
Nash
AcceleratedC# 2010

Companion
eBook Available

this print for content only—size & color not accurate

  CYAN
  MAGENTA

  YELLOW
  BLACK
  PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Trey Nash, author of

Accelerated C# 2008

Accelerated C# 2005

Accelerated VB 2005

(with Guy Fouche)

Accelerated VB 2008

(with Guy Fouche)

US $39.99

Shelve in:
.NET

User level:
Intermediate–Advanced

THE APRESS ROADMAP

Accelerated C# 2010

Pro C# 2010 and the
.NET 4.0 Platform

Pro LINQ: Language
Integrated Query in C# 2008

Beginning Android

Pro Android Games

Pro Android

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2537-9

9 781430 225379

53999

Accelerated C# 2010
Dear Reader,

In your hands is a guide to creating effective C# 4.0 code. This book focuses precisely
on the C# language, showing you how to write programs that are robust, fault-toler-
ant, and ready to be put into widely available libraries.

I won’t burden your time with endless discussions of libraries: Accelerated C#
2010 instead presents you with a well organized, focused and easy to read text about
C# and all of the tried and true idioms, patterns, and design principles accrued in the
object oriented arena and during the lifetime of the .NET Framework. With many
short examples, I will show you how common design patterns are used routinely in
the .NET Framework and how you should employ them in your own designs.

I cover with you all the newer features of the C# language in detail - including
the dynamic type, co- and contra-variance, extension methods, lambda expres-
sions, and Language Integrated Query (LINQ) among others. The new dynamic
type facilitates interoperability possibilities that were previously cumbersome to
implement. Extension methods, lambda expressions, and LINQ foster a functional
programming model within a traditionally imperative programming language and
you’ll find that they expand your horizons and open up new possibilities of solu-
tions using functional programming techniques!

Another area of particular interest for C# developers is how we can write excep-
tion-safe and fault-tolerant code. The .NET Framework includes several facilities,
including Critical Execution Regions, to help protect the state of your application
in the event of an asynchronous exception. In this book, I explain how to use these
facilities to your advantage.

Have fun programming and remember, defining contract before implementa-
tion, striving to be exception neutral, applying performance analysis and optimiza-
tion, and being frugal with your resource usage are all keys to a successful product.

Trey Nash

7.5 x 9.25 spine = 1.21875" 656 page count

THE EXPERT’S VOICE® IN C#

C# 2010

Trey Nash

The fast way to the latest and greatest in C#
programming and .NET 4.0

Accelerated

Accelerated C# 2010

■ ■ ■

Trey Nash

Accelerated C# 2010

Copyright © 2010 by Trey Nash

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2537-9

ISBN-13 (electronic): 978-1-4302-2538-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Damien Foggon
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editors: Katie Stence and Nancy Sixsmith
Compositor: Bob Cooper
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

Dedicated to the memory of a special friend

Thor

January 1999 – October 2008

For Maite
for the love and support

v

Contents at a Glance

Contents ... vii
About the Author ... xxi
About the Technical Reviewer .. xxii
Acknowledgments ... xxiii
Preface ...xxiv

■Chapter 1: C# Preview ... 1

■Chapter 2: C# and the CLR... 10

■Chapter 3: C# Syntax Overview.. 17

■Chapter 4: Classes, Structs, and Objects... 43

■ Chapter 5: Interfaces and Contracts... 137

■Chapter 6: Overloading Operators.. 165

■Chapter 7: Exception Handling and Exception Safety.. 181

■Chapter 8: Working with Strings ... 215

■Chapter 9: Arrays, Collection Types, and Iterators .. 243

■Chapter 10: Delegates, Anonymous Functions, and Events................................. 279

■Chapter 11: Generics ... 307

■Chapter 12: Threading in C# .. 361

■Chapter 13: In Search of C# Canonical Forms ... 429

■Chaper 14: Extension Methods .. 489

■Chaper 15: Lambda Expressions ... 517

■Chaper 16: LINQ: Language Integrated Query .. 543

vi

■Chaper 17: Dynamic Types .. 577

Index... 609

■ CONTENTS

vii

Contents

Contents at a Glance .. v
Contents ... vii
About the Author ... xxi
About the Technical Reviewer .. xxii
Acknowledgments ... xxiii
Preface ...xxiv

■Chapter 1: C# Preview ... 1

Differences Between C# and C++ ...1

C#..1

C++...2

CLR Garbage Collection...3

Example of a C# Program...3

Overview of Features Added in C# 2.0 ...5

Overview of Features Added in C# 3.0 ...6

Overview of New C# 4.0 Features..7

Summary..7

■Chapter 2: C# and the CLR... 10

The JIT Compiler in the CLR...10

Assemblies and the Assembly Loader ...11

Minimizing the Working Set of the Application ...12

Naming Assemblies ..12

Loading Assemblies ..13

Metadata ..13

■ CONTENTS

viii

Cross-Language Compatibility ...15

Summary..15

■Chapter 3: C# Syntax Overview.. 17

C# Is a Strongly Typed Language...17

Expressions..18

Statements and Expressions..20

Types and Variables ...21

Value Types...23

Enumerations...24

Flags Enumerations ...25

Reference Types ...26

Default Variable Initialization ..27

Implicitly Typed Local Variables..28

Type Conversion..30

Array Covariance..31

Boxing Conversion ...31

as and is Operators ...32

Generics ..34

Namespaces ..35

Defining Namespaces ...36

Using Namespaces ...37

Control Flow...39

if-else, while, do-while, and for ..39

switch ...39

foreach..40

break, continue, goto, return, and throw ..41

Summary..41

■ CONTENTS

ix

■Chapter 4: Classes, Structs, and Objects... 43

Class Definitions ..45

Fields...46

Constructors..49

Methods ..49

Static Methods...50

Instance Methods...50

Properties..51

Declaring Properties ..51

Accessors...53

Read-Only and Write-Only Properties ..53

Auto-Implemented Properties..54

Encapsulation..56

Accessibility ..59

Interfaces ..61

Inheritance ..62

Accessibility of Members...63

Implicit Conversion and a Taste of Polymorphism...63

Member Hiding ..65

The base Keyword ...68

sealed Classes ..69

abstract Classes..70

Nested Classes..71

Indexers ..74

partial Classes...76

partial Methods ...77

Static Classes..79

Reserved Member Names...81

Reserved Names for Properties ...81

Reserved Names for Indexers..81

Reserved Names for Destructors ...82

■ CONTENTS

x

Reserved Names for Events...82

Value Type Definitions..82

Constructors..82

The Meaning of this ..85

Finalizers...87

Interfaces ..87

Anonymous Types..88

Object Initializers ...91

Boxing and Unboxing ...94

When Boxing Occurs ...98

Efficiency and Confusion...100

System.Object ..101

Equality and What It Means ..103

The IComparable Interface..103

Creating Objects...103

The new Keyword ...103

Using new with Value Types ..103

Using new with Class Types ..103

Field Initialization ..104

Static (Class) Constructors..106

Instance Constructor and Creation Ordering...109

Destroying Objects ...113

Finalizers...113

Deterministic Destruction ...115

Exception Handling ...115

Disposable Objects...116

The IDisposable Interface..116

The using Keyword ...118

Method Parameter Types...119

Value Arguments...120

■ CONTENTS

xi

ref Arguments ...120

out Parameters ...122

param Arrays ..123

Method Overloading..123

Optional Arguments ..124

Named Arguments ..125

Inheritance and Virtual Methods ..128

Virtual and Abstract Methods..129

override and new Methods ...129

sealed Methods...131

A Final Few Words on C# Virtual Methods ..132

Inheritance, Containment, and Delegation...132

Choosing Between Interface and Class Inheritance..132

Delegation and Composition vs. Inheritance...134

Summary..136

■Chapter 5: Interfaces and Contracts.. 137

Interfaces Define Types ...138

Defining Interfaces...139

What Can Be in an Interface?..139

Interface Inheritance and Member Hiding ..140

Implementing Interfaces ..143

Implicit Interface Implementation ...143

Explicit Interface Implementation ...143

Overriding Interface Implementations in Derived Classes ..145

Beware of Side Effects of Value Types Implementing Interfaces ...150

Interface Member Matching Rules...150

Explicit Interface Implementation with Value Types ..154

Versioning Considerations ...156

Contracts..157

■ CONTENTS

xii

Contracts Implemented with Classes..157

Interface Contracts..159

Choosing Between Interfaces and Classes ..160

Summary..164

■Chapter 6: Overloading Operators.. 165

Just Because You Can Doesn’t Mean You Should..165

Types and Formats of Overloaded Operators...165

Operators Shouldn’t Mutate Their Operands..167

Does Parameter Order Matter? ..167

Overloading the Addition Operator...168

Operators That Can Be Overloaded ..169

Comparison Operators ..170

Conversion Operators..173

Boolean Operators ..176

Summary..179

■Chapter 7: Exception Handling and Exception Safety.. 181

How the CLR Treats Exceptions ...181

Mechanics of Handling Exceptions in C# ...182

Throwing Exceptions...182

Changes with Unhandled Exceptions Starting with .NET 2.0 ..182

Syntax Overview of the try, catch, and finally Statements ...183

Rethrowing Exceptions and Translating Exceptions ...186

Exceptions Thrown in finally Blocks ...189

Exceptions Thrown in Finalizers ...189

Exceptions Thrown in Static Constructors ..191

Who Should Handle Exceptions?..192

Avoid Using Exceptions to Control Flow...193

Achieving Exception Neutrality ..193

Basic Structure of Exception-Neutral Code...194

■ CONTENTS

xiii

Constrained Execution Regions ..199

Critical Finalizers and SafeHandle ..201

Creating Custom Exception Classes...206

Working with Allocated Resources and Exceptions ...207

Providing Rollback Behavior ..211

Summary..214

■Chapter 8: Working with Strings ... 215

String Overview..215

String Literals...216

Format Specifiers and Globalization ..217

Object.ToString, IFormattable, and CultureInfo...218

Creating and Registering Custom CultureInfo Types ..219

Format Strings ..221

Console.WriteLine and String.Format ...222

Examples of String Formatting in Custom Types ..223

ICustomFormatter ...224

Comparing Strings ..227

Working with Strings from Outside Sources ..228

StringBuilder ..230

Searching Strings with Regular Expressions ...232

Searching with Regular Expressions ..232

Searching and Grouping..234

Replacing Text with Regex..238

Regex Creation Options...240

Summary..242

■Chapter 9: Arrays, Collection Types, and Iterators .. 243

Introduction to Arrays ..243

Implicitly Typed Arrays..244

Type Convertibility and Covariance...247

■ CONTENTS

xiv

Sortability and Searchability ...248

Synchronization ..249

Vectors vs. Arrays ...249

Multidimensional Rectangular Arrays ..251

Multidimensional Jagged Arrays..253

Collection Types...255

Comparing ICollection<T> with ICollection ..255

Collection Synchronization..257

Lists...258

Dictionaries ...259

Sets ...259

System.Collections.ObjectModel...260

Efficiency ..262

IEnumerable<T>, IEnumerator<T>, IEnumerable, and IEnumerator264

Types That Produce Collections ..267

Iterators..268

Forward, Reverse, and Bidirectional Iterators ..273

Collection Initializers..277

Summary..278

■Chapter 10: Delegates, Anonymous Functions, and Events................................. 279

Overview of Delegates ...279

Delegate Creation and Use...280

Single Delegate ...281

Delegate Chaining...282

Iterating Through Delegate Chains..284

Unbound (Open Instance) Delegates ...285

Events ..288

Anonymous Methods..292

Captured Variables and Closures ..295

■ CONTENTS

xv

Beware the Captured Variable Surprise..297

Anonymous Methods as Delegate Parameter Binders..300

The Strategy Pattern ..304

Summary..305

■Chapter 11: Generics ... 307

Difference Between Generics and C++ Templates..308

Efficiency and Type Safety of Generics..309

Generic Type Definitions and Constructed Types ..311

Generic Classes and Structs ...311

Generic Interfaces...314

Generic Methods ...315

Generic Delegates ...317

Generic Type Conversion ..320

Default Value Expression ..321

Nullable Types...323

Constructed Types Control Accessibility ...325

Generics and Inheritance ..325

Constraints...327

Constraints on Nonclass Types ...332

Co- and Contravariance ...332

Covariance ..334

Contravariance..337

Invariance ...339

Variance and Delegates ..340

Generic System Collections ...344

Generic System Interfaces ...345

Select Problems and Solutions ..347

Conversion and Operators within Generic Types ..347

Creating Constructed Types Dynamically ...357

■ CONTENTS

xvi

Summary..358

■Chapter 12: Threading in C# .. 361

Threading in C# and .NET...361

Starting Threads ...362

Passing Data to New Threads..363

Using ParameterizedThreadStart ...365

The IOU Pattern and Asynchronous Method Calls...366

States of a Thread...366

Terminating Threads...369

Halting Threads and Waking Sleeping Threads ..371

Waiting for a Thread to Exit...372

Foreground and Background Threads...372

Thread-Local Storage..373

How Unmanaged Threads and COM Apartments Fit In ...377

Synchronizing Work Between Threads ..378

Lightweight Synchronization with the Interlocked Class ..379

SpinLock Class..385

Monitor Class ..387

Beware of Boxing...391

Pulse and Wait ...392

Locking Objects...396

ReaderWriterLock ..397

ReaderWriterLockSlim ...400

Mutex ...401

Semaphore..402

Events ...404

Win32 Synchronization Objects and WaitHandle ..405

Using ThreadPool ...407

Asynchronous Method Calls..408

Timers ...416

■ CONTENTS

xvii

Concurrent Programming...417

Task Class...418

Parallel Class ..420

Easy Entry to the Thread Pool ...425

Thread-Safe Collection Classes ...426

Summary..426

■Chapter 13: In Search of C# Canonical Forms ... 429

Reference Type Canonical Forms ..429

Default to sealed Classes..430

Use the Non-Virtual Interface (NVI) Pattern...431

Is the Object Cloneable? ...434

Is the Object Disposable?..440

Does the Object Need a Finalizer? ..443

What Does Equality Mean for This Object? ...450

Reference Types and Identity Equality...451

Value Equality ..454

Overriding Object.Equals for Reference Types ..454

If You Override Equals, Override GetHashCode Too ..457

Does the Object Support Ordering? ..461

Is the Object Formattable?..463

Is the Object Convertible? ...467

Prefer Type Safety at All Times...469

Using Immutable Reference Types ...473

Value Type Canonical Forms..476

Override Equals for Better Performance ...477

Do Values of This Type Support Any Interfaces? ..481

Implement Type-Safe Forms of Interface Members and Derived Methods ..482

Summary..484

Checklist for Reference Types ..485

Checklist for Value Types..486

■ CONTENTS

xviii

■Chaper 14: Extension Methods .. 489

Introduction to Extension Methods ..489

How Does the Compiler Find Extension Methods? ...490

Under the Covers...493

Code Readability versus Code Understandability..494

Recommendations for Use...495

Consider Extension Methods Over Inheritance ...495

Isolate Extension Methods in Separate Namespace ...496

Changing a Type’s Contract Can Break Extension Methods ...497

Transforms...497

Operation Chaining...502

Custom Iterators ..503

Borrowing from Functional Programming...505

The Visitor Pattern..511

Summary..515

■Chaper 15: Lambda Expressions ... 517

Introduction to Lambda Expressions..517

Lambda Expressions and Closures ...518

Closures in C# 1.0 ..521

Closures in C# 2.0 ..523

Lambda Statements ..524

Expression Trees..524

Operating on Expressions ...527

Functions as Data ...528

Useful Applications of Lambda Expressions ..529

Iterators and Generators Revisited ...529

More on Closures (Variable Capture) and Memoization ..533

Currying ..538

Anonymous Recursion ..540

■ CONTENTS

xix

Summary..541

■Chaper 16: LINQ: Language Integrated Query .. 543

A Bridge to Data ...544

Query Expressions ..544

Extension Methods and Lambda Expressions Revisited ...546

Standard Query Operators ...547

C# Query Keywords..549

The from Clause and Range Variables ..549

The join Clause..550

The where Clause and Filters ...552

The orderby Clause ...553

The select Clause and Projection..554

The let Clause ...556

The group Clause ..557

The into Clause and Continuations..560

The Virtues of Being Lazy...562

C# Iterators Foster Laziness ...562

Subverting Laziness..563

Executing Queries Immediately ..565

Expression Trees Revisited ...566

Techniques from Functional Programming..566

Custom Standard Query Operators and Lazy Evaluation...566

Replacing foreach Statements..575

Summary..576

■Chaper 17: Dynamic Types .. 577

What does dynamic Mean?..577

How Does dynamic Work? ...580

The Great Unification...582

Call Sites ...582

■ CONTENTS

xx

Objects with Custom Dynamic Behavior ...585

Efficiency ..587

Boxing with Dynamic ..589

Dynamic Conversions...590

Implicit Dynamic Expressions Conversion ..591

Dynamic Overload Resolution ..592

Dynamic Inheritance ..594

You Cannot Derive from dynamic..595

You Cannot Implement dynamic Interfaces ..595

You Can Derive From Dynamic Base Types ..597

Duck Typing in C# ..599

Limitations of dynamic Types ..602

ExpandoObject: Creating Objects Dynamically ..602

Summary..607

Index... 609

■ CONTENTS

xxi

About the Author

■ Trey Nash is an Escalation Engineer at Microsoft on the Platforms Global
Escalation Services team working on the Windows operating systems as well as
various other products. When he is not working feverishly within the bowels of the
operating system, he is delivering training on .NET Platform debugging as well as
user mode and kernel mode debugging on the Windows platform. Prior to working
at Microsoft, he was a Principal Software Engineer working on security solutions at
Credant Technologies, a market-leading security software company. He also
enjoyed a stint at a large Bluetooth company developing Bluetooth solutions for
the release of Microsoft Vista. And before that he called Macromedia Inc. home for
five years. At Macromedia, he worked on a cross-product engineering team for
several years, designing solutions for a wide range of products throughout the
company, including Flash, Fireworks, and Dreamweaver. He specialized in

COM/DCOM using C/C++/ATL until the .NET revolution. He’s been glued to computers ever since he
scored his first, a TI-99/4A, when he was a mere 13 years old. He astounded his parents by turning a
childhood obsession into a decent paying career, much to their dismay. Trey received his bachelor of
science and his master of engineering degrees in electrical engineering from Texas A&M University.
When he’s not sitting in front of a computer, you can find him working in his garage, playing his piano,
brushing up on a foreign language (Russian and Icelandic are the current favorites), or playing ice
hockey.

■ CONTENTS

xxii

About the Technical Reviewer

■ Damien Foggon is a developer, writer, and technical reviewer in cutting-edge technologies and has
contributed to more than 50 books on .NET, C#, Visual Basic and ASP.NET. He is a multiple MCPD in
.NET 2.0 and .NET 3.5 and can be found online at http://blog.littlepond.co.uk.

http://blog.littlepond.co.uk

■ CONTENTS

xxiii

Acknowledgments

Writing a book is a long and arduous process, during which I have received tons of great support, which I
greatly appreciate, from friends and family. The process would have been much more difficult, and
arguably much less fruitful, without their support.

I would like to specifically call out the following individuals for their contribution to the first two
editions of this work. I would like to thank (in no particular order) David Weller, Stephen Toub, Rex
Jaeschke, Vladimir Levin, Jerry Maresca, Chris Pels, Christopher T. McNabb, Brad Wilson, Peter Partch,
Paul Stubbs, Rufus Littlefield, Tomas Restrepo, John Lambert, Joan Murray, Sheri Cain, Jessica D’Amico,
Karen Gettman, Jim Huddleston, Richard Dal Porto, Gary Cornell, Brad Abrams, Ellie Fountain, Nicole
Abramowitz and the entire Apress crew, and finally, Shelley Nash, Michael Pulk, Shawn Wildermuth,
Sofia Marchant, Jim Compton, Dominic Shakeshaft, Wes Dyer, Kelly Winquist, and Laura Cheu.

During the development of the third edition, I would like to call out the following individuals for
their help and support (again in no particular order): Jonathan Hassell, Mary Tobin, Damien Foggon,
Maite Cervera.

If I have left anyone out, it is purely my mistake and not one I intended. I could not have done it
without all of your support. Thank you all!

xxiv

Preface

Visual C# .NET (C#) is relatively easy to learn for anyone familiar with another object-oriented language.
Even someone familiar with Visual Basic 6.0, who is looking for an object-oriented language, will find C#
easy to pick up. However, though C#, coupled with the .NET Framework, provides a quick path for
creating simple applications, you still must know a wealth of information and understand how to use it
correctly in order to produce sophisticated, robust, fault-tolerant C# applications. I teach you what you
need to know and explain how best to use your knowledge so that you can quickly develop true C#
expertise.

Idioms and design patterns are invaluable for developing and applying expertise, and I show you
how to use many of them to create applications that are efficient, robust, fault-tolerant, and exception-
safe. Although many are familiar to C++ and Java programmers, some are unique to .NET and its
Common Language Runtime (CLR). I show you how to apply these indispensable idioms and design
techniques to seamlessly integrate your C# applications with the .NET runtime, focusing on the new
capabilities of C# 3.0

Design patterns document best practices in application design that many different programmers
have discovered and rediscovered over time. In fact, the .NET Framework itself implements many well-
known design patterns. Similarly, over the past three versions of the .NET Framework and the past two
versions of C#, many new idioms and best practices have come to light. You will see these practices
detailed throughout this book. Also, it is important to note that the invaluable tool chest of techniques is
evolving constantly.

With the arrival of C# 3.0, you can easily incorporate functional programming techniques using
lambda expressions, extension methods, and Language Integrated Query (LINQ). Lambda expressions
make is easy to declare and instantiate function delegates at one point. Additionally, with lambda
expressions, it’s trivial to create functionals, which are functions that accept functions as arguments and
typically return another function. Even though you could implement functional programming
techniques in C# (albeit with some difficulty), the new language features in C# 3.0 foster an environment
where functional programming can flourish interweaved with the typical imperative programming style
of C#. LINQ allows you to express data query operations (which are typically functional in nature) using
a syntax that is native to the language. Once you see how LINQ works, you realize you can do much more
than simple data query and use it to implement complex functional programs.

.NET and the CLR provide a unique and stable cross-platform execution environment. C# is only
one of the languages that target this powerful runtime. You will find that many of the techniques
explored in this book are also applicable to any language that targets the .NET runtime.

For those of you who have significant C++ experience and are familiar with such concepts as C++
canonical forms, exception safety, Resource Acquisition Is Initialization (RAII), and const correctness,
this book explains how to apply these concepts in C#. If you’re a Java or Visual Basic programmer who
has spent years developing your toolbox of techniques and you want to know how to apply them
effectively in C#, you’ll find out how to here.

As you’ll see, it doesn’t take years of trial-and-error experience to become a C# expert. You simply
need to learn the right things and the right ways to use them. That’s why I wrote this book for you.

■ PREFACE

xxv

About This Book
I assume that you already have a working knowledge of some object-oriented programming language,
such as C++, Java, or Visual Basic .NET. Since C# derives its syntax from both C++ and Java, I don’t spend
much time covering C# syntax, except where it differs starkly from C++ or Java. If you already know some
C#, you may find yourself skimming or even skipping Chapters 1 through 3.

Chapter 1, “C# Preview,” gives a quick glimpse of what a simple C# application looks like, and it
describes some basic differences between the C# programming environment and the native C++
environment.

Chapter 2, “C# and the CLR,” expands on Chapter 1 and quickly explores the managed environment
within which C# applications run. I introduce you to assemblies, the basic building blocks of
applications, into which C# code files are compiled. Additionally, you’ll see how metadata makes
assemblies self-describing.

Chapter 3, “C# Syntax Overview,” surveys the C# language syntax. I introduce you to the two
fundamental kinds of types within the CLR: value types and reference types. I also describe namespaces
and how you can use them to logically partition types and functionality within your applications.

Chapters 4 through 13 provide in-depth descriptions on how to employ useful idioms, design
patterns, and best practices in your C# programs and designs. I’ve tried hard to put these chapters in
logical order, but occasionally one chapter may reference a technique or topic covered in a later chapter.
It is nearly impossible to avoid this situation, but I tried to minimize it as much as possible.

Chapter 4, “Classes, Structs, and Objects,” provides details about defining types in C#. You’ll learn
more about value types and reference types in the CLR. I also touch upon the native support for
interfaces within the CLR and C#. You’ll see how type inheritance works in C#, as well as how every
object derives from the System.Object type. This chapter also contains a wealth of information regarding
the managed environment and what you must know in order to define types that are useful in it. I
introduce many of these topics in this chapter and discuss them in much more detail in later chapters.

Chapter 5, “Interfaces and Contracts,” details interfaces and the role they play in the C# language.
Interfaces provide a functionality contract that types may choose to implement. You’ll learn the various
ways that a type may implement an interface, as well as how the runtime chooses which methods to call
when an interface method is called.

Chapter 6, “Overloading Operators,” details how you may provide custom functionality for the
built-in operators of the C# language when applied to your own defined types. You’ll see how to
overload operators responsibly, because not all managed languages that compile code for the CLR are
able to use overloaded operators.

Chapter 7, “Exception Handling and Exception Safety,” shows you the exception-handling
capabilities of the C# language and the CLR. Although the syntax is similar to that of C++, creating
exception-safe and exception-neutral code is tricky—even more tricky than creating exception-safe code
in native C++. You’ll see that creating fault-tolerant, exception-safe code doesn’t require the use of try,
catch, or finally constructs at all. I also describe some of the new capabilities added with the .NET 2.0
runtime that allow you to create more fault-tolerant code.

Chapter 8, “Working with Strings,” describes how strings are a first-class type in the CLR and how to
use them effectively in C#. A large portion of the chapter covers the string-formatting capabilities of
various types in the .NET Framework and how to make your defined types behave similarly by
implementing IFormattable. Additionally, I introduce you to the globalization capabilities of the
framework and how to create custom CultureInfo for cultures and regions that the .NET Framework
doesn’t already know about.

Chapter 9, “Arrays, Collection Types, and Iterators,” covers the various array and collection types
available in C#. You can create two types of multidimensional arrays, as well as your own collection
types while utilizing collection-utility classes. You’ll see how to define forward, reverse, and bidirectional
iterators using the new iterator syntax introduced in C# 2.0, so that your collection types will work well
with foreach statements.

■ PREFACE

xxvi

Chapter 10, “Delegates, Anonymous Functions, and Events,” shows you the mechanisms used
within C# to provide callbacks. Historically, all viable frameworks have always provided a mechanism to
implement callbacks. C# goes one step further and encapsulates callbacks into callable objects called
delegates. Additionally, C# 2.0 allows you to create delegates with an abbreviated syntax called
anonymous functions. Anonymous functions are similar to lambda functions in functional
programming. Also, you’ll see how the framework builds upon delegates to provide a publish/subscribe
event notification mechanism, allowing your design to decouple the source of the event from the
consumer of the event.

Chapter 11, “Generics,” introduces you to probably the most exciting feature added to C# 2.0 and
the CLR. Those familiar with C++ templates will find generics somewhat familiar, though many
fundamental differences exist. Using generics, you can provide a shell of functionality within which to
define more specific types at run time. Generics are most useful with collection types and provide great
efficiency compared to the collections of previous .NET versions. Starting with C# 4.0, generic type usage
became even more intuitive with the support of co- and contravariance. Assigning from one generic type
to another when it makes intuitive type-sense is now possible, thus reducing the clutter of conversion
methods needed prior to that.

Chapter 12, “Threading in C#,” covers the tasks required in creating multithreaded applications in
the C# managed virtual execution environment. If you’re familiar with threading in the native Win32
environment, you’ll notice the significant differences. Moreover, the managed environment provides
much more infrastructure for making the job easier. You’ll see how delegates, through use of the I Owe
You (IOU) pattern, provide an excellent gateway into the process thread pool. Arguably, synchronization
is the most important concept when getting multiple threads to run concurrently. This chapter covers
the various synchronization facilities available to your applications. In today’s world, concurrency is at
the forefront because, rather than spending exorbitant amount of time and money to create faster
processors, the industry has gravitated to creating processors with multiple cores. Therefore, I introduce
the new Parallel Extensions and the Task Parallel Library (TPL) added to .NET 4.0.

Chapter 13, “In Search of C# Canonical Forms,” is a dissertation on the best design practices for
defining new types and how to make them so you can use them naturally and so consumers won’t abuse
them inadvertently. I touch upon some of these topics in other chapters, but I discuss them in detail in
this chapter. This chapter concludes with a checklist of items to consider when defining new types using
C#.

Chapter 14, “Extension Methods,” are new since C# 3.0. Because you can invoke them like instance
methods on a type they extend, they can appear to augment the contract of types. But they are much
more than that. In this chapter, I show you how extension methods can begin to open up the world of
functional programming in C#.

Chapter 15, “Lambda Expressions,” are another feature added to C# 3.0. You can declare and
instantiate delegates using lambda expressions using a syntax that is brief and visually descriptive.
Although anonymous functions can serve the same purpose just mentioned, they are much more
verbose and less syntactically elegant. However, in C# 3.0 and beyond, you can convert lambda
expressions into expression trees. That is, the language has a built-in capability to convert code into data
structures. By itself, this capability is useful, but not nearly as useful as when coupled with Language
Integrated Query (LINQ). Lambda expressions, coupled with extension methods, really bring functional
programming full circle in C#.

Chapter 16, “LINQ: Language Integrated Query,” is the culmination of all of the new features added
to C# 3.0. Using LINQ expressions via the LINQ-oriented keywords, you can seamlessly integrate data
queries into your code. LINQ forms a bridge between the typically imperative programming world of C#
programming and the functional programming world of data query. LINQ expressions can be used to
manipulate normal objects as well as data originating from SQL databases, Datasets, and XML just to
name a few.

Chapter 17, “Dynamic Types,” covers the new dynamic type added in C# 4.0. Along with the
dynamic type comes easier integration with dynamic .NET languages, including COM Automation
objects. Gone are the days of coding unnatural-looking and hard-to-read code purely in efforts to
integrate with these components because the dynamic type implementation handles all of that rote

■ PREFACE

xxvii

work for you. The implementation of the dynamic type utilizes the Dynamic Language Runtime (DLR)
which is the same foundation for dynamic languages such as IronRuby and IronPython, among others.
And while using the dynamic type in conjunction with DLR types such as ExpandoObject, you can create
and implement truly dynamic types in C#.

C H A P T E R 1

■ ■ ■

1

C# Preview

This is a book for experienced object-oriented developers; therefore, I assume that you already have
some familiarity with the .NET runtime. Essential .NET Volume 1: The Common Language Runtime by
Don Box (Boston, MA: Addison-Wesley, 2002) is an excellent book specifically covering the .NET
runtime. Additionally, it’s important to look at some of the similarities and differences between C# and
C++, and then go through an elementary “Hello World!” example for good measure. If you already have
experience building .NET applications, you may want to skip this chapter. However, you may want to
read the section “Overview of New C# 4.0 Features.”

Differences Between C# and C++
C# is a strongly typed object-oriented language whose code visually resembles C++ (and Java). This
decision by the C# language designers allows C++ developers to easily leverage their knowledge to
quickly become productive in C#. C# syntax differs from C++ in some ways, but most of the differences
between these languages are semantic and behavioral, stemming from differences in the runtime
environments in which they execute.

C#
C# source code compiles into managed code. Managed code, as you may already know, is an
intermediate language (IL) because it is halfway between the high-level language (C#) and the lowest-
level language (assembly/machine code). At runtime, the Common Language Runtime (CLR) compiles
the code on the fly by using Just In Time (JIT) compiling. As with just about anything in engineering, this
technique comes with its pros and cons. It may seem that an obvious con is the inefficiency of compiling
the code at runtime. This process is different from interpreting, which is typically used by scripting
languages such as Perl and JScript. The JIT compiler doesn’t compile a function or method each and
every time it’s called; it does so only the first time, and when it does, it produces machine code native to
the platform on which it’s running. An obvious pro of JIT compiling is that the working set of the
application is reduced, because the memory footprint of intermediate code is smaller. During the
execution of the application, only the needed code is JIT-compiled. If your application contains printing
code, for example, that code is not needed if the user never prints a document, and therefore the JIT
compiler never compiles it. Moreover, the CLR can optimize the program’s execution on the fly at
runtime. For example, the CLR may determine a way to reduce page faults in the memory manager by
rearranging compiled code in memory, and it could do all this at runtime. Once you weigh all the pros
together, you find that they outweigh the cons for most applications.

CHAPTER 1 ■ C# PREVIEW

2

■ Note Actually, you can choose to code your programs in raw IL while building them with the IL Assembler

(ILASM). However, it will likely be an inefficient use of your time. High-level languages can nearly always provide

any capability that you can achieve with raw IL code.

C++
Unlike C#, C++ code traditionally compiles into native code. Native code is the machine code that’s
native to the processor for which the program was compiled. For the sake of discussion, assume that
we’re talking about natively compiled C++ code rather than managed C++ which can be achieved by
using C++/CLI. If you want your native C++ application to run on different platforms, such as on both a
32-bit platform and a 64-bit platform, you must compile it separately for each. The native binary output
is generally not compatible across platforms.

IL, on the other hand, is compatible across platforms, because it, along with the Common Language
Infrastructure (CLI) upon which the CLR is built, is a defined international standard.1 This standard is
rapidly gaining traction and being implemented beyond the Microsoft Windows platform.

■ Note I recommend you check out the work the Mono team has accomplished toward creating alternate, open

source Virtual Execution Systems (VESs) on other platforms.2

Included in the CLI standard is the Portable Executable (PE) file format for managed modules.
Therefore, you can actually compile a C# program on a Windows platform and execute the output on
both Windows and Linux without having to recompile, because even the file format is standardized.3
This degree of portability is extremely convenient and was in the hearts and minds of the COM/DCOM
designers back in the day, but for various reasons, it failed to succeed across disparate platforms at this
level.4 One of the major reasons for that failure is that COM lacked a sufficiently expressive and
extensible mechanism for describing types and their dependencies. The CLI specification solves this
nicely by introducing metadata, which I’ll describe in Chapter 2.

1 You can find the CLI standard document Ecma-335 at http://www.ecma-international.org. Additionally, Ecma-
334 is the standard document for the C# language.

2 You can find the Mono project on the Internet at http://www.mono-project.com.
3 Of course, the target platform must also have all of the dependent libraries installed. This is quickly becoming a
reality, considering the breadth of the .NET Standard Library. For example, check out http://www.go-
mono.com/docs/ to see how much coverage the Mono project libraries have.
4 For all the gory details, I recommend reading Essential .NET, Volume I: The Common Language Runtime by Don Box
and Chris Sells (Boston, MA: Addison-Wesley Professional, 2002). (The title leads one to believe that Volume II is due
out any time now, so let’s hope it’s not titled in the same vein as Mel Brooks’ History of the World: Part I.)

http://www.ecma-international.org
http://www.mono-project.com
http://www.go-mono.com/docs
http://www.go-mono.com/docs
http://www.go-mono.com/docs

CHAPTER 1 ■ C# PREVIEW

3

CLR Garbage Collection
One of the key facilities in the CLR is the garbage collector (GC). The GC frees you from the burden of
handling memory allocation and deallocation, which is where many software errors can occur. However,
the GC doesn’t remove all resource-handling burdens from your plate, as you’ll see in Chapter 4. For
example, a file handle is a resource that must be freed when the consumer is finished with it, just as
memory must be freed in the same way. The GC handles only memory resources directly. To handle
resources other than memory, such as database connections and file handles, you can use a finalizer (as
I’ll show you in Chapter 13) to free your resources when the GC notifies you that your object is being
destroyed. However, an even better way is to use the Disposable pattern for this task, which I’ll
demonstrate in Chapters 4 and 13.

■ Note The CLR references all objects of reference type indirectly, similar to the way you use pointers and references

in C++, except without the pointer syntax. When you declare a variable of a reference type in C#, you actually reserve

a storage location that has a type associated with it, either on the heap or on the stack, which stores the reference to

the object. So when you copy an object reference in one variable into another variable, you end up with two variables

referencing the same object. All reference type instances live on the managed heap. The CLR manages the location of

these objects, and if it needs to move them around, it updates all the outstanding references to the moved objects to

point to the new location. Also, value types exist in the CLR, and instances of them live on the stack or as a field of an

object on the managed heap. Their usage comes with many restrictions and nuances. You normally use them when

you need a lightweight structure to manage some related data. Value types are also useful when modeling an

immutable chunk of data. I cover this topic in much more detail in Chapter 4.

C# allows you to develop applications rapidly while dealing with fewer mundane details than in a
C++ environment. At the same time, C# provides a language that feels familiar to either C++ or Java
developers.

Example of a C# Program
Let’s take a close look at a very simple C# program. Consider the venerable “Hello World!” program that
everyone knows and loves. A console version of it looks like this in C#:

class EntryPoint {
 static void Main() {
 System.Console.WriteLine("Hello World!");
 }
}

Note the structure of this C# program. It declares a type (a class named EntryPoint) and a member
of that type (a method named Main). This differs from C++, where you declare a type in a header and
define it in a separate compilation unit, usually a .cpp file. Also, metadata (which describes all of the
types in a module and is generated transparently by the C# compiler) removes the need for the forward
declarations and inclusions as required in C++. In fact, forward declarations don’t even exist in C#.

CHAPTER 1 ■ C# PREVIEW

4

C++ programmers will find the static Main method familiar, except for the fact that its name begins
with a capital letter. Every program requires an entry point, and in the case of C#, it is the static Main
method. There are some further differences. For example, the Main method is declared within a class (in
this case, named EntryPoint). In C#, you must declare all methods within a type definition. There is no
such thing as a static, free function as there is in C++. The return type for the Main method may be either
of type int or void, depending on your needs. In my example, Main has no parameters, but if you need
access to the command-line parameters, your Main method can declare a parameter (an array of strings)
to access them.

■ Note If your application contains multiple types with a static Main method, you can select which one to use via

the /main compiler switch.

You may notice that the call to WriteLine seems verbose. I had to qualify the method name with the
class name Console, and I also had to specify the namespace that the Console class lives in (in this case,
System). .NET (and therefore C#) supports namespaces to avoid name collisions in the vast global
namespace. However, instead of having to type the fully qualified name, including the namespace, every
time, C# provides the using directive, which is analogous to Java’s import and C++’s using namespace. So
you could rewrite the previous program slightly, as Listing 1-1 shows.

Listing 1-1. hello_world.cs

using System;

class EntryPoint {
 static void Main() {
 Console.WriteLine("Hello World!");
 }
}

With the using System; directive, you can omit the System namespace when calling
Console.WriteLine.

To compile this example, execute the following command from a Windows command prompt:

csc.exe /r:mscorlib.dll /target:exe hello_world.cs

Let’s take a look at exactly what this command line does:

• csc.exe is the Microsoft C# compiler.

• The /r option specifies the assembly dependencies this program has. Assemblies
are similar in concept to DLLs in the native world. mscorlib.dll is where the
System.Console object is defined. In reality, you don’t need to reference the
mscorlib assembly because the compiler will reference it automatically, unless
you use the /nostdlib option.

CHAPTER 1 ■ C# PREVIEW

5

• The /target:exe option tells the compiler that you’re building a console
application, which is the default if not specified. Your other options here are
/target:winexe for building a Windows GUI application, /target:library for
building a DLL assembly with the .dll extension, and /target:module for
generating a DLL with the .netmodule extension. /target:module generated
modules don’t contain an assembly manifest, so you must include it later into an
assembly using the assembly linker al.exe. This provides a way to create multiple-
file assemblies.

• hello_world.cs is the C# program you’re compiling. If multiple C# files exist in the
project, you could just list them all at the end of the command line.

Once you execute this command line, it produces hello_world.exe, and you can execute it from the
command line and see the expected results. If you want, you can rebuild the code with the /debug
option. Then you may step through the execution inside of a debugger. To give an example of C#
platform independence, if you happen to have a Linux OS running and you have the Mono VES installed
on it, you can copy this hello_world.exe directly over in its binary form and it will run as expected,
assuming everything is set up correctly on the Linux box.

Overview of Features Added in C# 2.0
Since its initial release in late 2000, the C# language has evolved considerably. This evolution has likely
been accelerated thanks to the wide adoption of C#. With the release of Visual Studio 2005 and the .NET
Framework 2.0, the C# compiler supported the C# 2.0 enhancements to the language. This was great
news, since C# 2.0 included some handy features that provided a more natural programming experience
as well as greater efficiency. This section provides an overview of what those features are and what
chapters of the book contain more detailed information.

Arguably, the meatiest addition to C# 2.0 was support for generics. The syntax is similar to C++
templates, but the main difference is that constructed types created from .NET generics are dynamic in
nature—that is, they are bound and constructed at runtime. This differs from C++ concrete types created
from templates, which are static in the sense that they are bound and created at compile time.5 Generics
are most useful when used with container types such as vectors, lists, and hash tables, where they
provide the greatest efficiency gains. Generics can treat the types that they contain specifically by their
type, rather than by using the base type of all objects, System.Object. I cover generics in Chapter 11, and
I cover collections in Chapter 9.

C# 2.0 added support for anonymous methods. An anonymous method is sometimes referred to as a
lambda function, which comes from functional programming disciplines. C# anonymous methods are
extremely useful with delegates and events. Delegates and events are constructs used to register callback
methods that are called when triggered. Normally, you wire them up to a defined method somewhere.
But with anonymous methods, you can define the delegate’s or event’s code inline, at the point where
the delegate or event is set up. This is handy if your delegate merely needs to perform some small
amount of work for which an entire method definition would be overkill. What’s even better is that the
anonymous method body has access to all variables that are in scope at the point it is defined.6 I cover

5 Using C++/CLI, standardized in Ecma-372 and first made available with Visual Studio 2008, you can use generics
and templates together.
6 This is referred to as either a closure or variable capture.

CHAPTER 1 ■ C# PREVIEW

6

anonymous methods in Chapter 10. Lambda expressions, which are new to C# 3.0, supersede
anonymous methods and make for more readable code.

C# 2.0 added support for iterator blocks. Anyone familiar with the C++ Standard Template Library
(STL) knows about iterators and their usefulness. In C#, you typically use the foreach statement to
iterate over an object that behaves as a collection. That collection object must implement the
IEnumerable interface, which includes the GetEnumerator method. Implementing the GetEnumerator
method on container types is typically very tedious. However, when using C# iterators, implementing
the GetEnumerator method is a snap. You can find more information regarding iterators in Chapter 9.

Finally, C# 2.0 added support for partial types. Prior to C# 2.0, you had to define each C# class
entirely in one file (also called a compilation unit). This requirement was relaxed with the support for
partial types. This was great news for those who rely upon code generators to provide skeleton code. For
example, you can use the Visual Studio wizards to generate such useful things as System.Data.DataSet
derived types for accessing data in a database. Prior to C# 2.0, it was problematic if you needed to make
modifications to the generated code. You either had to derive from or contain the generated type in a
new type while specializing its implementation, or you had to edit the generated code. Editing the
generated code was risky because you normally lost those changes when the wizard was forced to
regenerate the type for some reason. Partial types solve this problem, because now you can augment the
generated code in a separate file so that your changes aren’t lost when the wizard regenerates the code.
For a great example of how partial types are used, look at the code automatically generated when you
create a Windows Forms application using Visual Studio. You can find more information regarding
partial types in Chapter 4.

Overview of Features Added in C# 3.0
C# 3.0 included some great new features. Most of the new features are stepping stones designed to
support Language Integrated Query (LINQ). Nevertheless, all of them are extremely useful when used
individually outside of the context of LINQ. Many of them allow programmers to employ functional
programming techniques more easily.

C# now supports implicitly typed local variables by making use of a new keyword var. It’s important
to note that these variables are not typeless; rather, their type is inferred at compile time. You can read
more about them in Chapter 3.

Have you ever wanted to create a simple type to hold some related data but been annoyed at having
to create an entire new class? In many cases, the support for anonymous types helps relieve you of this
burden. Using anonymous types, you can define and instantiate a type all in one compound statement. I
cover anonymous types in Chapter 4.

Auto-implemented properties are another helpful feature to save us some typing and reduce the
potential to introduce bugs. How many times have you simply declared a class to hold a few pieces of
data and been annoyed with the amount of typing required to create property accessors for that data?
After all, doing so follows good encapsulation practices. Thankfully, auto-implemented properties
greatly reduce the amount of typing necessary to define properties on types. You can read more about
them in Chapter 4.

While we’re on the subject of conveniences, C# 3.0 also introduced two new features that help when
instantiating and initializing object instances. Using object and collection initializers, you can
instantiate and initialize either an object or a collection in one compound statement. I cover object
initializers in Chapter 4 and collection initializers in Chapter 9.

C# 2.0 introduced partial class definitions to facilitate using code generators. C# 3.0 adds to that by
introducing partial methods. Using partial methods, a code generator can declare a method signature,
and the consumer of that generated code, the one that creates the rest of the partial class definition, can
choose to implement it or not. You can read more about partial methods in Chapter 4.

Extension methods are one of the most exciting new features. Taken from the surface view, they are
merely static methods that can be called as if they were instance methods. They do not get any special

CHAPTER 1 ■ C# PREVIEW

7

access into the instance they are operating on, so in that respect, they are just like static methods.
However, the syntax they foster allows us to program in a more functional manner, usually resulting in
clearer and more readable code. I devote the entire Chapter 14 to extension methods and what you can
do with them.

Probably more compelling than extension methods is support for lambda expressions. Lambda
expressions supersede support for anonymous methods. That is, if lambda expressions had existed in C#
2.0, there would have been no need for anonymous methods at all. However, lambda expressions offer
much more than anonymous methods as they can be converted into both delegates and expression
trees. Lambda expressions are covered in Chapter 15.

The granddaddy of all new C# 3.0 features has to be LINQ, which builds upon all of the new features,
especially extension methods, lambda expressions, and anonymous types. It also adds some new
language keywords to allow us to code intuitive query statements, thus seamlessly bridging the gap
between the object-oriented world and the data world. You can use LINQ to access data from multiple
sources. Visual Studio provides the capability to use LINQ on native object collections, SQL data stores,
and XML. Support for many other data sources is coming soon from both Microsoft and third parties.
For example, you’ll be able to use LINQ to connect to Windows Management Instrumentation (WMI),
the Document Object Model (DOM), and the Web. Additionally, there are implementations in the works
to use LINQ against popular web sites such as Google and Flickr. Chapter 16 is devoted to LINQ.

Overview of New C# 4.0 Features
Arguably, the theme of the new features of C# 4.0 centers on interoperability. The biggest feature in that
respect is the new dynamic type. By using dynamic, the cumbersome rigmarole of interoperating with
COM objects or types created by .NET dynamic languages is a thing of the past. Visual Basic has had a
leg up on C# for quite some time with respect to interoperability. But with C# 4.0, the playing field has
been leveled. Chapter 17 is devoted entirely to the dynamic type.

Each time the C# development team embarks on a new feature cycle, they must choose from a list of
feature ideas and requests. For some time, default method argument values has been on that list, but
prior to C# 4.0, has never been implemented. However, interoperability is just the compelling reason
needed to reach the tipping point. With default argument values, interoperating with COM types
becomes even easier. However, there is another feature that goes hand-in-hand with default arguments
values and that is named arguments. In C# 4.0, you can pass arguments to methods as named arguments
such that ordering of arguments in the argument list is irrelevant. As nice as that sounds, it is even more
powerful when you couple it with default argument values and COM interoperability. Often, COM
automation interfaces contain methods with many parameters that are often optional. Using default
arguments, you do not have to provide values for all of them. And by using named arguments, you can
pick and choose which of the arguments in the default list of arguments you want to provide.

Rounding out the new features of C# 4.0 is that of variance. New contextual keyword support was
added to allow one to declare covariant and contravariant generic interfaces and delegates. By
decorating the generic arguments with the in and out keywords, you can declare the interface as co- or
contravariant. This allows such intuitive implicit covariant conversions from IEnumerable<string>
references to IEnumerable<object> references. This is something that was not possible prior to C# 4.0.
This type of covariance has always been supported for arrays, however, it is broken. Chapter 11 includes
a section detailing the intricacies of co- and contravariance support added in C# 4.0.

Summary
In this chapter, I’ve touched upon the high-level characteristics of programs written in C#. That is, all
code is compiled into IL rather than the native instructions for a specific platform. Additionally, the CLR
implements a GC to manage raw memory allocation and deallocation, freeing you from having to worry

CHAPTER 1 ■ C# PREVIEW

8

about one of the most common errors in software development: improper memory management.
However, as with most engineering trade-offs, there are other aspects (read: complications) of memory
and resource management that the GC can introduce in certain situations.

Using the venerable “Hello World!” example, I was able to quickly show the usefulness of
namespaces as well as the fact that C# is devoid of any kind of inclusion syntax as available in C++.
Instead, all other external types are brought into the compilation unit via metadata, which is a rich
description format of the types contained within an assembly. Therefore, the metadata and the
compiled types are always contained in one neat package.

Generics open up such a huge area of development that you’ll probably still be learning handy tricks
of applying them over the next several years. Some of those tricks can be borrowed from the C++
template world, but not all of them, since the two concepts are fundamentally different. Iterators and
anonymous methods offer a concise way of expressing common idioms such as enumeration and
callback methods, while support for partial type declarations within C# makes it easier to work with tool-
generated code.

C# 3.0 and C# 4.0 offered many new and exciting features that allow one to employ functional
programming techniques very easily with little overhead. Some of the features add convenience to
programming in C#. LINQ provides a seamless mechanism to bridge to the data storage world from the
object-oriented world.

In the next chapter, I’ll briefly cover more details regarding the JIT compilation process.
Additionally, I’ll dig into assemblies and their contained metadata a bit more. Assemblies are the basic
building blocks of C# applications, analogous to DLLs in the native Windows world.

C H A P T E R 2

■ ■ ■

9

C# and the CLR

As mentioned in the previous chapter, managed applications and native applications have many
differences, mainly because managed applications run inside the Microsoft CLR. The CLR is a Virtual
Execution System (VES) that implements the CLI. The CLR provides many useful facilities to managed
applications, including a highly tuned GC for memory management, a code access security layer, and a
rich self-describing type system, among others. In this chapter, I’ll show you how the CLR compiles,
packages, and executes C# programs.

■ Note In-depth coverage of the CLR is outside the scope of this book, because I focus closely on C# concepts

and usage. However, I recommend that you become familiar with the CLR. It’s always best to know and

understand your target platform, and in the case of managed applications such as C#, the platform is the .NET

CLR. For further, in-depth coverage of the CLR and everything covered in this chapter, see Essential .NET, Volume

I: The Common Language Runtime by Don Box and Chris Sells (Addison-Wesley Professional, 2002) and Pro C#

2005 and the .NET 2.0 Platform, Third Edition by Andrew Troelsen (Apress, 2005). After that, you may find many of

the other, more specific books on the CLR more informative. For complete coverage of the CLR layer that provides

complete interoperability with native environments such as COM objects and the underlying platform, I recommend

.NET and COM: The Complete Interoperability Guide by Adam Nathan (Sams, 2002). For topics dealing with .NET

code access security, I recommend .NET Framework Security by Brian A. LaMacchia, et al. (Pearson Education,

2002). Because no developer should ever ignore platform security when designing new systems, I recommend The

.NET Developer’s Guide to Windows Security by Keith Brown (Addison-Wesley Professional, 2004).

This chapter provides a high-level and cursory description of the mechanisms involved with
compiling C# and loading code for execution. Once the code is loaded, it must be compiled into native
machine code for the platform it’s running on. Therefore, you need to understand the concept of JIT
compilation.

CHAPTER 2 ■ C# AND THE CLR

10

The JIT Compiler in the CLR
C# is compiled into IL, and IL is what the CLR processes. The IL specification is contained in the CLI
standard. You can see what IL looks like by loading the “Hello World!” application (from Chapter 1) into
the Intermediate Language Disassembler (ILDASM) provided with the .NET SDK. 1 ILDASM shows you a
tree view of the type data from the assembly, and you can open up individual methods and see the IL
code that the C# compiler generated for them. As shown in Listing 2-1, IL looks similar to assembly
language. In essence, it’s the assembly language of the CLR. It’s called IL because it acts as an
intermediate step between a specific language and a specific platform.

Listing 2-1. HelloWorld.exe Main Method IL

.method private hidebysig static void Main() cil managed
{
 .entrypoint
 // Code size 13 (0xd)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Hello World! "
 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: ret
} // end of method EntryPoint::Main

The CLR is not an interpreter. It doesn’t retranslate the IL code each time it executes it. Although
interpreters provide many flexible solutions (as in the JScript interpreter for the Windows Scripting Host,
for example), they’re generally not efficient run-time platforms. The CLR actually compiles IL code into
machine code before it executes it—called JIT compiling. This process takes some time, but for each part
of a program, it generally means only a one-time performance hit per process. Once the code is
compiled, the CLR holds on to it and simply executes the compiled version the next time it’s needed, just
as quickly as traditionally compiled code.

Although the JIT compilation phase adds some complexity and has an initial run time performance
penalty associated with it, the benefits of a JIT compiler coupled with the CLR can outweigh the time
penalty of JIT compiling and actually create more efficient code than native compiled applications
because of the following:

• Managed applications can consume far less memory: In general, IL code has a
smaller footprint than native code. In other words, the working set of managed
applications—that is, the number of memory pages the application consumes—is
normally smaller than native applications. With a fair amount of work, you can
reduce the working set of native applications to be comparable to managed
applications, but with the CLR, you get this for free. Your mileage may vary with
this regard because there is also the added overhead of CLR management
structures, assembly metadata, and other constructs loaded in memory. For very

1 If you have Visual Studio 2010 installed, you can easily launch ILDASM.exe from a Visual Studio 2010 command
prompt.

CHAPTER 2 ■ C# AND THE CLR

11

small applications, managed code along with the CLR can consume more memory
than the native counterpart.

• Only IL code that is executed ever gets JIT-compiled: IL code is generally more
compact than machine code, so keeping the compiled code to a minimum
reduces the memory footprint of the application.

• JIT-compiled code is highly optimized: When compiling typical native applications,
code is optimized based on generalizations such as what the typical computer
system topology looks like. JIT compiled code is optimized directly for the
platform it is running on at that moment. Therefore, it can consider very specific
parameters of the platform when optimizing compiled code and often generates
far more performant code than statically compiled native applications.

• The CLR can keep track of the frequency of calls: If it sees that a JIT-compiled code
section has not been called in a long time, it can free the space occupied by it. The
code will be recompiled if it’s called again.

The CLR also may perform optimizations at run time. In native applications, you define the
optimizations at compile time. But, because compilation occurs at run time in the CLR, it can apply
optimizations at any time. It may be the case that a CLR implementation can compile code faster with
fewer optimizations, and it may default to doing it that way. However, for code that it sees getting called
frequently, it could recompile such code with more optimizations turned on so that it executes faster.
For example, the CLR efficiency model can be vastly different depending on how many CPUs are on the
target platform or even what architecture family the CPUs belong to. For native applications, you have to
do more manual work—either at run time or compile time—to accommodate such a situation. But the
CLR provides facilities so you can create multi-CPU performance enhancements more readily.
Additionally, if the CLR determines that different parts of code scattered all over the application are
called rather frequently, it has the liberty to move them in memory so that they are all within the same
group of memory pages, thus minimizing the number of page faults and increasing the cache hits as the
application runs. Additionally, the CLR could perform branch optimization at any time by re-JIT
compiling code whereas in native applications, one must perform Profile-Guided Optimization where
those optimizations are based on what the developer assumes is the most likely platform configuration
on which the user is running the application. In other words, in the native application case optimization
is based on guesses and assumptions whereas in the CLR case, the optimizations are based on real data
for the exact platform on which it is running.

These are only a few of the reasons why the CLR is a flexible platform to target, and why its benefits
quickly outweigh the initial perceived performance hit of JIT compiling.

Assemblies and the Assembly Loader
An assembly is a discrete unit of reusable code within the CLR, similar in nature to a DLL in the
unmanaged world, but that’s where the similarities end. An assembly can consist of multiple modules all
linked together by a manifest, which describes the contents of the assembly. With respect to the
operating system, a module is identical to a DLL. Assemblies can have a version attached to them so that
multiple assemblies with the same name but different versions are identifiable separately. Assemblies
also contain metadata describing the contained types. When you distribute a native DLL, you typically
include a header file and/or documentation describing the exported functions. Metadata fulfills this
requirement, completely describing the types contained within the assembly. In short, assemblies are
versioned, self-describing units of reuse within the CLR environment.

As discussed in Chapter 1, when you compile the “Hello World!” program, the result is an .exe file
that is, in fact, an assembly. You can create managed assemblies using any managed language.

CHAPTER 2 ■ C# AND THE CLR

12

Moreover, in most cases, any other managed language can consume managed assemblies. Therefore,
you can easily create complex systems developed with multiple managed languages. For example, when
creating some low-level types, C++/CLI may be the most natural language to get the job done, but it may
make more sense to code the top-level user interface using either C# or Visual Basic and complex
arithmetic code using F#. To provide interoperability between the various languages, the CLI defines a
subset of the Common Type System (CTS) known as the Common Language Specification (CLS). If you
use only CLS-compliant types in your assemblies, you are guaranteed that any managed language can
consume them.

Minimizing the Working Set of the Application
In the “Hello World!” example, the resulting assembly consists of only one file. However, assemblies can
consist of multiple files. These files can include compiled modules, resources, and any other
components listed in the assembly manifest. The assembly manifest is typically included in the main
assembly module and contains essential identification information, including which pieces belong to
the assembly. By using this information, the assembly loader can determine, among other things, if an
assembly is incomplete or has been tampered with. Assemblies are either strongly named or not strongly
named. A strongly named assembly has a hash code built into its manifest that the loader can use to test
the integrity of the assembly to ensure it has not been tampered with. Assemblies can also be digitally
signed in order to identify their producer.

When a C# executable launches, the CLR loads the assembly and starts executing the entry-point
method. Of course, before it can do that, it must JIT-compile the entry-point method. At that stage, the
CLR may have to resolve some external references to be able to JIT-compile the code. For example, if
your Main method creates an instance of a class named Employee, the CLR must find and load the
assembly that contains the Employee type before the JIT compiler can continue. However, the great thing
is that the CLR loads assemblies on demand. So, if you have a type that provides a method to print a
document, and it lives in a separate assembly from the one containing the main application, but the
application never exercises the dependency, then the separate assembly never gets loaded. This keeps
the working set of the application from growing unnecessarily large. Therefore, when designing
applications, it makes sense to segregate less commonly used features into separate assemblies so that
the CLR loads them only when needed. Any time you can trim the working set of the application, you
speed up start-up time as well as shrink the memory footprint of the running application. The key is to
partition your code into cohesive units, or assemblies. There’s no point in creating multi-assembly
applications if code executed in common code paths is scattered across various assemblies, because
you’ll lose the benefit of multiple assemblies.

Naming Assemblies
You can name assemblies in two main ways:

• Strongly (fully) named: This assembly has a name that consists of four parts: the
short assembly name, a version number, a culture identifier in ISO format, and a
hash token. If an assembly is named with all four parts, it is considered to be
strongly named.

• Partially named: This assembly has a name that’s missing some of the detail in
strongly named assemblies.

To get a good idea of what assembly names look like, open up Windows Explorer and navigate to
your Global Assembly Cache (GAC), which is in the %systemroot%\assembly directory. In reality, the
directory structure is very complex, but the GAC Explorer plug-in presents what you see in your browser.

CHAPTER 2 ■ C# AND THE CLR

13

If you navigate to the same directory by using a command prompt, you see the encoded directory names
that the GAC uses to store the assemblies. Do not tamper with this directory structure, or you may cause
serious damage to your GAC. Focusing on the view in Explorer, you can see the assemblies’ four-part
names. If the Culture entry is blank for an assembly, it means that it is culture-neutral, which is common
for assemblies that contain only code. I recommend that you isolate all of your resources in separate
assemblies called satellite assemblies, so you can tag them as culture-specific and easily swap them out
based on the platform culture settings without affecting your code. Similar guidelines have existed in
native Win32 programming for years and greatly facilitate easy localization of your application to other
languages.

The benefit of strongly named assemblies is that they can be registered in the GAC and become
available for use by all applications on the system. Registering an assembly in the GAC is analogous to
registering a COM server in the registry. If the assembly is not strongly named, the application may only
use it locally. In other words, the assembly must reside somewhere in the directory of the application
using it or in a subdirectory thereof. Such assemblies are commonly referred to as private assemblies.

Loading Assemblies
The assembly loader goes through a detailed process to load an assembly. Part of this process
determines which version of the assembly to load. By using application configuration files, you can give
the loader some hints during version resolution. The CLR can load assemblies on an as-needed basis, or
you can load assemblies explicitly via AppDomain.Load(). The loader looks for partially named assemblies
in the same directory as the running application or in a subdirectory. The loader can also reference the
GAC when searching for the assembly—for example, when loading an assembly with a fully qualified
name, the loader searches the GAC before probing the local directories.

Versioning plays a key role at assembly load time, and all assemblies are versioned. Versioning was
built into the CLR loader from the beginning and removes the affliction known as DLL Hell, where
replacing a shared DLL with a newer version breaks applications that use the older version. You veterans
out there who have developed software on Windows throughout the past 15 years or so definitely have
felt this pain. In the CLR, multiple versions of the same assembly can exist simultaneously on the same
machine without conflicting with each other. Moreover, applications can choose to default to using the
most recent version of an assembly on the machine, or they can specify the exact version they prefer by
applying a version policy in their configuration files.

■ Note Assembly loading and versioning is a fairly complex topic that is outside the scope of this book. Before

loading an assembly, the loader uses various heuristics to determine which version to load. Once it knows the

version, it passes the information down to the low-level assembly loading method. For more detailed information

regarding assembly loading, reference Essential .NET, Volume I: The Common Language Runtime by Don Box and

Chris Sells (Addison-Wesley Professional, 2002).

Metadata
Let’s look closely at the “Hello World!” example back in Listing 1-1 and compare it to what you may be
used to if you come from the native C++ world. First, notice that it doesn’t include any headers. That’s
because C# does not need to include headers. Instead, it uses something much more reliable and
descriptively rich: metadata. By using metadata, managed modules are self-describing. In the C++ world,

CHAPTER 2 ■ C# AND THE CLR

14

to consume a library in your application, you would need two things: a static library or a DLL, and,
normally, a header file. They exist as two separate entities that you must treat as a whole; therefore, it’s
entirely possible that the header file and the library could get out of sync if you’re not careful. That could
spell disaster. Managed modules, on the other hand, contain all necessary information inside the
metadata that is contained in the module itself. The unit of reuse in the managed world is an assembly,
and assemblies can consist of multiple modules. So it is the assembly that is, in fact, self-describing.

Metadata is also extensible, allowing you to define new types and attributes that can be contained in
the metadata. To top it all off, you can access metadata at run time. For example, at run time, you can
iterate over all the fields of an arbitrary class type without having to know its declaration ahead of time
or at compile time. Astute readers may recognize that this power opens up the possibility of entire
programs and types being generated at run time, which is also something that is impossible with native
C++ unless you integrate a full C++ compiler into your application.

Metadata is an extensible description format for describing the contents of assemblies. Also, if it’s
not expressive enough for your needs, you can define new custom “attributes” that are easily included in
the metadata for a type. In the managed world, just about every entity in a program with a type can have
metadata attached to it, including classes, methods, parameters, return values, assemblies, and so on.
You can define custom attributes by deriving from the System.Attribute class, and then you can easily
associate an instance of your custom attribute to just about any entity in your assembly.

With metadata, you can access and examine type definitions and the attributes attached to them.
Metadata can tell you if a particular object’s class supports a given method before attempting to call it,
or if a given class is derived from another. The process of inspecting metadata is called reflection.
Typically, you start with a System.Type object when you reflect upon types in the assembly. You can get
hold of one of these type instances by using the typeof keyword in C#, by calling
System.Assembly.GetType(), and a few other ways. Generally, the typeof keyword is more efficient
because it is computed at compile time, whereas GetType(), although more flexible because you can
pass it an arbitrary string, is executed at run time. Once you have a type object, you can find out if it is a
class, an interface, a struct, or so on, what methods it has, and the number and types of fields it contains.

■ Note If you’re wondering, “Why metadata?,” COM/DCOM employ some other techniques. If you’ve ever created

COM components, you may be familiar with the Interface Description Language (IDL), which is a platform-

independent description language for interfaces and components. Typically, you provide your consumer with the

COM component packaged in either a DLL or an executable along with the IDL. Again, it serves the same purpose

as the header file for C++ libraries or the documentation for DLL exports. You typically take the IDL and pass it

through an IDL compiler to produce native code that you can then interface with. A Type Library (TLB) serves much

the same purpose as IDL, but it is a binary format that high-level languages, such as Visual Basic, typically

consume. Unfortunately, IDL and TLBs don’t overlap entirely. Some things can be described in IDL but not in TLBs,

and vice versa.

Because assemblies are self-describing, the only thing the C# compiler needs in order to resolve type
usages is a list of referenced assemblies as it compiles and builds the program. Once it has a list of the
referenced assemblies, it can access the metadata contained inside them to resolve the dependencies.
It’s a beautiful system, and it removes some typically error-prone mundane details from the C# coding
process.

In the managed world, you no longer have to carry around any extra baggage in the form of header
files or IDL files. I won’t go so far as to say you don’t have to provide any documentation, because

CHAPTER 2 ■ C# AND THE CLR

15

documentation is always useful. But with an assembly, you have a nicely packaged entity that contains
both the code and the descriptions needed to use its contents. If your assembly consists of a single file,
as most do, that one file contains everything needed to consume the code in the assembly.

Cross-Language Compatibility
Because assemblies are self-describing and contain portable IL code, they are easily shared across
multiple languages. Finally, you have a viable solution to put together complex systems, where some
components are coded using one language and others are coded using different languages. For example,
in a complex system used for engineering analysis, you may have a group of C# developers coding the
system infrastructure and a group of engineers developing the mathematical components. Many
engineers still program in languages such as Fortran. That’s OK, because Fortran compilers are available
that emit IL and create managed assemblies. Thus, each development group can work in a language that
is more natural to it and to its problem domains.

Metadata is essential to such sharing. Jim Miller and Susann Ragsdale describe the metadata format
completely in The Common Language Infrastructure Annotated Standard (Addison-Wesley Professional,
2003). I recommend that you read this book or the CLI Ecma standards documents2 to get the best
understanding of the CLR and how metadata is generated and consumed.

Summary
This chapter briefly covered the essentials of how C# is compiled, packaged, and executed.

I discussed how JIT compiling can actually outperform traditionally compiled applications. One of
the requirements for optimizing JIT compilation is an expressive and extensible-type mechanism that
the compiler can understand. By packaging IL into assemblies that are self-documenting, both the CLR
and the JIT compiler have all the information they need to manage code execution. Additionally, you can
explicitly load an assembly on demand by providing either its strong name or a partial name. Assemblies
make it possible to run distinct versions of code without experiencing DLL Hell, and they also provide
the basis for developing and sharing components across languages.

In the next chapter, I’ll lead you on a whirlwind 20,000-foot view of the C# language syntax. Because
I don’t have the space to cover every minute syntactic detail, I recommend that you also reference the C#
language specification as well.

2 The Ecma-335 document covers the Ecma CLI standard, and the Ecma-334 document found at http://www.ecma-
international.org covers the C# language. ISO/IEC 23271 also covers the CLI, and ISO/IEC 23270 at
http://www.iso.org also covers the C# language. However, the Ecma standards are generally more current, and
you can download them freely.

http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.iso.org

CHAPTER 2 ■ C# AND THE CLR

16

C H A P T E R 3

■ ■ ■

17

C# Syntax Overview

This chapter introduces you to the syntax of the C# language. It’s assumed that you have a reasonable
amount of experience with C++ or Java, because C# shares a similar syntax. This is no accident. The
designers of C# clearly meant to leverage the knowledge of those who have already developed with C++
and Java, which are arguably the dominant languages in object-oriented (OO) software development.

I’ve noted nuances and differences that are specific to the C# language. But, if you’re familiar with
either C++ or Java, you’ll feel right at home with C# syntax.

C# Is a Strongly Typed Language
Like C++ and Java, C# is a strongly typed language, which means that every variable and object instance
in the system is of a well-defined type. This enables the compiler to check that the operations you try to
perform on variables and object instances are valid. For example, suppose you have a method that
computes the average of two integers and returns the result. You could declare the C# method as follows:

double ComputeAvg(int param1, int param2)
{
 return (param1 + param2) / 2.0;
}

This tells the compiler that this method accepts two integers and returns a double. Therefore, if the
compiler attempts to compile code where you inadvertently pass an instance of type Apple, it will
complain and stop. Suppose you wrote the method slightly differently:

object ComputeAvg(object param1, object param2)
{
 return ((int) param1 + (int) param2) / 2.0;
}

The second version of ComputeAvg is still valid, but you have forcefully stripped away the type
information. Every object and value in C# implicitly derives from System.Object. The object keyword in
C# is an alias for the class System.Object. So it is perfectly valid to declare these parameters as type
object. However, object is not a numeric type. In order to perform the calculation, you must first cast
the objects into integers. After you’re done, you return the result as an instance of type object. Although
this version of the method can seem more flexible, it’s a disaster waiting to happen. What if some code in
the application attempts to pass an instance of type Apple into ComputeAvg? The compiler won’t
complain, because Apple derives from System.Object, as every other class does. However, you’ll get a

CHAPTER 3 ■ C# SYNTAX OVERVIEW

18

nasty surprise at runtime when your application throws an exception declaring that it cannot convert an
instance of Apple to an integer. The method will fail, and unless you have an exception handler in place,
it could terminate your application. That’s not something you want to happen in your code that is
running on a production server somewhere.

It is always best to find bugs at compile time rather than runtime. That is the moral of this story. If
you were to use the first version of ComputeAvg, the compiler would have told you how ridiculous it was
that you were passing an instance of Apple. This is much better than hearing it from an angry customer
whose e-commerce server just took a dirt nap. The compiler is your friend, so let it be a good one and
provide it with as much type information as possible to strictly enforce your intentions.

Expressions
Expressions in C# are practically identical to expressions in C++ and Java. The important thing to keep in
mind when building expressions is operator precedence. C# expressions are built using operands,
usually variables or types within your application, and operators. Many of the operators can be
overloaded as well. Operator overloading is covered in Chapter 6. Table 3-1 lists the precedence of the
operator groups. Entries at the top of the table have higher precedence, and operators within the same
category have equal precedence.

Table 3-1. C# Operator Precedence

Operator Group Operators Included Description

x.m Member access

x(...) Method invocation

x[...] Element access

x++, x-- Postincrement and
postdecrement

Primary

new T(...), new T[...] Creation expressions

typeof(T) Gets System.Type object for T

Object and array creation checked(x), unchecked(x) Evaluates expression while
controlling the overflow
checking context

CHAPTER 3 ■ C# SYNTAX OVERVIEW

19

Table 3-1. C# Operator Precedence (continued)

default(T) Produces default value for type T1

delegate {…} Anonymous function/method

+x, -x Identity and negation

!x Logical negation

~x Bitwise negation

++x, --x Preincrement and
predecrement

Unary

(T) x Casting operation

Multiplicative x*y, x/y, x%y Multiplication, division, and
remainder

Additive x+y, x-y Addition and subtraction

Shift x<<y, x>>y Left and right shift

x<y, x>y, x<=y, x>=y Less than, greater than, less
than or

x is T True if x is convertible to T; false
otherwise Relational and type testing

x as T Returns x converted to T, or null
if conversion is not possible

Equality x == y, x != y Equal and not equal

Logical AND x & y Integer bitwise AND, Boolean
logical AND

Logical XOR x ^ y Integer bitwise XOR, Boolean
logical XOR

1 You can learn more about default value expressions in the section titled “Default Value Expression” in Chapter 11.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

20

Table 3-1. C# Operator Precedence (continued)

Logical OR x | y Integer bitwise OR, Boolean
logical OR

Conditional AND x && y Evaluates y only if x is true

Conditional OR x || y Evaluates y only if x is false

Null coalescing x ?? y If x is non-null, evaluates to x;
otherwise, y

Conditional x ? y : z Evaluates y if x is true;
otherwise, evaluates z

x = y Simple assignment

Assignment or anonymous
function x op= y Compound assignment; could

be any of *=, /=, %=, +=, -=, <<=,
>>=, &=, ^=, or |=

(T x) => y Lambda expression (anonymous
function/method)

■ Note These operators can have different meanings in different contexts. Regardless, their precedence never

changes. For example, the + operator can mean string concatenation if you’re using it with string operands. By

using operator overloading when defining your own types, you can make some of these operators perform

whatever semantic meaning makes sense for the type. But again, you may never alter the precedence of these

operators except by using parentheses to change the grouping of operations.

In expressions, operators with the same precedence are processed based upon their associativity. All binary

operators except assignment operators are left-associative whereas assignment operators and the conditional

operator (the ternary operator) are right-associative.

Statements and Expressions
Statements in C# are identical in form to those of C++ and Java. A semicolon terminates one-line
expressions. However, code blocks, such as those in braces in an if or a while statement, do not need to
be terminated with a semicolon. Adding the semicolon is optional at the end of a block.

Most of the statements that are available in C++ and Java are available in C#, including variable
declaration statements, conditional statements, control flow statements, try/catch statements, and so
on. However, C# (like Java) has some statements that are not available in C++. For example, C# provides

CHAPTER 3 ■ C# SYNTAX OVERVIEW

21

a try/finally statement, which I discuss in detail in Chapter 7. In Chapter 12, I’ll show you the lock
statement, which synchronizes access to code blocks. C# also overloads the using keyword, so you can
use it either as a directive or a statement. You can use a using statement in concert with the Disposable
pattern I describe in Chapters 4 and 13. The foreach statement, which makes iterating through
collections easier, also deserves mention. You’ll see more of this statement in Chapter 9, when I discuss
collection types.

Types and Variables
Every entity in a C# program is an object that lives on either the stack or the managed heap. Every
method is defined in a class or struct declaration. There are no such things as free functions, defined
outside the scope of class or struct declarations, as there are in C++. Even the built-in value types, such
as int, long, double, and so on, have methods associated with them implicitly. So, in C#, it’s perfectly
valid to write a statement such as the following:

System.Console.WriteLine(42.ToString());

A statement like this, where a method is invoked on the immediate value 42, will feel unfamiliar if
you’re used to C++ or Java. But, it emphasizes how everything in C# is an object, even down to the most
basic types. In fact, the built-in type keywords in C# are actually mapped directly into types in the System
namespace that represent them. You can even elect not to use the C# built-in types and explicitly use the
types in the System namespace that they map to (but this practice is discouraged as a matter of style).
Table 3-2 describes the built-in types, showing their size and what type they map to in the System
namespace.

Table 3-2. C# Built-In Types

C# Type Size in Bits System Type CLS-Compliant

sbyte 8 System.SByte No

short 16 System.Int16 Yes

int 32 System.Int32 Yes

long 64 System.Int64 Yes

byte 8 System.Byte Yes

ushort 16 System.UInt16 No

uint 32 System.UInt32 No

ulong 64 System.UInt64 No

CHAPTER 3 ■ C# SYNTAX OVERVIEW

22

Table 3-2. C# Built-In Types (continued)

char 16 System.Char Yes

bool 8 System.Boolean Yes

float 32 System.Single Yes

double 64 System.Double Yes

decimal 128 System.Decimal Yes

string N/A System.String Yes

object N/A System.Object Yes

dynamic N/A System.Object Yes

For each entry in the table, the last column indicates whether the type is compliant with the
Common Language Specification (CLS). The CLS is defined as part of the CLI standard to facilitate
multilanguage interoperability. The CLS is a subset of the Common Type System (CTS). Even though the
CLR supports a rich set of built-in types, not all languages that compile into managed code support all of
them. However, all managed languages are required to support the types in the CLS. For example, Visual
Basic hasn’t supported unsigned types traditionally. The designers of the CLI defined the CLS to
standardize types in order to facilitate interoperability between the languages. If your application will be
entirely C#-based and won’t create any components consumed from another language, then you don’t
have to worry about adhering to the strict guidelines of the CLS. But if you work on a project that builds
components using various languages, then conforming to the CLS will be much more important to you.

In the managed world of the CLR, there are two kinds of types:

Value types: Defined in C# using the struct keyword. Instances of value types are the only kind of
instances that can live on the stack. They live on the heap if they’re members of reference types or if
they’re boxed, which I discuss later. They are similar to structures in C++ in the sense that they are
copied by value by default when passed as parameters to methods or assigned to other variables.
Although C#’s built-in value types represent the same kinds of values as Java’s primitive types, there
are no Java counterparts.

Reference types: Often defined in C# using the class keyword. They are called reference types
because the variables you use to manipulate them are actually references to objects on the managed
heap. In fact, in the CLR reference-type variables are like value types variables that have an
associated type and contain a pointer to an object on the heap. You, as the programmer, use the
class definition to define those objects that are created on the heap. In this way, C# and Java are
identical. C++ programmers can think of reference type variables as pointers that you don’t have to
dereference to access objects. Some C++ programmers like to think of these as smart pointers.
Often, when one refers to reference types in C#, one means objects that live on the managed heap.
However, a reference type variable is used to interact with the objects on the managed heap.
Reference type variables have a type associated with them and contain a pointer to the object they
reference. For example, the reference type variable’s type could be the same as the object’s class
that it points to, a base type for the object, or its type could be that of an interface that the object

CHAPTER 3 ■ C# SYNTAX OVERVIEW

23

implements. Naturally, several reference type variables could reference the same object instance at
the same time. In contrast, value types contain their data rather than a pointer to the data. Figure 3-
1 is a diagram describing the scenario of two reference type variables that reference the same object
on the managed heap. The diagram depicts how each reference type variable has a type associated
with it.

Object
on heap

referenceA

referenceB

Figure 3-1. Reference Variable Types

Value Types
Value types can live on either the stack or the managed heap. You use them commonly when you need
to represent some immutable data that is generally small in its memory footprint. You can define user-
defined value types in C# by using the struct keyword.

■ Note The next subsection covers enumerations which are declared with the enum keyword. The enum keyword

also allows one to declare a value type.

User-defined value types behave in the same way that the built-in value types do. When you create a
value during the flow of execution, the value is typically created on the stack unless it is a member of a
reference type. Consider this code snippet:

int theAnswer = 42;
System.Console.WriteLine(theAnswer.ToString());

Not only is the theAnswer instance created on the stack, but if it gets passed to a method, the method
will receive a copy of it. Value types are typically used in managed applications to represent lightweight
pieces or collections of data, similar to the way built-in types and structs are sometimes used in C++, and
primitive types are used in Java.

Values can also live on the managed heap, but not by themselves. The only way this can happen is if
a reference type has a field that is a value type. Even though a value type inside an object lives on the
managed heap, it still behaves the same as a value type on the stack when it comes to passing it into a
method; that is, the method will receive a copy by default. Any changes made to the value instance are
only local changes to the copy unless the value was passed by reference. The following code illustrates
these concepts:

public struct Coordinate //this is a value type
{
 public int x;

CHAPTER 3 ■ C# SYNTAX OVERVIEW

24

 public int y;
}

public class EntryPoint //this is a reference type
{
 public static void AttemptToModifyCoord(Coordinate coord) {
 coord.x = 1;
 coord.y = 3;
 }

 public static void ModifyCoord(ref Coordinate coord) {
 coord.x = 10;
 coord.y = 10;
 }

 static void Main() {
 Coordinate location;
 location.x = 50;
 location.y = 50;

 AttemptToModifyCoord(location);
 System.Console.WriteLine("({0}, {1})", location.x, location.y);

 ModifyCoord(ref location);
 System.Console.WriteLine("({0}, {1})", location.x, location.y);
 }
}

In the Main method, the call to AttemptToModifyCoord actually does nothing to the location value.
This is because AttemptToModifyCoord modifies a local copy of the value that was made when the
method was called. On the contrary, the location value is passed by reference into the ModifyCoord
method. Thus, any changes made in the ModifyCoord method are actually made on the location value in
the calling scope. It’s similar to passing a value by a pointer in C++. The output from the example is as
follows:

(50, 50)
(10, 10)

Enumerations

Enumerations (enums) in C# are similar to enumerations in C++, and the defining syntax is almost
identical. At the point of use, however, you must fully qualify the values within an enumeration using the
enumeration type name. All enumerations are based upon an underlying integral type, which if not
specified, defaults to int. Thus, enumerations are also value types.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

25

■ Note The underlying type of the enum must be an integral type that is one of the following: byte, sbyte, short,

ushort, int, uint, long, or ulong.

Each constant that is defined in the enumeration must be defined with a value within the range of
the underlying type. If you don’t specify a value for an enumeration constant, the value takes the default
value of 0 (if it is the first constant in the enumeration) or 1 plus the value of the previous constant. This
example is an enumeration based upon a long:

public enum Color : long
{
 Red,
 Green = 50,
 Blue
}

In this example, if I had left off the colon and the long keyword after the Color type identifier, the
enumeration would have been of int type. Notice that the value for Red is 0, the value for Green is 50, and
the value for Blue is 51.

To use this enumeration, write code such as the following:

static void Main() {
 Color color = Color.Red;
 System.Console.WriteLine("Color is {0}", color.ToString());
}

If you compile and run this code, you’ll see that the output actually uses the name of the
enumeration rather than the ordinal value 0. The System.Enum type’s implementation of the ToString
method performs this magic.

Flags Enumerations

Many times, you may use enumeration constants to represent bit flags. You can attach an attribute
in the System namespace called System.FlagsAttribute to the enumeration to make this explicit. The
attribute is stored in the metadata, and you can reference it at design time to determine whether
members of an enumeration are intended to be used as bit flags.

Note that System.FlagsAttribute doesn’t modify the behavior of the values defined by the
enumeration. At runtime, however, certain components can use the metadata generated by the attribute
to process the value differently. This is a great example of how you can use metadata effectively in an
aspect-oriented programming (AOP) manner.

■ Note AOP, also called aspect-oriented software development (AOSD), is a concept originally developed by

Gregor Kiczales and his team at Xerox PARC. Object-oriented methodologies generally do a great job of partitioning

the functionality, or concerns, of a design into cohesive units. However, some concerns, called cross-cutting

concerns, cannot be modeled easily with standard OO designs. For example, suppose you need to log entry into

CHAPTER 3 ■ C# SYNTAX OVERVIEW

26

and exit from various methods. It would be a horrible pain to modify the code for each and every method that you

need to log. It would be much easier if you could simply attach a property—or in this case, an attribute—to the

method itself, so that the runtime would log the method’s call when it happens. This keeps you from having to

modify the method, and the requirement is applied out-of-band from the method’s implementation. Microsoft

Transaction Server (MTS) was one of the first widely known examples of AOP.

Using metadata, and the fact that you can attach arbitrary, custom attributes to types, methods, properties, and so

on, you can use AOP in your own designs.

The following is an example of a bit flag enumeration:

[Flags]
public enum AccessFlags

{
 NoAccess = 0x0,
 ReadAccess = 0x1,
 WriteAccess = 0x2,
 ExecuteAccess = 0x4
}

The following is an example of using the AccessFlags enumeration:

static void Main() {
 AccessFlags access = AccessFlags.ReadAccess |
 AccessFlags.WriteAccess;

 System.Console.WriteLine("Access is {0}", access);
}

If you compile and execute the previous example, you’ll see that the Enum.ToString method
implicitly invoked by WriteLine does, in fact, output a comma-separated list of all the bits that are set in
this value.

Reference Types
The garbage collector (GC) inside the CLR manages everything regarding the placement of objects. It can
move objects at any time. When it moves them, the CLR makes sure that the variables that reference
them are updated. Normally, you’re not concerned with the exact location of the object within the heap,
and you don’t have to care if it gets moved around or not. There are rare cases, such as when interfacing
with native DLLs, when you may need to obtain a direct memory pointer to an object on the heap. It is
possible to do that using unsafe (or unmanaged) code techniques, but that is outside the scope of this
book.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

27

■ Note Conventionally, the term object refers to an instance of a reference type, whereas the term value refers to

an instance of a value type, but all instances of any type (reference type or value type) are also derived from type

object.

Variables of a reference type are either initialized by using the new operator to create an object on
the managed heap, or they are initialized by assignment from another variable of a compatible type. The
following code snippet points two variables at the same object:

object o1 = new object();
object o2 = o1;

Like the Java runtime, the CLR manages all references to objects on the heap. In C++, you must
explicitly delete heap-based objects at some carefully chosen point. But in the managed environment of
the CLR, the GC takes care of this for you. This frees you from having to worry about deleting objects
from memory and minimizes memory leaks. The GC can determine, at any point in time, how many
references exist to a particular object on the heap. If it determines there are none, it is free to start the
process of destroying the object on the heap. (Chapter 13 discusses at length the intricacies of this
process and the factors that influence it.) The previous code snippet includes two references to the same
object. You initialize the first one, o1, by creating a new object. You initialize the second one, o2, from o1.
The GC won’t collect the object on the heap until both of these references are outside any usable scope.
Had the method containing this code returned a copy of the reference to whatever called it, then the GC
would still have a reference to track even when the method was no longer in scope.

■ Note For those coming from a C++ background, the fundamental way in which objects are treated in the C++

world is reversed in the C# world. In C++, objects are allocated on the stack unless you create them explicitly with

the new operator, which then returns a pointer to the object on the native heap. In C#, you cannot create objects of

a reference type on the stack. They can only live on the heap. So, it’s almost as if you were writing C++ code,

where you create every object on the heap without having to worry about deleting the objects explicitly to clean up.

Default Variable Initialization
By default, the C# compiler produces what is called safe code. One of the safety concerns is making sure
the program doesn’t use uninitialized memory. The compiler wants every variable to be set to a value
before you use it, so it is useful to know how many different types of variables are initialized.

The default value for references to objects is null. At the point of declaration, you can optionally
assign references from the result of a call to the new operator; otherwise, they will be set to null. When
you create an object, the runtime initializes its internal fields. Fields that are references to objects are
initialized to null, of course. Fields that are value types are initialized by setting all bits of the value type
to zero. Basically, you can imagine that all the runtime is doing is setting the bits of the underlying
storage to 0. For references to objects, that equates to a null reference, and for value types, that equates
to a value of zero (or false for a Boolean).

CHAPTER 3 ■ C# SYNTAX OVERVIEW

28

For value types that you declare on the stack, the compiler does not zero-initialize the memory
automatically. However, it does make sure that you initialize the memory before the value is used.

■ Note Enumerations are actually value types and even though 0 is implicitly convertible to any enumeration type,

it is good design practice to always declare an enumeration member that equates to zero, even if the name of the

member is InvalidValue or None and is otherwise meaningless. If an enumeration is declared as a field of a

class, instances of that class will have the field set to zero upon default initialization. Declaring a member that

equates to zero allows users of your enumeration to deal with this case easily and, one could argue, creates more

readable code.

Implicitly Typed Local Variables
Because C# is a strongly typed language, every variable declared in the code must have an explicit type
associated with it. Starting with C# 4.0, that rule is relaxed a bit with the dynamic type that I introduce in
Chapter 17. When the CLR stores the contents of the variable in a memory location, it also associates a
type with that location. But sometimes, when writing code for strongly typed languages, the amount of
typing needed to declare such variables can be tedious, especially if the type is a generic one. For
complex types, such as query variables created using Language Integrated Query (LINQ), discussed in
Chapter 16, the type names can be downright unwieldy. Enter implicitly typed variables.

By declaring a local variable using the new var keyword, you effectively ask the compiler to reserve a
local memory slot and attach an inferred type to that slot. At compilation time, there is enough
information available at the point the variable is initialized for the compiler to deduce the actual type of
that variable without your having to tell it the type explicitly. Let’s have a look at what these look like.

Here you see an example of what an implicitly typed variable declaration looks like:

using System;
using System.Collections.Generic;

public class EntryPoint
{
 static void Main() {
 var myList = new List<int>();

 myList.Add(1);
 myList.Add(2);
 myList.Add(3);

 foreach(var i in myList) {
 Console.WriteLine(i);
 }
 }
}

The first things you should notice are the keywords in bold that show the usage of the new var
keyword. In the first usage, I have declared a variable named myList, asking the compiler to set the type
of the variable based upon the type from which it is assigned. It’s important to note that an implicitly

CHAPTER 3 ■ C# SYNTAX OVERVIEW

29

typed variable declaration must include an initializer. If you tried to state the following in code, you
would be greeted with the compiler warning CS0818, stating that “Implicitly typed locals must be
initialized”:

var newValue; // emits error CS0818

Similarly, if you try to declare a class field member as an implicitly typed variable, even if it has an
initializer, you will get the compiler error CS0825, stating that “The contextual keyword ‘var’ may only
appear within a local variable declaration.”

Finally, you may be used to declaring multiple variables in one line by separating each identifier
with a comma, as in the following two examples:

int a = 2, b = 1;
int x, y = 4;

However, you cannot do this with implicitly typed variables. The compiler gives you the error
CS0819, stating “Implicitly typed locals cannot have multiple declarators.”

THE COMPLEXITY OF ADDING NEW KEYWORDS TO THE LANGUAGE

Adding new features like implicitly typed variables to the compiler is not as trivial as it may appear at first.
That’s because any time you introduce a new keyword to the language, you have to be concerned about
breaking existing code and not allowing backward compatibility. For example, imagine what would happen if
you had a huge code base written with C# 1.0 or C# 2.0 that had a type, say a class, named var. Now, you
are in the process of making the switch to C# 3.0 or later and you compile your application using the new
compiler. Clearly, you will most likely have some variable declarations that create instances of your var
class. What should the compiler do? This is a very difficult question to answer.

In my tests with the compiler, the compiler does nothing. But should it do nothing? It could choose to
emit a compiler warning stating something such as, “declared type has same name as built-in ‘var’ keyword.”
But in reality, that’s not necessary, as I will show. In fact, it’s probably best that the compiler does not emit a
warning. Good development teams use the /WARNASERRORS+ compiler option to halt compilation if there is a
warning in the code. If the compiler emitted a warning, your application would fail to compile as you migrated
to C# 3.0 or later and Microsoft would take the blame for being so flagrant as to ignore backward
compatibility.

The bottom line is that if you have a type defined using the name var, you simply cannot use implicitly
typed variables in any C# code where that type’s namespace is imported into the local scope. If you do, you’ll
typically get the CS0029 compiler error, which says in essence that the type you are trying to assign to an
implicitly typed variable cannot be implicitly converted to your custom var type. Whew! What a mouthful. For
example, the following code exhibits this behavior:

using System;
using System.Collections.Generic;

public class var
{
}

CHAPTER 3 ■ C# SYNTAX OVERVIEW

30

public class EntryPoint
{
 static void Main() {
 var myList = new List<int>(); // Won't compile! Error CS0029
 }
}

Compiler developers typically take this problem extremely seriously and sometimes won’t even
introduce a new keyword if it could possibly break existing code. However, the C# compiler developers
have a trump card. If you follow the recommended conventions for naming .NET types with an initial capital
letter, you’ll never find yourself in this situation. Additionally, if you use Visual Studio code analysis or
FxCop (the stand-alone version of code analysis) during the development of your application, you will
never encounter this problem. These rules and guidelines are also covered in detail in Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries by Krzysztof Cwalina and Brad
Abrams (Boston, MA: Addison-Wesley Professional, 2005). I highly recommend you read their book if you
have not already.

Type Conversion
Many times, it’s necessary to convert instances of one type to another. In some cases, the compiler does
this conversion implicitly whenever a value of one type is assigned from another type that, when
converted to the assigned type, will not lose any precision or magnitude. In cases where precision could
be lost, an explicit conversion is required. For reference types, the conversion rules are analogous to the
pointer conversion rules in C++.

The semantics of type conversion are similar to both C++ and Java. Explicit conversion is
represented using the familiar casting syntax that all of them inherited from C—that is, the type to
convert to is placed in parentheses before whatever needs to be converted:

int defaultValue = 12345678;
long value = defaultValue;
int smallerValue = (int) value;

In this code, the (int) cast is required to be explicit since the underlying size of an int is smaller
than a long. Thus, it’s possible that the value in the long may not fit into the space available to the int.
The assignment from the defaultValue variable to the value variable requires no cast, since a long has
more storage space than an int. If the conversion will lose magnitude, it’s possible that the conversion
may throw an exception at runtime. The general rule is that implicit conversions are guaranteed never to
throw an exception, whereas explicit conversions may throw exceptions.

The C# language provides the facilities to define custom implicit and explicit conversion operators
to various types for your user-defined types. Chapter 6 covers these in more detail. The exception
requirements for built-in conversion operators apply to user-defined conversion operators. Namely,
implicit conversion operators are guaranteed never to throw.

Conversion to and from reference types models that of Java and of conversions between pointers in
C++. For example, a reference to type DerivedType can be implicitly converted to a reference to type
BaseType if DerivedType is derived from BaseType. However, you must explicitly cast a conversion in the
opposite direction. Also, an explicit cast may throw a System.InvalidCastException if the CLR cannot
perform the conversion at runtime.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

31

Array Covariance

One kind of implicit cast is available in C# that is not easily available in C++, mainly because of the
default value semantics of C++. It is possible to implicitly convert from an array of one reference type to
an array of another reference type, as long as the target reference type is one that can be implicitly
converted from the source reference type and the arrays are of the same dimension. This is called array
covariance. For example, the following conversion is valid:

public class EntryPoint
{
 static void Main() {
 string[] names = new string[4];
 object[] objects = names; //implicit conversion statement

 string[] originalNames =
 (string[]) objects; // explicit conversion statement
 }
}

Because System.String derives from System.Object and, therefore, is implicitly convertible to
System.Object, this implicit conversion of the string array names into the object array objects variable is
valid. However, to go in the other direction, as shown, requires an explicit cast that may throw an
exception at runtime if the conversion fails.

Keep in mind that implicit conversions of arguments may occur during method invocation if
arguments must be converted to match the types of parameters. If you cannot make the conversions
implicitly, you must cast the arguments explicitly.

Boxing Conversion

Finally, another type of common conversion is a boxing conversion. Boxing conversions are required
when you must pass a value type as a reference type parameter to a method or assign it to a variable that
is a reference type. What happens is that an object is allocated dynamically on the heap that contains a
field of the value’s type. The value is then copied into this field. I cover boxing in C# extensively in
Chapter 4. The following code demonstrates boxing:

public class EntryPoint
{
 static void Main() {
 int employeeID = 303;
 object boxedID = employeeID;

 employeeID = 404;
 int unboxedID = (int) boxedID;

 System.Console.WriteLine(employeeID.ToString());
 System.Console.WriteLine(unboxedID.ToString());
 }
}

At the point where the object variable boxedID is assigned from the int variable employeeID, boxing
occurs. A heap-based object is created and the value of employeeID is copied into it. This bridges the gap

CHAPTER 3 ■ C# SYNTAX OVERVIEW

32

between the value type and the reference type worlds within the CLR. The boxedID object actually
contains a copy of the employeeID value. I demonstrate this point by changing the original employeeID
value after the boxing operation. Before printing out the values, I unbox the value and copy the value
contained in the object on the heap back into another int on the stack. Unboxing requires an explicit
cast in C#.

as and is Operators
Because explicit conversion can fail by throwing exceptions, times arise when you may want to test the
type of a variable without performing a cast and seeing if it fails or not. Testing type via casting is tedious
and inefficient, and exceptions are generally expensive at runtime. For this reason, C# has two operators
that come to the rescue, and they are guaranteed not to throw an exception:

• is

• as

The is operator results in a Boolean that determines whether you can convert a given expression to
the given type as either a reference conversion or a boxing or unboxing operation. For example, consider
the following code:

using System;

public class EntryPoint
{
 static void Main() {
 String derivedObj = "Dummy";
 Object baseObj1 = new Object();
 Object baseObj2 = derivedObj;

 Console.WriteLine("baseObj2 {0} String",
 baseObj2 is String ? "is" : "isnot");
 Console.WriteLine("baseObj1 {0} String",
 baseObj1 is String ? "is" : "isnot");
 Console.WriteLine("derivedObj {0} Object",
 derivedObj is Object ? "is" : "isnot");

 int j = 123;
 object boxed = j;
 object obj = new Object();

 Console.WriteLine("boxed {0} int",
 boxed is int ? "is" : "isnot");
 Console.WriteLine("obj {0} int",
 obj is int ? "is" : "isnot");
 Console.WriteLine("boxed {0} System.ValueType",
 boxed is ValueType ? "is" : "isnot");

 }
}

The output from this code is as follows:

v@v
Text Box
Download at WoweBook.com

CHAPTER 3 ■ C# SYNTAX OVERVIEW

33

baseObj2 is String

baseObj1 isnot String

derivedObj is Object

boxed is int

obj isnot int

boxed is System.ValueType

As mentioned previously, the is operator considers only reference conversions. This means that it
won’t consider any user-defined conversions that are defined on the types.

The as operator is similar to the is operator, except that it returns a reference to the target type.
Because it is guaranteed never to throw an exception, it simply returns a null reference if the conversion
cannot be made. Similar to the is operator, the as operator only considers reference conversions or
boxing/unboxing conversions. For example, look at the following code:

using System;

public class BaseType {}

public class DerivedType : BaseType {}

public class EntryPoint {
 static void Main() {
 DerivedType derivedObj = new DerivedType();
 BaseType baseObj1 = new BaseType();
 BaseType baseObj2 = derivedObj;

 DerivedType derivedObj2 = baseObj2 as DerivedType;
 if(derivedObj2 != null) {
 Console.WriteLine("Conversion Succeeded");
 } else {
 Console.WriteLine("Conversion Failed");
 }

 derivedObj2 = baseObj1 as DerivedType;
 if(derivedObj2 != null) {
 Console.WriteLine("Conversion Succeeded");
 } else {
 Console.WriteLine("Conversion Failed");
 }

 BaseType baseObj3 = derivedObj as BaseType;
 if(baseObj3 != null) {
 Console.WriteLine("Conversion Succeeded");
 } else {

CHAPTER 3 ■ C# SYNTAX OVERVIEW

34

 Console.WriteLine("Conversion Failed");
 }
 }
}

The output from this code is as follows:

Conversion Succeeded

Conversion Failed

Conversion Succeeded

Sometimes you need to test whether a variable is of a certain type and, if it is, then do some sort of
operation on the desired type. You could test the variable for the desired type using the is operator and
then, if true, cast the variable to the desired type. However, doing it that way is inefficient. The better
approach is to follow the idiom of applying the as operator to obtain a reference of the variable with the
desired type, and then test whether the resulting reference is null, which would mean that the
conversion succeeded. That way, you perform only one type lookup operation instead of two.

Generics
Support for generics is one of the most exciting evolutions to the C# language. Using the generic syntax,
you can define a type that depends upon another type that is not specified at the point of definition, but
rather at the point of usage of the generic type. For example, imagine a collection type. Collection types
typically embody things such as lists, queues, and stacks. The collection types that have been around
since the .NET 1.0 days are adequate for containing any type in the CLR, since they contain Object
instances and everything derives from Object. However, all of the type information for the contained
type is thrown away, and the compiler’s power to catch type errors is rendered useless. You must cast
every type reference that you obtain from these collections into the type you think it should be, and that
could fail at runtime. Also, the original collection types can contain a heterogeneous blend of types
rather than force the user to insert only instances of a certain type. You could go about fixing this
problem by writing types such as ListOfIntegers and ListOfStrings for each type you want to contain
in a list. However, you will quickly find out that most of the management code of these lists is similar, or
generic, across all of the custom list types. The keyword is generic. Using generic types, you can declare
an open (or generic) type and only have to write the common code once. The users of your type can then
specify which type the collection will contain at the point they decide to use it.

Additionally, using generics involves efficiency gains. The concept of generics is so large that I’ve
devoted Chapter 11 entirely to their declaration and usage. However, I believe it’s important to give you
a taste of how to use a generic type now, since I mention them several times prior to Chapter 11.

■ Note The generic syntax will look familiar to those who use C++ templates. However, it’s important to note that

there are significant behavioral differences, which I’ll explain in Chapter 11.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

35

The most common use of generics is during the declaration of collection types. For example, take a
look at the following code:

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;

class EntryPoint
{
 static void Main() {
 Collection<int> numbers =
 new Collection<int>();
 numbers.Add(42);
 numbers.Add(409);

 Collection<string> strings =
 new Collection<string>();
 strings.Add("Joe");
 strings.Add("Bob");

 Collection< Collection<int> > colNumbers
 = new Collection<Collection<int>>();
 colNumbers.Add(numbers);

 IList<int> theNumbers = numbers;
 foreach(int i in theNumbers) {
 Console.WriteLine(i);
 }
 }
}

This example shows usage of the generic Collection type. The telltale sign of generic type usage is
the angle brackets surrounding a type name. In this case, I have declared a collection of integers, a
collection of strings, and, to show an even more complex generic usage, a collection of collections of
integers. Also, notice that I’ve shown the declaration for a generic interface, namely, IList<>.

When you specify the type arguments for a generic type by listing them within the angle brackets, as
in Collection<int>, you are declaring a closed type. In this case, Collection<int> only takes one type
parameter, but had it taken more, then a comma would have separated the type arguments. When the
CLR first encounters this type declaration, it will generate the closed type based on the generic type and
the provided type arguments. Using closed types formed from generics is no different than using any
other type, except that the type declaration uses the special angle bracket syntax to form the closed type.

Now that you’ve seen a glimpse of what generics look like, you should be prepared for the casual
generic references mentioned prior to Chapter 11.

Namespaces
C#, like C++ and analogous to Java packages, supports namespaces for grouping components logically.
Namespaces help you avoid naming collisions between your identifiers.

Using namespaces, you can define all of your types such that their identifiers are qualified by the
namespace that they belong to. You have already seen namespaces in action in many of the examples so
far. For instance, in the “Hello World!” example from Chapter 1, you saw the use of the Console class,

CHAPTER 3 ■ C# SYNTAX OVERVIEW

36

which lives in the .NET Framework Class Library’s System namespace and whose fully qualified name is
System.Console. You can create your own namespaces to organize components. The general
recommendation is that you use some sort of identifier, such as your organization’s name, as the top-
level namespace, and then more specific library identifiers as nested namespaces.

Namespaces provide an excellent mechanism with which you can make your types more
discoverable, especially if you’re designing libraries meant for consumption by others. For example, you
can create a general namespace such as MyCompany.Widgets, where you put the most commonly used
types of widgets. Then you can create a MyCompany.Widgets.Advanced namespace where you place all of
the less commonly used, advanced types. Sure, you could place them all in one namespace. However,
users could become confused when browsing the types and seeing all of the types they least commonly
use mixed in with the ones they use the most.

■ Note When picking a name for your namespace, the general guideline suggests that you name it using the

formula <CompanyName>.<Technology>.*, such that the first two dot-separated portions of the namespace name

start with your company name followed by your company’s technology. Then you can further subclassify the

namespace. You can see examples of this in the .NET Framework—for example, the Microsoft.Win32

namespace.

Defining Namespaces
The syntax for declaring a namespace is simple. The following code shows how to declare a namespace
named Acme:

namespace Acme
{
 class Utility {}
}

Namespaces don’t have to live in only one compilation unit (i.e., the C# source code file). In other
words, the same namespace declaration can exist in multiple C# files. When everything is compiled, the
set of identifiers included in the namespace is a union of all of the identifiers in each of the namespace
declarations. In fact, this union spans across assemblies. If multiple assemblies contain types defined in
the same namespace, the total namespace consists of all of the identifiers across all the assemblies that
define the types.

It’s possible to nest namespace declarations. You can do this in one of two ways. The first way is
obvious:

namespace Acme
{
 namespace Utilities
 {
 class SomeUtility {}
 }
}

CHAPTER 3 ■ C# SYNTAX OVERVIEW

37

Given this example, to access the SomeUtility class using its fully qualified name, you must identify
it as Acme.Utilities.SomeUtility. The following example demonstrates an alternate way of defining
nested namespaces:

namespace Acme
{
}

namespace Acme.Utilities
{
 class SomeUtility {}
}

The effect of this code is exactly the same as the previous code. In fact, you may omit the first empty
namespace declaration for the Acme namespace. I left it there only for demonstration purposes to point
out that the Utilities namespace declaration is not physically nested within the Acme namespace
declaration.

Any types that you declare outside a namespace become part of the global namespace.

■ Note You should always avoid defining types in the global namespace. Such practice is known as “polluting the

global namespace” and is widely considered poor programming practice. This should be obvious since there

would be no way to protect types defined by multiple entities from potential naming collisions.

Using Namespaces
In the “Hello World!” example in Chapter 1, I quickly touched on the options available for using
namespaces. Let’s examine some code that uses the SomeUtility class I defined in the previous section:

public class EntryPoint
{
 static void Main() {
 Acme.Utilities.SomeUtility util =
 new Acme.Utilities.SomeUtility();
 }
}

This practice of always qualifying names fully is rather verbose and might eventually lead to a bad
case of carpal tunnel syndrome. The using namespace directive avoids this. It tells the compiler that
you’re using an entire namespace in a compilation unit or another namespace. What the using keyword
does is effectively import all of the names in the given namespace into the enclosing namespace, which
could be the global namespace of the compilation unit. The following example demonstrates this:

using Acme.Utilities;

public class EntryPoint
{
 static void Main() {

CHAPTER 3 ■ C# SYNTAX OVERVIEW

38

 SomeUtility util = new SomeUtility();
 }
}

The code is now much easier to deal with and somewhat easier to read. The using directive, because
it is at the global namespace level, imports the type names from Acme.Utilities into the global
namespace. Sometimes when you import the names from multiple namespaces, you may still have
naming conflicts if both imported namespaces contain types with the same name. In this case, you can
import individual types from a namespace, creating a naming alias. This technique is available via
namespace aliasing in C#. Let’s modify the usage of the SomeUtility class so that you alias only the
SomeUtility class rather than everything inside the Acme.Utilities namespace:

namespace Acme.Utilities
{
 class AnotherUtility() {}
}

using SomeUtility = Acme.Utilities.SomeUtility;

public class EntryPoint
{
 static void Main() {
 SomeUtility util = new SomeUtility();
 Acme.Utilities.AnotherUtility =
 new Acme.Utilities.AnotherUtility();
 }
}

In this code, the identifier SomeUtility is aliased as Acme.Utilities.SomeUtility. To prove the
point, I augmented the Acme.Utilities namespace and added a new class named AnotherUtility. This
class must be fully qualified in order for you to reference it, since no alias is declared for it. Incidentally,
it’s perfectly valid to give the previous alias a different name than SomeUtility. Although giving the alias
a different name may be useful when trying to resolve a naming conflict, it’s generally better to alias it
using the same name as the original class name in order to avoid maintenance confusion in the future.

■ Note If you follow good partitioning principles when defining your namespaces, you shouldn’t have to deal with

this problem. It is bad design practice to create namespaces that contain a grab bag of various types covering

different groups of functionality. Instead, you should create your namespaces with intuitively cohesive types

contained within them to make it easier for developers to discover your types. In fact, at times in the .NET

Framework, you’ll see a namespace with some general types for the namespace included in it, with more

advanced types contained in a nested namespace named Advanced. For example, you will see the namespace

System.Xml.Serialization.Advanced defined in the .NET Framework. In many respects, for creating libraries,

these guidelines mirror the principle of discoverability applied when creating intuitive user interfaces. In other

words, name and group your types intuitively and make them easily discoverable.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

39

Control Flow
Like C, C++, and Java, the C# language contains all the usual suspects when it comes to control flow
structure. C# even implements the dastardly goto statement.

if-else, while, do-while, and for
The if-else construct within C# is identical to those in C++ and Java. As a stylistic recommendation, I’m
a proponent of always using blocks in if statements, or any other control flow statement as described in
the following sections, even when they contain only one statement, as in the following example:

if(<test condition>) {
 Console.WriteLine("You are here.");
}

The while, do, and for statements are identical to those in C++ and Java.

switch
The syntax of the C# switch statement is very similar to the C++ and Java switch syntax. The main
difference is that the C# switch doesn’t allow falling through to the next section. It requires a break (or
other transfer of control) statement to end each section. I believe this is a great thing. Countless hard-to-
spot bugs exist in C++ and Java applications because developers forgot a break statement or rearranged
the order of sections within a switch when one of them falls through to another. In C#, the compiler will
immediately complain with an error if it finds a section that falls through to the next. The one exception
to this rule is that you can have multiple switch labels (using the case keyword) per switch section, as
shown in the following code snippet. You can also simulate falling through sections with the goto
statement:

switch(k) {
 case 0:
 Console.WriteLine("case 0");
 goto case 1;
 case 1:
 case 2:
 Console.WriteLine("case 1 or 2");
 break;
}

■ Note The use of the goto statement is generally considered bad programming practice as it can create code

that is very hard to maintain, among other things. Even though it is available in the language does not mean that

you should use it frivolously. That said, there are very rare cases where it is applicable, however, any time you find

yourself using a goto statement, I advise you to scrutinize your design and evaluate whether the introduction of

goto reveals a design flaw.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

40

Notice that each one of the cases has a form of jump statement that terminates it. Even the last case
must have one. Many C++ and Java developers would omit the break statement in the final section,
because it would just fall through to the end of the switch anyway. Again, the beauty of the “no fall-
through” constraint is that even if a developer maintaining the code at a later date whimsically decides
to switch the ordering of the labels, no bugs can be introduced, unlike in C++ and Java. Typically, you
use a break statement to terminate switch sections, and you can use any statement that exits the section.
These include throw and return, as well as continue if the switch is embedded within a for loop where
the continue statement makes sense.

foreach
The foreach statement allows you to iterate over a collection of objects in a syntactically natural way.
Note that you can implement the same functionality using a while loop. However, this can be ugly, and
iterating over the elements of a collection is such a common task that foreach syntax is a welcome
addition to the language. If you had an array (or any other type of collection) of strings, for example, you
could iterate over each string using the following code:

static void Main() {
 string[] strings = new string[5];
 strings[0] = "Bob";
 strings[1] = "Joe";
 foreach(string item in strings) {
 Console.WriteLine("{0}", item);
 }
}

Within the parentheses of the foreach loop, you can declare the type of your iterator variable. In this
example, it is a string. Following the declaration of the iterator type is the identifier for the collection to
iterate over. You may use any object that implements the Collection pattern.2 Chapter 9 covers
collections in greater detail, including what sorts of things a type must implement in order to be
considered a collection. Naturally, the elements within the collection used in a foreach statement must
be convertible, using an explicit conversion, to the iterator type. If they’re not, the foreach statement will
throw an InvalidCastException at runtime. If you’d like to experience this inconvenience yourself, try
running this modification to the previous example:

static void Main() {
 object[] strings = new object[5];
 strings[0] = 1;
 strings[1] = 2;
 foreach(string item in strings) {
 Console.WriteLine("{0}", item);
 }
}

2 A type implements the Collection pattern if it either implements the IEnumerable (or IEnumerable<>) interface or
implements the public methods GetEnumerator and MoveNext as well as the public property Current. In other
words, a type need not implement IEnumerable in order to work with the foreach statement although one typically
implement the Collection pattern by implementing IEnumerable (or IEnumerable<>) in one’s types.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

41

Note, however, that it’s invalid for the code embedded in a foreach statement to attempt to modify
the iterator variable at all. It should be treated as read-only. That means you cannot pass the iterator
variable as an out or a ref parameter to a method, either. If you try to do any of these things, the
compiler will quickly alert you to the error of your ways.

break, continue, goto, return, and throw
C# includes a set of familiar statements that unconditionally transfer control to another location. These
include break, continue, goto, return, and throw. Their syntax should be familiar to any C++ or Java
developer (though Java has no goto). Their usage is essentially identical in all three languages.

Summary
This chapter introduced the C# syntax, emphasizing that C#, like similar object-oriented languages, is a
strongly typed language. For these languages, you want to utilize the type-checking engine of the
compiler to find as many errors as possible at compile time rather than find them later at runtime. In the
CLR, types are classified as either value types or reference types, and each category comes with its own
stipulations, which I’ll continue to dig into throughout this book. I also introduced namespaces and
showed how they help keep the global namespace from getting polluted with too many types whose
names could conflict. Finally, I showed how control statements work in C#, which is similar to how they
work in C++ and Java.

In the next chapter, I’ll dig deeper into the structure of classes and structs, while highlighting the
behavioral differences of instances of them.

CHAPTER 3 ■ C# SYNTAX OVERVIEW

42

C H A P T E R 4

■ ■ ■

43

Classes, Structs, and Objects

Everything is an object! At least, that is the view from inside the CLR and the C# programming language.
This is no surprise, because C# is, after all, an object-oriented language. The objects that you create
through class definitions in C# have all the same capabilities as the other predefined objects in the
system. In fact, keywords in the C# language such as int and bool are merely aliases to predefined value
types within the System namespace, in this case System.Int32 and System.Boolean, respectively.

■ Note This chapter is rather long, but don’t allow it to be intimidating. In order to cater to a wider audience, this

chapter covers as much C# base material as reasonably possible. If you’re proficient with either C++ or Java, you

may find yourself skimming this chapter and referencing it as you read subsequent chapters. Some of the topics

touched upon in this chapter are covered in more detail in later chapters.

The first section of this chapter covers class (reference type) definitions, which is followed by a section discussing

structure (value type) definitions. These are the two most fundamental classifications of types in the .NET runtime.

Then you’ll learn about System.Object (the base type of all types), the nuances of creating and destroying

instances of objects, expressions for initializing objects, and the topic of boxing and unboxing. I then cover newer

C# features such as anonymous types and named and optional arguments. Finally, I cover inheritance and

polymorphism, and the differences between inheritance and containment with regard to code reuse.

The ability to invent your own types is paramount to object-oriented systems. The cool thing is that
because even the built-in types of the language are plain-old CLR objects, the objects you create are on a
level playing field with the built-in types. In other words, the built-in types don’t have special powers
that you cannot muster in user-defined types. The cornerstone for creating these types is the class
definition. Class definitions, using the C# class keyword, define the internal state and the behaviors
associated with the objects of that class’s type. The internal state of an object is represented by the fields
that you declare within the class, which can consist of references to other objects, or values. Sometimes,
but rarely, you will hear people describe this as the “shape” of the object, because the instance field
definitions within the class define the memory footprint of the object on the heap.

The objects created from a class encapsulate the data fields that represent the internal state of the
objects, and the objects can tightly control access to those fields. The behavior of the objects is defined
by implementing methods, which you declare and define within the class definition. By calling one of

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

44

the methods on an object instance, you initiate a unit of work on the object. That work can possibly
modify the internal state of the object, inspect the state of the object, or anything else for that matter.

You can define constructors, which the system executes whenever a new object is created. You can
also define a method called a finalizer, which works when the object is garbage-collected. As you’ll see in
Chapter 13, you should avoid finalizers if at all possible. This chapter covers construction and
destruction in detail, including the detailed sequence of events that occur during the creation of an
object.

Objects support the concept of inheritance, whereby a derived class inherits the fields and methods
of a base class. Inheritance also allows you to treat objects of a derived type as objects of its base type. For
example, a design in which an object of type Dog derives from type Animal is said to model an is-a
relationship (i.e., Dog is-a(n) Animal). Therefore, you can implicitly convert references of type Dog to
references of type Animal. Here, implicit means that the conversion takes the form of a simple
assignment expression. Conversely, you can explicitly convert references of type Animal, through a cast
operation, to references of type Dog if the particular object referenced through the Animal type is, in fact,
an object created from the Dog class. This concept, called polymorphism, whereby you can manipulate
objects of related types as though they were of a common type, should be familiar to you. Computer
wonks always try to come up with fancy five-dollar words for things such as this, and polymorphism is no
exception, when all it means is that an object can take on multiple type identities. This chapter discusses
inheritance as well as its traps and pitfalls.

The CLR tracks object references. This means each variable of reference type actually contains a
reference to an object on the heap (or is null, if it doesn’t currently refer to an object). When you copy
the value of a reference-type variable into another reference-type variable, another reference to the
same object is created—in other words, the reference is copied. Thus, you end up with two variables that
reference the same object. In the CLR, you have to do extra work to create copies of objects—e.g., you
must implement the ICloneable interface or a similar pattern.

All objects created from C# class definitions reside on the system heap, which the CLR garbage
collector manages. The GC relieves you from the task of cleaning up your objects’ memory. You can
allocate them all day long without worrying about who will free the memory associated with them. The
GC is smart enough to track all of an object’s references, and when it notices that an object is no longer
referenced, it marks the object for deletion. Then, the next time the GC compacts the heap, it destroys
the object and reclaims the memory.

■ Note In reality, the process is much more complex than this. There are many hidden nuances to how the GC

reclaims the memory of unused objects. I talk about this in the section titled “Destroying Objects” later this

chapter. Consider this: The GC removes some complexity in one area, but introduces a whole new set of

complexities elsewhere.

Along with classes, the C# language supports the definition of new value types through the struct
keyword. Value types are lightweight objects that typically don’t live on the heap, but instead live on the
stack. To be completely accurate, a value type can live on the heap, but only if it is a field inside an object
on the heap. Value types cannot be defined to inherit from another class or value type, nor can another
value type or class inherit from them.

Value types can have constructors, but they cannot have a finalizer. By default, when you pass value
types into methods as parameters, the method receives a copy of the value. I cover the many details of
value types, along with their differences from reference types, in this chapter and in Chapter 13.

That said, let’s dive in and get to the details. Don’t be afraid if the details seem a little overwhelming
at first. The fact is you can start to put together reasonable applications with C# without knowing every

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

45

single detailed behavior of the language. That’s a good thing, because C#, along with the Visual Studio
IDE, is meant to facilitate rapid application development. However, the more details you know about the
language and the CLR, the more effective you’ll be at developing and designing robust C# applications.

Class Definitions
Class definitions in C# look similar to class definitions in C++ and Java. Let’s look at a simple class now,
so you can get a feel for things. In the following code, I’ve shown the basic pieces for creating a class
definition:

//NOTE: This code is not meant to be compiled as-is
[Serializable]
public class Derived : Base, ICloneable
{
 private Derived(Derived other) {
 this.x = other.x;
 }

 public object Clone() { //implement the IClonable.Clone interface
 return new Derived(this);
 }

 private int x;
}

This class declaration defines a class Derived, which derives from the class Base and also
implements the ICloneable interface.

■ Note If this is the first time you’ve encountered the interface concept, don’t worry. Chapter 5 is devoted entirely

to interfaces and contract-based programming.

The access modifier in front of the class keyword controls the visibility of the type from outside the
assembly (I describe assemblies in Chapter 2). The class Derived is publicly accessible, which means that
consumers of the assembly that contains this class can create instances of it. This type contains a private
constructor that is used by the public method Clone, which implements the ICloneable interface. When
a class implements an interface, you are required to implement all of the methods of the interface.

You can apply attributes to just about any nameable entity within the CLR type system. In this case,
I’ve attached the Serializable attribute to the class to show an example of attribute usage syntax. These
attributes become part of the metadata that describes the type to consumers. In addition, you can create
custom attributes to attach to various entities, such as classes, parameters, return values, and fields,
which easily exercise the capabilities of Aspect Oriented Programming (AOP).

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

46

Fields
Fields are the bread and butter that make up the state of objects. Typically, you declare a new class only
if you need to model some new type of object with its own custom internal state, represented by its
instance fields.

You declare fields with a type, just like all other variables in C. The possible field modifiers are as
follows:

new
public
protected
internal
private
static
readonly
volatile

Many of these are mutually exclusive. Those that are mutually exclusive control the accessibility of
the field and consist of the modifiers public, protected, internal, and private. I discuss these in more
detail in the “Accessibility” section. However, for now, I’ll detail the remaining modifiers.

The static modifier controls whether a field is a member of the class type or a member of objects
instantiated from the type. In the absence of the static modifier, a field is an instance field, and thus
each object created from the class has its own copy of the field. This is the default. When decorated with
the static modifier, the field is shared among all objects of a class on a per-application-domain basis.

Note that static fields are not included in the memory footprint of the object instances. In other
words, objects don’t encapsulate the static fields; rather, types encapsulate the static fields. It would be
inefficient for all instances of the object to contain a copy of the same static variable in their memory
footprint. And worse than that, the compiler would have to generate some sort of code under the hood
to make sure that when the static field is changed for one instance, it would change the field in all
instances. For this reason, the static fields actually belong to the class and not to the object instances. In
fact, when a static field is publicly accessible outside the class, you use the class name and not the object
instance variable to access the field.

■ Note Static fields have another important quality: They are global to the application domain within which their

containing types are loaded. Application domains are an abstraction that is an isolation mechanism similar to the

process abstraction within an operating system, but they are more lightweight. You can have multiple application

domains in one operating system process. If your CLR process contains multiple application domains, each will

have a copy of the class’s static fields. A static field’s value in one application domain can be different from the

same static field in another application domain. Unless you create extra application domains yourself, your

application will have only one application domain that your code runs in: the default application domain. However,

it’s important to note this distinction when working in environments such as ASP.NET, where the concept of the

application domain is used as the isolation mechanism between two ASP.NET applications. In fact, you can easily

jump to the conclusion that ASP.NET was the driving motivation behind the application domain notion.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

47

You can initialize fields during object creation in various ways. One straightforward way of
initializing fields is through initializers. You use these initializers at the point where the field is defined,
and they can be used for either static or instance fields—for example:

 private int x = 789;
 private int y;
 private int z = A.InitZ();

The field x is initialized using an initializer. The notation is rather convenient. Note that this
initialization occurs at run time and not at compile time. Therefore, this initialization statement could
have used something other than a constant. For example, the variable z is initialized by calling a method,
A.InitZ. At first, this field initialization notation may seem like a great shortcut, saving you from having
to initialize all of the fields inside the body of the constructor. However, I suggest that you initialize
instance fields within the instance constructor body for complex type definitions. I cover static and
instance initialization in all of its gory detail in the “Creating Objects” section later in this chapter, and
you’ll see why initializing fields in the constructor can facilitate code that’s easier to maintain and
debug.

Another field modifier that comes in handy from time to time is the readonly modifier. As you can
guess, it defines the field so that you can only read from it. You can write to it only during object
creation. You can emulate the same behavior with greater flexibility using a read-only property, which I
discuss in the section titled “Properties.” Static readonly fields are initialized in a static constructor,
while instance readonly fields are initialized in an instance constructor. Alternatively, you can initialize
readonly fields using initializers at the point of their declaration in the class definition, just as you can do
with other fields. Within the constructor, you can assign to the readonly field as many times as
necessary. Only within the constructor can you pass the readonly field as a ref or out parameter to
another function. Consider the following example:

public class A
{
 public A()
 {
 this.y = 456;

 // We can even set y again.
 this.y = 654;

 // We can use y as a ref param.
 SetField(ref this.y);
 }

 private void SetField(ref int val)
 {
 val = 888;
 }

 private readonly int x = 123;
 private readonly int y;
 public const int z = 555;

 static void Main()
 {
 A obj = new A();

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

48

 System.Console.WriteLine("x = {0}, y = {1}, z = {2}",
 obj.x, obj.y, A.z);
 }
}

You should note one important nuance here: The z field is declared using the const keyword. At
first, it may seem that it has the same effect as a readonly field, but it does not. First, a const field such as
this is known and used at compile time. This means that the code generated by the compiler in the Main
routine can be optimized to replace all uses of this variable with its immediate const value. The compiler
is free to use this performance trick, simply because the value of the field is known at compile time. Also,
note that you access the const field using the class name rather than the instance name. This is because
const values are implicitly static and don’t affect the memory footprint, or shape, of the object instances.
Again, this makes sense because the compiler would optimize away access to that memory slot in the
object instance anyway, because it would be the same for all instances of this object.

But one more detail is lurking here with regard to the difference between readonly and const fields.
readonly fields are guaranteed to be computed at run time. Therefore, suppose you have one class with
both a readonly field and a const field that lives in assembly A, and code in assembly B creates and uses
an instance of that class in assembly A. Now, suppose you rebuild assembly A at a later date, and you
modify the field initializers for the readonly field and the const field. The consumer in assembly B would
see the change in the const field only after you recompile the code in assembly B. This behavior is
expected, because when assembly B was built referencing the initial incarnation of assembly A, the
compiler optimized the use of the const values by inserting the literal value into the generated IL code.
Because of this, you need to be careful when deciding whether to use a readonly field or a const value
and, if you choose to use a readonly field, you need to choose carefully between using a readonly field or
a read-only property, which I introduce in a later section titled “Properties.” Properties provide greater
design-time and maintenance-time flexibility over readonly fields.

Lastly, the volatile modifier indicates, as its name implies, that the field is sensitive to read and
write timing. Technically, the modifier indicates to the compiler that the field may be accessed or
modified by the operating system or hardware running on that system, or more likely, by another thread
at any time. The latter case is the most typical. Normally, access to a field by multiple threads only
becomes a problem when you don’t use any synchronization techniques, such as when not using the C#
lock statement or OS synchronization objects. This is typically called lock free programming. When a
field is marked as volatile, it tells the implementation—and by that, I mean the CLR JIT compiler—that
it must not apply optimizations to that field’s access. The fact is, you’ll rarely ever need the volatile
modifier or come into contact with it.

I’ve already covered some of the ways that field initialization can occur within an object instance
during class initialization. I cover many more nuances of field initialization in the “Field Initialization”
section. However, note that C# has rules about default field initialization that are applied before any field
initialization code that occurs in the constructor method’s code block. C#, by default, creates verifiably
type-safe code, which is guaranteed not to use uninitialized variables and fields. The compiler goes to
great lengths to ensure that this requirement is satisfied. For example, it initializes all fields, whether
they’re instance or static fields, to a default value before any of your variable initializers execute. The
default value for just about anything can easily be represented by either the value 0 or null. For example,
you can initialize an integer or any other similar value type by setting all of the bits in its storage space to
0. For reference types, you set the initial default value to null. Again, this is usually the result of the
implementation setting all of the bits of the reference to 0. These default initializations occur before any
code executes on the instance or class. Therefore, it’s impossible to inspect the uninitialized values of an
object or a class during initial construction.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

49

Constructors
Constructors are called when a class is first loaded by the CLR or an object is created. There are two
types of constructors: static constructors and instance constructors.

A class can have only one static constructor which is called when the type is loaded by the CLR, and
it can have no parameters. The name of the static constructor must match the name of the class it
belongs to. As with any other class member, you can attach metadata attributes to the static constructor.

Instance constructors, on the other hand, are called when an instance of a class is created. They
typically set up the state of the object by initializing the fields to a desired predefined state. You can also
do any other type of initialization work, such as connecting to a database and opening a file. A class can
have multiple instance constructors that can be overloaded (i.e., have different parameter types). As with
the static constructor, instance constructor names must match the name of the defining class. One
notable capability of an instance constructor is that of the optional constructor initializer clause. Using
the initializer, which follows a colon after the parameter list, you can call a base class constructor or
another constructor in the same class through the keywords base and this, respectively. I have more to
say about the base keyword in the section titled “base Keyword.” Consider the following sample code
and the two comments:

class Base
{
 public int x = InitX();

 public Base(int x)
 {
 this.x = x; // disambiguates the parameter and the instance variable
 }
}

class Derived : Base
{
 public Derived(int a)
 :base(a) // calls the base class constructor
 {
 }
}

Methods
A method defines a procedure that you can perform on an object or a class. If the method is an instance
method, you can call it on an object. If the method is a static method, you can call it only on the class.
The difference is that instance methods have access to both the instance fields of the object instance and
the static fields of the class, whereas static methods don’t have access to instance fields or methods.
Static methods can only access static class members.

Methods can have metadata attributes attached to them, and they can also have optional modifiers
attached. I discuss them throughout this chapter. These modifiers control the accessibility of the
methods, as well as facets of the methods that are germane to inheritance. Every method either does or
does not have a return type. If a method doesn’t have a return type, the declaration must declare the
return type as void. Methods may or may not have parameters.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

50

Static Methods
You call static methods on the class rather than on instances of the class. Static methods only have
access to the static members of the class. You declare a method as static by using the static modifier, as
in the following example:

public class A
{
 public static void SomeFunction()
 {
 System.Console.WriteLine("SomeFunction() called");
 }

 static void Main()
 {
 A.SomeFunction();
 SomeFunction();
 }
}

Notice that both methods in this example are static. In the Main method, I first access the
SomeFunction method using the class name. I then call the static method without qualifying it. This is
because the Main and SomeFunction methods are both defined in the same class and are both static
methods. Had SomeFunction been in another class, say class B, I would have had no choice but to
reference the method as B.SomeFunction.

Instance Methods
Instance methods operate on objects. In order to call an instance method, you need a reference to an
instance of the class that defines the method. The following example shows the use of an instance
method:

public class A
{
 private void SomeOperation()
 {
 x = 1;
 this.y = 2;
 z = 3;

 // assigning this in objects is an error.
 // A newinstance = new A();
 // this = newinstance;
 }

 private int x;
 private int y;
 private static int z;

 static void Main()
 {

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

51

 A obj = new A();

 obj.SomeOperation();

 System.Console.WriteLine("x = {0}, y = {1}, z= {2}",
 obj.x, obj.y, A.z);
 }
}

In the Main method, you can see that I create a new instance of the A class and then call the
SomeOperation method through the instance of that class. Within the method body of SomeOperation, I
have access to the instance and static fields of the class, and I can assign to them simply by using their
identifiers. Even though the SomeOperation method can assign the static field z without qualifying it, as I
mentioned before, I believe it makes for more readable code if the assignment of static fields is qualified
by the class name even in the methods of the same class. Doing so is helpful for whoever comes after you
and has to maintain your code— that someone could even be you!

Notice that when I assign to y, I do so through the this identifier. You should note a few important
things about this when used within an instance method body. It is treated as a read-only reference
whose type is that of the class. Using this, you can access the fields of the instance, as I did when
assigning the value of y in the previous code example. Because the this value is read-only, you may not
assign it, which would make it reference a different instance. If you try to do so, you’ll hear about it when
the compiler complains to you and fails to compile your code.

Properties
Properties are one of the nicest mechanisms within C# and the CLR that enable you to enforce
encapsulation better. In short, you use properties for strict control of access to the internal state of an
object.

A property, from the point of view of the object’s client, looks, smells, and behaves just like a public
field. The notation to access a property is the same as that used to access a public field on the instance.
However, a property doesn’t have any associated storage space within the object, as a field does. Rather,
a property is a shorthand notation for defining accessors used to read and write fields. The typical pattern
is to provide access to a private field in a class through a public property. C# 3.0 made this even easier
with its introduction of auto-implemented properties.

Properties significantly enhance your flexibility as a class designer. For example, if a property
represents the number of table rows in a database table object, the table object can defer the
computation of the value until the point where it is queried through a property. It knows when to
compute the value, because the client will call an accessor when it accesses the property.

Declaring Properties
The syntax for declaring properties is straightforward. As with most class members, you can attach
metadata attributes to a property. Various modifiers that are valid for properties are similar to ones for
methods. Other modifiers include the ability to declare a property as virtual, sealed, override,
abstract, and so on. I also cover these in detail in the section titled “Inheritance and Virtual Methods”
later in this chapter.

The following code defines a property, Temperature, in class A:

public class A
{
 private int temperature;

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

52

 public int Temperature
 {
 get
 {
 System.Console.WriteLine("Getting value for temperature");
 return temperature;
 }

 set
 {
 System.Console.WriteLine("Setting value for temperature");
 temperature = value;
 }
 }
}

public class MainClass
{
 static void Main()
 {
 A obj = new A();

 obj.Temperature = 1;
 System.Console.WriteLine("obj.Temperature = {0}",
 obj.Temperature);
 }
}

First I defined a property named Temperature, which has a type of int. Each property declaration
must define the type that the property represents. That type should be visible to the compiler at the
point where it is declared in the class, and it should have at least the same accessibility as the property
being defined. By that, I mean that if a property is public, the type of the value that the property
represents must at least be declared public in the assembly within which it is defined. In the example,
the int type is an alias for Int32. That class is defined in the System namespace, and it is public. So, you
can use int as a property type in this public class A.

The Temperature property merely returns the private field temperature from the internal state of the
object instance. This is the universal convention. You name the private field with a leading lowercase
character, while naming the property with a leading uppercase character. Of course, you’re not obligated
to follow this convention, but there is no good reason not to and C# programmers expect it.

■ Note If it looks like a lot of typing simply to expose a field value as a property, don’t worry. The C# team

recognized this and added auto-implemented properties to the languages in C# 3.0, which I cover shortly in the

section titled “Auto-Implemented Properties.”

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

53

Accessors
In the previous example, you can see that there are two blocks of code within the property block. These
are the accessors for the property, and within the blocks of the accessors, you put the code that reads
and writes the property. As you can see, one is named get and the other is named set. It should be
obvious from their names what each one does.

The get block is called when the client of the object reads the property. As you would expect, this
accessor must return a value or an object reference that matches the type of the property declaration. It
can also return an object that is implicitly convertible to the type of the property declaration. For
example, if the property type is a long and the getter returns an int, the int will be implicitly converted
to a long without losing precision. Otherwise, the code in this block is just like a parameterless method
that returns a value or reference of the same type as the property.

The set accessor is called when the client attempts to write to the property. Note that there is no
return value. Note also that a special variable named value is available to the code within this block, and
it’s the same type as that of the property declaration. When you write to the property, the value variable
will have been set to the value or object reference that the client has attempted to assign to the property.
If you attempt to declare a local variable named value in the set accessor, you’ll receive a compiler error.
The set accessor is like a method that takes one parameter of the same type as the property and returns
void.

Read-Only and Write-Only Properties
If you define a property with only a get accessor, that property will be read-only. Likewise, if you define a
property with only a set accessor, you’ll end up with a write-only property. And lastly, a property with
both accessors is a read-write property.

You may be wondering why a read-only property is any better or worse than a readonly public field.
At first thought, it may seem that a read-only property is less efficient than a readonly public field.
However, given the fact that the CLR can inline the code to access the property during JIT compilation,
in the case where the property simply returns a private field, this argument of inefficiency does not hold.
Now, of course, writing the code is not as efficient. However, because programmers aren’t lazy and auto-
implemented properties make it so simple, that’s really no argument either.

The fact is, in 99% of all cases, a read-only property is more flexible than a readonly public field. One
reason is that you can defer a read-only property’s computation until the point where you need it (a
technique known as lazy evaluation, or deferred execution). So, in reality, it could provide for more
efficient code, when the property is meant to represent something that takes significant time to
compute. If you’re using a readonly public field for this purpose, the computation would have to happen
in the block of the constructor. All the necessary data to make the computation may not even be
available at that point. Or, you may waste time in the constructor computing the value, when the user of
the object may not ever access the value.

Also, read-only properties help enforce encapsulation. If you originally had a choice between a
read-only property and a readonly public field, and you chose the read-only property, you would have
had greater flexibility in future versions of the class to do extra work at the point where the property is
accessed without affecting the client. For example, imagine if you wanted to do some sort of logging in
debug builds each time the property is accessed. The client would effectively be calling a method
implicitly, albeit one of the special property methods, to access the data. The flexibility of things that you
can do in that method is almost limitless. Had you accessed the value as a public readonly field, you
wouldn’t call a method or be able to do anything without switching it over to a property and forcing the
client code to recompile. This discussion leads directly into the discussion regarding encapsulation in
the later section titled “Encapsulation.”

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

54

Auto-Implemented Properties
Many times, you need a type, say a class, which contains a few fields that are treated as a cohesive unit.
For example, imagine an Employee type that contains a full name and an identification number but, for
the sake of example, manages this data using strings as shown below:

public class Employee
{
 string fullName;
 string id;
}

As written, this class is essentially useless. The two fields are private and must be made accessible.
For the sake of encapsulation, we don’t want to just make the fields public. However, for such a simple
little type, it sure is painful to code up basic property accessors as the following code shows:

public class Employee
{
 public string FullName {
 get { return fullName; }
 set { fullName = value; }
 }

 public string Id {
 get { return id; }
 set { id = value; }
 }

 string fullName;
 string id;
}

What a lot of code just to get a type with a couple of read/write properties!

■ Note I’d be willing to bet that there are many developers out there who have simply avoided properties and

used public fields in these kinds of helper types simply because of the typing overhead alone. The problem with

that short-sighted approach is that you cannot do any sort of validation upon setting the field or perform any lazy

evaluation during property access if that requirement becomes necessary as your application evolves.

Thankfully, C# 3.0 added a new feature called auto-implemented properties that reduce this burden
significantly. Look how the previous Employee type changes after using auto-implemented properties:

public class Employee
{
 public string FullName { get; set; }
 public string Id { get; set; }
}

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

55

That’s it! Basically, what you’re telling the compiler is, “I want a string property named FullName
and I want it to support get and set.” Behind the scenes the compiler generates a private field in the
class for the storage and implements the accessors for you. The beauty of this is that it’s just a little more
typing than declaring public fields, but at the same time because they are properties you can change the
underlying implementation without having to modify the public contract of the type. That is, if you later
decided you wanted to customize the accessors for Id, you could do so without forcing the clients of
Employee to recompile.

■ Note If you’re curious about the private field that the compiler declares in your type for auto-implemented

properties, you can always look at the field using ILDASM. Using my current implementation, the private field

providing storage for FullName in the Employee class is named <>k__AutomaticallyGeneratedPropertyField0

and is of type string. Notice that the field name is “unspeakable,” meaning that you cannot type it into code and

compile without getting syntax errors. The C# compiler implementers do this on purpose so we don’t use the type

name directly. After all, the name of the field is a compiler implementation detail that is subject to change in the

future.

You can also create a read-only auto-implemented property by inserting the private keyword as
shown below:

public class Employee
{
 public string FullName { get; private set; }
 public string Id { get; set; }
}

At this point, you may be wondering how the FullName field ever gets set. After all, it’s read-only and
the private field representing the underlying storage has a compiler-generated name that we cannot use
in a constructor to assign to it. The solution is to use a conventional constructor or a factory method. The
example below shows the use of a conventional instance constructor:

using System;

public class Employee
{
 public Employee(string fullName, string id) {
 FullName = fullName;
 Id = id;
 }

 public string FullName { get; private set; }
 public string Id { get; set; }
}

public class AutoProps
{
 static void Main() {

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

56

 Employee emp = new Employee(
 "John Doe",
 "111-11-1111");
 }
}

Encapsulation
Arguably, one of the most important concepts in object-oriented programming is that of encapsulation.
Encapsulation is the discipline of tightly controlling access to internal object data and procedures. It
would be impossible to consider any language that does not support encapsulation as belonging to the
set of object-oriented languages.

You always want to follow this basic concept: Never define the data fields of your objects as publicly
accessible. It’s as simple as that. However, you would be surprised how many programmers still declare
their data fields as public. Typically, this happens when a small utility object is defined and the creators
are either lazy or think they are in too much of a hurry. There are some things, though, you should just
not do, and cutting corners like this is one of them.

You want the clients of your object to speak to it only through controlled means. This normally
means controlling communication to your object via methods on the object (or properties which, under
the covers, are method calls). In this way, you treat the internals of the object as if they are inside a black
box. No internals are visible to the outside world, and all communications that could modify those
internals are done through controlled channels. Through encapsulation, you can engineer a design
whereby the integrity of the object’s state is never compromised.

A simple example of what I’m talking about is in order. In this example, I create a dummy helper
object to represent a rectangle. The example itself is a tad contrived, but it’s a good one for the sake of
argument because of its minimal complexity:

class MyRectangle
{
 public uint width;
 public uint height;
}

You can see a crude example of a custom rectangle class. Currently, I’m only interested in the width
and the height of the rectangle. Of course, a useful rectangle class for a graphics engine would contain an
origin as well, but for the sake of this example, I’ll only be interested in the width and height. So, I
declare the two fields for width and height as public. Maybe I did that because I was in a hurry as I was
designing this basic little class. But as you’ll soon see, just a little bit more work up front will provide
much greater flexibility.

Now, let’s say that time has passed, and I have merrily used my little rectangle class for many uses.
Never mind the fact that my little rectangle class is not very useful in and of itself, but let’s say I have
come up with a desire to make it a little more useful. Suppose I have some client code that uses my
rectangle class and needs to compute the area of the rectangle. Back in the days of ANSI C and other
purely procedural imperative programming languages, you would have created a function named
something like ComputeArea, which would take, as a parameter, a pointer to an instance of MyRectangle.
Good object-oriented principles guide me to consider that the best way to do this is to let the instances
of MyRectangle tell the client what their area values are. So, let’s do it:

class MyRectangle
{
 public uint width;

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

57

 public uint height;

 public uint GetArea()
 {
 return width * height;
 }
}

As you can see, I’ve added a new member: the GetArea method. When called on an instance, the
trusty MyRectangle will compute the area of itself and return the result. Now, I’ve still just got a basic little
rectangle class that has one helper function defined on it to make clients’ lives a little bit easier if they
need to know the area of the rectangle. But let’s suppose I have some reason to precompute the value of
the area, so that each time the GetArea method is called, I don’t have to recompute it every time. Maybe I
want to do this because I know, for some reason, that GetArea will be called many times on the same
instance during its lifetime. Ignoring the fact that early optimization is foolish, let’s say that I decide to
do it. Now, my new MyRectangle class could look something like this:

class MyRectangle
{
 public uint width;
 public uint height;

 public uint area;

 public uint GetArea()
 {
 return area;
 }
}

If you look closely, you can start to see my errors. Notice that all of the fields are public. This allows
the consumer of my MyRectangle instances to access the internals of my rectangle directly. What would
be the point of providing the GetArea method if the consumer can simply access the area field directly?
Well, you say, maybe I should make the area field private. That way, clients are forced to call GetArea to
get the area of the rectangle. This is definitely a step in the right direction, as shown in the following
code:

class MyRectangle
{
 public uint width;
 public uint height;

 private uint area;

 public uint GetArea()
 {
 if(area == 0) {
 area = width * height;
 }

 return area;
 }
}

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

58

I’ve made the area field private, forcing the consumer to call GetArea in order to obtain the area.
However, in the process, I realized that I have to compute the area of the rectangle at some point. So,
because I’m lazy to begin with, I decide to check the value of the area field before returning it, and if it’s
0, I assume that I need to compute the area before I return it. This is a crude attempt at an optimization.
But now, I only compute the area if it is needed. Suppose a consumer of my rectangle instance never
needed to know the area of the rectangle. Then, given the previous code, that consumer wouldn’t have
to lose the time it takes to compute the area. Of course, in my contrived example, this optimization will
most likely be extremely negligible. But if you think for just a little bit, I’m sure you can come up with an
example where it may be beneficial to use this lazy evaluation technique. Think about database access
across a slow network where only certain fields in a table may be needed at run time. Or, for the same
database access object, it may be expensive to compute the number of rows in the table. You should only
use this technique when necessary.

A glaring problem still exists with my rectangle class. The width and height fields are public, so what
happens if consumers change one of the values after they’ve called GetArea on the instance? Well, then
I’ll have a really bad case of inconsistent internals. The integrity of the state of my object would be
compromised. This is definitely not a good situation to be in. So, now you see the error of my ways yet
again. I must make the width and height fields of my rectangle private as well:

class MyRectangle
{
 private uint width;
 private uint height;
 private uint area;

 public uint Width
 {
 get
 {
 return width;
 }

 set
 {
 width = value;
 ComputeArea();
 }
 }

 public uint Height
 {
 get
 {
 return height;
 }

 set
 {
 height = value;
 ComputeArea();
 }
 }

 public uint Area

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

59

 {
 get
 {
 return area;
 }
 }

 private void ComputeArea()
 {
 area = width * height;
 }
}

Now, in my latest incarnation of MyRectangle, I have become really wise. After making the width and
height fields private, I realized that the consumer of the objects needs some way to get and set the values
of the width and the height. That’s where I use C# properties. Internally, I now handle the changes to the
internal state through a method body, and the methods called belong to the set of specially named
methods on the class. I have more to say about special—sometimes called reserved—member names in
the section titled “Reserved Member Names.” Now, I have tight control over access to the internals, and
along with that control comes the most essential value of encapsulation. I can effectively manage the
state of the internals so that they never become inconsistent. It’s impossible to guarantee the integrity of
the object’s state when foreign entities have access to the state through back-door means.

In this example, my object knows exactly when the width and height fields change. Therefore, it can
take the necessary action to compute the new area. If the object had used the approach of lazy
evaluation, such that it contained a cached value of the area computed during the first call of the Area
property getter, then I would know to invalidate that cache value as soon as either of the setters on the
Width or Height properties is called.

The moral of the story is, a little bit of extra work up front to foster encapsulation goes a long way as
time goes on. One of the greatest properties of encapsulation that you need to burn into your head and
take to the bank is that, when used properly, the object’s internals can change to support a slightly
different algorithm without affecting the consumers. In other words, the interface visible to the
consumer (also known as the contract) does not change. For example, in the final incarnation of the
MyRectangle class, the area is computed up front as soon as either of the Width or Height properties is set.
Maybe once my software is nearing completion, I’ll run a profiler and determine that computing the
area early is really sapping the life out of the processor as my program runs. No problem. I can change
the model to use a cached area value that is only computed when first needed, and because I followed
the tenets of encapsulation, the consumers of my objects don’t even need to know about it. They don’t
even know a change internal to the object occurred. That’s the power of encapsulation. When the
internal implementation of an object can change, and the clients that use it don’t have to change, then
you know encapsulation is working as it should.

■ Note Encapsulation helps you achieve the age-old guideline of strong cohesion of objects with weak coupling

between objects.

Accessibility
I’ve mentioned access modifiers several times up to this point. Their use may seem intuitive to you if you
have any experience with any other object-oriented language, such as C++ or Java. However, certain

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

60

nuances of C# and CLI member access modifiers bear mentioning. Before I discuss the various types of
modifiers, let’s talk a little bit about where you can apply them.

Essentially, you can use access modifiers on just about any defined entity in a C# program,
including classes and any member within the class. Access modifiers applied to a class affect its visibility
from outside the containing assembly. Access modifiers applied to class members, including methods,
fields, properties, events, and indexers, affect the visibility of the member from outside of the class.
Table 4-1 describes the various access modifiers available in C#.

Table 4-1. Access Modifiers in C#

Access Modifier Meaning

public Member is completely visible outside both the defining scope and the internal
scope. In other words, access to a public member is not restricted at all.

protected Member is visible only to the defining class and any class that derives from the
defining class.

internal Member is visible anywhere inside the containing assembly. This includes the
defining class and any scope within the assembly that is outside the defining class.

protected
internal

Member is visible within the defining class and anywhere else inside the assembly.
This modifier combines protected and internal using a Boolean OR operation.
The member is also visible to any class that derives from the defining class,
whether it’s in the same assembly or not.

private Member is visible only within the defining class, with no exceptions. This is the
strictest form of access and is the default access for class members.

Note that the CLR supports one more form of accessibility that the C# language designers felt
strongly was unnecessary to implement. Within the CLR, it is known as family-and-assembly
accessibility. In C# parlance, that equates to protected and internal. If, for some reason, you absolutely
must use this accessibility modifier, then you need to use a different language, such as C++/CLI or raw
IL.

Now, let’s examine the allowed usage of these modifiers on various defined entities within C#. Class
members can use all five variants of the C# access modifiers. The default access of the class members, in
the absence of any modifiers at all, is private. Types defined either within or outside a namespace can
only have one of two access modifiers; they can either be public or internal. By default, they are
internal.

You can apply only public, private, and internal to struct member definitions. I cover struct
definitions in greater detail later in the chapter in the section titled “Value Type Definitions.” Notice the
absence of protected and protected internal. They aren’t needed, because structs are implicitly
sealed, meaning they cannot be base classes. I cover the sealed modifier in more detail in the section
titled “Sealed Classes.”

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

61

■ Note One more important note is in order for those used to coding in C++: struct members are private by

default, just like in class definitions, whereas they are public by default in C++.

Lastly, members of interfaces, which I describe fully in Chapter 5, and enums, which I covered in
Chapter 3, are implicitly public by their very nature. Interfaces are meant to define a set of operations, or
a contract, that a class can implement. It makes no sense for an interface to have any restricted access
members, because restricted access members are normally associated with a class implementation, and
interfaces, by their definition, contain no implementation. Enumerations, on the other hand, are
normally used as a named collection of constants. Enumerations have no internal implementation
either, so it makes no sense for enumeration members to have any restricted access. In fact, you get an
error if you specify an access modifier, even public, on an interface member or an enumeration
member.

As you can see, access for just about anything defaults to the strictest form of access that makes
sense for that entity. In other words, you have to do work to allow others access to classes or class
members. The only exception is the access for a namespace, which is implicitly public and cannot have
any access modifiers applied to it.

Interfaces
Even though I devote much of Chapter 5 to the topic of interfaces, it is worth introducing interfaces at
this point for the purpose of discussion in the rest of this chapter. Generally speaking, an interface is a
definition of a contract. Classes can choose to implement various interfaces, and by doing so, they
guarantee to adhere to the rules of the contract. When a class inherits from an interface, it is required to
implement the members of that interface. A class can implement as many interfaces as it wants by listing
them in the base class list of the class definition.

In general terms, an interface’s syntax closely resembles that of a class. However, each member is
implicitly public. In fact, you’ll get a compile-time error if you declare any interface member with any
modifiers. Interfaces can only contain instance methods; therefore, you can’t include any static methods
in the definition. Interfaces don’t include an implementation; therefore, they are semantically abstract
in nature. If you’re familiar with C++, you know that you can create a similar sort of construct by creating
a class that contains all public, pure virtual methods that have no default implementations.

The members of an interface can only consist of members that ultimately boil down to methods in
the CLR. This includes methods, properties, events, and indexers. I cover indexers in the “Indexers”
section, and I cover events in Chapter 10.

■ Note If you’re a stickler for terminology, the C# specification actually calls properties, events, indexers,

operators, constructors, and destructors function members. It’s actually a misnomer to call them methods.

Methods contain executable code, so they’re also considered function members.

The following code shows an example of an interface and a class that implements the interface:

public interface IMusician
//Note:A standard practice is that you preface interface names with a capital "I"

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

62

{
 void PlayMusic();
}

public class TalentedPerson : IMusician
{
 public void PlayMusic() {}
 public void DoALittleDance() {}
}

public class EntryPoint
{
 static void Main()
 {
 TalentedPerson dude = new TalentedPerson();
 IMusician musician = dude;

 musician.PlayMusic();
 dude.PlayMusic();
 dude.DoALittleDance();
 }
}

In this example, I’ve defined an interface named IMusician. A class, TalentedPerson, indicates that it
wants to support the IMusician interface. The class declaration is basically saying, “I would like to enter
into a contract to support the IMusician interface, and I guarantee to support all the methods of that
interface.” The requirement of that interface is merely to support the PlayMusic method, which the
TalentedPerson class does so faithfully. As a final note, it is customary to name an interface type with a
leading uppercase I. When reading code, this stands as a marker to indicate that the type in question is,
in fact, an interface.

Now, clients can access the PlayMusic method in one of two ways. They can either call it through the
object instance directly, or they can obtain an interface reference onto the object instance and call the
method through it. Because the TalentedPerson class supports the IMusician interface, references to
objects of that class are implicitly convertible to references of IMusician. The code inside the Main
method in the previous example shows how to call the method both ways.

The topic of interfaces is broad enough to justify devoting an entire chapter to them, which I do in
Chapter 5. However, the information regarding interfaces that I’ve covered in this section is enough to
facilitate the discussions in the rest of this chapter.

Inheritance
If you ask around, many developers will tell you that inheritance is the backbone of object-oriented
programming. Although inheritance is a really slick concept to those who first encounter it, I beg to
differ that inheritance is the backbone. I’m a firm believer that encapsulation is the strongest feature of
object-oriented programming. Inheritance is an important concept and a useful tool. However, like
many powerful tools, it can be dangerous when misused. My goal in this section is to introduce you to
inheritance in a way that makes you respect its power and that helps you to avoid abusing it.

Earlier, I covered the syntax for defining a class. You specify the base class after a colon that follows
the class name. In C#, a class can have only one base class. (Some other languages, such as C++, support
multiple inheritance.)

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

63

Accessibility of Members
Accessibility of members plays an important aspect in inheritance, specifically with respect to accessing
members of the base class from the derived class. Any public members of the base class become public
members of the derived class.

Any members marked as protected are only accessible internally to the declaring class and to the
classes that inherit from it. Protected members are never accessible publicly from outside the defining
class or any class deriving from the defining class. Private members are never accessible to anything
except the defining class. So even though a derived class inherits all the members of the base class,
including the private ones, the code in the derived class cannot access the private members inherited
from the base class. In addition, protected internal members are visible to all types that are defined
within the containing assembly and to classes that derive from the class defining the member. The
reality is that the derived class inherits every member of a base class, except instance constructors, static
constructors, and destructors.

As you’ve seen, you can control the accessibility of the entire class itself when you define it. The only
possibilities for the class type’s accessibility are internal and public. When using inheritance, the rule is
that the base class type must be at least as accessible as the deriving class. Consider the following code:

class A
{
 protected int x;
}

public class B : A
{
}

This code doesn’t compile, because the A class is internal and is not at least as accessible as the
deriving class B. Remember that in the absence of an access modifier, class definitions default to
internal access—hence, the reason class A is internal. In order for the code to compile, you must either
promote class A to public access or demote class B to internal access. Also note that it is legal for class A
to be public and class B to be internal.

Implicit Conversion and a Taste of Polymorphism
You can view inheritance and what it does for you in several ways. First and most obvious, inheritance
allows you to borrow an implementation. In other words, you can inherit class D from class A and reuse
the implementation of class A in class D. It potentially saves you from having to do some work when
defining class D. Another use of inheritance is specialization, where class D becomes a specialized form of
class A. For example, consider the class hierarchy, as shown in Figure 4-1.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

64

Figure 4-1. Inheritance specialization

As you can see, classes Rectangle and Circle derive from class GeometricShape. In other words, they
are specializing the GeometricShape class. Specialization is meaningless without polymorphism and
virtual methods. I cover the topic of polymorphism in more detail in the “Inheritance and Virtual
Methods” section of this chapter. For the moment, I’ll define basically what it means for the purpose of
this conversation.

Polymorphism describes a situation in which a type referenced with a particular variable can
behave like, and actually be, a different (more specialized) type instance. Chapter 5 examines the
differences and similarities between interfaces and contracts. Figure 4-1 shows a method in
GeometricShape named Draw. This same method appears in both Rectangle and Circle. You can
implement the model with the following code:

public class GeometricShape
{
 public virtual void Draw()
 {
 // Do some default drawing stuff.
 }
}

public class Rectangle : GeometricShape
{
 public override void Draw()
 {
 // Draw a rectangle
 }
}

public class Circle : GeometricShape
{
 public override void Draw()
 {
 // Draw a circle
 }
}

public class EntryPoint
{
 private static void DrawShape(GeometricShape shape)
 {

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

65

 shape.Draw();
 }

 static void Main()
 {
 Circle circle = new Circle();
 GeometricShape shape = circle;

 DrawShape(shape);
 DrawShape(circle);
 }
}

You create a new instance of Circle in the Main method. Right after that, you obtain a
GeometricShape reference on the same object. This is an important step to note. The compiler has
implicitly converted the reference into a GeometricShape type reference by allowing you to use a simple
assignment expression. Underneath the covers, however, it’s really still referencing the same Circle
object. This is the gist of type specialization and the automatic conversion that goes along with it.

Now let’s consider the rest of the code in the Main method. After you get a GeometricShape reference
on the Circle instance, you can pass it to the DrawShape method, which does nothing but call the Draw
method on the shape. However, the shape object reference really points to a Circle, the Draw method is
defined as virtual, and the Circle class overrides the virtual method, so calling Draw on the
GeometricShape reference actually calls Circle.Draw. That is polymorphism in action. The DrawShape
method doesn’t need to care at all about what specific type of shape the object is. All it cares about is
whether it is, in fact, a GeometricShape. And Circle is a GeometricShape. This is why inheritance is often
referred to as an is-a relationship. In the given example, Rectangle is-a GeometricShape, and Circle is-a
GeometricShape. The key to determining whether inheritance makes sense or not is to apply the is-a
relationship, along with some good old common sense, to your design. If a class D inherits from a class B,
and class D semantically is-not-a class B, then inheritance is not the correct tool for that relationship.

One last important note about inheritance and convertibility is in order. I’ve said that the compiler
implicitly converts the Circle instance reference into a GeometricShape instance reference. Implicit, in
this case, means that the code doesn’t have to do anything special to do the conversion, and by
something special, I typically mean a cast operation. Because the compiler has the ability to do this
based upon its knowledge of the inheritance hierarchy, it would seem to make sense that you don’t have
to get a GeometricShape reference before you can call DrawShape with the Circle object instance. In fact,
this is exactly true. The last line of the Main method demonstrates this. You can simply pass the Circle
instance reference directly into the DrawShape method, and because the compiler can implicitly convert
the type to a GeometricShape reference based upon the inheritance, it does all of the work for you. Again,
you can see the power of this mechanism.

Now, you can pass any object instance that derives from GeometricShape. After the software is
shrink-wrapped and labeled version 1, someone can come along later in version 2 and define new shapes
that derive from GeometricShape, and the code for DrawShape does not need to change. It doesn’t even
need to know what the new specializations are. They could be Trapezoid, Square (a specialization of
Rectangle), or Ellipse. It does not matter, as long as they derive from GeometricShape.

Member Hiding
From the previous section’s discussion, you can see how the concept of inheritance, although a powerful
one, can be overused. When programmers are first introduced to inheritance, they have a tendency to
use it too much, creating designs and hierarchical structures that are hard to maintain. It’s important to
note that there are alternatives to using inheritance that in many cases make more sense. Among the
various types of associations between classes in a software system design, inheritance is the strongest

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

66

bond of them all. I uncover many more issues with regards to inheritance near the end of the chapter.
However, let’s go ahead and cover some basic effects of inheritance here.

Note that inheritance extends functionality but cannot remove functionality. For example, the
public methods available on a base class are available through instances of the derived class and classes
derived from that class. You cannot remove these capabilities from the derived class. Consider the
following code:

public class A
{
 public void DoSomething()
 {
 System.Console.WriteLine("A.DoSomething");
 }
}

public class B : A
{
 public void DoSomethingElse()
 {
 System.Console.WriteLine("B.DoSomethingElse");
 }
}

public class EntryPoint
{
 static void Main()
 {
 B b = new B();

 b.DoSomething();
 b.DoSomethingElse();
 }
}

In Main, you create a new instance of class B, which derives from class A. Class B inherits from class A,
therefore class B gets a union of the members of both class A and class B. That is why you can call both
DoSomething and DoSomethingElse on the instance of class B. This is pretty obvious, because inheritance
extends functionality.

But what if you want to inherit from class A but hide the DoSomething method? In other words, what
if you just want to extend part of A’s functionality? This is impossible with inheritance. However, you
have the option of member hiding, as shown in the following code, which is a modified form of the
previous example:

public class A
{
 public void DoSomething()
 {
 System.Console.WriteLine("A.DoSomething");
 }
}

public class B : A
{

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

67

 public void DoSomethingElse()
 {
 System.Console.WriteLine("B.DoSomethingElse");
 }

 public new void DoSomething()
 {
 System.Console.WriteLine("B.DoSomething");
 }
}

public class EntryPoint
{
 static void Main()
 {
 B b = new B();

 b.DoSomething();
 b.DoSomethingElse();

 A a = b;
 a.DoSomething();
 }
}

You can see that in this version I’ve introduced a new method on class B named DoSomething. Also
notice the addition of the new keyword to the declaration of B.DoSomething. If you don’t add this
keyword, the compiler will complain with a warning. This is the compiler’s way of telling you that you
need to be more explicit about the fact that you’re hiding a method in the base class. Arguably, the
compiler does this because hiding members this way is generally considered bad design. Let’s see why.
The output from the previous code is as follows:

B.DoSomething

B.DoSomethingElse

A.DoSomething

First notice that which DoSomething method gets called depends on the type of reference it is being
called through. This is rather nonintuitive, because B is-an A, and you know that inheritance models an
is-a relationship. If that’s the case, shouldn’t the entire public interface for A be available to consumers
of the instance of class B? The short answer is yes. If you really want the method to behave differently in
subclasses, then at the point class A is defined, you would declare the DoSomething method as virtual.
That way, you could utilize polymorphism to do the right thing. Then, the most derived DoSomething
would get called no matter which type of reference it is called through.

I have more to say about virtual methods later on, but think about this for a moment. In order to
declare DoSomething as virtual, you need to think about the future at the point you define it. That is, you
have to anticipate the possibility that someone could inherit from your class and possibly may want to
override this functionality. This is just one reason why inheritance can be more complicated during the

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

68

design process than it initially seems. As soon as you employ inheritance, you have to start thinking
about a lot more things like this. And we all know that nobody can predict the future.

Even though class B now hides class A’s implementation of DoSomething, remember, it does not
remove it. It hides it when calling the method through a B reference on the object. However, in the Main
method, you can see that you can easily get around this by using implicit conversion to convert the B
instance reference into an A instance reference and then calling the A.DoSomething implementation
through the A reference. So, A.DoSomething is not gone—it’s just hidden. You have to do a little more
work to get to it.

Suppose you passed the B instance reference to a method that accepted an A instance reference,
similar to the DrawShape example. The B instance reference would be implicitly converted to an A
instance reference, and if that method called DoSomething on that A instance reference passed to it, it
would get to A.DoSomething rather than B.DoSomething. That’s probably not what the caller of the method
would expect.

This is a classic demonstration that just because the language allows you to do something like this
doesn’t mean that doing so fosters good design. Just about any language available out there, including
C++, has features in the backwaters of its spec that, when used (or used improperly), really just add
unnecessary complexity and result in bad designs.

The base Keyword
When you derive from a class, often you need to call a method or access a field, a property, or an indexer
on the base class from within a method on the derived class. The base keyword exists for this purpose.
You can use the base keyword just like any other instance variable, but you can use it only within the
block of an instance constructor, instance method, or instance property accessor. You cannot use it in
static methods. This makes complete sense, because base allows access to base class implementations of
an instance, much like this allows access to the instance owning the method. Let’s look at the following
code block:

public class A
{
 public A(int var)
 {
 this.x = var;
 }

 public virtual void DoSomething()
 {
 System.Console.WriteLine("A.DoSomething");
 }

 private int x;
}

public class B : A
{
 public B()
 : base(123)
 {
 }

 public override void DoSomething()
 {

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

69

 System.Console.WriteLine("B.DoSomething");
 base.DoSomething();
 }

}

public class EntryPoint
{
 static void Main()
 {
 B b = new B();

 b.DoSomething();
 }
}

In this example, you can see two uses of the base keyword. The first is in the constructor for class B.
Remember that the base class doesn’t inherit instance constructors. However, when initializing the
object, it is sometimes necessary to call one of the base class constructors explicitly during initialization
of the derived class. This explains the notation in the class B instance constructor. The base class
initialization occurs after the declaration of the derived class constructor’s parameter list, but before the
constructor code block. I discuss the ordering of constructor calls and object initialization in greater
detail later, in the section titled “Creating Objects.”

The second use of the base keyword is in the B.DoSomething implementation. I have decided that, in
my implementation of class B, I want to borrow the DoSomething implementation in class A while
implementing B.DoSomething. I can call the A.DoSomething implementation directly from within the
B.DoSomething implementation by going through the base keyword.

If you’re familiar with virtual methods, you may have raised an eyebrow at this point. If the
DoSomething method is virtual, and the base keyword acts like an instance variable on the base class,
wouldn’t the call to base.DoSomething actually end up calling B.DoSomething? After all, that’s how
polymorphism works, and base.DoSomething is equivalent to doing ((B)this).DoSomething, which is just
casting the this reference into a class B reference on this and then calling B.DoSomething, isn’t it? Well, if
that were the case, then the code in B.DoSomething would introduce an infinite loop.

The answer to the question is that no infinite loop has been introduced. The base keyword is treated
specially when used inside an instance member to call a virtual method. Normally, calling a virtual
method on an instance calls the most derived implementation of the virtual method, which in this case
is B.DoSomething. However, when it’s called through the base keyword, the most derived method with
respect to the base class is called. Because A is the base class and A.DoSomething is the most derived
version of DoSomething with respect to class A, then base.DoSomething calls A.DoSomething. Thus, this is
how you can implement an override method while borrowing the implementation of the base class. If
you’re curious about the details, the fact is that the generated IL code calls through the base reference
using the call instruction rather than callvirt.

sealed Classes
I hinted previously that inheritance is such a powerful tool that it’s easily abused. In fact, this is so true
that I devote an entire discussion to the pitfalls of inheritance in the section titled “Inheritance,
Containment, and Delegation” later in this chapter. When you create a new class, sometimes you create
it with the express intent for it to serve as a base class or to allow for specialization. Often, though,
classes are designed with no knowledge or foresight about whether they will be used as base classes or
not. In fact, it’s likely that a class you design today will be used as a base class tomorrow, even though
you never intended for it to be used as a base class.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

70

C# offers the sealed keyword for the occasions when you never want a client to derive from a class.
When applied to the entire class, the sealed keyword indicates that this class is a leaf class. By that, I
mean that nothing can inherit from this class. If you visualize your inheritance diagrams in your design
as trees, then it makes sense to call sealed classes leaf classes. At first, you might think that you should
rarely use the sealed keyword. However, I believe that the contrary is true. You should use the sealed
keyword as often as possible when designing new classes. In fact, use it by default.

Inheritance is such a tricky beast that, in order for a class to serve as a good base class, you must
design it with that goal in mind. If not, you should mark it as sealed. It’s as simple as that. Now, you may
be thinking, “Shouldn’t I leave it unsealed so that someone can possibly derive from it in the future, thus
retaining maximum flexibility?” The answer is no, in a good design. Again, a class that is meant to serve
as a base class must be designed with that in mind from the start. If it is not, then it’s likely that you’ll hit
pitfalls while trying to derive from the class effectively.

■ Note In many cases, classes that are meant to serve as extendable base classes are contained in consumable

libraries. Creating libraries is a detail-oriented business that you must focus lots of time on for your library to be

maximally useful. Additionally, once you publish a library, you may be stuck with supporting it for a long time;

therefore, you want to get it right the first time. I suggest you reference Framework Design Guidelines:

Conventions, Idioms, and Patterns for Reusable .NET Libraries by Krzysztof Cwalina and Brad Abrams (Addison-

Wesley Professional, 2005) if you’re planning to create libraries; the book originated from the internal design

guidelines that the .NET Base Class Library team used while developing the framework.

abstract Classes
At the opposite end of the spectrum from sealed classes are abstract classes. Sometimes, you need to
design a class whose only purpose is to serve as a base class. You should mark classes such as these with
the abstract keyword.

The abstract keyword tells the compiler that this class is meant to be used only as a base class, and
therefore it does not allow code to create instances of that class. Let’s revisit the GeometricShape example
from earlier in the chapter:

public abstract class GeometricShape
{
 public abstract void Draw();
}

public class Circle : GeometricShape
{
 public override void Draw()
 {
 // Do some drawing.
 }
}

public class EntryPoint
{
 static void Main()

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

71

 {
 Circle shape = new Circle();

 // This won't work!
 // GeometricShape shape2 = new GeometricShape();

 shape.Draw();
 }
}

It makes no sense to create a GeometricShape object all by itself, so I’ve marked the GeometricShape
class as abstract. Therefore, if the code in Main attempts to create an instance of GeometricShape, a
compiler error will be emitted. You may have also noted the use of the abstract keyword on the
GeometricShape.Draw method. I cover this usage of the keyword in more detail in the “Virtual and
Abstract Methods” section. In short, using the abstract keyword is a way of saying to the compiler that
the deriving classes must override the method. The method must be overridden by the derived classes,
thus it makes no sense for GeometricShape.Draw to have an implementation when you can’t ever create
an instance of GeometricShape anyway. Therefore, abstract methods don’t need to have an
implementation. If you come from the C++ world, you may be exclaiming that C++ allows an abstract
method to have an implementation. This is true, but the designers of C# considered the idea
unnecessary. In my experience, I’ve rarely found the need to use a default implementation of an abstract
method except in debug builds.

As you can see, there can be times in a design when you use a base class to define a sort of template
of behavior by providing an implementation to inherit. The leaf classes can inherit from this base
template of an implementation and flesh out the details.

Nested Classes
You define nested classes within the scope of another class definition. Classes that are defined within the
scope of a namespace, or outside the scope of a namespace but not inside the scope of another class, are
called non-nested classes. Nested classes have some special capabilities and lend themselves well to
situations where you need a helper class that works on behalf of the containing class.

For example, a container class might maintain a collection of objects. Imagine that you need some
facility to iterate over those contained objects and also allow external users who are doing the iteration
to maintain a marker, or a cursor of sorts, representing their place during the iteration. This is a common
design technique. Preventing the users from holding on to direct references to the contained objects
gives you much greater flexibility to change the internal behavior of the container class without breaking
code that uses the container class. Nested classes provide a great solution to this problem for several
reasons.

First, nested classes have access to all of the members that are visible to the containing class, even if
they’re private. Consider the following code, which represents a container class that contains instances
of GeometricShape:

using System.Collections;

public abstract class GeometricShape
{
 public abstract void Draw();
}

public class Rectangle : GeometricShape
{

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

72

 public override void Draw()
 {
 System.Console.WriteLine("Rectangle.Draw");
 }
}

public class Circle : GeometricShape
{
 public override void Draw()
 {
 System.Console.WriteLine("Circle.Draw");
 }
}

public class Drawing : IEnumerable
{
 private ArrayList shapes;

 private class Iterator : IEnumerator
 {
 public Iterator(Drawing drawing)
 {
 this.drawing = drawing;
 this.current = -1;
 }

 public void Reset()
 {
 current = -1;
 }

 public bool MoveNext()
 {
 ++current;
 if(current < drawing.shapes.Count) {
 return true;
 } else {
 return false;
 }
 }

 public object Current
 {
 get
 {
 return drawing.shapes[current];
 }
 }

 private Drawing drawing;
 private int current;
 }

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

73

 public Drawing()
 {
 shapes = new ArrayList();
 }

 public IEnumerator GetEnumerator()
 {
 return new Iterator(this);
 }

 public void Add(GeometricShape shape)
 {
 shapes.Add(shape);
 }
}

public class EntryPoint
{
 static void Main()
 {
 Rectangle rectangle = new Rectangle();
 Circle circle = new Circle();

 Drawing drawing = new Drawing();
 drawing.Add(rectangle);
 drawing.Add(circle);

 foreach(GeometricShape shape in drawing) {
 shape.Draw();
 }
 }
}

This example introduces a few new concepts, such as the IEnumerable and IEnumerator interfaces,
which I detail in Chapter 9. For now, let’s focus primarily on the nested class usage. As you can see, the
Drawing class supports a method called GetEnumerator, which is part of the IEnumerable implementation.
It creates an instance of the nested Iterator class and returns it.

Here’s where it gets interesting. The Iterator class takes a reference to an instance of the containing
class, Drawing, as a parameter to its constructor. It then stores away this instance for later use so that it
can get at the shapes collection within the drawing object. However, notice that the shapes collection in
the Drawing class is private. It doesn’t matter, because nested classes have access to the containing
class’s private members.

Also, notice that the Iterator class itself is declared private. Non-nested classes can only be
declared as either public or internal, and they default to internal. You can apply the same access
modifiers to nested classes as you can to any other member of the class. In this case, you declare the
Iterator class as private so that external code, such as in the Main routine, cannot create instances of
the Iterator directly. Only the Drawing class itself can create instances of Iterator. It doesn’t make sense
for anyone other than Drawing.GetEnumerator to be able to create an Iterator instance.

Nested classes that are declared public can be instantiated by code external to the containing class.
The notation for addressing the nested class is similar to that of namespace qualification. In the
following example, you can see how to create an instance of a nested class:

public class A

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

74

{
 public class B
 {
 }
}

public class EntryPoint
{
 static void Main()
 {
 A.B b = new A.B();
 }
}

Sometimes when you introduce a nested class, its name may hide a member name within a base
class using the new keyword, similar to the way method hiding works. This is extremely rare, and can, for
the most part, be avoided. Let’s take a look at an example:

public class A
{
 public void Foo()
 {
 }
}

public class B : A
{
 public new class Foo
 {
 }
}

In this case, you define a nested class Foo inside the class B definition. The name is the same as the
Foo method in class A, therefore you must use the new keyword, or else the compiler will let you know
about the collision in names. Again, if you get into a situation like this, it’s probably time to rethink your
design or simply rename the nested class unless you really meant to hide the base member. Hiding base
members like this is questionable design and not something you should generally do just because the
language allows it.

Indexers
Indexers allow you to treat an object instance as if it were an array or a collection. This allows for a more
natural usage of objects that are meant to behave as a collection, such as instances of the Drawing class
from the previous section.

Generally, indexers look a little bit like a method whose name is this. As with just about every entity
in the C# type system, you can apply metadata attributes to indexers. You can also apply the same
modifiers to them that just about every other class member can have, except one: Indexers may not be
static. Indexers are, therefore, always instance-based and work on a specific instance of an object of the
defining class. Following the modifiers in the declaration is the type of the indexer. The indexer will
return this type of the object to the caller. Then you put the this keyword, followed by the parameter list
in square brackets, which I show in the next example.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

75

Essentially, an indexer behaves a lot like a hybrid between a property and a method. After all, under
the covers, it is one of the special methods defined by the compiler when you define an indexer.
Conceptually, an indexer is similar to a method, in that it can take a set of parameters when used.
However, it also behaves like a property, as you define the accessors with a similar syntax. You can apply
many of the same modifiers to indexers as you can to a method. For example, indexers can be virtual,
they can be an override of a base class indexer, or they can be overloaded based on the parameter list,
just as methods can. Following the parameter list is the code block for the indexer, which is just like a
property code block in its syntax. The main difference is that the accessors for the indexer can access the
parameter list variables, whereas the accessors of a property don’t have user-defined parameters. Let’s
add an indexer to the Drawing object and see how you can use it:

using System.Collections;

public abstract class GeometricShape
{
 public abstract void Draw();
}

public class Rectangle : GeometricShape
{
 public override void Draw()
 {
 System.Console.WriteLine("Rectangle.Draw");
 }
}

public class Circle : GeometricShape
{
 public override void Draw()
 {
 System.Console.WriteLine("Circle.Draw");
 }
}

public class Drawing
{
 private ArrayList shapes;

 public Drawing()
 {
 shapes = new ArrayList();
 }

 public int Count
 {
 get
 {
 return shapes.Count;
 }
 }

 public GeometricShape this[int index]

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

76

 {
 get
 {
 return (GeometricShape) shapes[index];
 }
 }

 public void Add(GeometricShape shape)
 {
 shapes.Add(shape);
 }
}

public class EntryPoint
{
 static void Main()
 {
 Rectangle rectangle = new Rectangle();
 Circle circle = new Circle();

 Drawing drawing = new Drawing();
 drawing.Add(rectangle);
 drawing.Add(circle);

 for(int i = 0; i < drawing.Count; ++i) {
 GeometricShape shape = drawing[i];
 shape.Draw();
 }
 }
}

As you can see, you can access the elements of the Drawing object in the Main method as if they were
inside a normal array. Most collection types support some type of indexer such as this. Also, because this
indexer only has a get accessor, it is read-only. However, keep in mind that if the collection maintains
references to objects, the client code can still change the state of the contained object through that
reference. But because the indexer is read-only, the client code cannot swap out the object reference at a
specific index with a reference to a completely different object.

One difference is worth noting between a real array and an object that provides an indexer. You
cannot pass the results of calling an indexer on an object as an out or ref parameter to a method as you
can do with a real array. A similar restriction is placed on properties.

partial Classes
Classes defined as partial were a new addition to C# 2.0. So far, I’ve shown you how to define classes in
one single file. This was a requirement in C# 1.0. It was impossible to split the definition of a class across
multiple files.

At first, such a convenience may not seem worthwhile. After all, if a class has become so large that
the file is hard to manage, that may be an indication of poor design. But arguably, the main reason
partial classes were introduced is to support code-generation tools.

Normally, when you work within the confines of the IDE, the IDE tries to help you out by generating
some code for you. For example, a wizard generates helpful DataSet-derived classes when using

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

77

ADO.NET facilities. The classic problem has always been editing the resulting code generated by the
tool. It was always a dangerous proposition to edit the output from the tool, because any time the
parameters to the tool change, the tool regenerates the code, thus overwriting any changes made. This is
definitely not desired. Previously, the only way to work around this was to use some form of reuse, such
as inheritance or containment, thus inheriting a class from the class produced by the code-generation
tool. Many times these were not natural solutions to the problem. And many times, the code generated
by these tools was not designed to take inheritance into consideration.

Now, you can slip the partial keyword into the class definition right before the class keyword, and
voilà—you can split the class definition across multiple files. One requirement is that each file that
contains part of the partial class must use the partial keyword, and all of the partial pieces must be
defined within the same namespace, if you declare them in a namespace at all. Now, with the addition of
the partial keyword, the code generated from the code-generation tool can live in a separate file from
the additions to that generated class, and when the tool regenerates the code, you don’t lose your
changes.

You should know some things about the process the compiler goes through to assemble partial
classes into a whole class. You must compile all the partial pieces of a class together at once so the
compiler can find all of the pieces. For the most part, all of the members and aspects of the class are
merged together using a union operation. Therefore, they must coexist together as if you had declared
and defined them all in the same file. Base interface lists are unioned together. However, because a class
can have one base class at most, if the partial pieces list a base class, they must all list the same base
class. Other than those obvious restrictions, I think you’ll agree that partial classes are a welcome
addition to the C# language.

partial Methods
C# 3.0 introduced the partial keyword for methods to complement partial classes. A partial method is
simply a method whose signature is declared without a body in one piece of the partial class and defined
in another piece of the partial class. Just like partial classes, partial methods come in really handy when
you are consuming code created by wizards and code generators. But the beauty of partial methods is
that if a generator creates a declaration for a partial method in one part of the class declaration and you
don’t implement it in your part, then the method is not included as part of the final assembled class.
Moreover, any code in the generated piece that calls the partial method will not break. It will simply not
call the partial method at all. There are several restrictions on partial methods necessary to provide this
behavior.

• Partial methods must have a return type of void.

• Partial methods may not accept out parameters but may accept ref parameters.

• Partial methods may not be extern as well.

• Partial methods cannot be marked virtual and may not be decorated with access
modifiers because they are implicitly private.

• Partial methods can be marked either static or unsafe1.

1 Unsafe coding within C# is outside of the scope of this book. For more information, I suggest that you reference the
MSDN documentation.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

78

• Partial methods can be generic and may be decorated with constraints, although
repeating the constraints in the declaration of the implementation is optional.

• Delegates may not be wired up to call partial methods because they are not
guaranteed to exist in the final compiled code.

With all of that in mind, let’s look at a short example of partial methods. Imagine one partial class
that is, for the sake of this example, a result of some code generator and is shown below:

public partial class DataSource
{
 // Some useful methods
 // ...

 partial void ResetSource();
}

Let’s pretend from this DataSource class that the generator created represents some sort of back-end
data store that, in order to satisfy some design requirement, needs to be able to be reset from time to
time. Moreover, let’s assume that the steps required to reset the data source are only known by the one
who completes and consumes this partial class and implements the partial method. With that in mind, a
possible completion of this partial class by the consumer could look like the following:

using System;

public partial class DataSource
{
 partial void ResetSource() {
 Console.WriteLine("Source was reset");
 }

 public void Reset() {
 ResetSource();
 }
}

public class PartialMethods
{
 static void Main() {
 DataSource ds = new DataSource();

 ds.Reset();
 }
}

You can see that I had to add a public method named Reset in order for Main to be able to reset
instances of DataSource. That’s because the ResetSource method is implicitly private. If you inspect the
resultant executable with ILDASM, you will see the private method DataSource.ResetSource and if you
inspect the IL generated for DataSource.Reset, you will see it calling through to ResetSource. If you were
to comment out, or remove, the partial implementation of ResetSource and recompile, ILDASM would
show that the DataSource.ResetSource method does not exist and the call to ResetSource within the
Reset method is simply removed.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

79

Static Classes
C# 2.0 introduced a new class modifier that allows you to designate that a class is nothing more than a
collection of static members and cannot have objects instantiated from it. The way you do this is by
decorating the class declaration with the static modifier. Once you do that, several restrictions are
placed upon the class, as follows:

• The class may not derive from anything other than System.Object, and if you don’t
specify any base type, derivation from System.Object is implied.

• The class may not be used as a base class of another class.

• The class can only contain static members, which can be public or private.
However, they cannot be marked protected or protected internal, because the
class cannot be used as a base class.

• The class may not have any operators, because defining them would make no
sense if you cannot create instances of the class.

Even though the entire class is marked static, you still must mark each individual member as
static as well. Although it would be nice for the compiler to just assume that any member within a static
class is static itself, it would add unnecessary complexity to an already complex compiler. If you put the
static modifier on a nested class, it too will be a static class just as the containing class is, but you’ll be
able to instantiate nested classes not decorated with static.

■ Note In essence, declaring a class static is just the same as declaring it sealed and abstract at the same

time, but the compiler won’t let you do such a thing. However, if you look at the IL code generated for a static

class, you’ll see that this is exactly what the compiler is doing—that is, the class is decorated with the abstract

and sealed modifiers in the IL.

The following code shows an example of a static class:

using System;

public static class StaticClass
{
 public static void DoWork() {
 ++callCount;
 Console.WriteLine("StaticClass.DoWork()");
 }

 public class NestedClass {
 public NestedClass() {
 Console.WriteLine("NestedClass.NestedClass()");
 }
 }

 private static long callCount = 0;

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

80

 public static long CallCount {
 get {
 return callCount;
 }
 }
}

public static class EntryPoint
{
 static void Main() {
 StaticClass.DoWork();

 // OOPS! Cannot do this!
 // StaticClass obj = new StaticClass();

 StaticClass.NestedClass nested =
 new StaticClass.NestedClass();

 Console.WriteLine("CallCount = {0}",
 StaticClass.CallCount);
 }
}

The StaticClass type contains one method, a field, a property, and a nested class. Notice that
because the NestedClass is not declared static, you can instantiate it just like any other class. Also,
because the EntryPoint class merely contains the static Main method, it too is marked as static to
prevent anyone from instantiating it inadvertently.

Static classes are useful when you need a logical mechanism to partition a collection of methods. An
example of a static class within the Base Class Library is the venerable System.Console class. It contains
static methods, properties, and events, which are all static because only one console can be attached to
the process at a single time.

THE SINGLETON PATTERN

Probably the most popular design pattern is the Singleton pattern, which typically models a situation in
which you can create only one instance of a class at one time. Historically, you implement the Singleton
pattern with private constructors and with a static method named something like GetInstance to obtain a
reference to the one possible running instance. Although you can use this technique in C#, the static class
provides an excellent tool for implementing the Singleton pattern in certain situations, as you see with
System.Console.

If your Singleton is not required to be an instance of a class, then the static class is an excellent tool
for implementing it. For example, if you don’t ever need to destroy and recreate your class, and if you
won’t use your Singleton with .NET Remoting, then each application domain has its own instance of the
Singleton, because static fields are application-domain-specific. In fact, such a Singleton will not live on
the heap, and all of the bookkeeping involved with managing the single instance is unnecessary. What’s
even better is that because it’s not an actual object instance, you can use the static class effectively within

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

81

an object’s finalizer body safely. In Chapter 13, I describe why using objects in finalizers is so dangerous
and how you cannot guarantee in what order finalizers for multiple objects will be called.

Reserved Member Names
Several of the capabilities provided by the C# language are really just syntactic sugar that boils down to
methods and method calls in the IL code that you never see, unless you open the generated assembly
with a tool such as ILDASM. It’s important to be aware of this, just in case you attempt to declare a
method whose name conflicts with one of these underlying reserved method names. These syntactic
shortcuts include properties, events, and indexers. If you try to declare a method with one of these
special internal names and you also have a property, an event, or an indexer already defined that
declares the same method names internally, the compiler will complain about duplicate symbols.

■ Note If you follow the conventions in Framework Design Guidelines: Conventions, Idioms, and Patterns for

Reusable .NET Libraries by Krzysztof Cwalina and Brad Abrams (Addison-Wesley Professional, 2005) or you use

FxCop to regularly analyze your code, you should never encounter a name conflict between one of your class

members and a reserved member name.

Reserved Names for Properties
For a property named Prop of type T, the following signatures are reserved for the implementation of the
property:

T get_Prop();
void set_Prop(T value);

Reserved Names for Indexers
If the class contains an indexer that is of type T and takes a parameter list represented by Params, it will
contain the following reserved method names:

T get_Item(Params);
void set_Item(Params, T value);

Reserved Names for Destructors
If the class is defined with a finalizer (using the destructor syntax), it will contain a definition of the
following method:

void Finalize();

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

82

I have a lot more to say about destructors and the Finalize method later in this chapter and in
Chapter 13.

Reserved Names for Events
If the class contains an event definition of type T that is named Event, the following methods are reserved
on the class:

void add_Event(T callback);
void remove_Event(T callback);

I discuss events in Chapter 10, when I cover delegates and anonymous methods.

Value Type Definitions
A value type is a lightweight type that you typically don’t create on the heap. The only exception to this
rule is a value type that is a field in a reference object that lives on the heap. A value type is a type that
behaves with value semantics. That is, when you assign a value-type variable to another value-type
variable, the contents of the source are copied into the destination and a full copy of the instance is
made. This is in contrast to reference types, or object instances, where the result of copying one
reference-type variable to another is that there is now a new reference to the same object. Also, when
you pass a value type as a parameter to a method, the method body receives a local copy of the value,
unless the parameter was declared as a ref or an out parameter. All of the C# built-in types except
string, arrays, and delegates are value types. In C#, you declare a value type using the struct keyword
rather than the class keyword.

On the whole, the syntax of defining a struct is the same as for a class—with some notable
exceptions, as you’ll soon see. A struct cannot declare a base class. Also, a struct is implicitly sealed. That
means that nothing else can derive from a struct. Internally, a struct derives from System.ValueType,
which in turn extends System.Object. This is so that ValueType can provide implementations of
Object.Equals and Object.GetHashCode, among others, which are meaningful for value types. In the
section titled “System.Object,” I cover the nuances involved with implementing the methods inherited
from System.Object for a value type. Like classes, structs can be declared in partial pieces, and the same
rules for partial pieces apply to structs as they do to classes.

Constructors
Types defined as structs can have static constructors just like classes. Structs can also have instance
constructors, with one notable exception. They cannot have a user-defined default, parameterless
constructor, nor can they have instance field initializers in the struct definition. Static field initializers
are permitted, though. Parameterless constructors are not necessary for value types, because the system
provides one, which simply sets the fields of the value to their default values. In all cases, that amounts
to setting the bits of the field’s storage to 0. So, if a struct contains an int, the default value will be 0. If a
struct contains a reference type field, the default value will be null. Each struct gets this implicit,
parameterless constructor, which takes care of this initialization. It’s all part of the language’s endeavor
to create verifiably type-safe code. However, it’s completely possible for a user to declare a variable of a
value type without calling a constructor on it at all—that is also without using the new keyword. If that
happens, the coder is responsible for setting up the struct appropriately before any methods on it can be
called. Consider the following code:

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

83

using System;

public struct Square
{
 // Not a good idea to have public fields, but I use them
 // here only for the sake of example. Prefer to expose
 // these with properties instead.
 public int width;
 public int height;
}

public class EntryPoint
{
 static void Main()
 {
 Square sq;
 sq.width = 1;

 // Can’t do this yet.
 // Console.WriteLine("{0} x {1}", sq.width, sq.height);

 sq.height = 2;

 Console.WriteLine("{0} x {1}", sq.width, sq.height);
 }
}

In Main, I’ve allocated space on the stack for a Square object. However, immediately after, I only
assign to the width field. I’ve commented out a call to Console.WriteLine immediately after that because
it won’t compile. The reason is that you can’t call methods on a struct before it is fully initialized.
Properties are really method calls under the covers. After I initialize the height field, I can successfully
use the Square instance to send the width and height to the console. Can you spot the problem in the
following code?

using System;

public struct Square
{
 public int Width
 {
 get
 {
 return width;
 }

 set
 {
 width = value;
 }
 }

 public int Height
 {

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

84

 get
 {
 return height;
 }

 set
 {
 height = value;
 }
 }

 private int width;
 private int height;
}

public class EntryPoint
{
 static void Main()
 {
 Square sq;
 sq.Width = 1;
 sq.Height = 1;
 }
}

The problem is in the Main method. If you try to compile this code, the compiler will fail with an
error. You cannot initialize the fields because they’re now private. Also, you cannot initialize them with
the properties, because properties are really methods, and it’s illegal to call methods on a value that is
not fully initialized. One way to get out of this pickle is to use the new keyword when you declare the new
Square instance. You can either call one of the constructors on the struct or the default constructor. In
this case, I’ll call the default constructor so the Main method will change to the following:

public class EntryPoint
{
 static void Main()
 {
 Square sq = new Square();
 sq.Width = 1;
 sq.Height = 1;
 }
}

Because a struct cannot derive from another struct or class, it is not permitted to call any base
constructor through the base keyword while inside the constructor block. Even though you know that a
struct derives from System.ValueType internally, you may not invoke the constructor of the base type
explicitly.

The Meaning of this
Previously, I said that the this keyword within class methods behaves as a constant, read-only value that
contains a reference to the current object instance. In other words, it’s a read-only object reference in
class methods. However, with value types, this behaves like a regular ref parameter. In instance

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

85

constructors that don’t have an initializer clause, the this value behaves as an out parameter. That
means that you can actually assign a value to this, as in the following example:

public struct ComplexNumber
{
 public ComplexNumber(double real, double imaginary)
 {
 this.real = real;
 this.imaginary = imaginary;
 }

 public ComplexNumber(ComplexNumber other)
 {
 this = other;
 }

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main()
 {
 ComplexNumber valA = new ComplexNumber(1, 2);
 ComplexNumber copyA = new ComplexNumber(valA);
 }
}

Notice that the second constructor takes, as a parameter, another ComplexNumber value. This
constructor behaves similarly to a copy constructor in C++. But instead of having to assign each field
individually, you can simply assign to this, thus making a copy of the parameter’s state in one line of
code. Again, the this keyword acts like an out parameter in this case.

Remember that out parameters behave similarly to ref parameters, with one special difference.
When a parameter is marked as an out parameter, the compiler knows that the value is uninitialized at
the point the method body starts executing. Therefore, the compiler must make sure that every field of
the value is initialized before the constructor exits. For example, consider the following code, which
doesn’t compile:

public struct ComplexNumber
{
 public ComplexNumber(double real, double imaginary)
 {
 this.real = real;
 this.imaginary = imaginary;
 }

 public ComplexNumber(double real)
 {
 this.real = real;
 }

 private double real;

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

86

 private double imaginary;
}

The problem with this code lies in the second constructor. Because value types typically are created
on the stack, the allocation of such values merely requires adjustment of the stack pointer. Of course, an
allocation of this sort says nothing about the state of the memory. The odds are that the memory
reserved on the stack for the value contains random garbage. The CLR could elect to zero-initialize these
blocks of memory, but that would defeat half the purpose of value types. Value types are meant to be
lightweight and fast. If the CLR has to zero-initialize the stack memory for a value type each time the
memory is reserved, that’s hardly a fast operation. Of course, the default parameterless constructor
generated by the system does exactly this. But you must call it explicitly by creating the instance with the
new keyword. Because the this keyword is treated as an out parameter in the instance constructors, the
instance constructor must initialize each field of the value before it exits. And it is the duty of the C#
compiler, which is supposed to generate verifiably type-safe code, to make sure you do so. That’s why
the previous code example produces a compiler error.

Even though instance constructors in value types cannot use the base keyword to call base class
constructors, they can have an initializer. It is valid for the initializer to use the this keyword to call other
constructors on the same struct during initialization. So you can make one minor modification to the
preceding code example to make it compile:

public struct ComplexNumber
{
 public ComplexNumber(double real, double imaginary)
 {
 this.real = real;
 this.imaginary = imaginary;
 }

 public ComplexNumber(double real)
 :this(real, 0)
 {
 this.real = real;
 }

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main()
 {
 ComplexNumber valA = new ComplexNumber(1, 2);
 }
}

Notice the difference in the second constructor. I’ve now introduced an initializer that calls the first
constructor from the second one. Even though the single line of code in the second constructor’s body is
redundant, I left it there to prove a point. Notice that it only assigns the real value as in the previous
example, but the compiler doesn’t complain. That’s because when an instance constructor contains an
initializer, the this keyword behaves as a ref parameter in that constructor’s body rather than an out
parameter. And, because it is a ref parameter, the compiler can assume that the value has been

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

87

initialized properly before entry into the method’s code block. In essence, the initialization burden is
deferred to the first constructor, whose duty it is to make sure it initializes all fields of the value.

One last note to consider is that even though the system generates a default, parameterless
initializer, you can’t call it using the this keyword. For example, the following code doesn’t compile:

public struct ComplexNumber
{
 public ComplexNumber(double real, double imaginary)
 {
 this.real = real;
 this.imaginary = imaginary;
 }

 public ComplexNumber(double real)
 :this()
 {
 this.real = real;
 }

 private double real;
 private double imaginary;
}

If you had a struct that had quite a few fields in it and you wanted to initialize all but one of them to
0 or null, it would save you a little bit of typing to be able to do this. But, alas, the compiler doesn’t allow
it.

Finalizers
Value types are not allowed to have a finalizer. The concept of finalization, or nondeterministic
destruction, is reserved for instances of classes, or objects. If structs had finalizers, the runtime would
have to manage the calling of the finalizer each time the value goes out of scope.

Keep in mind that you want to be careful about initializing resources within constructors of value
types. Just don’t do it. Consider a value type that has a field, which is a handle to some sort of low-level
system resource. Suppose this low-level resource is allocated, or acquired, in a special constructor that
accepts parameters. You now have a couple of problems to deal with. Because you cannot create a
default, parameterless constructor, how can you possibly acquire the resource when the user creates an
instance of the value without using one of the custom constructors? The answer is, you cannot. The
second problem is that you have no automatic trigger to clean up and release the resource, because you
have no finalizer. You would have to force the user of the value to call some special method to clean up
before the value goes out of scope. Requiring the user to remember to do something like that in order to
avoid resource leaks is poor design.

Interfaces
Although it’s illegal for a struct to derive from another class, it can still implement interfaces. Supported
interfaces are listed in the same way as they are for classes, in a base interface list after the struct
identifier. Generally, supporting interfaces for structs is the same as supporting interfaces for classes. I
cover interfaces in much more detail in Chapter 5. There are performance implications of implementing
interfaces on structs, in that doing so incurs a boxing operation to call methods through an interface
reference on the struct value instances. I talk more about that in Chapter 13.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

88

Anonymous Types
How many times have you needed a lightweight class to hold a handful of related values for use within a
particular method and you lamented having to type a whole type definition complete with private fields
and public property accessors? Enter anonymous types. C# allows you to introduce these types using
implicitly typed local variables together with an extended syntax of the new operator. Let’s see what this
looks like:

using System;

public class EntryPoint
{
 static void Main() {
 var employeeInfo = new { Name = "Joe", Id = 42 };
 var customerInfo = new { Name = " Jane", Id = "AB123" };

 Console.WriteLine("Name: {0}, Id: {1}",
 employeeInfo.Name,
 employeeInfo.Id);

 Console.WriteLine("employeeInfo Type is actually: {0}",
 employeeInfo.GetType());
 Console.WriteLine("customerInfo Type is actually: {0}",
 customerInfo.GetType());
 }
}

Notice the interesting syntax within the braces after the new keyword while declaring employeeInfo.
The name/value pairs declare a property name within the anonymous type and initialize it to the given
value. In this case, two anonymous types are created with two properties. In the first anonymous type,
the first property is a System.String called Name, and the second is a System.Int32 called Id. It’s
important to note that the underlying type of the instance created is a strong type, it’s just compiler
generated and you don’t know the name of it. But as you can see from the following output from the
code above, you can figure out the name of the type:

Name: Joe, Id: 42

employeeInfo Type is actually: <>f__AnonymousType0`2[System.String,System.Int32]

customerInfo Type is actually: <>f__AnonymousType0`2[System.String,System.String]

■ Note The compiler-generated type names are implementation specific, so you should never rely on them.

Additionally, you’ll notice that they are “unspeakable” to the compiler; if you were to attempt to declare an

instance using that type name, the compiler would complain with a syntax error.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

89

You do not know the compiler-generated name of the type, therefore you are forced to declare the
variable instance as an implicitly typed local variable using the var keyword, as I did in the code.

Also, notice that the compiler-generated type is a generic type that takes two type parameters. It
would be inefficient for the compiler to generate a new type for every anonymous type that contains two
types with the same field names. The output above indicates that the actual type of employeeInfo looks
similar to the type name below:

<>f__AnonymousType0<System.String, System.Int32>

And because the anonymous type for customerInfo contains the same number of fields with the
same names, the generated generic type is reused and the type of customerInfo looks similar to the type
below:

<>f__AnonymousType0<System.String, System.String>

Had the anonymous type for customerInfo contained different field names than those for
employeeInfo, then another generic anonymous type would have been declared.

Now that you know the basics about anonymous types, I want to show you an abbreviated syntax
for declaring them. Pay attention to the bold statements in the following example:

using System;

public class ConventionalEmployeeInfo
{
 public ConventionalEmployeeInfo(string Name, int Id) {
 this.name = Name;
 this.id = Id;
 }

 public string Name {
 get {
 return name;
 }

 set {
 name = value;
 }
 }

 public int Id {
 get {
 return id;
 }

 set {
 id = value;
 }
 }

 private string name;
 private int id;
}

public class EntryPoint

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

90

{
 static void Main() {
 ConventionalEmployeeInfo oldEmployee =
 new ConventionalEmployeeInfo("Joe", 42);

 var employeeInfo = new { oldEmployee.Name,
 oldEmployee.Id };

 string Name = "Jane";
 int Id = 1234;

 var customerInfo = new { Name, Id };

 Console.WriteLine("employeeInfo Name: {0}, Id: {1}",
 employeeInfo.Name,
 employeeInfo.Id);
 Console.WriteLine("customerInfo Name: {0}, Id: {1}",
 customerInfo.Name,
 customerInfo.Id);

 Console.WriteLine("Anonymous Type is actually: {0}",
 employeeInfo.GetType());
 }
}

For illustration purposes, I have declared a type named ConventionalEmployeeInfo that is not an
anonymous type. Notice that at the point where I instantiate the anonymous type for employeeInfo, I do
not provide the names of the fields as before. In this case, the compiler uses the names of the properties
of the ConventionalEmployeeInfo type, which is the source of the data. This same technique works using
local variables, as you can see when I declare the customerInfo instance. In this case, customerInfo is an
anonymous type that implements two read/write properties named Name and Id. Member declarators for
anonymous types that use this abbreviated style are called projection initializers.2

If you inspect the compiled assembly in ILDASM, you’ll notice that the generated types for
anonymous types are of class type. The class is also marked private and sealed. However, the class is
extremely basic and does not implement anything like a finalizer or IDisposable.

■ Note Anonymous types, even though they are classes, do not implement the IDisposable interface. As I

mention in Chapter 13, the general guideline for types that contain disposable types is that they, too, should be

disposable. But because anonymous types are not disposable, you should avoid placing instances of disposable

types within them.

2 Projection initializers are very handy when used together with LINQ (Language-Integrated Query) which I cover in
Chapter 16.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

91

Be careful not to strip the type off of anonymous types. For example, if you put instances of
anonymous types in a System.List, how are you supposed to cast those instances back into the
anonymous type when you reference them later? Remember, System.List stores references to
System.Object. And even though the anonymous types derive from System.Object, how are you going to
cast them back into their concrete types to access their properties? You could attempt to use reflection to
overcome this. But then you introduce so much work that you lose any benefit from using anonymous
types in the first place. Similarly, if you want to pass instances of anonymous types out of functions via
out parameters or via a return statement, you must pass them out as references to System.Object, thus
stripping the variables of their useful type information. In the previous example, if you need to pass
instances out of a method, then you really should be using an explicitly defined type such as
ConventionalEmployeeInfo instead of anonymous types.

After all of these restrictions placed on anonymous types, you may be wondering how they are
useful except in rare circumstances within the local scope. It turns out that they are extremely useful
when used with projection operators in LINQ (Language Integrated Query), which I will show you in
Chapter 16.

Object Initializers
C# 3.0 introduced a shorthand you can use while instantiating new instances of objects. How many
times have you written code similar to this?

Employee developer = new Employee();
developer.Name = "Fred Blaze";
developer.OfficeLocation = "B1";

Right after creating an instance of Employee, you immediately start initializing the accessible
properties of the instance. Wouldn’t it be nice if you could do this all in one statement? Of course, you
could always create a specialized overload of the constructor that accepts the parameters to use while
initializing the new instance. However, there may be times where it is more convenient not to do so.

The new object initializer syntax is shown below:

using System;

public class Employee
{
 public string Name {
 get; set;
 }

 public string OfficeLocation {
 get; set;
 }
}

public class InitExample
{
 static void Main() {
 Employee developer = new Employee {
 Name = "Fred Blaze",
 OfficeLocation = "B1"
 };

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

92

 }
}

Notice how the developer instance is initialized in the Main method. Under the hood, the compiler

generates the same code it would have if you had initialized the properties manually after creating the
Employee instance. Therefore, this technique only works if the properties, in this case Name and
OfficeLocation, are accessible at the point of initialization.

You can even nest object initializers as shown in the example below:

using System;

public class Employee
{
 public string Name { get; set; }
 public string OfficeLocation { get; set; }
}

public class FeatureDevPair
{
 public Employee Developer { get; set; }
 public Employee QaEngineer { get; set; }
}

public class InitExample
{
 static void Main() {
 FeatureDevPair spellCheckerTeam = new FeatureDevPair {
 Developer = new Employee {
 Name = "Fred Blaze",
 OfficeLocation = "B1"
 },
 QaEngineer = new Employee {
 Name = "Marisa Bozza",
 OfficeLocation = "L42"
 }
 };
 }
}

Notice how the two properties of spellCheckerTeam are initialized using the new syntax. Each of the
Employee instances assigned to those properties is itself initialized using an object initializer, too. Finally,
let me show you an even more abbreviated way to initialize the object above that saves a bit more typing
at the expense of hidden complexity:

using System;

public class Employee
{
 public string Name { get; set; }
 public string OfficeLocation { get; set; }
}

v@v
Text Box
Download at WoweBook.com

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

93

public class FeatureDevPair
{
 private Employee developer = new Employee();
 private Employee qaEngineer = new Employee();

 public Employee Developer {
 get { return developer; }
 set { developer = value; }
 }

 public Employee QaEngineer {
 get { return qaEngineer; }
 set { qaEngineer = value; }
 }
}

public class InitExample
{
 static void Main() {
 FeatureDevPair spellCheckerTeam = new FeatureDevPair {
 Developer = {
 Name = "Fred Blaze",
 OfficeLocation = "B1"
 },
 QaEngineer = {
 Name = "Marisa Bozza",
 OfficeLocation = "L42"
 }
 };
 }
}

Notice that I was able to leave out the new expressions when initializing the Developer and
QaEngineer properties of spellCheckerTeam. However, this abbreviated syntax requires that the fields of
spellCheckerTeam exist before the properties are set, that is, the fields cannot be null. Therefore, you see
that I had to change the definition of FeatureDevPair to create the contained instances of the Employee
type at the point of initialization.

■ Note If you do not initialize fields exposed by properties during object initialization, and then later write code

that initializes instances of those objects using the abbreviated syntax shown above, you will get a nasty surprise

at run time. You might have guessed that your code will generate a NullReferenceException in those cases.

Unfortunately, the compiler cannot detect this potential disaster at compile time. So be very careful when using the

abbreviated syntax previously shown. For example, if you are using this syntax to initialize instances of objects that

you did not write, then you should be even more careful because unless you look at the implementation of that

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

94

third-party class using ILDASM or Reflector, you have no way of knowing if the fields are initialized at object

initialization time or not.

Boxing and Unboxing
Allow me to introduce boxing and unboxing. All types within the CLR fall into one of two categories:
reference types (objects) or value types (values). You define objects using classes, and you define values
using structs. A clear divide exists between these two. Objects live on the garbage collected heap. Values
normally live in temporary storage spaces, such as on the stack. The one notable exception already
mentioned is that a value type can live on the heap as long as it is contained as a field within an object.
However, it is not autonomous, and the GC doesn’t control its lifetime directly. Consider the following
code:

public class EntryPoint
{
 static void Print(object obj)
 {
 System.Console.WriteLine("{0}", obj.ToString());
 }
 static void Main()
 {
 int x = 42;
 Print(x);
 }
}

It looks simple enough. In Main, there is an int, which is a C# alias for System.Int32, and it is a value
type. You could have just as well declared x as type System.Int32. The space allocated for x is on the local
stack. You then pass it as a parameter to the Print method. The Print method takes an object reference
and simply sends the results of calling ToString on that object to the console. Let’s analyze this. Print
accepts an object reference, which is a reference to a heap-based object. Yet, you’re passing a value type
to the method. What’s going on here? How is this possible?

The key is a concept called boxing. At the point where a value type is defined, the CLR creates a
runtime-created wrapper class to contain a copy of the value type. Instances of the wrapper live on the
heap and are commonly called boxing objects. This is the CLR’s way of bridging the gap between value
types and reference types. In fact, if you use ILDASM to look at the IL code generated for the Main
method, you’ll see the following:

.method private hidebysig static void Main() cil managed
{
 .entrypoint
 // Code size 15 (0xf)
 .maxstack 1
 .locals init (int32 V_0)
 IL_0000: ldc.i4.s 42
 IL_0002: stloc.0
 IL_0003: ldloc.0
 IL_0004: box [mscorlib]System.Int32
 IL_0009: call void EntryPoint::Print(object)

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

95

 IL_000e: ret
} // end of method EntryPoint::Main

Notice the IL instruction, box, which takes care of the boxing operation before the Print method is
called. This creates an object, which Figure 4-2 depicts.

Figure 4-2. Result of boxing operation

Figure 4-2 depicts the action of copying the value type into the boxing object that lives on the heap.
The boxing object behaves just like any other reference type in the CLR. Also, note that the boxing type
implements the interfaces of the contained value type. The boxing type is a class type that is generated
internally by the virtual execution system of the CLR at the point where the contained value type is
defined. The CLR then uses this internal class type when it performs boxing operations as needed.

The most important thing to keep in mind with boxing is that the boxed value is a copy of the
original. Therefore, any changes made to the value inside the box are not propagated back to the original
value. For example, consider this slight modification to the previous code:

public class EntryPoint
{
 static void PrintAndModify(object obj)
 {
 System.Console.WriteLine("{0}", obj.ToString());
 int x = (int) obj;
 x = 21;
 }
 static void Main()
 {
 int x = 42;
 PrintAndModify(x);
 PrintAndModify(x);
 }
}

The output from this code might surprise you:

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

96

42
42

The fact is, the original value, x, declared and initialized in Main, is never changed. As you pass it to
the PrintAndModify method, it is boxed, because the PrintAndModify method takes an object as its
parameter. Even though PrintAndModify takes a reference to an object that you can modify, the object it
receives is a boxing object that contains a copy of the original value. The code also introduces another
operation called unboxing in the PrintAndModify method. Because the value is boxed inside an instance
of an object on the heap, you can’t change the value because the only methods supported by that object
are methods that System.Object implements. Technically, it also supports the same interfaces that
System.Int32 supports. Therefore, you need a way to get the value out of the box. In C#, you can
accomplish this syntactically with casting. Notice that you cast the object instance back into an int, and
the compiler is smart enough to know that what you’re really doing is unboxing the value type and using
the unbox IL instruction, as the following IL for the PrintAndModify method shows:

.method private hidebysig static void PrintAndModify(object obj) cil managed
{
 // Code size 28 (0x1c)
 .maxstack 2
 .locals init (int32 V_0)
 IL_0000: ldstr "{0}"
 IL_0005: ldarg.0
 IL_0006: callvirt instance string [mscorlib]System.Object::ToString()
 IL_000b: call void [mscorlib]System.Console::WriteLine(string,
 object)
 IL_0010: ldarg.0
 IL_0011: unbox [mscorlib]System.Int32
 IL_0016: ldind.i4
 IL_0017: stloc.0
 IL_0018: ldc.i4.s 21
 IL_001a: stloc.0
 IL_001b: ret
} // end of method EntryPoint::PrintAndModify

Let me be very clear about what happens during unboxing in C#. The operation of unboxing a value
is the exact opposite of boxing. The value in the box is copied into an instance of the value on the local
stack. Again, any changes made to this unboxed copy are not propagated back to the value contained in
the box. Now, you can see how boxing and unboxing can really become confusing. As shown, the code’s
behavior is not obvious to the casual observer who is not familiar with the fact that boxing and unboxing
are going on internally. What’s worse is that two copies of the int are created between the time the call
to PrintAndModify is initiated and the time that the int is manipulated in the method. The first copy is
the one put into the box. The second copy is the one created when the boxed value is copied out of the
box.

Technically, it’s possible to modify the value that is contained within the box. However, you must do
this through an interface. The box generated at run time that contains the value also implements the
interfaces that the value type implements and forwards the calls to the contained value. So, you could do
the following:

public interface IModifyMyValue
{
 int X

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

97

 {
 get;
 set;
 }
}

public struct MyValue : IModifyMyValue
{
 public int x;

 public int X
 {
 get
 {
 return x;
 }

 set
 {
 x = value;
 }
 }

 public override string ToString()
 {
 System.Text.StringBuilder output =
 new System.Text.StringBuilder();
 output.AppendFormat("{0}", x);
 return output.ToString();
 }
}

public class EntryPoint
{
 static void Main()
 {
 // Create value
 MyValue myval = new MyValue();
 myval.x = 123;

 // box it
 object obj = myval;
 System.Console.WriteLine("{0}", obj.ToString());

 // modify the contents in the box.
 IModifyMyValue iface = (IModifyMyValue) obj;
 iface.X = 456;
 System.Console.WriteLine("{0}", obj.ToString());

 // unbox it and see what it is.
 MyValue newval = (MyValue) obj;
 System.Console.WriteLine("{0}", newval.ToString());
 }

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

98

}

You can see that the output from the code is as follows:

123

456

456

As expected, you’re able to modify the value inside the box using the interface named
IModifyMyValue. However, it’s not the most straightforward process. And keep in mind that before you
can obtain an interface reference to a value type, it must be boxed. This makes sense if you think about
the fact that references to interfaces are object reference types.

■ Caution I cannot think of a good design reason as to why you would want to define a special interface simply so

you can modify the value contained within a boxed object.

When Boxing Occurs
C# handles boxing implicitly for you, therefore it’s important to know the instances when C# boxes a
value. Basically, a value gets boxed when one of the following conversions occurs:

• Conversion from a value type to an object reference

• Conversion from a value type to a System.ValueType reference

• Conversion from a value type to a reference to an interface implemented by the
value type

• Conversion from an enum type to a System.Enum reference

In each case, the conversion normally takes the form of an assignment expression. The first two
cases are fairly obvious, because the CLR is bridging the gap by turning a value type instance into a
reference type. The third one can be a little surprising. Any time you implicitly cast your value into an
interface that it supports, you incur the penalty of boxing. Consider the following code:

public interface IPrint
{
 void Print();
}

public struct MyValue : IPrint
{
 public int x;

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

99

 public void Print()
 {
 System.Console.WriteLine("{0}", x);
 }
}

public class EntryPoint
{
 static void Main()
 {
 MyValue myval = new MyValue();
 myval.x = 123;

 // no boxing
 myval.Print();

 // must box the value
 IPrint printer = myval;
 printer.Print();
 }
}

The first call to Print is done through the value reference, which doesn’t incur boxing. However, the
second call to Print is done through an interface. The boxing takes place at the point where you obtain
the interface. At first, it looks like you can easily sidestep the boxing operation by not acquiring an
explicit reference typed on the interface type. This is true in this case, because Print is also part of the
public contract of MyValue. However, had you implemented the Print method as an explicit interface,
which I cover in Chapter 5, then the only way to call the method would be through the interface
reference type. So, it’s important to note that any time you implement an interface on a value type
explicitly, you force the clients of your value type to box it before calling through that interface. The
following example demonstrates this:

public interface IPrint
{
 void Print();
}

public struct MyValue : IPrint
{
 public int x;

 void IPrint.Print()
 {
 System.Console.WriteLine("{0}", x);
 }
}

public class EntryPoint
{
 static void Main()
 {
 MyValue myval = new MyValue();

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

100

 myval.x = 123;

 // must box the value
 IPrint printer = myval;
 printer.Print();
 }
}

As another example, consider that the System.Int32 type supports the IConvertible interface.
However, most of the IConvertible interface methods are implemented explicitly. Therefore, even if you
want to call an IConvertible method, such as IConvertible.ToBoolean on a simple int, you must box it
first.

■ Note Typically, you want to rely upon the external class System.Convert to do a conversion like the one

mentioned previously. I only mention calling directly through IConvertible as an example.

Efficiency and Confusion
As you might expect, boxing and unboxing are not the most efficient operations in the world. What’s
worse is that the C# compiler silently does the boxing for you. You really must take care to know when
boxing is occurring. Unboxing is usually more explicit, because you typically must do a cast operation to
extract the value from the box, but there is an implicit case I’ll cover soon. Either way, you must pay
attention to the efficiency aspect of things. For example, consider a container type, such as a
System.Collections.ArrayList. It contains all of its values as references to type object. If you were to
insert a bunch of value types into it, they would all be boxed! Thankfully, generics, which were
introduced in C# 2.0 and .NET 2.0 and are covered in Chapter 11, can solve this inefficiency for you.
However, note that boxing is inefficient and should be avoided as much as possible. Unfortunately,
because boxing is an implicit operation in C#, it takes a keen eye to find all of the cases of boxing. The
best tool to use if you’re in doubt whether boxing is occurring or not is ILDASM. Using ILDASM, you can
examine the IL code generated for your methods, and the box operations are clearly identifiable. You
can find ILDASM.exe in the .NET SDK \bin folder.

As mentioned previously, unboxing is normally an explicit operation introduced by a cast from the
boxing object reference to a value of the boxed type. However, unboxing is implicit in one notable case.
Remember how I talked about the differences in how the this reference behaves within methods of
classes vs. methods of structs? The main difference is that, for value types, the this reference acts as
either a ref or an out parameter, depending on the situation. So when you call a method on a value type,
the hidden this parameter within the method must be a managed pointer rather than a reference. The
compiler handles this easily when you call directly through a value-type instance. However, when calling
a virtual method or an interface method through a boxed instance—thus, through an object—the CLR
must unbox the value instance so that it can obtain the managed pointer to the value type contained
within the box. After passing the managed pointer to the contained value type’s method as the this
pointer, the method can modify the fields through the this pointer, and it will apply the changes to the
value contained within the box. Be aware of hidden unboxing operations if you’re calling methods on a
value through a box object.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

101

■ Note Unboxing operations in the CLR are not inefficient in and of themselves. The inefficiency stems from the

fact that C# typically combines that unboxing operation with a copy operation on the value.

System.Object
Every object in the CLR derives from System.Object. Object is the base type of every type. In C#, the
object keyword is an alias for System.Object. It can be convenient that every type in the CLR and in C#
derives from Object. For example, you can treat a collection of instances of multiple types
homogenously simply by casting them to Object references.

Even System.ValueType derives from Object. However, some special rules govern obtaining an
Object reference. On reference types, you can turn a reference of class A into a reference of class Object
with a simple implicit conversion. Going the other direction requires a run time type check and an
explicit cast using the familiar cast syntax of preceding the instance to convert with the new type in
parentheses. Obtaining an Object reference directly on a value type is, technically, impossible.
Semantically, this makes sense, because value types can live on the stack. It can be dangerous for you to
obtain a reference to a transient value instance and store it away for later use if, potentially, the value
instance is gone by the time you finally use the stored reference. For this reason, obtaining an Object
reference on a value type instance involves a boxing operation, as described in the previous section.

The definition of the System.Object class is as follows:

public class Object
{
 public Object();

 public virtual void Finalize();

 public virtual bool Equals(object obj);
 public static bool Equals(object obj1,
 object obj2);

 public virtual int GetHashCode();
 public Type GetType();
 protected object MemberwiseClone();
 public static bool ReferenceEquals(object obj1,
 object obj2);
 public virtual string ToString();
}

Object provides several methods, which the designers of the CLI/CLR deemed to be important and
germane for each object. The methods dealing with equality deserve an entire discussion devoted to
them; I cover them in detail in the next section. Object provides a GetType method to obtain the runtime
type of any object running in the CLR. Such a capability is extremely handy when coupled with
reflection—the capability to examine types in the system at run time. GetType returns an object of type
Type, which represents the real, or concrete, type of the object. Using this object, you can determine
everything about the type of the object on which GetType is called. Also, given two references of type
Object, you can compare the result of calling GetType on both of them to find out if they’re actually
instances of the same concrete type.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

102

System.Object contains a method named MemberwiseClone, which returns a shallow copy of the
object. I have more to say about this method in Chapter 13. When MemberwiseClone creates the copy, all
value type fields are copied on a bit-by-bit basis, whereas all fields that are references are simply copied
such that the new copy and the original both contain references to the same object. When you want to
make a copy of an object, you may or may not desire this behavior. Therefore, if objects support copying,
you could consider supporting ICloneable and do the correct thing in the implementation of that
interface. Also, note that MemberwiseClone is declared as protected. The main reason for this is so that
only the class for the object being copied can call it, because MemberwiseClone can create an object
without calling its instance constructor. Such behavior could potentially be destabilizing if it were made
public.

■ Note Be sure to read more about ICloneable in Chapter 13 before deciding whether to implement this

interface.

Four of the methods on Object are virtual, and if the default implementations of the methods inside
Object are not appropriate, you should override them. ToString is useful when generating textual, or
human-readable, output and a string representing the object is required. For example, during
development, you may need the ability to trace an object out to debug output at run time. In such cases,
it makes sense to override ToString so that it provides detailed information about the object and its
internal state. The default version of ToString simply calls the ToString implementation on the Type
object returned from a call to GetType, thus providing the name of the object’s type. It’s more useful than
nothing, but it’s probably not useful enough for you if you need to call ToString on an object in the first
place. 3 Try to avoid adding side effects to the ToString implementation, because the Visual Studio
debugger can call it to display information at debug time. In fact, ToString is most useful for debugging
purposes and rarely useful otherwise due to its lack of versatility and localization as I describe in Chapter
8.

The Finalize method deserves special mention. C# doesn’t allow you to explicitly override this
method. Also, it doesn’t allow you to call this method on an object. If you need to override this method
for a class, you can use the destructor syntax in C#. I have much more to say about destructors and
finalizers in Chapter 13.

Equality and What It Means
Equality between reference types that derive from System.Object is a tricky issue. By default, the equality
semantics provided by Object.Equals represent identity equivalence. What that means is that the test
returns true if two references point to the same instance of an object. However, you can change the
semantic meaning of Object.Equals to value equivalence. That means that two references to two entirely
different instances of an object may equate to true as long as the internal states of the two instances
match. Overriding Object.Equals is such a sticky issue that I’ve devoted several sections within Chapter
13 to the subject.

3 Be sure to read Chapter 8, where I give reasons why Object.ToString is not what you want when creating software
for localization to various locales and cultures.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

103

The IComparable Interface
The System.IComparable interface is a system-defined interface that objects can choose to implement if
they support ordering. If it makes sense for your object to support ordering in collection classes that
provide sorting capabilities, then you should implement this interface. For example, it may seem
obvious, but System.Int32, aliased by int in C#, implements IComparable. In Chapter 13, I show how you
can effectively implement this interface and its generic cousin, IComparable<T>.

Creating Objects
Object creation is a topic that looks simple on the surface, but in reality is relatively complex under the
hood. You need to be intimately familiar with what operations take place during creation of a new object
instance or value instance in order to write constructor code effectively and use field initializers
effectively. Also, in the CLR, not only do object instances have constructors, but so do the types they’re
based on. By that, I mean that even the struct and the class types have a constructor, which is
represented by a static constructor definition. Static constructors allow you to get work done at the point
the type is loaded and initialized into the application domain.

The new Keyword
The new keyword lets you create new instances of objects or values. However, it behaves slightly different
when used with value types than with object types. For example, new doesn’t always allocate space on
the heap in C#. Let’s discuss what it does with value types first.

Using new with Value Types
The new keyword is only required for value types when you need to invoke one of the constructors for the
type. Otherwise, value types simply have space reserved on the stack for them, and the client code must
initialize them fully before you can use them. I covered this in the “Value Type Definitions” section on
constructors in value types.

Using new with Class Types
You need the new operator to create objects of class type. In this case, the new operator allocates space on
the heap for the object being created. If it fails to find space, it will throw an exception of type
System.OutOfMemoryException, thus aborting the rest of the object-creation process.

After it allocates the space, all of the fields of the object are initialized to their default values. This is
similar to what the compiler-generated default constructor does for value types. For reference-type
fields, they are set to null. For value-type fields, their underlying memory slots are filled with all zeros.
Thus, the net effect is that all fields in the new object are initialized to either null or 0. Once this is done,
the CLR calls the appropriate constructor for the object instance. The constructor selected is based upon
the parameters given and is matched using the overloaded method parameter matching algorithm in C#.
The new operator also sets up the hidden this parameter for the subsequent constructor invocation,
which is a read-only reference that references the new object created on the heap, and that reference’s
type is the same as the class type. Consider the following example:

public class MyClass
{

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

104

 public MyClass(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 public int x;
 public int y;
}

public class EntryPoint
{
 static void Main()
 {
 // We can't do this!
 // MyClass objA = new MyClass();

 MyClass objA = new MyClass(1, 2);
 System.Console.WriteLine("objA.x = {0}, objA.y = {1}",
 objA.x, objA.y);
 }
}

In the Main method, notice that you cannot create a new instance of MyClass by calling the default
constructor. The C# compiler doesn’t create a default constructor for a class unless no other
constructors are defined. The rest of the code is fairly straightforward. I create a new instance of MyClass
and then output its values to the console. Shortly, in the section titled “Instance Constructor and
Creation Ordering,” I cover the minute details of object instance creation and constructors.

Field Initialization
When defining a class, it is sometimes convenient to assign the fields a value at the point where the field
is declared. The fact is, you can assign a field from any immediate value or any callable method as long
as the method is not called on the instance of the object being created. For example, you can initialize
fields based upon the return value from a static method on the same class. Let’s look at an example:

using System;

public class A
{
 private static int InitX()
 {
 Console.WriteLine("A.InitX()");
 return 1;
 }
 private static int InitY()
 {
 Console.WriteLine("A.InitY()");
 return 2;
 }
 private static int InitA()
 {

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

105

 Console.WriteLine("A.InitA()");
 return 3;
 }
 private static int InitB()
 {
 Console.WriteLine("A.InitB()");
 return 4;
 }

 private int y = InitY();
 private int x = InitX();

 private static int a = InitA();
 private static int b = InitB();
}

public class EntryPoint
{
 static void Main()
 {
 A a = new A();
 }
}

Notice that you’re assigning all of the fields using field initializers and setting the fields to the return
value from the methods called. All of those methods called during field initialization are static, which
helps reinforce a couple of important points regarding field initialization. The output from the preceding
code is as follows:

A.InitA()

A.InitB()

A.InitY()

A.InitX()

Notice that two of the fields, a and b, are static fields, whereas the fields x and y are instance fields.
The runtime initializes the static fields before the class type is used for the first time in this application
domain. In the next section, “Static (Class) Constructors,” I show how you can relax the CLR’s timing of
initializing the static fields.

During construction of the instance, the instance field initializers are invoked. As expected, proof of
that appears in the console output after the static field initializers have run. Note one important point:
Notice the ordering of the output regarding the instance initializers and compare that with the ordering
of the fields declared in the class itself. You’ll see that field initialization, whether it’s static or instance
initialization, occurs in the order in which the fields are listed in the class definition. Sometimes this
ordering can be important if your static fields are based on expressions or methods that expect other
fields in the same class to be initialized first. You should avoid writing such code at all costs. In fact, any
code that requires you to think about the ordering of the declaration of your fields in your class is bad

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

106

code. If initialization ordering matters, you should consider initializing all of your fields in the body of
the static constructor. That way, people maintaining your code at a later date won’t be unpleasantly
surprised when they reorder the fields in your class for some reason.

Static (Class) Constructors
I already touched upon static constructors in the “Fields” section, but let’s look at them in a little more
detail. A class can have at most one static constructor, and that static constructor cannot accept any
parameters. Static constructors can never be invoked directly. Instead, the CLR invokes them when it
needs to initialize the type for a given application domain. The static constructor is called before an
instance of the given class is first created or before some other static fields on the class are referenced.
Let’s modify the previous field initialization example to include a static constructor and examine the
output:

using System;

public class A
{
 static A()
 {
 Console.WriteLine("static A::A()");
 }

 private static int InitX()
 {
 Console.WriteLine("A.InitX()");
 return 1;
 }
 private static int InitY()
 {
 Console.WriteLine("A.InitY()");
 return 2;
 }
 private static int InitA()
 {
 Console.WriteLine("A.InitA()");
 return 3;
 }
 private static int InitB()
 {
 Console.WriteLine("A.InitB()");
 return 4;
 }

 private int y = InitY();
 private int x = InitX();

 private static int a = InitA();
 private static int b = InitB();
}

public class EntryPoint

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

107

{
 static void Main()
 {
 A a = new A();
 }
}

I’ve added the static constructor and want to see that it has been called in the output. The output
from the previous code is as follows:

A.InitA()

A.InitB()

static A::A()

A.InitY()

A.InitX()

Of course, the static constructor was called before an instance of the class was created. However,
notice the important ordering that occurs. The static field initializers are executed before the body of the
static constructor executes. This ensures that the instance fields are initialized properly before possibly
being referenced within the static constructor body.

It is the default behavior of the CLR to call the type initializer (implemented using the static
constructor syntax) before any member of the type is accessed. By that, I mean that the type initializers
will execute before any code accesses a field or a method on the class or before an object is created from
the class. However, you can apply a metadata attribute defined in the CLR, beforefieldinit, to the class
to relax the rules a little bit. In the absence of the beforefieldinit attribute, the CLR is required to call
the type initializer before any member on the class is touched. With the beforefieldinit attribute, the
CLR is free to defer the type initialization to the point right before the first static field access and not any
time sooner. This means that if beforefieldinit is set on the class, you can call instance constructors
and methods all day long without requiring the type initializer to execute first. But as soon as anything
tries to access a static field on the class, the CLR invokes the type initializer first. Keep in mind that the
beforefieldinit attribute gives the CLR this leeway to defer the type initialization to a later time, but the
CLR could still initialize the type long before the first static field is accessed.

The C# compiler sets the beforefieldinit attribute on all classes that don’t specifically define a
static constructor. To see this in action, you can use ILDASM to examine the IL generated for the
previous two examples. For the example in the previous section, where I didn’t specifically define a static
constructor, the class A metadata looks like the following:

.class public auto ansi beforefieldinit A
 extends [mscorlib]System.Object
{
} // end of class A

For the class A metadata in the example in this section, the metadata looks like the following:

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

108

.class public auto ansi A
 extends [mscorlib]System.Object
{
} // end of class A

This behavior of the C# compiler makes good sense. When you explicitly define a type initializer,
you usually want to guarantee that it will execute before anything in the class is utilized or before any
instance of the class is created. However, if you don’t provide an explicit type initializer and you do have
static field initializers, the C# compiler will create a type initializer of sorts that merely initializes all of
the static fields. Because you didn’t provide user code for the type initializer, the C# compiler can let the
class defer the static field initializers until one of the static fields is accessed.

After all of this discussion regarding beforefieldinit, you should make note of one important point.
Suppose you have a class similar to the ones in the examples, where a static field is initialized based
upon the result of a method call. If your class doesn’t provide an explicit type initializer, it would be
erroneous to assume that the code called during the static field initialization will be called prior to an
object creation based on this class. For example, consider the following code:

using System;

public class A
{
 public A()
 {
 Console.WriteLine("A.A()");
 }

 static int InitX()
 {
 Console.WriteLine("A.InitX()");
 return 1;
 }

 public int x = InitX();
}

public class EntryPoint
{
 static void Main()
 {
 // No guarantee A.InitX() is called before this!
 A a = new A();
 }
}

If your implementation of InitX contains some side effects that are required to run before an object
instance can be created from this class, then you would be better off putting that code in a static
constructor so that the compiler will not apply the beforefieldinit metadata attribute to the class.
Otherwise, there’s no guarantee that your code with the side effect in it will run prior to a class instance
being created.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

109

Instance Constructor and Creation Ordering
Instance constructors follow a lot of the same rules as static constructors, except they’re more flexible
and powerful, so they have some added rules of their own. Let’s examine those rules.

Instance constructors can have what’s called an initializer expression. An initializer expression
allows instance constructors to defer some of their work to other instance constructors within the class,
or more importantly, to base class constructors during object initialization. This is important if you rely
on the base class instance constructors to initialize the inherited members. Remember, constructors are
never inherited, so you must go through explicit means such as this in order to call the base class
constructors during initialization of derived types if you need to.

If your class doesn’t implement an instance constructor at all, the compiler will generate a default
parameterless instance constructor for you, which really only does one thing—it merely calls the base
class default constructor through the base keyword. If the base class doesn’t have an accessible default
constructor, a compiler error is generated. For example, the following code doesn’t compile:

public class A
{
 public A(int x) {
 this.x = x;
 }

 private int x;
}

public class B : A
{
}

public class EntryPoint
{
 static void Main()
 {
 B b = new B();
 }
}

Can you see why it won’t compile? The problem is that a class with no explicit constructors is given
a default parameterless constructor by the compiler; this constructor merely calls the base class
parameterless constructor, which is exactly what the compiler tries to do for class B. However, the
problem is that, because class A does have an explicit instance constructor defined, the compiler doesn’t
produce a default constructor for class A. So, there is no accessible default constructor available on class
A for class B’s compiler-provided default constructor to call. Therein lies another caveat to inheritance.
In order for the previous example to compile, either you must explicitly provide a default constructor for
class A, or class B needs an explicit constructor. Now, let’s look at an example that demonstrates the
ordering of events during instance initialization:

using System;

class Base
{
 public Base(int x)
 {
 Console.WriteLine("Base.Base(int)");

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

110

 this.x = x;
 }

 private static int InitX()
 {
 Console.WriteLine("Base.InitX()");
 return 1;
 }

 public int x = InitX();
}

class Derived : Base
{
 public Derived(int a)
 :base(a)
 {
 Console.WriteLine("Derived.Derived(int)");
 this.a = a;
 }

 public Derived(int a, int b)
 :this(a)
 {
 Console.WriteLine("Derived.Derived(int, int)");
 this.a = a;
 this.b = b;
 }

 private static int InitA()
 {
 Console.WriteLine("Derived.InitA()");
 return 3;
 }

 private static int InitB()
 {
 Console.WriteLine("Derived.InitB()");
 return 4;
 }

 public int a = InitA();
 public int b = InitB();
}

public class EntryPoint
{
 static void Main()
 {
 Derived b = new Derived(1, 2);
 }
}

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

111

Before I start detailing the ordering of events here, look at the output from this code:

Derived.InitA()

Derived.InitB()

Base.InitX()

Base.Base(int)

Derived.Derived(int)

Derived.Derived(int, int)

Are you able to determine why the ordering is the way it is? It can be quite confusing upon first
glance, so let’s take a moment to examine what’s going on here. The first line of the Main method creates
a new instance of class Derived. As you see in the output, the constructor is called. But, it’s called in the
last line of the output! Clearly, a lot of things are happening before the constructor body for class Derived
executes.

At the bottom, you see the call to the Derived constructor that takes two int parameters. Notice that
this constructor has an initializer using the this keyword. This delegates construction work to the
Derived constructor that takes one int parameter.

The Derived constructor that takes one int parameter also has an initialization list, except it uses the
base keyword, thus calling the constructor for the class Base, which takes one int parameter. However, if
a constructor has an initializer that uses the base keyword, the constructor will invoke the field
initializers defined in the class before it passes control to the base class constructor. And remember, the
ordering of the initializers is the same as the ordering of the fields in the class definition. This behavior
explains the first two entries in the output. The output shows that the initializers for the fields in Derived
are invoked first, before the initializers in Base.

After the initializers for Derived execute, control is then passed to the Base constructor that takes
one int parameter. Notice that class Base has an instance field with an initializer, too. The same behavior
happens in Base as it does in Derived, so before the constructor body for the Base constructor is
executed, the constructor implicitly calls the initializers for the class. I have more to say about why this
behavior is defined in this way later in this section, and it involves virtual methods. This is why the third
entry in the output trace is that of Base.InitX.

After the Base initializers are done, you find yourself in the block of the Base constructor. Once that
constructor body runs to completion, control returns to the Derived constructor that takes one int
parameter, and execution finally ends up in that constructor’s code block. Once it’s done there, it finally
gets to execute the body of the constructor that was called when the code created the instance of Derived
in the Main method. Clearly, a lot of initialization work is going on under the covers when an object
instance is created.

As promised, I’ll explain why the field initializers of a derived class are invoked before the
constructor for the base class is called through an initializer on the derived constructor, and the reason
is subtle. Virtual methods, which I cover in more detail in the section titled “Inheritance and Virtual
Methods,” work inside constructors in the CLR and in C#.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

112

■ Note If you’re coming from a C++ programming environment, you should recognize that this behavior of calling

virtual methods in constructors is completely different. In C++, you’re never supposed to rely on virtual method

calls in constructors, because the vtable is not set up while the constructor body is running.

Let’s look at an example:

using System;

public class A
{
 public virtual void DoSomething()
 {
 Console.WriteLine("A.DoSomething()");
 }

 public A()
 {
 DoSomething();
 }
}

public class B : A
{
 public override void DoSomething()
 {
 Console.WriteLine("B.DoSomething()");
 Console.WriteLine("x = {0}", x);
 }

 public B()
 :base()
 {
 }

 private int x = 123;
}

public class EntryPoint
{
 static void Main()
 {
 B b = new B();
 }
}

The output from this code is as follows:

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

113

B.DoSomething()
x = 123

As you can see, the virtual invocation works just fine from the constructor of A. Notice that
B.DoSomething uses the x field. Now, if the field initializers were not run before the base invocation,
imagine the calamity that would ensue when the virtual method is invoked from the class A constructor.
That, in a nutshell, is why the field initializers are run before the base constructor is called if the
constructor has an initializer. The field initializers are also run before the constructor’s body is entered,
if there is no initializer defined for the constructor.

Destroying Objects
If you thought object creation was complicated, hold onto your hats. As you know, the CLR environment
contains a garbage collector, which manages memory on your behalf. You can create new objects as
much as you want, but you never have to worry about freeing their memory explicitly. A huge majority of
bugs in native applications come from memory allocation/deallocation mismatches, otherwise known
as memory leaks. Garbage collection is a technique meant to avoid that type of bug, because the
execution environment now handles the tracking of object references and destroys the object instances
when they’re no longer in use.

The CLR tracks every single managed object reference in the system that is just a plain-old object
reference that you’re already used to. During a heap compaction, if the CLR realizes that an object is no
longer reachable via a reference, it flags the object for deletion. As the garbage collector compacts the
heap, these flagged objects either have their memory reclaimed or are moved over into a queue for
deletion if they have a finalizer. It is the responsibility of another thread, the finalizer thread, to iterate
over this queue of objects and call their finalizers before freeing their memory. Once the finalizers have
completed, the memory for the object is freed on the next collection pass, and the object is completely
dead, never to return.

Finalizers
There are many reasons why you should rarely write a finalizer. When used unnecessarily, finalizers can
degrade the performance of the CLR, because finalizable objects live longer than their nonfinalizable
counterparts. Even allocating finalizable objects is more costly. Additionally, finalizers are difficult to
write, because you cannot make any assumptions about the state that other objects in the system are in.

When the finalization thread iterates through the objects in the queue of finalizable objects, it calls
the Finalize method on each object. The Finalize method is an override of a virtual method on
System.Object; however, it’s illegal in C# to explicitly override this method. Instead, you write a
destructor that looks like a method that has no return type, cannot have access modifiers applied to it,
accepts no parameters, and whose identifier is the class name immediately prefixed with a tilde.
Destructors cannot be called explicitly in C#, and they are not inherited, just as constructors are not
inherited. A class can have only one destructor.

When an object’s finalizer is called, each finalizer in an inheritance chain is called, from the most
derived class to the least derived class. Consider the following example:

using System;

public class Base
{

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

114

 ~Base()
 {
 Console.WriteLine("Base.~Base()");
 }
}

public class Derived : Base
{
 ~Derived()
 {
 Console.WriteLine("Derived.~Derived()");
 }
}

public class EntryPoint
{
 static void Main()
 {
 Derived derived = new Derived();
 }
}

As expected, the result of executing this code is as follows:

Derived.~Derived()
Base.~Base()

Although the garbage collector now handles the task of cleaning up memory so that you don’t have
to worry about it, you have a whole new host of concerns to deal with when it comes to the destruction
of objects. I’ve mentioned that finalizers run on a separate thread in the CLR. Therefore, whatever
objects you use inside your destructor must be thread-safe, but the odds are you should not even be
using other objects in your finalizer, because they may have already been finalized or destroyed. This
includes objects that are fields of the class that contains the finalizer. You have no guaranteed way of
knowing exactly when your finalizer will be called or in what order the finalizer will be called between
two independent or dependent objects. This is one more reason why you shouldn’t introduce
interdependencies on objects in the destructor code block. After all this dust has settled, it starts to
become clear that you shouldn’t do much inside a finalizer except basic housecleaning, if anything.

Essentially, you only need to write a finalizer when your object manages some sort of unmanaged
resource. However, if the resource is managed through a standard Win32 handle, I highly recommend
that you use the SafeHandle type to manage it. Writing a wrapper such as SafeHandle is tricky business,
mainly because of the finalizer and all of the things you must do to guarantee that it will get called in all
situations, even the diabolical ones such as an out-of-memory condition or in the face of unexpected
exceptions. Finally, any object that has a finalizer must implement the Disposable pattern, which I cover
in the forthcoming section titled “Disposable Objects.”

Deterministic Destruction
So far, everything that you’ve seen regarding destruction of objects in the garbage-collected
environment of the CLR is known as nondeterministic destruction. That means that you cannot predict

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

115

the timing of the execution of the destructor code for an object. If you come from a native C++ world,
you’ll recognize that this is completely different.

In C++, heap object destructors are called when the user explicitly deletes the object. With the CLR,
the garbage collector handles that for you, so you don’t have to worry about forgetting to do it. However,
for a C++-based stack object, the destructor is called as soon as the execution scope in which that object
is created is exited. This is known as deterministic destruction and is extremely useful for managing
resources.

Let’s examine the case of an object that holds a system file handle. You can use such a stack-based
object in C++ to manage the lifetime of the file handle. When the object is created, the constructor of the
object acquires the file handle, and as soon as the object goes out of scope, the destructor is called and
its code closes the file handle. This frees the client code of the object from having to manage the
resource explicitly. It also prevents resource leaks, because if an exception is thrown from that code
block where the object is used, C++ guarantees that the destructors for all stack-based objects will be
called no matter how the block is exited.

This idiom is called Resource Acquisition Is Initialization (RAII), and it’s extremely useful for
managing resources. C# has almost completely lost this capability of automatic cleanup in a timely
manner. Of course, if you had an object that held a file open and closed it in the destructor, you wouldn’t
have to worry about whether the file gets closed or not, but you will definitely have to consider when it
gets closed. The fact is, you don’t know exactly when it will get closed if the code to close it is in the
finalizer, which is fallout from nondeterministic finalization. For this very reason, it would be bad design
to put resource management code, such as closing file handles, in the finalizer. What if the object is
already marked for finalization but has not had its finalizer called yet, and you try to create a new
instance of the object whose constructor tries to open the resource? Well, with an exclusive-access
resource, the code will fail in the constructor for the new instance. I’m sure you’ll agree that this is not
desired, and most definitely would not be expected by the client of your object.

Let’s revisit the finalization ordering problem mentioned a little while ago. If an object contains
another finalizable object, and the outer object is put on the finalization queue, the internal objects
possibly are, too. However, the finalizer thread just goes through the queue finalizing the objects
individually. It doesn’t care who was an internal object of whom. So clearly, it’s possible that if
destructor code accesses an object reference in a field, that object could already have been finalized.
Accessing such a field produces the dreaded undefined behavior.

This is a perfect example of how the garbage collector removes one bit of complexity but replaces it
with another. In reality, you should avoid finalizers if possible. Not only do they add complexity, but they
hamper memory management, because they cause objects to live longer than objects with no finalizer.
This is because they’re put on the finalization list, and it is the responsibility of an entirely different
thread to clean up the finalization list. In the “Disposable Objects” section and in Chapter 13, I describe
an interface, IDisposable, that was included in the Framework Class Library in order to facilitate a form
of deterministic destruction.

Exception Handling
It’s important to note the behavior of exceptions when inside the scope of a finalizer. If you come from a
native C++ world, you know that it is bad behavior to allow exceptions to propagate out from a
destructor, because in certain situations, that may cause your application to abort. In C#, an exception
thrown in a finalizer that leaves the finalizer uncaught will be treated as an unhandled exception, and by
default, the process will be terminated after notifying you of the exception.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

116

■ Note This behavior starting with .NET 2.0 is a breaking change from .NET 1.1. Before .NET 2.0, unhandled

exceptions in the finalization thread were swallowed after notifying the user, and the process was allowed to

continue. The danger with this behavior is that the system could be running in a half-baked or inconsistent state.

Therefore, it’s best to kill the process rather than run the risk of it causing more damage. In Chapter 7, I show you

how you can force the CLR to revert to the pre-2.0 behavior if you absolutely must.

Disposable Objects
In the previous section on finalizers, I discussed the differences between deterministic and
nondeterministic finalization, and you also saw that you lose a lot of convenience along with
deterministic finalization. For that reason, the IDisposable interface exists, and in fact, it was only added
during beta testing of the first release of the .NET Framework when developers were shouting about not
having any form of deterministic finalization built into the framework. It’s not a perfect replacement for
deterministic finalization, but it does get the job done at the expense of adding complexity to the client
of your objects.

The IDisposable Interface
The IDisposable definition is as follows:

public interface IDisposable
{
 void Dispose();
}

Notice that it has only one method, Dispose, and it is within this method’s implementation that the
dirty work is done. Thus, you should completely clean up your object and release all resources inside
Dispose. Even though the client code rather than the system calls Dispose automatically, it’s the client
code’s way of saying, “I’m done with this object and don’t intend to use it ever again.”

Even though the IDisposable pattern provides a form of deterministic destruction, it is not a perfect
solution. Using IDisposable, the onus is thrown on the client to ensure that the Dispose method is
called. There is no way for the client to rely upon the system, or the compiler, to call it for them
automatically. C# makes this a little easier to manage in the face of exceptions by overloading the using
keyword, which I discuss in the next section.

When you implement Dispose, you normally implement the class in such a way that the finalizer
code reuses Dispose. This way, if the client code never calls Dispose, the finalizer code will take care of it
at finalization time. Another factor makes implementing IDisposable painful for objects, and that is that
you must chain calls of IDisposable if your object contains references to other objects that support
IDisposable. This makes designing classes a little more difficult, because you must know whether a class
that you use for a field type implements IDisposable, and if it does, you must implement IDisposable
and you must make sure to call its Dispose method inside yours.

Given all of this discussion regarding IDisposable, you can definitely start to see how the garbage
collector adds complexity to design, even though it reduces the chance for memory bugs. I’m not trying
to say the garbage collector is worthless; in fact, it’s very valuable when used appropriately. However, as
with any design, engineering decisions typically have pros and cons in both directions.

Let’s look at an example implementation of IDisposable:

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

117

using System;

public class A : IDisposable
{
 private bool disposed = false;
 private void Dispose(bool disposing)
 {
 if(!disposed) {
 if(disposing) {
 // It is safe to access other objects here.
 }

 Console.WriteLine("Cleaning up object");
 disposed = true;
 }
 }
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 public void DoSomething()
 {
 Console.WriteLine("A.SoSomething()");
 }

 ~A()
 {
 Console.WriteLine("Finalizing");
 Dispose(false);
 }
}

public class EntryPoint
{
 static void Main()
 {
 A a = new A();
 try {
 a.DoSomething();
 }
 finally {
 a.Dispose();
 }
 }
}

Let’s go over this code in detail to see what’s really going on. The first thing to notice in the class is
an internal Boolean field that registers whether or not the object has been disposed. It’s there because
it’s perfectly legal for client code to call Dispose multiple times. Therefore, you need some way to know
that you’ve done the work already.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

118

You’ll also see that I’ve implemented the finalizer in terms of the Dispose implementation. Notice
that I have two overloads of Dispose. I’ve done this so that I know inside the Dispose(bool) method
whether I got here through IDisposable.Dispose or through the destructor. It tells me whether I can
safely access contained objects inside the method.

One last point: The Dispose method makes a call to GC.SuppressFinalize. This method on the
garbage collector allows you to keep the garbage collector from finalizing an object. If the client code
calls Dispose, and if the Dispose method completely cleans up all resources, including all the work a
finalizer would have done, then there is no need for this object to ever be finalized. You can call
SuppressFinalize to keep this object from being finalized. This handy optimization helps the garbage
collector get rid of your object in a timely manner when all references to it cease to exist.

Now, let’s take a look at how to use this disposable object. Notice the try/finally block within the
Main method. I cover exceptions in Chapter 7. For now, understand that this try/finally construct is a
way of guaranteeing that certain code will be executed no matter how a code block exits. In this case, no
matter how the execution flow leaves the try block—whether normally, through a return statement, or
even by exception—the code in the finally block will execute. View the finally block as a sort of safety
net. It is within this finally block that you call Dispose on the object. No matter what, Dispose will get
called.

This is a perfect example of how nondeterministic finalization throws the onus on the client code, or
the user, to clean up the object, whereas deterministic finalization doesn’t require the user to bother
typing these ugly try/finally blocks or to call Dispose. This definitely makes life harder on the user, as it
makes it much more tedious to create exception-safe and/or exception-neutral code. The designers of
C# have tried to lessen this load by overloading the using keyword. Although it lessens the load, it
doesn’t remove the burden put on the client code altogether.

■ Note C++/CLI allows you to use RAII in a way familiar to C++ developers without requiring you to call Dispose

explicitly or use a using block. It would be nice if C# could do the same, but it would cause too much of a calamity

to introduce such a breaking change in the language at this point.

The using Keyword
The using keyword was overloaded to support the IDisposable pattern, and the general idea is that the
using statement acquires the resources within the parentheses following the using keyword, while the
scope of these local variables is confined to the declaration scope of the following curly braces.

Let’s look at a modified form of the previous example:

using System;

public class A : IDisposable
{
 private bool disposed = false;
 private void Dispose(bool disposing)
 {
 if(!disposed) {
 if(disposing) {
 // It is safe to access other objects here.
 }

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

119

 Console.WriteLine("Cleaning up object");
 disposed = true;
 }
 }
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 public void DoSomething()
 {
 Console.WriteLine("A.SoSomething()");
 }

 ~A()
 {
 Console.WriteLine("Finalizing");
 Dispose(false);
 }
}

public class EntryPoint
{
 static void Main()
 {
 using(A a = new A()) {
 a.DoSomething();
 }

 using(A a = new A(), b = new A()) {
 a.DoSomething();
 b.DoSomething();
 }
 }
}

The meat of the changes is in the Main method. Notice that I’ve replaced the ugly try/finally
construct with the cleaner using statement. Under the covers, the using statement expands to the
try/finally construct I already had. Now, granted, this code is much easier to read and understand.
However, it still doesn’t remove the burden from the client code of having to remember to use the using
statement in the first place.

The using statement requires that all resources acquired in the acquisition process be implicitly
convertible to IDisposable. That is, they must implement IDisposable. If they don’t, you’ll see a
compiler warning.

Method Parameter Types
Method parameters follow the same general rules as those of C/C++. That is, by default, parameters
declare a variable identifier that is valid for the duration and scope of the method itself. There are no

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

120

const parameters as in C++, and method parameters may be reassigned at will. Unless the parameter is
declared a certain way as a ref or an out parameter, such reassignment will remain local to the method.

I have found that one of the biggest stumbling blocks for C++ developers in C# is dealing with the
semantics of variables passed to methods. The dominant type of type instance within the CLR is a
reference, so variables to such objects merely point to their instances on the heap—i.e., arguments are
passed to the method using reference semantics. C++ developers are used to copies of variables being
made as they’re passed into methods by default, unless they’re passed by reference or as pointers. In
other words, arguments are passed using value semantics.

In C#, arguments are actually passed by value. However, for references, the value that is copied is
the reference itself and not the object that it references. Changes in state that are made to the reference
object within the method are visible to the caller of the method.

There is no notion of a const parameter within C#, thus you should create immutable objects to pass
where you would have wanted to pass a const parameter. I have more to say about immutable objects in
Chapter 13.

■ Note Those C++ developers who are used to using handle/body idioms to implement copy-on-write semantics

must take these facts into consideration. It doesn’t mean that you cannot employ those idioms in C#; rather, it just

means that you must implement them differently.

Value Arguments
In reality, all parameters passed to methods are value arguments, assuming they’re normal, plain,
undecorated parameters that get passed to a method. By undecorated, I mean they don’t have special
keywords such as out, ref, and params attached to them. They can, however, have metadata attributes
attached to them just as almost everything else in the CLR type system can. As with all parameters, the
identifier is in scope within the method block following the parameter list (i.e., within the curly braces),
and the method receives a copy of the passed variable at invocation time. Be careful about what this
means, though. If the passed variable is a struct, or value type, then the method receives a copy of the
value. Any changes made locally to the value are not seen by the caller. If the passed variable is a
reference to an object on the heap, as any variable for a class instance is, then the method receives a
copy of the reference. Thus, any changes made to the object through the reference are seen by the caller
of the method.

ref Arguments
Passing parameters by reference is indicated by placing the ref modifier ahead of the parameter type in
the parameter list for the method. When a variable is passed by reference, a new copy of the variable is
not made, and the caller’s variable is directly affected by any actions within the method. As is usually the
case in the CLR, this means two slightly different things, depending on whether the variable is an
instance of a value type (struct) or an object (class).

When a value instance is passed by reference, a copy of the caller’s value is not made. It’s as if the
parameter were passed as a C++ pointer, even though you access the methods and fields of the variable
in the same way as value arguments. When an object (reference) instance is passed by reference, again,
no copy of the variable is made, which means that a new reference to the object on the heap is not
created. In fact, the variable behaves as if it were a C++ pointer to the reference variable, which could be
viewed as a C++ pointer to a pointer. Additionally, the verifier ensures that the variable referenced by the

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

121

ref parameter has been definitely assigned before the method call. Let’s take a look at some examples to
put the entire notion of ref parameters into perspective:

using System;

public struct MyStruct
{
 public int val;
}

public class EntryPoint
{
 static void Main() {
 MyStruct myValue = new MyStruct();
 myValue.val = 10;

 PassByValue(myValue);
 Console.WriteLine("Result of PassByValue: myValue.val = {0}",
 myValue.val);

 PassByRef(ref myValue);
 Console.WriteLine("Result of PassByRef: myValue.val = {0}",
 myValue.val);
 }

 static void PassByValue(MyStruct myValue) {
 myValue.val = 50;
 }

 static void PassByRef(ref MyStruct myValue) {
 myValue.val = 42;
 }
}

This example contains two methods: PassByValue and PassByRef. Both methods modify a field of the
value type instance passed in. However, as the following output shows, the PassByValue method
modifies a local copy, whereas the PassByRef method modifies the caller’s instance as you would expect:

Result of PassByValue: myValue.val = 10
Result of PassByRef: myValue.val = 42

Also, pay attention to the fact that the ref keyword is required at the point of call into the PassByRef
method. This is necessary because the method could be overloaded based upon the ref keyword. In
other words, another PassByRef method could just as well have taken a MyStruct by value rather than by
ref. Plus, the fact that you have to put the ref keyword on at the point of call makes the code easier to
read in my opinion. When programmers read the code at the point of call, they can get a pretty clear idea
that the method could make some changes to the object being passed by ref.

Now, let’s consider an example that uses an object rather than a value type:

using System;

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

122

public class EntryPoint
{
 static void Main() {
 object myObject = new Object();

 Console.WriteLine("myObject.GetHashCode() == {0}",
 myObject.GetHashCode());
 PassByRef(ref myObject);
 Console.WriteLine("myObject.GetHashCode() == {0}",
 myObject.GetHashCode());
 }

 static void PassByRef(ref object myObject) {
 // Assign a new instance to the variable.
 myObject = new Object();
 }
}

In this case, the variable passed by reference is an object. But, as I said, instead of the method
receiving a copy of the reference, thus creating a new reference to the same object, the original reference
is referenced instead. Yes, this can be confusing. In the previous PassByRef method, the reference passed
in is reassigned to a new object instance. The original object is left with no references to it, so it is now
available for collection. To illustrate that the myObject variable references two different instances
between the point before it is called and the point after it is called, I sent the results of
myObject.GetHashCode to the console to prove it and you can see the output that I got below.

myObject.GetHashCode() == 46104728
myObject.GetHashCode() == 12289376

out Parameters
Out parameters are almost identical to ref parameters, with two notable differences. First, instead of
using the ref keyword, you use the out keyword, and you still have to provide the out keyword at the
point of call as you do with the ref keyword. Second, the variable referenced by the out variable is not
required to have been definitely assigned before the method is called as it is with ref parameters. That’s
because the method is not allowed to use the variable for anything useful until it has assigned the
variable. For example, the following is valid code:

public class EntryPoint
{
 static void Main() {
 object obj;
 PassAsOutParam(out obj);
 }

 static void PassAsOutParam(out object obj) {
 obj = new Object();
 }
}

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

123

Notice that the obj variable in the Main method is not directly assigned before the call to
PassAsOutParam. That’s perfectly fine, because it is marked as an out parameter. The PassAsOutParam
method won’t be referencing the variable unless it has already assigned it. If you were to replace the two
occurrences of out with ref in the previous code, you would see a compiler error similar to the following:

error CS0165: Use of unassigned local variable 'obj'

param Arrays
C# makes it a snap to pass a variable list of parameters. Simply declare the last parameter in your
parameter list as an array type and precede the array type with the params keyword. Now, if the method
is invoked with a variable number of parameters, those parameters are passed to the method in the form
of an array that you can easily iterate through, and the array type that you use can be based on any valid
type. Here’s a short example:

using System;

public class EntryPoint
{
 static void Main() {
 VarArgs(42);
 VarArgs(42, 43, 44);
 VarArgs(44, 56, 23, 234, 45, 123);
 }

 static void VarArgs(int val1, params int[] vals) {
 Console.WriteLine("val1: {0}", val1);
 foreach(int i in vals) {
 Console.WriteLine("vals[]: {0}",
 i);
 }
 Console.WriteLine();
 }
}

In each case, VarArgs is called successfully, but in each case, the array referenced by the vals
parameter is different. As you can see, referencing a variable number of parameters is pretty easy in C#.
You can code an efficient Add method to a container type using parameter arrays where only one call is
necessary to add a variable number of items.

Method Overloading
C# overloading is a compile-time technique in which, at a call point, the compiler chooses a method
from a set of methods with the same name. The compiler uses the argument list of the method to choose
the method that fits best. The argument types and the ref, out, and param parameter modifiers play a
part in method overloading, because they form part of the method signature. Methods without variable-
length parameter arrays get preference over those that have them. Similar to C++, the method return
type is not part of the signature (except in one rare case of conversion operators, which I cover in
Chapter 6). So you cannot have methods within an overloaded class where the only difference is the
return type. Finally, if the compiler gets to a point where multiple methods are ambiguous with respect
to overloading, it stops with an error.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

124

Overall, there’s really nothing different about method overloading in C# compared to C++.
Normally, it can’t possibly cause any runtime exceptions, because the entire algorithm is applied at
compile time. When the compiler fails to find an exact match based on the parameters given, it then
starts hunting for a best match based on implicit convertibility of the instances in the parameter list.
Thus, if a single parameter method accepts an object of type A, and you have passed an object of type B
that is derived from type A, in the absence of a method that accepts type B, the compiler will implicitly
convert your instance into a type A reference to satisfy the method call. Depending on the situation and
the size of the overloaded method set, the selection process can still be a tricky one. I’ve found that it’s
best to minimize too many confusing overloads where implicit conversion is necessary to satisfy the
resolution. Too many implicit conversions can make code difficult to follow, requiring you to actually
execute it in a debugger to see what happens. That makes it hard on maintenance engineers who need to
come in behind you and figure out what you were doing. It’s not to say that implicit conversion is bad
during overload resolution, but just use it judiciously and sparingly to minimize future surprises.

Starting with C# 4.0, overload resolution can generate exceptions at run time when using the new
dynamic type. You can reference Chapter 17 for all of the details on dynamic types.

Optional Arguments
The C# designers always consider a list of feature requests when designing the next version of the
language. Over the years, optional method arguments has been near the top of that list. But until C# 4.0,
there were never enough compelling reasons to add it to the language. In the spirit of greater
interoperability, C# 4.0 introduced optional arguments as well as named arguments (covered in the next
section) and the dynamic type (covered in Chapter 17). These three features greatly enhance the
interoperability experience between C# and other technologies such as COM and bring C# up to the
same level of interoperability convenience as Visual Basic.

Optional arguments in C# work very similarly to the way they work in C++. In the method
declaration, you may provide a default value for a method parameter at the point where the parameter is
declared. Any parameter without a default value is considered a required parameter. Additionally, no
required parameters may follow default parameters in the method declaration. This has the effect of
placing all of the default parameters at the end of the parameter list for a method. Consider the following
contrived example:

using System;

class TeamMember
{
 public TeamMember(string fullName,
 string title = "Unknown",
 string team = "Unknown",
 bool isFullTime = false,
 TeamMember manager = null) {
 FullName = fullName;
 Title = title;
 Team = team;
 IsFullTime = isFullTime;
 Manager = manager;
 }

 public string FullName { get; private set; }
 public string Title { get; private set; }
 public string Team { get; private set; }
 public bool IsFullTime{ get; private set; }

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

125

 public TeamMember Manager { get; private set; }
}

static class EntryPoint
{
 static void Main() {
 TeamMember tm = new TeamMember("Milton Waddams");
 }
}

In this example, I am using optional parameters in the constructor declaration and you can see in
the Main method, I rely on the associated optional arguments when initializing an instance of
TeamMember. Notice that all of the default parameter values are constants. It is not permitted to provide
anything other than a compile-time constant for a default parameter value. If you do, you will be greeted
with the following compiler error:

error CS1736: Default parameter value for 'title' must be a compile-time constant

Named Arguments
Named arguments are a new feature that was introduced in C# 4.0 and actually complements optional
arguments. Consider the TeamMember example class from the previous section. Suppose you wanted to
create an instance of TeamMember and accept all of the default arguments, except the isFullTime
argument to the constructor. In order to do so, you must utilize named arguments as shown in the
following example:

using System;

class TeamMember
{
 public TeamMember(string fullName,
 string title = "Unknown",
 string team = "Unknown",
 bool isFullTime = false,
 TeamMember manager = null) {
 FullName = fullName;
 Title = title;
 Team = team;
 IsFullTime = isFullTime;
 Manager = manager;
 }

 public string FullName { get; private set; }
 public string Title { get; private set; }
 public string Team { get; private set; }
 public bool IsFullTime{ get; private set; }
 public TeamMember Manager { get; private set; }
}

static class EntryPoint

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

126

{
 static void Main() {
 TeamMember tm = new TeamMember("Peter Gibbons",
 isFullTime : true);
 }
}

Notice how I have provided the isFullTime argument to the constructor. Using named arguments is
easy. Simply provide the name of the argument followed by a colon and then the value you want to be
passed for that argument. The rest of the arguments will contain their default values when the
constructor is invoked. In fact, I could have used a named argument for the required argument in the
constructor above. If I had done that, I could have swapped the order of the arguments in the argument
list entirely as shown below:

 static void Main() {
 TeamMember tm = new TeamMember(
 isFullTime : true,
 fullName : "Peter Gibbons");
 }

Named arguments have a minor effect on method overloading. Essentially, a positional list of
arguments is constructed by combining the given positional arguments together with the named
arguments and any applicable default arguments. Once this positional list of arguments is constructed,
overload resolution proceeds as normal. About the only place where named arguments get tricky is with
virtual overrides. Consider the following contrived example:

using System;

class A
{
 public virtual void DoSomething(int x, int y) {
 Console.WriteLine("{0}, {1}", x, y);
 }
}

class B : A
{
 public override void DoSomething(int y, int x) {
 base.DoSomething(y, x);
 }
}

static class EntryPoint
{
 static void Main() {
 B b = new B();
 b.DoSomething(x : 1, y : 2);

 A a = b;
 a.DoSomething(x : 1, y : 2);
 }
}

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

127

This example is completely diabolical and something that should be avoided entirely! If you execute
the code above, you will see the following output:

2, 1
1, 2

When you override a virtual method in a derived type, the only requirement is that the parameter
types and their positions must match the base method’s declaration. The actual names of the arguments
can change as I have shown above. The problem is that the compiler must have a reliable methodology
for mapping a named argument to the positional argument of virtual methods. The way it does this is it
uses the method declaration of the static type of the variable reference.

In the example above, the two references, a and b, both reference the same instance of B. However,
when DoSomething is called with named arguments, it’s the declaration of DoSomething associated with
the static type of the reference that matters. In the first call to DoSomething via the b variable, because the
static type of the variable is B, the named arguments are resolved using the B.DoSomething definition. But
in the second call to DoSomething via the a variable, because the variable is of static type A, then the
named arguments are deduced by referencing the definition for A.DoSomething. As you can see, this must
be avoided at all costs and certainly introduce some unnecessary confusion into the code.

Finally, one more thing to consider is that any time you have expressions in an argument list, they
are evaluated in the order in which they appear even if that order is different from the positional
parameters of the method being called. Consider the following example:

using System;

class A
{
 public void DoSomething(int x, int y) {
 Console.WriteLine("{0}, {1}", x, y);
 }
}

static class EntryPoint
{
 static void Main() {
 A a = new A();

 a.DoSomething(GenerateValue1(),
 GenerateValue2());

 // Now use named arguments
 a.DoSomething(y : GenerateValue2(),
 x : GenerateValue1());

 }

 static int GenerateValue1() {
 Console.WriteLine("GenerateValue1 called");
 return 1;
 }

 static int GenerateValue2() {

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

128

 Console.WriteLine("GenerateValue2 called");
 return 2;
 }
}

When you run the code above, you will get the following output sent to the console:

GenerateValue1 called

GenerateValue2 called

1, 2

GenerateValue2 called

GenerateValue1 called

1, 2

Notice that the order of calling the GenerateValue1 and GenerateValue2 methods depends on the
order in which they appear in the argument list, regardless of which positional parameter they are
associated with. After the expressions are evaluated, in this case, after GenerateValue1 and
GenerateValue2 are called, then the arguments are placed in their respective positions in order to find
the best method.

■ Caution Prior to the existence of named arguments, you could create code where the order of expression

evaluation in parameter lists could be relied upon. Doing so is poor design with or without named arguments. In

the previous example, imagine the methods were coded with side effects such that GenerateValue2 always

assumed GenerateValue1 was called prior to it executing. And suppose you called a method such as

A.DoSomething using positional arguments back when C# 3.0 was current. Later on, once named arguments

exist, a maintenance engineer decides to change the code and pass the arguments in the opposite order using

named arguments simply because it produces prettier looking code. Now you have a serious problem! The moral

of the story is to avoid the situation entirely by not relying on the order of expression evaluation in argument lists.

Inheritance and Virtual Methods
C# implements the notion of virtual methods just as the C++ and Java languages do. That’s no surprise at
all, because C# is an object-oriented language, and virtual methods are the primary mechanism for
implementing dynamic polymorphism. That said, some notable differences from those languages
deserve special mention.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

129

Virtual and Abstract Methods
You declare a virtual method using either the virtual or abstract modifiers on the method at the point
of declaration. They both introduce the method into the declaration space as one that a deriving class
can override. The difference between the two is that abstract methods are required to be overridden,
whereas virtual methods are not. Abstract methods are similar to C++ pure virtual methods, except that
C++ pure virtual methods may have an implementation associated with them, whereas C# abstract
methods may not. Additionally, classes that contain abstract methods must also be marked abstract
themselves. Virtual methods, in contrast to abstract methods, are required to have an implementation
associated with them. Virtual methods, along with interfaces, are the only means of implementing
polymorphism within C#.

■ Note Under the hood, the CLR implements virtual methods differently from C++. Whereas C++ can create

multiple vtables (dynamic method tables pointing to virtual methods) for an individual object of a class depending

on its static hierarchical structure, CLR objects have only one method table that contains both virtual and

nonvirtual methods. Additionally, the table in the CLR is built early on in the lifetime of the object. Not only does the

creation order of objects affect the ordering of static initializers and constructor calls in a hierarchy, but it also

gives C# a capability that C++ lacks. In C#, virtual method calls work when called inside constructor bodies,

whereas they don’t in C++. For more information on how the CLR manages method tables for object instances,

read Essential .NET, Volume 1: The Common Language Runtime by Don Box and Chris Sells (Addison-Wesley

Professional, 2002).

override and new Methods
To override a method in a derived class, you must tag the method with the override modifier. If you
don’t, you’ll get a compiler warning telling you that you need to provide either the new modifier or the
override modifier in the derived method declaration. The compiler defaults to using the new modifier,
which probably does the exact opposite of what you intended. This behavior is different than C++,
because in C++, once a method is marked as virtual, any derived method of the same name and
signature is automatically an override of the virtual method, and the virtual modifier on those derived
methods is completely optional. Personally, I prefer the fact that C# requires you to tag the overriding
method simply for the purpose of code readability. I cannot tell you how many poorly designed C++
code bases I’ve worked on with deep hierarchies where developers were too lazy to keep tagging the
virtual override methods with the virtual keyword. I had no way of knowing if a method overrides a
virtual in a base class without looking at the base class declaration. These terribly designed code bases
had such deep hierarchies that they forced me to rifle through a whole plethora of files just to find the
answer. C# drives a stake through the heart of this problem. Check out the following code:

using System;

public class A
{
 public virtual void SomeMethod() {
 Console.WriteLine("A.SomeMethod");
 }

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

130

}

public class B : A
{
 public void SomeMethod() {
 Console.WriteLine("B.SomeMethod");
 }
}

public class EntryPoint
{
 static void Main() {
 B b = new B();
 A a = b;

 a.SomeMethod();
 }
}

This code compiles, but not without the following warning:

test.cs(12,17): warning CS0114: 'B.SomeMethod()' hides inherited member 'A.SomeMethod()'.

To make the current member override that implementation, add the override keyword.

Otherwise add the new keyword.

When the code is executed, A.SomeMethod gets called. So what does the new keyword do? It breaks the
virtual chain at that point in the hierarchy. When a virtual method is called through an object reference,
the method called is determined from the method tables at run time. If a method is virtual, the runtime
searches down through the hierarchy looking for the most derived version of the method, and then it
calls that one. However, during the search, if it encounters a method marked with the new modifier, it
backs up to the method of the previous class in the hierarchy and uses that one instead. That is why
A.SomeMethod is the method that gets called. Had B.SomeMethod been marked as override, then the code
would have called B.SomeMethod instead. Because C# defaults to using the new modifier when none of
them are present, it throws off the warning possibly to get the attention of those of us who are used to
the C++ syntax. Finally, the new modifier is orthogonal to the virtual modifier in meaning, in the sense
that the method marked new could either also be virtual or not. In the previous example, I did not also
attach the virtual modifier to B.SomeMethod, so there cannot be a class C derived from B that overrides
B.SomeMethod, because it’s not virtual. Thus, the new keyword not only breaks the virtual chain, but it
redefines whether the class and the derived classes from class B will get a virtual SomeMethod.

Another issue to consider with regard to overriding methods is whether to call the base class version
of the method and when. In C#, you call the base class version using the base identifier as shown:

using System;

public class A
{
 public virtual void SomeMethod() {

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

131

 Console.WriteLine("A.SomeMethod");
 }
}

public class B : A
{
 public override void SomeMethod() {
 Console.WriteLine("B.SomeMethod");
 base.SomeMethod();
 }
}

public class EntryPoint
{
 static void Main() {
 B b = new B();
 A a = b;

 a.SomeMethod();
 }
}

As expected, the output of the previous code prints A.SomeMethod on the line after it prints
B.SomeMethod. Is this the correct ordering of events? Should it not be the other way around? Shouldn’t
B.SomeMethod call the base class version before it does its work? The point is that you don’t have enough
information to answer this question. Therein lies a problem with inheritance and virtual method
overrides. How do you know when and if to call the base class method? The answer is that the method
should be well documented so that you know how to do the right thing. Thus, inheritance with virtual
methods increases your documentation load, because now you must provide the consumers of your
class with information above and beyond just the public interface. For example, if you follow the Non-
Virtual Interface (NVI) pattern that I describe in Chapter 13, the virtual method in question is protected,
so now you must document both public methods and some protected methods, and the virtual methods
must clearly state whether the base class should call them and when. Ouch!

sealed Methods
For the reasons stated previously, I believe you should seal your classes by default and only make classes
inheritable in well-thought-out circumstances. Many times I see hierarchies where the developer was
thinking, “I’ll just mark all of my methods as virtual to give my deriving classes the most flexibility.” All
this does is create a rat’s nest of bugs later down the line. This thought pattern is typical of less-
experienced designers who are grappling with the complexities of inheritance and virtual methods. The
fact is that inheritance coupled with virtual methods is so surprisingly complex that it’s best to explicitly
turn off the capability rather than leave it wide open for abuse. Therefore, when designing classes, you
should prefer to create sealed, noninheritable classes, and you should document the public interface
well. Consumers who need to extend the functionality can still do so, but through containment rather
than inheritance. Extension through containment coupled with crafty interface definitions is far more
powerful than class inheritance.

In rare instances, you’re deriving from a class with virtual methods and you want to force the virtual
chain for a specific method to end at your override. In other words, you don’t want further derived
classes to be able to override the virtual method. To do so, you also mark the method with the sealed
modifier. As is obvious from the name, it means that no further derived classes can override the method.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

132

They can, however, provide a method with the same signature, as long as the method is marked with the
new modifier, as discussed in the previous section. In fact, you could mark the new method as virtual,
thus starting a new virtual chain in the hierarchy. This is not the same as sealing the entire class, which
doesn’t even allow a class to derive from this one in the first place. Therefore, if the deriving class is
marked as sealed, then marking override methods within that class with sealed is redundant.

A Final Few Words on C# Virtual Methods
Clearly, C# provides a lot of flexible keywords to make some interesting things happen when it comes to
inheritance and virtual methods. However, just because the language provides them does not mean that
it’s wise to use them. Over the past decade, many experts have published countless books describing
how to design C++- and Java-based applications safely and effectively. Many times, those works indicate
things that you should not do rather than things that you should do. That’s because C++, along with C#,
provides you with the power to do things that don’t necessarily fall within the boundaries of what’s
considered good design. In the end, you want to strive for classes and constructs that are intuitive to use
and carry few hidden surprises.

The savvy reader probably noticed that the new modifier is the quickest way to introduce some
serious surprises into a class hierarchy. If you ever find yourself using that modifier on a method, you’re
most likely using a class in a way it was not intended to be used. You could be deriving from a class that
should have been marked sealed in the first place. And you may be cursing the developer of that class for
not marking a particular method virtual so you can easily override it. Therefore, you resort to using the
new modifier. Just because it exists, don’t assume it’s wise to use it. The designer of the class you’re
deriving from probably never intended you to derive from it and just forgot to mark it sealed. And if the
designer intentionally left it unsealed, he probably did not intend for you to replace the method you’re
trying to override. Therefore, always strive to follow time-tested design techniques and avoid the whiz-
bang features of the language that go against that grain of good design.

Inheritance, Containment, and Delegation
When many people started programming in object-oriented languages some years ago, they thought
inheritance was the greatest thing since sliced bread. In fact, many people consider it an integral,
important part of object-oriented programming. Some argue that a language that doesn’t support
inheritance is not an object-oriented language at all. This arguing point for many people over the years
has almost taken on the form of a religious war at times. As time went on, though, some astute designers
started to notice the pitfalls of inheritance.

Choosing Between Interface and Class Inheritance
When you first discover inheritance, you have a tendency to overuse it and abuse it. This is easy to do.
Misuse can make software designs hard to understand and maintain, especially in languages such as
C++ that support multiple inheritance. It can also make it hard for those designs to adapt to future
needs, thus forcing them to be thrown out and replaced with a completely new design. In languages that
only support single inheritance, such as C# and Java, you’re forced to apply more diligence to your use of
inheritance.

For example, when modeling a human-resources system at company XYZ, one naïve designer could
be inclined to introduce classes such as Payee, BenefitsRecipient, and Developer. Then, using multiple
inheritance, he could build or compose a full-time developer, represented by the class
FulltimeDeveloper, by inheriting from all three, as in Figure 4-3.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

133

Figure 4-3. Example of bad inheritance

As you can see, this forces our designer to create a new class for contract developers, where the
concrete class doesn’t inherit from BenefitsRecipient. After the system grows by leaps and bounds, you
can quickly see the flaw in the design when the inheritance lattice becomes complex and deep. Now he
has two classes for types of developers, thus making the design hard to manage. Now, let’s look at a bad
attempt of the same problem with a language that supports only single inheritance. Figure 4-4 shows
you that this solution is hardly a good one.

Figure 4-4. Example of bad single-inheritance hierarchy

If you look closely, you can see the ambiguity that is present. It’s impossible that the Developer class
can be derived from both Payee and BenefitsRecipient in an environment where only single inheritance
is allowed. Because of that, these two hierarchies cannot live within the same design. You could create
two different variants of the Developer class—one for FulltimeDeveloper to derive from, and one for
ContractDeveloper to derive from. However, that would be a waste of time. More importantly, code
reuse—the main benefit of inheritance—is gone if you have to create two versions of essentially the
same class.

A better approach is to have a Developer class that contains various properties that represent these
qualities of developers within the company. For example, the support of a specific interface could
represent the support of a certain property. An inheritance hierarchy that is multiple levels deep is a
telltale sign that the design needs some rethinking.

To see what’s really going on here, let’s take a moment to analyze what inheritance does for you. In
reality, it allows you to get a little bit of work for free by inheriting an implementation. There is an
important distinction between inheritance and interface implementation. Although the object-oriented
languages, including C#, typically use a similar syntax for the two, it’s important to note that classes that
implement an interface don’t get any implementation at all. When using inheritance, not only do you
inherit the public contract of the base class, but you also inherit the layout, or the guts.

A good rule of thumb is that when your purpose is primarily to inherit a contract, choose interface
implementation over inheritance. This will guarantee that your design has the greatest flexibility. To
understand more why that’s the case, let’s investigate more pitfalls of inheritance.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

134

Delegation and Composition vs. Inheritance
Another very important aspect of inheritance that is unfavorable: Inheritance can break encapsulation
and always increases coupling. I’m sure we all agree, or at least we should all agree, that encapsulation is
the most fundamental and important object-oriented concept. If that’s the case, then why would you
want to break it? Yet any time you use encapsulation where the base type contains protected fields,
you’re cracking the shell of encapsulation and exposing the internals of the base class. This cannot be
good. Let me explain why it’s not and what sorts of alternatives you have at your disposal that can create
better designs.

Many describe inheritance as white-box reuse. A better form of reuse is black-box reuse, meaning
that the internals of the object are not exposed to you. You can achieve this by using containment. Yes,
that’s correct. Instead of inheriting your new class from another, you can contain an instance of the
other class in your new class, thus reusing the class of the contained type without cracking the
encapsulation. The downside to this technique is that in most languages, including C#, it requires a little
more coding work, but not too much. In the end, it can provide a much more adaptable design.

For a simple example of what I’m talking about, consider a problem domain where a class handles
some sort of custom network communications. Let’s call this class NetworkCommunicator, and let’s say it
looks like this:

public class NetworkCommunicator
{
 public void SendData(DataObject obj)
 {
 // Send the data over the wire.
 }

 public DataObject ReceiveData()
 {
 // Receive data over the wire.
 }
}

Now, let’s say that you come along later and decide it would be nice to have an
EncryptedNetworkCommunicator object, where the data transmission is encrypted before it is sent. A
common approach would be to derive EncryptedNetworkCommunicator from NetworkCommunicator. Then,
the implementation could look like this:

public class EncryptedNetworkCommunicator : NetworkCommunicator
{
 public override void SendData(DataObject obj)
 {
 // Encrypt the data.
 base.SendData(obj);
 }

 public override DataObject ReceiveData()
 {
 DataObject obj = base.ReceiveData();

 // Decrypt data.

 return obj;
 }

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

135

}

There is a major drawback here. First of all, good design dictates that if you’re going to modify the
functionality of the base class methods, you should override them. To override them properly, you need
to declare them as virtual in the first place. This requires you to be able to tell the future when you
design the NetworkCommunicator class and mark the methods as virtual, but since we could not tell the
future we did not mark it virtual and therefore EncryptedNetworkCommunicator above will not compile.
Yes, you can hide them in C# using the new keyword when you define the method on the derived class.
But if you do that, you’re breaking the tenet that the inheritance relationship models an is-a
relationship. Now, let’s look at the containment solution:

public class EncryptedNetworkCommunicator
{
 public EncryptedNetworkCommunicator()
 {
 contained = new NetworkCommunicator();
 }

 public void SendData(DataObject obj)
 {
 // Encrypt the data.
 contained.SendData(obj);
 }

 public DataObject ReceiveData()
 {
 DataObject obj = contained.ReceiveData();

 // Decrypt data

 return obj;
 }

 private NetworkCommunicator contained;
}

As you can see, it’s only slightly more work. But the good thing is, you’re able to reuse the
NetworkCommunicator as if it were a black box. The designer of NetworkCommunicator could have created
the thing sealed, and you would still be able to reuse it. Had it been sealed, you definitely could not have
inherited from it. While reusing NetworkCommunicator via containment, one could even provide a public
contract on the container such that it looks slightly different than the one NetworkCommunicator
implements. Such a technique is commonly referred to as the Facade pattern.

Another downfall of using inheritance is that it is not dynamic. It is static by the very fact that it is
determined at compile time. This can be very limiting, to say the least. You can remove this limitation by
using containment. However, in order to do that, you have to also employ your good friend,
polymorphism. By doing so, the contained type can be, say, an interface type. Then, the contained
object merely has to support the contract of that interface in order to be reused by the container.
Moreover, you can change this object at run time. Think about this for a moment and let it sink in.
Consider an object that represents a container of sortable objects. Let’s say that this container type
comes with a default sort algorithm. If you implement this default algorithm as a contained type that you
can swap at run time, then if the problem domain required it, you could replace it with a custom sort
algorithm as long as the new sort algorithm object implements the required interface that the container
type expects. This technique is known as the Strategy design pattern.

CHAPTER 4 ■ CLASSES, STRUCTS, AND OBJECTS

136

In conclusion, you can see that designs are much more flexible if you favor dynamic rather than
static constructs. This includes favoring containment over inheritance in many reuse cases. This type of
reuse is also known as delegation, because the work is delegated to the contained type. Containment
also preserves encapsulation, whereas inheritance breaks encapsulation. One word of caution is in
order, though. As with just about anything, you can overdo containment. For smaller utility classes, it
may not make sense to go to too much effort to favor containment. And in some cases, you need to use
inheritance to implement specialization. But, in the grand scheme of things, designs that favor
containment over inheritance as a reuse mechanism are magnitudes more flexible and stand the test of
time much better. Always respect the power of inheritance, including the damage it can cause through
its misuse.

Summary
In this very long chapter, I’ve covered the important points regarding the C# type system, which allows
you to create new types that have all of the capabilities of implicit types defined by the runtime. I started
out by covering class definitions used to define new reference types, then I followed that with struct
definitions used to create instances of new value types within the CLR, and I described the major
differences between the two. Related to the topic of value types is that of boxing and unboxing, which I
showed can introduce unintended inefficiencies when you don’t understand all of the places boxing can
be introduced by the compiler. (In Chapter 11, which covers generics, you’ll see how you can eliminate
boxing and unboxing entirely in some cases.)

I then turned to the complex topics of object creation and initialization, as well as object
destruction. Destruction is a rather tricky topic in the CLR, because your reference types can support
either deterministic or nondeterministic destruction. (I cover destruction in more detail with more
examples in Chapter 13.) Then, I quickly discussed method overloading in C# and the various modifiers
you can place on methods to control whether they’re modified as virtual, override, or sealed. Finally, I
spent some time discussing inheritance, polymorphism, and containment, and I provided some
pointers for choosing when to use them.

The last sections in this chapter lead right into the next chapter, where I’ll cover the all-important
topic of interface-based, or contract-based, programming and how to use it in the CLR.

C H A P T E R 5

■ ■ ■

137

Interfaces and Contracts

During your years as a software developer, you’ve likely come across the notion of interface-based
programming. If you’re familiar with the seminal book, Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (known as the
“Gang of Four”), 1 then you know that many design patterns employ interface-style “contracts.” If you’re
not familiar with that book and its concepts, I urge you to read it. In this chapter, it is my goal to show
you how you can model well-defined, versioned contracts using interfaces. In this context, a contract is
an agreement by a type to support a set of functionality.

If you’ve done any COM or CORBA development over the years, then you’ve most definitely been
doing interface-based development. In fact, the interface is the only form of communication between
components in COM. Therefore, much of the design complexity rests in developing solid interfaces
before you write any lines of implementation code. Failure to follow this paradigm has been the source
of many problems. For example, Visual Studio 2003 offered an easy environment from which you could
create web services. By simply annotating methods of a class a certain way, you could expose those
methods as methods of the web service. However, the IDE fostered an approach whereby the interface
was the result of annotating methods on a class rather than the other way around. Thus, the cart was put
before the horse. Instead, you should clearly define the web service interface before doing any coding,
and then code the implementation to implement the interface. To name just one benefit of this
approach, you can code the client and the server concurrently rather than one after the other. Another
part of the problem is that once an interface is published to the world, you cannot change it. Doing so
would break all implementations based upon it. Unfortunately, the Visual Studio environment
encourages you to break this rule by making it easy for you to add a new method to a class and annotate
it as a web service method.

In a well-designed, interface-based system, such as in service-oriented architecture (SOA) systems,
you should always design the interface first, as it’s the contract between components. The contract
drives the implementation rather than the implementation driving, or defining, the contract.
Unfortunately, too many tools in the past and even up to the present have promoted this backward
development. But just because they promote it does not mean you need to follow their erroneous lead.
After all, a contract, when applied to a type, imposes a set of requirements on that type. It makes no
sense for the requirements to be driven by the types themselves. In the .NET environment, interfaces are
types.

1 Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides (Boston, MA: Addison-Wesley Professional, 1995) is cited in the references at the end of this book.

CHAPTER 5 ■ INTERFACES AND CONTRACTS

138

Interfaces Define Types
An interface declaration defines a reference type. Within variables of this type, you can store a reference
to an object on the garbage collected heap that implements the contract of the interface type. Each
variable in the CLR is stored in a storage location, whether it be on the heap or on the stack. Each of
these storage locations has a type associated with it. Therefore, an interface type can describe the type
associated with a specific storage location. When a variable—say, a reference to an object—is stored in
that location, it must be the same type as the location, or it must be convertible to the type attached to
the location. If it can be converted automatically to the type of the location, then it is implicitly
convertible to the storage location type. If it requires a specific cast syntax to perform the conversion,
then it is explicitly convertible to the storage location type.

Many examples use a fictitious GUI framework as their basis for demonstration purposes, so I’ll do
the same here. Take a look at the following code snippet:

public interface IUIControl
{
 void Paint();
}

public class Button : IUIControl
{
 public void Paint() {
 // Paint the Button
 }
}

public class ListBox : IUIControl
{
 public void Paint() {
 // Paint the Listbox
 }
}

This example declares an interface named IUIControl that simply exposes one method, Paint. This
interface defines a contract, which states that any type that implements this interface must implement
the Paint method. Of course, some documentation describing the semantic meaning of what Paint is
supposed to do would be nice. For example, you can imagine that an interface named IArtist could
have a method named Paint, but the meaning would probably not be reflexive as it is in the previous
example—i.e., IUIControl.Paint likely asks a control to paint itself, while IArtist.Paint likely means
that the artist should paint something.

■ Note I’ve found it useful to name methods according to both the action they perform and where the action is

directed. For example, suppose the IUIControl.Paint method takes a Graphics object as a parameter telling it

where to paint itself. In my opinion, it makes the code more readable if the method is named

IUIControl.PaintSelfTo. This way, the method call reads like a spoken language in the sense that a method

call that looks like control.PaintSelfTo(myGraphicsObject) is saying, “control, please paint yourself to

myGraphicsObject.”

CHAPTER 5 ■ INTERFACES AND CONTRACTS

139

Once the classes ListBox and Button in the previous example implement the interface, they can
both be treated as type IUIControl. It’s handy to consider how the CLR manages the situation. If you
were to attempt to store any instance of either Button or ListBox into a variable declared as IUIControl,
the operation would succeed. The reference to those concrete types is implicitly convertible to the
IUIControl interface type because they both implement the interface. However, to cast an IUIControl
reference back into a ListBox or Button reference requires an explicit cast, and that explicit cast could fail
at runtime if, in fact, the IUIControl reference does not point to an instance of the desired concrete type.

Defining Interfaces
In the previous section, you got a taste of what a C# interface declaration looks like. It looks similar to a
class declaration where the keyword class is simply replaced with the word interface and the methods
have no body. Note some important things, though. If you follow the recommended convention, your
interface names will start with the letter I. Thus, you can spot interface types in code easily. Interfaces
can have an access modifier attached to them. This determines whether the interface type declaration is
visible outside the assembly. Most interfaces represent contracts of communication between consumers
and providers, so interface declarations are typically declared as public.

Interface members cannot have any access modifiers attached to them. However, they can be
decorated with the new modifier, which I discuss later on. Interface members are implicitly public. What
would be the point of having a nonpublic interface member when the purpose of the interface is to allow
two objects to talk to each other?

INTERFACES DEFINE CONTRACTS

To stress the fact that an interface only specifies a contract, I like to draw an analogy between interface
declarations and IDL and Web Services Description Language (WSDL). Both COM and CORBA use IDL to
define interfaces. The syntax is similar to C++. It is typically passed through a translator, such as midl.exe
for COM, to generate wrappers—and possibly proxies and stubs—for whatever language you desire. WSDL
is another example, although it is much more expressive than IDL. An XML schema defines the format of
WSDL, and a WSDL document is used to describe a contract, or interface, into a network service. The usage
pattern is similar to IDL. Once you have a WSDL document, you pass it through a translator for whatever
language you’re using to implement or consume the service. The translator helps you out by generating a
shell of an implementation, or interfaces that are native to the language you’re using. Declaring and
consuming interfaces in the .NET environment should follow the same pattern.

In practice, it usually make sense to house your interface declarations in a separate assembly that
contains only interface definitions and constants, so that the consumer and the provider can base their
implementations on exactly the same version of the interfaces. A great example of this is the Managed
AddIn Framework (MAF) made available in .NET 3.5.

What Can Be in an Interface?
Interface declarations may declare zero or more methods, properties, events, and indexers. All are
implicitly public and cannot be static. Interfaces may inherit from one or more other interfaces. The
syntax is the same as that of class inheritance. When it comes to interfaces, I prefer to think of interface B

CHAPTER 5 ■ INTERFACES AND CONTRACTS

140

deriving from interface A as meaning that if you implement interface B, you must also implement
interface A. Class inheritance implies an is-a relationship, where the base implementation is also
inherited. Even though interface inheritance borrows the same syntax as class inheritance, which is an
is-a relationship, it’s not completely accurate to consider them one and the same, because interface
inheritance merely declares a generalization and no implementation is inherited. Therefore, whenever
you say interface inheritance, try to think of it more in terms of an implements relationship. This
becomes clearer when I discuss how a derived class can reimplement interfaces and how the compiler
does interface implementation mapping in the concrete types that implement the interface.

Here’s an example of what you can declare in an interface:

public delegate void DBEvent(IMyDatabase sender);2

public interface IMyDatabase : ISerializable, IDisposable
{
 void Insert(object element);
 int Count { get; }
 object this[int index] { get; set; }
 event DBEvent Changed;
}

In this example, IMyDatabase also implements ISerializable and IDisposable. Therefore, any
concrete type that implements IMyDatabase must also implement ISerializable and IDisposable;
otherwise, the concrete type will not compile. If you were to compile this code snippet into an assembly
and look at it with ILDASM, you would see that the IMyDatabase type contains nothing more than
instance method declarations. Of course, some of those will have special names based on the fact that
they’re accessors for the property, indexer, or event.

Interface Inheritance and Member Hiding
As mentioned previously, interfaces support multiple inheritance from other interfaces in the syntactic
sense. As with multiple inheritance in C++, you may also have diamond-lattice hierarchies, such as in
the following code:

public interface IUIControl
{
 void Paint();
}

public interface IEditBox : IUIControl
{
}

public interface IDropList : IUIControl
{
}

2 If you’re unfamiliar with the delegate keyword and how delegates are used to declare events, don’t worry. You’ll
find a thorough discussion of delegates and events in Chapter 10.

CHAPTER 5 ■ INTERFACES AND CONTRACTS

141

public class ComboBox : IEditBox, IDropList
{
 public void Paint() {
 // paint implementation for ComboBox
 }
}

In this example, both the IEditBox and IDropList interfaces implement the IUIControl interface.
And because ComboBox implements both of those interfaces, it must implement the union of all the
methods declared in the interfaces it directly implements, plus the methods for the interfaces those
interfaces implement, etc. In this case, that only includes the IUIControl.Paint method.

Quite simply, all of the methods from all of the interfaces are merged together into one big union to
form the set of methods that the concrete class or structure must implement. Therefore, the ComboBox
class gets only one implementation of the Paint method. If you were to cast a ComboBox instance into
both an IEditBox reference and an IDropList reference, then calling Paint through both of those would
call into exactly the same implementation.

■ Note If you come from a native C++ background, you might know all of the intricacies of multiple inheritance

and diamond-lattice inheritance diagrams and how they relate to virtual inheritance in C++ and the multiple

compiler-generated vtables involved. To understand how C# differs, imagine that C# flattens all of those vtables

into one table at compile time.

Sometimes—although extremely rarely—you need to declare a method in an interface that hides a
method in an inherited interface. You must use the new keyword if you want to keep the compiler from
complaining about it with a warning.

■ Note Traditionally, Object-Oriented Analysis and Design (OOA-D) considers it bad design to hide a non-virtual

inherited member. The implementation that actually gets called depends on the type of reference held, even if the

two references point to the same instance. For example, if A.DoWork isn’t virtual, and B derives from A and

introduces a new B.DoWork that hides the base method, then calling DoWork on a reference to B will call

B.DoWork, and calling DoWork on a reference to A obtained by casting a B reference to an A reference will call

A.DoWork. This behavior is nonintuitive in object-oriented systems. Just because the language allows you to do

something does not mean that it’s the correct thing to do. Now you see why the compiler warning exists in the first

place.

In the following example, IEditBox, for one reason or another, needs to declare a Paint method
whose signature is exactly that of the one in IUIControl. Therefore, it must use the new keyword:

using System;

CHAPTER 5 ■ INTERFACES AND CONTRACTS

142

public interface IUIControl
{
 void Paint();
}

public interface IEditBox : IUIControl
{
 new void Paint();
}

public interface IDropList : IUIControl
{
}

public class ComboBox : IEditBox, IDropList
{
 public void Paint() {
 Console.WriteLine("ComboBox.IEditBox.Paint()");
 }
}

public class EntryPoint
{
 static void Main() {
 ComboBox cb = new ComboBox();
 cb.Paint();
 ((IEditBox)cb).Paint();
 ((IDropList)cb).Paint();
 ((IUIControl)cb).Paint();
 }
}

In all calls to the Paint method in the Main method, it always boils down to a call on ComboBox.Paint.
That’s because the set of required methods that ComboBox must implement are merged together into one
set. Both signatures from Paint—the one from IEditBox and the one from IUIControl—are merged into
one slot in the requirements list. In the end, they both map to ComboBox.Paint. You can change this
behavior by using explicit interface implementation (which I discuss in the section “Explicit Interface
Implementation”), where ComboBox can elect to implement two different versions of Paint—one for
IEditBox and one for IUIControl.

When the IEditBox interface declares the Paint method using the new keyword, it is said to hide the
Paint method declared in IUIControl. When you call ComboBox.Paint, it will invoke the IEditBox.Paint
method as if it chose the IEditBox path in the inheritance hierarchy over the IDropList path. In essence,
any time any path hides a method, it hides the method for all paths. This will become clearer when I
discuss how the compiler matches up a concrete method with an interface method when you call an
interface method. That process is called interface mapping, and I cover it in the section titled “Interface
Member Matching Rules” later in this chapter.

CHAPTER 5 ■ INTERFACES AND CONTRACTS

143

Implementing Interfaces
When implementing interfaces in C#, you have the choice of implementing them one of two ways. By
default, interface implementations are said to be implicit implementations. The method
implementations are part of the public contract of the class but also implement the interface implicitly.
Alternatively, you can implement the interface explicitly, whereby the method implementations are
private to the implementing class and don’t become part of the public interface of the class. Explicit
implementation provides some flexibility, especially when implementing two interfaces that have
methods with the same name in them.

Implicit Interface Implementation
When a concrete type implements the methods in inherited interfaces, and those methods are marked
public, it’s known as implicit interface implementation. What good is it to say that a concrete type
implements the contract of a specific interface if a consumer of the objects of that type cannot call the
methods in that contract? For example, the following is not valid:

public interface IUIControl
{
 void Paint();
}

public class StaticText : IUIControl
{
 void Paint(); // !!! WON'T COMPILE !!!
}

If you try to compile this, the compiler will immediately complain that the StaticText class doesn’t
implement all of the methods of the derived interfaces—in this case, IUIControl. In order for this to
work, you could rewrite it as in the following:

public interface IUIControl
{
 void Paint();
}

public class StaticText : IUIControl
{
 public void Paint(); //Notice that we’ve added ‘public’ to the method declaration
}

Now, not only will the code compile, but when you call Paint through a reference to StaticText or
through a reference to IUIControl, the StaticText.Paint method will be called. Thus, consumers can
treat instances of StaticText polymorphically as instances of type IUIControl.

Explicit Interface Implementation
When a concrete type implements an interface implicitly, the interface methods also become part of the
public contract of the concrete type itself. However, you might not always want the interface method
implementations to become part of the public contract of the class that implements the interface. For

CHAPTER 5 ■ INTERFACES AND CONTRACTS

144

example, the System.IO.FileStream class implements IDisposable, but you cannot call Dispose through
an instance of FileStream. Instead, you must first cast the reference to the FileStream object to an
IDisposable interface, and then you may call Dispose. When you need this behavior in your own types,
you must implement the interfaces using explicit interface implementation.

■ Note To achieve the same result as Dispose using a reference to a FileStream object, you must call

FileStream.Close. In the implementation of FileStream.Close calls straight through to the internal

implementation of the Dispose method. Why did the designers of FileStream do this? Most likely because it

makes more linguistic sense to “close” a file rather than “dispose of” it.

You can also use explicit implementation to provide separate implementations for overlapping
methods in inherited interfaces. Let’s look again at the ComboBox example from the previous section. If
you want to provide a separate implementation for IEditBox.Paint and IUIControl.Paint inside
ComboBox, you can do that using explicit interface implementation, as shown here:

using System;

public interface IUIControl
{
 void Paint();
}

public interface IEditBox : IUIControl
{
 new void Paint();
}

public interface IDropList : IUIControl
{
}

public class ComboBox : IEditBox, IDropList
{
 void IEditBox.Paint() {
 Console.WriteLine("ComboBox.IEditBox.Paint()");
 }

 void IUIControl.Paint() {
 Console.WriteLine("ComboBox.IUIControl.Paint()");
 }

 public void Paint() {
 ((IUIControl)this).Paint();
 }
}

public class EntryPoint

CHAPTER 5 ■ INTERFACES AND CONTRACTS

145

{
 static void Main() {
 ComboBox cb = new ComboBox();
 cb.Paint();
 ((IEditBox)cb).Paint();
 ((IDropList)cb).Paint();
 ((IUIControl)cb).Paint();
 }
}

Pay attention to the change in syntax. Now, ComboBox has three implementations for Paint. One is
specific for the IEditBox interface, the other is specific to the IUIControl interface, and the last one is
simply there for convenience to provide a Paint method for the public contract of the ComboBox class.
When you implement interface methods explicitly, not only do you add the interface name followed by a
dot before the method name, but you also remove the access modifier. This keeps it from being in the
public contract for ComboBox. However, the explicit interface implementations aren’t exactly private in
the sense that you can call them after you cast the instance of the ComboBox to the required interface type.
In my implementation of ComboBox.Paint—the one that contributes to the ComboBox public contract—I
get to choose which version of Paint to call. In this case, I chose to call IUIControl.Paint. I could just as
easily have chosen to implement IEditBox.Paint explicitly and IUIControl.Paint implicitly, and then I
wouldn’t have needed the third implementation of Paint. But in this case, I believe it adds more
flexibility and makes more sense for ComboBox to implement its own Paint method so that it can reuse the
other and add value to it at the same time. If you compile and run the previous example, you’ll see
output similar to the following:

ComboBox.IUIControl.Paint()

ComboBox.IEditBox.Paint()

ComboBox.IUIControl.Paint()

ComboBox.IUIControl.Paint()

Granted, this example is rather contrived, but it’s meant to exhibit the intricacies of explicit
interface implementation and member hiding during multiple interface inheritance.

Overriding Interface Implementations in Derived Classes
Suppose you have a handy implementation of ComboBox, as in the previous section, and the implementer
decided not to seal the class so that you can inherit from it.

■ Note I suggest that you declare all classes sealed unless the designer explicitly intends them to be inherited

from. In Chapter 4, I explain in detail why this is desired. In short, it’s impossible to tell the future.

CHAPTER 5 ■ INTERFACES AND CONTRACTS

146

Now, suppose you create a new class, FancyComboBox, and you want it to paint itself better, maybe
with some new psychedelic theme. You could try something like this:

using System;

public interface IUIControl
{
 void Paint();
 void Show();
}

public interface IEditBox : IUIControl
{
 void SelectText();
}

public interface IDropList : IUIControl
{
 void ShowList();
}

public class ComboBox : IEditBox, IDropList
{
 public void Paint() { }
 public void Show() { }

 public void SelectText() { }

 public void ShowList() { }
}

public class FancyComboBox : ComboBox
{
 public void Paint() { }
}

public class EntryPoint
{
 static void Main() {
 FancyComboBox cb = new FancyComboBox();
 }
}

However, the compiler will promptly warn you that FancyComboBox.Paint hides ComboBox.Paint and
that you probably meant to use the new keyword. This will surprise you if you were assuming that
methods that implement interface methods are automatically virtual. They are not in C#.

■ Note Under the covers, interface method implementations are called as if they are virtual methods within the

CLR. Any interface method implementations not marked virtual in the C# code are marked as virtual and

CHAPTER 5 ■ INTERFACES AND CONTRACTS

147

final (sealed) in the generated IL. If the method is marked virtual in the C# code, then the method is marked

with virtual and newslot (new) in the generated IL. This can be the source of some confusion.

When faced with a problem such as this, you have a couple of options. One option is to have
FancyComboBox reimplement the IUIControl interface:

using System;

public interface IUIControl
{
 void Paint();
 void Show();
}

public interface IEditBox : IUIControl
{
 void SelectText();
}

public interface IDropList : IUIControl
{
 void ShowList();
}

public class ComboBox : IEditBox, IDropList
{
 public void Paint() {
 Console.WriteLine("ComboBox.Paint()");
 }
 public void Show() { }

 public void SelectText() { }

 public void ShowList() { }
}

public class FancyComboBox : ComboBox, IUIControl
{
 public new void Paint() {
 Console.WriteLine("FancyComboBox.Paint()");
 }
}

public class EntryPoint
{
 static void Main() {
 FancyComboBox cb = new FancyComboBox();
 cb.Paint();
 ((IUIControl)cb).Paint();
 ((IEditBox)cb).Paint();

CHAPTER 5 ■ INTERFACES AND CONTRACTS

148

 }
}

In this example, note a couple of things. First, FancyComboBox lists IUIControl in its inheritance list.
That’s how you indicate that FancyComboBox is planning to reimplement the IUIControl interface. Had
IUIControl inherited from another interface, FancyComboBox would have had to reimplement the
methods from those inherited interfaces as well. I also had to use the new keyword for
FancyComboBox.Paint, because it hides CombBox.Paint. This wouldn’t have been a problem had ComboBox
implemented the IUIControl.Paint method explicitly, because it wouldn’t have been part of the
ComboBox public contract. When the compiler matches class methods to interface methods, it also
considers public methods of base classes. In reality, FancyComboBox could have indicated that it
reimplements IUIControl but without redeclaring any methods, as the compiler would have just wired
up the interface to the base class methods. Of course, doing so would be pointless, because the reason
you reimplement an interface in a derived class is to modify behavior.

■ Note The ability to reimplement an interface is a powerful one. It highlights the vast differences between the

way C# and the CLR handle interfaces and the C++ treatment of interfaces as abstract class definitions. Gone are

the intricacies of C++ vtables, as well as the question of when you should use C++ virtual inheritance. As I’ve said

before, and don’t mind saying again, C#/CLR interfaces are nothing more than contracts that say, “You, Mr.

Concrete Class, agree to implement all of these methods in said contract, a.k.a. interface.”

When you implement methods in an interface contract implicitly, they must be publicly accessible.
As long as they meet those requirements, they can also have other attributes, including the virtual
keyword. In fact, implementing the IUIControl interface in ComboBox using virtual methods as opposed
to nonvirtual methods would make the previous problem a lot easier to solve, as demonstrated in the
following:

using System;

public interface IUIControl
{
 void Paint();
 void Show();
}

public interface IEditBox : IUIControl
{
 void SelectText();
}

public interface IDropList : IUIControl
{
 void ShowList();
}

public class ComboBox : IEditBox, IDropList
{

CHAPTER 5 ■ INTERFACES AND CONTRACTS

149

 public virtual void Paint() {
 Console.WriteLine("ComboBox.Paint()");
 }
 public void Show() { }

 public void SelectText() { }

 public void ShowList() { }
}

public class FancyComboBox : ComboBox
{
 public override void Paint() {
 Console.WriteLine("FancyComboBox.Paint()");
 }
}

public class EntryPoint
{
 static void Main() {
 FancyComboBox cb = new FancyComboBox();
 cb.Paint();
 ((IUIControl)cb).Paint();
 ((IEditBox)cb).Paint();
 }
}

In this case, FancyComboBox doesn’t have to reimplement IUIControl. It merely has to override the
virtual ComboBox.Paint method. It’s much cleaner for ComboBox to declare Paint virtual in the first place.
Any time you have to use the new keyword to keep the compiler from warning you about hiding a
method, consider whether the method of the base class should be virtual.

■ Caution Hiding methods causes confusion and makes code hard to follow and debug. Again, just because the

language allows you to do something does not mean that you should.

Of course, the implementer of ComboBox would have had to think ahead and realize that someone
might derive from ComboBox, and anticipated these issues. In my opinion, it’s best to seal the class and
avoid any surprises by people who attempt to derive from your class when you never meant for it to be
derived from. Imagine who they will scream at when they encounter a problem. Have you ever used
Microsoft Foundation Classes (MFC) in the past and come to a point where you’re pulling your hair out
because you’re trying to derive from an MFC class and wishing a particular method were virtual? In that
case, it’s easy to blame the designers of MFC for being so flagrantly thoughtless and not making the
method virtual when, in reality, it’s more accurate to consider the fact that they probably never meant
for you to derive from the class in the first place. Chapter 13 describes how containment rather than
inheritance is the key in situations like these.

CHAPTER 5 ■ INTERFACES AND CONTRACTS

150

Beware of Side Effects of Value Types Implementing Interfaces
All the examples so far have shown how classes may implement interface methods. In fact, value types
can implement interfaces as well. However, there’s one major side effect to doing so. If you cast a value
type to an interface type, you’ll incur a boxing penalty. Even worse, if you modify the value via the
interface reference, you’re modifying the boxed copy and not the original. Given the intricacies of boxing
that I cover in Chapters 4 and 13, you may consider that to be a bad thing.

As an example, consider System.Int32. I’m sure you’ll agree that it is one of the most basic types in
the CLR. However, you may or may not have noticed that it also implements several interfaces:
IComparable, IFormattable, and IConvertible. Consider System.Int32’s implementation of IConvertible,
for example. All of the methods are implemented explicitly. IConvertible has quite a few methods
declared within it. However, none of those are in the public contract of System.Int32. If you want to call
one of those methods, you must first cast your Int32 value type into an IConvertible interface reference.
Only then may you call one of the IConvertible methods. And of course, because interface-typed
variables are references, the Int32 value must be boxed.

PREFER THE CONVERT CLASS OVER ICONVERTIBLE

Even though I use the IConvertible interface implemented by a value type as an example to prove a point,
the documentation urges you not to call the methods of IConvertible on Int32; rather, it recommends
using the Convert class instead. The Convert class provides a collection of methods with many overloads of
common types for converting a value to just about anything else, including custom types (by using
Convert.ChangeType), and it makes your code easier to change later. For example, if you have the
following

int i = 0;
double d = Int32.ToDouble(i);

and you want to change the type of i to long, you have to also change the Int32 type to Int64. On
the other hand, if you write

int i = 0;
double d = Convert.ToDouble(i);

then all you have to do is change the type of i.

Interface Member Matching Rules
Each language that supports interface definitions has rules about how it matches up method
implementations with interface methods. The interface member matching rules for C# are pretty
straightforward and boil down to some simple rules. However, to find out which method actually gets
called at runtime, you need to consider the rules of the CLR as well. These rules are only relevant at
compile time. Suppose you have a hierarchy of classes and interfaces. To find the implementation for
SomeMethod on ISomeInterface, start at the bottom of the hierarchy and search for the first type that
implements the interface in question. In this case, that interface is ISomeInterface. This is the level at
which the search for a matching method begins. Once you find the type, recursively move up through

CHAPTER 5 ■ INTERFACES AND CONTRACTS

151

the type hierarchy and search for a method with the matching signature, while first giving preference to
explicit interface member implementations. If you don’t find any, look for public instance methods that
match the same signature.

The C# compiler uses this algorithm when matching up method implementations with interface
implementations. The method that it picks must be a public instance method or an explicitly
implemented instance method, and it may or may not be tagged in C# as virtual. However, when the IL
code is generated, all interface method calls are made through the IL callvirt instruction. So, even
though the method is not necessarily marked as virtual in the C# sense, the CLR treats interface calls as
virtual. Be sure that you don’t confuse these two concepts. If the method is marked as virtual in C# and
has methods that override it in the types below it, the C# compiler will generate vastly different code at
the point of call. Be careful, as this can be quite confusing, as shown by the following contrived example:

using System;

public interface IMyInterface
{
 void Go();
}

public class A : IMyInterface
{
 public void Go() {
 Console.WriteLine("A.Go()");
 }
}

public class B : A
{
}

public class C : B, IMyInterface
{
 public new void Go() {
 Console.WriteLine("C.Go()");
 }
}

public class EntryPoint
{
 static void Main() {
 B b1 = new B();

 C c1 = new C();
 B b2 = c1;

 b1.Go();
 c1.Go();
 b2.Go();
 ((I)b2).Go();
 }
}

The output from this example is as follows:

CHAPTER 5 ■ INTERFACES AND CONTRACTS

152

A.Go()

C.Go()

A.Go()

C.Go()

The first call, on b1, is obvious, as is the second call on c1. However, the third call, on b2, is not
obvious at all. Because the A.Go method is not marked as virtual, the compiler generates code that calls
A.Go. The fourth and final call is almost equally confusing, but not if you consider the fact that the CLR
handles virtual calls on class type references and calls on interface references significantly differently.
The generated IL for the fourth call makes a call to IMyInterface.Go, which, in this case, boils down to a
call to C.Go, because b2 is actually a C, and C reimplements IMyInterface.

You have to be careful when searching for the actual method that gets called, because you must
consider whether the type of your reference is a class type or an interface type. The C# compiler
generates IL virtual method calls in order to call through to interfaces methods, and the CLR uses
interface tables internally to achieve this.

■ Note C++ programmers must realize that interface tables are different from C++ vtables. Each CLR type only

has one method table, whereas a C++ instance of a type may have multiple vtables.

The contents of these interface tables are defined by the compiler using its method-matching rules.
For more detailed information regarding these interface tables, see Essential .NET, Volume I: The
Common Language Runtime by Don Box and Chris Sells (Boston, MA: Addison-Wesley Professional,
2002), as well as the CLI standard document itself.

The C# method-matching rules explain the situation I discussed previously in the section “Interface
Inheritance and Member Hiding.” Hiding a method in one hierarchical path of a diamond-shaped
hierarchy hides the method in all inheritance paths. The rules state that when you walk up the hierarchy,
you short-circuit the search once you find a method at a particular level. These simple rules also explain
how interface reimplementation can greatly affect the method-matching process, thus short-circuiting
the compiler’s search during its progression up the hierarchy. Let’s consider an example of this in action:

using System;

public interface ISomeInterface
{
 void SomeMethod();
}

public interface IAnotherInterface : ISomeInterface
{
 void AnotherMethod();
}

CHAPTER 5 ■ INTERFACES AND CONTRACTS

153

public class SomeClass : IAnotherInterface
{
 public void SomeMethod() {
 Console.WriteLine("SomeClass.SomeMethod()");
 }

 public virtual void AnotherMethod() {
 Console.WriteLine("SomeClass.AnotherMethod()");
 }
}

public class SomeDerivedClass : SomeClass
{
 public new void SomeMethod() {
 Console.WriteLine("SomeDerivedClass.SomeMethod()");
 }

 public override void AnotherMethod() {
 Console.WriteLine("SomeDerivedClass.AnotherMethod()");
 }
}

public class EntryPoint
{
 static void Main() {
 SomeDerivedClass obj = new SomeDerivedClass();
 ISomeInterface isi = obj;
 IAnotherInterface iai = obj;

 isi.SomeMethod();
 iai.SomeMethod();
 iai.AnotherMethod();
 }
}

Let’s apply the search rules to each method call in Main in the previous example. In all cases, I’ve
implicitly converted an instance of SomeDerivedClass to references of the two interfaces, ISomeInterface
and IAnotherInterface. I place the first call to SomeMethod through ISomeInterface. First, walk up the
class hierarchy, starting at the concrete type of the reference, looking for the first class that implements
this interface or an interface derived from it. Doing so leaves us at the SomeClass implementation,
because, even though it does not implement ISomeInterface directly, it implements IAnotherInterface,
which derives from ISomeInterface. Thus, we end up calling SomeClass.SomeMethod. You may be
surprised that SomeDerivedClass.SomeMethod was not called. But if you follow the rules, you’ll notice that
you skipped right over SomeDerivedClass, looking for the bottom-most class in the hierarchy that
implements the interface. In order for SomeDerivedClass.SomeMethod to be called instead,
SomeDerivedClass would need to reimplement ISomeInterface. The second call to SomeMethod through
the IAnotherInterface reference follows exactly the same path when finding the matching method.

Things get interesting in the third call in Main, where you call AnotherMethod through a reference to
IAnotherInterface. As before, the search begins at the bottom-most class in the hierarchy that
implements this interface, inside SomeClass. Because SomeClass has a matching method signature, your
search is complete. However, the twist is that the matching method signature is declared virtual. So
when the call is made, the virtual method mechanism places execution within

CHAPTER 5 ■ INTERFACES AND CONTRACTS

154

SomeDerivedClass.AnotherMethod. It’s important to note that AnotherMethod doesn’t change the rules for
interface method matching, even though it is implemented virtually. It’s not until after the interface
method has been matched that the virtual nature of the method has an impact on exactly which
implementation gets called at runtime.

■ Note Interface method matching is applied statically at compile time. Virtual method dispatching happens

dynamically at runtime. You should note the difference between the two when trying to determine which method

implementation gets invoked.

The output from the previous example code is as follows:

SomeClass.SomeMethod()

SomeClass.SomeMethod()

SomeDerivedClass.AnotherMethod()

Explicit Interface Implementation with Value Types
Many times, you’ll encounter general-use interfaces that take parameters in the form of a reference to
System.Object. These interfaces are typically general usage, nongeneric interfaces. For example,
consider the IComparable interface, which looks like the following:

public interface IComparable
{
 int CompareTo(object obj);
}

■ Note NET 2.0 added support for IComparable<T>, which you should always consider using along with

IComparable in order to offer greater type safety.

It makes sense that the CompareTo method accepts such a general type, because it would be nice to
be able to pass it just about anything to see how the object passed in compares to the one that
implements CompareTo. When dealing strictly with reference types, there’s really no loss of efficiency
here, because conversion to and from System.Object on reference types is free for all practical purposes.
But things get a little sticky when you consider value types. Let’s look at some code to see the gory
details:

CHAPTER 5 ■ INTERFACES AND CONTRACTS

155

using System;

public struct SomeValue : IComparable
{
 public SomeValue(int n) {
 this.n = n;
 }

 public int CompareTo(object obj) {
 if(obj is SomeValue) {
 SomeValue other = (SomeValue) obj;

 return n - other.n;
 } else {
 throw new ArgumentException("Wrong Type!");
 }
 }

 private int n;
}

public class EntryPoint
{
 static void Main() {
 SomeValue val1 = new SomeValue(1);
 SomeValue val2 = new SomeValue(2);

 Console.WriteLine(val1.CompareTo(val2));
 }
}

In the innocuous call to WriteLine in Main, you see val1 being compared to val2. But look closely at
how many boxing operations are required. First, because CompareTo takes an object reference, val2 must
be boxed at the point of the method call. Had you implemented the CompareTo method explicitly, you
would have needed to cast the val1 value into an IComparable interface, which would incur a boxing
penalty. But once you’re inside the CompareTo method, the boxing nightmare is still not overdue to the
amount of unboxing necessary. Ouch.

Thankfully, you can employ an optimization when SomeValue is compared to certain types. Take, for
example, the case where an instance of SomeValue is compared to another SomeValue instance. You can
provide a type-safe version of the CompareTo method to get the job done, as shown in the following code:

using System;

public struct SomeValue : IComparable
{
 public SomeValue(int n) {
 this.n = n;
 }

 int IComparable.CompareTo(object obj) {
 if(obj is SomeValue) {
 SomeValue other = (SomeValue) obj;

CHAPTER 5 ■ INTERFACES AND CONTRACTS

156

 return n - other.n;
 } else {
 throw new ArgumentException("Wrong Type!");
 }
 }

 public int CompareTo(SomeValue other) {
 return n - other.n;
 }

 private int n;
}

public class EntryPoint
{
 static void Main() {
 SomeValue val1 = new SomeValue(1);
 SomeValue val2 = new SomeValue(2);

 Console.WriteLine(val1.CompareTo(val2));
 }
}

In this example, there is absolutely no boxing in the call to CompareTo. That’s because the compiler
picks the one with the best match for the type. In this case, because you implement
IComparable.CompareTo explicitly, there is only one overload of CompareTo in the public contract of
SomeValue. But even if IComparable.CompareTo had not been implemented explicitly, the compiler would
have still chosen the type-safe version. The typical pattern involves hiding the typeless versions from
casual use so that the user must do a boxing operation explicitly. This operation converts the value to an
interface reference in order to get to the typeless version.

The bottom line is that you’ll definitely want to follow this idiom any time you implement an
interface on a value type where you determine that you can define overloads with better type safety than
the ones listed in the interface declaration. Avoiding unnecessary boxing is always a good thing, and
your users will appreciate your attention to detail and commitment to efficiency.

Versioning Considerations
The concept of versioning is essentially married to the concept of interfaces. When you create, define,
and publish an interface, you’re defining a contract—or viewed in more rigid terms—a standard. Any
time you have a standard form of communication, you must adhere to it so as not to break any clients of
that contract. For example, consider the 802.11 standard upon which WiFi devices are based. It’s
important that access points from one vendor work with devices from as many vendors as possible. This
works as long as all of the vendors agree and follow the standard. Can you imagine the chaos that would
erupt if a single vendor’s WiFi card were the only one that worked at your favorite Pacific Northwest-
based coffee shops? It would be pandemonium. Therefore, we have standards.

Now, nothing states that the standard cannot be augmented. Certain manufacturers do just that. In
some cases, if you use Manufacturer A’s access point with the same manufacturer’s wireless card, you
can achieve speeds greater than those supported by the standard. However, note that those
augmentations only augment, and don’t alter, the standard. Similarly, nothing states that a standard
cannot be revised. Standards normally have version numbers attached to them, and when they are
revised, the version number is modified. Most of the time, devices that implement the new version also

CHAPTER 5 ■ INTERFACES AND CONTRACTS

157

support the previous version. Although not required, it’s a good move for those manufacturers who want
to achieve maximum market saturation. In the 802.11 example, 802.11a, 802.11b, and 802.11g represent
the various revisions of the standard.

The point of this example is that you should apply these same rules to your interfaces once you
publish them. You don’t normally create interfaces unless you’re doing so to allow entities to interact
with each other using a common contract. So, once you’re done with creating that contract, do the right
thing and slap a version number on it. You can create your version number in many ways. For new
revisions of your interface, you could simply give it a new name—the key point being that you never
change the original interface. You’ve probably already seen exactly the same idiom in use in the COM
world. Typically, if someone such as Microsoft, decides they have a good reason to augment the
behavior of an interface, you’ll find a new interface definition ending with either an Ex suffix or a
numeric suffix. At any rate, it’s a completely different interface than the previous one, even though the
contract of the new interface could inherit the original interface, and the implementations may be
shared.

■ Note Current design guidelines in wide use suggest that if you need to create an augmented interface based

upon another, you shouldn’t use the suffix Ex as COM does. Instead, you should follow the interface name with an

ordinal. So, if the original interface is ISomeContract, then you should name the augmented interface

ISomeContract2.

In reality, if your interface definitions live within a versioned assembly, you may define a newer
version of the same interface, even with the same name, in an assembly with the same name but with a
new version number. The assembly loader will resolve and load the proper assembly at runtime.
However, this practice can become confusing to the developers using your interface, because they now
have to be more explicit about which assembly to reference at build time.

Contracts
Many times, you need to represent the notion of a contract when designing an application or a system. A
programming contract is no different than any other contract. You usually define a contract to facilitate
communication between two types in your design. For example, suppose you have a virtual zoo, and in
your zoo, you have animals. Now, an instance of your ZooKeeper needs a way to communicate to the
collection of these ZooDweller objects that they should fly to a specific location. Ignoring the fact that
they had all better be fairly obedient, they had also better be able to fly. However, not all animals can fly,
so clearly not all of the types in the zoo can support this flying contract.

Contracts Implemented with Classes
Let’s consider one way to manage the complexity of getting these creatures to fly from one location to
the next. First, consider the assumptions that you can make here. Let’s say that this Zoo can have only
one ZooKeeper. Second, let’s assume that you can model the locations within this Zoo by using a simple
two-dimensional Point structure. It starts to look as though you can model this system by the following
code:

using System;

CHAPTER 5 ■ INTERFACES AND CONTRACTS

158

using System.Collections.ObjectModel;

namespace CityOfShanoo.MyZoo
{

public struct Point
{
 public double X;
 public double Y;
}

public abstract class ZooDweller
{
 public void EatSomeFood() {
 DoEatTheFood();
 }

 protected abstract void DoEatTheFood();
}

public sealed class ZooKeeper
{
 public void SendFlyCommand(Point to) {
 // Implementation removed for clarity.
 }
}

public sealed class Zoo
{
 private static Zoo theInstance = new Zoo();
 public static Zoo GetInstance() {
 return theInstance;
 }

 private Zoo() {
 creatures = new Collection<ZooDweller>();3
 zooKeeper = new ZooKeeper();
 }

 public ZooKeeper ZooKeeper {
 get {
 return zooKeeper;
 }
 }

 private ZooKeeper zooKeeper;
 private Collection<ZooDweller> creatures;

3 If the syntax of Collection<ZooDweller> looks foreign to you, don’t worry. It is a declaration of a collection based on
a generic collection type. I will cover generics in detail in Chapter 11.

CHAPTER 5 ■ INTERFACES AND CONTRACTS

159

}

}

There can only be one zoo in the CityOfShanoo, thus the Zoo is modeled as a singleton object, and
the only way to obtain the instance of the one and only Zoo is to call Zoo.GetInstance. Also, you can get a
reference to the ZooKeeper via the Zoo.ZooKeeper property. It is common practice in the .NET Framework
to name the property after the custom type that it represents.

■ Note The Singleton design pattern is one of the most widely used and well-known design patterns. Essentially,

the pattern allows only one instance of its type to exist at one time. Many people still argue about the best way to

implement it. Implementation difficulty varies depending on the language you’re using. But in general, some

static private instance within the type declaration is lazily initialized at the point of first access. The previous

implementation of the Zoo class does that, it creates only one instance per application domain, because the static

initializer is not called until the type is first accessed through the GetInstance method.

This initial design defines the ZooDweller as an abstract class that implements a method
EatSomeFood. The ZooDweller uses the Non-Virtual Interface (NVI) pattern described in Chapter 13,
where the virtual method that the concrete type overrides is declared protected rather than public.

It’s important to note that the ZooDweller type does, in fact, define a contract even though it is not
an interface. The contract, as written, states that any type that derives from ZooDweller must implement
EatSomeFood. Any code that uses a ZooDweller instance can be guaranteed that this method is supported.

■ Note Notice that an interface is not required in order to define a contract.

So far, this design is missing a key operation, and that is the one commanding the creatures to fly to
a destination within the zoo. Clearly, you cannot put a Fly method on the ZooDweller type, because not
all animals in the zoo can fly. You must express this contract in a different way.

Interface Contracts
Because not all creatures in the zoo can fly, an interface provides an excellent mechanism for defining
the flying contract. Consider the following modifications to the example from the previous section:

public interface IFly
{
 void FlyTo(Point destination);
}

public class Bird : ZooDweller, IFly
{

CHAPTER 5 ■ INTERFACES AND CONTRACTS

160

 public void FlyTo(Point destination) {
 Console.WriteLine("Flying to ({0}. {1}).",
 destination);
 }

 protected override void DoEatTheFood() {
 Console.WriteLine("Eating some food.");
 }
}

Now, using the interface IFly, Bird is defined such that it derives from ZooDweller and implements
IFly.

■ Note If you intend to have various bird types derive from Bird, and those various birds have different

implementations of ToFly, consider using the NVI pattern. You could introduce a protected virtual method

named DoFlyTo that the base types override, while having Bird.FlyTo call through to DoFlyTo. Read the section

titled “Use the Non-Virtual Interface (NVI) Pattern” in Chapter 13 for more information on why this is a good idea.

Choosing Between Interfaces and Classes
The previous section on contracts shows that you can implement a contract in multiple ways. In the C#
and .NET environments, the two main methods are interfaces and classes, where the classes may even
be abstract. In the zoo example, it’s pretty clear as to when you should use an interface rather than an
abstract class to define an interface. However, the choice is not always so clear, so let’s consider the
ramifications of both methods.

■ Note If the zoo example is not as clear with regard to when to use inheritance vs. interface implementation,

consider the following. One could just as easily declare a class ZooFlyer derived from ZooDweller and then

derive Bird from ZooFlyer. However, what if we were to introduce ZooInsect derived from ZooDweller. How

would we then declare ZooFruitFly? After all, C# does not allow multiple inheritance so ZooFruitFly cannot

derive from both ZooInsect and ZooFlyer. When you find situations such as these, it is time to reevaluate your

class hierarchy as it is probably too complex.

C# supports abstract classes, therefore, you can easily model a contract using abstract classes. But
which method is more powerful? And which is more appropriate? These are not easy questions to
answer, although the guideline tends to be that you should prefer a class if possible. Let’s explore this.

CHAPTER 5 ■ INTERFACES AND CONTRACTS

161

■ Note Since COM became so popular, some developers have a false notion that the only way to define a contract

is by defining an interface. It’s easy to jump to that conclusion when moving from the COM environment to the C#

environment, simply because the basic building block of COM is the interface, and C# and .NET support interfaces

natively. However, jumping to that conclusion would be perilous to your designs.

If you’re familiar with COM and you’ve created any serious COM projects in the past, you most certainly

implemented the COM objects using C++. You probably even used the Active Template Library (ATL) to shield

yourself from the intricacies of the mundane COM development tasks. But at the core of it all, how does C++

model COM interfaces? The answer is with abstract classes.

When you implement a contract by defining an interface, you’re defining a versioned contract. That
means that the interface, once released, must never change, as if it were cast into stone. Sure, you could
change it later, but you would not be very popular when all of your clients’ code fails to compile with the
modified interface. Consider the following example:

public interface IMyOperations
{
 void Operation1();
 void Operation2();
}

// Client class
public class ClientClass : IMyOperations
{
 public void Operation1() { }
 public void Operation2() { }
}

Now, you’ve released this wonderful IMyOperations interface to the world, and thousands of clients
have implemented it. Then, you start getting requests from your clients asking for Operation3 support in
your library. It seems like it would be easy enough to simply add Operation3 to the IMyOperations
interface, but that would be a terrible mistake. If you add another operation to IMyOperations, then all of
a sudden your clients’ code won’t compile until they implement the new operation. Also, code in
another assembly that knows about the newer IMyOperations could attempt to cast a ClientClass
instance into an IMyOperations reference and then call Operation3, thus creating a runtime failure.
Clearly, you shouldn’t modify an already published interface.

■ Caution Never modify an already publicly published interface declaration.

You could also address this problem by defining a completely new interface, say IMyOperations2.
However, ClientClass would need to implement both interfaces in order to get the new behavior, as
shown in the following code:

CHAPTER 5 ■ INTERFACES AND CONTRACTS

162

public interface IMyOperations
{
 void Operation1();
 void Operation2();
}

public interface IMyOperations2
{
 void Operation1();
 void Operation2();
 void Operation3();
}

// Client class
public class ClientClass : IMyOperations,
 IMyOperations2
{
 public void Operation1() { }
 public void Operation2() { }
 public void Operation3() { }
}

public class AnotherClass
{
 public void DoWork(IMyOperations ops) {
 }
}

Modifying ClientClass to support the new operation from IMyOperations2 isn’t terribly difficult, but
what about the code that already exists, such as what is shown in AnotherClass? The problem is that the
DoWork method accepts a type of IMyOperations. In order to make it to where the new Operation3 method
can be called, the prototype of DoWork must change, or the code within it must do a cast to IOperations2,
which could fail at runtime. Because you want the compiler to be able to catch as many type bugs as
possible, it would be better if you change the prototype of DoWork to accept a type of IMyOperations2.

■ Note If you define your original IMyOperations interface within a fully versioned, strongly named assembly,

then you can get away with creating a new interface with the same name in a new assembly, as long as the

version of the new assembly is different. Although the .NET Framework supports this explicitly, it doesn’t mean

you should do it without careful consideration, because introducing two IMyOperations interfaces that differ only

by version number of the containing assembly could be confusing to your clients.

That was a lot of work just to make a new operation available to clients. Let’s examine the same
situation, except using an abstract class:

public abstract class MyOperations
{
 public virtual void Operation1() {

CHAPTER 5 ■ INTERFACES AND CONTRACTS

163

 }

 public virtual void Operation2() {
 }
}

// Client class
public class ClientClass : MyOperations
{
 public override void Operation1() { }
 public override void Operation2() { }
}

public class AnotherClass
{
 public void DoWork(MyOperations ops) {
 }
}

MyOperations is a base class of ClientClass. One advantage is that MyOperations can contain default
implementations if it wants to. Otherwise, the virtual methods in MyOperations could have been declared
abstract. The example also declares MyOperations abstract, because it makes no sense for clients to be
able to create instances of MyOperations. Now, let’s suppose you want to add a new Operation3 method
to MyOperations, and you don’t want to break existing clients. You can do this as long as the added
operation is not abstract, such that it forces changes on derived types, as shown here:

public abstract class MyOperations
{
 public virtual void Operation1() {
 }

 public virtual void Operation2() {
 }

 public virtual void Operation3() {
 // New default implementation
 }
}

// Client class
public class ClientClass : MyOperations
{
 public override void Operation1() { }
 public override void Operation2() { }
}

public class AnotherClass
{
 public void DoWork(MyOperations ops) {
 ops.Operation3();
 }
}

CHAPTER 5 ■ INTERFACES AND CONTRACTS

164

Notice that the addition of MyOperations.Operation3 doesn’t force any changes upon ClientClass,
and AnotherClass.DoWork can make use of Operation3 without making any changes to the method
declaration. This technique doesn’t come without its drawbacks, though. You’re restricted by the fact
that the managed runtime only allows a class to have one base class. ClientClass has to derive from
MyOperations to get the functionality, therefore, it uses up its only inheritance ticket. This may put
complicated restrictions upon your client code. For example, what if one of your clients needs to create
an object for use with .NET Remoting? In order to do so, the class must derive from MarshalByRefObject.

Sometimes, it’s tricky to find a happy medium when deciding between interfaces and classes. I use
the following rules of thumb:

• If modeling an is-a relationship, use a class: If it makes sense to name your
contract with a noun, then you should probably model it with a class.

• If modeling an IMPLEMENTS relationship, use an interface: If it makes sense to
name your contract with an adjective, as if it is a quality, then you should probably
model it as an interface.

• Consider wrapping up your interface and abstract class declarations in a separate
assembly: Implementations in other assemblies can then reference this separate
assembly.

• If possible, prefer classes over interfaces: This can be helpful for the sake of
extensibility.

You can see examples of these techniques throughout the .NET Framework Base Class Library
(BCL). Consider using them in your own code as well.

Summary
This chapter introduced you to interfaces and how you can model a well-defined, versioned contract
using an interface. Along with showing you the various ways that classes can implement interfaces, I also
described the process that the C# compiler follows when matching up interface methods to
implementations in the implementing class. I described interfaces from the perspective of reference
types and value types—specifically, how expensive boxing operations can cause you pain when using
interfaces on value types. Finally, I spent some time comparing and contrasting the use of interfaces and
classes when modeling contracts between types in your design.

In the next chapter, I’ll explain the intricacies of operator overloading in the C# language and why
you may want to avoid it when creating code used by other .NET languages.

v@v
Text Box
Download at WoweBook.com

C H A P T E R 6

■ ■ ■

165

Overloading Operators

C# adopted the capability of operator overloading from C++. Just as you can overload methods, you can
overload operators such as +, -, *, and so on. In addition to overloading arithmetic operators, you can
also create custom conversion operators to convert from one type to another. You can overload other
operators to allow objects to be used in Boolean test expressions.

Just Because You Can Doesn’t Mean You Should
Overloading operators can make certain classes and structs more natural to use. However, overloading
operators in a slipshod way can make code much more difficult to read and understand. You must be
careful to consider the semantics of a type’s operators. Be careful not to introduce something that is
hard to decipher. Always aim for the most readable code, not only for the next fortunate soul who claps
eyes with your code, but also for yourself. Have you ever looked at code and wondered, “Who in their
right mind wrote this stuff?!” only to find out it was you? I know I have.

Another reason not to overload operators is that not all .NET languages support overloaded
operators, because overloading operators is not part of the CLS. Languages that target the CLI aren’t
required to support operator overloading. For example, Visual Basic 2005 was the first .NET version of
the language to support operator overloading. Therefore, it’s important that your overloaded operators
be syntactic shortcuts to functionality provided by other methods that perform the same operation and
can be called by CLS-compliant languages. In fact, I recommend that you design types as if overloaded
operators don’t exist. Then, later on, you can add overloaded operators in such a way that they simply
call the methods you defined that carry the same semantic meaning.

Types and Formats of Overloaded Operators
You define all overloaded operators as public static methods on the classes they’re meant to augment.
Depending on the type of operator being overloaded, the method may accept either one or two
parameters, and it always returns a value. For all operators except conversion operators, one of the
parameter types must be of the same type as the enclosing type for the method. For example, it makes
no sense to overload the + operator on class Complex if it adds two double values together, and, as you’ll
see shortly, it’s impossible.

A typical + operator for a class Complex could look like the following:

public static Complex operator+(Complex lhs, Complex rhs)

Even though this method adds two instances of Complex together to produce a third instance of
Complex, nothing says that one of the parameters cannot be that of type double, thus adding a double to a

CHAPTER 6 ■ OVERLOADING OPERATORS

166

Complex instance. Now, how you add a double value to a Complex instance and produce another Complex
instance is for you to decipher. In general, operator overloading syntax follows the previous pattern, with
the + replaced with the operator du jour, and of course, some operators accept only one parameter.

■ Note When comparing C# operators with C++ operators, note that C# operator declarations are more similar to

the friend function technique of declaring C++ operators because C# operators are not instance methods.

There are essentially three different groups of overloadable operators.

• Unary operators: Unary operators accept only one parameter. Familiar unary
operators include the ++ and -- operators.

• Binary operators: As the name implies, binary operators accept two parameters
and include familiar mathematical operators such as +, -, /, and *, as well as the
familiar comparison operators.

• Conversion operators: Conversion operators define a user-defined conversion.
They must have either the operand or the return value type declared the same as
the containing class or struct type.

Even though operators are static and public, and thus are inherited by derived classes, operator
methods must have at least one parameter in their declaration that matches the enclosing type, making
it impossible for the derived type’s operator method to match the signature of the base class operator
method exactly. For example, the following is not valid:

public class Apple
{
 public static Apple operator+(Apple lhs, Apple rhs) {
 // Method does nothing and exists only for example.
 return rhs;
 }
}

public class GreenApple : Apple
{
 // INVALID!! — Won't compile.
 public static Apple operator+(Apple lhs, Apple rhs) {
 // Method does nothing and exists only for example.
 return rhs;
 }
}

If you attempt to compile the previous code, you’ll get the following compiler error:

error CS0563: One of the parameters of a binary operator must be the containing type

CHAPTER 6 ■ OVERLOADING OPERATORS

167

Operators Shouldn’t Mutate Their Operands
You already know that operator methods are static. Therefore, it is highly recommended (read: required)
that you do not mutate the operands passed into the operator methods. Instead, you should create a
new instance of the return value type and return the result of the operation. Structs and classes that are
immutable, such as System.String, are perfect candidates for implementing custom operators. This
behavior is natural for operators such as boolean operators, which usually return a type different from
the types passed into the operator.

■ Note “Now wait just a minute!” some of you from the C++ community may be saying. “How in the world can

you implement the postfix and prefix operators ++ and -- without mutating the operand?” The answer lies in the

fact that the postfix and prefix operators as implemented in C# are somewhat different than those of C++. All C#

operators are static, and that includes the postfix and prefix operators, whereas in C++ they are instance methods

that modify the object instance through the this pointer. The beauty of the C# approach is that you don’t have to

worry about implementing two different versions of the ++ operator in order to support both postfix and prefix

incrementing, as you do in C++. The compiler handles the task of making temporary copies of the object to handle

the difference in behavior between postfix and prefix. This is yet another reason why your operators must return

new instances while never modifying the state of the operands themselves. If you don’t follow this practice, you’re

setting yourself up for some major debugging heartbreak.

Does Parameter Order Matter?
Suppose you create a struct to represent simple complex numbers—say, struct Complex—and you need
to add instances of Complex together. It would also be convenient to be able to add a plain old double to
the Complex instance. Adding this functionality is no problem, because you can overload the operator+
method such that one parameter is a Complex and the other is a double. That declaration could look like
the following:

static public Complex operator+(Complex lhs, double rhs)

With this operator declared and defined on the Complex struct, you can now write code such as the
following:

Complex cpx1 = new Complex(1.0, 2.0);
Complex cpx2 = cpx1 + 20.0;

This saves you the time of having to create an extra Complex instance with just the real part set to
20.0 in order to add it to cpx1. However, suppose you want to be able to reverse the operands on the
operator and do something like the following instead:

Complex cpx2 = 20.0 + cpx1;

CHAPTER 6 ■ OVERLOADING OPERATORS

168

If you want to support different orderings of operands of different types, you must provide separate
overloads of the operator. If you overload a binary operator that uses different parameter types, you can
create a mirror overload—that is, another operator method that reverses the parameters.

Overloading the Addition Operator
Let’s take a look at a cursory example of a Complex struct, which is by no means a complete
implementation, but merely a demonstration of how to overload operators. Throughout this chapter, I’ll
build upon this example and add more operators to it:

using System;

public struct Complex
{
 public Complex(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 static public Complex Add(Complex lhs,
 Complex rhs) {
 return new Complex(lhs.real + rhs.real,
 lhs.imaginary + rhs.imaginary);
 }

 static public Complex Add(Complex lhs,
 double rhs) {

 return new Complex(rhs + lhs.real,
 lhs.imaginary);
 }

 public override string ToString() {
 return String.Format("({0}, {1})",
 real,
 imaginary);
 }

 static public Complex operator+(Complex lhs,
 Complex rhs) {
 return Add(lhs, rhs);
 }

 static public Complex operator+(double lhs,
 Complex rhs) {
 return Add(rhs, lhs);
 }

 static public Complex operator+(Complex lhs,
 double rhs) {
 return Add(lhs, rhs);
 }

CHAPTER 6 ■ OVERLOADING OPERATORS

169

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main() {
 Complex cpx1 = new Complex(1.0, 3.0);
 Complex cpx2 = new Complex(1.0, 2.0);

 Complex cpx3 = cpx1 + cpx2;
 Complex cpx4 = 20.0 + cpx1;
 Complex cpx5 = cpx1 + 25.0;

 Console.WriteLine("cpx1 == {0}", cpx1);
 Console.WriteLine("cpx2 == {0}", cpx2);
 Console.WriteLine("cpx3 == {0}", cpx3);
 Console.WriteLine("cpx4 == {0}", cpx4);
 Console.WriteLine("cpx5 == {0}", cpx5);
 }
}

Notice that, as recommended, the overloaded operator methods call methods that perform the
same operation. In fact, doing so makes supporting both orderings of operator+ that add a double to a
Complex a snap.

■ Tip If you’re absolutely sure that your type will only be used in a C# environment or in a language that supports

overloaded operators, then you can forgo this exercise and simply stick with the overloaded operators.

Operators That Can Be Overloaded
Let’s take a quick look at which operators you can overload. Unary operators, binary operators, and
conversion operators are the three general types of operators. It’s impossible to list all of the conversion
operators here, because the set is limitless. Additionally, you can use the one ternary operator—the
familiar ?: operator—for conditional statements, but you cannot overload it directly. Later, in the
“Boolean Operators” section, I describe what you can do to play nicely with the ternary operator. Table
6-1 lists all of the operators except the conversion operators.

CHAPTER 6 ■ OVERLOADING OPERATORS

170

Table 6-1. Unary and Binary Operators

Unary Operators Binary Operators

+ +

- -

! *

~ /

++ %

--
&

true and false |

^

<<

>>

== and !=

> and <

>= and <=

Comparison Operators
The binary comparison operators == and !=, < and >, and >= and <= are all required to be implemented as
pairs. Of course, this makes perfect sense, because I doubt there would ever be a case where you would
like to allow users to use operator== and not operator!=. Moreover, if your type allows ordering via
implementation of the IComparable interface or its generic counterpart IComparable<T>, then it makes
the most sense to implement all comparison operators. Implementing these operators is trivial if you
follow the canonical guidelines given in Chapters 4 and 13 by overriding Equals and GetHashCode and
implementing IComparable (and optionally IComparable<T> and IEquatable<T>) appropriately. Given
that, overloading the operators merely requires you to call those implementations. Let’s look at a
modified form of the Complex number that follows this pattern to implement all of the comparison
operators:

using System;

public struct Complex : IComparable,

CHAPTER 6 ■ OVERLOADING OPERATORS

171

 IEquatable<Complex>,
 IComparable<Complex>
{
 public Complex(double real, double img) {
 this.real = real;
 this.img = img;
 }

 // System.Object override
 public override bool Equals(object other) {
 bool result = false;
 if(other is Complex) {
 result = Equals((Complex) other);
 }
 return result;
 }

 // Typesafe version
 public bool Equals(Complex that) {
 return (this.real == that.real &&
 this.img == that.img);
 }

 // Must override this if overriding Object.Equals()
 public override int GetHashCode() {
 return (int) this.Magnitude;
 }

 // Typesafe version
 public int CompareTo(Complex that) {
 int result;
 if(Equals(that)) {
 result = 0;
 } else if(this.Magnitude > that.Magnitude) {
 result = 1;
 } else {
 result = -1;
 }

 return result;
 }

 // IComparable implementation
 int IComparable.CompareTo(object other) {
 if(!(other is Complex)) {
 throw new ArgumentException("Bad Comparison");
 }

 return CompareTo((Complex) other);
 }

 // System.Object override
 public override string ToString() {

CHAPTER 6 ■ OVERLOADING OPERATORS

172

 return String.Format("({0}, {1})",
 real,
 img);
 }

 public double Magnitude {
 get {
 return Math.Sqrt(Math.Pow(this.real, 2) +
 Math.Pow(this.img, 2));
 }
 }

 // Overloaded operators
 public static bool operator==(Complex lhs, Complex rhs) {
 return lhs.Equals(rhs);
 }

 public static bool operator!=(Complex lhs, Complex rhs) {
 return !lhs.Equals(rhs);
 }

 public static bool operator<(Complex lhs, Complex rhs) {
 return lhs.CompareTo(rhs) < 0;
 }

 public static bool operator>(Complex lhs, Complex rhs) {
 return lhs.CompareTo(rhs) > 0;
 }

 public static bool operator<=(Complex lhs, Complex rhs) {
 return lhs.CompareTo(rhs) <= 0;
 }

 public static bool operator>=(Complex lhs, Complex rhs) {
 return lhs.CompareTo(rhs) >= 0;
 }

 // Other methods omitted for clarity.

 private double real;
 private double img;
}

public class EntryPoint
{
 static void Main() {
 Complex cpx1 = new Complex(1.0, 3.0);
 Complex cpx2 = new Complex(1.0, 2.0);

 Console.WriteLine("cpx1 = {0}, cpx1.Magnitude = {1}",
 cpx1, cpx1.Magnitude);
 Console.WriteLine("cpx2 = {0}, cpx2.Magnitude = {1}\n",
 cpx2, cpx2.Magnitude);

CHAPTER 6 ■ OVERLOADING OPERATORS

173

 Console.WriteLine("cpx1 == cpx2 ? {0}", cpx1 == cpx2);
 Console.WriteLine("cpx1 != cpx2 ? {0}", cpx1 != cpx2);
 Console.WriteLine("cpx1 < cpx2 ? {0}", cpx1 < cpx2);
 Console.WriteLine("cpx1 > cpx2 ? {0}", cpx1 > cpx2);
 Console.WriteLine("cpx1 <= cpx2 ? {0}", cpx1 <= cpx2);
 Console.WriteLine("cpx1 >= cpx2 ? {0}", cpx1 >= cpx2);
 }
}

Notice that the operator methods merely call the methods that implement Equals and CompareTo.
Also, I’ve followed the guideline of providing type-safe versions of the two methods introduced by
implementing IComparable<Complex> and IEquatable<Complex>, because the Complex type is a value type
and I want to avoid boxing if possible. 1 Additionally, I implemented the IComparable.CompareTo method
explicitly to give the compiler a bigger type-safety hammer to wield by making it harder for users to call
the wrong one (the type-less one) inadvertently. Anytime you can utilize the compiler’s type system to
sniff out errors at compile time rather than runtime, you should do so. Had I not implemented
IComparable.CompareTo explicitly, then the compiler would have happily compiled a statement where I
attempt to compare an Apple instance to a Complex instance. Of course, you would expect an
InvalidCastException at runtime if you were to attempt something so silly, but again, always prefer
compile-time errors over runtime errors.

Conversion Operators
Conversion operators are, as the name implies, operators that convert objects of one type into objects of
another type. Conversion operators can allow implicit conversion as well as explicit conversion. Implicit
conversion is done with a simple assignment, whereas explicit conversion requires the familiar casting
syntax with the target type of the conversion provided in parentheses immediately preceding the
instance being assigned from.

There is an important restriction on implicit operators. The C# standard requires that implicit
operators do not throw exceptions and that they’re always guaranteed to succeed with no loss of
information. If you cannot meet that requirement, then your conversion must be an explicit one. For
example, when converting from one type to another, there’s always the possibility for loss of information
if the target type is not as expressive as the original type. Consider the conversion from long to short.
Clearly, it’s possible that information could be lost if the value in the long is greater than the highest
value a short can represent (short.MaxValue). Such a conversion must be an explicit one and require the
user to use the casting syntax. Now, suppose you were going the other way and converting a short into a
long. Such a conversion will always succeed, so therefore it can be implicit.

■ Note Performing explicit conversions from a type with larger storage to a type with smaller storage may result

in a truncation error if the original value is too large to be represented by the smaller type. For example, if you

explicitly cast a long into a short, you may trigger an overflow situation. By default, your compiled code will

1 I describe this guideline in more detail in Chapter 5 in the section, “Explicit Interface Implementation with Value
Types.”

CHAPTER 6 ■ OVERLOADING OPERATORS

174

silently perform the truncation. If you compile your code with the /checked+ compiler option, it actually would

throw a System.OverflowException if your explicit conversion from a long to a short caused an overflow. I

recommend that you lean toward building with /checked+ turned on.

Let’s see what kind of conversion operators you should provide for Complex. I can think of at least
one definite case, and that’s the conversion from double to Complex. Definitely, such a conversion should
be an implicit one. Another consideration is from Complex to double. Clearly, this conversion requires an
explicit conversion. (Casting a Complex to double makes no sense anyway and is only shown here for the
sake of example, thus you can choose to return the magnitude rather than just the real portion of the
complex number when casting to a double.) Let’s look at an example of implementing conversion
operators:

using System;

public struct Complex
{
 public Complex(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 // System.Object override
 public override string ToString() {
 return String.Format("({0}, {1})", real, imaginary);
 }

 public double Magnitude {
 get {
 return Math.Sqrt(Math.Pow(this.real, 2) +
 Math.Pow(this.imaginary, 2));
 }
 }

 public static implicit operator Complex(double d) {
 return new Complex(d, 0);
 }

 public static explicit operator double(Complex c) {
 return c.Magnitude;
 }

 // Other methods omitted for clarity.

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main() {

CHAPTER 6 ■ OVERLOADING OPERATORS

175

 Complex cpx1 = new Complex(1.0, 3.0);
 Complex cpx2 = 2.0; // Use implicit operator.

 double d = (double) cpx1; // Use explicit operator.

 Console.WriteLine("cpx1 = {0}", cpx1);
 Console.WriteLine("cpx2 = {0}", cpx2);
 Console.WriteLine("d = {0}", d);
 }
}

The syntax in the Main method uses conversion operators. However, be careful when implementing
conversion operators to make sure that you don’t open up users to any surprises or confusion with your
implicit conversions. It’s difficult to introduce confusion with explicit operators when the users of your
type must use the casting syntax to get it to work. After all, how can users be surprised when they must
provide the type to convert to within parentheses? On the other hand, inadvertent use or misguided use
of implicit conversion can be the source of much confusion. If you write a bunch of implicit conversion
operators that make no semantic sense, I guarantee your users will find themselves in a confusing spot
one day when the compiler decides to do a conversion for them when they least expect it. For example,
the compiler could do an implicit conversion when trying to coerce an argument on a method call
during overload resolution. Even if the conversion operators do make semantic sense, they can still
provide plenty of surprises, because the compiler will have the liberty of silently converting instances of
one type to another when it feels it’s necessary.

Unlike C++ where single parameter constructors behave like implicit conversion operators by
default, C# requires that you explicitly write an implicit operator on the types that you define. 2 However,
in order to provide these conversions, you must bend the rules of method overloading ever so slightly for
this one case. Consider the case where Complex provides another explicit conversion operator to convert
to an instance of Fraction as well as to an instance of double. This would give Complex two methods with
the following signatures:

public static explicit operator double(Complex d)
public static explicit operator Fraction(Complex f)

These two methods take the same type, Complex, and return another type. However, the overload
rules clearly state that the return type doesn’t participate in the method signature. Going by those rules,
these two methods should be ambiguous and result in a compiler error. In fact, they are not ambiguous,
because a special rule exists to allow the return type of conversion operators to be considered in these
signatures. Incidentally, the implicit and explicit keywords don’t participate in the signature of
conversion operator methods. Therefore, it’s impossible to have both implicit and explicit conversion
operators with the same signature. Naturally, at least one of the types in the signature of a conversion
operator must be the enclosing type. It is invalid for a type Complex to implement a conversion operator
from type Apples to type Oranges.

2 Yes, I realize the implications of my explicit, and possible confusing, use of the words implicit and explicit. I
explicitly hope that I have not implicitly confused anyone.

CHAPTER 6 ■ OVERLOADING OPERATORS

176

THE FLOATING POINT ENIGMA

Jon Skeet provided to me an excellent example that shows, in some cases when dealing with floating point
numbers, implicit conversions can actually lose data. Jon provides the following example to illustrate the
point:

using System;

public class Test {
 static void Main() {
 long l1 = long.MaxValue - 5;
 long l2 = long.MaxValue - 4;
 double d1 = l1;
 double d2 = l2;
 Console.WriteLine(d1);
 Console.WriteLine(d2);
 Console.WriteLine(l1 == l2);
 Console.WriteLine(d1 == d2);
 }
}

In fact, if you execute the previous code, you get the surprising result shown in the following code:

9.22337203685478E+18
9.22337203685478E+18
False
True

Before, you cry foul, I would like to point out that floating point numbers are one of those very tricky,
but often trivialized areas of programming. Moreover, when dealing with floating point numbers, comparison
often only considers the significant digits of the floating point numbers leaving the rest within the acceptable
margin of error. Many dissertations have been written on the proper representation of floating point numbers
in inherently fixed point machines. I invite you to read Appendix D of the Numerical Computation Guide titled
What Every Computer Scientist Should Know About Floating-Point Arithmetic hosted at the following link:
http://docs.sun.com/source/806-3568/ncg_goldberg.html.

Incidentally, if you change the type double to type decimal in the previous example, you will get a
less surprising result due to the fact that decimal can represent more significant digits than double.

Boolean Operators
It makes sense for some types to participate in Boolean tests, such as within the parentheses of an if
block or with the ternary operator ?:. In order for this to work, you have two alternatives. The first is that
you can implement two conversion operators, known as operator true and operator false. You must
implement these two operators in pairs to allow the Complex number to participate in Boolean test
expressions. Consider the following modification to the Complex type, where you now want to use it in
expressions where a value of (0, 0) means false and anything else means true:

http://docs.sun.com/source/806-3568/ncg_goldberg.html

CHAPTER 6 ■ OVERLOADING OPERATORS

177

using System;

public struct Complex
{
 public Complex(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 // System.Object override
 public override string ToString() {
 return String.Format("({0}, {1})",
 real,
 imaginary);
 }

 public double Magnitude {
 get {
 return Math.Sqrt(Math.Pow(this.real, 2) +
 Math.Pow(this.imaginary, 2));
 }
 }

 public static bool operator true(Complex c) {
 return (c.real != 0) || (c.imaginary != 0);
 }

 public static bool operator false(Complex c) {
 return (c.real == 0) && (c.imaginary == 0);
 }

 // Other methods omitted for clarity.

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main() {
 Complex cpx1 = new Complex(1.0, 3.0);
 if(cpx1) {
 Console.WriteLine("cpx1 is true");
 } else {
 Console.WriteLine("cpx1 is false");
 }

 Complex cpx2 = new Complex(0, 0);
 Console.WriteLine("cpx2 is {0}", cpx2 ? "true" : "false");
 }
}

CHAPTER 6 ■ OVERLOADING OPERATORS

178

You can see the two operators for applying the true and false tests to the Complex type. Notice the
syntax looks almost the same as regular operators, except that it includes the return type of bool. I’m not
quite sure why this is necessary, because you can’t provide a type other than bool as the return type. If
you do, the compiler will quickly tell you that the only valid return type from operator true or operator
false is a bool. Nevertheless, you must supply the return type for these two operators. Also, notice that
you cannot mark these operators explicit or implicit, because they’re not conversion operators. Once
you define these two operators on the type, you can use instances of Complex in Boolean test expressions,
as shown in the Main method.

Alternatively, you can choose to implement a conversion to type bool to achieve the same result.
Typically, you’ll want to implement this operator implicitly for ease of use. Consider the modified form
of the previous example using the implicit bool conversion operator rather than operator true and
operator false:

using System;

public struct Complex
{
 public Complex(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 // System.Object override
 public override string ToString() {
 return String.Format("({0}, {1})",
 real,
 imaginary);
 }

 public double Magnitude {
 get {
 return Math.Sqrt(Math.Pow(this.real, 2) +
 Math.Pow(this.imaginary, 2));
 }
 }

 public static implicit operator bool(Complex c) {
 return (c.real != 0) || (c.imaginary != 0);
 }

 // Other methods omitted for clarity.

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main() {
 Complex cpx1 = new Complex(1.0, 3.0);
 if(cpx1) {
 Console.WriteLine("cpx1 is true");
 } else {

CHAPTER 6 ■ OVERLOADING OPERATORS

179

 Console.WriteLine("cpx1 is false");
 }

 Complex cpx2 = new Complex(0, 0);
 Console.WriteLine("cpx2 is {0}", cpx2 ? "true" : "false");
 }
}

The end result is the same with this example. Now, you may be wondering why you would ever want
to implement operator true and operator false rather than just an implicit bool conversion operator.
The answer lies in whether it is valid for your type to be converted to a bool type or not. With the latter
form, where you implement the implicit conversion operator, the following statement would be valid:

bool f = cpx1;

This assignment would work because the compiler would find the implicit conversion operator at
compile time and apply it. However, if you were extremely tired the night you coded this line and really
meant to assign f from a completely different variable, it might be a long time before you find the bug.
This is one example of how gratuitous use of implicit conversion operators can get you in trouble.

The rule of thumb is this: Provide only enough of what is necessary to get the job done and no more.
If all you want is for your type—in this case, Complex—to participate in Boolean test expressions, only
implement operator true and operator false. Do not implement the implicit bool conversion operator
unless you have a real need for it. If you do happen to have a need for it, and thus implement the implicit
bool conversion operator, you don’t have to implement operator true and operator false, because
they would be redundant. If you do provide all three, the compiler will go with the implicit conversion
operator rather than operator true and operator false, because invoking one is not more efficient than
the other, assuming you code them the same.

Summary
In this chapter, I covered some useful guidelines for overloading operators, including unary, binary, and
conversion operators. Operator overloading is one of the features that makes C# such a powerful and
expressive .NET language. However, just because you can do something doesn’t mean that you should.
Misuse of implicit conversion operators and improperly defined semantics in other operator overloads
has proven time and time again to be the source of great user confusion (and that user could be the
author of the type) as well as unintended behavior. When it comes to overloading operators, provide
only enough of what is necessary, and don’t go counter to the general semantics of the various
operators. The CLS doesn’t require overloaded operator support, thus not all .NET languages support
overloaded operators. Therefore, it’s important to always provide explicitly named methods that provide
the same functionality. Sometimes, those methods are already defined in system interfaces, such as
IComparable or IComparable<T>. Never isolate functionality strictly within overloaded operators unless
you’re 100% sure that your code will be consumed by .NET languages that do support operator
overloading.

In the next chapter, I’ll cover the intricacies and tricks involved in creating exception-safe and
exception-neutral code in the .NET Framework.

CHAPTER 6 ■ OVERLOADING OPERATORS

180

C H A P T E R 7

■ ■ ■

181

Exception Handling and
Exception Safety

The CLR contains strong support for exceptions. Exceptions can be created and thrown at a point where
code execution cannot continue because of some exceptional condition (usually a method failure or an
invalid state). Writing exception-safe code is a difficult art to master. It would be a mistake to assume
that the only tasks required when writing exception-safe code are simply throwing exceptions when an
error occurs and catching them at some point. Such a view of exception-safe code is shortsighted and
will lead you down a path of despair. Instead, exception-safe coding means guaranteeing the integrity of
the system in the face of exceptions. When an exception is thrown, the runtime will iteratively unwind
the stack while cleaning up. Your job as an exception-safe programmer is to structure your code in such
a way that the integrity of the state of your objects is not compromised as the stack unwinds. That is the
true essence of exception-safe coding techniques.

In this chapter, I will show you how the CLR handles exceptions and the mechanics involved with
handling exceptions. However, there is more to exception handling than just that. For example, I’ll
describe which areas of code should handle exceptions as well as pitfalls to avoid when implementing
exception handling. Most importantly, I will show you how writing exception-safe code may not even
involve handling exceptions at all. Such code is typically called exception-neutral code. It may sound
surprising, but read on for all of the details.

How the CLR Treats Exceptions
Once an exception is thrown, the CLR begins the process of unwinding the execution stack iteratively,
frame by frame.1 As it does so, it cleans up any objects that are local to each stack frame. At some point, a
frame on the stack could have an exception handler registered for the type of exception thrown. Once
the CLR reaches that frame, it invokes the exception handler to remedy the situation. If the stack
unwinds completely and a handler is not found for the exception thrown, then the unhandled-exception
event for the current application domain may be fired and the application could be aborted.

1 If you’re not familiar with the term stack frame, you may want to reference
http://en.wikipedia.org/wiki/Stack_frame. In short, as each method is called throughout the execution of a
program, a frame is built on the stack that contains the passed parameters and any local parameters to the method.
The frame is deleted upon return from the method. However, as the method calls other methods, and so on, new
frames are stacked on top of the current frame, thus implementing a nested call-frame structure.

http://en.wikipedia.org/wiki/Stack_frame

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

182

Mechanics of Handling Exceptions in C#
If you’ve ever used exceptions in other C-style languages such as C++, Java, or even C/C++ using the
Microsoft structured exception-handling extensions (__try/__catch/__finally), then you’re already
familiar with the basic syntax of exceptions in C#. In that case, you may find yourself skimming the next
few sections or treating the material as a refresher. I’ve tried to point out any areas that are significantly
different from the other C-style languages in the process.

Throwing Exceptions
The act of throwing an exception is actually quite easy. You simply execute a throw statement whose
parameter is the exception you would like to throw. For example, suppose you have written a custom
collection class that allows users to access items by index, and you would like to notify users when an
invalid index is passed as a parameter. You could throw an ArgumentOutOfRange exception, as in the
following code:

public class MyCollection
{
 public object GetItem(int index) {
 if(index < 0 || index >= count) {
 throw new ArgumentOutOfRangeException();
 }

 // Do other useful stuff here
 }

 private int count;
}

The runtime can also throw exceptions as a side effect to code execution. An example of a system-
generated exception is NullReferenceException, which occurs if you attempt to access a field or call a
method on an object when, in fact, the reference to the object doesn’t exist.

Changes with Unhandled Exceptions Starting with .NET 2.0
When an exception is thrown, the runtime begins to search up the stack for a matching catch block for
the exception. As it walks up the execution stack, it unwinds the stack at the same time, cleaning up each
frame along the way.

If the search ends in the last frame for the thread, and it still finds no handler for the exception, the
exception is considered unhandled at that point. What happens next depends on what version of the
.NET Framework your code uses.

■ Note You can install an unhandled-exception filter by registering a delegate with

AppDomain.UnhandledException. When an unhandled exception comes up through the stack, this delegate will

be called and will receive an instance of UnhandledExceptionEventArgs.

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

183

■ Note The CLR translates unhandled exceptions passing through static constructors. I’ll cover that in more detail

in the section titled “Exceptions Thrown in Static Constructors.”

In .NET 1.1, the CLR designers decided to swallow certain unhandled exceptions in the pursuit of
greater stability. For example, if a finalizer throws an exception in .NET 1.1 instead of aborting the
finalizer thread and the process, the exception is swallowed and not allowed to kill the finalizer thread or
terminate the process. Similarly, if an unhandled exception percolates up in a thread other than the
main thread, that thread is terminated without affecting the rest of the process. In a thread-pool thread,
the exception is swallowed and the thread is returned to the pool, which is behavior that is similar to
exception handling in the finalizer thread. If an unhandled exception propagates up from the main
thread, then it behaves as expected, and either the process is terminated or the JIT debugging dialog is
displayed, asking the user what to do.

This behavior sounds good in concept, but, in reality, it gives the opposite of the desired result.
Instead of providing greater stability, systems become unstable because code runs in a nondeterministic
state. For example, consider a finalizer that does some crucial work. Suppose that halfway through that
work, an exception is thrown. The second half of the work in the finalizer never runs. Now, the system is
in a potentially unstable, half-baked state. Everything continues to run normally, although the state of
the system could be far from normal. In practice, this causes great instability because the sources of the
errors are hard to find because the exceptions are swallowed. Debugging these problems is extremely
difficult because the point in time where the exceptional condition occurred is long before you typically
notice the resulting instability.

.NET 2.0 solves this problem by requiring that any unhandled exception, except
AppDomainUnloadException and ThreadAbortException, causes the thread to terminate. It sounds rude,
but, in reality, this is the behavior you should want from an unhandled exception. After all, it’s an
unhandled exception. Now that the thread terminates as it should, a big red flag is raised at the point of
the exception that allows you to find the problem immediately and fix it. This is always a good thing. You
always want errors to present themselves as soon as possible; never swallow exceptions and just let the
system keep running as if everything were normal.

■ Note If you really want the unhandled-exception behavior to emulate the .NET 1.1 behavior, you can request

that by adding the following option to the application’s configuration file.

<system>
 <runtime>
 <legacyUnhandledExceptionPolicy enabled="1"/>
 </runtime>
</system>

Syntax Overview of the try, catch, and finally Statements
The code within a try block is guarded against exceptions such that, if an exception is thrown, the
runtime searches for a suitable catch block to handle the exception. Whether a suitable catch block

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

184

exists or not, if a finally block is provided, the finally block is always executed no matter how
execution flow leaves the try block. Let’s look at an example of a C# try statement:

using System;
using System.Collections;
using System.Runtime.CompilerServices;

// Disable compiler warning: CS1058
[assembly: RuntimeCompatibility(WrapNonExceptionThrows = false)]

public class EntryPoint
{
 static void Main() {
 try {
 ArrayList list = new ArrayList();
 list.Add(1);

 Console.WriteLine("Item 10 = {0}", list[10]);
 }
 catch(ArgumentOutOfRangeException x) {
 Console.WriteLine("=== ArgumentOutOfRangeException"+
 " Handler ===");
 Console.WriteLine(x);
 Console.WriteLine("=== ArgumentOutOfRangeException"+
 " Handler ===\n\n");
 }
 catch(Exception x) {
 Console.WriteLine("=== Exception Handler ===");
 Console.WriteLine(x);
 Console.WriteLine("=== Exception Handler ===\n\n");
 }
 catch {
 Console.WriteLine("=== Unexpected Exception" +
 " Handler ===");
 Console.WriteLine("An exception I was not" +
 " expecting...");
 Console.WriteLine("=== Unexpected Exception" +
 " Handler ===");
 }
 finally {
 Console.WriteLine("Cleaning up...");
 }
 }
}

Once you see the code in the try block, you know it is destined to throw an ArgumentOutOfRange
exception. Once the exception is thrown, the runtime begins searching for a suitable catch clause that is
part of this try statement and matches the type of the exception as best as possible. Clearly, the first
catch clause is the one that fits best. Therefore, the runtime will immediately begin executing the
statements in the first catch block. Had I not been interested in the actual exception contents, I could
have left off the declaration of the exception variable x in the catch clause and only declared the type.
But in this case, I wanted to demonstrate that exception objects in C# produce a nice stack trace, among
other data, that can be useful during debugging. While generating the output for this chapter, I compiled

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

185

the samples without debugging symbols turned on. However, if you turn on debugging symbols, you’ll
notice that the stack trace also includes file and line numbers of the various levels in the stack.

The second catch clause will catch exceptions of the general Exception type. Should the code in the
try block throw an exception derived from System.Exception other than ArgumentOutOfRangeException,
then this catch block would handle it. In C#, multiple catch clauses associated with a single try block
must be ordered such that more specific exception types are listed first. The C# compiler will simply not
compile code in which more general catch clauses are listed before more specific catch clauses. You can
verify this by swapping the order of the first two catch clauses in the previous example in which case you
would get the following compiler error:

error CS0160: A previous catch clause already catches all exceptions of this or of a super
type ('System.Exception')

In C#, every exception that you can possibly throw must derive from System.Exception. I declared a
catch clause that traps exceptions of type System.Exception specifically, but what’s the story with the
third and last catch clause? Even though it is impossible to throw an exception of any type not derived
from System.Exception in the C# language, it is not impossible in the CLR. (For example, you can throw
an exception of any type in C++.) Therefore, if you wrote ArrayList in a language that allows this, it’s
possible that the code could throw a not-very-useful type, such as System.Int32. It sounds strange, but it
is possible. In this case, you can catch such an exception in C# by using a catch clause with neither an
explicit exception type nor a variable. Unfortunately, there’s no easy way to know what type the thrown
exception is. Also, a try statement can have, at most, one such general catch clause.

■ Note Starting with .NET 2.0, the situation regarding general catch clauses is a little different than in .NET 1.1. It

features a new attribute, RuntimeCompatibilityAttribute, that you can attach to your assembly. The C# and

Visual Basic compilers that target .NET 2.0 apply this property by default. It tells the runtime to wrap exceptions

that are not derived from System.Exception inside an exception of type RuntimeWrappedException, which is

derived from System.Exception. This is handy, because it allows your C# code to access the thrown exception.

Previously, you could not access the thrown exception, because it was caught by a general, parameterless catch

clause. You can access the actual thrown exception type via the RuntimeWrappedException.WrappedException

property. If your code contains a parameterless catch clause, the compiler emits a warning of type CS1058 by

default, unless you disable the attribute as I did in the previous example.

Last of all, there is the finally block. No matter how the try block is exited, whether by reaching the
end point of the block or via an exception or a return statement, the finally block will always execute. If
there is a suitable catch block and a finally block associated with the same try block, the catch block
executes before the finally block. You can see this by looking at the output of the previous code
example, which looks like the following:

=== ArgumentOutOfRangeException Handler ===

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

186

System.ArgumentOutOfRangeException: Index was out of range. Must be

non-negative and less than the size of the collection.

Parameter name: index

 at System.Collections.ArrayList.get_Item(Int32 index)

 at Entrypoint.Main()

=== ArgumentOutOfRangeException Handler ===

Cleaning up...

Rethrowing Exceptions and Translating Exceptions
Within a particular stack frame, you may find it necessary to catch all exceptions, or a specific subset of
exceptions, long enough to do some cleanup and then rethrow the exception in order to let it continue
to propagate up the stack. To do this, you use the throw statement with no parameter:

using System;
using System.Collections;

public class Entrypoint
{
 static void Main() {
 try {
 try {
 ArrayList list = new ArrayList();
 list.Add(1);

 Console.WriteLine("Item 10 = {0}", list[10]);
 }
 catch(ArgumentOutOfRangeException) {
 Console.WriteLine("Do some useful work and" +
 " then rethrow");

 // Rethrow caught exception.
 throw;
 }
 finally {
 Console.WriteLine("Cleaning up...");
 }
 }

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

187

 catch {
 Console.WriteLine("Done");
 }
 }
}

Note that any finally blocks associated with the exception frame that the catch block is associated
with will execute before any higher-level exception handlers are executed. You can see this in the output
from the code:

Do some useful work and then rethrow

Cleaning up...

Done

In the “Achieving Exception Neutrality” section, I introduce some techniques that can help you
avoid having to catch an exception, do cleanup, and then rethrow the exception. Such a work flow is
cumbersome, because you must be careful to rethrow the exception appropriately. If you accidentally
forget to rethrow, things could get ugly, because you would not likely be remedying the exceptional
situation. The techniques that I show you will help you to achieve a goal where the only place to
introduce a catch block is at the point where correctional action can occur.

Sometimes, you may find it necessary to “translate” an exception within an exception handler. In
this case, you catch an exception of one type, but you throw an exception of a different, possibly more
precise, type in the catch block for the next level of exception handlers to deal with. Consider the
following example:

using System;
using System.Collections;

public class MyException : Exception
{
 public MyException(String reason, Exception inner)
 :base(reason, inner) {
 }
}

public class Entrypoint
{
 static void Main() {
 try {
 try {
 ArrayList list = new ArrayList();
 list.Add(1);

 Console.WriteLine("Item 10 = {0}", list[10]);
 }
 catch(ArgumentOutOfRangeException x) {
 Console.WriteLine("Do some useful work" +

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

188

 " and then rethrow");
 throw new MyException("I'd rather throw this",
 x) ;
 }
 finally {
 Console.WriteLine("Cleaning up...");
 }
 }
 catch(Exception x) {
 Console.WriteLine(x);
 Console.WriteLine("Done");
 }
 }
}

One special quality of the System.Exception type is its ability to contain an inner exception reference
via the Exception.InnerException property. This way, when the new exception is thrown, you can
preserve the chain of exceptions for the handlers that process them. I recommend you use this useful
feature of the standard exception type of C# when you translate exceptions. The output from the
previous code is as follows:

Do some useful work and then rethrow

Cleaning up...

MyException: I’d rather throw this —-> System.ArgumentOutOfRangeException: ~CCC

Index was out of range. ~CCC

Must be non-negative and less than the size of the collection.

Parameter name: index

 at System.Collections.ArrayList.get_Item(Int32 index)

 at Entrypoint.Main()

 —- End of inner exception stack trace —-

 at Entrypoint.Main()

Done

Keep in mind that you should avoid translating exceptions if possible. The more you catch and then
rethrow within a stack, the more you insulate the code that handles the exception from the code that
throws the exception. That is, it’s harder to correlate the point of catch to the original point of throw.

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

189

Yes, the Exception.InnerException property helps mitigate some of this disconnect, but it still can be
tricky to find the root cause of a problem if there are exception translations along the way.

Exceptions Thrown in finally Blocks
It is possible, but highly inadvisable, to throw exceptions within a finally block. The following code
shows an example:

using System;
using System.Collections;

public class Entrypoint
{
 static void Main() {
 try {
 try {
 ArrayList list = new ArrayList();
 list.Add(1);

 Console.WriteLine("Item 10 = {0}", list[10]);
 }
 finally {
 Console.WriteLine("Cleaning up...");
 throw new Exception("I like to throw");
 }
 }
 catch(ArgumentOutOfRangeException) {
 Console.WriteLine("Oops! Argument out of range!");
 }
 catch {
 Console.WriteLine("Done");
 }
 }
}

The first exception, ArgumentOutOfRangeException in this case, is simply lost, and the new exception
is propagated up the stack. Clearly, this is not desirable. You never want to lose track of exceptions,
because it becomes virtually impossible to determine what caused an exception in the first place.

Exceptions Thrown in Finalizers
C# destructors are not really deterministic destructors, but rather CLR finalizers. Finalizers are run in the
context of the finalizer thread, which is effectively an arbitrary thread context. If the finalizer were to
throw an exception, the CLR might not know how to handle the situation and might simply shut down
the thread (and the process). Consider the following code:

using System;

public class Person
{
 ~Person() {

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

190

 Console.WriteLine("Cleaning up Person...");
 Console.WriteLine("Done Cleaning up Person...");
 }
}

public class Employee : Person
{
 ~Employee() {
 Console.WriteLine("Cleaning up Employee...");
 object obj = null;

 // The following will throw an exception.
 Console.WriteLine(obj.ToString());
 Console.WriteLine("Done cleaning up Employee...");
 }
}

public class Entrypoint
{
 static void Main() {
 Employee emp = new Employee();
 emp = null;
 }
}

The output from executing this code is as follows:

Cleaning up Employee...

Unhandled Exception: System.NullReferenceException: Object reference not set ~CCC

to an instance of an object.

 at Employee.Finalize()

Cleaning up Person...

Done Cleaning up Person...

You will notice slightly different behavior with this example between the .NET 1.1 and .NET 2.0 and
later runtimes. In .NET 1.1, the exception is swallowed while it is logged in the console, and execution
then continues. Starting with .NET 2.0, your development environment presents you with the familiar
JIT debugger dialog, asking if you would like to debug the application. The problem is, you have a limited
amount of time within which to respond before the runtime aborts your application. If you haven’t
already, be sure to read about how .NET 1.1 and .NET 2.0 and later treat unhandled exceptions
differently in this chapter’s previous section, “Changes with Unhandled Exceptions in .NET 2.0.”

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

191

You should avoid knowingly throwing exceptions in finalizers at all costs, because you could abort
the process. As a final note, be sure to read about all of the pros and cons of creating a finalizer in the
first place in Chapter 13.

Exceptions Thrown in Static Constructors
If an exception is thrown and there is no handler in the stack, so that the search for the handler ends up
in the static constructor for a type, the runtime handles this case specially. It translates the exception
into a System.TypeInitializationException and throws that instead. Before throwing the new
exception, it sets the InnerException property of the TypeInitializationException instance to the
original exception. That way, any handler for type initialization exceptions can easily find out exactly
why things failed.

Translating such an exception makes sense because constructors cannot, by their very nature, have
a return value to indicate success or failure. Exceptions are the only mechanism you have to indicate
that a constructor has failed. More importantly, because the system calls static constructors at system-
defined times,2 it makes sense for them to use the TypeInitializationException type in order to be more
specific about when something went wrong. For example, suppose you have a static constructor that can
potentially throw an ArgumentOutOfRangeException. Now, imagine the frustration users would have if
your exception propagated out to the enclosing thread at some seemingly random time, because the
exact moment of a static constructor call is system-defined. It could appear that the ArgumentOutOfRange
exception materialized out of thin air. Wrapping your exception inside a TypeInitializationException
takes a little of the mystery out of it and tips off users, or hopefully the developer, that the problem
happened during type initialization.

The following code shows an example of what a TypeInitializationException with an inner
exception looks like:

using System;
using System.IO;

class EventLogger
{
 static EventLogger() {
 eventLog = File.CreateText("logfile.txt");

 // Statement below will throw an exception.
 strLogName = (string) strLogName.Clone();
 }

 static public void WriteLog(string someText) {
 eventLog.Write(someText);
 }

 static private StreamWriter eventLog;
 static private string strLogName;
}

2 The system could call static constructors at type load time or just prior to a static member access, depending on how
the CLR is configured for the current process.

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

192

public class EntryPoint
{
 static void Main() {
 EventLogger.WriteLog("Log this!");
 }
}

When you run this example, the output looks like the following:

Unhandled Exception: System.TypeInitializationException:

The type initializer for ‘EventLogger’ threw

an exception. —-> System.NullReferenceException: Object reference not set ~CCC

to an instance of an object.

 at EventLogger..cctor()

 —- End of inner exception stack trace —-

 at EntryPoint.Main()

Notice that along with describing that the outermost exception is of type
TypeInitializationException, the output also shows that the inner exception, which started it all, is a
NullReferenceException.

Who Should Handle Exceptions?
Where should you handle exceptions? You can find the answer by applying a variant of the Expert
pattern, which states that work should be done by the entity that is the expert with respect to that work.
That is a circuitous way of saying that you should catch the exception at the point where you can actually
handle it with some degree of knowledge available to remedy the exceptional situation. Sometimes, the
catching entity could be close to the point of the exception generation within the stack frame. The code
could catch the exception, then take some corrective action, and then allow the program to continue to
execute normally. In other cases, the only reasonable place to catch an exception is at the entry-point
Main method, at which point you could either abort the process after providing some useful data, or reset
the process as if the application were just restarted. The bottom line is that you should figure out the
best way to recover from exceptions, if that is possible, and the best place to do so based upon where it
makes the most sense to do it. Always keep in mind that, in many cases, it is impossible to recover from
an exceptional condition within the scope of the running application.

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

193

Avoid Using Exceptions to Control Flow
It can be tempting to use exceptions to manage the flow of execution in complex methods. This is never
a good idea, for a couple of reasons. First, exceptions are generally expensive to generate and handle.
Therefore, if you were to use them to control execution flow within a method that is at the heart of your
application, your performance would likely degrade. Second, it trivializes the exceptional nature of
exceptions in the first place. The whole point of exceptions is to indicate an exceptional condition in a
way that can be handled or reported cleanly.

Historically, programmers have been rather lazy when it comes to handling error conditions. How
many times have you seen code where the programmer never even bothered to check the return value of
an API function or a method call? Such lackadaisical approaches to error handling can lead to headaches
in a hurry. Exceptions provide a syntactically succinct and uniform way to indicate and handle error
conditions without littering your code with a plethora of if blocks and other traditional (nonexception-
based) error-handling constructs. At the same time, the runtime supports exceptions, and it does a lot of
work on your behalf when exceptions are thrown. Unwinding the stack is no trivial task in itself. Lastly,
the point where an exception is thrown and the point where it’s handled can be disjointed and have no
connection to each other. Thus, it can be difficult when reading code to determine where an exception
will be caught and handled. These reasons alone are enough for you to stick to traditional techniques
when managing normal execution flow.

■ Note You can find an article, “The Cost of Exceptions,” on Rico Mariani’s blog at

http://blogs.msdn.com/ricom/archive/2003/12/19/44697.aspx. Rico is an expert on performance-related

issues in the CLR.

Achieving Exception Neutrality
When exceptions were first added to C++, many developers were excited to be able to throw them, catch
them, and handle them. In fact, a common misconception at the time was that exception handling
simply consisted of strategically placing try statements throughout the code and tossing in an
occasional throw when necessary. Over time, the developer community realized that dropping try
statements all over the place made their code difficult to read when, most of the time, the only thing they
wanted to do was clean up gracefully when an exception was thrown and allow the exception to keep
propagating up the stack. Even worse, it made the code hard to write and difficult to maintain. Code that
doesn’t handle exceptions but is expected to behave properly in the face of exceptions is generally called
exception-neutral code.

Clearly, there had to be a better way to write exception-neutral code without having to rely on
writing try statements all over the place. In fact, the only place you need a try statement is the point at
which you perform any sort of system recovery or logging in response to an exception. Over time,
everyone started to realize that writing try statements was, in fact, the least significant part of writing
exception-safe and exception-neutral code. Generally, the only code that should catch an exception is
code that knows specifically how to remedy the situation. That code could even be in the main entry
point and could merely reset the system to a known start state, effectively restarting the application.

By exception-neutral code, I mean code that doesn’t really have the capability to specifically handle
the exception but that must be able to handle exceptional conditions gracefully. Usually, this code sits
somewhere on the stack in between the code that throws the exception and the code that catches the
exception, and it must not be adversely affected by the exception passing through on its way up the

http://blogs.msdn.com/ricom/archive/2003/12/19/44697.aspx

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

194

stack. At this point, some of you are probably starting to think about the throw statement with no
parameters that allows you to catch an exception, do some work, and then rethrow the exception.
However, I want to introduce you to an arguably cleaner technique that allows you to write exception-
neutral code without using a single try statement and that also produces code that is easier to read and
more robust.

Basic Structure of Exception-Neutral Code
The general idea behind writing exception-neutral code is similar to the idea behind creating
commit/rollback code. You write such code with the guarantee that if it doesn’t finish to completion, the
entire operation is reverted with no change in state to the system. The changes in state are committed
only if the code reaches the end of its execution path. You should code your methods like this in order
for them to be exception-neutral. If an exception is thrown before the end of the method, the state of the
system should remain unchanged. The following shows how you should structure your methods in order
to achieve these goals:

void ExceptionNeutralMethod()
{
 //——————————
 // All code that could possibly throw exceptions is in this
 // first section. In this section, no changes in state are
 // applied to any objects in the system including this.
 //——————————

 //——————————
 // All changes are committed at this point using operations
 // strictly guaranteed not to throw exceptions.
 //——————————
}

As you can see, this technique doesn’t work unless you have a set of operations that are guaranteed
never to throw exceptions. Otherwise, it would be impossible to implement the commit/rollback
behavior as illustrated. Thankfully, the .NET runtime does provide quite a few operations that the
specification guarantees will never throw exceptions.

Let’s start by building an example to describe what I mean. Suppose you have a system or an
application where you’re managing employees. For the sake of argument, say that once an employee is
created and represented by an Employee object, it must exist within one and only one collection in the
system. Currently, the only two collections in the system are one to represent active employees and one
to represent terminated employees. Additionally, the collections exist within an EmployeeDatabase
object, as shown in the following example:

using System.Collections;

class EmployeeDatabase
{
 private ArrayList activeEmployees;
 private ArrayList terminatedEmployees;
}

The example uses collections of the ArrayList type, which is contained in the System.Collections
namespace. A real-world system would probably use something more useful, such as a database.

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

195

Now, let’s see what happens when an employee quits. Naturally, you need to move that employee
from the activeEmployees to the terminatedEmployees collection. A naïve attempt at such a task could
look like the following:

using System.Collections;

class Employee
{
}

class EmployeeDatabase
{
 public void TerminateEmployee(int index) {
 object employee = activeEmployees[index];
 activeEmployees.RemoveAt(index);
 terminatedEmployees.Add(employee);
 }

 private ArrayList activeEmployees;
 private ArrayList terminatedEmployees;
}

This code looks reasonable enough. The method that does the move assumes that the calling code
somehow figured out the index for the current employee in the activeEmployees list prior to calling
TerminateEmployee. It copies a reference to the designated employee, removes that reference from
activeEmployees, and adds it to the terminatedEmployees collection. So what’s so bad about this method?

Look at the method closely, and think about where exceptions could be generated. The fact is, an
exception could be thrown upon execution of any of the method calls in this method. If the index is out
of range, you would expect to see ArgumentOutOfRange exceptions thrown from the first two lines. Of
course, if the range exception is thrown from the first line, execution would never see the second line,
but you get the idea. And, if memory is scarce, it’s possible that the call to Add could fail with an
exception. The danger comes from the possibility of the exception being thrown after the state of the
system is modified. Suppose the index passed in is valid. The first two lines will likely succeed. However,
if an exception is thrown while trying to add the employee to terminatedEmployees, then the employee
will get lost in the system. So, what can you do to fix the glitch?

An initial attempt could use try statements to avoid damage to the system state. Consider the
following example.

using System.Collections;

class Employee
{
}

class EmployeeDatabase
{
 public void TerminateEmployee(int index) {
 object employee = null;
 try {
 employee = activeEmployees[index];
 }
 catch {
 // oops! We must be out of range here.

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

196

 }

 if(employee != null) {
 activeEmployees.RemoveAt(index);

 try {
 terminatedEmployees.Add(employee);
 }
 catch {
 // oops! Allocation may have failed.
 activeEmployees.Add(employee);
 }
 }
 }

 private ArrayList activeEmployees;
 private ArrayList terminatedEmployees;
}

Look how quickly the code becomes hard to read and understand, thanks to the try statements. You
have to pull the employee variable declaration to outside of the try statement and initialize it to null.
Once you attempt to get the reference to the employee instance, you have to check the reference for null
to make sure you actually got a valid reference. Once that succeeds, you can proceed to add the employee
to the terminatedEmployees list. However, if that fails for some reason, you need to put the employee back
into the activeEmployees list. Also, notice that the call to RemoveAt is not inside of a try block. That’s ok,
because if that fails, no state has been modified at that point and we have no need to catch that.

You may have already spotted a multitude of problems with this approach. First of all, what happens
if you have a failure to add the employee back into the activeEmployees collection? Do you just fail at that
point? That’s unacceptable, because the state of the system has changed already. Second, you probably
need to return an error code from this method to indicate why it may have failed. That’s something I
didn’t do in the previous code. The method can’t just return happily as if everything went smoothly
when, in fact, the action failed to complete. Third, the code is just plain ugly and hard to read. Lastly, a
variety of problems still exist with this code that I won’t waste time going into.

So what’s the solution? Well, think of what you attempted to do with the try statements. You want to
do the actions that possibly throw exceptions, and if they fail, revert to the previous state. You can
actually perform a variation on this theme without try statements that goes like this: Attempt all of the
actions in the method that could throw exceptions up front, and once you get past that point, commit
those actions using operations that can’t throw exceptions.

■ Note The C++ community has accepted these techniques, thanks, in part, to the excellent works published by

Herb Sutter in his Exceptional C++ series (Boston, MA: Addison-Wesley Professional). There is no good reason

why you cannot apply the same techniques wholesale in the C# world.

Let’s see what this method would look like:

using System.Collections;

class Employee

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

197

{
}

class EmployeeDatabase
{
 public void TerminateEmployee(int index) {
 // Clone sensitive objects.
 ArrayList tempActiveEmployees =
 (ArrayList) activeEmployees.Clone()3;
 ArrayList tempTerminatedEmployees =
 (ArrayList) terminatedEmployees.Clone();

 // Perform actions on temp objects.
 object employee = tempActiveEmployees[index];
 tempActiveEmployees.RemoveAt(index);
 tempTerminatedEmployees.Add(employee);

 // Now commit the changes.
 ArrayList tempSpace = null;
 ListSwap(ref activeEmployees,
 ref tempActiveEmployees,
 ref tempSpace);
 ListSwap(ref terminatedEmployees,
 ref tempTerminatedEmployees,
 ref tempSpace);
 }

 void ListSwap(ref ArrayList first,
 ref ArrayList second,
 ref ArrayList temp) {
 temp = first;
 first = second;
 second = temp;
 temp = null;
 }

 private ArrayList activeEmployees;
 private ArrayList terminatedEmployees;
}

First, notice the absence of any try statements. The nice thing about their absence is that the
method doesn’t need to return a result code. The caller can expect the method to either work as
advertised or throw an exception otherwise. The only two lines in the method that affect the state of the
system are the last two calls to ListSwap. ListSwap was introduced to allow you to swap the references of
the ArrayList objects in the EmployeeDatabase with the references to the temporary modified copies that
you made.

3 Be sure to read the section in Chapter 13 regarding ICloneable and how you probably should avoid it in the first
place.

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

198

How is this technique so much better when it appears to be so much less efficient? There are two
tricks here. The obvious one is that, no matter where in this method an exception is thrown, the state of
the EmployeeDatabase will remain unaffected. But what if an exception is thrown inside ListSwap? Ah!
Here you have the second trick: ListSwap will never throw an exception. One of the most important
features required in order to create exception-neutral code is that you have a small set of operations that
are guaranteed not to fail under normal circumstances. No, I’m not including the case of some bozo
pulling the plug on the computer in the middle of a ListSwap call, nor am I considering the case of a
catastrophic earthquake or tornado at that point either. Let’s see why ListSwap won’t throw any
exceptions.

In order to create exception-neutral code, it’s imperative that you have a handful of operations,
such as an assignment operation, that are guaranteed not to throw. Thankfully, the CLR provides such
operations. The assignment of references, when no conversion is required, is one example of a
nonthrowing operation. Every reference to an object is stored in a location, and that location has a type
associated with it. However, once the locations exist, copying a reference from one to the other is a
simple memory copy to already allocated locations, just like a regular pointer copy in C++, and that
cannot fail. That’s great for when you’re copying references of one type to references of the same type.

But what happens when a conversion is necessary? Can that throw an exception? The C# standard
specifies that conforming implicit conversion operators will never throw an exception. If your
assignment invokes an implicit conversion, you’re covered, assuming that any custom implicit
conversion operators don’t throw. 4 If you find a custom implicit conversion that throws an exception, I
suggest you throw the C# specification at the author immediately. However, explicit conversions, in the
form of casts, can throw. The bottom line is, a simple assignment from one reference to another,
whether it requires implicit conversion or not, will not throw.

Simple assignment from one reference location to another is all that ListSwap is doing. After you set
up the temporary ArrayList objects with the desired state, and you’ve gotten to the point of even
executing the ListSwap calls, you’ve arrived at a point where you know that no more exceptions in the
TerminateEmployee method are possible. Now you can make the switch safely. The ArrayList objects in
the EmployeeDatabase object are swapped with the temporary ones. Once the method completes, the
original ArrayList objects are free to be collected by the GC.

One more thing that you may have noticed regarding ListSwap is that the temporary location to
store an ArrayList instance during the swap is allocated outside the ListSwap method and passed in as a
ref parameter. I did this in order to avoid a StackOverflowException inside ListSwap. It’s remotely
possible that, when calling ListSwap, the stack could be running on vapors, and the mere allocation of
another stack slot could fail and generate an exception. Thus, I performed that step outside of the
confines of the ListSwap method. Once execution is inside ListSwap, all the locations are allocated and
ready for use.

This technique, when applied liberally in a system that requires rigid stability, will quickly point out
methods that may be too complex and need to be broken up into smaller functional units. In essence,
this idiom amplifies the complexity of a particular method it is applied to. Therefore, if you find that it
becomes unwieldy and difficult to make the method bulletproof, you should analyze the method and
make sure it’s not trying to do too much work that you could break up into smaller units.

Incidentally, you may find it necessary to make swap operations, similar to ListSwap, atomic in a
multithreaded environment. You could modify ListSwap to use some sort of exclusive lock object, such
as a mutex or a System.Threading.Monitor object. However, you may find yourself inadvertently making
ListSwap capable of throwing exceptions, and that violates the requirements on ListSwap. Thankfully,
the System.Threading namespace offers the Interlocked class to perform these swap operations
atomically, and best of all, the methods are guaranteed never to throw exceptions. The Interlocked class

4 The C# reference explicitly states that custom implicit conversion operators must not throw exceptions.

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

199

provides a generic overload of all of the useful methods, making them very efficient. The generic
Interlocked methods come with a constraint that they only work with reference types. Chapter 12
contains more information on the use of the Interlocked class.

The bottom line is, you should do everything that can possibly throw an exception before modifying
the state of the object being operated on. Once you know you’re past the point of possibly causing any
exceptions, commit the changes using operations that are guaranteed not to throw exceptions.

If you’re tasked to create a robust, real-world system where many people rely on the integrity of the
system, I cannot stress how much this idiom is a must. Sure, it’s not as efficient at runtime as the naïve
approach, and it requires more system resources to succeed effectively, but your clients will prefer the
inefficiency over corrupt data any day. Your colleagues will thank you, too, because resource leaks and
other related glitches caused as a side effect of a thrown exception are tricky to find due to their out-of-
band nature.

Constrained Execution Regions
The example in the previous section demonstrates some of the level of paranoia you must endure in
order to write bulletproof, exception-neutral code. I was so paranoid that a stack overflow would occur
that I allocated the extra space needed by ListSwap before I called the method. You would think that
would take care of all of the issues. Unfortunately, you’d be wrong. In the CLR environment, other
asynchronous exceptions could occur, such as a ThreadAbortException (which I cover in Chapter 12) and
OutOfMemoryException and StackOverflowException exceptions.

For example, what if, during the commit phase of the TerminateEmployee method, the application
domain is shut down, forcing a ThreadAbortException? Or what if, during the first call to ListSwap, the JIT
compiler fails to allocate enough memory to compile the method in the first place? Clearly, these bad
situations are difficult to deal with. In fact, in the .NET 1.1 days, you couldn’t do much to handle these
diabolical situations. However, starting in .NET 2.0, you can use a constrained execution region (CER) or
a critical finalizer.

A CER is a region of code that the CLR prepares prior to executing, so that when the code is needed,
everything is in place and the failure possibilities are mitigated. Moreover, the CLR postpones the
delivery of any asynchronous exceptions, such as ThreadAbortException exceptions, if the code in the
CER is executing. You can perform the magic of CERs using the RuntimeHelpers class in the
System.Runtime.CompilerServices namespace. To create a CER, simply call
RuntimeHelpers.PrepareConstrainedRegions prior to a try statement in your code. The CLR then
examines the catch and finally blocks and prepares them by walking through the call graph and
making sure all methods in the execution path are JIT-compiled and sufficient stack space is available.5
Even though you call PrepareConstrainedRegions prior to a try statement, the actual code within the try
block is not prepared. Therefore, you can use the following idiom for preparing arbitrary sections of
code by wrapping the code in a finally block within a CER:

RuntimeHelpers.PrepareConstrainedRegions();
try {} finally
{

5 Incidentally, virtual methods and delegates pose a problem, because the call graph is not deducible at preparation
time. However, if you know the target of the virtual method or delegate, you can prepare it explicitly by calling
RuntimeHelpers.PrepareDelegate. I recommend reading Stephen Toub’s Keep Your Code Running with the
Reliability Features of the .NET Framework, available at
http://msdn.microsoft.com/msdnmag/issues/05/10/Reliability/default.aspx.

http://msdn.microsoft.com/msdnmag/issues/05/10/Reliability/default.aspx

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

200

 // critical code goes here
}

Let’s look at how you can modify the previous example using a CER to make it even more reliable:

using System.Collections;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;

class Employee
{
}

class EmployeeDatabase
{
 public void TerminateEmployee(int index) {
 // Clone sensitive objects.
 ArrayList tempActiveEmployees =
 (ArrayList) activeEmployees.Clone();
 ArrayList tempTerminatedEmployees =
 (ArrayList) terminatedEmployees.Clone();

 // Perform actions on temp objects.
 object employee = tempActiveEmployees[index];
 tempActiveEmployees.RemoveAt(index);
 tempTerminatedEmployees.Add(employee);

 RuntimeHelpers.PrepareConstrainedRegions();
 try {} finally {
 // Now commit the changes.
 ArrayList tempSpace = null;
 ListSwap(ref activeEmployees,
 ref tempActiveEmployees,
 ref tempSpace);
 ListSwap(ref terminatedEmployees,
 ref tempTerminatedEmployees,
 ref tempSpace);
 }
 }

 [ReliabilityContract(Consistency.WillNotCorruptState,
 Cer.Success)]
 void ListSwap(ref ArrayList first,
 ref ArrayList second,
 ref ArrayList temp) {
 temp = first;
 first = second;
 second = temp;
 temp = null;
 }

 private ArrayList activeEmployees;
 private ArrayList terminatedEmployees;

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

201

}

Notice that the commit section of the TerminateEmployee method is wrapped inside a CER. At
runtime, prior to executing that code, the CLR prepares the code by also preparing the ListSwap method
and ensuring that the stack can handle the work. Of course, this preparation operation may fail, and
that’s OK, because you’re not yet into the code that commits the changes. Notice the addition of the
ReliabilityContractAttribute to the ListSwap method. This informs the runtime of what sorts of
guarantees the ListSwap method adheres to so that the CER can be formed properly. You could also
attach a ReliabilityContractAttribute to the TerminateEmployee method, but it really is only useful for
code executed inside a CER. If you want to attach this attribute to the TerminateEmployee method so that
you can use it in a CER created elsewhere, you could add the following attribute:

[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]

This ReliabilityContractAttribute expresses the goal that you set out to achieve with
TerminateEmployee in the first place. Because the Consistency is set to
Consistency.WillNotCorruptState, then even though the method may fail, if it does, the state of the
system won’t be corrupted. Other values you could provide are Consistency.MayCorruptProcess,
Consistency.MayCorruptAppDomain, and Consistency.MayCorruptInstance. Their names are self
descriptive of what they mean and you can read more about these in the MSDN documentation, but for
the most robust software, it should be obvious that you will want your methods to adhere to the
Consistency.WillNotCorruptState reliability contract.

■ Note Even though the CLR guarantees that asynchronous exceptions won’t be injected into the thread while

inside a CER, it doesn’t provide any guarantee about suppressing all exceptions. It only suppresses the ones that

are outside of your control. That means that if you create objects within a CER, you must be prepared to deal with

OutOfMemoryException or any other such code-induced exception.

Critical Finalizers and SafeHandle
Critical finalizers are similar to CERs, in that the code within them is protected from asynchronous
exceptions and other such dangers caused by running in a virtual execution system that are outside your
control. To mark your object as having a critical finalizer, simply derive from CriticalFinalizerObject.
By doing so, you guarantee your object to have a finalizer that runs within the context of a CER, and
therefore, must abide by all of the rules imposed by a CER. Additionally, the CLR will execute critical
finalizers after it finishes dealing with all other noncritical finalizable objects.

In reality, it’s rare that you’ll ever need to create a critical finalizable object. Critical finalizable
objects are used most commonly in interop code. You can usually get the behavior you need by deriving
from SafeHandle because often you end up holding on to native handles in interop code. SafeHandle is a
critical tool when creating native interop code through P/Invoke or COM interop, because it allows you
to guarantee that you won’t leak any unmanaged resources from within the CLR. Prior to .NET 2.0, this
was not possible. In the .NET 1.1 days, you would typically represent an opaque native handle type with
a managed IntPtr type. This works just fine, except that you cannot guarantee that the underlying

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

202

resource will be cleaned up in the event of an asynchronous exception such as a ThreadAbortException.
As usual, by adding an extra level of indirection6 in the form of a SafeHandle, you can mitigate these
problems in .NET 2.0.

■ Caution Before you jump to the conclusion that you need to create a SafeHandle derivative, be sure to check if

one of the supplied SafeHandle derivatives in the .NET Framework will work for you. For example, if you’re

creating code to talk directly to a device driver by calling the Win32 DeviceIoControl function via P/Invoke, then

the SafeFileHandle type is sufficient for holding the handle that you open directly on the driver.

When creating your own SafeHandle derived class, you must follow a short list of steps. As an
example, let’s create a SafeHandle derived class, SafeBluetoothRadioFindHandle, to enumerate through
the Bluetooth radios on a system, assuming there are any. The pattern for enumerating Bluetooth radios
in native code is quite simple and a common theme used throughout the Win32 API. You call the Win32
BluetoothFindFirstRadio function, and if it succeeds, it returns the first radio handle through an out
parameter and an enumeration handle through the return value. You can find any additional radios by
calling the Win32 function BluetoothFindNextRadio while passing the enumeration handle obtained
from BluetoothFindFirstRadio. When finished, you must be sure to call the Win32 function
BluetoothFindRadioClose on the enumeration handle. Consider the following code:

using System;
using System.Runtime.InteropServices;
using System.Runtime.ConstrainedExecution;
using System.Security;
using System.Security.Permissions;
using System.Text;
using Microsoft.Win32.SafeHandles;

//
// Matches Win32 BLUETOOTH_FIND_RADIO_PARAMS
//
[StructLayout(LayoutKind.Sequential)]
class BluetoothFindRadioParams
{
 public BluetoothFindRadioParams() {
 dwSize = 4;
 }
 public UInt32 dwSize;
}

//

6 Andrew Koenig of C++ fame likes to call this the Fundamental Theorem of Software Engineering—that is, that any
software engineering problem can be solved by adding a level of indirection.

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

203

// Matches Win32 BLUETOOTH_RADIO_INFO
//
[StructLayout(LayoutKind.Sequential,
 CharSet = CharSet.Unicode)]
struct BluetoothRadioInfo
{
 public const int BLUETOOTH_MAX_NAME_SIZE = 248;

 public UInt32 dwSize;
 public UInt64 address;
 [MarshalAs(UnmanagedType.ByValTStr,
 SizeConst = BLUETOOTH_MAX_NAME_SIZE)]
 public string szName;
 public UInt32 ulClassOfDevice;
 public UInt16 lmpSubversion;
 public UInt16 manufacturer;
}

//
// Safe Bluetooth Enumeration Handle
//
[SecurityPermission(SecurityAction.Demand,
 UnmanagedCode = true)]
sealed public class SafeBluetoothRadioFindHandle
 : SafeHandleZeroOrMinusOneIsInvalid
{
 private SafeBluetoothRadioFindHandle() : base(true) { }

 override protected bool ReleaseHandle() {
 return BluetoothFindRadioClose(handle);
 }

 [DllImport("Irprops.cpl")]
 [ReliabilityContract(Consistency.WillNotCorruptState,
 Cer.Success)]
 [SuppressUnmanagedCodeSecurity]
 private static extern bool BluetoothFindRadioClose(
 IntPtr hFind);
}

public class EntryPoint
{
 private const int ERROR_SUCCESS = 0;

 static void Main() {
 SafeFileHandle radioHandle;
 using(SafeBluetoothRadioFindHandle radioFindHandle
 = BluetoothFindFirstRadio(new BluetoothFindRadioParams(),
 out radioHandle)) {
 if(!radioFindHandle.IsInvalid) {
 BluetoothRadioInfo radioInfo = new BluetoothRadioInfo();
 radioInfo.dwSize = 520;
 UInt32 result = BluetoothGetRadioInfo(radioHandle,

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

204

 ref radioInfo);

 if(result == ERROR_SUCCESS) {
 // Let's send the contents of the radio info to the
 // console.
 Console.WriteLine("address = {0:X}",
 radioInfo.address);
 Console.WriteLine("szName = {0}",
 radioInfo.szName);
 Console.WriteLine("ulClassOfDevice = {0}",
 radioInfo.ulClassOfDevice);
 Console.WriteLine("lmpSubversion = {0}",
 radioInfo.lmpSubversion);
 Console.WriteLine("manufacturer = {0}",
 radioInfo.manufacturer);
 }

 radioHandle.Dispose();
 }
 }
 }

 [DllImport("Irprops.cpl")]
 private static extern SafeBluetoothRadioFindHandle
 BluetoothFindFirstRadio([MarshalAs(UnmanagedType.LPStruct)]
 BluetoothFindRadioParams pbtfrp,
 out SafeFileHandle phRadio);

 [DllImport("Irprops.cpl")]
 private static extern UInt32
 BluetoothGetRadioInfo(SafeFileHandle hRadio,
 ref BluetoothRadioInfo pRadioInfo);
}

The crux of this example is SafeBluetoothRadioFindHandle. You could have derived it directly from
SafeHandle, but the runtime provides two helper classes, SafeHandleZeroOrMinusOneIsInvalid and
SafeHandleMinusOneIsInvalid, to derive from in order to make things easier.

■ Caution Be careful when dealing with Win32 functions via P/Invoke, and always read the documentation

carefully to see what constitutes an invalid handle value. The Win32 API is notorious for making this confusing. For

example, the Win32 CreateFile function returns -1 to represent a failure. The CreateEvent function returns a

NULL handle in the event of an error. In both cases, the return type is HANDLE.

Take several things into consideration when providing your own SafeHandle derivative:

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

205

• Apply a code access security demand on the class requiring the ability to call
unmanaged code: Of course, you don’t need to do this unless you really do call
unmanaged code, but the odds of your ever creating a SafeHandle derivative and
not calling unmanaged code are very slim.

• Provide a default constructor that initializes the SafeHandle derivative: Notice that
SafeBluetoothRadioFindHandle declares a private default constructor. The
P/Invoke layer possesses special powers, thus it can create instances of the object
even though the constructor is private. The private constructor keeps clients from
creating instances without calling the Win32 functions that create the underlying
resource.

• Override the virtual IsInvalid property: In this case, that was not necessary
because the base class SafeHandleZeroOrMinusOneIsInvalid handles that for you.

• Override the virtual ReleaseHandle method, which is used to clean up the resource:
Typically, this is where you’ll make your call through P/Invoke to release the
unmanaged resource. In the example, you make a call to
BluetoothFindRadioClose. Note that when declaring the method for P/Invoke, you
apply a reliability contract, because the ReleaseHandle method is called within the
context of a CER. Additionally, it’s wise to apply the
SuppressUnmanagedCodeSecurityAttribute to the method to prevent the Code
Access Security (CAS) feature of the CLR from walking the stack checking security
each time it is called. Keep in mind that doing so implies that your code is secure.

Once you define your SafeHandle derivative, you’re ready to use it in your P/Invoke declarations. In
the preceding example, you declare the BluetoothFindFirstRadio method to be called through P/Invoke.
If you look up this function in the Microsoft Developer Network (MSDN), you’ll see that it returns a
BLUETOOTH_RADIO_FIND type, which is a handle to an internal radio enumeration object. In the .NET 1.1
days, you would have declared the method as returning an IntPtr. Starting with .NET 2.0, you indicate
that it returns a SafeBluetoothRadioFindHandle type, and the P/Invoke marshaling layer handles the rest.
Now, the enumeration handle is safe from being leaked by the runtime in the event of some
asynchronous exception introduced by the virtual execution system.

■ Caution When marshaling between a COM method or Win32 function that returns a handle contained within a

structure (as opposed to simply returning a handle), the interop layer doesn’t provide support for dealing with

SafeHandle derivatives. In these rare cases, you’ll need to call SetHandle on the SafeHandle derivative after

getting the structure back from the function or COM method so that the SafeHandle instance can manage the

lifetime of the unmanaged resource.. However, if you have to do such a thing, you want to make sure that the

operation that creates the handle and the subsequent SetHandle method call occurs within a CER so that nothing

can interrupt the process of allocating the resource and assigning the handle to the SafeHandle object; otherwise,

your application could leak resources.

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

206

Creating Custom Exception Classes
System.Exception has three public constructors and one protected constructor. The first is the default
constructor, which doesn’t really do much of anything. The second is a constructor that accepts a
reference to a string object. This string is a general, programmer-defined message that you can consider
a more user-friendly description of the exception. The third is a constructor that takes a message string,
like the second constructor, but it also accepts a reference to another Exception. The reference to the
other exception allows you to keep track of originating exceptions when one exception is translated into
another exception within a try block. A good example of that is when an exception is not handled and
percolates up to the stack frame of a static constructor. In that case, the runtime throws a
TypeInitializationException, but only after it sets the inner exception to that of the original exception
so that the one who catches the TypeInitializationException will at least know why this exception
occurred in the first place. Finally, the protected constructor allows creation of an exception from a
SerializationInfo object. You always want to create serializable exceptions so you can use them across
context boundaries—for example, with .NET Remoting. That means you’ll also want to mark your
custom exception classes with the SerializableAttribute as well.

The System.Exception class is very useful with these three public constructors. However, it would
constitute a bad design to simply throw objects of type System.Exception any time anything goes wrong.
Instead, it would make much more sense to create a new, more specific, exception type that derives from
System.Exception. That way, the type of the exception is much more expressive about the problem at
hand. Even better than that is the fact that your derived exception class could contain data that is
germane to the reason the exception was thrown in the first place. And remember, in C#, all exceptions
must derive from System.Exception. Let’s see what it takes to define custom exceptions effectively.

Consider the previous EmployeeDatabase example. Suppose that in order to add an employee to the
database, the employee’s data must be validated. If an employee’s data does not validate, the Add
method will throw an exception of type EmployeeVerificationException. Notice that I’m ending the new
exception’s type name with the word Exception. This is a good habit to get into, and a recommended
convention, because it makes it easy to spot exception types within your type system. It’s also
considered good style within the C# programming community. Let’s see what such an exception type
could look like:

using System;
using System.Runtime.Serialization;

[Serializable()]
public class EmployeeVerificationException : Exception
{
 public enum Cause {
 InvalidSSN,
 InvalidBirthDate
 }

 public EmployeeVerificationException(Cause reason)
 :base() {
 this.Reason = reason;
 }

 public EmployeeVerificationException(Cause reason,
 String msg)
 :base(msg) {
 this.Reason = reason;
 }

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

207

 public EmployeeVerificationException(Cause reason,
 String msg,
 Exception inner)
 :base(msg, inner) {
 this.Reason = reason;
 }

 protected EmployeeVerificationException(
 SerializationInfo info,
 StreamingContext context)
 :base(info, context) { }

 public Cause Reason { get; private set; }
}

In the EmployeeDatabase.Add method, you can see the simple call to Validate on the emp object. This
is a rather crude example, where you force the validation to fail by throwing an
EmployeeVerificationException. But the main focus of the example is the creation of the new exception
type. Many times, you’ll find that just creating a new exception type is good enough to convey the extra
information you need to convey. In this case, I wanted to illustrate an example where the exception type
carries more information about the validation failure, so I created a Reason property whose backing field
must be initialized in the constructor. Also, notice that EmployeeVerificationException derives from
System.Exception. At one point, the school of thought was that all .NET Framework-defined exception
types would derive from System.Exception, while all user-defined exceptions would derive from
ApplicationException, thus making it easier to tell the two apart. This goal has been lost partly due to
the fact that some .NET Framework-defined exception types derive from ApplicationException. 7

You may be wondering why I defined four exception constructors for this simple exception type.
The traditional idiom when defining new exception types is to define the same four public constructors
that System.Exception exposes. Had I decided not to carry the extra reason data, then the
EmployeeVerificationException constructors would have matched the System.Exception constructors
exactly in their form. If you follow this idiom when defining your own exception types, users will be able
to treat your new exception type in the same way as other system-defined exceptions. Plus, your derived
exception will be able to leverage the message and inner exception already encapsulated by
System.Exception.

Working with Allocated Resources and Exceptions
If you’re a seasoned C++ pro, then one thing you have most definitely been grappling with in the C#
world is the lack of deterministic destruction. C++ developers have become accustomed to using
constructors and destructors of stack-based objects to manage precious resources. This idiom even has
a name: Resource Acquisition Is Initialization (RAII). This means that you can create objects on the C++
stack where some precious resource is allocated in the constructor of those objects, and if you put the
deallocation in the destructor, you can rely upon the destructor getting called at the proper time to clean

7 For more on this subject and many other useful guidelines, reference Krzysztof Cwalina and Brad Abrams’
Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries (2nd Edition) (Boston,
MA: Addison-Wesley Professional, 2008).

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

208

up. For example, no matter how the stack-based object goes out of scope—whether it’s through normal
execution while reaching the end of the scope or via an exception—you can always be guaranteed that
the destructor will execute, thus cleaning up the precious resource.

When C# and the CLR were first introduced to developers during the beta program, many
developers immediately became very vocal about this omission in the runtime. Whether you view it as
an omission or not, it clearly was not addressed to its fullest extent until after the beta developer
community applied a gentle nudge. The problem stems, in part, from the garbage-collected nature of
objects in the CLR, coupled with the fact that the friendly destructor in the C# syntax was reused to
implement object finalizers. It’s also important to remember that finalizers are very different from
destructors. Using the destructor syntax for finalizers only added to the confusion of the matter. There
were also other technical reasons, some dealing with efficiency, why deterministic destructors as we
know them were not included in the runtime.

After knocking heads for some time, the solution put on the table was the Disposable pattern that
you utilize by implementing the IDisposable interface. For more detailed discussions relating to the
Disposable pattern and your objects, refer to Chapter 4 and Chapter 13. Essentially, if your object needs
deterministic destruction, it obtains it by implementing the IDisposable interface. However, you have to
call your Dispose method explicitly in order to clean up after the disposable object. If you forget to, and
your object is coded properly, then the resource won’t be lost—rather, it will just be cleaned up when the
GC finally gets around to calling your finalizer. Within C++, you only have to remember to put your
cleanup code in the destructor, and you never have to remember to clean up after your local objects,
because cleanup happens automatically once they go out of scope.

Consider the following contrived example that illustrates the danger you can face:

using System;
using System.IO;
using System.Text;

public class EntryPoint
{
 public static void DoSomeStuff() {
 // Open a file.
 FileStream fs = File.Open("log.txt",
 FileMode.Append,
 FileAccess.Write,
 FileShare.None);
 Byte[] msg = new UTF8Encoding(true).GetBytes("Doing Some"+
 " Stuff");
 fs.Write(msg, 0, msg.Length);
 }

 public static void DoSomeMoreStuff() {
 // Open a file.
 FileStream fs = File.Open("log.txt",
 FileMode.Append,
 FileAccess.Write,
 FileShare.None);
 Byte[] msg = new UTF8Encoding(true).GetBytes("Doing Some"+
 " More Stuff");
 fs.Write(msg, 0, msg.Length);
 }

 static void Main() {
 DoSomeStuff();

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

209

 DoSomeMoreStuff();
 }
}

This code looks innocent enough. However, if you execute this code, you’ll most likely encounter an
IOException. The code in DoSomeStuff creates a FileStream object with an exclusive lock on the file. Once
the FileStream object goes out of scope at the end of the function, it is marked for collection, but you’re
at the mercy of the GC and when it decides to do the cleanup. Therefore, when you find yourself opening
the file again in DoSomeMoreStuff, you’ll get the exception, because the precious resource is still locked by
the unreachable FileStream object. Clearly, this is a horrible position to be in. And don’t even think
about making an explicit call to GC.Collect in Main before the call to DoSomeMoreStuff. Fiddling with the
GC algorithm by forcing it to collect at specific times is a recipe for poor performance. You cannot
possibly help the GC do its job better, because you have no specific idea how it is implemented.

So what is one to do? One way or another, you must ensure that the file gets closed. However, here’s
the rub: No matter how you do it, you must remember to do it. This is in contrast to C++, where you can
put the cleanup in the destructor and then just rest assured that the resource will get cleaned up in a
timely manner. One option would be to call the Close method on the FileStream in each of the methods
that use it. That works fine, but it’s much less automatic and something you must always remember to
do. However, even if you do, what happens if an exception is thrown before the Close method is called?
You find yourself back in the same boat as before, with a resource dangling out there that you can’t get to
in order to free it.

Those who are savvy with exception handling will notice that you can solve the problem using some
try/finally blocks, as in the following example:

using System;
using System.IO;
using System.Text;

public class EntryPoint
{
 public static void DoSomeStuff() {
 // Open a file.
 FileStream fs = null;
 try {
 fs = File.Open("log.txt",
 FileMode.Append,
 FileAccess.Write,
 FileShare.None);
 Byte[] msg =
 new UTF8Encoding(true).GetBytes("Doing Some"+
 " Stuff\n");
 fs.Write(msg, 0, msg.Length);
 }
 finally {
 if(fs != null) {
 fs.Close();
 }
 }
 }

 public static void DoSomeMoreStuff() {
 // Open a file.

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

210

 FileStream fs = null;
 try {
 fs = File.Open("log.txt",
 FileMode.Append,
 FileAccess.Write,
 FileShare.None);
 Byte[] msg =
 new UTF8Encoding(true).GetBytes("Doing Some"+
 " More Stuff\n");
 fs.Write(msg, 0, msg.Length);
 }
 finally {
 if(fs != null) {
 fs.Close();
 }
 }
 }

 static void Main() {
 DoSomeStuff();

 DoSomeMoreStuff();
 }
}

The try/finally blocks solve the problem. But, yikes! Notice how ugly the code just got. Plus, let’s
face it, many of us are lazy typists, and that was a lot of extra typing. Moreover, more typing means more
places for bugs to be introduced. Lastly, it makes the code difficult to read. As you’d expect, there is a
better way. Many objects, such as FileStream, that have a Close method also implement the IDisposable
pattern. Usually, calling Dispose on these objects is the same as calling Close. Of course, calling Close
over Dispose or vice versa is arguing over apples and oranges, if you still have to explicitly call one or the
other. Thankfully, there’s a good reason why most classes that have a Close method implement
Dispose—so you can use them effectively with the using statement, which is typically used as part of the
Disposable pattern in C#. Therefore, you could change the code to the following:

using System;
using System.IO;
using System.Text;

public class EntryPoint
{
 public static void DoSomeStuff() {
 // Open a file.
 using(FileStream fs = File.Open("log.txt",
 FileMode.Append,
 FileAccess.Write,
 FileShare.None)) {
 Byte[] msg =
 new UTF8Encoding(true).GetBytes("Doing Some" +
 " Stuff\n");
 fs.Write(msg, 0, msg.Length);
 }
 }

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

211

 public static void DoSomeMoreStuff() {
 // Open a file.
 using(FileStream fs = File.Open("log.txt",
 FileMode.Append,
 FileAccess.Write,
 FileShare.None)) {
 Byte[] msg =
 new UTF8Encoding(true).GetBytes("Doing Some" +
 " More Stuff\n");
 fs.Write(msg, 0, msg.Length);
 }
 }

 static void Main() {
 DoSomeStuff();

 DoSomeMoreStuff();
 }
}

As you can see, the code is much easier to follow, and the using statement takes care of having to
type all those explicit try/finally blocks. You probably won’t be surprised to notice that if you look at
the generated code in ILDASM, the compiler has generated the try/finally blocks in place of the using
statement. You can also nest using statements within their compound blocks, just as you can nest
try/finally blocks.

Even though the using statement solves the “ugly code” symptom and reduces the chances of typing
in extra bugs, it still requires that you remember to use it in the first place. It’s not as convenient as the
deterministic destruction of local objects in C++, but it’s better than littering your code with try/finally
blocks all over the place, and it’s definitely better than nothing. The end result is that C# does have a
form of deterministic destruction via the using statement, but it’s only deterministic if you remember to
make it deterministic.

Providing Rollback Behavior
When producing exception-neutral methods, as covered in the “Achieving Exception Neutrality” section
of this chapter, you’ll often find it handy to employ a mechanism that can roll back any changes if an
exception happens to be generated. You can solve this problem by using the classic technique of
introducing one more level of indirection in the form of a helper class. For the sake of discussion, let’s
use an object that represents a database connection, and that has methods named Commit and Rollback.

In the C++ world, a popular solution to this problem involves the creation of a helper class that is
created on the stack. The helper class also has a method named Commit. When called, it just passes
through to the database object’s method, but before doing so, it sets an internal flag. The trick is in the
destructor. If the destructor executes before the flag is set, there are only a couple of ways that is
possible. First, the user might have forgotten to call Commit. That’s a bug in the code, so let’s not consider
that option. The second way to get into the destructor without the flag set is if the object is being cleaned
up because the stack is unwinding as it looks for a handler for a thrown exception. Depending on the
state of the flag in the destructor code, you can instantly tell if you got here via normal execution or via
an exception. If you got here via an exception, all you have to do is call Rollback on the database object,
and you have the functionality you need.

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

212

Now, this is all great in the land of native C++, where you can use deterministic destruction.
However, you can get the same end result using the C# form of deterministic destruction, which is the
marriage between IDisposable and the using keyword. Remember, a destructor in native C++ maps into
an implementation of the IDisposable interface in C#. All you have to do is take the code that you would
have put into the destructor in C++ into the Dispose method of the C# helper class. Let’s take a look at
what this C# helper class could look like:

using System;
using System.Diagnostics;

public class Database
{
 public void Commit() {
 Console.WriteLine("Changes Committed");
 }

 public void Rollback() {
 Console.WriteLine("Changes Abandoned");
 }
}

public class RollbackHelper : IDisposable
{
 public RollbackHelper(Database db) {
 this.db = db;
 }

 ~RollbackHelper() {
 Dispose(false);
 }

 public void Dispose() {
 Dispose(true);
 }

 public void Commit() {
 db.Commit();
 committed = true;
 }

 private void Dispose(bool disposing) {
 // Don't do anything if already disposed. Remember, it is
 // valid to call Dispose() multiple times on a disposable
 // object.
 if(!disposed) {
 disposed = true;

 // Remember, we don't want to do anything to the db if
 // we got here from the finalizer, because the database
 // field could already be finalized!
 if(disposing) {
 if(!committed) {
 db.Rollback();
 }

CHAPTER 7 ■ EXCEPTION HANDLING AND SECEPTION SAFETY

213

 } else {
 Debug.Assert(false, "Failed to call Dispose()" +
 " on RollbackHelper");
 }
 }
 }

 private Database db;
 private bool disposed = false;
 private bool committed = false;
}

public class EntryPoint
{
 static private void DoSomeWork() {
 using(RollbackHelper guard = new RollbackHelper(db)) {
 // Here we do some work that could throw an exception.

 // Comment out the following line to cause an
 // exception.
 // nullPtr.GetType();

 // If we get here, we commit.
 guard.Commit();
 }

 }

 static void Main() {
 db = new Database();
 DoSomeWork();
 }

 static private Database db;
 static private Object nullPtr = null;
}

Inside the DoSomeWork method is where you’ll do some work that could fail with an exception.
Should an exception occur, you’ll want any changes that have gone into the Database object to be
reverted. Inside the using block, you’ve created a new RollbackHelper object that contains a reference to
the Database object. If control flow gets to the point of calling Commit on the guard reference, all is well,
assuming the Commit method does not throw. Even if it does throw, you should code it in such a way that
the Database remains in a valid state. However, if your code inside the guarded block throws an
exception, the Dispose method in the RollbackHelper will diligently roll back your database.

No matter what happens, the Dispose method will be called on the RollbackHelper instance, thanks
to the using block. If you forget the using block, the finalizer for the RollbackHelper will not be able to do
anything for you, because finalization of objects goes in random order, and the Database referenced by
the RollbackHelper could be finalized prior to the RollbackHelper instance. To help you find the places
where you brain-froze, you can code an assertion into the helper object as I have previously done. The
whole use of this pattern hinges on the using block, so, for the sake of the remaining discussion, let’s
assume you didn’t forget it.

Once execution is safely inside the Dispose method, and it got there via a call to Dispose rather than
through the finalizer, it simply checks the committed flag, and if it’s not set, it calls Rollback on the

CHAPTER 7 ■ EXCEPTION HANDLING AND EXCEPTION SAFETY

214

Database instance. That’s all there is to it. It’s almost as elegant as the C++ solution except that, as in
previous discussions in this chapter, you must remember to use the using keyword to make it work. If
you’d like to see what happens in a case where an exception is thrown, simply uncomment the attempt
to access the null reference inside the DoSomeWork method.

You may have noticed that I haven’t addressed what happens if Rollback throws an exception.
Clearly, for robust code, it’s optimal to require that whatever operations RollbackHelper performs in the
process of a rollback should be guaranteed never to throw. This goes back to one of the most basic
requirements for generating strong exception-safe and exception-neutral code: In order to create robust
exception-safe code, you must have a well-defined set of operations that are guaranteed not to throw. In
the C++ world, during the stack unwind caused by an exception, the rollback happens within a
destructor. Seasoned C++ salts know that you should never throw an exception in a destructor, because
if the stack is in the process of unwinding during an exception when that happens, your process is
aborted very rudely. And there’s nothing worse than an application disappearing out from under users
without a trace. But what happens if such a thing happens in C#? Remember, a using block is expanded
into a try/finally block under the covers. And you may recall that when an exception is thrown within a
finally block that is executing as the result of a previous exception, that previous exception is simply
lost and the new exception gets thrown. What’s worse is that the finally block that was executing never
gets to finish. That, coupled with the fact that losing exception information is always bad and makes it
terribly difficult to find problems, means that it is strongly recommended that you never throw an
exception inside a finally block. I know I’ve mentioned this before in this chapter, but it’s so important
it deserves a second mention. The CLR won’t abort your application, but your application will likely be
in an undefined state if an exception is thrown during execution of a finally block, and you’ll be left
wondering how it got into such an ugly state.

Summary
In this chapter, I covered the basics of exception handling along with how you should apply the Expert
pattern to determine the best place to handle a particular exception. I touched upon the differences
between .NET 1.1 and later versions of the CLR when handling unhandled exceptions and how .NET 2.0
and later respond in a more consistent manner. The meat of this chapter described techniques for
creating bulletproof exception-safe code that guarantees system stability in the face of unexpected
exceptional events. I also described constrained execution regions that you can use to postpone
asynchronous exceptions during thread termination. Creating bulletproof exception-safe and exception-
neutral code is no easy task. Unfortunately, the huge majority of software systems in existence today flat-
out ignore the problem altogether. It’s an extremely unfortunate situation, given the wealth of resources
that have become available ever since exception handling was added to the C++ language years ago.

Sadly, for many developers, exception safety is an afterthought. They erroneously assume they can
solve any exceptional problems during testing by sprinkling try statements throughout their code. In
reality, exception safety is a crucial issue that you should consider at software design time. Failure to do
so will result in substandard systems that will do nothing but frustrate users and lose market share to
those companies whose developers spent a little extra time getting exception safety right. Moreover,
there’s always the possibility, as computers integrate more and more into people’s daily lives, that
government regulations could force systems to undergo rigorous testing in order to prove they are
worthy for society to rely upon. Don’t think you may be the exception, either (no pun intended). I can
envision an environment where a socialist government could force such rules on any commercially sold
software (shudder). Have you ever heard stories about how, for example, the entire integrated air traffic
control system in a country or continent went down because of a software glitch? Wouldn’t you hate to
be the developer who skimped on exception safety and caused such a situation? I rest my case.

In the next chapter, I’ll cover the main facets of dealing with strings in C# and the .NET Framework.
Additionally, I’ll cover the important topic of globalization.

C H A P T E R 8

■ ■ ■

215

Working with Strings

Within the .NET Framework base class library, the System.String type is the model citizen of how to
create an immutable reference type that semantically acts like a value type.

String Overview
Instances of String are immutable in the sense that once you create them, you cannot change them.
Although it may seem inefficient at first, this approach actually does make code more efficient. If you call
the ICloneable.Clone method on a string, you get an instance that points to the same string data as the
source. In fact, ICloneable.Clone simply returns a reference to this. This is entirely safe because the
String public interface offers no way to modify the actual String data. Sure, you can subvert the system
by employing unsafe code trickery, but I trust you wouldn’t want to do such a thing. In fact, if you
require a string that is a deep copy of the original string, you may call the Copy method to do so.

■ Note Those of you who are familiar with common design patterns and idioms may recognize this usage pattern

as the handle/body or envelope/letter idiom. In C++, you typically implement this idiom when designing reference-

based types that you can pass by value. Many C++ standard library implementations implement the standard

string this way. However, in C#’s garbage-collected heap, you don’t have to worry about maintaining reference

counts on the underlying data.

In many environments, such as C++ and C, the string is not usually a built-in type at all, but rather a
more primitive, raw construct, such as a pointer to the first character in an array of characters. Typically,
string-manipulation routines are not part of the language but rather a part of a library used with the
language. Although that is mostly true with C#, the lines are somewhat blurred by the .NET runtime. The
designers of the CLI specification could have chosen to represent all strings as simple arrays of
System.Char types, but they chose to annex System.String into the collection of built-in types instead. In
fact, System.String is an oddball in the built-in type collection, because it is a reference type and most of
the built-in types are value types. However, this difference is blurred by the fact that the String type
behaves with value semantics.

You may already know that the System.String type represents a Unicode character string, and
System.Char represents a 16-bit Unicode character. Of course, this makes portability and localization to
other operating systems—especially systems with large character sets—easy. However, sometimes you

CHAPTER 8 ■ WORKING WITH STRINGS

216

might need to interface with external systems using encodings other than UTF-16 Unicode character
strings. For times like these, you can employ the System.Text.Encoding class to convert to and from
various encodings, including ASCII, UTF-7, UTF-8, and UTF-32. Incidentally, the Unicode format used
internally by the runtime is UTF-16.1

String Literals
When you use a string literal in your C# code, the compiler creates a System.String object for you that it
then places into an internal table in the module called the intern pool. The idea is that each time you
declare a new string literal within your code, the compiler first checks to see if you’ve declared the same
string elsewhere, and if you have, then the code simply references the one already interned. Let’s take a
look at an example of a way to declare a string literal within C#:

using System;

public class EntryPoint
{
 static void Main(string[] args) {
 string lit1 = "c:\\windows\\system32";
 string lit2 = @"c:\windows\system32";

 string lit3 = @"
Jack and Jill
Went up the hill...
";
 Console.WriteLine(lit3);

 Console.WriteLine("Object.RefEq(lit1, lit2): {0}",
 Object.ReferenceEquals(lit1, lit2));

 if(args.Length > 0) {
 Console.WriteLine("Parameter given: {0}",
 args[0]);

 string strNew = String.Intern(args[0]);

 Console.WriteLine("Object.RefEq(lit1, strNew): {0}",
 Object.ReferenceEquals(lit1, strNew));
 }
 }
}

First, notice the two declarations of the two literal strings lit1 and lit2. The declared type is string,
which is the C# alias for System.String. The first instance is initialized via a regular string literal that can
contain the familiar escaped sequences that are used in C and C++, such as \t and \n. Therefore, you
must escape the backslash itself as usual—hence, the double backslash in the path. You can find more

1 For more information regarding the Unicode standard, visit www.unicode.org.

http://www.unicode.org

CHAPTER 8 ■ WORKING WITH STRINGS

217

information about the valid escape sequences in the MSDN documentation. However, C# offers a type of
string literal declaration called verbatim strings, where anything within the string declaration is put in
the string as is. Such declarations are preceded with the @ character as shown. Specifically, pay attention
to the fact that the strange declaration for lit3 is perfectly valid. The newlines within the code are taken
verbatim into the string, which is shown in the output of this program. Verbatim strings can be useful if
you’re creating strings for form submission and you need to be able to lay them out specifically within
the code. The only escape sequence that is valid within verbatim strings is "", and you use it to insert a
quote character into the verbatim string.

Clearly, lit1 and lit2 contain strings of the same value, even though you declare them using
different forms. Based upon what I said in the previous section, you would expect the two instances to
reference the same string object. In fact, they do, and that is shown in the output from the program,
where I test them using Object.ReferenceEquals.

Finally, this example demonstrates the use of the String.Intern static method. Sometimes, you may
find it necessary to determine if a string you’re declaring at run time is already in the intern pool. If it is,
it may be more efficient to reference that string rather than create a new instance. The code accepts a
string on the command line and then creates a new instance from it using the String.Intern method.
This method always returns a valid string reference, but it will either be a string instance referencing a
string in the intern pool, or the reference passed in will be added to the intern pool and then simply
returned. Given the string of “c:\windows\system32” on the command line, this code produces the
following output:

Jack and Jill

Went up the hill...

Object.RefEq(lit1, lit2): True

Parameter given: c:\windows\system32

Object.RefEq(lit1, strNew): True

Format Specifiers and Globalization
You often need to format the data that an application displays to users in a specific way. For example,
you may need to display a floating-point value representing some tangible metric in exponential form or
in fixed-point form. In fixed-point form, you may need to use a culture-specific character as the decimal
mark. Traditionally, dealing with these sorts of issues has always been painful. C programmers have the
printf family of functions for handling formatting of values, but it lacks any locale-specific capabilities.
C++ took further steps forward and offered a more robust and extensible formatting mechanism in the
form of standard I/O streams while also offering locales. The .NET standard library offers its own
powerful mechanisms for handling these two notions in a flexible and extensible manner. However,
before I can get into the topic of format specifiers themselves, let’s cover some preliminary topics.

CHAPTER 8 ■ WORKING WITH STRINGS

218

■ Note It’s important to address any cultural concerns your software may have early in the development cycle.

Many developers tend to treat globalization as an afterthought. But if you notice, the .NET Framework designers

put a lot of work into creating a rich library for handling globalization. The richness and breadth of the globalization

API is an indicator of how difficult it can be. Address globalization concerns at the beginning of your product’s

development cycle, or you’ll suffer from heartache later.

Object.ToString, IFormattable, and CultureInfo
Every object derives a method from System.Object called ToString that you’re probably familiar with
already. It’s extremely handy to get a string representation of your object for output, even if only for
debugging purposes. For your custom classes, you’ll see that the default implementation of ToString
merely returns the type of the object itself. You need to implement your own override to do anything
useful. As you’d expect, all of the built-in types do just that. Thus, if you call ToString on a System.Int32,
you’ll get a string representation of the value within. But what if you want the string representation in
hexadecimal format? Object.ToString is of no help here, because there is no way to request the desired
format. There must be another way to get a string representation of an object. In fact, there is a way, and
it involves implementing the IFormattable interface, which looks like the following:

public interface IFormattable
{
 string ToString(string format, IFormatProvider formatProvider)
}

You’ll notice that all built-in numeric types as well as date-time types implement this interface.
Using this method, you can specify exactly how you want the value to be formatted by providing a
format specifier string. Before I get into exactly what the format strings look like, let me explain a few
more preliminary concepts, starting with the second parameter of the IFormattable.ToString method.

An object that implements the IFormatProvider interface is—surprise—a format provider. A format
provider’s common task within the .NET Framework is to provide culture-specific formatting
information, such as what character to use for monetary amounts, for decimal separators, and so on.
When you pass null for this parameter, the format provider that IFormattable.ToString uses is typically
the CultureInfo instance returned by System.Globalization.CultureInfo.CurrentCulture. This instance
of CultureInfo is the one that matches the culture that the current thread uses. However, you have the
option of overriding it by passing a different CultureInfo instance, such as one obtained by creating a
new instance of CultureInfo by passing into its constructor a string representing the desired locale
formatted as described in the RFC 1766 standard such as en-US for English spoken in the United States.
For more information on culture names, consult the MSDN documentation for the CultureInfo class.
Finally, you can even provide a culture-neutral CultureInfo instance by passing the instance provided
by CultureInfo.InvariantCulture.

■ Note Instances of CultureInfo are used as a convenient grouping mechanism for all formatting information

relevant to a specific culture. For example, one CultureInfo instance could represent the cultural-specific

qualities of English spoken in the United States, while another could contain properties specific to English spoken

CHAPTER 8 ■ WORKING WITH STRINGS

219

in the United Kingdom. Each CultureInfo instance contains specific instances of DateTimeFormatInfo,

NumberFormatInfo, TextInfo, and CompareInfo that are germane to the language and region represented.

Once the IFormattable.ToString implementation has a valid format provider—whether it was
passed in or whether it is the one attached to the current thread—then it may query that format provider
for a specific formatter by calling the IFormatProvider.GetFormat method. The formatters implemented
by the .NET Framework are the NumberFormatInfo and DateTimeFormatInfo types. When you ask for one
of these objects via IFormatProvider.GetFormat, you ask for it by type. This mechanism is extremely
extensible, because you can provide your own formatter types, and other types that you create that know
how to consume them can ask a custom format provider for instances of them.

Suppose you want to convert a floating-point value into a string. The execution flow of the
IFormattable.ToString implementation on System.Double follows these general steps:

1. The implementation gets a reference to an IFormatProvider type, which is
either the one passed in or the one attached to the current thread if the one
passed in is null.

2. It asks the format provider for an instance of the type NumberFormatInfo via a
call to IFormatProvider.GetFormat. The format provider initializes the
NumberFormatInfo instance’s properties based on the culture it represents.

3. It uses the NumberFormatInfo instance to format the number appropriately
while creating a string representation of this based upon the specification of
the format string.

Creating and Registering Custom CultureInfo Types
The globalization capabilities of the .NET Framework have always been strong. However, there was
room for improvement, and much of that improvement came with the .NET 2.0 Framework. Specifically,
with .NET 1.1, it was always a painful process to introduce cultural information into the system if the
framework didn’t know the culture and region information. The .NET 2.0 Framework introduced a new
class named CultureAndRegionInfoBuilder in the System.Globalization namespace.

Using CultureAndRegionInfoBuilder, you have the capability to define and introduce an entirely
new culture and its region information into the system and register them for global usage as well.
Similarly, you can modify preexisting culture and region information on the system. And if that’s not
enough flexibility for you, you can even serialize the information into a Locale Data Markup Language
(LDML) file, which is a standard-based XML format. Once you register your new culture and region with
the system, you can then create instances of CultureInfo and RegionInfo using the string-based name
that you registered with the system.

When naming your new cultures, you should adhere to the standard format for naming cultures.
The format is generally [prefix-]language[-region][-suffix[...]], where the language identifier is the
only required part and the other pieces are optional. The prefix can be either of the following:

• i- for culture names registered with the Internet Assigned Numbers Authority
(IANA)

• x- for all others

CHAPTER 8 ■ WORKING WITH STRINGS

220

Additionally, the prefix portion can be in uppercase or lowercase. The language part is the lowercase
two-letter code from the ISO 639-1 standard, while the region is a two-letter uppercase code from the
ISO 3166 standard. For example, Russian spoken in Russia is ru-RU. The suffix component is used to
further subidentify the culture based on some other data. For example, Serbian spoken in Serbia could
be either sr-SP-Cyrl or sr-SP-Latn—one for the Cyrillic alphabet and the other for the Latin alphabet. If
you define a culture specific to your division within your company, you could create it using the name x-
en-US-MyCompany-WidgetDivision.

To see how easy it is to use the CultureAndRegionInfoBuilder object, let’s create a fictitious culture
based upon a preexisting culture. In the United States, the dominant measurement system is English
units. Let’s suppose that the United States decided to switch to the metric system at some point, and you
now need to modify the culture information on some machines to match. Let’s see what that code would
look like:

using System;
using System.Globalization;

public class EntryPoint
{
 static void Main() {
 CultureAndRegionInfoBuilder cib = null;
 cib = new CultureAndRegionInfoBuilder(
 "x-en-US-metric",
 CultureAndRegionModifiers.None);

 cib.LoadDataFromCultureInfo(new CultureInfo("en-US"));
 cib.LoadDataFromRegionInfo(new RegionInfo("US"));

 // Make the change.
 cib.IsMetric = true;

 // Create an LDML file.
 cib.Save("x-en-US-metric.ldml");

 // Register with the system.
 cib.Register();
 }
}

■ Note In order to compile the previous example, you’ll need to reference the sysglobl.dll assembly

specifically. If you build it using the command line, you can use the following:

csc /r:sysglobl.dll example.cs
You can see that the process is simple, because the CultureAndRegionInfoBuilder has a well-

designed interface. For illustration purposes, I’ve sent the LDML to a file so you can see what it looks
like, although it’s too verbose to list in this text. One thing to consider is that you must have proper
permissions in order to call the Register method. This typically requires that you be an administrator,
although you could get around that by adjusting the accessibility of the %WINDIR%\Globalization

CHAPTER 8 ■ WORKING WITH STRINGS

221

directory and the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CustomLocale registry
key. Once you register the culture with the system, you can reference it using the given name when
specifying any culture information in the CLR. For example, to verify that the culture and information
region is registered properly, you can build and execute the following code to test it:

using System;
using System.Globalization;

public class EntryPoint
{
 static void Main() {
 RegionInfo ri = new RegionInfo("x-en-US-metric");
 Console.WriteLine(ri.IsMetric);
 }
}

Format Strings
You must consider what the format string looks like. The built-in numeric objects use the standard
numeric format strings or the custom numeric format strings defined by the .NET Framework, which
you can find in the MSDN documentation by searching for “standard numeric format strings.” The
standard format strings are typically of the form Axx, where A is the desired format requested and xx is an
optional precision specifier. Examples of format specifiers for numbers are "C" for currency, "D" for
decimal, "E" for scientific notation, "F" for fixed-point notation, and "X" for hexadecimal notation. Every
type also supports "G" for general, which is the default format specifier and is also the format that you
get when you call Object.ToString, where you cannot specify a format string. If these format strings
don’t suit your needs, you can even use one of the custom format strings that allow you to describe what
you’d like in a more-or-less picture format.

The point of this whole mechanism is that each type interprets and defines the format string
specifically in the context of its own needs. In other words, System.Double is free to treat the G format
specifier differently than the System.Int32 type. Moreover, your own type—say, type Employee—is free to
implement a format string in whatever way it likes. For example, a format string of "SSN" could create a
string based on the Social Security number of the employee.

■ Note Allowing your own types to handle a format string of "DBG" is of even more utility, thus creating a detailed

string that represents the internal state to send to a debug output log.

Let’s take a look at some example code that exercises these concepts:

using System;
using System.Globalization;
using System.Windows.Forms;

public class EntryPoint
{
 static void Main() {
 CultureInfo current = CultureInfo.CurrentCulture;

CHAPTER 8 ■ WORKING WITH STRINGS

222

 CultureInfo germany = new CultureInfo("de-DE");
 CultureInfo russian = new CultureInfo("ru-RU");

 double money = 123.45;

 string localMoney = money.ToString("C", current);
 MessageBox.Show(localMoney, "Local Money");

 localMoney = money.ToString("C", germany);
 MessageBox.Show(localMoney, "German Money");

 localMoney = money.ToString("C", russian);
 MessageBox.Show(localMoney, "Russian Money");
 }
}

In this example, I display the strings using the MessageBox type defined in System.Windows.Forms,
because the console isn’t good at displaying Unicode characters. The format specifier that I’ve chosen is
“C” to display the number in a currency format. For the first display, I use the CultureInfo instance
attached to the current thread. For the following two, I’ve created a CultureInfo for both Germany and
Russia. Note that in forming the string, the System.Double type has used the CurrencyDecimalSeparator,
CurrencyDecimalDigits, and CurrencySymbol properties, among others, of the NumberFormatInfo instance
returned from the CultureInfo.GetFormat method. Had I displayed a DateTime instance, then the
DateTime implementation of IFormattable.ToString would have utilized an instance of
DateTimeFormatInfo returned from CultureInfo.GetFormat in a similar way.

Console.WriteLine and String.Format
Throughout this book, you’ve seen me using Console.WriteLine extensively in the examples. One of the
forms of WriteLine that is useful and identical to some overloads of String.Format allows you to build a
composite string by replacing format tags within a string with a variable number of parameters passed
in. In practice, String.Format is similar to the printf family of functions in C and C++. However, it’s
much more flexible and safer, because it’s based upon the .NET Framework string-formatting
capabilities covered previously. Let’s look at a quick example of string format usage:

using System;
using System.Globalization;
using System.Windows.Forms;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 3) {
 Console.WriteLine("Please provide 3 parameters");
 return;
 }

 string composite =
 String.Format("{0} + {1} = {2}",
 args[0],
 args[1],
 args[2]);

CHAPTER 8 ■ WORKING WITH STRINGS

223

 Console.WriteLine(composite);
 }
}

You can see that a placeholder is contained within curly braces and that the number within them is
the index within the remaining arguments that should be substituted there. The String.Format method,
as well as the Console.WriteLine method, has an overload that accepts a variable number of arguments
to use as the replacement values. In this example, the String.Format method’s implementation replaces
each placeholder using the general formatting of the type that you can get via a call to the parameterless
version of ToString on that type. If the argument being placed in this spot supports IFormattable, the
IFormattable.ToString method is called on that argument with a null format specifier, which usually is
the same as if you had supplied the “G”, or general, format specifier. Incidentally, within the source
string, if you need to insert actual curly braces that will show in the output, you must double them by
putting in either {{ or }}.

The exact format of the replacement item is {index[,alignment][:formatString]}, where the items
within square brackets are optional. The index value is a zero-based value used to reference one of the
trailing parameters provided to the method. The alignment represents how wide the entry should be
within the composite string. For example, if you set it to eight characters in width and the string is
narrower than that, then the extra space is padded with spaces. Lastly, the formatString portion of the
replacement item allows you to denote precisely what formatting to use for the item. The format string is
the same style of string that you would have used if you were to call IFormattable.ToString on the
instance itself, which I covered in the previous section. Unfortunately, you can’t specify a particular
IFormatProvider instance for each one of the replacement strings. Recall that the IFormatter.ToString
method accepts an IFormatProvider, however, when using String.Format and the placeholder string as
previously shown, String.Format simply passes null for the IFormatProvider when it calls
IFormatter.ToString resulting in it utilizing the default formatters associated with the culture of the
thread. If you need to create a composite string from items using multiple format providers or cultures,
you must resort to using IFormattable.ToString directly.

Examples of String Formatting in Custom Types
Let’s take a look at another example using the venerable Complex type that I’ve used throughout this
book. This time, let’s implement IFormattable on it to make it a little more useful when generating a
string version of the instance:

using System;
using System.Text;
using System.Globalization;

public struct Complex : IFormattable
{
 public Complex(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 // IFormattable implementation
 public string ToString(string format,
 IFormatProvider formatProvider) {
 StringBuilder sb = new StringBuilder();

CHAPTER 8 ■ WORKING WITH STRINGS

224

 if(format == "DBG") {
 // Generate debugging output for this object.
 sb.Append(this.GetType().ToString() + "\n");
 sb.AppendFormat("\treal:\t{0}\n", real);
 sb.AppendFormat("\timaginary:\t{0}\n", imaginary);
 } else {
 sb.Append("(");
 sb.Append(real.ToString(format, formatProvider));
 sb.Append(" : ");
 sb.Append(imaginary.ToString(format, formatProvider));
 sb.Append(")");
 }

 return sb.ToString();
 }

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main() {
 CultureInfo local = CultureInfo.CurrentCulture;
 CultureInfo germany = new CultureInfo("de-DE");

 Complex cpx = new Complex(12.3456, 1234.56);

 string strCpx = cpx.ToString("F", local);
 Console.WriteLine(strCpx);

 strCpx = cpx.ToString("F", germany);
 Console.WriteLine(strCpx);

 Console.WriteLine("\nDebugging output:\n{0:DBG}",
 cpx);
 }
}

The real meat of this example lies within the implementation of IFormattable.ToString. I’ve
implemented a “DBG” format string for this type that will create a string that shows the internal state of
the object and may be useful for debug purposes. I’m sure you can think of a little more information to
display to a debugger output log that is specific to the instance, but you get the idea. If the format string
is not equal to “DBG”, then you simply defer to the IFormattable implementation of System.Double.
Notice my use of StringBuilder, which I cover in the later section of this chapter called “StringBuilder,”
to create the string that I eventually return. Also, I chose to use the Console.WriteLine method and its
format item syntax to send the debugging output to the console just to show a little variety in usage.

ICustomFormatter
ICustomFormatter is an interface that allows you to replace or extend a built-in or already existing
IFormattable interface for an object. Whenever you call String.Format or StringBuilder.AppendFormat

CHAPTER 8 ■ WORKING WITH STRINGS

225

to convert an object instance to a string, before the method calls through to the object’s implementation
of IFormattable.ToString, or Object.ToString if it does not implement IFormattable, it first checks to
see if the passed-in IFormatProvider provides a custom formatter. If it does, it calls
IFormatProvider.GetFormat while passing a type of ICustomFormatter. If the formatter returns an
implementation of ICustomFormatter, then the method will use the custom formatter. Otherwise, it will
use the object’s implementation of IFormattable.ToString or the object’s implementation of
Object.ToString in cases where it doesn’t implement IFormattable.

Consider the following example where I’ve reworked the previous Complex example, but I’ve
externalized the debugging output capabilities outside of the Complex struct. I’ve bolded the code that
has changed:

using System;
using System.Text;
using System.Globalization;

public class ComplexDbgFormatter : ICustomFormatter, IFormatProvider
{
 // IFormatProvider implementation
 public object GetFormat(Type formatType) {
 if(formatType == typeof(ICustomFormatter)) {
 return this;
 } else {
 return CultureInfo.CurrentCulture.
 GetFormat(formatType);
 }
 }

 // ICustomFormatter implementation
 public string Format(string format,
 object arg,
 IFormatProvider formatProvider) {
 if(arg.GetType() == typeof(Complex) &&
 format == "DBG") {
 Complex cpx = (Complex) arg;

 // Generate debugging output for this object.
 StringBuilder sb = new StringBuilder();
 sb.Append(arg.GetType().ToString() + "\n");
 sb.AppendFormat("\treal:\t{0}\n", cpx.Real);
 sb.AppendFormat("\timaginary:\t{0}\n", cpx.Imaginary);
 return sb.ToString();
 } else {
 IFormattable formattable = arg as IFormattable;
 if(formattable != null) {
 return formattable.ToString(format, formatProvider);
 } else {
 return arg.ToString();
 }
 }
 }
}

CHAPTER 8 ■ WORKING WITH STRINGS

226

public struct Complex : IFormattable
{
 public Complex(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 public double Real {
 get { return real; }
 }

 public double Imaginary {
 get { return imaginary; }
 }

 // IFormattable implementation
 public string ToString(string format,
 IFormatProvider formatProvider) {
 StringBuilder sb = new StringBuilder();

 sb.Append("(");
 sb.Append(real.ToString(format, formatProvider));
 sb.Append(" : ");
 sb.Append(imaginary.ToString(format, formatProvider));
 sb.Append(")");

 return sb.ToString();
 }

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main() {
 CultureInfo local = CultureInfo.CurrentCulture;
 CultureInfo germany = new CultureInfo("de-DE");

 Complex cpx = new Complex(12.3456, 1234.56);

 string strCpx = cpx.ToString("F", local);
 Console.WriteLine(strCpx);

 strCpx = cpx.ToString("F", germany);
 Console.WriteLine(strCpx);

 ComplexDbgFormatter dbgFormatter =
 new ComplexDbgFormatter();
 strCpx = String.Format(dbgFormatter,
 "{0:DBG}",

CHAPTER 8 ■ WORKING WITH STRINGS

227

 cpx);
 Console.WriteLine("\nDebugging output:\n{0}",
 strCpx);
 }
}

Of course, this example is a bit more complex (no pun intended). But if you were not the original
author of the Complex type, then this may be your only way to provide custom formatting for that type.
Using this technique, you can provide custom formatting to any of the other built-in types in the system.

Comparing Strings
When it comes to comparing strings, the .NET Framework provides quite a bit of flexibility. You can
compare strings based on cultural information as well as without cultural consideration. You can also
compare strings using case sensitivity or not, and the rules for how to do case-insensitive comparisons
vary from culture to culture. There are several ways to compare strings offered within the Framework,
some of which are exposed directly on the System.String type through the static String.Compare
method. You can choose from a few overloads, and the most basic of them use the CultureInfo attached
to the current thread to handle comparisons.

You often need to compare strings, and you don’t need to worry about, or want to carry, the
overhead of culture-specific comparisons. A perfect example is when you’re comparing internal string
data from, say, a configuration file, or when you’re comparing file directories. In the .NET 1.1 days, the
main tool of choice was to use the String.Compare method while passing the InvariantCulture property.
This works fine in most cases, but it still applies culture information to the comparison even though the
culture information it uses is neutral to all cultures, and that is usually an unnecessary overhead for such
comparisons. The .NET 2.0 Framework introduced a new enumeration, StringComparison, that allows
you to choose a true nonculture-based comparison. The StringComparison enumeration looks like the
following:

public enum StringComparison
{
 CurrentCulture,
 CurrentCultureIgnoreCase,
 InvariantCulture,
 InvariantCultureIgnoreCase,
 Ordinal,
 OrdinalIgnoreCase
}

The last two items in the enumeration are the items of interest. An ordinal-based comparison is the
most basic string comparison; it simply compares the character values of the two strings based on the
numeric value of each character compared (i.e., it actually compares the raw binary values of each
character). Doing comparisons this way removes all cultural bias from the comparisons and increases
the efficiency tremendously. On my computer, I ran some crude timing loops to compare the two
techniques when comparing strings of equal length. The speed increase was almost nine times faster. Of
course, had the strings been more complex with more than just lowercase Latin characters in them, the
gain would have been even higher.

The .NET 2.0 Framework introduced a new class called StringComparer that implements the
IComparer interface. Things such as sorted collections can use StringComparer to manage the sort. With
regards to locale support, the System.StringComparer type follows the same idiom as the IFormattable
interface. You can use the StringComparer.CurrentCulture property to get a StringComparer instance

CHAPTER 8 ■ WORKING WITH STRINGS

228

specific to the culture of the current thread. Additionally, you can get the StringComparer instance from
StringComparer.CurrentCultureIgnoreCase to do case-insensitive comparison. Also, you can get culture-
invariant instances using the InvariantCulture and InvariantCultureIgnoreCase properties. Lastly, you
can use the Ordinal and OrdinalIgnoreCase properties to get instances that compare based on ordinal
string comparison rules.

As you may expect, if the culture information attached to the current thread isn’t what you need,
you can create StringComparer instances based upon explicit locales simply by calling the
StringComparer.Create method and passing the desired CultureInfo representing the locale you want as
well as a flag denoting whether you want a case-sensitive or case-insensitive comparer.

When choosing between the various comparison techniques, take care to choose the appropriate
choice for the job. The general rule of thumb is to use the culture-specific or culture-invariant
comparisons for any user-facing data—that is, data that will be presented to end users in some form or
fashion—and ordinal comparisons otherwise. However, it’s rare that you’d ever use InvariantCulture
compared strings to display to users. Use the ordinal comparisons when dealing with data that is
completely internal. In fact, ordinal-based comparisons render InvariantCulture comparisons almost
useless.

■ Note Prior to version 2.0 of the .NET Framework, it was a general guideline that if you were comparing strings

to make a security decision, you should use InvariantCulture rather than base the comparison on

CultureInfo.CurrentCulture. In such comparisons, you want a tightly controlled environment that you know

will be the same in the field as it is in your test environment. If you base the comparison on CurrentCulture, this

is impossible to achieve, because end users can change the culture on the machine and introduce a probably

untested code path into the security decision, since it’s almost impossible to test under all culture permutations.

Naturally, in .NET 2.0 and onward, it is recommended that you base these security comparisons on ordinal

comparisons rather than InvariantCulture for added efficiency and safety.

Working with Strings from Outside Sources
Within the confines of the .NET Framework, all strings are represented using Unicode UTF-16 character
arrays. However, you often might need to interface with the outside world using some other form of
encoding, such as UTF-8. Sometimes, even when interfacing with other entities that use 16-bit Unicode
strings, those entities may use big-endian Unicode strings, whereas the typical Intel platform uses little-
endian Unicode strings. The .NET Framework makes this conversion work easy with the
System.Text.Encoding class.

In this section, I won’t go into all of the details of System.Text.Encoding, but I highly suggest that
you reference the documentation for this class in the MSDN for all of the finer details. Let’s take a look at
a cursory example of how to convert to and from various encodings using the Encoding objects served up
by the System.Text.Encoding class:

using System;
using System.Text;

public class EntryPoint
{

CHAPTER 8 ■ WORKING WITH STRINGS

229

 static void Main() {
 string leUnicodeStr = // "What's up!"

 Encoding leUnicode = Encoding.Unicode;
 Encoding beUnicode = Encoding.BigEndianUnicode;
 Encoding utf8 = Encoding.UTF8;

 byte[] leUnicodeBytes = leUnicode.GetBytes(leUnicodeStr);
 byte[] beUnicodeBytes = Encoding.Convert(leUnicode,
 beUnicode,
 leUnicodeBytes);
 byte[] utf8Bytes = Encoding.Convert(leUnicode,
 utf8,
 leUnicodeBytes);

 Console.WriteLine("Orig. String: {0}\n", leUnicodeStr);
 Console.WriteLine("Little Endian Unicode Bytes:");
 StringBuilder sb = new StringBuilder();
 foreach(byte b in leUnicodeBytes) {
 sb.Append(b).Append(" : ");
 }
 Console.WriteLine("{0}\n", sb.ToString());

 Console.WriteLine("Big Endian Unicode Bytes:");
 sb = new StringBuilder();
 foreach(byte b in beUnicodeBytes) {
 sb.Append(b).Append(" : ");
 }
 Console.WriteLine("{0}\n", sb.ToString());

 Console.WriteLine("UTF Bytes: ");
 sb = new StringBuilder();
 foreach(byte b in utf8Bytes) {
 sb.Append(b).Append(" : ");
 }
 Console.WriteLine(sb.ToString());
 }
}

The example first starts by creating a System.String with some Russian text in it. As mentioned, the
string contains a Unicode string, but is it a big-endian or little-endian Unicode string? The answer
depends on what platform you’re running on. On an Intel system, it is normally little-endian. However,
because you’re not supposed to access the underlying byte representation of the string because it is
encapsulated from you, it doesn’t matter. In order to get the bytes of the string, you should use one of
the Encoding objects that you can get from System.Text.Encoding. In my example, I get local references
to the Encoding objects for handling little-endian Unicode, big-endian Unicode, and UTF-8. Once I have
those, I can use them to convert the string into any byte representation that I want. As you can see, I get
three representations of the same string and send the byte sequence values to standard output. In this
example, because the text is based on the Cyrillic alphabet, the UTF-8 byte array is longer than the
Unicode byte array. Had the original string been based on the Latin character set, the UTF-8 byte array
would be shorter than the Unicode byte array usually by half. The point is, you should never make any
assumption about the storage requirements for any of the encodings. If you need to know how much
space is required to store the encoded string, call the Encoding.GetByteCount method to get that value.

CHAPTER 8 ■ WORKING WITH STRINGS

230

■ Caution Never make assumptions about the internal string representation format of the CLR. Nothing says that

the internal representation cannot vary from one platform to the next. It would be unfortunate if your code made

assumptions based upon an Intel platform and then failed to run on a Sun platform running the Mono CLR.

Microsoft could even choose to run Windows on another platform one day, just as Apple has chosen to start using

Intel processors. Also, just because Encoding.Unicode is not named Encoding.LittleEndianUnicode should not

lead you to believe that the CLR forces all string data to be represented as little-endian internally. In fact, the CLI

standard clearly states that for all data types greater than 1 byte in memory, the byte ordering of the data is

dependent on the target platform.

Usually, you need to go the opposite way with the conversion and convert an array of bytes from the
outside world into a string that the system can then manipulate easily. For example, the Bluetooth
protocol stack uses big-endian Unicode strings to transfer string data. To convert the bytes into a
System.String, use the GetString method on the encoder that you’re using. You must also use the
encoder that matches the source encoding of your data.

This brings up an important note to keep in mind. When passing string data to and from other
systems in raw byte format, you must always know the encoding scheme used by the protocol you’re
using. Most importantly, you must always use that encoding’s matching Encoding object to convert the
byte array into a System.String, even if you know that the encoding in the protocol is the same as that
used internally to System.String on the platform where you’re building the application. Why? Suppose
you’re developing your application on an Intel platform and the protocol encoding is little-endian,
which you know is the same as the platform encoding. So you take a shortcut and don’t use the
System.Text.Encoding.Unicode object to convert the bytes to the string. Later on, you decide to run the
application on a platform that happens to use big-endian strings internally. You’ll be in for a big surprise
when the application starts to crumble because you falsely assumed what encoding System.String uses
internally. Efficiency is not a problem if you always use the encoder, because on platforms where the
internal encoding is the same as the external encoding, the conversion will essentially boil down to
nothing.

In the previous example, you saw use of the StringBuilder class in order to send the array of bytes
to the console. Let’s now take a look at what the StringBuilder type is all about.

StringBuilder
System.String objects are immutable; therefore, they create efficiency bottlenecks when you’re trying to
build strings on the fly. You can create composite strings using the + operator as follows:

string space = " ";
string compound = "Vote" + space + "for" + space + "Pedro";

However, this method isn’t efficient, because this code creates several strings to get the job done.
Creating all those intermediate strings could increase memory pressure. Although this line of code is
rather contrived, you can imagine that the efficiency of a complex system that does lots of string
manipulation can quickly go downhill due to memory usage. Consider a case where you implement a
custom base64 encoder that appends characters incrementally as it processes a binary file. The .NET
library already offers this functionality in the System.Convert class, but let’s ignore that for the sake of
this example. If you repeatedly used the + operator in a loop to create a large base64 string, your

CHAPTER 8 ■ WORKING WITH STRINGS

231

performance would quickly degrade as the source data increased in size. For these situations, you can
use the System.Text.StringBuilder class, which implements a mutable string specifically for building
composite strings efficiently.

I won’t go over each of the methods of StringBuilder in detail, because you can get all the details of
each method within the MSDN documentation. However, I’ll cover more of the salient points of note.
StringBuilder internally maintains an array of characters that it manages dynamically. The workhorse
methods of StringBuilder are Append, Insert, and AppendFormat. If you look up the methods in the
MSDN, you’ll see that they are richly overloaded in order to support appending and inserting string
forms of the many common types. When you create a StringBuilder instance, you have various
constructors to choose from. The default constructor creates a new StringBuilder instance with the
system-defined default capacity. However, that capacity doesn’t constrain the size of the string that it
can create. Rather, it represents the amount of string data the StringBuilder can hold before it needs to
grow the internal buffer and increase the capacity. If you know a ballpark figure of how big your string
will likely end up being, you can give the StringBuilder that number in one of the constructor overloads,
and it will initialize the buffer accordingly. This could help the StringBuilder instance from having to
reallocate the buffer too often while you fill it.

You can also define the maximum-capacity property in the constructor overloads. By default, the
maximum capacity is System.Int32.MaxValue, which is currently 2,147,483,647, but that exact value is
subject to change as the system evolves. If you need to protect your StringBuilder buffer from growing
over a certain size, you may provide an alternate maximum capacity in one of the constructor overloads.
If an append or insert operation forces the need for the buffer to grow greater than the maximum
capacity, an ArgumentOutOfRangeException is thrown.

For convenience, all of the methods that append and insert data into a StringBuilder instance
return a reference to this. Thus, you can chain operations on a single string builder as shown:

using System;
using System.Text;

public class EntryPoint
{
 static void Main() {
 StringBuilder sb = new StringBuilder();

 sb.Append("StringBuilder ").Append("is ")
 .Append("very... ");

 string built1 = sb.ToString();

 sb.Append("cool");

 string built2 = sb.ToString();

 Console.WriteLine(built1);
 Console.WriteLine(built2);
 }
}

In this example, you can see that I converted the StringBuilder instance sb into a new
System.String instance named built1 by calling sb.ToString. For maximum efficiency, the
StringBuilder simply hands off a reference to the underlying string so that a copy is not necessary. If you
think about it, part of the utility of StringBuilder would be compromised if it didn’t do it this way. After
all, if you create a huge string—say, some megabytes in size, such as a base64-encoded large image—you
don’t want that data to be copied in order to create a string from it. However, once you call

CHAPTER 8 ■ WORKING WITH STRINGS

232

StringBuilder.ToString, you now have the string variable and the StringBuilder holding references to
the same string. Because string is immutable, StringBuilder then switches to using a copy-on-write
idiom with the underlying string. Therefore, at the place where I append to the StringBuilder after
having assigned the built1 variable, the StringBuilder must make a new copy of the internal string. It’s
important for you to keep this behavior in mind if you’re using StringBuilder to work with large string
data.

Searching Strings with Regular Expressions
The System.String type itself offers some rudimentary searching methods, such as IndexOf, IndexOfAny,
LastIndexOf, LastIndexOfAny, and StartsWith. Using these methods, you can determine if a string
contains certain substrings and where. However, these methods quickly become cumbersome and are a
bit too primitive to do any complex searching of strings effectively. Thankfully, the .NET Framework
library contains classes that implement regular expressions (regex). If you’re not already familiar with
regular expressions, I strongly suggest that you learn the regular-expression syntax and how to use it
effectively. The regular-expression syntax is a language in and of itself. Excellent sources of information
on the syntax include Mastering Regular Expressions, Third Edition, Jeffrey E. F. Friedl (Sebastopol, CA:
O’Reilly Media, 2006) and the material under “Regular Expression Language Elements” within the
MSDN documentation. The capabilities of the .NET regular-expression engine are on par with those of
Perl 5 and Python. Full coverage of the capabilities of regular expressions with regard to their syntax is
beyond the scope of this book. However, I’ll describe the ways to use regular expressions that are specific
to the .NET Framework.

There are really three main types of operations for which you employ regular expressions. The first
is when searching a string just to verify that it contains a specific pattern, and if so, where. The search
pattern can be extremely complex. The second is similar to the first, except, in the process, you save off
parts of the searched expression. For example, if you search a string for a date in a specific format, you
may choose to break the three parts of the date into individual variables. Finally, regular expressions are
often used for search-and-replace operations. This type of operation builds upon the capabilities of the
previous two. Let’s take a look at how to achieve these three goals using the .NET Framework’s
implementation of regular expressions.

Searching with Regular Expressions
As with the System.String class itself, most of the objects created from the regular expression classes are
immutable. The workhorse class at the bottom of it all is the Regex class, which lives in the
System.Text.RegularExpressions namespace. One of the general patterns of usage is to create a Regex
instance to represent your regular expression by passing it a string of the pattern to search for. You then
apply it to a string to find out if any matches exist. The results of the search will include whether a match
was found, and if so, where. You can also find out where all subsequent instances of the match occur
within the searched string. Let’s go ahead and look at an example of what a basic Regex search looks like
and then dig into more useful ways to use Regex:

using System;
using System.Text.RegularExpressions;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");

CHAPTER 8 ■ WORKING WITH STRINGS

233

 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"\d\d?\d?\.\d\d?\d?.\d\d?\d?.\d\d?\d?";
 Regex regex = new Regex(pattern);
 Match match = regex.Match(args[0]);
 while(match.Success) {
 Console.WriteLine("IP Address found at {0} with " +
 "value of {1}",
 match.Index,
 match.Value);

 match = match.NextMatch();
 }

 }
}

This example searches a string provided on the command line for an IP address. The search is
crude, but I’ll refine it a bit as I continue. Regular expressions can consist of literal characters to search
for, as well as escaped characters that carry a special meaning. The familiar backslash is the method
used to escape characters in a regular expression. In this example, \d means a numeric digit. The ones
that are suffixed with a ? mean that there can be one or zero occurrences of the previous character or
escaped expression. Notice that the period is escaped, because the period by itself carries a special
meaning: An unescaped period matches any character in that position of the match. Lastly, you’ll see
that it is much easier to use the verbatim string syntax when declaring regular expressions in order to
avoid the gratuitous proliferation of backslashes. If you were to invoke the previous example passing the
following quoted string on the command line

"This is an IP address:123.123.1.123"

the output would look like the following:

IP Address found at 22 with value of 123.123.1.123

The previous example creates a new Regex instance named regex and then, using the Match method,
applies the pattern to the given string. The results of the match are stored in the match variable. That
match variable represents the first match within the searched string. You can use the Match.Success
property to determine if the regex found anything at all. Next, you see the code using the Index and Value
properties to find out more about the match. Lastly, you can go to the next match in the searched string
by calling the Match.NextMatch method, and you can iterate through this chain until you find no more
matches in the searched string.

Alternatively, instead of calling Match.NextMatch in a loop, you can call the Regex.Matches method to
retrieve a MatchCollection that gives you all of the matches at once rather than one at a time. Also, all of
the examples using Regex in this chapter are calling instance methods on a Regex instance. Many of the
methods on Regex, such as Match and Replace, also offer static versions where you don’t have to create a
Regex instance first and you can just pass the regular expression pattern in the method call.

CHAPTER 8 ■ WORKING WITH STRINGS

234

Searching and Grouping
From looking at the previous match, really all that is happening is that the pattern is looking for a series
of four groups of digits separated by periods, where each group can be from one to three digits in length.
The reason I say this is a crude search is that it will match an invalid IP address such as 999.888.777.666.
A better search for the IP address would look like the following:

using System;
using System.Text.RegularExpressions;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");
 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"([01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])";
 Regex regex = new Regex(pattern);
 Match match = regex.Match(args[0]);
 while(match.Success) {
 Console.WriteLine("IP Address found at {0} with " +
 "value of {1}",
 match.Index,
 match.Value);

 match = match.NextMatch();
 }

 }
}

Essentially, four groupings of the same search pattern [01]?\d\d?|2[0-4]\d|25[0-5] are separated
by periods, which of course, are escaped in the preceding regular expression. Each one of these
subexpressions matches a number between 0 and 255.2 This entire expression for searching for regular
expressions is better, but still not perfect. However, you can see that it’s getting closer, and with a little
more fine-tuning, you can use it to validate the IP address given in a string. Thus, you can use regular
expressions to effectively validate input from users to make sure that it matches a certain form. For
example, you may have a web server that expects US telephone numbers to be entered in a pattern such
as (xxx) xxx-xxxx. Regular expressions allow you to easily validate that the user has input the number
correctly.

2 Breaking down the specifics of how this regular expression works is beyond the scope of this book. I encourage you
to reference one of the many fine resources in print or on the Internet detailing the grammar of regular expressions.

CHAPTER 8 ■ WORKING WITH STRINGS

235

You may have noticed the addition of parentheses in the IP address search expression in the
previous example. Parentheses are used to define groups that group subexpressions within regular
expressions into discrete chunks. Groups can contain other groups as well. Therefore, the IP address
regular-expression pattern in the previous example forms a group around each part of the IP address. In
addition, you can access each individual group within the match. Consider the following modified
version of the previous example:

using System;
using System.Text.RegularExpressions;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");
 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"([01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])\ " +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])\ " +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])";
 Regex regex = new Regex(pattern);
 Match match = regex.Match(args[0]);
 while(match.Success) {
 Console.WriteLine("IP Address found at {0} with " +
 "value of {1}",
 match.Index,
 match.Value);
 Console.WriteLine("Groups are:");
 foreach(Group g in match.Groups) {
 Console.WriteLine("\t{0} at {1}",
 g.Value,
 g.Index);
 }

 match = match.NextMatch();
 }

 }
}

Within each match, I’ve added a loop that iterates through the individual groups within the match.
As you’d expect, there will be at least four groups in the collection, one for each portion of the IP address.
In fact, there is also a fifth item in the group—the entire match. So, one of the groups within the groups
collection returned from Match.Groups will always contain the entire match itself. Given the following
input to the previous example

"This is an IP address:123.123.1.123"

the result would look like the following:

CHAPTER 8 ■ WORKING WITH STRINGS

236

IP Address found at 22 with value of 123.123.1.123

Groups are:

 123.123.1.123 at 22

 123 at 22

 123 at 26

 1 at 30

 123 at 32

Groups provide an excellent means of picking portions out of a given input string. For example, at
the same time that you validate that a user has input a phone number of the required format, you could
also capture the area code into a group for use later. Collecting substrings of a match into groups is
handy. But what’s even handier is being able to give those groups a name. Check out the following
modified example:

using System;
using System.Text.RegularExpressions;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");
 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"(?<part1>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part2>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part3>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part4>[01]?\d\d?|2[0-4]\d|25[0-5]) ";
 Regex regex = new Regex(pattern);
 Match match = regex.Match(args[0]);
 while(match.Success) {
 Console.WriteLine("IP Address found at {0} with " +
 "value of {1}",
 match.Index,
 match.Value);
 Console.WriteLine("Groups are:");
 Console.WriteLine("\tPart 1: {0}",
 match.Groups["part1"]);
 Console.WriteLine("\tPart 2: {0}",
 match.Groups["part2"]);

v@v
Text Box
Download at WoweBook.com

CHAPTER 8 ■ WORKING WITH STRINGS

237

 Console.WriteLine("\tPart 3: {0}",
 match.Groups["part3"]);
 Console.WriteLine("\tPart 4: {0}",
 match.Groups["part4"]);

 match = match.NextMatch();
 }

 }
}

In this variation, I’ve captured each part into a group with a name, and when I send the result to the
console, I access the group by name through an indexer on the GroupCollection returned by
Match.Groups that accepts a string argument.

With the ability to name groups comes the ability to back-reference groups within searches. For
example, if you’re looking for an exact repeat of a previous match, you can reference a previous group in
what’s called a back-reference by including \k<name>, where name is the name of the group to back-
reference. For example, consider the following example that looks for IP addresses where all four parts
are the same:

using System;
using System.Text.RegularExpressions;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");
 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"(?<part1>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"\k<part1>\." +
 @"\k<part1>\." +
 @"\k<part1>";
 Regex regex = new Regex(pattern);
 Match match = regex.Match(args[0]);
 while(match.Success) {
 Console.WriteLine("IP Address found at {0} with " +
 "value of {1}",
 match.Index,
 match.Value);

 match = match.NextMatch();
 }
 }
}

The following output shows the results of running this code on the string “My IP address is
123.123.123.123”:

CHAPTER 8 ■ WORKING WITH STRINGS

238

IP Address found at 17 with value of 123.123.123.123

Replacing Text with Regex
If you’ve ever used Perl to do any text processing, you know that the regular-expression engine within it
is indispensable. But one of the greatest powers within Perl is the regular-expression text-substitution
capabilities. You can do the same thing using .NET regular expressions via the Regex.Replace method
overloads. Suppose that you want to process a string looking for an IP address that a user input, and you
want to display the string. However, for security reasons, you want to replace the IP address with
xxx.xxx.xxx.xxx. You could achieve this goal, as in the following example:

using System;
using System.Text.RegularExpressions;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");
 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"([01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"([01]?\d\d?|2[0-4]\d|25[0-5])";
 Regex regex = new Regex(pattern);
 Console.WriteLine("Input given —> {0}",
 regex.Replace(args[0],
 "xxx.xxx.xxx.xxx"));
 }
}

Thus, given the following input

"This is an IP address:123.123.123.123"

the output would look like the following:

Input given —> This is an IP address:xxx.xxx.xxx.xxx

Of course, when you find a match within a string, you may want to replace it with something that
depends on what the match is. The previous example simply replaces each match with a static string. In
order to replace based on the match instance, you can create an instance of the MatchEvaluator delegate
and pass it to the Regex.Replace method. Then, whenever it finds a match, it calls through to the
MatchEvaluator delegate instance given while passing it the match. Thus, the delegate can create the
replacement string based upon the actual match. The MatchEvaluator delegate has the following
signature:

CHAPTER 8 ■ WORKING WITH STRINGS

239

public delegate string MatchEvaluator(Match match);

Suppose you want to reverse the individual parts of an IP address. Then you could use a
MatchEvaluator coupled with Regex.Replace to get the job done, as in the following example:

using System;
using System.Text;
using System.Text.RegularExpressions;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");
 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"(?<part1>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part2>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part3>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part4>[01]?\d\d?|2[0-4]\d|25[0-5])";
 Regex regex = new Regex(pattern);

 MatchEvaluator eval = new MatchEvaluator(
 EntryPoint.IPReverse);
 Console.WriteLine(regex.Replace(args[0],
 eval));
 }

 static string IPReverse(Match match) {
 StringBuilder sb = new StringBuilder();
 sb.Append(match.Groups["part4"] + ".");
 sb.Append(match.Groups["part3"] + ".");
 sb.Append(match.Groups["part2"] + ".");
 sb.Append(match.Groups["part1"]);
 return sb.ToString();
 }
}

Whenever a match is found, the delegate is called to determine what the replacement string should
be. However, because all you’re doing is changing the order, the job is not too complex for what are
called regular-expression substitutions. If, in the example prior to this one, you had chosen to use the
overload of Replace that doesn’t use a MatchEvaluator delegate, you could have achieved the same result,
because the regex lets you reference the group variables in the replacement string. To reference one of
the named groups, you can use the syntax shown in the following example:

using System;
using System.Text;
using System.Text.RegularExpressions;

public class EntryPoint

CHAPTER 8 ■ WORKING WITH STRINGS

240

{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");
 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"(?<part1>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part2>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part3>[01]?\d\d?|2[0-4]\d|25[0-5])\." +
 @"(?<part4>[01]?\d\d?|2[0-4]\d|25[0-5])";
 Regex regex = new Regex(pattern);
 Match match = regex.Match(args[0]);

 string replace = @"${part4}.${part3}.${part2}.${part1}" +
 @" (the reverse of $&)";
 Console.WriteLine(regex.Replace(args[0],
 replace));
 }
}

To include one of the named groups, simply use the ${name} syntax, where name is the name of the
group. You can also see that I reference the full text of the match using $&. Other substitutions strings are
available, such as $`, which substitutes the part of the input string prior to and up to the match, and $’,
which substitutes all text after the match. Others are documented in the MSDN documentation.

As you can imagine, you can craft complex string-replacement capabilities using the regular-
expression implementation within .NET Framework just as you can using Perl.

Regex Creation Options
One of the constructor overloads of a Regex allows you to pass various options of type RegexOptions
during creation of a Regex instance. Likewise, the methods on Regex, such as Match and Replace, have a
static overload allowing you to pass RegexOptions flags. I’ll discuss some of the more commonly used
options in this section, but for a description of all of the options and their behavior, consult the
RegexOptions documentation within the MSDN.

By default, regular expressions are interpreted at run time. Complex regular expressions can chew
up quite a bit of processor time while the regex engine is processing them. For times like these, consider
using the Compiled option. This option causes the regular expression to be represented internally by IL
code that is JIT-compiled. This increases the latency for the first use of the regular expression, but if it’s
used often, it will pay off in the end. Also, don’t forget that JIT-compiled code increases the working set
of the application.

Many times, you’ll find it useful to do case-insensitive searches. You could accommodate that in the
regular-expression pattern, but it makes your pattern much more difficult to read. It’s much easier to
pass the IgnoreCase flag when creating the Regex instance. When you use this flag, the Regex engine will
also take into account any culture-specific, case-sensitivity issues by referencing the CultureInfo
attached to the current thread. If you want to do case-insensitive searches in a culture-invariant way,
combine the IgnoreCase flag with the CultureInvariant flag.

The IgnorePatternWhitespace flag is also useful for complex regular expressions. This flag tells the
regex engine to ignore any white space within the match expression and to ignore any comments on
lines following the # character. This provides a nifty way to comment regular expressions that are really

CHAPTER 8 ■ WORKING WITH STRINGS

241

complex. For example, check out the IP address search from the previous example rewritten using
IgnorePatternWhitespace:

using System;
using System.Text.RegularExpressions;

public class EntryPoint
{
 static void Main(string[] args) {
 if(args.Length < 1) {
 Console.WriteLine("You must provide a string.");
 return;
 }

 // Create regex to search for IP address pattern.
 string pattern = @"
First part match
([01]?\d\d? # At least one digit,
 # possibly prepended by 0 or 1
 # and possibly followed by another digit
OR
 |2[0-4]\d # Starts with a 2, after a number from 0-4
 # and then any digit
OR
 |25[0-5]) # 25 followed by a number from 0-5

\. # The whole group is followed by a period.

REPEAT
([01]?\d\d?|2[0-4]\d|25[0-5])\.

REPEAT
([01]?\d\d?|2[0-4]\d|25[0-5])\.

REPEAT
([01]?\d\d?|2[0-4]\d|25[0-5])
";
 Regex regex = new Regex(pattern,
 RegexOptions.IgnorePatternWhitespace);
 Match match = regex.Match(args[0]);
 while(match.Success) {
 Console.WriteLine("IP Address found at {0} with " +
 "value of {1}",
 match.Index,
 match.Value);

 match = match.NextMatch();
 }

 }
}

CHAPTER 8 ■ WORKING WITH STRINGS

242

Notice how expressive you can be in the comments of your regular expression. Indeed, given how
complex regular expressions can become, this is never a bad thing.

Summary
In this chapter, I’ve touched the tip of the iceberg on the string-handling capabilities of the .NET
Framework and C#. Because the string type is such a widely used type, rather than merely include it in
the base class library, the CLR designers chose to annex it into the set of built-in types. This is a good
thing considering how common string usage is. Furthermore, the library provides a thorough
implementation of cultural-specific patterns, via CultureInfo, that you typically need when creating
global software that deals with strings heavily.

I showed how you can create your own cultures easily using the CultureAndRegionInfoBuilder class.
Essentially, any software that interacts directly with the user and is meant to be used on a global basis
needs to be prepared to service locale-specific needs. Finally, I gave a brief tour of the regular-expression
capabilities of the .NET Framework, even though a full treatment of the regular-expression language is
outside the scope of this book. I think you’ll agree that the string and text-handling facilities built into
the CLR, the .NET Framework, and the C# language are well-designed and easy to use.

In Chapter 9, I cover arrays and other, more versatile, collection types in the .NET Framework. Also,
I spend a fair amount of time covering the new support for iterators in C#.

C H A P T E R 9

■ ■ ■

243

Arrays, Collection Types,
and Iterators

Collection types have been around in various forms since the dawn of programming. I’m sure you
remember the linked list exercises when you were learning to write programs. In this chapter, I’ll give a
brief overview of arrays but won’t go into much detail, as arrays have not changed much between the
various .NET releases.

However, I’ll spend more time explaining the major generic collection interfaces and iterators along
with what sorts of cool things you can do with them. Traditionally, creating enumerators for collection
types has been tedious and annoying. Iterators make this task a breeze, while making your code a lot
more readable in the process.

Introduction to Arrays
C# arrays, as well as arrays in the CLR, are highly evolved from C/C++ arrays. In C/C++, you typically
access an array by offsetting a pointer that points to the beginning of a contiguous range of items in a
memory block somewhere. C/C++ arrays have no built-in range checking, which is the root of more bugs
than you can shake a stick at. C# and the CLR solve this problem elegantly by making the array type a
built-in, implicit type to the runtime.

When you declare a type—whether it’s a class or struct—the runtime reserves the right to silently
generate an array type based upon that new type. The array type that it generates is a reference type—
thus, all array instances are of class type. The reference type that it generates is derived from
System.Array, and ultimately from System.Object. Therefore, you can treat all C# arrays polymorphically
through a reference to System.Array. Of course, that means that each array, no matter what concrete
type of array it is, implements all of the methods and properties of System.Array.

The way that you declare an array within C# is similar to C/C++, except the designers of the
language took the liberty to make the syntax a tad more intuitive in their minds, in that the square
brackets in the declaration follow the type and not the array variable name. The following example
shows three ways to create an array:

using System;

public class EntryPoint
{
 static void Main() {
 int[] array1 = new int[10];
 for(int i = 0; i < array1.Length; ++i) {
 array1[i] = i*2;

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

244

 }

 int[] array2 = new int[] { 2, 4, 6, 8 };

 int[] array3 = { 1, 3, 5, 7 };
 }
}

The longhand way to create an array instance and fill it with initial values is shown where array1 is
initialized. Items are indexed using an indexer that is typically greater than or equal to 0. You may know
that arrays in the CLR can have a user-defined lower bound. However, in C#, the lower bound is always 0
in order to meet the CLS restriction that arrays have a 0 lower bound. The initialization techniques used
for array2 and array3 show a shorter notation for doing the same thing. Notice that in most cases, you
must first allocate the array instances on the heap using the new operator. The same thing happens with
the array3 instance, but the compiler does it for you in order to facilitate the notational shorthand. It’s
interesting to note that an array of type object—thus, System.Object[]—is itself of type System.Object.

One of the conveniences of .NET arrays is that they are range-checked. Therefore, if you step off the
end of one of them, thus going out of bounds, the runtime will throw an IndexOutOfRangeException
instead of changing random memory, as in native C/C++. So you can say goodbye to those lurking, hard-
to-find range bugs, because the CLR won’t allow them to lurk too long, and they definitely won’t go
unnoticed for long periods of time anymore.

Lastly, notice that you can conveniently iterate through the items in the array using the C# foreach
statement. This works because System.Array implements IEnumerable. I have more to say about
IEnumerable and its cousin IEnumerator later on, in the section titled “IEnumerable<T>,
IEnumerator<T>, IEnumerable, and IEnumerator.”

■ Note The compiler actually uses an optimization while compiling the foreach loop which I mention in Chapter

13. Instead of actually converting the array to an IEnumerable instance and then calling

IEnumerable.GetEnumerator, it instead simply calls any public GetEnumerator method that matches the

required signature. This optimization is a form of what is known as duck typing, which I speak more about in

Chapter 17. Even though foreach uses this optimization, it is always a good idea to implement IEnumerable and

IEnumerable<T> because a consumer may wish to iterate over your collection without using foreach such as with

LINQ.

Implicitly Typed Arrays
C# 3.0 introduced an abbreviated way of initializing arrays when the type of the array can be inferred at
runtime. Let’s have a look at the new syntax in the following code snippet:

using System;

public class EntryPoint
{
 static void Main() {
 // A conventional array
 int[] conventionalArray = new int[] { 1, 2, 3 };

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

245

 // An implicitly typed array
 var implicitlyTypedArray = new [] { 4, 5, 6 };
 Console.WriteLine(implicitlyTypedArray.GetType());

 // An array of doubles
 var someNumbers = new [] { 3.1415, 1, 6 };
 Console.WriteLine(someNumbers.GetType());

 // Won't compile!
 // var someStrings = new [] { "int",
 // someNumbers.GetType() };
 }
}

For comparison purposes, the first array variable, named conventionalArray, uses one of the
conventional syntaxes for declaring and instantiating an array. However, the next variable,
implicitlyTypedArray, uses the new and shorter syntax, and so it is devoid of any type information.
Instead of providing the compiler with type information, I instead rely on the compiler to deduce that
each item in the array is of type int. And to save even more keystrokes and make my life a bit easier,
implicitlyTypedArray is declared as an implicitly typed local variable. If you execute this code, you will
see that the WriteLine method call right below it shows that the implicitly typed variable is of type
System.Int32[]. In fact, you could have expressed the same line of code as follows:

int[] implicitlyTypedArray = new [] { 4, 5, 6 };

However, because you’ve already got the compiler figuring out the type of the array elements, you
may as well go a little further and let it deduce the entire array type, especially if the variable remains
local to the scope of this method. But what happens if you declare the array using multiple types in the
initialization list?

When the compiler is presented with multiple types within the initialization list of an implicitly
typed array, it determines a type that all the given types are implicitly convertible to. And, of course, for
all practical purposes, any type instance is convertible to its own type. Therefore, in the declaration of
the someNumbers instance in the example, the compiler determines that all of the types within the braces
are convertible to System.Double. Not surprisingly, the following WriteLine method call confirms this.
But what if the types are not all implicitly convertible to a single type?

When the compiler cannot find a common type that all of the array variables are convertible to, it
will present the compiler warning CS0826, stating

No best type found for implicitly typed array

If you uncomment the line where I have declared the someStrings variable, you will see this
behavior, because System.Type instances are not implicitly convertible to System.String.

■ Note All objects in .NET are implicitly convertible to System.Object; therefore, you may be wondering why the

compiler won't settle on using System.Object as the common type in the previous assignment to someStrings.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

246

That is because the compiler may only use types that are present in the implicitly typed array expression. Since

System.Object is not one of the types listed in the assignment of someStrings, it is not considered.

But what happens if you declare an array with two items and both types are convertible to each
other? Getting into a situation like this is very rare and usually has to be induced by having two custom
types that both contain implicit conversion operators to each other’s type.1 Just to see what happened, I
did just that. When I attempted to declare an implicitly typed array with an item of each type, I was
greeted with the CS0826 compiler error again, which I expected.

You may already be thinking about many useful applications for implicitly typed arrays. But in most
cases, they merely save you some typing.2 This is handy if your array contains closed generic types that
require a lot of typing to specify their type. So, in that respect, implicitly typed arrays can make more
readable code. But in other cases, they can actually make code harder to follow for a maintenance
engineer if knowing the type of the array at the point of declaration is essential to easily reading and
understanding what the code is doing.

■ Note Implicitly typed variables are actually implicitly typed local variables, so unless the method you are

reading is overly complex and huge, you should have no trouble deducing the type yourself. If you have trouble

deducing the type from looking at the code, it may mean that the function is too complex and in need of some

refactoring. Additionally, if you’re using implicitly typed local variables in your code, be sure the name the variables

logically so that a maintenance engineer can deduce the type of the variable easily.

All of that said, implicitly typed arrays are great for instantiating n-tuples of items. For example, the
following code snippet shows a succinct way to declare a matrix of integers:

using System;

public class EntryPoint {
 static void Main() {
 var threeByThree = new [] {
 new [] { 1, 2, 3 },
 new [] { 4, 5, 6 },
 new [] { 7, 8, 9 }
 };

 foreach(var i in threeByThree) {

1 I cover how you can define your own custom implicit and explicit conversion operators in Chapter 6.
2 Implicitly typed arrays are also very useful when used with LINQ. In fact, that’s true of most of the features
introduced in C# 3.0. Taken individually, they provide minimal added convenience, but taken as a whole and used
with LINQ, they provide the ability to create incredibly expressive expressions. I cover LINQ in Chapter 16.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

247

 foreach(var j in i) {
 Console.Write("{0}, ", j);
 }
 Console.Write("\n");
 }
 }
}

Type Convertibility and Covariance
When you declare an array to contain instances of a certain reference type, the instances that you may
place in that array can actually be instances of a more derived type, or any other reference type implicitly
convertible to the contained type. For example, if you create an array that contains instances of type
Animal, then you can feasibly insert an instance of Dog or Cat if both of them derive from Animal.

■ Note In C/C++, storing instances of type Dog or Cat into arrays as type Animal is strongly discouraged because

the objects, if held by value, would get sheared off, the Cat-ness and Dog-ness would get chopped off, and all

you’d end up with is Animal-ness. Not so in C#, because the array merely references the objects on the heap. If

you want to make an analogy to C/C++ arrays, C# arrays are similar to C/C++ arrays holding pointers to Cat and

Dog through pointers to type Animal.

You can coerce array types in another, even more interesting way:

using System;

public class Animal { }
public class Dog : Animal { }
public class Cat : Animal { }

public class EntryPoint
{
 static void Main() {
 Dog[] dogs = new Dog[3];
 Cat[] cats = new Cat[2];

 Animal[] animals = dogs;
 Animal[] moreAnimals = cats;
 }
}

The assignment from dogs to animals and from cats to animals is something that you definitely can’t
do in native C/C++. Arrays in C# are assignable as long as their rank matches and the contained type is a
reference type that is implicitly convertible from one to the other. This capability of array assignment in
the CLR is provided by the fact that arrays are covariant as opposed to invariant. Both arrays in the
previous example have a rank of 1, and Dog and Cat are type-convertible to Animal, thus the assignment
works. The C# creators included covariant array support in the CLR primarily to support the Java

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

248

language. Incidentally, this feature of the language is inherently broken and allows you to insert an
instance of Table into an array of Dogs. For more details, refer to the section titled “Co- and
Contravariance” in Chapter 11.

■ Note The full type information of an array comprises its rank (how many dimensions it has) and the type that it

contains.

Sortability and Searchability
If you take a look at the entire System.Array interface as documented in the MSDN documentation,
you’ll notice that several methods have to do with sorting the items within the array. These methods are
usable when the contained type implements IComparable, the standard interface through which items of
a particular type are compared.3 Naturally, you cannot sort a multidimensional array, and if you try,
you’ll need to be ready to catch an exception of type RankException. So, always be cognizant of what
types of things could go wrong when you’re calling methods on arrays to do what could appear to be fail-
proof operations.

Using the static methods Index and LastIndexOf, you can locate a specific value within an array. If
the method fails to find the requested value, it returns –1. No particular search algorithm is involved with
these methods other than the fact that the former starts searching from the beginning of the array and
the latter starts at the end. If you’d like to perform a faster search, you can use the BinarySearch static
method. However, before you can do so, you must sort your array, and of course, that requires that the
items within the array implement IComparable/IComparable<T> or you must provide a type that
implements IComparer/IComparer<T> which is passed to the Sort method.

■ Note The difference between whether your type implements IComparable/IComparable<T> or whether you

provide another type which implements IComparer/IComparer<T> to perform the comparison of two instances is

a subtle but important one. As Jon Skeet points out, separating the comparison logic from the type itself facilitates

greater flexibility. Sort methods should provide an overload that accepts a type that implements

IComparer/IComparer<T> which the Sort method then delegates to in order to compare two instances. This

design whereby one can provide the algorithm at the time of the sort is a form of the Strategy pattern.

3 IComparable<T>, the generic form of IComparable, is also available.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

249

Synchronization
Many times, you’ll find it necessary to synchronize access to an array or a collection type that
implements ICollection.4 The System.Array type implements ICollection as well as IList. One of the
properties of ICollection is IsSynchronized, which always returns false for regular arrays. That’s
because regular arrays aren’t synchronized by default, because enforcing such a rule would cause those
who don’t need synchronization to pay a penalty. Therefore, you must manage synchronization
yourself.

■ Tip If you are going to need synchronization within collections used in multithreaded systems, I highly suggest

that you use the collection types in System.Collections.Concurrent. These types were added to .NET 4.0 by

the Parallel Computing Platform team at Microsoft and their locking techniques are finely tuned for efficiency in

concurrent multithreaded environments.

The easiest way to manage synchronization is via the System.Monitor class, which you normally use
via the C# lock keyword. The class allows you to acquire the built-in synchronization lock on an object.5
However, instead of acquiring a lock on the array object itself, you should acquire a lock on the
ICollection.SyncRoot object instead.

■ Note You can acquire a lock on any object referenced in the CLR. Each object has a lazily created sync block,

which contains the lock variable that the CLR manages internally when System.Monitor attempts to acquire the

lock.

Many array and collection implementations are free to return a reference to the actual container via
the ICollection.SyncRoot property, but they might not for various reasons. ICollection.SyncRoot
provides a common way for synchronizing access to both arrays and collections. I have more to say
about synchronization when I cover the ICollection interface in the “Collection Synchronization”
section.

Vectors vs. Arrays
It’s interesting to note that the CLR supports two special types to deal with arrays in C# code. If your
array happens to be single-dimensional, and it happens to have a lower bound of 0, which is usually true

4 Chapter 12 covers synchronization and concurrency in detail, along with the subject of threading in the .NET
Framework.

5 You can find out more about System.Monitor and other synchronization techniques in Chapter 12.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

250

for C# arrays,6 then the CLR uses a special built-in type called a vector, which is actually a subtype of
System.Array. The CLR supports special IL instructions defined to work directly with vectors. If your
array is multidimensional, then a CLR vector type is not used and an array object is used instead. To
demonstrate this, let’s take a quick look at some IL code generated by the following short example:

public class EntryPoint
{
 static void Main() {
 int val = 123;
 int newVal;

 int[] vector = new int[1];
 int[,] array = new int[1,1];
 vector[0] = val;
 array[0,0] = val;

 newVal = vector[0];
 newVal = array[0,0];
 }
}

Take a look at the generated IL for the Main method:

.method private hidebysig static void Main() cil managed
{
 .entrypoint
 // Code size 46 (0x2e)
 .maxstack 4
 .locals init ([0] int32 val,
 [1] int32 newVal,
 [2] int32[] 'vector',
 [3] int32[0...,0...] 'array')
 IL_0000: nop
 IL_0001: ldc.i4.s 123
 IL_0003: stloc.0
 IL_0004: ldc.i4.1
 IL_0005: newarr [mscorlib]System.Int32
 IL_000a: stloc.2
 IL_000b: ldc.i4.1
 IL_000c: ldc.i4.1
 IL_000d: newobj instance void int32[0...,0...]::.ctor(int32,
 int32)
 IL_0012: stloc.3
 IL_0013: ldloc.2
 IL_0014: ldc.i4.0
 IL_0015: ldloc.0

6 Arrays declared with the C# array syntax always have a zero lower bound. If you need an array with a nonzero lower
bound, you must create the instance via the System.Array.CreateInstance() method.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

251

 IL_0016: stelem.i4
 IL_0017: ldloc.3
 IL_0018: ldc.i4.0
 IL_0019: ldc.i4.0
 IL_001a: ldloc.0
 IL_001b: call instance void int32[0...,0...]::Set(int32,
 int32,
 int32)
 IL_0020: ldloc.2
 IL_0021: ldc.i4.0
 IL_0022: ldelem.i4
 IL_0023: stloc.1
 IL_0024: ldloc.3
 IL_0025: ldc.i4.0
 IL_0026: ldc.i4.0
 IL_0027: call instance int32 int32[0...,0...]::Get(int32,
 int32)
 IL_002c: stloc.1
 IL_002d: ret
} // end of method EntryPoint::Main

Notice the difference between usages of the two C# arrays. On line IL_0005, the newarr IL instruction
creates the instance represented by the vector variable. The multidimensional array held in the variable
array is created on line IL_000d. In the first case, a native IL instruction handles the operation, whereas a
regular constructor call handles the operation in the second case. Similarly, when accessing the
elements, the IL instructions stelem and ldelem, on lines IL_0016 and IL_0022 respectively, are used for
the vector, whereas regular method calls handle the access to the elements of the multidimensional
array.

Because vector support is handled by specific IL instructions tailored specifically for vectors, it’s safe
to assume that vector use tends to be more efficient than multidimensional array use, even though
instances of both derive from System.Array.

Multidimensional Rectangular Arrays
C# and the CLR contain direct support for multidimensional arrays, also known as rectangular arrays.
You can easily declare an array with multiple rank within C#. Simply introduce a comma into the square
brackets to separate the rank, as shown in the following example:

using System;

public class EntryPoint
{
 static void Main() {
 int[,] twoDim1 = new int[5,3];

 int[,] twoDim2 = { {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9} };

 foreach(int i in twoDim2) {
 Console.WriteLine(i);

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

252

 }
 }
}

There are several things to note when using rectangular arrays. All usage of these arrays boils down
to method calls on a CLR-generated reference type, and the built-in vector types don’t come into play
here. Notice the two declarations. In each case, you don’t need the size of each dimension when
declaring the type. Again, that’s because arrays are typed based on their containing type and rank.
However, once you create an instance of the array type, you must provide the size of the dimensions. I
did this in two different ways in this example. In creating twoDim1, I explicitly said what the dimension
sizes are, and in the creation of twoDim2, the compiler figured it out based upon the initialization
expression.

In the example, I listed all of the items in the array using the foreach loop as shown. foreach iterates
over all items in the array in a row-major fashion. I could have achieved the same goal using two nested
for loops, and I definitely would have needed to do that if I needed to iterate over the array elements in
any other order. When doing so, keep in mind that the Array.Length property returns the total amount
of items in the array. In order to get the count of each dimension, you must call the Array.GetLength
method supplying the dimension that you’re interested in. For example, I could have iterated over the
items in the array using the following syntax, and the results would have been the same:

using System;

public class EntryPoint
{
 static void Main() {
 int[,] twoDim = { {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9} };

 for(int i = 0; i != twoDim.GetLength(0); ++i) {
 for(int j = 0; j != twoDim.GetLength(1); ++j) {
 Console.WriteLine(twoDim[i,j]);
 }
 }

 for(int i = twoDim.GetLowerBound(0);
 i <= twoDim.GetUpperBound(0);
 ++i) {
 for(int j = twoDim.GetLowerBound(1);
 j <= twoDim.GetUpperBound(1);
 ++j) {
 Console.WriteLine(twoDim[i,j]);
 }
 }
 }
}

For good measure, I’ve shown how to iterate over the dimensions of the array using two methods.
The first method assumes that the lower bound of each dimension is 0, and the second does not. In all of
the calls to GetLength, GetUpperBound, and GetLowerBound, you must supply a zero-based dimension of
the Array that you’re interested in.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

253

■ Note All arrays created within C# using the standard C# array declaration syntax will have a lower bound of 0.

However, if you’re dealing with arrays used for mathematical purposes, as well as arrays that come from

assemblies written in other languages, you may need to consider that the lower bound may not be 0.

When you access the items of a multidimensional array, the compiler generates calls to Get and Set
methods, which are similar to GetValue and SetValue. These methods are overloaded to accept a variable
list of integers to specify the ordinal of each dimension within the array.

When mapping multidimensional arrays to mathematical concepts, the rectangular array is the
most natural and preferred way to go. However, creating methods where an argument may be an array
of varying rank is tricky, because you must accept the argument as type System.Array and dynamically
deal with the rank of the array. You can access the rank of an array using the Array.Rank property. Thus,
creating rank-general code is tricky due to the syntactical burden of accessing all array items through
method calls to System.Array, but it is entirely possible. Moreover, the most general array-manipulation
code should also handle the case of nonzero lower bounds in the individual ranks.

Multidimensional Jagged Arrays
If you come from a C/C++ or Java background, you’re probably already familiar with jagged arrays,
because those languages don’t support rectangular multidimensional arrays like C# does. The only way
to implement multidimensional arrays is to create arrays of arrays, which is precisely what a jagged array
is. However, because each element of the top-level array is an individual array instance, each array
instance in the top-level array can be any size. Therefore, the array isn’t necessarily rectangular—hence,
the name jagged arrays.

The syntactical pattern for declaring a jagged array in C# is similar to its cousins C++ and Java. The
following example shows how to allocate and use a jagged array:

using System;
using System.Text;

public class EntryPoint
{
 static void Main() {
 int[][] jagged = new int[3][];

 jagged[0] = new int[] {1, 2};
 jagged[1] = new int[] {1, 2, 3, 4, 5};
 jagged[2] = new int[] {6, 5, 4};

 foreach(int[] ar in jagged) {
 StringBuilder sb = new StringBuilder();
 foreach(int n in ar) {
 sb.AppendFormat("{0} ", n);
 }
 Console.WriteLine(sb.ToString());
 }
 Console.WriteLine();

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

254

 for(int i = 0; i < jagged.Length; ++i) {
 StringBuilder sb = new StringBuilder();
 for(int j = 0; j < jagged[i].Length; ++j) {
 sb.AppendFormat("{0} ", jagged[i][j]);
 }
 Console.WriteLine(sb.ToString());
 }
 }
}

As you can see, allocating and creating a jagged array is a bit more complex than rectangular arrays
because you must handle all of the subarray allocations individually, whereas a rectangular array gets
allocated all at once. Notice how the output provides a jagged-looking output, because each subarray
has a different size:

1 2

1 2 3 4 5

6 5 4

In the example, I show two ways to iterate through the array just to show the syntax for accessing the
individual items within a jagged array and how that syntax differs from accessing items within a
rectangular array. The syntax is similar to that of C++ and Java. The foreach method of iterating through
the array is more elegant, and as I’ll cover later on, using foreach allows you to use the same code to
iterate through collections that may not be arrays.

■ Note It’s preferable to use foreach to iterate through arrays and collections. That way, you can change the type

of the container later and the foreach block won’t have to change. If you use a for loop instead, you may have to

change the method used to access each individual element. Additionally, foreach handles cases where the array

has a nonzero lower bound.

It often makes sense to use jagged arrays rather than rectangular arrays. For example, you may be
reading in information from a database, and each entry in the top-level array may represent a collection
where each subcollection may have a widely varying amount of items in it. If most of the subcollections
contain just a handful of items and then one of them contains 100 items, a rectangular array would
waste a lot of space because it would allocate 100 entries for each subcollection no matter what. Jagged
arrays are generally more space efficient, but the trade-off is that accessing items within a jagged array
requires more care, because you cannot assume that each subarray has the same number of items in it.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

255

■ Note Jagged arrays can potentially be more computationally efficient, because jagged arrays are typically

arrays of single-dimension, zero-lower-bound arrays, which the CLR represents with vectors, as described

previously in this chapter.

Collection Types
Ever since its inception, the .NET Framework has offered a host of collection types for managing
everything from an expandable array via ArrayList, a Queue, a Stack, or even a dictionary via the
HashTable class. Over the years, newer versions of the .NET Framework expanded these types. Generally,
a collection is any type that holds on to a set of objects and implements IEnumerable or IEnumerable<T>.
The objects in the set are typically related to each other in some way defined by the problem domain.

I’m assuming that you’re already familiar with the nongeneric collection types and collection
interfaces available in .NET 1.1—specifically, those defined in the System.Collections and
System.Collections.Specialized namespaces. You can find plenty of documentation on these in the
MSDN. Throughout this discussion, I’ll call the old collection types the nongeneric collection types in
order to distinguish them from the new collection types and interfaces defined within the
System.Collections.Generic and System.Collections.ObjectModel namespaces.

Comparing ICollection<T> with ICollection
The most obvious additions to the collection types starting within the .NET 2.0 Framework are the types
defined within the System.Collections.Generic namespace. You can read much more about generics in
Chapter 11. These types are strongly typed, thus giving the compiler a bigger type-safety hammer to
wield when ferreting out type-mismatch bugs at compile time. In addition, when used to contain value
types, they are much more efficient, because there is no gratuitous boxing. Arguably, the root type of all
the generic collection types is ICollection<T>. I have included the declaration for it here:

public interface ICollection<T> : IEnumerable<T>, IEnumerable
{
 int Count { get; }
 bool IsReadOnly { get; }
 void Add(T item);
 void Clear();
 bool Contains(T item);
 void CopyTo(T[] array, int arrayIndex);
 bool Remove(T item);
}

For the sake of comparison, I’ve included the nongeneric ICollection interface definition as well:

public interface ICollection : IEnumerable
{
 int Count { get; }
 bool IsSynchronized { get; }
 object SyncRoot { get; }
 void CopyTo(Array array, int index);

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

256

}

Now, let’s take a look at the differences and what that means for your code. One thing that has been
missing with the nongeneric collections is a uniform interface for managing the contents of the
collection. For example, the nongeneric Stack and Queue types both have a Clear method to erase their
contents. As expected, they both implement ICollection. However, because ICollection doesn’t
contain any modifying methods, you generally can’t treat instances of these two types polymorphically
within code. Thus, you would always have to cast an instance variable to type Stack in order to call
Stack.Clear, and cast to type Queue in order to call Queue.Clear.

ICollection<T> helps this problem by declaring some methods for modifying the collection. As with
most general-use solutions, it does not necessarily apply to all situations. For example, ICollection<T>
also declares an IsReadOnly property, because sometimes you need to introduce an immutable
collection in your design. For those instances, you would expect calls to Add, Clear, and Remove to throw
an InvalidOperationException.

■ Note For better performance, it’s recommended that calling code determines if such operations are forbidden

by first checking the IsReadOnly property, thus avoiding the exception altogether. Of course, if the end result of

IsReadOnly returning true is that you throw an exception, then there is no gain.

Since a main purpose of ICollection<T> is to provide stronger type safety, it only makes sense that
ICollection<T> provides its own version of CopyTo that is strongly typed. Whereas ICollection.CopyTo
knows that the first parameter is an array and accepts a System.Array reference as its first parameter,
ICollection<T>.CopyTo is given the concrete array type in its first parameter. Clearly, you can only pass a
single dimension array to ICollection<T>.CopyTo. The fact is that the nongeneric ICollection.CopyTo
only accepts an array of single dimension as well, but because the compiler cannot determine the rank
of a System.Array type at compile time, you get a runtime exception of the type ArgumentException if you
pass an array with more than one dimension to a proper implementation of ICollection.CopyTo. Notice
that I said “a proper implementation.” Not only is the caller of ICollection.CopyTo supposed to know
this rule, but so is the type implementing ICollection. The added type information in
ICollection<T>.CopyTo not only protects both the caller and the implementer from making this mistake,
it also provides greater efficiency.

You’ll notice that all of the generic collection types implement both ICollection<T> and
ICollection. Both interfaces provide useful utility to the container type. Any methods in ICollection
that overlap with ICollection<T> should be implemented explicitly.

■ Note When defining your own collection types, you should derive from Collection<T> in the

System.Collections.ObjectModel namespace unless there is a good reason not to do so. For instance,

Collection<T> might have some functionality that you don’t want, or you must be explicit about how the items

are stored in the collection and has protected virtual methods that you can override to control its behavior. When

you don’t derive from Collection<T>, your job is much more laborious, because you must reimplement most of

what Collection<T> already implements. If you are creating your own custom dictionary type, derive from

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

257

KeyedCollection<TKey, TItem> instead. Incidentally, List<T> is not designed to be used as a base class

because it does not have any ways for one to override its behavior.

Collection Synchronization
One capability present in ICollection that is missing from its generic counterpart is the provision for
handling multithreaded synchronization generally across all collections. By default, most collection
types are not synchronized. You can access the IsSynchronized property to determine whether the
collection is synchronized. Most of the time, including with System.Array, the answer will be false.
However, sometimes you’ll require synchronization while accessing these collections from multiple
threads.

There are a couple of ways to control synchronization to collections that return false from
ICollection.IsSynchronized. The most basic way is to use the ICollection.SyncRoot property, which
returns an object that you can subsequently use with the System.Monitor—usually via the C# lock
statement—to guard access to the collection. Handling it this way gives you much greater flexibility
when accessing the collection, because you control the granularity of exactly when the lock is acquired
and released. However, the burden is on you to make sure that locking is handled appropriately, because
the collection doesn’t attempt to acquire the lock internally.

■ Note Choosing how to implement synchronization is a classic engineering trade-off decision to make when

designing new collections that implement ICollection. You can implement synchronization internally to the

collection, but clients that don’t need it pay a performance penalty. You also can externalize the synchronization by

implementing ICollection.SyncRoot, but then you rely on the clients to manage the synchronization correctly.

You should consider your application domain thoroughly when choosing between the two.

In some cases, collection types simply return this for ICollection.SyncRoot. It is best practice that
you never synchronize access to a collection by passing its reference directly to the System.Monitor.
Instead, always use the object obtained through the SyncRoot property, even though it may actually
return this.

As an alternative to managing the SyncLock manually, most of the nongeneric collection types in the
standard library implement a Synchronized method, which returns an object that wraps the collection
and manages the synchronization lock for you. You may want to consider applying this same pattern
when creating collection types of your own. By using the wrapper returned by the Synchronized method,
client code that uses the collection doesn’t have to change in order to work in a multithreaded
environment. When implementing your own collections, always allow clients to choose whether
synchronization is used and never force it upon them.

■ Tip If you are going to need synchronization within collections used in multithreaded systems, I highly suggest

that you use the collection types in System.Collections.Concurrent. These types were added to .NET 4.0 by

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

258

the Parallel Computing Platform team at Microsoft and their locking techniques are finely tuned for efficiency in

concurrent multithreaded environments.

Lists
One thing that is missing from ICollection<T>, and for good reason, is an index operator that allows you
to access the items within the collection using the familiar array-access syntax. The fact is that not all
concrete types that implement ICollection<T> need to have an index operator, and in some of those
cases, it makes no sense for them to have an index operator. For example, an index operator for a list of
integers would probably accept a parameter of type int, whereas a dictionary type would accept a
parameter type that is the same as the key type in the dictionary.

If you’re defining a collection where it makes sense to index the items, then you want that collection
to implement IList<T>. Concrete generic list collection types typically implement the IList<T> and
IList interfaces. IList<T> implements ICollection<T>, and IList implements ICollection, so any type
that is a list is also a collection. The IList<T> interface looks like the following:

public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable
{
 T this[int index] { get; set; }
 int IndexOf(T item);
 void Insert(int index, T item);
 void RemoveAt(int index);
}

The IList interface is a bit larger:

public interface IList : ICollection, IEnumerable
{
 bool IsFixedSize { get; }
 bool IsReadOnly { get; }
 object this[int index] { get; }
 int Add(object value);
 void Clear();
 bool Contains(object value);
 int IndexOf(object value);
 void Insert(int index, object value);
 void Remove(object value);
 void RemoveAt(int index);
}

As you can see, there is some overlap between IList<T> and IList, but there are plenty of useful
properties and methods in IList that a generic container such as List<T>, or any other generic list that
you create, would want. As with ICollection<T> and ICollection, the typical pattern is to implement
both interfaces. You should explicitly implement the methods of IList that overlap in functionality with
those of IList<T>, so that the only way to get to them is to convert the instance reference to the IList
type first.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

259

■ Note Generally, when implementing your own list types, you should derive your implementation from

Collection<T> in the System.Collections.ObjectModel namespace.

Dictionaries
The .NET 2.0 Framework introduced the IDictionary<TKey, TValue> type as a generic and thus strongly
typed counterpart to IDictionary. As usual, concrete types that implement IDictionary<TKey, TValue>
should implement IDictionary as well. There is a lot of overlap, and the generic interface declares more
type-safe versions of some properties and methods declared in IDictionary. However, there is also a
new method available on IDictionary<TKey, TValue> called TryGetValue, which you can use to attempt
to get a value based on the given key. The method returns the value through an out parameter, and the
actual return value from the method indicates whether the item was in the dictionary. Although you can
do this same thing using the index operator and catching the KeyNotFoundException when the item is not
in there, it is always more efficient to avoid exceptions if you know the item is probably not there. Using
exceptions for the purpose of control flow is a practice to avoid for two reasons. First, using exceptions
for control flow is inefficient, because exceptions are expensive. Second, it trivializes the fact that an
exception is a truly exceptional event. When using exceptions for control flow, you’re using exceptions to
handle an expected event. You’ll find more cases of this Try... method call pattern throughout the .NET
Framework, because the .NET team made a concerted effort to avoid efficiency bottlenecks such as
these.

■ Note When implementing generic dictionaries, you have a couple of choices from which to derive

implementations. First, you can use SortedDictionary<TKey, TValue>, which provides O(log n) retrieval and

implements IDictionary<TKey, TValue> as well as the collection interfaces. However, you can also choose to

use KeyedCollection<TKey, TValue> in the System.Collections.ObjectModel namespace. Although it

doesn’t actually implement the dictionary interfaces, it does provide O(1) retrieval most of the time. For more

details, see the MSDN documentation.

Sets
The .NET 3.5 Framework introduced yet another useful collection class, known as HashSet, which is
defined in the System.Collections.Generic namespace. HashSet implements the typical set operations
that you would expect. For example, you can call the IntersectWith method to modify the current set so
that it will contain an intersection of the current items and the items contained in the IEnumerable<T>
type given. Conversely, UnionWith modifies the current set to contain the union of two sets. Other useful
methods include IsSubsetOf, IsSupersetOf, ExceptWith, SymmetricExceptWith, Contains, etc. These are
just a few of the useful methods available for sets.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

260

■ Note Notice that the various set operation methods implemented by HashSet accept parameters of type

IEnumerable<T>. This is very handy because it allows you to use any collection type as the parameter to these

methods rather than only HashSet instances.

As is typical with set operations, you can only add unique values to instances of HashSet. For
example, if you have already added the values 1, 2, and 3 to a HashSet<int> instance, then you cannot
add another integer corresponding to one of those values. This is the reason the Add method returns a
Boolean indicating whether the operation succeeded or not. It would be inefficient to throw an
exception in such cases, so the result is indicated via the return value from Add.

System.Collections.ObjectModel
For those of you who need to define your own collection types, you’ll find the types defined in the
System.Collection.ObjectModel namespace most useful. In fact, you should derive your
implementations from the objects in this namespace, if at all possible. This namespace contains only
five types, and the fact that this namespace exists has been the source of some controversy. There were
two main reasons these types were broken out into their own namespace. First, the Visual Basic
environment already contains a Collection type that is implemented by a namespace it imports by
default, and the Visual Basic team was concerned that VB users could become confused by seeing two
types with similar names and drastically different behaviors popping up in IntelliSense. Second, the Base
Class Libraries (BCL) team thought that users would rarely need the types in this namespace. Whether
that is true will be shown over time. My opinion is that these types are extremely useful for writing
libraries or for code consumed by others. One of Microsoft’s guidelines even suggests that you should
consider creating a subclass of these types when exposing collections, even if only to provide a richer
type name describing the collection and an easily accessible extensibility point.

These types are extremely useful if you’re defining collection types of your own. You can derive your
type from Collection<T> easily in order to get default collection behavior, including implementation of
ICollection<T>, IList<T>, and IEnumerable<T>. Collection<T> also implements the nongeneric
interfaces ICollection, IList, and IEnumerable. However, you may have to cast the type to one of these
interfaces explicitly to access the properties and methods of them, because many of them are
implemented explicitly. Moreover, the Collection<T> type uses the NVI pattern7 to provide the derived
type with a set of protected virtual methods that you can override. I won’t list the entire public interface
to Collection<T> here, because you can find the details in the MSDN documentation. However, the
protected virtual methods that you may override are shown in the following code:

public class Collection<T> : ICollection<T>, IList<T>, IEnumerable<T>,
 ICollection, IList, IEnumerable
{
 ...
 protected virtual void ClearItems();
 protected virtual void InsertItem(int index, T item);
 protected virtual void RemoveItem(int index);

7 I describe the NVI pattern in Chapter 13.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

261

 protected virtual void SetItem(int index, T item);
 ...
}

You cannot modify the storage location of the collection by overriding these methods.
Collection<T> manages the storage of the items, and the items are held internally through a private field
of type IList<T>. However, you can override these methods to manage extra information triggered by
these operations. Just be sure to call through to the base class versions in your overrides.

Finally, the Collection<T> type offers two constructors: one creates an empty instance, and the
other accepts an IList<T>. The constructor copies the passed-in contents of the IList<T> instance into
the new collection in the order that they are provided by the enumerator returned from
IList<T>.GetEnumerator. This ordering is important to note, as you’ll see a way to control it in the
following section on enumerators and iterator blocks. The implementation of the source list’s
enumerator can do such things as reverse the order of the items as they’re put into the collection, simply
by providing a proper enumerator implementation. Personally, I believe there should be more
constructors on Collection<T> that accept an interface of type IEnumerator<T> and IEnumerable<T> in
order to provide more flexible ways to fill a collection. You can solve this problem by introducing the
extra constructors into a type that derives from Collection<T>, as I’ve shown here:

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;

public class MyCollection<T> : Collection<T>
{
 public MyCollection() : base() {
 }

 public MyCollection(IList<T> list)
 : base(list) { }

 public MyCollection(IEnumerable<T> enumerable)
 : base() {
 foreach(T item in enumerable) {
 this.Add(item);
 }
 }

 public MyCollection(IEnumerator<T> enumerator)
 : base() {
 while(enumerator.MoveNext()) {
 this.Add(enumerator.Current);
 }
 }
}

public class EntryPoint
{
 static void Main() {
 MyCollection<int> coll =
 new MyCollection<int>(GenerateNumbers());

 foreach(int n in coll) {

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

262

 Console.WriteLine(n);
 }
 }

 static IEnumerable<int> GenerateNumbers() {
 for(int i = 4; i >= 0; —i) {
 yield return i;
 }
 }
}

In Main, you can see the instance of MyCollection<int> created by passing in an IEnumerable<int>
type returned from the GenerateNumbers method. If the yield keyword in the GenerateNumbers method
looks foreign to you, it may be because it’s a feature added in C# 2.0. I’ll explain this keyword a little later
on in this chapter. Essentially, it defines what’s called an iterator block, which creates a compiler-
generated enumerator from the code. After creating a MyCollection<T> constructed type, you can still
hold on to it and use it solely through a Collection<T> reference. After all, MyCollection<T> is-a
Collection<T>. Incidentally, I didn’t bother creating constructors that accept the nongeneric
IEnumerable and IEnumerator, simply because I want to favor stronger type safety.

You may have noticed the existence of List<T> in the System.Collections.Generic namespace. It
would be tempting to use List<T> in your applications whenever you need to provide a generic list type
to consumers. However, instead of using List<T>, consider Collection<T>. List<T> doesn’t implement
the protected virtual methods that Collection<T> implements. Therefore, if you derive your list type
from List<T>, your derived type has no way to respond when modifications are made to the list. On the
other hand, List<T> serves as a great tool to use when you need to embed a raw list-like storage
implementation within a type, because it is devoid of virtual method calls such as Collection<T> and is
more efficient as a result.

Another useful type within the System.Collections.ObjectModel namespace is the type
ReadOnlyCollection<T>, which is a wrapper you can use to implement read-only collections. Since the
C# language lacks any notion of using the const keyword for const-correctness like in C++, it is essential
to create immutable types when necessary and pass those to methods in lieu of const parameters. The
constructor for ReadOnlyCollection<T> accepts an IList<T> parameter type. Thus, you can use a
ReadOnlyCollection<T> to wrap any type that implements IList<T>, including Collection<T>. Naturally,
if users access the ICollection<T>.IsReadOnly property, the answer will be true. Any time users call a
modifying method such as ICollection<T>.Clear, an exception of type NotSupportedException will be
thrown. Moreover, in order to call modifying methods, the ReadOnlyCollection<T> reference must be
cast to the interface containing the method, because ReadOnlyCollection<T> implements all modifying
methods explicitly. The biggest benefit of implementing these methods explicitly is to help you avoid
their use at compile time.

Efficiency
When given a choice, you should always prefer the generic collection types over the nongeneric versions
because of added type safety and higher efficiency. Let’s consider the efficiency standpoint a little more
closely. When containing value types, the generic types avoid any unnecessary boxing and unboxing.
Boxing is definitely a much more expensive operation than unboxing, because boxing requires a heap
allocation but an unboxing operation doesn’t. Rico Mariani pinpoints many other efficiency bottlenecks

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

263

in his blog, Rico Mariani’s Performance Tidbits.8 He indicates that the development teams spent a lot of
time focusing specifically on performance issues and simplifying things to make them better. One
excellent example that he provides illustrates how List<T> is remarkably faster than ArrayList when
used in many foreach iterations. However, the speed is not because of the obvious boxing/unboxing
reasons, but rather because ArrayList uses a gratuitous amount of virtual methods, especially during
enumeration. ArrayList.GetEnumerator is virtual, and the nested enumerator type
ArrayListEnumeratorSimple also implements the MoveNext method and the Current property virtually.
That adds up to many costly virtual methods to call during enumeration. Unless you’re enumerating an
ArrayList like a crazed demon, you won’t notice this performance penalty, but it just goes to show how
much attention the BCL development team has been putting on efficiency lately.

This is a great example of why you want to analyze your class designs clearly to ensure that you’re
making your classes inheritable for a good reason. Don’t make a method virtual unless you’re positive
someone will need to override it, and if you do, make sure you use the NVI pattern covered in Chapter
13. It is my firm belief that you should tend toward creating sealed classes, unless you’re absolutely sure
that there is a good reason why people would want to inherit from your class. If you can’t think of a
reason why they would want to, don’t leave it unsealed just because you think someone may come up
with a good reason in the future. If you don’t come up with a good reason, then it’s unlikely that you
created your class with inheritance in mind, and it may not work as expected for whatever derives from
your class. Inheritability should be a conscious decision and not a subconscious one.

■ Note Even if your class derives from a class that uses virtual methods, it will be more efficient if you declare it

sealed, because the compiler can then call those virtual methods nonvirtually when calling through a reference to

the derived type.

There is one caveat to everything mentioned so far: Gratuitous use of generics, or any feature for
that matter, without knowing the ramifications is never good. Whenever a fully constructed type is
created, the runtime must generate that code within memory. Also, fully constructed types created from
generic types with static fields will each get their own copy of the static fields. Moreover, they’ll all get
their own version of the static constructor. So, if the generic contains a field like this:

public class MyGeneric<T>
{
 public static int staticField;
}

then MyGeneric<int>.staticField and MyGeneric<long>.staticField will both reference different
storage locations.

The moral of the story is that you must consider the engineering trade-off. Although generics help
avoid boxing and generally create more efficient code, they can also increase the size of your
application’s working set. If in doubt, measure the results using performance-analysis tools to determine
the proper route to take.

8 You can find Rico’s blog at http://blogs.msdn.com/ricom/.

http://blogs.msdn.com/ricom

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

264

IEnumerable<T>, IEnumerator<T>, IEnumerable, and
IEnumerator
You’ve seen how you can use the C# foreach statement to conveniently iterate over a collection of
objects, including a System.Array, ArrayList, List<T>, and so on. How does this work? The answer is that
each collection that expects to work with foreach must implement the IEnumerable<T> or IEnumerable
interface that foreach uses to obtain an object that knows how to enumerate, or iterate over, the items in
the collection. The iterator object obtained from IEnumerable<T> must implement the IEnumerator<T> or
IEnumerator interface. Generic collection types typically implement IEnumerable<T>, and the enumerator
object implements IEnumerator<T>. IEnumerable<T> derives from IEnumerable, and IEnumerator<T>
derives from IEnumerator. This allows you to use generic collections in places where nongeneric
collections are used. Strictly speaking, your collection types are not required to implement enumerators,
and users can iterate through the collection using a for loop if you provide an index operator by
implementing IList<T>, for example. However, you won’t make many friends that way, and once I show
you how easy it is to create enumerators using iterator blocks, you’ll see that it’s a piece of cake to
implement IEnumerable<T> and IEnumerator<T>.

Many of you may already be familiar with the nongeneric enumerator interfaces and how to
implement enumerators on your collection types. In the rest of this section, I’ll quickly go over the
salient points of creating enumerators from scratch, and I’ll quickly transition to how to create
enumerators the new and improved way using iterator blocks. If you’d like, you may skip to the next
section on iterators. Or if you want a refresher on implementing enumerators, go ahead and read the rest
of this section.

The IEnumerable<T> interface exists so that clients have a well-defined way to obtain an enumerator
on the collection. The following code defines the IEnumerable<T> and IEnumerable interfaces:

public interface IEnumerable<T> : IEnumerable
{
 IEnumerator<T> GetEnumerator();
}

public interface IEnumerable
{
 IEnumerator GetEnumerator();
}

Since both interfaces implement GetEnumerator with the same overload signature (remember, the
return value doesn’t take part in overload resolution), any collection that implements IEnumerable<T>
needs to implement one of the GetEnumerator methods explicitly. It makes the most sense to implement
the non-generic IEnumerable.GetEnumerator method explicitly to make the compiler happy.

The IEnumerator<T> and IEnumerator interfaces are shown here:

public interface IEnumerator<T> : IEnumerator, IDisposable
{
 T Current { get; }
}

public interface IEnumerator
{
 object Current { get; }
 bool MoveNext();
 void Reset();

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

265

}

Again, the two interfaces implement a member that has the same signature, which, in this case, is
the Current property. When implementing IEnumerator<T>, you should implement IEnumerator.Current
explicitly. Also, notice that IEnumerator<T> implements the IDisposable interface. Later, I’ll explain why
this is a good thing.

Now I’m going to show you how to implement IEnumerable<T> and IEnumerator<T> for a home-
grown collection type. Good teachers always show you how to do something the “hard way” before
introducing you to the “easy way.” I think this technique is useful because it forces you to understand
what is happening under the covers. When you know what’s happening underneath, you’re more adept
at dealing with the technicalities that may come from using the “easy way.” Let’s look at an example of
implementing IEnumerable<T> and IEnumerator<T> the hard way by introducing a home-grown
collection of integers. I’ll show how to implement the generic versions, because that implies that you
must also implement the nongeneric versions as well. In this example, I haven’t implemented
ICollection<T> so as not to clutter the example, because I’m focusing on the enumeration interfaces:

using System;
using System.Threading;
using System.Collections;
using System.Collections.Generic;

public class MyColl<T> : IEnumerable<T>
{
 public MyColl(T[] items) {
 this.items = items;
 }

 public IEnumerator<T> GetEnumerator() {
 return new NestedEnumerator(this);
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }

 // The enumerator definition.
 class NestedEnumerator : IEnumerator<T>
 {
 public NestedEnumerator(MyColl<T> coll) {
 Monitor.Enter(coll.items.SyncRoot);
 this.index = -1;
 this.coll = coll;
 }

 public T Current {
 get { return current; }
 }

 object IEnumerator.Current {
 get { return Current; }
 }

 public bool MoveNext() {

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

266

 if(++index >= coll.items.Length) {
 return false;
 } else {
 current = coll.items[index];
 return true;
 }
 }

 public void Reset() {
 current = default(T);
 index = 0;
 }

 public void Dispose() {
 try {
 current = default(T);
 index = coll.items.Length;
 }
 finally {
 Monitor.Exit(coll.items.SyncRoot);
 }
 }

 private MyColl<T> coll;
 private T current;
 private int index;
 }

 private T[] items;
}

public class EntryPoint
{
 static void Main() {
 MyColl<int> integers =
 new MyColl<int>(new int[] {1, 2, 3, 4});

 foreach(int n in integers) {
 Console.WriteLine(n);
 }
 }
}

■ Note In most real-world cases, you would derive your custom collection class from Collection<T> and get the

IEnumerable<T> implementation for free.

This example initializes the internal array within MyColl<T> with a canned set of integers, so that the
enumerator will have some data to play with. Of course, a real container should implement

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

267

ICollection<T> to allow you to populate the items in the collection dynamically. The foreach statements
expand into code that obtains an enumerator by calling the GetEnumerator method on the
IEnumerable<T> interface. The compiler is smart enough to use IEnumerator<T>.GetEnumerator rather
than IEnumerator.GetEnumerator in this case. Once it gets the enumerator, it starts a loop, where it first
calls MoveNext and then initializes the variable n with the value returned from Current. If the loop
contains no other exit paths, the loop will continue until MoveNext returns false. At that point, the
enumerator finishes enumerating the collection, and you must call Reset on the enumerator in order to
use it again.

Even though you could create and use an enumerator explicitly, I recommend that you use the
foreach construct instead. You have less code to write, which means fewer opportunities to introduce
inadvertent bugs. Of course, you might have good reasons to manipulate the enumerators directly. For
example, your enumerator could implement special methods specific to your concrete enumerator type
that you need to call while enumerating collections. If you must manipulate an enumerator directly, be
sure to always do it inside a using block, because IEnumerator<T> implements IDisposable.

Notice that there is no synchronization built into enumerators by default. Therefore, one thread
could enumerate over a collection, while another thread modifies it. If the collection is modified while
an enumerator is referencing it, the enumerator is semantically invalid, and subsequent use could
produce undefined behavior. If you must preserve integrity within such situations, then you may want
your enumerator to lock the collection via the object provided by the SyncRoot property. The obvious
place to obtain the lock would be in the constructor for the enumerator. However, you must also release
the lock at some point. You already know that in order to provide such deterministic cleanup, you must
implement the IDisposable interface. That’s exactly one reason why IEnumerator<T> implements the
IDisposable interface. Moreover, the code generated by a foreach statement creates a try/finally block
under the covers that calls Dispose on the enumerator within the finally block. You can see the
technique in action in my previous example.

Types That Produce Collections
I’ve already touched upon the fact that a collection’s contents can change while an enumerator is
enumerating the collection. If the collection changes, it could invalidate the enumerator. In the
following sections on iterators, I show how you can create an enumerator that locks access to the
container while it is enumerating. Although that’s possible, it may not be the best thing to do from an
efficiency standpoint. For example, what if it takes a long time to iterate over all of the items in the
collection? The foreach loop could do some lengthy processing on each item, during which time anyone
else could be blocked from modifying the collection.

In cases like these, it may make sense for the foreach loop to iterate over a copy of the collection
rather than the original collection itself. If you decide to do this, you need to make sure you understand
what a copy of the collection means. If the collection contains value types, then the copy is a deep copy,
as long as the value types within don’t hold on to reference types internally. If the collection contains
reference types, you need to decide if the copy of the collection must clone each of the contained items.
Either way, it would be nice to have a design guideline to follow in order to know when to return a copy.

The current rule of thumb when returning collection types from within your types is to always
return a copy of the collection from methods, and return a reference to the actual collection if accessed
through a property on your type. Although this rule is not set in stone, and you’re in no way obligated to
follow it, it does make some semantic sense. Methods tend to indicate that you’re performing some sort
of operation on the type and you may expect results from that operation. On the other hand, property
access tends to indicate that you need direct access to the state of the object itself. Therefore, this rule of
thumb makes good semantic sense. In general, it makes sense to apply this same semantic separation to
all properties and methods within your types.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

268

Iterators
In the previous section, I showed you a cursory and lightweight example of creating an enumerator for a
collection type. After you do this a few times, the task becomes mundane. And any time a task becomes
mundane, we as humans are more likely to introduce silly mistakes. C# introduces a new construct
called an iterator block to make this task much easier. Before I go into the gory details of iterators, let’s
quickly look at how to accomplish the same task as the example in the previous section. This is the “easy
way” that I was talking about:

using System;
using System.Collections;
using System.Collections.Generic;

public class MyColl<T> : IEnumerable<T>
{
 public MyColl(T[] items) {
 this.items = items;
 }

 public IEnumerator<T> GetEnumerator() {
 foreach(T item in items) {
 yield return item;
 }
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }

 private T[] items;
}

public class EntryPoint
{
 static void Main() {
 MyColl<int> integers =
 new MyColl<int>(new int[] {1, 2, 3, 4});

 foreach(int n in integers) {
 Console.WriteLine(n);
 }
 }
}

It doesn’t get much easier than that. Notice that the enumerator implementation from the example
in the previous section has boiled down to three lines within the GetEnumerator method. The key to the
whole thing is the yield keyword. The presence of the yield keyword defines this block of code as a yield
block. When you see it for the first time, it can be a little confusing to figure out exactly what’s going on.
When GetEnumerator is called, the code in the method that contains the yield statement is not actually
executed at that point in time. Instead, the compiler generates an enumerator class, and that class
contains the yield block code. It is an instance of that class that is returned. Thus, when the foreach
statement in Main calls through to the IEnumerator<T> methods, the code in the yield block is utilized.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

269

One thing missing that was in the example from the previous section is synchronization. Let’s
explore how to add synchronization to the enumerator returned by the yield block. The following is a
replacement for the previous GetEnumerator method:

 public IEnumerator<T> GetEnumerator() {
 lock(items.SyncRoot) {
 for(int i = 0; i < items.Length; ++i) {
 yield return items[i];
 }
 }
 }

How amazingly simple is that? For the sake of variety, I’ve changed the way I iterate over the
collection using a for loop rather than foreach. Now, let me explain what magic the compiler is doing
here. As before, the yield block code isn’t executed immediately. Rather, an enumerator object is
returned. Internally, the enumerator can be in one of several states. The first time MoveNext is called on
the enumerator, the block of code is executed up until the first yield statement is reached. Each
subsequent call to MoveNext continues execution of the loop until either a yield break statement is
reached or the loop falls through to the end of the method. Once that happens, the enumerator goes into
its final state, and you cannot use it to enumerate the collection anymore. In fact, the Reset method isn’t
available for use on enumerators generated from yield blocks, and if you call it, a NotSupportedException
is thrown. At the end of enumeration, any finally blocks within the yield block are executed as
expected. In this case, that means releasing the lock, because the C# lock statement boils down to a
try/finally construct under the covers. Also, if the enumerator is disposed of before it reaches the end
of the loop, the compiler is smart enough to put the code within the finally block into the
implementation of Dispose on the enumerator so that the lock always gets released.

As you can see, the compiler is doing a lot of work for you under the covers when you use iterators.
As a final example, I’ve shown yet another way to iterate through the items in this collection:

 public IEnumerator<T> GetEnumerator(bool synchronized) {
 if(synchronized) {
 Monitor.Enter(items.SyncRoot);
 }
 try {
 int index = 0;
 while(true) {
 if(index < items.Length) {
 yield return items[index++];
 } else {
 yield break;
 }
 }
 }
 finally {
 if(synchronized) {
 Monitor.Exit(items.SyncRoot);
 }
 }
 }

 public IEnumerator<T> GetEnumerator() {
 return GetEnumerator(false);
 }

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

270

It is not a pretty way to iterate over the items, but I wanted to show you an example of using the
yield break statement. Also, notice that I created a new GetEnumerator method that accepts a bool
denoting whether the caller wants a synchronized or nonsynchronized enumerator. The important thing
to note here is that the enumerator object created by the compiler now has a public field named
synchronized. Any parameters passed to the method containing the yield block are added as public fields
to the generated enumerator class.

■ Note The enumerator generated from the yield block captures local variables and parameters; therefore, it is

invalid to attempt to declare ref or out parameters on methods that implement a yield block.

You could argue that the added fields should be private rather than public, because you can really
mess up the enumerator if you access the fields and modify those public fields during enumeration. In
this case, if you modify the synchronized field during enumeration and change it to false, other entities
will have a hard time gaining access to the collection because the lock will never be released. Even
though you have to use reflection to access the public fields of an enumerator generated from a yield
block, it’s easy and dangerous to do so if used improperly. That’s not to say that this technique cannot be
useful, as I show in an example in the section “Forward, Reverse, and Bidirectional Iterators,” when I
demonstrate how to create a bidirectional iterator.

You can mitigate this whole can of worms by introducing the proverbial extra level of indirection.
Instead of returning the enumerator resulting from the yield block, put it inside of a wrapper enumerator
and return the wrapper instead. This technique is shown in the following example:

using System;
using System.Threading;
using System.Reflection;
using System.Collections;
using System.Collections.Generic;

public class EnumWrapper<T> : IEnumerator<T>
{
 public EnumWrapper(IEnumerator<T> inner) {
 this.inner = inner;
 }

 public void Dispose() { inner.Dispose(); }

 public bool MoveNext() { return inner.MoveNext(); }

 public void Reset() { inner.Reset(); }

 public T Current {
 get { return inner.Current; }
 }

 object IEnumerator.Current {
 get { return inner.Current; }
 }

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

271

 private IEnumerator<T> inner;
}

public class MyColl<T> : IEnumerable<T>
{
 public MyColl(T[] items) {
 this.items = items;
 }

 public IEnumerator<T> GetEnumerator(bool synchronized) {
 return(new EnumWrapper<T>(GetPrivateEnumerator(synchronized)));
 }

 private IEnumerator<T> GetPrivateEnumerator(bool synchronized) {
 if(synchronized) {
 Monitor.Enter(items.SyncRoot);
 }
 try {
 foreach(T item in items) {
 yield return item;
 }
 }
 finally {
 if(synchronized) {
 Monitor.Exit(items.SyncRoot);
 }
 }
 }

 public IEnumerator<T> GetEnumerator() {
 return GetEnumerator(false);
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }

 private T[] items;
}

public class EntryPoint
{
 static void Main() {
 MyColl<int> integers =
 new MyColl<int>(new int[] {1, 2, 3, 4});

 IEnumerator<int> enumerator =
 integers.GetEnumerator(true);

 // Try to get a reference to synchronized field.
 //

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

272

 // Throws an exception!!!
 object field = enumerator.GetType().
 GetField("synchronized").GetValue(enumerator);
 }
}

In Main, you can see that I’m playing the part of the nefarious developer who wants to change the
enumerator’s state during enumeration. You can see that I attempt to change the value of the property
on enumerator using reflection. This throws an exception, because the property does not exist on the
wrapper.

■ Note Those of you familiar with the intricacies of reflection will recognize that it is technically possible for the

code to modify the private field within the EnumWrapper<T> instance. That, however, requires that the code pass

the ReflectionPermission code access security (CAS) demand. This demand fails unless the person running this

code has granted it explicitly, and that’s unlikely. CAS is beyond the scope of this book, but for all the nitty-gritty

details on CAS, including how to extend it to meet your needs, I recommend reading .NET Framework Security by

Brian A. LaMacchia, et al. (Upper Saddle River, NJ: Pearson Education, 2002).

So far, you’ve seen how iterator blocks are handy for creating enumerators. However, you can also
use them to generate the enumerable type as well. For example, suppose you want to iterate through the
first few powers of 2. You could do the following:

using System;
using System.Collections.Generic;

public class EntryPoint
{
 static public IEnumerable<int> Powers(int from,
 int to) {
 for(int i = from; i <= to; ++i) {
 yield return (int) Math.Pow(2, i);
 }
 }

 static void Main() {
 IEnumerable<int> powers = Powers(0, 16);
 foreach(int result in powers) {
 Console.WriteLine(result);
 }
 }
}

In this example, the compiler generates a single type that implements the four interfaces
IEnumerable<int>, IEnumerable, IEnumerator<int>, and IEnumerator. Therefore, this type serves as both
the enumerable and the enumerator. The bottom line is that any method that contains a yield block
must return a type of IEnumerable<T>, IEnumerable, IEnumerator<T>, or IEnumerator, where T is the yield

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

273

type of the method. The compiler will handle the rest. I recommend that you strive to use the generic
versions, because they will avoid unnecessary boxing for value types and give the type-safety engine
more muscle. In the previous example, the from and to values are stored as public fields in the
enumerable type, as shown earlier in this section. So, you may want to consider wrapping them up
inside an immutable type if you want to prevent users from modifying them during enumeration.

■ Tip Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries by Krzysztof

Cwalina and Brad Abrams (Boston, MA: Addison-Wesley Professional, 2005) suggests that a type should never

implement both IEnumerable<T> and IEnumerator<T>, because a single type should semantically be either a

collection or an enumerator but not both. However, the objects generated by yield blocks violate this rule. For

hand-coded collections, you should try to adhere to the rule, even though it’s clear that C# does this to make yield

blocks more useful.

Forward, Reverse, and Bidirectional Iterators
Many libraries that support iterators on their container types support three main flavors of iterators in
the form of forward, reverse, and bidirectional iterators. Forward iterators are analogous to regular
enumerators implementing IEnumerator<T>, which the GetEnumerator methods of the container types in
the .NET library typically expose. However, what if you need a reverse iterator or a bidirectional iterator?
C# iterators make creating such things nice and easy.

To get a reverse iterator for your container, all you need to do is create a yield block that loops
through the items in the collection in reverse order. Even more convenient, you can typically declare
your yield block external to your collection, as shown in the following example:

using System;
using System.Collections.Generic;

public class EntryPoint
{
 static void Main() {
 List<int> intList = new List<int>();
 intList.Add(1);
 intList.Add(2);
 intList.Add(3);
 intList.Add(4);

 foreach(int n in CreateReverseIterator(intList)) {
 Console.WriteLine(n);
 }
 }

 static IEnumerable<T> CreateReverseIterator<T>(IList<T> list) {
 int count = list.Count;
 for(int i = count-1; i >= 0; --i) {
 yield return list[i];
 }

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

274

 }
}

The meat of the example is in the CreateReverseIterator<T> method. This method only works on
collections of type IList<T>, but you could easily write another form of CreateReverseIterator<T> that
takes some other collection type. When you create utility methods of this sort, it’s always best to be as
generic as possible in the types that you accept. For example, would it be possible to make
CreateReverseIterator<T> more general-purpose by accepting a type of ICollection<T>? No, because
ICollection<T> doesn’t declare an index operator. IList<T> does declare an index operator, though.

Now let’s turn our attention to a bidirectional iterator. In order to make a bidirectional iterator out
of an enumerator, you need to be able to toggle its direction. As I showed previously, enumerators
created from methods that accept parameters and contain a yield block have public fields that you can
modify. Although you must use reflection to access these fields, you can still do it nevertheless. First, let’s
look at a possible usage scenario for a bidirectional iterator:

 static void Main() {
 LinkedList<int> intList = new LinkedList<int>();
 for(int i = 1; i < 6; ++i) {
 intList.AddLast(i);
 }

 BidirectionalIterator<int> iter =
 new BidirectionalIterator<int>(intList,
 intList.First,
 TIteratorDirection.Forward);

 foreach(int n in iter) {
 Console.WriteLine(n);

 if(n == 5) {
 iter.Direction = TIteratorDirection.Backward;
 }
 }
 }

You need a way to create an iterator object that supports IEnumerable<T> and then use it within a
foreach statement to start the enumeration. At any time within the foreach block, you want the ability to
reverse the direction of iteration. The following example shows a BidirectionalIterator class that
facilitates the previous usage model:

public enum TIteratorDirection {
 Forward,
 Backward
};

public class BidirectionalIterator<T> : IEnumerable<T>
{
 public BidirectionalIterator(LinkedList<T> list,
 LinkedListNode<T> start,
 TIteratorDirection dir) {
 enumerator = CreateEnumerator(list,
 start,
 dir).GetEnumerator();

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

275

 enumType = enumerator.GetType();
 }

 public TIteratorDirection Direction {
 get {
 return (TIteratorDirection) enumType.GetField("dir")
 .GetValue(enumerator);
 }
 set {
 enumType.GetField("dir").SetValue(enumerator,
 value);
 }
 }

 private IEnumerator<T> enumerator;
 private Type enumType;

 private IEnumerable<T> CreateEnumerator(LinkedList<T> list,
 LinkedListNode<T> start,
 TIteratorDirection dir) {
 LinkedListNode<T> current = null;
 do {
 if(current == null) {
 current = start;
 } else {
 if(dir == TIteratorDirection.Forward) {
 current = current.Next;
 } else {
 current = current.Previous;
 }
 }

 if(current != null) {
 yield return current.Value;
 }
 } while(current != null);
 }

 public IEnumerator<T> GetEnumerator() {
 return enumerator;
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }
}

Technically speaking, I didn’t have to wrap the enumerator inside the BidirectionalIterator class.
I could have accessed the direction variable via reflection from within the foreach block directly.
However, in order to do that, the code within the foreach block would have needed the name of the
parameter passed into the BidirectionalIterator.CreateEnumerator method with the yield block. In
order to avoid such disjoint coupling, I tidied it up within the BidirectionalIterator wrapper class and
provided a Direction property to access the public field on the enumerator.

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

276

Finally, the following example shows how you can use the same technique to implement a circular
iterator. You could use this for things such as game loops, where you must iterate indefinitely through a
collection of entities, updating their state with each pass until requested to quit:

using System;
using System.Collections;
using System.Collections.Generic;

public class EntryPoint
{
 static void Main() {
 LinkedList<int> intList = new LinkedList<int>();
 for(int i = 1; i < 6; ++i) {
 intList.AddLast(i);
 }

 CircularIterator<int> iter =
 new CircularIterator<int>(intList,
 intList.First);

 int counter = 0;
 foreach(int n in iter) {
 Console.WriteLine(n);

 if(counter++ == 100) {
 iter.Stop();
 }
 }
 }
}

public class CircularIterator<T> : IEnumerable<T>
{
 public CircularIterator(LinkedList<T> list,
 LinkedListNode<T> start) {
 enumerator = CreateEnumerator(list,
 start,
 false).GetEnumerator();
 enumType = enumerator.GetType();
 }

 public void Stop() {
 enumType.GetField("stop").SetValue(enumerator, true);
 }

 private IEnumerator<T> enumerator;
 private Type enumType;

 private IEnumerable<T> CreateEnumerator(LinkedList<T> list,
 LinkedListNode<T> start,
 bool stop) {
 LinkedListNode<T> current = null;
 do {

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

277

 if(current == null) {
 current = start;
 } else {
 current = current.Next;
 if(current == null) {
 current = start;
 }
 }

 yield return current.Value;
 } while(!stop);
 }

 public IEnumerator<T> GetEnumerator() {
 return enumerator;
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }
}

I’ve included a Stop method on CircularIterator<T> so that you can easily tell it to stop iterating. Of
course, as with the bidirectional iterator example, the Stop method uses reflection to set the public field
stop on the compiler-generated enumerator. I’m sure that you’ll agree that there are many more creative
uses for yield blocks for creating complex iteration paths.

Collection Initializers
C# 3.0 introduced a new abbreviated syntax for initializing collections, similar to the object initializer
syntax shown in the section titled “Object Initializers.” If the collection type instance you are initializing
implements IEnumerable or IEnumerable<T> and contains a public Add method that accepts one
parameter of the contained type, you can utilize this new syntax. Alternatively, your type could just
implement ICollection<T> from the System.Collections.Generic namespace because it also
implements IEnumerable<T>. The collection initializer syntax is shown in the following:

using System;
using System.Collections.Generic;

public class Employee
{
 public string Name { get; set; }
}

public class CollInitializerExample
{
 static void Main() {
 var developmentTeam = new List<Employee> {
 new Employee { Name = "Michael Bolton" },
 new Employee { Name = "Samir Nagheenanajar" },
 new Employee { Name = "Peter Gibbons" }

CHAPTER 9 ■ ARRAYS, COLLECTION TYPES, AND ITERATORS

278

 };

 Console.WriteLine("Development Team:");
 foreach(var employee in developmentTeam) {
 Console.WriteLine("\t" + employee.Name);
 }
 }
}

Under the covers the compiler generates a fair amount of code to help you out here. For each item
in the collection initialization list, the compiler generates a call to the collection’s Add method. Notice
that I have also used the new object initializer syntax to initialize each of the instances in the initializer
list.

As I’ve mentioned, the collection type must implement ICollection<T> or implement
IEnumerable<T> and a public Add method. If it does not, you will receive compile-time errors.
Additionally, the collection must implement only one specialization of ICollection<T>; that is, it can
only implement ICollection<T> for one type T. And finally, each item in the collection initialization list
must be implicitly convertible to the type T.

Summary
In this chapter, I gave a brief overview of how arrays work in the CLR and in C#, in preparation for the
discussion of generic collection types. After reviewing the generic collection types defined in
System.Collections.Generic, I covered efficiency and usage concerns and introduced you to the useful
types defined in System.Collections.ObjectModel. I then turned the spotlight on enumerators and
showed you how to create effective enumerators efficiently by employing iterator yield blocks added in
the C# 2.0 language. Finally, I showed you the syntax added in C# 3.0 that streamlines initializing a
collection at instantiation time.

Although this chapter didn’t delve into the minute details of each of the collection types, after
reading the chapter, you should be effectively armed with the information you need to make informed
choices about which generic collection types to use and when. I encourage you to reference the MSDN
documentation often for all of the finer details regarding the APIs for the collection types.

In the next chapter, I cover delegates, anonymous methods, and events. Anonymous methods are
useful for creating callable code inline at the point where you register the callback with the caller.

C H A P T E R 10

■ ■ ■

279

Delegates, Anonymous Functions,
and Events

Delegates provide a built-in, language-supported mechanism for defining and executing callbacks. Their
flexibility allows you to define the exact signature of the callback, and that information becomes part of
the delegate type. Anonymous functions are forms of delegates that allow you to shortcut some of the
delegate syntax that, in many cases, is overkill and mundane1. Building on top of delegates is the support
for events in C# and the .NET platform. Events provide a uniform pattern for hooking up callback
implementations—and possibly multiple instances thereof—to the code that triggers the callback.

Overview of Delegates
The CLR provides a runtime that explicitly supports a flexible callback mechanism. From the beginning
of time, or at least from the beginning of Windows time, there has always been the need for a callback
function that the system, or some other entity, calls at specific times to notify you of something
interesting. After all, callbacks provide a convenient mechanism whereby users can extend functionality
of a component. Even the most basic component of a Win32 GUI application—the window procedure—
is a callback function that is registered with the system. The system calls the function any time it needs
to notify you that a message for the window has arrived. This mechanism works just fine in a C-based
programming environment.

Things became a little trickier with the widespread use of object-oriented languages such as C++.
Developers immediately wanted the system to be able to call back into instance methods on objects
rather than global functions or static methods. Many solutions to this problem exist. But no matter
which solution you use, the bottom line is that somewhere, someone must store an instance pointer to
the object and call the instance method through that instance pointer. Implementations typically consist
of a thunk, which is nothing more than an adapter, such as an intermediate block of data or code that
calls the instance method through the instance pointer2. This thunk is the actual function registered with
the system. Many creative thunk solutions have been developed in C++ over the years. Your trusty
author can recall many iterations of such designs with sentimental fondness.

1 Even better than anonymous functions are lambda expressions, which deserve an entire chapter and are covered in
Chapter 15.
2 You can find out more about various styles of thunks at the following link:
http://www.wikipedia.org/wiki/Thunk.

http://www.wikipedia.org/wiki/Thunk

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

280

Delegates are the preferred method of implementing callbacks in the CLR. I find it helpful to
imagine a delegate as simply a glorified pointer to a function, and that function can be either a static
method or an instance method. A delegate instance is exactly the same as a thunk, but at the same time
it is a first-class citizen of the CLR. In fact, when you declare a delegate in your code, the C# compiler
generates a class derived from MulticastDelegate, and the CLR implements all the interesting methods
of the delegate dynamically at run time. That’s why you won’t see any IL code behind those delegate
methods if you examine the compiled module with ILDASM.

The delegate contains a couple of useful fields. The first one holds a reference to an object, and the
second holds a method pointer. When you invoke the delegate, the instance method is called on the
contained object reference. However, if the object reference is null, the runtime understands that the
method is a static method. One delegate type can handle callbacks to either an instance or a static
method. Moreover, invoking a delegate syntactically is the same as calling a regular function. Therefore,
delegates are perfect for implementing callbacks.

As you can see, delegates provide an excellent mechanism to decouple the method being called
from the actual caller. In fact, the caller of the delegate has no idea (or necessity to know) whether it is
calling an instance method or a static method, or on what exact instance it is calling. To the caller, it is
calling arbitrary code. The caller can obtain the delegate instance through any appropriate means, and it
can be decoupled completely from the entity it actually calls. Think for a moment about UI elements in a
dialog, such as a Commit button, and how many external parties might be interested in knowing when
that button is selected. If the class that represents the button must call directly to the interested parties,
it needs to have intimate knowledge of the layout of those parties, or objects, and it must know which
method to call on each one of them. Clearly, this requirement adds way too much coupling between the
button class and the interested parties, and with coupling come complexity and code maintenance
nightmares. Delegates come to the rescue and break this link. Now, interested parties only need to
register a delegate with the button, and that delegate is preconfigured to call whatever method they
want. This decoupling mechanism describes events as supported by the CLR. I have more to say about
CLR events later in this chapter in the “Events” section. Let’s go ahead and see how to create and use
delegates in C#.

Delegate Creation and Use
Delegate declarations look almost exactly like abstract method declarations, except they have one added
keyword: the delegate keyword. The following is a valid delegate declaration:

public delegate double ProcessResults(double x, double y);

When the C# compiler encounters this line, it defines a type derived from MulticastDelegate, which
also implements a method named Invoke that has exactly the same signature as the method described in
the delegate declaration. For all practical purposes, that class looks like the following:

public class ProcessResults : System.MulticastDelegate
{
 public double Invoke(double x, double y);

 // Other stuff omitted for clarity
}

Even though the compiler creates a type similar to that listed, the compiler also abstracts the use of
delegates behind syntactical shortcuts. Typically, you use a syntax that looks similar to a function call to
invoke the delegate rather than call Invoke directly, which I’ll show shortly.

When you instantiate an instance of a delegate, you must wire it up to a method to call when it is
invoked. The method that you wire it up to could be either a static or an instance method that has a

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

281

signature compatible with that of the delegate. Thus, the parameter types and the return type must
either match the delegate declaration or be implicitly convertible to the types in the delegate
declaration.

■ Note In .NET 1.x, the signature of the methods wired up to delegates had to match the delegate declaration

exactly. In .NET 2.0, this requirement was relaxed to allow methods with compatible types in the declaration.

Single Delegate
The following example shows the basic syntax of how to create a delegate:

using System;

public delegate double ProcessResults(double x,
 double y);

public class Processor
{
 public Processor(double factor) {
 this.factor = factor;
 }

 public double Compute(double x, double y) {
 double result = (x+y)*factor;
 Console.WriteLine("InstanceResults: {0}", result);
 return result;
 }

 public static double StaticCompute(double x,
 double y) {
 double result = (x+y)*0.5;
 Console.WriteLine("StaticResult: {0}", result);
 return result;
 }

 private double factor;
}

public class EntryPoint
{
 static void Main() {
 Processor proc1 = new Processor(0.75);
 Processor proc2 = new Processor(0.83);

 ProcessResults delegate1 = new ProcessResults(proc1.Compute);
 ProcessResults delegate2 = new ProcessResults(proc2.Compute);
 ProcessResults delegate3 = Processor.StaticCompute;

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

282

 double combined = delegate1(4, 5) +
 delegate2(6, 2) +
 delegate3(5, 2);

 Console.WriteLine("Output: {0}", combined);
 }
}

In this example, I’ve created three delegates. Two of them point to instance methods, and one
points to a static method. Notice that the first two delegates are created by creating instances of the
ProcessResults type, which is the type created by the delegate declaration, and passing the target
method in the constructor argument list. However, the delegate3 instance uses an abbreviated syntax
where I simply assign the method to the delegate instance. Although it looks like
Processor.StaticCompute is simply the name of the method, it’s actually called a method group because
the method could be overloaded and this name could refer to a group of methods. In this case, the
method group Processor.StaticCompute has one method in it. And to make life easier, C# allows you to
directly assign a delegate from a method group. When you create the delegate instances via new, you pass
the method group in the constructor. Take note of the format of the method groups. In the first two
cases, you pass an instance method on the proc1 and proc2 instances. However, in the third case, you
pass a method group on the type rather than an instance. This is the way you create a delegate that
points to a static method rather than an instance method. You could have just as well assigned an
instance method group to delegate3 too. At the point where the delegates are called, the syntax is
identical and independent of whether the delegate points to an instance method or a static method. Of
course, this example is rather contrived, but it gives a clear indication of the basic usage of delegates
within C#.

In all the cases in the previous code, a single action takes place when the delegate is called. It is
possible to chain delegates together so that multiple actions take place and we will investigate this in the
next section.

Delegate Chaining
Delegate chaining allows you to create a linked list of delegates such that when the delegate at the head
of the list is called, all the delegates in the chain are called. The System.Delegate class provides a few
static methods to manage lists of delegates. To create delegate lists, you ultimately rely on the following
methods declared inside of the System.Delegate type:

public class Delegate : ICloneable, ISerializable
{
 public static Delegate Combine(Delegate[]);
 public static Delegate Combine(Delegate first, Delegate second);
}

Notice that the Combine methods take the delegates to combine and return another Delegate. The
Delegate returned is a new instance of a MulticastDelegate, which derives from Delegate, because
Delegate instances are immutable.

Notice that the first version of Combine listed previously takes an array of delegates to form the
constituents of the new delegate list, and the second form takes just a pair of delegates. However, in both
cases, any one of the Delegate instances could itself already be a delegate chain. So, you can see that
some fairly complex nesting can take place here.

To remove delegates from a list, you ultimately rely upon the following two static methods on
System.Delegate:

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

283

public class Delegate : IClonable, ISerializable
{
 public static Delegate Remove(Delegate source, Delegate value);
 public static Delegate RemoveAll(Delegate source, Delegate value);
}

As with the Combine methods, the Remove and RemoveAll methods return a new Delegate instance
created from the previous two. The Remove method removes the last occurrence of the invocation list
represented by the parameter value from the source delegate list, whereas RemoveAll removes all
occurrences of the invocation list represented by the parameter value from the source delegate list.
Notice that I said that the value parameter can represent a delegate list rather than just a single delegate.
Again, these methods have the capability to meet any complex delegate list management needs.

If the preceding methods seem cumbersome, C# overloads operators for combining and removing
delegates from a chain. To combine two delegates or delegate lists, simply use the addition operator; and
to remove a delegate or delegate list from a chain, use the subtraction operator. Let’s look at a modified
form of the code example in the last section to see how you can combine the delegates:

using System;

public delegate double ProcessResults(double x,
 double y);

public class Processor
{
 public Processor(double factor) {
 this.factor = factor;
 }

 public double Compute(double x, double y) {
 double result = (x+y)*factor;
 Console.WriteLine("InstanceResults: {0}", result);
 return result;
 }

 public static double StaticCompute(double x,
 double y) {
 double result = (x+y)*0.5;
 Console.WriteLine("StaticResult: {0}", result);
 return result;
 }

 private double factor;
}

public class EntryPoint
{
 static void Main() {
 Processor proc1 = new Processor(0.75);
 Processor proc2 = new Processor(0.83);

 ProcessResults[] delegates = new ProcessResults[] {
 proc1.Compute,
 proc2.Compute,

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

284

 Processor.StaticCompute
 };

 // Chain the delegates now.
 ProcessResults chained = delegates[0] +
 delegates[1] +
 delegates[2];

 double combined = chained(4, 5);

 Console.WriteLine("Output: {0}", combined);
 }
}

Notice that instead of calling all the delegates, this example chains them together and then calls
them by calling through the head of the chain. This example features some major differences from the
previous example, which I have listed as follows:

• The resultant double that comes out of the chained invocation is the result of the
last delegate called, which, in this case, is the delegate pointing to the static
method StaticCompute. The return values from the other delegates in the chain are
simply lost.

• If any of the delegates throws an exception, processing of the delegate chain will
terminate, and the CLR will begin to search for the next exception-handling frame
on the stack.

• Finally, be aware that if you declare delegates that take parameters by reference,
each delegate that uses the reference parameter will see the changes made by the
previous delegate in the chain. This could be a desired effect or it could be a
surprise, depending on what your intentions are.

Iterating Through Delegate Chains
Sometimes you have to call a chain of delegates, but you need to harvest the return values from each
invocation, or you might need to specify the ordering of the calls in the chain. For these times, the
System.Delegate type, from which all delegates derive, offers the GetInvocationList method to acquire
an array of delegates in which each element in the array corresponds to a delegate in the invocation list.
Once you obtain this array, you can call the delegates in any order you please and you can process the
return value from each delegate appropriately. You could also put an exception frame around each entry
in the list so that an exception in one delegate invocation will not abort the remaining invocations. This
modified version of the previous example shows how to call each delegate in the chain explicitly:

using System;

public delegate double ProcessResults(double x,
 double y);

public class Processor
{
 public Processor(double factor) {
 this.factor = factor;

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

285

 }

 public double Compute(double x, double y) {
 double result = (x+y)*factor;
 Console.WriteLine("InstanceResults: {0}", result);
 return result;
 }

 public static double StaticCompute(double x,
 double y) {
 double result = (x+y)*0.5;
 Console.WriteLine("StaticResult: {0}", result);
 return result;
 }

 private double factor;
}

public class EntryPoint
{
 static void Main() {
 Processor proc1 = new Processor(0.75);
 Processor proc2 = new Processor(0.83);

 ProcessResults[] delegates = new ProcessResults[] {
 proc1.Compute,
 proc2.Compute,
 Processor.StaticCompute
 };

 ProcessResults chained = delegates[0] +
 delegates[1] +
 delegates[2];

 Delegate[] chain = chained.GetInvocationList();
 double accumulator = 0;
 for(int i = 0; i < chain.Length; ++i) {
 ProcessResults current = (ProcessResults) chain[i];
 accumulator += current(4, 5);
 }

 Console.WriteLine("Output: {0}", accumulator);
 }
}

Unbound (Open Instance) Delegates
All the delegate examples so far show how to wire up a delegate to a static method on a specific type or to
an instance method on a specific instance. This abstraction provides excellent decoupling, but the
delegate doesn’t really imitate or represent a pointer to a method per se because it is bound to a method
on a specific instance. What if you want to have a delegate represent an instance method and then you
want to invoke that same instance method, via the delegate, on a collection of instances?

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

286

For this task, you need to use an open instance delegate. When you call a method on an instance,
there is a hidden parameter at the beginning of the parameter list known as this, which represents the
current instance.3 When you wire up a closed instance delegate to an instance method on an object
instance, the delegate passes the object instance as the this reference when it calls the instance method.
With open instance delegates, the delegate defers this action to whatever invokes the delegate. Thus, you
can provide the object instance to call on at delegate invocation time.

Let’s look at an example of what this would look like. Imagine a collection of Employee types, and the
company has decided to give everyone a 10% raise at the end of the year. All the Employee objects are
contained in a collection type, and now you need to iterate over each employee, applying the raise by
calling the Employee.ApplyRaiseOf method:

using System;
using System.Reflection;
using System.Collections.Generic;

delegate void ApplyRaiseDelegate(Employee emp,
 Decimal percent);

public class Employee
{
 private Decimal salary;

 public Employee(Decimal salary) {
 this.salary = salary;
 }

 public Decimal Salary {
 get {
 return salary;
 }
 }

 public void ApplyRaiseOf(Decimal percent) {
 salary *= (1 + percent);
 }
}

public class EntryPoint
{
 static void Main() {
 List<Employee> employees = new List<Employee>();

 employees.Add(new Employee(40000));
 employees.Add(new Employee(65000));
 employees.Add(new Employee(95000));

 // Create open instance delegate.

3 Refer to Chapter 4 for more details on this with regards to reference and value types.

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

287

 MethodInfo mi =
 typeof(Employee).GetMethod("ApplyRaiseOf",
 BindingFlags.Public |
 BindingFlags.Instance);
 ApplyRaiseDelegate applyRaise = (ApplyRaiseDelegate)
 Delegate.CreateDelegate(typeof(ApplyRaiseDelegate),
 mi);

 // Apply raise.
 foreach(Employee e in employees) {
 applyRaise(e, (Decimal) 0.10);

 // Send new salary to console.
 Console.WriteLine(e.Salary);
 }
 }
}

First, notice that the declaration of the delegate has an Employee type declared at the beginning of
the parameter list. This is how you expose the hidden instance pointer so that you can bind it later. Had
you used this delegate to represent a closed instance delegate, the Employee parameter would have been
omitted. Unfortunately, the C# language doesn’t have any special syntax for creating open instance
delegates. Therefore, you must use one of the more generalized Delegate.CreateDelegate overloads to
create the delegate instance as shown. Before you can do that, you must use reflection to obtain the
MethodInfo instance representing the method to bind to.

The key point is that nowhere during the instantiation of the delegate do you provide a specific
object instance. You won’t provide that until the point of delegate invocation. The foreach loop shows
how you invoke the delegate and provide the instance to call upon at the same time. Even though the
ApplyRaiseOf method that the delegate is wired to takes only one parameter, the delegate invocation
requires two parameters, so that you can provide the instance on which to make the call.

The previous example shows how to create and invoke an open instance delegate; however, the
delegate could still be more general and more useful in a broad sense. In that example, you declared the
delegate so that it knew it was going to be calling a method on a type of Employee. Thus, at invocation
time, you could have placed the call only on an instance of Employee or a type derived from Employee.
You can use a generic delegate to declare the delegate so that the type on which it is called is unspecified
at declaration time.4 Such a delegate is potentially much more useful. It allows you to state the following:
“I want to represent a method that matches this signature supported by an as-of-yet unspecified type.”
Only at the point of instantiation of the delegate are you required to provide the concrete type that will
be called. Examine the following modifications to the previous example:

delegate void ApplyRaiseDelegate<T>(T instance,

 Decimal percent);

public class EntryPoint
{
 static void Main() {

4 I cover generics in Chapter 11.

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

288

 List<Employee> employees = new List<Employee>();

 employees.Add(new Employee(40000));
 employees.Add(new Employee(65000));
 employees.Add(new Employee(95000));

 // Create open instance delegate
 MethodInfo mi =
 typeof(Employee).GetMethod("ApplyRaiseOf",
 BindingFlags.Public |
 BindingFlags.Instance);
 ApplyRaiseDelegate<Employee> applyRaise =
 (ApplyRaiseDelegate<Employee>)
 Delegate.CreateDelegate(
 typeof(ApplyRaiseDelegate<Employee>),
 mi);

 // Apply raise.
 foreach(Employee e in employees) {
 applyRaise(e, (Decimal) 0.10);

 // Send new salary to console.
 Console.WriteLine(e.Salary);
 }
 }
}

Now, the delegate is much more generic. You can imagine that this delegate could be useful in some
circumstances. For example, consider an imaging program that supports applying filters to various
objects on the canvas. Suppose that you need a delegate to represent a generic filter type that, when
applied, is provided a percentage value to indicate how much of an effect it should have on the object.
Using generic, open instance delegates, you could represent such a general notion.

Events
In many cases, when you use delegates as a callback mechanism, you might just want to notify someone
that some event happened, such as a button press in a UI. Suppose that you’re designing a media player
application. Somewhere in the UI is a Play button. In a well-designed system, the UI and the control
logic are separated by a well-defined abstraction, commonly implemented using a form of the Bridge
pattern. This abstraction facilitates slapping on an alternate UI later, or even better, because UI
operations are normally platform-specific, it facilitates porting the application to another platform. For
example, the Bridge pattern works well in situations in which you want to decouple your control logic
from the UI.

■ Note The purpose of the Bridge pattern, as defined in Design Patterns: Elements of Reusable Object-Oriented

Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Boston: Addison-Professional, 1995),

is to decouple an abstraction from an implementation so that the two can vary independently.

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

289

By using the Bridge pattern, you can facilitate the scenario in which changes that occur in the core
system don’t force changes in the UI and, most importantly, in which changes in the UI don’t force
changes in the core system. One common way of implementing this pattern is by creating well-defined
interfaces into the core system that the UI then uses to communicate with it, and vice versa. However, in
these situations, defining interface types are cumbersome and less than ideal. Delegates, on the other
hand, are an excellent mechanism to use in this scenario. With a delegate, you can begin to say things as
abstract as, “When the user wants to play, I want you to call registered methods passing any information
germane to the action.” The beauty here is that the core system doesn’t care how the user indicates to
the UI that he wants the player to start playing media. It could be a button press, or there could be some
sort of brain wave detection device that recognizes what the user is thinking. To the core system, it
doesn’t matter, and you can change and interchange both independently without breaking the other.
Both sides adhere to the same agreed-upon contract, which in this case include a specifically formed
delegate and a means to register that delegate with the event-generating entity.5

This pattern of usage, also known as publish/subscribe, is so common, even outside the realm of UI
development, that the .NET runtime designers were so generous as to define a formalized built-in event
mechanism. When you declare an event within a class, internally the compiler implements some hidden
methods that allow you to register and unregister delegates, which are called when a specific event is
raised. In essence, an event is a shortcut that saves you the time of having to write the register and
unregister methods that manage a delegate chain yourself. Let’s take a look at a simple event sample
based on the previous discussion:

using System;

// Arguments passed from UI when play event occurs.
public class PlayEventArgs : EventArgs
{
 public PlayEventArgs(string filename) {
 this.filename = filename;
 }

 private string filename;
 public string Filename {
 get { return filename; }
 }
}

public class PlayerUI
{
 // define event for play notifications.
 public event EventHandler<PlayEventArgs> PlayEvent;

 public void UserPressedPlay() {
 OnPlay();
 }

 protected virtual void OnPlay() {
 // fire the event.

5 In Chapter 5, I cover the topic of contracts and interfaces in detail.

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

290

 EventHandler<PlayEventArgs> localHandler
 = PlayEvent;
 if(localHandler != null) {
 localHandler(this,
 new PlayEventArgs("somefile.wav"));
 }
 }
}

public class CorePlayer
{
 public CorePlayer() {
 ui = new PlayerUI();

 // Register our event handler.
 ui.PlayEvent += this.PlaySomething;
 }

 private void PlaySomething(object source,
 PlayEventArgs args) {
 // Play the file.
 }

 private PlayerUI ui;
}

public class EntryPoint
{
 static void Main() {
 CorePlayer player = new CorePlayer();
 }
}

Even though the syntax of this simple event might look complicated, the overall idea is that you’re
creating a well-defined contract through which to notify interested parties that the user wants to play a
file. That well-defined contract is encapsulated inside the PlayEventArgs class, which derives from
System.EventArgs (as described in the following text).

Events put certain rules upon how you use delegates. The delegate must not return anything and it
must accept two arguments as shown in the PlaySomething method in the previous example. The first
argument is an object reference representing the party generating the event. The second argument must
be a type derived from System.EventArgs. Your EventArgs derived class is where you define any event-
specific arguments.

■ Note In .NET 1.1, you had to explicitly define the delegate type behind the event. Starting in .NET 2.0, you can

use the new generic EventHandler<T> delegate to shield you from this mundane chore.

Notice the way that the event is defined within the PlayerUI class using the event keyword. The
event keyword is first followed by the defined event delegate, which is then followed by the name of the

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

291

event—in this case, PlayEvent. Also notice that I declared the event member using the generic
EventHandler<T> delegate.

When registering handlers using the += operator, as a shortcut you can provide only the name of the
method to call, and the compiler will create the EventHandler<T> instance for you using the method
group to delegate assignment rules I mentioned in a previous section. You could optionally follow the +=
operator with a new expression creating a new instance of EventHandler<T>, just as you could when
creating delegate instances, but if the compiler provides the shortcut shown, why type more syntax that
makes the code harder to read?

The PlayEvent identifier means two entirely different things, depending on what side of the
decoupling fence you’re on. From the perspective of the event generator—in this case, PlayerUI—the
PlayEvent event is used just like a delegate. You can see this usage inside the OnPlay method. Typically, a
method such as OnPlay is called in response to a UI button press. It notifies all the registered listeners by
calling through the PlayEvent event (delegate).

■ Note The popular idiom when raising events is to raise the event within a protected virtual method named

On<event>, where <event> is replaced with the name of the event—in this case, OnPlay. This way, derived

classes can easily modify the actions taken when the event needs to be raised. In C#, you must test the event for

null before calling it; otherwise, the result could be a NullReferenceException. The OnPlay method makes a

local copy of the event before testing it for null. This avoids the race condition where the event is set to null from

another thread after the null check passes and before the event is raised.

From the event consumer side of the fence, the PlayEvent identifier is used completely differently,
as you can see in the CorePlayer constructor.

That’s the basic structure of events. As I alluded to earlier, .NET events are a shortcut to creating
delegates and the contracts with which to register those delegates. As proof of this, you can examine the
IL generated from compiling the previous example. Under the covers, the compiler has generated two
methods, add_OnPlay and remove_OnPlay, which are called when you use the overloaded += and -=
operators. These methods manage the addition and removal of delegates from the event delegate chain.
In fact, the C# compiler doesn’t allow you to call these methods explicitly, so you must use the operators.
You might be wondering whether there is some way to control the body of those function members as
you can with properties. The answer is yes, and the syntax is similar to that of properties. I modified the
PlayerUI class to show the way to handle event add and remove operations explicitly:

public class PlayerUI
{
 // define event for play notifications.
 private EventHandler<PlayEventArgs> playEvent;
 public event EventHandler<PlayEventArgs> PlayEvent {
 add {
 playEvent = (EventHandler<PlayEventArgs>)
 Delegate.Combine(playEvent, value);
 }
 remove {
 playEvent = (EventHandler<PlayEventArgs>)
 Delegate.Remove(playEvent, value);
 }

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

292

 }

 public void UserPressedPlay() {
 OnPlay();
 }

 protected virtual void OnPlay() {
 // fire the event.
 EventHandler<PlayEventArgs> localHandler
 = playEvent;
 if(localHandler != null) {
 localHandler(this,
 new PlayEventArgs("somefile.wav"));
 }
 }
}

Inside the add and remove sections of the event declaration, the delegate being added or removed is
referenced through the value keyword, which is identical to the way property setters work. This example
uses Delegate.Combine and Delegate.Remove to manage an internal delegate chain named playEvent.
This example is a bit contrived because the default event mechanism does essentially the same thing,
but I show it here for the sake of example.

■ Note You would want to define custom event accessors explicitly if you needed to define some sort of custom

event storage mechanism, or if you needed to perform any other sort of custom processing when events are

registered or unregistered.

One final comment regarding design patterns is in order. As described, you can see that events are
ideal for implementing a publish/subscribe design pattern, in which many listeners are registering for
notification (publication) of an event. Similarly, you can use .NET events to implement a form of the
Observer pattern, in which various entities register to receive notifications that some other entity has
changed. These are merely two design patterns that events facilitate.

Anonymous Methods
Many times, you might find yourself creating a delegate for a callback that does something very simple.
Imagine that you’re implementing a simple engine that processes an array of integers. Let’s say that you
design the system flexibly, so that when the processor works on the array of integers, it uses an algorithm
that you supply at the point of invocation. This pattern of usage is called the Strategy pattern. In this
pattern, you can choose to use a different computation strategy by providing a mechanism to specify the
algorithm to use at run time. A delegate is the perfect tool for implementing such a system. Let’s see
what an example looks like:

using System;

public delegate int ProcStrategy(int x);

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

293

public class Processor
{
 private ProcStrategy strategy;
 public ProcStrategy Strategy {
 set {
 strategy = value;
 }
 }

 public int[] Process(int[] array) {
 int[] result = new int[array.Length];
 for(int i = 0; i < array.Length; ++i) {
 result[i] = strategy(array[i]);
 }
 return result;
 }
}

public class EntryPoint
{
 private static int MultiplyBy2(int x) {
 return x*2;
 }

 private static int MultiplyBy4(int x) {
 return x*4;
 }

 private static void PrintArray(int[] array) {
 for(int i = 0; i < array.Length; ++i) {
 Console.Write("{0}", array[i]);
 if(i != array.Length-1) {
 Console.Write(", ");
 }
 }
 Console.Write("\n");
 }

 static void Main() {
 // Create an array of integers.
 int[] integers = new int[] {
 1, 2, 3, 4
 };

 Processor proc = new Processor();
 proc.Strategy = new ProcStrategy(EntryPoint.MultiplyBy2);
 PrintArray(proc.Process(integers));

 proc.Strategy = new ProcStrategy(EntryPoint.MultiplyBy4);
 PrintArray(proc.Process(integers));
 }
}

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

294

Conceptually, the idea sounds really easy. However, in practice, you must do a few complicated
things to make this work. First, you have to define a delegate type to represent the strategy method. In
the previous example, that’s the ProcStrategy delegate type. Then you have to write the various strategy
methods. After that, the delegates are created and bound to those methods and registered with the
processor. In essence, these actions feel disjointed in their flow. It would feel much more natural to be
able to define the delegate method in a less verbose way. Many times, the infrastructure required with
using delegates makes the code hard to follow because the pieces of the mechanism are sprinkled
around various different places in the code.

Anonymous methods provide an easier and more compact way to define simple delegates such as
these. In short, anonymous methods (introduced in C# 2.0) allow you to define the method body of the
delegate at the point where you instantiate the delegate. Let’s look at how you can modify the previous
example to use anonymous methods. The following is the revised portion of the example:

public class EntryPoint
{
 private static void PrintArray(int[] array) {
 for(int i = 0; i < array.Length; ++i) {
 Console.Write("{0}", array[i]);
 if(i != array.Length-1) {
 Console.Write(", ");
 }
 }
 Console.Write("\n");
 }

 static void Main() {
 // Create an array of integers.
 int[] integers = new int[] {
 1, 2, 3, 4
 };

 Processor proc = new Processor();
 proc.Strategy = delegate(int x) {
 return x*2;
 };
 PrintArray(proc.Process(integers));

 proc.Strategy = delegate(int x) {
 return x*4;
 };
 PrintArray(proc.Process(integers));

 proc.Strategy = delegate {
 return 0;
 };
 PrintArray(proc.Process(integers));
 }
}

Notice that the two methods, MultiplyBy2 and MultiplyBy4, are gone. Instead, a delegate is created
using a special syntax for anonymous methods at the point where it is assigned to the
Processor.Strategy property. You can see that the syntax is almost as if you took the delegate

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

295

declaration and the method you wired the delegate to and then mashed them together into one.
Basically, anywhere that you can pass a delegate instance as a parameter, you can pass an anonymous
method instead.

When you pass an anonymous method in a parameter list that accepts a delegate, or when you
assign a delegate type from an anonymous method, you must be concerned with anonymous method
type conversion. Behind the scenes, your anonymous method is turned into a regular delegate that is
treated just like any other delegate instance.

When you assign an anonymous method to a delegate instance storage location, a number of rules
must apply.

• First, the parameter types of the delegate must be compatible with those of the
anonymous method. In the previous example’s first two delegate usages, I showed
you the long way to declare an anonymous method. Some of you might have
noticed the different syntax in the third usage in the example. I left out the
parameter list because the body of the method doesn’t even use it. Yet, I was still
able to set the Strategy property based upon this anonymous method, so clearly
some type conversion has occurred. Basically, if the anonymous method has no
parameter list, it is convertible to a delegate type that has a parameter list, as long
as the list doesn’t include any out or ref parameters. If there are out parameters,
the anonymous method is forced to list them in its parameter list at the point of
declaration.

• Second, if the anonymous method does list any parameters in its declaration, it
must list the same count of parameters as the delegate type, and each one of those
types must be the same types in the delegate declaration.

• Finally, the return type returned from the anonymous method must be implicitly
convertible to the declared return type of the delegate type it is being assigned to.
Because the anonymous method declaration syntax doesn’t explicitly state what
the return type is, the compiler must examine each return statement within the
anonymous method and make sure that it returns a type that matches the
convertibility rules.

Captured Variables and Closures
So far, anonymous methods have saved a small amount of typing and made the code more readable. But
let’s look at the scoping rules involved with anonymous methods. With C#, you already know that curly
braces define units of nested scope. The braces delimiting anonymous methods are no different. Take a
look at the following modifications to the previous example:

using System;

public delegate int ProcStrategy(int x);

public class Processor
{
 private ProcStrategy strategy;
 public ProcStrategy Strategy {
 set { strategy = value; }
 }

 public int[] Process(int[] array) {

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

296

 int[] result = new int[array.Length];
 for(int i = 0; i < array.Length; ++i) {
 result[i] = strategy(array[i]);
 }
 return result;
 }
}

public class Factor
{
 public Factor(int fact) {
 this.fact = fact;
 }

 private int fact;

 public ProcStrategy Multiplier {
 get {
 // This is an anonymous method.
 return delegate(int x) {
 return x*fact;
 };
 }
 }

 public ProcStrategy Adder {
 get {
 // This is an anonymous method.
 return delegate(int x) {
 return x+fact;
 };
 }
 }
}

public class EntryPoint
{
 private static void PrintArray(int[] array) {
 for(int i = 0; i < array.Length; ++i) {
 Console.Write("{0}", array[i]);
 if(i != array.Length-1) {
 Console.Write(", ");
 }
 }
 Console.Write("\n");
 }

 static void Main() {
 // Create an array of integers.
 int[] integers = new int[] {
 1, 2, 3, 4
 };

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

297

 Factor factor = new Factor(2);
 Processor proc = new Processor();
 proc.Strategy = factor.Multiplier;
 PrintArray(proc.Process(integers));

 proc.Strategy = factor.Adder;
 factor = null;
 PrintArray(proc.Process(integers));
 }
}

In particular, pay close attention to the Factor class in this example. I have made this example more
flexible so that I can apply the factor differently, using either multiplication or addition. Notice that the
anonymous methods in the Factor class are using a variable that is accessible within the scope they are
defined in—namely, the fact instance field. You can do this because the regular scoping rules apply
even to the block of the anonymous method. There’s something tricky going on here, though. See where
I set the factor instance variable in Main to null? Notice that I did it before the delegate obtained from
the Factor.Adder property is invoked. That’s fine because the Adder property returns a delegate instance,
even though I decided to declare the delegate as an anonymous method rather than the original way.
But what about that Factor.fact instance field? If I set the factor variable to null in Main, the GC can
collect the factor object even before the delegate, which uses the field, is done with it, right? Could this
actually be a volatile race condition if the GC collects the Factor.fact instance before the delegate is
finished with it? The answer is no because the delegate has captured the variable.

Within anonymous method declarations, any variables defined outside the scope of the anonymous
method but accessible to the anonymous method’s scope, including the this reference, are considered
outer variables. And whenever an anonymous method body references one of these variables, it is said
that the anonymous method has “captured” the variable. In this case, this has been captured. Thus, the
Factor.fact field in the previous example will continue to live as it is still referenced in active delegates.

The ability of anonymous method bodies to access variables within their containing definition
scope is enormously useful. In computer science circles, this is commonly referred to as a closure.
Imagine how much more difficult it would have been to achieve the same mechanism as in the example
if you’d used regular delegates. You would have to create a mechanism, external to the delegate, to
maintain the instance that you want the delegate to use. One solution when using standard delegates is
to introduce another level of indirection in the form of a class, as is so often done when solving problems
like these. However, I’m sure you’ll agree that anonymous methods can save a fair amount of work, not
to mention that they can make your code significantly briefer and more readable.

Beware the Captured Variable Surprise
When a variable is captured by an instance of an anonymous method, you have to be careful of the
implications that can have. Keep in mind that a captured variable’s representation lives on the heap
somewhere, and the variable in a delegate instance is merely a reference to that data. Therefore, it’s
entirely possible that two delegate instances created from an anonymous method can hold references to
the same variable. Let me show an example of what I’m talking about:

using System;

public delegate void PrintAndIncrement();

public class EntryPoint
{
 public static PrintAndIncrement[] CreateDelegates() {

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

298

 PrintAndIncrement[] delegates = new PrintAndIncrement[3];
 int someVariable = 0;
 int anotherVariable = 1;
 for(int i = 0; i < 3; ++i) {
 delegates[i] = delegate {
 Console.WriteLine(someVariable++);
 };
 }
 return delegates;
 }

 static void Main() {
 PrintAndIncrement[] delegates = CreateDelegates();
 for(int i = 0; i < 3; ++i) {
 delegates[i]();
 }
 }
}

The anonymous method inside the CreateDelegates method captures someVariable, which is a local
variable in the CreateDelegates method scope. However, because three instances of the anonymous
method are put into the array, three anonymous method instances have now captured the same
instance of the same variable. Therefore, when the previous code is run, the result looks like this:

0

1

2

As each delegate is called, it prints and increments the same variable. Now, consider what effect a
small change in the CreateDelegates method can have. If you move the someVariable declaration into
the loop that creates the delegate array, a fresh instance of the local variable is instantiated every time
you go through the loop, thus mimicking the semantics of when variables are allocated on the stack.
Notice the following change to the CreateDelegates method:

 public static PrintAndIncrement[] CreateDelegates() {
 PrintAndIncrement[] delegates = new PrintAndIncrement[3];
 for(int i = 0; i < 3; ++i) {
 int someVariable = 0;
 delegates[i] = delegate {
 Console.WriteLine(someVariable++);
 };
 }
 return delegates;
 }

This time, the output is as follows:

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

299

0

0

0

This is why you need to be careful when you use variable capture in anonymous delegates. In the
first case, the three delegates all captured the same variable. In the second case, they all captured
separate instances of the variable because each iteration of the for loop creates a new (separate)
instance of someVariable. Although you should keep this powerful feature handy in your bag of tricks,
you must know what you’re doing so you don’t end up shooting yourself in the foot.

Savvy readers might be wondering how the code can possibly work without blowing up because the
captured variables in this example are value types that live on the stack by default. Remember that value
types are created on the stack unless they happen to be declared as a field in a reference type that is
created on the heap, which includes the case when they are boxed. However, someVariable is a local
variable, so under normal circumstances, it is created on the stack. But these are not normal
circumstances. Clearly, it’s not possible for an instance of an anonymous method to capture a local
variable on the stack and expect it to be there later when it needs to reference it. It must live on the heap.
Local value type variables that are captured must have different lifetime rules than such variables that
are not captured. Therefore, the compiler does quite a bit of magic under the covers when it encounters
local value type captured variables.

■ Note Although the previous discussion uses a captured value type as an example, the compiler employs the

same capture mechanism for reference type variables as well.

When the compiler encounters a captured value type variable, it silently creates a class behind the
scenes. Where the code initializes the local variable, the compiler generates IL code that creates an
instance of this transparent class and initializes the field, which represents someVariable in this case.
You can verify this with the first example if you open the compiled code in ILDASM or Reflector. I
included the dummy variable anotherVariable so you could see the difference in how the IL treats them.
Because anotherVariable is not captured, it is created on the stack, as you’d expect. The following code
contains a portion of the IL for the CreateDelegates call after compiling the example with debugging
symbols turned on:

 // Code size 85 (0x55)
 .maxstack 5
 .locals init ([0] class PrintAndIncrement[] delegates,
 [1] int32 anotherVariable,
 [2] int32 i,
 [3] class PrintAndIncrement '<>9__CachedAnonymousMethodDelegate1',
 [4] class EntryPoint/'<>c__DisplayClass2' '<>8__locals3',
 [5] class PrintAndIncrement[] CS$1$0000,
 [6] bool CS$4$0001)
 IL_0000: ldnull

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

300

 IL_0001: stloc.3
 IL_0002: newobj instance void EntryPoint/'<>c__DisplayClass2'::.ctor()
 IL_0007: stloc.s '<>8__locals3'
 IL_0009: nop
 IL_000a: ldc.i4.3
 IL_000b: newarr PrintAndIncrement
 IL_0010: stloc.0
 IL_0011: ldloc.s '<>8__locals3'
 IL_0013: ldc.i4.0
 IL_0014: stfld int32 EntryPoint/'<>c__DisplayClass2'::someVariable
 IL_0019: ldc.i4.1
 IL_001a: stloc.1
 IL_001b: ldloc.1
 IL_001c: call void [mscorlib]System.Console::WriteLine(int32)

Note the two variables’ usages. In line IL_0002, a new instance of the hidden class is created. In this
case, the compiler named the class <>c__DisplayClass2. That class contains a public instance field
named someVariable, which is assigned in IL_0014. The compiler has transparently inserted the
proverbial extra level of indirection in the form of a class to solve this sticky wicket of local value types
captured by anonymous methods. Also, note that anotherVariable is treated just like a normal stack-
based variable, as can be shown by the fact that it is declared in the local variables portion of the
method.

Anonymous Methods as Delegate Parameter Binders
Anonymous methods, coupled with variable capture, can provide a convenient means of implementing
parameter binding on delegates. Parameter binding is a technique in which you want to call a delegate,
typically with more than one parameter, so that one or more parameters are fixed while the others can
vary per delegate invocation. For example, if you have a delegate that takes two parameters, and you
want to convert it into a delegate that takes one parameter where the other parameter is fixed, you could
use parameter binding to accomplish this feat. This technique is sometimes called currying6. Those of
you C++ programmers who are familiar with the STL or the Boost Library might be familiar with
parameter binders. Here’s an example:

using System;

public delegate int Operation(int x, int y);

public class Bind2nd
{
 public delegate int BoundDelegate(int x);

 public Bind2nd(Operation del, int arg2) {
 this.del = del;
 this.arg2 = arg2;

6 I talk more about currying in Chapter 15 when I cover lambda expressions, which are a more syntactically expressive
way of achieving the same goals as anonymous methods.

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

301

 }

 public BoundDelegate Binder {
 get {
 return delegate(int arg1) {
 return del(arg1, arg2);
 };
 }
 }

 private Operation del;
 private int arg2;
}

public class EntryPoint
{
 static int Add(int x, int y) {
 return x + y;
 }

 static void Main() {
 Bind2nd binder = new Bind2nd(
 new Operation(EntryPoint.Add),
 4);

 Console.WriteLine(binder.Binder(2));
 }
}

In this example, the delegate of type Operation with two parameters, which calls back into the static
EntryPoint.Add method, is converted into a delegate that takes only one parameter. The second
parameter is fixed using the Bind2nd class. Basically, the instance field Bind2nd.arg2 is set to the value
that you want the second parameter fixed to. Then the Bind2nd.Binder property returns a new delegate
in the form of an anonymous method instance, which captures the instance field and applies it along
with the first parameter that is applied at the point of invocation.

Readers familiar with the C++ STL are probably exclaiming that this example would be infinitely
more useful if Bind2nd was generic so it could support a generic two-parameter delegate, much as the
binder in STL does. This would be nice indeed, but some language barriers make it a bit tricky. Let’s start
with an attempt to make the delegate type generic in the Bind2nd class. You could try the following:

// WILL NOT COMPILE !!!
public class Bind2nd< DelegateType >
{
 public delegate int BoundDelegate(int x);

 public Bind2nd(DelegateType del, int arg2) {
 this.del = del;
 this.arg2 = arg2;
 }

 public BoundDelegate Binder {
 get {
 return delegate(int arg1) {

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

302

 return this.del(arg1, arg2); // OUCH!
 };
 }
 }

 private DelegateType del;
 private int arg2;
}

This is a noble attempt, but unfortunately it fails miserably because the compiler gets confused
inside the anonymous method body and complains that an instance field is being used like a method.
The exact error looks like the following:

error CS1955: Non-invocable member 'Bind2nd<DelegateType>.del' cannot be used like a method.

The compiler is correct. What it is saying you cannot do is exactly what you want to do, even though
the compiler cannot make heads or tails of it. What’s a programmer to do?

Another attempt involves generic constraints. Using constraints, you can say that even if the type is
generic, it must derive from a certain base class or implement a specific interface. Fair enough! Let’s just
help the compiler out and tell it that DelegateType will derive from System.Delegate, as follows:

// STILL WILL NOT COMPILE !!!
public class Bind2nd< DelegateType >
 where DelegateType : Delegate
{
 public delegate int BoundDelegate(int x);

 public Bind2nd(DelegateType del, int arg2) {
 this.del = del;
 this.arg2 = arg2;
 }

 public BoundDelegate Binder {
 get {
 return delegate(int arg1) {
 return this.del(arg1, arg2); // OUCH!
 };
 }
 }

 private DelegateType del;
 private int arg2;
}

Alas, you’re stuck again! This time, the compiler says that a constraint of type Delegate is not
allowed as shown in the following error:

error CS0702: Constraint cannot be special class 'System.Delegate'

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

303

It turns out that the solution lies with using generic delegates to get the job done. The following is a
solution to the problem:

using System;

public class Bind2nd<Arg1Type, Arg2Type, ReturnType>
{
 public Bind2nd(Func<Arg1Type, Arg2Type, ReturnType> del,
 Arg2Type arg2) {
 this.del = del;
 this.arg2 = arg2;
 }

 public Func<Arg1Type, ReturnType> Binder {
 get {
 return delegate(Arg1Type arg1) {
 return del(arg1, arg2);
 };
 }
 }

 private Func<Arg1Type, Arg2Type, ReturnType> del;
 private Arg2Type arg2;
}

public class EntryPoint
{
 static int Add(int x, int y) {
 return x + y;
 }

 static void Main() {
 Bind2nd<int,int,int> binder = new Bind2nd<int,int,int>(
 EntryPoint.Add,
 4);

 Console.WriteLine(binder.Binder(2));
 }
}

First, in order for the anonymous method to be able to use the del field as a method, the compiler
must know that it is a delegate. Also, it cannot simply be of type System.Delegate. In order to call
through to a delegate using the method call syntax, it must be a concrete delegate type. To make things
simple, I used the Func<> generic delegate type to avoid having to declare my own generic delegates. We
now have a working generic binder.

The Bind2nd type in the previous example provides an excellent segue into generics, disussed in
Chapter 11.

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

304

The Strategy Pattern
Delegates offer up a handy mechanism to implement the Strategy pattern. In a nutshell, the Strategy
pattern allows you to swap computational algorithms dynamically, based on the runtime situation. For
example, consider the common case of sorting a group of items. Let’s suppose that you want the sort to
occur as quickly as possible. Because of system circumstances, however, more temporary memory is
required in order to achieve this speed. This works great for collections of reasonably manageable size,
but if the collection grows to be huge, it’s possible that the amount of memory needed to perform the
quick sort could exceed the system resource capacity. For those cases, you can provide a sort algorithm
that is much slower but taxes the system resources far less. The Strategy pattern allows you to swap out
these algorithms at run time depending on the conditions. This example, although a tad contrived,
illustrates the purpose of the Strategy pattern perfectly.

Typically, you implement the Strategy pattern using interfaces. You declare an interface that all
implementations of the strategy implement. Then, the consumer of the algorithm doesn’t have to care
which concrete implementation of the strategy it is using. Figure 10-1 features a diagram that describes
this typical usage.

«interface»
Strategy

ConcreteStrategy1 ConcreteStrategy2

Consumer

* *

Figure 10-1. Typical interface-based implementation of the Strategy pattern

Delegates offer a more lightweight alternative to using interfaces to implement a simple strategy.
Interfaces are merely a mechanism to implement a programming contract. Instead, imagine that your
delegate declaration is used to implement the contract, and any method that matches the delegate
signature is a potential concrete strategy. Now, instead of the consumer holding on to a reference to the
abstract strategy interface, it simply retains a delegate instance. The following example illustrates this
scenario:

using System;
using System.Collections;

public delegate Array SortStrategy(ICollection theCollection);

public class Consumer
{
 public Consumer(SortStrategy defaultStrategy) {
 this.strategy = defaultStrategy;

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

305

 }

 private SortStrategy strategy;
 public SortStrategy Strategy {
 get { return strategy; }
 set { strategy = value; }
 }

 public void DoSomeWork() {
 // Employ the strategy.
 Array sorted = strategy(myCollection);

 // Do something with the results.
 }

 private ArrayList myCollection;
}

public class SortAlgorithms
{
 static Array SortFast(ICollection theCollection) {
 // Do the fast sort.
 }

 static Array SortSlow(ICollection theCollection) {
 // Do the slow sort.
 }
}

When the Consumer object is instantiated, it is passed a sort strategy, which is nothing more than a
method that implements the SortStrategy delegate signature. Depending on the run time conditions,
the appropriate delegate is provided to the Consumer instance, and the Consumer.DoSomeWork method
automatically calls into the desired strategy. Using the SortStrategy property, one could even change
which strategy is used at run time. You could argue that implementing a strategy pattern this way is even
more flexible than using interfaces because delegates can bind to both static methods and instance
methods. Therefore, you could create a concrete implementation of the strategy that also contains some
state data that is needed for the operation, as long as the delegate points to an instance method on a
class that contains that state data. Similarly, the delegate could be an anonymous method returned by a
property of that class.

Summary
Delegates offer a first-class, system-defined, and system-implemented mechanism for uniformly
representing callbacks. In this chapter, you saw various ways to declare and create delegates of different
types, including single delegates; chained delegates; open instance delegates; and anonymous methods,
which are delegates. Additionally, I showed how to use delegates as the building blocks of events. You
can use delegates to implement a wide variety of design patterns because delegates are a great means for
defining a programming contract. And at the heart of just about all design patterns is a well-defined
contract.

The next chapter covers the details of generics, which is arguably one of the most powerful features
of the CLR and the C# language for creating type safe code.

CHAPTER 10 ■ DELEGATES, ANONYMOUS FUNCTIONS, AND EVENTS

306

C H A P T E R 11

■ ■ ■

307

Generics

Support for generics is one of the nicest features of C# and .NET. Generics allow you to create open-
ended types that are converted into closed types at runtime. Each unique closed type is a unique type.
Only closed types can be instantiated. When you declare a generic type, you specify a list of type
parameters in the declaration for which type arguments are given to create closed types, as in the
following example:

public class MyCollection<T>
{
 public MyCollection() {
 }

 private T[] storage;
}

In this case, I declared a generic type, MyCollection<T>, which treats the type within the collection as
an unspecified type. In this example, the type parameter list consists of only one type, and it is described
with syntax in which the generic types are listed, separated by commas, between angle brackets. The
identifier T is really just a placeholder for any type. At some point, a consumer of MyCollection<T> will
declare what’s called a closed type, by specifying the concrete type that T is supposed to represent. For
example, suppose that some other assembly wants to create a MyCollection<T> constructed type that
contains members of type int. Then it would do so as shown in the following code:

public void SomeMethod() {
 MyCollection<int> collectionOfNumbers = new MyCollection<int>();
}

MyCollection<int> in this example is the closed type. MyCollection<int> can be used just like any
other declared type, and it also follows all the same rules that other nongeneric types follow. The only
difference is that it was born from a generic type. At the point of instantiation, the IL code behind the
implementation of MyCollection<T> is JIT-compiled in a way that all the usages of type T in the
implementation of MyCollection<T> are replaced with type int.

Note that all unique constructed types created from the same generic type are, in fact, completely
different types that share no implicit conversion capabilities. For example, MyCollection<long> is a
completely different type than MyCollection<int>, and you cannot do something like the following:

// THIS WILL NOT WORK!!!
public void SomeMethod(MyCollection<int> intNumbers) {
 MyCollection<long> longNumbers = intNumbers; // ERROR!

CHAPTER 11 ■ GENERICS

308

}

If you’re familiar with the array covariance rules that allow you to do the following, you’ll be happy
to know that C# 4.0 adds new syntax to let you do this with generics:

public void ProcessStrings(string[] myStrings) {
 object[] objs = myStrings;
 foreach(object o in objs) {
 Console.WriteLine(o);
 }
}

The difference is that with array covariance, the source and the destination of the assignment are of
the same type: System.Array. The array covariance rules simply allow you to assign one array from
another, as long as the declared type of the elements in the array is implicitly convertible at compile
time. However, in the case of two constructed generic types, they are completely separate types.

Starting with C# 4.0, the language supports covariance and contravariance between generic
interfaces and delegates with reference-based type arguments. This helps relax the restrictions on
implicit convertibility for some generic types and helps to create code that simply makes sense without a
lot of extra conversion baggage. I will have more to say about the topic of variance in the section titled
“Co- and Contravariance” later in the chapter.

Difference Between Generics and C++ Templates
It’s no accident that the syntax of generics is similar to that of C++ templates, when the syntax for every
other element in C# is based on the corresponding C++ syntax. This approach makes the language look
familiar to many. As is typical throughout C#, the designers have streamlined the syntax and removed
some of the verbosity. However, the similarities end there because C# generics behave very differently
from C++ templates, and if you come from the C++ world, you must make sure that you understand the
differences. Otherwise, you might find yourself attempting to apply your C++ template knowledge in
ways that simply won’t work with generics.

The main difference between the two is that expansion of generics is dynamic, whereas expansion
of C++ templates is static. In other words, C++ templates are always expanded at compile time.
Therefore, the C++ compiler must have access to all template types—generally through header files—
and any types used to create the closed types from the template types at compile time. For this reason
alone, it is impossible to package C++ templates into libraries. I know that many developers become
confused by this fact when learning C++ templates for the first time. I remember plenty of times when it
would have been nice to be able to package a C++ template into a static library or a DLL. Unfortunately,
that is not possible. That’s why all the code for C++ template types usually lives in headers. This makes it
difficult to package proprietary library code within C++ templates because you must essentially give your
code away to anyone who needs to consume it. The STL is a perfect example: notice that almost every bit
of your favorite STL implementation exists in header files.

Generics, on the other hand, can be packaged in assemblies and consumed later. Instead of being
formed at compile time, constructed types are formed at runtime, or more specifically, at JIT-compile
time. In many ways, this makes generics more flexible. However, as with just about anything in the
engineering world, advantages come with disadvantages. You must treat generics significantly
differently at design time from C++ templates, as you’ll see at the end of this chapter.

CHAPTER 11 ■ GENERICS

309

■ Note Each time the JIT compiler forms a closed type, a new type is initialized for the application domain that

uses it. Naturally, this places a demand on the memory consumption of the application, also known as the working

set. Once a type is initialized and loaded into an application domain, you cannot uninitialize and unload it without

destroying the application domain as well. Under some rare circumstances, you might need to consider these

ramifications when designing systems that use generics. In general, though, such concerns are typically minimal.

If your generic type declares a lot of static fields, creating many closed types from it could place pressure on

memory because each closed type gets its own copy of those static fields. Additionally, if those closed types are

used in multiple application domains, there will be a copy of that static data for each application domain the type

is loaded into.

Efficiency and Type Safety of Generics
Arguably, the added efficiency when using value types in collections is one of the greatest gains from
generics in C#. Whereas a regular array based on System.Array can contain a heterogeneous collection of
instances created from many types as long as it holds references to a common base type such as
System.Object, it does come with its drawbacks. Take a look at the following usage:

public void SomeMethod(ArrayList col) {
 foreach(object o in col) {
 ISomeInterface iface = (ISomeInterface) o;
 o.DoSomething();
 }
}

Because everything in the CLR is derived from System.Object, the ArrayList passed in via the col
variable could possibly contain a hodgepodge of things. Some of those things might not actually
implement ISomeInterface. As you’d expect, an InvalidCastException could erupt from this code.
However, wouldn’t it be nice to be able to utilize the C# compiler’s type engine to help sniff out such
things at compile time? That’s exactly what generics allow you to do. Using generics, you can devise
something like the following:

public void SomeMethod(IList<ISomeInterface> col) {
 foreach(ISomeInterface iface in col) {
 o.DoSomething();
 }
}

Here, the method accepts an interface of IList<T>. Because the type parameter to the constructed
type is of type ISomeInterface, the only objects the list can hold are those of type ISomeInterface.
Instantly, the compiler has a bigger stick to wield while enforcing type safety.

CHAPTER 11 ■ GENERICS

310

■ Note Added type safety at compile time is always a good thing because it’s much better to capture bugs based

on type mismatches earlier at compile time rather than later at runtime.

You could have solved the same problem without using generics, but it would have required writing
a class by hand that would have served the same purpose as the List<ISomeInterface> constructed type.
Thus, another beauty of generics is similar to that of C++ templates: They provide an easy-to-specialize
shell for new types to be built from thus increasing code re-use.

The compiler is your friend, and you should always provide it with as much type information as
possible to help it do its job. Because everything in C# and the CLR derives from System.Object one way
or another, you can easily cast away all type information from objects, thus crippling the compiler. If you
come from a C++ environment, just imagine how ugly things could get if you preferred to pass around
pointers to objects as void*. And that’s not even mentioning the hard-to-find bugs that would come
from such madness.

The example you’ve just seen shows how to use generics for better type safety. However, you
haven’t really gained much yet from an efficiency standpoint. The real efficiency gain comes into play
when the type argument is a value type. Remember that a value type inserted into a collection in the
System.Collections namespace, such as ArrayList, must first be boxed because the ArrayList maintains
a collection of System.Object types. An ArrayList meant to hold nothing but a bunch of integers suffers
from severe efficiency problems because the integers must be boxed and unboxed each time they are
inserted and referenced or extracted from the ArrayList, respectively. Also, an unboxing operation in C#
is normally formed with an IL unbox operation paired with a copy operation on the value type’s data.
Additionally, all that boxing puts more pressure on the managed heap. Generics come to the rescue to
stop this madness. As an example, compile the following code and then load the assembly into ILDASM
to compare the IL generated for each of the methods that accept a Stack instance:

using System;
using System.Collections;
using System.Collections.Generic;

public class EntryPoint
{
 static void Main() {
 }

 public void NonGeneric(Stack stack) {
 foreach(object o in stack) {
 int number = (int) o;
 Console.WriteLine(number);
 }
 }

 public void Generic(Stack<int> stack) {
 foreach(int number in stack) {
 Console.WriteLine(number);
 }
 }
}

CHAPTER 11 ■ GENERICS

311

Notice that the IL code generated by the NonGeneric method has at least ten more instructions than
the generic version. Most of this is attributed to the type coercing and unboxing that the NonGeneric
method must do. Furthermore, the NonGeneric method could possibly throw an InvalidCastException if
it encounters an object that cannot be explicitly cast and unboxed into an integer at runtime.

Clearly, generics offer the compiler much greater latitude to help it do its job by not stripping away
precious type information at compile time. However, you could argue that the efficiency gain is so high
that the primary motivator for generics in the CLR was to avoid unnecessary boxing operations. Either
way, both gains are extremely significant and worth utilizing to the fullest extent.

GENERIC TYPE PLACEHOLDER NAMING CONVENTIONS

Although there are no hard-and-fast rules for naming generic parameter placeholders, it is recommended
that you at least provide a name that is somewhat descriptive of how the type will be used. Additionally,
placeholder identifiers conventionally make the first letter a capital T to denote it as a type.

Naming conventions like these, similar to the convention that interface names start with a capital I,
provide for code that is generally easier to read. If the generic type definition has only one type parameter
and it’s simple to understand, it’s conventional to name it T.

Generic Type Definitions and Constructed Types
As I touched upon previously, a generic type is a compiled type that is unusable until a closed type is
created from it. A nongeneric type is also known as a closed type, whereas a generic type is known as an
open type. It is possible to define a new open type via a generic, as shown in the following example:

public class MyClass<T>
{
 private T innerObject;
}

public class Consumer<T>
{
 private MyClass< Stack<T> > obj;
}

In this case, a generic type, Consumer<T>, is defined and also contains a field that is based on another
generic type. When declaring the type of the Consumer<T>.obj field, MyClass< Stack<T> > remains open
until someone declares a constructed type based on Consumer<T>, thus creating a closed type for the
contained field.

Generic Classes and Structs
So far, all the examples I’ve shown you have been generic classes; in fact, the most common types of
generic declaration you will use are generic classes and structs. Also, I’ve been running pretty fast and
loose with my terminology, so I’ll be more explicit from now on.

CHAPTER 11 ■ GENERICS

312

Overall, declarations of all generic struct and class types follow the same rules as those for regular
struct and class types. Any time a class declaration contains a type parameter list within angle brackets,
it is a generic type from that point on. Likewise, any nested class declaration—whether it’s generic or
not—that is declared within the scope of a generic type is a generic type because the nested type’s fully
qualified name requires a type argument to completely specify the nested type.

Generic types are overloaded based upon the number of arguments in their type argument lists. The
following example illustrates what I mean:

public class Container {}
public class Container<T> {}
public class Container<T, R> {}

Each of these declarations is valid within the same namespace. You can declare as many generic
types based on the Container identifier as you want, as long as each one has a different count of type
parameters. Within the scope of the definitions shown previously, you cannot declare another type
named Container<X, Y>, even though the identifiers used in the type parameters list have different
names. The name-overloading rules for generic declarations are based on the count of type parameters
instead of the names given to their placeholders.

When you declare a generic type, you’re declaring what is called an open type. It’s called that
because its fully specified type is not yet known. When you declare another type based upon the generic
type definition, you’re declaring what’s called a constructed type, as shown here:

public class MyClass<T>
{
 private Container<int> field1;
 private Container<T> field2;
}

Both fields in the previous declaration of MyClass<T> are constructed types because they declare a
new type based upon the generic type Container<T>. Container<int> is a closed type because all given
type arguments are themselves closed; that is, nongeneric. However, not every constructed type is a
closed type. Only field1 is of a closed type, whereas field2 is of an open type because its final type must
still be determined at runtime based on the type arguments from MyClass<T>.

In C#, all identifiers are declared and are valid within a specific scope. Within the confines of a
method, for example, any local variable identifiers declared within the curly braces of the method are
available only within that scope. Similar rules exist for type parameter identifiers within generics. In the
previous example, the identifier T is valid only within the scope of the class declaration itself. Consider
the following nested class example:

public class MyClass<T>
{
 public class MyNestedClass<R>
 {
 }
}

The identifier R is valid only within the scope of the nested class, and you cannot use it within the
outer scope of the declaration for MyClass<T>. However, you can use T in the nested class because the
nested class is defined within the scope within which T is valid. It is generally considered to be bad form
to hide outer argument identifiers within nested scopes, just as it is with variable name identifiers within
nested execution scopes. For example, try to follow this confusing code:

CHAPTER 11 ■ GENERICS

313

public class MyClass<T>
{
 public class MyNestedClass<T>
 {
 }

 private Container<T> field1;

 static void Main() {
 // What does this mean for MyNestedClass?
 MyClass<int> closedTypeInstance = null;
 }
}

When the closed type MyClass<int> is declared in Main, what does it mean for the nested type? The
answer is nothing. Even though the MyNestedClass<T> declaration uses the same type argument, it does
not expand into the following:

// This is NOT what happens!
public class MyClass<int>
{
 public class MyNestedClass<int>
 {
 }

 private Container<int> field1;
}

Just because the type parameter for the MyClass<T> type has been specified, it does not mean that
the MyNestedClass<T> has been specified as well. In fact, it would be more accurate to describe the
resultant MyClass<int> as follows:

public class MyClass<int>
{
 public class MyNestedClass<T>
 {
 }

 private Container<int> field1;
}

MyNestedClass<T> still remains open, even though it used the same identifier in its parameter list as
the containing type. What’s actually happening is that within the curly braces of MyNestedClass<T>, the
outer type argument to MyClass<T> is hidden from access by the identifier of the inner scope. It is better
to declare it as follows:

public class MyClass<T>
{
 public class MyNestedClass<R>
 {
 private T innerfield1;
 private R innerfield2;

CHAPTER 11 ■ GENERICS

314

 }

 private Container<T> field1;

 static void Main() {
 MyClass<int> closedTypeInstance = null;
 }
}

Now the declaration scope of MyNestedClass<R> has access to both the T and R type parameters, as
illustrated. One thing worth pointing out is that even though the variable of type MyClass<int>, a closed
type, is declared, it does not imply that any closed types from MyNestedClass<R> have been declared.

Generic structs and classes, just like normal structs and classes, can contain static types. However,
each closed type based on the generic type contains its own instances of those static types. When you
consider that each closed type is a separate concrete type, this fact makes perfect sense. For example, if
MyClass<T> declares a static field named MyValue, then MyClass<int>, a closed type, has its own static
field MyClass<int>.MyValue, which is unrelated to the static field MyClass<long>.MyValue. Therefore, if
you need to share static data between different closed types based on the same generic type, you must
devise some other means to do so. One technique involves a separate, nongeneric type that contains
static data that is referenced by the generic types. Such a device is typically implemented with the
Singleton pattern. You could also achieve this by having the generic type derive from a nongeneric type
and put the shared statics in the nongeneric type.

■ Note Keep in mind that generic types with static initializers require that the initialization code be run each and

every time the CLR creates a closed type based upon the generic type. Complex type initializers, or static

constructors, can possibly increase the working set of the application if too many closed types are created based

upon such a generic type. For example, if you create a sizable per-type data structure in a generic type initializer,

you could create a hidden source of memory consumption if many types are formed from it.

Generic Interfaces
Along with classes and structs, you can also create generic interface declarations. This concept is a
natural progression from struct and class generics. Naturally, a whole host of interfaces declared within
the .NET 1.1 base class library make excellent candidates to have generic versions fashioned after them.
A perfect example is IEnumerable<T>. Generic containers create much more efficient code than
nongeneric containers when they contain value types because they avoid any unnecessary boxing. It’s
only natural that any generic enumerable interface must have a means of enumerating the generic items
within. Thus, IEnumerable<T> exists, and any enumerable containers you implement yourself should
implement this interface. Alternatively, you could get it for free by deriving your custom containers from
Collection<T>.

■ Note When creating your own custom collection types, you should derive them from Collection<T> in the

System.Collections.ObjectModel namespace. Other types, such as List<T>, are not meant to be derived from

v@v
Text Box
Download at WoweBook.com

CHAPTER 11 ■ GENERICS

315

and are intended as a lower-level storage mechanism. Collection<T> implements protected virtual methods that

you can override to customize its behavior, whereas List<T> does not.

Generic Methods
C# supports generic methods. Any method declaration that exists within a struct, a class, or an interface
can be declared as a generic method. That includes static as well as virtual or abstract methods. Also, you
can declare generic methods on either generic or nongeneric types. To declare a generic method, simply
append a type parameter list within angle brackets to the end of the method name but before the
parameter list for the method. You can declare any of the types in the method parameter list, including
the method return type, using one of the generic parameters. As with nested classes, it is bad form to
hide outer type identifiers by reusing the same identifier in the nested scope, which in this case, is the
scope of the generic method. Let’s consider an example in which a generic method might be useful. In
the following code, I created a container to which I want to add the contents of another generic
container:

using System;
using System.Collections.Generic;

public class MyContainer<T> : IEnumerable<T>
{
 public void Add(T item) {
 impl.Add(item);
 }

 // Converter<TInput, TOutput> is a new delegate type introduced
 // in the .NET Framework 2.0 that can be wired up to a method that
 // knows how to convert the TInput type into a TOutput type.
 public void Add<R>(MyContainer<R> otherContainer,
 Converter<R, T> converter) {
 foreach(R item in otherContainer) {
 impl.Add(converter(item));
 }
 }

 public IEnumerator<T> GetEnumerator() {
 foreach(T item in impl) {
 yield return item;
 }
 }

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }

 private List<T> impl = new List<T>();
}

public class EntryPoint
{

CHAPTER 11 ■ GENERICS

316

 static void Main() {
 MyContainer<long> lContainer = new MyContainer<long>();
 MyContainer<int> iContainer = new MyContainer<int>();

 lContainer.Add(1);
 lContainer.Add(2);
 iContainer.Add(3);
 iContainer.Add(4);

 lContainer.Add(iContainer,
 EntryPoint.IntToLongConverter);

 foreach(long l in lContainer) {
 Console.WriteLine(l);
 }
 }

 static long IntToLongConverter(int i) {
 return i;
 }
}

First of all, take note of the syntax of the generic Add<R> method, and also notice that there are two
overloads of Add in MyContainer<T>. Clearly, you need to have a method to add instances of type T—thus,
the need for Add(T). However, it would be really handy to be able to add an entire range of objects
from another closed type formed from MyContainer<T>, as long as the enclosed type of the source
container is convertible to the enclosed type of the target. If you look at Main, you can see the intent here.
I want to place the objects contained within an instance of MyContainer<int> into an instance of
MyContainer<long>. Therefore, I created a generic method, Add<R>, to allow me to accept another
container that contains any arbitrary type. Because the generic class uses T in its argument list, the
generic method uses R to avoid any type parameter hiding.

This technique involves a twist, though. Logically, what I’m trying to do makes perfect type sense. I
want to add a collection of ints to a collection of longs, and I know that an int is easily implicitly
convertible to a long, so I should be able to do this. Although this is true, you have to take into
consideration that generics are formed dynamically at runtime. And at runtime, there is no guarantee
what closed type formed from MyContainer<T> the Add<R> method will see. It could be
MyContainer<Apples>, and an Apple might not be implicitly convertible to a long, assuming it was passed
to MyContainer<long>.Add<Apples>. Those of you who are used to C++ templates will recognize that the
compiler will let you know if you’re trying to perform an invalid conversion at compile time. However,
generics don’t have this compile-time luxury, so more restrictions are in place during compile time to
disallow such a thing. Therefore, you must seek out a different solution, and a good one is to provide a
conversion delegate to get the job done.

The base class library provides the System.Converter<TInput, TOutput> delegate specifically for this
case. The syntax for this delegate might seem a bit foreign, but it’s simply a generic delegate declaration,
which I cover in detail in the section “Generic Delegates.” When callers call Add<R>, they must also
provide an instance of the generic Converter<T, R> delegate pointing to a method that knows how to
convert from the source type to the target type. This explains the need for the IntToLongConverter
method in the previous example. The Add<R> method then uses this delegate to do the actual conversion
from one type to another. In this case, the conversion is an implicit one, but it still must be externalized
this way because the compiler must accommodate the fact that the Add<R> method can have any type
thrown at it at compile time.

CHAPTER 11 ■ GENERICS

317

■ Note Staring with C# 4.0, there is a new syntax for marking an interface or delegate as covariant or

contravariant. (I cover this new syntax in detail in the section “Co- and Contravariance” later in this chapter.)

Depending on the situation, if your types T and R are implicitly convertible to one or the other, you might not have

to implement a converter delegate as shown previously.

To facilitate enumeration of the container, I have also declared MyContainer<T> such that it
implements IEnumerable<T>. This allows you to use the syntactically intuitive foreach construct. You’ll
notice some syntax that might look foreign to you if you’re not familiar with C# iterators, specifically the
yield statement.1 However, notice how easy it is to create an enumerator for this class using the yield
keyword. This was a welcome addition to the language because declaring and constructing objects that
enumerate containers without it is a laborious task.

Generic Delegates
Quite often, generics are used in the context of container types, in which a closed type’s field or internal
array is based on the type argument given. Generic methods extend the capability of generic types by
providing a finer granularity of generic scope. I have yet to discuss the power of generic delegates.

You’re already familiar with the venerable delegate. If you were to declare a delegate that takes two
parameters—the first being a long, and the second being an object—you could declare a delegate such
as the following:

public delegate void MyDelegate(long l, object o);

In the previous section, you got a preview of a generic delegate when I showed the use of the generic
converter delegate. The declaration for the generic converter delegate looks like this:

public delegate TOutput Converter<TInput, TOutput>(
 TInput input
);

It looks just like any other delegate, except that it has the telltale form of a generic with a type
parameter list immediately following the name of the delegate. Just as nongeneric delegates look similar
to method declarations without a body, generic delegate declarations look almost identical to generic
method declarations without a body. The type parameter list follows the name of the delegate, but it
precedes the parameter list of the delegate.

The generic converter uses the placeholder identifiers TInput and TOutput within its type parameter
list, and those types are used elsewhere in the declaration for the delegate. In generic delegate
declarations, the types in the type parameter list are in scope for the entire declaration of the delegate,
including the return type as shown in the previous declaration for the generic converter delegate.

Creating an instance of the Converter<TInput, TOutput> delegate is the same as creating an instance
of any other delegate. When you create an instance of the generic delegate, you can use the new operator,

1 I covered iterators fully in Chapter 9. Also, if you’re wondering why there is an explicitly implemented version of
GetEnumerator that returns a nongeneric IEnumerator, it is because IEnumerable<T> derives from IEnumerable.

CHAPTER 11 ■ GENERICS

318

and you can explicitly provide the type list at compile time. Or, you might simply use the abbreviated
syntax that I used in the MyContainer<T> example in the previous section, in which case the compiler
deduces the type parameters. For convenience, I have reprinted the Main method of that example:

 static void Main() {
 MyContainer<long> lContainer = new MyContainer<long>();
 MyContainer<int> iContainer = new MyContainer<int>();

 lContainer.Add(1);
 lContainer.Add(2);
 iContainer.Add(3);
 iContainer.Add(4);

 lContainer.Add(iContainer,
 EntryPoint.IntToLongConverter);

 foreach(long l in lContainer) {
 Console.WriteLine(l);
 }
 }

Notice that the second parameter to the last Add method is simply a reference to the method rather
than an explicit creation of the delegate itself. This works because of the method group conversion rules
defined by the C# language. When the actual delegate is created from the method, the closed type of the
generic is inferred using a complex pattern-matching algorithm from the parameter types of the
IntToLongConverter method itself. In fact, the call to Add<R> is devoid of any explicit type parameter list
at the point of invocation. The compiler can do the exact same type of pattern matching to infer the
closed form of the Add<R> method called, which in this case is Add<int>. You could just as well have
written the code as follows, in which every type is provided explicitly:

 static void Main() {
 MyContainer<long> lContainer = new MyContainer<long>();
 MyContainer<int> iContainer = new MyContainer<int>();

 lContainer.Add(1);
 lContainer.Add(2);
 iContainer.Add(3);
 iContainer.Add(4);

 lContainer.Add<int>(iContainer,
 new Converter<int, long>(EntryPoint.IntToLongConverter));

 foreach(long l in lContainer) {
 Console.WriteLine(l);
 }
 }

In this example, all types are given explicitly, and the compiler is not left with the task of inferring
them at compile time. Either way, the generated IL code is the same. Most of the time, you can rely on
the type inference engine of the compiler. However, depending on the complexity of your code, you
occasionally might find yourself needing to throw the compiler a bone by providing an explicit type list.

Along with providing a way to externalize type conversions from a container type, as in the previous
examples, generic delegates help solve a specific problem that I demonstrate in the following code:

CHAPTER 11 ■ GENERICS

319

// THIS WON'T WORK AS EXPECTED!!!
using System;
using System.Collections.Generic;

public delegate void MyDelegate(int i);

public class DelegateContainer<T>
{
 public void Add(T del) {
 imp.Add(del);
 }

 public void CallDelegates(int k) {
 foreach(T del in imp) {
// del(k);
 }
 }

 private List<T> imp = new List<T>();
}

public class EntryPoint
{
 static void Main() {
 DelegateContainer<MyDelegate> delegates =
 new DelegateContainer<MyDelegate>();

 delegates.Add(EntryPoint.PrintInt);
 }

 static void PrintInt(int i) {
 Console.WriteLine(i);
 }
}

As written, the previous code will compile. However, notice the commented line within the
CallDelegates method. If you uncomment this line and attempt to recompile with the Microsoft
compiler, you’ll get the following error:

error CS0118: 'del' is a 'variable' but is used like a 'method'

The problem is that the compiler has no way of knowing that the type represented by the
placeholder T is a delegate. Those of you who have been jumping ahead in this chapter might be
wondering why there is no form of constraint (I cover constraints shortly) to give the compiler the hint
that it is a delegate. Well, even if there were, the compiler could not possibly know how to call the
delegate. The constraint would not carry the information about how many parameters the delegate
accepts. Remember, unlike C++ templates, generics are dynamic, and closed types are formed at
runtime rather than at compile time. So, at runtime, the delegate represented by del could take an
arbitrary number of parameters. I can only imagine the headache caused by trying to devise a way to
push a dynamic count of parameters onto the stack before calling the delegate. For all these reasons, it

CHAPTER 11 ■ GENERICS

320

rarely makes sense to create a closed type from a generic, in which one of the type arguments is a
delegate type because, after all, you cannot call through to it normally.

What you can do to help in this situation is apply a generic delegate to give the compiler a bit more
information about what you want to do with this delegate. As in this example, using a generic delegate,
you can effectively say, “I want you to use delegates that accept only one parameter of a generic type and
return void.” That’s enough information to get the compiler past the block and allow it to generate code
that makes sense for the generic. After all, if you give the compiler this amount of information, at least it
knows how many parameters to push onto the stack before making the call through the delegate.

The following code shows how you could remedy the previous situation:

using System;
using System.Collections.Generic;

public delegate void MyDelegate<T>(T i);

public class DelegateContainer<T>
{
 public void Add(MyDelegate<T> del) {
 imp.Add(del);
 }

 public void CallDelegates(T k) {
 foreach(MyDelegate<T> del in imp) {
 del(k);
 }
 }

 private List<MyDelegate<T> > imp = new List<MyDelegate<T> >();
}

public class EntryPoint
{
 static void Main() {
 DelegateContainer<int> delegates =
 new DelegateContainer<int>();

 delegates.Add(EntryPoint.PrintInt);
 delegates.CallDelegates(42);
 }

 static void PrintInt(int i) {
 Console.WriteLine(i);
 }
}

Generic Type Conversion
As I covered earlier in this chapter, there is no implicit type conversion for different constructed types
formed from the same generic type. The same rules that apply when determining if an object of type X is
implicitly convertible to an object of type Y apply equally when determining whether an object of type
List<int> is convertible to an object of type List<object>. When such conversion is desired, you must
create a custom implicit conversion operator, just as in the case of converting objects of type X to objects

CHAPTER 11 ■ GENERICS

321

of type Y when they share no inheritance relationship. Otherwise, you need to create a conversion
method to go from one type to another.

For example, the following code is invalid:

// INVALID CODE!!!
public void SomeMethod(List<int> theList) {
 List<object> theSameList = theList; // Ooops!!!
}

■ Note This is not entirely true now because C# 4.0 introduced syntax to declare generic interfaces and delegates

as variant. But for the sake of this section, everything is true as long as you treat all generic types as invariant,

which is what you get by default if the generic declaration is not decorated with the variance syntax.

If you looked at the documentation of List<T>, you might have noticed a generic method named
ConvertAll<TOutput>. Using this method, you can convert a generic list of type List<int> to
List<object>. However, you must pass the method an instance of a conversion delegate as described in
the previous section. So, to convert List<int> to List<object>, you must provide a delegate that knows
how to convert an int instance into an object instance. By using the given delegate, it is the only way
that ConvertAll<TOutput> can possibly know how to convert each contained instance from the source
type to the destination type.

Those familiar with the Strategy pattern might find this a familiar notion. In essence, you can
provide the ConvertAll<TOutput> method at runtime with a means of doing the conversion on the
contained instances that, depending on the complexity of the conversion, can be tuned for the platform
it is running on. In other words, if you were converting List<Apples> to List<Oranges>, you could
provide a few different conversion methods to select from, depending on the circumstances. For
example, maybe one of them is highly tuned for an environment with lots of resources, so it runs faster
in those environments. Another version might be optimized for minimal resource usage but is much
slower. At runtime, the proper conversion delegate is built to bind to the conversion method that is
logical for the job at hand.

Default Value Expression
Sometimes when working with generic type definitions and generic method definitions, you need to
initialize an object or a value instance of a parameterized type to its default value. Recall that the default
value for a reference variable is the same as setting it to null, whereas the default value for a value type
variable is equivalent to setting all its underlying bits to 0. You need an expression for generics to
account for these two semantic differences; for that task, you can use the default value expression
shown in the following code example:

using System;

public class MyContainer<T>
{
 public MyContainer() {
 // Create initial capacity.
 imp = new T[4];

CHAPTER 11 ■ GENERICS

322

 for(int i = 0; i < imp.Length; ++i) {
 imp[i] = default(T);
 }
 }

 public bool IsDefault(int i) {
 if(i < 0 || i >= imp.Length) {
 throw new ArgumentOutOfRangeException();
 }

 if(imp[i] == null) {
 return true;
 } else {
 return false;
 }
 }

 private T[] imp;
}

public class EntryPoint
{
 static void Main() {
 MyContainer<int> intColl =
 new MyContainer<int>();

 MyContainer<object> objColl =
 new MyContainer<object>();

 Console.WriteLine(intColl.IsDefault(0));
 Console.WriteLine(objColl.IsDefault(0));
 }
}

Pay attention to the syntax within the MyContainer<T> constructor, in which each item in the array is
initialized explicitly to its default value. At runtime, the type of T might be a value type or a reference
type, so you cannot simply set the value to null and expect it to work for value types. In fact, if you
attempt to assign imp[i] to null, the compiler will give you a friendly reminder with the following error:

error CS0403: Cannot convert null to type parameter 'T' because it could be
a non-nullable value type. Consider using 'default(T)' instead.

You should also use the default expression when testing a variable for its default value because it has
a different meaning depending on whether it is a value type or a reference type. However, in this case,
the compiler cannot help you sniff out when you should do this, as you can see in the example. If you
run the previous code, you get the output as follows:

False
True

CHAPTER 11 ■ GENERICS

323

This is not the intended result because they should both return true. If you modify the code so that
the IsDefault method looks like the following example, you’ll get output that is more in line with the
intended result:

 public bool IsDefault(int i) {
 if(i < 0 || i >= imp.Length) {
 throw new ArgumentOutOfRangeException();
 }

 if(Object.Equals(imp[i], default(T))) {
 return true;
 } else {
 return false;
 }
 }

Nullable Types
Related to the previous discussion is the concept of null values and what semantic meaning they carry.
The null state for reference types is easily representable. If the value of the reference is set to null, it
typically means that the variable has no value. This is much different, semantically, than saying that the
value is 0. Semantically, a variable set to null has no value, not even the value of 0. With respect to value
types, it has traditionally been much more cumbersome to represent the semantic meaning of null. If
you set the value to 0, it could mean that the value is null. Then what do you do to represent the case
when the value is actually 0, not null? Many techniques involve maintaining another Boolean value to
indicate that the value type actually conveys meaning, such as a bool value named isNull.

To help you avoid having to manage such a mundane, error-prone mechanism, the .NET base class
library provides you with the System.Nullable<T> type, as demonstrated in the following code where I
show two ways to use nullable types:

using System;

public class Employee
{
 public Employee(string firstName,
 string lastName) {
 this.firstName = firstName;
 this.lastName = lastName;

 this.terminationDate = null;
 this.ssn = default(Nullable<long>);
 }

 public string firstName;
 public string lastName;

 public Nullable<DateTime> terminationDate;
 public long? ssn; // Shorthand notation
}

public class EntryPoint

CHAPTER 11 ■ GENERICS

324

{
 static void Main() {
 Employee emp = new Employee("Vasya",
 "Pupkin");
 emp.ssn = 1234567890;

 Console.WriteLine("{0} {1}",
 emp.firstName,
 emp.lastName);
 if(emp.terminationDate.HasValue) {
 Console.WriteLine("Start Date: {0}",
 emp.terminationDate);
 }

 long tempSSN = emp.ssn ?? -1;
 Console.WriteLine("SSN: {0}",
 tempSSN);
 }
}

This code demonstrates two ways to declare a nullable type. The first nullable field within type
Employee is the terminationDate field, which is declared using the System.Nullable<DateTime> type. The
second nullable value within Employee is the ssn field; however, this time I chose to use a C# shorthand
notation for nullable types, in which you simply follow the field’s type declaration with a question mark.
Internally, the compiler handles this in exactly the same way as with the declaration for the
terminationDate field.

■ Tip Personally, I feel that even though using Nullable<T> explicitly requires more typing, it’s definitely a lot

harder to overlook than the little question mark at the end of the field type when you’re reading code. Always

prefer to write clearly readable code rather than trite cute code. No offense to the question mark syntax! It’s just

my preference.

One last thing to consider when using nullable types is how you assign to and from them. In the
constructor for Employee, you can see that I assign null to the nullable types at first. The compiler uses
an implicit conversion for the null value to do the right thing. In fact, when I assign the ssn field in the
constructor, I use the default expression syntax, which is the same thing the compiler does when I
assign the terminationDate nullable value to null.

One of the properties of Nullable<T> is HasValue, which returns true when the nullable value is non-
null and returns false otherwise. Finally, you must consider what it means to assign a nullable type to a
non-nullable type. For example, in the Main method, I want to assign tempSSN based upon the value of
emp.ssn. However, because emp.ssn is nullable, what should tempSSN be assigned to if emp.ssn happens to
have no value? This is when you must use the null coalescing operator ??. This operator allows you to
designate what you want the non-nullable value to be set to in the event that the nullable value you’re
assigning from has no value. So, in the previous example, I’m saying, “Set the value of tempSSN to
emp.ssn, and if emp.ssn has no value, set tempSSN to –1 instead.” Armed with these tools, it’s a snap to
represent values within a system that might be semantically null, which is handy when you’re using
values to represent fields within a database field that is nullable.

CHAPTER 11 ■ GENERICS

325

Constructed Types Control Accessibility
When you build constructed types from generic types, you must consider the accessibility of both the
generic type and the types provided as the type arguments, in order to determine the accessibility of the
whole constructed type.

For example, the following code is invalid and will not compile:

public class Outer
{
 private class Nested
 {
 }

 public class GenericNested<T>
 {
 }

 private GenericNested<Nested> field1;
 public GenericNested<Nested> field2; // Ooops!
}

The problem is with field2. The Nested type is private, so how can GenericNested<Nested> possibly
be public? Of course, the answer is that it cannot. With constructed types, the accessibility is an
intersection of the accessibility of the generic type and the types provided in the argument list.

Generics and Inheritance
C# generic types cannot directly derive from a type parameter. However, you can use the following type
parameters to construct the base types they do derive from:

// This is invalid!!
public class MyClass<T> : T
{
}

// But this is valid.
public class MyClass<T> : Stack<T>
{
}

■ Tip With C++ templates, deriving directly from a type parameter provides a special flexibility. If you’ve ever

used the Active Template Library (ATL) to do COM development, you have no doubt come across this technique

because ATL employs it extensively to avoid the need for virtual method calls. The same technique is used with

C++ templates to generate entire hierarchies at compile time. For more examples, I suggest you read Andrei

Alexandrescu’s Modern C++ Design: Generic Programming and Design Patterns Applied (Boston, MA: Addison-

CHAPTER 11 ■ GENERICS

326

Wesley Professional, 2001). This is yet another example showing how C++ templates are static in nature, whereas

C# generics are dynamic.

Let’s examine techniques that you can use to emulate the same behavior to some degree. As is often
the case, you can add one more level of indirection to achieve something similar. In C++, when a
template type derives directly from one of the type arguments, it is often assumed that the type specified
for the type argument exhibits a certain desired behavior.

For example, you can do the following using C++ templates:

// NOTE: This is C++ code used for the sake of example

class Employee
{
 public:
 long get_salary() {
 return salary;
 }
 void set_salary(long salary) {
 this->salary = salary;
 }

 private:
 long salary;
};

template< class T >
class MyClass : public T
{
};

void main()
{
 MyClass<Employee> myInstance;
 myInstance.get_salary();
}

In the main function, pay attention to the call to get_salary. Even though it looks odd at first, it
works just fine because MyClass<T> inherits the implementation of whatever type is specified for T at
compile time. In this case, that type, Employee, implements get_salary, and MyClass<Employee> inherits
that implementation. Clearly, an assumption is being placed on the type that is provided for T in
MyClass<T> that the type will support a method named get_salary. If it does not, the C++ compiler will
complain at compile time. This is a form of static polymorphism or policy-based programming. In
traditional cases, polymorphism is explained within the context of virtual methods known as dynamic
polymorphism. You cannot implement static polymorphism with C# generics. However, you can require
that the type arguments given when forming a closed type support a specific contract by using a
mechanism called constraints, which I cover in the following section.

CHAPTER 11 ■ GENERICS

327

Constraints
So far, the majority of generics examples that I’ve shown involve some sort of collection-style class that
holds a bunch of objects or values of a specific type. But you’ll often need to create generic types that not
only contain instances of various types but also use those objects directly by calling methods or
accessing properties on them. For example, suppose that you have a generic type that holds instances of
arbitrary geometric shapes that all implement a property named Area. Also, you need the generic type to
implement a property—say, TotalArea—in which all the areas of the contained shapes are accumulated.
The guarantee here is that each geometric shape in the generic container will implement the Area
property. You might be inclined to write code like the following:

using System;
using System.Collections.Generic;

public interface IShape
{
 double Area {
 get;
 }
}

public class Circle : IShape
{
 public Circle(double radius) {
 this.radius = radius;
 }

 public double Area {
 get {
 return 3.1415*radius*radius;
 }
 }

 private double radius;
}

public class Rect : IShape
{
 public Rect(double width, double height) {
 this.width = width;
 this.height = height;
 }

 public double Area {
 get {
 return width*height;
 }
 }

 private double width;
 private double height;
}

CHAPTER 11 ■ GENERICS

328

public class Shapes<T>
{
 public double TotalArea {
 get {
 double acc = 0;
 foreach(T shape in shapes) {
 // THIS WON'T COMPILE!!!
 acc += shape.Area;
 }
 return acc;
 }
 }

 public void Add(T shape) {
 shapes.Add(shape);
 }

 private List<T> shapes = new List<T>();
}

public class EntryPoint
{
 static void Main() {
 Shapes<IShape> shapes = new Shapes<IShape>();

 shapes.Add(new Circle(2));
 shapes.Add(new Rect(3, 5));

 Console.WriteLine("Total Area: {0}",
 shapes.TotalArea);
 }
}

There is one major problem, as the code won’t compile. The offending line of code is inside the
TotalArea property of Shapes<T>. The compiler complains with the following error:

error CS0117: 'T' does not contain a definition for 'Area'

All this talk of requiring the contained type T to support the Area property sounds a lot like a
contract because it is! C# generics are dynamic as opposed to static in nature, so you cannot achieve the
desired effect without some extra information. Whenever you hear the word contract within the C#
world, you might start thinking about interfaces. Therefore, I chose to have both of my shapes
implement the IShape interface. Thus, the IShape interface defines the contract, and the shapes
implement that contract. However, that still is not enough for the C# compiler to be able to compile the
previous code.

C# generics must have a way to enforce the rule that the type T supports a specific contract at
runtime. A naïve attempt to solve the problem could look like the following:

public class Shapes<T>
{

CHAPTER 11 ■ GENERICS

329

 public double TotalArea {
 get {
 double acc = 0;
 foreach(T shape in shapes) {
 // DON'T DO THIS!!!
 IShape theShape = (IShape) shape;
 acc += theShape.Area;
 }
 return acc;
 }
 }

 public void Add(T shape) {
 shapes.Add(shape);
 }

 private List<T> shapes = new List<T>();
}

This modification to Shapes<T> indeed does compile and work most of the time. However, this
generic has lost some of its innocence due to the type cast within the foreach loop. Just imagine that if
during a late-night caffeine-induced trance, you attempted to create a constructed type Shapes<int>.
The compiler would happily oblige. But what would happen if you tried to get the TotalArea property
from a Shapes<int> instance? As expected, you would be treated to a runtime exception as the TotalArea
property accessor attempted to cast an int into an IShape. One of the primary benefits of using generics
is better type safety, but in this example I tossed type safety right out the window. So, what are you
supposed to do? The answer lies in a concept called generic constraints. Check out the following correct
implementation:

public class Shapes<T>
 where T: IShape
{
 public double TotalArea {
 get {
 double acc = 0;
 foreach(T shape in shapes) {
 acc += shape.Area;
 }
 return acc;
 }
 }

 public void Add(T shape) {
 shapes.Add(shape);
 }

 private List<T> shapes = new List<T>();
}

Notice the extra line under the first line of the class declaration using the where keyword. This says,
“Define class Shapes<T> where T must implement IShape.” Now the compiler has everything it needs to
enforce type safety, and the JIT compiler has everything it needs to build working code at runtime. The

CHAPTER 11 ■ GENERICS

330

compiler has been given a hint to help it notify you, with a compile-time error, when you attempt to
create constructed types where T does not implement IShape.

The syntax for constraints is pretty simple. There can be one where clause for each type parameter.
Any number of constraints can be listed following the type parameter in the where clause. However, only
one constraint can name a class type (because the CLR has no concept of multiple inheritance), so that
constraint is known as the primary constraint. Additionally, instead of specifying a class name, the
primary constraint can list the special words class or struct, which are used to indicate that the type
parameter must be any class or any struct. The constraint clause can then include as many secondary
constraints as possible, such as a list of interfaces that the parameterized type must implement. Finally,
you can list a constructor constraint that takes the form new() at the end of the constraint list. This
constrains the parameterized type so it is required to have a default parameterless constructor. Class
types must have an explicitly defined default constructor to satisfy this constraint, whereas value types
have a system-generated default constructor.

It is customary to list each where clause on a separate line in any order under the class header. A
comma separates each constraint following the colon in the where clause. That said, let’s take a look at
some constraint examples:

using System.Collections.Generic;

public class MyValueList<T>
 where T: struct
// But can't do the following
// where T: struct, new()
{
 public void Add(T v) {
 imp.Add(v);
 }

 private List<T> imp = new List<T>();
}

public class EntryPoint
{
 static void Main() {
 MyValueList<int> intList =
 new MyValueList<int>();

 intList.Add(123);

 // CAN'T DO THIS.
 // MyValueList<object> objList =
 // new MyValueList<object>();
 }
}

In this code, you can see an example of the struct constraint in the declaration for a container that
can contain only value types. The constraint prevents one from declaring the objList variable that I have
commented out in this example because the result of attempting to compile it presents the following
error:

CHAPTER 11 ■ GENERICS

331

error CS0453: The type 'object' must be a non-nullable value type in order to use it as
parameter 'T' in the generic type or method 'MyValueList<T>'

Alternatively, the constraint could have also claimed to allow only class types. Incidentally, in the
Visual Studio version of the C# compiler, I can’t create a constraint that includes both class and struct.
Of course, doing so is pointless because the same effect comes from including neither struct nor class
in the constraints list. Nevertheless, the compiler complains with an error if you try to do so, claiming
the following:

error CS0449: The 'class' or 'struct' constraint must come before any
other constraints

This looks like the compiler error could be better stated by saying that only one primary constraint
is allowed in a constraint clause. You’ll also see that I commented out an alternate constraint line, in
which I attempted to include the new() constraint to force the type given for T to support a default
constructor. Clearly, for value types, this constraint is redundant and should be harmless to specify.
Even so, the compiler won’t allow you to provide the new() constraint together with the struct
constraint. Now let’s look at a slightly more complex example that shows two constraint clauses:

using System;
using System.Collections.Generic;

public interface IValue
{
 // IValue methods.
}

public class MyDictionary<TKey, TValue>
 where TKey: struct, IComparable<TKey>
 where TValue: IValue, new()
{
 public void Add(TKey key, TValue val) {
 imp.Add(key, val);
 }

 private Dictionary<TKey, TValue> imp
 = new Dictionary<TKey, TValue>();
}

I declared MyDictionary<TKey, TValue> so that the key value is constrained to value types. I also
want those key values to be comparable, so I’ve required the TKey type to implement IComparable<TKey>.
This example shows two constraint clauses, one for each type parameter. In this case, I’m allowing the
TValue type to be either a struct or a class, but I do require that it support the defined IValue interface as
well as a default constructor.

Overall, the constraint mechanism built into C# generics is simple and straightforward. The
complexity of constraints is easy to manage and decipher with few if any surprises. As the language and
the CLR evolve, I suspect that this area will see some additions as more and more applications for
generics are explored. For example, the ability to use the class and struct constraints within a
constraint clause was a relatively late addition to the standard.

CHAPTER 11 ■ GENERICS

332

Finally, the format for constraints on generic interfaces is identical to that of generic classes and
structs.

Constraints on Nonclass Types
So far, I’ve discussed constraints within the context of classes, structs, and interfaces. In reality, any
entity that you can declare generically is capable of having an optional constraints clause. For generic
method and delegate declarations, the constraints clauses follow the formal parameter list to the
method or delegate. Using constraint clauses with method and delegate declarations does provide for
some odd-looking syntax, as shown in the following example:

using System;

public delegate R Operation<T1, T2, R>(T1 val1,
 T2 val2)
 where T1: struct
 where T2: struct
 where R: struct;

public class EntryPoint
{
 public static double Add(int val1, float val2) {
 return val1 + val2;
 }

 static void Main() {
 var op =
 new Operation<int, float, double>(EntryPoint.Add);

 Console.WriteLine("{0} + {1} = {2}",
 1, 3.2, op(1, 3.2f));
 }
}

I declared a generic delegate for an operator method that accepts two parameters and has a return
value. My constraint is that the parameters and the return value all must be value types. Similarly, for
generic methods, the constraints clauses follow the method declaration but precede the method body.

Co- and Contravariance
Variance is all about convertibility and being able to do what makes type-sense. For example, consider
the following code, which demonstrates array covariance that has been possible in C# since the 1.0 days:

using System;

static class EntryPoint
{
 static void Main() {
 string[] strings = new string[] {
 "One",

CHAPTER 11 ■ GENERICS

333

 "Two",
 "Three"
 };

 DisplayStrings(strings);

 // Array covariance rules allow the following
 // assignment
 object[] objects = strings;

 // But what happens now?
 objects[1] = new object();
 DisplayStrings(strings);
 }

 static void DisplayStrings(string[] strings) {
 Console.WriteLine("----- Printing strings -----");
 foreach(var s in strings) {
 Console.WriteLine(s);
 }
 }
}

At the beginning of the Main method, I create an array of strings and then immediately pass it to
DisplayStrings to print them to the console. Then, I assign a variable of type objects[] from the variable
strings. After all, because strings and objects are reference type variables, at first glance it makes
logical sense to be able to assign strings to objects because a string is implicitly convertible to an
object. However, notice right after doing so, I modify slot one and replace it with an object instance.
What happens when I call DisplayStrings the second time passing the strings array? As you might
expect, the runtime throws an exception of type ArrayTypeMismatchException shown as follows:

Unhandled Exception: System.ArrayTypeMismatchException: Attempted to access an
element as a type incompatible with the array.

Array covariance in C# has been in the language since the beginning for Java compatibility. But
because it is flawed, and some say broken, then how can we fix this problem? There are a few ways
indeed. Those of you familiar with functional programming will naturally suggest invariance as the
solution. That is, if an array is invariant similar to System.String, a copy is made typically in a lazy
fashion at the point where one is assigned into another variable. However, let’s see how we might fix this
problem using generics:

using System;
using System.Collections.Generic;

static class EntryPoint
{
 static void Main() {
 List<string> strings = new List<string> {
 "One",
 "Two",
 "Three"

CHAPTER 11 ■ GENERICS

334

 };

 // THIS WILL NOT COMPILE!!!
 List<object> objects = strings;
 }
}

The spirit of the preceding code is identical to the array covariance example, but it will not compile.
If you attempt to compile this, you will get the following compiler error:

error CS0029: Cannot implicitly convert type

'System.Collections.Generic.List<string>' to

'System.Collections.Generic.List<object>'

The ultimate problem is that each constructed type is an individual type, and even though they
might originate from the same generic type, they have no implicit type relation between them. For
example, there is no implicit relationship between List<string> and List<object>, and just because
they both are constructed types of List<T> and string is implicitly convertible to object does not imply
that they are convertible from one to the other.

Don’t lose hope, though. There is a syntax added in C# 4.0 that allows you to achieve the desired
result. Using this new syntax, you can notate a generic interface or delegate indicating whether it
supports covariance or contravariance. Additionally, the new variance rules apply only to constructed
types in which reference types are passed for the type arguments to the generic type.

Covariance
Within strongly typed programming languages such as C#, an operation is covariant if it reflects and
preserves the ordering of types so they are ordered from more specific types to more generic types. To
illustrate, I’ll borrow from the example in the previous section to show how array assignment rules in C#
are covariant:

string s = "Hello";
object o = s;

string[] strings = new string[3];
object[] objects = strings;

The first two lines make perfect sense; after all, variables of type string are implicitly convertible to
type object because string derives from object. The second set of lines shows that variables of type
string[] are implicitly convertible to variables of type object[]. And because the ordering of types
between the two implicit assignments is identical that is, from a more specialized type (string) to a
more generic type (object) the array assignment operation is said to be covariant.

Now, to translate this concept to generic interface assignment, an interface of type IOperation<T> is
covariance-convertible to IOperation<R> if there exists an implicit reference conversion from T to R and
IOperation<T> to IOperation<R>. Simply put, if for the two conversion operations just mentioned, T and R

CHAPTER 11 ■ GENERICS

335

are on the same sides of the conversion operations, the conversion operation is covariant. For example,
let the arrow shown following represent the operation. And because T and R appear on the same sides of
the operation in both cases, the operation is covariant in nature.

T R
IOperation<T> IOperation<R>

■ Note C# variance rules do not apply to value types; that is, types that are not reference convertible. In other

words, IOperation<int> is not covariance-convertible to IOperation<double>, even though int is implicitly

convertible to double.

Let’s consider an example of a custom collection called MyCollection<T> that implements the
interface IMyCollection<T>:

using System;
using System.Collections.Generic;

interface IMyCollection<T>
{
 void AddItem(T item);
 T GetItem(int index);
}

class MyCollection<T> : IMyCollection<T>
{
 public void AddItem(T item) {
 collection.Add(item);
 }

 public T GetItem(int index) {
 return collection[index];
 }

 private List<T> collection = new List<T>();
}

static class EntryPoint
{
 static void Main() {
 var strings = new MyCollection<string>();
 strings.AddItem("One");
 strings.AddItem("Two");

 IMyCollection<string> collStrings = strings;
 PrintCollection(collStrings, 2);
 }

 static void PrintCollection(IMyCollection<string> coll,

CHAPTER 11 ■ GENERICS

336

 int count) {
 for(int i = 0; i < count; ++i) {
 Console.WriteLine(coll.GetItem(i));
 }
 }
}

Of course, the collection MyCollection<T> is extremely contrived and we would never author a real
collection type like this, but I have written it this way to keep the example brief and to focus on
covariance. The preceding code compiles and runs just fine while printing out the two strings in the
MyCollection<string> instance to the console. But now, let’s imagine that we want PrintCollection to
accept an instance of type IMyCollection<object> rather than IMyCollection<string>. After all, it is
logical that a collection of strings is a collection of objects as well. If you simply just change the
signature of PrintCollection to accept IMyCollection<object>, you will get a compiler error at the point
of invocation. That’s because what is logical to you and me is not necessarily logical to the compiler
because, by default, constructed generic types are invariant and there is no implicit conversion from one
to the other. Something else is needed. Check out the following modification that compiles and works as
expected. I have bolded the differences to pay attention to:

using System;
using System.Collections.Generic;

interface IMyCollection<T>
{
 void AddItem(T item);
}

interface IMyEnumerator<out T>
{
 T GetItem(int index);
}

class MyCollection<T> : IMyCollection<T>,
 IMyEnumerator<T>
{
 public void AddItem(T item) {
 collection.Add(item);
 }

 public T GetItem(int index) {
 return collection[index];
 }

 private List<T> collection = new List<T>();
}

static class EntryPoint
{
 static void Main() {
 var strings = new MyCollection<string>();
 strings.AddItem("One");
 strings.AddItem("Two");

CHAPTER 11 ■ GENERICS

337

 IMyEnumerator<string> collStrings = strings;

 // Covariance in action!
 IMyEnumerator<object> collObjects = collStrings;

 PrintCollection(collObjects, 2);
 }

 static void PrintCollection(IMyEnumerator<object> coll,
 int count) {
 for(int i = 0; i < count; ++i) {
 Console.WriteLine(coll.GetItem(i));
 }
 }
}

First, notice that I split the previous implementation of IMyCollection into two interfaces named
IMyCollection and IMyEnumerator. I’ll explain why in a moment. Also, notice that PrintCollection
accepts a variable of type IMyEnumerator<object> rather than IMyCollection<string>. But most
importantly, look very closely at the IMyEnumerator<T> declaration and pay attention to the way the
generic parameter is decorated with the out keyword.

The out keyword in the generic parameter list is how you denote that a generic interface is covariant
in T. In other words, it’s how you tell the compiler that if R is implicitly convertible to S, IMyEnumerator<R>
is implicitly convertible to IMyEnumerator<S>. Why is the keyword named out? Because it just so happens
that generic interfaces that are covariant in T typically have T in an output position of the methods
within. Now you can see why I had to split the original IMyCollection interface into two interfaces
because the IMyCollection.AddItem method does not have T in the output position.

■ Note The keywords in and out were likely chosen by the compiler team because, as shown previously,

covariant interfaces have the variant type in the output position and vice versa for contravariance. However, I will

show in a later section that this oversimplified view becomes rather confusing when higher-order functions (or

functionals) via delegates are involved.

The venerable IEnumerable<T> and IEnumerator<T> types are denoted as covariant with the out
keyword starting with the release of C# 4.0. This is a tremendous help, especially when using LINQ.

Contravariance
As you might expect, contravariance is the opposite of covariance. That is, for generic interface
assignment, an interface of type IOperation<T> is contravariance-convertible to IOperation<R> if there
exists an implicit reference conversion from R to T and IOperation<T> to IOperation<R>. Simply put, if T
and R are on opposite sides of the conversion operation for both conversions, the conversion operation
is contravariant. For example, let the following arrow represent the operation. And because T and R
appear on opposite sides of the operation in both cases, the operation is contravariant in nature.

R T

CHAPTER 11 ■ GENERICS

338

IOperation<T> IOperation<R>

Contravariant generic parameters in generic interfaces and delegates are notated using the new in
generic parameter decoration. To illustrate, let’s revisit the contrived MyCollection<T> class in the
previous section and imagine that we want the ability to remove items from the collection (the areas of
interest are in bold):

using System;
using System.Collections.Generic;

class A { }
class B : A { }

interface IMyCollection<T>
{
 void AddItem(T item);
}

interface IMyTrimmableCollection<in T>
{
 void RemoveItem(T item);
}

class MyCollection<T> : IMyCollection<T>,
 IMyTrimmableCollection<T>
{
 public void AddItem(T item) {
 collection.Add(item);
 }

 public void RemoveItem(T item) {
 collection.Remove(item);
 }

 private List<T> collection = new List<T>();
}

static class EntryPoint
{
 static void Main() {
 var items = new MyCollection<A>();
 items.AddItem(new A());

 B b = new B();
 items.AddItem(b);

 IMyTrimmableCollection<A> collItems = items;

 // Contravariance in action!
 IMyTrimmableCollection trimColl = collItems;
 trimColl.RemoveItem(b);
 }

CHAPTER 11 ■ GENERICS

339

}

I have trimmed some of the code from the covariance example in order to focus squarely on the
contravariance case. Notice the use of the in keyword in the declaration for the
IMyTrimmableCollection<T> interface. This tells the compiler that with respect to the desired operation
in this example (trimming in this case), there exists an implicit contravariance-conversion from
IMyTrimmableCollection<A> to IMyTrimmableCollection because there is an implicit conversion from
B to A. At first glance, the conversion and the assignment of collItems into the trimColl might feel
foreign. But if for MyCollection<A> I can invoke RemoveItem passing an A instance, I should be able to
invoke RemoveItem passing a B instance because B is an A based on the inheritance rules.

Up to this point, I have shown examples of both covariance and contravariance using modifications
to the same contrived collection class. You have seen how enumeration on the collection is covariant
and how removal from the collection is contravariant. What about addition to the collection? Which
flavor of variance is it? We already have the IMyCollection<T> interface, which is repeated here for
convenience:

interface IMyCollection<T>
{
 void AddItem(T item);
}

If you have an IMyCollection<A> reference, you should be able to add instances of B if B derives from
A. So calling AddItem on IMyCollection<A> passing a B instance should be equivalent to calling
IMyCollection passing a B instance. Therefore, the operation of adding an instance to the collection is
contravariant based on the definition. That is, if B is convertible to A and IMyCollection is convertible
to IMyCollection<A>, the operation is contravariant.

Now that you have discovered that the operation of adding an item to the collection is
contravariant, you should decorate our interface accordingly:

interface IMyCollection<in T>
{
 void AddItem(T item);
}

Invariance
A generic interface or delegate type in which the generic parameters are not decorated at all is invariant.
Naturally, all such interfaces and delegates were invariant prior to C# 4.0 because the in and out
decorations to generic parameters did not exist before then. Remember from an earlier section, the
contrived IMyCollection<T> interface looked like the following:

interface IMyCollection<T>
{
 void AddItem(T item);
 T GetItem(int index);
}

If we must keep these two methods in the same interface, we have no choice but to leave the
interface as invariant. If the compiler were to allow us to decorate the generic parameter T with the out
keyword, then we would be in the same broken boat that the array covariance is in. That is, we would be
allowed to compile code that would appear to allow us to add instances of incompatible types to a

CHAPTER 11 ■ GENERICS

340

collection. Why is that? Well, let’s imagine for a moment that we could mark the preceding interface as
covariant:

// This won't work!
interface IMyCollection<out T>
{
 void AddItem(T item);
 T GetItem(int index);
}

Then, based on the definition of covariance, a variable of type IMyCollection<string> would be
assignable to a variable of type IMyCollection<object>. And then, through the latter variable, we would
be able to do something like the following:

// Nothing but pure evil!
MyCollection<string> strings = …;
IMyCollection<object> objects = strings;
objects.AddItem(new MonkeyWrench());

Therefore, much of the pain associated with array invariance in C# is avoided by using generics
coupled with the variance syntax added to the language in C# 4.0. In other words, the variance rules for
generics are type safe whereas the variance rules for plain old arrays are not.

Variance and Delegates
In general, generic delegates follow the same rules as generic interfaces when applying variance
decorations to generic parameters. The .NET Base Class Library (BCL) contains handy generic delegate
types such as Action<> and Func<>, which are applicable in many instances saving you from having to
define your own custom delegate types. The Action<> delegates can be used to hold methods that accept
up to 16 parameters and have no return value, and the Func<> delegates can be used to hold methods
that accept up to 16 parameters and do return a value.

■ Note Prior to the .NET 4.0 BCL, the Action<> and Func<> delegates only accepted up to four parameters.

Currently, they support up to 16.

Starting with .NET 4.0, these generic delegates have also been marked appropriately for variance.
Thus, the two parameter versions of these will look like the following:

public delegate void Action< in T1, in T2 >(T1 arg1, T2 arg2);
public delegate TResult Func< in T1, in T2, out TResult>(T1 arg1, T2 arg2);

Now for an example of delegate variance, let’s consider a type hierarchy:

class Animal
{
}

CHAPTER 11 ■ GENERICS

341

class Dog : Animal
{
}

Suppose that you had a couple of methods like the following defined in some class:

static void SomeFuntion(Animal animal);
static void AnotherFunction(Dog dog);

Then because the function signature matches the delegate signature, it makes sense that you could
assign SomeFunction to an instance of Action<Animal> like the following:

Action<Animal> action1 = SomeFunction;

When one invokes action1, one can pass a Dog or an Animal because Dog is implicitly convertible to
Animal. Let’s suppose that you later create an Action<Dog> instance such as the following:

Action<Dog> action2 = AnotherFunction;

When one invokes action2, one can pass a Dog instance. But also notice that because one can also
pass a Dog instance to SomeFunction, it would have been possible to create action2 as shown here:

Action<Dog> action2 = SomeFunction;

This type of variance-assignment (contravariance in this case) from method group to delegate
instance has been supported in C# for quite some time. So, if the preceding is possible, it makes sense to
be able to do the following, which one can do starting in C# 4.0:

Action<Dog> action2 = action1;

Now, let’s see a short example of contravariance-assignment with Action<T> at work using the same
object hierarchy shown in the previous example:

using System;

class Animal
{
 public virtual void ShowAffection() {
 Console.WriteLine("Response unknown");
 }
}

class Dog : Animal
{
 public override void ShowAffection() {
 Console.WriteLine("Wag Tail...");
 }
}

static class EntryPoint
{
 static void Main() {
 Action<Animal> petAnimal = (Animal a) => {
 Console.Write("Petting animal and response is: ");
 a.ShowAffection();

CHAPTER 11 ■ GENERICS

342

 };

 // Contravariance rule in action!
 //
 // Since Dog -> Animal and
 // Action<Animal> -> Action<Dog>
 // then the following assignment is contravariant
 Action<Dog> petDog = petAnimal;

 petDog(new Dog());
 }
}

In the Main method, I have created an instance of Action<Animal> that holds a reference to a
function that accepts an Animal instance and calls the ShowAffection method on the instance.

■ Note I use the lambda syntax to assign a function to the Action<Animal> instance for brevity. If you are

unfamiliar with this syntax and you are itching to learn more, you can jump to Chapter 15 soon to read all about it.

The next line of code in Main is where the fun begins. This is where I assign the instance of
Action<Animal> into a reference to Action<Dog>. And because Dog is implicitly convertible to Animal, yet
Action<Animal> is implicitly convertible to Action<Dog>, the assignment is contravariant. If at this point
you are struggling to get your head wrapped around how Action<Animal> is implicitly convertible to
Action<Dog> when Animal is not implicitly convertible to Dog, try to keep in mind that the action is the
focal point. If an action can operate on Animal instances, it can certainly operate on Dog instances.

But now let’s kick it up a notch! In functional programming disciplines, it is common to pass actual
functions as parameters to other functions. This has always been easy in C# using delegates (and in
Chapter 15, you’ll see that it’s even easier using lambda expressions). Functions that accept functions as
parameters are often called higher-level functions or functionals. So what sort of variance is involved
when assigning compatible instances of higher-order functions to each other? Let’s investigate by
introducing a new delegate definition that looks like the following:

delegate void Task<T>(Action<T> action);

Here we have defined a delegate, Task<T>, which will reference a function that accepts another
delegate of type Action<T>.

■ Note Please don’t confuse the Task type in this example with the Task type in the Task Parallel Library (TPL).

If we were to mark this delegate as variant, would we notate the type parameter with in or out? Let’s
investigate by looking at the following example:

static class EntryPoint
{

CHAPTER 11 ■ GENERICS

343

 static void Main() {
 Action<Animal> petAnimal = (Animal a) => {
 Console.Write("Petting animal and response is: ");
 a.ShowAffection();
 };

 // Contravariance rule in action!
 //
 // Since Dog -> Animal and
 // Action<Animal> -> Action<Dog>
 // then the following assignment is contravariant
 Action<Dog> petDog = petAnimal;

 petDog(new Dog());

 Task<Dog> doStuffToADog = BuildTask<Dog>();
 doStuffToADog(petDog);

 // But a task that accepts an action to a dog can also
 // accept an action to an animal
 doStuffToADog(petAnimal);

 // Therefore, it is logical for Task<Dog> to be implicitly
 // convertible to Task<Animal>
 //
 // Covariance in action!
 //
 // Since Dog -> Animal and
 // Task<Dog> -> Task<Animal>
 // then the following assignment is covariant
 Task<Animal> doStuffToAnAnimal = doStuffToADog;
 doStuffToAnAnimal(petAnimal);
 doStuffToADog(petAnimal);
 }

 static Task<T> BuildTask<T>() where T : new() {
 return (Action<T> action) => action(new T());
 }
}

First, notice that I created a BuildTask<T> generic helper method to make my code a little more
readable. In Main, I create an instance of Task<Dog> and assign it to the doStuffToADog variable.
doStuffToADog holds a reference to a delegate that accepts an Action<Dog> instance as a parameter. I
then invoke doStuffToADog passing petDog, which is an instance of Action<Dog>. But in the previous
example we discovered that Action<Animal> is implicitly convertible to Action<Dog>, so that’s how I can
get away with passing petAnimal in the second invocation of doStuffToADog.

Now let’s follow the same thought pattern as the previous example, in which you discovered that
Action<Animal> is contravariance-assignable to an Action<Dog>. In Main, I create an instance of
Task<Animal> and assign it to the doStuffToAnAnimal variable. When I invoke doStuffToAnAnimal, I can
certainly pass an instance of Action<Animal>. But because Action<Animal> can also be passed to
Task<Dog> at invocation time, it implies that an instance of Task<Dog> can be assigned to an instance of

CHAPTER 11 ■ GENERICS

344

Task<Animal>. Indeed, that is what I am demonstrating in this example. But is it contravariance or
covariance?

At first glance, because T is used on the right side in the declaration of the Task<T> delegate, one
might be inclined to say that we must decorate the type parameter T with the in keyword. However, let’s
analyze the situation. Because Dog is implicitly convertible to Animal, and Task<Dog> is implicitly
convertible to Task<Animal>, the assignment is covariant because the direction of conversion with
respect to T is the same direction in both operations. Therefore, the type parameter must be decorated
with the out keyword, thus making the declaration for Task<T> look like the following:

delegate void Task<out T>(Action<T> action);

The point to understand here is that you cannot choose the in or out keyword based solely on which
side of the delegate declaration the generic parameter is used. You must analyze the conversion to
determine whether it is covariant or contravariant, and then make your choice accordingly. Of course, if
you choose the wrong one, the compiler will certainly let you know about it.

Generic System Collections
It seems that the most natural use of generics within C# and the CLR is for collection types. Maybe that’s
because you can gain a huge amount of efficiency when using generic containers to hold value types
when compared with the collection types within the System.Collections namespace. Of course, you
cannot overlook the added type safety that comes with using the generic collections. Any time you get
added type safety, you’re guaranteed to reduce runtime type conversion exceptions because the
compiler can catch many of them at compile time.

I encourage you to look at the .NET Framework documentation for the System.Collections.Generic
namespace. There you will find all the generic collection classes made available by the Framework.
Included in the namespace are Dictionary<TKey, TValue>, LinkedList<T>, List<T>, Queue<T>,
SortedDictionary<TKey, TValue>, SortedList<T>, HashSet<T>, and Stack<T>.

Based on their names, the uses of these types should feel familiar compared to the nongeneric
classes under System.Collections. Although the containers within the System.Collections.Generic
namespace might not seem complete for your needs, you have the possibility to create your own
collections, especially given the extendable types in System.Collections.ObjectModel.

When creating your own collection types, you’ll often find the need to be able to compare the
contained objects. When coding in C#, it feels natural to use the built-in equality and inequality
operators to perform the comparison. However, I suggest that you stay away from them because the
support of operators by classes and structs—although possible—is not part of the CLS. Some languages
have been slow to pick up support for operators. Therefore, your container must be prepared for the
case when it contains types that don’t support operators for comparison. This is one of the reasons why
interfaces such as IComparer and IComparable exist.

When you create an instance of the SortedList type within System.Collections, you have the
opportunity to provide an instance of an object that supports IComparer. The SortedList then utilizes
that object when it needs to compare two key instances that it contains. If you don’t provide an object
that supports IComparer, the SortedList looks for an IComparable interface on the contained key objects
to do the comparison. Naturally, you’ll need to provide an explicit comparer if the contained key objects
don’t support IComparable. The overloaded versions of the constructor that accept an IComparer type
exist specifically for that case.

The generic version of the sorted list, SortedList<TKey, TValue>, follows the same sort of pattern.
When you create a SortedList<TKey, TValue>, you have the option of providing an object that
implements the IComparer<T> interface so it can compare two keys. If you don’t provide one, the
SortedList<TKey, TValue> defaults to using what’s called the generic comparer. The generic comparer is
simply an object that derives from the abstract Comparer<T> class and can be obtained through the static
property Comparer<T>.Default. Based upon the nongeneric SortedList, you might think that if the

CHAPTER 11 ■ GENERICS

345

creator of SortedList<TKey, TValue> did not provide a comparer, it would just look for IComparable<T>
on the contained key type. This approach would cause problems because the contained key type could
either support IComparable<T> or the nongeneric IComparable. Therefore, the default comparer acts as an
extra level of indirection. The default comparer checks to see whether the type provided in the type
parameter implements IComparable<T>. If it does not, looks to see whether it supports IComparable, thus
using the first one that it finds. Using this extra level of indirection provides greater flexibility with regard
to the contained types. Let’s look at an example to illustrate what I’ve just described:

using System;
using System.Collections.Generic;

public class EntryPoint
{
 static void Main() {
 SortedList<int, string> list1 =
 new SortedList<int, string>();

 SortedList<int, string> list2 =
 new SortedList<int, string>(Comparer<int>.Default);

 list1.Add(1, "one");
 list1.Add(2, "two");
 list2.Add(3, "three");
 list2.Add(4, "four");
 }
}

I declared two instances of SortedList<TKey, TValue>. In the first instance, I used the parameterless
constructor; in the second instance, I explicitly provided a comparer for integers. In both cases, the
result is the same because I provided the default generic comparer in the list2 constructor. I did this
mainly so you could see the syntax used to pass in the default generic comparer. You could have just as
easily provided any other type in the type parameter list for Comparer as long as it supports either
IComparable or IComparable<T>.

Generic System Interfaces
Given the fact that the runtime library provides generic versions of container types, it should be no
surprise that it also provides generic versions of commonly used interfaces. This is a great thing for those
trying to achieve maximum type safety. For example, your classes and structs can implement
IComparable<T> and/or IComparable as well as IEquatable<T>. Naturally, IComparable<T> is a more type-
safe version of IComparable and should be preferred whenever possible.

■ Note IEquatable<T> was added in .NET 2.0 and provides a type-safe interface through which you can perform

equality comparisons on value types or reference types.

The System.Collections.Generic namespace also defines a whole host of interfaces that are generic
versions of the ones in System.Collections. These include ICollection<T>, IDictionary<TKey, TValue>,

CHAPTER 11 ■ GENERICS

346

and IList<T>. Two of these interfaces deserve special mention: IEnumerator<T> and IEnumerable<T>.2
The development team at Microsoft decided it would be a good idea for IEnumerator<T> to derive from
IEnumerator and for IEnumerable<T> to derive from IEnumerable. This decision has proven to be a
controversial one. Anders Hejlsberg, the father of the C# language, indicates that IEnumerable<T> inherits
from IEnumerable because it can.

His argument goes something like this: you can imagine that it would be nice if the container that
implements IList<T> also implemented IList. If IList<T> inherits from IList, it would be forced upon
the author of the container to implement two versions of the Add method: Add<T> and Add. If the end user
can call the nongeneric Add, the whole benefit of added type safety through IList<T> would be lost
because the very existence of Add opens up the container implementation for runtime cast exceptions.
So deriving IList<T> from IList is a bad idea. IEnumerable<T> and IEnumerator<T>, on the other hand,
differ from the other generic interfaces in that the type T is used only in return value positions.
Therefore, no type safety is lost when implementing both.

■ Note This is also another example of covariance.

That is the basis of the justification for saying that IEnumerable<T> can derive from IEnumerable and
that IEnumerator<T> can derive from IEnumerator because they can. One of the developers at Microsoft
working on the Framework library indicated that IEnumerable<T> and IEnumerator<T> are implemented
this way in order to work around the lack of covariance with regard to generics. Yes, it’s dizzying indeed.
However, that point is moot because C# 4.0 introduced syntax that allows one to implement covariant
generic interfaces.

Coding a type that implements IEnumerable<T> requires a bit of a trick in that you must implement
the IEnumerable method using explicit interface implementation. Moreover, in order to keep the
compiler from becoming confused, you might have to fully qualify IEnumerable with its namespace, as in
the following example:

using System;
using System.Collections.Generic;

public class MyContainer<T> : IEnumerable<T>
{
 public void Add(T item) {
 impl.Add(item);
 }

 public void Add<R>(MyContainer<R> otherContainer,
 Converter<R, T> converter) {
 foreach(R item in otherContainer) {
 impl.Add(converter(item));
 }
 }

2 Chapter 9 covers the facilities provided by IEnumerator<T> and IEnumerable<T> and how you can implement them
easily by using C# iterators.

CHAPTER 11 ■ GENERICS

347

 public IEnumerator<T> GetEnumerator() {
 foreach(T item in impl) {
 yield return item;
 }
 }

 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }

 private List<T> impl = new List<T>();
}

Select Problems and Solutions
In this section, I want to illustrate some examples of creating generic types that show some useful
techniques when creating generic code. I assure you that the pathway to learning how to use generics
effectively will contain many surprises from time to time because you must sometimes develop an
unnatural or convoluted way of doing something that conceptually is very natural.

■ Note Many of you will undoubtedly get that unnatural feeling if you’re transitioning from the notion of C++

templates to generics, as you discover the constraints that the dynamic nature of generics places upon you.

Conversion and Operators within Generic Types
Converting from one type to another or applying operators to parameterized types within generics can
prove to be tricky. To illustrate, let’s develop a generic Complex struct that represents a complex number.
Suppose that you want to be able to designate what value type is used internally to represent the real and
imaginary portions of a complex number. This example is a tad contrived because you would normally
represent the components of an imaginary number using something such as System.Double. However,
for the sake of example, let’s imagine that you might want to be able to represent the components using
System.Int64. (Throughout this discussion, in order to reduce clutter and focus on the issues regarding
generics, I’m going to ignore all the canonical constructs that the generic Complex struct should
implement.)

You could start out by defining the Complex number as follows:

using System;

public struct Complex<T>
 where T: struct
{
 public Complex(T real, T imaginary) {
 this.real = real;
 this.imaginary = imaginary;

CHAPTER 11 ■ GENERICS

348

 }

 public T Real {
 get { return real; }
 set { real = value; }
 }

 public T Img {
 get { return imaginary; }
 set { imaginary = value; }
 }

 private T real;
 private T imaginary;
}

public class EntryPoint
{
 static void Main() {
 Complex<Int64> c =
 new Complex<Int64>(4, 5);
 }
}

This is a good start, but now let’s make this value type a little more useful. You could benefit from
having a Magnitude property that returns the square root of the two components multiplied together.
Let’s attempt to create such a property:

using System;

public struct Complex<T>
 where T: struct
{
 public Complex(T real, T imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 public T Real {
 get { return real; }
 set { real = value; }
 }

 public T Img {
 get { return imaginary; }
 set { imaginary = value; }
 }

 public T Magnitude {
 get {
 // WON'T COMPILE!!!
 return Math.Sqrt(real * real +
 imaginary * imaginary);

CHAPTER 11 ■ GENERICS

349

 }
 }

 private T real;
 private T imaginary;
}

public class EntryPoint
{
 static void Main() {
 Complex<Int64> c =
 new Complex<Int64>(3, 4);

 Console.WriteLine("Magnitude is {0}",
 c.Magnitude);
 }
}

If you attempt to compile this code, you might be surprised to get the following compiler error:

error CS0019: Operator '*' cannot be applied to operands of type 'T' and 'T'

This is a perfect example of the problem with using operators in generic code. The compilation
problem stems from the fact that you must compile generic code in a generic way because constructed
types formed at runtime can be formed from a value type that might not support the operator. In this
case, it’s impossible for the compiler to know whether the type given for T in a constructed type at some
point in the future even supports the multiplication operator. What are you to do? A common technique
is to externalize the operation from the Complex<T> definition and then require the user of Complex<T> to
provide the operation. A delegate is the perfect tool for doing this. Let’s look at an example of Complex<T>
that does that:

using System;

public struct Complex<T>
 where T: struct, IConvertible
{
 // Delegate for doing multiplication.
 public delegate T BinaryOp(T val1, T val2);

 public Complex(T real, T imaginary,
 BinaryOp mult,
 BinaryOp add,
 Converter<double, T> convToT) {
 this.real = real;
 this.imaginary = imaginary;
 this.mult = mult;
 this.add = add;
 this.convToT = convToT;
 }

 public T Real {

CHAPTER 11 ■ GENERICS

350

 get { return real; }
 set { real = value; }
 }

 public T Img {
 get { return imaginary; }
 set { imaginary = value; }
 }

 public T Magnitude {
 get {
 double magnitude =
 Math.Sqrt(Convert.ToDouble(add(mult(real, real),
 mult(imaginary, imaginary))));
 return convToT(magnitude);
 }
 }

 private T real;
 private T imaginary;
 private BinaryOp mult;
 private BinaryOp add;
 private Converter<double, T> convToT;
}

public class EntryPoint
{
 static void Main() {
 Complex<Int64> c =
 new Complex<Int64>(
 3, 4,
 EntryPoint.MultiplyInt64,
 EntryPoint.AddInt64,
 EntryPoint.DoubleToInt64);

 Console.WriteLine("Magnitude is {0}",
 c.Magnitude);
 }

 static Int64 MultiplyInt64(Int64 val1, Int64 val2) {
 return val1 * val2;
 }

 static Int64 AddInt64(Int64 val1, Int64 val2) {
 return val1 + val2;
 }

 static Int64 DoubleToInt64(double d) {
 return Convert.ToInt64(d);
 }
}

CHAPTER 11 ■ GENERICS

351

You’re probably looking at this code and wondering what went wrong and why the complexity
seems so much higher when all you’re trying to do is find the contrived definition of the magnitude of a
complex number. As mentioned previously, you had to provide a delegate to handle the multiplication
external to the generic type. Thus, I’ve defined the Complex<T>.Multiply delegate. At construction time,
the Complex<T> constructor must be passed a third parameter that references a method for the
multiplication delegate to refer to. In this case, EntryPoint.MultiplyInt64 handles multiplication. So,
when the Magnitude property needs to multiply the components, it must use the delegate rather than the
multiplication operator. Naturally, when the delegate is called, it boils down to a call to the
multiplication operator. However, the application of the operator is now effectively external to the
generic type Complex<T>. And as you can see, I applied the same technique for the add operation.

No doubt you have noticed the extra complexities in the property accessor. First, Math.Sqrt accepts
a type of System.Double. This explains the call to the Convert.ToDouble method. And to make sure things
go smoothly, I added a constraint to T so that the type supplied supports IConvertible. But you’re not
done yet. Math.Sqrt returns a System.Double, and you have to convert that value type back into type T. In
order to do so, you cannot rely on the System.Convert class because you don’t know what type you’re
converting to at compile time. Yet again, you have to externalize an operation, which in this case is a
conversion. This is precisely one reason why the Framework defines the Converter<TInput, TOuput>
delegate. In this case, Complex<T> needs a Converter<double, T> conversion delegate. At construction
time, you must pass a method for this delegate to call through to, which in this case is
EntryPoint.DoubleToInt64. Now, after all this, the Complex<T>.Magnitude property works as expected, but
not without an extra amount of work.

■ Note The complexity of using Complex<T>, as shown in the previous example, is greatly reduced by using

lambda expressions, which are covered fully in Chapter 15. By using lambda expressions, you can completely

bypass the need to define the operation methods such as MultiplyInt64, AddInt64, and DoubeToInt64, as

shown in the example.

Let’s say you want instances of Complex<T> to be able to be used as key values in a SortedList<TKey,
TValue> generic type. In order for that to work, Complex<T> needs to implement IComparable<T>. Let’s see
what you need to do to make that a reality:

using System;

public struct Complex<T> : IComparable<Complex<T> >
 where T: struct, IConvertible, IComparable
{
 // Delegate for doing multiplication.
 public delegate T BinaryOp(T val1, T val2);

 public Complex(T real, T imaginary,
 BinaryOp mult,
 BinaryOp add,
 Converter<double, T> convToT) {
 this.real = real;
 this.imaginary = imaginary;
 this.mult = mult;
 this.add = add;

CHAPTER 11 ■ GENERICS

352

 this.convToT = convToT;
 }

 public T Real {
 get { return real; }
 set { real = value; }
 }

 public T Img {
 get { return imaginary; }
 set { imaginary = value; }
 }

 public T Magnitude {
 get {
 double magnitude =
 Math.Sqrt(Convert.ToDouble(add(mult(real, real),
 mult(imaginary, imaginary))));
 return convToT(magnitude);
 }
 }

 public int CompareTo(Complex<T> other) {
 return Magnitude.CompareTo(other.Magnitude);
 }

 private T real;
 private T imaginary;
 private BinaryOp mult;
 private BinaryOp add;
 private Converter<double, T> convToT;
}

public class EntryPoint
{
 static void Main() {
 Complex<Int64> c =
 new Complex<Int64>(
 3, 4,
 EntryPoint.MultiplyInt64,
 EntryPoint.AddInt64,
 EntryPoint.DoubleToInt64);

 Console.WriteLine("Magnitude is {0}",
 c.Magnitude);
 }

 static Int64 MultiplyInt64(Int64 val1, Int64 val2) {
 return val1 * val2;
 }

 static Int64 AddInt64(Int64 val1, Int64 val2) {
 return val1 + val2;

CHAPTER 11 ■ GENERICS

353

 }

 static Int64 DoubleToInt64(double d) {
 return Convert.ToInt64(d);
 }
}

My implementation of the IComparable<Complex<T>> interface considers two Complex<T> types to be
equivalent if they have the same magnitude. Therefore, most of the work required to do the comparison
is done already. However, instead of being able to rely upon the inequality operator of the C# language,
again you need to use a mechanism that doesn’t rely upon operators. In this case, I used the CompareTo
method. Of course, this requires me to force another constraint on type T: it must support the
nongeneric IComparable interface because the type provided for T might not even be generic at all, thus it
might support only IComparable rather than IComparable<T>.

One thing worth noting is that the previous constraint on the nongeneric IComparable interface
makes it a little bit difficult for Complex<T> to contain generic structs because generic structs might
implement IComparable<T> instead. In fact, given the current definition, it is impossible to define a type
of Complex<Complex<int>>. It would be nice if Complex<T> could be constructed from types that might
implement either IComparable<T> or IComparable, or even both. Let’s see how you can do this:

using System;
using System.Collections.Generic;

public struct Complex<T> : IComparable<Complex<T> >
 where T: struct
{
 // Delegate for doing multiplication.
 public delegate T BinaryOp(T val1, T val2);

 public Complex(T real, T imaginary,
 BinaryOp mult,
 BinaryOp add,
 Converter<double, T> convToT) {
 this.real = real;
 this.imaginary = imaginary;
 this.mult = mult;
 this.add = add;
 this.convToT = convToT;
 }

 public T Real {
 get { return real; }
 set { real = value; }
 }

 public T Img {
 get { return imaginary; }
 set { imaginary = value; }
 }

 public T Magnitude {
 get {
 double magnitude =

CHAPTER 11 ■ GENERICS

354

 Math.Sqrt(Convert.ToDouble(add(mult(real, real),
 mult(imaginary, imaginary))));
 return convToT(magnitude);
 }
 }

 public int CompareTo(Complex<T> other) {
 return Comparer<T>.Default.Compare(this.Magnitude, other.Magnitude);
 }

 private T real;
 private T imaginary;
 private BinaryOp mult;
 private BinaryOp add;
 private Converter<double, T> convToT;
}

public class EntryPoint
{
 static void Main() {
 Complex<Int64> c =
 new Complex<Int64>(
 3, 4,
 EntryPoint.MultiplyInt64,
 EntryPoint.AddInt64,
 EntryPoint.DoubleToInt64);

 Console.WriteLine("Magnitude is {0}",
 c.Magnitude);
 }

 static void DummyMethod(Complex<Complex<int> > c) {
 }

 static Int64 AddInt64(Int64 val1, Int64 val2) {
 return val1 + val2;
 }

 static Int64 MultiplyInt64(Int64 val1, Int64 val2) {
 return val1 * val2;
 }

 static Int64 DoubleToInt64(double d) {
 return Convert.ToInt64(d);
 }
}

In this example, I had to remove the constraint on T requiring implementation of the IComparable
interface. Instead, the CompareTo method relies upon the default generic comparer defined in the
System.Collections.Generic namespace.

CHAPTER 11 ■ GENERICS

355

■ Note The generic comparer class Comparer<T> introduces one more level of indirection in the form of a class

with regard to comparing two instances. In effect, it externalizes the comparability of the instances. If you need a

custom implementation of IComparer, you should derive from Comparer<T>.

Additionally, I had to remove the IConvertible constraint on T to get DummyMethod to compile. That’s
because Complex<T> doesn’t implement IConvertible, and when T is replaced with Complex<T> (thus
forming Complex<Complex<T>>), the result is that T doesn’t implement IConvertible.

■ Note When creating generic types, try not to be too restrictive by forcing too many constraints on the contained

types. For example, don’t force all the contained types to implement IConvertible. Many times, you can

externalize such constraints by using a helper object coupled with a delegate.

Think about the removal of this constraint for a moment. In the Magnitude property, you rely on the
Convert.ToDouble method. However, because you removed the constraint, the possibility of getting a
runtime exception exists—for example, when the type represented by T doesn’t implement
IConvertible. Because generics are meant to provide better type safety and help you avoid runtime
exceptions, there must be a better way. In fact, there is and you can do better by giving Complex<T> yet
another converter in the form of a Convert<T, double> delegate in the constructor, as follows:

using System;
using System.Collections.Generic;

public struct Complex<T> : IComparable<Complex<T> >
 where T: struct
{
 // Delegate for doing multiplication.
 public delegate T BinaryOp(T val1, T val2);

 public Complex(T real, T imaginary,
 BinaryOp mult,
 BinaryOp add,
 Converter<T, double> convToDouble,
 Converter<double, T> convToT) {
 this.real = real;
 this.imaginary = imaginary;
 this.mult = mult;
 this.add = add;
 this.convToDouble = convToDouble;
 this.convToT = convToT;
 }

 public T Real {
 get { return real; }

CHAPTER 11 ■ GENERICS

356

 set { real = value; }
 }

 public T Img {
 get { return imaginary; }
 set { imaginary = value; }
 }

 public T Magnitude {
 get {
 double magnitude =
 Math.Sqrt(convToDouble(add(mult(real, real),
 mult(imaginary, imaginary))));
 return convToT(magnitude);
 }
 }

 public int CompareTo(Complex<T> other) {
 return Comparer<T>.Default.Compare(this.Magnitude, other.Magnitude);
 }

 private T real;
 private T imaginary;
 private BinaryOp mult;
 private BinaryOp add;
 private Converter<T, double> convToDouble;
 private Converter<double, T> convToT;
}

public class EntryPoint
{
 static void Main() {
 Complex<Int64> c =
 new Complex<Int64>(
 3, 4,
 EntryPoint.MultiplyInt64,
 EntryPoint.AddInt64,
 EntryPoint.Int64ToDouble,
 EntryPoint.DoubleToInt64);

 Console.WriteLine("Magnitude is {0}",
 c.Magnitude);
 }

 static void DummyMethod(Complex<Complex<int> > c) {
 }

 static Int64 MultiplyInt64(Int64 val1, Int64 val2) {
 return val1 * val2;
 }

 static Int64 AddInt64(Int64 val1, Int64 val2) {
 return val1 + val2;

CHAPTER 11 ■ GENERICS

357

 }

 static Int64 DoubleToInt64(double d) {
 return Convert.ToInt64(d);
 }

 static double Int64ToDouble(Int64 i) {
 return Convert.ToDouble(i);
 }
}

Now, the Complex<T> type can contain any kind of struct, whether it’s generic or not. However, you
must provide it with the necessary means to be able to convert to and from double as well as to multiply
and add constituent types. This Complex<T> struct is by no means meant to be a reference for complex
number representation at all. Rather, it is a somewhat contrived example meant to illustrate many of the
concerns you must deal with in order to create effective generic types.

You’ll see some of these techniques in practice as you deal with the generic containers that exist in
the BCL.

Creating Constructed Types Dynamically
Given the dynamic nature of the CLR and the fact that you can actually generate classes and code at
runtime, it is only natural to consider the possibility of constructing closed types from generics at
runtime. Until now, all the examples in this book have dealt with creating closed types at compile time.

This functionality stems from a natural extension of the metadata specification to accommodate
generics. System.Type is the cornerstone of functionality whenever you need to work with types
dynamically within the CLR, so it has been extended to deal with generics as well. Some of the generic-
centric methods on System.Type are self-explanatory by name and include GetGenericArguments,
GetGenericParameterConstraints, and GetGenericTypeDefinition. These methods are helpful when you
already have a System.Type instance representing a closed type. However, the method that makes things
interesting is MakeGenericType, which allows you to pass an array of System.Type objects that represent
the types that are to be used in the argument list for the resultant constructed type.

Those coming from a C++ template background have probably become frustrated from time to time
with generics because they lack the static compile-time capabilities of templates. However, I think you’ll
agree that the dynamic capabilities of generics make up for that in the end. Imagine how handy it is to be
able to create closed types from generics at runtime. For example, creating a parsing engine for some
sort of XML-based language that defines new types from generics is a snap. Let’s take a look at an
example of how to use the MakeGenericType method:

using System;
using System.Collections.Generic;

public class EntryPoint
{
 static void Main() {
 IList<int> intList =
 (IList<int>) CreateClosedType<int>(typeof(List<>));

 IList<double> doubleList =
 (IList<double>)
 CreateClosedType<double>(typeof(List<>));

CHAPTER 11 ■ GENERICS

358

 Console.WriteLine(intList);
 Console.WriteLine(doubleList);
 }

 static object CreateClosedType<T>(Type genericType) {
 Type[] typeArguments = {
 typeof(T)
 };

 Type closedType =
 genericType.MakeGenericType(typeArguments);

 return Activator.CreateInstance(closedType);
 }
}

The meat of this code is inside the generic method CreateClosedType<T>. All the work is done in
general terms via references to Type created from the available metadata. First, you need to get a
reference to the generic open type List<>, which is passed in as a parameter. After that, you simply
create an array of Type instances to pass to MakeGenericType to obtain a reference to the closed type.
Once that stage is complete, the only thing left to do is to call CreateInstance on the System.Activator
class. System.Activator is the facility that you must use to create instances of types that are known only
at runtime. In this case, I’m calling the default constructor for the closed type. However, Activator has
overloads of CreateInstance that allow you to call constructors that require parameters.

■ Note I used the C# typeof operator rather than the Type.GetType method to obtain the Type instance for the

types. If the type is known at compile time, the typeof operator performs the metadata lookup then rather than at

runtime—therefore, it is more efficient.

When you run the previous example, you’ll see that the closed types are streamed to the console
showing their fully qualified type names, thus proving that the closed types were created properly after
all.

The ability to create closed types at runtime is yet another powerful tool in your toolbox for creating
highly dynamic systems. Not only can you declare generic types within your code so that you can write
flexible code, but you can also create closed types from those generic definitions at runtime. Take a
moment to consider the extent of problems you could solve with these techniques, and it’s easy to see
that generics are extremely potent.

Summary
This chapter has discussed how to declare and use generics using C#, including generic classes, structs,
interfaces, methods, and delegates. I discussed generic constraints, which are necessary for the compiler
to create code where certain functional assumptions are placed upon the type arguments provided for
the generic type arguments at runtime. Collection types enjoy a real and measurable gain in efficiency
and safety with generics.

CHAPTER 11 ■ GENERICS

359

Not only do generics allow you to generate more efficient code when using value types with
containers but they also give the compiler much more power when enforcing type safety. As a rule, you
should always prefer compile-time type safety over runtime type safety. You can fix a compile-time
failure before software is deployed, but a runtime failure usually results in an InvalidCastException
thrown in a production environment. Such a runtime failure could cost the end user huge sums of
money, depending on the situation, and it could cause large amounts of embarrassment for you as the
developer. Therefore, always provide the compiler with as much power as possible to enforce type
safety, so it can do what it’s meant to do best—and that’s to be your friend.

The next chapter tackles the topic of threading in C# and the .NET runtime. Along with threading
comes the ever-so-important topic of synchronization.

CHAPTER 11 ■ GENERICS

360

C H A P T E R 12

■ ■ ■

361

Threading in C#

The mere mention of multithreading can strike fear in the hearts of some programmers. For others, it
fires them up for a good challenge. No matter how you react to the subject, multithreading is an area
riddled with minefields. Unless you show due diligence, a threading bug can jump up and bite you—and
bite you in a place where you cannot seem to find it easily. Threading bugs can be among the hardest to
find and they are hard enough to find on a single-processor machine,; add more processors and cores,
and the bugs can become even harder to find. In fact, some threading bugs don’t even rear their ugly
head until you run your application on a multiprocessor machine, because that’s the only way to get true
concurrent multithreading. For this reason, I always advise anyone developing a multithreaded
application to test, and test often, on a multiprocessor machine. Otherwise, you run the risk of sending
your product out the door with lurking threading bugs.

I remember it as if it were a meal ago: At a former employer of mine, we were soon to ship our gold
master to the manufacturer and have hundreds of thousands of disks made, and then someone finally
happened to test the application on a multiprocessor machine in the lab. Back in those days,
multiprocessor desktops were few and far between. Needless to say, a great lesson was learned across
the entire team, and a nasty bug was sniped before it got out the door.

Threading in C# and .NET
Even though threading environments have presented many challenges and hurdles over the years, and
will continue to do so, the CLR and the .NET base class library mitigate many of these risks and provide a
clean model to build upon. It’s still true that the greatest challenge of creating high-quality threaded
code is that of synchronization. The .NET Framework makes it easier than ever to create new threads or
utilize a system-managed pool of threads, and it provides intuitive objects that help you synchronize
those threads with each other. However, it’s still your duty to make sure you use those objects properly.

Managed threads are virtual threads in the sense that they don’t necessarily map one-to-one to OS
threads. Managed threads do actually run concurrently, but it would be erroneous to assume that the OS
thread currently running a particular managed thread’s code will only run managed code for that thread
only. In fact, an OS thread could run managed code for multiple managed threads in multiple
application domains in an implementation of the CLR. The bottom line is, don’t make any assumptions
about the correlation between OS threads and managed threads. If you burrow down to the OS thread
using the P/Invoke layer to make direct Win32 calls, be sure that you only use platform thread
information for debugging purposes and base no program logic on it at all. Otherwise, you’ll end up with
something that may break as soon as you run it on another CLR implementation.

It would be erroneous to conclude that multithreaded programming is just about creating extra
threads to do something that can take a long time to do. Sure, that’s part of the puzzle. And when you
create a desktop application, you definitely want to use threading techniques to ensure that the UI stays
responsive during a long computational operation, because we all know what impatient users tend to do

CHAPTER 12 ■ THREADING IN C#

362

when desktop applications become unresponsive: They kill them! But it’s important to realize that there
is much more to the threading puzzle than creating an extra thread to run some random code. That task
is actually quite easy in the C# environment, so let’s take a look and see how easy it really is.

Starting Threads
As I said, creating a thread is very simple. Take a look at the following example to see what I mean:

using System;
using System.Threading;

public class EntryPoint
{
 private static void ThreadFunc() {
 Console.WriteLine("Hello from new thread {0}!",
 Thread.CurrentThread.GetHashCode());
 }

 static void Main() {
 // Create the new thread.
 Thread newThread =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc));

 Console.WriteLine("Main Thread is {0}",
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("Starting new thread...");

 // Start the new thread.
 newThread.Start();

 // Wait for new thread to finish.
 newThread.Join();

 Console.WriteLine("New thread has finished");
 }
}

All you have to do is create a new System.Thread object and pass an instance of the ThreadStart
delegate as the parameter to the constructor. The ThreadStart delegate references a method that takes
no parameters and returns no parameters. In the previous example, I chose to use the static ThreadFunc
method as the start of execution for the new thread. I could have just as easily chosen to use any other
method visible to the code creating the thread, as long as it neither accepted nor returned parameters.
Notice that the code also outputs the managed thread identifier in two different ways to demonstrate
how you can identify threads in the managed world. In the unmanaged C++ world, you would use the
thread ID obtained via the Win32 API. In the managed world of .NET 1.1, you instead use the value
returned by GetHashCode. As long as this thread is alive, it is guaranteed never to collide with any other
thread in any application domain of this process. The thread hash code is not globally unique on the
entire system. Starting with .NET 2.0, you can get the managed thread id by accessing the
Thread.ManagedThreadId property. Also, you can see how you can get a reference to the current thread by
accessing the static property Thread.CurrentThread. Finally, notice the call to the Join method on the
newThread object. In native Win32 code, you normally wait for a thread to finish by waiting on its handle.
When the thread finishes running, the operating system signals its handle and the wait completes. The

CHAPTER 12 ■ THREADING IN C#

363

Thread.Join method encapsulates this functionality. In this case, the code waits forever for the thread to
finish. Thread.Join also provides a few overloads that allow you to specify a timeout period on the wait.

■ Note There is some confusion in the MSDN documentation regarding whether one should call

Thread.GetHashCode or access the Thread.ManagedThreadId property. If you read the MSDN documentation

carefully, the summary page for System.Thread indicates that GetHashCode is what you should use to obtain the

unique managed thread identifier during the duration the thread is alive. But if you look at the documentation for

Thread.GetHashCode, it states that you should use the ManagedThreadId property instead. By debugging into the

example application above using windbg in the Debugging Tools for Windows package in concert with the sos.dll

debugger extension, I was able to determine that the results of GetHashCode and the ManagedThreadId property

accessor both harvest the value from the same location within an internal structure of the Thread object instance.

Arguably, ManagedThreadId makes the code easier to read because it’s more obvious what it is. Additionally,

ManagedThreadId was introduced in .NET 2.0 and if you are targeting .NET 1.1, then you must use GetHashCode. I

expect this confusion in the MSDN documentation to go away at some point soon, as it is a documentation bug.

You should always rely upon ManagedThreadId even though GetHashCode returns the same value for the

purposes of backwards compatibility. Throughout the rest of this chapter, I will be using ManagedThreadId rather

than GetHashCode.

When you create a separate thread, it is subject to the rules of the thread scheduler on the system,
just like any other thread. However, sometimes you need to create threads that carry a little more or a
little less weight when the scheduler algorithm is deciding which thread to execute next. You can control
the priority of a managed thread via the Thread.Priority property. You can adjust this value as
necessary during execution of the thread. It’s actually a rare occurrence that you’ll need to adjust this
value. All threads start out with the priority of Normal from the ThreadPriority enumeration.

Passing Data to New Threads

In the managed environment, the System.Thread class nicely encapsulates all of the operations that you
may perform on a thread. If you have some sort of state data that you must transmit to the new thread so
that it has that data available when it starts execution, you can simply create a helper object and
initialize the ThreadStart delegate to point to an instance method on that object. Yet again, you solve
another problem by introducing another level of indirection in the form of a class. Suppose you have a
system where you fill multiple queues with tasks, and then at some point you want to create a new
thread to process the items in a specific queue that you pass into it. The following code demonstrates
one way you can achieve such a goal:

using System;
using System.Threading;
using System.Collections;

public class QueueProcessor
{

CHAPTER 12 ■ THREADING IN C#

364

 public QueueProcessor(Queue theQueue) {
 this.theQueue = theQueue;
 theThread = new Thread(new ThreadStart(this.ThreadFunc));
 }

 private Queue theQueue;

 private Thread theThread;
 public Thread TheThread {
 get {
 return theThread;
 }
 }

 public void BeginProcessData() {
 theThread.Start();
 }

 public void EndProcessData() {
 theThread.Join();
 }

 private void ThreadFunc() {
 // ... drain theQueue here.
 }
}

public class EntryPoint
{
 static void Main() {
 Queue queue1 = new Queue();
 Queue queue2 = new Queue();

 // ... operations to fill the queues with data.

 // Process each queue in a separate thread.
 QueueProcessor proc1 = new QueueProcessor(queue1);
 proc1.BeginProcessData();

 QueueProcessor proc2 = new QueueProcessor(queue2);
 proc2.BeginProcessData();

 // ... do some other work in the meantime.

 // Wait for the work to finish.
 proc1.EndProcessData();
 proc2.EndProcessData();
 }
}

There are some potential synchronization problems here if anyone were to access the queues after
the new threads begin their work. But I’ll save synchronization issues until later in the chapter. The class
adding the extra level of indirection is the QueueProcessor class. It cleanly encapsulates the worker

CHAPTER 12 ■ THREADING IN C#

365

thread and exposes a lightweight interface to get the work done. In this example, the main thread waits
for the work to finish by calling EndProcessData. That method merely calls Join on the encapsulated
thread. However, had you required some sort of status regarding the completion of the work, the
EndProcessData method could have returned it to you.

Using ParameterizedThreadStart

For those of you familiar with and accustomed to starting native threads in Win32, you know that you
can provide a thread function that accepts a single parameter through which you can pass the start-up
state for the thread. In System.Threading.Thread, there is an overloaded version of the constructor that
allows you to provide it with a delegate of type ParameterizedThreadStart which is a delegate that
accepts a single object reference and returns void. Note however, that because the parameter passed in
is an object instance, you must cast it to the expected type in order to use it and that may expose you to
run-time cast exceptions if you are not careful. Using the constructor that accepts a
ParameterizedThreadStart delegate, the example above would then become the following:

using System;
using System.Threading;
using System.Collections;

public class EntryPoint
{
 static void Main() {
 Queue queue1 = new Queue();
 Queue queue2 = new Queue();

 // ... operations to fill the queues with data.

 // Process each queue in a separate threda.
 Thread proc1 = new Thread(EntryPoint.ThreadFunc);
 proc1.Start(queue1);

 Thread proc2 = new Thread(EntryPoint.ThreadFunc);
 proc2.Start(queue2);

 // ... do some other work in the meantime.

 // Wait for the work to finish.
 proc1.Join();
 proc2.Join();
 }

 static private void ThreadFunc(object obj) {
 // We must cast the incoming object into a Queue.
 Queue theQueue = (Queue) obj;

 // ... drain the queue
 }
}

CHAPTER 12 ■ THREADING IN C#

366

The IOU Pattern and Asynchronous Method Calls
In a later section titled “Asynchronous Method Calls,” where I discuss asynchronous I/O and thread
pools, you’ll see that the BeginProcessData/EndProcessData is a common pattern of asynchronous
processing used throughout the .NET Framework. The BeginMethod/EndMethod pattern of asynchronous
programming in the .NET Framework is similar to the IOU pattern described by Allan Vermeulen in his
article, “An Asynchronous Design Pattern” (Dr. Dobb’s Journal, June 1996). In that pattern, a function is
called to start the asynchronous operation and in return, the caller is given an “I owe you” (IOU) object.
Later, the caller can use that object to retrieve the result of the asynchronous operation. The beauty of
this pattern is that it completely decouples the caller wanting to get the asynchronous work done from
the mechanism used to actually do the work. This pattern is used extensively in the .NET Framework,
and I suggest that you employ it for asynchronous method calls, as it will give your clients a familiar look
and feel.

States of a Thread
The states of a managed thread are well defined by the runtime. Although the state transitions may seem
confusing at times, they aren’t much more confusing than the state transitions of an OS thread. There
are other considerations to address in the managed world, so the allowable states and state transitions
are naturally more complex. Figure 12-1 shows a state diagram for managed threads.

v@v
Text Box
Download at WoweBook.com

CHAPTER 12 ■ THREADING IN C#

367

Figure 12-1. State diagram of managed threads

CHAPTER 12 ■ THREADING IN C#

368

The states in the state diagram are based upon the states defined by the CLR for managed threads,
as defined in the ThreadState enumeration. Every managed thread starts life in the Unstarted state. As
soon as you call Start on the new thread, it enters the Running state. OS threads that enter the managed
runtime start immediately in the Running state, thus bypassing the Unstarted state. Notice that there is
no way to get back to the Unstarted state. The dominant state in the state diagram is the Running state.
This is the state of the thread when it is executing code normally, including any exception handling and
execution of any finally blocks. If the main thread method, passed in via an instance of the ThreadStart
delegate during thread creation, finishes normally, then the thread enters the Finished state, as shown in
Figure 12-1. Once in this state, the thread is completely dead and will never wake up again. If all of the
foreground threads in your process enter the Finished state, the process will exit normally.

The three states mentioned previously cover the basics of managed thread state transition,
assuming you have a thread that simply executes some code and exits. Once you start to add
synchronization constructs in the execution path or wish to control the state of the thread, whether from
another thread or the current thread, things become more complicated.

For example, suppose you’re writing code for a new thread and you want to put it to sleep for a
while. You would call Thread.Sleep and provide it a timeout, such as how many milliseconds to sleep.
This is similar to how you put an OS thread to sleep. When you call Sleep, the thread enters the
WaitSleepJoin state, where its execution is suspended for the duration of the timeout. Once the sleep
expires, the thread reenters the running state.

Synchronization operations can also put the thread into the WaitSleepJoin state. As may be obvious
by the name of the state, calling Thread.Join on another thread in order to wait for it to finish puts the
calling thread into the WaitSleepJoin state. Calling Monitor.Wait also enters the WaitSleepJoin state.
Now you know the three factors that went into naming the state in the first place. You can use other
synchronization methods with a thread, and I’ll cover those later in the chapter in the “Synchronizing
Work Between Threads” section. As before, once the thread’s wait requirements have been met, it
reenters the Running state and continues execution normally.

It’s important to note that any time the thread is sitting in the WaitSleepJoin state, it can be
forcefully pushed back into the Running state when another thread calls Thread.Interrupt on the waiting
thread. Win32 programmers will recognize that this behavior is similar to alertable wait states in the
operating system. Beware that when a thread calls Thread.Interrupt on another thread, the interrupted
thread receives a thrown ThreadInterruptedException. So, even though the interrupted thread reenters
the Running state, it won’t stay there for long unless an appropriate exception-handling frame is in place.
Otherwise, the thread will soon enter the Finished state once the exception boils its way up to the top of
the thread’s stack unhandled.

Another way that the thread state can transition out of the WaitSleepJoin state is when another
thread calls Thread.Abort on the current thread. Technically, a thread could call Abort on itself.
However, I consider that a rare execution flow and have not shown it in Figure 12-1. Once Thread.Abort
is called, the thread enters the AbortRequested state. This state is actually a form of a running state,
because the thread is thrown a ThreadAbortException and must handle the exception. However, as I
explain later on, the managed thread treats this exception in a special way, such that the next state will
be the final Aborted state unless the thread that called Thread.Abort manages to call Thread.ResetAbort
before that happens. Incidentally, there’s nothing to stop the thread that is aborting from calling
ResetAbort. However, you must refrain from doing such a thing because it could create some ill
behavior. For example, if a foreground thread can never be aborted because it keeps resetting the abort,
the process will never exit.

CHAPTER 12 ■ THREADING IN C#

369

■ Note Beginning in .NET 2.0, the host has the ability to forcefully kill threads during application domain shutdown

by using what’s called a rude thread abort. In such a situation, it is impossible for the thread to keep itself alive by

using Thread.ResetAbort.

Finally, a running thread enters the SuspendRequested state after calling Thread.Suspend on itself, or
after another thread calls Suspend on it. Very shortly after that, the thread automatically enters the
Suspended state. Once a thread enters the SuspendRequested state, there is no way to keep it from
eventually entering the Suspended state. Later on, in the section titled “Halting Threads and Waking
Sleeping Threads,” I discuss why this intermediate state is needed when a thread is suspended. But for
now, it’s important to realize that the SuspendRequested state is a form of a running state in the sense
that it is still executing managed code.

That wraps up the big picture regarding managed-thread state transitions. Be sure to refer to Figure
12-1 throughout the rest of the chapter when reading about topics that affect the state of the thread.

Terminating Threads
When you call Thread.Abort, the thread in question eventually receives a ThreadAbortException. So,
naturally, in order to handle this situation gracefully, you must process the ThreadAbortException if
there is anything specific you must do when the thread is being aborted. There is also an overload of
Abort that accepts an arbitrary object reference, which is then encapsulated in the subsequent
ThreadAbortException. This allows the code that is aborting the thread to pass some sort of context
information to the ThreadAbortException handler, such as a reason why Abort was called in the first
place.

The CLR doesn’t deliver a ThreadAbortException unless the thread is running within the managed
context. If your thread has called out to a native function via the P/Invoke layer, and that function takes
a long time to complete, then a thread abort on that thread is pended until execution returns to
managed space.

■ Note In .NET 2.0 and later, if a finally block is executing, delivery of a ThreadAbortException is pended until

execution leaves the finally block. In .NET 1.x, the abort exception is delivered anyway.

Calling Abort on a thread doesn’t forcefully terminate the thread, so if you need to wait until the
thread is truly finished executing, you must call Join on that thread to wait until all of the code in the
ThreadAbortException exception handler is finished. During such a wait, it is wise to wait with a timeout
so that you don’t get stuck waiting forever for a thread to finish cleaning up after itself. Even though the
code in the exception handler should follow other exception-handler coding guidelines, it’s still possible
for the handler to take a long time or, gasp, forever to complete its work. Let’s take a look at a
ThreadAbortException handler and see how this works:

using System;
using System.Threading;

public class EntryPoint

CHAPTER 12 ■ THREADING IN C#

370

{
 private static void ThreadFunc() {
 ulong counter = 0;
 while(true) {
 try {
 Console.WriteLine("{0}", counter++);
 }
 catch(ThreadAbortException) {
 // Attempt to swallow the exception and continue.
 Console.WriteLine("Abort! ");
 }
 }
 }

 static void Main() {
 Thread newThread =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc));
 newThread.Start();
 Thread.Sleep(2000);

 // Abort the thread.
 newThread.Abort();

 // Wait for thread to finish.
 newThread.Join();
 }
}

From a cursory glance at the code, it would appear that the call to Join on the newThread instance
will block forever. However, that’s not what happens. It would appear that because the
ThreadAbortException is handled within the loop of the thread function, the exception will be swallowed
and the loop will continue no matter how many times the main thread attempts to abort the thread. As it
turns out, the ThreadAbortException thrown via the Thread.Abort method is special. When your thread
finishes processing the abort exception, the runtime implicitly rethrows it at the end of your exception
handler. It’s the same as if you had rethrown the exception yourself. Therefore, any outer exception
handlers or finally blocks will still execute normally. In the example, the call to Join won’t be waiting
forever as initially expected.

There is a way to keep the system from rethrowing the ThreadAbortException, by calling the
Thread.ResetAbort static method. However, the general recommendation is that you only call
ResetAbort from the thread that called Abort. This would require some sort of tricky intrathread
communication technique if you wanted to cause this to happen from within the abort handler of the
thread being aborted. If you find yourself trying to implement such a technique to abort a thread abort,
then maybe it’s time to reassess the design of the system in the first place. In other words, bad design
alert!

Even though the runtime provides a much cleaner mechanism for aborting threads such that you
can inform interested parties when the thread is aborting, you still have to implement a
ThreadAbortException handler properly.

CHAPTER 12 ■ THREADING IN C#

371

■ Note The fact that ThreadAbortException instances can be thrown asynchronously into a random managed

thread makes it tricky to create robust exception-safe code. Be sure to read the “Constrained Execution Regions”

section in Chapter 7.

Halting Threads and Waking Sleeping Threads
Similar to native threads, there are mechanisms in place for putting a thread to sleep for a defined period
of time or actually halting execution until it is explicitly released again. If a thread just wants to suspend
itself for a prescribed period of time, it may call the static method Thread.Sleep to enter the
WaitSleepJoin state. The only parameter to the Sleep method is the number of milliseconds the thread
should sleep. When called, this method causes the thread to relinquish the rest of its time slice with the
processor and go to sleep. After the time has expired, the thread may be considered for scheduling again.
Naturally, the time duration you pass to Sleep is reasonably accurate, but not exact. That’s because, at
the end of the duration, the thread is not immediately given time on the processor. There could be other,
higher-priority threads in the queue before it. Therefore, using Sleep to synchronize execution between
two threads is strongly discouraged.

■ Caution If you find yourself solving synchronization problems by introducing calls to Sleep within your code,

you’re not solving the problems at all. You’re merely covering them up even more.

There is even a special value, Timeout.Infinite, that you can pass to Sleep to make the thread go to
sleep forever. You can wake a sleeping thread by interrupting it via the Thread.Interrupt instance
method. Interrupt is similar to Abort in that it wakes up the target thread and throws a
ThreadInterruptedException. Therefore, if your thread function is not equipped to handle the exception,
the exception will percolate all the way up the call stack until the runtime ends the thread’s execution
because of an unhandled exception. If you really do want to implement an alertable sleep state using
this mechanism, then to be safe, you should make your call to Sleep within a try block and catch the
ThreadInterruptException. Unlike the ThreadAbortException, the ThreadInterruptException is not
automatically rethrown by the runtime at the end of the exception handler. Note, however, that you
should never have to implement an alertable sleep mechanism because the Monitor type, introduced
shortly, provides a more efficient way to achieve the same goal.

■ Note Another special parameter value for Thread.Sleep is 0. If you pass 0, Thread.Sleep will cause the thread

to relinquish the rest of its time slice. The thread will then be allowed to run again once the system thread

scheduler comes back around to it. If you are running on the .NET 4.0 platform or later, you should use the new

method Thread.Yield instead.

CHAPTER 12 ■ THREADING IN C#

372

Another way to put a thread to sleep for an indefinite time is via the Thread.Suspend instance
method. Calling Suspend will suspend execution of the thread until it is explicitly resumed. You can
resume the thread by calling the Resume instance method or Interrupt. However, with Interrupt, the
target thread needs to have a proper exception handler around the Suspend call; otherwise, the thread
could exit. Technically, calling Abort on the thread will resume the thread, but only to send it a
ThreadAbortException ultimately causing the thread to exit. Keep in mind that any thread with sufficient
privileges can call Suspend on a thread—even the current thread can call Suspend. If the current thread
calls Suspend, it blocks at that point, waiting for the next Resume call.

It’s important to note that when you call Suspend on a thread, the thread is not suspended
immediately in its tracks. Instead, the thread is allowed to execute to what’s called a safe point. Once it
reaches the safe point, the thread is suspended. A safe point is a place in the managed code where it is
safe to allow garbage collection. For instance, if the CLR determines it is time to perform a garbage
collection, it must suspend all threads temporarily while it performs the collection. However, as you can
imagine, if a thread is in the middle of a multi-instruction operation that accesses an object on the heap,
and then the GC comes along and moves that object to a different place in system memory, only bad
things will happen. For that reason, when the GC suspends threads for collection, it must wait until they
all have reached a safe point where it is OK to move things around on the heap. For this reason, the call
to Suspend allows the thread to reach a safe point before actually suspending it. I also want to stress that
you should never use Suspend and Resume to orchestrate thread synchronization. Of course, the fact that
the system allows the thread to continue running until it reaches a safe point is a good enough reason
not to rely on this mechanism, but it’s also a bad design practice.

Waiting for a Thread to Exit
In this chapter’s previous examples, I’ve used the Join method to wait for a specific thread to exit. In
fact, that is exactly what it is used for. In an unmanaged Win32 application, you may have been
accustomed to waiting for the thread handle to become signaled to indicate the completion of the
thread. The Join method is the same mechanism indeed. The name of the method is suggestive of the
fact that you’re joining the current thread’s execution path to that of the thread you’re calling Join on,
and you cannot proceed until your joined thread arrives.

Naturally, you’ll want to avoid calling Join on the current thread. The effect is similar to calling
Suspend from the current thread. The thread is blocked until it is interrupted. Even when a thread is
blocked from calling Join, it can be awoken via a call to Interrupt or Abort as described in the previous
section.

Sometimes, you’ll want to call Join to wait for another thread to complete, but you won’t want to get
stuck waiting forever. Join offers overloads that allow you to designate the amount of time you’re willing
to wait. Those overloads return a Boolean value that returns true to indicate that the thread actually
terminated, or false to indicate that the timeout expired.

Foreground and Background Threads
When you create a thread in the .NET managed environment, it exists as a foreground thread by default.
This means that the managed execution environment, and thus the process, will remain alive as long as
the thread is alive. Consider the following code:

using System;
using System.Threading;

public class EntryPoint
{
 private static void ThreadFunc1() {

CHAPTER 12 ■ THREADING IN C#

373

 Thread.Sleep(5000);
 Console.WriteLine("Exiting extra thread");
 }

 static void Main() {
 Thread thread1 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc1));

 thread1.Start();

 Console.WriteLine("Exiting main thread");
 }
}

If you run this code, you’ll see that Main exits before the extra thread finishes, as shown in the
following output.

Exiting main thread
Exiting extra thread

C++ developers will find that very different from the behavior they’re used to, where the process
normally terminates once the main routine in the application exits.

At times, you might want the process to terminate when the main thread finishes, even when there
are extra threads in the background. You can accomplish this in the runtime by turning the extra thread
into a background thread by setting the Thread.IsBackground property to true. You’ll want to consider
doing this for threads that do stuff such as listen on a port for network connections, or some other
background task such as that. Keep in mind, though, that you always want to make sure that your
threads get a proper chance to clean up if they need to before they are shut down. When a background
thread is shut down as the process exits, it doesn’t receive an exception of any type as it does when
someone calls Interrupt or Abort. So, if the thread has persistent data in some sort of half-baked state,
shutting down the process will definitely not be good for that persistent data. Therefore, when creating
background threads, make sure they are coded so that they can be terminated rudely at any point
without any adverse effects. You can also implement some sort of mechanism to notify the thread that
the process is to shut down soon. Creating such a mechanism will prove messy, because the main thread
will need to wait a reasonable amount of time after firing the notification for the extra thread to do its
cleanup work. At that point, it almost becomes reasonable to turn the thread back into a foreground
thread.

Thread-Local Storage
You can create thread-local storage in the managed environment. Depending on your application, it
may be necessary for you to have a static field of a class that is unique for each thread that the class is
used in. Doing so is trivially easy in the majority of the cases in C#. If you have a static field that must be
thread-relative, simply adorn it with the ThreadStaticAttribute attribute. Once you do that, the field will
be initialized for each thread that accesses it. Under the covers, each thread is given its own thread-
relative location to save the value or reference. However, when using references to objects, be careful
with your assumptions about object creation. The following code shows a pitfall to avoid:

using System;
using System.Threading;

CHAPTER 12 ■ THREADING IN C#

374

public class TLSClass
{
 public TLSClass() {
 Console.WriteLine("Creating TLSClass");
 }
}

public class TLSFieldClass
{
 [ThreadStatic]
 public static TLSClass tlsdata = new TLSClass();
}

public class EntryPoint
{
 private static void ThreadFunc() {
 Console.WriteLine("Thread {0} starting...",
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("tlsdata for this thread is \"{0}\"",
 TLSFieldClass.tlsdata);
 Console.WriteLine("Thread {0} exiting",
 Thread.CurrentThread.ManagedThreadId);
 }

 static void Main() {
 Thread thread1 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc));
 Thread thread2 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc));

 thread1.Start();
 thread2.Start();
 }
}

This code creates two threads that access a thread-relative static member of TLSFieldClass. To
illustrate the trap, I’ve made that thread-specific slot of type TLSClass, and the code attempts to initialize
that slot with an initializer in the class definition that simply calls new on the default constructor of the
class. Now, look how surprising the output is:

Thread 3 starting...

Thread 4 starting...

Creating TLSClass

tlsdata for this thread is "TLSClass"

Thread 3 exiting

CHAPTER 12 ■ THREADING IN C#

375

tlsdata for this thread is ""

Thread 4 exiting

■ Caution Always remember that ordering of execution in multithreaded programs is never guaranteed unless you

employ specific synchronization mechanisms. This output was generated on a single-processor system. If you run

the same application on a multiprocessor system, you’ll likely see that the output executes in a completely

different order. Nevertheless, the purpose of the example does not change.

The important thing to take note of is that the constructor for TLSClass was only called once. The
constructor was called for the first thread, but not for the second thread. For the second thread, the field
is initialized to null. tlsdata is static, therefore its initialization is actually done at the time the static
constructor for the TLSFieldClass is called. However, static constructors can only be called once per
class per application domain. For this reason, you want to avoid assigning thread-relative slots at the
point of declaration. That way, they will always be assigned to their default values. For reference types,
that means null, and for value types, it means the equivalent of setting all of the bits in the value’s
underlying storage to 0. Then, upon first access to the thread-specific slot, you can test the value for null
and create an instance as appropriate. The cleanest way to achieve this is always to access the thread-
local slot via a static property.

As an added note, don’t think that you can outsmart the compiler by adding a level of indirection,
such as assigning the thread-relative slot based on the return value of a static method. You’ll find that
your static method will only get called once. If the CLR were to “fix” this problem for you, it would
undoubtedly be less efficient because it would have to test whether the field is being accessed for the
first time and call the initialization code if that is the case. If you think about it, you’ll find that task is a
lot harder than it sounds, because it will be impossible to do the right thing 100% of the time.

There is another way to use thread-local storage that doesn’t involve decorating a static variable
with an attribute. You can allocate thread-specific storage dynamically by using either of the
Thread.AllocateDataSlot or Thread.AllocateNamedDataSlot methods. You’ll want to use these methods
if you won’t know how many thread-specific slots you’ll need to allocate until runtime. Otherwise, it’s
generally much easier to use the static field method. When you call AllocateDataSlot, a new slot is
allocated in all threads to hold a reference to an instance of type System.Object. The method returns a
handle of sorts in the form of a LocalDataStoreSlot object instance. You can access this location using
the GetData and SetData methods on the thread. Let’s look at a modification of the previous example:

using System;
using System.Threading;

public class TLSClass
{
 static TLSClass() {
 tlsSlot = Thread.AllocateDataSlot();
 }

 private TLSClass() {

CHAPTER 12 ■ THREADING IN C#

376

 Console.WriteLine("Creating TLSClass");
 }

 public static TLSClass TlsSlot {
 get {
 Object obj = Thread.GetData(tlsSlot);
 if(obj == null) {
 obj = new TLSClass();
 Thread.SetData(tlsSlot, obj);
 }
 return (TLSClass) obj;
 }
 }

 private static LocalDataStoreSlot tlsSlot = null;
}

public class EntryPoint
{
 private static void ThreadFunc() {
 Console.WriteLine("Thread {0} starting...",
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("tlsdata for this thread is \"{0}\"",
 TLSClass.TlsSlot);
 Console.WriteLine("Thread {0} exiting",
 Thread.CurrentThread.ManagedThreadId);
 }

 static void Main() {
 Thread thread1 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc));
 Thread thread2 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc));

 thread1.Start();
 thread2.Start();
 }
}

As you can see, using dynamic slots is a little more involved than using the static field method.
However, it does provide some extra flexibility. Notice that the slot is allocated in the type initializer,
which is the static constructor you see in the example. That way, the slot is allocated for all threads at the
point where the runtime initializes the type for use. Notice that I’m testing the slot for null in the
property accessor of the TLSClass. When you allocate the slot using AllocateDataSlot, the slot is
initialized to null for each thread.

You may find it convenient to access your thread-specific storage via a string name rather than with
a reference to a LocalDataStoreSlot instance. You can do that if you create your TLS slot using
Thread.AllocateNamedDataSlot. However, you must be careful to use a reasonably unique name so that
use of that same name elsewhere in the code won’t cause adverse effects. You may consider naming
your slot using a string representation of a GUID, so that you can reasonably assume that nobody will
attempt to create one with the same name. When you need to access the slot, you can call
GetNamedDataSlot, which will simply translate your string into a LocalDataStoreSlot instance. I urge you
to read the MSDN documentation regarding named thread-local storage slots to get more details.

CHAPTER 12 ■ THREADING IN C#

377

Most of this will be familiar to those developers who have used thread-local storage in Win32. There
is one improvement, though: Because managed TLS slots are implemented in a different way, the
limitation on the number of Win32 TLS slots doesn’t apply.

How Unmanaged Threads and COM Apartments Fit In
It is possible for unmanaged threads to enter the managed environment from the outside. For example,
managed objects can be exposed to native code via the COM interop layer. When the native thread calls
through to the object, it enters the managed environment. When this happens, the CLR makes note of
that fact, and if it is the first time the unmanaged thread has called into the CLR, it sets up the necessary
bookkeeping structures allowing it to run as a managed thread within the managed runtime. As I
mentioned before, threads that enter the managed environment this way initially start their managed
thread existence in the Running state, as shown in Figure 12-1. Once this bookkeeping is set up, then
each time the same unmanaged thread enters the runtime, it is associated with the same managed
thread.

Just as managed objects can be exposed to the native world as COM objects, COM objects can be
exposed to the managed world as managed objects. When a managed thread calls out to a COM object in
this way, the runtime relinquishes control over the thread’s state until it reenters the managed
environment.

Suppose a COM object, written in native C++, calls the WaitForSingleObject Win32 API function to
wait for a particular synchronization object to become signaled. Then, if a managed thread calls
Thread.Abort or Thread.Interrupt to wake up the thread, the wakeup will be pended until the thread
reenters the managed environment. In other words, it will have no effect while the thread is executing
unmanaged code. Therefore, you want to be reasonably cognizant of what sorts of synchronization
mechanisms are being used by native COM objects that your managed code is calling out to.

Finally, if you’ve ever done an extensive amount of COM development in the past, then you’re
familiar with the notion of a COM apartment and the proxies and stubs that go along with them.1 When
managed code calls out into COM objects, it is important that the managed code be set up to call the
unmanaged COM object through either a single-threaded apartment (STA) or a multithreaded
apartment (MTA). You can set this property on a new managed thread by calling the
Thread.SetApartmentState method. Once the thread starts, the apartment state gets locked in. In other
words, you cannot change it afterwards. When you call out to COM objects from managed code, it’s best
to know the type of apartment the COM objects will run in. That way, you can judiciously choose which
type of COM apartment you want your thread to run in. Choosing the wrong type may introduce
inefficiencies by forcing calls to go through proxies and stubs. In even worse cases, COM objects may not
be callable from other apartment types.

Using Thread.SetApartmentState, you can control the COM apartment property for new managed
threads that you create. But what about the main thread of an application? The fact is that once the main
thread of a managed application is running, it’s already too late to set the apartment state. That’s
because the managed runtime initializes the main thread to the MTA state as the managed application is
initialized. If you need to change the apartment state of the main thread to STA, the only way to do so is
by decorating the Main method with the STAThreadAttribute attribute. Incidentally, you could also
decorate it with the MTAThreadAttribute attribute, but that would be redundant because that’s the CLR’s
default choice. The following code shows an example of what I’m talking about:

1 For a detailed description of COM apartments and how they work, I suggest you read Don Box’s Essential COM
(Boston, MA: Addison-Wesley Professional, 1997).

CHAPTER 12 ■ THREADING IN C#

378

public class EntryPoint
{
 [STAThread]
 static void Main() {
 }
}

If you’ve ever worked with Windows Forms applications, especially those generated by the wizards
of Visual Studio, you probably have already seen this attribute and wondered what it was all about. By
decorating the main UI thread of GUI applications with this attribute, you can integrate native ActiveX
controls more easily in the GUI, because those normally run in an STA.

The apartment state of a managed thread only pertains to COM interop situations. Note that the
apartment state of a managed thread has no effect on the execution of managed code. And more
importantly, when managed objects are consumed by native applications via the COM interop layer, the
apartment state doesn’t control what apartment the object appears to live in from the perspective of the
native application. From the native side of the fence, all managed objects appear as COM objects that
live in the MTA and integrate the Free Threaded Marshaller (FTM). Also, all threads created in the CLR’s
thread pool always live in the MTA for the process.

Synchronizing Work Between Threads
Synchronization is arguably the most difficult part of creating multithreaded applications. You can
create extra threads to do work all day long without having to worry about synchronization, as long as
those threads do not concurrently access data that other threads access. Nobody needs to know when
they finish or what the results of their operations are. Obviously, it’s a rare case that you’ll create such a
thread. In most cases, you need to communicate with the running thread, wait for it to reach a defined
state in the code, or possibly work on the same object or value instances that other threads are working
on.

In all of those cases, and more, you must rely upon synchronization techniques to synchronize the
threads to avoid race conditions and deadlocks. With race conditions, two threads may need to access
the same piece of memory and only one can safely do so at a time. In these cases, you must use a
synchronization mechanism that will only allow one thread at a time to access the data and lock out the
other thread, making it wait until the first one is done. Multithreaded environments are stochastic in
nature, and you never know when the scheduler will take away control from the thread. The classic
example is where one thread gets halfway through changing a block of memory, loses control, and then
the other thread is given control and starts reading the memory, assuming that it is in a valid state. An
example of a deadlock is when two threads are waiting for each other to release a resource. Both threads
end up waiting for each other, and because neither one of them can run until the wait is satisfied, they
will end up waiting forever.

In all synchronization tasks, you should use the most lightweight sync mechanism that you can get
away with and no heavier. For example, if you’re trying to share a data block between two threads in the
same process and you must gate access between the two, use something such as a Monitor (discussed
shortly) lock rather than a Mutex. Why? Because a Mutex is meant to gate access to a shared resource
between processes, and therefore, is a heavyweight OS object that slows down the process when
acquiring and releasing the lock. If no interprocess locking is necessary, use the Monitor instead. Even
more lightweight than the Monitor is a set of methods in the Interlocked class. These are ideal when you
know that the likelihood of actually having to wait a good while when acquiring a lock is low.

CHAPTER 12 ■ THREADING IN C#

379

■ Note Any type of wait on a kernel object—such as waiting on a Mutex, Semaphore, EventWaitHanldle, or any

other wait that boils down to waiting on a Win32 kernel object—requires a transition to kernel mode. Transitions

to kernel mode are expensive, and you should avoid them if at all possible. For example, if the threads you are

synchronizing live in the same process, kernel synchronization objects are probably too heavy. The lightest

synchronization technique involves crafty use of the Threading.Interlocked class. Its methods are all

implemented completely in user mode, thus allowing you to avoid the user-to-kernel mode transition. However,

using the Threading.Interlocked class can be tricky, so moving up to a slightly higher level locking mechanism

such as Monitor (or any other mechanism that does not require transitions to and from kernel mode) is often

desired when synchronizing threads within the same process.

When using synchronization objects in a multithreaded environment, you want to hold the lock for
as little time as possible. For example, if you acquire a synchronization lock to read a shared structure
instance, and code within the method that acquires the lock uses that instance of the structure for some
purpose, it’s best to make a local copy of the structure on the stack and then release the lock
immediately, unless it is logically impossible or degrading to performance. That way, you don’t tie up
other threads in the system that need to access the guarded variable.

When you need to synchronize thread execution, never rely upon methods such as Thread.Suspend
or Thread.Resume to control thread synchronization. If you recall from a previous section in this chapter,
calling Thread.Suspend doesn’t actually suspend the thread immediately. Instead, it must get to a safe
point within the managed code before it can suspend execution. And never use Thread.Sleep to
synchronize threads. Thread.Sleep is appropriate when you’re doing some sort of polling loop on an
entity, such as device hardware that has just been reset and has no way of notifying anyone that it is back
online. In that case, you don’t want to check the state in a loop repeatedly. Instead, it’s much nicer to
sleep a little bit between polling, to allow the scheduler to let other threads run. I’ve said this in a
previous section, but I’ll say it again because it’s so important: If you ever find yourself solving a
synchronization bug by introducing a call to Thread.Sleep at some seemingly random point in the code,
you’re not solving the problem at all. Rather, you’re hiding it even deeper. Just don’t do it!

Lightweight Synchronization with the Interlocked Class
Those of you who come from the unmanaged world of programming against the Win32 API probably
already know about the Interlocked... family of functions. Thankfully, those functions have been
exposed to managed C# developers via static methods on the Interlocked class in the System.Threading
namespace. Sometimes, when running multiple threads, it’s necessary to maintain a simple variable—
typically, a value, but possibly an object—between the multiple threads. For example, suppose you have
some reason to track the number of running threads in a static integer somewhere. When a thread
begins, it increments that value, and when it finishes, it decrements that value. Obviously, you must
synchronize access to that value somehow, because the scheduler could take away control from one
thread and give it to another when the first one is in the process of updating the value. Even worse, the
same code could be executing concurrently on a multiprocessor machine. For this task, you can use
Interlocked.Increment and Interlocked.Decrement. These methods are guaranteed to modify the value
atomically across all processors in the system. Take a look at the following example:

using System;
using System.Threading;

CHAPTER 12 ■ THREADING IN C#

380

public class EntryPoint
{
 static private volatile int numberThreads = 0;

 static private Random rnd = new Random();

 private static void RndThreadFunc() {
 // Manage thread count and wait for a
 // random amount of time between 1 and 12
 // seconds.
 Interlocked.Increment(ref numberThreads);
 try {
 int time = rnd.Next(1000, 12000);
 Thread.Sleep(time);
 }
 finally {
 Interlocked.Decrement(ref numberThreads);
 }
 }

 private static void RptThreadFunc() {
 while(true) {
 int threadCount = 0;
 threadCount =
 Interlocked.CompareExchange(ref numberThreads,
 0, 0);
 Console.WriteLine("{0} thread(s) alive",
 threadCount);
 Thread.Sleep(1000);
 }
 }

 static void Main() {
 // Start the reporting threads.
 Thread reporter =
 new Thread(new ThreadStart(
 EntryPoint.RptThreadFunc));
 reporter.IsBackground = true;
 reporter.Start();

 // Start the threads that wait random time.
 Thread[] rndthreads = new Thread[50];
 for(uint i = 0; i < 50; ++i) {
 rndthreads[i] =
 new Thread(new ThreadStart(
 EntryPoint.RndThreadFunc));
 rndthreads[i].Start();
 }
 }
}

CHAPTER 12 ■ THREADING IN C#

381

This little program creates 50 foreground threads that do nothing but wait a random period of time
between 1 and 12 seconds. It also creates a background thread that reports how many threads are
currently alive. If you look at the RndThreadFunc method, which is the thread function that the 50 threads
use, you can see it increment and decrement the integer value using the Interlocked methods. Notice
that I use a finally block to ensure that the value gets decremented no matter how the thread exits. You
could use the disposable trick with the using keyword by wrapping the increment and decrement in a
separate class that implements IDisposable. That would get rid of the ugly finally block. But, in this
case, it wouldn’t help you at all, because you’d also have to create a reference type to contain the integer
count variable, as you cannot store a ref to the integer as a field in the helper class.

■ Note Jon Skeet makes an excellent point regarding the previous sample code that underscores the importance

of knowing how types behave in concurrent situations. The static instance of Random in the sample code above is

not thread aware. Thus, if two threads call methods on it at just the right time, the internal state of the Random

instance could theoretically become inconsistent thus sending it into the land of undefined behavior. Jon suggests

wrapping Random within another type that provides the necessary synchronization. However, for the purposes of

this example code above, doing so would clutter the real message.

You’ve already seen Interlocked.Increment and Interlocked.Decrement in action. But what about
Interlocked.CompareExchange, which the reporter thread uses? Remember, because multiple threads are
attempting to write to the threadCount variable, the reporter thread must read the value in a
synchronized way as well. That’s where Interlocked.CompareExchange comes in.
Interlocked.CompareExchange, as its name implies, allows you to exchange the value of a variable if the
current value is equal to the comparand with that of another in an atomic fashion, and it returns the
value that was stored previously in that location. I’m not so interested in replacing the value with zero,
which is why I only do so if it is already zero, but I’m more interested in the side effect that the
Interlocked.ComapreExchange method returns to me the value that was in the slot.

INTERLOCKED METHODS ON SMP SYSTEMS

On Intel symmetric multiprocessing (SMP) platforms and most other SMP systems, simple reads and writes
to memory slots that are of the native size are synchronized automatically. On an IA-32 system, for example,
reads and writes to properly aligned 32-bit values are synchronized. Therefore, in the previous example
where I showed the use of Interlocked.CompareExchange merely to read an Int32 value, it would not
have been necessary if the variable were aligned properly.

By default, the CLR works hard to make sure that values are aligned properly on natural boundaries.
However, you can override the placement of values within a class or structure using the
FieldOffsetAttribute on fields, thus forcing a misaligned data field. If an Int32 is not aligned, the
guarantee mentioned in the previous paragraph is lost. In such a case, you must use
Interlocked.CompareExchange to read the value reliably.

The Interlocked... methods are all implemented on IA-32 systems using the lock prefix. This
prefix causes the processor LOCK# signal to be asserted. This prevents the other processors in the system

CHAPTER 12 ■ THREADING IN C#

382

from accessing the value concurrently, which is necessary for complex operations where values are
incremented and so on. One handy quality of the lock prefix is that the misaligned data field does not
adversely affect the integrity of the lock. In other words, it works perfectly fine with misaligned data. That’s
why Interlocked.CompareExchange is the ticket for reading misaligned data atomically.

Finally, consider the fact that the Interlocked class implements overloads of some of the methods
so that they work with 64-bit values, floating-point numbers, and object references. In fact, Interlocked...
even offers generic overloads for working with object references of any type. Consider what it means to work
with 64-bit values atomically on a 32-bit system. Naturally, there is no possible way to read such values
atomically without resorting to the Interlocked class. In fact, for this very reason, the .NET 2.0 version of
the Interlocked class introduced Interlocked.Read for Int64 values. Naturally, such a beast is not
necessary on 64-bit systems and should simply boil down to a regular read. However, the CLR is meant to
work on multiple platforms, so you should always use Interlocked.Read when working with 64-bit values.

For these reasons, it would be better safe than sorry to always use Interlocked.CompareExchange
for reading and writing values atomically, because it could prove troublesome to validate that the data is not
misaligned and no bigger than the native size prior to reading or writing it in a raw manner. Determining the
native size on the platform and basing code conditionally on such data goes against the grain of the cross-
platform spirit of managed code.

And one final thing I would like to point out is the use of the volatile keyword in the examples. When
you are accessing variables in a lock-free manner, thus relying on the processor’s automatic synchronization
in a multithreaded environment, you must decorate those variables with the volatile keyword. Otherwise,
the compiler is given various latitudes during optimization of code such that it may break the intentions of the
code. The volatile keyword prevents these sorts of optimizations, among others, and ensures that the full
intentions of code ordering are preserved as written.

When you use the Interlocked class methods with values marked volatile, the compiler will issue
a warning CS0420 stating “a reference to a volatile field will not be treated as volatile.” If you read the
documentation for the warning in MSDN, you will also see that one of the exceptions to the rule is calling the
Interlocked methods in this way. Therefore, in this case, you can safely suppress those warnings using
#pragma warning.

Moreover, imagine you had two 32-bit integers representing two locks named lock1 and lock2.
Additionally, suppose your system requires lock1 to be acquired before lock2. Your code may be written
with that intention in mind, yet at run time, the processor could find a reason to reorder those operations for
the sake of efficiently because it may assume that they are completely independent of each other and maybe
it found out that operating on them in the opposite order is more efficient. To solve this problem, you must
introduce a call to Thread.MemoryBarrier in between accesses of those two variables.
Thread.MemoryBarrier forces the ordering to be preserved.

The last method to cover in the Interlocked class is CompareExchange. As you have already seen, this
little method is handy indeed. It’s similar to Interlocked.Exchange, in that it allows you to exchange the
value of a location or slot in an atomic fashion. However, it only does the exchange if the original value
compares equal to a provided comparand and all of these operations are collectively performed
atomically. In any event, the method always returns the original value. One extremely handy use of the
CompareExchange method is to create a lightweight spin lock. A spin lock gets its name from the fact that if

CHAPTER 12 ■ THREADING IN C#

383

it cannot acquire the lock, it will spin in a tight loop until it can. Typically, when implementing a spin
lock, you put your thread to sleep for a very brief slice of time with each failed attempt to acquire the
lock. That way, the thread scheduler can give processor time to another thread while you wait. If you
don’t want the thread to sleep but only to release its time slice, you can pass a value of 0 to Thread.Sleep.
Let’s look at an example:

using System;
using System.IO;
using System.Threading;

public class MySpinLock
{
 public MySpinLock(int spinWait) {
 this.spinWait = spinWait;
 }

 public void Enter() {
 while(Interlocked.CompareExchange(ref theLock,
 1,
 0) == 1) {
 // The lock is taken, spin.
 Thread.Sleep(spinWait);
 }
 }

 public void Exit() {
 // Reset the lock.
 Interlocked.Exchange(ref theLock,
 0);
 }

 private volatile int theLock = 0;
 private int spinWait;
}

public class MySpinLockManager : IDisposable
{
 public MySpinLockManager(MySpinLock spinLock) {
 this.spinLock = spinLock;
 spinLock.Enter();
 }

 public void Dispose() {
 spinLock.Exit();
 }

 private MySpinLock spinLock;
}

public class EntryPoint
{
 static private Random rnd = new Random();
 private static MySpinLock logLock = new MySpinLock(10);

CHAPTER 12 ■ THREADING IN C#

384

 private static StreamWriter fsLog =
 new StreamWriter(File.Open("log.txt",
 FileMode.Append,
 FileAccess.Write,
 FileShare.None));

 private static void RndThreadFunc() {
 using(new MySpinLockManager(logLock)) {
 fsLog.WriteLine("Thread Starting");
 fsLog.Flush();
 }

 int time = rnd.Next(10, 200);
 Thread.Sleep(time);

 using(new MySpinLockManager(logLock)) {
 fsLog.WriteLine("Thread Exiting");
 fsLog.Flush();
 }
 }

 static void Main() {
 // Start the threads that wait random time.
 Thread[] rndthreads = new Thread[50];
 for(uint i = 0; i < 50; ++i) {
 rndthreads[i] =
 new Thread(new ThreadStart(
 EntryPoint.RndThreadFunc));
 rndthreads[i].Start();
 }
 }
}

This example is similar to the previous one. It creates 50 threads that wait a random amount of time.
However, instead of managing a thread count, it outputs a line to a log file. This writing is happening
from multiple threads, and instance methods of StreamWriter are not thread-safe, therefore you must do
the writing in a safe manner within the context of a lock. That is where the MySpinLock class comes in.

Internally, it manages a lock variable in the form of an integer, and it uses
Interlocked.CompareExchange to gate access to the lock. The call to Interlocked.CompareExchange in
MySpinLock.Enter is saying

1. If the lock value is equal to 0, replace the value with 1 to indicate that the lock
is taken; otherwise, do nothing.

2. If the value of the slot already contains 1, it’s taken, and you must sleep and
spin.

Both of those items occur in an atomic fashion via the Interlocked class, so there is no possible way
that more than one thread at a time can acquire the lock. When the MySpinLock.Exit method is called, all
it needs to do is reset the lock. However, that must be done atomically as well—hence, the call to
Interlocked.Exchange.

CHAPTER 12 ■ THREADING IN C#

385

■ Note Because the internal lock is represented by an int (which is an Int32), one could simply set the value to

zero in MySpinLock.Exit. However, as mentioned in the previous sidebar, you must be careful if the lock were a

64-bit value and you are running on a 32-bit platform. Therefore, for the sake of example, I err on the side of

caution. What if a maintenance engineer came along and changed the underlying storage from an int to an

IntPtr (which is a pointer sized type, thus storage size is dependent on the platform) and didn’t change the place

where theLock is reset as well?

In this example, I decided to illustrate the use of the disposable/using idiom to implement
deterministic destruction, where you introduce another class—in this case, MySpinLockManager—to
implement the RAII idiom. This saves you from having to remember to write finally blocks all over the
place. Of course, you still have to remember to use the using keyword, but if you follow the idiom more
closely than this example, you would implement a finalizer that could assert in the debug build if it ran
and the object had not been disposed.2

Keep in mind that spin locks implemented in this way are not reentrant. In other words, the lock
cannot be acquired more than once like a critical section or a mutex can, for example. This doesn’t mean
that you cannot use spin locks with recursive programming techniques. It just means that you must
release the lock before recursing, or else suffer a deadlock.

■ Note If you require a reentrant wait mechanism, you can use wait objects that are more structured, such as the

Monitor class, which I cover in the next section, or kernel-based wait objects.

Incidentally, if you’d like to see some fireworks, so to speak, try commenting out the use of the spin
lock in the RndThreadFunc method and run the result several times. You’ll most likely notice the output in
the log file gets a little ugly. The ugliness should increase if you attempt the same test on a
multiprocessor machine.

SpinLock Class
The .NET 4.0 BCL introduced a new type, System.Threading.SpinLock. You should certainly use SpinLock
rather than the MySpinLock class that I used for the sake of the example in the previous section. SpinLock
should be used when you have a reasonable expectation that the thread acquiring it will rarely have to
wait. If the threads using SpinLock have to wait often, efficiency will suffer due to the excessive spinning
these threads will perform. Therefore, when a thread holds a SpinLock, it should hold it for as little time
as possible and avoid blocking on another lock while it holds the SpinLock at all costs. Also, just like
MySpinLock in the previous section, SpinLock cannot be acquired reentrantly. That is, if a thread already

2 Check out Chapter 13 for more information on this technique.

CHAPTER 12 ■ THREADING IN C#

386

owns the lock, attempting to acquire the lock again will throw an exception if you passed true for the
enableThreadOwnerTracking parameter of the SpinLock constructor or it will introduce a deadlock.

■ Note Thread owner tracking in SpinLock is really intended for use in debugging.

There is an old adage in software development that states that early optimization is the root of all
evil. Although this statement is rather harsh sounding and does have notable exceptions, it is a good rule
of thumb to follow. Therefore, you should probably start out using a higher level or heavier, more flexible
locking mechanism that trades efficiency for flexibility. Then, if you determine during testing and
profiling that a fast, lighter weight locking mechanism should be used, then investigate using SpinLock.

■ Caution SpinLock is a value type. Therefore, be very careful to avoid any unintended copying or boxing. Doing

so may introduce unforeseen surprises. If you must pass a SpinLock as a parameter to a method, for example, be

sure to pass it by ref to avoid the extra copy.

To demonstrate how to use SpinLock, I have modified the previous example removing MySpinLock
and replacing it with SpinLock as shown below:

using System;
using System.IO;
using System.Threading;

public class EntryPoint
{
 static private Random rnd = new Random();
 private static SpinLock logLock = new SpinLock(false);
 private static StreamWriter fsLog =
 new StreamWriter(File.Open("log.txt",
 FileMode.Append,
 FileAccess.Write,
 FileShare.None));

 private static void RndThreadFunc() {
 bool lockTaken = false;
 logLock.Enter(ref lockTaken);
 if(lockTaken) {
 try {
 fsLog.WriteLine("Thread Starting");
 fsLog.Flush();
 }
 finally {
 logLock.Exit();
 }

CHAPTER 12 ■ THREADING IN C#

387

 }

 int time = rnd.Next(10, 200);
 Thread.Sleep(time);

 lockTaken = false;
 logLock.Enter(ref lockTaken);
 if(lockTaken) {
 try {
 fsLog.WriteLine("Thread Exiting");
 fsLog.Flush();
 }
 finally {
 logLock.Exit();
 }
 }
 }

 static void Main() {
 // Start the threads that wait random time.
 Thread[] rndthreads = new Thread[50];
 for(uint i = 0; i < 50; ++i) {
 rndthreads[i] =
 new Thread(new ThreadStart(
 EntryPoint.RndThreadFunc));
 rndthreads[i].Start();
 }
 }
}

There are some very important things I want to point out here. First, notice that the call to
SpinLock.Enter takes a ref to a bool. This bool is what indicates whether the lock was taken or not.
Therefore, you much check it after the call to Enter. But most importantly, you must initialize the bool to
false before calling Enter. The SpinLock does not implement IDisposable, therefore, you cannot use it
with a using block, therefore you can see I am using a try/finally construct instead to guarantee proper
clean-up. Had the BCL team implemented IDisposable on SpinLock, it would have been a disaster
waiting to happen. That’s because any time you cast a value type into an instance of an interface it
implements, the value type is boxed. Boxing is highly undesirable for SpinLock instances and should be
avoided.

Monitor Class
In the previous section, I showed you how to implement a spin lock using the methods of the
Interlocked class. A spin lock is not always the most efficient synchronization mechanism, especially if
you use it in an environment where a wait is almost guaranteed. The thread scheduler keeps having to
wake up the thread and allow it to recheck the lock variable. As I mentioned before, a spin lock is ideal
when you need a lightweight, non-reentrant synchronization mechanism and the odds are low that a
thread will have to wait in the first place. When you know the likelihood of waiting is high, you should
use a synchronization mechanism that allows the scheduler to avoid waking the thread until the lock is
available. .NET provides the System.Threading.Monitor class to allow synchronization between threads
within the same process. You can use this class to guard access to certain variables or to gate access to
code that should only be run on one thread at a time.

CHAPTER 12 ■ THREADING IN C#

388

■ Note The Monitor pattern provides a way to ensure synchronization such that only one method, or a block of

protected code, executes at one time. A Mutex is typically used for the same task. However, Monitor is much

lighter and faster. Monitor is appropriate when you must guard access to code within a single process. Mutex is

appropriate when you must guard access to a resource from multiple processes.

One potential source of confusion regarding the Monitor class is that you cannot instantiate an
instance of this class. The Monitor class, much like the Interlocked class, is merely a containing
namespace for a collection of static methods that do the work. If you’re used to using critical sections in
Win32, you know that at some point you must allocate and initialize a CRITICAL_SECTION structure. Then,
to enter and exit the lock, you call the Win32 EnterCriticalSection and LeaveCriticalSection functions.
You can achieve exactly the same task using the Monitor class in the managed environment. To enter
and exit the critical section, you call Monitor.Enter and Monitor.Exit. Whereas you pass a
CRITICAL_SECTION object to the Win32 critical section functions, in contrast, you pass an object reference
to the Monitor methods.

Internally, the CLR manages a sync block for every object instance in the process. Basically, it’s a flag
of sorts, similar to the integer used in the examples of the previous section describing the Interlocked
class. When you obtain the lock on an object, this flag is set. When the lock is released, this flag is reset.
The Monitor class is the gateway to accessing this flag. The versatility of this scheme is that every object
instance in the CLR potentially contains one of these locks. I say potentially because the CLR allocates
them in a lazy fashion, because not every object instance’s lock will be utilized. To implement a critical
section, all you have to do is create an instance of System.Object. Let’s look at an example using the
Monitor class by borrowing from the example in the previous section:

using System;
using System.Threading;

public class EntryPoint
{
 static private readonly object theLock = new Object();
 static private int numberThreads = 0;
 static private Random rnd = new Random();

 private static void RndThreadFunc() {
 // Manage thread count and wait for a
 // random amount of time between 1 and 12
 // seconds.
 Monitor.Enter(theLock);
 try {
 ++numberThreads;
 }
 finally {
 Monitor.Exit(theLock);
 }

 int time = rnd.Next(1000, 12000);
 Thread.Sleep(time);

 Monitor.Enter(theLock);

CHAPTER 12 ■ THREADING IN C#

389

 try {
 --numberThreads;
 }
 finally {
 Monitor.Exit(theLock);
 }
 }

 private static void RptThreadFunc() {
 while(true) {
 int threadCount = 0;
 Monitor.Enter(theLock);
 try {
 threadCount = numberThreads;
 }
 finally {
 Monitor.Exit(theLock);
 }

 Console.WriteLine("{0} thread(s) alive",
 threadCount);
 Thread.Sleep(1000);
 }
 }

 static void Main() {
 // Start the reporting threads.
 Thread reporter =
 new Thread(new ThreadStart(
 EntryPoint.RptThreadFunc));
 reporter.IsBackground = true;
 reporter.Start();

 // Start the threads that wait random time.
 Thread[] rndthreads = new Thread[50];
 for(uint i = 0; i < 50; ++i) {
 rndthreads[i] =
 new Thread(new ThreadStart(
 EntryPoint.RndThreadFunc));
 rndthreads[i].Start();
 }
 }
}

Notice that I perform all access to the numberThreads variable within a critical section in the form of
an object lock. Before each access, the accessor must obtain the lock on the theLock object instance. The
type of theLock field is of type object simply because its actual type is inconsequential. The only thing
that matters is that it is a reference type—that is, an instance of object rather than a value type. You only
need the object instance to utilize its internal sync block, therefore you can just instantiate an object of
type System.Object.

CHAPTER 12 ■ THREADING IN C#

390

■ Tip As a safeguard, you may want to mark the internal lock object readonly as I have done above. This may

prevent you or another developer from inadvertently reassigning theLock with another instance thus wreaking

havoc in the system.

One thing you’ve probably also noticed is that the code is uglier than the version that used the
Interlocked methods. Whenever you call Monitor.Enter, you want to guarantee that the matching
Monitor.Exit executes no matter what. I mitigated this problem in the examples using the MySpinLock
class by wrapping the usage of the Interlocked class methods within a class named MySpinLockManager.
Can you imagine the chaos that could ensue if a Monitor.Exit call was skipped because of an exception?
Therefore, you always want to utilize a try/finally block in these situations. The creators of the C#
language recognized that developers were going through a lot of effort to ensure that these finally
blocks were in place when all they were doing was calling Monitor.Exit. So, they made our lives easier by
introducing the lock keyword. Consider the same example again, this time using the lock keyword:

using System;
using System.Threading;

public class EntryPoint
{
 static private readonly object theLock = new Object();
 static private int numberThreads = 0;
 static private Random rnd = new Random();

 private static void RndThreadFunc() {
 // Manage thread count and wait for a
 // random amount of time between 1 and 12
 // seconds.
 lock(theLock) {
 ++numberThreads;
 }

 int time = rnd.Next(1000, 12000);
 Thread.Sleep(time);

 lock(theLock) {
 —numberThreads;
 }
 }

 private static void RptThreadFunc() {
 while(true) {
 int threadCount = 0;
 lock(theLock) {
 threadCount = numberThreads;
 }

 Console.WriteLine("{0} thread(s) alive",
 threadCount);

CHAPTER 12 ■ THREADING IN C#

391

 Thread.Sleep(1000);
 }
 }

 static void Main() {
 // Start the reporting threads.
 Thread reporter =
 new Thread(new ThreadStart(
 EntryPoint.RptThreadFunc));
 reporter.IsBackground = true;
 reporter.Start();

 // Start the threads that wait random time.
 Thread[] rndthreads = new Thread[50];
 for(uint i = 0; i < 50; ++i) {
 rndthreads[i] =
 new Thread(new ThreadStart(
 EntryPoint.RndThreadFunc));
 rndthreads[i].Start();
 }
 }
}

Notice that the code is much cleaner now, and in fact, there are no more explicit calls to any Monitor
methods at all. Under the hood, however, the compiler is expanding the lock keyword into the familiar
try/finally block with calls to Monitor.Enter and Monitor.Exit. You can verify this by examining the
generated IL code using ILDASM.

In many cases, synchronization implemented internally within a class is as simple as implementing
a critical section in this manner. But when only one lock object is needed across all methods within the
class, you can simplify the model even more by eliminating the extra dummy instance of System.Object
by using the this keyword when acquiring the lock through the Monitor class. You’ll probably come
across this usage pattern often in C# code. Although it saves you from having to instantiate an object of
type System.Object—which is pretty lightweight, I might add—it does come with its own perils. For
example, an external consumer of your object could actually attempt to utilize the sync block within
your object by passing your instance to Monitor.Enter before even calling one of your methods that will
try to acquire the same lock. Technically, that’s just fine, because the same thread can call Monitor.Enter
multiple times. In other words, Monitor locks are reentrant, unlike the spin locks of the previous section.
However, when a lock is released, it must be released by calling Monitor.Exit a matching number of
times. So, now you have to rely upon the consumers of your object to either use the lock keyword or a
try/finally block to ensure that their call to Monitor.Enter is matched appropriately with Monitor.Exit.
Any time you can avoid such uncertainty, do so. Therefore, I recommend against locking via the this
keyword, and I suggest instead using a private instance of System.Object as your lock. You could achieve
the same effect if there were some way to declare the sync block flag of an object private, but alas, that is
not possible.

Beware of Boxing
When you’re using the Monitor methods to implement locking, internally Monitor uses the sync block of
object instances to manage the lock. Because every object instance can potentially have a sync block,
you can use any reference to an object, even an object reference to a boxed value. Even though you can,
you should never pass a value type instance to Monitor.Enter, as demonstrated in the following code
example:

CHAPTER 12 ■ THREADING IN C#

392

using System;
using System.Threading;

public class EntryPoint
{
 static private int counter = 0;

 // NEVER DO THIS !!!
 static private int theLock = 0;

 static private void ThreadFunc() {
 for(int i = 0; i < 50; ++i) {
 Monitor.Enter(theLock);
 try {
 Console.WriteLine(++counter);
 }
 finally {
 Monitor.Exit(theLock);
 }
 }
 }

 static void Main() {
 Thread thread1 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc));
 Thread thread2 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc));
 thread1.Start();
 thread2.Start();
 }
}

If you attempt to execute this code, you will immediately be presented with a
SynchronizationLockException, complaining that an object synchronization method was called from an
unsynchronized block of code. Why does this happen? In order to find the answer, you need to
remember that implicit boxing occurs when you pass a value type to a method that accepts a reference
type. And remember, passing the same value type to the same method multiple times will result in a
different boxing reference type each time. Therefore, the reference object used within the body of
Monitor.Exit is different from the one used inside of the body of Monitor.Enter. This is another example
of how implicit boxing in the C# language can cause you grief. You may have noticed that I used the old
try/finally approach in this example. That’s because the designers of the C# language created the lock
statement such that it doesn’t accept value types. So, if you just stick to using the lock statement for
handling critical sections, you’ll never have to worry about inadvertently passing a boxed value type to
the Monitor methods.

Pulse and Wait
I cannot overstate the utility of the Monitor methods to implement critical sections. However, the
Monitor methods have capabilities beyond that of implementing simple critical sections. You can also
use them to implement handshaking between threads, as well as for implementing queued access to a
shared resource.

CHAPTER 12 ■ THREADING IN C#

393

When a thread has entered a locked region successfully, it can give up the lock and enter a waiting
queue by calling one of the Monitor.Wait overloads where the first parameter to Monitor.Wait is the
object reference whose sync block represents the lock being used and the second parameter is a timeout
value. Monitor.Wait returns a Boolean that indicates whether the wait succeeded or if the timeout was
reached. If the wait succeeded, the result is true; otherwise, it is false. When a thread that calls
Monitor.Wait completes the wait successfully, it leaves the wait state as the owner of the lock again.

■ Note You may want to consult the MSDN documentation for the Monitor class to become familiar with the

various overloads available for Monitor.Wait.

If threads can give up the lock and enter into a wait state, there must be some mechanism to tell the
Monitor that it can give the lock back to one of the waiting threads as soon as possible. That mechanism
is the Monitor.Pulse method. Only the thread that currently holds the lock is allowed to call
Monitor.Pulse. When it’s called, the thread first in line in the waiting queue is moved to a ready queue.
Once the thread that owns the lock releases the lock, either by calling Monitor.Exit or by calling
Monitor.Wait, the first thread in the ready queue is allowed to run. The threads in the ready queue
include those that are pulsed and those that have been blocked after a call to Monitor.Enter.
Additionally, the thread that owns the lock can move all waiting threads into the ready queue by calling
Monitor.PulseAll.

There are many fancy synchronization tasks that you can accomplish using the Monitor.Pulse and
Monitor.Wait methods. For example, consider the following example that implements a handshaking
mechanism between two threads. The goal is to have both threads increment a counter in an alternating
manner:

using System;
using System.Threading;

public class EntryPoint
{
 static private int counter = 0;

 static private object theLock = new Object();

 static private void ThreadFunc1() {
 lock(theLock) {
 for(int i = 0; i < 50; ++i) {
 Monitor.Wait(theLock, Timeout.Infinite);
 Console.WriteLine("{0} from Thread {1}",
 ++counter,
 Thread.CurrentThread.ManagedThreadId);
 Monitor.Pulse(theLock);
 }
 }
 }

 static private void ThreadFunc2() {
 lock(theLock) {
 for(int i = 0; i < 50; ++i) {

CHAPTER 12 ■ THREADING IN C#

394

 Monitor.Pulse(theLock);
 Monitor.Wait(theLock, Timeout.Infinite);
 Console.WriteLine("{0} from Thread {1}",
 ++counter,
 Thread.CurrentThread.ManagedThreadId);
 }
 }
 }

 static void Main() {
 Thread thread1 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc1));
 Thread thread2 =
 new Thread(new ThreadStart(EntryPoint.ThreadFunc2));
 thread1.Start();
 thread2.Start();
 }
}

You’ll notice that the output from this example shows that the threads increment counter in an
alternating fashion. If you’re having trouble understanding the flow from looking at the code above, the
best way to get a feel for it is to actually step through it in a debugger.

As another example, you could implement a crude thread pool using Monitor.Wait and
Monitor.Pulse. It is unnecessary to actually do such a thing, because the .NET Framework offers the
ThreadPool object, which is robust and uses optimized I/O completion ports of the underlying OS. For
the sake of this example, however, I’ll show how you could implement a pool of worker threads that wait
for work items to be queued:

using System;
using System.Threading;
using System.Collections;

public class CrudeThreadPool
{
 static readonly int MaxWorkThreads = 4;
 static readonly int WaitTimeout = 2000;

 public delegate void WorkDelegate();

 public CrudeThreadPool() {
 stop = false;
 workLock = new Object();
 workQueue = new Queue();
 threads = new Thread[MaxWorkThreads];

 for(int i = 0; i < MaxWorkThreads; ++i) {
 threads[i] =
 new Thread(new ThreadStart(this.ThreadFunc));
 threads[i].Start();
 }
 }

 private void ThreadFunc() {

CHAPTER 12 ■ THREADING IN C#

395

 lock(workLock) {
 do {
 if(!stop) {
 WorkDelegate workItem = null;
 if(Monitor.Wait(workLock, WaitTimeout)) {
 // Process the item on the front of the
 // queue
 lock(workQueue.SyncRoot) {
 workItem =
 (WorkDelegate) workQueue.Dequeue();
 }
 workItem();
 }
 }
 } while(!stop);
 }
 }

 public void SubmitWorkItem(WorkDelegate item) {
 lock(workLock) {
 lock(workQueue.SyncRoot) {
 workQueue.Enqueue(item);
 }

 Monitor.Pulse(workLock);
 }
 }

 public void Shutdown() {
 stop = true;
 }

 private Queue workQueue;
 private Object workLock;
 private Thread[] threads;
 private volatile bool stop;
}

public class EntryPoint
{
 static void WorkFunction() {
 Console.WriteLine("WorkFunction() called on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 }

 static void Main() {
 CrudeThreadPool pool = new CrudeThreadPool();
 for(int i = 0; i < 10; ++i) {
 pool.SubmitWorkItem(
 new CrudeThreadPool.WorkDelegate(
 EntryPoint.WorkFunction));
 }

CHAPTER 12 ■ THREADING IN C#

396

 // Sleep to simulate this thread doing other work.
 Thread.Sleep(1000);

 pool.Shutdown();
 }
}

In this case, the work item is represented by a delegate of type WorkDelegate that neither accepts nor
returns any values. When the CrudeThreadPool object is created, it creates a pool of four threads and
starts them running the main work item processing method. That method simply calls Monitor.Wait to
wait for an item to be queued. When SubmitWorkItem is called, an item is pushed into the queue and it
calls Monitor.Pulse to release one of the worker threads. Naturally, access to the queue must be
synchronized. In this case, the reference type used to sync access is the object returned from the queue’s
SyncRoot property. Additionally, the worker threads must not wait forever, because they need to wake up
periodically and check a flag to see if they should shut down gracefully. Optionally, you could simply
turn the worker threads into background threads by setting the IsBackground property inside the
Shutdown method. However, in that case, the worker threads may be shut down before they’re finished
processing their work. Depending on your situation, that may or may not be favorable.

There is a subtle flaw in the example above that prevents CrudeThreadPool from being used widely.
For example, what would happen if items were put into the queue prior to the threads being created in
CrudeThreadPool? As currently written, CrudeThreadPool would lose track of those items in the queue.
That’s because Monitor does not maintain state indicating that Pulse has been called. Therefore, if Pulse
is called before any threads call Wait, then the item will be lost. In this case, it would be better to use an
Semaphore which I cover in a later section.

■ Note Another useful technique for telling threads to shut down is to create a special type of work item that tells

a thread to shut down. The trick is that you need to make sure you push as many of these special work items onto

the queue as there are threads in the pool.

Locking Objects
The .NET Framework offers several high-level locking objects that you can use to synchronize access to
data from multiple threads. I dedicated the previous section entirely to one type of lock: the Monitor.
However, the Monitor class doesn’t implement a kernel lock object; rather, it provides access to the sync
lock of every .NET object instance. Previously in this chapter, I also covered the primitive Interlocked
class methods that you can use to implement spin locks. One reason spin locks are considered so
primitive is that they are not reentrant and thus don’t allow you to acquire the same lock multiple times.
Other higher-level locking objects typically do allow that, as long as you match the number of lock
operations with release operations. In this section, I want to cover some useful locking objects that the
.NET Framework provides.

No matter what type of locking object you use, you should always strive to write code that keeps the
lock for the least time possible. For example, if you acquire a lock to access some data within a method
that could take quite a bit of time to process that data, acquire the lock only long enough to make a copy
of the data on the local stack, and then release the lock as soon as possible. By using this technique, you
will ensure that other threads in your system don’t block for inordinate amounts of time to access the
same data.

CHAPTER 12 ■ THREADING IN C#

397

ReaderWriterLock
When synchronizing access to shared data between threads, you’ll often find yourself in a position
where you have several threads reading, or consuming, the data, while only one thread writes, or
produces, the data. Obviously, all threads must acquire a lock before they touch the data to prevent the
race condition in which one thread writes to the data while another is in the middle of reading it, thus
potentially producing garbage for the reader. However, it seems inefficient for multiple threads that are
merely going to read the data rather than modify it to be locked out from each other. There is no reason
why they should not be able to all read the data concurrently without having to worry about stepping on
each other’s toes.

The ReaderWriterLock elegantly avoids this inefficiency. In a nutshell, it allows multiple readers to
access the data concurrently, but as soon as one thread needs to write the data, everyone except the
writer must get their hands off. ReaderWriterLock manages this feat by using two internal queues. One
queue is for waiting readers, and the other is for waiting writers. Figure 12-2 shows a high-level block
diagram of what the inside of a ReaderWriterLock looks like. In this scenario, four threads are running in
the system, and currently, none of the threads are attempting to access the data in the lock.

Figure 12-2. Unutilized ReaderWriterLock

CHAPTER 12 ■ THREADING IN C#

398

To access the data, a reader calls AcquireReaderLock. Given the state of the lock shown in Figure 12-
2, the reader will be placed immediately into the Lock Owners category. Notice the use of plural here,
because multiple read lock owners can exist. Things get interesting as soon as one of the threads
attempts to acquire the write lock by calling AcquireWriterLock. In this case, the writer is placed into the
writer queue because readers currently own the lock, as shown in Figure 12-3.

Figure 12-3. The writer thread is waiting for ReaderWriterLock

As soon as all of the readers release their lock via a call to ReleaseReaderLock, the writer—in this
case, Thread B—is allowed to enter the Lock Owners region. But, what happens if Thread A releases its
reader lock and then attempts to reacquire the reader lock before the writer has had a chance to acquire
the lock? If Thread A were allowed to reacquire the lock, then any thread waiting in the writer queue
could potentially be starved of any time with the lock. In order to avoid this, any thread that attempts to
require the read lock while a writer is in the writer queue is placed into the reader queue, as shown in
Figure 12-4.

CHAPTER 12 ■ THREADING IN C#

399

Figure 12-4. Reader attempting to reacquire lock

Naturally, this scheme gives preference to the writer queue. That makes sense given the fact that
you’d want any readers to get the most up-to-date information. Of course, had the thread that needs the
writer lock called AcquireWriterLock while the ReaderWriterLock was in the state shown in Figure 12-2, it
would have been placed immediately into the Lock Owners category without having to go through the
writer queue.

The ReaderWriterLock is reentrant. Therefore, a thread can call any one of the lock-acquisition
methods multiple times, as long as it calls the matching release method the same number of times. Each
time the lock is reacquired, an internal lock count is incremented. It should seem obvious that a single
thread cannot own both the reader and the writer lock at the same time, nor can it wait in both queues in
the ReaderWriterLock.

■ Caution If a thread owns the reader lock and then calls AcquireWriterLock with an infinite timeout, that

thread will deadlock waiting on itself to release the reader lock.

It is possible, however, for a thread to upgrade or down-grade the type of lock it owns. For example,
if a thread currently owns a reader lock and calls UpgradeToWriterLock, its reader lock is released no
matter what the lock count is, and then it is placed into the writer queue. The UpgradeToWriterLock
returns an object of type LockCookie. You should hold on to this object and pass it to
DowngradeFromWriterLock when you’re done with the write operation. The ReaderWriterLock uses the
cookie to restore the reader lock count on the object. Even though you can increase the writer lock count
once you’ve acquired it via UpgradeToWriterLock, your call to DowngradeFromWriterLock will release the
writer lock no matter what the write lock count is. Therefore, it’s best that you avoid relying on the writer
lock count within an upgraded writer lock.

CHAPTER 12 ■ THREADING IN C#

400

As with just about every other synchronization object in the .NET Framework, you can provide a
timeout with almost every lock acquisition method. This timeout is given in milliseconds. However,
instead of the methods returning a Boolean to indicate whether the lock was acquired successfully, these
methods throw an exception of type ApplicationException if the timeout expires. So, if you pass in any
timeout value other than Timeout.Infinite to one of these functions, be sure to make the call inside a
try block to catch the potential exception.

ReaderWriterLockSlim
.NET 3.5 introduced a new style of reader/writer lock called ReaderWriterLockSlim. It brings a few
enhancements to the table, including better deadlock protection, efficiency, and disposability. It also
does not support recursion by default, which adds to its efficiency. If you need recursion,
ReaderWriterLockSlim provides an overloaded constructor that accepts a value from the
LockRecursionPolicy enumeration. Microsoft recommends using ReaderWriterLockSlim rather than
ReaderWriterLock for any new development.

With respect to ReaderWriterLockSlim, there are four states that the thread can be in:

• Unheld

• Read mode

• Upgradeable mode

• Write mode

Unheld means that the thread is not attempting to read or write to the resource at all. If a thread is
in read mode, it has read access to the resource after successfully calling the EnterReadLock method.
Likewise, if a thread is in write mode, it has write access to the thread after successfully calling
EnterWriteLock. Just as with ReaderWriterLock, only one thread can be in write mode at a time and while
any thread is in write mode, all threads are blocked from entering read mode. Naturally, a thread
attempting to enter write mode is blocked while any threads still remain in read mode. Once they all exit,
the thread waiting for write mode is released. So what is upgradeable mode?

Upgradeable mode is useful if you have a thread that needs read access to the resource but may also
need write access to the resource. Without upgradeable mode, the thread would need to exit read mode
and then attempt to enter write mode sequentially. During the time when it is in the unheld mode,
another thread could enter read mode, thus stalling the thread attempting to gain the write lock. Only
one thread at a time may be in upgradeable mode, and it enters upgradeable mode via a call to
EnterUpgradeableReadLock. Upgradeable threads may enter read mode or write mode recursively, even
for ReaderWriterLockSlim instances that were created with recursion turned off. In essence, upgradeable
mode is a more powerful form of read mode that allows greater efficiency when entering write mode. If a
thread attempts to enter upgradeable mode and another thread is in write mode or threads are in a
queue to enter write mode, the thread calling EnterUpgradeableReadLock will block until the other thread
has exited write mode and the queued threads have entered and exited write mode. This is identical
behavior to threads attempting to enter read mode.

ReaderWriterLockSlim may throw a LockRecursionException in certain circumstances.
ReaderWriterLockSlim instances don’t support recursion by default, therefore attempting to call
EnterReadLock, EnterWriteLock, or EnterUpgradeableReadLock multiple times from the same thread will
result in one of these exceptions. Additionally, whether the instance supports recursion or not, a thread
that is already in upgradeable mode and attempts to call EnterReadLock or a thread that is in write mode
and attempts to call EnterReadLock could deadlock the system, so a LockRecursionException is thrown in
those cases too.

CHAPTER 12 ■ THREADING IN C#

401

If you’re familiar with the Monitor class, you may recognize the idiom represented in the method
names of ReaderWriterLockSlim. Each time a thread enters a state, it must call one of the
Enter...methods, and each time it leaves that state, it must call one of the corresponding Exit...
methods. Additionally, just like Monitor, ReaderWriterLockSlim provides methods that allow you to try to
enter the lock without potentially blocking forever with methods such as TryEnterReadLock,
TryEnterUpgradeableReadLock, and TryEnterWriteLock. Each of the Try... methods allows you to pass in
a timeout value indicating how long you are willing to wait.

The general guideline when using Monitor is not to use Monitor directly, but rather indirectly
through the C# lock keyword. That’s so that you don’t have to worry about forgetting to call
Monitor.Exit and you don’t have to type out a finally block to ensure that Monitor.Exit is called under
all circumstances. Unfortunately, there is no equivalent mechanism available to make it easier to enter
and exit locks using ReaderWriterLockSlim. Always be careful to call the Exit... method when you are
finished with a lock, and call it from within a finally block so that it gets called even in the face of
exceptional conditions.

Mutex
The Mutex object is a heavier type of lock that you can use to implement mutually exclusive access to a
resource. The .NET Framework supports two types of Mutex implementations. If it’s created without a
name, you get what’s called a local mutex. But if you create it with a name, the Mutex is usable across
multiple processes and implemented using a Win32 kernel object, which is one of the heaviest types of
lock objects. By that, I mean that it is the slowest and carries the most overhead when used to guard a
protected resource from multiple threads. Other lock types, such as the ReaderWriterLock and the
Monitor class, are strictly for use within the confines of a single process. Therefore, for efficiency, you
should only use a Mutex object when you really need to synchronize execution or access to some
resource across multiple processes.

As with other high-level synchronization objects, the Mutex is reentrant. When your thread needs to
acquire the exclusive lock, you call the WaitOne method. As usual, you can pass in a timeout value
expressed in milliseconds when waiting for the Mutex object. The method returns a Boolean that will be
true if the wait is successful, or false if the timeout expired. A thread can call the WaitOne method as
many times as it wants, as long as it matches the calls with the same amount of ReleaseMutex calls.

You can use Mutex objects across multiple processes, but each process needs a way to identify the
Mutex. Therefore, you can supply an optional name when you create a Mutex instance. Providing a name
is the easiest way for another process to identify and open the mutex. Because all Mutex names exist in
the global namespace of the entire operating system, it is important to give the mutex a sufficiently
unique name, so that it won’t collide with Mutex names created by other applications. I recommend
using a name that is based on the string form of a GUID generated by GUIDGEN.exe.

■ Note I mentioned that the names of kernel objects are global to the entire machine. That statement is not

entirely true if you consider Windows fast user switching and Terminal Services. In those cases, the namespace

that contains the name of these kernel objects is instanced for each logged-in user (session). For times when you

really do want your name to exist in the global namespace, you can prefix the name with the special string

“Global\”. For more information, reference Microsoft Windows Internals, Fifth Edition: Including Windows Server

2008 and Windows Vista by Mark E. Russinovich, David A. Solomon, and Alex Ionescu (Microsoft Press, 2009).

CHAPTER 12 ■ THREADING IN C#

402

If everything about the Mutex object sounds strikingly familiar to those of you who are native Win32
developers, that’s because the underlying mechanism is, in fact, the Win32 Mutex object. In fact, you can
get your hands on the actual OS handle via the SafeWaitHandle property inherited from the WaitHandle
base class. I have more to say about the WaitHandle class in the “Win32 Synchronization Objects and
WaitHandle” section, where I discuss its pros and cons. It’s important to note that because you
implement the Mutex using a kernel mutex, you incur a transition to kernel mode any time you
manipulate or wait upon the Mutex. Such transitions are extremely slow and should be minimized if
you’re running time-critical code.

■ Tip Avoid using kernel mode objects for synchronization between threads in the same process if at all possible.

Prefer more lightweight mechanisms, such as the Monitor class or the Interlocked class. When effectively

synchronizing threads between multiple processes, you have no choice but to use kernel objects. On my current

test machine, a simple test showed that using the Mutex took more than 44 times longer than the Interlocked

class and 34 times longer than the Monitor class.

Semaphore
The .NET Framework supports semaphores via the System.Threading.Semaphore class. They are used to
allow a countable number of threads to acquire a resource simultaneously. Each time a thread enters the
semaphore via WaitOne (or any of the other Wait...methods on WaitHandle discussed shortly), the
semaphore count is decremented. When an owning thread calls Release, the count is incremented. If a
thread attempts to enter the semaphore when the count is zero, it will block until another thread calls
Release.

Just as with Mutex, when you create a semaphore, you may or may not provide a name by which
other processes may identify it. If you create it without a name, you end up with a local semaphore that
is only useful within the same process. Either way, the underlying implementation uses a Win32
semaphore kernel object. Therefore, it is a very heavy synchronization object that is slow and inefficient.
You should prefer local semaphores over named semaphore unless you need to synchronize access
across multiple processes for security reasons.

Note that a thread can acquire a semaphore multiple times. However, it or some other thread must
call Release the appropriate number of times to restore the availability count on the semaphore. The
task of matching the Wait...method calls and subsequent calls to Release is entirely up to you. There is
nothing in place to keep you from calling Release too many times. If you do, then when another thread
later calls Release, it could attempt to push the count above the allowable limit, at which point it will
throw a SemaphoreFullException. These bugs are very difficult to find because the point of failure is
disjoint from the point of error.

In the previous section titled “Monitor Class,” I introduced a flawed thread pool named
CrudeThreadPool and described how Monitor is not the best synchronization mechanism to use to
represent the intent of the CrudeThreadPool. Below, I have slightly modified CrudeThreadPool using
Semaphore to demonstrate a more correct CrudeThreadPool. Again, I only show CrudeThreadPool for the
sake of example. You should prefer to use the system thread pool described shortly.

using System;
using System.Threading;
using System.Collections;

CHAPTER 12 ■ THREADING IN C#

403

public class CrudeThreadPool
{
 static readonly int MaxWorkThreads = 4;
 static readonly int WaitTimeout = 2000;

 public delegate void WorkDelegate();

 public CrudeThreadPool() {
 stop = false;
 semaphore = new Semaphore(0, int.MaxValue);
 workQueue = new Queue();
 threads = new Thread[MaxWorkThreads];

 for(int i = 0; i < MaxWorkThreads; ++i) {
 threads[i] =
 new Thread(new ThreadStart(this.ThreadFunc));
 threads[i].Start();
 }
 }

 private void ThreadFunc() {
 do {
 if(!stop) {
 WorkDelegate workItem = null;
 if(semaphore.WaitOne(WaitTimeout)) {
 // Process the item on the front of the
 // queue
 lock(workQueue) {
 workItem =
 (WorkDelegate) workQueue.Dequeue();
 }
 workItem();
 }
 }
 } while(!stop);
 }

 public void SubmitWorkItem(WorkDelegate item) {
 lock(workQueue) {
 workQueue.Enqueue(item);
 }

 semaphore.Release();
 }

 public void Shutdown() {
 stop = true;
 }

 private Semaphore semaphore;
 private Queue workQueue;
 private Thread[] threads;
 private volatile bool stop;

CHAPTER 12 ■ THREADING IN C#

404

}

public class EntryPoint
{
 static void WorkFunction() {
 Console.WriteLine("WorkFunction() called on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 }

 static void Main() {
 CrudeThreadPool pool = new CrudeThreadPool();
 for(int i = 0; i < 10; ++i) {
 pool.SubmitWorkItem(
 new CrudeThreadPool.WorkDelegate(
 EntryPoint.WorkFunction));
 }

 // Sleep to simulate this thread doing other work.
 Thread.Sleep(1000);

 pool.Shutdown();
 }
}

I have highlighted the differences above showing the use of Semaphore.Release to indicate when an
item is in the queue. Release increments the Semaphore count whereas a worker thread successfully
completing a call to WaitOne decrements the semaphore count. By using Sempahore, CrudeThreadPool is
not susceptible to losing work items if they are placed into the queue prior to the threads starting up.
The Semaphore may not go higher than Int32.MaxValue, however, if you have that many items in your
queue and you have enough memory on the machine to support that, then it may indicate an
inefficiently elsewhere.

Events
In the .NET Framework, you can use two types to signal events: ManualResetEvent, AutoResetEvent, and
EventWaitHandle. As with the Mutex object, these event objects map directly to Win32 event objects. If
you’re familiar with using Win32 events, you’ll feel right at home with the .NET event objects. Similar to
Mutex objects, working with event objects incurs a slow transition to kernel mode. Both event types
become signaled when someone calls the Set method on an event instance. At that point, a thread
waiting on the event will be released. Threads wait for an event by calling the inherited WaitOne method,
which is the same method you call to wait on a Mutex to become signaled.

I was careful in stating that a waiting thread is released when the event becomes signaled. It’s
possible that multiple threads could be released when an event becomes signaled. That, in fact, is the
difference between ManualResetEvent and AutoResetEvent. When a ManualResetEvent becomes signaled,
all threads waiting on it are released. It stays signaled until someone calls its Reset method. If any thread
calls WaitOne while the ManualResetEvent is already signaled, then the wait is immediately completed
successfully. On the other hand, AutoResetEvent objects only release one waiting thread and then
immediately reset to the unsignaled state automatically. You can imagine that all threads waiting on the
AutoResetEvent are waiting in a queue, where only the first thread in the queue is released when the
event becomes signaled. However, even though it’s useful to assume that the waiting threads are in a
queue, you cannot make any assumptions about which waiting thread will be released first.
AutoResetEvents are also known as sync events based on this behavior.

CHAPTER 12 ■ THREADING IN C#

405

Using the AutoResetEvent type, you could implement a crude thread pool where several threads wait
on an AutoResetEvent signal to be told that some piece of work is available. When a new piece of work is
added to the work queue, the event is signaled to turn one of the waiting threads loose. Implementing a
thread pool this way is not efficient and comes with its problems. For example, things become tricky to
handle when all threads are busy and work items are pushed into the queue, especially if only one thread
is allowed to complete one work item before going back to the waiting queue. If all threads are busy and,
say, five work items are queued in the meantime, the event will be signaled but no threads will be
waiting. The first thread back into the waiting queue will be released once it calls WaitOne, but the others
will not, even though four more work items exist in the queue. One solution to this problem is not to
allow work items to be queued while all of the threads are busy. That’s not really a solution, because it
defers some of the synchronization logic to the thread attempting to queue the work item by forcing it to
do something appropriate in reaction to a failed attempt to queue a work item. In reality, creating an
efficient thread pool is tricky business, to say the least. Therefore, I recommend you utilize the
ThreadPool class before attempting such a feat. I cover the ThreadPool class in detail in the “Using
ThreadPool” section.

.NET event objects are based on Win32 event objects, thus you can use them to synchronize
execution between multiple processes. Along with the Mutex, they are also more inefficient than an
alternative, such as the Monitor class, because of the kernel mode transition involved. However, the
creators of ManualResetEvent and AutoResetEvent did not expose the ability to name the event objects in
their constructors, as they do for the Mutex object. Therefore, if you need to create a named event, you
should use the EventWaitHandle class introduced in .NET 2.0 instead.

■ Note A new type was introduced in the .NET 4.0 BCL called ManualResetEventSlim, which is a lightweight

lock-free implementation of a manual reset event. However, it may only be used in inter-thread communication

within the same process, that is, intra-process communication. If you must synchronize across multiple processes,

you must use ManualResetEvent or AutoResetEvent instead.

Win32 Synchronization Objects and WaitHandle
In the previous sections, I covered the Mutex, ManualResetEvent, and AutoResetEvent objects, among
others. Each one of these types is derived from WaitHandle, a general mechanism that you can use in the
.NET Framework to manage any type of Win32 synchronization object that you can wait upon. That
includes more than just events and mutexes. No matter how you obtain the Win32 object handle, you
can use a WaitHandle object to manage it. I prefer to use the word manage rather than encapsulate,
because the WaitHandle class doesn’t do a great job of encapsulation, nor was it meant to. It’s simply
meant as a wrapper to help you avoid a lot of direct calls to Win32 via the P/Invoke layer when dealing
with OS handles.

■ Note Take some time to understand when and how to use WaitHandle, because many APIs have yet to be

mapped into the .NET Framework, and many of them may never be.

CHAPTER 12 ■ THREADING IN C#

406

I’ve already discussed the WaitOne method used to wait for an object to become signaled. However,
the WaitHandle class has two handy static methods that you can use to wait on multiple objects. The first
is WaitHandle.WaitAny. You pass it an array of WaitHandle objects, and when any one of the objects
becomes signaled, the WaitAny method returns an integer indexing into the array to the object that
became signaled. The other method is WaitHandle.WaitAll, which, as you can imagine, won’t return
until all of the objects becomes signaled. Both of these methods have defined overloads that accept a
timeout value. In the case of a call to WaitAny that times out, the return value will be equal to the
WaitHandle.WaitTimeout constant. In the case of a call to WaitAll, a Boolean is returned, which is either
true to indicate that all of the objects became signaled, or false to indicate that the wait timed out.

Prior to the existence of the EventWaitHandle class in .NET 2.0, in order to get a named event, one
had to create the underlying Win32 object and then wrap it with a WaitHandle, as I’ve done in the
following example:

using System;
using System.Threading;
using System.Runtime.InteropServices;
using System.ComponentModel;
using Microsoft.Win32.SafeHandles;

public class NamedEventCreator
{
 [DllImport("KERNEL32.DLL", EntryPoint="CreateEventW",
 SetLastError=true)]
 private static extern SafeWaitHandle CreateEvent(
 IntPtr lpEventAttributes,
 bool bManualReset,
 bool bInitialState,
 string lpName);

 public static AutoResetEvent CreateAutoResetEvent(
 bool initialState,
 string name) {
 // Create named event.
 SafeWaitHandle rawEvent = CreateEvent(IntPtr.Zero,
 false,
 initialState,
 name);
 if(rawEvent.IsInvalid) {
 throw new Win32Exception(
 Marshal.GetLastWin32Error());
 }

 // Create a managed event type based on this handle.
 AutoResetEvent autoEvent = new AutoResetEvent(false);

 // Must clean up handle currently in autoEvent
 // before swapping it with the named one.
 autoEvent.SafeWaitHandle = rawEvent;

 return autoEvent;
 }
}

CHAPTER 12 ■ THREADING IN C#

407

Here I’ve used the P/Invoke layer to call down into the Win32 CreateEventW function to create a
named event. Several things are worth noting in this example. For instance, I’ve completely punted on
the Win32 handle security, just as the rest of the .NET Framework standard library classes tend to do.
Therefore, the first parameter to CreateEvent is IntPtr.Zero, which is the best way to pass a NULL pointer
to the Win32 error for the LPSECURITY_ATTRIBUTES parameter. Notice that you detect the success or
failure of the event creation by testing the IsInvalid property on the SafeWaitHandle. When you detect
this value, you throw a Win32Exception type. You then create a new AutoResetEvent to wrap the raw
handle just created. WaitHandle exposes a property named SafeWaitHandle, whereby you can modify the
underlying Win32 handle of any WaitHandle derived type.

■ Note You may have noticed the legacy Handle property in the documentation. You should avoid this property,

because reassigning it with a new kernel handle won’t close the previous handle, thus resulting in a resource leak

unless you close it yourself. You should use SafeHandle derived types instead. The SafeHandle type also uses

constrained execution regions to guard against resource leaks in the event of an asynchronous exception such as

ThreadAbortException. You can read more about constrained execution regions in Chapter 7.

In the previous example, you can see that I declared the CreateEvent method to return a SafeWaitHandle.

Although it’s not obvious from the documentation of SafeWaitHandle, it has a private default constructor that the

P/Invoke layer is capable of using to create and initialize an instance of this class.

Be sure to check out the rest of the SafeHandle derived types in the Microsoft.Win32.SafeHandles namespace.

Specifically, the .NET 2.0 Framework introduced SafeHandleMinusOneIsInvalid and

SafeHandleZeroOrMinusOneIsInvalid for convenience when defining your own Win32-based SafeWaitHandle

derivatives. These are useful because, unfortunately, various subsections of the Win32 API use different return

handle values to represent failure conditions.

Be aware that the WaitHandle type implements the IDisposable interface. Therefore, you want to
make judicious use of the using keyword in your code whenever using WaitHandle instances or instances
of any of the classes that derive from it, such as Mutex, AutoResetEvent, and ManualResetEvent.

One last thing that you need to be aware of when using WaitHandle objects and those objects that
derive from the type is that you cannot abort or interrupt managed threads in a timely manner when
they’re blocked via a method to WaitHandle. Because the actual OS thread that is running under the
managed thread is blocked inside the OS—thus outside of the managed execution environment—it can
only be aborted or interrupted as soon as it reenters the managed environment. Therefore, if you call
Abort or Interrupt on one of those threads, the operation will be pended until the thread completes the
wait at the OS level. You want to be cognizant of this when you block using a WaitHandle object in
managed threads.

Using ThreadPool
A thread pool is ideal in a system where small units of work are performed regularly in an asynchronous
manner. A good example is a web server or any other kind of server listening for requests on a port.

CHAPTER 12 ■ THREADING IN C#

408

When a request comes in, a new thread is given the request and processes it. The server achieves a high
level of concurrency and optimal utilization by servicing these requests in multiple threads. Typically,
the slowest operation on a computer is an I/O operation. Storage devices, such as hard drives, are very
slow in comparison to the processor and its ability to access memory. Therefore, to make optimal use of
the system, you want to begin other work items while it’s waiting on an I/O operation to complete in
another thread. Creating a thread pool to manage such a system is an amazing task fraught with many
details and pitfalls. However, the .NET environment exposes a prebuilt, ready-to-use thread pool via the
ThreadPool class.

The ThreadPool class is similar to the Monitor and Interlocked classes in the sense that you cannot
actually create instances of the ThreadPool class. Instead, you use the static methods of the ThreadPool
class to manage the thread pool that each process gets by default in the CLR. In fact, you don’t even have
to worry about creating the thread pool. It gets created when it is first used. If you have used thread
pools in the Win32 world, whether it be via the system thread pool that was introduced in Windows 2000
or via I/O completion ports, you’ll notice that the .NET thread pool is the same beast with a managed
interface placed on top of it.

To queue an item to the thread pool, you simply call ThreadPool.QueueUserWorkItem, passing it an
instance of the WaitCallback delegate. The thread pool gets created the first time your process calls this
function. The callback method that is represented by the WaitCallback delegate accepts a reference to a
System.Object instance and has a return type of void. The object reference is an optional context object
that the caller can supply to an overload of QueueUserWorkItem. If you don’t provide a context, the
context reference will be null. Once the work item is queued, a thread in the thread pool will execute the
callback as soon as it becomes available. Once a work item is queued, it cannot be removed from the
queue except by a thread that will complete the work item. So if you need to cancel a work item, you
must craft a way to let your callback know that it should do nothing once it gets called.

The thread pool is tuned to keep the machine processing work items in the most efficient way
possible. It uses an algorithm based upon how many CPUs are available in the system to determine how
many threads to create in the pool. However, even once it computes how many threads to create, the
thread pool may, at times, contain more threads than originally calculated. For example, suppose the
algorithm decides that the thread pool should contain four threads. Then, suppose the server receives
four requests that access a backend database that takes some time. If a fifth request comes in during this
time, no threads will be available to dispatch the work item. What’s worse, the four busy threads are just
sitting around waiting for the I/O to complete. In order to keep the system running at peak performance,
the thread pool will actually create another thread when it knows all of the others are blocking. After the
work items have all been completed and the system is in a steady state again, the thread pool will then
kill off any extra threads created like this. Even though you cannot easily control how many threads are
in a thread pool, you can easily control the minimum number of threads that are idle in the pool waiting
for work via calls to GetMinThreads and SetMinThreads.

I urge you to read the details of the System.Threading.ThreadPool static methods in the MSDN
documentation if you plan to deal directly with the thread pool. In reality, it’s rare that you’ll ever need
to insert work items directly into the thread pool. There is another, more elegant, entry point into the
thread pool via delegates and asynchronous procedure calls, which I cover in the next section.

Asynchronous Method Calls
Although you can manage the work items put into the thread pool directly via the ThreadPool class, a
more popular way to employ the thread pool is via asynchronous delegate calls. When you declare a
delegate, the CLR defines a class for you that derives from System.MulticastDelegate. One of the
methods defined is the Invoke method, which takes exactly the same function signature as the delegate
definition. The C# language, of course, offers a syntactical shortcut to calling the Invoke method. But
along with Invoke, the CLR also defines two methods, BeginInvoke and EndInvoke, that are at the heart of
the asynchronous processing pattern used throughout the CLR. This pattern is similar to the IOU pattern
introduced earlier in the chapter.

CHAPTER 12 ■ THREADING IN C#

409

The basic idea is probably evident from the names of the methods. When you call the BeginInvoke
method on the delegate, the operation is pended to be completed in another thread. When you call the
EndInvoke method, the results of the operation are given back to you. If the operation has not completed
at the time you call EndInvoke, the calling thread blocks until the operation is complete. Let’s look at a
short example that shows the general pattern in use. Suppose you have a method that computes your
taxes for the year, and you want to call it asynchronously because it could take a reasonably long amount
of time to do:

using System;
using System.Threading;

public class EntryPoint
{
 // Declare the delegate for the async call.
 private delegate Decimal ComputeTaxesDelegate(int year);

 // The method that computes the taxes.
 private static Decimal ComputeTaxes(int year) {
 Console.WriteLine("Computing taxes in thread {0}",
 Thread.CurrentThread.ManagedThreadId);

 // Here's where the long calculation happens.
 Thread.Sleep(6000);

 // You owe the man.
 return 4356.98M;
 }

 static void Main() {
 // Let's make the asynchronous call by creating
 // the delegate and calling it.
 ComputeTaxesDelegate work =
 new ComputeTaxesDelegate(EntryPoint.ComputeTaxes);
 IAsyncResult pendingOp = work.BeginInvoke(2004,
 null,
 null);

 // Do some other useful work.
 Thread.Sleep(3000);

 // Finish the async call.
 Console.WriteLine("Waiting for operation to complete.");
 Decimal result = work.EndInvoke(pendingOp);

 Console.WriteLine("Taxes owed: {0}", result);
 }
}

The first thing you will notice with the pattern is that the BeginInvoke method’s signature does not
match that of the Invoke method. That’s because you need some way to identify the particular work item
that you just pended with the call to BeginInvoke. Therefore, BeginInvoke returns a reference to an object
that implements the IAsyncResult interface. This object is like a cookie that you can hold on to so that
you can identify the work item in progress. Through the methods on the IAsyncResult interface, you can

CHAPTER 12 ■ THREADING IN C#

410

check on the status of the operation, such as whether it is completed. I’ll discuss this interface in more
detail in a bit, along with the extra two parameters added onto the end of the BeginInvoke method
declaration for which I’m passing null. When the thread that requested the operation is finally ready for
the result, it calls EndInvoke on the delegate. However, because the method must have a way to identify
which asynchronous operation to get the results for, you must pass in the object that you got back from
the BeginInvoke method. In this example, you’ll notice the call to EndInvoke blocking for some time as
the operation completes.

■ Note If an exception is generated while the delegate’s target code is running asynchronously in the thread pool,

the exception is rethrown when the initiating thread makes a call to EndInvoke.

Part of the beauty of the IOU asynchronous pattern that delegates implement is that the called code
doesn’t even need to be aware of the fact that it’s getting called asynchronously. Of course, it’s rarely
practical to call a method asynchronously when it was never designed to be, if it touches data in the
system that other methods touch without using any synchronization mechanisms. Nonetheless, the
headache of creating an asynchronous calling infrastructure around the method has been mitigated by
the delegate generated by the CLR, along with the per-process thread pool. Moreover, the initiator of the
asynchronous action doesn’t even need to be aware of how the asynchronous behavior is implemented.

Now let’s look a little closer at the IAsyncResult interface for the object returned from the
BeginInvoke method. The interface declaration looks like the following:

public interface IAsyncResult
{
 Object AsyncState { get; }
 WaitHandle AsyncWaitHandle { get; }
 bool CompletedSynchronously { get; }
 bool IsCompleted { get; }
}

In the previous example, I chose to wait for the computation to finish by calling EndInvoke. I could
have instead waited on the WaitHandle returned by the IAsyncResult.AsyncWaitHandle property before
calling EndInvoke. The end result would have been the same in this case. However, the fact that the
IAsyncResult interface exposes the WaitHandle allows you to have multiple threads in the system wait for
this one action to complete if they needed to.

Two other properties allow you to query whether the operation has completed. The IsCompleted
property simply returns a Boolean representing the fact. You could construct a polling loop that checks
this flag repeatedly. However, that would be much more inefficient than just waiting on the WaitHandle.
Nonetheless, it is there if you need it. Another Boolean property is CompletedSynchronously. The
asynchronous processing pattern in the .NET Framework provides for the option that the call to
BeginInvoke could actually choose to process the work synchronously rather than asynchronously. The
CompletedSynchronously property allows you to determine if this happened. As it is currently
implemented, the CLR will never do such a thing when delegates are called asynchronously, but this
could change at any time. However, because it is recommended that you apply this same asynchronous
pattern whenever you design a type that can be called asynchronously, the capability was built into the
pattern. For example, suppose you have a class where a method to process generalized operations
synchronously is supported. If one of those operations simply returns the version number of the class,
then you know that operation can be done quickly, and you may choose to perform it synchronously.

CHAPTER 12 ■ THREADING IN C#

411

Finally, the AsyncState property of IAsyncResult allows you to attach any type of specific context
data to an asynchronous call. This is the last of the extra two parameters added at the end of the
BeginInvoke signature. In my previous example, I passed in null because I didn’t need to use it.

Although I chose to harvest the result of the operation via a call to EndInvoke, thus blocking the
thread, I could have chosen to be notified via a callback. Consider the following modifications to the
previous example:

using System;
using System.Threading;

public class EntryPoint
{
 // Declare the delegate for the async call.
 private delegate Decimal ComputeTaxesDelegate(int year);

 // The method that computes the taxes.
 private static Decimal ComputeTaxes(int year) {
 Console.WriteLine("Computing taxes in thread {0}",
 Thread.CurrentThread.ManagedThreadId);

 // Here's where the long calculation happens.
 Thread.Sleep(6000);

 // You owe the man.
 return 4356.98M;
 }

 private static void TaxesComputed(IAsyncResult ar) {
 // Let' get the results now.
 ComputeTaxesDelegate work =
 (ComputeTaxesDelegate) ar.AsyncState;

 Decimal result = work.EndInvoke(ar);
 Console.WriteLine("Taxes owed: {0}", result);
 }

 static void Main() {
 // Let's make the asynchronous call by creating
 // the delegate and calling it.
 ComputeTaxesDelegate work =
 new ComputeTaxesDelegate(EntryPoint.ComputeTaxes);
 work.BeginInvoke(2004,
 new AsyncCallback(
 EntryPoint.TaxesComputed),
 work);

 // Do some other useful work.
 Thread.Sleep(3000);

 Console.WriteLine("Waiting for operation to complete.");

 // Only using sleep for the sake of example!!!
 // In reality, you would want to wait for an event

CHAPTER 12 ■ THREADING IN C#

412

 // to get set or something similar.
 Thread.Sleep(4000);
 }
}

Now, instead of calling EndInvoke from the thread that called BeginInvoke, I’m requesting that the
thread pool call the TaxesComputed method via an instance of the AsyncCallback delegate that I passed in
as the second-to-last parameter of BeingInvoke. The IAsyncCallback delegate references a method that
accepts a single parameter of type IAsyncResult and returns void. Using a callback to process the result
completes the asynchronous processing pattern by allowing the thread that started the operation to
continue to work without ever having to explicitly wait on the worker thread. Notice that the
TaxesComputed callback method must still call EndInvoke to harvest the results of the asynchronous call.
In order to do that, though, it must have an instance of the delegate. That’s where the
IAsyncResult.AsyncState context object comes in handy.

In my example, I initialize it to point to the delegate by passing the delegate as the last parameter to
BeginInvoke. The main thread that calls BeginInvoke has no need for the object returned by the call,
because it never actively polls the state of the operation, nor does it wait explicitly for the operation to
complete. The added sleep at the end of the Main method is there for the sake of the example.
Remember, all threads in the thread pool run as background threads. Therefore, if you don’t wait at this
point, the process would exit long before the operation completes. If you need asynchronous work to
occur in a foreground thread, it is best to create a new class that implements the asynchronous pattern
of BeingInvoke/EndInvoke and use a foreground thread to do the work. Never change the background
status of a thread in the thread pool via the IsBackground property on the current thread. Even if you try,
you’ll find that it has no effect.

■ Note It’s important to realize that when your asynchronous code is executing and when the callback is

executing, you are running in an arbitrary thread context. You cannot make any assumptions about which thread is

running your code. In many respects, this technique is similar to driver development on Windows platforms.

Using a callback to handle the completion of a work item is very handy when creating a server
process that will handle incoming requests. For example, suppose you have a process that listens on a
specific TCP/IP port for an incoming request. When it receives one, it replies with the requested
information. To achieve high utilization, you definitely want to pend these operations asynchronously.
Consider the following example that listens on port 1234 and when it receives anything at all, it simply
replies with “Hello World!”:

using System;
using System.Text;
using System.Threading;
using System.Net;
using System.Net.Sockets;

public class EntryPoint {
 private const int ConnectQueueLength = 4;
 private const int ListenPort = 1234;

 static void ListenForRequests() {
 Socket listenSock =

CHAPTER 12 ■ THREADING IN C#

413

 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 listenSock.Bind(new IPEndPoint(IPAddress.Any,
 ListenPort));
 listenSock.Listen(ConnectQueueLength);

 while(true) {
 using(Socket newConnection = listenSock.Accept()) {
 // Send the data.
 byte[] msg =
 Encoding.UTF8.GetBytes("Hello World!");
 newConnection.Send(msg, SocketFlags.None);
 }
 }
 }

 static void Main() {
 // Start the listening thread.
 Thread listener = new Thread(
 new ThreadStart(
 EntryPoint.ListenForRequests));
 listener.IsBackground = true;
 listener.Start();

 Console.WriteLine("Press <enter> to quit");
 Console.ReadLine();
 }
}

This example creates an extra thread that simply loops around listening for incoming connections
and servicing them as soon as they come in. The problems with this approach are many. First, only one
thread handles the incoming connections. If the connections are flying in at a rapid rate, it will quickly
become overwhelmed. Think about a web server that could easily see thousands of requests per second.

As it turns out, the Socket class implements the asynchronous calling pattern of the .NET
Framework. Using the pattern, you can make the server a little bit better by servicing the incoming
requests using the thread pool, as follows:

using System;
using System.Text;
using System.Threading;
using System.Net;
using System.Net.Sockets;

public class EntryPoint {
 private const int ConnectQueueLength = 4;
 private const int ListenPort = 1234;

 static void ListenForRequests() {
 Socket listenSock =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

CHAPTER 12 ■ THREADING IN C#

414

 listenSock.Bind(new IPEndPoint(IPAddress.Any,
 ListenPort));
 listenSock.Listen(ConnectQueueLength);

 while(true) {
 Socket newConnection = listenSock.Accept();
 byte[] msg = Encoding.UTF8.GetBytes("Hello World!");
 newConnection.BeginSend(msg,
 0, msg.Length,
 SocketFlags.None,
 null, null);
 }
 }

 static void Main() {
 // Start the listening thread.
 Thread listener = new Thread(
 new ThreadStart(
 EntryPoint.ListenForRequests));
 listener.IsBackground = true;
 listener.Start();

 Console.WriteLine("Press <enter> to quit");
 Console.ReadLine();
 }
}

The server is becoming a little more efficient, because it is now sending the data to the incoming
connection from a thread in the thread pool. This code also demonstrates a fire-and-forget strategy
when using the asynchronous pattern. The caller is not interested in the return object that implements
IAsyncResult, nor is it interested in setting a callback method to get called when the work completes.
This fire-and-forget call is a valiant attempt to make the server more efficient. However, the result is less
than satisfactory, because the using statement from the previous incarnation of the server is gone. The
Socket is not closed in a timely manner, and the remote connections are held open until the GC gets
around to finalizing the Socket objects. Therefore, the asynchronous call needs to include a callback in
order to close the connection. It wouldn’t make sense for the listening thread to wait on the EndSend
method, as that would put you back in the same inefficiency boat you were in before.

■ Note When you get an object that implements IAsyncResult back from starting an asynchronous operation,

that object must implement the IAsyncResult.AsyncWaitHandle property to allow users to obtain a handle they

can wait on. In the case of Socket, an instance of OverlappedAsyncResult is returned. That class ultimately

derives from System.Net.LazyAsyncResult. It doesn’t actually create the event to wait on until someone

accesses it via the IAsyncResult.AsyncWaitHandle property. This lazy creation spares the burden of creating a

lock object that goes unused most of the time. Also, it is the responsibility of the OverlappedAsyncResult object

to close the OS handle when it is finished with it.

CHAPTER 12 ■ THREADING IN C#

415

However, before getting to the callback, consider the listening thread for a moment. All it does is
spin around listening for incoming requests. Wouldn’t it be more efficient if the server were to use the
thread pool to handle the listening too? Of course it would! So, now, let me present the new and
improved “Hello World!” server that makes full use of the process thread pool:

using System;
using System.Text;
using System.Threading;
using System.Net;
using System.Net.Sockets;

public class EntryPoint {
 private const int ConnectQueueLength = 4;
 private const int ListenPort = 1234;
 private const int MaxConnectionHandlers = 4;

 private static void HandleConnection(IAsyncResult ar) {
 Socket listener = (Socket) ar.AsyncState;

 Socket newConnection = listener.EndAccept(ar);
 byte[] msg = Encoding.UTF8.GetBytes("Hello World!");
 newConnection.BeginSend(msg,
 0, msg.Length,
 SocketFlags.None,
 new AsyncCallback(
 EntryPoint.CloseConnection),
 newConnection);

 // Now queue another accept.
 listener.BeginAccept(
 new AsyncCallback(EntryPoint.HandleConnection),
 listener);
 }

 static void CloseConnection(IAsyncResult ar) {
 Socket theSocket = (Socket) ar.AsyncState;
 theSocket.Close();
 }

 static void Main() {
 Socket listenSock =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 listenSock.Bind(new IPEndPoint(IPAddress.Any,
 ListenPort));
 listenSock.Listen(ConnectQueueLength);

 // Pend the connection handlers.
 for(int i = 0; i < MaxConnectionHandlers; ++i) {
 listenSock.BeginAccept(
 new AsyncCallback(EntryPoint.HandleConnection),
 listenSock);

CHAPTER 12 ■ THREADING IN C#

416

 }

 Console.WriteLine("Press <enter> to quit");
 Console.ReadLine();
 }
}

Now, the “Hello World” server is making full use of the process thread pool and can handle
incoming client requests with the best concurrency. Incidentally, testing the connection is fairly simple
using the built-in Windows Telnet client. Simply run Telnet from a command prompt or from the
Start~TRA Run dialog, and at the prompt enter the following command to connect to port 1234 on the
local machine while the server process is running in another command window:

Microsoft Telnet> open 127.0.0.1 1234

Timers
Yet another entry point into the thread pool is via Timer objects in the System.Threading namespace. As
the name implies, you can arrange for the thread pool to call a delegate at a specific time as well as at
regular intervals. Let’s look at an example of how to use a Timer object:

using System;
using System.Threading;

public class EntryPoint
{
 private static void TimerProc(object state) {
 Console.WriteLine("The current time is {0} on thread {1}",
 DateTime.Now,
 Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(3000);
 }

 static void Main() {
 Console.WriteLine("Press <enter> when finished\n\n");

 Timer myTimer =
 new Timer(new TimerCallback(EntryPoint.TimerProc),
 null,
 0,
 2000);

 Console.ReadLine();
 myTimer.Dispose();
 }
}

When the timer is created, you must give it a delegate to call at the required time. Therefore, I’ve
created a TimerCallback delegate that points back to the static TimerProc method. The second parameter
to the Timer constructor is an arbitrary state object that you can pass in. When your timer callback is
called, this state object is passed to the timer callback. In my example, I have no need for a state object,
so I just pass null. The last two parameters to the constructor define when the callback gets called. The

CHAPTER 12 ■ THREADING IN C#

417

second-to-last parameter indicates when the timer should fire for the first time. In my example, I pass 0,
which indicates that it should fire immediately. The last parameter is the period at which the callback
should be called. In my example, I’ve asked for a two-second period. If you don’t want the timer to be
called periodically, pass Timeout.Infinite as the last parameter. Finally, to shut down the timer, simply
call its Dispose method.

In my example, you may wonder why I have the Sleep call inside the TimerProc method. It’s there
just to illustrate a point, and that is that an arbitrary thread calls the TimerProc. Therefore, any code that
executes as a result of your TimerCallback delegate must be thread-safe. In my example, the first thread
in the thread pool to call TimerProc sleeps longer than the next timeout, so the thread pool calls the
TimerProc method two seconds later on another thread, as you can see in the generated output. You
could really cause some strain on the thread pool if you were to notch up the sleep in the TimerProc.

■ Note If you’ve ever used the Timer class in the System.Windows.Forms namespace, you must realize that it’s a

completely different beast than the Timer class in the System.Threading namespace. For one, the Forms.Timer

is based upon Win32 Windows messaging—namely, the WM_TIMER message. One handy quality of the

Forms.Timer is that its timer callback is always called on the same thread. However, the only way that happens in

the first place is if the UI thread that the timer is a part of has an underlying UI message pump. If the pump stalls,

so do the Forms.Timer callbacks. So, naturally, the Threading.Timer is more powerful in the sense that it

doesn’t suffer from this dependency. However, the drawback is that you must code your Threading.Timer

callbacks in a thread-safe manner.

Concurrent Programming
During the 1990s, most personal computers typically had only one processor and processor speeds were
increasing at a steady clip as each newer processor was released. With that speed increase came faster
response times whether or not the software running on them was multithreaded. However, today, that
processor speed curve has slowed and instead, processor power increases come in the form of multiple
cores. At the time of this writing, Intel has a consumer processor on the market with eight cores.

To realize a speed gain via the addition of processors or cores requires a different style of software
development where the emphasis is on concurrency. Naturally, concurrent applications are highly
multithreaded and are therefore tremendously complex. Development takes more time and attention to
detail as does the testing of those systems. In order to mitigate the added complexity, a flexible and
highly tuned library is necessary in order to facilitate concurrent programming. The Parallel Computing
Platform team at Microsoft delivered with the Parallel Extensions and the Task Parallel Library (TPL)
which are incorporated into the .NET 4.0 BCL.

■ Note If you are interested in becoming familiar with the intricacies of concurrent and lock-free programming for

both native and .NET development, I highly recommend Concurrent Programming on Windows by Joe Duffy

(Boston, MA: Addison Wesley, 2009).

CHAPTER 12 ■ THREADING IN C#

418

You really should become familiar with the TPL because it greatly reduces the amount of work you
need to do to interact with the thread pool and create robust concurrent programs. Concurrent
programs written against the TPL also scale automatically to platforms that contain many processors
without having to be recompiled. The TPL is spread across the System.Threading and
System.Threading.Tasks namespaces.

Full coverage of the Parallel Extensions and TPL are beyond the scope of this book, however, I want
to give you enough to whet your appetite for them.

■ Note When using the Parallel Extensions and TPL, it feels more natural and programmatically expressive to use

lambda expressions to define the various delegates passed into the library. Therefore, if you are not comfortable

with lambda expressions in code, you may want to skip this section and its subsections until you get a chance to

read Chapter 15.

Task Class
The Task class is arguably the workhorse of the TPL. In the section titled “Asynchronous Method Calls”
previously in this chapter, I explained how to use BeginInvoke and EndInvoke to schedule work to be
completed asynchronously in the CLR thread pool. The Task class makes that job even easier and it is
even more efficient than using the CLR thread pool. The Parallel Computing Platform team has put quite
a bit of work into the TPL to remove as many locks as possible relying on lock-free synchronization
techniques. The results are impressive indeed.

To get an idea of what you can do with the Task class, I will borrow from the socket example from
previous sections. Consider the following modification to the asynchronous socket example that only
accepts one connection and simply sends “Hello World!” to the client when it connects.

using System;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Net;
using System.Net.Sockets;

public class EntryPoint {
 private const int ConnectQueueLength = 4;
 private const int ListenPort = 1234;

 static void Main() {
 var doneEvent = new ManualResetEventSlim();

 // Create task to listen on a socket.
 Socket listenSock = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 Socket connection = null;

 try {
 Task listenTask = null;

CHAPTER 12 ■ THREADING IN C#

419

 listenTask = Task.Factory.StartNew(() => {
 listenSock.Bind(new IPEndPoint(IPAddress.Any,
 ListenPort));
 listenSock.Listen(ConnectQueueLength);
 connection = listenSock.Accept();

 listenTask.ContinueWith((previousTask) => {
 byte[] msg = Encoding.UTF8.GetBytes("Hello World!");
 connection.Send(msg, SocketFlags.None);
 connection.Close();
 doneEvent.Set();
 });
 });

 Console.WriteLine("Waiting for task to complete...");
 doneEvent.Wait();
 }
 catch(AggregateException e) {
 Console.WriteLine(e);
 }

 listenSock.Close();
 }
}

There are many things to point out in this example.

• Notice how the lambda expressions allow you to fluidly express what it is you want
the task to do by allowing you to easily create a delegate on the fly and pass it into
the TaskFactory.StartNew() method.

• The first Task, listenTask handles the operation of listening for the incoming
connection and I created it using the TaskFactory accessed through the static
property Task.Factory. I could have created the Task in stages and then called
Start on it, however, if you have no reason to do so, TaskFactory.StartNew is more
efficient. But notice how I have chained a task with ContinueWith on the initial task
and passed yet another Task. ContinueWith allows you to easily chain Tasks.
There are overloads of ContinueWith that you should explore in MSDN, but by
default, it will only schedule the continuation task once the previous task has
completed. Also, notice how ContinueWith passes the previousTask to the
continuation Task instance’s delegate. In this case, I want the continuation task to
send “Hello World!” through the socket once the connection is made.

CHAPTER 12 ■ THREADING IN C#

420

• Finally, notice how I have wrapped the Task usage within a try/catch block where
the catch block catches exceptions of type AggregateException.
AggregateException is a new type introduced with the TPL for catching exceptions
from multiple asynchronous and related tasks. This is because both listenTask
and the continuation could both generate exceptions. So AggregateException
allows you to catch a collection of exceptions3.

Parallel Class
The System.Threading.Parallel class consists of a collection of static methods where you can easily
transform a traditionally non-parallel task into a parallel one. For example, the Parallel class contains
methods one can use to replace for loops or foreach loops with concurrent for loops where instead of
iterating over each item in a serialized manner, each iteration is dispatched to the thread pool where it is
performed concurrently. There is actually much more to it than that, but going into the finer details of
how the Parallel Extensions library for .NET performs its work is beyond the scope of this book.
Naturally, not all for and foreach loops can be blindly replaced with concurrent for loops. The code
within the for loop must be capable of being parallelized and each iteration must be sufficiently
independent from other iterations.

Let me show an example, while at the same time describing how enabling concurrency is not as easy
as flipping a switch. Consider the following example code which is not parallel. This is the code we will
be parallelizing later in this section.

using System;
using System.Numerics;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Concurrent;

class EntryPoint
{
 const int FactorialsToCompute = 2000;

 static void Main() {
 var numbers = new ConcurrentDictionary<BigInteger, BigInteger>(4,
FactorialsToCompute);

 // Create a factorial delegate.
 Func<BigInteger, BigInteger> factorial = null;
 factorial = (n) => (n == 0) ? 1 : n * factorial(n-1);

 // Now compute the factorial of the list.
 for(ulong i = 0; i < FactorialsToCompute; ++i) {
 numbers[i] = factorial(i);
 }

3 For more information on AggregateException, I encourage you to read Stephen Toub’s article “Aggregating
Exceptions” in the August 2009 MSDN Magazine.

CHAPTER 12 ■ THREADING IN C#

421

 }
}

This example code computes the first 2000 factorials and stores the results in a dictionary. The
factorial operation is a sufficiently complex algorithm for demonstration and, in this example, we should
not blow out the stack during the recursive computation.

■ Caution Be wary of recursive computations such as these because you can inadvertently blow out the stack

leading to a StackOverflowException. In Chapter 15, I cover a concept known as Memoization that one can use

to avoid that situation in recursive functions like factorial.

The factorial computations above will quickly overflow any of the native integer types, therefore, I
must use the BigInteger type introduced in .NET 4.0 for this example. Also, notice that I have created an
instance of ConcurrentDictionary to store the results. ConcurrentDictionary is one of the collection
types in the System.Collections.Concurrent namespace introduced in .NET 4.0. The concurrent
collections are optimized for concurrency as they use locks very conservatively and only if necessary,
thus maximizing performance and reducing contention in concurrent environments. Even though the
code above is not concurrent, I am using ConcurrentDictionary in anticipation of what is to come.

If you run the example above, you will see that it runs as expected, however, upon further
examination, we can see that each iteration of the for loop is independent from the other, thus making it
a prime candidate for parallelization. Below is the same code, but parallelized using Parallel.For:

using System;
using System.Numerics;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Concurrent;

class EntryPoint
{
 const int FactorialsToCompute = 2000;

 static void Main() {
 var numbers = new ConcurrentDictionary<BigInteger, BigInteger>(4,
FactorialsToCompute);

 // Create a factorial delegate.
 Func<BigInteger, BigInteger> factorial = null;
 factorial = (n) => (n == 0) ? 1 : n * factorial(n-1);

 // Now compute the factorial of the list
 // concurrently.
 Parallel.For(0,
 FactorialsToCompute,
 (i) => {
 numbers[i] = factorial(i);
 });

CHAPTER 12 ■ THREADING IN C#

422

 }
}

As you can see, the Parallel.For method makes the transformation easy. The first two arguments
are the range of the iteration, and the third argument is a delegate, in this case provided in the form of a
lambda expression, which represents the body of the original for loop. That was easy, right? Not so fast!

Once you execute the code above, you may see that it executes much slower than the serialized
version. For example, after compiling the two previous code examples, I ran them both consecutively on
a quad core Hyper-V hosted Windows 7 installation while performing an analysis with xperf4 and saw the
following:

Figure 12-5. Xperf analysis of serialized and parallel factorial computation

The two graphs in figure 12-5 represent CPU usage by process and CPU usage by thread. In the
bottom graph, the square pulse on the left represents the single thread that computes the 2000 factorials
in the serialized version of the code. Following that, the part of the graph that looks like noise represents

4 If you are unfamiliar with xperf, I highly recommend that you become familiar with it by visiting the Windows
Performance Tools (WPT) Kit site at http://msdn.microsoft.com/performance. Xperf is an extremely powerful Event
Tracing for Windows (ETW) controller and viewer.

http://msdn.microsoft.com/performance

CHAPTER 12 ■ THREADING IN C#

423

the multiple threads of the parallelized version of the code. Although there are multiple threads
computing the factorials now, this behavior is certainly not what we expected! After all, the concurrent
version should have performed better, right? In the graph above, you can see that the parallel version not
only took longer than the serialized version, but it actually took more than four times longer! Also, notice
that the CPU utilization by both versions, shown on the top graph, was relatively low. What is going on
here?

Any time you encounter a situation like this, you should gravitate to using tools such as xperf and
System Performance Monitor (perfmon) to get a clearer picture. In fact, the CLR exposes quite a few
performance counters for diagnosing problems like these. So, to get a better idea of what was going on, I
ran the parallel version of the code while capturing a perfmon log and you can see the results below in
Figure 12-6.

Figure 12-6. Perfmon analysis of parallel factorial code

In Figure 12-6 above, the solid line at the top of the graph represents the percentage of time spent in

the CLR garbage collector while the dotted line represents the amount of generation 0 collections. So,
you can conclude that the performance problems in the parallel version of the code are caused by the
GC. This makes sense if you think about how you are heavily using the BigInteger type and creating and
releasing a lot of BigInteger instances with each iteration, thus putting pressure on the GC. And because
the parallel version of the code has multiple threads placing this pressure on the GC rather than just one,
the problem is exacerbated. So, what can you do about this situation?

The solution is surprisingly simple. Given that the problem is in the GC, you need to tune the GC to
be more performant for concurrent code. You can do just that by using the server version of the GC
rather than the default workstation version of the GC. The garbage collector is one of those areas within
the CLR that is always under constant development in order to make it more efficient and versatile. The
server GC is the result of much of that effort and maximizes concurrency, which is often desired in server
applications. In fact, the server GC is the default GC for ASP.NET applications. So, how do you turn it on?

CHAPTER 12 ■ THREADING IN C#

424

All you need to do is create an application configuration XML file named <application>.config where
the <application> is replaced with the entire executable name including the extension. For example, the
configuration file for parallel.exe would be parallel.exe.config. Using the gcServer element, we can
turn on the server GC as shown below:

<configuration>
 <runtime>
 <gcServer enabled="true" />
 </runtime>
</configuration>

After turning on the server GC, you will see a substantial improvement in performance in the
parallel version of the code. This is because the server GC creates per-processor GC heaps that better
facilitate concurrency. Additionally, the Windows operating system strives to schedule threads to the
same processor as often as possible. This will reduce the amount of locks that must be taken during GC
operations. Figure 12-7 below shows the xperf output captured while running the serialized and
concurrent versions of the factorial test with the configuration file in place.

Figure 12-7. Xperf analysis of serialized and parallel factorial computation with server GC

CHAPTER 12 ■ THREADING IN C#

425

Notice that the parallel version performs as expected once server GC is enabled and, as desired,
takes a lot less time to perform the computation. Additionally, notice that the parallel process achieves
much higher CPU utilization than the serialized version, which is also desired because that is typically
one of the goals of concurrent programming.

The take-away from this experiment is that introducing concurrency to your applications is rarely as
easy as simply flipping a switch. Instead, you must take environmental factors into account and you
must be prepared to execute performance analysis tests to verify that you are getting the intended
performance boost.

Easy Entry to the Thread Pool
In previous sections under “Using ThreadPool,” I demonstrated how you can schedule asynchronous
work to the CLR thread pool by utilizing ThreadPool.QueueUserWorkItem and showed how you can use
BeginInvoke and EndInvoke on delegates to gain entry to the thread pool. However, starting with .NET
4.0, for fire-and-forget units of work, there is an easier entry into the thread pool by way of
Parallel.Invoke.

You can very easily and succinctly schedule asynchronous work to be performed by the CLR thread
pool threads by passing an array of Action delegates to Parallel.Invoke. Parallel.Invoke will then block
until all of the actions have run to completion. Consider the following example:

using System;
using System.Numerics;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Concurrent;

class EntryPoint
{
 const int FactorialsToCompute = 100;

 static void Main() {
 var numbers = new ConcurrentDictionary<BigInteger, BigInteger>();

 // Create a factorial delegate.
 Func<BigInteger, BigInteger> factorial = null;
 factorial = (n) => (n == 0) ? 1 : n * factorial(n-1);

 // Build the array of actions
 var actions = new Action[FactorialsToCompute];
 for(int i = 0; i < FactorialsToCompute; ++i) {
 int x = i;
 actions[i] = () => {
 numbers[x] = factorial(x);
 };
 }

 // Now compute the values.
 Parallel.Invoke(actions);

 // Print out the results.
 for(int i = 0; i < FactorialsToCompute; ++i) {
 Console.WriteLine(numbers[i]);

CHAPTER 12 ■ THREADING IN C#

426

 }
 }
}

This example is a variant of the Parallel.For example, except instead of using Parallel.For, I am
creating an array of Actions and passing them to Parallel.Invoke. Keep in mind, however, that
Parallel.For typically performs better in cases like this and I only do this for the sake of example. In fact,
I encourage you to do some performance analysis, comparing the performance of Parallel.Invoke and
Parallel.For to see the difference. I build one action for each factorial computation and put it into the
array, then I pass that array of actions to Parallel.Invoke. Once all of those tasks have completed and
the call to Parallel.Invoke returns, I then dump out the resulting values just so I can see that it
performed all of the work I requested.

One last point I would like to make is that you have no guarantees regarding the ordering of the
tasks executed by Parallel.Invoke nor do you have any guarantee that they will be performed in parallel
either. It all depends on the platform upon which the code executes and the environmental parameters
considered by Parallel.Invoke.

Thread-Safe Collection Classes
I hope I have impressed upon you the complexities and difficulties involved with creating correct
thread-safe code. There are a lot of traps and pitfalls to look out for. Moreover, your code will be more
efficient if you strive to use the lightest weight synchronization mechanism possible. However, lock-free
concurrent programming, that is, without using locks explicitly and instead relying on the
synchronization guaranteed by the platform is not for the faint at heart. Also, such code requires a heavy
amount of testing in all sorts of environments to ferret out any synchronization bugs.

Therefore, any time you can use a library provided mechanism to get your job done, you should.
For example, you should avoid coding your own thread pool implementations and instead use the
system thread pool. Likewise, if you need synchronized collection classes, you should rely upon the
classes in the System.Collections.Concurrent namespace introduced in .NET 4.0.

The collections in System.Collections.Concurrent use the most efficient locking mechanism
possible and you don’t even have to bother with creating your own. They will use allow lock-free access
to contents when possible and they use lightweight, fine-grained locking when appropriate. I highly
recommend you become familiar with the types defined within the System.Collections.Concurrent
namespace and prefer them when you are working in concurrent applications. In there, you will find
such types as ConcurrentQueue<T>, ConcurrentStack<T>, ConcurrentBag<T>, etc.

Summary
In this chapter, I’ve covered the intricacies of managed threads in the .NET environment. I covered the
various mechanisms in place for managing synchronization between threads, including the Interlocked,
Monitor, AutoResetEvent, ManualResetEvent, WaitHandle-based objects, and so on. I then described the
IOU pattern and how the .NET Framework uses it extensively to get work done asynchronously. That
discussion centered around the CLR’s usage of the ThreadPool based upon the Windows thread pool
implementation. Then, you got a taste of how the Parallel Extension and the TPL introduced in .NET 4.0
can make concurrent programming much easier.

Threading and concurrency always adds complexity to applications. However, when used properly,
it can make applications more responsive to user commands and more efficient. Although
multithreading development comes with its pitfalls, the .NET Framework and the CLR mitigate many of
those risks and provide a model that shields you from the intricacies of the operating system—most of
the time. For example, thread pools have always been difficult to implement, even after a common

CHAPTER 12 ■ THREADING IN C#

427

implementation was added to the Windows operating system. Not only does the .NET environment
provide a nice buffer between your code and the Windows thread pool intricacies, but it also allows your
code to run on other platforms that implement the .NET Framework, such as the Mono runtime running
on Linux. If you understand the details of the threading facilities provided by.NET and are familiar with
multithreaded synchronization techniques, as covered in this chapter, then you’re well on your way to
producing effective multithreaded applications.

In the next chapter, I go in search of a C# canonical form for types. I investigate the checklist of
questions you should ask yourself when designing any type using C# for the .NET Framework.

CHAPTER 12 ■ THREADING IN C#

428

C H A P T E R 13

■ ■ ■

429

In Search of C# Canonical Forms

Many object-oriented languages—C# included—don’t offer anything to force developers to create well-
designed software. There is no better example of this than when using C++ to implement an OO design.
C# is a little more structured than C++; for example, you cannot create free static functions that exist
outside the context of a defined type. Still, C# doesn’t force you to create software that adheres to well-
known practices of good software design.

The C++ community quickly identified some canonical forms useful for designing types to meet a
specific purpose. Really and truly, these canonical forms are merely checklists, or recipes, you can use
while designing new classes. Before a pilot can clear an airplane to back out of the gate, he must go
through a strict checklist. The goal of this chapter is to identify such checklists for creating robust types
in the C# world.

When you explore these checklists, you need to consider what sorts of behaviors are required of
objects of the new type you’re creating. For example, is your new type going to be cloneable? In other
words, can it be copied? If instances of your new type are placed in a collection, can they be ordered?
What does it mean to compare two references of this object’s type for equality? In other words, do you
want to know if the two references refer to the same instance? Or do you want to know if two instances
referred to have exactly the same state? These are the types of questions you should ask yourself when
you create a new type.

■ Note This chapter is rather long, but it’s important to keep so much useful and related information together.

Overall, the chapter is sectioned into two partitions. The first partition covers reference types, and the second

covers value types. I cover reference types first and at greater length, because some material applies to both

reference types and value types. Finally, the chapter concludes with a pair of checklists to go through when

designing new types.

Reference Type Canonical Forms
First, let’s explore canonical forms for reference types in C#. In C#, objects live on the managed heap and
are accessed through value types containing references to them, such as reference type variables.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

430

■ Note In C++ terms, you can envision a similar system in which all objects are created dynamically using new,

and you only reference them through the pointer returned by new. This is essentially what is happening in the CLR,

except that the CLR tracks all these “pointers,” or references, and it knows when the objects on the heap have no

more references to them and thus when they can be destroyed.

To be a little more specific, consider this: over the years, the C++ community has utilized a vast array of idioms

that rely upon the stack to help manage resources. If you create your C++ object on the stack, the compiler will

make sure that your object’s constructors and destructor get called at the appropriate times, thus giving you a

controlled point at which to put your resource cleanup code. The dominant idiom here is called Resource

Acquisition Is Initialization (RAII), and it’s used extensively in C++ and any other object-oriented language with

deterministic destruction of objects. Basically, the idea behind the idiom is that any resource that requires

allocation is acquired in a constructor body, and the release of the resource is in the matching destructor. This

idiom is so entrenched that in order to write robust, exception-safe, and exception-neutral C++ code, you must

use this idiom extensively and contain just about every usage of new and delete inside constructors and

destructors. In the C# domain, this idiom is not available so easily because C# destructors are not deterministic.

Therefore, you must approach the problems solved by this idiom in a different way, as discussed throughout this

section.

Default to sealed Classes
When you create a new class, I firmly believe you should automatically mark that class sealed and
remove the sealed keyword only if you can think of a bona fide reason why someone would need to
derive from your class. Why not go the other way around and make the class unsealed by default and
seal it when you know someone should not derive from it? Because it’s impossible to predict how
someone will attempt to derive from your class if you don’t put in specific design measures to support
inheritance. I’ve seen many designs over the years where someone attempted to derive from a class that
was never meant to be derived from. For example, in a good design, classes that have no virtual methods
are not normally intended to be derived from. The lack of virtual methods most likely indicates that the
author of the class didn’t consider whether anyone would even want to inherit from the type and
probably should have marked the class sealed. If your class is not sealed and you intend to allow others
to inherit from it, be sure to include adequate documentation so the person deriving from your class
doesn’t shoot himself in the foot.

■ Note As hard as you might try to create self-explanatory base classes, it’s nearly impossible to escape

documenting them as long as you have at least one overrideable virtual method in them. Read on for more

information why.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

431

Even classes that do have virtual methods and are purposely meant to be derived from can be
problematic. For example, if you derive from a class that provides a virtual method DoSomething, and you
want to extend that method by overriding it, do you call the base class version in your override? If so, do
you call it before or after you get your derived work done? Does the ordering matter? Maybe it does if
protected fields are declared in the base class.1 If you don’t have really good documentation for the class
you’re deriving from, you might never know the answers to these questions. In fact, this is one reason
why extension through containment is generally more flexible, and thus more powerful, at design time
than extension through inheritance. Extension through containment is dynamic and performed at run
time, whereas inheritance-based extension is more restrictive because it is static and wired up at
compile time. And better yet, you can do containment-based extension even if the class you want to
extend is marked sealed.

Unless you can come up with a really good reason why your class should serve as a base class, mark
your class sealed. Otherwise, be prepared to offer very detailed documentation on how to best derive
from your class. I guarantee that you can produce a different design using interface inheritance together
with containment rather than implementation (class) inheritance that can do the same job. Because that
is the case, there’s almost no reason why almost all the classes you design should not be marked sealed.
Don’t misunderstand: I’m not saying that all inheritance is bad. On the contrary, it is useful when used
properly. Unfortunately, it is greatly misused. A deep hierarchy tree, as opposed to a shallow flat one, is a
common sign that you should rethink the design.

■ Note When leaf classes that derive from other classes with virtual methods are marked sealed, or when

individual override methods are marked sealed, the runtime can turn calls to those methods into nonvirtual calls

because no more derived implementations of those methods can exist. Naturally, this is a performance gain.

Use the Non-Virtual Interface (NVI) Pattern
Many times, when you design a class specifically capable of acting as a base class in a hierarchy, you
declare methods that are virtual so that deriving classes can modify the behavior. A first pass at such a
base class might look something like the following:

using System;

public class Base
{
 public virtual void DoWork() {
 Console.WriteLine("Base.DoWork()");
 }
}

public class Derived : Base
{

1 In Chapter 4, I discussed encapsulation and its importance in object-oriented design. It’s important to note that
protected fields break encapsulation.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

432

 public override void DoWork() {
 Console.WriteLine("Derived.DoWork()");
 }
}

public class EntryPoint
{
 static void Main() {
 Base b = new Derived();
 b.DoWork();
 }
}

Not surprisingly, the output from the example looks like this:

Derived.DoWork()

However, the design could be subtly more robust. Imagine that you’re the writer of Base, and you
have deployed Base to millions of users. Many people are happily using Base all over the world when you
decide, for some good reason, that you should do some pre- and postprocessing within DoWork. For
example, suppose thatyou would like to provide a debug version of Base that tracks how many times the
DoWork method is called. As the code was written previously, you cannot do such a thing without forcing
breaking changes onto the millions of users who have used your class Base. For example, you could
introduce two more methods, named PreDoWork and PostDoWork, and ask kindly that your users
reimplement their overrides so that they call these methods at the correct time. Ouch! Now, let’s
consider a minor modification to the original design that doesn’t even change the public interface of
Base:

using System;

public class Base
{
 public void DoWork() {
 CoreDoWork();
 }

 protected virtual void CoreDoWork() {
 Console.WriteLine("Base.DoWork()");
 }
}

public class Derived : Base
{
 protected override void CoreDoWork() {
 Console.WriteLine("Derived.DoWork()");
 }
}

public class EntryPoint
{
 static void Main() {

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

433

 Base b = new Derived();
 b.DoWork();
 }
}

This nifty little pattern is called the Non-Virtual Interface (NVI) pattern, and it does exactly that: it
makes the public interface to the base class nonvirtual, but the overrideable behavior is moved into
another protected method named CoreDoWork, thus adding the required level of indirection. The NVI
pattern is similar to the Template Method pattern, as described by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides in Design Patterns: Elements of Reusable Object-Oriented Software (Boston:
Addison-Wesley Professional, 1995). .NET Framework libraries use the NVI pattern widely, and it’s
circulated in library design guidelines at Microsoft for obviously good reasons. In order to add some
metering to the DoWork method, you only need to modify Base and the assembly that contains it. Any of
the other classes that derive from assembly don’t even have to change.

Another technique that is typically used with NVI in the C++ world is that of actually declaring the
virtual method private, as in the following code that unfortunately won’t compile in C# for reasons I’ll
explain shortly:

// WILL NOT COMPILE!!!!!
using System;

public class Base
{
 public void DoWork() {
 CoreDoWork();
 }

 // WILL NOT COMPILE!!!!!
 private virtual void CoreDoWork() {
 Console.WriteLine("Base.DoWork()");
 }
}

public class Derived : Base
{
 // WILL NOT COMPILE!!!!!
 private override void CoreDoWork() {
 Console.WriteLine("Derived.DoWork()");
 }
}

public class EntryPoint
{
 static void Main() {
 Base b = new Derived();
 b.DoWork();
 }
}

This code would actually compile in the initial .NET 1.0 release of C#, and the technique was
perfectly valid in the CLR, reflecting the fact that the CLI spec at the time and C# wanted to match the
C++ semantics as closely as possible. Before I explain why this won’t work in C# now, let me explain why
you would want to do it in the first place.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

434

There is a fundamental difference between a method’s visibility and its accessibility. If the method
is in the declaration of a class or struct, no matter what its protection level is, it is visible. And
traditionally, in order for a derived class to override a method, it merely has to be visible and not
accessible.

■ Note The only thing private means on a C++ private virtual method is that the derived class might not call

the base class’s implementation. If you don’t believe me, try this example in native C++. You’ll find that it works

as expected.

The beauty of being able to declare private virtual methods is that you don’t have to worry about
derived classes misusing your Base class. For example, maybe you require that they don’t call your base
class implementation of the virtual method. Fine, just make it private virtual. In fact, using such a
technique, you should make your method protected virtual only if you know there is a good reason
why the base class would need to call it. And if you do that, you must strictly document at what point the
override should call the base implementation. Many people believe that just because the method is
declared private, it cannot be overridden. But in the strict sense, restricted accessibility doesn’t make it
invisible to overriding.

Now let me explain why this feature was turned off in the .NET 1.1 release of C#. This was a mystery
to me until Brandon Bray from the Microsoft Visual C++ team explained it neatly. The fact that you can
inherit across assembly boundaries turns this feature into a sort of security hole. With native C++, it was
never an issue. Consider this: if a private virtual method can be overridden, so can an internal
virtual method. And therein lies the problem. It would allow you to override the behavior of an
internal virtual method on some random class in a particular assembly, and that is the source of the
security hole. So, a trade-off was made, and every release starting with 1.1 has this feature disabled.
Incidentally, this same fix was added to C++/CLI. Although native C++ classes can use the private
virtual method feature effectively, ref C++ classes cannot. And that, of course, is because ref C++
classes represent .NET ref types that can be inherited across assembly boundaries. How about that!

Is the Object Cloneable?
As you know, objects in C# and in the CLR live on the heap and are accessed through references. You’re
not actually making a copy of the object when you assign one object variable to another, as in the
following code.

Object obj = new Object();
Object objCopy = obj;

After this code executes, objCopy doesn’t refer to a copy of obj; rather, you now have two references
to the same Object instance.

However, sometimes it makes sense to be able to make a copy of an object. For that purpose, the
Standard Library defines the ICloneable interface. When your object implements this interface, it is
saying that it supports the ability to have copies of itself made. In other words, it claims that it can be
used as a prototype to create new instances of objects. Objects of this type could participate in a
prototype factory design pattern. Before I go any further, let’s have a look at the ICloneable interface:

public interface ICloneable

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

435

{
 object Clone();
}

As you can see, the interface defines only one method, Clone, which returns an object reference.
That object reference is intended to be the copy. All you have to do is return a copy of the object and
you’re done, right? Well, not so fast.

You see, there’s a not-so-subtle problem with the definition of this interface. The documentation for
the interface doesn’t indicate whether the copy returned should be a deep copy or a shallow copy. In
fact, the documentation leaves it open for the class designer to decide. The difference between a shallow
copy and a deep copy is only relevant if the object contains references to other objects.

• A shallow copy of an object creates a copy whose contained object references refer to the same
objects as the prototype’s references.

• A deep copy, on the other hand, creates a copy of the prototype where all the contained objects
are copied as well. In a deep copy, the object containment tree is traversed all the way down to
the bottom, and copies of each of those objects are made. Therefore, the result of a deep copy
shares no underlying objects with the prototype.

This is enough to drive a good software designer insane. It seems only logical that if you really want
to make a copy of an object, then a deep copy is the only true way to go. Fine! From this point onward,
when I say “clone,” I mean a deep copy.

In order for an object to effectively implement a clone of itself, remember that I’m saying that a
clone is a deep copy, so all its contained objects must provide a means of creating a deep copy of
themselves. You can quickly see the problem that comes with that requirement. You cannot guarantee a
deep copy if your object contains references to objects that themselves cannot be deep-copied. This is
precisely why we suffer from the documentation for the ICloneable interface and its lack of specification
of copy semantics. Plus, and importantly, this lack of specification forces you to clearly document the
ICloneable implementation on any object that implements it so that consumers will know if the object
supports a shallow or deep copy.

Let’s consider options for implementing the ICloneable interface on objects. If your object contains
only value types such as int, long, or values based on struct definitions where the structs contain no
reference types you can use a shortcut to implement the Clone method by using
Object.MemberwiseClone, as in the following code:

using System;

public sealed class Dimensions : ICloneable
{
 public Dimensions(long width, long height) {
 this.width = width;
 this.height = height;
 }

 // ICloneable implementation
 public object Clone() {
 return this.MemberwiseClone();
 }

 private long width;
 private long height;

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

436

}

MemberwiseClone is a protected method implemented on System.Object that an object can use to
create a shallow copy of itself. However, it’s important to note one caveat: MemberwiseClone creates a
copy of the object without calling any constructors on the new object. It’s an object-creation shortcut. If
your object relies upon the constructor being called during creation—for example, if you send debug
traces to the console during object construction—then MemberwiseClone is not for you. If you absolutely
must use MemberwiseClone, and your object requires work to be done during the constructor call, you
must factor that work out into a separate method. Then you can call that method from the constructor,
and, in your Clone method, you can call that worker method on the new object after calling
MemberwiseClone to create the new instance. Although doable, it’s a tedious approach. An alternative way
to implement the clone is to make use of a private copy constructor, as in the following code:

using System;

public sealed class Dimensions : ICloneable
{
 public Dimensions(long width, long height) {
 Console.WriteLine("Dimensions(long, long) called");

 this.width = width;
 this.height = height;
 }

 // Private copy constructor used when making a copy of this object.
 private Dimensions(Dimensions other) {
 Console.WriteLine("Dimensions(Dimensions) called");

 this.width = other.width;
 this.height = other.height;
 }

 // ICloneable implementation
 public object Clone() {
 return new Dimensions(this);
 }

 private long width;
 private long height;
}

This method of cloning an object is the safest way in the sense that you have full control over how
the copy is made. Any changes that need to be done regarding the way the object is copied can be made
in the copy constructor. You must take care to consider what happens when you declare a constructor in
a class. Any time you do so, the compiler will not emit the default constructor that it normally does when
you don’t provide a constructor. If the private copy constructor listed here was the only constructor
defined in the class, users of the class would never be able to create instances of it. That’s because the
default constructor is now gone, and no other publicly accessible constructor would exist. In this
example, you have nothing to worry about because you also defined a public constructor that takes two
parameters. Nevertheless, it’s an important point to consider during class design.

Now, let’s also consider objects that themselves contain references to other objects. Suppose that
you have an employee database, and you represent each employee with an object of type Employee. This
Employee type contains vital information such as the employee’s name, title, and ID number. The name

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

437

and possibly the formatted ID number are represented by strings, which are themselves reference type
objects. For the sake of example, let’s implement the employee title as a separate class named Title. If
you follow the guideline I stated previously (you always do a deep copy on a clone), then you could
implement the following clone method:

using System;

// Title class
//
public sealed class Title : ICloneable
{
 public enum TitleNameEnum {
 GreenHorn,
 HotshotGuru
 }

 public Title(TitleNameEnum title) {
 this.title = title;

 LookupPayScale();
 }

 private Title(Title other) {
 this.title = other.title;

 LookupPayScale();
 }

 // ICloneable implementation
 public object Clone() {
 return new Title(this);
 }

 private void LookupPayScale() {
 // Looks up the pay scale in a database. Payscale is
 // based upon the title.
 }

 private TitleNameEnum title;
 private double minPay;
 private double maxPay;
}

// Employee class
//
public sealed class Employee : ICloneable
{
 public Employee(string name, Title title, string ssn) {
 this.name = name;
 this.title = title;
 this.ssn = ssn;
 }

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

438

 private Employee(Employee other) {
 this.name = String.Copy(other.name);
 this.title = (Title) other.title.Clone();
 this.ssn = String.Copy(other.ssn);
 }

 // ICloneable implementation
 public object Clone() {
 return new Employee(this);
 }

 private string name;
 private Title title;
 private string ssn;
}

Notice that you cannot copy the Title object with MemberwiseClone because a side effect of the
constructor is to call LookupPayScale on the new object to retrieve the pay scale for the title from the
database. Let’s assume it’s possible that the pay scale for the position can change between the
prototype’s creation and the clone operation, so you always want to look that up in the database. Also,
note that copies of the contained objects are made using their respective ICloneable methods. For the
Title object, you merely call its implementation of Clone. It turns out that System.String implements
ICloneable. However, you cannot use the Clone method to create a deep copy of Employee. If you read
the fine print on the String.Clone implementation, you’ll see that it just returns a reference to itself. This
is a perfect example of the issues I was talking about regarding the inconsistencies of the Clone
implementations out there. Instead, you have to use the static String.Copy method in order to get a real
copy of the source string.

The fact that System.String returns a reference to itself when its ICloneable.Clone method is called
is an optimization that its implementors introduced. Even though the implementation bars you from
making a true deep clone of any object that contains string object references, the optimization is valid
for two reasons. First, the documentation doesn’t specify whether you need to implement a deep or
shallow copy. I’ve already discussed the pros and cons of that omission in the contract specification.
Second, System.String is an immutable object. Immutability in objects is a powerful concept that I cover
in the later section “Prefer Type Safety at All Times.” The general idea is that once you create a string
object, you can never change it for as long as it lives. Therefore, it becomes an efficiency burden to
implement String.Clone so that it always performs a deep copy. Clients of System.String work the same
way, whether String.Clone performs a deep or shallow copy, because of its immutability.

In efforts to make the ICloneable implementation document itself, you can use a custom attribute
to mark the Clone method. This way, consumers of your object can determine at design time or at run
time whether your object supports a deep copy or a shallow copy. Consider the following custom
attribute:2

using System;

namespace CloneHelpers

2 Full coverage of custom attributes in the .NET Framework is beyond the scope of this book. For more information,
consult the MSDN Library documentation or any one of the fine books covering the CLR, such as Andrew Troelsen’s
Pro C# with .NET 3.0 (Berkeley, CA: Apress, 2007).

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

439

{

 public enum CloneStyle {
 Deep,
 Shallow
 }

 [AttributeUsageAttribute(AttributeTargets.Method)]
 public sealed class CloneStyleAttribute : Attribute
 {
 public CloneStyleAttribute(CloneStyle clonestyle) {
 this.clonestyle = clonestyle;
 }

 public CloneStyle Style {
 get {
 return clonestyle;
 }
 }

 private CloneStyle clonestyle;
 }

}

Using this attribute, you can tag your clone implementations such that they are explicit about what
type of clone operation they perform. But keep in mind that, as shown, the attribute is only a marker and
doesn’t enforce anything at run time. That’s not to say that you cannot create some other type that
enforces a policy at run time based on attached custom attributes. Let’s revisit the Dimensions class and
apply this attribute appropriately:

using System;
using CloneHelpers;

public sealed class Dimensions : ICloneable
{
 public Dimensions(long width, long height) {
 this.width = width;
 this.height = height;
 }

 // ICloneable implementation
 [CloneStyleAttribute(CloneStyle.Deep)]
 public object Clone() {
 return this.MemberwiseClone();
 }

 private long width;
 private long height;
}

There is no question as to how the Clone method is implemented, and consumers of this object will
be well informed.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

440

After this discussion, I’m sure you’ll agree that implementing something so seemingly innocuous as
ICloneable is not so simple after all.

■ Caution Avoid implementing ICloneable. As alarming as that sounds, Microsoft is actually making this

recommendation. The problem stems from the fact that the contract doesn’t specify whether the copy should be

deep or shallow. In fact, as noted in Krzysztof Cwalina and Brad Abrams’ Framework Design Guidelines:

Conventions, Idioms, and Patterns for Reusable .NET Libraries (Boston: Addison-Wesley Professional, 2005),

Cwalina searched the entire code base of the .NET Framework and couldn’t find any code that uses ICloneable.

Had the Framework designers and developers been using this interface, they probably would have stumbled

across the omission in the ICloneable specification and fixed it.

However, this recommendation is not to say that you shouldn’t implement a Clone method if you need one. If your

class needs a clone method, you can still implement one on the public contract of the class without actually

implementing ICloneable.

Is the Object Disposable?
I’ve already covered the ins and outs of disposable objects, but let’s cover more of the effects they can
have on your design. First, you need to determine whether your object should be disposable in the first
place. Generally, if it manages some sort of unmanaged resource, such as a chunk of virtual memory (or
any other native resource), the object needs to be disposable. Stated another way, if your object has a
finalizer, then it most likely should be disposable as well. If your object contains other objects that are
themselves disposable, then your object also should be disposable. For example, an object that holds a
reference to a file opened with exclusive read/write privileges should be disposable so that the client of
the object can control when the underlying resource is closed or cleaned up.

An object is declared to be disposable if it implements the IDisposable interface. The IDisposable
interface is another one of those simplistic-looking interfaces, but similar to ICloneable, that has a lot of
issues lurking under the covers. Let’s have a look at the interface itself:

public interface IDisposable
{
 void Dispose();
}

It looks simple enough. Just implement the Dispose method so that it cleans up the resource, and
you’re done, right? Well, maybe.

If you create a disposable object that contains other objects that are disposable, then in your
Dispose implementation, you should call the Dispose method on the contained objects. Also, it’s
perfectly valid for clients to call Dispose multiple times. So, instead of throwing an exception on
subsequent calls, which is invalid based upon the documentation for IDisposable, you should simply do
nothing. Therefore, you’ll need to maintain some sort of internal flag so that your code doesn’t explode if
Dispose gets called multiple times. This internal flag can be used for another purpose, too. It is normally
invalid to call a method on a disposed object, so in those cases, you can check the flag and if it indicates
that the object has been disposed previously, you can throw an ObjectDisposedException. You can
already see that the requirements for implementing IDisposable are mounting, and what appeared to be

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

441

a simple interface is becoming more and more difficult to implement properly. Let’s look at an example
of implementing IDisposable.

■ Note This example does not represent good unmanaged resource-management practices. It is purely for the

sake of the IDisposable discussion. For reasons why, please reference the “Contained Execution Regions” and

“Critical Finalizers and Safe Handle” sections of Chapter 7.

The following code consists of a custom heap object that uses Win32 functions to manage a local
heap:

using System;
using System.Runtime.InteropServices;

public sealed class Win32Heap : IDisposable
{
 [DllImport("kernel32.dll")]
 static extern IntPtr HeapCreate(uint flOptions, UIntPtr dwInitialSize,
 UIntPtr dwMaximumSize);

 [DllImport("kernel32.dll")]
 static extern bool HeapDestroy(IntPtr hHeap);

 public Win32Heap() {
 theHeap = HeapCreate(0, (UIntPtr) 4096, UIntPtr.Zero);
 }

 // IDisposable implementation
 public void Dispose() {
 if(!disposed) {
 HeapDestroy(theHeap);
 theHeap = IntPtr.Zero;
 disposed = true;
 }
 }

 private IntPtr theHeap;
 private bool disposed = false;
}

This object doesn’t contain any objects that implement IDisposable, so you don’t need to iterate
through the containment tree calling Dispose.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

442

■ Caution It’s important to note that in the Disposable pattern, the implementation of the contained objects

shapes the container object by forcing it to implement IDisposable if the contained objects implement

IDisposable. It’s an inside-out relationship.

Because the IDisposable pattern requires the user to call the Dispose method explicitly, the onus is
thrown on the user to make sure that it is called, even in the face of exceptions. This makes the client
code tedious to produce. For example, consider the following code, which opens a file for writing:

using System;
using System.IO;

public sealed class WriteStuff
{
 static void Main(){
 StreamWriter sw = new StreamWriter("Output.txt");
 try {
 sw.WriteLine("This is a test of the emergency dispose mechanism");
 }
 finally {
 if(sw != null) {
 ((IDisposable)sw).Dispose();
 }
 }
 }
}

The C# designers recognized that writing code like this can be a royal pain, so at the same time the
.NET Framework introduced the IDisposable interface, the C# designers overloaded the using keyword
to provide a using statement to help out. In a using statement, you declare the disposable variables
within a pair of parentheses and then, when the scope leaves the following code block, the objects are
disposed of. Internally, the using statement does essentially the same thing as the try/finally construct.
You can look at the generated IL code to prove this. The using statement definitely does help; however,
the client of the object is still required to remember to use it in the first place. Let’s modify the previous
example with a using statement:

using System;
using System.IO;

public sealed class WriteStuff
{
 static void Main(){
 using(StreamWriter sw = new StreamWriter("Output.txt")) {
 sw.WriteLine("This is a test of the emergency dispose mechanism");
 }
 }
}

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

443

Now, can you think of what happens if the client of your object forgets to call Dispose or doesn’t use
a using statement? Clearly, there is the chance that you will leak the resource. And that’s why the
Win32Heap example type needs to also implement a finalizer, as I describe in the next section.

■ Note In the previous examples, I have not considered what would happen if multiple threads were to call

Dispose concurrently. Although the situation seems diabolical, you must plan for the worst if you’re a developer of

library code that unknown clients will consume.

Does the Object Need a Finalizer?
A finalizer is a method that you can implement on your class and that is called prior to the GC cleaning
up your unused object from the heap. Let’s get one important concept clear up front: Finalizers are not
destructors, nor should you view them as destructors.

Destructors usually are associated with deterministic destruction of objects. Finalizers are
associated with nondeterministic destruction of objects. Unfortunately, much of the confusion between
finalizers and destructors comes from the fact that the C# language designers chose to map finalizers
into the C# destructor syntax, which is identical to the C++ destructor syntax. In fact, you’ll find that it’s
impossible to overload Object.Finalize explicitly in C#. You overload it implicitly by using the
destructor syntax that you’re used to if you come from the C++ world. The only good thing that comes
from C# implementing finalizers this way is that you never have to worry about calling the base class
finalizer from derived classes. The compiler does that for you.

Most of the time, when your object needs some sort of cleanup code (for example, an object that
abstracts a file in the file system), it needs to happen deterministically; for example, when manipulating
unmanaged resources. In other words, it needs to happen explicitly when the user is finished with the
object and not when the GC finally gets around to disposing of the object. In these cases, you need to
implement this functionality using the Disposable pattern by implementing the IDisposable interface.
Don’t be fooled into thinking that the destructor you wrote for the class using the familiar destructor
syntax will get called when the object goes out of scope as it does in C++. In fact, if you think about it,
you’ll see that it is extremely rare that you’ll need to implement a finalizer. It’s difficult to think of a
cleanup task that you cannot do using IDisposable.

■ Note In reality, it’s rare that you’ll ever need to write a finalizer. Most of the time, you should implement the

Disposable pattern to do any resource cleanup code in your object. However, finalizers can be useful for cleaning

up unmanaged resources in a guaranteed way—that is, when the user has forgotten to call

IDisposable.Dispose.

In a perfect world, you could simply implement all your typical destructor code in the
IDisposable.Dispose method. However, there is one serious side effect of the C# language’s not
supporting deterministic destruction. The C# compiler doesn’t call IDisposable.Dispose on your object
automatically when it goes out of scope. C#, as I have mentioned previously, throws the onus on the user
of the object to call IDisposable.Dispose. The C# language does make it easier to guarantee this behavior
in the face of exceptions by overloading the using keyword, but it still requires the client of your object

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

444

not to forget the using keyword in the first place. This is important to keep in mind and it’s what can ruin
your “perfect world” dream.

We don’t live in a perfect world, so in order to clean up directly held resources reliably, it’s wise for
any objects that implement the IDisposable interface to also implement a finalizer that merely defers to
the Dispose method.3 This way, you can catch those errant mistakes where users forget to use the
Disposable pattern and don’t dispose of the object properly. Of course, the cleanup of undisposed
objects will now happen at the discretion of the GC, but at least it will happen. Beware; the GC calls the
finalizer for the objects being cleaned up from a separate thread. Now, all of a sudden, you might have to
worry about threading issues in your disposable objects. It’s unlikely that threading issues will bite you
during finalization, because, in theory, the object being finalized is not being referenced anywhere.
However, it could become a factor depending on what you do in your Dispose method. For example, if
your Dispose method uses an external, possibly unmanaged, object to get work done that another entity
might hold a reference to, then that object needs to be thread-hot—that is, it must work reliably in
multithreaded environments. It’s better to be safe than sorry and consider threading issues when you
implement a finalizer.

There is one more important thing to consider that I touched on in a previous chapter. When you
call your Dispose method via the finalizer, you should not use reference objects contained in fields
within this object. It might not sound intuitive at first, but you must realize that there is no guaranteed
ordering of how objects are finalized. The objects in the fields of your object could have been finalized
before your finalizer runs. Therefore, it would elicit the dreaded undefined behavior if you were to use
them and they just happened to be destroyed already. I think you’ll agree that could be a tough bug to
find. Now, it’s becoming clear that finalizers can drag you into a land of many pitfalls.

■ Caution Be wary of any object used during finalization, even if it’s not a field of your object being finalized,

because it, too, might already be marked for finalization and might or might not have been finalized already. Using

object references within a finalizer is a slippery slope indeed. In fact, many schools of thought recommend against

using any external objects within a finalizer. But the fact is that any time an object that supports a finalizer is

moved to the finalization queue in the GC, all objects in the object graph are rooted and reachable, whether they

are finalizable or not. So if your finalizable object contains a private, nonfinalizable object, then you can touch the

private contained object in the containing type’s finalizer because you know it’s still alive, and it cannot have been

finalized before your object because it has no finalizer. However, see the next Note in the text!

Let’s revisit the Win32Heap example from the previous section and modify it with a finalizer. Follow
the recommended Disposable pattern, and see how it changes:

using System;
using System.Runtime.InteropServices;

3 Objects that implement IDisposable only because they are forced to due to contained types that implement
IDisposable should not have a finalizer. They don’t directly manage resources, and the finalizer will impose undue
stress on the finalizer thread and the GC.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

445

public class Win32Heap : IDisposable
{
 [DllImport("kernel32.dll")]
 static extern IntPtr HeapCreate(uint flOptions, UIntPtr dwInitialSize,
 UIntPtr dwMaximumSize);

 [DllImport("kernel32.dll")]
 static extern bool HeapDestroy(IntPtr hHeap);

 public Win32Heap() {
 theHeap = HeapCreate(0, (UIntPtr) 4096, UIntPtr.Zero);
 }

 // IDisposable implementation
 protected virtual void Dispose(bool disposing) {
 if(!disposed) {
 if(disposing) {
 // It's ok to use any internal objects here. This class happens
 // not to have any, though.
 }

 // If using objects that you know do still exist, such as objects
 // that implement the Singleton pattern, it is important to make
 // sure those objects are thread-safe.

 HeapDestroy(theHeap);
 theHeap = IntPtr.Zero;
 disposed = true;
 }
 }

 public void Dispose() {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 ~Win32Heap() {
 Dispose(false);
 }

 private IntPtr theHeap;
 private bool disposed = false;
}

Let’s analyze the changes made to support a finalizer. First, notice that I’ve added the finalizer using
the familiar destructor syntax.4 Also, notice that I’ve added a second level of indirection in the Dispose
implementation. This is so you know whether the private Dispose method was called from a call to
Dispose or through the finalizer. Also, in this example, Dispose(bool) is implemented virtually, so that

4 But keep telling yourself that it’s not a destructor!

v@v
Text Box
Download at WoweBook.com

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

446

any deriving type merely has to override this method to modify the dispose behavior. If the Win32Heap
class was marked sealed, you could change that method from protected to private and remove the
virtual keyword. As I mentioned before, you cannot reliably use subobjects if your Dispose method was
called from the finalizer.

■ Note Some people take the approach that all object references are off limits inside the Dispose method that is

called by the finalizer. There’s no reason you cannot use objects that you know to be alive and well. However,

beware if the finalizer is called as a result of the application domain shutting down; objects that you assume to be

alive might not actually be alive. In reality, it’s almost impossible to determine if an object reference is still valid in

100% of the cases. So, it’s best just to not reference any reference types within the finalization stage if you can

avoid it.

The Dispose method features a performance boost; notice the call to GC.SuppressFinalize. The
finalizer of this object merely calls the private Dispose method, and you know that if the public Dispose
method gets called because the user remembered to do so, the finalizer doesn’t need to be invoked any
longer. So you can tell the GC to remove the object instance from the finalization queue when the
IDisposable.Dispose method is called. This optimization is more than trivial once you consider the fact
that objects that implement a finalizer live longer than those that don’t. When the GC goes through the
heap looking for dead objects to collect, it normally just compacts the heap and reclaims their memory.
However, if an object has a finalizer, instead of reclaiming the memory immediately, the GC moves the
object over to a finalization list that gets handled by the separate finalization thread. This forces the
object to be promoted to the next GC generation if it is not already in the highest generation. Once the
finalization thread has completed its job on the object, the object is remarked for deletion, and the GC
reclaims the space during a subsequent pass. That’s why objects that implement a finalizer live longer
than those that don’t. If your objects eat up lots of heap memory, or your system creates lots of those
objects, finalization starts to become a huge factor. Not only does it make the GC inefficient, but it also
chews up processor time in the finalization thread. This is why you suppress finalization inside Dispose if
possible.

■ Note When an object has a finalizer, it is placed on an internal CLR queue to keep track of this fact, and clearly

GC.SuppressFinalize affects that status. During normal execution, as previously mentioned, you cannot

guarantee that other object references are reachable. However, during application shutdown, the finalizer thread

actually finalizes the objects right off of this internal finalizable queue, so those objects are reachable and can be

referenced in finalizers. You can determine whether this is the case by using Environment.HasShutdownStarted

or AppDomain.IsFinalizingForUnload. However, just because you can do it does not mean that you should do

so without careful consideration. For example, even though the object is reachable, it might have been finalized

prior to you accessing it. Don’t be surprised if this behavior changes in future versions of the CLR.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

447

Let’s consider the performance impact of finalizers on the GC a little more closely. The CLR GC is
implemented as a generational GC. This means that allocated objects that live in higher generations are
assumed to live longer than those that live in lower generations and are collected less frequently than the
generation below them. The fine details of the GC’s collection algorithm are beyond the scope of this
book. However, it’s beneficial to touch upon them at a high level. For example, the GC normally
attempts to allocate any new objects in generation 0. Moreover, the GC assumes that objects in
generation 0 will live a relatively short lifespan. So when the GC attempts to allocate space for an object,
and it sees that the heap must be compacted, it releases space held by dead generation 0 objects, and
objects that are not dead get promoted to generation 1 during the compaction. Upon completion of this
stage, if the GC is able to find enough space for the allocation, it stops compacting the heap. It won’t
attempt to compact generation 1 unless it needs even more space or it sees that the generation 1 heap is
full and likely needs to be compacted. It will iterate through all the generations as necessary. However,
during the entire pass of the garbage collector, an object can be promoted only one level. So, if an object
is promoted from generation 0 to generation 1 during a collection, and the GC must subsequently
continue compacting generation 1 in the same collection pass, the object just promoted stays in
generation 1. Currently, the CLR heap consists of only three generations. So if an object lives in
generation 2, it cannot be promoted to a higher generation. The CLR also contains a special heap for
large object allocation, which in the current release contains objects greater than 80 KB in size. That
number might change in future releases, though, so don’t rely on it staying static.

Now, consider what happens when a generation 0 object gets promoted to generation 1 during a
compaction. Even if all root references to an object in generation 1 are out of scope, the space might not
be reclaimed for a while because the GC will not compact generation 1 very often.

Objects that implement finalizers get put on what is called the freachable queue during a GC pass.
That reference in the freachable queue counts as a root reference. Therefore, the object will be promoted
to generation 1 if it currently lives in generation 0. But you already know that the object is dying. In fact,
once the freachable queue is drained, the object most likely will be dead unless it is resurrected during
the finalization process. So, there’s the rub. This object with the finalizer is dying, but because it was put
on the freachable queue and thus promoted to a higher generation, its shell will likely lie around rotting
in the GC until a higher-generation compaction occurs.

For this reason, it’s important that you implement a finalizer only if you have to. Typically, this
means implementing a finalizer only if your object directly contains an unmanaged resource. For
example, consider the System.IO.FileStream type through which one manipulates operating system
files. FileStream contains a handle to an unmanaged resource, specifically an operating system file
handle, and therefore must have a finalizer in case one forgets to call Dispose or Close on the FileStream
instance. However, if you implement a type that contains a single instance of FileStream, you should
consider the following:

• Your containing type should implement IDisposable because it contains a
FileStream instance, which implements IDisposable. Remember that IDisposable
forces an inside-out requirement. After all, if your type contains a private
FileStream instance, unless you implement IDisposable as well, clients of your
type cannot control when the FileStream closes its underlying unmanaged file
handle.

• Your containing type should not implement a finalizer because the contained
instance of FileStream will close the underlying operating system file handle. Your
containing type should implement a finalizer only if it directly contains an
unmanaged resource.

I want to focus a little more on the fact that Dispose is never called automatically and how your
finalizer can help point out potential efficiency problems to your client. Let’s suppose that you create an
object that allocates a nontrivial chunk of unmanaged system resources. And suppose that the client of
your object has created a web site that takes many hits per minute, and the client creates a new instance

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

448

of your object with each hit. The client’s system’s performance will degrade significantly if the client
forgets to dispose of these objects in a timely manner before all references to the object are gone. Of
course, if you implement a finalizer as shown previously, the object will eventually be disposed of.
However, disposal happens only when the GC feels it necessary, so resources will probably run dry and
cripple the system. Moreover, failing to call Dispose will likely result in more finalization, which will
cripple the GC even more. Client code can force GC collection through the GC.Collect method.
However, it is strongly recommended that you never call it because it interferes with the GC’s
algorithms. The GC knows how to manage its memory better than you do 99.9% of the time.

It would be nice if you could inform the clients of your object when they forget to call Dispose in
their debug builds. Well, in fact, you can log an error whenever the finalizer for your object runs and it
notices that the object has not been disposed of properly. You can even point clients to the exact
location of the object creation by storing off a stack trace at the point of creation. That way, they know
which line of code created the offending instance. Let’s modify the Win32Heap example with this
approach:

using System;
using System.Runtime.InteropServices;
using System.Diagnostics;

public sealed class Win32Heap : IDisposable
{
 [DllImport("kernel32.dll")]
 static extern IntPtr HeapCreate(uint flOptions,
 UIntPtr dwInitialSize,
 UIntPtr dwMaximumSize);

 [DllImport("kernel32.dll")]
 static extern bool HeapDestroy(IntPtr hHeap);

 public Win32Heap() {
 creationStackTrace = new StackTrace(1, true);

 theHeap = HeapCreate(0, (UIntPtr) 4096, UIntPtr.Zero);
 }

 // IDisposable implementation
 private void Dispose(bool disposing) {
 if(!disposed) {
 if(disposing) {
 // It's ok to use any internal objects here. This
 // class happens not to have any, though.
 } else {
 // OOPS! We're finalizing this object and it has not
 // been disposed. Let's let the user know about it if
 // the app domain is not shutting down.
 AppDomain currentDomain = AppDomain.CurrentDomain;
 if(!currentDomain.IsFinalizingForUnload() &&
 !Environment.HasShutdownStarted) {
 Console.WriteLine(
 "Failed to dispose of object!!!");
 Console.WriteLine("Object allocated at:");
 for(int i = 0;
 i < creationStackTrace.FrameCount;

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

449

 ++i) {
 StackFrame frame =
 creationStackTrace.GetFrame(i);
 Console.WriteLine(" {0}",
 frame.ToString());
 }
 }
 }

 // If using objects that you know do still exist, such
 // as objects that implement the Singleton pattern, it
 // is important to make sure those objects are thread-
 // safe.

 HeapDestroy(theHeap);
 theHeap = IntPtr.Zero;
 disposed = true;
 }
 }

 public void Dispose() {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 ~Win32Heap() {
 Dispose(false);
 }

 private IntPtr theHeap;
 private bool disposed = false;
 private StackTrace creationStackTrace;
}

public sealed class EntryPoint
{
 static void Main()
 {
 Win32Heap heap = new Win32Heap();
 heap = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

In the Main method, notice that I allocate a new Win32Heap object, and then I immediately force it to
be finalized. Because the object was not disposed, this triggers the stack dumping code inside the private
Dispose method. Because you probably don’t care about objects being finalized as a result of the app
domain getting unloaded, I wrapped the stack-dumping code inside a block conditional on the result of
AppDomain.IsFinalizingForUnload && Environment.HasShutdownStarted. Had I called Dispose prior to
setting the reference to null in Main, the stack trace would not be sent to the console. Clients of your
library might thank you for pointing out undisposed objects. I know I would.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

450

■ Note When you compile the previous example, you’ll get much more meaningful and readable output if you

compile with the /debug+ compiler switch because more symbol and line number information will be available at

run time as a result. You might even want to consider turning on such reporting only in debug and testing builds.

After this discussion, I hope, you can see the perils of implementing finalizers. They are potential
tremendous resource sinks because they make objects live longer, and yet they are hidden behind the
innocuous syntax of destructors. The one redeeming quality of finalizers is the ability to point out when
objects are not disposed of properly, but I advise using that technique only in debug builds. Be aware of
the efficiency implications you impose on your system when you implement a finalizer on an object. I
recommend that you avoid writing a finalizer if at all possible.

Developers familiar with finalizers are also familiar with the cost incurred by the finalization thread
that walks through the freachable queue calling the objects’ finalizers. However, many more hidden
costs are easy to miss. For example, the creation of finalizable objects takes a little bit longer due to the
bookkeeping that the CLR must maintain to denote the object as finalizable. Of course, for a single
object instance, this cost is extremely minimal, but if you’re creating tens of thousands of small
finalizable objects very quickly, the cost will add up. Also, some incarnations of the CLR create only one
finalization thread, so if you’re running code on a multiprocessor system and several processors are
allocating finalizable objects quicker than the finalization thread can clean them up, you’ll have a
resource problem. What’s worse is if you can imagine what would happen if one of your finalizers
blocked the thread for a long period of time or indefinitely. Additionally, even though you can introduce
dependencies between finalizable objects using some crafty techniques, be aware that the CLR team is
actively considering moving finalization to the process thread pool rather than using a single finalization
thread. That would mean that those crafty finalization techniques would need to be thread-safe. Be
careful out there, and avoid finalizers if at all possible.

What Does Equality Mean for This Object?
Object.Equals is the virtual method that you call to determine, in the most general way, if two objects
are equivalent. On the surface, overriding the Object.Equals method might seem trivial. However,
beware that it is yet another one of those simplistic-looking things that can turn into a semantic hair
ball. The key to understanding Object.Equals is to understand that there are generally two semantic
meanings of equivalence in the CLR. The default meaning of equivalence for reference types—a.k.a.
objects—is identity equivalence. This means that two separate references are considered equal if they
both reference the same object instance on the heap. So, with identity equality, even if you have two
references each referencing different objects that just happen to have completely identical internal
states, Object.Equals will return false for those.

The other form of equivalence in the CLR is that of value equality. Value equality is the default
equivalence for value types, or structs, in C#. The default version of Equals, which is provided by the
override of Equals inside the ValueType class that all value types derive from, sometimes uses reflection
to iterate over the internal fields of two values, comparing them for value equality. With two semantic
meanings of Equals in the CLR possible, some confusion can come from the fact that both value types
and reference types have different default semantic meanings for Equals. In this section, I’ll concentrate
on implementing Object.Equals for reference types. I’ll save value types for a later section.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

451

Reference Types and Identity Equality
What does it mean to say that a type is a reference type? Basically, it means that every variable of that
type that you manipulate is actually a pointer to the actual object on the heap. When you make a copy of
this reference, you get another reference that points to the same object. Consider the following code:

public class EntryPoint
{
 static void Main()
 {
 object referenceA = new System.Object();
 object referenceB = referenceA;
 }
}

In Main, I create a new instance of type System.Object, and then I immediately make a copy of the
reference. What I end up with is something that resembles the diagram in Figure 13-1.

Figure 13-1. Reference variables

In the CLR, the variables that represent the references are actually value types that embody a
storage location (for the pointer to the object they represent) and an associated type. However, note that
once a reference is copied, the actual object pointed to is not copied. Instead, you have two references
that refer to the same object. Operations on the object performed through one reference will be visible to
the client using the other reference.

Now, let’s consider what it means to compare these references. What does equality mean between
two reference variables? The answer is, it depends on what your needs are and how you define equality.
By default, equality of reference variables is meant to be an identity comparison. What that means is that
two reference variables are equal if they refer to the same object, as in Figure 13-1. Again, this referential
equality, or identity, is the default behavior of equality between two references to a heap-based object.

From the client code standpoint, you have to be careful about how you compare two object
references for equality. Consider the following code:

public class EntryPoint
{
 static bool TestForEquality(object obj1, object obj2)
 {
 return obj1.Equals(obj2);
 }

 static void Main()
 {

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

452

 object obj1 = new System.Object();
 object obj2 = null;

 System.Console.WriteLine("obj1 == obj2 is {0}",
 TestForEquality(obj1, obj2));
 }
}

Here I create an instance of System.Object, and I want to find out if the variables obj1 and obj2 are
equal. Because I’m comparing references, the equality test determines if they are pointing to the same
object instance. From looking at the code, you can see that the obvious result is that obj1 != obj2
because obj2 is null. This is expected. However, consider what would happen if you swapped the order
of the parameters in the call to TestForEquality. You would quickly find that your program crashes with
an unhandled exception where TestForInequality tries to call Equals on a null reference. Therefore, you
should modify the code to account for this:

public class EntryPoint
{
 static bool TestForEquality(object obj1, object obj2)
 {
 if(obj1 == null && obj2 == null) {
 return true;
 }

 if(obj1 == null)
 {
 return false;
 }

 return obj1.Equals(obj2);
 }

 static void Main()
 {
 object obj1 = new System.Object();
 object obj2 = null;

 System.Console.WriteLine("obj1 == obj2 is {0}",
 TestForEquality(obj2, obj1));
 System.Console.WriteLine("null == null is {0}",
 TestForEquality(null, null));
 }
}

Now, the code can swap the order of the arguments in the call to TestForEquality, and you get the
expected result. Notice that I also put a check in there to return the proper result if both arguments are
null. Now, TestForEquality is complete. It sure seems like a lot of work to test two references for
equality. Well, the designers of the .NET Framework Standard Library recognized this problem and
introduced the static version of Object.Equals that does this exact comparison. Thankfully, as long as
you call the static version of Object.Equals, you don’t have to worry about creating the code in
TestForEquality in this example.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

453

You’ve seen how equality tests on references to objects test identity by default. However, there
might be times when an identity equivalence test makes no sense. Consider an immutable object that
represents a complex number:

public class ComplexNumber
{
 public ComplexNumber(int real, int imaginary)
 {
 this.real = real;
 this.imaginary = imaginary;
 }

 private int real;
 private int imaginary;
}

public class EntryPoint
{
 static void Main()
 {
 ComplexNumber referenceA = new ComplexNumber(1, 2);
 ComplexNumber referenceB = new ComplexNumber(1, 2);

 System.Console.WriteLine("Result of Equality is {0}",
 referenceA == referenceB);
 }
}

The output from that code looks like this:

Result of Equality is False

Figure 13-2 shows the diagram representing the in-memory layout of the references.

Figure 13-2. References to ComplexNumber

This is the expected result based upon the default meaning of equality between references.
However, this is hardly intuitive to the user of these ComplexNumber objects. It would make better sense
for the comparison of the two references in the diagram to return true because the values of the two
objects are the same. To achieve such a result, you need to provide a custom implementation of equality
for these objects. I’ll show how to do that shortly, but first, let’s quickly discuss what value equality
means.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

454

Value Equality
From the preceding section, it should be obvious what value equality means. Equality of two values is
true when the actual values of the fields representing the state of the object or value are equivalent. In
the ComplexNumber example from the previous section, value equality is true when the values for the real
and imaginary fields are equivalent between two instances of the class.

In the CLR, and thus in C#, this is exactly what equality means for value types defined as structs.
Value types derive from System.ValueType, and System.ValueType overrides the Object.Equals method.
ValueType.Equals sometimes uses reflection to iterate through the fields of the value type while
comparing the fields. This generic implementation will work for all value types. However, it is much
more efficient if you override the Equals method in your struct types and compare the fields directly.
Although using reflection to accomplish this task is a generally applicable approach, it’s very inefficient.

■ Note Before the implementation of ValueType.Equals resorts to using reflection, it makes a couple of quick

checks. If the two types being compared are different, it fails the equality. If they are the same type, it first checks

to see if the types in the contained fields are simple data types that can be bitwise-compared. If so, the entire type

can be bitwise-compared. Failing both of these conditions, the implementation then resorts to using reflection.

Because the default implementation of ValueType.Equals iterates over the value’s contained fields using

reflection, it determines the equality of those individual fields by deferring to the implementation of

Object.Equals on those objects. Therefore, if your value type contains a reference type field, you might be in for

a surprise, depending on the semantics of the Equals method implemented on that reference type. Generally,

containing reference types within a value type is not recommended.

Overriding Object.Equals for Reference Types
Many times, you might need to override the meaning of equivalence for an object. You might want
equivalence for your reference type to be value equality as opposed to referential equality, or identity.
Or, as you’ll see in a later section, you might have a custom value type where you want to override the
default Equals method provided by System.ValueType in order to make the operation more efficient. No
matter what your reason for overriding Equals, you must follow several rules:

• x.Equals(x) == true. This is the reflexive property of equality.

• x.Equals(y) == y.Equals(x). This is the symmetric property of equality.

• x.Equals(y) && y.Equals(z) implies x.Equals(z) == true. This is the transitive
property of equality.

• x.Equals(y) must return the same result as long as the internal state of x and y has
not changed.

• x.Equals(null) == false for all x that are not null.

• Equals must not throw exceptions.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

455

An Equals implementation should adhere to these hard-and-fast rules. You should follow other
suggested guidelines in order to make the Equals implementations on your classes more robust.

As already discussed, the default version of Object.Equals inherited by classes tests for referential
equality, otherwise known as identity. However, in cases like the example using ComplexNumber, such a
test is not intuitive. It would be natural and expected that instances of such a type are compared on a
field-by-field basis. It is for this very reason that you should override Object.Equals for these types of
classes that behave with value semantics.

Let’s revisit the ComplexNumber example once again to see how you can do this:

public class ComplexNumber
{
 public ComplexNumber(int real, int imaginary)
 {
 this.real = real;
 this.imaginary = imaginary;
 }

 public override bool Equals(object obj)
 {
 ComplexNumber other = obj as ComplexNumber;

 if(other == null)
 {
 return false;
 }

 return (this.real == other.real) &&
 (this.imaginary == other.imaginary);
 }

 public override int GetHashCode()
 {
 return (int) real ^ (int) imaginary;
 }

 public static bool operator==(ComplexNumber me, ComplexNumber other)
 {
 return Equals(me, other);
 }

 public static bool operator!=(ComplexNumber me, ComplexNumber other)
 {
 return Equals(me, other);
 }

 private double real;
 private double imaginary;
}

public class EntryPoint
{
 static void Main()
 {

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

456

 ComplexNumber referenceA = new ComplexNumber(1, 2);
 ComplexNumber referenceB = new ComplexNumber(1, 2);

 System.Console.WriteLine("Result of Equality is {0}",
 referenceA == referenceB);

 // If we really want referential equality.
 System.Console.WriteLine("Identity of references is {0}",
 (object) referenceA == (object) referenceB);
 System.Console.WriteLine("Identity of references is {0}",
 ReferenceEquals(referenceA, referenceB));
 }
}

In this example, you can see that the implementation of Equals is pretty straightforward, except that
I do have to test some conditions. I must make sure that the object reference I’m comparing to is both
not null and does, in fact, reference an instance of ComplexNumber. Once I get that far, I can simply test
the fields of the two references to make sure they are equal. You could introduce an optimization and
compare this with other in Equals. If they’re referencing the same object, you could return true without
comparing the fields. However, comparing the two fields is a trivial amount of work in this case, so I’ll
skip the identity test.

In the majority of cases, you won’t need to override Object.Equals for your reference type objects. It
is recommended that your objects treat equivalence using identity comparisons, which is what you get
for free from Object.Equals. However, there are times when it makes sense to override Equals for an
object. For example, if your object represents something that naturally feels like a value and is
immutable, such as a complex number or the System.String class, then it could very well make sense to
override Equals in order to give that object’s implementation of Equals() value equality semantics.

In many cases, when overriding virtual methods in derived classes, such as Object.Equals, it makes
sense to call the base class implementation at some point. However, if your object derives directly from
System.Object, it makes no sense to do this. This is because Object.Equals likely carries a different
semantic meaning from the semantics of your override. Remember, the only reason to override Equals
for objects is to change the semantic meaning from identity to value equality. Also, you don’t want to
mix the two semantics together. But there’s an ugly twist to this story. You do need to call the base class
version of Equals if your class derives from a class other than System.Object and that other class does
override Equals to provide the same semantic meaning you intend in your derived type. This is because
the most likely reason a base class overrode Object.Equals is to switch to value semantics. This means
that you must have intimate knowledge of your base class if you plan on overriding Object.Equals, so
that you will know whether to call the base version. That’s the ugly truth about overriding Object.Equals
for reference types.

Sometimes, even when you’re dealing with reference types, you really do want to test for referential
equality, no matter what. You cannot always rely on the Equals method for the object to determine the
referential equality, so you must use other means because the method can be overridden as in the
ComplexNumber example.

Thankfully, you have two ways to handle this job, and you can see them both at the end of the Main
method in the previous code sample. The C# compiler guarantees that if you apply the == operator to
two references of type Object, you will always get back referential equality. Also, System.Object supplies
a static method named ReferenceEquals that takes two reference parameters and returns true if the
identity test holds true. Either way you choose to go, the result is the same.

If you do change the semantic meaning of Equals for an object, it is best to document this fact
clearly for the clients of your object. If you override Equals for a class, I would strongly recommend that
you tag its semantic meaning with a custom attribute, similar to the technique introduced for
iCloneable implementations previously. This way, people who derive from your class and want to
change the semantic meaning of Equals can quickly determine if they should call your implementation

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

457

in the process. For maximum efficiency, the custom attribute should serve a documentation purpose.
Although it’s possible to look for such an attribute at run time, it would be very inefficient.

■ Note You should never throw exceptions from an implementation of Object.Equals. Instead of throwing an

exception, return false as the result instead.

Throughout this entire discussion, I have purposely avoided talking about the equality operators
because it is beneficial to consider them as an extra layer in addition to Object.Equals. Support of
operator overloading is not a requirement for languages to be CLS-compliant. Therefore, not all
languages that target the CLR support them thoroughly. Visual Basic is one language that has taken a
while to support operator overloading, and it only started supporting it fully in Visual Basic 2005. Visual
Basic .NET 2003 supports calling overloaded operators on objects defined in languages that support
overloaded operators, but they must be called through the special function name generated for the
operator. For example, operator== is implemented with the name op_Equality in the generated IL code.
The best approach is to implement Object.Equals as appropriate and base any operator== or operator!=
implementations on Equals while only providing them as a convenience for languages that support
them.

■ Note Consider implementing IEquatable<T> on your type to get a type-safe version of Equals. This is

especially important for value types, because type-specific versions of methods avoid unnecessary boxing.

If You Override Equals, Override GetHashCode Too
GetHashCode is called when objects are used as keys of a hash table. When a hash table searches for an
entry after given a key to look for, it asks the key for its hash code and then uses that to identify which
hash bucket the key lives in. Once it finds the bucket, it can then see if that key is in the bucket.
Theoretically, the search for the bucket should be quick, and the buckets should have very few keys in
them. This occurs if your GetHashCode method returns a reasonably unique value for instances of your
object that support value equivalence semantics.

Given the previous discussion, you can see that it would be very bad if your hash code algorithm
could return a different value between two instances that contain values that are equivalent. In such a
case, the hash table might fail to find the bucket your key is in. For this reason, it is imperative that you
override GetHashCode if you override Equals for an object. In fact, if you override Equals and not
GetHashCode, the C# compiler will let you know about it with a friendly warning. And because we’re all
diligent with regard to building our release code with zero warnings, we should take the compiler’s word
seriously.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

458

■ Note The previous discussion should be plenty of evidence that any type used as a hash table key should be

immutable. After all, the GetHashCode value is normally computed based upon the state of the object itself. If that

state changes, the GetHashCode result will likely change with it.

GetHashCode implementations should adhere to the following rules:

• If, for two instances, x.Equals(y) is true, then x.GetHashCode() ==
y.GetHashCode().

• Hash codes generated by GetHashCode need not be unique.

• GetHashCode is not permitted to throw exceptions.

If two instances return the same hash code value, they must be further compared with Equals to
determine whether they’re equivalent. Incidentally, if your GetHashCode method is very efficient, you can
base the inequality code path of your operator!= and operator== implementations on it because
different hash codes for objects of the same type imply inequality. Implementing the operators this way
can be more efficient in some cases, but it all depends on the efficiency of your GetHashCode
implementation and the complexity of your Equals method. In some cases, when using this technique,
the calls to the operators could be less efficient than just calling Equals, but in other cases, they can be
remarkably more efficient. For example, consider an object that models a multidimensional point in
space. Suppose that the number of dimensions (rank) of this point could easily approach into the
hundreds. Internally, you could represent the dimensions of the point by using an array of integers. Say
you want to implement the GetHashCode method by computing a CRC32 on the dimension points in the
array. This also implies that this Point type is immutable. This GetHashCode call could potentially be
expensive if you compute the CRC32 each time it is called. Therefore, it might be wise to precompute the
hash and store it in the object. In such a case, you could write the equality operators as shown in the
following code:

sealed public class Point
{
 // other methods removed for clarity

 public override bool Equals(object other) {
 bool result = false;
 Point that = other as Point;
 if(that != null) {
 if(this.coordinates.Length !=
 that.coordinates.Length) {
 result = false;
 } else {
 result = true;
 for(long i = 0;
 i < this.coordinates.Length;
 ++i) {
 if(this.coordinates[i] !=
 that.coordinates[i]) {
 result = false;
 break;

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

459

 }
 }
 }
 }

 return result;
 }

 public override int GetHashCode() {
 return precomputedHash;
 }

 public static bool operator ==(Point pt1, Point pt2) {
 if(pt1.GetHashCode() != pt2.GetHashCode()) {
 return false;
 } else {
 return Object.Equals(pt1, pt2);
 }
 }

 public static bool operator !=(Point pt1, Point pt2) {
 if(pt1.GetHashCode() != pt2.GetHashCode()) {
 return true;
 } else {
 return !Object.Equals(pt1, pt2);
 }
 }

 private float[] coordinates;
 private int precomputedHash;
}

In this example, as long as the precomputed hash is sufficiently unique, the overloaded operators
will execute quickly in some cases. In the worst case, one more comparison between two integers—the
hash values—is executed along with the function calls to acquire them. If the call to Equals is expensive,
then this optimization will return some gains on a lot of the comparisons. If the call to Equals is not
expensive, then this technique could add overhead and make the code less efficient. It’s best to apply the
old adage that premature optimization is poor optimization. You should only apply such an
optimization after a profiler has pointed you in this direction and if you’re sure it will help.

Object.GetHashCode exists because the developers of the Standard Library felt it would be
convenient to be able to use any object as a key to a hash table. The fact is, not all objects are good
candidates for hash keys. Usually, it’s best to use immutable types as hash keys. A good example of an
immutable type in the Standard Library is System.String. Once such an object is created, you can never
change it. Therefore, calling GetHashCode on a string instance is guaranteed to always return the same
value for the same string instance. It becomes more difficult to generate hash codes for objects that are
mutable. In those cases, it’s best to base your GetHashCode implementation on calculations performed on
immutable fields inside the mutable object.

Detailing algorithms for generating hash codes is outside the scope of this book. I recommend that
you reference Donald E. Knuth’s The Art of Computer Programming, Volume 3: Sorting and Searching,
Second Edition (Boston: Addison-Wesley Professional, 1998). For the sake of example, suppose that you
want to implement GetHashCode for a ComplexNumber type. One solution is to compute the hash based on
the magnitude of the complex number, as in the following example:

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

460

using System;

public sealed class ComplexNumber
{
 public ComplexNumber(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 public override bool Equals(object other) {
 bool result = false;
 ComplexNumber that = other as ComplexNumber;
 if(that != null) {
 result = (this.real == that.real) &&
 (this.imaginary == that.imaginary);
 }

 return result;
 }

 public override int GetHashCode() {
 return (int) Math.Sqrt(Math.Pow(this.real, 2) *
 Math.Pow(this.imaginary, 2));
 }

 public static bool operator ==(ComplexNumber num1, ComplexNumber num2) {
 return Object.Equals(num1, num2);
 }

 public static bool operator !=(ComplexNumber num1, ComplexNumber num2) {
 return !Object.Equals(num1, num2);
 }

 // Other methods removed for clarity

 private readonly double real;
 private readonly double imaginary;
}

The GetHashCode algorithm is not meant as a highly efficient example. In fact, it’s not efficient at all
because it is based on nontrivial floating-point mathematical routines. Also, the rounding could
potentially cause many complex numbers to fall within the same bucket. In that case, the efficiency of
the hash table would degrade. I’ll leave a more efficient algorithm as an exercise to the reader. Notice
that I don’t use the GetHashCode method to implement operator!= because of the efficiency concerns.
But more importantly, I rely on the static Object.Equals method to compare them for equality. This
handy method checks the references for null before calling the instance Equals method, saving you from
having to do that. Had I used GetHashCode to implement operator!=, I would have had to check the
references for null values before calling GetHashCode on them. Also, note that both fields used to
calculate the hash code are immutable. Thus, this instance of this object will always return the same
hash code value as long as it lives. In fact, you might consider caching the hash code value once you
compute it the first time to gain greater efficiency.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

461

Does the Object Support Ordering?
Sometimes you’ll design a class for objects that are meant to be stored within a collection. When the
objects in that collection need to be sorted, such as by calling Sort on an ArrayList, you need a well-
defined mechanism for comparing two objects. The pattern that the Base Class Library designers
provided hinges on implementing the following IComparable interface:5

public interface IComparable
{
 int CompareTo(object obj);
}

Again, another one of these interfaces merely contains one method. Thankfully, IComparable doesn’t
contain the same depth of pitfalls as ICloneable and IDisposable. The CompareTo method is fairly
straightforward. It can return a value that is either positive, negative, or zero. Table 13-1 lists the return
value meanings.

Table 13-1. Meaning of Return Values of IComparable.CompareTo

CompareTo Return Value Meaning

Positive this > obj

Zero this == obj

Negative this < obj

You should be aware of a few points when implementing IComparable.CompareTo. First, notice that
the return value specification says nothing about the actual value of the returned integer. It only defines
the sign of the return values. So, to indicate a situation where this is less than obj, you can simply return
-1. When your object represents a value that carries an integer meaning, an efficient way to compute the
comparison value is by subtracting one from the other. It can be tempting to treat the return value as an
indication of the degree of inequality. Although this is possible, I don’t recommend it because relying on
such an implementation is outside the bounds of the IComparable specification, and not all objects can
be expected to do that. Keep in mind that the subtraction operation on integers might incur an overflow.
If you want to avoid that situation, you can simply defer to the IComparable.CompareTo implemented by
the integer type for greater safety.

Second, keep in mind that CompareTo provides no return value definition for when two objects
cannot be compared. Because the parameter type to CompareTo is System.Object, you could easily
attempt to compare an Apple instance to an Orange instance. In such a case, there is no comparison, and
you’re forced to indicate such by throwing an ArgumentException object.

Finally, semantically, the IComparable interface is a superset of Object.Equals. If you derive from an
object that overrides Equals and implements IComparable, you’re wise to override Equals and

5 You should consider using the generic IComparable<T> interface, as shown in Chapter 11 for greater type safety.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

462

reimplement IComparable in your derived class, or do neither. You want to make certain that your
implementation of Equals and CompareTo are aligned with each other.

Based upon all of this information, a compliant IComparable interface should adhere to the
following rules:

• x.CompareTo(x) must return 0. This is the reflexive property.

• If x.CompareTo(y) == 0, then y.CompareTo(x) must equal 0. This is the symmetric
property.

• If x.CompareTo(y) == 0, and y.CompareTo(z) == 0, then x.CompareTo(z) must
equal 0. This is the transitive property.

• If x.CompareTo(y) returns a value other than 0, then y.CompareTo(x) must return a
non-0 value of the opposite sign. In other terms, this statement says that if x < y,
then y > x, or if x > y, then y < x.

• If x.CompareTo(y) returns a value other than 0, and y.CompareTo(z) returns a value
other than 0 with the same sign as the first, then x.CompareTo(y) is required to
return a non-0 value of the same sign as the previous two. In other terms, this
statement says that if x < y and y < z, then x < z, or if x > y and y > z, then x >
z.

The following code shows a modified form of the ComplexNumber class that implements IComparable
and consolidates some code at the same time in private helper methods:

using System;

public sealed class ComplexNumber : IComparable
{
 public ComplexNumber(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 public override bool Equals(object other) {
 bool result = false;
 ComplexNumber that = other as ComplexNumber;
 if(that != null) {
 result = InternalEquals(that);
 }

 return result;
 }

 public override int GetHashCode() {
 return (int) this.Magnitude;
 }

 public static bool operator ==(ComplexNumber num1, ComplexNumber num2) {
 return Object.Equals(num1, num2);
 }

 public static bool operator !=(ComplexNumber num1, ComplexNumber num2) {

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

463

 return !Object.Equals(num1, num2);
 }

 public int CompareTo(object other) {
 ComplexNumber that = other as ComplexNumber;
 if(that == null) {
 throw new ArgumentException("Bad Comparison!");
 }

 int result;
 if(InternalEquals(that)) {
 result = 0;
 } else if(this.Magnitude > that.Magnitude) {
 result = 1;
 } else {
 result = -1;
 }

 return result;
 }

 private bool InternalEquals(ComplexNumber that) {
 return (this.real == that.real) &&
 (this.imaginary == that.imaginary);
 }

 public double Magnitude {
 get {
 return Math.Sqrt(Math.Pow(this.real, 2) +
 Math.Pow(this.imaginary, 2));
 }
 }

 // Other methods removed for clarity

 private readonly double real;
 private readonly double imaginary;
}

Is the Object Formattable?
When you create a new object, or an instance of a value type for that matter, it inherits a method from
System.Object called ToString. This method accepts no parameters and simply returns a string
representation of the object. In all cases, if it makes sense to call ToString on your object, you’ll need to
override this method. The default implementation provided by System.Object merely returns a string
representation of the object’s type name, which of course is not useful for an object requiring a string
representation based upon its internal state. You should always consider overriding Object.ToString for
all your types, even if only for the convenience of logging the object state to a debug output log.

Object.ToString is useful for getting a quick string representation of an object, but it’s sometimes
not useful enough. For example, consider the previous ComplexNumber example. Suppose that you want
to provide a ToString override for that class. An obvious implementation would output the complex
number as an ordered pair within a pair of parentheses (for example, “(1, 2)”. However, the real and

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

464

imaginary components of ComplexNumber are of type double. Also, floating-point numbers don’t always
appear the same across all cultures. Americans use a period to separate the fractional element of a
floating-point number, whereas most Europeans use a comma. This problem is solved easily if you
utilize the default culture information attached to the thread. By accessing the
System.Threading.Thread.CurrentThread.CurrentCulture property, you can get references to the default
cultural information detailing how to represent numerical values, including monetary amounts, as well
as information on how to represent time and date values.

■ Note I cover globalization and cultural information in greater detail in Chapter 8.

By default, the CurrentCulture property gives you access to
System.Globalization.DateTimeFormatInfo and System.Globalization.NumberFormatInfo. Using the
information provided by these objects, you can output the ComplexNumber in a form that is appropriate
for the default culture of the machine the application is running on. Check out Chapter 8 for an example
of how this works.

That solution seems easy enough. However, you must realize that there are times when using the
default culture is not sufficient, and a user of your objects might need to specify which culture to use.
Not only that; the user might want to specify the exact formatting of the output. For example, a user
might prefer to say that the real and imaginary portions of a ComplexNumber instance should be displayed
with only five significant digits while using the German cultural information. If you develop software for
servers, you know that you need this capability. A company that runs a financial services server in the
United States and services requests from Japan will want to display Japanese currency in the format
customary for the Japanese culture. You need to specify how to format an object when it is converted to
a string via ToString without having to change the CurrentCulture on the thread beforehand.

In fact, the Standard Library provides an interface for doing just that. When a class or struct needs
the capability to respond to such requests, it implements the IFormattable interface. The following code
shows the simple-looking IFormattable interface. However, don’t be fooled by its simplistic looks
because depending on the complexity of your object, it might be tricky to implement:

public interface IFormattable
{
 string ToString(string format, IFormatProvider formatProvider);
}

Let’s consider the second parameter first. If the client passes null for formatProvider, you should
default to using the culture information attached to the current thread as previously described.
However, if formatProvider is not null, you’ll need to acquire the formatting information from the
provider via the IFormatProvider.GetFormat method, as discussed in Chapter 8. IFormatProvider looks
like this:

public interface IFormatProvider
{
 object GetFormat(Type formatType);
}

In an effort to be as generic as possible, the designers of the Standard Library designed GetFormat to
accept an object of type System.Type. Thus, it is extensible as to what types the object that implements

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

465

IFormatProvider can support. This flexibility is handy if you intend to develop custom format providers
that need to return as-of-yet-undefined formatting information.

The Standard Library provides a System.Globalization.CultureInfo type that will most likely suffice
for all of your needs. The CultureInfo object implements the IFormatProvider interface, and you can
pass instances of it as the second parameter to IFormattable.ToString. Soon, I’ll show an example of its
usage when I make modifications to the ComplexNumber example, but first, let’s look at the first parameter
to ToString.

The format parameter of ToString allows you to specify how to format a specific number. The
format provider can describe how to display a date or how to display currency based upon cultural
preferences, but you still need to know how to format the object in the first place. All the types within the
Standard Library, such as Int32, support the standard format specifiers, as described under “Standard
Numeric Format Strings” in the MSDN library. In a nutshell, the format string consists of a single letter
specifying the format, and then an optional number between 0 and 99 that declares the precision. For
example, you can specify that a double be output as a five-significant-digit floating-point number with
F5. Not all types are required to support all formats except for one—the G format, which stands for
“general.” In fact, the G format is what you get when you call the parameterless Object.ToString on most
objects in the Standard Library. Some types will ignore the format specification in special circumstances.
For example, a System.Double can contain special values that represent NaN (Not a Number),
PositiveInfinity, or NegativeInfinity. In such cases, System.Double ignores the format specification
and displays a symbol appropriate for the culture as provided by NumberFormatInfo.

The format specifier can also consist of a custom format string. Custom format strings allow the user
to specify the exact layout of numbers as well as mixed-in string literals and so on by using the syntax
described under “Custom Numeric Format String” in the MSDN library. The client can specify one
format for negative numbers, another for positive numbers, and a third for zero values. I won’t spend
any time detailing these various formatting capabilities. Instead, I encourage you to reference the MSDN
material for detailed information regarding them.

As you can see, implementing IFormattable.ToString can be quite a tedious experience, especially
because your format string could be highly customized. However, in many cases—and the
ComplexNumber example is one of those cases—you can rely upon the IFormattable implementations of
standard types. Because ComplexNumber uses System.Double to represent its real and imaginary parts, you
can defer most of your work to the implementation of IFormattable on System.Double. Let’s look at
modifications to the ComplexNumber example to support IFormattable. Assume that the ComplexNumber
type will accept a format string exactly the same way that System.Double does and that each component
of the complex number will be output using this same format. Of course, a better implementation might
provide more capabilities such as allowing you to specify whether the output should be in Cartesian or
polar format, but I’ll leave that to you as an exercise:

using System;
using System.Globalization;

public sealed class ComplexNumber : IFormattable
{
 public ComplexNumber(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 public override string ToString() {
 return ToString("G", null);
 }

 // IFormattable implementation
 public string ToString(string format,

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

466

 IFormatProvider formatProvider) {
 string result = "(" +
 real.ToString(format, formatProvider) +
 " " +
 real.ToString(format, formatProvider) +
 ")";
 return result;
 }

 // Other methods removed for clarity

 private readonly double real;
 private readonly double imaginary;
}

public sealed class EntryPoint
{
 static void Main() {
 ComplexNumber num1 = new ComplexNumber(1.12345678,
 2.12345678);

 Console.WriteLine("US format: {0}",
 num1.ToString("F5",
 new CultureInfo("en-US")));
 Console.WriteLine("DE format: {0}",
 num1.ToString("F5",
 new CultureInfo("de-DE")));
 Console.WriteLine("Object.ToString(): {0}",
 num1.ToString());
 }
}

Here’s the output from running this example:

US format: (1.12346 2.12346)

DE format: (1,12346 2,12346)

Object.ToString(): (1.12345678 2.12345678)

In Main, notice the creation and use of two different CultureInfo instances. First, the ComplexNumber
is output using American cultural formatting; second, using German cultural formatting. In both cases, I
specify to output the string using only five significant digits. You will see that System.Double’s
implementation of IFormattable.ToString even rounds the result as expected. Finally, you can see that
the Object.ToString override is implemented to defer to the IFormattable.ToString method using the G
(general) format.

IFormattable provides the clients of your objects with powerful capabilities when they have specific
formatting needs for your objects. However, that power comes at an implementation cost.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

467

Implementing IFormattable.ToString can be a very detail-oriented task that takes a lot of time and
attentiveness.

Is the Object Convertible?
The C# compiler provides support for converting instances of simple built-in value types, such as int
and long, from one type to another via casting by generating IL code that uses the conv IL instruction.
The conv instruction works well for the simple built-in types, but what do you do when you want to
convert a string to an integer, or vice versa? The compiler cannot do this for you automatically because
such conversions are potentially complex and even require parameters, such as cultural information.

The .NET Framework provides several ways to get the job done. For nontrivial conversions that you
cannot do with casting, you should rely upon the System.Convert class. I won’t list the functions that
Convert implements here, as the list is extremely long. I encourage you to look it up in the MSDN library.
The Convert class contains methods to convert from just about any built-in type to another as long as it
makes sense. So, if you want to convert a double to a String, you would simply call the ToString static
method, passing it the double as follows:

static void Main()
{
 double d = 12.1;
 string str = Convert.ToString(d);
}

In similar form to IFormattable.ToString, Convert.ToString has various overloads that also allow
you to pass a CultureInfo object or any other object that supports IFormatProvider, in order to specify
cultural information when doing the conversion. You can use other methods as well, such as ToBoolean
and ToUInt32. The general pattern of the method names is obviously ToXXX, where XXX is the type you’re
converting to. System.Convert even has methods to convert byte arrays to and from base64-encoded
strings. If you store any binary data in XML text or any other text-based medium, you’ll find these
methods very handy.

Convert will generally serve most of your conversion needs between built-in types. It’s a one-stop
shop for converting an object of one type to another. You can see this just by looking at the wealth of
methods that it supports. However, what happens when your conversion involves a custom type that
Convert doesn’t know about? The answer lies in the Convert.ChangeType method.

ChangeType is System.Convert’s extensibility mechanism. It has several overloads, including some
that take a format provider for cultural information. However, the general idea is that it takes an object
reference and converts it to the type represented by the passed-in System.Type object. Consider the
following code, which uses the ComplexNumber from previous examples and tries to convert it into a string
using System.Convert.ChangeType:

using System;

public sealed class ComplexNumber
{
 public ComplexNumber(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 // Other methods removed for clarity

 private readonly double real;

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

468

 private readonly double imaginary;
}

public sealed class EntryPoint
{
 static void Main() {
 ComplexNumber num1 = new ComplexNumber(1.12345678, 2.12345678);

 string str =
 (string) Convert.ChangeType(num1, typeof(string));
 }
}

You’ll find that the code compiles just fine. However, you’ll get a surprise at run time when you find
that it throws an InvalidCastException with the message, “Object must implement IConvertible.” Even
though ChangeType is System.Convert’s extensibility mechanism, extensibility doesn’t come for free. You
must do some work to make ChangeType work with ComplexNumber. And as you probably guessed, the
work required is to implement the IConvertible interface.

The IConvertible interface is the last defense when it comes to converting objects. If you want your
custom objects to play nice with System.Convert and the types of conversions the user might desire to
perform, you had better implement IConvertible. As with System.Convert, I won’t list the IConvertible
methods here because there are quite a few of them. I encourage you to look them up in the MSDN
documentation. You’ll see one method for converting to each of the built-in types. In addition, Convert
uses a catch-all method, IConvertible.ToType, to convert one custom type to another custom type. Also,
the IConvertible methods accept a format provider so that you can provide cultural information to the
conversion method.

Remember, when you implement an interface, you’re required to provide implementations for all
the interface’s methods. However, if a particular conversion makes no sense for your object, then you
can throw an InvalidCastException in the implementation for that method. Naturally, your
implementation will most definitely throw an exception inside IConvertible.ToType for any type that it
doesn’t support conversion to.

To sum up, it might appear that there are many ways to convert one type to another in C#, and in
fact, there are. However, the general rule of thumb is to rely on System.Convert when casting won’t do
the trick. Moreover, your custom objects, such as the ComplexNumber class, should implement
IConvertible so they can work in concert with the System.Convert class.

■ Note C# offers conversion operators that allow you to do essentially the same thing you can do by implementing

IConvertible. However, C# implicit and explicit conversion operators aren’t CLS-compliant. Therefore, not every

language that consumes your C# code might call them to do the conversion. It is recommended that you not rely

on them exclusively to handle conversion. Of course, if your project is coded using .NET languages that do support

conversion operators, then you can use them exclusively, but it’s recommended that you also support

IConvertible.

The .NET Framework offers yet another type of conversion mechanism, which works via the
System.ComponentModel.TypeConverter. It is another converter that is external to the class of the object
instance that needs to be converted, such as System.Convert. The advantage of using TypeConverter is

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

469

that you can use it at design time within the IDE as well as at run time. You create your own special type
converter for your class that derives from TypeConverter, and then you associate your new type
converter to your class via the TypeConverterAttribute. At design time, the IDE can examine the
metadata for your type and, from the information gleaned from the metadata, create an instance of your
type’s converter. That way, it can convert your type to and from representations that it sees fit to use. I
won’t go into the details of creating a TypeConverter derivative, but if you’d like more information, look
up the “Generalized Type Conversion” topic in the MSDN documentation.

Prefer Type Safety at All Times
You already know that C# is a strongly typed language. A strongly typed language and its compiler form a
dynamic duo capable of sniffing out bugs before they strike. Even though every object in the managed
world derives from System.Object, it’s a bad idea to treat every object generically via a System.Object
reference. One reason is efficiency; for example, if you were to maintain a collection of Employee objects
via references to System.Object, you would always have to cast instances of them to type Employee before
you can call the Evaluate method on them. This inefficiency is amplified by magnitudes with value types
because unnecessary boxing operations are generated in the IL code. I’ll cover the boxing inefficiencies
in the following sections dealing with value types. The biggest problem with all of this casting when
using reference types is when the cast fails and an exception is thrown. By using strong types, you can
catch these problems and deal with them at compile time.

Another prominent reason to prefer strong type usage is associated with catching errors. Consider
the case when implementing interfaces such as ICloneable. Notice that the Clone method returns an
instance as type Object. Clearly, this is done so that the interface will work generically across all types.
However, it can come at a price.

C++ and C# are both strongly typed languages where every variable is declared with a type. Along
with this comes type safety, which the compiler supplies to help you avoid errors. For example, it keeps
you from assigning an instance of class Apple from an instance of class MonkeyWrench. However, C# (and
C++) allows you to work in a less-type-safe way. You can reference every object through the type Object;
however, doing so throws away the type safety, and the compiler will allow you to assign an instance of
type Apple from an instance of type MonkeyWrench as long as both references are of type Object.
Unfortunately, even though the code will compile, you run the risk of generating a runtime error once
the CLR executes code that realizes what sort of craziness you’re attempting to do. So the more you
utilize the type safety of the compiler, the more error detection it can do at compile time, and catching
errors at compile time is always more desirable than catching errors at run time.

Let’s have a closer look at the efficiency facet of the problem. Treating objects generically can
impose a run-time inefficiency when you need to downcast to the actual type. In reality, this efficiency
hit is very minor with managed reference types in C# unless you’re doing it many times within a loop.

In some situations, the C# compiler will generate much more efficient code if you provide a type-
safe implementation of a well-defined method. Consider this typical foreach statement in C#:

foreach(Employee emp in collection) {
 // Do Something
}

Quite simply, the code loops over all the items in collection. Within the body of the foreach
statement, a variable emp of type Employee references the current item in the collection during iteration.
One of the rules enforced by the C# compiler for the collection is that it must implement a public

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

470

method named GetEnumerator, which returns a type used to enumerate the items in the collection. This
method is typically implemented as a result of the collection type implementing the IEnumerable
interface and often returns a forward iterator on the collection of contained objects.6 One of the rules for
the enumerator type is that it must implement a public property named Current, which allows access to
the current element. This property is part of the IEnumerator interface; however, notice that
IEnumerator.Current is typed as System.Object. This leads to another rule with regard to the foreach
statement. It states that the object type of IEnumerator.Current, the real object type, must be explicitly
castable to the type of the iterator in the foreach statement, which in this example is type Employee. If
your collection’s enumerator types its Current property as System.Object, the compiler must always
perform the cast to type Employee. However, you can see that the compiler can generate much more
efficient code if your Current property on your enumerator is typed as Employee.

So, what can you do to remedy this situation in the C# world? Basically, whenever you implement an
interface that contains methods with essentially non-typed return values, consider using explicit
interface implementation to hide those methods from the public contract of the class, while
implementing more type-safe versions as part of the public contract of the class. Let’s look at an example
using the IEnumerator interface:

using System;
using System.Collections;

public class Employee
{
 public void Evaluate() {
 Console.WriteLine("Evaluating Employee...");
 }
}

public class WorkForceEnumerator : IEnumerator
{
 public WorkForceEnumerator(ArrayList employees) {
 this.enumerator = employees.GetEnumerator();
 }

 public Employee Current {
 get {
 return (Employee) enumerator.Current;
 }
 }

 object IEnumerator.Current {
 get {
 return enumerator.Current;
 }
 }

 public bool MoveNext() {

6 I use the word often here because the iterators could be reverse iterators. In Chapter 9, I show how you can easily
create reverse and bidirectional iterators that implement IEnumerator.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

471

 return enumerator.MoveNext();
 }

 public void Reset() {
 enumerator.Reset();
 }

 private IEnumerator enumerator;
}

public class WorkForce : IEnumerable
{
 public WorkForce() {
 employees = new ArrayList();

 // Let's put an employee in here for demo purposes.
 employees.Add(new Employee());
 }

 public WorkForceEnumerator GetEnumerator() {
 return new WorkForceEnumerator(employees);
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return new WorkForceEnumerator(employees);
 }

 private ArrayList employees;
}

public class EntryPoint
{
 static void Main() {
 WorkForce staff = new WorkForce();
 foreach(Employee emp in staff) {
 emp.Evaluate();
 }
 }
}

Look carefully at the example and notice how the typeless versions of the interface methods are
implemented explicitly. Remember that in order to access those methods, you must first cast the
instance to the interface type. However, the compiler doesn’t do that when it generates the foreach loop.
Instead, it simply looks for methods that match the rules already mentioned.7 So, it will find the strongly
typed versions and use them. I encourage you to step through the code using a debugger to see it in
action. In fact, these types aren’t even required to implement the interfaces that they implement—
namely, IEnumerable and IEnumerator. You can comment the interface names out and simply implement

7 This technique is commonly referred to as duck typing.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

472

the methods that match the signatures of the ones in the interfaces. Also, you can make this code
considerably more efficient by using generics, which I covered in Chapter 11.

Let’s take a closer look at the foreach loop generated by the compiler to get a better idea of what
sorts of efficiency gains you get. In the following code, I’ve removed the strongly typed versions of the
interface methods, and as expected, the example runs pretty much the same as before from an outside
perspective:

using System;
using System.Collections;

public class Employee
{
 public void Evaluate() {
 Console.WriteLine("Evaluating Employee...");
 }
}

public class WorkForceEnumerator : IEnumerator
{
 public WorkForceEnumerator(ArrayList employees) {
 this.enumerator = employees.GetEnumerator();
 }

 public object Current {
 get {
 return enumerator.Current;
 }
 }

 public bool MoveNext() {
 return enumerator.MoveNext();
 }

 public void Reset() {
 enumerator.Reset();
 }

 private IEnumerator enumerator;
}

public class WorkForce : IEnumerable
{
 public WorkForce() {
 employees = new ArrayList();

 // Let's put an employee in here for demo purposes.
 employees.Add(new Employee());
 }

 public IEnumerator GetEnumerator() {
 return new WorkForceEnumerator(employees);
 }

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

473

 private ArrayList employees;
}

public class EntryPoint
{
 static void Main() {
 WorkForce staff = new WorkForce();
 foreach(Employee emp in staff) {
 emp.Evaluate();
 }
 }
}

Of course, the generated IL is not as efficient. To see the efficiency gains within the foreach loop,
you must load the compiled versions of each example into ILDASM and open up the IL code for the Main
method. You’ll see that the weakly typed example has extra castclass instructions that are not present in
the strongly typed example. On my development machine, I ran the foreach loop 20,000,000 times in a
tight loop to create a crude benchmark. The typed version of the enumerator was 15% faster than the
untyped version. That’s a considerable gain if you’re working on the game loop in the next best-selling
Managed DirectX game.

Using Immutable Reference Types
When creating a well-designed contract or interface, you should always consider the mutability or
immutability of types declared in the contract. For example, if you have a method that accepts a
parameter, you should consider whether it is valid for the method to modify the parameter. Suppose
that you want to ensure that the method body cannot modify a parameter. If the parameter is a value
type that is passed without the ref keyword, the method receives a copy of the parameter, and you’re
guaranteed that the source value is not modified. However, for reference types, it’s much more
complicated because only the reference is copied rather than the object the reference points to.

■ Note If you come from a C++ background, you’ll recognize that immutability is implemented via the const

keyword. To follow this technique is to be const-correct. Even though C++ might seem superior to those who are

upset that C# doesn’t support const, keep in mind that in C++, you can cast away the const-ness using

const_cast. Therefore, an immutable implementation is actually superior to the C++ const keyword, because

you can’t simply cast it away.

A great example of an immutable class within the Standard Library is System.String. Once you
create a String object, you can’t ever change it. There’s no way around it; that’s the way the class is
designed. You can create copies, and those copies can be modified forms of the original, but you simply
cannot change the original instance for as long as it lives, without resorting to unsafe code. If you
understand that, you’re probably starting to get the gist of where I’m going here: For a reference-based
object to be passed into a method, such that the client can be guaranteed that it won’t change during the
method call, it must itself be immutable.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

474

In a world such as the CLR where objects are held by reference by default, this notion of
immutability becomes very important. Let’s suppose that System.String was mutable, and let’s suppose
that you could write a method such as the following fictitious method:

public void PrintString(string theString)
{
 // Assuming following line does not create a new
 // instance of String but modifies theString
 theString += ": there, I printed it!";
 Console.WriteLine(theString);
}

Imagine the callers’ dismay when they get further along in the code that called this method and now
their string has this extra stuff appended onto the end of it. That’s what could happen if System.String
were mutable. You can see that String’s immutability exists for a reason, and maybe you should
consider adding the same capability to your design.

There are many ways to solve the C# const parameter problem for objects that must be mutable.
One general solution is to create two classes for each mutable class you create if you’ll ever want your
clients to be able to pass a const version of the object to a parameter. As an example, let’s revisit the
previous ComplexNumber class. If implemented as an object rather than a value type, ComplexNumber is a
perfect candidate to be an immutable type, similar to String. In such cases, an operation such as
ComplexNumber.Add would need to produce a new instance of ComplexNumber rather than modify the
object referenced by this. But for the sake of argument, let’s consider what you would want to do if
ComplexNumber were allowed to be mutable. You could allow access to the real and imaginary fields via
read-write properties. But how would you be able to pass the object to a method and be guaranteed that
the method won’t change it by accessing the setter of the one of the properties? One answer, as in many
other object-oriented designs, is the technique of introducing another class. Consider the following
code:

using System;

public sealed class ComplexNumber
{
 public ComplexNumber(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 public double Real {
 get {
 return real;
 }

 set {
 real = value;
 }
 }

 public double Imaginary {
 get {
 return imaginary;
 }

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

475

 set {
 imaginary = value;
 }
 }

 // Other methods removed for clarity

 private double real;
 private double imaginary;
}

public sealed class ConstComplexNumber
{
 public ConstComplexNumber(ComplexNumber pimpl) {
 this.pimpl = pimpl;
 }

 public double Real {
 get {
 return pimpl.Real;
 }
 }

 public double Imaginary {
 get {
 return pimpl.Imaginary;
 }
 }

 private readonly ComplexNumber pimpl8;
}

public sealed class EntryPoint
{
 static void Main() {
 ComplexNumber someNumber = new ComplexNumber(1, 2);
 SomeMethod(new ConstComplexNumber(someNumber));

 // We are guaranteed by the contract of ConstComplexNumber that
 // someNumber has not been changed at this point.
 }

 static void SomeMethod(ConstComplexNumber number) {
 Console.WriteLine("({0}, {1})",
 number.Real,
 number.Imaginary);

8 For those of you curious about the curious name of this field, read about the Pimpl Idiom in Herb Sutter’s
Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Exception-Safety Solutions (Boston: Addison-
Wesley Professional, 1999).

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

476

 }
}

Notice that I’ve introduced a shim class named ConstComplexNumber. When a method wants to
accept a ComplexNumber object but guarantee that it won’t change that parameter, it accepts a
ConstComplexNumber rather than a ComplexNumber. Of course, for the case of ComplexNumber, the best
solution would have been to implement it as an immutable type in the first place.9 But, you can easily
imagine a class much more complex than ComplexNumber (no pun intended . . . really!) that might require
a technique similar to this to guarantee that a method won’t modify an instance of it.

As with many problems in software design, you can achieve the same goal in many ways. Before you
write these techniques off as academic exercises, please take time to consider and understand the power
of immutability in robust software designs. So many articles on const-correctness exist in the C++
community for good reason. And there is no good reason that you shouldn’t apply these same
techniques to your C# designs.

Value Type Canonical Forms
While investigating the notions of canonical forms for value types, you’ll find that some of the concepts
that apply to reference types might be applied here as well. However, there are many notable
differences. For example, it makes no sense to implement ICloneable on a value type. Technically you
could, but because ICloneable returns an instance of type Object, your value type’s implementation of
ICloneable.Clone would most likely just be returning a boxed copy of itself. You can get exactly the same
behavior by simply casting a value type instance into a reference to System.Object, as long as your value
type doesn’t contain any reference types. In fact, you could argue that value types that contain mutable
reference types are bordering on poor design. Value types are best used for immutable, lightweight data
chunks. So, as long as the reference types your value type does contain are immutable—similar to
System.String, for example—you don’t have to worry about implementing ICloneable on your value
type. If you find yourself being forced to implement ICloneable on your value type, take a closer look at
the design. It’s possible that your value type should be a reference type.

Value types don’t need a finalizer, and, in fact, C# won’t let you create a finalizer via the destructor
syntax on a struct. Similarly, value types have no need to implement the IDisposable interface unless
they contain objects by reference, which implement IDisposable, or if they hold onto scarce system
resources. In those cases, it’s important that value types implement IDisposable. In fact, you can use the
using statement with value types that implement IDisposable.

■ Tip Because value types cannot implement finalizers, they cannot guarantee that the cleanup code in Dispose

executes even if the user forgets to call it explicitly. Therefore, declaring fields of reference type within value types

should be discouraged. If the field is a value type that requires disposal, you cannot guarantee that disposal

happens.

9 To avoid this complex ball of yarn, many of the value types defined by the .NET Framework are, in fact, immutable.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

477

Value types and reference types do share many implementation idioms. For example, it makes
sense for both to consider implementing IComparable, IFormattable, and possibly IConvertible.

In the rest of this section, I’ll cover the different canonical concepts that you should apply while
designing value types. Specifically, you’ll want to override Equals for greater run-time efficiency, and
you’ll want to be cognizant of what it means for a value type to implement an interface. Let’s get started.

Override Equals for Better Performance
You’ve already seen the main differences between the two types of equivalence in the CLR and in C#. For
example, you now know that reference types (class instances) define equality as a referential or identity
test by default, and value types (struct instances) use value equality as an equivalence test. Reference
types get their default implementation from Object.Equals, whereas value types get their default
implementation from System.ValueType’s override of Equals. All struct types (and enum types) implicitly
derive from System.ValueType.

You should implement your own override of Equals for each struct that you define. You can
compare the fields of your object more efficiently, because you know their types and what they are at
compile time. Let’s update the ComplexNumber example from previous sections, converting it to a struct
and implementing a custom Equals override:

using System;

public struct ComplexNumber : IComparable
{
 public ComplexNumber(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 public override bool Equals(object other) {
 bool result = false;
 if(other is ComplexNumber) {
 ComplexNumber that = (ComplexNumber) other ;

 result = InternalEquals(that);
 }

 return result;
 }

 public override int GetHashCode() {
 return (int) this.Magnitude;
 }

 public static bool operator ==(ComplexNumber num1,
 ComplexNumber num2) {
 return num1.Equals(num2);
 }

 public static bool operator !=(ComplexNumber num1,
 ComplexNumber num2) {
 return !num1.Equals(num2);
 }

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

478

 public int CompareTo(object other) {
 if(!(other is ComplexNumber)) {
 throw new ArgumentException("Bad Comparison!");
 }

 ComplexNumber that = (ComplexNumber) other;

 int result;
 if(InternalEquals(that)) {
 result = 0;
 } else if(this.Magnitude > that.Magnitude) {
 result = 1;
 } else {
 result = -1;
 }

 return result;
 }

 private bool InternalEquals(ComplexNumber that) {
 return (this.real == that.real) &&
 (this.imaginary == that.imaginary);
 }

 public double Magnitude {
 get {
 return Math.Sqrt(Math.Pow(this.real, 2) +
 Math.Pow(this.imaginary, 2));
 }
 }

 // Other methods removed for clarity

 private readonly double real;
 private readonly double imaginary;
}

public sealed class EntryPoint
{
 static void Main()
 {
 ComplexNumber num1 = new ComplexNumber(1, 2);
 ComplexNumber num2 = new ComplexNumber(1, 2);

 bool result = num1.Equals(num2);
 }
}

Looking at the example code, you can see that it has only minimal changes compared with the
reference type version. The type is now declared as a struct rather than a class, and notice that it also still
supports IComparable. I’ll have more to say about structs implementing interfaces later, in the section
titled “Do Values of This Type Support Any Interfaces?” The keen reader might notice that the efficiency

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

479

still stands to improve by a fair amount. The trick lies in the concept of boxing and unboxing. Remember
that any time a value type instance is passed as an object in a method parameter list, it must be
implicitly boxed if it is not boxed already. That means that when the Main method calls the Equals
method, it must first box the num2 value. What’s worse is that the method will typically unbox the value in
order to use it. Thus, in the process of comparing two values for equality, you’ve made two more copies
of one of them.

To solve this problem, you can define two overloads of Equals. You want a type-safe version that
takes a ComplexNumber as its parameter type, and you still need to override the Object.Equals method as
before.

■ Note The .NET 2.0 Framework formalized this concept with the generic interface IEquatable<T>, which

declares one method that is the type-safe version of Equals.

Let’s take a look at how the code changes:

using System;

public struct ComplexNumber : IComparable,
 IComparable<ComplexNumber>,
 IEquatable<ComplexNumber>
{
 public ComplexNumber(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 public bool Equals(ComplexNumber other) {
 return (this.real == other.real) &&
 (this.imaginary == other.imaginary);
 }

 public override bool Equals(object other) {
 bool result = false;
 if(other is ComplexNumber) {
 ComplexNumber that = (ComplexNumber) other ;

 result = Equals(that);
 }

 return result;
 }

 public override int GetHashCode() {
 return (int) this.Magnitude;
 }

 public static bool operator ==(ComplexNumber num1,
 ComplexNumber num2) {

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

480

 return num1.Equals(num2);
 }

 public static bool operator !=(ComplexNumber num1,
 ComplexNumber num2) {
 return !num1.Equals(num2);
 }

 public int CompareTo(object other) {
 if(!(other is ComplexNumber)) {
 throw new ArgumentException("Bad Comparison!");
 }

 return CompareTo((ComplexNumber) other);
 }

 public int CompareTo(ComplexNumber that) {
 int result;
 if(Equals(that)) {
 result = 0;
 } else if(this.Magnitude > that.Magnitude) {
 result = 1;
 } else {
 result = -1;
 }

 return result;
 }

 public double Magnitude {
 get {
 return Math.Sqrt(Math.Pow(this.real, 2) +
 Math.Pow(this.imaginary, 2));
 }
 }

 // Other methods removed for clarity

 private readonly double real;
 private readonly double imaginary;
}

public sealed class EntryPoint
{
 static void Main()
 {
 ComplexNumber num1 = new ComplexNumber(1, 2);
 ComplexNumber num2 = new ComplexNumber(1, 2);

 bool result = num1.Equals(num2);
 }
}

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

481

Now, the comparison inside Main is much more efficient because the value doesn’t need to be
boxed. The compiler chooses the closest match of the two overloads, which, of course, is the strongly
typed overload of Equals that accepts a ComplexNumber rather than a generic object type. Internally, the
Object.Equals override delegates to the type-safe version of Equals after it checks the type of the object
and unboxes it. It’s important to note that the Object.Equals override first checks the type to see if it is a
ComplexNumber, or more specifically a boxed ComplexNumber, before it unboxes it to avoid throwing an
exception. The Standard Library documentation for Object.Equals clearly states that overrides of
Object.Equals must not throw exceptions. Finally, notice that the same rule of thumb for GetHashCode
exists for structs as well as classes. If you override Object.Equals, you must also override
Object.GetHashCode, or vice versa.

Note that I also implemented IComparable<ComplexNumber>, which uses the same technique as
IEquatable<ComplexNumber> to provide a type-safe version of IComparable. You should always consider
implementing these generic interfaces so the compiler has greater latitude when enforcing type safety.

Do Values of This Type Support Any Interfaces?
The difference in behavior between value types and reference types within the CLR can sometimes cause
headaches and confusion, especially to those who are new to the CLR and C#. Those headaches usually
derive from the tricky nature of bridging the two worlds between reference types and value types.
Consider the fact that all value types (structs) implicitly derive from System.ValueType. Also, consider the
fact that System.ValueType derives from System.Object. You might be inclined to think that you could
simply cast a value type, such as an instance of ComplexNumber, into Object and thus bridge the gap
between the value-type world and the reference-type world. This is what happens, but probably not as
you might expect.

What actually happens is that the CLR creates a new object for you, and that new object contains a
copy of your value type. You have already seen this concept defined as boxing. Under the covers, when
the CLR encounters a definition for a struct, or value type, it also internally defines a reference type,
which is the box I’m talking about when I talk about a boxing operation. You can’t create an instance of
that type explicitly, but that’s what you’re doing when you incur a boxing operation on a value instance.

When the CLR creates this internal boxing type at run time, it has access to all the information it
needs to effectively implement all the methods that your value type supports, and the method
implementations simply forward the calls to the contained copy of your value type. By the same token,
the dynamically generated boxing type also implements any interfaces that the value type implements.
Thus, references to instances of the dynamic box type, which is a reference type, can be cast to
references of the implemented interface types, as is natural for reference types. But what do you think
happens when you cast a value type instance into an interface type? The answer is that the value must be
boxed first. It makes sense when you consider that an interface reference always references a reference
type.

You’ve already seen how boxing can be a nuisance in C#. This is because boxing happens
automatically, as if to help you out. But unless you know what’s going on behind the scenes, it can cause
more confusion than not, because you can inadvertently modify a value within a box and then throw it
away without propagating those changes back into the original value from the boxed value. Dizzying,
isn’t it?

Can you think of a way whereby you can modify a value that lives inside a box? If you cast the box
instance back to its value type, you get a new copy of the value in the box. So, that cannot do the trick.
What you need is a way to touch the internal boxed value. Interfaces are the answer. As I said before, the
internally created boxing reference type that you never see implements all the interfaces that the struct
implements. Because interface references refer to objects, they can modify the state of the value inside
the box, if you make calls through the interface. Thus, the only way you can modify the contents of a
value within a box is through an interface reference. I can’t think of a good design reason for why you
would want to do that in the first place, though!

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

482

In closing, it’s important to note that value types that implement interfaces will incur implicit
boxing if you cast one of those types to an interface type that it implements. At the same time, interfaces
are the only mechanism through which you can change the value inside a box. For an example of how to
do this, check out the “Boxing and Unboxing” section in Chapter 4.

Implement Type-Safe Forms of Interface Members and Derived
Methods
I already covered this topic with respect to reference types in the “Prefer Type Safety at All Times”
section. Most of the same points are applicable to value types, along with some added efficiency
considerations. These efficiency problems stem from explicit conversion operations from value types to
reference types, and vice versa. As you know, these conversions produce hidden boxing and unboxing
operations in the generated IL code. Boxing operations can easily kill your efficiency in many situations.
The points made previously about how type-safe versions of the enumeration methods help the C#
compiler create much more efficient code in a foreach loop apply tenfold to value types. That is because
boxing operations from conversions to and from value types take much more processor time when
compared to a typecast of a reference type, which is relatively quick.

You’ve already seen how the ComplexNumber value type implements an interface—in this case,
IComparable. That is because you still want value types to be sortable if they’re stored within a container.
You’ll notice that core types within the CLR, such as System.Int32, also support interfaces such as
IComparable. However, from an efficiency standpoint, you don’t want to box a value type each time you
want to compare it to another. In fact, as it is currently written, the following code boxes both values:

public void Main()
{
 ComplexNumber num1 = new ComplexNumber(1, 3);
 ComplexNumber num2 = new ComplexNumber(1, 2);

 int result = ((IComparable)num1).CompareTo(num2);
}

Can you see both of the boxing operations? As was shown in the previous section, the num1 instance
must be boxed in order to acquire a reference to the IComparable interface on it. Secondly, because
CompareTo accepts a reference of type System.Object, the num2 instance must be boxed. This is terrible for
efficiency. Technically, I didn’t have to box num1 in order to call through IComparable. However, if the
previous ComplexNumber example had implemented the IComparable interface explicitly, I would have
had no choice.

To solve this problem, you want to implement a type-safe version of the CompareTo method, while at
the same time implementing the IComparable.CompareTo method. Using this technique, the comparison
call in the previous code will incur absolutely no boxing operations. Let’s look at how to modify the
ComplexNumber struct to do this:

using System;

public struct ComplexNumber : IComparable,
 IComparable<ComplexNumber>,
 IEquatable<ComplexNumber>
{
 public ComplexNumber(double real, double imaginary) {
 this.real = real;
 this.imaginary = imaginary;

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

483

 }

 public bool Equals(ComplexNumber other) {
 return (this.real == other.real) &&
 (this.imaginary == other.imaginary);
 }

 public override bool Equals(object other) {
 bool result = false;
 if(other is ComplexNumber) {
 ComplexNumber that = (ComplexNumber) other ;

 result = Equals(that);
 }

 return result;
 }

 public override int GetHashCode() {
 return (int) this.Magnitude;
 }

 public static bool operator ==(ComplexNumber num1,
 ComplexNumber num2) {
 return num1.Equals(num2);
 }

 public static bool operator !=(ComplexNumber num1,
 ComplexNumber num2) {
 return !num1.Equals(num2);
 }

 public int CompareTo(ComplexNumber that) {
 int result;
 if(Equals(that)) {
 result = 0;
 } else if(this.Magnitude > that.Magnitude) {
 result = 1;
 } else {
 result = -1;
 }

 return result;
 }

 int IComparable.CompareTo(object other) {
 if(!(other is ComplexNumber)) {
 throw new ArgumentException("Bad Comparison!");
 }

 return CompareTo((ComplexNumber) other);
 }

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

484

 public double Magnitude {
 get {
 return Math.Sqrt(Math.Pow(this.real, 2) +
 Math.Pow(this.imaginary, 2));
 }
 }

 // Other methods removed for clarity

 private readonly double real;
 private readonly double imaginary;
}

public sealed class EntryPoint
{
 static void Main()
 {
 ComplexNumber num1 = new ComplexNumber(1, 3);
 ComplexNumber num2 = new ComplexNumber(1, 2);

 int result = num1.CompareTo(num2);

 // Now, try the type-generic version
 result = ((IComparable)num1).CompareTo(num2);
 }
}

After the modifications, the first call to CompareTo in Main will incur no boxing operations. You’ll also
notice that I went one step further and implemented the IComparable.CompareTo method explicitly; this
makes it harder to call the typeless version of CompareTo inadvertently without first explicitly casting the
value instance to a reference of type IComparable. For good measure, the Main method demonstrates how
to call the typeless version of CompareTo. Now, the idea is that clients who use the ComplexNumber value
can write code in a natural-looking way and get the benefits of better performance. Clients who require
going through the interface, such as some nongeneric container types, can use the IComparable
interface, albeit with some boxing. If you’re curious, go ahead and open up the compiled executable
with the previous example code inside ILDASM and examine the Main method. You’ll see that the first
call to CompareTo results in no superfluous boxing, whereas the second call to CompareTo does, in fact,
result in two boxing operations as expected.

As a general rule of thumb, you can apply this idiom to just about any value type’s methods that
accept or return a boxed instance of the value type. So far, you’ve seen two such examples of the idiom
in use. The first was while implementing Equals for the ComplexNumber type, and the second was while
implementing IComparable.CompareTo.

Summary
This entire chapter can be summarized into a pair of handy checklists that you can use whenever you
design a new type in C#. When you design a new class or struct, it is good design practice to go through
the checklist for each type, just as a pilot does before the plane leaves the gate. If you take this approach,
you can always feel confident about your designs.

These checklists have been a work in progress for some time. They are by no means meant to be
complete. You might find the need to augment them or create new entries for new scenarios where you

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

485

might use classes or structs. These checklists are meant to address the most common scenarios that
you’re likely to encounter in a C# design process.

Checklist for Reference Types

• Should this class be unsealed? Classes should be declared sealed by default unless
they’re clearly intended to be used as a base class. Even then, you should well
document how to use them as a base class. Choose sealed classes over unsealed
classes.

• Is an object cloneable?

• Implement ICloneable while defaulting to a deep copy: If an object is
mutable, default to a deep copy. Otherwise, if it’s immutable, consider a
shallow copy as an optimization.

• Avoid use of MemberwiseClone: Calling MemberwiseClone creates a new object
without calling any constructors. This practice can be dangerous.

• Is an object disposable?

• Implement IDisposable: If you find the need to implement a conventional
destructor, use the IDispose pattern instead.

• Implement a finalizer: Disposable objects should implement a finalizer to
either catch objects that clients forgot to dispose of or to warn clients that
they forgot to do so. Don’t do deterministic destruction work in the C#
destructor, which is the finalizer. Only do that kind of work in the Dispose
method.

• Suppress finalization during a call to Dispose: This will make the GC
perform much more efficiently. Otherwise, objects live on the heap longer
than they need to.

• Should object equivalence checks carry value semantics?

• Override Object.Equals: Before changing the semantic meaning of Equals,
be sure you have a solid argument to do so; otherwise, leave the default
identity equivalence in place for objects. It is an error to throw exceptions
from within your Equals override.

• Know when to call the base class Equals implementation: If your object
derives from a type whose version of Equals differs in semantic meaning
from your implementation, don’t call the base class version in the override.
Otherwise, be sure to do so and include its result with yours.

• Override GetHashCode, too: This is a required step to ensure that you can use
objects of this type as a hash code key. If you override Equals, always
override GetHashCode too.

• Are objects of this type comparable?

• Implement IComparable and IComparable<T>, and override Equals and
GetHashCode: You’ll want to override these as a group, because they have
intertwined implementations.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

486

• Is the object convertible to System.String, or vice versa?

• Override Object.ToString: The implementation inherited from
Object.ToString merely returns a string name of the object’s type.

• Implement IFormattable if users need finer control over string formatting:
Implement the Object.ToString override by calling IFormattable.ToString
with a format string of G and a null format provider.

• Is an object convertible?

• Override IConvertible so the class will work with System.Convert: In C#, you
must implement all methods of the interface. However, for conversion
methods that don’t make sense for your class, simply throw an
InvalidCastException object.

• Should this object be immutable?

• Consider making fields read-only and provide only read-only properties:
Objects that fundamentally represent a simple value, such as a string or a
complex number, are excellent candidates to be immutable objects.

• Do you need to pass this object as a constant immutable method parameter?

• Consider implementing an immutable shim class that contains a reference to
a mutable object, which can be passed a method parameter: First, see if it
makes sense for your class to be immutable. If so, then there’s no need for
this action. If you do need to be able to pass your mutable objects to
methods as immutable objects, you can achieve the same effect by using
interfaces.

Checklist for Value Types

• Do you desire greater efficiency for your value types?

• Override Equals and GetHashCode: The generic version of ValueType.Equals
is not efficient because it relies upon reflection to do the job. Generally, it’s
best to provide a type-safe version of Equals by implementing
IEquatable<T> and then have the typeless version call it. Don’t forget to
override GetHashCode, too.

• Provide type-safe overloads of inherited typeless methods and interface
methods: For any method that accepts or returns a parameter of type
System.Object, provide an overload that uses the concrete value type in its
place. That way, clients of the value type can avoid unnecessary boxing. For
interfaces, consider hiding the typeless implementation behind an explicit
interface implementation, if desired.

• Need to modify boxed instances of value?

• Implement an interface to do so: Calling through an interface member
implemented by a value type is the only way to change a value type within a
boxed instance.

• Are values of this type comparable?

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

487

• Implement IComparable and IComparable<T>, and override Equals and
GetHashCode: You’ll want to implement and override all these, because they
have intertwined implementations. If you override Equals, take the previous
advice and create a type-safe version as well.

• Is the value convertible to System.String, or vice versa?

• Override ValueType.ToString: The implementation inherited from
ValueType merely returns a string name of the value’s type.

• Implement IFormattable if users need finer control over string formatting:
Implement a ValueType.ToString override that calls IFormattable.ToString
with a format string of G and a null format provider.

• Is the value convertible?

• Override IConvertible so struct will work with System.Convert: In C#, all
methods of the interface must be implemented. However, for conversion
methods that don’t make sense for your struct, simply throw an
InvalidCastException object.

• Should this struct be immutable?

• Consider making fields read-only, and provide only read-only properties:
Values are excellent candidates to be immutable types.

CHAPTER 13 ■ IN SEARCH OF C# CANONICAL FORMS

488

C H A P T E R 14

■ ■ ■

489

Extension Methods

Using extension methods, you can declare methods that appear to augment the public interface, or
contract, of a type. At first glance, they may appear to provide a way to extend classes that are not meant
to be extended. However, it’s very important to note that extension methods cannot break
encapsulation. That’s because they’re not really instance methods at all and thus cannot crack the shell
of encapsulation on the type they are extending.

Introduction to Extension Methods
As previously mentioned, extension methods make it appear that you can modify the public interface of
any type. Let’s take a quick look at a small example showing extension methods in action:

using System;

namespace ExtensionMethodDemo
{

 public static class ExtensionMethods
 {
 public static void SendToLog(this String str) {
 Console.WriteLine(str);
 }
 }

 public class ExtensionMethodIntro
 {
 static void Main() {
 String str = "Some useful information to log";

 // Call the extension method
 str.SendToLog();

 // Call the same method the old way.
 ExtensionMethods.SendToLog(str);
 }
 }

}

CHAPTER 14 ■ EXTENSION METHODS

490

Take a look at the Main method first. Notice that I declared a System.String first and then called the
method SendToLog on the str instance. But wait! There is no method named SendToLog in the
System.String type definition. That’s because SendToLog is an extension method declared in the previous
class, named ExtensionMethods.

At first glance, it appears that ExtensionMethods.SendToLog is just like any other plain static method.
But notice two things. It is declared inside a static class, namely ExtensionMethods, and the first
parameter to the static method SendToLog has its type prefixed with the keyword this. Using the this
keyword in this way on a static method declared in a static class is how you tell the compiler that the
method is an extension method.

Notice that in the end of the Main method, I demonstrate that you can still call the SendToLog method
just like any other normal static method. In fact, extension methods do not give you any more
functionality over regular static methods. Extension methods add a certain amount of syntactic sugar to
the language to allow you to call them as if they were an instance method of the type instance you are
operating on. But just like any other feature of the language, they can be abused. Therefore, I present
some best practices and guidelines when using extension methods later in the “Recommendations for
Use” section.

How Does the Compiler Find Extension Methods?
When you call an instance method on a type instance, the compiler must deduce which method you are
actually calling by considering things such as the instance’s type, its base type (if there is one), any
interfaces it and its base type may implement, and so on. As shown in Chapter 5, the steps the compiler
goes through to determine which method to call can be quite complex. So how does the compiler handle
the added complexity of finding an extension method to call?

Extension methods are typically imported into the current compilation unit via namespaces with
the using keyword. When you use the using keyword to import the types from a particular namespace
into the current scope, you also make all the extension methods implemented in static classes in that
namespace available for call via the new syntax. If you don’t import the namespace with the static
classes implementing the extension methods you need, you can only call them as static methods using
their fully qualified names. Remember that it is not required that you import a namespace in order to
use the types within it. For example, you can use the System.Console type in your application without
actually importing the types of the System namespace as long as you use its fully qualified name. But you
typically do it for convenience. Similarly, in order to call extension methods using the instance method
call syntax, you must import the namespace.

■ Note Starting with C# 3.0, importing a namespace as a more convenient way to address the types within it has

a side effect if that namespace also contains extension methods. I discuss this more fully in the

“Recommendations for Use” section later on.

When you invoke an instance method, the compiler searches the type for the matching instance
method. If the search yields no matching methods, the compiler proceeds to look for matching
extension methods. It starts by searching all the extension methods declared in the innermost
containing namespace of the method invocation including its imported namespaces, and if it does not
find a match, it searches the next outer enclosing namespace recursively up to the global namespace as
it looks for a match. If it fails to find a match, the compiler will stop with a compilation error. Conversely,
if the current namespace has more than one extension method imported that matches, the compiler will

CHAPTER 14 ■ EXENTENSION METHODS

491

issue an error complaining about the ambiguity. In such cases, you must fall back to calling the method
as a static method while specifying the fully qualified method name.

■ Note Technically, this name lookup process is a little more complicated than this. If the instance you are trying

to call an extension method on contains a property with the same name, the property will be found by the compiler

and then it will stop with an error claiming that you are attempting to call a property as a method.

Consider the following example that illustrates all these points:

using System;

public static class ExtensionMethods
{
 static public void WriteLine(this String str) {
 Console.WriteLine("Global Namespace: " + str);
 }
}

namespace A
{
 public static class ExtensionMethods
 {
 static public void WriteLine(this String str) {
 Console.WriteLine("Namespace A: " + str);
 }
 }
}

namespace B
{
 public static class ExtensionMethods
 {
 static public void WriteLine(this String str) {
 Console.WriteLine("Namespace B: " + str);
 }
 }
}

namespace C
{
 using A;

 public class Employee
 {
 public Employee(String name) {
 this.name = name;
 }

CHAPTER 14 ■ EXTENSION METHODS

492

 public void PrintName() {
 name.WriteLine();
 }

 private String name;
 }
}

namespace D
{
 using B;

 public class Dog
 {
 public Dog(String name) {
 this.name = name;
 }

 public void PrintName() {
 name.WriteLine();
 }

 private String name;
 }
}

namespace E
{
 public class Cat
 {
 public Cat(String name) {
 this.name = name;
 }

 public void PrintName() {
 name.WriteLine();
 }

 private String name;
 }
}

namespace Demo
{
 using A;
 using B;

 public class EntryPoint
 {
 static void Main() {
 C.Employee fred = new C.Employee("Fred");
 D.Dog thor = new D.Dog("Thor");
 E.Cat sylvester = new E.Cat("Sylvester");

CHAPTER 14 ■ EXENTENSION METHODS

493

 fred.PrintName();
 thor.PrintName();
 sylvester.PrintName();

 // String str = "Etouffe";
 // str.WriteLine();
 }
 }
}

In this example, the same extension method, WriteLine, is declared in three different namespaces
(namespace A, namespace B, and the global namespace). Additionally, three types are defined, each in its
own namespace: Employee, Dog, and Cat. In the Main method, an instance of each is created, and then the
PrintName method is called on each instance. The body of each type’s PrintName method then calls the
WriteLine extension method on the field of type String, and this is where things get interesting. If you
compile and execute the code, you will see the following output on the console:

Namespace A: Fred

Namespace B: Thor

Global Namespace: Sylvester

Notice that in this case the exact implementation of the extension method that gets called is
governed by which namespace is imported into the namespace where the type (either Employee, Dog, or
Cat) is defined. Because namespace C imports namespace A, it follows that Employee will end up calling
the WriteLine defined in namespace A. Similarly, because namespace D imports namespace B, the
WriteLine extension method in namespace B will get called. Because namespace E imports neither
namespaces A nor B, the search proceeds out to the global namespace, which also includes an
implementation of the WriteLine extension method. Finally, notice the commented code at the end of
the Main method. If you uncomment these lines and attempt to compile, you will see the compiler
complain that it cannot figure out which WriteLine to call because the Demo namespace imports both
namespaces A and B. This example highlights the dangers of improperly using this new syntax.

Under the Covers
How does the compiler implement extension methods? Because extension methods are just a syntactic
shortcut, no modifications were needed to the runtime to support extension methods. Instead, the
compiler implements extension methods completely with metadata. Following is the IL code for the
ExtensionMethods.WriteLine method from the default namespace generated by compiling the previous
example:

.method public hidebysig static void WriteLine(string str) cil managed
{
 .custom instance void [System.Core]System.Runtime.CompilerServices. ~CCC
ExtensionAttribute::.ctor() = (01 00 00 00)
 // Code size 19 (0x13)

CHAPTER 14 ■ EXTENSION METHODS

494

 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Default Namespace: "
 IL_0006: ldarg.0
 IL_0007: call string [mscorlib]System.String::Concat(string,
 string)
 IL_000c: call void [mscorlib]System.Console::WriteLine(string)
 IL_0011: nop
 IL_0012: ret
} // end of method ExtensionMethods::WriteLine

The bold text is wrapped to fit the page width, but what it shows you is that the method has a new
attribute applied to it. That attribute is ExtensionAttribute and it is defined in the
System.Runtime.CompilerServices namespace. The compiler also applies the attribute to the containing
class, which is ExtensionMethods in this case. At compile time, it references this information when
searching for potential extension methods to call. This is a perfect example of the power of metadata and
the kinds of things you can achieve with custom attributes in metadata.

If you look at the generated IL at the call site of an extension method, you will see that the extension
method is called as a normal static method.

Code Readability versus Code Understandability
Let’s face it. There are too many companies out there that provide very little documentation of their
applications’ code. Many companies may have high-level design documents that essentially show the
big components of the application and some vague lines joining them together to express the
relationships between them. But all too often, companies are in such a hurry to get to market that once
they start coding the app, and the design makes a few turns here and there, they never bother to update
the original design documents. Give the product a few versions for the code and documentation to
diverge further, and then you might as well just send the documents to the recycle bin. At the other end
of the spectrum, you very occasionally see organizations that document everything, even up to the point
of designing every piece of the application with a UML modeling tool, and so on, before coding.

Most successful projects fall somewhere in between. You typically have just enough documentation
so that if the lead developer who conjured up the guts of a rendering engine meets an unfortunate fate,
the next developer can come in behind him and couple the information in the documentation with the
information in the code and move forward. One key to this puzzle is easily readable code, but it should
also be easy-to-understand code.

What’s the difference? Code that’s easily readable makes the programmer’s intentions at the place
you are reading easy to absorb. For example, imagine that you are reading someone’s code and they
have a need to send some string to some log file. You could come across something like the following:

String info = "tasty information";
Logger.LogOutput(info);

For the most part, it’s easy to see what is going on. Or is it? What does LogOutput do? Does it write
the string to a file? Does it send it to the console? Does it send it to the debug output stream? It’s
impossible to tell from looking at this code. Instead, we have to look at the Logger.LogOutput method’s
code to understand what’s going on. So one may argue that the key to understandable code is code that
is easy to navigate, thus making it easy to follow.

Consider what that code might look like with extension methods in play:

String info = "tasty information";

CHAPTER 14 ■ EXENTENSION METHODS

495

info.WriteTo(logFile);

Instantly, the code is much easier to read. It almost reads like a written sentence. This is a technique
you see used all throughout the .NET Framework. In the second line, it starts with a subject, in the
middle there is a verb, and at the end is an indirect object. You could read it as if it were an imperative
command given to the info object.

But what if WriteTo is implemented as an extension method? Is the code just as easy to understand
as it is to read? It actually might depend on your tools. IntelliSense in Visual Studio definitely can help
here because it can help you find which static class implements the WriteTo extension method. But if
your favorite editor is Emacs or Vim without appropriate plug-ins, you are stuck having to determine
which namespaces have been imported into the current scope, and then you must start searching those
namespaces for a class that implements the extension method. Depending on the complexity of the
application code and how many namespaces the current compilation unit imports, that could be a
nightmare!

So the moral of the story is this. Just as with any other language feature, be sure to use extension
methods correctly, sparingly, and only when needed. Just because you can implement something with
an extension method doesn’t mean that you always should. The entire engineering discipline is built
around making engineering decisions whereby we gather information and make the best decision based
upon the data, even if none of the options may be perfect.1

Recommendations for Use
The following sections detail some best-use practices and guidelines for using extension methods. Of
course, as extension method use evolves in the language, this set will grow.

Consider Extension Methods Over Inheritance
When one first encounters extension methods, it’s natural to view the feature as a way to extend the
public contract of a single type or a group of types. That’s an obvious conclusion given the fact that
extension methods can be invoked through the instance method call syntax. However, I think it’s much
more effective to view extension methods as a way to provide operations that you can apply to a given
type, or multiple types, in a more attractive syntactic, or general way—because again, they do not
actually extend a type’s contract at all.

Previously, I showed trivial examples of using extension methods to be able to call WriteLine on
instances of type String. Alternatively, one could have attempted to inherit from String in order to
provide the same behavior. In this case, you’ll find that such a technique is impossible because String is
sealed. In Chapter 13, I explain why I believe it is best to prefer sealing the types you create by default.
You should unseal them only after you put in the extra thought and design (and documentation)
required to make them suitable as base classes. The designers of System.String clearly had good reason
to keep us from using it as a base type.

Additionally, gratuitous use of inheritance for this purpose unnecessarily complicates your design.
Chapter 4 describes how you should use inheritance sparingly and how using containment is generally
more flexible than inheritance. Inheritance is one of the strongest forms of static binding between two
types. Overuse of that glue creates a monolith that’s extremely difficult to work with.

1 Some people in the jaded crowd call this choosing between the lesser of two evils.

CHAPTER 14 ■ EXTENSION METHODS

496

For example, you might have the need to apply your WriteLine operation, or some other useful
extension method, on a type instance that you do not create. Consider an instance of a type that’s
returned from some factory method, as in the following code:

public class MyFactory
{
 public Widget CreateWidget() {
 …
 }
}

Here CreateWidget is the method that is creating the instance of the returned Widget. It’s what is
called a factory method. Typically, you’ll have a hierarchy of type specializations derived from Widget,
and CreateWidget might take some parameters telling it exactly what type of Widget to create. Regardless
of that, we don’t have control over how or when the object is created. Therefore, it’s impossible for us to
use inheritance to extend the Widget type’s contract unless we also control the CreateWidget method.
And even if we do, maybe that method is already published in some other assembly that’s been signed
and certified and cannot be easily changed. Clearly inheritance is not the correct approach to add the
WriteLine functionality to types of Widget in this situation.

Extension methods also allow you to provide an operation that one can apply to an entire hierarchy
of types’ instances. For example, consider an extension method whose first parameter is of type
System.Object. That extension method can be called on any type. You can’t achieve that with
inheritance. To do so would require that you have some ability to create a derived type from
System.Object, say MyObject, and then somehow get every type in the CLR to derive from MyObject rather
than System.Object. Clearly, there’s no reason to think too much about the impossible. But just because
you can create an extension method that is callable on all objects does not mean you should. Unless the
extension method operates only on the public interface of System.Object, you’ll most likely have some
code in the extension method to determine type at run time so that you can perform some type-specific
operation. Such a coding style defeats the strongly typed nature of C# and its compiler.

■ Note You can also use generics to apply extension methods to multiple types. You can declare generic

extension methods just as easily as declaring generic instance methods or generic delegates. In the section titled

“The Visitor Pattern,” I show an example of using a generic extension method.

Isolate Extension Methods in Separate Namespace
One of the fundamental disciplines in writing methods is that you should avoid side effects. What that
means is that, if you create a method such as LogToFile and within its implementation you decide to
modify some global state that is used by other components in the application, you have just introduced
a potentially dangerous side effect. Side effects such as these are usually the cause of many hard-to-find
bugs because, in this case, the modification of the global state might not be intuitive based on the
method name.

In the same regard, try to avoid introducing side effects to your clients when they import
namespaces. Specifically, it’s best if you declare any extension methods in their own namespace
separate from the namespace of the types they extend. Typically, the extension methods are in a nested
namespace. Not giving your clients this granularity can cause confusion when the compiler attempts to
look up a method for an instance method call.

CHAPTER 14 ■ EXENTENSION METHODS

497

Imagine, for a moment, the confusion that could come from defining your extension methods in the
System namespace. There’s no mechanism that keeps you from doing so. Just about everyone imports
the System namespace into their code. Thus, if you define your extensions that way, most everyone will
import them, and the only way to keep it from happening is for them to live with the inconvenience of
not importing the System namespace at all!

If you think this is no big deal, allow me to paint a scenario. Imagine that you have an application
that uses a library from Acme Widgets. The developers of Acme Widgets thought that it would be handy
to introduce an extension method named WriteToLog so that you can have another debugging tool in
your toolbox when using their library. Being good designers, they defined the extension method in a
namespace called AcmeWidgetExtensions. Now, two versions later, you come across a library from Ace
Objects that you just must have. Before making any changes to your code, you reference their assembly
and include their namespace in your project. All of a sudden, your code won’t build: the compiler is
complaining with error CS0121 that calls to WriteToLog are ambiguous! Further investigation reveals that
Ace Objects also thought it would be handy to provide an extension method called WriteToLog.
Unfortunately, they defined it in the System namespace, which all your code files import. Ouch!

Thus, the moral of the story is to always define your extension methods in a separate namespace in
order to allow your clients the granularity they need when importing them into their scope. Moreover, if
you are offering a large set of extension methods, consider whether it would be appropriate to further
partition them into multiple namespaces to offer greater granularity to your clients.

Changing a Type’s Contract Can Break Extension Methods
When the compiler looks for a name that matches an instance method call, extension methods are the
last place it looks. This makes sense because if you have a class that already implements an instance
method named WriteToLog, you don’t want an extension method to replace that functionality. However,
consider the following scenario.

You have an application that uses a library from Acme Widgets. To further help debug your system
and to produce a rich logging mechanism, you created an extension method named WriteToLog that you
can use to send information about a particular widget to a log file. Time passes, and now you have
decided to upgrade to version 2 of the Acme Widgets library. But in the meantime, the creators of the
Acme Widgets library decided to extend the public contract of some of their types and add a WriteToLog
method because, before you implemented your own WriteToLog extension method, you sent them a
feature request expressing how valuable such a thing would be. Without knowing that they added this
method to their types, you recompile your code. There are no errors because the new instance method’s
signature just happens to match your extension method’s signature exactly. But then the next time you
run your application, you see some different behavior, and all of a sudden, the formatting in your log file
is completely different! This happens because now the compiler prefers the instance method over the
extension method. It turns out that similar bad things can happen if the type definition includes a new
property with the same name as your extension method. But in that case, you get a compiler error as it
complains that you are attempting to call a property as if it were a method.

The only real solution to this problem, if you ever come across it, is to switch to calling the extension
method through the classic static method call syntax rather than the extension method instance call
syntax. But if you’re unlucky enough to have the switch happen silently, as in the previous scenario, it
might be a little while before you realize that you need to start calling the extension method differently.

Transforms
Even though extension methods are merely syntactic shortcuts for calling static methods using the
standard method call syntax, sometimes even such seemingly insignificant features can trigger a
different thought process, thus opening up a plethora of new ideas. For example, imagine that you have

CHAPTER 14 ■ EXTENSION METHODS

498

a collection of data. Let’s say that collection implements IEnumerable<T>. Now, let’s say that we want to
apply an operation to each item in the collection and produce a new collection. For the sake of example,
let’s assume that we have a collection of integers and that we want to transform them into a collection of
doubles that are one-third of the original value. You could approach the problem as shown in this
example:

using System;
using System.Collections.Generic;

public class TransformExample
{
 static void Main() {
 var intList = new List<int>() { 1, 2, 3, 4, 5 };

 var doubleList = new List<double>();

 // Compute the new list.
 foreach(var item in intList) {
 doubleList.Add((double) item / 3);
 Console.WriteLine(item);
 }
 Console.WriteLine();

 // Display the new list.
 foreach(var item in doubleList) {
 Console.WriteLine(item);
 }
 Console.WriteLine();
 }
}

The technique here is a typical imperative programming style and a valid solution to the problem.
Unfortunately, it’s not very scalable or reusable. For example, imagine if you wanted to apply some other
operation to the result of the first one, or maybe three operations chained together. Or maybe you want
to make as much of this code reusable as possible.

There are really at least two fundamental operations taking place in this example. The first is that of
iterating over the input collection and producing a new collection. Another operation, which is
fundamentally orthogonal to the first, is that of dividing each item by 3. Wouldn’t it be nice to decouple
these two? Then, if coded correctly, the transformation code can be reused with a variety of operations.
So, first, let’s break out the operation from the transformation and see what the code may look like:

using System;
using System.Collections.Generic;

public class TransformExample
{
 delegate double Operation(int item);

 static List<double> Transform(List<int> input, Operation op) {
 List<double> result = new List<double>();
 foreach(var item in input) {
 result.Add(op(item));
 }

CHAPTER 14 ■ EXENTENSION METHODS

499

 return result;
 }

 static double DivideByThree(int n) {
 return (double)n / 3;
 }

 static void Main() {
 var intList = new List<int>() { 1, 2, 3, 4, 5 };

 // Compute the new list.
 var doubleList = Transform(intList, DivideByThree);

 foreach(var item in intList) {
 Console.WriteLine(item);
 }
 Console.WriteLine();

 // Display the new list.
 foreach(var item in doubleList) {
 Console.WriteLine(item);
 }
 Console.WriteLine();
 }
}

The new code is better. Now, the operation has been factored out and is passed via a delegate to the
Transform static method.

As you can imagine, we can convert the Transform method to an extension method. But that’s not
all! We can also use generics to make the code even more reusable. But wait, there’s even more! We can
use iterators to make the Transform method calculate its items in a lazy fashion. Check out the next
example for a more reusable version of Transform:

using System;
using System.Linq;
using System.Collections.Generic;

public static class MyExtensions
{
 public static IEnumerable<R> Transform<T, R>(
 this IEnumerable<T> input,
 Func<T, R> op) {
 foreach(var item in input) {
 yield return op(item);
 }
 }
}

public class TransformExample
{
 static double DivideByThree(int n) {
 return (double)n / 3;

CHAPTER 14 ■ EXTENSION METHODS

500

 }

 static void Main() {
 var intList = new List<int>() { 1, 2, 3, 4, 5 };

 // Compute the new list.
 var doubleList =
 intList.Transform(DivideByThree);

 foreach(var item in intList) {
 Console.WriteLine(item);
 }
 Console.WriteLine();

 // Display the new list.
 foreach(var item in doubleList) {
 Console.WriteLine(item);
 }
 }
}

Now we’re getting there! First, notice that Transform<T> is now a generic extension method.
Moreover, it takes and returns IEnumerable<T> types. Now Transform<T> can be used on any generic
collection and accepts a delegate describing how to transform each item. The Func<> type is defined in
the System namespace and makes it easier to declare delegates. Because an iterator block is used to
return items from Transform<T> via the yield keyword, each item is only processed each time the
returned IEnumerable<T> type’s cursor is advanced. In this example, the computational savings are
trivial, but this sort of lazy evaluation is one of the cornerstones of LINQ.

However, you can easily imagine a situation where the passed-in operation can take quite a bit of
time to process each item in the input collection. The input collection could contain long strings and the
operation could be an encryption operation, for example.

Another reason lazy evaluation is so handy is that the input collection could even be an infinite
series. How? Check out the next example, which also shows a teaser for lambda expressions, covered in
Chapter 15:

using System;
using System.Linq;
using System.Collections.Generic;

public static class MyExtensions
{
 public static IEnumerable<R> Transform<T, R>(
 this IEnumerable<T> input,
 Func<T, R> op) {
 foreach(var item in input) {
 yield return op(item);
 }
 }
}

public class TransformExample
{
 static IEnumerable<int> CreateInfiniteSeries() {

CHAPTER 14 ■ EXENTENSION METHODS

501

 int n = 0;
 while(true) {
 yield return n++;
 }
 }

 static void Main() {
 var infiniteSeries1 = CreateInfiniteSeries();

 var infiniteSeries2 =
 infiniteSeries1.Transform(x => (double)x / 3);

 IEnumerator<double> iter =
 infiniteSeries2.GetEnumerator();

 for(int i = 0; i < 25; ++i) {
 iter.MoveNext();
 Console.WriteLine(iter.Current);
 }
 }
}

How cool is that? It’s so easy to create an infinite series with an iterator block. Of course, in my loop I
could not use foreach; otherwise, the program would never finish and you would have to terminate it
forcefully. The funny syntax within the Transform<T> method call is a lambda expression. A lambda
expression used this way defines a function (passed as a delegate in this case). You can envision lambda
expressions as a terse syntax for defining anonymous methods. If you just can’t wait to see what lambda
expressions are all about, jump to Chapter 15.

Used this way, extension methods allow us to implement more of a functional programming style.2
After all, the Transform<T> method just shown fits into that category. In fact, you will find that most of
the new additions introduced in C# 3.0 facilitate the functional programming paradigm. Those features
include extension methods, lambda expressions, and LINQ. Each of these features places the emphasis
on the computational operation rather than the structure of the computation. The benefits of functional
programming are numerous, and one could fill the pages of an entire book describing them. For
example, functional programming facilitates parallelism because variables are typically never changed
after initial assignment; thus, fewer locks and sync blocks are necessary.

■ Note C++ developers familiar with template metaprogramming, as described in the excellent book C++

Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond, by David Abrahams and

Aleksey Gurtovoy (Boston, MA: Addison-Wesley Professional, 2004), will be right at home with this style of

functional programming. In fact, template metaprogramming provides a more purely functional programming

environment because once a variable (or symbol, in functional programming lingo) is assigned, it can never be

2 For more on functional programming, search “functional programming” on http://www.wikipedia.org.

http://www.wikipedia.org

CHAPTER 14 ■ EXTENSION METHODS

502

changed. C#, on the other hand, offers a hybrid environment in which you are free to implement functional

programming if you choose. Also, those familiar with the Standard Template Library (STL) will get a familiar feeling

from this style of programming. STL swept through the C++ programming community back in the early 1990s and

encouraged a more functional programming thought process.

Operation Chaining
Using extension methods, operation chaining becomes a more natural process. Again, it’s nothing that
you could not have done in the C# 2.0 days using plain static methods and anonymous methods.
However, with the streamlined syntax, chaining actually removes the clutter and can trigger some
innovative thinking. Let’s start with the example from the previous section, in which we took a list of
integers and transformed them into a list of doubles. This time, we’ll look at how we can actually chain
operations in a fluid way. Let’s suppose that after dividing the integers by 3, we want to then compute
the square of the result. The following code shows how to do that:

using System;
using System.Linq;
using System.Collections.Generic;

public static class MyExtensions
{
 public static IEnumerable<R> Transform<T, R>(
 this IEnumerable<T> input,
 Func<T, R> op) {
 foreach(var item in input) {
 yield return op(item);
 }
 }
}

public class TransformExample
{
 static IEnumerable<int> CreateInfiniteList() {
 int n = 0;
 while(true) yield return n++;
 }

 static double DivideByThree(int n) {
 return (double)n / 3;
 }

 static double Square(double r) {
 return r * r;
 }

 static void Main() {
 var divideByThree =
 new Func<int, double>(DivideByThree);
 var squareNumber =

CHAPTER 14 ■ EXENTENSION METHODS

503

 new Func<double, double>(Square);

 var result = CreateInfiniteList().
 Transform(divideByThree).
 Transform(squareNumber);

 var iter = result.GetEnumerator();
 for(int i = 0; i < 25; ++i) {
 iter.MoveNext();
 Console.WriteLine(iter.Current);
 }
 }
}

Isn’t that cool? In one statement of code, I took an infinite list of integers and applied a divisor
followed by a squaring operation, and the end result is a lazy-evaluated IEnumerable<double> type that
computes each element as needed. Functional programming is actually pretty useful when you look at it
this way. Of course, you could chain as many operations as necessary. For example, you might want to
append a rounding operation at the end. Or maybe you want to append a filtering operation so that only
the results that match a certain criteria are considered. To do that, you could create a generic Filter<T>
extension method, similar to Transform<T>, that takes a predicate delegate as a parameter and uses it to
filter the items in the collection.

At this point, I’m sure that you’re thinking of all the really useful extension methods you could
create to manipulate data. You might be wondering if a host of these extension methods already exists.
Check out the System.Linq.Enumerable class. This class provides a whole host of extension methods that
are typically used with LINQ, which I cover in Chapter 16. All these extension methods operate on types
of IEnumerable<T>. Also, the System.Linq.Queryable class provides the same extension methods for types
that implement IQueryable<T>, which derives from IEnumerable<T>.

Custom Iterators
Chapter 9 covered iterators, which were added to the language in C# 2.0. I described some ways you
could create custom iterators. Extension methods offer even more flexibility to create custom iterators
for collections in a very expressive way. By default, every collection that implements IEnumerable or
IEnumerable<T> has a forward iterator, so a custom iterator would be necessary to walk through a
collection in a different way than its default iterator. Also, you will need to create a custom iterator for
types that don’t support IEnumerable<T>, as I’ll show in the next section, “Borrowing from Functional
Programming.” Let’s look at how you can use extension methods to implement custom iterators on
types implementing IEnumerable<T>.

For example, imagine a two-dimensional matrix implemented as a List<List<int>> type. When
performing some operations on such matrices, it’s common to require an iterator that walks through the
matrix in row-major fashion. What that means is that the iterator walks all the items of the first row, then
the second row, and so on until it reaches the end of the last row.

You could iterate through the matrix in row-major form as shown here:

using System;
using System.Collections.Generic;

public class IteratorExample
{
 static void Main() {

CHAPTER 14 ■ EXTENSION METHODS

504

 var matrix = new List<List<int>> {
 new List<int> { 1, 2, 3 },
 new List<int> { 4, 5, 6 },
 new List<int> { 7, 8, 9 }
 };

 // One way of iterating the matrix.
 foreach(var list in matrix) {
 foreach(var item in list) {
 Console.Write("{0}, ", item);
 }
 }

 Console.WriteLine();
 }
}

Yes, this code gets the job done, but it is not very reusable. Let’s see one way this can be redone
using an extension method:

using System;
using System.Collections.Generic;

public static class CustomIterators
{
 public static IEnumerable<T> GetRowMajorIterator<T>(
 this List<List<T>> matrix) {
 foreach(var row in matrix) {
 foreach(var item in row) {
 yield return item;
 }
 }
 }
}

public class IteratorExample
{
 static void Main() {
 var matrix = new List<List<int>> {
 new List<int> { 1, 2, 3 },
 new List<int> { 4, 5, 6 },
 new List<int> { 7, 8, 9 }
 };

 // A more elegant way to enumerate the items.
 foreach(var item in matrix.GetRowMajorIterator()) {
 Console.Write("{0}, ", item);
 }

 Console.WriteLine();
 }
}

CHAPTER 14 ■ EXENTENSION METHODS

505

In this version, I have externalized the iteration into the GetRowMajorIterator<T> extension method.
At the same time, I made the extension method generic so it will accept two-dimensional nested lists
that contain any type, thus making it a bit more reusable.

Borrowing from Functional Programming
You might have already noticed that many of the new features added in C# 3.0 facilitate a functional
programming model. You’ve always been able to implement functional programming models in C#, but
the new language features make it easier syntactically by making the language more expressive.
Sometimes, the functional model facilitates easier solutions to various problems. Various languages are
categorized as functional languages, and Lisp is one of them.

If you’ve ever programmed using Lisp, you know that the list is one of the core constructs in that
language. In C#, we can model such a list using the following interface definition at the core:

public interface IList<T>
{
 T Head { get; }
 IList<T> Tail { get; }
}

■ Caution Although I have named this type IList<T> for this example, be sure not to confuse it with IList<T> in

the System.Collections.Generic namespace. If one were to implement this type as written, it would be best to

define it within one’s own namespace to avoid name conflict. After all, that is one of the benefits of using

namespaces.

The structure of this list is a bit different from the average linked list implementation. Notice that
instead of one node containing a value and a pointer to the next node, it instead contains the value at
the node and then a reference to the rest of the list. In fact, it’s rather recursive in nature. That’s no
surprise because recursive techniques are part of the functional programming model. For example, if
you were to represent a list on paper by writing values within parentheses, a traditional list might look
like the following:

(1 2 3 4 5 6)

Whereas a list defined using the IList<T> interface above could look like this:

(1 (2 (3 (4 (5 (6 (null null)))))))

Each set of parentheses contains two items: the value of the node and then the remainder of the list
within a nested set of parentheses. So, to represent a list with just one item in it, such as just the number
1, we could represent it this way:

(1 (null null))

And of course, the empty list could be represented this way:

(null null)

CHAPTER 14 ■ EXTENSION METHODS

506

In the following example code, I create a custom list called MyList<T> that implements IList<T>. The
way it is built here is not very efficient, and I’ll have more to say about that shortly.

using System;
using System.Collections.Generic;

public interface IList<T>
{
 T Head { get; }
 IList<T> Tail { get; }
}

public class MyList<T> : IList<T>
{
 public static IList<T> CreateList(IEnumerable<T> items) {
 IEnumerator<T> iter = items.GetEnumerator();
 return CreateList(iter);
 }

 public static IList<T> CreateList(IEnumerator<T> iter) {
 if(!iter.MoveNext()) {
 return new MyList<T>(default(T), null);
 }

 return new MyList<T>(iter.Current, CreateList(iter));
 }

 private MyList(T head, IList<T> tail) {
 this.head = head;
 this.tail = tail;
 }

 public T Head {
 get {
 return head;
 }
 }

 public IList<T> Tail {
 get {
 return tail;
 }
 }

 private T head;
 private IList<T> tail;
}

public static class CustomIterators
{
 public static IEnumerable<T>
 LinkListIterator<T>(this IList<T> theList) {

CHAPTER 14 ■ EXENTENSION METHODS

507

 for(var list = theList;
 list.Tail != null;
 list = list.Tail) {
 yield return list.Head;
 }
 }
}

public class IteratorExample
{
 static void Main() {
 var listInts = new List<int> { 1, 2, 3, 4 };
 var linkList =
 MyList<int>.CreateList(listInts);

 foreach(var item in linkList.LinkListIterator()) {
 Console.Write("{0}, ", item);
 }

 Console.WriteLine();
 }
}

First, notice in Main that I am initializing an instance of MyList<int> using a List<int>. The
CreateList static method recursively populates MyList<int> using these values. Once CreateList is
finished, we have an instance of MyList<int> that can be visualized as follows:

(1 (2 (3 (4 (null null)))))

You’re probably wondering why the list is not represented using the following:

(1 (2 (3 (4 null))))

You could do that; however, you will find that it is not as easy to use either when composing the list
or consuming it.

Speaking of consuming the list, you can imagine that there are times when you need to iterate over
one of these lists. In that case, you need a custom iterator, which I have highlighted in the example. The
code in Main uses this iterator to send all the list items to the console. The output is as follows:

1, 2, 3, 4,

In the example, notice that the LinkListIterator<T> method creates a forward iterator by making
some assumptions about how to determine whether it has reached the end of the list and how to
increment the cursor during iteration. That is, it starts at the head and assumed it has finished iterating
once the current node’s tail is null. What if we externalized this information? For example, what if we
wanted to allow the user to parameterize what it means to iterate, such as iterate forwards, backwards,
circularly, and so on? How could we do that? If the idea of delegates pops into your mind, you’re right on
track. Check out the following revised version of the iterator extension method and the Main method:

public static class CustomIterators
{

CHAPTER 14 ■ EXTENSION METHODS

508

 public static IEnumerable<T>
 GeneralIterator<T>(this IList<T> theList,
 Func<IList<T>, bool> finalState,
 Func<IList<T>, IList<T>> incrementer) {
 while(!finalState(theList)) {
 yield return theList.Head;
 theList = incrementer(theList);
 }
 }
}

public class IteratorExample
{
 static void Main() {
 var listInts = new List<int> { 1, 2, 3, 4 };
 var linkList =
 MyList<int>.CreateList(listInts);

 var iterator = linkList.GeneralIterator(delegate(IList<int> list) {
 return list.Tail == null;
 },
 delegate(IList<int> list) {
 return list.Tail;
 });
 foreach(var item in iterator) {
 Console.Write("{0}, ", item);
 }

 Console.WriteLine();
 }
}

Notice that the GeneralIterator<T> method accepts two more delegates, one of which is then called
upon to check whether the cursor is at the end of the list, and the other to increment the cursor. In the
Main method, I am passing two delegates in the form of anonymous methods. Now the
GeneralIterator<T> method can be used to iterate over every other item in the list simply by modifying
the delegate passed in through the incrementer parameter.

■ Note Some of you might already be familiar with lambda expressions, which were introduced in C# 3.0. Indeed,

when using lambda expressions, you can clean up this code considerably by using the lambda expression syntax

to replace the previous anonymous delegates. I cover lambda expressions in Chapter 15.

As a final extension method example for operations on the IList<T> type, consider how we could
create an extension method to reverse the list and return a new IList<T>. There are several ways one
could consider doing this, and some are much more efficient than others. However, I want to show you
an example that uses a form of recursion. Consider the following Reverse<T> custom method
implementation:

CHAPTER 14 ■ EXENTENSION METHODS

509

public static class CustomIterators
{
 public static IList<T> Reverse<T>(this IList<T> theList) {
 var reverseList = new List<T>();
 Func<IList<T>, List<T>> reverseFunc = null;

 reverseFunc = delegate(IList<T> list) {
 if(list != null) {
 reverseFunc(list.Tail);
 if(list.Tail != null) {
 reverseList.Add(list.Head);
 }
 }
 return reverseList;
 };

 return MyList<T>.CreateList(reverseFunc(theList));
 }
}

If you’ve never encountered this style of coding, it can surely make your brain twist inside your
head. The key to the work lies in the fact that there is a delegate defined that calls itself and captures
variables along the way.3 In the preceding code, the anonymous method is assigned to the reverseFunc
variable. And as you can see, the anonymous method body calls reverseFunc, or more accurately, itself!
In a way, the anonymous method captures itself! The trigger to get all the work done is in the last line of
the Reverse<> method. It initiates the chain of recursive calls to the anonymous method and then passes
the resulting List<T> to the CreateList method, thus creating the reversed list.

Those who pay close attention to efficiency are likely pointing out the inefficiency of creating a
temporary List<T> instance that is then passed to CreateList in Main. After all, if the original list is
huge, creating a temporary list to just throw away moments later will put pressure on the garbage
collected heap, among other things. For example, if the constructor to MyList<T> is made public, you can
eliminate the temporary List<T> entirely and build the new MyList<T> using a captured variable as
shown here:

public static class CustomIterators
{
 public static IList<T> Reverse<T>(this IList<T> theList) {
 var reverseList = new MyList<T>(default(T), null);
 Func<IList<T>, MyList<T>> reverseFunc = null;

 reverseFunc = delegate(IList<T> list) {
 if(list.Tail != null) {
 reverseList = new MyList<T>(list.Head, reverseList);
 reverseFunc(list.Tail);
 }

 return reverseList;

3 Computer science wonks like to call a delegate that captures variables a closure, which is a construct in which a
function is packaged with an environment (such as variables).

CHAPTER 14 ■ EXTENSION METHODS

510

 };

 return reverseFunc(theList);
 }
}

The previous Reverse<T> method first creates an anonymous function and stores it in the local
variable reverseFunc. It then returns the results of calling the anonymous method to the caller of
Reverse<T>. All the work of building the reversed list is encapsulated into the closure created by the
anonymous method and the captured local variables reverseList and reverseFunc. reverseFunc simply
calls itself recursively until it is finished building the reversed list into the reverseList captured variable.

Those of you who are more familiar with functional programming are probably saying that the
preceding Reverse<T> extension method can be cleaned up by eliminating the captured variable and
using the stack instead. In this case, it’s more of a stylistic change, but I want to show it to you for
completeness’ sake. Instead of having the captured variable reverseList, as in the previous
implementation of Reverse<T>, I instead pass the reference to the list I am building as an argument to
each recursion of the anonymous method reverseFunc. Why would you want to do this? By eliminating
the captured variable reverseList, you eliminate the possibility that the reference could be
inadvertently changed outside of the scope of the anonymous method. Therefore, my final example of
the Reverse<T> method uses only the stack as a temporary storage location while building the new
reversed list:

public static class CustomIterators
{
 public static IList<T> Reverse<T>(this IList<T> theList) {
 Func<IList<T>, IList<T>, IList<T>> reverseFunc = null;

 reverseFunc = delegate(IList<T> list, IList<T> result) {
 if(list.Tail != null) {
 return reverseFunc(list.Tail, new MyList<T>(list.Head, result));
 }

 return result;
 };

 return reverseFunc(theList, new MyList<T>(default(T), null));
 }
}

■ Note This code uses the Func<> definition, which is a generic delegate that is defined in the System

namespace. Using Func<> is a shortcut you can employ to avoid having to declare delegate types all over the

place. You use the Func<> type parameter list to declare what the parameter types (if any) and return type of the

delegate are. If the delegate you need has no return value, you can use the Action<> generic delegate type.

The MyList<T> class used in the previous examples builds the linked list from the IEnumerable<T>
type entirely before the MyList<T> object can be used. I used a List<T> as the seed data, but I could have
used anything that implements IEnumerable<T> to fill the contents of MyList<T>. But what if

CHAPTER 14 ■ EXENTENSION METHODS

511

IEnumerable<T> were an infinite iterator similar to the one created by CreateInfiniteList in the
“Operation Chaining” section of this chapter? If you fed the result of CreateInfiniteList to
MyList<T>.CreateList, you would have to kill the program forcefully or wait until your memory runs out
as it tries to build the MyList<T>. If you are creating a library for general use that contains a type such as
MyList<T>, which builds itself given some IEnumerable<T> type, you should do your best to accommodate
all scenarios that could be thrown at you. The IEnumerable<T> given to you could take a very long time to
calculate each item of the enumeration. For example, it could be enumerating over a database of live
data in which database access is very costly. For an example of how to create the list in a lazy fashion, in
which each node is created only when needed, check out Wes Dyer’s excellent blog, specifically the entry
titled “Why all the love for lists?”4 The technique of lazy evaluation while iterating is a fundamental
feature of LINQ, which I cover in Chapter 16.

The Visitor Pattern
The Visitor pattern, as described in the seminal pattern book Design Patterns: Elements of Reusable
Object-Oriented Software by the Gang of Four,5 allows you to define a new operation on a group of
classes without changing the classes. Extension methods present a handy option for implementing the
Visitor pattern.

For example, consider a collection of types that might or might not be related by inheritance, and
imagine that you want to add functionality to validate instances of them at some point in your
application. One option, although very unattractive, is to modify the public contract of all the types,
introducing a Validate method on each of them. One might even jump to the conclusion that the easiest
way to do it is to introduce a new base type that derives from System.Object, implements Validate as an
abstract method, and then makes all the other types derive from the new type instead of System.Object.
That would be nothing more than a maintenance nightmare in the end.

By now, you should agree that an extension method or a collection of extension methods will do the
trick nicely. Given a collection of unrelated types, you will probably implement a host of extension
methods. But the beauty is that you don’t have to change the already defined types. In fact, if they’re not
your types to begin with, you cannot change them anyway. Consider the following code:

using System;
using ValidatorExtensions;

namespace ValidatorExtensions
{
 public static class Validators
 {
 public static void Validate(this String str) {
 // Do something to validate the String instance.

 Console.WriteLine("String with \"" +
 str +
 "\" Validated.");

4 You can find Wes Dyer’s blog titled “Yet Another Language Geek” at blogs.msdn.com/wesdyer/.
5 Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides (Boston, MA: Addison-Wesley Professional, 1995), is cited in the references at the end of this book.

CHAPTER 14 ■ EXTENSION METHODS

512

 }

 public static void Validate(this SupplyCabinet cab) {
 // Do something to validate the SupplyCabinet instance.

 Console.WriteLine("Supply Cabinet Validated.");
 }

 public static void Validate(this Employee emp) {
 // Do something to validate the Employee instance.

 Console.WriteLine("** Employee Failed Validation! **");
 }
 }
}

public class SupplyCabinet
{
}

public class Employee
{
}

public class MyApplication
{
 static void Main() {
 String data = "some important data";

 SupplyCabinet supplies = new SupplyCabinet();

 Employee hrLady = new Employee();

 data.Validate();
 supplies.Validate();
 hrLady.Validate();
 }
}

Notice that for each type of object we want to validate (in this example there are three), I have
defined a separate Validate extension method. The output from the application shows that the proper
Validate method is being called for each instance and is as follows:

String with "some important data" Validated.

Supply Cabinet Validated.

** Employee Failed Validation! **

CHAPTER 14 ■ EXENTENSION METHODS

513

In this example, it’s important to note that the visitors, in this case the extension methods named
Validate, must treat the instance that they are validating as black boxes. By that I mean that they do not
have the validation capabilities of a true instance method because only true instance methods have
access to the internal state of the objects. Nevertheless, in this example, it might make sense to validate
the instances from a client’s perspective.

■ Note Keep in mind that if the extension methods are defined in the same assembly as the types they are

extended, they can still access internal members.

Using generics and constraints, you can slightly extend the previous example and provide a generic
form of the Validate extension method that can be used if the instance supports a well-known interface.
In this case, the well-known interface is named IValidator. Therefore, it would be nice to create a
special Validate method that will be called if the type implements the IValidator interface. Consider the
following code, which shows the changes marked in bold:

using System;
using ValidatorExtensions;

namespace ValidatorExtensions
{
 public static class Validators
 {
 public static void Validate(this String str) {
 // Do something to validate the String instance.

 Console.WriteLine("String with \"" +
 str +
 "\" Validated.");
 }

 public static void Validate(this Employee emp) {
 // Do something to validate the Employee instance.

 Console.WriteLine("** Employee Failed Validation! **");
 }

 public static void Validate<T>(this T obj)
 where T: IValidator {
 obj.DoValidation();
 Console.WriteLine("Instance of following type" +
 " validated: " +
 obj.GetType());
 }
 }
}

public interface IValidator
{

CHAPTER 14 ■ EXTENSION METHODS

514

 void DoValidation();
}

public class SupplyCabinet : IValidator
{
 public void DoValidation() {
 Console.WriteLine("\tValidating SupplyCabinet");
 }
}

public class Employee
{
}

public class MyApplication
{
 static void Main() {
 String data = "some important data";

 SupplyCabinet supplies = new SupplyCabinet();

 Employee hrLady = new Employee();

 data.Validate();
 supplies.Validate();
 hrLady.Validate();
 }
}

Now, if the instance that we’re calling Validate on happens to implement IValidator, and there is
not a version of Validate that specifically takes the type as its first parameter, the generic form of
Validate will be called, which then passes through to the DoValidation method on the instance.

Notice that I removed the extension method whose first parameter was of type SupplyCabinet, so
that the compiler would choose the generic version. If I had left it in, the code as written in Main would
call the version that I removed. However, even if I had not removed the nongeneric extension method, I
could have forced the compiler to call the generic one by changing the syntax at the point of call, as
shown here:

public class MyApplication
{
 static void Main() {
 String data = "some important data";

 SupplyCabinet supplies = new SupplyCabinet();

 Employee hrLady = new Employee();

 data.Validate();

 // Force generic version
 supplies.Validate<SupplyCabinet>();

CHAPTER 14 ■ EXENTENSION METHODS

515

 hrLady.Validate();
 }
}

In the Main method, I have given the compiler more information to limit its search of the Validate
method to generic forms of the extension method that accept one generic type parameter.

Summary
In this chapter, I introduced you to extension methods, including how to declare them, how to call them,
and how the compiler implements them under the covers. Additionally, you saw how they really are just
syntactic sugar and don’t require any changes to the underlying runtime in order to work. Extension
methods can cause confusion when defined inappropriately, so we looked at some caveats to avoid. I
showed you how they can be used to create useful things such as iterators (IEnumerable<T> types) on
containers that are not enumerable by default. Even for types that do have enumerators, you can define
enumerators that iterate in a custom way. As you’ll see in Chapter 15, when they are combined with
lambda expressions, extension methods provide a certain degree of expressiveness that is extremely
useful. While showing how to create custom iterators, I took a slight detour (using anonymous functions
rather than lambda expressions) to show you the world of functional programming that the features
added to C# 3.0 unlock. The code for those examples will become much cleaner when you use lambda
expressions instead of anonymous methods.

In the next chapter, I’ll introduce you to lambda expressions, which really make functional
programming in C# syntactically succinct. Additionally, they allow you to convert a functional
expression into either code or data in the form of IL code or an expression tree, respectively.

v@v
Text Box
Download at WoweBook.com

CHAPTER 14 ■ EXTENSION METHODS

516

C H A P T E R 15

■ ■ ■

517

Lambda Expressions

Most of the new features of C# 3.0 opened up a world of expressive functional programming to the C#
programmer. Functional programming, in its pure form, is a programming methodology built on top of
immutable variables (sometimes called symbols), functions that can produce other functions, and
recursion, just to name a few of its foundations. Some prominent functional programming languages
include Lisp, Haskell, F#,1 and Scheme.2 However, functional programming does not require a pure
functional language, and one can use and implement functional programming disciplines in
traditionally imperative languages such as the C-based languages (including C#). The features added in
C# 3.0 transformed the language into a more expressive hybrid language in which both imperative and
functional programming techniques can be utilized in harmony. Lambda expressions are arguably the
biggest piece of this functional programming pie.

Introduction to Lambda Expressions
Using lambda expressions, you can succinctly define function objects for use at any time. C# has always
supported this capability via delegates, whereby you create a function object (in the form of a delegate)
and wire it up to the backing code at the time of creation. Lambda expressions join these two actions—
creation and connection—into one expressive statement in the code. Additionally, you can easily
associate an environment with function objects using a construct called a closure. A functional is a
function that takes functions in its parameter list and operates on those functions, possibly even
returning another function as the result. For example, a functional could accept two functions, one
performing one mathematical operation and the other performing a different mathematical operation,
and return a third function that is a composite function built from the two. Lambda expressions provide
a more natural way to create and invoke functionals.

In simple syntactic terms, lambda expressions are a syntax whereby you can declare anonymous
functions (delegates) in a more fluid and expressive way. At the same time, they are very much more
than that, as you will see. Just about every use of an anonymous method can be replaced with a lambda

1 F# is an exciting new functional programming language for the .NET Framework. For more information, I invite you
to read Robert Pickering’s Foundations of F# (Berkeley, CA: Apress, 2007).
2 One of the languages that I use often is C++. Those of you that are familiar with metaprogramming in C++ are
definitely familiar with functional programming techniques. If you do use C++ and you’re curious about
metaprogramming, I invite you to check out David Abrahams’ and Alexey Gurtovoy’s most excellent book C++
Template Metaprogramming (Boston: Addison-Wesley Professional, 2004).

CHAPTER 15 ■ LAMBDA EXPRESSIONS

518

expression. That said, there’s no reason you can’t utilize functional programming techniques in C# 2.03.
At first, the syntax of lambda expressions might take some time to get used to. Overall, the syntax is very
straightforward when you are looking at a lambda expression all by itself. However, when embedded in
code, they can be a little tricky to decipher and it might take some time to get used to their syntax.

Lambda expressions really take two forms. The form that most directly replaces anonymous
methods in syntax includes a statement block within braces. I like to refer to these as lambda statements.
These lambda statements are a direct replacement for anonymous methods. Lambda expressions, on
the other hand, provide an even more abbreviated way to declare an anonymous method and do not
require code within braces nor a return statement. Both types of lambda expressions can be converted
to delegates. However, lambda expressions without statement blocks offer something truly impressive.
You can convert them into expression trees based on the types in the System.Linq.Expressions
namespace. In other words, the function described in code is turned into data. I cover the topic of
creating expression trees from lambda expressions in the section titled “Expression Trees” later in this
chapter.

Lambda Expressions and Closures
First, let’s look at the simpler form of lambda expressions; that is, the ones without a statement block. As
mentioned in the previous section, a lambda expression is a shorthand way of declaring a simple
anonymous method. The following lambda expression can be used as a delegate that accepts one
parameter and returns the result of performing division by 2 on that parameter:

x => x / 2

What this says is “take x as a parameter and return the result of following operation on x.” Notice that the
lambda expression is devoid of any type information. It does not mean that the expression is typeless.
Instead, the compiler will deduce the type of the argument x and the type of the result depending on the
context where it is used. It means that if you are assigning a lambda expression to a delegate, the types of
the delegate definition are used to determine the types within the lambda expression. The following
code shows what happens when a lambda expression is assigned to a delegate type:

using System;
using System.Linq;

public class LambdaTest
{
 static void Main() {
 Func<int, double> expr = x => x / 2;

 int someNumber = 9;
 Console.WriteLine("Result: {0}", expr(someNumber));
 }
}

I have marked the lambda expression in bold so that it stands out. The Func<> type is a helper type
provided by the System namespace that you can use to declare simple delegates that take up to four
arguments and return a result. In this case, I am declaring a variable expr that is a delegate that accepts

3 I covered some examples of functional programming with anonymous methods in Chapter 14.

CHAPTER 15 ■ LAMBDA EXPRESSIONS

519

an int and returns a double. When the compiler assigns the lambda expression to the expr variable, it
uses the type information of the delegate to determine that the type of x must be int, and the type of the
return value must be double.

Now, if you execute that code, you’ll notice that the result is not entirely accurate. That is, the result
has been rounded. This is expected because the result of x/2 is represented as an int, which is then cast
to a double. You can fix this by specifying different types in the delegate declaration, as shown here:

using System;
using System.Linq;

public class LambdaTest
{
 static void Main() {
 Func<double, double> expr = (double x) => x / 2;

 int someNumber = 9;
 Console.WriteLine("Result: {0}", expr(someNumber));
 }
}

For the sake of demonstration, this lambda expression has what’s called an explicitly typed
parameter list, and in this case, x is declared as type double. Also notice that the type of expr is now
Func<double, double> rather than Func<int, double>. The compiler requires that any time you use a
typed parameter list in a lambda expression and assign it to a delegate, the delegate’s argument types
must match exactly. However, because an int is explicitly convertible to a double, you can pass
someNumber to expr at call time as shown.

■ Note When using typed parameter lists, notice that the parameter list must be enclosed in parentheses.

Parentheses are also required when declaring a delegate that accepts either more than one parameter or no

parameters, as I’ll show later on. In fact, you can use parentheses at any time; they are optional in lambda

expressions of only one implicitly typed parameter.

When the lambda expression is assigned to a delegate, the return type of the expression is generally
derived from the argument types. So, in the following code statement, the return type of the expression
is double because the inferred type of the parameter x is double:

Func<double, int> expr = (x) => x / 2; // Compiler Error!!!!

However, because double is not implicitly convertible to int, the compiler will complain:

error CS1662: Cannot convert 'lambda expression' to

 delegate type 'System.Func<double,int>' because some of the return

CHAPTER 15 ■ LAMBDA EXPRESSIONS

520

 types in the block are not implicitly convertible to the delegate return

 type

You can “fix” this by casting the result of the lambda expression body to int:

Func<double, int> expr = (x) => (int) x / 2;

■ Note Explicit types in lambda expression parameter lists are required if the delegate you are assigning them to

has out or ref parameters. One could argue that fixing the parameter types explicitly within a lambda expression

defeats some of the elegance of their expressive power. It definitely can make the code harder to read.

Now I want to show you a simple lambda expression that accepts no parameters:

using System;
using System.Linq;

public class LambdaTest
{
 static void Main() {
 int counter = 0;

 WriteStream(() => counter++);

 Console.WriteLine("Final value of counter: {0}",
 counter);
 }

 static void WriteStream(Func<int> generator) {
 for(int i = 0; i < 10; ++i) {
 Console.Write("{0}, ", generator());
 }
 Console.WriteLine();
 }
}

Notice how simple it was to pass a function as a parameter into the WriteStream method using this
lambda expression. Moreover, the function passed in captures an environment within which to run,
namely, the counter value in Main. This captured environment and the function together are commonly
referred to as a closure.

Finally, I want to show you an example of a lambda expression that accepts more than one
parameter:

using System;
using System.Linq;
using System.Collections.Generic;

CHAPTER 15 ■ LAMBDA EXPRESSIONS

521

public class LambdaTest
{
 static void Main() {
 var teamMembers = new List<string> {
 "Lou Loomis",
 "Smoke Porterhouse",
 "Danny Noonan",
 "Ty Webb"
 };

 FindByFirstName(teamMembers,
 "Danny",
 (x, y) => x.Contains(y));
 }

 static void FindByFirstName(
 List<string> members,
 string firstName,
 Func<string, string, bool> predicate) {
 foreach(var member in members) {
 if(predicate(member, firstName)) {
 Console.WriteLine(member);
 }
 }
 }
}

In this case, the lambda expression is used to create a delegate that accepts two parameters of type
string and returns a bool. As you can see, lambda expressions provide a nice, succinct way of creating
predicates. In a later section, “Iterators Revisited,” I’ll build upon an example from Chapter 14 showing
how to use lambda expressions as predicates to create flexible iterators.

Closures in C# 1.0

Back in the “good old days” of C# 1.0, creating closures was a painful process indeed, and one needed to
do something like the following:

using System;

unsafe public class MyClosure
{
 public MyClosure(int* counter)
 {
 this.counter = counter;
 }

 public delegate int IncDelegate();
 public IncDelegate GetDelegate() {
 return new IncDelegate(IncrementFunction);
 }

CHAPTER 15 ■ LAMBDA EXPRESSIONS

522

 private int IncrementFunction() {
 return (*counter)++;
 }

 private int* counter;
}

public class LambdaTest
{
 unsafe static void Main() {
 int counter = 0;

 MyClosure closure = new MyClosure(&counter);

 WriteStream(closure.GetDelegate());

 Console.WriteLine("Final value of counter: {0}",
 counter);
 }

 static void WriteStream(MyClosure.IncDelegate incrementor) {
 for(int i = 0; i < 10; ++i) {
 Console.Write("{0}, ", incrementor());
 }
 Console.WriteLine();
 }
}

Look at all the work involved without lambda expressions. I have bolded the extra work and other
changes in the code. The first order of business is to create an object to represent the delegate and its
environment. In this case, the environment is a pointer to the counter variable in the Main method. I
decided to use a class to encapsulate the function and its environment. Notice the use of unsafe code in
the MyClosure class to accomplish this. Unsafe code is required when using pointers in C# because the
safety of the code cannot be verified by the CLR.4 Then, in the Main method, I created an instance of
MyClosure and passed a delegate created by calling GetDelegate to WriteStream.

What a lot of work! And on top of that, it sure makes for some hard-to-follow code.

■ Note You might be wondering why I used a pointer in the preceding longhand example, thus forcing one to

compile using the /unsafe compiler option. The reason was simply to emphasize the fact that the captured

variable can be changed out of band from the code consuming it. When the C# compiler captures a variable in a

closure, it does something similar, but instead of using a pointer to the captured variable, it instead initializes a

4 The intricacies of unsafe coding in C# are outside the scope of this book. I encourage you to reference the MSDN
documentation for further details.

CHAPTER 15 ■ LAMBDA EXPRESSIONS

523

public field of the generated class that implements the closure with a reference to the captured variable or a copy

if the captured variable is a value type. However, any code that attempts to modify the captured variable outside

the scope of the closure modifies the copy within the closure object because, after all, it is a public field. Design

wonks might cry foul because public fields are considered evil. However, remember that this is part of the

compiler implementation. In fact, the class the compiler generates is “unspeakable,” meaning that you cannot

instantiate an instance of it in C# code because the name itself, if typed in code, will generate a syntax error. I

invite you to inspect the way the compiler generates closures by opening the compiled code within Intermediate

Language Disassembler (ILDASM).

Closures in C# 2.0

In C# 2.0, anonymous methods were introduced to reduce the burden I just described. However, they
are not as functionally expressive as lambda expressions because they still carry the old imperative
programming style with them and require parameter types in the parameter list. Additionally, the
anonymous method syntax is rather bulky. For good measure, the following shows how the previous
example would be implemented using anonymous methods, so you can see the difference in syntax
from lambda expressions:

using System;

public class LambdaTest
{
 static void Main() {
 int counter = 0;

 WriteStream(delegate () {
 return counter++;
 });

 Console.WriteLine("Final value of counter: {0}",
 counter);
 }

 static void WriteStream(Func<int> counter) {
 for(int i = 0; i < 10; ++i) {
 Console.Write("{0}, ", counter());
 }
 Console.WriteLine();
 }
}

I have bolded the differences between this example and the original lambda expression example.
It’s definitely much cleaner than the way you would have implemented it in the C# 1.0 days. However,
it’s still not as expressive and succinct as the lambda expression version. Using lambda expressions, you
have an elegant means of defining potentially very complex functions that can even be built by
assembling together other functions.

CHAPTER 15 ■ LAMBDA EXPRESSIONS

524

■ Note In the previous code example, you likely noticed the implications of referencing the counter variable

within the lambda expression. After all, counter is actually a local variable within the scope of Main, yet within the

scope of WriteStream it is referenced while invoking the delegate. In the Chapter 10 section “Beware the

Captured Variable Surprise,” I described how you can do the same thing with anonymous methods. In functional

programming lingo, this is called a closure. In essence, any time a lambda expression incorporates the

environment around it, a closure is the result. As I’ll show in a following section, “Closures (Variable Capture) and

Memoization,” closures can be very useful. However, when used inappropriately, they can create some nasty

surprises.

Lambda Statements
All the lambda expressions I have shown so far have been purely of the expression type. Another type of
lambda expression is one I like to call a lambda statement. It is similar in form to the lambda expressions
of the previous section except that it is composed of a compound statement block within curly braces.
Because of that, a lambda with statement blocks must have a return statement. In general, all lambda
expressions shown in the previous section can be converted to a lambda with a statement block simply
by surrounding the expression with curly braces after prefixing the right side with a return statement.
For example, the following lambda expression:

(x, y) => x * y

can be rewritten as the following lambda with a statement block:

(x, y) => { return x * y; }

In form, lambdas with statement blocks are almost identical to anonymous methods. But there is
one major difference between lambdas with statement blocks and lambda expressions. Lambdas with
statement blocks can be converted only to delegate types, whereas lambda expressions can be converted
both to delegates and to expression trees typed by the family of types centered around
System.Linq.Expressions.Expression<T>. I’ll discuss expression trees in the next section.

■ Note The big difference between lambdas with statement blocks and anonymous methods is that anonymous

methods must explicitly type their parameters, whereas the compiler can infer the types of the lambda based on

context in almost all cases. The abbreviated syntax offered by lambda expressions fosters a more functional

programming thought process and approach.

Expression Trees
So far, I have shown you lambda expressions that replace the functionality of delegates. If I stopped
there, I would be doing you a great disservice. That’s because the C# compiler also has the capability to
convert lambda expressions into expression trees based on the types in the System.Linq.Expressions

CHAPTER 15 ■ LAMBDA EXPRESSIONS

525

namespace. I’ll explain why this is such a great thing in a later section, “Functions as Data.” For example,
you’ve already seen how you can convert a lambda expression into a delegate as shown here:

Func<int, int> func1 = n => n+1;

In this line of code, the expression is converted into a delegate that accepts a single int parameter
and returns an int. However, check out the following modification:

Expression<Func<int, int>> expr = n => n+1;

This is really cool! The lambda expression, instead of being converted into a callable delegate, is
converted into a data structure that represents the operation. The type of the expr variable is
Expression<T>, where T is replaced with the type of delegate the lambda can be converted to. The
compiler notices that you are trying to convert the lambda expression into an
Expression<Func<int,int>> instance and generates all the code internally to make it happen. At some
point later in time, you can then compile the expression into a usable delegate as shown in the next
example:

using System;
using System.Linq;
using System.Linq.Expressions;

public class EntryPoint
{
 static void Main() {
 Expression<Func<int, int>> expr = n => n+1;

 Func<int, int> func = expr.Compile();

 for(int i = 0; i < 10; ++i) {
 Console.WriteLine(func(i));
 }

 }
}

The line in bold shows the step at which the expression is compiled into a delegate. If you think
about it a little bit, you might quickly start imagining how you could modify this expression tree or even
combine multiple expression trees to create more complex expression trees prior to compiling them.
One could even define a new expression language or implement a parser for an already existing
expression language. In fact, the compiler acts as an expression parser when you assign a lambda
expression into an Expression<T> type instance. Behind the scenes, it generates the code to build the
expression tree and if you use ILDASM or Reflector to look at the generated code, you can see it in
action.

The previous example could be rewritten without using the lambda expression as follows:

using System;
using System.Linq;
using System.Linq.Expressions;

public class EntryPoint
{
 static void Main() {
 var n = Expression.Parameter(typeof(int), "n");

CHAPTER 15 ■ LAMBDA EXPRESSIONS

526

 var expr = Expression<Func<int,int>>.Lambda<Func<int,int>>(
 Expression.Add(n, Expression.Constant(1)),
 n);

 Func<int, int> func = expr.Compile();

 for(int i = 0; i < 10; ++i) {
 Console.WriteLine(func(i));
 }

 }
}

The bolded lines here replace the single line in the prior example in which the expr variable is
assigned the lambda expression n => n+1. I think you’ll agree that the first example is much easier to
read. However, this longhand example helps express the true flexibility of expression trees. Let’s break
down the steps of building the expression. First, you need to represent the parameters in the parameter
list of the lambda expression. In this case, there is only one: the variable n. Thus we start with the
following:

var n = Expression.Parameter(typeof(int), "n");

■ Note In these examples, I am using implicitly typed variables to save myself a lot of typing and to reduce clutter

for readability. Remember, the variables are still strongly typed. The compiler simply infers their type at compile

time rather than requiring you to provide the type.

This line of code says that we need an expression to represent a variable named n that is of type int.
Remember that in a plain lambda expression, this type can be inferred based upon the delegate type
provided.

Now, we need to construct a BinaryExpression instance that represents the addition operation, as
shown next:

Expression.Add(n, Expression.Constant(1))

Here, I’ve said that my BinaryExpression should consist of adding an expression representing a
constant, the number 1, to an expression representing the parameter n. You might have already started
to notice a pattern. The framework implements a form of the Abstract Factory design pattern for creating
instances of expression elements. That is, you cannot create a new instance of BinaryExpression, or any
other building block of expression trees, using the new operator along with the constructor of the type.
The constructor is not accessible, so you must use the static methods on the Expression class to create
those instances. They give us as consumers the flexibility to express what we want and allow the
Expression implementation to decide which type we really need.

CHAPTER 15 ■ LAMBDA EXPRESSIONS

527

■ Note If you look up BinaryExpression, UnaryExpression, ParameterExpression, and so on in the MSDN

documentation, you will notice that there are no public constructors on these types. Instead, you create instances

of Expression derived types using the Expression type, which implements the factory pattern and exposes static

methods for creating instances of Expression derived types.

Now that you have the BinaryExpression, you need to use the Expression.Lambda<> method to bind
the expression (in this case, n+1) with the parameters in the parameter list (in this case, n). Notice that in
the example I use the generic Lambda<> method so that I can create the type Expression<Func<int,int>>.
Using the generic form gives the compiler more type information to catch any errors I might have
introduced at compile time rather than let those errors bite me at run time.

One more point I want to make that demonstrates how expressions represent operations as data is
with the Expression Tree Debugger Visualizer in Visual Studio 2010. If you execute the previous example
within the Visual Studio Debugger, once you step past the point where you assign the expression into the
expr variable, you will notice that in either the “Autos” or “Locals” windows, the expression is parsed and
displayed as {n => (n + 1)} even though it is of type
System.Linq.Expressions.Expression<System.Func<int,int>>. Naturally, this is a great help while
creating complicated expression trees.

■ Note If I had used the nongeneric version of the Expression.Lambda method, the result would have been an

instance of LambdaExpression rather than Expression. LambdaExpression also implements the Compile

method; however, instead of a strongly typed delegate, it returns an instance of type Delegate. Before you can

invoke the Delegate instance, you must cast it to the specific delegate type; in this case, Func<int, int> or

another delegate with the same signature, or you must call DynamicInvoke on the delegate. Either one of those

could throw an exception at run time if you have a mismatch between your expression and the type of delegate

you think it should generate.

Operating on Expressions
Now I want to show you an example of how you can take an expression tree generated from a lambda
expression and modify it to create a new expression tree. In this case, I will take the expression (n+1) and
turn it into 2*(n+1):

using System;
using System.Linq;
using System.Linq.Expressions;

public class EntryPoint
{
 static void Main() {
 Expression<Func<int,int>> expr = n => n+1;

CHAPTER 15 ■ LAMBDA EXPRESSIONS

528

 // Now, reassign the expr by multiplying the original
 // expression by 2.
 expr = Expression<Func<int,int>>.Lambda<Func<int,int>>(
 Expression.Multiply(expr.Body,
 Expression.Constant(2)),
 expr.Parameters);

 Func<int, int> func = expr.Compile();

 for(int i = 0; i < 10; ++i) {
 Console.WriteLine(func(i));
 }

 }
}

The bolded lines show the stage at which I multiply the original lambda expression by 2. It’s very
important to notice that the parameters passed into the Lambda<> method (the second parameter) need
to be exactly the same instances of the parameters that come from the original expression; that is,
expr.Parameters. This is required. You cannot pass a new instance of ParameterExpression to the
Lambda<> method; otherwise, at run time you will receive an exception similar to the following because
the new ParameterExpression instance, even though it might have the same name, is actually a different
parameter instance:

System.InvalidOperationException: Lambda Parameter not in scope

There are many classes derived from the Expression class and many static methods for creating
instances of them and combining other expressions. It would be monotonous for me to describe them
all here. Therefore, I recommend that you refer to the MSDN Library documentation regarding the
System.Linq.Expressions namespace for all the fantastic details.

Functions as Data
If you have ever studied functional languages such as Lisp, you might notice the similarities between
expression trees and how Lisp and similar languages represent functions as data structures. Most people
encounter Lisp in an academic environment, and many times concepts that one learns in academia are
not directly applicable to the real world. But before you eschew expression trees as merely an academic
exercise, I want to point out how they are actually very useful.

As you might already guess, within the scope of C#, expression trees are extremely useful when
applied to LINQ. I will give a full introduction to LINQ in Chapter 16, but for our discussion here, the
most important fact is that LINQ provides a language-native, expressive syntax for describing operations
on data that are not naturally modeled in an object-oriented way. For example, you can create a LINQ
expression to search a large in-memory array (or any other IEnumerable type) for items that match a
certain pattern. LINQ is extensible and can provide a means of operating on other types of stores, such
as XML and relational databases. In fact, out of the box, C# supports LINQ to SQL, LINQ to Dataset,
LINQ to Entities, LINQ to XML, and LINQ to Objects, which collectively allow you to perform LINQ
operations on any type that supports IEnumerable.

So how do expression trees come into play here? Imagine that you are implementing LINQ to SQL to
query relational databases. The user’s database could be half a world away, and it might be very
expensive to perform a simple query. On top of that, you have no way of judging how complex the user’s

CHAPTER 15 ■ LAMBDA EXPRESSIONS

529

LINQ expression might be. Naturally, you want to do everything you can to provide the most efficient
experience possible.

If the LINQ expression is represented in data (as an expression tree) rather than in IL (as a delegate),
you can operate on it. Maybe you have an algorithm that can spot places where an optimization can be
utilized, thus simplifying the expression. Or maybe when your implementation analyzes the expression,
you determine that the entire expression can be packaged up, sent across the wire, and executed in its
entirety on the server.

Expression trees give you this important capability. Then, when you are finished operating on the
data, you can translate the expression tree into the final executable operation via a mechanism such as
the LambdaExpression.Compile method and go. Had the expression only been available as IL code from
the beginning, your flexibility would have been severely limited. I hope now you can appreciate the true
power of expression trees in C#.

Useful Applications of Lambda Expressions
Now that I have shown you what lambda expressions look like, let’s consider some of the things you can
do with them. You can actually implement most of the following examples in C# using anonymous
methods or delegates. However, it’s amazing how a simple syntactic addition to the language can clear
the fog and open up the possibilities of expressiveness.

Iterators and Generators Revisited
I’ve described how you can create custom iterators with C# in a couple of places in this book already.5
Now I want to demonstrate how you can use lambda expressions to create custom iterators. The point I
want to stress is how the code implementing the algorithm, in this case the iteration algorithm, is then
factored out into a reusable method that can be applied in almost any scenario.

■ Note Those of you who are also C++ programmers and familiar with using the Standard Template Library (STL)

will find this notion a familiar one. Most of the algorithms defined in the std namespace in the <algorithm>

header require you to provide predicates to get their work done. When the STL arrived on the scene back in the

early 1990s, it swept the C++ programming community like a refreshing functional programming breeze.

I want to show how you can iterate over a generic type that might or might not be a collection in the
strict sense of the word. Additionally, you can externalize the behavior of the iteration cursor as well as
how to access the current value of the collection. With a little thought, you can factor out just about
everything from the custom iterator creation method, including the type of the item stored, the type of
the cursor, the start state of the cursor, the end state of the cursor, and how to advance the cursor. All

5 Chapter 9 introduces iterators via the yield statement, and Chapter 14 expanded on custom iterators in the section
titled “Borrowing from Functional Programming.”

CHAPTER 15 ■ LAMBDA EXPRESSIONS

530

these are demonstrated in the following example, in which I iterate over the diagonal of a two-
dimensional array:

using System;
using System.Linq;
using System.Collections.Generic;

public static class IteratorExtensions
{
 public static IEnumerable<TItem>
 MakeCustomIterator<TCollection, TCursor, TItem>(
 this TCollection collection,
 TCursor cursor,
 Func<TCollection, TCursor, TItem> getCurrent,
 Func<TCursor, bool> isFinished,
 Func<TCursor, TCursor> advanceCursor) {
 while(!isFinished(cursor)) {
 yield return getCurrent(collection, cursor);
 cursor = advanceCursor(cursor);
 }
 }
}

public class IteratorExample
{
 static void Main() {
 var matrix = new List<List<double>> {
 new List<double> { 1.0, 1.1, 1.2 },
 new List<double> { 2.0, 2.1, 2.2 },
 new List<double> { 3.0, 3.1, 3.2 }
 };

 var iter = matrix.MakeCustomIterator(
 new int[] { 0, 0 },
 (coll, cur) => coll[cur[0]][cur[1]],
 (cur) => cur[0] > 2 || cur[1] > 2,
 (cur) => new int[] { cur[0] + 1,
 cur[1] + 1 });

 foreach(var item in iter) {
 Console.WriteLine(item);
 }
 }
}

Let’s look at how reusable MakeCustomIterator<> is. Admittedly, it takes some time to get used to the
lambda syntax, and those used to reading imperative coding styles might find it hard to follow. Notice
that it takes three generic type arguments. TCollection is the type of the collection, which in this
example is specified as List<List<double>> at the point of use. TCursor is the type of the cursor, which in
this case is a simple array of integers that can be considered coordinates of the matrix variable. And
TItem is the type that the code returns via the yield statement. The rest of the type arguments to
MakeCustomIterator<> are delegate types that it uses to determine how to iterate over the collection.

CHAPTER 15 ■ LAMBDA EXPRESSIONS

531

First, it needs a way to access the current item in the collection, which, for this example, is expressed
in the following lambda expression which uses the values within the cursor array to index the item
within the matrix:

(coll, cur) => coll[cur[0]][cur[1]]

Then it needs a way to determine whether you have reached the end of the collection, for which I
supply the following lambda expression that just checks to see whether the cursor has stepped off of the
edge of the matrix:

(cur) => cur[0] > 2 || cur[1] > 2

And finally it needs to know how to advance the cursor, which I have supplied in the following
lambda expression, which simply advances both coordinates of the cursor:

(cur) => new int[] { cur[0] + 1, cur[1] + 1 }

After executing the preceding code, you should see output similar to the following, which shows that
you have indeed walked down the diagonal of the matrix from the top left to the bottom right. At each
step along the way, MakeCustomIterator<> has delegated work to the given delegates to perform the
work.

1

2.1

3.2

Other implementations of MakeCustomIterator<> could accept a first parameter of type
IEnumerable<T>, which in this example would be IEnumerable<double>. However, when you impose that
restriction, whatever you pass to MakeCustomIterator<> must implement IEnumerable<>. The matrix
variable does implement IEnumerable<>, but not in the form that is easily usable, because it is
IEnumerable<List<double>>. Additionally, you could assume that the collection implements an indexer,
as described in the Chapter 4 section “Indexers,” but to do so would be restricting the reusability of
MakeCustomIterator<> and which objects you could use it on. In the previous example, the indexer is
actually used to access the current item, but its use is externalized and wrapped up in the lambda
expression given to access the current item.

Moreover, because the operation of accessing the current item of the collection is externalized, you
could even transform the data in the original matrix variable as you iterate over it. For example, I could
have multiplied each value by 2 in the lambda expression that accesses the current item in the
collection, as shown here:

(coll, cur) => coll[cur[0]][cur[1]] * 2;

Can you imagine how painful it would have been to implement MakeCustomIterator<> using
delegates in the C# 1.0 days? This is exactly what I mean when I say that even just the addition of the
lambda expression syntax to C# opens one’s eyes to the incredible possibilities.

As a final example, consider the case in which your custom iterator does not even iterate over a
collection of items at all and is used as a number generator instead, as shown here:

using System;

CHAPTER 15 ■ LAMBDA EXPRESSIONS

532

using System.Linq;
using System.Collections.Generic;

public class IteratorExample
{
 static IEnumerable<T> MakeGenerator<T>(T initialValue,
 Func<T, T> advance) {
 T currentValue = initialValue;
 while(true) {
 yield return currentValue;
 currentValue = advance(currentValue);
 }
 }

 static void Main() {
 var iter = MakeGenerator<double>(1,
 x => x * 1.2);

 var enumerator = iter.GetEnumerator();
 for(int i = 0; i < 10; ++i) {
 enumerator.MoveNext();
 Console.WriteLine(enumerator.Current);
 }
 }
}

After executing this code, you will see the following results:

1

1.2

1.44

1.728

2.0736

2.48832

2.985984

3.5831808

4.29981696

5.159780352

CHAPTER 15 ■ LAMBDA EXPRESSIONS

533

You could allow this method to run infinitely, and it would stop only if you experienced an overflow
exception or you stopped execution. But the items you are iterating over don’t exist as a collection;
rather, they are generated on an as-needed basis each time you advance the iterator. You can apply this
concept in many ways, even creating a random number generator implemented using C# iterators.

More on Closures (Variable Capture) and Memoization
In the Chapter 10 section titled “Beware the Captured Variable Surprise,” I described how anonymous
methods can capture the contexts of their lexical surroundings. Many refer to this phenomenon as
variable capture. In functional programming parlance, it’s also known as a closure.6 Here is a simple
closure in action:

using System;
using System.Linq;

public class Closures
{
 static void Main() {
 int delta = 1;
 Func<int, int> func = (x) => x + delta;

 int currentVal = 0;
 for(int i = 0; i < 10; ++i) {
 currentVal = func(currentVal);
 Console.WriteLine(currentVal);
 }
 }
}

The variable delta and the delegate func embody the closure. The expression body references delta,
and therefore must have access to it when it is executed at a later time. To do this, the compiler
“captures” the variable for the delegate. Behind the scenes, what this means is that the delegate body
contains a reference to the actual variable delta. But notice that delta is a value type on the stack. The
compiler must be doing something to ensure that delta lives longer than the scope of the method within
which is it declared because the delegate will likely be called later, after that scope has exited. Moreover,
because the captured variable is accessible to both the delegate and the context containing the lambda
expression, it means that the captured variable can be changed outside the scope and out of band of the
delegate. In essence, two methods (Main and the delegate) both have access to delta. This behavior can
be used to your advantage, but when unexpected, it can cause serious confusion.

6 For a more general discussion of closures, visit
http://en.wikipedia.org/wiki/Closure_%28computer_science%29.

http://en.wikipedia.org/wiki/Closure_%28computer_science%29

CHAPTER 15 ■ LAMBDA EXPRESSIONS

534

■ Note In reality, when a closure is formed, the C# compiler takes all those variables and wraps them up in a

generated class. It also implements the delegate as a method of the class. In very rare cases, you might need to

be concerned about this, especially if it is found to be an efficiency burden during profiling.

Now I want to show you a great application of closures. One of the foundations of functional
programming is that the function itself is treated as a first-class object that can be manipulated and
operated upon as well as invoked. You’ve already seen how lambda expressions can be converted into
expression trees so you can operate on them, producing more or less complex expressions. But one
thing I have not discussed yet is the topic of using functions as building blocks for creating new
functions. As a quick example of what I mean, consider two lambda expressions:

x => x * 3
x => x + 3.1415

You could create a method to combine such lambda expressions to create a compound lambda
expression as I’ve shown here:

using System;
using System.Linq;

public class Compound
{
 static Func<T, S> Chain<T, R, S>(Func<T, R> func1,
 Func<R, S> func2) {
 return x => func2(func1(x));
 }

 static void Main() {
 Func<int, double> func = Chain((int x) => x * 3,
 (int x) => x + 3.1415);

 Console.WriteLine(func(2));
 }
}

The Chain<> method accepts two delegates and produces a third delegate by combining the two. In
the Main method, you can see how I used it to produce the compound expression. The delegate that you
get after calling Chain<> is equivalent to the delegate you get when you convert the following lambda
expression into a delegate:

x => (x * 3) + 3.1415

Having a method to chain arbitrary expressions like this is useful indeed, but let’s look at other ways
to produce a derivative function. Imagine an operation that takes a really long time to compute.
Examples are the factorial operation or the operation to compute the nth Fibonacci number. An example
that I ultimately like to show demonstrates the Reciprocal Fibonacci constant, which is

CHAPTER 15 ■ LAMBDA EXPRESSIONS

535

where Fk is a Fibonacci number.7

To begin to demonstrate that this constant exists computationally, you need to first come up with
an operation to compute the nth Fibonacci number:

using System;
using System.Linq;

public class Proof
{
 static void Main() {
 Func<int, int> fib = null;
 fib = (x) => x > 1 ? fib(x-1) + fib(x-2) : x;

 for(int i = 30; i < 40; ++i) {
 Console.WriteLine(fib(i));
 }
 }
}

When you look at this code, the first thing that jumps up and grabs you is the formation of the
Fibonacci routine; that is, the fib delegate. It forms a closure on itself! This is definitely a form of
recursion and behavior that I desire. However, if you execute the example, unless you have a
powerhouse of a machine, you will notice how slow it is, even though all I did was output the 30th to 39th
Fibonacci numbers! If that is the case, you don’t even have a prayer of demonstrating the Fibonacci
constant. The slowness comes from the fact that for each Fibonacci number that you compute, you have
to do a little more work than you did to compute the two prior Fibonacci numbers, and you can see how
this work quickly mushrooms.

You can solve this problem by trading a little bit of space for time by caching the Fibonacci numbers
in memory. But instead of modifying the original expression, let’s look at how to create a method that
accepts the original delegate as a parameter and returns a new delegate to replace the original. The
ultimate goal is to be able to replace the first delegate with the derivative delegate without affecting the
code that consumes it. One such technique is called memorization.8 This is the technique whereby you
cache function return values and each return value’s associated input parameters. This works only if the
function has no entropy, meaning that for the same input parameters, it always returns the same result.
Then, prior to calling the actual function, you first check to see whether the result for the given
parameter set has already been computed and return it rather than calling the function. Given a very
complex function, this technique trades a little bit of memory space for significant speed gain.

Let’s look at an example:

7 Weisstein, Eric W. "Reciprocal Fibonacci Constant." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/ReciprocalFibonacciConstant.html

8 You can read more about memoization at http://en.wikipedia.org/wiki/Memoization. Also, Wes Dyer has an
excellent entry regarding memoization on his blog at
http://blogs.msdn.com/wesdyer/archive/2007/01/26/function-memoization.aspx.

http://mathworld.wolfram.com/ReciprocalFibonacciConstant.html
http://en.wikipedia.org/wiki/Memoization
http://blogs.msdn.com/wesdyer/archive/2007/01/26/function-memoization.aspx

CHAPTER 15 ■ LAMBDA EXPRESSIONS

536

using System;
using System.Linq;
using System.Collections.Generic;

public static class Memoizers
{
 public static Func<T,R> Memoize<T,R>(this Func<T,R> func) {
 var cache = new Dictionary<T,R>();
 return (x) => {
 R result = default(R);
 if(cache.TryGetValue(x, out result)) {
 return result;
 }

 result = func(x);
 cache[x] = result;
 return result;
 };
 }
}

public class Proof
{
 static void Main() {
 Func<int, int> fib = null;
 fib = (x) => x > 1 ? fib(x-1) + fib(x-2) : x;
 fib = fib.Memoize();

 for(int i = 30; i < 40; ++i) {
 Console.WriteLine(fib(i));
 }
 }
}

First of all, notice that in Main, I have added only one more statement where I apply the Memoize<>
extension method to the delegate to produce a new delegate. Everything else stays the same, so the
transparent replaceability goal is achieved. The Memoize<> method wraps the original delegate that’s
passed in via the func argument with another closure that includes a Dictionary<> instance to store the
cached values of the given delegate func. In the process of Memoize<> taking one delegate and returning
another, it has introduced a cache that greatly improves the efficiency. Each time the derivative delegate
is called, it first checks the cache to see whether the value has already been computed.

■ Caution Of course, memoization works only for functions that are deterministically repeatable in the sense that

you are guaranteed to get the same result for the same parameters. For example, a true random number generator

cannot be memoized.

CHAPTER 15 ■ LAMBDA EXPRESSIONS

537

Run the two previous examples on your own machine to see the amazing difference. Now you can
move on to the business of computing the Reciprocal Fibonacci constant by modifying the Main method
as follows:

 static void Main() {
 Func<ulong, ulong> fib = null;
 fib = (x) => x > 1 ? fib(x-1) + fib(x-2) : x;
 fib = fib.Memoize();

 Func<ulong, decimal> fibConstant = null;
 fibConstant = (x) => {
 if(x == 1) {
 return 1 / ((decimal)fib(x));
 } else {
 return 1 / ((decimal)fib(x)) + fibConstant(x-1);
 }
 };
 fibConstant = fibConstant.Memoize();

 Console.WriteLine("\n{0}\t{1}\t{2}\t{3}\n",
 "Count",
 "Fibonacci".PadRight(24),
 "1/Fibonacci".PadRight(24),
 "Fibonacci Constant".PadRight(24));

 for(ulong i = 1; i <= 93; ++i) {
 Console.WriteLine("{0:D5}\t{1:D24}\t{2:F24}\t{3:F24}",
 i,
 fib(i),
 (1/(decimal)fib(i)),
 fibConstant(i));
 }
 }

The bold text shows the delegate I created to compute the nth Reciprocal Fibonacci constant. As you
call this delegate with higher and higher values for x, you should see the result get closer and closer to
the Reciprocal Fibonacci constant. Notice that I memoized the fibConstant delegate as well. If you don’t
do this, you might suffer a stack overflow due to the recursion as you call fibConstant with higher and
higher values for x. So you can see that memoization also trades stack space for heap space. On each line
of output, the code outputs the intermediate values for informational purposes, but the interesting value
is in the far right column. Notice that I stopped calculation with iteration number 93. That’s because the
ulong will overflow with the 94th Fibonacci number. I could solve the overflow problem by using
BigInteger in the System.Numeric namespace. However, that’s not necessary because the 93rd iteration of
the Reciprocal Fibonacci constant shown here is close enough to prove the point of this example:

3.359885666243177553039387

CHAPTER 15 ■ LAMBDA EXPRESSIONS

538

I have bolded the digits that are significant.9 I think you will agree that memoization is extremely
useful. For that matter, many more useful things can be done with methods that accept functions and
produce other functions, as I’ll show in the next section.

Currying
In the previous section on closures I demonstrated how to create a method that accepts a function, given
as a delegate, and produces a new function. This concept is a very powerful one and memoization, as
shown in the previous section, is a powerful application of it. In this section, I want to show you the
technique of currying.10 In short, what it means is creating an operation (usually a method) that accepts
a function of multiple parameters (usually a delegate) and produces a function of only a single
parameter.

■ Note If you are a C++ programmer familiar with the STL, you have undoubtedly used the currying operation if

you’ve ever utilized any of the parameter binders such as Bind1st and Bind2nd.

Suppose that you have a lambda expression that looks like the following:

(x, y) => x + y

Now, suppose that you have a list of doubles and you want to use this lambda expression to add a
constant value to each item on the list, producing a new list. What would be nice is to create a new
delegate based on the original lambda expression in which one of the variables is forced to a static value.
This notion is called parameter binding, and those who have used STL in C++ are likely very familiar with
it. Check out the next example, in which I show parameter binding in action by adding the constant 3.2
to the items in a List<double> instance:

using System;
using System.Linq;
using System.Collections.Generic;

public static class CurryExtensions
{
 public static Func<TArg1, TResult>
 Bind2nd<TArg1, TArg2, TResult>(
 this Func<TArg1, TArg2, TResult> func,
 TArg2 constant) {
 return (x) => func(x, constant);
 }

9 You can see many more decimal location of the Fibonacci constant at
http://www.research.att.com/~njas/sequences/A079586.

10 For a lot more information about currying, go to http://en.wikipedia.org/wiki/Currying.

http://www.research.att.com/~njas/sequences/A079586
http://en.wikipedia.org/wiki/Currying

CHAPTER 15 ■ LAMBDA EXPRESSIONS

539

}

public class BinderExample
{
 static void Main() {
 var mylist = new List<double> { 1.0, 3.4, 5.4, 6.54 };
 var newlist = new List<double>();

 // Here is the original expression.
 Func<double, double, double> func = (x, y) => x + y;

 // Here is the curried function.
 var funcBound = func.Bind2nd(3.2);

 foreach(var item in mylist) {
 Console.Write("{0}, ", item);
 newlist.Add(funcBound(item));
 }

 Console.WriteLine();
 foreach(var item in newlist) {
 Console.Write("{0}, ", item);
 }
 }
}

The meat of this example is in the Bind2nd<> extension method, which I have bolded. You can see
that it creates a closure and returns a new delegate that accepts only one parameter. Then, when that
new delegate is called, it passes its only parameter as the first parameter to the original delegate and
passes the provided constant as the second parameter. For the sake of example, I iterate through the
mylist list, building a second list held in the newlist variable while using the curried version of the
original method to add 3.2 to each item.

Just for good measure, I want to show you another way you can perform the currying, slightly
different from that shown in the previous example:

using System;
using System.Linq;
using System.Collections.Generic;

public static class CurryExtensions
{
 public static Func<TArg2, Func<TArg1, TResult>>
 Bind2nd<TArg1, TArg2, TResult>(
 this Func<TArg1, TArg2, TResult> func) {
 return (y) => (x) => func(x, y);
 }
}

public class BinderExample
{
 static void Main() {
 var mylist = new List<double> { 1.0, 3.4, 5.4, 6.54 };
 var newlist = new List<double>();

CHAPTER 15 ■ LAMBDA EXPRESSIONS

540

 // Here is the original expression.
 Func<double, double, double> func = (x, y) => x + y;

 // Here is the curried function.
 var funcBound = func.Bind2nd()(3.2);

 foreach(var item in mylist) {
 Console.Write("{0}, ", item);
 newlist.Add(funcBound(item));
 }

 Console.WriteLine();
 foreach(var item in newlist) {
 Console.Write("{0}, ", item);
 }
 }
}

I have bolded the parts that are different from the previous example. In the first example, Bind2nd<>
returned a delegate that accepted a single integer and returned an integer. In this example, I changed
Bind2nd<> to return a delegate that accepts a single parameter (the value to bind the second parameter of
the original function to) and returns another delegate that is the curried function. Both forms are
perfectly valid. But the purists might prefer the second form over the former.

Anonymous Recursion
In the earlier section titled “Closures (Variable Capture) and Memoization,” I showed a form of recursion
using closures while calculating the Fibonacci numbers. For the sake of discussion, let’s look at a similar
closure that one can use to calculate the factorial of a number:

Func<int, int> fact = null;
fact = (x) => x > 1 ? x * fact(x-1) : 1;

This code works because fact forms a closure on itself and also calls itself. That is, the second line,
in which fact is assigned the lambda expression for the factorial calculation, captures the fact delegate
itself. Even though this recursion works, it is extremely fragile, and you must be very careful when using
it as written because of reasons I will describe now.

Remember that even though a closure captures a variable for use inside the anonymous method,
which is implemented here as a lambda expression, the captured variable is still accessible and mutable
from outside the context of the capturing anonymous method or lambda expression. For example,
consider what happens if you perform the following:

Func<int, int> fact = null;
fact = (x) => x > 1 ? x * fact(x-1) : 1;
Func<int, int> newRefToFact = fact;

Because objects in the CLR are reference types, newRefToFact and fact now reference the same
delegate. Now, imagine that you then do something similar to this:

Func<int, int> fact = null;

CHAPTER 15 ■ LAMBDA EXPRESSIONS

541

fact = (x) => x > 1 ? x * fact(x-1) : 1;
Func<int, int> newRefToFact = fact;
fact = (x) => x + 1;

Now the intended recursion is broken! Can you see why? The reason is that we modified the
captured variable fact. We reassigned fact to reference a new delegate based on the lambda expression
(x) => x+1. But newRefToFact still references the lambda expression (x) => x > 1 ? x * fact(x-1) : 1.
However, when the delegate referenced by newRefToFact calls fact, instead of recursing, it ends up
executing the new expression (x) => x+1, which is different behavior from the recursion you had before.
Ultimately, the problem is caused by the fact that the closure that embodies the recursion allows you to
modify the captured variable (the func delegate) externally. If the captured variable is changed, the
recursion could break.

There are several ways to fix this problem, but the typical method is to use anonymous recursion.11
What ends up happening is that you modify the preceding factorial lambda expression to accept another
parameter, which is the delegate to call when it’s time to recurse. Essentially, this removes the closure
and converts the captured variable into a parameter to the delegate. What you end up with is something
similar to the following:

delegate TResult AnonRec<TArg,TResult>(AnonRec<TArg,TResult> f, TArg arg);
AnonRec<int, int> fact = (f, x) => x > 1 ? x * f(f, x-1) : 1;

The key here is that instead of recursing by relying on a captured variable that is a delegate, you
instead pass the delegate to recurse on as a parameter. That is, you traded the captured variable for a
variable that is passed on the stack (in this case, the parameter f in the fact delegate). In this example,
the recursion delegate is represented by the parameter f. Therefore, notice that fact not only accepts f
as a parameter, but calls it in order to recurse and then passes f along to the next iteration of the
delegate. In essence, the captured variable now lives on the stack as it is passed to each recursion of the
expression. However, because it is on the stack, the danger of it being modified out from underneath the
recursion mechanism is now gone.

For more details on this technique, I strongly suggest that you read Wes Dyer’s blog entry titled
“Anonymous Recursion in C#” at http://blogs.msdn.com/wesdyer. In his blog entry he demonstrates
how to implement a Y fixed-point combinator that generalizes the notion of anonymous recursion
shown previously.12

Summary
In this chapter, I introduced you to the syntax of lambda expressions, which are, for the most part,
replacements for anonymous methods. In fact, it’s a shame that lambda expressions did not come along
with C# 2.0 because then there would have been no need for anonymous methods. I showed how you
can convert lambda expressions, with and without statement bodies, into delegates. Additionally, you
saw how lambda expressions without statement bodies are convertible to expression trees based on the
Expression<T> type as defined in the System.Linq.Expression namespace. Using expression trees, you
can apply transformations to the expression tree before actually compiling it into a delegate and calling

11 For more theoretical details on anonymous recursion reference the article at
http://en.wikipedia.org/wiki/Anonymous_recursion.
12 Read more about Y fixed-point combinators at http://en.wikipedia.org/wiki/Fixed_point_combinator.

http://blogs.msdn.com/wesdyer
http://en.wikipedia.org/wiki/Anonymous_recursion
http://en.wikipedia.org/wiki/Fixed_point_combinator

CHAPTER 15 ■ LAMBDA EXPRESSIONS

542

it. I finished the chapter by showing you useful applications of lambda expressions. They included
creating generalized iterators, memoization by using closures, delegate parameter binding using
currying, and an introduction to the concept of anonymous recursion. Just about all these concepts are
foundations of functional programming. Even though one could implement all these techniques in C#
2.0 using anonymous methods, the introduction of lambda syntax to the language makes using such
techniques more natural and less cumbersome.

The following chapter introduces LINQ. I will also continue to focus on the functional programming
aspects that it brings to the table.

C H A P T E R 16

■ ■ ■

543

LINQ: Language Integrated Query

C-style languages (including C#) are imperative in nature, meaning that the emphasis is placed on the
state of the system, and changes are made to that state over time. Data-acquisition languages such as
SQL are functional in nature, meaning that the emphasis is placed on the operation and there is little or
no mutable data used during the process. LINQ bridges the gap between the imperative programming
style and the functional programming style. LINQ is a huge topic that deserves entire books devoted to it
and what you can do with LINQ.1 There are several implementations of LINQ readily available: LINQ to
Objects, LINQ to SQL, LINQ to Dataset, LINQ to Entities, and LINQ to XML. I will be focusing on LINQ to
Objects because I’ll be able to get the LINQ message across without having to incorporate extra layers
and technologies.

■ Note Development for LINQ started some time ago at Microsoft and was born out of the efforts of Anders

Hejlsberg and Peter Golde. The idea was to create a more natural and language-integrated way to access data

from within a language such as C#. However, at the same time, it was undesirable to implement it in such a way

that it would destabilize the implementation of the C# compiler and become too cumbersome for the language. As

it turns out, it made sense to implement some building blocks in the language in order to provide the functionality

and expressiveness of LINQ. Thus we have features like lambda expressions, anonymous types, extension

methods, and implicitly typed variables. All are excellent features in themselves, but arguably were precipitated by

LINQ.

LINQ does a very good job of allowing the programmer to focus on the business logic while
spending less time coding up the mundane plumbing that is normally associated with data access code.
If you have experience building data-aware applications, think about how many times you have found
yourself coding up the same type of boilerplate code over and over again. LINQ removes some of that
burden.

1 For more extensive coverage of LINQ, I suggest you check out Foundations of LINQ in C#, by Joseph C. Rattz, Jr.
(Apress, 2007).

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

544

A Bridge to Data
Throughout this book, I have stressed how just about all the new features introduced by C# 3.0 foster a
functional programming model. There’s a good reason for that, in the sense that data query is typically a
functional process. For example, a SQL statement tells the server exactly what you want and what to do.
It does not really describe objects and structures and how they are related both statically and
dynamically, which is typically what you do when you design a new application in an object-oriented
language. Therefore, functional programming is the key here and any techniques that you might be
familiar with from other functional programming languages such as Lisp, Scheme, or F# are applicable.

Query Expressions
At first glance, LINQ query expressions look a lot like SQL expressions. But make no mistake: LINQ is not
SQL. For starters, LINQ is strongly typed. After all, C# is a strongly typed language, and therefore, so is
LINQ. The language adds several new keywords for building query expressions. However, their
implementation from the compiler standpoint is pretty simple. LINQ query expressions typically get
translated into a chain of extension method calls on a sequence or collection. That set of extension
methods is clearly defined, and they are called standard query operators.

■ Note This LINQ model is quite extensible. If the compiler merely translates query expressions into a series of

extension method calls, it follows that you can provide your own implementations of those extension methods. In

fact, that is the case. For example, the class System.Linq.Enumerable provides implementations of those

methods for LINQ to Objects, whereas System.Linq.Queryable provides implementations of those methods for

querying types that implement IQueryable<T> and are commonly used with LINQ to SQL.

Let’s jump right in and have a look at what queries look like. Consider the following example, in
which I create a collection of Employee objects and then perform a simple query:

using System;
using System.Linq;
using System.Collections.Generic;

public class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public Decimal Salary { get; set; }
 public DateTime StartDate { get; set; }
}

public class SimpleQuery
{
 static void Main() {
 // Create our database of employees.
 var employees = new List<Employee> {

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

545

 new Employee {
 FirstName = "Joe",
 LastName = "Bob",
 Salary = 94000,
 StartDate = DateTime.Parse("1/4/1992") },
 new Employee {
 FirstName = "Jane",
 LastName = "Doe",
 Salary = 123000,
 StartDate = DateTime.Parse("4/12/1998") },
 new Employee {
 FirstName = "Milton",
 LastName = "Waddams",
 Salary = 1000000,
 StartDate = DateTime.Parse("12/3/1969") }
 };

 var query = from employee in employees
 where employee.Salary > 100000
 orderby employee.LastName, employee.FirstName
 select new { LastName = employee.LastName,
 FirstName = employee.FirstName };

 Console.WriteLine("Highly paid employees:");
 foreach(var item in query) {
 Console.WriteLine("{0}, {1}",
 item.LastName,
 item.FirstName);
 }

 }
}

First of all, you will need to import the System.Linq namespace, as I show in the following section
titled “Standard Query Operators.” In this example, I marked the query expression in bold to make it
stand out. It’s quite shocking if it’s the first time you have seen a LINQ expression! After all, C# is a
language that syntactically evolved from C++ and Java, and the LINQ syntax looks nothing like those
languages.

■ Note For those of you familiar with SQL, the first thing you probably noticed is that the query is backward from

what you are used to. In SQL, the select clause is normally the beginning of the expression. There are several

reasons why the reversal makes sense in C#. One reason is so that Intellisense will work. In the example, if the

select clause appeared first, Intellisense would have a hard time knowing which properties employee provides

because it would not even know the type of employee yet.

Prior to the query expression, I created a simple list of Employee instances just to have some data to
work with.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

546

Each query expression starts off with a from clause, which declares what’s called a range variable.
The from clause in our example is very similar to a foreach statement in that it iterates over the employees
collection and stores each item in the collection in the variable employee during each iteration. After the
from clause, the query consists of a series of clauses in which we can use various query operators to filter
the data represented by the range variable. In my example, I applied a where clause and an orderby
clause, as you can see. Finally, the expression closes with select, which is a projection operator. When
you perform a projection in the query expression, you are typically creating another collection of
information, or a single piece of information, that is a transformed version of the collection iterated by
the range variable. In the previous example, I wanted just the first and last names of the employees in my
results.

Another thing to note is my use of anonymous types in the select clause. I wanted the query to
create a transformation of the original data into a collection of structures, in which each instance
contains a FirstName property, a LastName property, and nothing more. Sure, I could have defined such a
structure prior to my query and made my select clause instantiate instances of that type, but doing so
defeats some of the convenience and expressiveness of the LINQ query.

And most importantly, as I’ll detail a little later in the section “The Virtues of Being Lazy,” the query
expression does not execute at the point the query variable is assigned. Instead, the query variable in this
example implements IEnumerable<T>, and the subsequent use of foreach on the query variable produces
the end result of the example.

The end result of building the query expression culminates in what’s called a query variable, which
is query in this example. Notice that I reference it using an implicitly typed variable. After all, can you
imagine what the type of query is? If you are so inclined, you can send query.GetType to the console and
you’ll see that the type is as shown here:

System.Linq.Enumerable+<SelectIterator>d__b`2[Employee,
<>f__AnonymousType0`2[System.String,System.String]]

Extension Methods and Lambda Expressions Revisited
Before I break down the elements of a LINQ expression in more detail, I want to show you an alternate
way of getting the work done. In fact, it’s more or less what the compiler is doing under the covers.

The LINQ syntax is very foreign looking in a predominantly imperative language like C#. It’s easy to
jump to the conclusion that the C# language underwent massive modifications in order to implement
LINQ. Actually, the compiler simply transforms the LINQ expression into a series of extension method
calls that accept lambda expressions.

If you look at the System.Linq namespace, you’ll see that there are two interesting static classes full
of extension methods: Enumerable and Queryable. Enumerable defines a collection of generic extension
methods usable on IEnumerable types, whereas Queryable defines the same collection of generic
extension methods usable on IQueryable types. If you look at the names of those extension methods,
you’ll see they have names just like the clauses in query expressions. That’s no accident because the
extension methods implement the standard query operators I mentioned in the previous section. In fact,
the query expression in the previous example can be replaced with the following code:

 var query = employees
 .Where(emp => emp.Salary > 100000)
 .OrderBy(emp => emp.LastName)
 .OrderBy(emp => emp.FirstName)
 .Select(emp => new {LastName = emp.LastName,
 FirstName = emp.FirstName});

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

547

Notice that it is simply a chain of extension method calls on IEnumerable, which is implemented by
employees. In fact, you could go a step further and flip the statement inside out by removing the
extension method syntax and simply call them as static methods, as shown here:

 var query =
 Enumerable.Select(
 Enumerable.OrderBy(
 Enumerable.OrderBy(
 Enumerable.Where(
 employees, emp => emp.Salary > 100000),
 emp => emp.LastName),
 emp => emp.FirstName),
 emp => new {LastName = emp.LastName,
 FirstName = emp.FirstName});

But why would you want to do such a thing? I merely show it here for illustration purposes so you
know what is actually going on under the covers. Those who are really attached to C# 2.0 anonymous
methods could even go one step further and replace the lambda expressions with anonymous methods.
Needless to say, the Enumerable and Queryable extension methods are very useful even outside the
context of LINQ. And as a matter of fact, some of the functionality provided by the extension methods
does not have matching query keywords and therefore can only be used by invoking the extension
methods directly.

Standard Query Operators
LINQ is built upon the use of standard query operators, which are methods that operate on sequences
such as collections that implement IEnumerable or IQueryable. As discussed previously, when the C#
compiler encounters a query expression, it typically converts the expression into a series or chain of calls
to those extension methods that implement the behavior.

There are two benefits to this approach. One is that you can generally perform the same actions as a
LINQ query expression by calling the extension methods directly. The resulting code is not as easy to
read as code with query expressions. However, there might be times when you need functionality from
the extension methods, and a complete query expression might be overkill. Other times are when query
operators are not exposed as query keywords.

The greatest benefit of this approach is that LINQ is extensible. That is, you can define your own set
of extension methods, and the compiler will generate calls to them while compiling a LINQ query
expression. For example, suppose that you did not import the System.Linq namespace and instead
wanted to provide your own implementation of Where and Select. You could do that as shown here:

using System;
using System.Collections.Generic;

public static class MySqoSet
{
 public static IEnumerable<T> Where<T> (
 this IEnumerable<T> source,
 System.Func<T,bool> predicate) {
 Console.WriteLine("My Where implementation called.");
 return System.Linq.Enumerable.Where(source,
 predicate);
 }

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

548

 public static IEnumerable<R> Select<T,R> (
 this IEnumerable<T> source,
 System.Func<T,R> selector) {
 Console.WriteLine("My Select implementation called.");
 return System.Linq.Enumerable.Select(source,
 selector);
 }
}

public class CustomSqo
{
 static void Main() {
 int[] numbers = { 1, 2, 3, 4 };

 var query = from x in numbers
 where x % 2 == 0
 select x * 2;

 foreach(var item in query) {
 Console.WriteLine(item);
 }
 }
}

Notice that I did not have to import the System.Linq namespace. Aside from the added convenience,
this helps prove my point because not importing the System.Linq namespace prevents the compiler
from automatically finding the extension methods in System.Linq.Enumerable. In the MySqoSet static
class, I provide my own implementations of the standard query operators Where and Select that simply
log a message and then forward to the ones in Enumerable. If you run this example, the output will look
as follows:

My Where implementation called.

My Select implementation called.

4

8

You could take this exercise a little further and imagine that you want to use LINQ against a
collection that does not support IEnumerable. Although you would normally make your collection
support IEnumerable, for the sake of argument, let’s say it supports the custom interface IMyEnumerable
instead. In that case, you can supply your own set of standard query operators that operates on
IMyEnumerable rather than IEnumerable. There is one drawback, though. If your type does not derive from
IEnumerable, you cannot use a LINQ query expression because the from clause requires a data source
that implements IEnumerable or IEnumerable<T>. However, you can call the standard query operators on
your IMyEnumerable type to achieve the same effect. I will show an example of this in the later section
titled “Techniques from Functional Programming,” in which I build upon an example from Chapter 14.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

549

C# Query Keywords
C# 2008 introduces a small set of new keywords for creating LINQ query expressions, some of which we
have already seen in previous sections. They are from, join, where, group, into, let, ascending,
descending, on, equals, by, in, orderby, and select. In the following sections, I cover the main points
regarding their use.

The from Clause and Range Variables
Each query begins with a from clause. The from clause is a generator that also defines the range variable,
which is a local variable of sorts used to represent each item of the input collection as the query
expression is applied to it. The from clause is just like a foreach construct in the imperative programming
style, and the range variable is identical in purpose to the iteration variable in the foreach statement.

A query expression might contain more than one from clause. In that case, you have more than one
range variable, and it’s analogous to having nested foreach clauses. The next example uses multiple from
clauses to generate the multiplication table you might remember from grade school, albeit not in tabular
format:

using System;
using System.Linq;

public class MultTable
{
 static void Main() {
 var query = from x in Enumerable.Range(0,10)
 from y in Enumerable.Range(0,10)
 select new {
 X = x,
 Y = y,
 Product = x * y
 };

 foreach(var item in query) {
 Console.WriteLine("{0} * {1} = {2}",
 item.X,
 item.Y,
 item.Product);
 }
 }
}

Remember that LINQ expressions are compiled into strongly typed code. So in this example, what is
the type of x and what is the type of y? The compiler infers the types of those two range variables based
upon the type argument of the IEnumerable<T> interface returned by Range. Because Range returns a type
of IEnumerable<int>, the type of x and y is int. Now, you might be wondering what happens if you want
to apply a query expression to a collection that only supports the nongeneric IEnumerable interface. In
those cases, you must explicitly specify the type of the range variable, as shown here:

using System;
using System.Linq;
using System.Collections;

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

550

public class NonGenericLinq
{
 static void Main() {
 ArrayList numbers = new ArrayList();
 numbers.Add(1);
 numbers.Add(2);

 var query = from int n in numbers
 select n * 2;

 foreach(var item in query) {
 Console.WriteLine(item);
 }
 }
}

You can see where I am explicitly typing the range variable n to type int. At run time, a cast is
performed, which could fail with an InvalidCastException. Therefore, it’s best to strive to use the
generic, strongly typed IEnumerable<T> rather than IEnumerable so these sorts of errors are caught at
compile time rather than run time.

■ Note As I’ve emphasized throughout this book, the compiler is your best friend. Use as many of its facilities as

possible to catch coding errors at compile time rather than run time. Strongly typed languages such as C# rely

upon the compiler to verify the integrity of the operations you perform on the types defined within the code. If you

cast away the type and deal with general types such as System.Object rather than the true concrete types of the

objects, you are throwing away one of the most powerful capabilities of the compiler. Then, if there is a type-

based mistake in your code, and quality assurance does not catch it before it goes out the door, you can bet your

customer will let you know about it, in the most abrupt way possible!

The join Clause
Following the from clause, you might have a join clause used to correlate data from two separate
sources. Join operations are not typically needed in environments where objects are linked via
hierarchies and other associative relationships. However, in the relational database world, there
typically are no hard links between items in two separate collections, or tables, other than the equality
between items within each record. That equality operation is defined by you when you create a join
clause. Consider the following example:

using System;
using System.Linq;
using System.Collections.Generic;

public class EmployeeId
{
 public string Id { get; set; }

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

551

 public string Name { get; set; }
}

public class EmployeeNationality
{
 public string Id { get; set; }
 public string Nationality { get; set; }
}

public class JoinExample
{
 static void Main() {
 // Build employee collection
 var employees = new List<EmployeeId>() {
 new EmployeeId{ Id = "111-11-1111",
 Name = "Ed Glasser" },
 new EmployeeId{ Id = "222-22-2222",
 Name = "Spaulding Smails" },
 new EmployeeId{ Id = "333-33-3333",
 Name = "Ivan Ivanov" },
 new EmployeeId{ Id = "444-44-4444",
 Name = "Vasya Pupkin" }
 };

 // Build nationality collection.
 var empNationalities = new List<EmployeeNationality>() {
 new EmployeeNationality{ Id = "111-11-1111",
 Nationality = "American" },
 new EmployeeNationality{ Id = "333-33-3333",
 Nationality = "Russian" },
 new EmployeeNationality{ Id = "222-22-2222",
 Nationality = "Irish" },
 new EmployeeNationality{ Id = "444-44-4444",
 Nationality = "Russian" }
 };

 // Build query.
 var query = from emp in employees
 join n in empNationalities
 on emp.Id equals n.Id
 orderby n.Nationality descending
 select new {
 Id = emp.Id,
 Name = emp.Name,
 Nationality = n.Nationality
 };

 foreach(var person in query) {
 Console.WriteLine("{0}, {1}, \t{2}",
 person.Id,
 person.Name,
 person.Nationality);
 }

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

552

 }
}

In this example, I have two collections. The first one contains just a collection of employees and
their employee identification numbers. The second contains a collection of employee nationalities in
which each employee is identified only by employee ID. To keep the example simple, every piece of data
is a string. Now, I want a list of all employee names and their nationalities and I want to sort the list by
their nationality but in descending order. A join clause comes in handy here because there is no single
data source that contains this information. But join lets us meld the information from the two data
sources, and LINQ makes this a snap! In the query expression, I have highlighted the join clause. For
each item that the range variable emp references (that is, for each item in employees), it finds the item in
the collection empNationalities (represented by the range variable n) where the Id is equivalent to the
Id referenced by emp. Then, my projector clause, the select clause, takes data from both collections
when building the result and projects that data into an anonymous type. Thus, the result of the query is a
single collection where each item from both employees and empNationalities is melded into one. If you
execute this example, the results are as shown here:

333-33-3333, Ivan Ivanov, Russian

444-44-4444, Vasya Pupkin, Russian

222-22-2222, Spaulding Smails, Irish

111-11-1111, Ed Glasser, American

When your query contains a join operation, the compiler converts it to a Join extension method call
under the covers unless it is followed by an into clause. If the into clause is present, the compiler uses
the GroupJoin extension method which also groups the results. For more information on the more
esoteric things you can do with join and into clauses, reference the MSDN documentation on LINQ or
see Pro LINQ: Language Integrated Query in C# 2008 by Joseph C. Rattz, Jr. (Apress, 2007).

■ Note There’s no reason you cannot have multiple join clauses within the query to meld data from multiple

different collections all at once. In the previous example, you might have a collection that represents languages

spoken by each nation, and you could join each item from the empNationalities collection with the items in that

language’s spoken collection. To do that, you would simply have one join clause following another.

The where Clause and Filters
Following one or more from clause generators or the join clauses if there are any, you typically place one
or more filter clauses. Filters consist of the where keyword followed by a predicate expression. The where
clause is translated into a call to the Where extension method, and the predicate is passed to the Where
method as a lambda expression. Calls to Enumerable.Where, which are used if you are performing a query
on an IEnumerable type, convert the lambda expression into a delegate. Conversely, calls to

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

553

Queryable.Where, which are used if you perform a query on a collection via an IQueryable interface,
convert the lambda expression into an expression tree.2 I’ll have more to say about expression trees in
LINQ later, in the section titled “Expression Trees Revisited.”

The orderby Clause
The orderby clause is used to sort the sequence of results in a query. Following the orderby keyword is
the item you want to sort by, which is commonly some property of the range variable. You can sort in
either ascending or descending order, and if you don’t specify that with either the ascending or
descending keyword, ascending is the default order. Following the orderby clause, you can have an
unlimited set of subsorts simply by separating each sort item with a comma, as demonstrated here:

using System;
using System.Linq;
using System.Collections.Generic;

public class Employee
{
 public string LastName { get; set; }
 public string FirstName { get; set; }
 public string Nationality { get; set; }
}

public class OrderByExample
{
 static void Main() {
 var employees = new List<Employee>() {
 new Employee {
 LastName = "Glasser", FirstName = "Ed",
 Nationality = "American"
 },
 new Employee {
 LastName = "Pupkin", FirstName = "Vasya",
 Nationality = "Russian"
 },
 new Employee {
 LastName = "Smails", FirstName = "Spaulding",
 Nationality = "Irish"
 },
 new Employee {
 LastName = "Ivanov", FirstName = "Ivan",
 Nationality = "Russian"
 }
 };

2 In Chapter 15, I show how lambda expressions that are assigned to delegate instance variables are converted into
executable IL code, whereas lambda expressions that are assigned to Expression<T> are converted into expression
trees, thus describing the expression with data rather than executable code.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

554

 var query = from emp in employees
 orderby emp.Nationality,
 emp.LastName descending,
 emp.FirstName descending
 select emp;

 foreach(var item in query) {
 Console.WriteLine("{0},\t{1},\t{2}",
 item.LastName,
 item.FirstName,
 item.Nationality);
 }
 }
}

Notice that because the select clause simply returns the range variable, this whole query
expression is nothing more than a sort operation. But it sure is a convenient way to sort things in C#. In
this example, I sort first by Nationality in ascending order, then the second expression in the orderby
clause sorts the results of each nationality group by LastName in descending order, and then each of
those groups is sorted by FirstName in descending order.

At compile time, the compiler translates the first expression in the orderby clause into a call to the
OrderBy standard query operator extension method. Any subsequent secondary sort expressions are
translated into chained ThenBy extension method calls. If orderby is used with the descending keyword,
the generated code uses OrderByDescending and ThenByDescending respectively.

The select Clause and Projection
In a LINQ query, the select clause is used to produce the end result of the query. It is called a projector
because it projects, or translates, the data within the query into a form desired for consumption. If there
are any filtering where clauses in the query expression, they must precede the select clause. The
compiler converts the select clause into a call to the Select extension method. The body of the select
clause is converted into a lambda expression that is passed into the Select method, which uses it to
produce each item of the result set.

Anonymous types are extremely handy here and you would be correct in guessing that the
anonymous types feature was born from the select operation during the development of LINQ. To see
why anonymous types are so handy in this case, consider the following example:

using System;
using System.Linq;

public class Result
{
 public Result(int input, int output) {
 Input = input;
 Output = output;
 }
 public int Input { get; set; }
 public int Output { get; set; }
}

public class Projector
{

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

555

 static void Main() {
 int[] numbers = { 1, 2, 3, 4 };

 var query = from x in numbers
 select new Result(x, x*2);

 foreach(var item in query) {
 Console.WriteLine("Input = {0}, Output = {1}",
 item.Input,
 item.Output);
 }
 }
}

This works. However, notice that I had to declare a new type Result just to hold the results of the
query. Now, what if I wanted to change the result to include x, x*2, and x*3 in the future? I would have to
first go modify the definition of the Result class to accommodate that. Ouch! It’s so much easier just to
use anonymous types as follows:

using System;
using System.Linq;

public class Projector
{
 static void Main() {
 int[] numbers = { 1, 2, 3, 4 };

 var query = from x in numbers
 select new {
 Input = x,
 Output = x*2 };

 foreach(var item in query) {
 Console.WriteLine("Input = {0}, Output = {1}",
 item.Input,
 item.Output);
 }
 }
}

Now that’s much better! I can go and add a new property to the result type and call it Output2, for
example, and it would not force any changes on anything other than the anonymous type instantiation
inside the query expression. Existing code will continue to work, and anyone who wants to use the new
Output2 property can use it.

Of course, there are some circumstances where you do want to use predefined types in the select
clause such as when one of those type instances has to be returned from a function. However, the more
you can get away with using anonymous types, the more flexibility you will have later on.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

556

The let Clause
The let clause introduces a new local identifier that can subsequently be referenced in the remainder of
the query. Think of it as a local variable that is visible only within the query expression, just as a local
variable inside a normal code block is visible only within that block. Consider the following example:

using System;
using System.Linq;
using System.Collections.Generic;

public class Employee
{
 public string LastName { get; set; }
 public string FirstName { get; set; }
}

public class LetExample
{
 static void Main() {
 var employees = new List<Employee>() {
 new Employee {
 LastName = "Glasser", FirstName = "Ed"
 },
 new Employee {
 LastName = "Pupkin", FirstName = "Vasya"
 },
 new Employee {
 LastName = "Smails", FirstName = "Spaulding"
 },
 new Employee {
 LastName = "Ivanov", FirstName = "Ivan"
 }
 };

 var query = from emp in employees
 let fullName = emp.FirstName +
 " " + emp.LastName
 orderby fullName
 select fullName;

 foreach(var item in query) {
 Console.WriteLine(item);
 }
 }
}

In this example, I wanted to sort the names in ascending order, but by sorting on the full name
created by putting the FirstName and LastName together. I introduce this construct by using the let
clause to define the fullName variable.

One other nice quality of local identifiers introduced by let clauses is that if they reference
collections, you can use the variable as input to another from clause to create a new derived range
variable. In the previous section titled “The from Clause and Range Variables,” I gave an example using

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

557

multiple from clauses to generate a multiplication table. Following is a slight variation of that example
using a let clause:

using System;
using System.Linq;

public class MultTable
{
 static void Main() {
 var query = from x in Enumerable.Range(0,10)
 let innerRange = Enumerable.Range(0, 10)
 from y in innerRange
 select new {
 X = x,
 Y = y,
 Product = x * y
 };

 foreach(var item in query) {
 Console.WriteLine("{0} * {1} = {2}",
 item.X,
 item.Y,
 item.Product);
 }
 }
}

I have bolded the changes in this query from the earlier example. Notice that I added a new
intermediate identifier named innerRange and I then iterate over that collection with the from clause
following it.

The group Clause
The query expression can have an optional group clause, which is very powerful at partitioning the input
of the query. The group clause is a projector as it projects the data into a collection of IGrouping
interfaces. Because of that, the group clause can be the final clause in the query, just like the select
clause. The IGrouping interface is defined in the System.Linq namespace and it also derives from the
IEnumerable interface. Therefore, you can use an IGrouping interface anywhere you can use an
IEnumerable interface. IGrouping comes with a property named Key, which is the object that delineates
the subset. Each result set is formed by applying an equivalence operator to the input data and Key. Let’s
take a look at an example that takes a series of integers and partitions them into the set of odd and even
numbers:3

using System;
using System.Linq;

3 In the discussion of the group clause, I am using the word partition in the set theory context. That is a set partition of
a space S is a set of disjoint subsets whose union produces S.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

558

public class GroupExample
{
 static void Main() {
 int[] numbers = {
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 };

 // partition numbers into odd and
 // even numbers.
 var query = from x in numbers
 group x by x % 2;

 foreach(var group in query) {
 Console.WriteLine("mod2 == {0}", group.Key);
 foreach(var number in group) {
 Console.Write("{0}, ", number);
 }
 Console.WriteLine("\n");
 }
 }
}

First of all, notice that there is no select clause in this query. The end result of the query is a
sequence of two instances of IGrouping, that is IEnumerable<IGrouping<int>>. The first instance in the
result sequence contains the even numbers, and the second one contains the odd numbers, as shown in
the following output:

mod2 == 0

0, 2, 4, 6, 8,

mod2 == 1

1, 3, 5, 7, 9,

The first foreach iterates over the two groups, or the two instances of IGrouping. And because each
IGrouping implements IEnumerable, there is a nested foreach loop that iterates over all the items in the
group. As you can see, this simple query iterated over all the items from the source data collection,
numbers, and produced two resultant groups. Internally, the compiler translates each group clause into a
call to the GroupBy standard query operator.

The group clause can also partition the input collection using multiple keys, also known as
compound keys. I prefer to think of it as partitioning on one key that consists of multiple pieces of data.
In order to perform such a grouping, you can use an anonymous type to introduce the multiple keys into
the query, as demonstrated in the following example:

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

559

using System;
using System.Linq;
using System.Collections.Generic;

public class Employee
{
 public string LastName { get; set; }
 public string FirstName { get; set; }
 public string Nationality { get; set; }
}

public class GroupExample
{
 static void Main() {
 var employees = new List<Employee>() {
 new Employee {
 LastName = "Jones", FirstName = "Ed",
 Nationality = "American"
 },
 new Employee {
 LastName = "Ivanov", FirstName = "Vasya",
 Nationality = "Russian"
 },
 new Employee {
 LastName = "Jones", FirstName = "Tom",
 Nationality = "Welsh"
 },
 new Employee {
 LastName = "Smails", FirstName = "Spaulding",
 Nationality = "Irish"
 },
 new Employee {
 LastName = "Ivanov", FirstName = "Ivan",
 Nationality = "Russian"
 }
 };

 var query = from emp in employees
 group emp by new {
 Nationality = emp.Nationality,
 LastName = emp.LastName
 };

 foreach(var group in query) {
 Console.WriteLine(group.Key);
 foreach(var employee in group) {
 Console.WriteLine(employee.FirstName);
 }
 Console.WriteLine();
 }
 }
}

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

560

Notice the anonymous type within the group clause. What this says is that I want to partition the
input collection into groups where both the Nationality and LastName are the same. In this example,
every group ends up having one entity except one, and it’s the one where Nationality is Russian and
LastName is Ivanov.

Essentially how it works is that for each item, it builds an instance of the anonymous type and
checks to see whether that key instance is equal to the key of an existing group. If so, the item goes in
that group. If not, a new group is created with that instance of the anonymous type as the key.

If you execute the preceding code, you will see the following results:

{ Nationality = American, LastName = Jones }

Ed

{ Nationality = Russian, LastName = Ivanov }

Vasya

Ivan

{ Nationality = Welsh, LastName = Jones }

Tom

{ Nationality = Irish, LastName = Smails }

Spaulding

The grouping by itself is useful indeed. However, what if you want to operate further on each of the
groups within the query, thus treating the resulting partition as an intermediate step? That’s when you
use the into keyword, described in the next section.

The into Clause and Continuations
The into keyword is similar to the let keyword in that it defines an identifier local to the scope of the
query. Using an into clause, you tell the query that you want to assign the results of a group or a join
operation to an identifier that can then be used later on in the query. In query lingo, this is called a
continuation because the group clause is not the final projector in the query. However, the into clause
acts as a generator, much as from clauses do, and the identifier introduced by the into clause is similar to
a range variable in a from clause. Let’s look at some examples:

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

561

using System;
using System.Linq;

public class GroupExample
{
 static void Main() {
 int[] numbers = {
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 };

 // Partition numbers into odd and
 // even numbers.
 var query = from x in numbers
 group x by x % 2 into partition
 where partition.Key == 0
 select new {
 Key = partition.Key,
 Count = partition.Count(),
 Group = partition
 };

 foreach(var item in query) {
 Console.WriteLine("mod2 == {0}", item.Key);
 Console.WriteLine("Count == {0}", item.Count);
 foreach(var number in item.Group) {
 Console.Write("{0}, ", number);
 }
 Console.WriteLine("\n");
 }
 }
}

In this query, the continuation (the part of the query after the into clause) filters the series of groups
where Key is 0 by using a where clause. This filters out the group of even numbers. I then project that
group out into an anonymous type, producing a count of items in the group to go along with the Key
property and the items in the group. Thus the output to the console includes only one group.

But what if I wanted to add a count to each group in the partition? As I said before, the into clause is
a generator. So I can produce the desired result by changing the query to this:

 var query = from x in numbers
 group x by x % 2 into partition
 select new {
 Key = partition.Key,
 Count = partition.Count(),
 Group = partition
 };

Notice that I removed the where clause, thus removing any filtering. When executed with this
version of the query, the example produces the following desired output:

mod2 == 0

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

562

Count == 5

0, 2, 4, 6, 8,

mod2 == 1

Count == 5

1, 3, 5, 7, 9,

In both of the previous query expressions, note that the result is not an IEnumerable<IGrouping<T>>
as it commonly is when the group clause is the final projector. Rather, the end result is an IEnumerable<T>
where T is replaced with our anonymous type.

The Virtues of Being Lazy
When you build a LINQ query expression and assign it to a query variable, very little code is executed in
that statement. The data becomes available only when you iterate over that query variable, which
executes the query once for each result in the result set. So, for example, if the result set consists of 100
items and you only iterate over the first 10, you don’t pay the price for computing the remaining 90 items
in the result set unless you apply some sort of operator such as Average, which requires you to iterate
over the entire collection.

■ Note You can use the Take extension method, which produces a deferred execution enumerator, to access a

specified number of elements at the head of the given stream. Similarly useful methods are TakeWhile, Skip, and

SkipWhile.

The benefits of this deferred execution approach are many. First of all, the operations described in
the query expression could be quite expensive. Because those operations are provided by the user, and
the designers of LINQ have no way of predicting the complexity of those operations, it’s best to harvest
each item only when necessary. Also, the data could be in a database halfway around the world. You
definitely want lazy evaluation on your side in that case. And finally, the range variable could actually
iterate over an infinite sequence. I’ll show an example of that in the next section.

C# Iterators Foster Laziness
Internally, the query variable is implemented using C# iterators by using the yield keyword. I explained
in Chapter 9 that code containing yield statements actually compiles into an iterator object. Therefore,
when you assign the LINQ expression to the query variable, just about the only code that is executed is
the constructor for the iterator object. The iterator might depend on other nested objects, and they are

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

563

initialized as well. You get the results of the LINQ expression once you start iterating over the query
variable using a foreach statement, or by using the IEnumerator interface.

As an example, let’s have a look at a query slightly modified from the code in the earlier section
“LINQ Query Expressions.” For convenience, here is the relevant code:

 var query = from employee in employees
 where employee.Salary > 100000
 select new { LastName = employee.LastName,
 FirstName = employee.FirstName };

 Console.WriteLine("Highly paid employees:");
 foreach(var item in query) {
 Console.WriteLine("{0}, {1}",
 item.LastName,
 item.FirstName);

Notice that the only difference is that I removed the orderby clause from the original LINQ
expression; I’ll explain why in the next section. In this case, the query is translated into a series of
chained extension method calls on the employees variable. Each of those methods returns an object that
implements IEnumerable<T>. In reality, those objects are iterators created from a yield statement.

Let’s consider what happens when you start to iterate over the query variable in the foreach block.
To obtain the next result, first the from clause grabs the next item from the employees collection and
makes the range variable employee reference it. Then, under the covers, the where clause passes the next
item referenced by the range variable to the Where extension method. If it gets trapped by the filter,
execution backtracks to the from clause to obtain the next item in the collection. It keeps executing that
loop until either employees is completely empty or an element of employees passes the where clause
predicate. Then the select clause projects the item into the format we want by creating an anonymous
type and returning it. Once it returns the item from the select clause, the enumerator’s work is done
until the query variable cursor is advanced by the next iteration.

■ Note LINQ query expressions can be reused. For example, suppose you have started iterating over the results of

a query expression. Now, imagine that the range variable has iterated over just a few of the items in the input

collection, and the variable referencing the collection is changed to reference a different collection. You can

continue to iterate over the same query and it will pick up the changes in the new input collection without

requiring you to redefine the query. How is that possible? Hint: think about closures and variable capture and what

happens if the captured variable is modified outside the context of the closure.

Subverting Laziness
In the previous section, I removed the orderby clause from the query expression, and you might have
been wondering why. That’s because there are certain query operations that foil lazy evaluation. After
all, how can orderby do its work unless it has a look at all the results from the previous clauses? Of course
it can’t, and therefore orderby forces the clauses prior to it to iterate to completion.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

564

■ Note orderby is not the only clause that subverts lazy evaluation, or deferred execution, of query expressions.

group . . . by and join do as well. Additionally, any time you make an extension method call on the query

variable that produces a singleton value (as opposed to an IEnumerable<T> result), such as Count, you force the

entire query to iterate to completion.

The original query expression used in the earlier section “LINQ Query Expressions” looked like the
following:

 var query = from employee in employees
 where employee.Salary > 100000
 orderby employee.LastName, employee.FirstName
 select new { LastName = employee.LastName,
 FirstName = employee.FirstName };

 Console.WriteLine("Highly paid employees:");
 foreach(var item in query) {
 Console.WriteLine("{0}, {1}",
 item.LastName,
 item.FirstName);
 }

I have bolded the orderby clause to make it stand out. When you ask for the next item in the result
set, the from clause sends the next item in employees to the where clause filter. If it passes, that is sent on
to the orderby clause. However, now the orderby clause needs to see the rest of the input that passes the
filter, so it forces execution back up to the from clause to get the next item that passes the filter. It
continues in this loop until there are no more items left in the employees collection. Then, after ordering
the items based on the criteria, it passes the first item in the ordered set to the select projector. When
foreach asks for the next item in the result set, evaluation starts with the orderby clause because it has
cached all the results from every clause prior. It takes the next item in its internal cache and passes it on
to the select projector. This continues until the consumer of the query variable iterates over all the
results, thus draining the cache formed by orderby.

Now, earlier I mentioned the case where the range variable in the expression iterates over an infinite
loop. Consider the following example:

using System;
using System.Linq;
using System.Collections.Generic;

public class InfiniteList
{
 static IEnumerable<int> AllIntegers() {
 int count = 0;
 while(true) {
 yield return count++;
 }
 }

 static void Main() {

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

565

 var query = from number in AllIntegers()
 select number * 2 + 1;

 foreach(var item in query.Take(10)) {
 Console.WriteLine(item);
 }
 }
}

Notice in the bolded query expression, it makes a call to AllIntegers, which is simply an iterator
that iterates over all integers starting from zero. The select clause projects those integers into all the odd
numbers. I then use Take and a foreach loop to display the first ten odd numbers. Notice that if I did not
use Take, the program would run forever unless you compile it with the /checked+ compiler option to
catch overflows.

■ Note Methods that create iterators over infinite sets like the AllIntegers method in the previous example are

sometimes called streams. The Queryable and Enumerable classes also contain useful methods that generate

finite collections. Those methods are Empty, which returns an empty set of elements; Range, which returns a

sequence of numbers; and Repeat, which generates a repeated stream of constant objects given the object to

return and the number of times to return it. I wish Repeat would iterate forever if a negative count is passed to it.

Consider what would happen if I modified the query expression ever so slightly as shown here:

 var query = from number in AllIntegers()
 orderby number descending
 select number * 2 + 1;

If you attempt to iterate even once over the query variable to get the first result, then you had better
be ready to terminate the application. That’s because the orderby clause forces the clauses before it to
iterate to completion. In this case, that will never happen.

Even if your range variable does not iterate over an infinite set, the clauses prior to the orderby
clause could be very expensive to execute. So the moral of the story is this: be careful of the performance
penalty associated with using orderby, group . . . by, and join in your query expressions.

Executing Queries Immediately
Sometimes you need to execute the entire query immediately. Maybe you want to cache the results of
your query locally in memory or maybe you need to minimize the lock length to a SQL database. You can
do this in a couple of ways. You could immediately follow your query with a foreach loop that iterates
over the query variable, stuffing each result into a List<T>. But that’s so imperative! Wouldn’t you rather
be functional? Instead, you could call the ToList extension method on the query variable, which does the
same thing in one simple method call. As with the orderby example in the previous section, be careful
when calling ToList on a query that returns an infinite result set. There is also a ToArray extension
method for converting the results into an array. I show an interesting usage of ToArray in the later
section titled “Replacing foreach Statements.”

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

566

Along with ToList, there are other extension methods that force immediate execution of the entire
query. They include such methods as Count, Sum, Max, Min, Average, Last, Reverse and any other method
that must execute the entire query in order to produce its result.

Expression Trees Revisited
In Chapter 15, I described how lambda expressions can be converted into expression trees. I also made a
brief mention of how this is very useful for LINQ to SQL.

When you use LINQ to SQL, the bodies of the LINQ clauses that boil down to lambda expressions
are represented by expression trees. These expression trees are then used to convert the entire
expression into a SQL statement for use against the server. When you perform LINQ to Objects, as I have
done throughout this chapter, the lambda expressions are converted to delegates in the form of IL code
instead. Clearly that’s not acceptable for LINQ to SQL. Can you imagine how difficult it would be to
convert IL into SQL?

As you know by now, LINQ clauses boil down to extension method calls implemented in either
System.Linq.Enumerable or System.Linq.Queryable. But which set of extension methods are used and
when? If you look at the documentation for the methods in Enumerable, you can see that the predicates
are converted to delegates because the methods all accept a type based on the Func<> generic delegate
type. However, the extension methods in Queryable, which have the same names as those in Enumerable,
all convert the lambda expressions into an expression tree because they take a parameter of type
Expression<T>. Clearly, LINQ to SQL uses the extension methods in Queryable.

■ Note Incidentally, when you use the extension methods in Enumerable, you can pass either lambda expressions

or anonymous functions to them because they accept a delegate in their parameter lists. However, the extension

methods in Queryable can accept only lambda expressions because anonymous functions cannot be converted

into expression trees.

Techniques from Functional Programming
In the following sections, I want to explore some more of the functional programming concepts that are
prevalent throughout the features added in C# 3.0. As you’ll soon see, some problems are solved with
clever use of delegates created from lambda expressions to add the proverbial extra level of indirection.
I’ll also show how you can replace many uses of the imperative programming style constructs such as
for loops and foreach loops using a more functional style.

Custom Standard Query Operators and Lazy Evaluation
In this section, I will revisit an example introduced in Chapter 14, in which I showed how to implement a
Lisp-style forward-linked list along with some extension methods to perform on that list. The primary
interface for the list is shown here:

public interface IList<T>
{
 T Head { get; }

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

567

 IList<T> Tail { get; }
}

A possible implementation of a collection based on this type was shown in Chapter 14; I repeat it
here for convenience:

public class MyList<T> : IList<T>
{
 public static IList<T> CreateList(IEnumerable<T> items) {
 IEnumerator<T> iter = items.GetEnumerator();
 return CreateList(iter);
 }

 public static IList<T> CreateList(IEnumerator<T> iter) {
 if(!iter.MoveNext()) {
 return new MyList<T>(default(T), null);
 }

 return new MyList<T>(iter.Current, CreateList(iter));
 }

 public MyList(T head, IList<T> tail) {
 this.head = head;
 this.tail = tail;
 }

 public T Head {
 get {
 return head;
 }
 }

 public IList<T> Tail {
 get {
 return tail;
 }
 }

 private T head;
 private IList<T> tail;
}

Now, let’s say that you want to implement the Where and Select standard query operators. Based on
this implementation of MyList, those operators could be implemented as shown here:

public static class MyListExtensions
{
 public static IEnumerable<T>
 GeneralIterator<T>(this IList<T> theList,
 Func<IList<T>, bool> finalState,
 Func<IList<T>, IList<T>> incrementer) {
 while(!finalState(theList)) {
 yield return theList.Head;

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

568

 theList = incrementer(theList);
 }
 }

 public static IList<T> Where<T>(this IList<T> theList,
 Func<T, bool> predicate) {
 Func<IList<T>, IList<T>> whereFunc = null;

 whereFunc = list => {
 IList<T> result = new MyList<T>(default(T), null);

 if(list.Tail != null) {
 if(predicate(list.Head)) {
 result = new MyList<T>(list.Head, whereFunc(list.Tail));
 } else {
 result = whereFunc(list.Tail);
 }
 }

 return result;
 };

 return whereFunc(theList);
 }

 public static IList<R> Select<T,R>(this IList<T> theList,
 Func<T,R> selector) {
 Func<IList<T>, IList<R>> selectorFunc = null;

 selectorFunc = list => {
 IList<R> result = new MyList<R>(default(R), null);

 if(list.Tail != null) {
 result = new MyList<R>(selector(list.Head),
 selectorFunc(list.Tail));
 }

 return result;
 };

 return selectorFunc(theList);
 }
}

Each of the two methods, Where and Select, uses an embedded lambda expression that is converted
to a delegate in order to get the work done.

■ Note Chapter 14 demonstrated a similar technique, but because lambda expressions had not been introduced

yet, it used anonymous methods instead. Of course, lambda expressions clean up the syntax quite a bit.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

569

In both methods, the embedded lambda expression is used to perform a simple recursive
computation to compute the desired results. The final result of the recursion produces the product you
want from each of the methods. I encourage you to follow through the execution of this code in a
debugger to get a good feel for the execution flow.

The GeneralIterator method in the previous example is used to create an iterator that implements
IEnumerable on the MyList object instances. It is virtually the same as that shown in the example in
Chapter 14.

Finally, you can put all of this together and execute the following code to see it in action:

public class SqoExample
{
 static void Main() {
 var listInts = new List<int> { 5, 2, 9, 4, 3, 1 };
 var linkList =
 MyList<int>.CreateList(listInts);

 // Now go.
 var linkList2 = linkList.Where(x => x > 3).Select(x => x * 2);
 var iterator2 = linkList2.GeneralIterator(list => list.Tail == null,
 list => list.Tail);
 foreach(var item in iterator2) {
 Console.Write("{0}, ", item);
 }

 Console.WriteLine();
 }
}

Of course, you will have to import the appropriate namespaces in order for the code to compile.
Those namespaces are System, System.Linq, and System.Collections.Generic. If you execute this code,
you will see the following results:

10, 18, 8,

There are some very important points and problems to address in this example, though. Notice that
my query was not written using a LINQ query expression even though I do make use of the standard
query operators Where and Select. This is because the from clause requires that the given collection must
implement IEnumerable. Because the IList interface does not implement IEnumerable, it is impossible to
use foreach or a from clause. You could use the GeneralIterator extension method to get an IEnumerable
interface on the IList and then use that in the from clause of a LINQ query expression. In that case, there
would be no need to implement custom Where and Select methods because you could just use the ones
already implemented in the Enumerable class. However, your results of the query would be in the form of
an IEnumerable and not an IList, so you would then have to reconvert the results of the query back to an
IList. Although these conversions are all possible, for the sake of example, let’s assume that the
requirement is that the standard query operators must accept the custom IList type and return the
custom IList type. Under such a requirement, it is impossible to use LINQ query expressions, and you
must invoke the standard query operators directly.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

570

■ Note You can see the power of the LINQ layered design and implementation. Even when your custom collection

type does not implement IEnumerable, you can still perform operations using custom designed standard query

operators, even though you cannot use LINQ query expressions.

There is one major problem with the implementation of MyList and the extension methods in the
MyListExtensions class as shown so far. They are grossly inefficient! One of the functional programming
techniques employed throughout the LINQ implementation is that of lazy evaluation. In the section
titled “The Virtues of Being Lazy,” I showed that when you create a LINQ query expression, very little
code is executed at that point, and operations are performed only as needed while you iterate the results
of the query. The implementations of Where and Select for IList, as shown so far, don’t follow this
methodology. For example, when you call Where, the entire input list is processed before any results are
returned to the caller. That’s bad because what if the input IList were an infinite list? The call to Where
would never return.

■ Note When developing implementations of the standard query operators or any other method in which lazy

evaluation is desirable, I like to use an infinite list for input as the litmus test of whether my lazy evaluation code is

working as expected. Of course, as shown in the section “Subverting Laziness,” there are certain operations that

just cannot be coded using lazy evaluation.

Let’s turn to reimplementing the custom standard query operators in the previous example using
lazy evaluation. Let’s start by considering the Where operation. How could you reimplement it to use lazy
evaluation? It accepts an IList and returns a new IList, so how is it possible that Where could return
only one item at a time? The solution actually lies in the implementation of the MyList class. Let’s
consider the typical IEnumerator implementation for a moment. It has an internal cursor that points to
the item that the IEnumerable.Current property returns, and it has a MoveNext method to go to the next
item. The IEnumerable.MoveNext method is the key to retrieving each value only when needed. When you
call MoveNext, you are invoking the operation to produce the next result, but only when needed, thus
using lazy evaluation.

I’ve mentioned Andrew Koenig’s “Fundamental Theorem of Software Engineering,” in which all
problems can be solved by introducing an extra level of indirection.4 Although it’s not really a theorem, it
is true and very useful. In the C language, that form of indirection is typically in the form of a pointer. In
C++ and other object-oriented languages, that extra level of indirection is typically in the form of a class
(sometimes called a wrapper class). In functional programming, that extra level of indirection is typically
a function in the form of a delegate.

4 I first encountered Koenig’s so called fundamental theorem of software engineering in his excellent book co-
authored with Barbara Moo titled Ruminations on C++ (Boston: Addison-Wesley Professional, 1996).

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

571

So how can you fix this problem in MyList by adding the proverbial extra level of indirection? It’s
actually fundamentally quite simple. Don’t compute the IList that is the IList.Tail until it is asked for.
Consider the changes in the MyList implementation as shown here:

public class MyList<T> : IList<T>
{
 public static IList<T> CreateList(IEnumerable<T> items) {
 IEnumerator<T> iter = items.GetEnumerator();
 return CreateList(iter);
 }

 public static IList<T> CreateList(IEnumerator<T> iter) {
 Func<IList<T>> tailGenerator = null;
 tailGenerator = () => {
 if(!iter.MoveNext()) {
 return new MyList<T>(default(T), null);
 }

 return new MyList<T>(iter.Current, tailGenerator);
 };

 return tailGenerator();
 }

 public MyList(T head, Func<IList<T>> tailGenerator) {
 this.head = head;
 this.tailGenerator = tailGenerator;
 }

 public T Head {
 get {
 return head;
 }
 }

 public IList<T> Tail {
 get {
 if(tailGenerator == null) {
 return null;
 } else if(tail == null) {
 tail = tailGenerator();
 }
 return tail;
 }
 }

 private T head;
 private Func<IList<T>> tailGenerator;
 private IList<T> tail = null;
}

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

572

I have bolded the portions of the code that are interesting. Notice that the constructor still accepts
the item that is assigned to head, but instead of taking an IList tail as the second argument it accepts a
delegate that knows how to compute tail instead. There’s the extra level of indirection! Also, notice that
the get accessor of the Tail property then uses that delegate on an as-needed basis to compute tail
when asked for it. And finally, the CreateList static method that builds an IList from an IEnumerator
must pass in a delegate that simply grabs the next item out of the IEnumerator. So, even if you initialize a
MyList with an IEnumerable, the IEnumerable type is not fully consumed at creation time as it was in the
example from Chapter 14. That’s a definite plus because even the IEnumerable passed in can reference
an infinite stream of objects.

Now, let’s turn to the modifications necessary for the standard query operators so they can work on
this new implementation of MyList. Consider the modifications shown here:

public static class MyListExtensions
{
 public static IEnumerable<T>
 GeneralIterator<T>(this IList<T> theList,
 Func<IList<T>,bool> finalState,
 Func<IList<T>,IList<T>> incrementer) {
 while(!finalState(theList)) {
 yield return theList.Head;
 theList = incrementer(theList);
 }
 }

 public static IList<T> Where<T>(this IList<T> theList,
 Func<T, bool> predicate) {
 Func<IList<T>> whereTailFunc = null;

 whereTailFunc = () => {
 IList<T> result = null;

 if(theList.Tail == null) {
 result = new MyList<T>(default(T), null);
 }

 if(predicate(theList.Head)) {
 result = new MyList<T>(theList.Head,
 whereTailFunc);
 }

 theList = theList.Tail;
 if(result == null) {
 result = whereTailFunc();
 }

 return result;
 };

 return whereTailFunc();
 }

 public static IList<R> Select<T,R>(this IList<T> theList,

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

573

 Func<T,R> selector) {
 Func<IList<R>> selectorTailFunc = null;

 selectorTailFunc = () => {
 IList<R> result = null;

 if(theList.Tail == null) {
 result = new MyList<R>(default(R), null);
 } else {
 result = new MyList<R>(selector(theList.Head),
 selectorTailFunc);
 }

 theList = theList.Tail;
 return result;
 };

 return selectorTailFunc();
 }
}

The implementations for Where and Select build a delegate that knows how to compute the next
item in the result set and pass that delegate to the new instance of MyList that they return. If this code
looks overwhelming, I encourage you to step through it within a debugger to get a better feel for the
execution flow. Thus, we have achieved lazy evaluation. Notice that each lambda expression in each
method forms a closure that uses the passed-in information to form the recursive code that generates
the next element in the list. Test the lazy evaluation by introducing an infinite linked list of values.

Before you can prove the lazy evaluation with an infinite list, you need to either iterate through the
results using a for loop (because a foreach loop will attempt to iterate to the nonexistent end). Or
instead of using a for loop, implement the standard query operator Take, which returns a given number
of elements from the list. Following is a possible implementation of Take using the new lazy MyList
implementation:

public static class MyListExtensions
{
 public static IList<T> Take<T>(this IList<T> theList,
 int count) {
 Func<IList<T>> takeTailFunc = null;

 takeTailFunc = () => {
 IList<T> result = null;

 if(theList.Tail == null || count-- == 0) {
 result = new MyList<T>(default(T), null);
 } else {
 result = new MyList<T>(theList.Head,
 takeTailFunc);
 }

 theList = theList.Tail;
 return result;
 };

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

574

 return takeTailFunc();
 }
}

This implementation of Take is very similar to that of Select, except that the closure formed by the
lambda expression assigned to takeTailFunc also captures the count parameter.

■ Note Using Take is a more functional programming approach rather than using a for loop to count through the

first few items in a collection.

Armed with the Take method, you can prove that lazy evaluation works with the following code:

public class SqoExample
{
 static IList<T> CreateInfiniteList<T>(T item) {
 Func<IList<T>> tailGenerator = null;

 tailGenerator = () => {
 return new MyList<T>(item, tailGenerator);
 };

 return tailGenerator();
 }

 static void Main() {
 var infiniteList = CreateInfiniteList<int>(21);

 var linkList = infiniteList.Where(x => x > 3)
 .Select(x => x * 2)
 .Take(10);
 var iterator = linkList.GeneralIterator(
 list => list.Tail == null,
 list => list.Tail);
 foreach(var item in iterator) {
 Console.Write("{0}, ", item);
 }

 Console.WriteLine();
 }
}

The Main method uses the CreateInfiniteList method to create an infinite IList stream that
returns the constant 21. Following the creation of infiniteList are chained calls to the custom standard
query operators. Notice that the final method in the chain is the Take method, in which I am asking only
for the first 10 items in the result set. Without that call, the foreach loop later on would loop indefinitely.
Because the Main method actually runs to completion, it proves that the lazy evaluation coded into the

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

575

new MyList and the new implementations of Where, Select, and Take are working as expected. If any of
them were broken, execution would get stuck in an infinite loop.

Replacing foreach Statements
As with most of the new features added in C# 3.0, LINQ imparts a taste of functional programming on
the language that, when used appropriately, can leave a sweet aftertaste on the palate. Because
functional programming has, over the years, been considered less efficient in its consumption of
memory and CPU resources, it’s possible that inappropriate use of LINQ could actually lead to
inefficiencies. As with just about anything in software development, moderation is often the key to
success. With enough use and given enough functional programming examples, you might be surprised
by how many problems can be solved in a different and sometimes clearer way using LINQ and
functional programming practices rather than the typical imperative programming style of C-style
languages such as C#, C++, and Java.

In many of the examples in this book, I send a list of items to the console to illustrate the results of
the example. I have typically used a Console.WriteLine method call within a foreach statement to iterate
over the results when the result set is a collection. Now I want to show you how this can be done
differently using LINQ, as in the following example:

using System;
using System.Linq;
using System.Collections.Generic;

public static class Extensions
{
 public static string Join(this string str,
 IEnumerable<string> list) {
 return string.Join(str, list.ToArray());
 }
}

public class Test
{
 static void Main() {
 var numbers = new int[] { 5, 8, 3, 4 };

 Console.WriteLine(
 string.Join(", ",
 (from x in numbers
 orderby x
 select x.ToString()).ToArray()));
 }
}

I have bolded the interesting part of the code. In one statement, I sent all the items in the numbers
collection to the console separated by commas and sorted in ascending order. Isn’t that cool? The way it
works is that my query expression is evaluated immediately because I call the ToArray extension method
on it to convert the results of the query into an array. That’s where the typical foreach clause disappears
to. The static method String.Join should not be confused with the LINQ join clause or the Join
extension method you get when using the System.Linq namespace. What it does is intersperse the first
string, in this case a comma, among each string in the given array of strings, building one big string in
the process. I then simply pass the results of String.Join to Console.WriteLine.

CHAPTER 16 ■ LINQ: LANGUAGE INTEGRATED QUERY

576

■ Note In my opinion, LINQ is to C# what the Standard Template Library (STL) is to C++. When STL first came out

in the early 1990s, it really jolted C++ programmers into thinking more functionally. It was definitely a breath of

fresh air. LINQ has this same effect on C#, and I believe that as time goes on, you will see more and more crafty

usage of functional programming techniques using LINQ. For example, if a C++ programmer used the STL

effectively, there was little need to write a for loop because the STL provides algorithms where one passes a

function into the algorithm along with the collection to operate on, and it invokes that function on each item in the

collection. One might wonder why this technique is so effective. One reason is that for loops are a common place

to inadvertently introduce an off-by-one bug. Of course, the C# foreach keyword also helps alleviate that problem.

With enough thought, you could probably replace just about every foreach block in your program
with a LINQ query expression. It does not necessarily make sense to do so, but it is a great mental
exercise on functional programming.

Summary
LINQ is clearly the culmination of most of the features added in C# 3.0. Or put another way, most of the
new features of C# 3.0 were born from LINQ. In this chapter, I showed the basic syntax of a LINQ query
including how LINQ query expressions ultimately compile down to a chain of extension methods known
as the standard query operators. I then described all the new C# keywords introduced for LINQ
expressions. Although you are not required to use LINQ query expressions and you can choose to call
the extension methods directly, it sure makes for easily readable code. However, I also described how
when you implement standard query operators on collection types that don’t implement IEnumerable,
you might not be able to use LINQ query expressions.

I then explored the usefulness of lazy evaluation, or deferred execution, which is used extensively
throughout the library provided LINQ standard operators on IEnumerable and IQueryable types. And
finally, I closed the chapter by exploring how to apply the concept of lazy evaluation when defining your
own custom implementations of the standard query operators.

LINQ is such a huge topic that there is no way I could possibly cover every nuance in one chapter.
For example, you’ll notice that I covered only LINQ to Objects, not LINQ to SQL, XML, DataSet, or
Entities. Entire books are devoted to LINQ. I highly suggest that you frequently reference the MSDN
documentation on LINQ. Additionally, you might consider LINQ for Visual C# 2005 by Fabio Claudio
Ferracchiati or Pro LINQ: Language Integrated Query in C# 2008 by Joseph C. Rattz, Jr., both published by
Apress.

In the next chapter, I will introduce one of the coolest new features added in the C# 4.0 language. It
is the new dynamic type and it brings interoperability in C# to a level of parity with Visual Basic, among
other things.

C H A P T E R 17

■ ■ ■

577

Dynamic Types

Throughout this book, I have emphasized the importance of type and type safety. After all, C# is a
strongly typed language, and you are most effective when you use the C# type system along with the
compiler to eliminate any programming errors early at compile time rather than later at run time.
However, there are some areas where the static, strongly-typed nature of C# creates headaches. Those
areas often involve interoperability. In this chapter, I will introduce you to the dynamic type (which is
new in C# 4.0) and discuss what it means from both a language standpoint as well as a runtime
standpoint.

What does dynamic Mean?
In a nutshell, dynamic is a static type that you can use where you would use any other static type.
However, it is special because it allows you to tell the compiler you are not quite sure exactly what type it
references and that it should defer any irresolvable type decisions to run time. You can assign any
reference or value type to an instance of dynamic. Under the hood, the compiler coupled with the
Dynamic Language Runtime (DLR)1 produces the magic to get this done by deferring the work of the
compiler to run time.

■ Note Make sure you keep a clear distinction in your mind between dynamic types and implicitly typed local

variables (declared with the var keyword). Implicitly typed local variables are strongly typed, even though you

don’t have to type the full type name that they reference. Instances of dynamic are truly dynamic and are generally

resolved at run time. I mention this here to avoid any potential confusion.

When programming in C#, you are usually programming against static .NET types that might have
been coded in C#, C++/CLI, and so on. But what about when you have to interoperate with types created

1 The DLR is at the heart of .NET-based dynamic languages such as IronPython and IronRuby. It provides an
environment within which it is easy to implement dynamic languages as well as add dynamic capabilities to a
statically typed language such as C#. You can read more about the DLR on MSDN.

CHAPTER 17 ■ DYNAMIC TYPES

578

by dynamic languages such as IronPython or IronRuby? Or what about when you have to interoperate
with COM objects that implement IDispatch to support automation via late-bound interfaces?

Let’s consider COM/IDispatch interoperability for a moment. Additionally, assume that I am talking
about purely late-bound IDispatch implementations rather than dual interface implementations. In C#
3.0, you had to rely on gratuitous amounts of reflection to dynamically invoke the methods and
properties of an instance that just feels cumbersome and unnatural. What happens behind the scenes is
that the Runtime Callable Wrapper (RCW), which acts as the proxy between the .NET runtime and the
COM object, translates reflection operations into IDispatch operations. This allows you to reflect over a
COM object that implements the IDispatch automation interface.

If you used VB.NET rather than C# 3.0, the experience would have been much more pleasant
because VB.NET shields you from all the reflection work. Now that C# 4.0 offers dynamic type support in
concert with the DLR, its functionality is at par with VB.NET with respect to working with dynamically
typed objects.

To better illustrate what I am talking about, let’s consider a short example. Suppose that you want to
create a new Excel document with some text in the first cell. Additionally, force yourself to use only the
late bound IDispatch interfaces for the sake of the example. If you are familiar with coding against Office
apps such as Excel, forget for a moment the existence of Primary Interop Assemblies (PIA). The example
code in C# 3.0 might look like the following:

using System;
using System.Reflection;

static class EntryPoint
{
 static void Main() {
 // Create an instance of Excel
 Type xlAppType = Type.GetTypeFromProgID("Excel.Application");
 object xl = Activator.CreateInstance(xlAppType);

 // Set Excel to be visible
 xl.GetType().InvokeMember("Visible",
 BindingFlags.SetProperty,
 null,
 xl,
 new object[] { true });

 // Create a new workbook
 object workbooks = xl.GetType().InvokeMember("Workbooks",
 BindingFlags.GetProperty,
 null,
 xl,
 null);

 workbooks.GetType().InvokeMember("Add",
 BindingFlags.InvokeMethod,
 null,
 workbooks,
 new object[] { -4167 });

 // Set the value of the first cell
 object cell = xl.GetType().InvokeMember("Cells",
 BindingFlags.GetProperty,
 null,

CHAPTER 17 ■ DYNAMIC TYPES

579

 xl,
 new object[] { 1, 1 });
 cell.GetType().InvokeMember("Value2",
 BindingFlags.SetProperty,
 null,
 cell,
 new object[] { "C# Rocks!" });

 Console.WriteLine("Press Enter to Continue...");
 Console.ReadLine();
 }
}

This coding style is both ugly and cumbersome. From glancing at the code, it’s difficult to tell which
methods and properties of the Excel objects you are actually calling. In this code, after creating a new
instance of the application, you make it visible, access the Workbooks property to create a new workbook,
and then put some data in the first cell. Now, let’s take a look at the new and improved way of doing this
using dynamic in C# 4.0:

using System;

static class EntryPoint
{
 static void Main() {
 // Create an instance of Excel
 Type xlAppType = Type.GetTypeFromProgID("Excel.Application");
 dynamic xl = Activator.CreateInstance(xlAppType);

 // Set Excel to be visible
 xl.Visible = true;

 // Create a new workbook
 dynamic workbooks = xl.Workbooks;
 workbooks.Add(-4167);

 // Set the value of the first cell
 xl.Cells[1, 1].Value2 = "C# Rocks!";

 Console.WriteLine("Press Enter to Continue...");
 Console.ReadLine();
 }
}

The spirit of this code is much easier to follow. You can clearly see which properties you are
accessing and which methods you are calling. dynamic brings a lot to the table and facilitates more
readable code in these interoperability situations.

CHAPTER 17 ■ DYNAMIC TYPES

580

How Does dynamic Work?
How is this magic happening? Although dynamic is a real static type in the C# language, the compiler
translates instances of dynamic into instances of object with an attribute attached to it at the CLR level.
To illustrate this, consider the following code that will not compile:

class C
{
 // This will not compile!!!
 void Foo(object o) { }
 void Foo(dynamic d) { }
}

If you attempt to compile this code, you will get the following compiler error:

error CS0111: Type 'C' already defines a member called 'Foo' with the same parameter types

Thus, for the sake of overload resolution, dynamic and object are equal. To see the attribute in
action, try compiling the following code into a library assembly:

class C
{
 void Foo(dynamic d) { }
}

I find it easiest to just compile this on the command line using the following where <filename> is
replaced with the C# code file name:

csc /target:library <filename>

Once you get this compiled, load the compiled assembly into Reflector and examine the code
Reflector shows for the class. At the time of this writing, Reflector knows nothing about dynamic; the code
Reflector shows can be seen here:

internal class C
{
 // Methods
 public C();
 private void Foo([Dynamic] object d);
}

You can see that the compiler attached the DynamicAttribute attribute to the parameter d to denote
that it is actually dynamic.

I mentioned in a previous section that the compiler defers completion of its work until run time
when it encounters dynamic types. In essence, dynamic types and dynamic expressions are opaque to
the compiler; it cannot see through them. Therefore, the compiler collects all its known information and
emits what’s called a dynamic call site. At run time, when all type information is available, the C#

CHAPTER 17 ■ DYNAMIC TYPES

581

runtime binder and the DLR complete the work of resolving dynamic types and performing the
necessary operations.

Naturally, this means that the compiler’s type system is bypassed to a certain degree at compile
time. In fact, the C# runtime binder contains a subset of the compiler’s functionality. When the C#
runtime binder needs to throw an exception, the error message in the exception is the same one as in the
compiler. This uniformity really helps when it comes to diagnosing problems at run time because you
are presented with the same errors that you’re familiar with. To illustrate this point, consider the
following code that will not compile:

class C
{
 public void Foo() {}
}

static class EntryPoint
{
 static void Main() {
 C obj = new C();
 obj.Bar();
 }
}

As you would expect, you end up with a compiler error. The output looks like the following:

error CS1061: 'C' does not contain a definition for 'Bar' and no extension method 'Bar'
accepting a first argument of type 'C' could be found (are you missing a using directive or
an assembly reference?)

Now consider the following example, in which it actually does compile because you are using
dynamic to hold the instance of C:

class C
{
 public void Foo() {}
}

static class EntryPoint
{
 static void Main() {
 dynamic dynobj = new C();
 dynobj.Bar();
 }
}

In this case, the error that you expect to see is deferred until run time, and if you execute this
example, you will see the following results on the console:

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException: 'C' does not
contain a definition for 'Bar'

CHAPTER 17 ■ DYNAMIC TYPES

582

 at CallSite.Target(Closure , CallSite , Object)

 at System.Dynamic.UpdateDelegates.UpdateAndExecuteVoid1[T0](CallSite site, T0 arg0)

 at EntryPoint.Main()

■ Note Yes, there is a slight discrepancy between the exception message and the compiler error message. That is

because dynamic does not currently support extension methods.

The Great Unification
Something that dynamic does really well is unify the various ways to call into types implemented by
various dynamic languages and technologies. When you’re coding in C# 4.0, you don’t have to be
concerned about the origin of the dynamic object. For example, it could be one of the following:

• An object from a DLR-based language such as IronPython or IronRuby

• A late-bound COM object that only implements the IDispatch interface

• An object that implements IDynamicMetaObjectProvider (which I will explain later
in the section “Objects with Custom Dynamic Behavior”)

• A plain old .NET statically typed object

For plain old .NET objects, the call site uses reflection to bind to the proper member. If the object is
a COM object, it reflects over the RCW that acts as a .NET proxy object to the COM object. The RCW
translates the reflection operations into the matching IDispatch operations in order to do the binding. If
the dynamic object instance implements the IDynamicMetaObjectProvider interface, the DLR will use it
when performing the binding. IDynamicMetaObjectProvider is a powerful extension mechanism for
creating custom dynamic behavior.

Call Sites
So far, the dynamic examples that I have shown only demonstrate accessing a member of a dynamic

instance; that is, using a dynamic receiver. The opposite of a dynamic receiver is a static receiver, which
is what you use to access a member through a statically typed variable. Implementation-wise, that is
probably the easiest of all dynamic operations for the compiler because it knows practically nothing
(because the dynamic receiver is opaque to it). Thus the compiler wraps up all the information it has
available and emits it in what is called a call site. The call site has a target delegate that is invoked to
handle the dynamic call. Thus, the call site is the portal into the DLR.

CHAPTER 17 ■ DYNAMIC TYPES

583

■ Note If you are interested in investigating the internals of call sites, I welcome you to use ILDASM to spelunk

around through a compiled assembly that uses dynamic. If you are not an IL juggernaut, try opening the compiled

assembly using Reflector to see the call sites in C#. This will also give you an idea of the complexity of the work

the compiler is doing for you.

Why did I say that accessing members on dynamic instances was the easy for the compiler? Consider
the following example:

using System;

class C
{
 void ProcessInput(int x) {
 Console.WriteLine("int: " + x.ToString());
 }

 public void ProcessInput(string msg) {
 Console.WriteLine("string: " + msg);
 }

 public void ProcessInput(double d) {
 Console.WriteLine("double: " + d.ToString());
 }
}

static class EntryPoint
{
 static void Main() {
 dynamic obj1 = 123;
 dynamic obj2 = "C# Rocks!";
 dynamic obj3 = 3.1415;

 C c = new C();
 c.ProcessInput(obj1); // #1
 c.ProcessInput(obj2); // #2

 dynamic cObj = c;
 cObj.ProcessInput(obj3); // #3
 }
}

What output would you expect from the code above? In the case of calls #1 and #2, the compiler
knows that you are calling members on the statically typed variable C; that is, through a static receiver.
Therefore, it can go ahead and verify that there are some public members of this name, which there are.
Had there been none, it would have complained with a compiler error. However, the compiler has no
idea how to complete overload resolution as it does not have enough information to do so because the
parameters are opaque dynamic types. Therefore, it must defer the overload resolution to run time. For

CHAPTER 17 ■ DYNAMIC TYPES

584

call #3, the compiler knows even less than for #1 and #2 because you are calling via a dynamic receiver. If
you execute the preceding example, you will get the following results:

double: 123

string: C# Rocks!

double: 3.1415

Pay attention to which overloads were called. Notice that #1 called the overload that accepts a
double. That’s because the overload that accepts int is not public, and the int parameter is implicitly
convertible to double. The call site was instrumental in selecting the overload at run time based upon the
information that it knew from the compiler.

Now, consider one small but significant change to the example code:

class C
{
 public void ProcessInput(int x) {
 Console.WriteLine("int: " + x.ToString());
 }

 public void ProcessInput(string msg) {
 Console.WriteLine("string: " + msg);
 }

 void ProcessInput(double d) {
 Console.WriteLine("double: " + d.ToString());
 }
}

Notice that I have now made the overload that accepts int public but the overload that accepts
double private. Which overloads do you think will be selected at run time now? If you execute the
modified example, you will get the following results:

int: 123

string: C# Rocks!

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:
'C.ProcessInput(double)' is inaccessible due to its pr

otection level

 at CallSite.Target(Closure , CallSite , Object , Object)

CHAPTER 17 ■ DYNAMIC TYPES

585

 at System.Dynamic.UpdateDelegates.UpdateAndExecuteVoid2[T0,T1](CallSite site, T0 arg0, T1
arg1)

 at EntryPoint.Main() in dynamic_parms_2.cs:line 30

Notice that it failed to find a proper overload for call #3. That is because there is no public overload
that accepts a double, and double is not implicitly convertible to any of the types in the available
overloads.

Objects with Custom Dynamic Behavior
Objects that implement IDynamicMetaObjectProvider can be the target of dynamic instances. You have a
highly extensible mechanism for creating custom dynamic behavior in which you define what it means
to access members of a dynamic type. In reality, however, you will probably only rarely directly
implement IDynamicMetaObjectProvider. Instead, you should derive your custom dynamic type from the
System.Dynamic.DynamicObject. DynamicObject that provides plenty of virtual methods you can override
to create your custom dynamic behavior.

■ Note IDynamicMetaObjectProvider and DynamicMetaObject are significant types at the heart of creating

custom dynamic behavior. But because deriving from DynamicObject is the recommended way of creating

custom dynamic objects, I will not go into the details of these two types. I recommend that you consult the MSDN

documentation to find out more about them and the important role they play in dynamic objects.

The DynamicObject class, whose abbreviated class definition is shown here, has a variety of virtual
methods you can override:

public class DynamicObject : IDynamicMetaObjectProvider
{
 …

 public virtual IEnumerable<string> GetDynamicMemberNames();
 public virtual DynamicMetaObject GetMetaObject(Expression parameter);
 public virtual bool TryBinaryOperation(BinaryOperationBinder binder, object arg, out
object result);
 public virtual bool TryConvert(ConvertBinder binder, out object result);
 public virtual bool TryCreateInstance(CreateInstanceBinder binder, object[] args, out
object result);
 public virtual bool TryDeleteIndex(DeleteIndexBinder binder, object[] indexes);
 public virtual bool TryDeleteMember(DeleteMemberBinder binder);
 public virtual bool TryGetIndex(GetIndexBinder binder, object[] indexes, out object
result);
 public virtual bool TryGetMember(GetMemberBinder binder, out object result);
 public virtual bool TryInvoke(InvokeBinder binder, object[] args, out object result);

CHAPTER 17 ■ DYNAMIC TYPES

586

 public virtual bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object
result);
 public virtual bool TrySetIndex(SetIndexBinder binder, object[] indexes, object value);
 public virtual bool TrySetMember(SetMemberBinder binder, object value);
 public virtual bool TryUnaryOperation(UnaryOperationBinder binder, out object result);

 …
}

The names of the methods start with the word Try because the call site, by calling these methods, is
asking the dynamic type whether it can perform the operation. If it can, the method performs the work
and then returns true. Otherwise, if the method returns false, the call site will determine the behavior,
which often results in it throwing an exception if these methods return false. All the default
implementations of the previous methods return false.

Here’s a very cursory example showing a type deriving from DynamicObject:

using System;
using System.Dynamic;
using System.Collections.Generic;

class MyDynamicType : DynamicObject
{
 public override bool TryInvokeMember(InvokeMemberBinder binder,
 object[] args,
 out object result) {
 result = null;
 Console.WriteLine("Dynamic invoke of " + GetType() +
 "." + binder.Name + "()");
 return true;
 }

 public override bool TrySetMember(SetMemberBinder binder,
 object Value) {
 Console.WriteLine("Dynamic set of property " + GetType() +
 "." + binder.Name + " to " +
 Value);

 return true;
 }

 public void DoDefaultWork() {
 Console.WriteLine("Performing default work");
 }
}

static class EntryPoint
{
 static void Main() {
 dynamic d = new MyDynamicType();

 d.DoDefaultWork();
 d.DoWork();
 d.Value = 42;

CHAPTER 17 ■ DYNAMIC TYPES

587

 d.Count = 123;
 }
}

In the Main method, after assigning a dynamic variable with a new instance of MyDynamicType, you can
then perform some operations on it. Notice that the first method called is DoDefaultWork, and
MyDynamicType actually has a method named DoDefaultWork. In this case, the call site reflects over the
type and notices it, thus calling it directly. For the call to DoWork, because MyDynamicType does not
implement DoWork yet it does implement IDynamicMetaObjectProvider by deriving from DynamicObject,
the call site invokes TryInvokeMember to perform the operation. Similarly, the assignment to the Value
and Count properties results in a call to TrySetMember. Thus, the output from executing the above code is
the following:

Performing default work

Dynamic invoke of MyDynamicType.DoWork()

Dynamic set of property MyDynamicType.Value to 42

Dynamic set of property MyDynamicType.Count to 123

As you can see, DynamicObject provides quite a bit of power to control what happens during
operations on dynamic instances. For example, you might have the need to create some sort of proxy
object that sits between the calling code and the implementation. Imagine you have an application that
communicates with some sort of legacy component through P/Invoke in a very complicated way that
might require multiple P/Invoke operations for one logical operation. By deriving from DynamicObject,
you could create a custom dynamic type that allows those complicated operations to be performed in
one dynamic method call from the perspective of the consumer.

Imagine an application that is extensible via scripting. Suppose that there is some directory in the
file system in which various scripts reside. By creating a custom dynamic type, you can expose each one
of those scripts as separate method calls. Users who are script-savvy can then easily modify the
application by modifying the scripts. You can even code the custom dynamic type so it exposes new
dynamic methods by enumerating the script in the directory so that users could add new methods to the
dynamic type simply by placing new scripts in the directory.

As yet another example, consider the fact that static classes in C# allow only single inheritance, thus
allowing only one class to reuse the implementation of one other class. Using custom dynamic types,
you could build dynamic types that emulate the behavior of COM aggregation, whereby multiple types
are aggregated into one. In C++, which supports multiple inheritance, you can derive from what’s called
a mix-in class to easily add functionality to a type. By implementing custom dynamic types in C#, you
can emulate this behavior.

Efficiency
At this point, performance-savvy readers might be getting worried that dynamic just introduces a huge
efficiency bottleneck by slowing down each and every dynamic dispatch in the program. Fear not! For
each dynamic call analysis, the results are cached in the DLR for later retrieval. Therefore, just like the

v@v
Text Box
Download at WoweBook.com

CHAPTER 17 ■ DYNAMIC TYPES

588

JIT compiler, you pay the price only the first time around. To demonstrate this, consider the following
code, which uses a crude method of timing multiple calls to a method on a dynamic call site:

using System;
using System.Runtime.InteropServices;

class C
{
 public void DoWork() {
 Console.Write("Doing work... ");
 }
}

static class EntryPoint
{
 [DllImport("kernel32.dll")]
 private static extern int QueryPerformanceCounter(out Int64 count);

 static void Main() {
 // Let's call DoWork once statically to get it jitted.
 C c = new C();
 c.DoWork();
 Console.WriteLine();

 dynamic d = c;

 for(int i = 0; i < 10; ++i) {
 Int64 start, end;

 QueryPerformanceCounter(out start);
 d.DoWork();
 QueryPerformanceCounter(out end);
 Console.WriteLine("Ticks: {0}",
 end - start);
 }
 }
}

I compiled and ran this example code on a virtual machine running Windows 7 while using the high
performance counter to time each dynamic call. Following are the results, which show that the results of
the dynamic resolution are cached for later use, thus saving lots of time on subsequent dynamic
invocations:

Doing work...

Doing work... Ticks: 83760

Doing work... Ticks: 2161

Doing work... Ticks: 1937

CHAPTER 17 ■ DYNAMIC TYPES

589

Doing work... Ticks: 1858

Doing work... Ticks: 1845

Doing work... Ticks: 1981

Doing work... Ticks: 1853

Doing work... Ticks: 1834

Doing work... Ticks: 1995

Doing work... Ticks: 1887

I first call DoWork once through a static receiver to make sure the method is JIT compiled before I
gather the numbers. That way, the first tick count should not reflect any JIT compiler time.

Boxing with Dynamic
Boxing is one of those areas in which many perils lie. As always, you should be careful when boxing is
involved in your code. But how does dynamic handle boxing? It does “the right thing,” meaning that it
does what you would expect from the spirit of the code. Consider the following code:

using System;

static class EntryPoint
{
 static void Main() {
 dynamic d = 42;
 ++d;

 object o = 42;
 o = (int)o + 1;

 Console.WriteLine("d = " + d + "\no = " + o);
 }
}

In this example, you have a dynamic instance that contains an integer. Behind the scenes, it is an
object that boxes the integer value. In the dynamic case, you can simply invoke the increment operator to
modify the value within the dynamic object’s box. Right after that, you can see what it takes to perform
the same operation on a static boxing object. Essentially, you have to copy the value out of the box,
increment it, and then put it back in. You cannot simply use the increment operator on the o variable.
But when you use the increment operator on the d variable, the compiler, via the generated call sites,
performs the same work as you had to do on the o variable and allows you to simplify the notation.

CHAPTER 17 ■ DYNAMIC TYPES

590

■ Note Although dynamic simplifies the interaction with boxed values, it does not mean that you should become

less cautious and cognizant about the implications of boxing. As always, just because a language feature

facilitates something does not mean, it’s always correct to utilize it.

Dynamic Conversions
Throughout the design and implementation of dynamic types in C# 4.0, the C# team had to find solutions
for some seriously tricky problems. Conversions to and from dynamic types is certainly one of those
problems. Recall that in C#, there are two types of conversions. They are implicit conversions and
explicit conversions. Implicit conversions do not require the casting syntax, although explicit
conversions do. Also, recall that for any type, you can define custom implicit and explicit conversion
operators. Dynamic expressions add a whole new dimension to conversions, indeed!

Let’s consider implicit conversions for a moment. What types should be implicitly convertible to
dynamic? It turns out that all types are implicitly convertible to dynamic. The rules are as follows:

• There exists an implicit conversion from any reference type to type dynamic.

• There exists an implicit boxing conversion from any value type to type dynamic.

• There exists an implicit identity conversion from type dynamic to type dynamic.

• There exists an implicit identity conversion from type object to type dynamic.

• There exists an implicit identity conversion between constructed types where generic arguments
only differ between object and dynamic.

This is as expected because it then allows you to do the things you would expect, such as what is
illustrated in the following code:

class C
{
}

static class EntryPoint
{
 static void Main() {
 dynamic d1 = 42; // Impl. boxing conversion
 dynamic d2 = new C(); // Impl. ref. conversion
 dynamic d3 = d2; // Impl. ident. conversion
 dynamic d4 = new object(); // Impl. ref. conversion
 }
}

What about when you need to go the other direction? Should instances of dynamic be convertible to
any type? Certainly it makes sense for dynamic expressions to be explicitly convertible to static types.
For the sake of discussion, think of a dynamic expression as an expression in which a component of the

CHAPTER 17 ■ DYNAMIC TYPES

591

expression forces the entire thing to be handled dynamically. For example, the right side of the equals
sign in the following statement is a dynamic expression if the variable d is a dynamic instance:

Double dbl = 3.14 + d;

Now that I have specified what I mean by a dynamic expression, consider this example:

class C
{
}

static class EntryPoint
{
 static void Main() {
 dynamic d = new C();

 // explicit cast back to C reference
 C cObj = (C) d;

 // What happens here???
 string str = d;
 }
}

I create a new instance of C and implicitly cast it to a dynamic reference. Then I explicitly cast the
dynamic reference, which is a short dynamic expression, back into a reference to C, which makes sense.
But isn’t it cumbersome to have to explicitly cast from a dynamic expression back into reference and
value types? All that casting can become laborious, especially if the type you’re casting to has a long
name (which is common for generic types or LINQ-generated types). Besides, all that casting goes
against the spirit of dynamic expressions because they are supposed to streamline your code, making it
easier to read and understand. And what about the last statement in the preceding code and what does it
mean?

As it turns out, the code does compile correctly. In the last statement, the dynamic expression d is
explicitly cast into a string reference, which will generate the following exception at run time:

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException: Cannot
implicitly convert type 'C' to 'string'

That’s very cool, indeed. The compiler has performed the explicit cast from dynamic to string
without me having to type the casting notation. In reality, I didn’t have to use the cast notation when I
converted the dynamic expression back into a C reference. If you load the compiled code into Reflector,
you will see that it uses a call site to perform an explicit conversion. Is this more than just a convenience?

Implicit Dynamic Expressions Conversion
The C# team realized that in order for dynamic expressions to be truly dynamic, they must be assignable
to reference types and value types. Therefore, assignment of dynamic expressions to reference types or
value types is syntactically implicit yet performed dynamically at run time. However, there is a clear
distinction between dynamic expressions and type dynamic because type dynamic is not implicitly

CHAPTER 17 ■ DYNAMIC TYPES

592

convertible to anything but dynamic. If it were otherwise, it would seriously mess up method overload
resolution (a topic covered in the next section).

■ Note At one point during the development of C# 4.0, this type of implicit conversion from dynamic expressions

to reference types was called assignment conversion. Therefore, if you read blogs and articles on the Internet

written during the development of C# 4.0, you might see references to that term.

Dynamic expression conversion comes into play in cases other than just implicitly assigning a
dynamic expression into a value or reference type, and vice versa. If a method’s body returns a dynamic
expression, but the method declaration returns a static type, dynamic expression conversion is used to
convert the dynamic instance back into a statically typed instance. There are other cases (such as during
array initialization, in yield blocks, and in foreach statements, just to name a few) in which dynamic
expression conversions come into play.

Again, implicit conversion of type dynamic to any reference or value type is not possible because of
the chaos that would ensue. Take a look at the following snippet of code and you can see why:

class C
{
 static public void Foo(int i) {}
 static public void Foo(string str) {}
}

class D { }

static class EntryPoint
{
 static void Main() {
 dynamic d = new D();

 C.Foo(d);
 }
}

If the compiler were to allow type dynamic to be implicitly convertible to anything while deciding
which overload of C.Foo to choose, it would fail with an ambiguity. Therefore, the compiler packages up
what it knows at compile time into a call site that performs the remainder of the overload resolution at
run time. You can see from looking at this code that it will throw an exception at run time because d
contains an instance of D, and D instances are not implicitly convertible to either int or string.

When it comes to overload resolution, dynamic did present some tricky problems to the C# team,
and they had to come up with some clever ways to solve them. I will explain some of them in the next
section.

Dynamic Overload Resolution
Overload resolution was reasonably complicated before the introduction of dynamic. In various other
parts of this book, I talked about overload resolution and how it works in the context of class methods,

CHAPTER 17 ■ DYNAMIC TYPES

593

interface definitions, and extension methods. Dynamic types add a new dimension to overload
resolution. Recall from the previous section that dynamic instance variables are implicitly convertible
only to type dynamic and nothing else. So what should the compiler do when you invoke a method on a
static type passing a dynamic argument?

The solution is that any time dynamic is involved in a method invocation, whether the receiver of the
call is dynamic or a parameter is dynamic, overload resolution is performed at run time. That’s easy!
Consider the following code:

using System;

class C
{
 static public void Foo(double dbl, dynamic dyn) {
 Console.WriteLine("void Foo(double dbl, dynamic dyn)");
 }
 static public void Foo(int i, string str) {
 Console.WriteLine("void Foo(int i, string str)");
 }
}

static class EntryPoint
{
 static void Main() {
 dynamic d = "I'm dynamic";
 dynamic d1 = new object();

 C.Foo(3.1415, d); // is it a compile-time overload?
 C.Foo(42, d); // run-time overload
 C.Foo(42, d1); // run-time overload

 // The following will not compile!
 // C.Foo("Hello!", d);
 }
}

The first call to C.Foo matches the signature of the first overload perfectly, even though it has
dynamic in its call. You might think the compiler would automatically choose the first overload at
compile time, but it does not (otherwise, it would be breaking the dynamic overload resolution rule just
stated). The second call defers overload selection until run time, even though both parameters are
implicitly convertible to the first overload. That is, int is implicitly convertible to double, and dynamic is
implicitly convertible to dynamic. Although the behavior of the second call to C.Foo might seem
counterintuitive at first because int is implicitly convertible to double and dynamic is implicitly
convertible to dynamic, consider the third call to C.Foo (maybe it will make more sense after you see the
following results). The output from the code is shown here:

void Foo(double dbl, dynamic dyn)

void Foo(int i, string str)

CHAPTER 17 ■ DYNAMIC TYPES

594

void Foo(double dbl, dynamic dyn)

You see, even though in the final two calls to C.Foo, the parameters are both implicitly convertible to
the first overload of C.Foo, you don’t want the compiler to make the choice at compile time. That’s
because the dynamic instance’s type can be inspected at run time and a more precise choice can be made
based on that information.

Finally, notice the last call to C.Foo that I have commented out in the code. It will not compile as
written. If every call that involves dynamic is resolved at run time, how is this so? The compiler actually
has examined the candidate set of methods and is telling you that there is no chance that an overload
will be found at run time. So even though the actual choice of overload is determined at run time, the
compiler still applies as much logic as possible at compile time to avoid a situation in which a run-time
exception is guaranteed.

■ Note If you read early material regarding dynamic overload resolution on the Internet, you likely came across

the concept of the phantom method. This was a technique the compiler team employed early on for performing

overload resolution on static receivers with dynamic parameters. The notion of the phantom method was later

abandoned for the current behavior of treating all such calls using dynamic lookup.

Remember, dynamic is implemented internally as a reference to object with an attribute attached.
Therefore, you cannot have overloads within a type in which a single parameter position differs only
between dynamic and object. For example, the following will not compile:

class C
{
 // Can't do this!!!
 public void DoWork(object o) { }
 public void DoWork(dynamic d) { }
}

If you attempt to compile something like this, you will get a compiler error like the following:

Type 'C' already defines a member called 'DoWork' with the same parameter types

Dynamic Inheritance
dynamic brings with it some complexities when it comes to inheritance. Does it make sense to be able to
derive from dynamic? Is it possible to derive from a generic base type in which one of the generic
arguments is dynamic? And is it possible to implement a generic interface in which one of the generic
arguments is dynamic? I will be digging into them in this section, but first let’s talk about the things you
cannot do with inheritance and dynamic.

CHAPTER 17 ■ DYNAMIC TYPES

595

You Cannot Derive from dynamic
One thing you cannot do is use dynamic as a base class. Thus, you cannot do the following:

// This will not compile!!!
class C : dynamic
{
}

If you attempt to compile this code, you will get the following compiler error:

error CS1965: 'C': cannot derive from the dynamic type

When you think about the fact that dynamic is replaced with object in the compiled IL code, you
might wonder why you cannot derive from dynamic. But even if you could, what does it buy you? It buys
you nothing. If dynamic is really object, you still end up inheriting the same implementation of
System.Object as if you had explicitly stated object as the base type of C. And because System.Object is
the default base type for all types, the extra typing is redundant. Moreover, C is a static type. Therefore,
even if you were able to derive from dynamic, the resultant type will be a static type, thus throwing out
the dynamic nature anyway. So it makes no sense at all to derive from dynamic.

You Cannot Implement dynamic Interfaces
Recall that at the CLR level, dynamic is nothing more than object with some attributes attached to it.
Keeping that in mind, let’s consider the following code:

// This will not compile!!!
interface IWork<T>
{
 void DoWork(T item);
}

class C : IWork<dynamic>
{
 public void DoWork(dynamic item) {
 }
}

If you attempt to compile this code, you will be greeted with the following compiler error:

error CS1966: 'C': cannot implement a dynamic interface 'IWork<dynamic>'

What the compiler is telling you is that you cannot implement a generic interface and specify that
the generic argument is type dynamic. Why is this? There are two good reasons. The first reason is a
technical one. Currently, in the CLR (which is an implementation of the CLI specification) there is no
way to emit the DynamicAttribute attribute, or any attribute for that matter, for the generic argument. To
illustrate, look at the following code that also will not compile:

CHAPTER 17 ■ DYNAMIC TYPES

596

//This will not compile!!!
using System;

class SpecialAttribute : Attribute
{
}

interface IWork<T>
{
 void DoWork(T item);
}

class C : IWork< [Special] object >
{
 public void DoWork([Special] object item) {
 }
}

If you attempt to decorate the generic argument with an attribute, you will get the following
compiler errors, which show that the compiler has no idea about what you are trying to do because it
fails the basic syntax verification:

generic_attribute.cs(13,18): error CS1031: Type expected
generic_attribute.cs(13,35): error CS1519: Invalid token '>' in class, struct, or
interface member declaration

The second reason why you cannot implement dynamic interfaces is practical in nature. If you think
about it, just because you cannot do this does not mean that you lose anything. For example, imagine
that you use object instead of dynamic and then convert those object instances to dynamic at the point
where you operate upon them. You would essentially achieve the same effect. For example, consider this
modified code that illustrates the point:

interface IWork<T>
{
 void DoWork(T item);
}

class C : IWork<object>
{
 public void DoWork(object item) {
 dynamic d = item;

 // Now complete the work with the
 // dynamic thing.
 }
}

static class EntryPoint
{
 static void Main() {

CHAPTER 17 ■ DYNAMIC TYPES

597

 C c = new C();
 dynamic d = new object();

 c.DoWork(d);
 }
}

This example demonstrates that nothing is lost because you cannot implement dynamic interfaces.
In the Main method, I can pass a dynamic instance to the DoWork method; inside the DoWork method, I can
operate on that dynamic instance even though I was unable to specify type dynamic in the generic
arguments where C implements IWork<>. To further illustrate this notion, consider the following
example:

using System;
using System.Collections.Generic;

class C
{
}

static class EntryPoint
{
 static void Main() {
 IList<dynamic> myList = new List<dynamic>();

 myList.Add(new C());
 myList.Add(new object());

 foreach(dynamic item in myList) {
 Console.WriteLine(item.GetType());
 }
 }
}

Notice the type of myList! Just because you cannot implement IList<dynamic> in types does not
mean you cannot declare a variable of type IList<dynamic>. This further illustrates the fact that not
being able to implement dynamic interfaces is a moot point because you can achieve the same intent
regardless. In fact, if you replace every instance of the word dynamic with object in the example, you will
get the output shown here:

C
System.Object

You Can Derive From Dynamic Base Types
After all this talk about how you cannot use dynamic as a base type and how you cannot implement
dynamic interfaces, you might be surprised that you can derive from generic base types that have
dynamic type arguments. So what does that mean? Let’s see a short example:

using System;

CHAPTER 17 ■ DYNAMIC TYPES

598

class B<T>
{
 public T Value { get; set; }
}

class C : B<dynamic>
{
}

static class EntryPoint
{
 static void Main() {
 C c = new C();

 c.Value = "C# Rocks!";
 Console.WriteLine(c.Value.GetType());
 }
}

So why can you get away with doing this even though types cannot implement dynamic interfaces?
Part of the reason is because you can. Remember that in the case of dynamic interfaces there is no way
for the compiler to emit the attribute necessary to denote the fact that the generic argument is dynamic.
But because a type can inherit at most from only one other type, it is possible to decorate the derived
type with the DynamicAttribute type to indicate that one or more of the generic arguments to the base
type are dynamic. As you have before, take a look at what class C looks like in Reflector, and you’ll see
something like the following:

[Dynamic(new bool[] { false, true })]
internal class C : B<object>
{
 // Methods
 public C();
}

Keep in mind that the code generated by the compiler, DynamicAttribute (which decorates class C),
has a couple of constructor overloads. This one accepts a type of bool[]. The bool array is used to denote
which one of the type arguments is dynamic. For more information, check out the documentation for
DynamicAttribute in the MSDN.

Logically, what does it mean to be able to do this and does it buy you anything more than had you
simply provided object as the type argument? Actually, it does buy you something. Consider the minor
modification to the Main method:

static class EntryPoint
{
 static void Main() {
 C c = new C();

 c.Value = "C# Rocks!";
 Console.WriteLine(42 + c.Value);
 }
}

CHAPTER 17 ■ DYNAMIC TYPES

599

The text in bold is what I want you to pay attention to. Because c.Value is a dynamic expression, the
expression in the call to Console.WriteLine becomes a dynamic expression. And just like any dynamic
expression anywhere else, type resolution is deferred until run time. Moreover, the compiler cannot
choose which overload of the addition operator to call without first resolving the types; therefore, it is
also deferred until run time. If you execute the Main method, you get the following results:

42C# Rocks!

If you were to replace the occurrence of dynamic with object in the previous example; that is, if you
were to make object the type argument in the base type of C, you would get a far different result. In fact,
you would get the following compiler error:

error CS0019: Operator '+' cannot be applied to operands of type 'int' and 'object'

Therefore, being able to supply dynamic as a generic type argument in base types is handy in some
situations when dynamic expression evaluation at run time is necessary.

Duck Typing in C#
Duck typing is where the type of an object is determined by the contract it supports rather than actual
interfaces or base types that it derives from. Duck typing is common in some C++ template libraries, in
which where you can do something similar to the following C# code that will not compile:

// This will not compile!!!
class C<T>
{
 static public void DoWork(T item) {
 item.DoWork();
 }
}

If you attempt this code, you are greeted with the following compiler error:

error CS1061: 'T' does not contain a definition for 'DoWork' and no extension method
'DoWork' accepting a first argument of type 'T' could be found (are you missing a using
directive or an assembly reference?)

Instead, you must use generic constraints to do anything close to the intended effect of the previous
code. However, constraints still don’t get you duck typing because you are relying upon type definitions.
Wouldn’t it be nice to be able to say, “whatever type T is, I want to invoke the DoWork method” without
having to have T implement an interface that includes a definition for DoWork?

The irony is that the C# compiler does exactly this. Consider the following code:

using System;
using System.Collections;

CHAPTER 17 ■ DYNAMIC TYPES

600

class C
{
 public IEnumerator GetEnumerator() {
 long l = 0;
 while(l < 10) {
 yield return ++l;
 }
 }
}

static class EntryPoint
{
 static void Main() {
 C c = new C();

 foreach(var item in c) {
 Console.Write(item + ", ");
 }
 }
}

When you execute code, it simply prints out these integers:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

The functionality of the program is not exciting, but what is interesting is the foreach statement in
bold. Recall that behind the scenes, the compiler calls GetEnumerator on the collection object on which
you want to iterate. And as you probably know, GetEnumerator is part of the IEnumerable and
IEnumerable<T> interfaces. However, notice that class C implements neither of these interfaces! It is a
common misconception that the type foreach iterates over needs to implement one of the IEnumerable
interfaces. Instead, the compiler just compiles in a call to GetEnumerator on whatever instance foreach is
iterating over. In fact, if you were to comment out the GetEnumerator method and attempt to recompile,
the compiler would tell you the following:

error CS1579: foreach statement cannot operate on variables of type 'C' because 'C' does not
contain a public definition for 'GetEnumerator'

This behavior of the compiler is a perfect example of duck typing at work. After all, the compiler
does not care what type is given to foreach or whether it implements some particular interface; instead it
just wants that type to implement a specific method with a specific signature. However, prior to C# 4.0,
this capability was virtually impossible in code.

Now, let’s look at how you can achieve this same result using type dynamic. Imagine that you are
adding new features to a very large and mature application. Furthermore, you have identified that
during testing it would be extremely handy to be able to dump detailed state information about objects
to a debug log by calling a method named DumpStateTo. Because this is a large mature application, there
are literally thousands of types defined. Therefore, it is unfeasible due to time constraints to define a new
interface and expect all the types to implement it. So let’s look at how this could be implemented in C#
using dynamic:

CHAPTER 17 ■ DYNAMIC TYPES

601

using System;
using System.IO;
using Microsoft.CSharp.RuntimeBinder;

class C
{
 public void DumpStateTo(TextWriter tw) {
 tw.WriteLine("This is the state for a " +
 GetType() + " instance");
 tw.WriteLine("\tValue == " + Value);
 }

 public long Value { get; set; }
}

class D
{
}

static class EntryPoint
{
 static void Main() {
 C c = new C();
 c.Value = 42;

 D d = new D();

 // Now let's dump some debug info
 DumpDebugInfo(c);
 DumpDebugInfo(d);
 }

 static void DumpDebugInfo(dynamic d) {
 // We don't want a lack of the DumpStateTo() method to
 // crash the application.
 try {
 Console.WriteLine("--------------------------------");
 d.DumpStateTo(Console.Out);
 }
 catch(RuntimeBinderException rbe) {
 Console.WriteLine("Failed to dump state for: " +
 d.GetType());
 Console.WriteLine("\t" + rbe.Message);
 }
 }
}

This example created an instance of both C and D, and you then pass them to DumpDebugInfo, which
is a wrapper around calls to DumpStateTo. Notice that DumpDebugInfo achieves duck typing by accepting a
parameter of type dynamic. Also, it is very important to catch any runtime binder exceptions because, as
stated, this fictional large application has thousands of types that might or might not implement
DumpStateTo. The results of the preceding code are shown here:

CHAPTER 17 ■ DYNAMIC TYPES

602

This is the state for a C instance

 Value == 42

Failed to dump state for: D

 'D' does not contain a definition for 'DumpStateTo'

In a real-world implementation, you might also want to include other information that would help
you identify exactly which instance is dumped so you can find it easily in a debugger.

One of the biggest differences between duck typing in C# using dynamic as opposed to duck typing
in some static languages, such as C++ using templates, is that type errors are deferred until run time,
whereas in C++ they are discovered at compile time. This is actually a big deal, indeed. You should use
duck typing with dynamic sparingly and carefully for the sake of robustness. If you must heavily rely on
dynamic duck typing, be sure to implement good error-handling mechanisms. Throughout this book, I
have stressed the importance of using the compiler as your friend to catch as many programming errors
as possible at compile time rather than run time. That was one of the motivating factors behind
implementing generics in C# 2.0. But with dynamic duck typing, you are throwing all that out of the
window so you must be prepared to handle the unintended consequences.

Limitations of dynamic Types
The new dynamic type was no easy feat to implement. There are some things you simply cannot do with
dynamic. Some of those things just don’t make sense, and others do, but the C# team might have not had
enough time to implement them properly. Furthermore, just as with any other new feature in a
programming language, you will learn more about it and its uses over time while using it. In other words,
don’t be surprised if the use of dynamic evolves over the coming years as the language matures.

As it stands, you cannot use the extension method syntax with type dynamic in C# 4.0. This might
change in future versions, though. As I mentioned before, you also cannot implement dynamic
interfaces; that is, interfaces where you specify dynamic as one of the type parameters. Also, you cannot
use dynamic in constraint clauses.

ExpandoObject: Creating Objects Dynamically
Up to this point in this chapter, you have seen how the dynamic type facilitates interoperability and how
to treat any type instance as a dynamic instance. But what about creating types dynamically at run time?

Since the initial release of the .NET Framework, you have always been able to create code
dynamically using the facilities within the System.Reflection.Emit namespace. But doing so is no trivial
task. Starting with .NET 4.0, the DLR team provides the System.Dynamic.ExpandoObject, which makes it
incredibly easy to create dynamic instances of objects. Let’s go ahead and look at an example:

CHAPTER 17 ■ DYNAMIC TYPES

603

using System;
using System.Dynamic;
using System.Collections.Generic;

static class EntryPoint
{
 static void Main() {
 // Create the kennel
 dynamic dogKennel = new ExpandoObject();

 // Set some useful properties
 dogKennel.Address = "1234 DogBone Way";
 dogKennel.City = "Fairbanks";
 dogKennel.State = "Alaska";

 dogKennel.Owner = new ExpandoObject();
 dogKennel.Owner.Name = "Ginger";

 // Setup a collection of dynamic dogs
 dogKennel.Dogs = new List<dynamic>();

 // Create some dogs
 dynamic thor = new ExpandoObject();
 thor.Name = "Thor";
 thor.Breed = "Siberian Husky";

 dynamic apollo = new ExpandoObject();
 apollo.Name = "Apollo";
 apollo.Breed = "Siberian Husky";

 // Put the dogs in the kennel
 dogKennel.Dogs.Add(thor);
 dogKennel.Dogs.Add(apollo);
 }
}

The first thing to notice is that when I created the new instance of ExpandoObject, I assigned it to a
variable of type dynamic that is essential because ExpandoObject implements
IDynamicMetaObjectProvider, through which it gets its special powers. Notice that I populated the
properties on the object by simply assigning to them as if they already existed. In reality, this operation
creates the property and assigns it at the same time. This magic is performed by ExpandoObject’s
implementation of IDynamicMetaObjectProvider, which adds an entry to an internal dictionary. To create
contained objects in the dogKennel object, simply assign a new instance of ExpandoObject to a property
name as I did with dogKennel.Owner. If you need your dynamic object to contain a collection of objects,
simply assign a new instance of a container object to a new property, as I did when I assigned an
instance of List<dynamic> to dogKennel.Dogs. I set the generic argument to dynamic in the collection type
because I want the contained objects to also be dynamic objects that I can create with ExpandoObject.
I’m sure you will agree that using ExpandoObject to create dynamic object instances is much easier than
using System.Reflection.Emit.

What if you want to enumerate the properties of the dynamic instance without having to know what
they are ahead of time? For example, what if you need a method named PrintExpandoObject to print the
contents of any dynamic ExpandoObject instance to the console? This is easy to do because
ExpandoObject implements IDictionary<string, object>, through which you can enumerate the

CHAPTER 17 ■ DYNAMIC TYPES

604

properties contained within the ExpandoObject instance. For example, one implementation for
PrintExpandoObject could look like the following:

 static void PrintExpandoObject(dynamic obj,
 string name,
 int indent = 0) {
 Func<int, string> createPad = (n) => {
 return string.Join("", Enumerable.Repeat(" ", n));
 };

 Console.WriteLine(createPad(indent) + name + ":");
 ++indent;

 var dict = (IDictionary<string, object>) obj;
 foreach(var property in dict) {
 if(property.Value is ExpandoObject) {
 // Recurse to print the contained ExpandoObject
 PrintExpandoObject(property.Value,
 property.Key,
 indent);
 } else {
 if(property.Value is IEnumerable<dynamic>) {
 string collName = property.Key;
 Console.WriteLine("{0}{1} collection:",
 createPad(indent),
 collName);
 int index = 0;
 foreach(var item in
 (IEnumerable<dynamic>)property.Value) {
 string itemName =
 string.Format("{0}[{1}]",
 collName,
 index++);

 // Recurse for this instance
 PrintExpandoObject(item,
 itemName,
 indent+1);
 }
 } else {
 Console.WriteLine("{0}{1} = {2}",
 createPad(indent),
 property.Key,
 property.Value);
 }
 }
 }
 }

In the example in which I created the dogKennel instance, I could have added the following code
afterward:

 PrintExpandoObject(dogKennel, "Ginger's Kennel");

CHAPTER 17 ■ DYNAMIC TYPES

605

Notice that for each key/value pair within the dictionary I test whether the value is also another
instance of ExpandoObject. If so, I make a recursive call into PrintExpandoObject to print it. Likewise, if
the value is an enumerable type, I iterate through the enumerable items, assuming that they are
instances of ExpandoObject and recurse for them as well. In an attempt to make the output a little bit
prettier, I have passed an indention value down through the stack, thus producing output that looks
similar to the following:

Ginger's Kennel:

 Address = 1234 DogBone Way

 City = Fairbanks

 State = Alaska

 Owner:

 Name = Ginger

 Dogs collection:

 Dogs[0]:

 Name = Thor

 Breed = Siberian Husky

 Dogs[1]:

 Name = Apollo

 Breed = Siberian Husky

I have assigned the ExpandoObject to a variable of type dynamic rather than a variable of type
ExpandoObject. Although I could have assigned it to variable of type ExpandoObject, it would have meant
that the only way to add properties would have been through the methods associated with the
IDictionary<string, object> interface. Obviously, that’s not as slick as creating the properties on the
fly, as already shown. Incidentally, the only way to remove properties from ExpandoObject instances is
via the methods associated with the IDictionary<string, object> interface.

CHAPTER 17 ■ DYNAMIC TYPES

606

■ Note When you use ExpandoObject, you often have to perform a certain degree of casting. Of course, such

casting could result in thrown exceptions, but such is the nature of deferring the type checking of the compiler to

run time.

But what about dynamic methods? So far, I have only shown you how to create properties on
ExpandoObject instances via a variable of type dynamic. Actually, it’s just as easy to create dynamic
methods, too. Here is an instance called dynamicExpression that contains a collection of coefficients for
computing a univariate polynomial:

using System;
using System.Dynamic;
using System.Linq.Expressions;
using System.Collections.Generic;

static class EntryPoint
{
 static void Main() {
 dynamic dynamicExpression = new ExpandoObject();

 // Add the coefficients
 dynamicExpression.Coefficients = new List<dynamic>();
 dynamicExpression.Coefficients.Add(2);
 dynamicExpression.Coefficients.Add(5);
 dynamicExpression.Coefficients.Add(3);

 // Create dynamic method
 dynamicExpression.Compute =
 new Func<double, double>((x) => {
 double result = 0;

 for(int i = 0;
 i < dynamicExpression.Coefficients.Count;
 ++i) {
 result +=
 (double)dynamicExpression.Coefficients[i] *
 Math.Pow(x, (double) i);
 }

 return result;
 });

 // Let's compute a value now
 Console.WriteLine(dynamicExpression.Compute(2));
 }
}

I have bolded the area in the code where I create and then call the dynamically created method
named Compute. All you have to do is create a delegate instance and assign it to a property on the

CHAPTER 17 ■ DYNAMIC TYPES

607

ExpandoObject instance where the name of the property is the same name you want associated with the
method. Then ExpandoObject’s implementation of IDynamicMetaObjectProvider allows you to simply call
through to that delegate using the familiar method invocation syntax as long as you invoke the method
through a variable of type dynamic. In the previous code, I used the Func<> delegate type, along with a
lambda expression, to provide the delegate.

Summary
This chapter covered the dynamic type added to the language in C# 4.0. Interoperability is the major
theme regarding dynamic types. Now it becomes much easier to interface with dynamic languages such
as IronPython and IronRuby, as well as legacy COM automation objects. Code that interacts with those
technologies becomes cleaner and clearer. I also showed how you use the ExpandoObject type to create
dynamically typed objects at run time. Additionally, C# has finally gained parity with Visual Basic in the
ease of interoperability arena.

However, such power often comes with its dangers and dynamic types are no exception. When
misused, you can bypass the stringent static type checking of the compiler, thus introducing unwanted
bugs lurking in the shadows. Also, working with dynamic types can become slightly tricky in some
situations, especially with regard to run-time type conversion and overload resolution.

As with any powerful capability of the language, to use it sparingly and with caution is to use it
wisely. For example, when object-oriented languages became all the rage, everyone began using
inheritance as if it were the end-all solution. Experience quickly showed that instead, when misused, it
creates software that is virtually impossible to maintain. In short, when being dynamic, be wise about it.

CHAPTER 17 ■ DYNAMIC TYPES

608

609

Index

Symbols
+ (addition) operator, 168–169, 230
@ character, preceding verbatim strings, 217
/checked+ compiler option, 174
{} curly braces, 295, 312
== operator, 456
++ (postfix) operators, 167
-- (prefix) operator, 167
?: ternary operator, 169, 176

■ A
A.InitZ() method, 47
Abort method, 368–370
AbortRequested state, of threads, 368
Abrahams, David, 501
Abrams, Brad, 70, 81, 273
abstract classes, 70–71
Abstract Factory design pattern, 526
abstract keyword, 70, 129
abstract methods, 129
access modifiers, 45, 59–61

enumerations, 61
interfaces and, 61, 139
members and, 63
namespaces, 61

accessors, properties and, 51, 53
AcquireReaderLock method, 398
AcquireWriterLock method, 398
Active Template Library (ATL), 325
Add method, 301, 316, 318, 346
Adder property, 297
addition (+) operator

composite strings and, 230
overloading, 168–169

Add<int> method, 318
Add<T> method, 316, 318, 346
AggregateException, 420
Alexandrescu, Andrei, 325
aliases, namespace, 38
allocated resources, 207–211

AllocateDataSlot method, 375
AllocateNamedDataSlot method, 375
anonymous methods, 5, 292–295

advantages, 297
as delegate parameter binders, 300–302
captured variables and, 297–300
lambda expression replacement, 518
lambda expressions compared, 523–524
parameters, 295
passing, 295
scoping, 295–297
uses, 294

anonymous recursion. See recursion,
anonymous

anonymous types
abbreviated syntax, 89
disposable types and, 90–91
example, 88
in group clause (LINQ), 560
in select clause (LINQ), 554–555
restrictions, 90–91
type casting, 91
uses, 88–91

AOP (aspect-oriented programming), 25
AOSD (aspect-oriented software development),

25
AppDomain.Load() function, 13
AppDomain.UnhandledException, 182
AppDomainUnloadException, 183
Append method, 231
AppendFormat method, 231
ApplicationException, 207
applications

managed. See managed applications
native, 2

ApplyRaiseOf method, 287
ArgumentException, 256
ArgumentOutOfRangeException, 182, 184, 191,

195, 231
arguments

named, 125–128
optional, 124–125

■ INDEX

610

passing, 120
positional, 126
ref, 120–122
value, 120

Array class, 308
array covariance, 30–31, 308, 332–334
Array.GetLength method, 252
Array.Length property, 252
Array.Rank property, 253
ArrayList, 310
arrays, 243–255

covariance and, 247–248
declaring, 243–244
implicit typed, 244–246
jagged, 253–255
multidimensional, 251–255
param, 123
rectangular, 251–253
searchability, 248
sortability and, 248
synchronization, 249
vectors and, 249–251

The Art of Computer Programming, Volume 3:
Sorting and Searching, Second Edition
(Knuth), 459as operator, 32–34

aspect-oriented programming (AOP), 25
aspect-oriented software development (AOSD),

25
assemblies, 4, 11–13

cross-language compatibility, 15
loading, 12–13
multiple, 12
naming, 12
strongly named, 12

assembly loader, 11–13
assignment conversion, 592
associativity, 20
asynchronous code, callbacks, 412
”An Asynchronous Design Pattern”

(Vermeulen), 366
asynchronous exceptions, 201
asynchronous method calls, 366, 408–416
AsyncState property, 411
AsyncWaitHandle property, 414
ATL (Active Template Library), 325
attributes, 45
auto-implemented properties, 6, 51–55. See also

accessors
AutoResetEvent, 404–405
Average method, 566

■ B
background threads, 372–373
backward compatibility, language issues and,

29–30
base classes, 44

documentation, 430
dynamic types and, 595
NVI pattern and, 431–434

base keyword, 49, 68–69, 109
base types, dynamic, 597
beforefieldinit attribute, 107, 108
BeginInvoke method, 408–412
BeginMethod()/EndMethod asynchronous

programming pattern, 366
bidirectional iterators, 273–277
BidirectionalIterator class, 274
BigInteger type, 421
binary operators

comparison, 170, 173
list, 170
overloading, 169
parameters and, 166

BinaryExpression, 527
BinarySearch method, 248
Bind2nd class, 301
Binder property, 301
bit flag enumerations, 25–26
bool array, 598
bool type, 22
Boolean operators, 176–179
Boost Library, 300
Box, Don, 9, 129
boxing/unboxing, 31, 941–101, 262

dynamic types and, 589
explicit interface implementation and, 156
Monitor class and, 391
value type interface implementation and,

150, 481
branch optimization, 11
break statement, 39, 41
Bridge pattern, 288–289
Brown, Keith, 9
built-in types, 21–22, 43
byte type, 21, 24

■ C
C#

as strongly typed language, 17, 18
compared with C++, 1–2, 430
history, 545

■ INDEX

611

program example, 3–5
syntax and, 17–41

C# 2.0
new features with, 5–6

anonymous methods, 292–303
generics, 307–359
iterator blocks, 262, 268–273
partial classes, 76
static modifier, 79
yield keyword, 262, 268

iterators, 317
C# 3.0, new features, 6–7, 517
C# 4.0, new features, 7
C++

calling virtual methods, 112
COM modeling, 161
compared with C#, 1–2, 430
default accessibility, 61
RAll, 118
templates, generics and, 34. 308, 310, 325
virtual keyword, 129
virtual methods and, 129

C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and
Beyond (Abrahams & Gurtovoy), 501

call sites, 582–585
callbacks, delegates for, 279–288
CallDelegates method, 319
canonical forms, 429–487

reference types and, 429–476
value types and, 476–484

captured variables, 295–300
CAS (code access security), 272
case keyword, 39
case-insensitive searches, 240
casting, 606
catch block, 182–183
catch statement, 184–185
CER (constrained execution region), 199–201
chained delegates, 282
ChangeType method, 467
char type, 22
circular iterators, 276
CirculatorIterator<T> method, 277
class constraints, 330–331
class definitions, 43–82

access modifiers, 59–61
constructors, 49
encapsulation, 56–59
fields, 46–48
inheritance, 62–69
interfaces, 61–62
methods, 49–51

properties, 51–55
class keyword, 22, 43, 45, 77
classes

abstract, 70–71
base, 44, 431–434, 595
contract implementation and, 157–159
derived, 44, 145–149
generic, 311–314
leaf, 70, 431
nested, 71–74
new keyword for, 103–104
non-nested, 71
partial, 76–77
sealed, 69, 145, 430–431
sealing, 495
static, 79–80

Clone method, 45, 215, 435, 438–440
Close method, 144, 209
closed types. See nongeneric types
closures, 295–297, 509, 524, 533–538

in C# 1.0, 521–523
in C# 2.0, 523
lambda expressions and, 518–523

CLR (Common Language Runtime), 1, 9–15
accessibility and, 60
assemblies and assembly loader, 11–13
features, 9
garbage collection, 3
JIT compiler in, 10–11
metadata, 13–15
resources for further reading, 9

CLS (Common Language Specification), 12, 22
code access security (CAS), 272
coding practices

code readability/understandability, 494–495
exception-safe. See exception-safe coding
guidelines. See development guidelines

collection classes, thread-safe, 426
collection initializers, 6
Collection pattern, 40
collection types, 255–263

custom, 567–575
dictionaries, 259
efficiency and, 262–263
generics and, 34–35, 344–345
ICollection and ICollection<T>, 255–256
lists, 258
sets, 259–260
synchronizing, 257
System.Collections.ObjectModel

namespace and, 260–262
Visual Basic and, 260

Collection<T>interface, 256, 259–260, 314

■ INDEX

612

collections
HashSet. See HashSet collection class
initializers, 277–278
synchronizing, 249
See also ICollection class

COM, 137, 139, 157
apartments, 377–378
C++ modeling, 161
interfaces and, 161
interoperability, 7, 578

COM/IDispatch interoperability, 578
Combine method, 282, 292
Common Language Infrastructure (CLI), 2
Common Language Runtime. See CLR
Common Language Specification (CLS), 12, 22
Common Type System (CTS), 22
CompareExchange method, 382, 384
Comparer<T> interace, 355
CompareTo method, 154, 461–463, 482
comparison operators, 170, 173
compilation units, 6
compile, command line, 4
compiler, as development tool, 550
compiler-generated type names. See

unspeakable field names
CompilerServices namespace, 199
CompletedSynchronously property, 410
ComplexNumber class, 462, 474
concurrent collections, 421
concurrent programming, 417–426
ConcurrentDictionary, 421
Console class, 80
Console.WriteLine method, 222–224
const keyword, 48, 473
const parameters, 120
constrained execution region (CER), 199–201
constraints, 302, 327–331

class, 302, 330–331
generic, 326–331
new, 330
nonclass types and, 332
primary, 330
struct, 330–331

constructed types
control accessibility and, 325
creating dynamically, 357–358
generic, 311–326

constructors, 44, 49, 82–84, 103
instance, 49, 109–113
static, 49
static, 106–109

Consumer<T>, 311
Container identifier, 312

Container<T>, 312
containment, 132–136
continuations (LINQ), 560
continue statement, 40–41
contracts, 137–139, 157–164, 328

implemented with classes, 157–159
interface, 159
interface vs. class implementation, 160–164

contravariance, 7, 332–334, 337–339
control flow, exceptions and, 193
conv IL instruction, 467
conversion operators, 165–166, 169, 173–175,

468
conversions, type. See type casting
Convert class, 150, 231, 467
ConvertAll<TOutput> method, 321
Converter<T, R> delegate, 316, 351
Converter<TInput, TOutput> delegate, 317
Copy method, 215

strings and, 215
CORBA development, 137
Count method, 566
covariance, 247–248, 332–337
co-variance support, 7
CreateClosedType<T> method, 358
CreateDelegate method, 287
CreateDelegates method, 298
CreateEnumerator method, 275
CreateEvent function (Win32), 204
CreateFile function (Win32), 204
CreateInstance method, 358
CreateReverseIterator<T>method, 274
creating

arrays, 243–244
CERs, 199
constructed types, 357–358
CultureInfo, 219–221
custom exception classes, 206–207
delegates, 280–288
dynamic types, 602–607
enumerators, 264–267
interfaces, 139–142
iterators, 268–277
jagged arrays, 253
objects, 103–113
threads, 362363

critical finalizers, 199, 201–205
CriticalFinalizerObject, 201
cross-cutting concerns, 25
cross-language compatibility, 15
CS1058 warning, 185
csc.exe, 4
CTS (Common Type System), 22

■ INDEX

613

culture, security, 220
culture names, 219
CultureAndRegionInfoBuilder class, 219
CultureAndRegionInfoBuilder object, 220
CultureInfo, 218–221, 227, 465
CultureInfo:CurrentCulture, 228
curly braces ({}), 295, 312
Current property, 265
CurrentCulture property, 464
currying, 538–540
custom dynamic behavior, 585–587
custom types, string formatting in, 223–224
Cwalina, Krzysztof, 70, 81, 273

■ D
data fields, declaring, 56–59
”DBG” format strings, 221
debugging, at compile time, 18
decimal type, 22
declaring

data fields, 56–59
generic types, 307, 312
interfaces, 138–139
namespaces, 36–37

Decrement method, 379
deep copies, objects and, 435, 440
default argument values, 7
default value expression, 321–323
default variable initialization, 27
deferred execution, 53
delegate chains, iterating through, 284
Delegate class, 282, 302
delegate keyword, 280
delegates, 289

anonymous methods and, 292–303
chained, 282
creating/using, 280–288
events, 288–292
generic, 317–320, 332, 340–344
lambda expression conversion, 518, 524
lambda expressions as, 518–522
list example, 507–508
open instance, 285–288
parameter binders, 300–303
removing from lists, 282
uses, 517
variable capture, 509
variance and, 340–344

delegates, 279–288
delegation, 132–136
derived classes, 44, 145–149
Derived constructor, 111

Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma, et al.),
137, 511

destroying objects, 113–116
destructors

reserved names and, 82
vs. finalizers, 443

deterministic finalization, 118
deterministic/nondeterministic destruction,

115, 207, 212
development guidelines

code understandability, 494
extension methods. See extension methods,

guidelines for use
side effects, avoiding, 496

diamond-lattice hierarchies, 140
dictionaries, 259
Dictionary<TKey, TValue> class, 344
Dimensions class, 439
Direction property, 275
disposable objects, 116–119, 440–443
Disposable pattern, 210, 443
Dispose method, 144, 116–118, 208, 267

deterministic destruction and, 443
finalizers and, 444–449
in multiple thread environments, 443

DLLs, 4–5, 11, 13
DLR. See Dynamic Lanugage Runtime
do statement, 39
DoSomeWork method, 305
double type, 22
DowngradeFromWriterLock method, 399
duck typing, 244, 599–602
Dyer, Wes, 511, 541
dynamic base types, 597–599
dynamic behavior, custom, 585–587
dynamic call site, 580
Dynamic Language Runtime (DLR), 577
dynamic receiver, 582
dynamic types, 7, 577–607

boxing with, 589
call sites, 582–585
call unification and, 582
compilation, 580–582
creating, 602–607
custom, 585–587
efficiency of, 587–589
vs. implicitly typed local variables, 577
inheritance, 594–599
introduction to, 577–579
limitations of, 602
overload resolution and, 592–594
type conversions, 590–592

■ INDEX

614

workings of, 580–581
DynamicAttribute attribute, 580, 598
DynamicObject class, 585–587

■ E
efficiency

boxing/unboxing and, 100
collection types and, 262–263
generics and, 309–311

Empty method, 565
encapsulation, 56–59, 134
encoding, strings and, 215, 228–230
EncodingGetByteCount method, 230
EndInvoke method, 408–412
EndProcessData method, 365
Enter method

Monitor class, 390, 393
SpinLock, 384

EnterReadLock method, 400
EnterUpgradeableReadLock method, 400
enum keyword, 23
Enumerable class, 565
Enumerable.Where method, 552
enumerations (enums), 24–27
flags, 25–26
enumerators, 264–267

disadvantages, 243
synchronization, 269

envelope/letter idiom. See handle/body idiom
equality, 450–457

operators, 457
System.Object class and, 103

Equals method, 450–457
overriding, 454–457, 477–481

error-handling, 193. See also exception
handling

errors, type safety and and, 469
escaped sequences, 216
Essential .NET, Volume I: The Common

Language Runtime (Box & Sells), 9, 129
event keyword, 290
EventHandler<T> class, 290–291
events, 82, 288–292, 404–405
EventWaitHandle class, 405–406
exception handling, 115, 181–214

cleaning up, 181, 193
custom exception classes and, 206–207
exception naming conventions and, 206
exception-neutral code and, 193–205
importance, 214
mechanics of, 182–192
program execution flow and, 193

responsible party, 192
rethrowing exceptions, 186–187
rollback behavior and, 214–211
translating exceptions, 187–188
try, catch, and finally statements, 183–185
unhandled exceptions and, 182, 183
working with exceptions and, 207–211

exception safety, 181–214
Exception.InnerException property, 188–189
Exceptional C++ series (Sutter), 196
exception-neutral code, 181, 193–205

constrained execution regions and, 199–201
structure of, 194–199

exceptions
asynchronous, 201
thrown in finalizers, 189–191
thrown in finally blocks, 189
thrown in static constructors, 191–192
undefined behavior, 115

exception-safe coding, 181
Exchange method, 381, 384
.exe files, 11
Exit method, 390, 393
ExpandoObject class, 602–607
Expert pattern, 192
explicit conversion, 30
explicit interface implementation, 142–145,

154–156
explicit type conversion, 44
Expression class, 526–528
Expression Tree Debugger Visualizer, 527
expression trees

building process, 526–527
in LINQ, 553
lambda expression conversion, 518, 524–

527, 566
modification, 527–528
uses, 528
without lambda expression, 525–526

expressions, 18
operator precedence and, 18–20
statements and, 20

extension methods, 6
benefits, 501
calling, 490, 494
compiler handling, 490–494
for custom iterators, 503–505
declaring, 490
described, 489
example, 489–501
to force immediate execution, 566
generic, 496, 499–501, 513–514
guidelines for use, 495–497

■ INDEX

615

inheritance compared, 495–496
introduction to, 489–494
limitations, 489
in LINQ, 546–547
list operations, 508–510
namespaces and, 496–497
operation chaining, 502–503
in System.Ling.Queryable class, 503
used by LINQ clauses, 566
uses, 496–497
Visitor pattern and, 511–515

■ F
Factor class, 297
family-and-assembly access modifier, 60
Ferracchiati, Fabio Claudio, 576
Fibonacci constant, 537
field initializers, 112
field modifiers, 46
fields

accessibility, 46–48
const, 48
declaring, 46
defining, 47–48
initializing, 47–48, 104–106
readonly, 47, 48

Finalize method, 443
Finalize() method, 102, 113
finalizers, 44, 87, 113–115, 443–450

advantages/disadvantages of, 450
critical, 199, 201–205
vs. destructors, 443
exceptions thrown in, 189–191
performance impact of, 447–448
value types and, 476

finally block, 184–185, 189
Finished state, of threads, 368
flags enumerations, 25–26
float type, 22
floating point numbers, 176, 219
flow control, 38–41
for statement, 39
foreach construct, 267, 317
foreach statement, 21, 40, 244, 254, 267, 317,

564–565, 575–576
IEnumerable<T>/IEnumerable interfaces

and, 264
multidimensional arrays and, 252
type safety and, 469–473

foreground threads, 372, 373
format specifiers, 465

strings and, 217–228

format strings, 221–227
forward iterators, 273–277
Foundations of LINQ in C# (Rattz), 576
Framework Design Guidelines: Conventions,

Idioms, and Patterns for Reusable
.NET Libraries (Cqalina & Abrams), 70,
81, 273

freachable queue, 447, 450
Free Threaded Marshaller (FTM), 378
from clause (LINQ), 549, 563–564
fully named assemblies, 12
Func<> definition, 510
Func<> type, 518
functional programming. See also lambda

expressions
benefits, 501–503, 575
C# 3.0 features facilitating, 505–507
C++ vs. C#, 501
described, 517, 544
foreach replacement, 575
languages 543
linked list example, 566–575
list manipulation, 505–511

functional, described, 517
functions, as data, 528–529
functions members, vs. methods, 61
”Fundamental Theorem of Software

Engineering” (Koenig), 570
FxCop, 81

■ G
GAC (Global Assembly Cache), 12
Gamma, Erich, 137, 433, 511
Gang of Four, 137, 511
garbage collection, 3
garbage collector (GC), 3, 26–27, 44

C# vs. C++, 430
concurrent code and, 423
finalizers and, 113–114, 443, 447–448
limitations, 3

GC.SuppressFinalize() method, 118, 446
general types, 550
GenerateNumbers method, 262
generic classes, 311–314
generic comparer, 344
generic constraints, 302, 326–331
generic delegates, 317–320

constraints and, 332
variance and, 340–344

generic extension methods, 496, 499–501
generic interfaces, 314
Generic method, 311

■ INDEX

616

generic methods, 315–317
constraints and, 332
default value expression and, 321–323

generic struts, 311–314
generic system collections, 344–345
generic system interfaces, 345–346
generic type conversion, 320–321, 347–357
generic type parameter placeholders, naming,

311
generics/generic types, 5, 34–35, 263, 307–359

array covariance rules compared, 308
vs. C++ templates, 308–310
collection types and, 34–35
constraints and, 327–331, 355
contravariance and, 337–339
control accessibility and, 325
covariance and, 337
declaring, 307, 312
default value expression and, 321–323
definitions, 311
efficiency and, 309–311
inheritance and, 325–326
invariance and, 339–40
memory issues, 309
problems/solutions and, 347–357
with static initializers, 314
type safety and, 309–311

get accessor, 53
Get method, multidimensional array and, 253
GetEnumerator method, 244, 264, 267–270
GetFormat method (IFormatProvider), 219, 225
GetHashCode method, 362, 458–460

overriding, 457–460
GetLength method, 252
GetLowerBound method, 252
GetMinThreads method, 408
GetString method, 230
GetType method, 14, 102, 358
GetUpperBound method, 252
GetValue method, multidimensional array and,

253
gloablization, 217–228
Global Assembly Cache (GAC), 12
global namespace, 37
Golde, Peter, 543
goto statement, 38–41
group clause (LINQ), 557–560, 564–565
groupings, 234–238
GroupJoin extension method (LINQ), 552
Gurtovoy, Aleksey, 501

■ H
Handle property, caution, 407
handle/body idiom, 215
hash table keys, data types, 458
hash tables, overriding GetHashCode method

and, 457–460
HashSet collection class, 259–260
header files, 14
headers, 13
heap compaction, 113
Hejlsberg, Anders, 346, 543
Hello World! program, 3–5, 10–11
Helm, Richard, 137, 433, 511
hiding members, 65–68

■ I
IAsyncCallback delegate, 412
IAsyncResult interface, 410
IAsyncResult.AsyncWaitHandle property, 414
ICloneable interface, 44–45, 215, 435

caution for, 440
MemberwiseClone interface and, 102
reference types and, 434–440
value types and, 476

ICloneable.Clone method, 438
ICollection interface, 249, 255–256
ICollection.SyncRoot object, 249
ICollection<T> interface, 255–256, 345
IComparable interface, 103, 150, 154, 170, 248,

344–345
reference types and, 461–463
value types and, 477, 482

IComparable<T> interface, 170, 345
IComparer interface, 227, 344
IComparer<T> interface, 344
IConvertible interface, 150

reference types and, 468
value types and, 477

ICustomFormatter interface, 224–227
identity equality, 450–453
IDictionary interface, 259
IDictionary<TKey, TValue> interface, 259, 345
IDisposable interface, 116–118, 140, 144, 208,

212, 267, 381, 407
deterministic destruction and, 443
finalizers and, 444
reference types and, 440
value types and, 476

IDisposable pattern, 442
IDL (Interface Description Language), 14

■ INDEX

617

IDynamicMetaObjectProvider, 582, 585, 603,
607

IEnumerable interface, 73, 264–267, 337, 346,
570

collection types and, 255
System.Array and, 244

IEnumerable.Current property, 570
IEnumerable.MoveNext method, 570
IEnumerable<object> references, 7
IEnumerable<string> references, 7
IEnumerable<T> interface, 255, 264–267, 314,

317, 337, 346
IEnumerator interface, 73, 264–267, 570
IEnumerator<T> interface, 264–267, 346
IEquatable<T> interface, 345, 479
if statement, 20, 39
if-else statement, 39
IFormatProvider interface, 218, 223, 225, 464
IFormatProvider.GetFormat method, 219, 225
IFormattable interface, 150, 218, 223, 465

reference types and, 464
value types and, 477

IFormattable.ToString method, 218–219, 224–
225, 465

IFormatter.ToString method, 223
IgnoreCase flag, 240
IgnorePatternWhitespace flag, 241
IGrouping interface, 557
IL (intermediate language), 1, 10, 11, 467
IL Assembler (ILASM), 2
ILDASM (Intermediate Language

Disassembler), 10, 81
ILDASM.exe, 100
IList interface, 258
IList<T> interface, 258, 309, 346
immutable reference types, 473, 476
imperative programming languages, 543
implementation, 133
implicit conversion, 30, 44, 63-65

conversion operators and, 173
dynamic types, 590–592
exception throwing and, 198
floating point numbers and, 176

implicit interface implementation, 143
implicit operators, 173
implicitly typed arrays, 244–246
implicitly typed local variables, 6, 28–29
IMyDatabase interface, 140
in keyword, 337
Increment method, 379
Index method, 248
indexers, 74–76, 81
IndexOf method, 232

IndexOutOfRangeException, 244
indirection

adding, 571–575
programming methodologies, 570
uses, 570

inheritance, 62–69, 128–136
bad uses of, 132
base keyword and, 68–69
vs. delegation/composition, 134–136
described, 44
dynamic types and, 594–599
extension methods compared, 495–496
generic types and, 325–326
implicit conversion and, 63–65
interface, 140–142
vs. interface implementation, 132
member accessibility and, 63
member hiding and, 65–68
multiple, 132
polymorphism and, 63–65
problems with, 135
sealed classes and, 69
single, 133
specialization, 63

initializer expressions, 109
initializers, 47

collection, 6
object, 6

initializing fields, 104–106
inner exceptions, 188
InnerException property, 191
Insert method, 231
instance constructors, 49, 109–113
instance fields, 46
instance methods, 49–51
int type, 21, 24, 467
integers, converting, 467
Intellisense, 495, 545
Interface Description Language (IDL), 14
interface implementation, 132
interface inheritance, 140–142
interface keyword, 139
interface mapping, 142
interface member matching rules, 150–154
interface tables, vs. vtables, 152
interface-based programming, 137
interfaces, 137–157, 264–267

augmented, 157
vs. classes, 160–164
contracts and, 159
declaring, 138–139
defining, 139–142
described, 61–62

■ INDEX

618

dynamic, 595–597
generic, 314, 345–346
implementing, 143–150, 154–156

overriding, 145–149
naming, 139, 157, 162
published, 161
reimplementing, 147–148
Strategy pattern and, 304
structs and, 87
value type implementation and, 150
value types and, 481
versioning, 156–157

Interlocked class, 198, 378, 402
Interlocked class, 379–385
Interlocked.CompareExchange method, 382,

384
Interlocked.Decrement method, 379
Interlocked.Exchange method, 381–382, 384
Interlocked.Increment method, 379
intermediate language (IL), 1, 10, 11, 467
Intermediate Language Disassembler

(ILDASM), 10, 81
intern pool, 216
internal access modifier, 60
internal field modifier, 46
internal virtual methods, C++ and, 434
interoperability, 7
Interrupt method, 368, 371–372
into clause (LINQ), 552, 560–561
IntToLongConverter method, 316, 318
InvalidCa4stException, 40, 309, 311, 468
InvalidOperationException, 256
invariance, 247, 339–340
InvariantCulture property, 227–228
InvariantCultureIgnoreCase property, 228
Invoke method, 408
IOException, 209
IOU pattern, 366
is operator, 32–34
is-a relationships, 44
IsBackground property, 373, 396, 412
IsCompleted property, 410
ISerializable interface, 140
IShape interface, 328
IsInvalid property, 205
IsReadOnly property, 256
IsSynchronized property, 249, 257
iterator blocks, 262, 268–273
Iterator class, 73
iterators, 6

advantages, 243, 268
bidirectional, 273–275
circular, 276–277

compiler behavior, 269
custom, 503–507
custom, creating with lambda expressions,

529–533
forward, 273
generating enumerable types, 272–273
indirection in, 270–272
over infinite sets, 565
query variables and, 562–563
reverse, 273–274

■ J
jagged arrays, 253–255
JIT (Just In Time) compiling, 1, 10–11, 308
Johnson, Ralph, 137, 433, 511
join clause (LINQ), 550, 552, 564–565
Join method, 363, 368
jump statement, 39
Just In Time (JIT) compiling, 1, 10–11, 308

■ K
kernel mode, transitions to, 379
kernel objects, names, 401
KeyedCollection<TKey, TValue>:, 259
KeyNotFoundException, 259
keywords, adding new, 29–30
Kiczales, Gregor, 25
Knuth, Donald E., 459
Koenig, Andrew, 570

■ L
LaMacchia, Brian A., 9, 272
lambda expressions, 418–419

advantages, 521–523, 529
benefits, 501
closures and, 518–524
compared to earlier C# versions, 521–522
delegates, conversion to, 525
described, 518
expression trees and, 524–528, 566
generators and, 529–533
in LINQ, 546–547
introduction to, 517–518
iterators and, 529–533
linked list example, 568–569
list iteration, 508
operation methods, bypassing definition,

351
syntax, 518–524
uses, 7, 501, 517, 529–541

■ INDEX

619

See also expression trees
lambda functions. See anonymous methods
lambda statements, 518, 524
lambda syntax, 342
LambdaExpression.Compile method, 529
languages, cross-language compatibility and,

15
Last method, 566
LastIndexOf method, 232, 248
LastIndexOfAny method, 232
lazy evaluation, 53
LDML (Locale Data Markup Language), 219
leaf classes, 70, 431
let clause (LINQ), 556–557
libraries, 70
LinkedList<T> class, 344
LINQ (Language Integrated Query)

advantages, 543, 575–576
benefits, 501
compiler behavior, 546–547
described, 528, 543–544
execution, delayed, 562–563, 570–575
execution, immediate, 563–565
expression trees, 553
extension methods, 503, 544, 547–548
history, 543
implementations available, 543
influence on C#, 543
linked list example. See functional

programming, linked list example
local identifiers, 556–557
query execution, 546
query expressions, 544–546, 563
query syntax, 544–561
resources on, 576
result display example, 575
SQL compared, 544
to SQL, 566
standard query operators, 544, 547–548
uses, 7, 528

LINQ for Visual C# 2005 (Ferracchiati), 576
Lisp programming language, 505, 528
List<T> class, 314, 344
lists, 258
ListSwap method, 197
local mutex objects, 401
local variables, implicitly typed, 6, 28–29, 246
Locale Data Markup Language (LDML), 219
lock keyword, 249, 390
lock statement, 21, 257
locking objects, 396–402
locks

Monitor. See Monitor class

mutex. See Mutex objects
reader/writer. See ReaderWriterLock

long type, 21, 24, 467

■ M
Main method, 4, 50, 316, 318
MakeGenericType method, 357
managed applications, 1, 10
managed assemblies, 11
managed code, 1
managed modules, 13
managed threads, 361
manifests, 11
ManualResetEvent, 404–405
ManualResetEventSlim, 405
Mariani, Rico, 262
Match method, 233–234, 240
MatchEvaluator delegate, 239
Max method, 566
member matching rules, 150–154
members

accessibility and, 63
hiding, 140–142, 149, 152
hiding, 65–68
reserved names and, 81–82

MemberwiseClone method, 102, 435–438
memoization, 533–538
memory leaks, 113
metadata, 3, 11–15
metadata attributes, 49
method groups, 282
method overloading, 123, 126
method parameter types, 119–123

named arguments, 125–128
optional arguments, 124–125
out parameters, 122–123
param arrays, 123
ref arguments, 120–122
value arguments, 120

method-matching rules, 152–153
methods, 43

abstract, 129
anonymous. See anonymous methods
described, 49
vs. function members, 61
generic, 315–317
hiding, 140–142, 149, 152
instance, 49–51
matching rules and, 150–154
metadata attributes, 49
naming conventions for, 138
overriding, 129–131

■ INDEX

620

partial, 77–79
sealed, 131
static, 49–50
virtual, 67–69, 128–132

Microsoft Foundation Classes (MFC), 149
Microsoft Windows Internals, Fourth Edition:

Microsoft Windows Server 2003,
Windows XP, and Windows 2000
(Russinovich & Solomon), 401

Min method, 566
mirror overload, 168
Modern C++ Design: Generic Programming and

Design Patterns Applied
(Alexandrescu), 325

Monitor class, 249, 378, 387–396, 401–402
Monitor.Enter method, 390, 393
Monitor.Exit method, 390, 393
Monitor.Pulse method, 393, 396
Monitor.Wait method, 368, 393
Mono project, 2
MoveNext method, 267, 269
mscorlib assembly, 4
MTAThreadAttribute attribute, 377
MulticastDelegate class, 280
multidimensional arrays, 251–255
multiple assemblies, 12
multiple inheritance, 132
MultiplyBy2 method, 294
MultiplyBy4 method, 294
multithreaded apartment (MTA), 377
multithreading. See threading
mutating operands, avoiding, 167
Mutex class, 378

vs. Monitor class, 388
Mutex objects, 401, 402
MyClass< Stack<T> >, 311
MyClass<int>, 313
MyClass<T>, 312
MyCollection<int>, 307
MyCollection<long>, 307, 316
MyCollection<T>, 307
MyContainer<int>, 316
MyContainer<T>, 316, 322
MyNestedClass<T>, 313

■ N
name conflicts, 81
named arguments, 7, 125–128
namespace aliasing, 38
namespaces, 4, 35–38

coding practices, 496–497
declaring, 36–37

global, 37
importing, 490
side effects, avoiding, 496
using, 37–38, 490

naming conventions
for culture names, 219
for exceptions, 206
for interfaces, 139, 157
for methods, 138
generic type parameter placeholders and,

311
namespaces and, 36

Nathan, Adam, 9
native applications, 2, 11
native code, 2
nested classes, 71–74
.NET

exception handling and, 116
threading and, 361–378

.NET 2.0
catch clauses and, 185
unhandled exceptions in, 182–183

.NET and COM: The Complete Interoperability
Guide (Nathan), 9

The .NET Developer’s Guide to Windows
Security (Brown), 9

.NET Framework Security (LaMacchia), 9, 272
new constraints, 330–331
new keyword, 74, 84, 139

class types and, 103–104
member hiding and, 67, 74, 141, 149
method overrides and, 129–131
uses, 103
value types and, 103

new operator, 27, 317
nondeterministic destruction, 115
nondeterministic finalization, 118
NonGeneric method, 311
nongeneric types, 311
non-nested classes, 71
Non-Virtual Interface (NVI) pattern, 431–434
NotSupportedException, 262, 269
null values, 323–324
nullable types, 323–324
Nullable<T>, 323–324
NullReferenceException, 182, 192, 291
NVI pattern, 431–434

■ O
Object class, 101–103, 154, 243
object initializers, 6

nesting, 92

■ INDEX

621

syntax, 91–94
uses, 91

object keyword, 101
object references, 44
object type, 22
Object.Equals method, 103, 450–457
Object.ToString method, 218, 221, 225
ObjectDisposedException, 441
Object-Oriented Analysis/Design (OOA/D), 141
object-oriented methodologies, 25
object-oriented programming, 544
objects, 43

copies and, 434–440
C# vs. C++, 27, 430
creating, 103–113, 430
destroying, 44, 113–116
disposable, 116–119
internal state of, 43
memory allocation for, 113
memory associated with, 44
terminology and, 26

On<event> method, 291
OOA/D (Object-Oriented Analysis/Design), 141
open instance delegates, 285–288
open types. See generic types
operands, 167
operation chaining, 502–503
operator overloading, 18, 165–179

addition operator, 168–169
Boolean operators, 176–179
mutating operands and, 167
operators for, 169–179
parameter order and, 167–168
reasons not to use, 165
semantics and, 165
types and formats, 165–166
Visual Basic and, 457

operator precedence, 18–20
operators

applying to parameterized types, 347–357
declaring, C# vs. C++, 166

optimizations, 11
optional arguments, 124–125
orderby clause (LINQ), 553–554, 563–565
ordering of object instance creation, 109–113
Ordinal property, 228
OrdinalIgnoreCase property, 228
OS threads, 361
out keyword, 122, 337
out parameters, 85, 122–123
OutOfMemoryException, 199–201
overflow errors, 174
overload resolution, 592

dynamic, 592–594
overloadable operators. See operator

overloading
overloaded constructors, 49
overloading methods, 123, 126
override keyword, 129

■ P
P/Invoke, 201–205
Parallel class, 420–425
Parallel Extensions, 417–418
Parallel.For method, 422
Parallel.Invoke, 425–426
param arrays, 123
param parameters, 123
parameter binding, 300–303, 538
ParameterExpression, 527
ParameterizedThreadStart delegate, 365
parameters

order, 167–168
out, 122–123

params keyword, 123
parentheses, 235
partial classes, 76–77
partial keyword, 77
partial methods

described, 77–79
restrictions, 77
uses, 6, 78

partial types, 6
partially named assemblies, 12
PassAsOutParam() method, 123
PassByRef() method, 121
PassByValue() method, 121
patterns, design, 137
PE (Portable Executable) file format, 2
performance, collection types and, 262–263
phantom method, 594
PlayEvent identifier, 291
polymorphism, 44, 63–65, 129
Portable Executable (PE) file format, 2
positional arguments, 126
postfix operator (++), 167
prefix operator (--), 167
PrepareConstrainedRegions method, 199
primary constraints, 330
Primary Interop Assemblies (PIA), 578
printf method, vs. String.Format method, 222
Priority property, 363
private access modifier, 60
private assemblies, 13
private field modifier, 46

■ INDEX

622

private virtual methods, C++ and, 433
Pro C# 2005 and the .NET 2.0 Platform, Third

Edition (Troelsen), 9
ProcessResults type, 282
profile-guided optimizations, 11
projection operators, 546
projector clause (LINQ). See group clause

(LINQ); select clause (LINQ)
properties

accessors and, 53
auto-implemented. See auto-implemented

properties
declaring, 51
public, 52
read-only, 47, 53
reserved names and, 81
uses, 51
write-only, 53

protected access modifier, 60
protected field modifier, 46
protected internal access modifier, 60
protected virtual methods, 291
public access modifier, 60
public field modifier, 46
publish/subscribe, 289
Pulse method, 393, 396

■ Q
query expressions, 544–546

keywords, 549–550
query variables (LINQ), 546, 562, 563, 564
Queryable class, 565
Queryable.Where method, 553
Queue.Clear method, 256
Queue<T> class, 344
QueueProcessor class, 364
QueueUserWorkItem method, 408

■ R
R identifier, 312, 314
RAII (Resource Acquisition Is Initialization),

115, 207, 430
range checking, 244
Range method, 565
range variables (LINQ), 546, 549–550, 562–565
rank, of arrays, 248, 253
RankException, 248
Rattz, Joseph C., Jr., 576
read thread mode, 400
ReaderWriterLock, 397–401
ReaderWriterLockSlim, 400–401

readonly field modifier, 47
readonly fields, 48
readonly properties, 47, 53
readonly public field, 53
rectangular arrays, 251–253
recursion, anonymous, 540–541
recursive computations, 421
ref arguments, 120–122
ref keyword, 121
ref parameters, 121–123
reference type variables, 22–23, 27, 44
reference types, 3, 22–23, 26–27, 44

canonical forms and, 429–476
checklist for, 429, 485–486
convertability and, 247–248
default values, 27
described, 94
explicit interface implementation and, 154
identity equality and, 451–453
immutability and, 473, 476
overriding Object.Equals method for, 454–

457
sealed classes and, 430–431
type conversion, 30
type safety and, 469–473

referenced assemblies, 14
ReferenceEquals method, 456
referential equality, 456
reflection, 14, 270, 272
Regex class, 232–242
Regex.Replace method, 238
RegexOptions, 240–242
RegionInfo types, 219
Register method, 220
regular expressions

searching strings with, 232–242
text substitution and, 238–240

regular-expression substitutions, 239
Release method, 402
ReleaseHandle method, 205
ReleaseMutex method, 401
ReleaseReaderLock method, 398
ReliabilityContractAttribute (ListSwap

method), 201
Remove method, 283, 292
RemoveAll method, 283
Repeat method, 565
Replace method, 234, 240
reserved member names, 59, 81–82
Reset method, 267–269
ResetAbort method, 368–370
Resource Acquisition Is Initialization (RAII),

115, 207, 430

■ INDEX

623

resources for further reading
assembly loading, 13
C++ design, 325
CLR, 9
code access security, 272
efficiency bottlenecks, 262
exception handling, 193
exception-neutral code, 196
hash codes, generating, 459
interface tables, 152
interface-based programming, 137
libraries, 70
metadata, 15
method tables, 129
regular expressions, 232
types, 273

Resume method, 372, 379
rethrowing exceptions, 186–187
return statement, 40–41
reverse iterators, 273–277
Reverse method, 566
RndThreadFunc method, 381, 385
rollback behavior, 211–214
rude thread abort, 369
Running state, of threads, 368, 377
Runtime Callable Wrapper (RCW), 578
RuntimeCompatibilityAttribute, 185
RuntimeHelpers class, 199
RuntimeWrappedException, 185
Russinovich, Mark E., 401

■ S
safe code, 27
safe points, 372
SafeHandle class, 114, 201–205, 407
SafeWaitHandle class, 407
sample code

complex numbers and, 247–357, 462
employee raises, delegates and, 286
media player, events and, 288–292

sbyte type, 21, 24
sealed classes, 69, 145, 430–431, 495
sealed keyword, 70, 131, 430
sealed methods, 131
searchability, 248
select clause (LINQ), 552–555, 563–564
Sells, Chris, 9, 129
semantics, operator overloading and, 165
SemaphoreFullExceptions, 402
semaphores, 402
semicolon, 20
Serializable attribute, 45

SerializableAttribute, 206
set accessor, 53
Set method, multidimensional array and, 253
SetMinThreads method, 408
sets. See HashSet collection class
SetValue method, multidimensional array and,

253
shallow copies, objects and, 435, 440
short type, 21, 24
Shutdown method, 396
single inheritance, 133
single-threaded apartment (STA), 377
Singleton design pattern, 159
Singleton pattern, 80, 314
Skip method (LINQ), 562
SkipWhile method (LINQ), 562
Sleep method, 368, 371, 379, 383
SMP (symmetric multiprocessing), 381
SOA (service-oriented architecture) systems,

137
Socket class, 413
Solomon, David A., 401
SomeFunction() method, 50
SomeMethod() method, 130
SomeOperation() method, 51
sortability, 248
SortedDictionary<TKey, TValue> class, 259, 344
SortedList<T> class, 344
SortedList<TKey, TValue> class, 344
sorting, 554
SortStrategy delegate, 305
specialization, 63
spin locks, 382
SpinLock class, 385–387
SpinLock.Enter method, 384
SpinLockManager, 385
SQL, 544–545
Stack.Clear method, 256
Stack<T> class, 344
StackOverflowException, 198–199
standard query operators, 544, 547–548
Start method, 368
StartsWith method, 232
statements, 20
STAThreadAttribute attribute, 377
static classes, 79–80
static constructors, 49, 106–109, 314

exceptions thrown in, 191–192
static field modifier, 46
static fields, 46
static methods, 49–50
static modifier, 79
static receiver, 582

■ INDEX

624

StaticCompute method, 284
STL (Standard Template Library)

programming, 300, 502, 529, 538, 576
Stop method, 277
Strategy pattern, 292, 304–305
Strategy property, 294
streams. See iterators, over infinite sets
StreamWriter, 384
String class, 215, 227, 229, 438
string literals, 216–217
string type, 22
String.Compare method, 227
String.Copy method, 438
String.Format method, 222–224
String.Intern method, 217
String.Join method, 575
StringBuilder class, 230–232
StringBuilder.AppendFormat method, 224
StringComparer class, 227
StringComparer.Create method, 228
StringComparison enumeration, 227
strings, 215

comparing, 227– 228
converting, 467
floating-point values, converting to, 219
format, 465
format specifiers and, 217–228, 465
format, 221–227
memory issues, 230
outside sources and, 228–230
overview, 215, 216
searching with regular expressions, 232–242
verbatim, 217

strong typing. See also variables, implicitly
typed local

strongly named assemblies, 12–13
strongly typed languages, 17–18, 469
struct constraints, 330–331
struct declarations, 21
struct keyword, 22–23, 44, 82
struct member definitions, access modifiers, 60
structs

contents, 82
generic, 311–314
interfaces and, 87

SubmitWorkItem method, 396
Sum method, 566
SuppressFinalize() method, 118, 446
Suspend method, 369, 372, 379
Suspended state, of threads, 369
SuspendRequested state, of threads, 369
Sutter, Herb, 196
swap operations, 198

switch statement, 39
symmetric multiprocessing (SMP), 381
sync events, 404
synchronization, 249

collections and, 257
enumerators, 269
Interlocked class and, 379–385
locking objects and, 396–402
Monitor class and, 387–396
semaphores and, 402–404
SpinLock class and, 385–387
threading and, 378–407
WaitHandle and, 405–407

synchronized field, 270
Synchronized method, 257
SyncRoot property, 257, 267
syntax, 17–41
sysglobl.dll assembly, 220
system heap, 44
System namespace, 21, 35
System Performance Monitor (perfmon), 423
System.Activator namespace, 358
System.Array, 243, 253

vectors and, 250
System.Array interface, 248
System.Collections namespace, 255, 310
System.Collections.Concurrent namespace, 421
System.Collections.Generic namespace, 255,

344–345
System.Collections.ObjectModel namespace,

255–256, 260–262
System.Collections.Specialized namespace, 255
System.Console class, 80
System.Convert class, 231
System.Double namespace, 221
System.Dynamic.DynamicObject, 585
System.Exception exception, 185, 188, 206–207
System.Globalization namespace, 219
System.Int32, 150
System.Int32.MaxValue, 231
System.Ling namespace, 545
System.Ling.Enumerable class, 544, 566
System.Ling.Expressions namespace, 518, 524,

528
System.Ling.Expressions.Expression<>, 524
System.Ling.Queryable class, 503, 544, 566
System.Monitor class, 249
System.Object, 101–103, 154, 243
System.Object types, 550
System.OutOfMemoryException, 103
System.String class, 215, 227, 229, 438
System.Text.Encoding class, 216, 228–230
System.Thread class, 363

■ INDEX

625

System.Threading namespace, 198
System.Threading.Semaphore class, 402
System.Type namespace, 357
System.Type object, 14
System.TypeInitializationException, 191
System.ValueType, 82

■ T
T identifier, 312, 314
Take extension (LINQ), 562, 565, 573–574
TakeWhile method (LINQ), 562
Task class, 418–420
Task Parallel Library (TPL), 417–418

Parallel class, 420–425
Task class, 418–420

TaskFactory.StartNew() method, 419
TBL (Type Library), 14
template metaprogramming (C++), 501
Template Method pattern, 433
ternary operator, 169, 176
TestForEquality method, 452
text substitution, 238–240
ThenBy extension method (LINQ), 554
this keyword, 49, 51, 74, 85–87, 286
this parameter, 104
Thread class, 363
thread pools, 407–417

asynchronous method calls and, 408–416
entry, using Parallel.Invoke, 425–426
timers and, 416–417

Thread.Abort method, 368–370
Thread.AllocateDataSlot method, 375
Thread.AllocateNamedDataSlot method, 375
Thread.ApartmentState property, 377
Thread.CurrentThread property, 362
Thread.GetHashCode, 363
Thread.Interrupt method, 368, 371
Thread.IsBackground property, 373, 396, 412
Thread.Join method, 363, 368
Thread.ManagedThreadId property, 363
Thread.Priority property, 363
Thread.ResetAbort method, 368, 370
Thread.Resume method, 379
Thread.Sleep method, 368, 371, 379, 383
Thread.Suspend method, 369, 372, 379
ThreadAbortException, 183, 199, 368–371
ThreadFunc method, 362
threads/threading, 361–427

background, 372–373
concurrent programming and, 417–426
creating, 362, 363
events and, 404–405

exceptions, 400
foreground/background threads and, 372–

373
halting, 371–372
locking objects and, 396–402
Monitor class and, 387–396
.NET and, 361–378
passing data to, 363–365
recursion, 400
semaphores and, 402–404
SpinLock class and, 385–387
states of, 366–369, 400
synchronization and, 378–407
terminating/halting threads and, 369–372
unmanaged threads and, 377–378
WaitHandle and, 405–407
waiting for exiting, 372
waking, 371–372

Threading.Interlocked class, 379
ThreadInterruptedException, 368, 371
thread-local storage, 373–377
ThreadPool class, 405, 408
ThreadPool object, 394
ThreadPool.QueueUserWorkItem method, 408
thread-safe collection classes, 426
ThreadStart delegate, 362
ThreadState enumeration, 368
ThreadStaticAttribute attribute, 373
throw statement, 40–41, 182

exception-neutral code and, 194–196
rethrowing exceptions and, 186

throwing exceptions, 182–192
thunks, 279
Timer class, 416

System.Threading namespace, 417
System.WindowsForms namespace, 417

TimerProc method, 417
timers, 416–417
TInput placeholder identifier, 317
TLSClass, 374
TLSFieldClass, 374
ToArray extension method, 575
ToList extension method, 565
ToString method, 102, 463–467

customized, 218
IFormattable class, 218–219, 224–225
IFormatter class, 223
Object class, 225
String.Format method and, 223

TOutput placeholder identifier, 317
TPL. See Task Parallel Library
transforms, 497–501
translating exceptions, 187–188

■ INDEX

626

Troelsen, Andrew, 9
try statement, 183–184

exception-neutral code and, 193
try/catch statement, 20
try/finally statement, 21, 118
TryGetValue method, 259
type casting, 173
type conversion, 30

array covariance, 30–31
boxing conversion, 31
dynamic, 590–592
explicit, 44
generic, 320–321, 347–357
implicit, 44, 63–65

Type Library (TLB), 14
type safety, 309–311

reference types and, 469–473
value types and, 482–484

TypeConverter class, 468
TypeInitializationException, 191, 206
typeof keyword, 14, 358
types, 3, 21–35

anonymous, 88–91
canonical forms and, 429–487
convertibility, 467–469
convertibility and, 247–248
creating own, 43
generic, 34–35
testing, 32–34
See also built-in types

■ U
uint type, 21, 24
ulong type, 21, 24
unary operators

list, 170
overloading, 169
parameters and, 166

UnaryExpression, 527
unbound delegates, 285–288
unboxing, 94–101
undefined behavior exception, 115
unhandled exceptions, 115, 182, 183
UnhandledExceptionEventArgs, 182
unheld thread mode, 400
unmanaged threads, 377–378
unsafe (unmanaged) code techniques, 26
unspeakable field names, 89
Unstarted state, of threads, 368
upgradeable thread mode, 400
UpgradeToWriterLock method, 399
user-defined value types, 23

ushort type, 21, 24
using keyword, 4, 21, 118–119, 212

deterministic destruction and, 443
disposable objects and, 442
extension methods and, 490
namespaces and, 37

using statement, 21
UTF-16 Unicode character strings, 216

■ V
Validate method, 207
value arguments, 120
value equality, 450, 454
value keyword, 292
value type definitions, 82–88

constructors, 82–84
finalizers, 87
interfaces, 87
this keyword, 85–87

value types, 3, 22–27
canonical forms and, 476–484
checklist for, 429, 486–487
definition, 44
described, 94
Equals override and, 477–481
explicit interface implementation and, 154–

156
interface implementation and, 150, 481
new keyword for, 103
type safety and, 482–484
value equality and, 450

values, terminology and, 26
ValueType class, 481
ValueType.Equals method, 454
var keyword, 28, 89
VarArgs() method, 123
variable capture, 297–300, 533–538
variables, 21–35

default initialization, 27
implicit typing, 526
implicitly typed local, 6, 28–29
reference type, 22–23, 27, 44
type testing, 32–34

variance, 7, 332–334
delegates and, 340–344
rules, 335

vectors, vs. arrays, 249, 251
verbatim strings, 217
Vermeulen, Allan, 366
versioning, 13, 156–157
Virtual Execution Systems (VESs), 2, 9
virtual keyword, 129, 148

■ INDEX

627

virtual methods, 67–69, 128–132
overriding, 127–131

Visitor pattern, 511–515
Visual Basic, collection types and, 260
Vlissides, John, 137, 433, 511
volatile field modifier, 48
vtables, vs. interface tables, 152

■ W
Wait method, 368, 393
WaitAll method, 406
WaitAny method, 406
WaitHandle class, 402, 405, 407
WaitHandle.WaitAll method, 406
WaitHandle.WaitAny method, 406
WaitHandle.WaitOne method, 404
WaitOne method, 401–406
WaitSleepJoin state, of threads, 368
waking threads, 371

Web Services Description Language (WSDL),
8139

where clause (LINQ), 552–554, 563–564
where keyword, 329
while statement, 20, 39
Win32 functions, 204
Win32 Synchronization objects, 405
write thread mode, 400
write-only properties, 53

■ X
xperf, 422, 423

■ Y
Y fixed-point combinators, 541
”Yet Another Language Geek” blog, 511
yield blocks, 268–277, 562–563
yield break statement, 270
yield keyword, 262, 268, 317

v@v
Text Box
Download at WoweBook.com

	Home Page
	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	About This Book

	C# Preview
	Differences Between C# and C++
	C#
	C++
	CLR Garbage Collection

	Example of a C# Program
	Overview of Features Added in C# 2.0
	Overview of Features Added in C# 3.0
	Overview of New C# 4.0 Features
	Summary

	C# and the CLR
	The JIT Compiler in the CLR
	Assemblies and the Assembly Loader
	Minimizing the Working Set of the Application
	Naming Assemblies
	Loading Assemblies

	Metadata
	Cross-Language Compatibility
	Summary

	C# Syntax Overview
	C# Is a Strongly Typed Language
	Expressions
	Statements and Expressions
	Types and Variables
	Value Types
	Enumerations
	Flags Enumerations
	Reference Types
	Default Variable Initialization
	Implicitly Typed Local Variables
	Type Conversion
	Array Covariance
	Boxing Conversion
	as and is Operators
	Generics

	Namespaces
	Defining Namespaces
	Using Namespaces

	Control Flow
	if-else, while, do-while, and for
	switch
	foreach
	break, continue, goto, return, and throw

	Summary

	Classes, Structs, and Objects
	Class Definitions
	Fields
	Constructors
	Methods
	Static Methods
	Instance Methods
	Properties
	Declaring Properties
	Accessors
	Read-Only and Write-Only Properties
	Auto-Implemented Properties
	Encapsulation
	Accessibility
	Interfaces
	Inheritance
	Accessibility of Members
	Implicit Conversion and a Taste of Polymorphism
	Member Hiding
	The base Keyword
	sealed Classes
	abstract Classes
	Nested Classes
	Indexers
	partial Classes
	partial Methods
	Static Classes
	Reserved Member Names
	Reserved Names for Properties
	Reserved Names for Indexers
	Reserved Names for Destructors
	Reserved Names for Events

	Value Type Definitions
	Constructors
	The Meaning of this
	Finalizers
	Interfaces

	Anonymous Types
	Object Initializers
	Boxing and Unboxing
	When Boxing Occurs
	Efficiency and Confusion

	System.Object
	Equality and What It Means
	The IComparable Interface

	Creating Objects
	The new Keyword
	Using new with Value Types
	Using new with Class Types
	Field Initialization
	Static (Class) Constructors
	Instance Constructor and Creation Ordering

	Destroying Objects
	Finalizers
	Deterministic Destruction
	Exception Handling

	Disposable Objects
	The IDisposable Interface
	The using Keyword

	Method Parameter Types
	Value Arguments
	ref Arguments
	out Parameters
	param Arrays
	Method Overloading
	Optional Arguments
	Named Arguments

	Inheritance and Virtual Methods
	Virtual and Abstract Methods
	override and new Methods
	sealed Methods
	A Final Few Words on C# Virtual Methods

	Inheritance, Containment, and Delegation
	Choosing Between Interface and Class Inheritance
	Delegation and Composition vs. Inheritance

	Summary

	Interfaces and Contracts
	Interfaces Define Types
	Defining Interfaces
	What Can Be in an Interface?
	Interface Inheritance and Member Hiding

	Implementing Interfaces
	Implicit Interface Implementation
	Explicit Interface Implementation
	Overriding Interface Implementations in Derived Classes
	Beware of Side Effects of Value Types Implementing Interfaces

	Interface Member Matching Rules
	Explicit Interface Implementation with Value Types
	Versioning Considerations
	Contracts
	Contracts Implemented with Classes
	Interface Contracts

	Choosing Between Interfaces and Classes
	Summary

	Overloading Operators
	Just Because You Can Doesn’t Mean You Should
	Types and Formats of Overloaded Operators
	Operators Shouldn’t Mutate Their Operands
	Does Parameter Order Matter?
	Overloading the Addition Operator
	Operators That Can Be Overloaded
	Comparison Operators
	Conversion Operators
	Boolean Operators

	Summary

	Exception Handling and Exception Safety
	How the CLR Treats Exceptions
	Mechanics of Handling Exceptions in C#
	Throwing Exceptions
	Changes with Unhandled Exceptions Starting with .NET 2.0
	Syntax Overview of the try, catch, and finally Statements
	Rethrowing Exceptions and Translating Exceptions
	Exceptions Thrown in finally Blocks
	Exceptions Thrown in Finalizers
	Exceptions Thrown in Static Constructors

	Who Should Handle Exceptions?
	Avoid Using Exceptions to Control Flow
	Achieving Exception Neutrality
	Basic Structure of Exception-Neutral Code
	Constrained Execution Regions
	Critical Finalizers and SafeHandle

	Creating Custom Exception Classes
	Working with Allocated Resources and Exceptions
	Providing Rollback Behavior
	Summary

	Working with Strings
	String Overview
	String Literals
	Format Specifiers and Globalization
	Object.ToString, IFormattable, and CultureInfo
	Creating and Registering Custom CultureInfo Types
	Format Strings
	Console.WriteLine and String.Format
	Examples of String Formatting in Custom Types
	ICustomFormatter
	Comparing Strings

	Working with Strings from Outside Sources
	StringBuilder
	Searching Strings with Regular Expressions
	Searching with Regular Expressions
	Searching and Grouping
	Replacing Text with Regex
	Regex Creation Options

	Summary

	Arrays, Collection Types, and Iterators
	Introduction to Arrays
	Implicitly Typed Arrays
	Type Convertibility and Covariance
	Sortability and Searchability
	Synchronization
	Vectors vs. Arrays

	Multidimensional Rectangular Arrays
	Multidimensional Jagged Arrays
	Collection Types
	Comparing ICollection<T> with ICollection
	Collection Synchronization
	Lists
	Dictionaries
	Sets
	System.Collections.ObjectModel
	Efficiency

	IEnumerable<T>, IEnumerator<T>, IEnumerable, and IEnumerator
	Types That Produce Collections

	Iterators
	Forward, Reverse, and Bidirectional Iterators

	Collection Initializers
	Summary

	Delegates, Anonymous Functions, and Events
	Overview of Delegates
	Delegate Creation and Use
	Single Delegate
	Delegate Chaining
	Iterating Through Delegate Chains
	Unbound (Open Instance) Delegates

	Events
	Anonymous Methods
	Captured Variables and Closures
	Beware the Captured Variable Surprise
	Anonymous Methods as Delegate Parameter Binders

	The Strategy Pattern
	Summary

	Generics
	Difference Between Generics and C++ Templates
	Efficiency and Type Safety of Generics
	Generic Type Definitions and Constructed Types
	Generic Classes and Structs
	Generic Interfaces
	Generic Methods
	Generic Delegates
	Generic Type Conversion
	Default Value Expression
	Nullable Types
	Constructed Types Control Accessibility
	Generics and Inheritance

	Constraints
	Constraints on Nonclass Types

	Coand Contravariance
	Covariance
	Contravariance
	Invariance
	Variance and Delegates

	Generic System Collections
	Generic System Interfaces
	Select Problems and Solutions
	Conversion and Operators within Generic Types
	Creating Constructed Types Dynamically

	Summary

	Threading in C#
	Threading in C# and .NET
	Starting Threads
	Passing Data to New Threads
	Using ParameterizedThreadStart
	The IOU Pattern and Asynchronous Method Calls
	States of a Thread
	Terminating Threads
	Halting Threads and Waking Sleeping Threads
	Waiting for a Thread to Exit
	Foreground and Background Threads
	Thread-Local Storage
	How Unmanaged Threads and COM Apartments Fit In

	Synchronizing Work Between Threads
	Lightweight Synchronization with the Interlocked Class
	SpinLock Class
	Monitor Class
	Beware of Boxing
	Pulse and Wait
	Locking Objects
	ReaderWriterLock
	ReaderWriterLockSlim
	Mutex
	Semaphore
	Events
	Win32 Synchronization Objects and WaitHandle

	Using ThreadPool
	Asynchronous Method Calls
	Timers

	Concurrent Programming
	Task Class
	Parallel Class
	Easy Entry to the Thread Pool

	Thread-Safe Collection Classes
	Summary

	In Search of C# Canonical Forms
	Reference Type Canonical Forms
	Default to sealed Classes
	Use the Non-Virtual Interface (NVI) Pattern
	Is the Object Cloneable?
	Is the Object Disposable?
	Does the Object Need a Finalizer?
	What Does Equality Mean for This Object?
	Reference Types and Identity Equality
	Value Equality
	Overriding Object.Equals for Reference Types
	If You Override Equals, Override GetHashCode Too
	Does the Object Support Ordering?
	Is the Object Formattable?
	Is the Object Convertible?
	Prefer Type Safety at All Times
	Using Immutable Reference Types

	Value Type Canonical Forms
	Override Equals for Better Performance
	Do Values of This Type Support Any Interfaces?
	Implement Type-Safe Forms of Interface Members and Derived Methods

	Summary
	Checklist for Reference Types
	Checklist for Value Types

	Extension Methods
	Introduction to Extension Methods
	How Does the Compiler Find Extension Methods?
	Under the Covers
	Code Readability versus Code Understandability

	Recommendations for Use
	Consider Extension Methods Over Inheritance
	Isolate Extension Methods in Separate Namespace
	Changing a Type’s Contract Can Break Extension Methods

	Transforms
	Operation Chaining
	Custom Iterators
	Borrowing from Functional Programming

	The Visitor Pattern
	Summary

	Lambda Expressions
	Introduction to Lambda Expressions
	Lambda Expressions and Closures
	Closures in C# 1.0
	Closures in C# 2.0
	Lambda Statements

	Expression Trees
	Operating on Expressions
	Functions as Data

	Useful Applications of Lambda Expressions
	Iterators and Generators Revisited
	More on Closures (Variable Capture) and Memoization
	Currying
	Anonymous Recursion

	Summary

	LINQ: Language Integrated Query
	A Bridge to Data
	Query Expressions
	Extension Methods and Lambda Expressions Revisited

	Standard Query Operators
	C# Query Keywords
	The from Clause and Range Variables
	The join Clause
	The where Clause and Filters
	The orderby Clause
	The select Clause and Projection
	The let Clause
	The group Clause
	The into Clause and Continuations

	The Virtues of Being Lazy
	C# Iterators Foster Laziness
	Subverting Laziness
	Executing Queries Immediately
	Expression Trees Revisited

	Techniques from Functional Programming
	Custom Standard Query Operators and Lazy Evaluation
	Replacing foreach Statements

	Summary

	Dynamic Types
	What does dynamic Mean?
	How Does dynamic Work?
	The Great Unification
	Call Sites
	Objects with Custom Dynamic Behavior
	Efficiency
	Boxing with Dynamic

	Dynamic Conversions
	Implicit Dynamic Expressions Conversion

	Dynamic Overload Resolution
	Dynamic Inheritance
	You Cannot Derive from dynamic
	You Cannot Implement dynamic Interfaces
	You Can Derive From Dynamic Base Types

	Duck Typing in C#
	Limitations of dynamic Types
	ExpandoObject: Creating Objects Dynamically
	Summary

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	U
	W
	X
	Y

