When the C# compiler captures a variable in a 

closure, it does something similar, but instead of using a pointer to the captured variable, it instead initializes a 

                                                 

 
4 The intricacies of unsafe coding in C# are outside the scope of this book. I encourage you to reference the MSDN 
documentation for further details. 
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public field of the generated class that implements the closure with a reference to the captured variable or a copy 

if the captured variable is a value type. However, any code that attempts to modify the captured variable outside 

the scope of the closure modifies the copy within the closure object because, after all, it is a public field. Design 

wonks might cry foul because public fields are considered evil. However, remember that this is part of the 

compiler implementation. In fact, the class the compiler generates is “unspeakable,” meaning that you cannot 

instantiate an instance of it in C# code because the name itself, if typed in code, will generate a syntax error. I 

invite you to inspect the way the compiler generates closures by opening the compiled code within Intermediate 

Language Disassembler (ILDASM). 

Closures in C# 2.0 

In C# 2.0, anonymous methods were introduced to reduce the burden I just described. However, they 
are not as functionally expressive as lambda expressions because they still carry the old imperative 
programming style with them and require parameter types in the parameter list. Additionally, the 
anonymous method syntax is rather bulky. For good measure, the following shows how the previous 
example would be implemented using anonymous methods, so you can see the difference in syntax 
from lambda expressions: 

using System; 
 
public class LambdaTest 
{ 
    static void Main() { 
        int counter = 0; 
 
        WriteStream( delegate () { 
                        return counter++; 
                     } ); 
 
        Console.WriteLine( "Final value of counter: {0}", 
                           counter ); 
    } 
 
    static void WriteStream( Func<int> counter ) { 
        for( int i = 0; i < 10; ++i ) { 
            Console.Write( "{0}, ", counter() ); 
        } 
        Console.WriteLine(); 
    } 
} 

I have bolded the differences between this example and the original lambda expression example. 
It’s definitely much cleaner than the way you would have implemented it in the C# 1.0 days. However, 
it’s still not as expressive and succinct as the lambda expression version. Using lambda expressions, you 
have an elegant means of defining potentially very complex functions that can even be built by 
assembling together other functions. 
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■ Note In the previous code example, you likely noticed the implications of referencing the counter variable 

within the lambda expression. After all, counter is actually a local variable within the scope of Main, yet within the 

scope of WriteStream it is referenced while invoking the delegate. In the Chapter 10 section “Beware the 

Captured Variable Surprise,” I described how you can do the same thing with anonymous methods. In functional 

programming lingo, this is called a closure. In essence, any time a lambda expression incorporates the 

environment around it, a closure is the result. As I’ll show in a following section, “Closures (Variable Capture) and 

Memoization,” closures can be very useful. However, when used inappropriately, they can create some nasty 

surprises. 

Lambda Statements 
All the lambda expressions I have shown so far have been purely of the expression type. Another type of 
lambda expression is one I like to call a lambda statement. It is similar in form to the lambda expressions 
of the previous section except that it is composed of a compound statement block within curly braces. 
Because of that, a lambda with statement blocks must have a return statement. In general, all lambda 
expressions shown in the previous section can be converted to a lambda with a statement block simply 
by surrounding the expression with curly braces after prefixing the right side with a return statement. 
For example, the following lambda expression: 

(x, y) => x * y 

can be rewritten as the following lambda with a statement block: 

(x, y) => { return x * y; } 

In form, lambdas with statement blocks are almost identical to anonymous methods. But there is 
one major difference between lambdas with statement blocks and lambda expressions. Lambdas with 
statement blocks can be converted only to delegate types, whereas lambda expressions can be converted 
both to delegates and to expression trees typed by the family of types centered around 
System.Linq.Expressions.Expression<T>. I’ll discuss expression trees in the next section. 

■ Note The big difference between lambdas with statement blocks and anonymous methods is that anonymous 

methods must explicitly type their parameters, whereas the compiler can infer the types of the lambda based on 

context in almost all cases. The abbreviated syntax offered by lambda expressions fosters a more functional 

programming thought process and approach. 

Expression Trees 
So far, I have shown you lambda expressions that replace the functionality of delegates. If I stopped 
there, I would be doing you a great disservice. That’s because the C# compiler also has the capability to 
convert lambda expressions into expression trees based on the types in the System.Linq.Expressions 
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namespace. I’ll explain why this is such a great thing in a later section, “Functions as Data.” For example, 
you’ve already seen how you can convert a lambda expression into a delegate as shown here: 

Func<int, int> func1 = n => n+1; 

In this line of code, the expression is converted into a delegate that accepts a single int parameter 
and returns an int. However, check out the following modification: 

Expression<Func<int, int>> expr = n => n+1; 

This is really cool! The lambda expression, instead of being converted into a callable delegate, is 
converted into a data structure that represents the operation. The type of the expr variable is 
Expression<T>, where T is replaced with the type of delegate the lambda can be converted to. The 
compiler notices that you are trying to convert the lambda expression into an 
Expression<Func<int,int>> instance and generates all the code internally to make it happen. At some 
point later in time, you can then compile the expression into a usable delegate as shown in the next 
example: 

using System; 
using System.Linq; 
using System.Linq.Expressions; 
 
public class EntryPoint 
{ 
    static void Main() { 
        Expression<Func<int, int>> expr = n => n+1; 
 
        Func<int, int> func = expr.Compile(); 
 
        for( int i = 0; i < 10; ++i ) { 
            Console.WriteLine( func(i) ); 
        } 
 
    } 
} 

The line in bold shows the step at which the expression is compiled into a delegate. If you think 
about it a little bit, you might quickly start imagining how you could modify this expression tree or even 
combine multiple expression trees to create more complex expression trees prior to compiling them. 
One could even define a new expression language or implement a parser for an already existing 
expression language. In fact, the compiler acts as an expression parser when you assign a lambda 
expression into an Expression<T> type instance. Behind the scenes, it generates the code to build the 
expression tree and if you use ILDASM or Reflector to look at the generated code, you can see it in 
action. 

The previous example could be rewritten without using the lambda expression as follows: 

using System; 
using System.Linq; 
using System.Linq.Expressions; 
 
public class EntryPoint 
{ 
    static void Main() { 
        var n = Expression.Parameter( typeof(int), "n" ); 
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        var expr = Expression<Func<int,int>>.Lambda<Func<int,int>>( 
                       Expression.Add(n, Expression.Constant(1)), 
                       n ); 
 
        Func<int, int> func = expr.Compile(); 
 
        for( int i = 0; i < 10; ++i ) { 
            Console.WriteLine( func(i) ); 
        } 
 
    } 
} 

The bolded lines here replace the single line in the prior example in which the expr variable is 
assigned the lambda expression n => n+1. I think you’ll agree that the first example is much easier to 
read. However, this longhand example helps express the true flexibility of expression trees. Let’s break 
down the steps of building the expression. First, you need to represent the parameters in the parameter 
list of the lambda expression. In this case, there is only one: the variable n. Thus we start with the 
following: 

var n = Expression.Parameter( typeof(int), "n" ); 

■ Note In these examples, I am using implicitly typed variables to save myself a lot of typing and to reduce clutter 

for readability. Remember, the variables are still strongly typed. The compiler simply infers their type at compile 

time rather than requiring you to provide the type. 

This line of code says that we need an expression to represent a variable named n that is of type int. 
Remember that in a plain lambda expression, this type can be inferred based upon the delegate type 
provided. 

Now, we need to construct a BinaryExpression instance that represents the addition operation, as 
shown next: 

Expression.Add(n, Expression.Constant(1)) 

Here, I’ve said that my BinaryExpression should consist of adding an expression representing a 
constant, the number 1, to an expression representing the parameter n. You might have already started 
to notice a pattern. The framework implements a form of the Abstract Factory design pattern for creating 
instances of expression elements. That is, you cannot create a new instance of BinaryExpression, or any 
other building block of expression trees, using the new operator along with the constructor of the type. 
The constructor is not accessible, so you must use the static methods on the Expression class to create 
those instances. They give us as consumers the flexibility to express what we want and allow the 
Expression implementation to decide which type we really need. 
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■ Note If you look up BinaryExpression, UnaryExpression, ParameterExpression, and so on in the MSDN 

documentation, you will notice that there are no public constructors on these types. Instead, you create instances 

of Expression derived types using the Expression type, which implements the factory pattern and exposes static 

methods for creating instances of Expression derived types. 

Now that you have the BinaryExpression, you need to use the Expression.Lambda<> method to bind 
the expression (in this case, n+1) with the parameters in the parameter list (in this case, n). Notice that in 
the example I use the generic Lambda<> method so that I can create the type Expression<Func<int,int>>. 
Using the generic form gives the compiler more type information to catch any errors I might have 
introduced at compile time rather than let those errors bite me at run time. 

One more point I want to make that demonstrates how expressions represent operations as data is 
with the Expression Tree Debugger Visualizer in Visual Studio 2010. If you execute the previous example 
within the Visual Studio Debugger, once you step past the point where you assign the expression into the 
expr variable, you will notice that in either the “Autos” or “Locals” windows, the expression is parsed and 
displayed as {n => (n + 1)} even though it is of type 
System.Linq.Expressions.Expression<System.Func<int,int>>. Naturally, this is a great help while 
creating complicated expression trees. 

■ Note If I had used the nongeneric version of the Expression.Lambda method, the result would have been an 

instance of LambdaExpression rather than Expression. LambdaExpression also implements the Compile 

method; however, instead of a strongly typed delegate, it returns an instance of type Delegate. Before you can 

invoke the Delegate instance, you must cast it to the specific delegate type; in this case, Func<int, int> or 

another delegate with the same signature, or you must call DynamicInvoke on the delegate. Either one of those 

could throw an exception at run time if you have a mismatch between your expression and the type of delegate 

you think it should generate. 

Operating on Expressions 
Now I want to show you an example of how you can take an expression tree generated from a lambda 
expression and modify it to create a new expression tree. In this case, I will take the expression (n+1) and 
turn it into 2*(n+1): 

using System; 
using System.Linq; 
using System.Linq.Expressions; 
 
public class EntryPoint 
{ 
    static void Main() { 
        Expression<Func<int,int>> expr = n => n+1; 
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        // Now, reassign the expr by multiplying the original 
        // expression by 2. 
        expr = Expression<Func<int,int>>.Lambda<Func<int,int>>( 
                  Expression.Multiply( expr.Body, 
                                       Expression.Constant(2) ), 
                  expr.Parameters ); 
 
        Func<int, int> func = expr.Compile(); 
 
        for( int i = 0; i < 10; ++i ) { 
            Console.WriteLine( func(i) ); 
        } 
 
    } 
} 

The bolded lines show the stage at which I multiply the original lambda expression by 2. It’s very 
important to notice that the parameters passed into the Lambda<> method (the second parameter) need 
to be exactly the same instances of the parameters that come from the original expression; that is, 
expr.Parameters. This is required. You cannot pass a new instance of ParameterExpression to the 
Lambda<> method; otherwise, at run time you will receive an exception similar to the following because 
the new ParameterExpression instance, even though it might have the same name, is actually a different 
parameter instance: 

System.InvalidOperationException: Lambda Parameter not in scope 

There are many classes derived from the Expression class and many static methods for creating 
instances of them and combining other expressions. It would be monotonous for me to describe them 
all here. Therefore, I recommend that you refer to the MSDN Library documentation regarding the 
System.Linq.Expressions namespace for all the fantastic details. 

Functions as Data 
If you have ever studied functional languages such as Lisp, you might notice the similarities between 
expression trees and how Lisp and similar languages represent functions as data structures. Most people 
encounter Lisp in an academic environment, and many times concepts that one learns in academia are 
not directly applicable to the real world. But before you eschew expression trees as merely an academic 
exercise, I want to point out how they are actually very useful. 

As you might already guess, within the scope of C#, expression trees are extremely useful when 
applied to LINQ. I will give a full introduction to LINQ in Chapter 16, but for our discussion here, the 
most important fact is that LINQ provides a language-native, expressive syntax for describing operations 
on data that are not naturally modeled in an object-oriented way. For example, you can create a LINQ 
expression to search a large in-memory array (or any other IEnumerable type) for items that match a 
certain pattern. LINQ is extensible and can provide a means of operating on other types of stores, such 
as XML and relational databases. In fact, out of the box, C# supports LINQ to SQL, LINQ to Dataset, 
LINQ to Entities, LINQ to XML, and LINQ to Objects, which collectively allow you to perform LINQ 
operations on any type that supports IEnumerable. 

So how do expression trees come into play here? Imagine that you are implementing LINQ to SQL to 
query relational databases. The user’s database could be half a world away, and it might be very 
expensive to perform a simple query. On top of that, you have no way of judging how complex the user’s 
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LINQ expression might be. Naturally, you want to do everything you can to provide the most efficient 
experience possible. 

If the LINQ expression is represented in data (as an expression tree) rather than in IL (as a delegate), 
you can operate on it. Maybe you have an algorithm that can spot places where an optimization can be 
utilized, thus simplifying the expression. Or maybe when your implementation analyzes the expression, 
you determine that the entire expression can be packaged up, sent across the wire, and executed in its 
entirety on the server. 

Expression trees give you this important capability. Then, when you are finished operating on the 
data, you can translate the expression tree into the final executable operation via a mechanism such as 
the LambdaExpression.Compile method and go. Had the expression only been available as IL code from 
the beginning, your flexibility would have been severely limited. I hope now you can appreciate the true 
power of expression trees in C#. 

Useful Applications of Lambda Expressions 
Now that I have shown you what lambda expressions look like, let’s consider some of the things you can 
do with them. You can actually implement most of the following examples in C# using anonymous 
methods or delegates. However, it’s amazing how a simple syntactic addition to the language can clear 
the fog and open up the possibilities of expressiveness. 

Iterators and Generators Revisited 
I’ve described how you can create custom iterators with C# in a couple of places in this book already.5 
Now I want to demonstrate how you can use lambda expressions to create custom iterators. The point I 
want to stress is how the code implementing the algorithm, in this case the iteration algorithm, is then 
factored out into a reusable method that can be applied in almost any scenario. 

■ Note Those of you who are also C++ programmers and familiar with using the Standard Template Library  (STL) 

will find this notion a familiar one. Most of the algorithms defined in the std namespace in the <algorithm> 

header require you to provide predicates to get their work done. When the STL arrived on the scene back in the 

early 1990s, it swept the C++ programming community like a refreshing functional programming breeze. 

I want to show how you can iterate over a generic type that might or might not be a collection in the 
strict sense of the word. Additionally, you can externalize the behavior of the iteration cursor as well as 
how to access the current value of the collection. With a little thought, you can factor out just about 
everything from the custom iterator creation method, including the type of the item stored, the type of 
the cursor, the start state of the cursor, the end state of the cursor, and how to advance the cursor. All 

                                                 

 
5 Chapter 9 introduces iterators via the yield statement, and Chapter 14 expanded on custom iterators in the section 
titled “Borrowing from Functional Programming.” 
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these are demonstrated in the following example, in which I iterate over the diagonal of a two-
dimensional array: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public static class IteratorExtensions 
{ 
    public static IEnumerable<TItem> 
        MakeCustomIterator<TCollection, TCursor, TItem>( 
                     this TCollection collection, 
                     TCursor cursor, 
                     Func<TCollection, TCursor, TItem> getCurrent, 
                     Func<TCursor, bool> isFinished, 
                     Func<TCursor, TCursor> advanceCursor) { 
        while( !isFinished(cursor) ) { 
            yield return getCurrent( collection, cursor ); 
            cursor = advanceCursor( cursor ); 
        } 
    } 
} 
 
public class IteratorExample 
{ 
    static void Main() { 
        var matrix = new List<List<double>> { 
            new List<double> { 1.0, 1.1, 1.2 }, 
            new List<double> { 2.0, 2.1, 2.2 }, 
            new List<double> { 3.0, 3.1, 3.2 } 
        }; 
 
        var iter = matrix.MakeCustomIterator( 
                     new int[] { 0, 0 }, 
                     (coll, cur) => coll[cur[0]][cur[1]], 
                     (cur) => cur[0] > 2 || cur[1] > 2, 
                     (cur) => new int[] { cur[0] + 1, 
                                          cur[1] + 1 } ); 
 
        foreach( var item in iter ) { 
            Console.WriteLine( item ); 
        } 
    } 
} 

Let’s look at how reusable MakeCustomIterator<> is. Admittedly, it takes some time to get used to the 
lambda syntax, and those used to reading imperative coding styles might find it hard to follow. Notice 
that it takes three generic type arguments. TCollection is the type of the collection, which in this 
example is specified as List<List<double>> at the point of use. TCursor is the type of the cursor, which in 
this case is a simple array of integers that can be considered coordinates of the matrix variable. And 
TItem is the type that the code returns via the yield statement. The rest of the type arguments to 
MakeCustomIterator<> are delegate types that it uses to determine how to iterate over the collection. 
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First, it needs a way to access the current item in the collection, which, for this example, is expressed 
in the following lambda expression which uses the values within the cursor array to index the item 
within the matrix: 

(coll, cur) => coll[cur[0]][cur[1]] 

Then it needs a way to determine whether you have reached the end of the collection, for which I 
supply the following lambda expression that just checks to see whether the cursor has stepped off of the 
edge of the matrix: 

(cur) => cur[0] > 2 || cur[1] > 2 

And finally it needs to know how to advance the cursor, which I have supplied in the following 
lambda expression, which simply advances both coordinates of the cursor: 

(cur) => new int[] { cur[0] + 1, cur[1] + 1 } 

After executing the preceding code, you should see output similar to the following, which shows that 
you have indeed walked down the diagonal of the matrix from the top left to the bottom right. At each 
step along the way, MakeCustomIterator<> has delegated work to the given delegates to perform the 
work. 

1 

2.1 

3.2 

Other implementations of MakeCustomIterator<> could accept a first parameter of type 
IEnumerable<T>, which in this example would be IEnumerable<double>. However, when you impose that 
restriction, whatever you pass to MakeCustomIterator<> must implement IEnumerable<>. The matrix 
variable does implement IEnumerable<>, but not in the form that is easily usable, because it is 
IEnumerable<List<double>>. Additionally, you could assume that the collection implements an indexer, 
as described in the Chapter 4 section “Indexers,” but to do so would be restricting the reusability of 
MakeCustomIterator<> and which objects you could use it on. In the previous example, the indexer is 
actually used to access the current item, but its use is externalized and wrapped up in the lambda 
expression given to access the current item. 

Moreover, because the operation of accessing the current item of the collection is externalized, you 
could even transform the data in the original matrix variable as you iterate over it. For example, I could 
have multiplied each value by 2 in the lambda expression that accesses the current item in the 
collection, as shown here: 

(coll, cur) => coll[cur[0]][cur[1]] * 2; 

Can you imagine how painful it would have been to implement MakeCustomIterator<> using 
delegates in the C# 1.0 days? This is exactly what I mean when I say that even just the addition of the 
lambda expression syntax to C# opens one’s eyes to the incredible possibilities.  

As a final example, consider the case in which your custom iterator does not even iterate over a 
collection of items at all and is used as a number generator instead, as shown here: 

using System; 
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using System.Linq; 
using System.Collections.Generic; 
 
public class IteratorExample 
{ 
    static IEnumerable<T> MakeGenerator<T>( T initialValue, 
                                            Func<T, T> advance ) { 
        T currentValue = initialValue; 
        while( true ) { 
            yield return currentValue; 
            currentValue = advance( currentValue ); 
        } 
    } 
 
    static void Main() { 
        var iter = MakeGenerator<double>( 1, 
                                          x => x * 1.2 ); 
 
        var enumerator = iter.GetEnumerator(); 
        for( int i = 0; i < 10; ++i ) { 
            enumerator.MoveNext(); 
            Console.WriteLine( enumerator.Current ); 
        } 
    } 
} 

After executing this code, you will see the following results: 

1 

1.2 

1.44 

1.728 

2.0736 

2.48832 

2.985984 

3.5831808 

4.29981696 

5.159780352 
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You could allow this method to run infinitely, and it would stop only if you experienced an overflow 
exception or you stopped execution. But the items you are iterating over don’t exist as a collection; 
rather, they are generated on an as-needed basis each time you advance the iterator. You can apply this 
concept in many ways, even creating a random number generator implemented using C# iterators. 

More on Closures (Variable Capture) and Memoization 
In the Chapter 10 section titled “Beware the Captured Variable Surprise,” I described how anonymous 
methods can capture the contexts of their lexical surroundings. Many refer to this phenomenon as 
variable capture. In functional programming parlance, it’s also known as a closure.6 Here is a simple 
closure in action: 

using System; 
using System.Linq; 
 
public class Closures 
{ 
    static void Main() { 
        int delta = 1; 
        Func<int, int> func = (x) => x + delta; 
 
        int currentVal = 0; 
        for( int i = 0; i < 10; ++i ) { 
            currentVal = func( currentVal ); 
            Console.WriteLine( currentVal ); 
        } 
    } 
} 

The variable delta and the delegate func embody the closure. The expression body references delta, 
and therefore must have access to it when it is executed at a later time. To do this, the compiler 
“captures” the variable for the delegate. Behind the scenes, what this means is that the delegate body 
contains a reference to the actual variable delta. But notice that delta is a value type on the stack. The 
compiler must be doing something to ensure that delta lives longer than the scope of the method within 
which is it declared because the delegate will likely be called later, after that scope has exited. Moreover, 
because the captured variable is accessible to both the delegate and the context containing the lambda 
expression, it means that the captured variable can be changed outside the scope and out of band of the 
delegate. In essence, two methods (Main and the delegate) both have access to delta. This behavior can 
be used to your advantage, but when unexpected, it can cause serious confusion. 

                                                 

 
6 For a more general discussion of closures, visit 
http://en.wikipedia.org/wiki/Closure_%28computer_science%29. 

http://en.wikipedia.org/wiki/Closure_%28computer_science%29
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■ Note In reality, when a closure is formed, the C# compiler takes all those variables and wraps them up in a 

generated class. It also implements the delegate as a method of the class. In very rare cases, you might need to 

be concerned about this, especially if it is found to be an efficiency burden during profiling. 

Now I want to show you a great application of closures. One of the foundations of functional 
programming is that the function itself is treated as a first-class object that can be manipulated and 
operated upon as well as invoked. You’ve already seen how lambda expressions can be converted into 
expression trees so you can operate on them, producing more or less complex expressions. But one 
thing I have not discussed yet is the topic of using functions as building blocks for creating new 
functions. As a quick example of what I mean, consider two lambda expressions: 

x => x * 3 
x => x + 3.1415 

You could create a method to combine such lambda expressions to create a compound lambda 
expression as I’ve shown here: 

using System; 
using System.Linq; 
 
public class Compound 
{ 
    static Func<T, S> Chain<T, R, S>( Func<T, R> func1, 
                                      Func<R, S> func2 ) { 
        return x => func2( func1(x) ); 
    } 
 
    static void Main() { 
        Func<int, double> func = Chain( (int x) => x * 3, 
                                        (int x) => x + 3.1415 ); 
 
        Console.WriteLine( func(2) ); 
    } 
} 

The Chain<> method accepts two delegates and produces a third delegate by combining the two. In 
the Main method, you can see how I used it to produce the compound expression. The delegate that you 
get after calling Chain<> is equivalent to the delegate you get when you convert the following lambda 
expression into a delegate: 

x => (x * 3) + 3.1415 

Having a method to chain arbitrary expressions like this is useful indeed, but let’s look at other ways 
to produce a derivative function. Imagine an operation that takes a really long time to compute. 
Examples are the factorial operation or the operation to compute the nth Fibonacci number. An example 
that I ultimately like to show demonstrates the Reciprocal Fibonacci constant, which is 
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where Fk is a Fibonacci number.7 

To begin to demonstrate that this constant exists computationally, you need to first come up with 
an operation to compute the nth Fibonacci number: 

using System; 
using System.Linq; 
 
public class Proof 
{ 
    static void Main() { 
        Func<int, int> fib = null; 
        fib = (x) => x > 1 ? fib(x-1) + fib(x-2) : x; 
 
        for( int i = 30; i < 40; ++i ) { 
            Console.WriteLine( fib(i) ); 
        } 
    } 
} 

When you look at this code, the first thing that jumps up and grabs you is the formation of the 
Fibonacci routine; that is, the fib delegate. It forms a closure on itself! This is definitely a form of 
recursion and behavior that I desire. However, if you execute the example, unless you have a 
powerhouse of a machine, you will notice how slow it is, even though all I did was output the 30th to 39th 
Fibonacci numbers! If that is the case, you don’t even have a prayer of demonstrating the Fibonacci 
constant. The slowness comes from the fact that for each Fibonacci number that you compute, you have 
to do a little more work than you did to compute the two prior Fibonacci numbers, and you can see how 
this work quickly mushrooms. 

You can solve this problem by trading a little bit of space for time by caching the Fibonacci numbers 
in memory. But instead of modifying the original expression, let’s look at how to create a method that 
accepts the original delegate as a parameter and returns a new delegate to replace the original. The 
ultimate goal is to be able to replace the first delegate with the derivative delegate without affecting the 
code that consumes it. One such technique is called memorization.8 This is the technique whereby you 
cache function return values and each return value’s associated input parameters. This works only if the 
function has no entropy, meaning that for the same input parameters, it always returns the same result. 
Then, prior to calling the actual function, you first check to see whether the result for the given 
parameter set has already been computed and return it rather than calling the function. Given a very 
complex function, this technique trades a little bit of memory space for significant speed gain. 

Let’s look at an example: 

                                                 

 
7 Weisstein, Eric W. "Reciprocal Fibonacci Constant." From MathWorld--A Wolfram Web Resource. 
http://mathworld.wolfram.com/ReciprocalFibonacciConstant.html 

8 You can read more about memoization at http://en.wikipedia.org/wiki/Memoization. Also, Wes Dyer has an 
excellent entry regarding memoization on his blog at 
http://blogs.msdn.com/wesdyer/archive/2007/01/26/function-memoization.aspx. 

http://mathworld.wolfram.com/ReciprocalFibonacciConstant.html
http://en.wikipedia.org/wiki/Memoization
http://blogs.msdn.com/wesdyer/archive/2007/01/26/function-memoization.aspx
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using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public static class Memoizers 
{ 
    public static Func<T,R> Memoize<T,R>( this Func<T,R> func ) { 
        var cache = new Dictionary<T,R>(); 
        return (x) => { 
            R result = default(R); 
            if( cache.TryGetValue(x, out result) ) { 
                return result; 
            } 
 
            result = func(x); 
            cache[x] = result; 
            return result; 
        }; 
    } 
} 
 
public class Proof 
{ 
    static void Main() { 
        Func<int, int> fib = null; 
        fib = (x) => x > 1 ? fib(x-1) + fib(x-2) : x; 
        fib = fib.Memoize(); 
 
        for( int i = 30; i < 40; ++i ) { 
            Console.WriteLine( fib(i) ); 
        } 
    } 
} 

First of all, notice that in Main, I have added only one more statement where I apply the Memoize<> 
extension method to the delegate to produce a new delegate. Everything else stays the same, so the 
transparent replaceability goal is achieved. The Memoize<> method wraps the original delegate that’s 
passed in via the func argument with another closure that includes a Dictionary<> instance to store the 
cached values of the given delegate func. In the process of Memoize<> taking one delegate and returning 
another, it has introduced a cache that greatly improves the efficiency. Each time the derivative delegate 
is called, it first checks the cache to see whether the value has already been computed. 

■ Caution Of course, memoization works only for functions that are deterministically repeatable in the sense that 

you are guaranteed to get the same result for the same parameters. For example, a true random number generator 

cannot be memoized. 
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Run the two previous examples on your own machine to see the amazing difference. Now you can 
move on to the business of computing the Reciprocal Fibonacci constant by modifying the Main method 
as follows: 

    static void Main() { 
        Func<ulong, ulong> fib = null; 
        fib = (x) => x > 1 ? fib(x-1) + fib(x-2) : x; 
        fib = fib.Memoize(); 
 
        Func<ulong, decimal> fibConstant = null; 
        fibConstant = (x) => { 
            if( x == 1 ) { 
                return 1 / ((decimal)fib(x)); 
            } else { 
                return 1 / ((decimal)fib(x)) + fibConstant(x-1); 
            } 
        }; 
        fibConstant = fibConstant.Memoize(); 
 
        Console.WriteLine( "\n{0}\t{1}\t{2}\t{3}\n", 
                           "Count", 
                           "Fibonacci".PadRight(24), 
                           "1/Fibonacci".PadRight(24), 
                           "Fibonacci Constant".PadRight(24) ); 
 
        for( ulong i = 1; i <= 93; ++i ) { 
            Console.WriteLine( "{0:D5}\t{1:D24}\t{2:F24}\t{3:F24}", 
                               i, 
                               fib(i), 
                               (1/(decimal)fib(i)), 
                               fibConstant(i) ); 
        } 
    } 

The bold text shows the delegate I created to compute the nth Reciprocal Fibonacci constant. As you 
call this delegate with higher and higher values for x, you should see the result get closer and closer to 
the Reciprocal Fibonacci constant. Notice that I memoized the fibConstant delegate as well. If you don’t 
do this, you might suffer a stack overflow due to the recursion as you call fibConstant with higher and 
higher values for x. So you can see that memoization also trades stack space for heap space. On each line 
of output, the code outputs the intermediate values for informational purposes, but the interesting value 
is in the far right column. Notice that I stopped calculation with iteration number 93. That’s because the 
ulong will overflow with the 94th Fibonacci number. I could solve the overflow problem by using 
BigInteger in the System.Numeric namespace. However, that’s not necessary because the 93rd iteration of 
the Reciprocal Fibonacci constant shown here is close enough to prove the point of this example: 

3.359885666243177553039387 
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I have bolded the digits that are significant.9 I think you will agree that memoization is extremely 
useful. For that matter, many more useful things can be done with methods that accept functions and 
produce other functions, as I’ll show in the next section. 

Currying 
In the previous section on closures I demonstrated how to create a method that accepts a function, given 
as a delegate, and produces a new function. This concept is a very powerful one and memoization, as 
shown in the previous section, is a powerful application of it. In this section, I want to show you the 
technique of currying.10 In short, what it means is creating an operation (usually a method) that accepts 
a function of multiple parameters (usually a delegate) and produces a function of only a single 
parameter. 

■ Note If you are a C++ programmer familiar with the STL, you have undoubtedly used the currying operation if 

you’ve ever utilized any of the parameter binders such as Bind1st and Bind2nd. 

Suppose that you have a lambda expression that looks like the following: 

(x, y) => x + y 

Now, suppose that you have a list of doubles and you want to use this lambda expression to add a 
constant value to each item on the list, producing a new list. What would be nice is to create a new 
delegate based on the original lambda expression in which one of the variables is forced to a static value. 
This notion is called parameter binding, and those who have used STL in C++ are likely very familiar with 
it. Check out the next example, in which I show parameter binding in action by adding the constant 3.2 
to the items in a List<double> instance: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public static class CurryExtensions 
{ 
    public static Func<TArg1, TResult> 
        Bind2nd<TArg1, TArg2, TResult>( 
            this Func<TArg1, TArg2, TResult> func, 
            TArg2 constant ) { 
        return (x) => func( x, constant ); 
    } 

                                                 

 
9 You can see many more decimal location of the Fibonacci constant at 
http://www.research.att.com/~njas/sequences/A079586. 

10 For a lot more information about currying, go to http://en.wikipedia.org/wiki/Currying. 

http://www.research.att.com/~njas/sequences/A079586
http://en.wikipedia.org/wiki/Currying
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} 
 
public class BinderExample 
{ 
    static void Main() { 
        var mylist = new List<double> { 1.0, 3.4, 5.4, 6.54 }; 
        var newlist = new List<double>(); 
 
        // Here is the original expression. 
        Func<double, double, double> func = (x, y) => x + y; 
 
        // Here is the curried function. 
        var funcBound = func.Bind2nd( 3.2 ); 
 
        foreach( var item in mylist ) { 
            Console.Write( "{0}, ", item ); 
            newlist.Add( funcBound(item) ); 
        } 
 
        Console.WriteLine(); 
        foreach( var item in newlist ) { 
            Console.Write( "{0}, ", item ); 
        } 
    } 
} 

The meat of this example is in the Bind2nd<> extension method, which I have bolded. You can see 
that it creates a closure and returns a new delegate that accepts only one parameter. Then, when that 
new delegate is called, it passes its only parameter as the first parameter to the original delegate and 
passes the provided constant as the second parameter. For the sake of example, I iterate through the 
mylist list, building a second list held in the newlist variable while using the curried version of the 
original method to add 3.2 to each item. 

Just for good measure, I want to show you another way you can perform the currying, slightly 
different from that shown in the previous example: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public static class CurryExtensions 
{ 
    public static Func<TArg2, Func<TArg1, TResult>> 
        Bind2nd<TArg1, TArg2, TResult>( 
            this Func<TArg1, TArg2, TResult> func ) { 
        return (y) => (x) => func( x, y ); 
    } 
} 
 
public class BinderExample 
{ 
    static void Main() { 
        var mylist = new List<double> { 1.0, 3.4, 5.4, 6.54 }; 
        var newlist = new List<double>(); 
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        // Here is the original expression. 
        Func<double, double, double> func = (x, y) => x + y; 
 
        // Here is the curried function. 
        var funcBound = func.Bind2nd()(3.2); 
 
        foreach( var item in mylist ) { 
            Console.Write( "{0}, ", item ); 
            newlist.Add( funcBound(item) ); 
        } 
 
        Console.WriteLine(); 
        foreach( var item in newlist ) { 
            Console.Write( "{0}, ", item ); 
        } 
    } 
} 

I have bolded the parts that are different from the previous example. In the first example, Bind2nd<> 
returned a delegate that accepted a single integer and returned an integer. In this example, I changed 
Bind2nd<> to return a delegate that accepts a single parameter (the value to bind the second parameter of 
the original function to) and returns another delegate that is the curried function. Both forms are 
perfectly valid. But the purists might prefer the second form over the former. 

Anonymous Recursion 
In the earlier section titled “Closures (Variable Capture) and Memoization,” I showed a form of recursion 
using closures while calculating the Fibonacci numbers. For the sake of discussion, let’s look at a similar 
closure that one can use to calculate the factorial of a number: 

Func<int, int> fact = null; 
fact = (x) => x > 1 ? x * fact(x-1) : 1; 

This code works because fact forms a closure on itself and also calls itself. That is, the second line, 
in which fact is assigned the lambda expression for the factorial calculation, captures the fact delegate 
itself. Even though this recursion works, it is extremely fragile, and you must be very careful when using 
it as written because of reasons I will describe now. 

Remember that even though a closure captures a variable for use inside the anonymous method, 
which is implemented here as a lambda expression, the captured variable is still accessible and mutable 
from outside the context of the capturing anonymous method or lambda expression. For example, 
consider what happens if you perform the following: 

Func<int, int> fact = null; 
fact = (x) => x > 1 ? x * fact(x-1) : 1; 
Func<int, int> newRefToFact = fact; 

Because objects in the CLR are reference types, newRefToFact and fact now reference the same 
delegate. Now, imagine that you then do something similar to this: 

Func<int, int> fact = null; 
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fact = (x) => x > 1 ? x * fact(x-1) : 1; 
Func<int, int> newRefToFact = fact; 
fact = (x) => x + 1; 

Now the intended recursion is broken! Can you see why? The reason is that we modified the 
captured variable fact. We reassigned fact to reference a new delegate based on the lambda expression 
(x) => x+1. But newRefToFact still references the lambda expression (x) => x > 1 ? x * fact(x-1) : 1. 
However, when the delegate referenced by newRefToFact calls fact, instead of recursing, it ends up 
executing the new expression (x) => x+1, which is different behavior from the recursion you had before. 
Ultimately, the problem is caused by the fact that the closure that embodies the recursion allows you to 
modify the captured variable (the func delegate) externally. If the captured variable is changed, the 
recursion could break. 

There are several ways to fix this problem, but the typical method is to use anonymous recursion.11 
What ends up happening is that you modify the preceding factorial lambda expression to accept another 
parameter, which is the delegate to call when it’s time to recurse. Essentially, this removes the closure 
and converts the captured variable into a parameter to the delegate. What you end up with is something 
similar to the following: 

delegate TResult AnonRec<TArg,TResult>( AnonRec<TArg,TResult> f, TArg arg ); 
AnonRec<int, int> fact = (f, x) => x > 1 ? x * f(f, x-1) : 1; 

The key here is that instead of recursing by relying on a captured variable that is a delegate, you 
instead pass the delegate to recurse on as a parameter. That is, you traded the captured variable for a 
variable that is passed on the stack (in this case, the parameter f in the fact delegate). In this example, 
the recursion delegate is represented by the parameter f. Therefore, notice that fact not only accepts f 
as a parameter, but calls it in order to recurse and then passes f along to the next iteration of the 
delegate. In essence, the captured variable now lives on the stack as it is passed to each recursion of the 
expression. However, because it is on the stack, the danger of it being modified out from underneath the 
recursion mechanism is now gone. 

For more details on this technique, I strongly suggest that you read Wes Dyer’s blog entry titled 
“Anonymous Recursion in C#” at http://blogs.msdn.com/wesdyer. In his blog entry he demonstrates 
how to implement a Y fixed-point combinator that generalizes the notion of anonymous recursion 
shown previously.12 

Summary 
In this chapter, I introduced you to the syntax of lambda expressions, which are, for the most part, 
replacements for anonymous methods. In fact, it’s a shame that lambda expressions did not come along 
with C# 2.0 because then there would have been no need for anonymous methods. I showed how you 
can convert lambda expressions, with and without statement bodies, into delegates. Additionally, you 
saw how lambda expressions without statement bodies are convertible to expression trees based on the 
Expression<T> type as defined in the System.Linq.Expression namespace. Using expression trees, you 
can apply transformations to the expression tree before actually compiling it into a delegate and calling 

                                                 

 
11 For more theoretical details on anonymous recursion reference the article at 
http://en.wikipedia.org/wiki/Anonymous_recursion. 
12 Read more about Y fixed-point combinators at http://en.wikipedia.org/wiki/Fixed_point_combinator. 

http://blogs.msdn.com/wesdyer
http://en.wikipedia.org/wiki/Anonymous_recursion
http://en.wikipedia.org/wiki/Fixed_point_combinator
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it. I finished the chapter by showing you useful applications of lambda expressions. They included 
creating generalized iterators, memoization by using closures, delegate parameter binding using 
currying, and an introduction to the concept of anonymous recursion. Just about all these concepts are 
foundations of functional programming. Even though one could implement all these techniques in C# 
2.0 using anonymous methods, the introduction of lambda syntax to the language makes using such 
techniques more natural and less cumbersome. 

The following chapter introduces LINQ. I will also continue to focus on the functional programming 
aspects that it brings to the table. 
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LINQ: Language Integrated Query 

C-style languages  (including C#) are imperative in nature, meaning that the emphasis is placed on the 
state of the system, and changes are made to that state over time. Data-acquisition languages such as 
SQL are functional in nature, meaning that the emphasis is placed on the operation and there is little or 
no mutable data used during the process. LINQ bridges the gap between the imperative programming 
style and the functional programming style. LINQ is a huge topic that deserves entire books devoted to it 
and what you can do with LINQ.1 There are several implementations of LINQ readily available: LINQ to 
Objects, LINQ to SQL, LINQ to Dataset, LINQ to Entities, and LINQ to XML. I will be focusing on LINQ to 
Objects because I’ll be able to get the LINQ message across without having to incorporate extra layers 
and technologies. 

■ Note Development for LINQ started some time ago at Microsoft and was born out of the efforts of Anders 

Hejlsberg and Peter Golde. The idea was to create a more natural and language-integrated way to access data 

from within a language such as C#. However, at the same time, it was undesirable to implement it in such a way 

that it would destabilize the implementation of the C# compiler and become too cumbersome for the language. As 

it turns out, it made sense to implement some building blocks in the language in order to provide the functionality 

and expressiveness of LINQ. Thus we have features like lambda expressions, anonymous types, extension 

methods, and implicitly typed variables. All are excellent features in themselves, but arguably were precipitated by 

LINQ. 

LINQ does a very good job of allowing the programmer to focus on the business logic while 
spending less time coding up the mundane plumbing that is normally associated with data access code. 
If you have experience building data-aware applications, think about how many times you have found 
yourself coding up the same type of boilerplate code over and over again. LINQ removes some of that 
burden. 

                                                 

 
1 For more extensive coverage of LINQ, I suggest you check out Foundations of LINQ in C#, by Joseph C. Rattz, Jr. 
(Apress, 2007).  
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A Bridge to Data 
Throughout this book, I have stressed how just about all the new features introduced by C# 3.0 foster a 
functional programming model. There’s a good reason for that, in the sense that data query is typically a 
functional process. For example, a SQL statement tells the server exactly what you want and what to do. 
It does not really describe objects and structures and how they are related both statically and 
dynamically, which is typically what you do when you design a new application in an object-oriented 
language. Therefore, functional programming is the key here and any techniques that you might be 
familiar with from other functional programming languages such as Lisp, Scheme, or F# are applicable. 

Query Expressions 
At first glance, LINQ query expressions look a lot like SQL expressions. But make no mistake: LINQ is not 
SQL. For starters, LINQ is strongly typed. After all, C# is a strongly typed language, and therefore, so is 
LINQ. The language adds several new keywords for building query expressions. However, their 
implementation from the compiler standpoint is pretty simple. LINQ query expressions typically get 
translated into a chain of extension method calls on a sequence or collection. That set of extension 
methods is clearly defined, and they are called standard query operators. 

■ Note This LINQ model is quite extensible. If the compiler merely translates query expressions into a series of 

extension method calls, it follows that you can provide your own implementations of those extension methods. In 

fact, that is the case. For example, the class System.Linq.Enumerable provides implementations of those 

methods for LINQ to Objects, whereas System.Linq.Queryable provides implementations of those methods for 

querying types that implement IQueryable<T> and are commonly used with LINQ to SQL. 

Let’s jump right in and have a look at what queries look like. Consider the following example, in 
which I create a collection of Employee objects and then perform a simple query: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public class Employee 
{ 
    public string FirstName { get; set; } 
    public string LastName { get; set; } 
    public Decimal Salary { get; set; } 
    public DateTime StartDate { get; set; } 
} 
 
public class SimpleQuery 
{ 
    static void Main() { 
        // Create our database of employees. 
        var employees = new List<Employee> { 
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            new Employee { 
                  FirstName = "Joe", 
                  LastName = "Bob", 
                  Salary = 94000, 
                  StartDate = DateTime.Parse("1/4/1992") }, 
            new Employee { 
                  FirstName = "Jane", 
                  LastName = "Doe", 
                  Salary = 123000, 
                  StartDate = DateTime.Parse("4/12/1998") }, 
            new Employee { 
                  FirstName = "Milton", 
                  LastName = "Waddams", 
                  Salary = 1000000, 
                  StartDate = DateTime.Parse("12/3/1969") } 
        }; 
 
        var query = from employee in employees 
                    where employee.Salary > 100000 
                    orderby employee.LastName, employee.FirstName 
                    select new { LastName = employee.LastName, 
                                 FirstName = employee.FirstName }; 
 
        Console.WriteLine( "Highly paid employees:" ); 
        foreach( var item in query ) { 
            Console.WriteLine( "{0}, {1}", 
                               item.LastName, 
                               item.FirstName ); 
        } 
                     
    } 
} 

First of all, you will need to import the System.Linq namespace, as I show in the following section 
titled “Standard Query Operators.” In this example, I marked the query expression in bold to make it 
stand out. It’s quite shocking if it’s the first time you have seen a LINQ expression! After all, C# is a 
language that syntactically evolved from C++ and Java, and the LINQ syntax looks nothing like those 
languages. 

■ Note For those of you familiar with SQL, the first thing you probably noticed is that the query is backward from 

what you are used to. In SQL, the select clause is normally the beginning of the expression. There are several 

reasons why the reversal makes sense in C#. One reason is so that Intellisense will work. In the example, if the 

select clause appeared first, Intellisense would have a hard time knowing which properties employee provides 

because it would not even know the type of employee yet. 

Prior to the query expression, I created a simple list of Employee instances just to have some data to 
work with. 
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Each query expression starts off with a from clause, which declares what’s called a range variable. 
The from clause in our example is very similar to a foreach statement in that it iterates over the employees 
collection and stores each item in the collection in the variable employee during each iteration. After the 
from clause, the query consists of a series of clauses in which we can use various query operators to filter 
the data represented by the range variable. In my example, I applied a where clause and an orderby 
clause, as you can see. Finally, the expression closes with select, which is a projection operator. When 
you perform a projection in the query expression, you are typically creating another collection of 
information, or a single piece of information, that is a transformed version of the collection iterated by 
the range variable. In the previous example, I wanted just the first and last names of the employees in my 
results.  

Another thing to note is my use of anonymous types in the select clause. I wanted the query to 
create a transformation of the original data into a collection of structures, in which each instance 
contains a FirstName property, a LastName property, and nothing more. Sure, I could have defined such a 
structure prior to my query and made my select clause instantiate instances of that type, but doing so 
defeats some of the convenience and expressiveness of the LINQ query. 

And most importantly, as I’ll detail a little later in the section “The Virtues of Being Lazy,” the query 
expression does not execute at the point the query variable is assigned. Instead, the query variable in this 
example implements IEnumerable<T>, and the subsequent use of foreach on the query variable produces 
the end result of the example. 

The end result of building the query expression culminates in what’s called a query variable, which 
is query in this example. Notice that I reference it using an implicitly typed variable. After all, can you 
imagine what the type of query is? If you are so inclined, you can send query.GetType to the console and 
you’ll see that the type is as shown here: 

System.Linq.Enumerable+<SelectIterator>d__b`2[Employee,  
<>f__AnonymousType0`2[System.String,System.String]] 

Extension Methods and Lambda Expressions Revisited 
Before I break down the elements of a LINQ expression in more detail, I want to show you an alternate 
way of getting the work done. In fact, it’s more or less what the compiler is doing under the covers. 

The LINQ syntax is very foreign looking in a predominantly imperative language like C#. It’s easy to 
jump to the conclusion that the C# language underwent massive modifications in order to implement 
LINQ. Actually, the compiler simply transforms the LINQ expression into a series of extension method 
calls that accept lambda expressions. 

If you look at the System.Linq namespace, you’ll see that there are two interesting static classes full 
of extension methods: Enumerable and Queryable. Enumerable defines a collection of generic extension 
methods usable on IEnumerable types, whereas Queryable defines the same collection of generic 
extension methods usable on IQueryable types. If you look at the names of those extension methods, 
you’ll see they have names just like the clauses in query expressions. That’s no accident because the 
extension methods implement the standard query operators I mentioned in the previous section. In fact, 
the query expression in the previous example can be replaced with the following code: 

        var query = employees 
              .Where( emp => emp.Salary > 100000 ) 
              .OrderBy( emp => emp.LastName ) 
              .OrderBy( emp => emp.FirstName ) 
              .Select( emp => new {LastName = emp.LastName, 
                                   FirstName = emp.FirstName} ); 
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Notice that it is simply a chain of extension method calls on IEnumerable, which is implemented by 
employees. In fact, you could go a step further and flip the statement inside out by removing the 
extension method syntax and simply call them as static methods, as shown here: 

        var query = 
            Enumerable.Select( 
              Enumerable.OrderBy( 
               Enumerable.OrderBy( 
                Enumerable.Where( 
                  employees, emp => emp.Salary > 100000), 
                 emp => emp.LastName ), 
                 emp => emp.FirstName ), 
                 emp => new {LastName = emp.LastName, 
                            FirstName = emp.FirstName} ); 

But why would you want to do such a thing? I merely show it here for illustration purposes so you 
know what is actually going on under the covers. Those who are really attached to C# 2.0 anonymous 
methods could even go one step further and replace the lambda expressions with anonymous methods. 
Needless to say, the Enumerable and Queryable extension methods are very useful even outside the 
context of LINQ. And as a matter of fact, some of the functionality provided by the extension methods 
does not have matching query keywords and therefore can only be used by invoking the extension 
methods directly. 

Standard Query Operators 
LINQ is built upon the use of standard query operators, which are methods that operate on sequences 
such as collections that implement IEnumerable or IQueryable. As discussed previously, when the C# 
compiler encounters a query expression, it typically converts the expression into a series or chain of calls 
to those extension methods that implement the behavior. 

There are two benefits to this approach. One is that you can generally perform the same actions as a 
LINQ query expression by calling the extension methods directly. The resulting code is not as easy to 
read as code with query expressions. However, there might be times when you need functionality from 
the extension methods, and a complete query expression might be overkill. Other times are when query 
operators are not exposed as query keywords. 

The greatest benefit of this approach is that LINQ is extensible. That is, you can define your own set 
of extension methods, and the compiler will generate calls to them while compiling a LINQ query 
expression. For example, suppose that you did not import the System.Linq namespace and instead 
wanted to provide your own implementation of Where and Select. You could do that as shown here: 

using System; 
using System.Collections.Generic; 
 
public static class MySqoSet 
{ 
    public static IEnumerable<T> Where<T> ( 
              this IEnumerable<T> source, 
              System.Func<T,bool> predicate ) { 
        Console.WriteLine( "My Where implementation called." ); 
        return System.Linq.Enumerable.Where( source, 
                                             predicate ); 
    } 
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    public static IEnumerable<R> Select<T,R> ( 
              this IEnumerable<T> source, 
              System.Func<T,R> selector ) { 
        Console.WriteLine( "My Select implementation called." ); 
        return System.Linq.Enumerable.Select( source, 
                                              selector ); 
    } 
} 
 
public class CustomSqo 
{ 
    static void Main() { 
        int[] numbers = { 1, 2, 3, 4 }; 
 
        var query = from x in numbers 
                    where x % 2 == 0 
                    select x * 2; 
 
        foreach( var item in query ) { 
            Console.WriteLine( item ); 
        } 
    } 
} 

Notice that I did not have to import the System.Linq namespace. Aside from the added convenience, 
this helps prove my point because not importing the System.Linq namespace prevents the compiler 
from automatically finding the extension methods in System.Linq.Enumerable. In the MySqoSet static 
class, I provide my own implementations of the standard query operators Where and Select that simply 
log a message and then forward to the ones in Enumerable. If you run this example, the output will look 
as follows: 

My Where implementation called. 

My Select implementation called. 

4 

8 

You could take this exercise a little further and imagine that you want to use LINQ against a 
collection that does not support IEnumerable. Although you would normally make your collection 
support IEnumerable, for the sake of argument, let’s say it supports the custom interface IMyEnumerable 
instead. In that case, you can supply your own set of standard query operators that operates on 
IMyEnumerable rather than IEnumerable. There is one drawback, though. If your type does not derive from 
IEnumerable, you cannot use a LINQ query expression because the from clause requires a data source 
that implements IEnumerable or IEnumerable<T>. However, you can call the standard query operators on 
your IMyEnumerable type to achieve the same effect. I will show an example of this in the later section 
titled “Techniques from Functional Programming,” in which I build upon an example from Chapter 14. 
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C# Query Keywords 
C# 2008 introduces a small set of new keywords for creating LINQ query expressions, some of which we 
have already seen in previous sections. They are from, join, where, group, into, let, ascending, 
descending, on, equals, by, in, orderby, and select. In the following sections, I cover the main points 
regarding their use. 

The from Clause and Range Variables 
Each query begins with a from clause. The from clause is a generator that also defines the range variable, 
which is a local variable of sorts used to represent each item of the input collection as the query 
expression is applied to it. The from clause is just like a foreach construct in the imperative programming 
style, and the range variable is identical in purpose to the iteration variable in the foreach statement. 

A query expression might contain more than one from clause. In that case, you have more than one 
range variable, and it’s analogous to having nested foreach clauses. The next example uses multiple from 
clauses to generate the multiplication table you might remember from grade school, albeit not in tabular 
format: 

using System; 
using System.Linq; 
 
public class MultTable 
{ 
    static void Main() { 
        var query = from x in Enumerable.Range(0,10) 
                    from y in Enumerable.Range(0,10) 
                    select new { 
                        X = x, 
                        Y = y, 
                        Product = x * y 
                    }; 
 
        foreach( var item in query ) { 
            Console.WriteLine( "{0} * {1} = {2}", 
                               item.X, 
                               item.Y, 
                               item.Product ); 
        } 
    } 
} 

Remember that LINQ expressions are compiled into strongly typed code. So in this example, what is 
the type of x and what is the type of y? The compiler infers the types of those two range variables based 
upon the type argument of the IEnumerable<T> interface returned by Range. Because Range returns a type 
of IEnumerable<int>, the type of x and y is int. Now, you might be wondering what happens if you want 
to apply a query expression to a collection that only supports the nongeneric IEnumerable interface. In 
those cases, you must explicitly specify the type of the range variable, as shown here: 

using System; 
using System.Linq; 
using System.Collections; 
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public class NonGenericLinq 
{ 
    static void Main() { 
        ArrayList numbers = new ArrayList(); 
        numbers.Add( 1 ); 
        numbers.Add( 2 ); 
 
        var query = from int n in numbers 
                    select n * 2; 
 
        foreach( var item in query ) { 
            Console.WriteLine( item ); 
        } 
    } 
} 

You can see where I am explicitly typing the range variable n to type int. At run time, a cast is 
performed, which could fail with an InvalidCastException. Therefore, it’s best to strive to use the 
generic, strongly typed IEnumerable<T> rather than IEnumerable so these sorts of errors are caught at 
compile time rather than run time. 

■ Note As I’ve emphasized throughout this book, the compiler is your best friend. Use as many of its facilities as 

possible to catch coding errors at compile time rather than run time. Strongly typed languages such as C# rely 

upon the compiler to verify the integrity of the operations you perform on the types defined within the code. If you 

cast away the type and deal with general types such as System.Object rather than the true concrete types of the 

objects, you are throwing away one of the most powerful capabilities of the compiler. Then, if there is a type-

based mistake in your code, and quality assurance does not catch it before it goes out the door, you can bet your 

customer will let you know about it, in the most abrupt way possible! 

The join Clause 
Following the from clause, you might have a join clause used to correlate data from two separate 
sources. Join operations are not typically needed in environments where objects are linked via 
hierarchies and other associative relationships. However, in the relational database world, there 
typically are no hard links between items in two separate collections, or tables, other than the equality 
between items within each record. That equality operation is defined by you when you create a join 
clause. Consider the following example: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public class EmployeeId 
{ 
    public string Id { get; set; } 
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    public string Name { get; set; } 
} 
 
public class EmployeeNationality 
{ 
    public string Id { get; set; } 
    public string Nationality { get; set; } 
} 
 
public class JoinExample 
{ 
    static void Main() { 
        // Build employee collection 
        var employees = new List<EmployeeId>() { 
            new EmployeeId{ Id = "111-11-1111", 
                            Name = "Ed Glasser" }, 
            new EmployeeId{ Id = "222-22-2222", 
                            Name = "Spaulding Smails" }, 
            new EmployeeId{ Id = "333-33-3333", 
                            Name = "Ivan Ivanov" }, 
            new EmployeeId{ Id = "444-44-4444", 
                            Name = "Vasya Pupkin" } 
        }; 
 
        // Build nationality collection. 
        var empNationalities = new List<EmployeeNationality>() { 
            new EmployeeNationality{ Id = "111-11-1111", 
                                     Nationality = "American" }, 
            new EmployeeNationality{ Id = "333-33-3333", 
                                     Nationality = "Russian" }, 
            new EmployeeNationality{ Id = "222-22-2222", 
                                     Nationality = "Irish" }, 
            new EmployeeNationality{ Id = "444-44-4444", 
                                     Nationality = "Russian" } 
        }; 
 
        // Build query. 
        var query = from emp in employees 
                    join n in empNationalities 
                        on emp.Id equals n.Id 
                    orderby n.Nationality descending 
                    select new { 
                        Id = emp.Id, 
                        Name = emp.Name, 
                        Nationality = n.Nationality 
                    }; 
 
        foreach( var person in query ) { 
            Console.WriteLine( "{0}, {1}, \t{2}", 
                               person.Id, 
                               person.Name, 
                               person.Nationality ); 
        } 
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    } 
} 

In this example, I have two collections. The first one contains just a collection of employees and 
their employee identification numbers. The second contains a collection of employee nationalities in 
which each employee is identified only by employee ID. To keep the example simple, every piece of data 
is a string. Now, I want a list of all employee names and their nationalities and I want to sort the list by 
their nationality but in descending order. A join clause comes in handy here because there is no single 
data source that contains this information. But join lets us meld the information from the two data 
sources, and LINQ makes this a snap! In the query expression, I have highlighted the join clause. For 
each item that the range variable emp references (that is, for each item in employees), it finds the item in 
the collection empNationalities (represented by the range variable n) where the Id is equivalent to the 
Id referenced by emp. Then, my projector clause, the select clause, takes data from both collections 
when building the result and projects that data into an anonymous type. Thus, the result of the query is a 
single collection where each item from both employees and empNationalities is melded into one. If you 
execute this example, the results are as shown here: 

333-33-3333, Ivan Ivanov,       Russian 

444-44-4444, Vasya Pupkin,      Russian 

222-22-2222, Spaulding Smails,  Irish 

111-11-1111, Ed Glasser,        American 

When your query contains a join operation, the compiler converts it to a Join extension method call 
under the covers unless it is followed by an into clause. If the into clause is present, the compiler uses 
the GroupJoin extension method which also groups the results. For more information on the more 
esoteric things you can do with join and into clauses, reference the MSDN documentation on LINQ or 
see Pro LINQ: Language Integrated Query in C# 2008 by Joseph C. Rattz, Jr. (Apress, 2007). 

■ Note There’s no reason you cannot have multiple join clauses within the query to meld data from multiple 

different collections all at once. In the previous example, you might have a collection that represents languages 

spoken by each nation, and you could join each item from the empNationalities collection with the items in that 

language’s spoken collection. To do that, you would simply have one join clause following another. 

The where Clause and Filters 
Following one or more from clause generators or the join clauses if there are any, you typically place one 
or more filter clauses. Filters consist of the where keyword followed by a predicate expression. The where 
clause is translated into a call to the Where extension method, and the predicate is passed to the Where 
method as a lambda expression. Calls to Enumerable.Where, which are used if you are performing a query 
on an IEnumerable type, convert the lambda expression into a delegate. Conversely, calls to 
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Queryable.Where, which are used if you perform a query on a collection via an IQueryable interface, 
convert the lambda expression into an expression tree.2 I’ll have more to say about expression trees in 
LINQ later, in the section titled “Expression Trees Revisited.” 

The orderby Clause 
The orderby clause is used to sort the sequence of results in a query. Following the orderby keyword is 
the item you want to sort by, which is commonly some property of the range variable. You can sort in 
either ascending or descending order, and if you don’t specify that with either the ascending or 
descending keyword, ascending is the default order. Following the orderby clause, you can have an 
unlimited set of subsorts simply by separating each sort item with a comma, as demonstrated here: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public class Employee 
{ 
    public string LastName { get; set; } 
    public string FirstName { get; set; } 
    public string Nationality { get; set; } 
} 
 
public class OrderByExample 
{ 
    static void Main() { 
        var employees = new List<Employee>() { 
            new Employee { 
                LastName = "Glasser", FirstName = "Ed", 
                Nationality = "American" 
            }, 
            new Employee { 
                LastName = "Pupkin", FirstName = "Vasya", 
                Nationality = "Russian" 
            }, 
            new Employee { 
                LastName = "Smails", FirstName = "Spaulding", 
                Nationality = "Irish" 
            }, 
            new Employee { 
                LastName = "Ivanov", FirstName = "Ivan", 
                Nationality = "Russian" 
            } 
        }; 
 

                                                 

 
2 In Chapter 15, I show how lambda expressions that are assigned to delegate instance variables are converted into 
executable IL code, whereas lambda expressions that are assigned to Expression<T> are converted into expression 
trees, thus describing the expression with data rather than executable code. 
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        var query = from emp in employees 
                    orderby emp.Nationality, 
                            emp.LastName descending, 
                            emp.FirstName descending 
                    select emp; 
 
        foreach( var item in query ) { 
            Console.WriteLine( "{0},\t{1},\t{2}", 
                               item.LastName, 
                               item.FirstName, 
                               item.Nationality ); 
        } 
    } 
} 

Notice that because the  select clause simply returns the range variable, this whole query 
expression is nothing more than a sort operation. But it sure is a convenient way to sort things in C#. In 
this example, I sort first by Nationality in ascending order, then the second expression in the orderby 
clause sorts the results of each nationality group by LastName in descending order, and then each of 
those groups is sorted by FirstName in descending order. 

At compile time, the compiler translates the first expression in the orderby clause into a call to the 
OrderBy standard query operator extension method. Any subsequent secondary sort expressions are 
translated into chained ThenBy extension method calls. If orderby is used with the descending keyword, 
the generated code uses OrderByDescending and ThenByDescending respectively. 

The select Clause and Projection 
In a LINQ query, the select clause is used to produce the end result of the query. It is called a projector 
because it projects, or translates, the data within the query into a form desired for consumption. If there 
are any filtering where clauses in the query expression, they must precede the select clause. The 
compiler converts the select clause into a call to the Select extension method. The body of the select 
clause is converted into a lambda expression that is passed into the Select method, which uses it to 
produce each item of the result set. 

Anonymous types are extremely handy here and you would be correct in guessing that the 
anonymous types feature was born from the select operation during the development of LINQ. To see 
why anonymous types are so handy in this case, consider the following example: 

using System; 
using System.Linq; 
 
public class Result 
{ 
    public Result( int input, int output ) { 
        Input = input; 
        Output = output; 
    } 
    public int Input { get; set; } 
    public int Output { get; set; } 
} 
 
public class Projector 
{ 
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    static void Main() { 
        int[] numbers = { 1, 2, 3, 4 }; 
 
        var query = from x in numbers 
                    select new Result( x, x*2 ); 
 
        foreach( var item in query ) { 
            Console.WriteLine( "Input = {0}, Output = {1}", 
                               item.Input, 
                               item.Output ); 
        } 
    } 
} 

This works. However, notice that I had to declare a new type Result just to hold the results of the 
query. Now, what if I wanted to change the result to include x, x*2, and x*3 in the future? I would have to 
first go modify the definition of the Result class to accommodate that. Ouch! It’s so much easier just to 
use anonymous types as follows: 

using System; 
using System.Linq; 
 
public class Projector 
{ 
    static void Main() { 
        int[] numbers = { 1, 2, 3, 4 }; 
 
        var query = from x in numbers 
                    select new { 
                        Input = x, 
                        Output = x*2 }; 
 
        foreach( var item in query ) { 
            Console.WriteLine( "Input = {0}, Output = {1}", 
                               item.Input, 
                               item.Output ); 
        } 
    } 
} 

Now that’s much better! I can go and add a new property to the result type and call it Output2, for 
example, and it would not force any changes on anything other than the anonymous type instantiation 
inside the query expression. Existing code will continue to work, and anyone who wants to use the new 
Output2 property can use it. 

Of course, there are some circumstances where you do want to use predefined types in the select 
clause such as when one of those type instances has to be returned from a function. However, the more 
you can get away with using anonymous types, the more flexibility you will have later on. 
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The let Clause 
The let clause introduces a new local identifier that can subsequently be referenced in the remainder of 
the query. Think of it as a local variable that is visible only within the query expression, just as a local 
variable inside a normal code block is visible only within that block. Consider the following example: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public class Employee 
{ 
    public string LastName { get; set; } 
    public string FirstName { get; set; } 
} 
 
public class LetExample 
{ 
    static void Main() { 
        var employees = new List<Employee>() { 
            new Employee { 
                LastName = "Glasser", FirstName = "Ed" 
            }, 
            new Employee { 
                LastName = "Pupkin", FirstName = "Vasya" 
            }, 
            new Employee { 
                LastName = "Smails", FirstName = "Spaulding" 
            }, 
            new Employee { 
                LastName = "Ivanov", FirstName = "Ivan" 
            } 
        }; 
 
        var query = from emp in employees 
                    let fullName = emp.FirstName + 
                                   " " + emp.LastName 
                    orderby fullName 
                    select fullName; 
 
        foreach( var item in query ) { 
            Console.WriteLine( item ); 
        } 
    } 
} 

In this example, I wanted to sort the names in ascending order, but by sorting on the full name 
created by putting the FirstName and LastName together. I introduce this construct by using the let 
clause to define the fullName variable. 

One other nice quality of local identifiers introduced by let clauses is that if they reference 
collections, you can use the variable as input to another from clause to create a new derived range 
variable. In the previous section titled “The from Clause and Range Variables,” I gave an example using 
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multiple from clauses to generate a multiplication table. Following is a slight variation of that example 
using a let clause: 

using System; 
using System.Linq; 
 
public class MultTable 
{ 
    static void Main() { 
        var query = from x in Enumerable.Range(0,10) 
                    let innerRange = Enumerable.Range(0, 10) 
                        from y in innerRange 
                        select new { 
                            X = x, 
                            Y = y, 
                            Product = x * y 
                        }; 
 
        foreach( var item in query ) { 
            Console.WriteLine( "{0} * {1} = {2}", 
                               item.X, 
                               item.Y, 
                               item.Product ); 
        } 
    } 
} 

I have bolded the changes in this query from the earlier example. Notice that I added a new 
intermediate identifier named innerRange and I then iterate over that collection with the from clause 
following it. 

The group Clause 
The query expression can have an optional group clause, which is very powerful at partitioning the input 
of the query. The group clause is a projector as it projects the data into a collection of IGrouping 
interfaces. Because of that, the group clause can be the final clause in the query, just like the select 
clause. The IGrouping interface is defined in the System.Linq namespace and it also derives from the 
IEnumerable interface. Therefore, you can use an IGrouping interface anywhere you can use an 
IEnumerable interface. IGrouping comes with a property named Key, which is the object that delineates 
the subset. Each result set is formed by applying an equivalence operator to the input data and Key. Let’s 
take a look at an example that takes a series of integers and partitions them into the set of odd and even 
numbers:3 

using System; 
using System.Linq; 

                                                 

 
3 In the discussion of the group clause, I am using the word partition in the set theory context. That is a set partition of 
a space S is a set of disjoint subsets whose union produces S. 
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public class GroupExample 
{ 
    static void Main() { 
        int[] numbers = { 
            0, 1, 2, 3, 4, 5, 6, 7, 8, 9 
        }; 
 
        // partition numbers into odd and 
        // even numbers. 
        var query = from x in numbers 
                    group x by x % 2; 
 
        foreach( var group in query ) { 
            Console.WriteLine( "mod2 == {0}", group.Key ); 
            foreach( var number in group ) { 
                Console.Write( "{0}, ", number ); 
            } 
            Console.WriteLine( "\n" ); 
        } 
    } 
} 

First of all, notice that there is no select clause in this query. The end result of the query is a 
sequence of two instances of IGrouping, that is IEnumerable<IGrouping<int>>. The first instance in the 
result sequence contains the even numbers, and the second one contains the odd numbers, as shown in 
the following output: 

mod2 == 0 

0, 2, 4, 6, 8, 

 

mod2 == 1 

1, 3, 5, 7, 9, 

The first foreach iterates over the two groups, or the two instances of IGrouping. And because each 
IGrouping implements IEnumerable, there is a nested foreach loop that iterates over all the items in the 
group. As you can see, this simple query iterated over all the items from the source data collection, 
numbers, and produced two resultant groups. Internally, the compiler translates each group clause into a 
call to the GroupBy standard query operator. 

The group clause can also partition the input collection using multiple keys, also known as 
compound keys. I prefer to think of it as partitioning on one key that consists of multiple pieces of data. 
In order to perform such a grouping, you can use an anonymous type to introduce the multiple keys into 
the query, as demonstrated in the following example: 
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using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public class Employee 
{ 
    public string LastName { get; set; } 
    public string FirstName { get; set; } 
    public string Nationality { get; set; } 
} 
 
public class GroupExample 
{ 
    static void Main() { 
        var employees = new List<Employee>() { 
            new Employee { 
                LastName = "Jones", FirstName = "Ed", 
                Nationality = "American" 
            }, 
            new Employee { 
                LastName = "Ivanov", FirstName = "Vasya", 
                Nationality = "Russian" 
            }, 
            new Employee { 
                LastName = "Jones", FirstName = "Tom", 
                Nationality = "Welsh" 
            }, 
            new Employee { 
                LastName = "Smails", FirstName = "Spaulding", 
                Nationality = "Irish" 
            }, 
            new Employee { 
                LastName = "Ivanov", FirstName = "Ivan", 
                Nationality = "Russian" 
            } 
        }; 
 
        var query = from emp in employees 
                    group emp by new { 
                        Nationality = emp.Nationality, 
                        LastName = emp.LastName 
                    }; 
 
        foreach( var group in query ) { 
            Console.WriteLine( group.Key ); 
            foreach( var employee in group ) { 
                Console.WriteLine( employee.FirstName ); 
            } 
            Console.WriteLine(); 
        } 
    } 
} 
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Notice the anonymous type within the group clause. What this says is that I want to partition the 
input collection into groups where both the Nationality and LastName are the same. In this example, 
every group ends up having one entity except one, and it’s the one where Nationality is Russian and 
LastName is Ivanov. 

Essentially how it works is that for each item, it builds an instance of the anonymous type and 
checks to see whether that key instance is equal to the key of an existing group. If so, the item goes in 
that group. If not, a new group is created with that instance of the anonymous type as the key. 

If you execute the preceding code, you will see the following results: 

{ Nationality = American, LastName = Jones } 

Ed 

 

{ Nationality = Russian, LastName = Ivanov } 

Vasya 

Ivan 

 

{ Nationality = Welsh, LastName = Jones } 

Tom 

 

{ Nationality = Irish, LastName = Smails } 

Spaulding 

The grouping by itself is useful indeed. However, what if you want to operate further on each of the 
groups within the query, thus treating the resulting partition as an intermediate step? That’s when you 
use the into keyword, described in the next section. 

The into Clause and Continuations 
The into keyword is similar to the let keyword in that it defines an identifier local to the scope of the 
query. Using an into clause, you tell the query that you want to assign the results of a group or a join 
operation to an identifier that can then be used later on in the query. In query lingo, this is called a 
continuation because the group clause is not the final projector in the query. However, the into clause 
acts as a generator, much as from clauses do, and the identifier introduced by the into clause is similar to 
a range variable in a from clause. Let’s look at some examples: 
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using System; 
using System.Linq; 
 
public class GroupExample 
{ 
    static void Main() { 
        int[] numbers = { 
            0, 1, 2, 3, 4, 5, 6, 7, 8, 9 
        }; 
 
        // Partition numbers into odd and 
        // even numbers. 
        var query = from x in numbers 
                    group x by x % 2 into partition 
                    where partition.Key == 0 
                    select new { 
                        Key = partition.Key, 
                        Count = partition.Count(), 
                        Group = partition 
                    }; 
 
        foreach( var item in query ) { 
            Console.WriteLine( "mod2 == {0}", item.Key ); 
            Console.WriteLine( "Count == {0}", item.Count ); 
            foreach( var number in item.Group ) { 
                Console.Write( "{0}, ", number ); 
            } 
            Console.WriteLine( "\n" ); 
        } 
    } 
} 

In this query, the continuation (the part of the query after the into clause) filters the series of groups 
where Key is 0 by using a where clause. This filters out the group of even numbers. I then project that 
group out into an anonymous type, producing a count of items in the group to go along with the Key 
property and the items in the group. Thus the output to the console includes only one group. 

But what if I wanted to add a count to each group in the partition? As I said before, the into clause is 
a generator. So I can produce the desired result by changing the query to this: 

        var query = from x in numbers 
                    group x by x % 2 into partition 
                    select new { 
                        Key = partition.Key, 
                        Count = partition.Count(), 
                        Group = partition 
                    }; 

Notice that I removed the where clause, thus removing any filtering. When executed with this 
version of the query, the example produces the following desired output: 

mod2 == 0 
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Count == 5 

0, 2, 4, 6, 8, 

 

mod2 == 1 

Count == 5 

1, 3, 5, 7, 9, 

In both of the previous query expressions, note that the result is not an IEnumerable<IGrouping<T>> 
as it commonly is when the group clause is the final projector. Rather, the end result is an IEnumerable<T> 
where T is replaced with our anonymous type. 

The Virtues of Being Lazy 
When you build a LINQ query expression and assign it to a query variable, very little code is executed in 
that statement. The data becomes available only when you iterate over that query variable, which 
executes the query once for each result in the result set. So, for example, if the result set consists of 100 
items and you only iterate over the first 10, you don’t pay the price for computing the remaining 90 items 
in the result set unless you apply some sort of operator such as Average, which requires you to iterate 
over the entire collection. 

■ Note You can use the Take extension method, which produces a deferred execution enumerator, to access a 

specified number of elements at the head of the given stream. Similarly useful methods are TakeWhile, Skip, and 

SkipWhile. 

The benefits of this deferred execution approach are many. First of all, the operations described in 
the query expression could be quite expensive. Because those operations are provided by the user, and 
the designers of LINQ have no way of predicting the complexity of those operations, it’s best to harvest 
each item only when necessary. Also, the data could be in a database halfway around the world. You 
definitely want lazy evaluation on your side in that case. And finally, the range variable could actually 
iterate over an infinite sequence. I’ll show an example of that in the next section. 

C# Iterators Foster Laziness 
Internally, the query variable is implemented using C# iterators by using the yield keyword. I explained 
in Chapter 9 that code containing yield statements actually compiles into an iterator object. Therefore, 
when you assign the LINQ expression to the query variable, just about the only code that is executed is 
the constructor for the iterator object. The iterator might depend on other nested objects, and they are 
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initialized as well. You get the results of the LINQ expression once you start iterating over the query 
variable using a foreach statement, or by using the IEnumerator interface. 

As an example, let’s have a look at a query slightly modified from the code in the earlier section 
“LINQ Query Expressions.” For convenience, here is the relevant code: 

        var query = from employee in employees 
                    where employee.Salary > 100000 
                    select new { LastName = employee.LastName, 
                                 FirstName = employee.FirstName }; 
 
        Console.WriteLine( "Highly paid employees:" ); 
        foreach( var item in query ) { 
            Console.WriteLine( "{0}, {1}", 
                               item.LastName, 
                               item.FirstName ); 

Notice that the only difference is that I removed the orderby clause from the original LINQ 
expression; I’ll explain why in the next section. In this case, the query is translated into a series of 
chained extension method calls on the employees variable. Each of those methods returns an object that 
implements IEnumerable<T>. In reality, those objects are iterators created from a yield statement. 

Let’s consider what happens when you start to iterate over the query variable in the foreach block. 
To obtain the next result, first the from clause grabs the next item from the employees collection and 
makes the range variable employee reference it. Then, under the covers, the where clause passes the next 
item referenced by the range variable to the Where extension method. If it gets trapped by the filter, 
execution backtracks to the from clause to obtain the next item in the collection. It keeps executing that 
loop until either employees is completely empty or an element of employees passes the where clause 
predicate. Then the select clause projects the item into the format we want by creating an anonymous 
type and returning it. Once it returns the item from the select clause, the enumerator’s work is done 
until the query variable cursor is advanced by the next iteration. 

■ Note LINQ query expressions can be reused. For example, suppose you have started iterating over the results of 

a query expression. Now, imagine that the range variable has iterated over just a few of the items in the input 

collection, and the variable referencing the collection is changed to reference a different collection. You can 

continue to iterate over the same query and it will pick up the changes in the new input collection without 

requiring you to redefine the query. How is that possible? Hint: think about closures and variable capture and what 

happens if the captured variable is modified outside the context of the closure. 

Subverting Laziness 
In the previous section, I removed the orderby clause from the query expression, and you might have 
been wondering why. That’s because there are certain query operations that foil lazy evaluation. After 
all, how can orderby do its work unless it has a look at all the results from the previous clauses? Of course 
it can’t, and therefore orderby forces the clauses prior to it to iterate to completion. 
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■ Note orderby is not the only clause that subverts lazy evaluation, or deferred execution, of query expressions. 

group . . . by and join do as well. Additionally, any time you make an extension method call on the query 

variable that produces a singleton value (as opposed to an IEnumerable<T> result), such as Count, you force the 

entire query to iterate to completion. 

The original query expression used in the earlier section “LINQ Query Expressions” looked like the 
following: 

        var query = from employee in employees 
                    where employee.Salary > 100000 
                    orderby employee.LastName, employee.FirstName 
                    select new { LastName = employee.LastName, 
                                 FirstName = employee.FirstName }; 
 
        Console.WriteLine( "Highly paid employees:" ); 
        foreach( var item in query ) { 
            Console.WriteLine( "{0}, {1}", 
                               item.LastName, 
                               item.FirstName ); 
        } 

I have bolded the orderby clause to make it stand out. When you ask for the next item in the result 
set, the from clause sends the next item in employees to the where clause filter. If it passes, that is sent on 
to the orderby clause. However, now the orderby clause needs to see the rest of the input that passes the 
filter, so it forces execution back up to the from clause to get the next item that passes the filter. It 
continues in this loop until there are no more items left in the employees collection. Then, after ordering 
the items based on the criteria, it passes the first item in the ordered set to the select projector. When 
foreach asks for the next item in the result set, evaluation starts with the orderby clause because it has 
cached all the results from every clause prior. It takes the next item in its internal cache and passes it on 
to the select projector. This continues until the consumer of the query variable iterates over all the 
results, thus draining the cache formed by orderby. 

Now, earlier I mentioned the case where the range variable in the expression iterates over an infinite 
loop. Consider the following example: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public class InfiniteList 
{ 
    static IEnumerable<int> AllIntegers() { 
        int count = 0; 
        while( true ) { 
            yield return count++; 
        } 
    } 
 
    static void Main() { 
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        var query = from number in AllIntegers() 
                    select number * 2 + 1; 
 
        foreach( var item in query.Take(10) ) { 
            Console.WriteLine( item ); 
        } 
    } 
} 

Notice in the bolded query expression, it makes a call to AllIntegers, which is simply an iterator 
that iterates over all integers starting from zero. The select clause projects those integers into all the odd 
numbers. I then use Take and a foreach loop to display the first ten odd numbers. Notice that if I did not 
use Take, the program would run forever unless you compile it with the /checked+ compiler option to 
catch overflows. 

■ Note Methods that create iterators over infinite sets like the AllIntegers method in the previous example are 

sometimes called streams. The Queryable and Enumerable classes also contain useful methods that generate 

finite collections. Those methods are Empty, which returns an empty set of elements; Range, which returns a 

sequence of numbers; and Repeat, which generates a repeated stream of constant objects given the object to 

return and the number of times to return it. I wish Repeat would iterate forever if a negative count is passed to it. 

Consider what would happen if I modified the query expression ever so slightly as shown here: 

        var query = from number in AllIntegers() 
                    orderby number descending 
                    select number * 2 + 1; 

If you attempt to iterate even once over the query variable to get the first result, then you had better 
be ready to terminate the application. That’s because the orderby clause forces the clauses before it to 
iterate to completion. In this case, that will never happen. 

Even if your range variable does not iterate over an infinite set, the clauses prior to the orderby 
clause could be very expensive to execute. So the moral of the story is this: be careful of the performance 
penalty associated with using orderby, group . . . by, and join in your query expressions. 

Executing Queries Immediately 
Sometimes you need to execute the entire query immediately. Maybe you want to cache the results of 
your query locally in memory or maybe you need to minimize the lock length to a SQL database. You can 
do this in a couple of ways. You could immediately follow your query with a foreach loop that iterates 
over the query variable, stuffing each result into a List<T>. But that’s so imperative! Wouldn’t you rather 
be functional? Instead, you could call the ToList extension method on the query variable, which does the 
same thing in one simple method call. As with the orderby example in the previous section, be careful 
when calling ToList on a query that returns an infinite result set. There is also a ToArray extension 
method for converting the results into an array. I show an interesting usage of ToArray in the later 
section titled “Replacing foreach Statements.” 
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Along with ToList, there are other extension methods that force immediate execution of the entire 
query. They include such methods as Count, Sum, Max, Min, Average, Last, Reverse and any other method 
that must execute the entire query in order to produce its result. 

Expression Trees Revisited 
In Chapter 15, I described how lambda expressions can be converted into expression trees. I also made a 
brief mention of how this is very useful for LINQ to SQL. 

When you use LINQ to SQL, the bodies of the LINQ clauses that boil down to lambda expressions 
are represented by expression trees. These expression trees are then used to convert the entire 
expression into a SQL statement for use against the server. When you perform LINQ to Objects, as I have 
done throughout this chapter, the lambda expressions are converted to delegates in the form of IL code 
instead. Clearly that’s not acceptable for LINQ to SQL. Can you imagine how difficult it would be to 
convert IL into SQL? 

As you know by now, LINQ clauses boil down to extension method calls implemented in either 
System.Linq.Enumerable or System.Linq.Queryable. But which set of extension methods are used and 
when? If you look at the documentation for the methods in Enumerable, you can see that the predicates 
are converted to delegates because the methods all accept a type based on the Func<> generic delegate 
type. However, the extension methods in Queryable, which have the same names as those in Enumerable, 
all convert the lambda expressions into an expression tree because they take a parameter of type 
Expression<T>. Clearly, LINQ to SQL uses the extension methods in Queryable. 

■ Note Incidentally, when you use the extension methods in Enumerable, you can pass either lambda expressions 

or anonymous functions to them because they accept a delegate in their parameter lists. However, the extension 

methods in Queryable can accept only lambda expressions because anonymous functions cannot be converted 

into expression trees. 

Techniques from Functional Programming 
In the following sections, I want to explore some more of the functional programming concepts that are 
prevalent throughout the features added in C# 3.0. As you’ll soon see, some problems are solved with 
clever use of delegates created from lambda expressions to add the proverbial extra level of indirection. 
I’ll also show how you can replace many uses of the imperative programming style constructs such as 
for loops and foreach loops using a more functional style. 

Custom Standard Query Operators and Lazy Evaluation 
In this section, I will revisit an example introduced in Chapter 14, in which I showed how to implement a 
Lisp-style forward-linked list along with some extension methods to perform on that list. The primary 
interface for the list is shown here: 

public interface IList<T> 
{ 
    T Head { get; } 
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    IList<T> Tail { get; } 
} 

A possible implementation of a collection based on this type was shown in Chapter 14; I repeat it 
here for convenience: 

public class MyList<T> : IList<T> 
{ 
    public static IList<T> CreateList( IEnumerable<T> items ) { 
        IEnumerator<T> iter = items.GetEnumerator(); 
        return CreateList( iter ); 
    } 
 
    public static IList<T> CreateList( IEnumerator<T> iter ) { 
        if( !iter.MoveNext() ) { 
            return new MyList<T>( default(T), null ); 
        } 
 
        return new MyList<T>( iter.Current, CreateList(iter) ); 
    } 
 
    public MyList( T head, IList<T> tail ) { 
        this.head = head; 
        this.tail = tail; 
    } 
 
    public T Head { 
        get { 
            return head; 
        } 
    } 
 
    public IList<T> Tail { 
        get { 
            return tail; 
        } 
    } 
 
    private T        head; 
    private IList<T> tail; 
} 

Now, let’s say that you want to implement the Where and Select standard query operators. Based on 
this implementation of MyList, those operators could be implemented as shown here: 

public static class MyListExtensions 
{ 
    public static IEnumerable<T> 
        GeneralIterator<T>( this IList<T> theList, 
                            Func<IList<T>, bool> finalState, 
                            Func<IList<T>, IList<T>> incrementer ) { 
        while( !finalState(theList) ) { 
            yield return theList.Head; 
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            theList = incrementer( theList ); 
        } 
    } 
 
    public static IList<T> Where<T>( this IList<T> theList, 
                                     Func<T, bool> predicate ) { 
        Func<IList<T>, IList<T>> whereFunc = null; 
 
        whereFunc = list => { 
            IList<T> result = new MyList<T>(default(T), null); 
 
            if( list.Tail != null ) { 
                if( predicate(list.Head) ) { 
                    result = new MyList<T>( list.Head, whereFunc(list.Tail) ); 
                } else { 
                    result = whereFunc( list.Tail ); 
                } 
            }  
 
            return result; 
        }; 
 
        return whereFunc( theList ); 
    } 
 
    public static IList<R> Select<T,R>( this IList<T> theList, 
                                        Func<T,R> selector ) { 
        Func<IList<T>, IList<R>> selectorFunc = null; 
 
        selectorFunc = list => { 
            IList<R> result = new MyList<R>(default(R), null); 
 
            if( list.Tail != null ) { 
                result = new MyList<R>( selector(list.Head), 
                                        selectorFunc(list.Tail) ); 
            }  
 
            return result; 
        }; 
 
        return selectorFunc( theList ); 
    } 
} 

Each of the two methods, Where and Select, uses an embedded lambda expression that is converted 
to a delegate in order to get the work done. 

■ Note Chapter 14 demonstrated a similar technique, but because lambda expressions had not been introduced 

yet, it used anonymous methods instead. Of course, lambda expressions clean up the syntax quite a bit. 
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In both methods, the embedded lambda expression is used to perform a simple recursive 
computation to compute the desired results. The final result of the recursion produces the product you 
want from each of the methods. I encourage you to follow through the execution of this code in a 
debugger to get a good feel for the execution flow. 

The GeneralIterator method in the previous example is used to create an iterator that implements 
IEnumerable on the MyList object instances. It is virtually the same as that shown in the example in 
Chapter 14. 

Finally, you can put all of this together and execute the following code to see it in action: 

public class SqoExample 
{ 
    static void Main() { 
        var listInts = new List<int> { 5, 2, 9, 4, 3, 1 }; 
        var linkList = 
            MyList<int>.CreateList( listInts ); 
 
        // Now go. 
        var linkList2 = linkList.Where( x => x > 3 ).Select( x => x * 2 ); 
        var iterator2 = linkList2.GeneralIterator( list => list.Tail == null, 
                                              list => list.Tail ); 
        foreach( var item in iterator2 ) { 
            Console.Write( "{0}, ", item ); 
        } 
 
        Console.WriteLine(); 
    } 
} 

Of course, you will have to import the appropriate namespaces in order for the code to compile. 
Those namespaces are System, System.Linq, and System.Collections.Generic. If you execute this code, 
you will see the following results: 

10, 18, 8, 

There are some very important points and problems to address in this example, though. Notice that 
my query was not written using a LINQ query expression even though I do make use of the standard 
query operators Where and Select. This is because the from clause requires that the given collection must 
implement IEnumerable. Because the IList interface does not implement IEnumerable, it is impossible to 
use foreach or a from clause. You could use the GeneralIterator extension method to get an IEnumerable 
interface on the IList and then use that in the from clause of a LINQ query expression. In that case, there 
would be no need to implement custom Where and Select methods because you could just use the ones 
already implemented in the Enumerable class. However, your results of the query would be in the form of 
an IEnumerable and not an IList, so you would then have to reconvert the results of the query back to an 
IList. Although these conversions are all possible, for the sake of example, let’s assume that the 
requirement is that the standard query operators must accept the custom IList type and return the 
custom IList type. Under such a requirement, it is impossible to use LINQ query expressions, and you 
must invoke the standard query operators directly. 
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■ Note You can see the power of the LINQ layered design and implementation. Even when your custom collection 

type does not implement IEnumerable, you can still perform operations using custom designed standard query 

operators, even though you cannot use LINQ query expressions. 

There is one major problem with the implementation of MyList and the extension methods in the 
MyListExtensions class as shown so far. They are grossly inefficient! One of the functional programming 
techniques employed throughout the LINQ implementation is that of lazy evaluation. In the section 
titled “The Virtues of Being Lazy,” I showed that when you create a LINQ query expression, very little 
code is executed at that point, and operations are performed only as needed while you iterate the results 
of the query. The implementations of Where and Select for IList, as shown so far, don’t follow this 
methodology. For example, when you call Where, the entire input list is processed before any results are 
returned to the caller. That’s bad because what if the input IList were an infinite list? The call to Where 
would never return. 

■ Note When developing implementations of the standard query operators or any other method in which lazy 

evaluation is desirable, I like to use an infinite list for input as the litmus test of whether my lazy evaluation code is 

working as expected. Of course, as shown in the section “Subverting Laziness,” there are certain operations that 

just cannot be coded using lazy evaluation. 

Let’s turn  to reimplementing the custom standard query operators in the previous example using 
lazy evaluation. Let’s start by considering the Where operation. How could you reimplement it to use lazy 
evaluation? It accepts an IList and returns a new IList, so how is it possible that Where could return 
only one item at a time? The solution actually lies in the implementation of the MyList class. Let’s 
consider the typical IEnumerator implementation for a moment. It has an internal cursor that points to 
the item that the IEnumerable.Current property returns, and it has a MoveNext method to go to the next 
item. The IEnumerable.MoveNext method is the key to retrieving each value only when needed. When you 
call MoveNext, you are invoking the operation to produce the next result, but only when needed, thus 
using lazy evaluation. 

I’ve mentioned Andrew Koenig’s “Fundamental Theorem of Software Engineering,” in which all 
problems can be solved by introducing an extra level of indirection.4 Although it’s not really a theorem, it 
is true and very useful. In the C language, that form of indirection is typically in the form of a pointer. In 
C++ and other object-oriented languages, that extra level of indirection is typically in the form of a class 
(sometimes called a wrapper class). In functional programming, that extra level of indirection is typically 
a function in the form of a delegate. 

                                                 

 
4 I first encountered Koenig’s so called fundamental theorem of software engineering in his excellent book co-
authored with Barbara Moo titled Ruminations on C++ (Boston: Addison-Wesley Professional, 1996). 
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So how can you fix this problem in MyList by adding the proverbial extra level of indirection? It’s 
actually fundamentally quite simple. Don’t compute the IList that is the IList.Tail until it is asked for. 
Consider the changes in the MyList implementation as shown here: 

public class MyList<T> : IList<T> 
{ 
    public static IList<T> CreateList( IEnumerable<T> items ) { 
        IEnumerator<T> iter = items.GetEnumerator(); 
        return CreateList( iter ); 
    } 
 
    public static IList<T> CreateList( IEnumerator<T> iter ) { 
        Func<IList<T>> tailGenerator = null; 
        tailGenerator = () => { 
            if( !iter.MoveNext() ) { 
                return new MyList<T>( default(T), null ); 
            } 
 
            return new MyList<T>( iter.Current, tailGenerator ); 
        }; 
 
        return tailGenerator(); 
    } 
 
    public MyList( T head, Func<IList<T>> tailGenerator ) { 
        this.head = head; 
        this.tailGenerator = tailGenerator; 
    } 
 
    public T Head { 
        get { 
            return head; 
        } 
    } 
 
    public IList<T> Tail { 
        get { 
            if( tailGenerator == null ) { 
                return null; 
            } else if( tail == null ) { 
                tail = tailGenerator(); 
            } 
            return tail; 
        } 
    } 
 
    private T              head; 
    private Func<IList<T>> tailGenerator; 
    private IList<T>       tail = null; 
} 
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I have bolded the portions of the code that are interesting. Notice that the constructor still accepts 
the item that is assigned to head, but instead of taking an IList tail as the second argument it accepts a 
delegate that knows how to compute tail instead. There’s the extra level of indirection! Also, notice that 
the get accessor of the Tail property then uses that delegate on an as-needed basis to compute tail 
when asked for it. And finally, the CreateList static method that builds an IList from an IEnumerator 
must pass in a delegate that simply grabs the next item out of the IEnumerator. So, even if you initialize a 
MyList with an IEnumerable, the IEnumerable type is not fully consumed at creation time as it was in the 
example from Chapter 14. That’s a definite plus because even the IEnumerable passed in can reference 
an infinite stream of objects. 

Now, let’s turn to the modifications necessary for the standard query operators so they can work on 
this new implementation of MyList. Consider the modifications shown here: 

public static class MyListExtensions 
{ 
    public static IEnumerable<T> 
        GeneralIterator<T>( this IList<T> theList, 
                            Func<IList<T>,bool> finalState, 
                            Func<IList<T>,IList<T>> incrementer ) { 
        while( !finalState(theList) ) { 
            yield return theList.Head; 
            theList = incrementer( theList ); 
        } 
    } 
 
    public static IList<T> Where<T>( this IList<T> theList, 
                                     Func<T, bool> predicate ) { 
        Func<IList<T>> whereTailFunc = null; 
 
        whereTailFunc = () => { 
            IList<T> result = null; 
 
            if( theList.Tail == null ) { 
                result = new MyList<T>( default(T), null ); 
            } 
 
            if( predicate(theList.Head) ) { 
                result = new MyList<T>( theList.Head, 
                                        whereTailFunc ); 
            }  
             
            theList = theList.Tail; 
            if( result == null ) { 
                result = whereTailFunc(); 
            } 
 
            return result; 
        }; 
 
        return whereTailFunc(); 
    } 
 
    public static IList<R> Select<T,R>( this IList<T> theList, 
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                                        Func<T,R> selector ) { 
        Func<IList<R>> selectorTailFunc = null; 
 
        selectorTailFunc = () => { 
            IList<R> result = null; 
 
            if( theList.Tail == null ) { 
                result = new MyList<R>( default(R), null ); 
            } else { 
                result = new MyList<R>( selector(theList.Head), 
                                        selectorTailFunc ); 
            } 
             
            theList = theList.Tail; 
            return result; 
        }; 
 
        return selectorTailFunc(); 
    } 
} 

The implementations for Where and Select build a delegate that knows how to compute the next 
item in the result set and pass that delegate to the new instance of MyList that they return. If this code 
looks overwhelming, I encourage you to step through it within a debugger to get a better feel for the 
execution flow. Thus, we have achieved lazy evaluation. Notice that each lambda expression in each 
method forms a closure that uses the passed-in information to form the recursive code that generates 
the next element in the list. Test the lazy evaluation by introducing an infinite linked list of values. 

Before you can prove the lazy evaluation with an infinite list, you need to either iterate through the 
results using a for loop (because a foreach loop will attempt to iterate to the nonexistent end). Or 
instead of using a for loop, implement the standard query operator Take, which returns a given number 
of elements from the list. Following is a possible implementation of Take using the new lazy MyList 
implementation: 

public static class MyListExtensions 
{ 
    public static IList<T> Take<T>( this IList<T> theList, 
                                    int count ) { 
        Func<IList<T>> takeTailFunc = null; 
 
        takeTailFunc = () => { 
            IList<T> result = null; 
 
            if( theList.Tail == null || count-- == 0 ) { 
                result = new MyList<T>( default(T), null ); 
            } else { 
                result = new MyList<T>( theList.Head, 
                                        takeTailFunc ); 
            } 
             
            theList = theList.Tail; 
            return result; 
        }; 
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        return takeTailFunc(); 
    } 
} 

This implementation of Take is very similar to that of Select, except that the closure formed by the 
lambda expression assigned to takeTailFunc also captures the count parameter. 

■ Note Using Take is a more functional programming approach rather than using a for loop to count through the 

first few items in a collection. 

Armed with the Take method, you can prove that lazy evaluation works with the following code: 

public class SqoExample 
{ 
    static IList<T> CreateInfiniteList<T>( T item ) { 
        Func<IList<T>> tailGenerator = null; 
 
        tailGenerator = () => { 
            return new MyList<T>( item, tailGenerator ); 
        }; 
 
        return tailGenerator(); 
    } 
 
    static void Main() { 
        var infiniteList = CreateInfiniteList<int>( 21 ); 
 
        var linkList = infiniteList.Where( x => x > 3 ) 
                                   .Select( x => x * 2 ) 
                                   .Take( 10 ); 
        var iterator = linkList.GeneralIterator( 
                                    list => list.Tail == null, 
                                    list => list.Tail ); 
        foreach( var item in iterator ) { 
            Console.Write( "{0}, ", item ); 
        } 
 
        Console.WriteLine(); 
    } 
} 

The Main method uses the CreateInfiniteList method to create an infinite IList stream that 
returns the constant 21. Following the creation of infiniteList are chained calls to the custom standard 
query operators. Notice that the final method in the chain is the Take method, in which I am asking only 
for the first 10 items in the result set. Without that call, the foreach loop later on would loop indefinitely. 
Because the Main method actually runs to completion, it proves that the lazy evaluation coded into the 
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new MyList and the new implementations of Where, Select, and Take are working as expected. If any of 
them were broken, execution would get stuck in an infinite loop. 

Replacing foreach Statements 
As with most of the new features added in C# 3.0, LINQ imparts a taste of functional programming on 
the language that, when used appropriately, can leave a sweet aftertaste on the palate. Because 
functional programming has, over the years, been considered less efficient in its consumption of 
memory and CPU resources, it’s possible that inappropriate use of LINQ could actually lead to 
inefficiencies. As with just about anything in software development, moderation is often the key to 
success. With enough use and given enough functional programming examples, you might be surprised 
by how many problems can be solved in a different and sometimes clearer way using LINQ and 
functional programming practices rather than the typical imperative programming style of C-style 
languages such as C#, C++, and Java. 

In many of the examples in this book, I send a list of items to the console to illustrate the results of 
the example. I have typically used a Console.WriteLine method call within a foreach statement to iterate 
over the results when the result set is a collection. Now I want to show you how this can be done 
differently using LINQ, as in the following example: 

using System; 
using System.Linq; 
using System.Collections.Generic; 
 
public static class Extensions 
{ 
    public static string Join( this string str, 
                               IEnumerable<string> list ) { 
        return string.Join( str, list.ToArray() ); 
    } 
} 
 
public class Test 
{ 
    static void Main() { 
        var numbers = new int[] { 5, 8, 3, 4 }; 
 
        Console.WriteLine( 
           string.Join(", ", 
                       (from x in numbers 
                        orderby x 
                        select x.ToString()).ToArray()) ); 
    } 
} 

I have bolded the interesting part of the code. In one statement, I sent all the items in the numbers 
collection to the console separated by commas and sorted in ascending order. Isn’t that cool? The way it 
works is that my query expression is evaluated immediately because I call the ToArray extension method 
on it to convert the results of the query into an array. That’s where the typical foreach clause disappears 
to. The static method String.Join should not be confused with the LINQ join clause or the Join 
extension method you get when using the System.Linq namespace. What it does is intersperse the first 
string, in this case a comma, among each string in the given array of strings, building one big string in 
the process. I then simply pass the results of String.Join to Console.WriteLine. 
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■ Note In my opinion, LINQ is to C# what the Standard Template Library (STL) is to C++. When STL first came out 

in the early 1990s, it really jolted C++ programmers into thinking more functionally. It was definitely a breath of 

fresh air. LINQ has this same effect on C#, and I believe that as time goes on, you will see more and more crafty 

usage of functional programming techniques using LINQ. For example, if a C++ programmer used the STL 

effectively, there was little need to write a for loop because the STL provides algorithms where one passes a 

function into the algorithm along with the collection to operate on, and it invokes that function on each item in the 

collection. One might wonder why this technique is so effective. One reason is that for loops are a common place 

to inadvertently introduce an off-by-one bug. Of course, the C# foreach keyword also helps alleviate that problem. 

With enough thought, you could probably replace just about every foreach block in your program 
with a LINQ query expression. It does not necessarily make sense to do so, but it is a great mental 
exercise on functional programming. 

Summary 
LINQ is clearly the culmination of most of the features added in C# 3.0. Or put another way, most of the 
new features of C# 3.0 were born from LINQ. In this chapter, I showed the basic syntax of a LINQ query 
including how LINQ query expressions ultimately compile down to a chain of extension methods known 
as the standard query operators. I then described all the new C# keywords introduced for LINQ 
expressions. Although you are not required to use LINQ query expressions and you can choose to call 
the extension methods directly, it sure makes for easily readable code. However, I also described how 
when you implement standard query operators on collection types that don’t implement IEnumerable, 
you might not be able to use LINQ query expressions. 

I then explored the usefulness of lazy evaluation, or deferred execution, which is used extensively 
throughout the library provided LINQ standard operators on IEnumerable and IQueryable types. And 
finally, I closed the chapter by exploring how to apply the concept of lazy evaluation when defining your 
own custom implementations of the standard query operators. 

LINQ is such a huge topic that there is no way I could possibly cover every nuance in one chapter. 
For example, you’ll notice that I covered only LINQ to Objects, not LINQ to SQL, XML, DataSet, or 
Entities. Entire books are devoted to LINQ. I highly suggest that you frequently reference the MSDN 
documentation on LINQ. Additionally, you might consider LINQ for Visual C# 2005 by Fabio Claudio 
Ferracchiati or Pro LINQ: Language Integrated Query in C# 2008 by Joseph C. Rattz, Jr., both published by 
Apress. 

In the next chapter, I will introduce one of the coolest new features added in the C# 4.0 language. It 
is the new dynamic type and it brings interoperability in C# to a level of parity with Visual Basic, among 
other things. 
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Dynamic Types 

Throughout this book, I have emphasized the importance of type and type safety. After all, C# is a 
strongly typed language, and you are most effective when you use the C# type system along with the 
compiler to eliminate any programming errors early at compile time rather than later at run time. 
However, there are some areas where the static, strongly-typed nature of C# creates headaches. Those 
areas often involve interoperability. In this chapter, I will introduce you to the dynamic type (which is 
new in C# 4.0) and discuss what it means from both a language standpoint as well as a runtime 
standpoint. 

What does dynamic Mean? 
In a nutshell, dynamic is a static type that you can use where you would use any other static type. 
However, it is special because it allows you to tell the compiler you are not quite sure exactly what type it 
references and that it should defer any irresolvable type decisions to run time. You can assign any 
reference or value type to an instance of dynamic. Under the hood, the compiler coupled with the 
Dynamic Language Runtime (DLR)1 produces the magic to get this done by deferring the work of the 
compiler to run time. 

■ Note Make sure you keep a clear distinction in your mind between dynamic types and implicitly typed local 

variables (declared with the var keyword). Implicitly typed local variables are strongly typed, even though you 

don’t have to type the full type name that they reference. Instances of dynamic are truly dynamic and are generally 

resolved at run time. I mention this here to avoid any potential confusion. 

When programming in C#, you are usually programming against static .NET types that might have 
been coded in C#, C++/CLI, and so on. But what about when you have to interoperate with types created 

                                                 

 
1 The DLR is at the heart of .NET-based dynamic languages such as IronPython and IronRuby. It provides an 
environment within which it is easy to implement dynamic languages as well as add dynamic capabilities to a 
statically typed language such as C#. You can read more about the DLR on MSDN. 
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by dynamic languages such as IronPython or IronRuby? Or what about when you have to interoperate 
with COM objects that implement IDispatch to support automation via late-bound interfaces? 

Let’s consider COM/IDispatch interoperability for a moment. Additionally, assume that I am talking 
about purely late-bound IDispatch implementations rather than dual interface implementations. In C# 
3.0, you had to rely on gratuitous amounts of reflection to dynamically invoke the methods and 
properties of an instance that just feels cumbersome and unnatural. What happens behind the scenes is 
that the Runtime Callable Wrapper (RCW), which acts as the proxy between the .NET runtime and the 
COM object, translates reflection operations into IDispatch operations. This allows you to reflect over a 
COM object that implements the IDispatch automation interface. 

If you used VB.NET rather than C# 3.0, the experience would have been much more pleasant 
because VB.NET shields you from all the reflection work. Now that C# 4.0 offers dynamic type support in 
concert with the DLR, its functionality is at par with VB.NET with respect to working with dynamically 
typed objects. 

To better illustrate what I am talking about, let’s consider a short example. Suppose that you want to 
create a new Excel document with some text in the first cell. Additionally, force yourself to use only the 
late bound IDispatch interfaces for the sake of the example. If you are familiar with coding against Office 
apps such as Excel, forget for a moment the existence of Primary Interop Assemblies (PIA). The example 
code in C# 3.0 might look like the following: 

using System; 
using System.Reflection; 
 
static class EntryPoint 
{ 
    static void Main() { 
        // Create an instance of Excel 
        Type xlAppType = Type.GetTypeFromProgID( "Excel.Application" ); 
        object xl = Activator.CreateInstance( xlAppType ); 
 
        // Set Excel to be visible 
        xl.GetType().InvokeMember( "Visible", 
                                   BindingFlags.SetProperty, 
                                   null, 
                                   xl, 
                                   new object[] { true } ); 
 
        // Create a new workbook 
        object workbooks = xl.GetType().InvokeMember( "Workbooks", 
                                                      BindingFlags.GetProperty, 
                                                      null, 
                                                      xl, 
                                                      null ); 
 
        workbooks.GetType().InvokeMember( "Add", 
                                          BindingFlags.InvokeMethod, 
                                          null, 
                                          workbooks, 
                                          new object[] { -4167 } ); 
         
        // Set the value of the first cell 
        object cell = xl.GetType().InvokeMember( "Cells", 
                                                 BindingFlags.GetProperty, 
                                                 null, 
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                                                 xl, 
                                                 new object[] { 1, 1 } ); 
        cell.GetType().InvokeMember( "Value2", 
                                     BindingFlags.SetProperty, 
                                     null, 
                                     cell, 
                                     new object[] { "C# Rocks!" } ); 
 
        Console.WriteLine( "Press Enter to Continue..." ); 
        Console.ReadLine(); 
    } 
} 

This coding style is both ugly and cumbersome. From glancing at the code, it’s difficult to tell which 
methods and properties of the Excel objects you are actually calling. In this code, after creating a new 
instance of the application, you make it visible, access the Workbooks property to create a new workbook, 
and then put some data in the first cell. Now, let’s take a look at the new and improved way of doing this 
using dynamic in C# 4.0: 

using System; 
 
static class EntryPoint 
{ 
    static void Main() { 
        // Create an instance of Excel 
        Type xlAppType = Type.GetTypeFromProgID( "Excel.Application" ); 
        dynamic xl = Activator.CreateInstance( xlAppType ); 
 
        // Set Excel to be visible 
        xl.Visible = true; 
 
        // Create a new workbook 
        dynamic workbooks = xl.Workbooks; 
        workbooks.Add( -4167 ); 
 
        // Set the value of the first cell 
        xl.Cells[1, 1].Value2 = "C# Rocks!"; 
 
        Console.WriteLine( "Press Enter to Continue..." ); 
        Console.ReadLine(); 
    } 
} 

The spirit of this code is much easier to follow. You can clearly see which properties you are 
accessing and which methods you are calling. dynamic brings a lot to the table and facilitates more 
readable code in these interoperability situations. 
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How Does dynamic Work? 
How is this magic happening? Although dynamic is a real static type in the C# language, the compiler 
translates instances of dynamic into instances of object with an attribute attached to it at the CLR level. 
To illustrate this, consider the following code that will not compile: 

class C 
{ 
    // This will not compile!!! 
    void Foo( object o ) { } 
    void Foo( dynamic d ) { } 
} 

If you attempt to compile this code, you will get the following compiler error: 

error CS0111: Type 'C' already defines a member called 'Foo' with the same parameter types 

Thus, for the sake of overload resolution, dynamic and object are equal. To see the attribute in 
action, try compiling the following code into a library assembly: 

class C 
{ 
    void Foo( dynamic d ) { } 
} 

I find it easiest to just compile this on the command line using the following where <filename> is 
replaced with the C# code file name: 

csc /target:library <filename> 

Once you get this compiled, load the compiled assembly into Reflector and examine the code 
Reflector shows for the class. At the time of this writing, Reflector knows nothing about dynamic; the code 
Reflector shows can be seen here: 

internal class C 
{ 
    // Methods 
    public C(); 
    private void Foo([Dynamic] object d); 
} 

You can see that the compiler attached the DynamicAttribute attribute to the parameter d to denote 
that it is actually dynamic. 

I mentioned in a previous section that the compiler defers completion of its work until run time 
when it encounters dynamic types. In essence, dynamic types and dynamic expressions are opaque to 
the compiler; it cannot see through them. Therefore, the compiler collects all its known information and 
emits what’s called a dynamic call site. At run time, when all type information is available, the C# 
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runtime binder and the DLR complete the work of resolving dynamic types and performing the 
necessary operations. 

Naturally, this means that the compiler’s type system is bypassed to a certain degree at compile 
time. In fact, the C# runtime binder contains a subset of the compiler’s functionality. When the C# 
runtime binder needs to throw an exception, the error message in the exception is the same one as in the 
compiler. This uniformity really helps when it comes to diagnosing problems at run time because you 
are presented with the same errors that you’re familiar with. To illustrate this point, consider the 
following code that will not compile: 

class C 
{ 
    public void Foo() {} 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        C obj = new C(); 
        obj.Bar(); 
    } 
} 

As you would expect, you end up with a compiler error. The output looks like the following: 

error CS1061: 'C' does not contain a definition for 'Bar' and no extension method 'Bar' 
accepting a first argument of type 'C' could be found (are you missing a using directive or 
an assembly reference?) 

Now consider the following example, in which it actually does compile because you are using 
dynamic to hold the instance of C: 

class C 
{ 
    public void Foo() {} 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic dynobj = new C(); 
        dynobj.Bar(); 
    } 
} 

In this case, the error that you expect to see is deferred until run time, and if you execute this 
example, you will see the following results on the console: 

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException: 'C' does not 
contain a definition for 'Bar' 
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   at CallSite.Target(Closure , CallSite , Object ) 

   at System.Dynamic.UpdateDelegates.UpdateAndExecuteVoid1[T0](CallSite site, T0 arg0) 

   at EntryPoint.Main() 

■ Note Yes, there is a slight discrepancy between the exception message and the compiler error message. That is 

because dynamic does not currently support extension methods. 

The Great Unification 
Something that dynamic does really well is unify the various ways to call into types implemented by 
various dynamic languages and technologies. When you’re coding in C# 4.0, you don’t have to be 
concerned about the origin of the dynamic object. For example, it could be one of the following: 

• An object from a DLR-based language such as IronPython or IronRuby 

• A late-bound COM object that only implements the IDispatch interface 

• An object that implements IDynamicMetaObjectProvider (which I will explain later 
in the section “Objects with Custom Dynamic Behavior”) 

• A plain old .NET statically typed object 

For plain old .NET objects, the call site uses reflection to bind to the proper member. If the object is 
a COM object, it reflects over the RCW that acts as a .NET proxy object to the COM object. The RCW 
translates the reflection operations into the matching IDispatch operations in order to do the binding. If 
the dynamic object instance implements the IDynamicMetaObjectProvider interface, the DLR will use it 
when performing the binding. IDynamicMetaObjectProvider is a powerful extension mechanism for 
creating custom dynamic behavior. 

Call Sites 
So far, the dynamic examples that I have shown only demonstrate accessing a member of a dynamic 

instance; that is, using a dynamic receiver. The opposite of a dynamic receiver is a static receiver, which 
is what you use to access a member through a statically typed variable. Implementation-wise, that is 
probably the easiest of all dynamic operations for the compiler because it knows practically nothing 
(because the dynamic receiver is opaque to it). Thus the compiler wraps up all the information it has 
available and emits it in what is called a call site. The call site has a target delegate that is invoked to 
handle the dynamic call. Thus, the call site is the portal into the DLR. 
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■ Note If you are interested in investigating the internals of call sites, I welcome you to use ILDASM to spelunk 

around through a compiled assembly that uses dynamic. If you are not an IL juggernaut, try opening the compiled 

assembly using Reflector to see the call sites in C#. This will also give you an idea of the complexity of the work 

the compiler is doing for you. 

Why did I say that accessing members on dynamic instances was the easy for the compiler? Consider 
the following example: 

using System; 
 
class C 
{ 
    void ProcessInput( int x ) { 
        Console.WriteLine( "int: " + x.ToString() ); 
    } 
 
    public void ProcessInput( string msg ) { 
        Console.WriteLine( "string: " + msg ); 
    } 
 
    public void ProcessInput( double d ) { 
        Console.WriteLine( "double: " + d.ToString() ); 
    } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic obj1 = 123; 
        dynamic obj2 = "C# Rocks!"; 
        dynamic obj3 = 3.1415; 
 
        C c = new C(); 
        c.ProcessInput( obj1 );         // #1 
        c.ProcessInput( obj2 );         // #2 
 
        dynamic cObj = c; 
        cObj.ProcessInput( obj3 );      // #3 
    } 
} 

What output would you expect from the code above? In the case of calls #1 and #2, the compiler 
knows that you are calling members on the statically typed variable C; that is, through a static receiver. 
Therefore, it can go ahead and verify that there are some public members of this name, which there are. 
Had there been none, it would have complained with a compiler error. However, the compiler has no 
idea how to complete overload resolution as it does not have enough information to do so because the 
parameters are opaque dynamic types. Therefore, it must defer the overload resolution to run time. For 
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call #3, the compiler knows even less than for #1 and #2 because you are calling via a dynamic receiver. If 
you execute the preceding example, you will get the following results: 

double: 123 

string: C# Rocks! 

double: 3.1415 

Pay attention to which overloads were called. Notice that #1 called the overload that accepts a 
double. That’s because the overload that accepts int is not public, and the int parameter is implicitly 
convertible to double. The call site was instrumental in selecting the overload at run time based upon the 
information that it knew from the compiler. 

Now, consider one small but significant change to the example code: 

class C 
{ 
    public void ProcessInput( int x ) { 
        Console.WriteLine( "int: " + x.ToString() ); 
    } 
 
    public void ProcessInput( string msg ) { 
        Console.WriteLine( "string: " + msg ); 
    } 
 
    void ProcessInput( double d ) { 
        Console.WriteLine( "double: " + d.ToString() ); 
    } 
} 

Notice that I have now made the overload that accepts int public but the overload that accepts 
double private. Which overloads do you think will be selected at run time now? If you execute the 
modified example, you will get the following results: 

int: 123 

string: C# Rocks! 

 

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException: 
'C.ProcessInput(double)' is inaccessible due to its pr 

otection level 

   at CallSite.Target(Closure , CallSite , Object , Object ) 
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   at System.Dynamic.UpdateDelegates.UpdateAndExecuteVoid2[T0,T1](CallSite site, T0 arg0, T1 
arg1) 

   at EntryPoint.Main() in dynamic_parms_2.cs:line 30 

Notice that it failed to find a proper overload for call #3. That is because there is no public overload 
that accepts a double, and double is not implicitly convertible to any of the types in the available 
overloads. 

Objects with Custom Dynamic Behavior 
Objects that implement IDynamicMetaObjectProvider can be the target of dynamic instances. You have a 
highly extensible mechanism for creating custom dynamic behavior in which you define what it means 
to access members of a dynamic type. In reality, however, you will probably only rarely directly 
implement IDynamicMetaObjectProvider. Instead, you should derive your custom dynamic type from the 
System.Dynamic.DynamicObject. DynamicObject that provides plenty of virtual methods you can override 
to create your custom dynamic behavior. 

■ Note IDynamicMetaObjectProvider and DynamicMetaObject are significant types at the heart of creating 

custom dynamic behavior. But because deriving from DynamicObject is the recommended way of creating 

custom dynamic objects, I will not go into the details of these two types. I recommend that you consult the MSDN 

documentation to find out more about them and the important role they play in dynamic objects. 

The DynamicObject class, whose abbreviated class definition is shown here, has a variety of virtual 
methods you can override: 

public class DynamicObject : IDynamicMetaObjectProvider 
{ 
    … 
 
    public virtual IEnumerable<string> GetDynamicMemberNames(); 
    public virtual DynamicMetaObject GetMetaObject(Expression parameter); 
    public virtual bool TryBinaryOperation(BinaryOperationBinder binder, object arg, out 
object result); 
    public virtual bool TryConvert(ConvertBinder binder, out object result); 
    public virtual bool TryCreateInstance(CreateInstanceBinder binder, object[] args, out 
object result); 
    public virtual bool TryDeleteIndex(DeleteIndexBinder binder, object[] indexes); 
    public virtual bool TryDeleteMember(DeleteMemberBinder binder); 
    public virtual bool TryGetIndex(GetIndexBinder binder, object[] indexes, out object 
result); 
    public virtual bool TryGetMember(GetMemberBinder binder, out object result); 
    public virtual bool TryInvoke(InvokeBinder binder, object[] args, out object result); 
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    public virtual bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object 
result); 
    public virtual bool TrySetIndex(SetIndexBinder binder, object[] indexes, object value); 
    public virtual bool TrySetMember(SetMemberBinder binder, object value); 
    public virtual bool TryUnaryOperation(UnaryOperationBinder binder, out object result); 
 
    … 
} 

The names of the methods start with the word Try because the call site, by calling these methods, is 
asking the dynamic type whether it can perform the operation. If it can, the method performs the work 
and then returns true. Otherwise, if the method returns false, the call site will determine the behavior, 
which often results in it throwing an exception if these methods return false. All the default 
implementations of the previous methods return false. 

Here’s a very cursory example showing a type deriving from DynamicObject: 

using System; 
using System.Dynamic; 
using System.Collections.Generic; 
 
class MyDynamicType : DynamicObject 
{ 
    public override bool TryInvokeMember( InvokeMemberBinder binder, 
                                          object[] args, 
                                          out object result ) { 
        result = null; 
        Console.WriteLine( "Dynamic invoke of " + GetType() + 
                           "." + binder.Name + "()" ); 
        return true; 
    } 
 
    public override bool TrySetMember( SetMemberBinder binder, 
                                       object Value ) { 
        Console.WriteLine( "Dynamic set of property " + GetType() + 
                           "." + binder.Name + " to " + 
                           Value ); 
 
        return true; 
    } 
 
    public void DoDefaultWork() { 
        Console.WriteLine( "Performing default work" ); 
    } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic d = new MyDynamicType(); 
 
        d.DoDefaultWork(); 
        d.DoWork(); 
        d.Value = 42; 
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        d.Count = 123; 
    } 
} 

In the Main method, after assigning a dynamic variable with a new instance of MyDynamicType, you can 
then perform some operations on it. Notice that the first method called is DoDefaultWork, and 
MyDynamicType actually has a method named DoDefaultWork. In this case, the call site reflects over the 
type and notices it, thus calling it directly. For the call to DoWork, because MyDynamicType does not 
implement DoWork yet it does implement IDynamicMetaObjectProvider by deriving from DynamicObject, 
the call site invokes TryInvokeMember to perform the operation. Similarly, the assignment to the Value 
and Count properties results in a call to TrySetMember. Thus, the output from executing the above code is 
the following: 

Performing default work 

Dynamic invoke of MyDynamicType.DoWork() 

Dynamic set of property MyDynamicType.Value to 42 

Dynamic set of property MyDynamicType.Count to 123 

As you can see, DynamicObject provides quite a bit of power to control what happens during 
operations on dynamic instances. For example, you might have the need to create some sort of proxy 
object that sits between the calling code and the implementation. Imagine you have an application that 
communicates with some sort of legacy component through P/Invoke in a very complicated way that 
might require multiple P/Invoke operations for one logical operation. By deriving from DynamicObject, 
you could create a custom dynamic type that allows those complicated operations to be performed in 
one dynamic method call from the perspective of the consumer. 

Imagine an application that is extensible via scripting. Suppose that there is some directory in the 
file system in which various scripts reside. By creating a custom dynamic type, you can expose each one 
of those scripts as separate method calls. Users who are script-savvy can then easily modify the 
application by modifying the scripts. You can even code the custom dynamic type so it exposes new 
dynamic methods by enumerating the script in the directory so that users could add new methods to the 
dynamic type simply by placing new scripts in the directory. 

As yet another example, consider the fact that static classes in C# allow only single inheritance, thus 
allowing only one class to reuse the implementation of one other class. Using custom dynamic types, 
you could build dynamic types that emulate the behavior of COM aggregation, whereby multiple types 
are aggregated into one. In C++, which supports multiple inheritance, you can derive from what’s called 
a mix-in class to easily add functionality to a type. By implementing custom dynamic types in C#, you 
can emulate this behavior. 

Efficiency 
At this point, performance-savvy readers might be getting worried that dynamic just introduces a huge 
efficiency bottleneck by slowing down each and every dynamic dispatch in the program. Fear not! For 
each dynamic call analysis, the results are cached in the DLR for later retrieval. Therefore, just like the 
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JIT compiler, you pay the price only the first time around. To demonstrate this, consider the following 
code, which uses a crude method of timing multiple calls to a method on a dynamic call site: 

using System; 
using System.Runtime.InteropServices; 
 
class C 
{ 
    public void DoWork() { 
        Console.Write( "Doing work...  " ); 
    } 
} 
 
static class EntryPoint 
{ 
    [DllImport("kernel32.dll")] 
    private static extern int QueryPerformanceCounter( out Int64 count ); 
 
    static void Main() { 
        // Let's call DoWork once statically to get it jitted. 
        C c = new C(); 
        c.DoWork(); 
        Console.WriteLine(); 
 
        dynamic d = c; 
 
        for( int i = 0; i < 10; ++i ) { 
            Int64 start, end; 
 
            QueryPerformanceCounter( out start ); 
            d.DoWork(); 
            QueryPerformanceCounter( out end ); 
            Console.WriteLine( "Ticks: {0}", 
                               end - start ); 
        } 
    } 
} 

I compiled and ran this example code on a virtual machine running Windows 7 while using the high 
performance counter to time each dynamic call. Following are the results, which show that the results of 
the dynamic resolution are cached for later use, thus saving lots of time on subsequent dynamic 
invocations: 

Doing work... 

Doing work...  Ticks: 83760 

Doing work...  Ticks: 2161 

Doing work...  Ticks: 1937 
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Doing work...  Ticks: 1858 

Doing work...  Ticks: 1845 

Doing work...  Ticks: 1981 

Doing work...  Ticks: 1853 

Doing work...  Ticks: 1834 

Doing work...  Ticks: 1995 

Doing work...  Ticks: 1887 

I first call DoWork once through a static receiver to make sure the method is JIT compiled before I 
gather the numbers. That way, the first tick count should not reflect any JIT compiler time. 

Boxing with Dynamic 
Boxing is one of those areas in which many perils lie. As always, you should be careful when boxing is 
involved in your code. But how does dynamic handle boxing? It does “the right thing,” meaning that it 
does what you would expect from the spirit of the code. Consider the following code: 

using System; 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic d = 42; 
        ++d; 
 
        object o = 42; 
        o = (int)o + 1; 
 
        Console.WriteLine( "d = " + d + "\no = " + o ); 
    } 
} 

In this example, you have a dynamic instance that contains an integer. Behind the scenes, it is an 
object that boxes the integer value. In the dynamic case, you can simply invoke the increment operator to 
modify the value within the dynamic object’s box. Right after that, you can see what it takes to perform 
the same operation on a static boxing object. Essentially, you have to copy the value out of the box, 
increment it, and then put it back in. You cannot simply use the increment operator on the o variable. 
But when you use the increment operator on the d variable, the compiler, via the generated call sites, 
performs the same work as you had to do on the o variable and allows you to simplify the notation. 
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■ Note Although dynamic simplifies the interaction with boxed values, it does not mean that you should become 

less cautious and cognizant about the implications of boxing. As always, just because a language feature 

facilitates something does not mean, it’s always correct to utilize it.  

Dynamic Conversions 
Throughout the design and implementation of dynamic types in C# 4.0, the C# team had to find solutions 
for some seriously tricky problems. Conversions to and from dynamic types is certainly one of those 
problems. Recall that in C#, there are two types of conversions. They are implicit conversions and 
explicit conversions. Implicit conversions do not require the casting syntax, although explicit 
conversions do. Also, recall that for any type, you can define custom implicit and explicit conversion 
operators. Dynamic expressions add a whole new dimension to conversions, indeed! 

Let’s consider implicit conversions for a moment. What types should be implicitly convertible to 
dynamic? It turns out that all types are implicitly convertible to dynamic. The rules are as follows: 

• There exists an implicit conversion from any reference type to type dynamic. 

• There exists an implicit boxing conversion from any value type to type dynamic. 

• There exists an implicit identity conversion from type dynamic to type dynamic. 

• There exists an implicit identity conversion from type object to type dynamic. 

• There exists an implicit identity conversion between constructed types where generic arguments 
only differ between object and dynamic. 

This is as expected because it then allows you to do the things you would expect, such as what is 
illustrated in the following code: 

class C 
{ 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic d1 = 42;            // Impl. boxing conversion 
        dynamic d2 = new C();       // Impl. ref. conversion 
        dynamic d3 = d2;            // Impl. ident. conversion 
        dynamic d4 = new object();  // Impl. ref. conversion 
    } 
} 

What about when you need to go the other direction? Should instances of dynamic be convertible to 
any type? Certainly it makes sense for dynamic expressions to be explicitly convertible to static types. 
For the sake of discussion, think of a dynamic expression as an expression in which a component of the 
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expression forces the entire thing to be handled dynamically. For example, the right side of the equals 
sign in the following statement is a dynamic expression if the variable d is a dynamic instance: 

Double dbl = 3.14 + d; 

Now that I have specified what I mean by a dynamic expression, consider this example: 

class C 
{ 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic d = new C(); 
 
        // explicit cast back to C reference 
        C cObj = (C) d; 
 
        // What happens here??? 
        string str = d; 
    } 
} 

I create a new instance of C and implicitly cast it to a dynamic reference. Then I explicitly cast the 
dynamic reference, which is a short dynamic expression, back into a reference to C, which makes sense. 
But isn’t it cumbersome to have to explicitly cast from a dynamic expression back into reference and 
value types? All that casting can become laborious, especially if the type you’re casting to has a long 
name (which is common for generic types or LINQ-generated types). Besides, all that casting goes 
against the spirit of dynamic expressions because they are supposed to streamline your code, making it 
easier to read and understand. And what about the last statement in the preceding code and what does it 
mean? 

As it turns out, the code does compile correctly. In the last statement, the dynamic expression d is 
explicitly cast into a string reference, which will generate the following exception at run time: 

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException: Cannot 
implicitly convert type 'C' to 'string' 

That’s very cool, indeed. The compiler has performed the explicit cast from dynamic to string 
without me having to type the casting notation. In reality, I didn’t have to use the cast notation when I 
converted the dynamic expression back into a C reference. If you load the compiled code into Reflector, 
you will see that it uses a call site to perform an explicit conversion. Is this more than just a convenience? 

Implicit Dynamic Expressions Conversion 
The C# team realized that in order for dynamic expressions to be truly dynamic, they must be assignable 
to reference types and value types. Therefore, assignment of dynamic expressions to reference types or 
value types is syntactically implicit yet performed dynamically at run time. However, there is a clear 
distinction between dynamic expressions and type dynamic because type dynamic is not implicitly 
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convertible to anything but dynamic. If it were otherwise, it would seriously mess up method overload 
resolution (a topic covered in the next section). 

■ Note At one point during the development of C# 4.0, this type of implicit conversion from dynamic expressions 

to reference types was called assignment conversion. Therefore, if you read blogs and articles on the Internet 

written during the development of C# 4.0, you might see references to that term. 

Dynamic expression conversion comes into play in cases other than just implicitly assigning a 
dynamic expression into a value or reference type, and vice versa. If a method’s body returns a dynamic 
expression, but the method declaration returns a static type, dynamic expression conversion is used to 
convert the dynamic instance back into a statically typed instance. There are other cases (such as during 
array initialization, in yield blocks, and in foreach statements, just to name a few) in which dynamic 
expression conversions come into play. 

Again, implicit conversion of type dynamic to any reference or value type is not possible because of 
the chaos that would ensue. Take a look at the following snippet of code and you can see why: 

class C 
{ 
    static public void Foo( int i ) {} 
    static public void Foo( string str ) {} 
} 
 
class D { } 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic d = new D(); 
 
        C.Foo( d ); 
    } 
}   

If the compiler were to allow type dynamic to be implicitly convertible to anything while deciding 
which overload of C.Foo to choose, it would fail with an ambiguity. Therefore, the compiler packages up 
what it knows at compile time into a call site that performs the remainder of the overload resolution at 
run time. You can see from looking at this code that it will throw an exception at run time because d 
contains an instance of D, and D instances are not implicitly convertible to either int or string. 

When it comes to overload resolution, dynamic did present some tricky problems to the C# team, 
and they had to come up with some clever ways to solve them. I will explain some of them in the next 
section. 

Dynamic Overload Resolution 
Overload resolution was reasonably complicated before the introduction of dynamic. In various other 
parts of this book, I talked about overload resolution and how it works in the context of class methods, 
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interface definitions, and extension methods. Dynamic types add a new dimension to overload 
resolution. Recall from the previous section that dynamic instance variables are implicitly convertible 
only to type dynamic and nothing else. So what should the compiler do when you invoke a method on a 
static type passing a dynamic argument? 

The solution is that any time dynamic is involved in a method invocation, whether the receiver of the 
call is dynamic or a parameter is dynamic, overload resolution is performed at run time. That’s easy! 
Consider the following code: 

using System; 
 
class C 
{ 
    static public void Foo( double dbl, dynamic dyn ) { 
        Console.WriteLine( "void Foo( double dbl, dynamic dyn )" ); 
    } 
    static public void Foo( int i, string str ) { 
        Console.WriteLine( "void Foo( int i, string str )" ); 
    } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic  d = "I'm dynamic"; 
        dynamic d1 = new object(); 
 
        C.Foo( 3.1415, d );            // is it a compile-time overload? 
        C.Foo( 42, d );                // run-time overload 
        C.Foo( 42, d1 );               // run-time overload 
 
        // The following will not compile! 
        // C.Foo( "Hello!", d ); 
    } 
} 

The first call to C.Foo matches the signature of the first overload perfectly, even though it has 
dynamic in its call. You might think the compiler would automatically choose the first overload at 
compile time, but it does not (otherwise, it would be breaking the dynamic overload resolution rule just 
stated). The second call defers overload selection until run time, even though both parameters are 
implicitly convertible to the first overload. That is, int is implicitly convertible to double, and dynamic is 
implicitly convertible to dynamic. Although the behavior of the second call to C.Foo might seem 
counterintuitive at first because int is implicitly convertible to double and dynamic is implicitly 
convertible to dynamic, consider the third call to C.Foo (maybe it will make more sense after you see the 
following results). The output from the code is shown here: 

void Foo( double dbl, dynamic dyn ) 

void Foo( int i, string str ) 
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void Foo( double dbl, dynamic dyn ) 

You see, even though in the final two calls to C.Foo, the parameters are both implicitly convertible to 
the first overload of C.Foo, you don’t want the compiler to make the choice at compile time. That’s 
because the dynamic instance’s type can be inspected at run time and a more precise choice can be made 
based on that information. 

Finally, notice the last call to C.Foo that I have commented out in the code. It will not compile as 
written. If every call that involves dynamic is resolved at run time, how is this so? The compiler actually 
has examined the candidate set of methods and is telling you that there is no chance that an overload 
will be found at run time. So even though the actual choice of overload is determined at run time, the 
compiler still applies as much logic as possible at compile time to avoid a situation in which a run-time 
exception is guaranteed. 

■ Note If you read early material regarding dynamic overload resolution on the Internet, you likely came across 

the concept of the phantom method. This was a technique the compiler team employed early on for performing 

overload resolution on static receivers with dynamic parameters. The notion of the phantom method was later 

abandoned for the current behavior of treating all such calls using dynamic lookup. 

Remember, dynamic is implemented internally as a reference to object with an attribute attached. 
Therefore, you cannot have overloads within a type in which a single parameter position differs only 
between dynamic and object. For example, the following will not compile: 

class C 
{ 
    // Can't do this!!! 
    public void DoWork( object o ) { } 
    public void DoWork( dynamic d ) { } 
} 

If you attempt to compile something like this, you will get a compiler error like the following: 

Type 'C' already defines a member called 'DoWork' with the same parameter types 

Dynamic Inheritance 
dynamic brings with it some complexities when it comes to inheritance. Does it make sense to be able to 
derive from dynamic? Is it possible to derive from a generic base type in which one of the generic 
arguments is dynamic? And is it possible to implement a generic interface in which one of the generic 
arguments is dynamic? I will be digging into them in this section, but first let’s talk about the things you 
cannot do with inheritance and dynamic. 
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You Cannot Derive from dynamic 
One thing you cannot do is use dynamic as a base class. Thus, you cannot do the following: 

// This will not compile!!! 
class C : dynamic 
{ 
} 

If you attempt to compile this code, you will get the following compiler error: 

error CS1965: 'C': cannot derive from the dynamic type 

When you think about the fact that dynamic is replaced with object in the compiled IL code, you 
might wonder why you cannot derive from dynamic. But even if you could, what does it buy you? It buys 
you nothing. If dynamic is really object, you still end up inheriting the same implementation of 
System.Object as if you had explicitly stated object as the base type of C. And because System.Object is 
the default base type for all types, the extra typing is redundant. Moreover, C is a static type. Therefore, 
even if you were able to derive from dynamic, the resultant type will be a static type, thus throwing out 
the dynamic nature anyway. So it makes no sense at all to derive from dynamic. 

You Cannot Implement dynamic Interfaces 
Recall that at the CLR level, dynamic is nothing more than object with some attributes attached to it. 
Keeping that in mind, let’s consider the following code: 

// This will not compile!!! 
interface IWork<T> 
{ 
    void DoWork( T item ); 
} 
 
class C : IWork<dynamic> 
{ 
    public void DoWork( dynamic item ) { 
    } 
} 

If you attempt to compile this code, you will be greeted with the following compiler error: 

error CS1966: 'C': cannot implement a dynamic interface 'IWork<dynamic>' 

What the compiler is telling you is that you cannot implement a generic interface and specify that 
the generic argument is type dynamic. Why is this? There are two good reasons. The first reason is a 
technical one. Currently, in the CLR (which is an implementation of the CLI specification) there is no 
way to emit the DynamicAttribute attribute, or any attribute for that matter, for the generic argument. To 
illustrate, look at the following code that also will not compile: 
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//This will not compile!!! 
using System; 
 
class SpecialAttribute : Attribute 
{ 
} 
 
interface IWork<T> 
{ 
    void DoWork( T item ); 
} 
 
class C : IWork< [Special] object > 
{ 
    public void DoWork( [Special] object item ) { 
    } 
} 

If you attempt to decorate the generic argument with an attribute, you will get the following 
compiler errors, which show that the compiler has no idea about what you are trying to do because it 
fails the basic syntax verification: 

generic_attribute.cs(13,18): error CS1031: Type expected 
generic_attribute.cs(13,35): error CS1519: Invalid token '>' in class, struct, or 
interface member declaration 

The second reason why you cannot implement dynamic interfaces is practical in nature. If you think 
about it, just because you cannot do this does not mean that you lose anything. For example, imagine 
that you use object instead of dynamic and then convert those object instances to dynamic at the point 
where you operate upon them. You would essentially achieve the same effect. For example, consider this 
modified code that illustrates the point: 

interface IWork<T> 
{ 
    void DoWork( T item ); 
} 
 
class C : IWork<object> 
{ 
    public void DoWork( object item ) { 
        dynamic d = item; 
 
        // Now complete the work with the 
        // dynamic thing. 
    } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
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        C c = new C(); 
        dynamic d = new object(); 
 
        c.DoWork( d ); 
    } 
} 

This example demonstrates that nothing is lost because you cannot implement dynamic interfaces. 
In the Main method, I can pass a dynamic instance to the DoWork method; inside the DoWork method, I can 
operate on that dynamic instance even though I was unable to specify type dynamic in the generic 
arguments where C implements IWork<>. To further illustrate this notion, consider the following 
example: 

using System; 
using System.Collections.Generic; 
 
class C 
{ 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        IList<dynamic> myList = new List<dynamic>(); 
 
        myList.Add( new C() ); 
        myList.Add( new object() ); 
 
        foreach( dynamic item in myList ) { 
            Console.WriteLine( item.GetType() ); 
        } 
    } 
} 

Notice the type of myList! Just because you cannot implement IList<dynamic> in types does not 
mean you cannot declare a variable of type IList<dynamic>. This further illustrates the fact that not 
being able to implement dynamic interfaces is a moot point because you can achieve the same intent 
regardless. In fact, if you replace every instance of the word dynamic with object in the example, you will 
get the output shown here: 

C 
System.Object 

You Can Derive From Dynamic Base Types 
After all this talk about how you cannot use dynamic as a base type and how you cannot implement 
dynamic interfaces, you might be surprised that you can derive from generic base types that have 
dynamic type arguments. So what does that mean? Let’s see a short example: 

using System; 
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class B<T> 
{ 
    public T Value { get; set; } 
} 
 
class C : B<dynamic> 
{ 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        C c = new C(); 
 
        c.Value = "C# Rocks!"; 
        Console.WriteLine( c.Value.GetType() ); 
    } 
} 

So why can you get away with doing this even though types cannot implement dynamic interfaces? 
Part of the reason is because you can. Remember that in the case of dynamic interfaces there is no way 
for the compiler to emit the attribute necessary to denote the fact that the generic argument is dynamic. 
But because a type can inherit at most from only one other type, it is possible to decorate the derived 
type with the DynamicAttribute type to indicate that one or more of the generic arguments to the base 
type are dynamic. As you have before, take a look at what class C looks like in Reflector, and you’ll see 
something like the following: 

[Dynamic(new bool[] { false, true })] 
internal class C : B<object> 
{ 
    // Methods 
    public C(); 
} 

Keep in mind that the code generated by the compiler, DynamicAttribute (which decorates class C), 
has a couple of constructor overloads. This one accepts a type of bool[]. The bool array is used to denote 
which one of the type arguments is dynamic. For more information, check out the documentation for 
DynamicAttribute in the MSDN. 

Logically, what does it mean to be able to do this and does it buy you anything more than had you 
simply provided object as the type argument? Actually, it does buy you something. Consider the minor 
modification to the Main method: 

static class EntryPoint 
{ 
    static void Main() { 
        C c = new C(); 
 
        c.Value = "C# Rocks!"; 
        Console.WriteLine( 42 + c.Value ); 
    } 
} 
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The text in bold is what I want you to pay attention to. Because c.Value is a dynamic expression, the 
expression in the call to Console.WriteLine becomes a dynamic expression. And just like any dynamic 
expression anywhere else, type resolution is deferred until run time. Moreover, the compiler cannot 
choose which overload of the addition operator to call without first resolving the types; therefore, it is 
also deferred until run time. If you execute the Main method, you get the following results: 

42C# Rocks! 

If you were to replace the occurrence of dynamic with object in the previous example; that is, if you 
were to make object the type argument in the base type of C, you would get a far different result. In fact, 
you would get the following compiler error: 

error CS0019: Operator '+' cannot be applied to operands of type 'int' and 'object' 

Therefore, being able to supply dynamic as a generic type argument in base types is handy in some 
situations when dynamic expression evaluation at run time is necessary. 

Duck Typing in C# 
Duck typing is where the type of an object is determined by the contract it supports rather than actual 
interfaces or base types that it derives from. Duck typing is common in some C++ template libraries, in 
which where you can do something similar to the following C# code that will not compile: 

// This will not compile!!! 
class C<T> 
{ 
    static public void DoWork( T item ) { 
        item.DoWork(); 
    } 
} 

If you attempt this code, you are greeted with the following compiler error: 

error CS1061: 'T' does not contain a definition for 'DoWork' and no extension method 
'DoWork' accepting a first argument of type 'T' could be found (are you missing a using 
directive or an assembly reference?) 

Instead, you must use generic constraints to do anything close to the intended effect of the previous 
code. However, constraints still don’t get you duck typing because you are relying upon type definitions. 
Wouldn’t it be nice to be able to say, “whatever type T is, I want to invoke the DoWork method” without 
having to have T implement an interface that includes a definition for DoWork? 

The irony is that the C# compiler does exactly this. Consider the following code: 

using System; 
using System.Collections; 
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class C 
{ 
    public IEnumerator GetEnumerator() { 
        long l = 0; 
        while( l < 10 ) { 
            yield return ++l; 
        } 
    } 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        C c = new C(); 
 
        foreach( var item in c ) { 
            Console.Write( item + ", " ); 
        } 
    } 
} 

When you execute code, it simply prints out these integers: 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

The functionality of the program is not exciting, but what is interesting is the foreach statement in 
bold. Recall that behind the scenes, the compiler calls GetEnumerator on the collection object on which 
you want to iterate. And as you probably know, GetEnumerator is part of the IEnumerable and 
IEnumerable<T> interfaces. However, notice that class C implements neither of these interfaces! It is a 
common misconception that the type foreach iterates over needs to implement one of the IEnumerable 
interfaces. Instead, the compiler just compiles in a call to GetEnumerator on whatever instance foreach is 
iterating over. In fact, if you were to comment out the GetEnumerator method and attempt to recompile, 
the compiler would tell you the following: 

error CS1579: foreach statement cannot operate on variables of type 'C' because 'C' does not 
contain a public definition for 'GetEnumerator' 

This behavior of the compiler is a perfect example of duck typing at work. After all, the compiler 
does not care what type is given to foreach or whether it implements some particular interface; instead it 
just wants that type to implement a specific method with a specific signature. However, prior to C# 4.0, 
this capability was virtually impossible in code. 

Now, let’s look at how you can achieve this same result using type dynamic. Imagine that you are 
adding new features to a very large and mature application. Furthermore, you have identified that 
during testing it would be extremely handy to be able to dump detailed state information about objects 
to a debug log by calling a method named DumpStateTo. Because this is a large mature application, there 
are literally thousands of types defined. Therefore, it is unfeasible due to time constraints to define a new 
interface and expect all the types to implement it. So let’s look at how this could be implemented in C# 
using dynamic: 
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using System; 
using System.IO; 
using Microsoft.CSharp.RuntimeBinder; 
 
class C 
{ 
    public void DumpStateTo( TextWriter tw ) { 
        tw.WriteLine( "This is the state for a " + 
                      GetType() + " instance" ); 
        tw.WriteLine( "\tValue == " + Value ); 
    } 
 
    public long Value { get; set; } 
} 
 
class D 
{ 
} 
 
static class EntryPoint 
{ 
    static void Main() { 
        C c = new C(); 
        c.Value = 42; 
 
        D d = new D(); 
 
        // Now let's dump some debug info 
        DumpDebugInfo( c ); 
        DumpDebugInfo( d ); 
    } 
 
    static void DumpDebugInfo( dynamic d ) { 
        // We don't want a lack of the DumpStateTo() method to 
        // crash the application. 
        try { 
            Console.WriteLine( "--------------------------------" ); 
            d.DumpStateTo( Console.Out ); 
        } 
        catch( RuntimeBinderException rbe ) { 
            Console.WriteLine( "Failed to dump state for: " + 
                               d.GetType() ); 
            Console.WriteLine( "\t" + rbe.Message ); 
        } 
    } 
} 

This example created an instance of both C and D, and you then pass them to DumpDebugInfo, which 
is a wrapper around calls to DumpStateTo. Notice that DumpDebugInfo achieves duck typing by accepting a 
parameter of type dynamic. Also, it is very important to catch any runtime binder exceptions because, as 
stated, this fictional large application has thousands of types that might or might not implement 
DumpStateTo. The results of the preceding code are shown here: 
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-------------------------------- 

This is the state for a C instance 

        Value == 42 

-------------------------------- 

Failed to dump state for: D 

        'D' does not contain a definition for 'DumpStateTo' 

In a real-world implementation, you might also want to include other information that would help 
you identify exactly which instance is dumped so you can find it easily in a debugger. 

One of the biggest differences between duck typing in C# using dynamic as opposed to duck typing 
in some static languages, such as C++ using templates, is that type errors are deferred until run time, 
whereas in C++ they are discovered at compile time. This is actually a big deal, indeed. You should use 
duck typing with dynamic sparingly and carefully for the sake of robustness. If you must heavily rely on 
dynamic duck typing, be sure to implement good error-handling mechanisms. Throughout this book, I 
have stressed the importance of using the compiler as your friend to catch as many programming errors 
as possible at compile time rather than run time. That was one of the motivating factors behind 
implementing generics in C# 2.0. But with dynamic duck typing, you are throwing all that out of the 
window so you must be prepared to handle the unintended consequences. 

Limitations of dynamic Types 
The new dynamic type was no easy feat to implement. There are some things you simply cannot do with 
dynamic. Some of those things just don’t make sense, and others do, but the C# team might have not had 
enough time to implement them properly. Furthermore, just as with any other new feature in a 
programming language, you will learn more about it and its uses over time while using it. In other words, 
don’t be surprised if the use of dynamic evolves over the coming years as the language matures. 

As it stands, you cannot use the extension method syntax with type dynamic in C# 4.0. This might 
change in future versions, though. As I mentioned before, you also cannot implement dynamic 
interfaces; that is, interfaces where you specify dynamic as one of the type parameters. Also, you cannot 
use dynamic in constraint clauses. 

ExpandoObject: Creating Objects Dynamically 
Up to this point in this chapter, you have seen how the dynamic type facilitates interoperability and how 
to treat any type instance as a dynamic instance. But what about creating types dynamically at run time? 

Since the initial release of the .NET Framework, you have always been able to create code 
dynamically using the facilities within the System.Reflection.Emit namespace. But doing so is no trivial 
task. Starting with .NET 4.0, the DLR team provides the System.Dynamic.ExpandoObject, which makes it 
incredibly easy to create dynamic instances of objects. Let’s go ahead and look at an example: 
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using System; 
using System.Dynamic; 
using System.Collections.Generic; 
 
static class EntryPoint 
{ 
    static void Main() { 
        // Create the kennel 
        dynamic dogKennel = new ExpandoObject(); 
         
        // Set some useful properties 
        dogKennel.Address = "1234 DogBone Way"; 
        dogKennel.City = "Fairbanks"; 
        dogKennel.State = "Alaska"; 
 
        dogKennel.Owner = new ExpandoObject(); 
        dogKennel.Owner.Name = "Ginger"; 
 
        // Setup a collection of dynamic dogs 
        dogKennel.Dogs = new List<dynamic>(); 
 
        // Create some dogs 
        dynamic thor = new ExpandoObject(); 
        thor.Name = "Thor"; 
        thor.Breed = "Siberian Husky"; 
 
        dynamic apollo = new ExpandoObject(); 
        apollo.Name = "Apollo"; 
        apollo.Breed = "Siberian Husky"; 
 
        // Put the dogs in the kennel 
        dogKennel.Dogs.Add( thor ); 
        dogKennel.Dogs.Add( apollo ); 
    } 
} 

The first thing to notice is that when I created the new instance of ExpandoObject, I assigned it to a 
variable of type dynamic that is essential because ExpandoObject implements 
IDynamicMetaObjectProvider, through which it gets its special powers. Notice that I populated the 
properties on the object by simply assigning to them as if they already existed. In reality, this operation 
creates the property and assigns it at the same time. This magic is performed by ExpandoObject’s 
implementation of IDynamicMetaObjectProvider, which adds an entry to an internal dictionary. To create 
contained objects in the dogKennel object, simply assign a new instance of ExpandoObject to a property 
name as I did with dogKennel.Owner. If you need your dynamic object to contain a collection of objects, 
simply assign a new instance of a container object to a new property, as I did when I assigned an 
instance of List<dynamic> to dogKennel.Dogs. I set the generic argument to dynamic in the collection type 
because I want the contained objects to also be dynamic objects that I can create with ExpandoObject. 
I’m sure you will agree that using ExpandoObject to create dynamic object instances is much easier than 
using System.Reflection.Emit. 

What if you want to enumerate the properties of the dynamic instance without having to know what 
they are ahead of time? For example, what if you need a method named PrintExpandoObject to print the 
contents of any dynamic ExpandoObject instance to the console? This is easy to do because 
ExpandoObject implements IDictionary<string, object>, through which you can enumerate the 
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properties contained within the ExpandoObject instance. For example, one implementation for 
PrintExpandoObject could look like the following: 

    static void PrintExpandoObject( dynamic obj, 
                                    string name, 
                                    int indent = 0 ) { 
        Func<int, string> createPad = (n) => { 
            return string.Join("", Enumerable.Repeat("   ", n) ); 
        }; 
 
        Console.WriteLine( createPad(indent) + name + ":" ); 
        ++indent; 
 
        var dict = (IDictionary<string, object>) obj; 
        foreach( var property in dict ) { 
            if( property.Value is ExpandoObject ) { 
                // Recurse to print the contained ExpandoObject 
                PrintExpandoObject( property.Value, 
                                    property.Key, 
                                    indent ); 
            } else { 
                if( property.Value is IEnumerable<dynamic> ) { 
                    string collName = property.Key; 
                    Console.WriteLine( "{0}{1} collection:", 
                                       createPad(indent), 
                                       collName ); 
                    int index = 0; 
                    foreach( var item in 
                             (IEnumerable<dynamic>)property.Value ) { 
                        string itemName = 
                            string.Format( "{0}[{1}]", 
                                           collName, 
                                           index++ ); 
 
                        // Recurse for this instance 
                        PrintExpandoObject( item, 
                                            itemName, 
                                            indent+1 ); 
                    } 
                } else { 
                    Console.WriteLine( "{0}{1} = {2}", 
                                       createPad(indent), 
                                       property.Key, 
                                       property.Value ); 
                } 
            } 
        } 
    }  

In the example in which I created the dogKennel instance, I could have added the following code 
afterward: 

        PrintExpandoObject( dogKennel, "Ginger's Kennel" ); 
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Notice that for each key/value pair within the dictionary I test whether the value is also another 
instance of ExpandoObject. If so, I make a recursive call into PrintExpandoObject to print it. Likewise, if 
the value is an enumerable type, I iterate through the enumerable items, assuming that they are 
instances of ExpandoObject and recurse for them as well. In an attempt to make the output a little bit 
prettier, I have passed an indention value down through the stack, thus producing output that looks 
similar to the following: 

Ginger's Kennel: 

   Address = 1234 DogBone Way 

   City = Fairbanks 

   State = Alaska 

   Owner: 

      Name = Ginger 

   Dogs collection: 

      Dogs[0]: 

         Name = Thor 

         Breed = Siberian Husky 

      Dogs[1]: 

         Name = Apollo 

         Breed = Siberian Husky 

I have assigned the ExpandoObject to a variable of type dynamic rather than a variable of type 
ExpandoObject. Although I could have assigned it to variable of type ExpandoObject, it would have meant 
that the only way to add properties would have been through the methods associated with the 
IDictionary<string, object> interface. Obviously, that’s not as slick as creating the properties on the 
fly, as already shown. Incidentally, the only way to remove properties from ExpandoObject instances is 
via the methods associated with the IDictionary<string, object> interface. 
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■ Note When you use ExpandoObject, you often have to perform a certain degree of casting. Of course, such 

casting could result in thrown exceptions, but such is the nature of deferring the type checking of the compiler to 

run time. 

But what about dynamic methods? So far, I have only shown you how to create properties on 
ExpandoObject instances via a variable of type dynamic. Actually, it’s just as easy to create dynamic 
methods, too. Here is an instance called dynamicExpression that contains a collection of coefficients for 
computing a univariate polynomial: 

using System; 
using System.Dynamic; 
using System.Linq.Expressions; 
using System.Collections.Generic; 
 
static class EntryPoint 
{ 
    static void Main() { 
        dynamic dynamicExpression = new ExpandoObject(); 
 
        // Add the coefficients 
        dynamicExpression.Coefficients = new List<dynamic>(); 
        dynamicExpression.Coefficients.Add( 2 ); 
        dynamicExpression.Coefficients.Add( 5 ); 
        dynamicExpression.Coefficients.Add( 3 ); 
 
        // Create dynamic method 
        dynamicExpression.Compute = 
            new Func<double, double>( (x) => { 
                double result = 0; 
 
                for( int i = 0; 
                     i < dynamicExpression.Coefficients.Count; 
                     ++i ) { 
                    result += 
                        (double)dynamicExpression.Coefficients[i] * 
                        Math.Pow( x, (double) i ); 
                } 
 
                return result; 
            } ); 
         
        // Let's compute a value now 
        Console.WriteLine( dynamicExpression.Compute(2) ); 
    } 
} 

I have bolded the area in the code where I create and then call the dynamically created method 
named Compute. All you have to do is create a delegate instance and assign it to a property on the 
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ExpandoObject instance where the name of the property is the same name you want associated with the 
method. Then ExpandoObject’s implementation of IDynamicMetaObjectProvider allows you to simply call 
through to that delegate using the familiar method invocation syntax as long as you invoke the method 
through a variable of type dynamic. In the previous code, I used the Func<> delegate type, along with a 
lambda expression, to provide the delegate. 

Summary 
This chapter covered the dynamic type added to the language in C# 4.0. Interoperability is the major 
theme regarding dynamic types. Now it becomes much easier to interface with dynamic languages such 
as IronPython and IronRuby, as well as legacy COM automation objects. Code that interacts with those 
technologies becomes cleaner and clearer. I also showed how you use the ExpandoObject type to create 
dynamically typed objects at run time. Additionally, C# has finally gained parity with Visual Basic in the 
ease of interoperability arena. 

However, such power often comes with its dangers and dynamic types are no exception. When 
misused, you can bypass the stringent static type checking of the compiler, thus introducing unwanted 
bugs lurking in the shadows. Also, working with dynamic types can become slightly tricky in some 
situations, especially with regard to run-time type conversion and overload resolution. 

As with any powerful capability of the language, to use it sparingly and with caution is to use it 
wisely. For example, when object-oriented languages became all the rage, everyone began using 
inheritance as if it were the end-all solution. Experience quickly showed that instead, when misused, it 
creates software that is virtually impossible to maintain. In short, when being dynamic, be wise about it. 
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events, 288–292 
generic, 317–320, 332, 340–344 
lambda expression conversion, 518, 524 
lambda expressions as, 518–522 
list example, 507–508 
open instance, 285–288 
parameter binders, 300–303 
removing from lists, 282 
uses, 517 
variable capture, 509 
variance and, 340–344 

delegates, 279–288 
delegation, 132–136 
derived classes, 44, 145–149 
Derived constructor, 111 

Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma, et al.), 
137, 511 

destroying objects, 113–116 
destructors 

reserved names and, 82 
vs. finalizers, 443 

deterministic finalization, 118 
deterministic/nondeterministic destruction, 

115, 207, 212 
development guidelines 

code understandability, 494 
extension methods. See extension methods, 

guidelines for use 
side effects, avoiding, 496 

diamond-lattice hierarchies, 140 
dictionaries, 259 
Dictionary<TKey, TValue> class, 344 
Dimensions class, 439 
Direction property, 275 
disposable objects, 116–119, 440–443 
Disposable pattern, 210, 443 
Dispose method, 144, 116–118, 208, 267 

deterministic destruction and, 443 
finalizers and, 444–449 
in multiple thread environments, 443 

DLLs, 4–5, 11, 13 
DLR. See Dynamic Lanugage Runtime 
do statement, 39 
DoSomeWork method, 305 
double type, 22 
DowngradeFromWriterLock method, 399 
duck typing, 244, 599–602 
Dyer, Wes, 511, 541 
dynamic base types, 597–599 
dynamic behavior, custom, 585–587 
dynamic call site, 580 
Dynamic Language Runtime (DLR), 577 
dynamic receiver, 582 
dynamic types, 7, 577–607 

boxing with, 589 
call sites, 582–585 
call unification and, 582 
compilation, 580–582 
creating, 602–607 
custom, 585–587 
efficiency of, 587–589 
vs. implicitly typed local variables, 577 
inheritance, 594–599 
introduction to, 577–579 
limitations of, 602 
overload resolution and, 592–594 
type conversions, 590–592 
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workings of, 580–581 
DynamicAttribute attribute, 580, 598 
DynamicObject class, 585–587 

■ E 
efficiency 

boxing/unboxing and, 100 
collection types and, 262–263 
generics and, 309–311 

Empty method, 565 
encapsulation, 56–59, 134 
encoding, strings and, 215, 228–230 
EncodingGetByteCount method, 230 
EndInvoke method, 408–412 
EndProcessData method, 365 
Enter method 

Monitor class, 390, 393 
SpinLock, 384 

EnterReadLock method, 400 
EnterUpgradeableReadLock method, 400 
enum keyword, 23 
Enumerable class, 565 
Enumerable.Where method, 552 
enumerations (enums), 24–27 
flags, 25–26 
enumerators, 264–267 

disadvantages, 243 
synchronization, 269 

envelope/letter idiom. See handle/body idiom 
equality, 450–457 

operators, 457 
System.Object class and, 103 

Equals method, 450–457 
overriding, 454–457, 477–481 

error-handling, 193. See also exception 
handling 

errors, type safety and and, 469 
escaped sequences, 216 
Essential .NET, Volume I: The Common 

Language Runtime (Box & Sells), 9, 129 
event keyword, 290 
EventHandler<T> class, 290–291 
events, 82, 288–292, 404–405 
EventWaitHandle class, 405–406 
exception handling, 115, 181–214 

cleaning up, 181, 193 
custom exception classes and, 206–207 
exception naming conventions and, 206 
exception-neutral code and, 193–205 
importance, 214 
mechanics of, 182–192 
program execution flow and, 193 

responsible party, 192 
rethrowing exceptions, 186–187 
rollback behavior and, 214–211 
translating exceptions, 187–188 
try, catch, and finally statements, 183–185 
unhandled exceptions and, 182, 183 
working with exceptions and, 207–211 

exception safety, 181–214 
Exception.InnerException property, 188–189 
Exceptional C++ series (Sutter), 196 
exception-neutral code, 181, 193–205 

constrained execution regions and, 199–201 
structure of, 194–199 

exceptions 
asynchronous, 201 
thrown in finalizers, 189–191 
thrown in finally blocks, 189 
thrown in static constructors, 191–192 
undefined behavior, 115 

exception-safe coding, 181 
Exchange method, 381, 384 
.exe files, 11 
Exit method, 390, 393 
ExpandoObject class, 602–607 
Expert pattern, 192 
explicit conversion, 30 
explicit interface implementation, 142–145, 

154–156 
explicit type conversion, 44 
Expression class, 526–528 
Expression Tree Debugger Visualizer, 527 
expression trees 

building process, 526–527 
in LINQ, 553 
lambda expression conversion, 518, 524–

527, 566 
modification, 527–528 
uses, 528 
without lambda expression, 525–526 

expressions, 18 
operator precedence and, 18–20 
statements and, 20 

extension methods, 6 
benefits, 501 
calling, 490, 494 
compiler handling, 490–494 
for custom iterators, 503–505 
declaring, 490 
described, 489 
example, 489–501 
to force immediate execution, 566 
generic, 496, 499–501, 513–514 
guidelines for use, 495–497 
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inheritance compared, 495–496 
introduction to, 489–494 
limitations, 489 
in LINQ, 546–547 
list operations, 508–510 
namespaces and, 496–497 
operation chaining, 502–503 
in System.Ling.Queryable class, 503 
used by LINQ clauses, 566 
uses, 496–497 
Visitor pattern and, 511–515 

■ F 
Factor class, 297 
family-and-assembly access modifier, 60 
Ferracchiati, Fabio Claudio, 576 
Fibonacci constant, 537 
field initializers, 112 
field modifiers, 46 
fields 

accessibility, 46–48 
const, 48 
declaring, 46 
defining, 47–48 
initializing, 47–48, 104–106 
readonly, 47, 48 

Finalize method, 443 
Finalize() method, 102, 113 
finalizers, 44, 87, 113–115, 443–450 

advantages/disadvantages of, 450 
critical, 199, 201–205 
vs. destructors, 443 
exceptions thrown in, 189–191 
performance impact of, 447–448 
value types and, 476 

finally block, 184–185, 189 
Finished state, of threads, 368 
flags enumerations, 25–26 
float type, 22 
floating point numbers, 176, 219 
flow control, 38–41 
for statement, 39 
foreach construct, 267, 317 
foreach statement, 21, 40, 244, 254, 267, 317, 

564–565, 575–576 
IEnumerable<T>/IEnumerable interfaces 

and, 264 
multidimensional arrays and, 252 
type safety and, 469–473 

foreground threads, 372, 373 
format specifiers, 465 

strings and, 217–228 

format strings, 221–227 
forward iterators, 273–277 
Foundations of LINQ in C# (Rattz), 576 
Framework Design Guidelines: Conventions, 

Idioms, and Patterns for Reusable 
.NET Libraries (Cqalina & Abrams), 70, 
81, 273 

freachable queue, 447, 450 
Free Threaded Marshaller (FTM), 378 
from clause (LINQ), 549, 563–564 
fully named assemblies, 12 
Func<> definition, 510 
Func<> type, 518 
functional programming. See also lambda 

expressions 
benefits, 501–503, 575 
C# 3.0 features facilitating, 505–507 
C++ vs. C#, 501 
described, 517, 544 
foreach replacement, 575 
languages 543 
linked list example, 566–575 
list manipulation, 505–511 

functional, described, 517 
functions, as data, 528–529 
functions members, vs. methods, 61 
”Fundamental Theorem of Software 

Engineering” (Koenig), 570 
FxCop, 81 

■ G 
GAC (Global Assembly Cache), 12 
Gamma, Erich, 137, 433, 511 
Gang of Four, 137, 511 
garbage collection, 3 
garbage collector (GC), 3, 26–27, 44 

C# vs. C++, 430 
concurrent code and, 423 
finalizers and, 113–114, 443, 447–448 
limitations, 3 

GC.SuppressFinalize() method, 118, 446 
general types, 550 
GenerateNumbers method, 262 
generic classes, 311–314 
generic comparer, 344 
generic constraints, 302, 326–331 
generic delegates, 317–320 

constraints and, 332 
variance and, 340–344 

generic extension methods, 496, 499–501 
generic interfaces, 314 
Generic method, 311 
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generic methods, 315–317 
constraints and, 332 
default value expression and, 321–323 

generic struts, 311–314 
generic system collections, 344–345 
generic system interfaces, 345–346 
generic type conversion, 320–321, 347–357 
generic type parameter placeholders, naming, 

311 
generics/generic types, 5, 34–35, 263, 307–359 

array covariance rules compared, 308 
vs. C++ templates, 308–310 
collection types and, 34–35 
constraints and, 327–331, 355 
contravariance and, 337–339 
control accessibility and, 325 
covariance and, 337 
declaring, 307, 312 
default value expression and, 321–323 
definitions, 311 
efficiency and, 309–311 
inheritance and, 325–326 
invariance and, 339–40 
memory issues, 309 
problems/solutions and, 347–357 
with static initializers, 314 
type safety and, 309–311 

get accessor, 53 
Get method, multidimensional array and, 253 
GetEnumerator method, 244, 264, 267–270 
GetFormat method (IFormatProvider), 219, 225 
GetHashCode method, 362, 458–460 

overriding, 457–460 
GetLength method, 252 
GetLowerBound method, 252 
GetMinThreads method, 408 
GetString method, 230 
GetType method, 14, 102, 358 
GetUpperBound method, 252 
GetValue method, multidimensional array and, 

253 
gloablization, 217–228 
Global Assembly Cache (GAC), 12 
global namespace, 37 
Golde, Peter, 543 
goto statement, 38–41 
group clause (LINQ), 557–560, 564–565 
groupings, 234–238 
GroupJoin extension method (LINQ), 552 
Gurtovoy, Aleksey, 501 

■ H 
Handle property, caution, 407 
handle/body idiom, 215 
hash table keys, data types, 458 
hash tables, overriding GetHashCode method 

and, 457–460 
HashSet collection class, 259–260 
header files, 14 
headers, 13 
heap compaction, 113 
Hejlsberg, Anders, 346, 543 
Hello World! program, 3–5, 10–11 
Helm, Richard, 137, 433, 511 
hiding members, 65–68 

■ I 
IAsyncCallback delegate, 412 
IAsyncResult interface, 410 
IAsyncResult.AsyncWaitHandle property, 414 
ICloneable interface, 44–45, 215, 435 

caution for, 440 
MemberwiseClone interface and, 102 
reference types and, 434–440 
value types and, 476 

ICloneable.Clone method, 438 
ICollection interface, 249, 255–256 
ICollection.SyncRoot object, 249 
ICollection<T> interface, 255–256, 345 
IComparable interface, 103, 150, 154, 170, 248, 

344–345 
reference types and, 461–463 
value types and, 477, 482 

IComparable<T> interface, 170, 345 
IComparer interface, 227, 344 
IComparer<T> interface, 344 
IConvertible interface, 150 

reference types and, 468 
value types and, 477 

ICustomFormatter interface, 224–227 
identity equality, 450–453 
IDictionary interface, 259 
IDictionary<TKey, TValue> interface, 259, 345 
IDisposable interface, 116–118, 140, 144, 208, 

212, 267, 381, 407 
deterministic destruction and, 443 
finalizers and, 444 
reference types and, 440 
value types and, 476 

IDisposable pattern, 442 
IDL (Interface Description Language), 14 
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IDynamicMetaObjectProvider, 582, 585, 603, 
607 

IEnumerable interface, 73, 264–267, 337, 346, 
570 

collection types and, 255 
System.Array and, 244 

IEnumerable.Current property, 570 
IEnumerable.MoveNext method, 570 
IEnumerable<object> references, 7 
IEnumerable<string> references, 7 
IEnumerable<T> interface, 255, 264–267, 314, 

317, 337, 346 
IEnumerator interface, 73, 264–267, 570 
IEnumerator<T> interface, 264–267, 346 
IEquatable<T> interface, 345, 479 
if statement, 20, 39 
if-else statement, 39 
IFormatProvider interface, 218, 223, 225, 464 
IFormatProvider.GetFormat method, 219, 225 
IFormattable interface, 150, 218, 223, 465 

reference types and, 464 
value types and, 477 

IFormattable.ToString method, 218–219, 224–
225, 465 

IFormatter.ToString method, 223 
IgnoreCase flag, 240 
IgnorePatternWhitespace flag, 241 
IGrouping interface, 557 
IL (intermediate language), 1, 10, 11, 467 
IL Assembler (ILASM), 2 
ILDASM (Intermediate Language 

Disassembler), 10, 81 
ILDASM.exe, 100 
IList interface, 258 
IList<T> interface, 258, 309, 346 
immutable reference types, 473, 476 
imperative programming languages, 543 
implementation, 133 
implicit conversion, 30, 44, 63-65 

conversion operators and, 173 
dynamic types, 590–592 
exception throwing and, 198 
floating point numbers and, 176 

implicit interface implementation, 143 
implicit operators, 173 
implicitly typed arrays, 244–246 
implicitly typed local variables, 6, 28–29 
IMyDatabase interface, 140 
in keyword, 337 
Increment method, 379 
Index method, 248 
indexers, 74–76, 81 
IndexOf method, 232 

IndexOutOfRangeException, 244 
indirection 

adding, 571–575 
programming methodologies, 570 
uses, 570 

inheritance, 62–69, 128–136 
bad uses of, 132 
base keyword and, 68–69 
vs. delegation/composition, 134–136 
described, 44 
dynamic types and, 594–599 
extension methods compared, 495–496 
generic types and, 325–326 
implicit conversion and, 63–65 
interface, 140–142 
vs. interface implementation, 132 
member accessibility and, 63 
member hiding and, 65–68 
multiple, 132 
polymorphism and, 63–65 
problems with, 135 
sealed classes and, 69 
single, 133 
specialization, 63 

initializer expressions, 109 
initializers, 47 

collection, 6 
object, 6 

initializing fields, 104–106 
inner exceptions, 188 
InnerException property, 191 
Insert method, 231 
instance constructors, 49, 109–113 
instance fields, 46 
instance methods, 49–51 
int type, 21, 24, 467 
integers, converting, 467 
Intellisense, 495, 545 
Interface Description Language (IDL), 14 
interface implementation, 132 
interface inheritance, 140–142 
interface keyword, 139 
interface mapping, 142 
interface member matching rules, 150–154 
interface tables, vs. vtables, 152 
interface-based programming, 137 
interfaces, 137–157, 264–267 

augmented, 157 
vs. classes, 160–164 
contracts and, 159 
declaring, 138–139 
defining, 139–142 
described, 61–62 
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dynamic, 595–597 
generic, 314, 345–346 
implementing, 143–150, 154–156 

overriding, 145–149 
naming, 139, 157, 162 
published, 161 
reimplementing, 147–148 
Strategy pattern and, 304 
structs and, 87 
value type implementation and, 150 
value types and, 481 
versioning, 156–157 

Interlocked class, 198, 378, 402 
Interlocked class, 379–385 
Interlocked.CompareExchange method, 382, 

384 
Interlocked.Decrement method, 379 
Interlocked.Exchange method, 381–382, 384 
Interlocked.Increment method, 379 
intermediate language (IL), 1, 10, 11, 467 
Intermediate Language Disassembler 

(ILDASM), 10, 81 
intern pool, 216 
internal access modifier, 60 
internal field modifier, 46 
internal virtual methods, C++ and, 434 
interoperability, 7 
Interrupt method, 368, 371–372 
into clause (LINQ), 552, 560–561 
IntToLongConverter method, 316, 318 
InvalidCa4stException, 40, 309, 311, 468 
InvalidOperationException, 256 
invariance, 247, 339–340 
InvariantCulture property, 227–228 
InvariantCultureIgnoreCase property, 228 
Invoke method, 408 
IOException, 209 
IOU pattern, 366 
is operator, 32–34 
is-a relationships, 44 
IsBackground property, 373, 396, 412 
IsCompleted property, 410 
ISerializable interface, 140 
IShape interface, 328 
IsInvalid property, 205 
IsReadOnly property, 256 
IsSynchronized property, 249, 257 
iterator blocks, 262, 268–273 
Iterator class, 73 
iterators, 6 

advantages, 243, 268 
bidirectional, 273–275 
circular, 276–277 

compiler behavior, 269 
custom, 503–507 
custom, creating with lambda expressions, 

529–533 
forward, 273 
generating enumerable types, 272–273 
indirection in, 270–272 
over infinite sets, 565 
query variables and, 562–563 
reverse, 273–274 

■ J 
jagged arrays, 253–255 
JIT (Just In Time) compiling, 1, 10–11, 308 
Johnson, Ralph, 137, 433, 511 
join clause (LINQ), 550, 552, 564–565 
Join method, 363, 368 
jump statement, 39 
Just In Time (JIT) compiling, 1, 10–11, 308 

■ K 
kernel mode, transitions to, 379 
kernel objects, names, 401 
KeyedCollection<TKey, TValue>:, 259 
KeyNotFoundException, 259 
keywords, adding new, 29–30 
Kiczales, Gregor, 25 
Knuth, Donald E., 459 
Koenig, Andrew, 570 

■ L 
LaMacchia, Brian A., 9, 272 
lambda expressions, 418–419 

advantages, 521–523, 529 
benefits, 501 
closures and, 518–524 
compared to earlier C# versions, 521–522 
delegates, conversion to, 525 
described, 518 
expression trees and, 524–528, 566 
generators and, 529–533 
in LINQ, 546–547 
introduction to, 517–518 
iterators and, 529–533 
linked list example, 568–569 
list iteration, 508 
operation methods, bypassing definition, 

351 
syntax, 518–524 
uses, 7, 501, 517, 529–541 
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See also expression trees 
lambda functions. See anonymous methods 
lambda statements, 518, 524 
lambda syntax, 342 
LambdaExpression.Compile method, 529 
languages, cross-language compatibility and, 

15 
Last method, 566 
LastIndexOf method, 232, 248 
LastIndexOfAny method, 232 
lazy evaluation, 53 
LDML (Locale Data Markup Language), 219 
leaf classes, 70, 431 
let clause (LINQ), 556–557 
libraries, 70 
LinkedList<T> class, 344 
LINQ (Language Integrated Query) 

advantages, 543, 575–576 
benefits, 501 
compiler behavior, 546–547 
described, 528, 543–544 
execution, delayed, 562–563, 570–575 
execution, immediate, 563–565 
expression trees, 553 
extension methods, 503, 544, 547–548 
history, 543 
implementations available, 543 
influence on C#, 543 
linked list example. See functional 

programming, linked list example 
local identifiers, 556–557 
query execution, 546 
query expressions, 544–546, 563 
query syntax, 544–561 
resources on, 576 
result display example, 575 
SQL compared, 544 
to SQL, 566 
standard query operators, 544, 547–548 
uses, 7, 528 

LINQ for Visual C# 2005 (Ferracchiati), 576 
Lisp programming language, 505, 528 
List<T> class, 314, 344 
lists, 258 
ListSwap method, 197 
local mutex objects, 401 
local variables, implicitly typed, 6, 28–29, 246 
Locale Data Markup Language (LDML), 219 
lock keyword, 249, 390 
lock statement, 21, 257 
locking objects, 396–402 
locks 

Monitor. See Monitor class 

mutex. See Mutex objects 
reader/writer. See ReaderWriterLock 

long type, 21, 24, 467 

■ M 
Main method, 4, 50, 316, 318 
MakeGenericType method, 357 
managed applications, 1, 10 
managed assemblies, 11 
managed code, 1 
managed modules, 13 
managed threads, 361 
manifests, 11 
ManualResetEvent, 404–405 
ManualResetEventSlim, 405 
Mariani, Rico, 262 
Match method, 233–234, 240 
MatchEvaluator delegate, 239 
Max method, 566 
member matching rules, 150–154 
members 

accessibility and, 63 
hiding, 140–142, 149, 152 
hiding, 65–68 
reserved names and, 81–82 

MemberwiseClone method, 102, 435–438 
memoization, 533–538 
memory leaks, 113 
metadata, 3, 11–15 
metadata attributes, 49 
method groups, 282 
method overloading, 123, 126 
method parameter types, 119–123 

named arguments, 125–128 
optional arguments, 124–125 
out parameters, 122–123 
param arrays, 123 
ref arguments, 120–122 
value arguments, 120 

method-matching rules, 152–153 
methods, 43 

abstract, 129 
anonymous. See anonymous methods 
described, 49 
vs. function members, 61 
generic, 315–317 
hiding, 140–142, 149, 152 
instance, 49–51 
matching rules and, 150–154 
metadata attributes, 49 
naming conventions for, 138 
overriding, 129–131 
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partial, 77–79 
sealed, 131 
static, 49–50 
virtual, 67–69, 128–132 

Microsoft Foundation Classes (MFC), 149 
Microsoft Windows Internals, Fourth Edition: 

Microsoft Windows Server 2003, 
Windows XP, and Windows 2000 
(Russinovich & Solomon), 401 

Min method, 566 
mirror overload, 168 
Modern C++ Design: Generic Programming and 

Design Patterns Applied 
(Alexandrescu), 325 

Monitor class, 249, 378, 387–396, 401–402 
Monitor.Enter method, 390, 393 
Monitor.Exit method, 390, 393 
Monitor.Pulse method, 393, 396 
Monitor.Wait method, 368, 393 
Mono project, 2 
MoveNext method, 267, 269 
mscorlib assembly, 4 
MTAThreadAttribute attribute, 377 
MulticastDelegate class, 280 
multidimensional arrays, 251–255 
multiple assemblies, 12 
multiple inheritance, 132 
MultiplyBy2 method, 294 
MultiplyBy4 method, 294 
multithreaded apartment (MTA), 377 
multithreading. See threading 
mutating operands, avoiding, 167 
Mutex class, 378 

vs. Monitor class, 388 
Mutex objects, 401, 402 
MyClass< Stack<T> >, 311 
MyClass<int>, 313 
MyClass<T>, 312 
MyCollection<int>, 307 
MyCollection<long>, 307, 316 
MyCollection<T>, 307 
MyContainer<int>, 316 
MyContainer<T>, 316, 322 
MyNestedClass<T>, 313 

■ N 
name conflicts, 81 
named arguments, 7, 125–128 
namespace aliasing, 38 
namespaces, 4, 35–38 

coding practices, 496–497 
declaring, 36–37 

global, 37 
importing, 490 
side effects, avoiding, 496 
using, 37–38, 490 

naming conventions 
for culture names, 219 
for exceptions, 206 
for interfaces, 139, 157 
for methods, 138 
generic type parameter placeholders and, 

311 
namespaces and, 36 

Nathan, Adam, 9 
native applications, 2, 11 
native code, 2 
nested classes, 71–74 
.NET 

exception handling and, 116 
threading and, 361–378 

.NET 2.0 
catch clauses and, 185 
unhandled exceptions in, 182–183 

.NET and COM: The Complete Interoperability 
Guide (Nathan), 9 

The .NET Developer’s Guide to Windows 
Security (Brown), 9 

.NET Framework Security (LaMacchia), 9, 272 
new constraints, 330–331 
new keyword, 74, 84, 139 

class types and, 103–104 
member hiding and, 67, 74, 141, 149 
method overrides and, 129–131 
uses, 103 
value types and, 103 

new operator, 27, 317 
nondeterministic destruction, 115 
nondeterministic finalization, 118 
NonGeneric method, 311 
nongeneric types, 311 
non-nested classes, 71 
Non-Virtual Interface (NVI) pattern, 431–434 
NotSupportedException, 262, 269 
null values, 323–324 
nullable types, 323–324 
Nullable<T>, 323–324 
NullReferenceException, 182, 192, 291 
NVI pattern, 431–434 

■ O 
Object class, 101–103, 154, 243 
object initializers, 6 

nesting, 92 
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syntax, 91–94 
uses, 91 

object keyword, 101 
object references, 44 
object type, 22 
Object.Equals method, 103, 450–457 
Object.ToString method, 218, 221, 225 
ObjectDisposedException, 441 
Object-Oriented Analysis/Design (OOA/D), 141 
object-oriented methodologies, 25 
object-oriented programming, 544 
objects, 43 

copies and, 434–440 
C# vs. C++, 27, 430 
creating, 103–113, 430 
destroying, 44, 113–116 
disposable, 116–119 
internal state of, 43 
memory allocation for, 113 
memory associated with, 44 
terminology and, 26 

On<event> method, 291 
OOA/D (Object-Oriented Analysis/Design), 141 
open instance delegates, 285–288 
open types. See generic types 
operands, 167 
operation chaining, 502–503 
operator overloading, 18, 165–179 

addition operator, 168–169 
Boolean operators, 176–179 
mutating operands and, 167 
operators for, 169–179 
parameter order and, 167–168 
reasons not to use, 165 
semantics and, 165 
types and formats, 165–166 
Visual Basic and, 457 

operator precedence, 18–20 
operators 

applying to parameterized types, 347–357 
declaring, C# vs. C++, 166 

optimizations, 11 
optional arguments, 124–125 
orderby clause (LINQ), 553–554, 563–565 
ordering of object instance creation, 109–113 
Ordinal property, 228 
OrdinalIgnoreCase property, 228 
OS threads, 361 
out keyword, 122, 337 
out parameters, 85, 122–123 
OutOfMemoryException, 199–201 
overflow errors, 174 
overload resolution, 592 

dynamic, 592–594 
overloadable operators. See operator 

overloading 
overloaded constructors, 49 
overloading methods, 123, 126 
override keyword, 129 

■ P 
P/Invoke, 201–205 
Parallel class, 420–425 
Parallel Extensions, 417–418 
Parallel.For method, 422 
Parallel.Invoke, 425–426 
param arrays, 123 
param parameters, 123 
parameter binding, 300–303, 538 
ParameterExpression, 527 
ParameterizedThreadStart delegate, 365 
parameters 

order, 167–168 
out, 122–123 

params keyword, 123 
parentheses, 235 
partial classes, 76–77 
partial keyword, 77 
partial methods 

described, 77–79 
restrictions, 77 
uses, 6, 78 

partial types, 6 
partially named assemblies, 12 
PassAsOutParam() method, 123 
PassByRef() method, 121 
PassByValue() method, 121 
patterns, design, 137 
PE (Portable Executable) file format, 2 
performance, collection types and, 262–263 
phantom method, 594 
PlayEvent identifier, 291 
polymorphism, 44, 63–65, 129 
Portable Executable (PE) file format, 2 
positional arguments, 126 
postfix operator (++), 167 
prefix operator (--), 167 
PrepareConstrainedRegions method, 199 
primary constraints, 330 
Primary Interop Assemblies (PIA), 578 
printf method, vs. String.Format method, 222 
Priority property, 363 
private access modifier, 60 
private assemblies, 13 
private field modifier, 46 
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private virtual methods, C++ and, 433 
Pro C# 2005 and the .NET 2.0 Platform, Third 

Edition (Troelsen), 9 
ProcessResults type, 282 
profile-guided optimizations, 11 
projection operators, 546 
projector clause (LINQ). See group clause 

(LINQ); select clause (LINQ) 
properties 

accessors and, 53 
auto-implemented. See auto-implemented 

properties 
declaring, 51 
public, 52 
read-only, 47, 53 
reserved names and, 81 
uses, 51 
write-only, 53 

protected access modifier, 60 
protected field modifier, 46 
protected internal access modifier, 60 
protected virtual methods, 291 
public access modifier, 60 
public field modifier, 46 
publish/subscribe, 289 
Pulse method, 393, 396 

■ Q 
query expressions, 544–546 

keywords, 549–550 
query variables (LINQ), 546, 562, 563, 564 
Queryable class, 565 
Queryable.Where method, 553 
Queue.Clear method, 256 
Queue<T> class, 344 
QueueProcessor class, 364 
QueueUserWorkItem method, 408 

■ R 
R identifier, 312, 314 
RAII (Resource Acquisition Is Initialization), 

115, 207, 430 
range checking, 244 
Range method, 565 
range variables (LINQ), 546, 549–550, 562–565 
rank, of arrays, 248, 253 
RankException, 248 
Rattz, Joseph C., Jr., 576 
read thread mode, 400 
ReaderWriterLock, 397–401 
ReaderWriterLockSlim, 400–401 

readonly field modifier, 47 
readonly fields, 48 
readonly properties, 47, 53 
readonly public field, 53 
rectangular arrays, 251–253 
recursion, anonymous, 540–541 
recursive computations, 421 
ref arguments, 120–122 
ref keyword, 121 
ref parameters, 121–123 
reference type variables, 22–23, 27, 44 
reference types, 3, 22–23, 26–27, 44 

canonical forms and, 429–476 
checklist for, 429, 485–486 
convertability and, 247–248 
default values, 27 
described, 94 
explicit interface implementation and, 154 
identity equality and, 451–453 
immutability and, 473, 476 
overriding Object.Equals method for, 454–

457 
sealed classes and, 430–431 
type conversion, 30 
type safety and, 469–473 

referenced assemblies, 14 
ReferenceEquals method, 456 
referential equality, 456 
reflection, 14, 270, 272 
Regex class, 232–242 
Regex.Replace method, 238 
RegexOptions, 240–242 
RegionInfo types, 219 
Register method, 220 
regular expressions 

searching strings with, 232–242 
text substitution and, 238–240 

regular-expression substitutions, 239 
Release method, 402 
ReleaseHandle method, 205 
ReleaseMutex method, 401 
ReleaseReaderLock method, 398 
ReliabilityContractAttribute (ListSwap 

method), 201 
Remove method, 283, 292 
RemoveAll method, 283 
Repeat method, 565 
Replace method, 234, 240 
reserved member names, 59, 81–82 
Reset method, 267–269 
ResetAbort method, 368–370 
Resource Acquisition Is Initialization (RAII), 

115, 207, 430 
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resources for further reading 
assembly loading, 13 
C++ design, 325 
CLR, 9 
code access security, 272 
efficiency bottlenecks, 262 
exception handling, 193 
exception-neutral code, 196 
hash codes, generating, 459 
interface tables, 152 
interface-based programming, 137 
libraries, 70 
metadata, 15 
method tables, 129 
regular expressions, 232 
types, 273 

Resume method, 372, 379 
rethrowing exceptions, 186–187 
return statement, 40–41 
reverse iterators, 273–277 
Reverse method, 566 
RndThreadFunc method, 381, 385 
rollback behavior, 211–214 
rude thread abort, 369 
Running state, of threads, 368, 377 
Runtime Callable Wrapper (RCW), 578 
RuntimeCompatibilityAttribute, 185 
RuntimeHelpers class, 199 
RuntimeWrappedException, 185 
Russinovich, Mark E., 401 

■ S 
safe code, 27 
safe points, 372 
SafeHandle class, 114, 201–205, 407 
SafeWaitHandle class, 407 
sample code 

complex numbers and, 247–357, 462 
employee raises, delegates and, 286 
media player, events and, 288–292 

sbyte type, 21, 24 
sealed classes, 69, 145, 430–431, 495 
sealed keyword, 70, 131, 430 
sealed methods, 131 
searchability, 248 
select clause (LINQ), 552–555, 563–564 
Sells, Chris, 9, 129 
semantics, operator overloading and, 165 
SemaphoreFullExceptions, 402 
semaphores, 402 
semicolon, 20 
Serializable attribute, 45 

SerializableAttribute, 206 
set accessor, 53 
Set method, multidimensional array and, 253 
SetMinThreads method, 408 
sets. See HashSet collection class 
SetValue method, multidimensional array and, 

253 
shallow copies, objects and, 435, 440 
short type, 21, 24 
Shutdown method, 396 
single inheritance, 133 
single-threaded apartment (STA), 377 
Singleton design pattern, 159 
Singleton pattern, 80, 314 
Skip method (LINQ), 562 
SkipWhile method (LINQ), 562 
Sleep method, 368, 371, 379, 383 
SMP (symmetric multiprocessing), 381 
SOA (service-oriented architecture) systems, 

137 
Socket class, 413 
Solomon, David A., 401 
SomeFunction() method, 50 
SomeMethod() method, 130 
SomeOperation() method, 51 
sortability, 248 
SortedDictionary<TKey, TValue> class, 259, 344 
SortedList<T> class, 344 
SortedList<TKey, TValue> class, 344 
sorting, 554 
SortStrategy delegate, 305 
specialization, 63 
spin locks, 382 
SpinLock class, 385–387 
SpinLock.Enter method, 384 
SpinLockManager, 385 
SQL, 544–545 
Stack.Clear method, 256 
Stack<T> class, 344 
StackOverflowException, 198–199 
standard query operators, 544, 547–548 
Start method, 368 
StartsWith method, 232 
statements, 20 
STAThreadAttribute attribute, 377 
static classes, 79–80 
static constructors, 49, 106–109, 314 

exceptions thrown in, 191–192 
static field modifier, 46 
static fields, 46 
static methods, 49–50 
static modifier, 79 
static receiver, 582 



■ INDEX 

 

624 

 

StaticCompute method, 284 
STL (Standard Template Library) 

programming, 300, 502, 529, 538, 576 
Stop method, 277 
Strategy pattern, 292, 304–305 
Strategy property, 294 
streams. See iterators, over infinite sets 
StreamWriter, 384 
String class, 215, 227, 229, 438 
string literals, 216–217 
string type, 22 
String.Compare method, 227 
String.Copy method, 438 
String.Format method, 222–224 
String.Intern method, 217 
String.Join method, 575 
StringBuilder class, 230–232 
StringBuilder.AppendFormat method, 224 
StringComparer class, 227 
StringComparer.Create method, 228 
StringComparison enumeration, 227 
strings, 215 

comparing, 227– 228 
converting, 467 
floating-point values, converting to, 219 
format, 465 
format specifiers and, 217–228, 465 
format, 221–227 
memory issues, 230 
outside sources and, 228–230 
overview, 215, 216 
searching with regular expressions, 232–242 
verbatim, 217 

strong typing. See also variables, implicitly 
typed local 

strongly named assemblies, 12–13 
strongly typed languages, 17–18, 469 
struct constraints, 330–331 
struct declarations, 21 
struct keyword, 22–23, 44, 82 
struct member definitions, access modifiers, 60 
structs 

contents, 82 
generic, 311–314 
interfaces and, 87 

SubmitWorkItem method, 396 
Sum method, 566 
SuppressFinalize() method, 118, 446 
Suspend method, 369, 372, 379 
Suspended state, of threads, 369 
SuspendRequested state, of threads, 369 
Sutter, Herb, 196 
swap operations, 198 

switch statement, 39 
symmetric multiprocessing (SMP), 381 
sync events, 404 
synchronization, 249 

collections and, 257 
enumerators, 269 
Interlocked class and, 379–385 
locking objects and, 396–402 
Monitor class and, 387–396 
semaphores and, 402–404 
SpinLock class and, 385–387 
threading and, 378–407 
WaitHandle and, 405–407 

synchronized field, 270 
Synchronized method, 257 
SyncRoot property, 257, 267 
syntax, 17–41 
sysglobl.dll assembly, 220 
system heap, 44 
System namespace, 21, 35 
System Performance Monitor (perfmon), 423 
System.Activator namespace, 358 
System.Array, 243, 253 

vectors and, 250 
System.Array interface, 248 
System.Collections namespace, 255, 310 
System.Collections.Concurrent namespace, 421 
System.Collections.Generic namespace, 255, 

344–345 
System.Collections.ObjectModel namespace, 

255–256, 260–262 
System.Collections.Specialized namespace, 255 
System.Console class, 80 
System.Convert class, 231 
System.Double namespace, 221 
System.Dynamic.DynamicObject, 585 
System.Exception exception, 185, 188, 206–207 
System.Globalization namespace, 219 
System.Int32, 150 
System.Int32.MaxValue, 231 
System.Ling namespace, 545 
System.Ling.Enumerable class, 544, 566 
System.Ling.Expressions namespace, 518, 524, 

528 
System.Ling.Expressions.Expression<>, 524 
System.Ling.Queryable class, 503, 544, 566 
System.Monitor class, 249 
System.Object, 101–103, 154, 243 
System.Object types, 550 
System.OutOfMemoryException, 103 
System.String class, 215, 227, 229, 438 
System.Text.Encoding class, 216, 228–230 
System.Thread class, 363 
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System.Threading namespace, 198 
System.Threading.Semaphore class, 402 
System.Type namespace, 357 
System.Type object, 14 
System.TypeInitializationException, 191 
System.ValueType, 82 

■ T 
T identifier, 312, 314 
Take extension (LINQ), 562, 565, 573–574 
TakeWhile method (LINQ), 562 
Task class, 418–420 
Task Parallel Library (TPL), 417–418 

Parallel class, 420–425 
Task class, 418–420 

TaskFactory.StartNew() method, 419 
TBL (Type Library), 14 
template metaprogramming (C++), 501 
Template Method pattern, 433 
ternary operator, 169, 176 
TestForEquality method, 452 
text substitution, 238–240 
ThenBy extension method (LINQ), 554 
this keyword, 49, 51, 74, 85–87, 286 
this parameter, 104 
Thread class, 363 
thread pools, 407–417 

asynchronous method calls and, 408–416 
entry, using Parallel.Invoke, 425–426 
timers and, 416–417 

Thread.Abort method, 368–370 
Thread.AllocateDataSlot method, 375 
Thread.AllocateNamedDataSlot method, 375 
Thread.ApartmentState property, 377 
Thread.CurrentThread property, 362 
Thread.GetHashCode, 363 
Thread.Interrupt method, 368, 371 
Thread.IsBackground property, 373, 396, 412 
Thread.Join method, 363, 368 
Thread.ManagedThreadId property, 363 
Thread.Priority property, 363 
Thread.ResetAbort method, 368, 370 
Thread.Resume method, 379 
Thread.Sleep method, 368, 371, 379, 383 
Thread.Suspend method, 369, 372, 379 
ThreadAbortException, 183, 199, 368–371 
ThreadFunc method, 362 
threads/threading, 361–427 

background, 372–373 
concurrent programming and, 417–426 
creating, 362, 363 
events and, 404–405 

exceptions, 400 
foreground/background threads and, 372–

373 
halting, 371–372 
locking objects and, 396–402 
Monitor class and, 387–396 
.NET and, 361–378 
passing data to, 363–365 
recursion, 400 
semaphores and, 402–404 
SpinLock class and, 385–387 
states of, 366–369, 400 
synchronization and, 378–407 
terminating/halting threads and, 369–372 
unmanaged threads and, 377–378 
WaitHandle and, 405–407 
waiting for exiting, 372 
waking, 371–372 

Threading.Interlocked class, 379 
ThreadInterruptedException, 368, 371 
thread-local storage, 373–377 
ThreadPool class, 405, 408 
ThreadPool object, 394 
ThreadPool.QueueUserWorkItem method, 408 
thread-safe collection classes, 426 
ThreadStart delegate, 362 
ThreadState enumeration, 368 
ThreadStaticAttribute attribute, 373 
throw statement, 40–41, 182 

exception-neutral code and, 194–196 
rethrowing exceptions and, 186 

throwing exceptions, 182–192 
thunks, 279 
Timer class, 416 

System.Threading namespace, 417 
System.WindowsForms namespace, 417 

TimerProc method, 417 
timers, 416–417 
TInput placeholder identifier, 317 
TLSClass, 374 
TLSFieldClass, 374 
ToArray extension method, 575 
ToList extension method, 565 
ToString method, 102, 463–467 

customized, 218 
IFormattable class, 218–219, 224–225 
IFormatter class, 223 
Object class, 225 
String.Format method and, 223 

TOutput placeholder identifier, 317 
TPL. See Task Parallel Library 
transforms, 497–501 
translating exceptions, 187–188 
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Troelsen, Andrew, 9 
try statement, 183–184 

exception-neutral code and, 193 
try/catch statement, 20 
try/finally statement, 21, 118 
TryGetValue method, 259 
type casting, 173 
type conversion, 30 

array covariance, 30–31 
boxing conversion, 31 
dynamic, 590–592 
explicit, 44 
generic, 320–321, 347–357 
implicit, 44, 63–65 

Type Library (TLB), 14 
type safety, 309–311 

reference types and, 469–473 
value types and, 482–484 

TypeConverter class, 468 
TypeInitializationException, 191, 206 
typeof keyword, 14, 358 
types, 3, 21–35 

anonymous, 88–91 
canonical forms and, 429–487 
convertibility, 467–469 
convertibility and, 247–248 
creating own, 43 
generic, 34–35 
testing, 32–34 
See also built-in types  

■ U 
uint type, 21, 24 
ulong type, 21, 24 
unary operators 

list, 170 
overloading, 169 
parameters and, 166 

UnaryExpression, 527 
unbound delegates, 285–288 
unboxing, 94–101 
undefined behavior exception, 115 
unhandled exceptions, 115, 182, 183 
UnhandledExceptionEventArgs, 182 
unheld thread mode, 400 
unmanaged threads, 377–378 
unsafe (unmanaged) code techniques, 26 
unspeakable field names, 89 
Unstarted state, of threads, 368 
upgradeable thread mode, 400 
UpgradeToWriterLock method, 399 
user-defined value types, 23 

ushort type, 21, 24 
using keyword, 4, 21, 118–119, 212 

deterministic destruction and, 443 
disposable objects and, 442 
extension methods and, 490 
namespaces and, 37 

using statement, 21 
UTF-16 Unicode character strings, 216 

■ V 
Validate method, 207 
value arguments, 120 
value equality, 450, 454 
value keyword, 292 
value type definitions, 82–88 

constructors, 82–84 
finalizers, 87 
interfaces, 87 
this keyword, 85–87 

value types, 3, 22–27 
canonical forms and, 476–484 
checklist for, 429, 486–487 
definition, 44 
described, 94 
Equals override and, 477–481 
explicit interface implementation and, 154–

156 
interface implementation and, 150, 481 
new keyword for, 103 
type safety and, 482–484 
value equality and, 450 

values, terminology and, 26 
ValueType class, 481 
ValueType.Equals method, 454 
var keyword, 28, 89 
VarArgs() method, 123 
variable capture, 297–300, 533–538 
variables, 21–35 

default initialization, 27 
implicit typing, 526 
implicitly typed local, 6, 28–29 
reference type, 22–23, 27, 44 
type testing, 32–34 

variance, 7, 332–334 
delegates and, 340–344 
rules, 335 

vectors, vs. arrays, 249, 251 
verbatim strings, 217 
Vermeulen, Allan, 366 
versioning, 13, 156–157 
Virtual Execution Systems (VESs), 2, 9 
virtual keyword, 129, 148 
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virtual methods, 67–69, 128–132 
overriding, 127–131 

Visitor pattern, 511–515 
Visual Basic, collection types and, 260 
Vlissides, John, 137, 433, 511 
volatile field modifier, 48 
vtables, vs. interface tables, 152 

■ W 
Wait method, 368, 393 
WaitAll method, 406 
WaitAny method, 406 
WaitHandle class, 402, 405, 407 
WaitHandle.WaitAll method, 406 
WaitHandle.WaitAny method, 406 
WaitHandle.WaitOne method, 404 
WaitOne method, 401–406 
WaitSleepJoin state, of threads, 368 
waking threads, 371 

Web Services Description Language (WSDL), 
8139 

where clause (LINQ), 552–554, 563–564 
where keyword, 329 
while statement, 20, 39 
Win32 functions, 204 
Win32 Synchronization objects, 405 
write thread mode, 400 
write-only properties, 53 

■ X 
xperf, 422, 423 

■ Y 
Y fixed-point combinators, 541 
”Yet Another Language Geek” blog, 511 
yield blocks, 268–277, 562–563 
yield break statement, 270 
yield keyword, 262, 268, 317 
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