PART D. COMPLEX ANALYSIS

CHAPTER 12. Complex Numbers and Functions.
Conformal Mapping

Sec. 12.1  Complex Numbers. Complex Plane
Example 2. The check is zz, = (£ + 23)(9-2i) =8 +3i.
Problem Set 12.1. Page 656

1. Powers of i. i* = -1 and + = —i will be used quite frequently. A formal derivation of i* = —1 from the
multiplication formula is shown in the text. 1/i = —ifi(~i) = -i/1 = —i follows from (7).

3. Multiplication. For z, = 4 + 37/ and z, = 2 — 5i the recipe on p. 654 at the top [which results from (3)]
gives

212, = (4+30)(2-510)
=4.2-4.5{+3i-2+i%-3-(-5)
=8-20i+6i+15=23-14i

With a little training you can go faster and write down first the two terms of the real part and then the two
terms of the imaginary part; thus

(4+3)(2-5i)=8-(-15)+i(-20+6)
=23-14i.

5. Division. Given z; = 4 + 34, find 1/z,.
This is a simple special case of (7), which gives
1 1 4-3] 4-3i

T 4+3i  (4+3)(@-3i) 16+9 = 0.16-0.124.

17. Real part. Complex conjugate. Let z = x + iy. Find Re (2%/Z).
First determine z%/Z. According to (7) multiply numerator and denominator by the conjugate of the
denominator, which is z, and use that zZ = x* + y. This gives
:\3
e = iy = )
x*+y
_ X +3ixty-3xy? —iy’
x2 +y? '
where the minus signs come from i2. The real part of this is obtained by omitting the two terms that have
an I. This gives the answer

3I_ 2
Re (27) = Z3%Y°
xX“+y

Sec. 12.2  Polar Form of Complex Numbers. Powers and Roots

Generalized triangle inequality (6). Drawing the complex numbers as little arrows and letting
each tail coincide with the preceding head, you get a zigzag line of n parts. The left side of (6)
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Section 12.3. Problem 7. Hyperbola H bounding the region R between the two branches

11. Function values. z = 7+ 2i gives 1 —z = —6 — 21, hence
1 —6+2i _ 6+2i ____i+;’
-z (-6-20)(-6+2i) 36+4 20 20°

Hence Re (f) = -3/20 and Im (f) = 1/20.

13. Continuity. First of all, the only point where f(z) = (Im z)/lzl could be discontinuous is the origin because
Im z = y is continuous everywhers. Now

f(2) = Um 2zl = y/Jx? +y2. (A)
Continuity at 0 would mean that f(z) approaches O as z approaches 0 from any direction. But from (A) you
see that on the x-axis (y = 0) the function has the value O for any x # 0, whereas on the y-axis (x = 0) you
obtain the value y/,/'y_ = y/lyl, which is +1 for positive y and —1 for negative y. Hence f(z) is
discontinuous at z = 0.
More simply, if you use polar coordinates, you have

Imz=rsin8, ki=r f(2)=(rsin8)/r=siné.

From the last expression you get 0 on the positive ray of the x-axis (8 = 0), 1 on the positive ray of the
y-axis (8 = n/2), 0 on the negative ray of the x-axis (6 = n), and —1 on the negative ray of the y-axis
(6 = 37/2 or -n/2, etc.). This agrees with the results obtained just before.

19. Derivative. The differentiation rules are the same as in calculus. Hence f(z) = (5 + 3i)/z> has the

derivative
(o) = _3_(::_3’1. (A)
For z = 2 + { you obtain by the usual division rule (Sec. 12.1)
ol @=dt (@)Y _ (3-4i)® _ 9-16-24i
2 @+ 2+t (4+1)* 625 625

Multiplying this by the factor -3 (5 + 3:) in (A) finally gives
(=15-9i)(=7-24i) _ —111+423i
625 625

If you had difficulties with this problem, review a few calculations from Sec. 12.1 and the corresponding
problem set because the differentiation as such was done as in calculus,
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Sec.124  Cauchy-Riemann Equations. Laplace’s Equation

Problem Set 12.4. Page 673

1. Check of analyticity. The form of the given function, f(z) = z®, shows that in the present case, (7) will be
simpler. Indeed, in polar coordinates you simply have

f(z) = r(cos 66 + i sin 68).
Hence
u=rcos68, v=résin6d.

The expressions needed in (7) are obtained by straightforward differentiation. In the first Cauchy-Riemann
equation in (7) you need

u, =6r’cos68 and v, = 6r%cos60,

with the factor 6 in v, resulting from the chain rule. From this you see that this first equation u, = ve/ris
satisfied. In the second Cauchy-Riemann equation you need

,=6r"sin68 and uy, = —6r%sin 66.

If you divide uy by —r, you obtain v,. Hence the second Cauchy-Riemann equation is also satisfied, and
you can conclude that z® is analytic for alt z = 0.

z% is also analytic at z = 0. This dees not follow from (7), but you have to use (1), which involves

more work. (Of course, this will make your work on (7) superfluous.) You can get u and v by using the
binomial theorem, obtaining

(x +iy)8 = x® + 6x3(iy) + 15x*(iy)? + 203 (iy)® + 15x% (iy)* + 6 x (iy)*® + (iv)®
=x8+6ix3y— 15x*y? - 20ix3y3 + 15x2y* + 6ixy® — y5.
The terms without an i give the real part
u=x5-15x"y? + 15x2y — y5,

The terms containing i give the imaginary part

v=06x>y-20x3y’ +6xy°.
In the first Cauchy-Riemann equation you need the partial derivatives

u, = 6x° - 60x3y? + 30xy*
and

v, = 6x3 - 60x3 y? + 30xy*.
Hence the first Cauchy-Riemann equation is satisfied. The second one involves

v, = 30x%y - 60x2y3 + 6y°
and

uy, = =30x'y + 60x?y* — 6y°.

You see that v, = —u,. so that the second Cauchy-Riemann equation is satisfied, too. This proves
analyticity of z¢ for all z.

3. Cauchy-Riemann equations. Analyticity. The function
f(?) = u+iv=e"(cosy+isiny) (A)

has the real part u = e* cos y and the imaginary part v = e* sin y. The familiar rules for differentiating the
exponential function and cosine and sine show that the Cauchy-Riemann equations (1) are satisfied for all
z=x+1iy.Indeed,

U, = e cosy=v,

u, =-e*siny = -v,.
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You will see in Sec. 12.6 that (A) defines the complex exponential function. Wheny = 0, sothat z = x is

real, thencosy = cos 0 = 1, siny = sin 0 = 0, and f(z) becomes &7, the exponential function known
from calculus. More on this follows in Sec. 12.6.

17. Harmonic functions appear as real and imaginary parts of analytic functions. If you remember that the
given function u is the real part of 1/z, you are done; indeed, by the division rule,

l= I x=ly

z  x+iy  xt+y?

This also shows that a conjugate harmonic of u is —y/(x? + y?).

If you don’t remember that, you have to work systematically by differentiation, beginning with proving
that the Laplace equation (8) is satisfied. Such somewhat lengthy differentiations (as well as other
calculations) can often be simplified (and made more reliable) by introducing suitable shorter notations for
certain expressions. In the present case you can write

u= % where F =x2+y% Then F, =2x, F,=2y. (A)
By applying the product rule of differentiation (and the chain rule), not the quotient rule, you obtain the
first partial derivative

1 x(2x
Uy = f - JFTZ (B)
By differentiating this again, using the product and chain rules you obtain the secornd partial derivative
2x 4x 8x}
uxx——‘F—F'i'F. (@]
Similarly, the partial derivative of u with respect to y is obtained from (A) in the form
2
uy = —?xzx. (D)
The partial derivative of this with respect to y is
2x  8xy?
Uy, = — F + T (E)
Adding (C) and (E) and remembering that F = x? + y? give
8x 8x(x?+y?) 8x 8x
lllu.'i-ll”,=—~F+'——F3 =—F+F=O.

This shows that u = x/F = x/(x + y?) is harmonic.
Now determine a conjugate harmonic. From (D) and the second Cauchy-Riemann equation you obtain

Integration of 2x/F? with respect to x gives —1/F, so that integration of v, with respect to x gives

=X ___ Y
2 Ty + h(y).
Now show that A(y) must be a constant (which you can choose to be 0). By differentiation with respect to
y and taking the common denominator F2 you obtain
1 2y? —xZ4y?

v,.=—F+ i +h'(y).

On the other hand, you have from (B)

By the first Cauchy-Riemann equation, v, = u,, so that A'(y) = 0 and h(y) = const, as claimed.
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Sec.12.5  Geometry of Analytic Functions: Conformal Mapping
Problem Set 12.5. Page 678

3. Mapping w = 1/z. Taking absolute values, you obtain
Iwi =11/z1 = Uzl

This shows that the concentric circles Izl = 1/3,1/2,1,2,3 are mapped onto the concentric circles
Iwl = 3,2,1,1/2,1/3, respectively, in the w-plane. In particular, the unit circle is mapped onto the unit
circle. For this reason this mapping is often called a reflection in the unit circle. The points z = 1 and
z = —1 are “mapped onto itself’; this means, they are mapped onto w = 1 and w = —1, respectively. Other
points on the unit circle are not mapped onto itself; for example, z = i is mapped onto w = 1/i = —i,
Circles inside the unit circle are mapped onto circles outside the unit circle, and conversely.

For arguments you have

arg w = arg (%) = -—argz,

as follows from (11) in Sec. 12.2 with z; = 1 and z, = z. Hence Arg z = 0 (the positive ray of the real
axis in the z-plane) maps onto Arg w = 0. Furthermore, Arg z = n/4 (the bisecting line of the first

quadrant) is mapped onto Arg w = —n/4 (the bisecting line of the fourth quadrant in the w-plane). And so
on.

9. Mapping of a sector. The given region in the z-plane is the sector bounded by the positive ray of the
y-axis and the bisecting line y = —x of ihe second quadrant. Since w = z? doubles angles at the origin, the
image of the sector is the sector bounded by the negative ray of the u-axis and the negative ray of the
v-axis, where w = u + iv, as usual. Thus this image is the third quadrant in the w-plane. More formaily,

Argw = Argz? = 2 Argz = 22

3r
7 and 2—4—,

respectively.

17. Parametric representations of curves are of great importance in our further work, not only in connection
with mappings, but also in integration methods in the complex plane, as we shall see in the next chapter.
A circle of radius r with center at z = 0 is given by
x2+y?=r2 - (A)
Parametrically represented, you have
X =1rcost, y=rsint. (B)

Indeed, substituting (B) into (A), you see from cos?z + sin®t = 1 that (A) is satisfied. In complex form this
can be written

z=x+iy=rcost+irsint =r(cost+isint).

For a circle of radius r with center at (a, b), thus at z = a + ib in complex notation, you can write instead of
(B)

x—a=rcost, y—b=rsint (@]
Then you obtain instead of (A) more generally the familiar nonparametric representation

(x-a)’+(y-b)? =r%

From (C) you now have

x=a+rcost, y=b+rsint
or in complex form

z=x+iy=a+rcost+i(b+rsini).

In the problem, a = 3, b = -1, r? = 4, so that r = 2 and the answer is
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z=3+2cost+i{-1+2sin1).

Sec. 12.6 Exponential Function
Problem Set 12.6. Page 682

- 1. Function values. From (1) you obtain
e = e2(cos3m+isin3n) = €2 (-1 +i.0) = —e? = -7.389.
From (10) you obtain the absolute value
letl = &* = ¢* = 7.389.

7. Polar form (6). z = 4 + 3i has the absolute value
Izl = J42+32 =5
and the argument
Arg z = arctan (3/4).

Hence (6) gives the polar form
z= Seim-ctan(.‘w)

= 50643500
You can check this by calculating
2 = 5(cos 0.643501 +i sin 0.643501)
= 5(0.8 + 0.6i)
=4+ 3i,

13. Equation. Since e* > 0, the given equation e* = -3 has no real solution. Taking absolute values and
using (10) gives

letl=e*=3, hence x=1In3.
From this and (1) you obtain
et =3(cosy+isiny) =-3,

hence cos y = —1 and siny = 0. A solution is y = &. Further solutions are = + 2nn, where n is a positive
integer. Together,

z=x+iy=In3+i(r+2nm).

17. Conformal mapping. The given domain in the z-plane is a horizontal strip of width n/2 bounded by the
x-axis and the horizontal straight line y = n/2. From (10) you see that y is the argument of w = ¢*. Hence
that domain is mapped onto the open first quadrant Q, because Q is precisely the domain consisting of all
complex w whose principal argument lies between O and #/2.

Sec. 12.7 Trigonometric Functions. Hyperbolic Functions
Problem Set 12.7. Page 686

1. Real and imaginary parts of cosh z. Use the definition (11), multiply it by 2 (in order not to carry 1/2

along), and set z = x + iy as usual. Because of the definition of the exponential function in Sec. 12.6 this
gives
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2coshz=e*+e7?

=e*(cosy+isiny) +e*(cosy—isiny).
Next collect cosine and sine terms, obtaining
2coshz=(e*+e™)cosy+i(ef —e™)siny.

The expressions in the parentheses are the real hyperbolic functions 2 cosh x and 2 sinh x, respectively.
Division by 2 now gives the expected result

cosh z = coshx cos y + i sinh x sin y.
The other formula follows by a similar straightforward calculation.

7. Function values. Your CAS may be able to give function values of the complex trigonometric or
hyperbolic functions directly. On a calculator you may use the formulas (6) and those in Prob. 1 to
calculate those values from values of the real exponential function, cosine, and sine. In the problem,

cosh (=3 - 61) = cosh (=3) cos (—6) + i sinh (-3) sin (-6)
= cosh 3 cos 6 + i sinh 3 sin 6

because in the last term you have a product of two minus signs. Expressing cosh and sinh in terms of
exponential functions and evaluating them, you obtain from the second line

cosh (=3 - 61) = % (20.0855 + 0.0498)-0.960170 + % 1(20.0855 — 0.0498)-(~0.279415)
= 9.66667 — 2799151,

11. Equation. cosh z = 1/2 has no real solution because cosh x 2 1 for any real x. Use the formula in Prob. 1.
For the real parts you have
coshxcosy = 1/2 (A)
and for the imaginary parts
sinhxsiny = 0. B)
From (B) you have x = 0 or y = nx, where n is any integer, positive, zero, or negative.
For x = 0 you get from (A) the equation cos y = 1/2. Hence
i1 Sr
= -3—+2n7r or y= T+2mt,

where n is any integer. This agrees with the answer on p. A32 in Appendix 2 of the book (which is merely
slightly differently written; note that S5n/3 — 27 = —n/3 ; this explains it).

For y = nx you have in (A)
cosh x cos n = (—1)" cosh x.

This is either at least equal to +1 (if n is even), or at most equal to —1 (if n is odd). Hence in none of these
two cases it can be equal to 1/2, so that you get no further solutions.

17. Mapping w = cosz.
w = u+iv = cos z =cosx coshy—isinx sinhy. A)

For the x-axis (y = 0) this becomes cos x and varies from 1 to —1 as x varies from O to x (the lower edge of

the rectangle in the z-plane to be mapped). For the y-axis (x = 0) the equation (A) gives cosh y , which
varies from 1 to cosh 1 as y varies from O to 1.

For the vertical line x = & the equation (A) gives —cosh y; this varies from -1 to —cosh | as y varies

from y to 1 along the right boundary of the given rectangle. Hence three edges of the rectangle are mapped
into the real axis (the u-axis) of the w-plane.

Finally, for the upper edge y = 1 you have in (A)
u = cos x cosh 1, = —sin x sinh 1. (B)
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Using cos?x + sin’x = 1, you obtain from this

u? v?

+
cosh?l  sinh?1
This represents an ellispse with semiaxes cosh 1 = 1.54308 and sinh 1 = 1.17520. Since part of the u-axis
is part of the boundary of the image, the image must be the upper or lower half of the interior of this

ellipse. To find out, calculate the image of the midpoint of the upper edge of the rectangle, which has the
coordinates x = 7/2, y = 1. As the image of this point you obtain from (A)

cos (m/2+1i) = 0—isinn/2sinh 1 = —isinh 1.

Since this is a point in the lower half-plane, the image of the rectangle must lie in the lower half-plane, not
in the upper. More simply: sinx in (B) is positive (except at x = 0 and x = &), hence v in (B) is negative.

0.5 1 13

Section 12.7. Problem 17. Image of the given rectangle under w = cos z

Sec. 12.8 Logarithm. General Power

Problem Set 12.8. Page 691

3. Analyticity. Use Lnz = Inlzl + i Arg(z) = In r + 6. Then show that (7) in Sec. 12.4 is satisfied
everywhere except at z = 0 and on the negative ray of the x-axis.

5. Principal value. Note that the real logarithm of a negative number is undefined. The principal value Ln z

of In z is defined by (2), where Arg z is the principal value of arg z . Now recall from Sec. 12.2 that the
principal value of the argument is defined by

-7 <Argfsn.

In particular, for a negative real number you always have Arg 8 = +n, as you should keep in mind. From
this and (2) you obtain the answer

Ln(-5) =InS+in.

13. All values of a complex logarithm. You need the absolute value and the argument of —e~ because by (1)
and (2),

In(~e7) =Inl-el+iarg(-e”) =Inl-el+iArg (-e?) £ 2nni.

Now the absolute value of the exponential function e* with a pure imaginary exponent always equals 1, as
you should memorize.; the derivation is

le?l = Icosy+isinyl = JCOSZ)H- sin’y = 1.
(Can you see where this calculation would break down if y were not real?) In our case,

I—el=1, hence Inl-e1=0. (A)
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The argument of —e™ is obtained from (10) in Sec. 12.6, that is,
arg (e°) = Argle’)*2nm = y+2nnm.
In Prob. 13 you have z = —i, hence y = —1. and, therefore,
arg (e) = -1£2nm. (B)

Finally, by (9) in Sec. 12.2, the argument of a product is the sum of the arguments of the factors, up to

integer multiples of 27 . Hence multiplying e~ by —1 corresponds to adding 7 in the argument. From (B)
you thus obtain

arg(—e¥)=n-1+2nnm. (©)
From (A) and (C) you obtain the answer

In(=e)=(r-1Dit2nni.

21. General power. You first have

34 = 3437 = 81.37 (A)
To the last factor apply (8) with a = 3 and z = —i. This gives
3-i = g=iln3

On the right now use the definition of the exponential function (Sec. 12.6). This gives
3~ = cos (In 2) - i sin (in 3).
Substituting this into (A) gives the answer
3% = 81(cos (In 3) — i sin (In 3))
= 36.841 — 72.137i.

Sec. 12.9  Linear Fractional Transformations. Optional

Problem Set 12.9. Page 698

1. Inverse. Write (1) as (cz+d)w = az+ b and and take the z-terms to the left and the other terms to the
right,

z2(cw-a) = b-dw. (A)

Now divide. Note that the result is determined only up to a common factor in the numerator and the
denominator. For instance, to obtain (4) from (A), multiply (A) by —1 on both sides.

3. Occurrence of infinity. For the given data the left side of (6) takes the form
w—(-1) —i—1

- . B
wol  Si-CD) ®
The rule of complex division in Sec. 12.1 shows that the second quotient has the value —i. Hence (B)
reduces to
—i{w+1)
w—1 ©

Infinity occurs on the right side of (6), which for the gives data becomes

z-0 l1-w

z-o 1-0 ®)

By Theorem 2 you have to replace the quotient of 1 — oo divided by z — o by the value 1. Hence the whole
expression (D) reduces to z. From this and (C) you have by multiplying by w — 1

—iw+ 1) =z(w-1).
Reshuffling terms gives



122 Complex Analysis Part D

w(-i—2z)=-z+i

Division by —i — z and multiplying both the numerator and the denominator of the result by -1 you obtain
—Z+1 z—i
W= — = —,
-i-z z+i

in agreement with Example 2.

* 13. Determination of a linear fractional transformation. Problems 7-14 can be solved by a straightforward

use of (6), a formula not to be remembered, but to be looked up when needed. For the data in Prob. 13 the
left side of (6) is

w=0 S o—(-1)
w— (—'1) w-0 )
Replacing the quotient containing the infinities by 1, there remains

w
w+1l'

The right side of (6) is
z—i —i-0 z-i
-0 -—i-i 2z

Equating the two results and multiplying through by the two denominators, you obtain
w-2z=W+1)(z-1i).

Coilecting the w-terms on the left and the others on the right, you have
wRz-(z-0) =z-1i.

Simplification and division finally gives

z—i
W= —
Z+i
You may also get the result by using the given data one after another, as follows, starting from (1).
z = i maps onto w = 0. Hence in the numerator of (2) you have ai+ b = 0, b = —ia . z = —i maps onto

w = o, Hence in the denominator of (2) you must have c(—i) +d = 0. Hence, so far you have
az-ia
we= 2 (E)

cz+ic

z = 0 maps onto w = —1. This gives -1 = —ial/(ic), hence ¢ = a, so that the quotient in (E) becomes
(az-ia)l/(az+ia).Now divide by a.

17. Matrices. It is clear that there must be a condition on the coefficients a, b, ¢, d in (1) and (4), as stated in
the problem, because these coefficients are determined only up to a constant factor.

Sec. 12.10 Riemann Surfaces. Optional
Problem Set 12.10. Page 700

1. Square root. If z moves on the unit circle, it has absolute value |z| = 1. The image under w = Jz also
has absolute value Iwl = 1, as you can see from

z=re’? w= [re, (A)
Hence the image point also moves around the unit circle (in the w-plane). Since (A) shows that
Argw = %arg zZ,

it follows that as z begins its motion and moves once around the unit circle, w will move fromw = 1 to
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w = —1 in the upper half-plane. When z continues and moves once more around the unit circle, w wili
move from —1 to 1 in the lower half-plane.

5. Logarithm. Use Fig. 318 in Sec. 12.8 as a guide to visualizing the answer on p. A32 in Appendix 2. Note
that on the unit circle z = 1 you have In Izl = In 1 = 0, which gives the indicated motion of w on the
imaginary axis (the v-axis).

9. Branch points and sheets. The radicand 2z + i is zero at z = —i/2. This is the location of a branch point,
the only one. The Riemann surface of a cube root has 3 sheets and looks as shown in Fig 323b. In the
figure the branch point is at 0, whereas in the present problem it is at —i/2. The corresponding function
value is w = 3, whereas in that figure itisw = 0.



