CHAPTER 7. Linear Algebra: Matrix Eigenvalue Problems ### Sec. 7.1 Eigenvalues, Eigenvectors Problem Set 7.1. Page 375 1. Eigenvalues and eigenvectors. For a diagonal matrix the eigenvalues are the main diagonal entries because the characteristic equation is $$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & 0 \\ 0 & a_{22} - \lambda \end{vmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) = 0.$$ For the given matrix you obtain from this $\lambda_1 = 4$, $\lambda_2 = -6$. Now determine an eigenvector of A corresponding to $\lambda_1 = 4$. In components, $(A - \lambda_1 I)x = 0$ is $$(a_{11} - \lambda_1)x_1 + a_{12}x_2 = (4 - 4)x_1 + 0x_2 = 0$$ $$a_{21}x_1 + (a_{22} - \lambda_1)x_2 = 0x_1 + (-6 - 4)x_2 = 0.$$ The first equation gives no condition. The second gives $x_2 = 0$. Hence an eigenvector of A corresponding to $\lambda_1 = 4$ is $\begin{bmatrix} x_1 & 0 \end{bmatrix}^T$. Since an eigenvector is determined only up to a nonzero constant, you can simply take $\begin{bmatrix} 1 & 0 \end{bmatrix}^T$ as an eigenvector. For $\lambda_2 = -6$ the procedure is similar and leads to $\begin{bmatrix} 0 & 1 \end{bmatrix}^T$. 13. Eigenvalues and eigenvectors. Ordinarily one would expect that a 3×3 matrix has 3 linearly independent eigenvectors. For symmetric, skew-symmetric and many other matrices this is true. A simple example is the 3×3 unit matrix, which has but one eigenvalue, 1, but every (nonzero) vector is an eigenvector, so that you can choose, for instance, $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$. The given matrix has the characteristic equation $$\begin{vmatrix} 2-\lambda & 0 & -1 \\ 0 & 1/2-\lambda & 0 \\ 1 & 0 & 4-\lambda \end{vmatrix} = (2-\lambda)(\frac{1}{2}-\lambda)(4-\lambda)-(-(\frac{1}{2}-\lambda))$$ $$= -\lambda^3 + 6.5 \lambda^2 - 12 \lambda + 4.5 = 0$$ The solutions are 1/2 and 3. In product form, the characteristic equation is $$-(\lambda - 0.5)(\lambda - 3)^2 = 0$$: hence $\lambda = 3$ has algebraic multiplicity 2. Now determine an eigenvector for $\lambda = 0.5$ from $$(2-0.5)x_1-x_3=0$$, $0=0$, $x_1+(4-0.5)x_3=0$. This gives $x_1 = 0$, $x_3 = 0$, x_2 arbitrary. Hence you can take $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$. Similarly for $\lambda = 3$ $$(2-3)x_1-x_3=0$$, $(0.5-3)x_2=0$, $x_1+(4-3)x_3=0$. Hence $x_1 = -x_3$, $x_2 = 0$, and you can take as an eigenvector $[-1 \quad 0 \quad 1]^T$, but you cannot obtain another eigenvector such that the three eigenvectors are linearly independent. 19. Orthogonal projection. This matrix has no inverse. This is geometrically obvious because all the points (x, y_0) on the horizontal line $y = y_0$ are projected onto the same point $(0, y_0)$ on the y-axis. ## Sec. 7.2 Some Applications of Eigenvalue Problems Problem Set 7.2. Page 379 3. Elastic membrane. Problems 1-6 amount to the determination of the eigenvalues (giving the extension or contraction factors) and eigenvectors (giving the principal directions) and a sketch of the latter. The characteristic equation of the given matrix is $$\begin{vmatrix} 3.0 - \lambda & 1.5 \\ 1.5 & 3.0 - \lambda \end{vmatrix} = (3.0 - \lambda)^2 - 1.5^2 = (\lambda - 1.5)(\lambda - 4.5) = 0.$$ You see that $\lambda = 1.5$ is an eigenvalue. A corresponding eigenvector is obtained from one of the two equations $$(3.0 - 1.5)x_1 + 1.5x_2 = 0$$, $1.5x_1 + (3.0 - 1.5)x_2 = 0$ which both give $x_1 = -x_2$, so that you can take $\begin{bmatrix} 1 \\ -1 \end{bmatrix}^T$, the vector from the origin (0, 0) to the point (1, -1) in the fourth quadrant, making a 45 degree angle with the x-axis. In this direction the membrane is stretched by a factor 1.5. Similarly, the other eigenvalue is $\lambda = 4.5$, and an eigenvector is obtained from $$(3.5-4.5)x_1+1.5x_2=0$$, thus $x_1=x_2$, or from the other equation, which gives the same result. Hence you can take $\begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$ as an eigenvector, which you can graph as an arrow from the origin to the point (1, 1) in the first quadrant. In this direction the membrane is stretched by a factor 4.5. The figure shows a circle of radius 1 and its image under stretching, which is an ellipse. A formula of the latter can be obtained by first stretching, leading from $x_1^2 + x_2^2 = 1$ (circle) to $x_1^2/4.5^2 + x_2^2/1.5^2 = 1$ (an ellipse whose axes coincide with the x_1 and x_2 axes) and then applying a 45 degree rotation (rotation through an angle $\alpha = \pi/4$) given by $$u = x_1 \cos \alpha - x_2 \sin \alpha = (x_1 - x_2)/\sqrt{2}$$, $v = x_1 \cos \alpha + x_2 \sin \alpha = (x_1 + x_2)/\sqrt{2}$. This problem is very similar to Example 1 on p. 376. Section 7.2. Problem 3. Circular elastic membrane stretched to an ellipse 15. Open Leontief input-output model. For reasons explained in the enunciation of the problem you have to solve x - Ax = y for x, where A and y are given. With the given data you thus have to solve $$\mathbf{x} - \mathbf{A}\mathbf{x} = (\mathbf{I} - \mathbf{A})\mathbf{x} = \begin{bmatrix} 1 - 0.1 & -0.4 & -0.2 \\ -0.5 & 1 & -0.1 \\ -0.1 & -0.4 & 1 - 0.4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{y} = \begin{bmatrix} 0.1 \\ 0.3 \\ 0.1 \end{bmatrix}.$$ For this you can apply the Gauss elimination to the augmented matrix of the system $$\begin{bmatrix} 0.9 & -0.4 & -0.2 & 0.1 \\ -0.5 & 1.0 & -0.1 & 0.3 \\ -0.1 & -0.4 & 0.6 & 0.1 \end{bmatrix}.$$ If you use 6 decimals in your calculation, you will obtain the solution $$x_1 = 0.55$$, $x_2 = 0.64375$, $x_3 = 0.6875$. # Sec. 7.3 Symmetric, Skew-Symmetric, and Orthogonal Matrices Example 1. For a skew-symmetric matrix, $a_{kj} = -a_{jk}$. Hence for the main diagonal entries a_{jj} this gives $a_{jj} = -a_{jj} = 0$. #### Problem Set 7.3. Page 384 3. A common mistake. This matrix is *NOT* skew-symmetric because a skew-symmetric matrix (which by definition is *real*) must have all diagonal entries zero. Hence you cannot expect its spectrum to lie on the y-axis. You obtain the eigenvalues from the characteristic equation $$\begin{vmatrix} 1-\lambda & 4 \\ -4 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 + 16 = \lambda^2 - 2\lambda + 17 = 0.$$ By the usual formula for the solutions of a quadratic equation you obtain $$\lambda_1 = 1 + \sqrt{1 - 17} = 1 + 4i, \quad \lambda_2 = 1 - 4i \quad (i = \sqrt{-1}).$$ You see that a real matrix may very well have complex eigenvalues. However, note that if λ is a complex eigenvalue of such a matrix, so is the complex conjugate number; 1 + 4i and 1 - 4i are complex conjugates. It is interesting that A = B + I, where $$\mathbf{B} = \left[\begin{array}{cc} 0 & 4 \\ -4 & 0 \end{array} \right]$$ is skew-symmetric. The characteristic equation of B is $\lambda^2 + 16 = 0$. The roots (eigenvalues of B) are -4i and 4i; they are pure imaginary. Hence A = B + I must have the eigenvalues 1 + 4i and 1 - 4i, according to the spectral shift explained in Project 16d of Sec. 7.2. 11. Inverse of a skew-symmetric matrix. Let A be skew-symmetric, that is, $$\mathbf{A}^T = -\mathbf{A}.\tag{1}$$ Let A be nonsingular. Let B be its inverse. Then $$AB = I. (2)$$ Transposition of (2) and the use of the skew symmetry (1) of A give $$I = I^{T} = (AB)^{T} = B^{T}A^{T} = B^{T}(-A) = -B^{T}A.$$ (3) Now multiply (3) by B from the right and use (2), obtaining $$\mathbf{B} = -\mathbf{B}^T \mathbf{A} \mathbf{B} = -\mathbf{B}^T.$$ This proves that $B = A^{-1}$ is skew-symmetric. #### Sec. 7.4 Complex Matrices: Hermitian, Skew-Hermitian, Unitary Example 1. In A the diagonal entries are real, hence equal to their conjugates. $a_{21} = 1 + 3i$ is the complex conjugate of $a_{12} = 1 - 3i$, as it should be for a Hermitian matrix. In B you have $\bar{b}_{11} = -3i = -b_{11}$, $\bar{b}_{22} = i = -b_{22}$, $\bar{b}_{21} = -2 - i = -b_{12}$. Hence B is skew-Hermitian. The complex conjugate transpose of C is $$\begin{bmatrix} -i/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & -i/2 \end{bmatrix}.$$ Multiplying this by C, you obtain the unit matrix. This verifies the defining relation of a unitary matrix. #### Problem Set 7.4. Page 390 3. Complex matrix. The determination of eigenvalues and eigenvectors is the same in principle as for a real matrix. The matrix $$\mathbf{B} = \begin{bmatrix} 3i & 2+i \\ -2+i & -i \end{bmatrix}$$ is skew-Hermitian, as has just been shown. The characteristic equation is $$\begin{vmatrix} 3i - \lambda & 2 + i \\ -2 + i & -i - \lambda \end{vmatrix} = (3i - \lambda)(-i - \lambda) - (2 + i)(-2 + i)$$ $$= \lambda^2 + (-3i + i)\lambda + 3 - (-4 + 2i - 2i - 1)$$ $$= \lambda^2 - 2i\lambda + 8 = 0.$$ The roots (eigenvalues of B) are obtained by the usual formula for solving a quadratic equation $$\lambda_1 = i + \sqrt{-1 - 8} = i + 3i = 4i, \quad \lambda_2 = i - 3i = -2i,$$ as given on p. 387 of the book. Observe that the eigenvalues need no longer be complex conjugates because the matrix is no longer real. To determine an eigenvector corresponding to $\lambda_1 = 4i$, substitute $\lambda = \lambda_1$ into the two equations, obtaining $$(3i-4i)x_1+(2+i)x_2=0,$$ $(-2+i)x_1+(-i-4i)x_2=0.$ Simplification gives $$-ix_1 + (2+i)x_2 = 0,$$ $$(-2+i)x_1 - 5ix_2 = 0.$$ The first equation suggests choosing $x_1 = 2 + i$, $x_2 = i$. Check your result as follows. For that choice the second equation gives $$(-2+i)(2+i)-5ii = -4-2i+2i-1+5=0$$ as expected. An eigenvector corresponding to $\lambda_2 = -2i$ is obtained in the same way from $$(3i+2i)x_1+(2+i)x_2=0$$, that is, $5ix_1+(2+i)x_2=0$. You see that you can choose $x_1 = 2 + i$, $x_2 = -5i$, as indicated in the solution on p. A19 in Appendix 2. 11. Decomposition. Let $A = [a_{jk}]$ be arbitrary complex. Then $\bar{A}^T = [\bar{a}_{kj}]$. The sum multiplied by 1/2 is $$H = \frac{1}{2}(A + \bar{A}^T) = \frac{1}{2}[a_{jk} + \bar{a}_{kj}].$$ Its conjugate transpose is $$\mathbf{\bar{H}}^T = \frac{1}{2} [\bar{a}_{kj} + a_{jk}] = \mathbf{H}.$$ Hence H is Hermitian. Similarly, the difference multiplied by 1/2 is $$S = \frac{1}{2}(A - \bar{A}^T) = \frac{1}{2}[a_{jk} - \bar{a}_{kj}].$$ Its conjugate transpose is $$\mathbf{\tilde{S}}^T = \frac{1}{2} [\mathbf{\tilde{a}}_{kj} - \mathbf{a}_{jk}] = -\mathbf{S}.$$ Hence S is skew-Hermitian. The sum H + S equals the given matrix A. This completes the derivation of this representation. # Sec. 7.5 Similarity of Matrices. Basis of Eigenvectors. Diagonalization # Problem Set 7.5. Page 397 1. Similar matrices. The solutions of Probs. 1-6 are obtained by calculating the inverse and performing straightforward matrix multiplication. The importance of similarity transformations, for instance, in designing numerical methods for eigenvalue problems, justifies these problems. Given $$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad \text{and} \quad \mathbf{P} = \begin{bmatrix} 1 & 3 \\ 3 & 6 \end{bmatrix}.$$ First calculate the inverse of P, which is best done by (4*) in Sec. 6.7. Then calculate $$\hat{\mathbf{A}} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{bmatrix} -2 & 1 \\ 1 & -1/3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & 6 \end{bmatrix}$$ $$= \begin{bmatrix} -2 & 1 \\ 1 & -1/3 \end{bmatrix} \begin{bmatrix} 7 & 15 \\ 14 & 30 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 7/3 & 5 \end{bmatrix}.$$ The eigenvalues of both **A** and $\hat{\mathbf{A}}$ are 0 and 5. Eigenvectors \mathbf{y} of $\hat{\mathbf{A}}$ are $\begin{bmatrix} 15 & -7 \end{bmatrix}^T$ and $\begin{bmatrix} 0 & 1 \end{bmatrix}^T$, respectively. Multiplying these by **P** yields the vectors \mathbf{x} given in the answer on p. A19 of Appendix 2. 15. Diagonalization is done by (5). For this you need the matrix X whose columns are eigenvectors of A. The characteristic equation of A gives the eigenvalues 15, -15, and 0. Eigenvectors are $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$, and $\begin{bmatrix} 2 & 0 & 1 \end{bmatrix}^T$, respectively. Using these, form X and calculate its inverse. This gives $$\mathbf{X} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{X}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -1 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}.$$ Now obtain the diagonal matrix D from (5) with main diagonal 15, -15, 0. This differs from the answer on p. A20 in Appendix 2 because the columns of X were chosen in a different order, which corresponds to the order of the eigenvalues on the main diagonal. 17. Principal axes transformation. The symmetric coefficient matrix of the given form is $$\mathbf{A} = \left[\begin{array}{cc} 7 & 3 \\ 3 & 7 \end{array} \right].$$ The eigenvalues 4 and 10 of A are obtained from the characteristic equation $$(7 - \lambda)(7 - \lambda) - 9 = \lambda^2 - 14\lambda + 40 = (\lambda - 4)(\lambda - 10) = 0.$$ Eigenvectors are $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$, respectively. From (10) you thus obtain the principal axes form $Q = 4y_1^2 + 10y_2^2 = 200$. This is an ellipse. The orthonormal matrix X in (9) is $$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$ It gives the transformation x = Xy shown in the answer on p. A20 in Appendix 2. Note that the eigenvectors (the columns of X) are determined only up to a minus sign; hence another X is obtained if you take $\begin{bmatrix} -1 \\ 1 \end{bmatrix}^T$ instead of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}^T$, giving another correct answer.