PART E. NUMERICAL METHODS

CHAPTER 17. Numerical Methods in General

Sec. 17.1 Introduction
Problem Set 17.1. Page 836

7. Quadratic equation. Given x? —30x+ 1 = 0. First use (6), wherea = 1, b = =30,and ¢ = 1.
Calculating with 4S, you obtain J(-30)2—4 = /896 = 29.93. Hence
x; = (30 +29.93)/2 = 59.93/2 = 29.96
and
x; = (30-29.93)/2 = 0.07/2 = 0.04.
Now use (7). The root x, equals 29.96, as before. For x, you now obtain

X, = —— = 1/29.96 = 0.03338.
ax,

With 28 the calculations are as follows. You have to calculate the square root of

90-10' - 4 = 90-10'
(remember that on the right you may retain only two sigaificant digits) or, differently written,

0.90-10% - 0.40. 10" = 0.90-103.
With 28, this gives 30. Hence by (6),
x; = (30+30)/2 = 60/2 = 30

and

x, = (30-30)/2 = 0.
In contrast, from (7) you obtain better results for the second root. You have x, = 30, as before, and

xy = 1/x; = 1/30 = 0.033.

The point of this and similar examples and problems is not to show that calculations with fewer significant
digits generally give inferior results (this is fairly plain, although not always the case). The point is to show
in terms of simple numbers what will happen in principle, regardless of the number of digits used in a
calculation. Here, formula (6) illustrates the loss of significant digits, easily recognizable when we work
with pencil (or calculator) and paper, but difficult to spot in a long calculation in which only a few
intermediate results are printed out. This explains the necessity of developing programs that are virtually
free of possible cancellation effects.

9. Change of formula. Given

J9+x? -3, (A)

where |x1 is small. Multiplication and division by

Jo9+x2 +3 B)

gives the numerator

J9+x22—9 =9+4+x2-9=1x?
le(J9+x2 +3). ©

For instance, if x = 0.1 and you use 45, you obtain from (A)

and the denominator (B), thus
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J9.01 -3 = 3.002 - 3.000 = 0.002.
The improved formula (C) gives
0.01000/(3.002 + 3.000) = 0.01000/6.002 = 0.001666.
The 10S-value is 0.001666 203961.

17. Rounding and adding. For instance, in rounding to, say, 1D, the given numbers a, = 1.03 and a, = 0.24
you getd, = 1.0 and 4, = 0.2, hence the sum 1.2. But if you add first, you obtain 1.27. Rounded to 1D
this gives 1.3, which is a more accurate approximation of the true value 1.27 than the approximation 1.2
obtained before. In terms of general formulas you have

a, =a,-¢

Gy = a; — €,
where €, and €, are the errors due to rounding, hence they are less than or equal to 1/2 unit of the last
decimal in absolute value. If you round first and add then, you add the rounded numbers 4, and 4,, that is,

a,+a, = 01+(12—(€1 +€2).

You see that in this case the error €, + €, is a number between 0 and 1 unit of the last decimal in absolute
value. But if you add first, the sum is a, + a,, and in rounding it you make an error between 0 and 1/2 unit
of the last decimal in absolute value. Similarly for n numbers, where the sum of the rounded numbers is a
number with an error between 0 and n/2 units of the last decimal in absolute value, whereas in adding and

then rounding the error is between 0 and 1/2 unit of the last decimal in absolute value, as before in the case
of two numbers.

Sec.17.2  Solution of Equations by Iteration

Problem Set 17.2. Page 847

1. Nonmonotonicity (as in Example 2) occurs if g(x) is monotone decreasing, that is,
g(x)) < gx,) if x> x,. (A)
{Make a sketch to better understand the reasoning.) Then
glx) 2 g(s) ifandonlyif x<s (B)
and
g(x) S gl if and only if x2S ©

Start from an x, > 5. Then g(x,) £ g(s) by (C). If g(x,) = g(s) (which could happen if g(x) is constant
between s and x,), then x, is a solution of f(x) = 0, and you are done. If g(x,) < g(s), then by the
definition of x, (formula (3) in the text) and since s is a fixed point (s = g(s)), you obtain

x; =g(x))<gls)=s5s sothat x,<s.
Hence by (B),
g(x2) 2 g(s).
The equality sign would give a solution, as before. Strict inequality and the use of (3) in the text give
xy = g(x;) > g(s) = s, sothat x; > s,

and so on. This gives a sequence of values that are alternatingly larger and smaller than s, as illustrated in
Fig. 395 of the text.

11. Newton's method. The derivation of this and similar formulas is schematical. Denote the quantity to be
computed by x, that is,
x=¥1.

Then try to find an equation for x, in many cases an equation by which x is (explicitly or implicitly)
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defined. In the present problem, using the definition of a cube root, you have

X =

The equation obtained is written as f(x) = 0, simply by collecting all the terms of the equation on the left
side. In our case, f(x) = x =7 = 0. You also need f'(x) = 3x2. With this, you can now set up the basic

relation of Newton’s method. This is equation (5) in the algorithm in Sec. 17.2,
f(xn) XIJI -7 2 7
oy T Xn T = TX t =
FGy T3 33

Some computational operations are avoided by pulling out the factor 1/3,

Xpyy = %(ZX,, + %)

21. Secant method. You have f(x) = cos x coshx — 1 . Hence formula (10) gives

Xnel = Xp =

Xy = Xp-
Xpe = X, — (cosx, coshx, — 1) n_“n-l

cos x, cosh x, — cos x,.; cosh x,_,

In the answer on p. A38 in Appendix 2 the first value listed is the suggested x, = 5. From x, = 4 and
x, = 5 you obtain x, = 4.48457. and so on. The convergence is slower than in Prob. 17 for Newton's
method. The sequence of approximate values is not monotone, in contrast to that in Prob. 17 (but these
properties are not typical, they depend on the kind of curve you are dealing with).

Sec. 17.3 Interpolation

Problem Set 17.3. Page 860

7. Extrapolation. In the case of extrapolation the various factors tend to be larger than in the case of

interpolation because in the latter case the point of interpolation lies more “in the middle” between the
nodes. In general. interpolation will give better results than extrapolation far enough away from the nodes.
However, our simple figures illustrate that we cannot make statements that are always true. In Fig. A,
interpolation gives better results than extrapolation at points much smaller than 5 or much larger than 15.
In Fig. B, extrapolation is more accurate than interpolation near x = 0. Of course, these naive examples

should merely make you aware of similar possibilities in more complicated cases in which you cannot see
immediately what is going on.
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Section 17.3. Problem 7. Fig. A. Interpolation and extrapolation. (Logarithmic curve)
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Section 17.3. Problem 7. Fig. B. Interpolation and Extrapolation (y = 1/(1 + x2)).

9. Lagrange polynomial for the error function. From (3) and the given data you obtain the Lagrange
polynomial

_ (x-0.5)(x=1.0) (x - 0.25) (x - 1.0) (x - 0.25) (x - 0.5)
paln) = T 027633 + Bl Een 050050 + A 5520084270,

Expanding and simplifying, you obtain the answer given on p. A38 of Appendix 2. The approximate value
p2(0.75) = 0.70929 is not very accurate. The exact 5D-value is erf (0.75) = 0.71116.
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Section 17.3. Problem 9. erf (x) and Lagrange polynomial p,(x) (lower curve)

11. Newton's forward difference formula (14) applies to the given data since these are equally spaced, with
h = 0.02. Set up a difference table as in Example 5, but containing one column less because you have only
three given x-values xo = 1.00, x; = 1.02, x, = 1.04 and corresponding function values of the gamma
function rounded to 4D. In (14) you need I'(1.00) = 1, A' = -0.0112, and A? = 0.0008. With this you
can read p,(x) in the answer on p. A38 of Appendix 2 in terms of r directly from (14). Then calculate
r = (x = xo)/h = (x - 1.00)/0.02 = 50(x — 1). In this r you can substitute x = 1.01,1.03, 1.05 and then
calculate p, by using the corresponding r = 0.5, 1.5, 2.5, respectively. Or you can convert p, from r to x
(which amounts to expanding p, in powers of x, as shown in the answer) and then substitute the x-values
into this polynomial in x. The 4D-values in the answer are correct, also the last one (obtained by
extrapolation).

15. Newton’s divided difference formula (10) is less frequently used in practice than Newton's formulas for
equally spaced data, which occur more often. Example 4 illustrates that the difference table contains the
divided differences needed in calculating those that appear in (10); the latter are circled. In Prob. 15 use
erf (0.25) = 0.27633. Then calculate the two first divided differences. The first of them is
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f10.25,0.50] = erf (0.5) — erf (0.25)/(0.50 — 0.25)
= 4(0.52050 - 0.27633)
= 0.97668
and appears in (10). The second of them is
f10.50,1.00]= erf (1.0) - erf (0.5)/(1.0 - 0.5)
= 2(0.84270 - 0.52050)
= 0.6444

and is needed for calculating the second divided difference (you have only one because you have only
three nodes, three function values). You obtain

£10.25,0.50,1.00) = (£[0.50, 1.00]-£[0.25,0.50])/(1.00 — 0.25)

= (0.6444 - 0.97668)/0.75 = -0.44304.

This is the last coefficient needed in (10). From this and (10) you obtain the expression for p,(x) given in
the answer. Developing it in powers of x, you obtain the same polynomial in x as in Prob. 9 obtained by
Lagrange’s method. This illustrates the fact mentioned in the text, that the Lagrange’s and Newton's
formulas merely give different forms of the same interpolation polynomial, which is uniquely determined
by the given data.

Sec.17.4  Splines
Problem Set 17.4. Page 867

3. Derivation of (7) and (8) from (6). The point of the preblem is that you minimize a chance of errors by
introducing suitable short notations. For instance, for the expressions involving x you may set

X;j=x-x;, Xy =x-xu,

and for the occurring constant quantities in (6) you may choose the short notations

A =f(x)c}, B=2¢c;, C=f(x)c}, D=kic} E=kjc}
Then formula (6) becomes simply

pi(x) = AXL, (1 + BX)) + CX}(1-BX;,)) +DX; X% + EX? X),,.
Differentiate this twice with respect to x, applying the product rule for the second derivative, that is,
)" = u"v+ 2V + w”,
and noting that the first derivative of X; is simply 1, and so is that of X,,. (Of course, you may do the
differentiations in two steps if you want.) You obtain
pi(x) =AQU+BX;) +4X;,B+0)+C(2(1 -BX;,) +4X;(-B) +0) 1))
+D(0+4X;,, +2X)+EQ2X;, +4X;+0),

where 4 = 2.2 with one 2 resulting from the product rule and the other from differentiating a square. And
the zeros arise from factors whose second derivative is zero. Now calculate pj at x = x;. Since X; = x — x;,
you see that X; = 0 at x = x;. Hence in each line the term containing X; disappears. This gives

pj(xj) =AQR+4BX;,)+C(2-2BX;,) +4DX;, +2EX},.

Also, when x = x;, then X}, = x; —x;,, = —1/c; (see the formula without number between (4) and (5),
which defines c;). Inserting this as well as the expressions for A, B, ..., E, you obtain (7). Indeed,

4c; 2¢c; dk;c? 2k, c?
i) = £ (242 20 ) aptaye (2-2. 22 )+ 22 2]

and cancellation of some of the factors c; gives
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P;(X) ——6f(x)c +6f(‘;+l)c —4kjc; -2k ¢

The derivation of (8) is similar. For x = x;,, you have X;,, = x;,, —x;,; = 0, so that (I) simplifies to
Furthermore, for x = x;,, you have X; = x;,, — x; = l/c;, and by substituting A, ..., E into the last equation
you obtain

" 4 8 . 2’. 2 .
Pf“f“)=f(xf)cf(2+—L)+f( w2} (20 22 )+ 25 4 2

¢; o <
Cancellation of some factors c; and simplification fianlly gives (8), that is,

pj (xp1) = 6¢2f(x;)) =6} f(xj01) + 2k + 4k

11. Determination of a spline. Proceed as in Example 1. Arrange the given data in a table for easier work.
Jjoxp f(x;) K

60-1 0 O
1 0 4
21 0 O

Since there are three nodes, the spline will consist of two polynomials, py(x) and p,(x). The polynomial
po(x) gives the spline for x from —1 to 0, and p, (x) gives the spline for x from O to 1.

Step 1. Since n = 2, you have just one equation in (12), from which you can determine k,. The equation
is obtained by taking j = 1 and noting that & = 1; thus

3
ko + 4k, = T(fz —-fo) =0

Hence k, = 0. Geometrically this means that at x = O the spline will have a horizontal tangent.
Step 2 for p,(x). Determine the coefficients of the spline from (14). You see that in general,

j=0,...n—1,sothat in the present case you have j = O (this will give the spline from -1 to 0) and
j = 1 (which will give the other half of the spline, from O to 1). Take j = 0. Then (14) gives

ag = PoPo) =fo =0
ag = Pa(xo) =ky=0

1y 3 1
ap, Po(xo) = _z(fl —fo) - —]—(k, -2k} =34-0=12

an = PV ) = 5o —fi) + (ks +ho) = 2(-4) 40 = =8,
With these Taylor coefﬁcxents you obtain from (13) the first half of the spline in the form
Po(x) = @ + g (x = Xo) + g2 (x — X0)* + ap3(x — xo)°
=0+0+12(x-(-1))2-8(x-(-1))3
= 12x2 4+ 24x+ 12-8(x> +3x2 +3x+ 1) = 4 - 12x2 - 8x3.

Step 2 for p,(x). This is slightly simpler because x; = x, = 0, so that (13) will give powers of x directly.
From the given data and (14) with j = 1 you obtain the Taylor coefficients

ap=pilx))=fi=4

a, = p,l(xl) =k =0
3 1
ap = —Px(xl) 1z S -f)- T(k2+2kl) =3.(4)-0=-12
' 2 1
a;y = — “ l) 13 (f2_fl)+T2'(k2+kl)=2°4+0=8°

With these coefficients and x; = 0 you obtain from (13) with j = 1 the polynomial
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pi(x) =4-12x% +8x%,
giving the spline on the interval from 0 to 1. As a check of the answer, you should verify that the
spline gives the function values f(x;) and the values k; of the derivatives in the table at the beginning.
Also make sure that the first and second derivatives of the spline at O are continuous by verifying that
po(0) = pi(0) =0 and pg(0) = pi(0) = -24.
The third derivative is no longer continuous,
po(0) =—48  but pY(0) = 48.
(Otherwise the spline would consist of a single cubic polynomial for the whole x-interval from -1 to

1.)

-1 -0.5 0 315 1

Section 17.4. Problem 11. Spline

Sec.17.5 Numerical Integration and Differentiation

Problem Set 17.5. Page 880

5. Error estimate (5) for the trapezoidal rule (2). In (5) you need two approximate values. Since you
1

calculate the integral
= g x = _ > =
J—Iosm(z)dx— COS(Z)/2O

by (2) for three choices of i, namely, for & =1, 1/2, 1/4. you can make two error estimates (5). Sketch the
integrand to see what is going on. Now apply the trapezoidal rule (2). By using the exact S5D-value
0.63662 in (A) you can immediately determine the actual error, which we write after each result obtained
from (2). The trapezoidal rule (2) with A = | gives

Jio = 1.0(0+ (1/2)-1) = 0.50000.  Error  0.13662. (B)

With /& = 0.5 you have the x-values 0, 1/2. 1, for which the integrand has the values 0, 1/42 = 0.70711.1.
respectively, so that (2) gives

Jos = 0.5(0+0.70711 + (1/2)-1) = 0.60355. Error 0.03307. (&)
With & = 0.25 you have the cosine values just used plus 0.38268 at x = 1/4 and 0.92388 at x = 3/4, so
that (2) gives
Joas = 0.25(0 + 0.38268 +0.70711 + 0.92388 + 0.50000) = 0.62842.  Error  0.00820. (D)

Note that the error (3) contains the factor h%. Hence in halving you can expect the error to be multiplied by

about (1/2)2 = 1/4. This property is nicely reflected by the numerical values in (B)-(D). Now turn to error
estimating by (5). You obtain

2 063662 (A)
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u

os = 5 Uos ~ J10) = (060355 - 0.50000) = 0.03452

€gas = %(.10_75 -Jos) = %(0.62842 - 0.60355) = 0.00829.

The agreement of these estimates with the actual value of the errors is very good, Although in other cases
the difference between estimate and actual value may be larger, estimation will still serve its purpose.
namely, to give an impression of the order of magnitude of the error.

0.8
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Section 17.5 Problem 5. Given sine curve and approximating polygons in the three trapezoidal rules used
21. Three-eights rule. For the present problem, this rule is very practical because the values of the integrand
needed are simple,

l 1
4 - — = —
cos 30 cos 3 [ ) V3,

cos 60° = cos lfl’ = l

3 2
‘Also, the fourth derivative in the error term is simply cos 7. You thus obtain
w2 3 = J3 1 a2 =\ .
J—J.o COSXL{X~§-€(1+3'—2—+3-7+0)—W(€) cos ¢ (E)

= Tné_ -5.098076 — 0.001476 cos t = 1.001005 — 0.001476 cos 7.

Note that this approximation 1.001005 is much inferior to that in Prob. 23 obtained by Gauss integration
with almost as little work as in the present problem. Error bounds are now readily obtained from (E) by
noting that in the interval of integration, cos 7 varies between 0 and 1. Hence cos 7/2 = 0 gives the upper
bound O for the error, and cos 0 = 1 gives the lower bound —0.001476.1 = —0.001476 for the error. From

this and (E) you have 1.001005 - 0.001476 = 0.999529. Hence bounds for the approximate value
J = 1.001005 of J = 1 given by (E) are

1.001005 - 0.001476-1 = 0.999529 < J £ 1.001005.

23. Gauss integration. The answer on p. A39 shows that the transformation of a given integral to the standard
interval —1 £ x £ 1 can often be avoided. This gives an additional reduction of the amount of work

involved in this integration. You see that you obtain almost 7D accuracy with very little work. This result
is much more accurate than that in Prob. 21 just considered.




