PART F. OPTIMIZATION, GRAPHS

CHAPTER 20. Unconstrained Optimization. Linear Programming

Sec. 20.1 Basic Concepts. Unconstrained Optimization
Problem Set 20.1. Page 993

3. Cauchy’s method of steepest descent. The given function is
Fx) = 2(xf +x3) +x,x, = 5(x, +x,). D

The given starting value is xo = [1 —2]7. Proceed as in Example 1, beginning with the general
formulas and using the starting value later. To simplify notations, denote the components of the gradient of
f by f and f,. The gradient of fis

Vi) =i ALY =[x +x,-5 4x,+x -5]".
In terms of components,
fi=4x,+x,-5  fi=4x,+x;,-5. (I
Furthermore,
2n) = (21 )" =x-1Vfx) =[x ~tfi x2-1f]".

In terms of components,

z)(0) = x, —1fy, (1) = x2 — thy. (I
Now obtain g(r) = f(z(#)) from f(x) in (I) by replacing x, with z, and x, with z,. This gives

g =2(2+23) +z,2,-5(z; + 25).
Calculate the derivative of g(r) with respect to ¢, obtaining

g'() = 42,2 + 22) + 2122 + 2, 25— 5(Z) + 25).
From (ITI) you see that z; = —f, and zj = —f,. Substitute this and z, and z, from (IIl) into g’(¢), obtaining
g' () = 4l(x, = tf)) (=) + (2 = 1) (SR + (1) (2 — 1f2) + (= 1) (+f2) = S (=, = fa).

Order the terms as follows. Collect the terms containing r and denote their sum by D (suggesting
“denominator” in what follows). This gives

D = f{afi +4f} +fif + 1 12]. )
Denote the sum of the other terms by N (suggesting “numerator”), obtaining
N=-4x fi-4xifa-fixa—-x\fr+5fi +5f. V)
With these notations you have g'(¢) = 1D + N. Solving g'(#) = 0 for ¢ gives
N
D

Step 1. For the givenx = xo = [1  —2]" youhavex, = 1,x, = -2 and from (II)
fH=-3  fo=-12, D =684r, N =-153,
so that
t =15 =-N/D =0.223684211.
From this and (II) and (III) you obtain the next approximation x, of the desired solution in the form
X, =z(tg) =[1-15(-3) =2-1,(-12)1T=[1+3t, —-2+121)7 = [1.671052632 0.6842105:

This completes the first step.

Step 2. Instead of x4 now use x,, in terms of components,

x; = 1.671052632, x, = 0.684210526.
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FFrom this and (I1) you obtain f; = 2.368421053, f; = -0.592 105 263. From this and (IV) it follows

that 1D = 21.03531856¢+, and (V) gives N = —5.960006 925. The corresponding solution of g'(¢) =
1S

o

r=1, = 0.2833333333.
From this and (III) calculate

Xy =2(n) =[x, -1fi xp—1,/5]7 =[1.000000000 0.851973684]".
Step 3. Using (II), (IV), (V), and (III), in this order, withx = x,, calculate

fi =-0.148016316, f, = -0.592105263, D = 1.665296316t, N = -0.372500433,
hencet =t, = -N/D = 0.223684 211 and

xy =2(t;) = [1.03311115 0.984418283]7.
The further steps give

x4 = [1.000000000 0.992696070]7
xs = [1.001633774  0.999231165]7

xg = [0.999999999  0.999639 6088}

and so on. The exact solution isx = [1  1]7. This can be seen by substituting x, = y, + 1,
X, = y, + 1 into f(x), which transforms it into

208 +y3 +y1y2 -5, (VD
Except for the -5 this is a quadratic form with the symmetric coefficient matrix

C 2 n
Ll/?.’l )

The eigenvalues of this matrix are 2.5 and 1.5, with eigenvectors {1~ 1] and [1 -177, respectively
(derive!). Geometrically, this means that the principal axes of the ellipses in the figure make 45 degree
angles with the coordinate axes. Hence if you apply a 45-degree rotation (see p. 320 of the book) to (VI),
given by

"= (X, —xz)/ﬁ
y2 = (X, +X2)/ﬁ
(note that cos 45 degrees = sin 45 degrees = 1/ f2- ). you obtain the function

%X%+%X§—5

and the curves h(X) = ¢ = const (with ¢ > 5) are ellipses whose principal axes lie in the X, X,-coordinate

N —=))

Section 20.1. Problem 3. Curves f(x;, x,) = const (ellipses)

h(X) = 2(X}+X3) + = (X?—X%)-—S =

L

[
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Sec.20.2 Linear Programming

Problem Set 20.2. Page 997

1. Position of maximum. Consider what happens as you move the straight line z = ¢ = consr, beginning
with its position when ¢ = 0 (which is shown in Fig. 442) and increasing ¢ continuously.

5. Region, constraints. The given inequalities are

-05x,+ x,£2 (A)
Xy + X9 g 2 (B)
-X|+5X225. (C)

Consider (A). The equation —-0.5x, + x, = 2 gives a straight line. Putting x, = 0 gives x; = —4 as the
intersection point with the x,-axis. Putting x; = 0 gives x, = 2 as the intersection point with the x,-axis.
Putting x; = x, = 0 in the inequality gives 0 + 0 £ 2, which is true. Hence the region to be determined
extends from the line downward. Similarly for the line x; + x, = 2 in (B), which intersects the axes at

x, = 2 and x, = 2. Since for x, + x, = 0 the inequality 0 + 0 2 2 is false, the region to be obtained
extends from the line upward (away from the origin, leaving the origin outside). Similarly for (C), which
gives the line --x; + 5x, = 5, intersecting the axes at x, = -5 (putx, = O) and x, = 1 (putx, = 0) and the
region extending upward. Hence the region is bounded by a portion of (A) (above), (B) (on the left), and
(C) (below), and is unbounded (extends to infinity) on the right. Note that it lies entirely in the first
quadrant of the x, x,-plane, so that the conditions x; 2 0, x, 2 0 (often inuposed by the kind of

application, for instance, number of items produced, time or quantity of raw material needed. etc.) are
automatically satisfied.

0 1 2x3 4 5

Section 20.2. Problem 5. Region determined by the three inequalities

17. Maximum profit. The profit per lamp L, is 15 and that per lamp L, is 10. Hence if you produce x, lamps
L, and x, lamps L,, the total profit is

f(xl,XZ) = ]5)(, + 10/\'2.

You wish to determine x, and x, such that the profit f(x,, x,) is as large as possible. Limitations arise due
to the available work force. For the sake of simplicity the problem is talking about two workers W, and
W ,, but it is rather obvious how the corresponding constraints could be modified if teams of workers were
involved or if additional constraints arose from raw material. The assumption is that for this kind of
high-quality work, W, is available 100 hours per month and that he or she assembles 3 lamps L, per hour
or 2 lamps L, per hour. Hence W, needs 1/3 hour for assembling a lamp L, and 1/2 hour for assembling a
lamp L,. For a production of x, lamps L, and x, lamps L , this gives the restriction (constraint)

1

1
—x, + =x, < 100.
351+ 5 € 100 (A)
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(As in other applications, it is essential to measure time or other physical quantities by the same units
throughout a calculation.) (A) with equality sign gives a straight line which intersects the x,-axis at 300
{put x; = 0) and the x,-axis at 200 (put x, = 0); see the figure. If you put both x; = 0 and x, = 0, the
inequality becomes 0+ 0 £ 100. which is true. This means that the region to be determined extends from
that line downward. Worker W, paints the lamps, namely, 3 lamps L; per hour and 6 lamps L, per hour.
Hence painting a lamp L, takes 1/3 hour, and painting a lamp L, takes 1/6 hour. W, is available 80 hours

per month. Hence if x, lamps L, and x, lamps L, are produced per month, his or her availability gives the
constraint

%—x, + %x: < 80. (B)
(B) with the equality sign gives a straight line which intersects the x,-axis at 240 (put x, = 0) and the
X,-axis at 480 (put x; = 0); see the figure. If you put x, = 0 and x, = O the inequality (B) becomes

0 + 0 £ 80, which is true. Hence the region to be determined extends from that line downward. And the
region must lie in the first quadrant because you must have x; 2 0 and x, 2 0. The intersection of those
two lines is at (210, 60). This gives the maximum profit f = 21015 + 60-10 = 3750. The straight line

f = 3750 (the middlemost of the three lines in the figure) is given by x, = 375 — 1.5x, . And by varying ¢
in the line f = const, that is, in x; = ¢ — 1.5x,, which comesponds to moving the line up and down, it
becomes obvious that (210, 60) does give the maximum profit.
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Section 20.1. Problem 17. Constraints (A) (lower line) and (B)

Sec.20.3 Simplex Method
Problem Set 20.3. Page 1001

1. Maximization by the simplex method. The objective function to be maximized is
z = f(xy, x3) = 30x, +20x,. (A)
The constraints are
-X +x; £5, (B)
2x, +x, £ 10.

Begin by writing this in normal form (see (1) and (2) in Sec. 20.3). The inequalities are converted to
equations by introducing slack variables, one slack variable per inequality. In (A) and (B) you have the
variables x, and x,. Hence denote the slack variables by x; (for the first inequality in (B)) and x,. This
gives the normal form (with the objective function written as an equation)

z-30x; — 20x, =0
-X; + X2 +X;3 =5 (C)
2x1 + X, + Xy = 10.
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This is a linear system of equations. The corresponding augmented matrix (a concept you should
know'—see Sec. 6.3) is called the initial simplex table and is denoted by T,. Obviously it is

1 =30 =20 0 0 O
Ty = 0 -1 1 1 0 5 | D)
6 2 10 1 10

Take a look at (4) on p. 999, which has an extra line on top showing z, the variables, and b (denoting the
terms on the right side in (C)). Perhaps you may add such a line in (D) and also draw the dashed lines.
which separate the first row of T, from the others as well as the columns corresponding to z, to the given
variables, to the slack variables, and to the right sides. Perform Operation O,. The first column with a
negative entry in Row 1 is Column 2, the entry being —30. This is the column of the first pivot. Perform
Operation O,. Divide the right sides by the corresponding entries of the column just selected. This gives
5/(-1) = =5 and 10/2 = 5. The smallest positive of these two quotients is 5. It corresponds to Row 3.
Hence select Row 3 as the row of the pivot. (You cannot choose Row 2 because to eliminate —30, you
would have to take Row 1 =30 Row 2 as the new Row 1, which would give z = 0 — 30-5 = —150 as the
value of z, which is impossible since x; 2 0 and x, 2 0 by assumption.) Perform Operation O, that is,

create zeros in Column 2 by the row operations
Rowl+ 15Row3

Row2 +0.5Row3.
This gives the new simplex table (with Row 3 as before)

10 -5 0 15 150
T,=| 00321 12 10
021 0 1 10

This was the first step. Now comes the second step. which is necessary because of the negative entry =5 in
Row 1 of T,. Hence the column of the pivot is Column 3 of T,. Calculate 10/(3/2) and 10/1. The first of
these is the smallest. Hence the pivot row is Row 2. To create zeros in Column 3 you have to do the row
operations Row 1 +5/(3/2) Row 2 Row 3 —(2/3)Row 2 , leaving Row 2 unchanged. This gives the simplex

table
i 0 0 10/3 50/3 550/3
T,= 00 32 1 12 10
02 0 -23 23 1073

Since no more negative entries appear in Row 1, you are finished. From Row 1 you see that f,,,, = 550/3.
Row 3 gives the corresponding x,-value (10/3)/2 = 5/3. Row 2 gives the corresponding x,-value

10/(3/2) = 20/3. Hence the maximum value of z = f(x,, x) is reached at the point P : (5/3,20/3) in the
X,X5-plane.

Draw a sketch of the region determined by the constraints and convince yourself that the maximum

value is taken at one of the vertices of the quadrangle determined by the constraints, with vertices at (0, 0),
(5,0), (0, 5),and P.

7. Minimization by the simplex method. The given problem in normal form (with z = f(x;. x,) written as
an equation) is

z—5x,+20x, =0
—2x; +10x; + x5 =5
2x,+ Sx;+ x4 = 10.
From this you see that the initial simplex table is
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1 52000 0
Ty = 0210105
0 2 50110

Since you minimize (instead of maximizing), consider the columns whose first entry is positive (instead of
negative). There is only one such column, namely, Column 3. The quotients are 5/10 = 1/2 (from Row 2)
and 10/5 = 2 (from Row 3). The smallest of these is 1/2. Hence you have to choose Row 2 as pivot row
and 10 as the pivot. Create zeros by the row operations Row 1 — 2 Row 2 (this gives the new Row 1) and
Row 3 — (1/2) Row 2 (this gives the new Row 3), leaving Row 2 unchanged. The result is

I -1 0 -2 0 -10

Ty=| 0-210 1 0 5

0 3 0 =172 1 152
Since in the first row there are no further positive entries. you are done. From Row 1 of T, you see that
Jmin = —10. From Row 2 (and columns 3 and 6) you see that x, = 5/10 = 1/2. From Row 3 (and columns 5

and 6) you see that x, = (15/2)/1 = 15/2. Now x, appears in the second constraint, written as equation,
that is,

2x1 +SX2 +Xy = 10.

Inserting x, = 1/2 and x; = 15/2 gives 2x, + 10 = 10, hence x, = 0. Hence the minimum -10 of

z = f(x,, x;) occurs at the point (0, 1/2). Since this problem involves only two variables (not counting the
slack variables), as a control and to better understand the problem, you can plot the constraints, which
determine a quadrangle, and calculate the values of f at the four vertices, obtaining 0 a: (0, 0). 25 (at (5, 0),
=7.5 at (2.5, 1), and =10 at (0, 0.5). This confirms your result.

Sec. 204 Simplex Method: Degeneracy, Difficulties in Starting

Problem Set 20.4. Page 1007

3. Degeneracy. The given problem is
Z=x1+ x,
2x; +3xy £130
3x, +8x; £300
4x, 4+ 3x, £ 140.
[ts normal form (with z = f(x,, x,) written as an equation) is

- xl — Xz =

2x, +3xy 4+ x5 = 130
3x; +8x, + X =300
4x, +2x, + x5 = 140.

From this you see that the initial simplex table is
1 -1 -1000 O
0 2 3 100 130
0 3 8 01 0 300
0 4 2 001 140

The first pivot must be in Column 2 because of the entry -1 in this column. Determine the row of the first

To=
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pivot by calculating
13072 = 65 (from Row 2)
300/3 = 100  (from Row 3)
140/4 = 35 (from Row 4).
Since 35 is smallest, Row 4 is the pivot row and 4 the pivot. With this the next simplex table becomes
10 -0500 025 35 Row 1 + 0.25Row4
00 2 10 -05 60 Row2 - 0.5 Row4
00 65 01 -075 195 | Row3-0.75Row4 |
04 2 00 1 140 Row4
You have reached a point at which z = 35. To find the point, calculate
x; = 140/4 = 35 (from Row 4 and Column 2)

x3 =60/1 =60 (from Row 2 and Column 4).
From this and the first constraint you obtain
2x; +3x,+x3 =70+3x,+60 =130, hence x,=0.

(More simply: x,, x3, x4 are basic. x,, x5 are nonbasic. Equating the latter to zero gives x; = 0, x5 = 0.)
Thus z = 35 at the point (35, 0) on the x,-axis.

Column 3 of T, contains the negative entry —0.5. Hence this column is the column of the next pivot.
To obtain the row of the pivot, calculate

60/2 = 30 {from Row 2 and Column 3)
195/6.5 = 30  (from Row 3 and Column 3)
140/2 = 70  (from Row 4 and Column 3).

Hence you could take 2 or 6.5. Take the first of the two, so that Row 2 is the pivot row. With this calculate
the next simplex table

T|=

1 00 025 0 0125 50 Row 1 +0.25Row 2
002 1 0 -05 60 | Row2

000 -3251 0875 0 | Row3-325Row2
040 -1 0 15 8 | Row4-Row2

T2=

There are no more negative entries in Row 1. Hence you have reached the maximum z,,, = 50. You see
that x,, x5, x4 are basic, and x3, x5 are nonbasic. z,,,, occurs at (20, 30) because x; = 80/4 = 20 (from
Row 4 and Column 2) and x, = 60/2 = 30 (from Row 2 and Column 3). The point (20, 30) corresponds
to a degenerate solution because x, = 0/1 = 0 from Row 3 and Column 5, in addition to x5 = 0 and

xs = 0. Geometrically, this means that the straight line 3x, + 8x, = 300 resulting from the second
constraint, also passes through (20, 30) because 3-20 + 8.30 = 300. Now in Example 1 of Sec. 20.4 we
reached a degenerate solution before we reached the maximum (the optimal solution), and for this reason
we had to do an additional step (Step 2). In contrast, in the present problem you reached the maximum
when you reached a degenerate solution. Hence no additional work is necessary.



