CHAPTER 14. Power Series, Taylor Series

Sec. 14.1  Sequences, Series, Convergence Tests

Problem Set 14.1. Page 740

1. Uniqueness of limit. A formal proof is given on p. A34 in Appendix 2. A standard idea for many
uniqueness proofs is to proceed indirectly, that is, one assumes that there are two objects of the kind
considered and shows that they are identical. In the present problem one assumes the existence of two
limits and shows that they are identical. The idea of doing this is that one draws two circles, one around
each of the two limits and so small that they do not intersect. Then, by the definition of a limit. the first of
these circles must contain all the terms of the sequence in its interior, except for at most finitely many of
them. But the same must also be true for the second circle, again because of the definition of a limit; that
is, it must also contain all the terms in its interior, except for finitely many of them, But this is impossible
because the two circles lie outside of each other, their interiors have no points in common.

How comes that nothing can happen if the two limits are “very close to each other”? Well, they are
distinct points and they are kept fixed. Hence they have a positive distance d from each other (which may

be extremely small but not zero—otherwise the two points would be identical). And if you choose circles of
radius, say, d/3 or d/4, you obtain disjoint circular disks, as needed.

11. Boundedness. Let {z,} be bounded, say, |z,| < K for some K and all .. Set z, = x, + iy, as in the text.
Then boundedness of the sequences {x,} and {y,} can be seen from

bx,l £ l1z,1 < K, Iy, 1 £zl < K.
Here it was used that for z = x + iy you always have
x2€xt+y*=1z1* hence IxIglzl
and similarly for the imaginary part y, namely, iyl £ 1z1.
Conversely, let {x,} and {y,} be bounded, say,

Ix,1 < K, Iy, < K.
Then x2 < K2, y? < K?, so that

Iz, 1? = x2+y2 < 2K?
By taking square roots this gives

Iz, <k  (k=KJ2).
Hence {z,} is bounded.

Can you see that this proof is very similar to that of Theorem 17 Just setc = a+ib = 0, and write K
for €. Then you see that the idea is practically the same in both proofs.

13. Convergence test. Apply the ratio test. For this you need
a, = n%i"R"* hence la,l = n?2"
where it was used that 1i"| = 1 for all n, and
Qpey = (n+ 12127
hence

la,,l = (n+1)2/2m1,
The quotient is

Qn+l
an

la,| nip2n 2

Obviously, it approaches 1/2 as n approaches infinity. This shows that the series converges.

G| _ (n+1)22™ 1(n+1 )2

- n
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The intuitive qualitative reason for this result is the fact that the exponential factor 2" in the
denominator increases eventually much more rapidly than the factor n? in the numerator.

15. Failure of the ratio test. Divergence by comparison. The ratio

Gy _ I/Jn+1 =J n
a, 1/ Jn n+1

approaches 1 as n approaches infinity. Hence no conclusion can be drawn from the ratio test. However,
the answer is obtained by comparing with the harmonic series. You have

J2 <2 hence 142 > 112 (A)

ﬁ <3 hence Ilﬁ > 1/3, etc.

Now the harmonic series diverges. Hence its partial sums must eventually become greater than any (fixed)
bound, no matter how large. But because of the infinitely many inequalities (A) each partial sum of the
given series (except for the first, which equals 1) must be larger than the corresponding partial sum of the
harmonic series; hence these partial sums must also eventually become larger than any given bound. This
means that the given series also diverges.

Sec. 14.2 Power Series
Problem Set 14.2. Page 745

1. Radius cf convergence. You can immediately see that the center is —iy/2 . The radius of convergence
equals 1 because a, = n, a,,; = n+ 1, and the Cauchy-Hadamard formula (6) gives

n

an
m
o 4]

R = lim

N0

= 1.

a+l |

11. Cauchy-Hadamard formula. The center is 0. The radius of convergence can be determined by the
Cauchy-Hadamard formula (6). For this you need

__Gn G
4= 2ay M A = G T

Now

B+ =0Cn+3)!=@n+3)Bn+2)Bn+1)(3n)!
and (3n)! will cancel when you form the quotient a,/a,,,. Similarly,
((n+ 13 = (n+ 1)} ()3
and (n!)3 will cancel. Finally, 2™*!/2" = 2. Together,
an  _ 2(n+1)3
Qpy) Bn+3)Bn+2)@Bn+1)’

The limit of this quotient as n approaches infinity equals the quotient of the highest power of n, which is
n3 in both the numerator and the denominator; thus,

2n3/(27n%) = 2/27.
This is the radius of convergence. It is relatively small. The reason is that (3n)! in the numerator of the

general coefficient grows much faster than (n!)? in the denominator, about 27 times as fast, the first few
values of the quotient being

1, 6, 90, 1680, 34650, 756756, 17153136, 399072960.
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17. Extension of Theorem 2. The given serics
32+ 30 20+ 3828 (A)
consists of the geometric series z* + z° + z’ + ..., which has radius of convergence 1, and the geometric

series (32)2 + (32)* + (32)® + ..., which converges for 13z1> < 1, hence 13z| < 1, thus Izl < 1/3. It follows
that the given series has radius of convergence 1/3.

In principle, the series (A) is similar to that in Example 6. It can be written

Zanz”
n=2
where
=L ~1\» n _]_ ~1)\n+lyY.
ap = 71+ (D3 + 50+ (D™

indeed, the first summand in a, equals 3" if n is even and O if n is odd; the second summand in a, equals O
if n is even and 1 if n is odd. The sequence of the n™ roots la, |'" of la, | has the two limit points 3 and 1,
and the reciprocal 1/3 of the greatest limit point is the radius of convergence, as in Example 6 in the text.

Sec. 14.3  Functions Given by Power Series
Problem Set 14.3. Page 750
3. Radius of convergence by differentiation (Theorem 3). The geometric series
5
n=0
converges for [2/51 < 1, thus for [zl < 5. By Theorem 3, the same holds for the derived series

5 "‘Z""_' (A)

=\

(where you can sum from n = 1 because the term for # = 0 is 0) and for the derived series of (A)
= n{n-1)z"2
Hence the same is true for
22f"(2) = ; nn-1) (%) )
This is the given series and proves that it has the radius of convergence 3.

7. Radius of convergence by integration (Theorem 4). The factors # + 2 and n + 1 in the denominator of

the coefficients suggests determining the radius of convergence by using two successive integrations.
Since (—4)"2" = (=2)", you may start from
o

=

Z (_l)n 2n22n = Z (_l)n (222)"-

n=0 n=0

This geometric series converges for 12221 < 1, hence 1221 < 1/2 or Izl < 1/42. The same is true for this
series multiplied by z, that is,

Z (_] )n n Z2n+l . (B)
a=0

Integration and cancellation of a factor 2 in the numerator and denominator give
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i (._12112"32'14'2 Z (_])n?_n—l 2142

pr 2n+2 s n+1

This series has the same radius of convergence 1/42 as (B). The same is true for this series multiplied by
z. that is,

Another integration and cancellation of 2 give

i (=1)7 27" Z2m _ Z“’: (=1)7 272 72w

~ (2n+4)(n+1) mh+2)(n+1)°
By Theorem 4 this series also has the radius of convergence 1/4/2 . Multiplication by 4/z* yields the given
series, which thus has the radius of convergence 1/4/2.

15. Cauchy product. The observation that

1 1
(-2 1-z 1-2

suggests trying the geometric series

(+z+2+2+. )l +2+22+2+..) = ) a,2"
n=0
Now you obtain the power 2” on the left as the sum of the products
1 'Z"""Z‘Z"-l +22'zn—2+."+zn-l z+2z"-1.
These are n + 1 terms. Hence a,, = n + 1, as claimed.
A more natural approach seems differentiation of the geometric series and of its sum, obtaining

(1_12)1 =(] ) an‘""’—Z(s+l)z,

»=0

where n = s+ 1, hence s = n— 1, so that the summation over s starts with 0.

Sec. 144  Taylor Series and Maclaurin Series

Example 2 shows the Maclaurin series of the exponential function. Using it for defining e* would have forced

us to introduce series rather early. I tried this out several times, but found the approach chosen in this book
didactically superior.

Problem Set 14.4. Page 757
1. Cosine. Use the familiar series for cos s and set s = 2z2.

5. Geometric series. The denominator of
f2) = (z2+2)I(1-2%)
suggests starting from the geometric series (with z2 instead of z), that is,
(1-2)=14+22+2+25+....
Multiplication by z + 2 gives the result
@O =QRQ+)N+22+28+28+..) =2+z4222+ 2 +22* + 25 + 225 +. (A)

The radius of convergence is | because the multiplication by 2 + z does not change it. In terms of
summation signs the calculation is
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17. Extension of Theorem 2. The given series
3+ 3 P+ 3020 (A)
consists of the geometric series z° + z* + 27 + ..., which has radius of convergence 1, and the geometric

series (32)2 + (32)* + (32)% + ..., which converges for 13z1? < 1, hence 13z1 < 1. thus Izl < 1/3. It follows
that the given series has radius of convergence 1/3.

In principle, the series (A) is similar to that in Example 6. It can be written

«w
E a,7"
n=2

where
=_1- —_1\n n _L —1yn+ly.
a, = L0+ (M3 + L1+ ()™);

indeed, the first summand in a, equals 3" if n is even and O if » is odd; the second summand in a, equals 0
if n is even and 1 if 2 is odd. The sequence of the n roots la, | of la, | has the two limit points 3 and 1,
and the reciprocal 1/3 of the greatest limit point is the radius of convergence, as in Example 6 in the text.

Sec. 14.3  Functions Given by Power Series

Problem Set 14.3. Page 750

3. Radius of convergence by differentiation (Theorem 3). The geometric series

5
n=0
converges for |z/51 < 1, thus for Iz} < 5. By Theorem 3, the same holds for the derived series
* nzn-l
> — (A)
n=| 5
(where you can sum from n = 1 because the term for n = 0 is 0) and for the derived series of (A)

0

nin—1)z"?
s

n
n=2 5

Hence the same is true for

20 — = _ i "
z2°f"(2) gn(n ])(5).
This is the given series and proves that it has the radius of convergence 5.

7. Radius of convergence by integration (Theorem 4). The factors n + 2 and n + 1 in the denominator of

the coefficients suggests determining the radius of convergence by using two successive integrations.
Since (—4)"/2" = (-2)", you may start from

Z (_])n 2n 72 = Z (_l)n (2Z2)n.
n=0 n=0

This geometric series converges for 12221 < 1, hence 1221 < 1/2 or Izl < 1/42. The same is true for this
series multiplied by z, that is,

Z (-l)" 2n22n+l' (B)
=)

Integration and cancellation of a factor 2 in the numerator and denominator give
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( ])n') ~2n _ had (_l)nzn—lzlnﬂ
> LRty Lyema

n=0 n=0 n+l

This series has the same radius of convergence 1/4/2 as (B). The same is true for this series multiplied by
Z, that is,

i (_1 211 2n—| 22n+3
n+1
Another integration and cancellation of 2 give

Zw: (—1)" 2n-l Zln«l _ i (—1)" 2n-2 Z2n<v-4

~ 2n+4)(n+1) “= n+2)(n+1) "’
By Theorem 4 this series also has the radius of convergence 1/y2 . Multiplication by 4/z* yields the given
series, which thus has the radius of convergence 1/J/2.

15. Cauchy product. The observation that
1 1 1

(1-27  1-7 1-2

suggests trying the geometric series

(Qrz+22+2+. )1 +z+22+22+..) = D a,2"
n=0
Now you obtain the power z" on the left as the sum of the products
Tez"+z-2"' 422224 42z e L
These are n + 1 terms. Hence a, = n + 1, as claimed.
A more natural approach seems differentiation of the geometric series and of its sum, obtaining

(]_lz)z =(]_ ) 2nz"“’—2(s+])z,

+=0
where n = s+ 1, hence s = n — 1, so that the summation over s starts with 0.

Sec. 144  Taylor Series and Maclaurin Series

Example 2 shows the Maclaurin series of the exponential function. Using it for defining e? would have forced

us to introduce series rather early. I tried this out several times, but found the approach chosen in this book
didactically superior.

Problem Set 14.4. Page 757
1. Cosine. Use the familiar series for cos s and set s = 2z2.

5. Geometric series. The denominator of
fl2) = (2+2)/(1 - 2%)
suggests starting from the geometric series (with z2 instead of 2z), that is,
V(1-2)=1+22+* +25 + ...
Multiplication by z + 2 gives the result
f@Q=Q+N+2+2+28+..)=2+7+222+23+22* + 5 +228 + ... (A)

The radius of convergence is 1 because the multiplication by 2 + z does not change it. In terms of
summation signs the calculation is
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f(z)=(2+z)zzzn=Z(222n+22n.~l)=Z (3+(;]) )z .
n=0 n=0 n=0 -
Indeed, (-1)" = +1 if nis even, so that (3 + (—1)")/2 = 4/2 = 2; this is the coefficient of cvery even
power of zin (A). And (—1)" = -1 if 1 is odd, so that then (3 + (-1)")/2 = 2/2 = 1; this is the coefficient

of every odd power in (A).

11. Fresnel integral. Start from the Maclaurin series of sin x. Set x = 2. Perform termwise integration,
obtaining

I Z ( 1) I(4n+2) _ i (=1)7 (813

(2n+])' ~ @2n+1)!(4n+3)
Now set r = z; this is the conmbunon from the upper limit of integration. The lower limit of integration
gives 0, so that you obtain the answer by setting t = z in the series on the right.

17. Taylor series. Use the method explained in Example 7, based on the geometric series, as follows.

L ! = = n -2 n_ = n-n— n
T [z-2)+2 2[]+.x—_2_] - 72( D ('LQ—) -§(—1) 2 (z-2)".  (B)

This series converges for {(z ~2)/21 < I, thusiz - 2I < 2. Hence the radius of convergence is R = 2.

In the present case the use of the coefficient formula in (1) would also be quite simple and
straightforward. Indeed. by differentiation,

f2) =z [ @@=-Uz2 f'"(2) =+22, f"(2) =-3Uz

and in general,

fP) = (=1)"n\zm.
This implies for the center z = 2

F™2) = (=1)"n2m,
Division by n! gives the coefficient

= fRBQ2)n! = (-1)"2™1,
in agreement with (B).

Sec. 145 Uniform Convergence. Optional

Problem Set 14.5. Page 766

1. Power series. This follows from Theorem 1 because the series has radius of convergence R = 1, so that it
converges forlz — il < 1.

7. Power series. By Theorem 1, a power series in powers of z — z, converges uniformly in the closed disk
tz—zol £ r. where r < R and R is the radius of convergence of the series. Hence solving Probs. 7 — 12
amounts to determining the radius of convergence.

In Prob. 7 you have a power series in powers of

Z=(z+1)? (A)
of the form

Za,,Z" (B)

n=0

with coefficients a, = 1/5". Hence the Cauchy-Hadamard formula in Sec. 14.2 gives the radius of
convergence R* of this series in Z in the form
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a, 57
[ 5—(n+|)

Hence the series (B) converges uniformly in every closed disk IZ! £ r* < R* = 5. Substituting (A) and
taking square roots, you see that this means uniform convergence of the given power series in powers of
z+ i in every closed disk

lz+ilSr<R =45, (C)
You can also write this differently by setting
d=R-r (D)

Then from R > r by subtracting r on both sides you have § = R—r > r—r = 0, thus § > 0. Furthermore,
from (D) you have r = R - 6. Together,

lz+ilSR-6=45-6 (6 > 0).
This is the form in which the answer is given in Appendix 2 of the book.



