CHAPTER 11. Partial Differential Equations

Sec. 11.1  Basic Concepts

Problem Set 11.1. Page 584

15.

15.

23,

Reduction to ordinary differential equations is possible, for instance, if an equation contains only
partial derivatives with respect to x or only with respect to y. The given equation

u, =u
with u = u(x, y) can be regarded as u' = u and solved to obtain
u=ce¥
where ¢ now depends on x, that is, the solution is
ux, y) = c(x)ev.
Check by differentiation that this function with arbitrary c(x) satisfies the given equation.

Substitution u, = v. This reduces the given equation u,, = u, to

u, = V.

¥
The geneial solution is
v =c(x)e¥

where the arbitrary “constant” of integration ¢ depends on x. Integration with respect to x now gives the
answer

u= Ivdx = e¥c(x) + (),

where ¢, (x) is the integral of c(x) with respect to x and ¢, (y) is the corresponding “‘constant” of
integration. Check your result by differentiation to make sure that it is correct.

Boundary value problem. Verify the solution. Observing the chain rule, you obtain by differentiation

"y = 2ax
e
and by another differentiation, with the product rule applied to 2ax and 1/(x2 + y?)
2a 4ax?
Uy = X2 +y? - (x2+yH)?" (A)
Similarly, with y instead of x,
2a 4ay’
Byy = X+yl R4yt (B)

Taking the common denominator (x? + y2)2, you obtain in (A) the numerator
2a(x*+y?) -4ax? = -2ax®+2ay?
and in (B)

2a(x*+y?) —4ay? = -2ay* +2ax.
Addition of the two expressions on the right gives 0 and completes the verification.
Now determine a and b in u(x, y) = a In (x? + y?) + b from the boundary conditions. For x? + y? = |
you have In1 = 0, so that b = 0 from the first boundary condition. From this and the second boundary

condition you have aln 4 = 3. Hence a = 3/In 4, in agreement with the answer on p. A28 in Appendix 2
of the book.
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Sec. 11.3  Separation of Variables. Use of Fourier Series
Problem Set 11.3. Page 594

3. Vibrating string: simplest solutions. In (11) a term sin px is multiplied by cos ¢pt because

nw . nw . .
p=- in (9)andl,,—cT—cp in (11°).
p and A, differ by a factor ¢, which is | in the problem, by assumption. It follows that for ¢ = 1, initial

velocity 0, and initial deflection
. 1 .
k(sm X— 5 sin Zx)

k(costsinx— —]— cos 21 sin Zx).

the corresponding solution is

2

Note that in this problem, B; = k and B, = —k/2 in (11) are given; the initial condition already has the
form of a Fourier series, so you need not do anything further.

7. Use of Fourier series. Problems 4-9 amount to the determination of the Fourier sine series of the iniiial
deflection. Each term b,, sin nx is then multiplied by the corresponding cos nt (since ¢ = 1; for arbitrary ¢
it would be cos cnt). The series of the terms thus obtained is the desired solution. For the “triangular”
initial deflection in Prob. 7 you obtain the Fourier sine series (see p. 546 with L = x and k = 1/2)

n 9 25

Multiplying each term sin ((2n + 1) x) by the corresponding cos ((2n + 1)), you obtain the answer on p.
A28 in Appendix 2 of the book.

—%(sinx— lsin 3x+ Lsin Sx—- + )

17. Separation of variables is a relatively general method of solution, particularly when it is used for
generating the terms of suitable series developments, as shown in the text.

The given differential equation is uy, ~ u = 0 or u,, = u. To solve it, substitute u = F(x) G(y),

obtaining
dF dG
& ay o
Now separate variables. This gives
dFldx _ G
F " dGldy" (A)

Both sides must equal a constant, say, &, by the argument used in the text. This gives from the left side of
(A), equated to &,

dF

e kF.
The solution is
F = ¢, e®.
Equating the right side of (A) to &, you have G/(dG/dy) = k; hence
46 _ G
dy k-

The solution is

G = Czeﬂk.
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This gives the answer u = FG = ce*™¥.

Sec. 11.4  D’Alembert’s Solution of the Wave Equation

Problem Set 11.4. Page 597

1. Speed. This is a uniform motion (motion with constant speed). Use that in this case, speed is distance
divided by time or, equivalently, speed is distance traveled in unit time.

13. Normal form. The given equation
Uge +4ug +4uy, =0

is of the form (15) with A =1, B=2, and C = 4. Hence AC — B? = 0, so that the equation is parabolic.
Furthermore, the ordinary differential equation in Prob. 11 takes the form

y2i-4y'+4 =0
You can factor this in the form
o'-22=0 (A)

From Prob. 12 you see that for a parabolic equation the new variables leading to the normal form are
v =xand z = P(x, y), where ¥ = const is a solution y = y(x) of (A). From (A) you obtain

y~-2=0, y—-2x=const, z=2x-y.
(z = y— 2x would do it equally well; try it.) Hence the new variables are
v=x
z=2x-y.
The remainder of the work consists of transforming the occurring partial derivatives into partial

derivatives with respect to these new variables. This is done by the chain rule. For the first partial
derivative with respect to x you obtain

Uy = U,V + 1,2,

u,+2u,.
The partial derivative of this with respect to x is
Hee = (U +2u,) Ve + (u, + 2uz)zz,
= Uy +2Uy + 2, +2u,,).

Assuming the continuity of the partial derivatives involved, you can interchange the order of
differentiation and have u,, = u,,. Hence u,, becomes

Uy = Uy, +4u, +4u,. (B)
Now turn to partial differentiation with respect to y. The first partial derivative with respect to y is

Uy = U, Vy + U, 2y = —U,
because v, = 0 and z, = —1. Take the derivative of this with respect to x, obtaining

Byy = Upy = ~UpyVy— Uy Zy ©
=—u,—-2u,.
Finally, taking the partial derivative of u, with respect to y gives
Uy, = —UpVy = U2, D)
=u,.

Substituting the second partial derivatives (B)-(D) into the given equation, you obtain
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e + QU + Ay = 1y, + AUy, +4uy,
—4u, - 8u,
+4u,
=u, =0.

This is the normal form for parabolic equations.

Sec. 11.5  Heat Equation: Solution by Fourier Series

Problem Set 11.5. Page 608

3. Single sine terms as initial temperatures lead to solutions of the form (9),

17.

. nAmx  _
B, sin € i
that is, single eigenfunctions (which in more complicated cases would not be sufficient for satisfying the
inital condition). The initial condition
sin (0.1 zx) = sin (7x/10) = sin (nx/L)

(where L = 10) shows that n = 1, that is, the initial condition is such that the solution is given by the first
eigenfunction. From the data for K, o, and p calculate ¢* = K/(op) = 1.75202 (see the very first equation
in Sec. 11.5). This gives the answer

u = sin (0.1 wx) exp (-1.752027224/100)
where L? = 100 results from

Heat flow in a plate. The problem corresponds to the situation discussed on p. 606 of the text for a
rectangle because the boundary conditions are as in the text, with f(x) = 20 = const. Hence you can

obtain the solution of the problem from (19) and (20) with @ = b = 24. You have to begin with (20),
which for the problem takes the form

Al = 2 u sin JEX
" 24sinhnr Jo 24

40 24 cos X 24
24 sinh nn nn 0 24

40
" " nmsinh nn (cos nm — 1)

4
nm sinh nr

B
nn sinh nm

and O for even a. If you substitute this into (19), you obtain the series

I

(=D"-1)

g l sin 2% sinh 272

“= nsmhnr 024 24

where you sum over odd n only because A; = 0 for even n. If in this answer you write 2m — 1 instead of n,
then you automatically have the desired summation and can drop the condition “over odd n only”. This is
the form of the answer given on p. A29 in Appendix 2 of the book.
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Sec. 11.6  Heat Equation: Solution by Fourier Integrals and Transforms
Problem Set 11.6. Page 615

3. Solutions in integral form are obtained by using the Fourier integral (instead of the Fourier series, \yhose
use is restricted to periodic solutions). These so]utions-a‘re of the form (6). Hfare, A_(p) apd B(p) are given
by (8), which shows that they are determined by the initial temperature f(x) in the infinitely long
(practically: very long) bar or wire. The given initial temperature in Prob. 3 is

fxy=1if ~1<x<1 and f(x) = 0 otherwise. 8]

This models a situation when a short portion of the bar is heated, whereas the rest of it is kept at
temperature 0.

From (8) and (I) you obtain
1
1
A(p) = %I cos pvdv = n—lp—sinpv an
-! v=—I1
| . . 2 sin
= -ﬁ(smp -sin(-p)) = _Tp'ﬂ
Furthermore, from (8) and (I),
1 ¢ .
= = dv =0,
B(p) = = j_lsmpv v (o)

this follows immediately without calculation by notirg that f(x) is an even function, so that f(x) sin px is
odd, and you integrate from —1 to 1, so that the area under the curve from —1 to 0 is minus the area under

the curve from O to 1. Substituting (I) and (IIT) into (6) in the text gives the answer shown on p. A29 in
Appendix 2 of the book.

. Use of Sec. 10.8. That section and its problem set contain integrals that can be used for the present
purpose. The initial temperature in Prob. 5 is “wavy” with a relatively fast decreasing maximum amplitude
and alternatingly positive and negative temperatures given by f(x).

sinx is odd. Hence (sinx)/x is even, so that B(p) in (8) is zero. For A(p) you obtain from (8)
1 ¢! sinv
A(p) = TJ-I —— Ccos pvdy
2 ! siny ‘
= ?IOTCOSP"d"- Iv)

This is precisely the integral in Prob. 2 of Problem Set 10.8, except for notation. Its value is /2 if

0 < x < 1. Multiplication by 2/x (the factor in (IV)) gives the values A(p) = 1if0 < x < 1 and A(p) = 0
ifx> 1.

(The value at x = 1 is (7/4)(2/x) = 1/2; this is of no interest here because we are concerned with an
integral, (6).) Substitution of A(p) into (6) gives the integral from O to 1 shown on p. A29 in Appendix 2.
Sec. 11.8  Rectangular Membrane. Use of Double Fourier Series

Problem Set 11.8. Page 626

7. Coefficients of a double Fourier series can be obtained following the idea in the text. For fx,y) =yin

the square 0 < x < 7,0 < y < « the calculations are as follows. (Here we use the formula numbers of the
text.) The desired series is obtained from (18) with a = b = & in the form
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flx,y) =y = Z (Z B, sin mx sin ny) (18)
= Z K.(y)sinmx  (sum over m)
where the notation

K.(y) = Z B, sinny (sumover n) (19

was used. Now fix y. Then the second line of (18) is the Fourier sine series of f(x,y) = y considered as a
function of x (hence as a constant, but this is not essential). Thus, by (6) in Sec. 10.4 its Fourier
coefficients are

ba = Ka®) = = [ ysin mxd, (20)

You can pull out y from under the integral sign (since you integrate with respect to x) and integrate,
obtaining

K.(y) = ,—?H—(—cos mr+ 1)

ENEEILI

by .
= 77 ifmisodd and O foreven m

(because (—1)™ = | for even m). By (6) in Sec. 10.4 (with y instead of x and L = ) the coefficients of the
Fourier series of the function K, (y) just obtained are

2 ¢~ .
Bow = !o K. (y) sin ny dy

2 (~ dysinn
= fJ'O_LXdy

minw

8 x .
= onsm ny dy.

Integration by parts gives

8

B, = —— (—ycos rzy|)=o+jo cos ny dy).

The integral gives a sine, which is zero at y = 0 and y = nz. The integral-free part is zero at the lower
limit. At the upper limit it gives

_1\+!
S = 78

nmm? nmn
Remember that this is the expression when m is odd, whereas for even m these coefficients are zero.

Sec. 11.9  Laplacian in Polar Coordinates

Problem Set 11.9. Page 628

3. Laplacian in polar coordinates. The alternative form is sometimes more practical than (4), which is
obtained from it simply by performing the indicated product differentiation.

5. Solution depending only on r. If r is the only independent variable involved, you have to write the usual
derivatives instead of partial derivatives. Hence (4), with the last term absent, now gives

u' +u'tr = 0.

This can be solved for «’ by separating variables and subsequent exponentiation, giving ' = a/r, where a
is an arbitrary constant. Now integrate.
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9. Temperature in a circular disk. The disk is bounded by the circle x? + y* = r? = 1. The boundary
temperature means that the left half of the circle is kept at temperature 0. At x = 0, y = —1 (the lowest
point of the circle) the temperature jumps from 0 to —n/2. Then it increases steadily to O (this temperature
is reached where the circle crosses the x-axis) and on to /2 (reached at the uppermost pointx = 0,y = 1

of the circle), where it jumps down to 0.

The temperature inside the disk is obtained from (6) (see Team Project 6). For this you need the
Fourier series of the boundary temperature (sketch it over the 8-axis from —x to in & the usual fashion).
This is an odd function; hence that series is a Fourier sine series. Because it has period 27, the Fourier
coefficients are obtained from (6*) in Sec. 10.4 (or from the original Euler formulas in Sec. 10.2). To
evaluate the integral, use integration by parts. The result is

2 . 1 . 2 . 1 .
u—Tsm9+5sm20—9—ﬂsm39—zsm49+--',

in agreement with the answer to Prob. 15 in Problem Set 10.2. From this the temperature in the disk is
obtained by multiplying each term by a power of r, namely, sin n8 is multiplied by »*; thus

. 2 3 4

u= z,t—'sin 0+ %sin 28 - %%sin 36— %sin 48 4 ---.
Try to sketch the isotherms by noting the following. You know that the left half of the boundary circle is
at temperature 0. So is the x-axis because it corresponds to § = 0 and 8 = =, for which the sine is 0. All
positive isotherms must begin at the corresponding boundary points of the circle in the first quadrant and
must end at the jump aty = 1 on the y-axis, and they must remain in the upper half of the disk. Similarly
in the lower half of the disk, for the negative isotherms between —7/2 and Q. Since the boundary
temperature is symmetric with respect to the x-axis, so are the isotherms, that is, a negative isotherm is
obtained by reflecting the corresponding positive isotherm in the x-axis. At the upper jump, isotherms,
such as u = 0, n/8, n/4, 3n/8, must make equal angles with one another (/4 for these four isotherms).
Why?

This discussion is typical. It shows that in many cases, one can obtain substantial qualitative
information without actual computation.

Sec.11.10  Circular Membrane. Use of Fourier-Bessel Series

Problem Set 11.10. Page 634

7. Nonzero initial velocity. Differentiating (12) with respect to ¢, you obtain

w0

u(r1) = Z(—amxm $in At + by Ay COS A,,,t)Jo( Sul ))

For r = 0 this must equal g(r), the given inital velocity in (4). Since sin 0 = 0 and cos 0 = 1, you have

0.0) = 3" badno( 22L) = g0,
m=1

Hence the b, A, are the coefficients of the Fourier-Bessel series of g(r). Accordingly, you obtain their
form from (14) with a,, replaced by b,, A, on the left and f(r) replaced by g(r) under the integral sign.
Division by A4,, = ck,, = ca,/R (see before) gives (15) because a factor R cancels.

m=]

13. Periodicity. This follows from the fact that 8 is an angular variable (an angular coordinate), which is

determined only up to integer multiples of 2, so that its increase or decrease by 2, 47, etc. does not
change the point to which it belongs.

To express (20) in terms of the usual Bessel equation, set kr = s, thus r = s/k, d/dr = kd/ds, so that
by the chain rule,

(SUKYEW + (STKW + (s2 =n)W =0,  s2W+sW+ (s2 - n2)W = 0,
where dots denote derivatives with respect to s.
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15. Membrane vibrations also depending on angle. These solutions are given by (22). This formula is a
consequence of the steps of separation in Probs. 11-14. To understand it completely, it is worth thinking
about how this case relates to that of independence of angle. In the latter case, the Bessel equation for the
radial coordinate r is (7%), which is Bessel's equation with v = 0. The latter is obtained from Bessel’s
equation (7) involving a constant k (not to be confused with the parameter v; & slips into the argument,
whereas v specifies the whole function and distinguishes it from a Bessel function with another value of
v). That arbitrary k is later determined by the boundary condition that the membrane be fixed on the
boundary. In this case of independence of the angle you are concerned exclusively with the Bessel
function J,. And there is no differential equation for the angle—of course not because the angle does not
appear. In the case of angular dependence you do obtain Bessel functions with v different from O (hence,
greater than zero; Bessel’s equation involves the square v2, so you can always assume v to be positive or
0). And you have (19), the equation for the angle, which for reasons of periodicity leads to the integer
valuesv=n=1,2,3,.. . Instead of the zeros a,, of J, resulting from fixing the membrane along the
boundary circle you now have the zeros a,, of J, resulting for the very same reason.

For n = 0 the solutions u,,, in the first line of (22) reduce to those in (11), and the solutions wuy, in the
second line of (22) are no longer present when n = 0 because then sin n 6 is identically zero.

Sec. 11.11  Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

Problem Set 11.11. Page 641

7. Potential between two spheres. Since the region is bounded by two concentric spheres, and since these
spheres are kept at constant potentials, the potential between the spheres will be spherically symmetric,

that is, the equipotential surfaces will be concentric spheres. Now a spherically symmetric solution of the
three-dimensional Laplace equation is

u(ry =clr+k

(see Prob. 6). The constants ¢ and k can be determined from the two boundary conditions #(2) = 220 and
u(4) = 140; thus,

u(2) = cl2+k =220 (A)
and u(4) = c/4 + k = 140 or, multiplied by 2,
2u(4) = c/2 + 2k = 280. (B)

(B) minus (A) gives k = 60. From this and (A) you have ¢/2 = 160, hence ¢ = 320. Check the result.

13. Special Fourier-Legendre series. These series were introduced in Example 2 of Sec. 4.8. They are of the
form

(10P0+01P| +02P2+... .
Since x is one of our coordinates in space, you must choose another notation. Choose w or use ¢ obtained

by setting w = cos ¢. The Legendre polynomials P,(w) involve powers of w; thus P,(cos ¢) involves
powers of cos ¢. Accordingly, you have to transform cos 2¢ into powers of cos ¢. This gives

G =2cos2¢p-1=2w2-1.

This must now be expressed in terms of Legendre polynomials. From the occurring powers you see that
you need P, and Py. The result is

2wE =1 = 3 Py(w) = +Po(w). ©
Check this by using the definitions of P, and Py in Sec. 4.3.
From (C) and (16) you finally see that the answer is

u(r, @) = - -;— Py(cos ¢) + %Pz(cos ¢).
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Note that in the present case the coefficient formulas (18) or (18*) were not needed because the boundary
condition was so simple that the coefficients were already known to us. Note further that Py = 1 = const,

but our notations Py(w) and Py(cos ¢) are correct because a constant is a special case of a function of any
variable.

21. Transformation of the Laplacian. Set r = 1/s, hence s = 1/r. You have to transform the partial
derivatives occurring in the Laplacian in polar coordinates. By the chain rule you obtain for the first partial

derivative
1 2
Uy = ugS, = U | —— | = —stu;,.
r

From u, = u,s. you obtain for the second partial derivative

2
2 2 _ 3
U = Uy Sp +UsSpe = U | —— | tUs—5 =5 us+2s5°u,.
r r
Substituting these expressions into the Laplacian gives
Upr + (Ur)u, + (UrH)ugg = s*ugy + 253 u, + s(—s%u,) + 5s%ugq.

On the right side take the second and third terms together. Then you see that this is s* times the Laplacian
in s = 1/r and 8. Hence if u(r, 8) satisfies Laplace’s equation, so does v(r,8) = u(1/r,8), as claimed.

Sec. 11.12  Solution by Laplace Transforms

Problem Set 11.12. Page 646

5. First-order differential equation. The boundary conditions mean that u(x,r) vanishes on the positive
parts of the coordinate axes in the xr-plane. Let U be the Laplace transform of u(x, ) considered as a
function of r; write U = U(x, s). The derivative u, has the transform sU because u(x,0) = 0. The
transform of ¢ on the right is 1/s2. Hence you first have

X
xUg+sU=—.

N
This is a first-order linear differential equation with the independent variable x. Division by x gives
sU 1
Ut 5 =7

Its solution is given by the integral formula (4) in Sec. 1.6. Using the notation in that section, you obtain

p = six, h=_[pdx=slnx, eh=x, et =1xS.

Hence (4) in section 1.6, with the “constant” of integration depending on s, gives, since 1/s? does not
depend on x,

Ulx. s) = ;—I(J'::—;dx+c(s)) B CS) * sz(sx+ 1)

(note that x* cancels in the second term, leaving the factor x). Here you must have ¢(s) = 0 for U(x, s) to

be finite at x = 0. Then

X

Ulx,s) = 5——.
=9 = S6+1)

Now

1 1 1 1

—_— .
s2(s+1) s s s+
This has the inverse Laplace transform ¢ — 1 + e~ and gives the solution u(x, f) = x(t— 1 + ¢™).




