CHAPTER 15. Laurent Series. Residue Integration

Sec.15.1 Laurent Series
Problem Set 15.1. Page 775

1. Laurent series near a singularity. Examples 4 and 5 in the text illustrate that a function may have
different Laurent series in different annuli with the same center. However, practically most important of
these is the Laurent series that converges directly near the center at which the given function has a
singularity. (In Example 4 this is z = 0.) In each of Probs. 1-8 that Laurent series is obtained by using a
familiar Maclaurin series or (in Probs. 5 and 7) a series in powers of 1/z. Thus, in Prob. 1 you consider the
Maclaurin series
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Division by z* gives the Laurent series
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The principal part consists of the first two terms on the right. The series converges for all z # 0.

7. Infinite principal part. Use the familiar Maclaurin series of the exponential funcion,
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Substituting ¢ = —1/z%, you obtain
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Now divide by z2. You see that the series consists of an infinite principal part and there are no nonnegative
powers. The series converges for all z = 0.

13. Use of the binomial theorem. Develop the numerator z* of the given function
f2) = 2z +20)*
in terms of powers of z + 2i by means of the binomial theorem and then divide by (z + 2i)*. (If you have

forgotten that theorem, you will find it on p. 1069 of the book.) Since for (a + b)* the binomial
coefficients needed are 1, 4, 6, 4, 1, you obtain

2= ([z+2i] -20)*
= (z+20)* -4z +2) + 62z + 2?2 - 423 (z+2) + (24
=(z+2)*-8i(z+2)>3-24(z+2)?+32i(z+2i) + 16.
Division by (z + 2i)* gives the Laurent series
z“=_8i_24+32i+16
(z+20)* z+2i (24207 (z+2)3  (z+2)*
Instead of the binomial theorem you may use the Taylor series (1) in Sec. 14.4, which in the present

case reduces to a polynomial because z* and its derivatives are z*, 42%, 1222, 247,24,0,0,.... Atz = 2i
the values of these expressions are

(=20)* =16, 4(-20)3 = 32i, 12(-2i)% = -48, 24(-2i) = -48i, 24.
Division by 0, 11,21, ... gives the Taylor coefficients
i6, 32i, -24, -8i, 1, 0,
Hence the development is the same as before, with the terms being in reverse order,
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2= 16+32i(z+20)—24(z+2i)° - 8i(z+2i)> + (z+2i)*

The amount of work was not much more than before, because it would not have been necessary to write
down all the intermediate expressions.

Sec. 15.2  Singularities and Zeros. Infinity
Problem Set 15.2. Page 780

1. Zeros. Since tan z is periodic with period =, it follows that tan 7z is periodic with period 1. Since
tan O = 0, you see that tan xz has zeros at 0,+1,+2,... . Determine the order. The derivative is (by the
chain rule!)

(tan ng)’ = n/cos?mz.

Since the cosine is not zero at z = 0, the zero of tan 7z at 0 is simple. Because of periodicity all those other
zeros are simple, too.

Show that tan zz has no further zeros. To have simpler formulas, write 7z = s + it. Then (6b) in Sec.
12.7 becomes

sin mz = sin s cosh ¢t + i cos s sinh ¢.
This is zero if and only if the real part is zero,
sinscosht =0, ence sins=0
(since cosh ¢ # 0, note that s and t are real) and the imaginary part is zero,
cosssinhs =0, hence sinht=20

because cos s # 0 where sin s = 0 (sin and cos have no zeros in common). Now sin s = 0 gives exactly
the zeros at s = nx = 0,+m,+2x,..., thatis, atz = 0,£1,12,...; these are the zeros discovered before.
Furthermore, sinh 7 = 0 only at + = 0 (note again that ¢ is real!); this gives no additional zeros.

19. Pole, essential singularity. Since sinh z is an entire function, the only singularity the given function
f(@) =(@z-ni)?sinhz
can have in the finite complex plane (see p. 693) is at z = xi. It seems to be a pole of second order, but

you must be cautious because sinh z may perhaps be zero at that point. Now, indeed, by the definition of
sin and sinh in Sec. 12.7 you obtain

sinh mi = (e*' — e*N/2 = i{e* - e™)(2i) = isinm = 0.
Fortunately, this zero is simple because the derivative is cosh z, and at ni,
coshmi = (e +e*)/2 =cosnm = 0.
Hence the given function still has a pole, albeit a simple ane, due to the occurrence of that zero. Indeed,
for sinh z to have a simple zero at z = « i, the Taylor series of sinh z with center i/ must be of the form
a,(z—-ri)+a(z-ni)*+..,
so that

(231_11:1.2)2 = zflni +a,+ay(z-mi)+....
By definition this is the Laurent series near a simple pole. (If sinh z had a double zero or a zero of still
higher order at «i, the given function would be analytic at zi.)
Furthermore, f(z) has an essential singularity at infinity, for reasons given in Example 5 in the text. To
see this directly, consider
sinh (1/w)
(1w = mi)?

g(w) = f(liw) =

at w = 0. The function
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] w?

(Uw-ni)2  (1-niw)?
is analytic at w = 0. The other factor of g(w), the function sinh (1/w) has near w = O the Laurent series

. 1 1 1 1
sxnh(W-)= W+3—!W—3+W
as obtained from the familiar Maclaurin series of sinh s by setting s = 1/w. Since this series has an infinite
series as its principal part, w = 0 is an essential singularity of g(w), by definition. Again by definition, this
means that f(z) has an essential singularity at infinity.

+ o

Sec. 15.3  Residue Integration Method

Problem Set 15.3. Page 786

1. Simple poles.1 +z2 = O at z2 = -1, z = i and —i . Hence the given function f(z) = 4/(1 + z?) has simple
poles at z = i and —i. For z = z, = i, using (1 + z*)' = 2zand 1/i = —i, you obtain from (4)
Res f(z) = 4/2i = -2i. (A)
z=i
Similarily, for z = —i you obtain
Res f(z) = 4/(-2i) = 2i.
o—i
Formula (3) gives the same answers. In (3) you need forz = zo = i
(z—10)-4(z*+1) = 4/(z+ ).
At z = i this has the value 4/(21) = -2, in agreement with (A). Similarly for the pole at z = —i.

3. Use of the Laurent series. In Prob. 1 you have used formulas that gave the residue directly, without
reference to the whole Laurent series. For the function f(z) = (sin2z)/z® you may use the familiar
Maclaurin series of the sine function and find the coefficient as of the power z° because asz°/z¢ = as/z,

which shows that a;s is the residue of f(z) at z = 0, where f(z) has a pole of fifth order (not sixth because
sin 2z has a simple zero at z = 0). You obtain

H 3 5
sin2z _ %(22_ 23°  (22) _+_").

z z 3! 5!
Hence as = 2°/5! = 32/120 = 4/15.

13. Residue theorem. tan 7z = (sin mz)/(cos 7z) is singular where cos 7z = 0, thatis, at 7z = +#/2,+3n/2, ...,
hence at z = +1/2,£3/2, .... These are simple zeros of cos 7z, hence simple poles of tan mz, as follows from
Theorem 4 in Sec. 15.2. Here you have used that sin 7z + 0 at points where cos 7z = 0. Hence tan nz has

infinitely many simple poles. But only those at z = 1/2 and z = -1/2 lie inside the contour of integration,
which is the unit circle |z1 = 1.

You can apply (4) to
tan 7z = p(z)/g(z) = (sin nz)/(cos nz).
In (4) you need
p(2)/q'(2) = (sin wz)/(cos nz)' = (sin n2)/(-m sinnz) = -1/n

where the factor # results from the chain rule. From this and the residue theorem (Theorem 1) you obtain
the answer 2mi(-l/n — l/m) = —-41i.



