CHAPTER 18. Numerical Methods in Linear Algebra

Sec. 18.1 Linear Systems: Gauss Elimination

Problem Set 18.1. Page 893

S. System without solution. The left side of the second equation equals minus three times the left side of
the first equation. Hence for a solution to exist the right sides should be related in the same fashion; they
should equal, for instance, 16 and —48 (instead of 48). Of course, for most systems with more than two
equations, one cannot immediately see whether there will be solutions, but the Gauss elimination (with
partial pivoting) will work in each case, giving the solution(s) or indicating that there is none.

7. System with a unique solution, Pivoting. Worked-out examples are given in the text. They show all the
details. Review those first because there is little we can do for a better understanding and we shall have to
restrict ourselves to a more detailed discussion of Table 18.1, which contains the algorithm for the Gauss
elimination, and the addition of a few remarks. Consider Table 18.1. To follow the discussion, control it
for Prob. 7 in terms of matrices with paper and pencil. In each case, write down all three rows of a matrix,
not just one or two rows, as was done below Lo save some space and to avoid copying the same numbers
several times. At the beginning, k = 1. Since a;, = 0, you must pivot. Line 2 in Table 18.1 requests to
look for the absolutely greatest a;;. This is a3,. According to the algorithm, you have to interchange
Equations 1 and 3, that is, Rows 1 and 3 of the augmented matrix . This gives

13 -8 0 79
6 0 -81]-38 | (A)
0 6 13 61

Don’t forget to interchange the entries on the right side (that is, in the last column of the augmented
matrix). In line 2 of Table 18.1, the phrase ‘the smallest’j 2 & is necessary since there may be several
entries of the same absolute value (or even of the same size), and the computer needs unique instructions

what to do in each operation. To get O as the first entry of Row 2, subtract 6/13 times Row 1 from Row 2.
The new Row 2 is

[ 0 3692308 -8 | -74.461538 ] (B)

This was k = 1 andj = 2 in lines 3 and 4 in the table.
Now comes k = 1 and j = n = 3 in line 3. The calculation is m3, = as,/a;, = 0/13 = 0. Hence the

operations in line 4 simply have no effect, they merely reproduce Row 3 of the matrix in (A). This was
k=1

Now comes k = 2. Look at line 2 in the table. Since 6 > 3.692308, interchange Row 2 in (B) and
Row 3 in (A). This gives the matrix

13 -8 0 79
0 6 13 61 . ©
0 3.692308 -8 | -74.461538
In line 3 of the table with k = 2 andj = k+ 1 = 3 calculate
may; = asla, = 3.692308/6 = 0.615385.
Performing the operations in line 4 of the table for p = 3, 4, you obtain the new Row 3
[0 o -16]-12 )

The system and its matrix have now reached triangular form, and back substitution begins with line 6
of the table,
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X3 = aplay; = —-112/(-16) = 7.

(Remember that in the table the right sides b, b,. b5 are denoted by a4, ay4, aay, respectively.) Line 7 of
the table with i = 2,1 gives

X, = %(61—13-7)=—5 (i=2)

and

L9 (8:(5)+0-1 =3 (=D,

Depending on the number of digits you use in your calculation, your values may be slightly affected by
round-off.

X)

11. System with more than one solution. Solutions exist if and only if the coefficient matrix and the

augmented matrix have the same rank (see Sec. 6.5). If these matrices have equal rank r < n (n the number
of unknowns), there exists more than one solution and, in fact, infinitely many solutions. In this case, to
one or more suitable unknowns there can be assigned arbitrary values. In the present problem, n = 3 and
the system is nonhomogeneous. For such a system you may have r = 3 (a unique solution), r = 2 (one
(suitable) unknown remains arbitrary), r = 1 (two (suitable) variables remain arbitrary). r = O is
impossible because then the matrices would be zero matrices. In most cases you have choices which of the
variables you want to leave arbitrary; the present result will show this. To avoid misunderstandings: you
need not determine those ranks, but the Gauss elimination will automatically give all solutions. Your CAS
may give only some solutions (for exampie, those obtained by equating arbitrary unknowns to zero); so be
careful. Following line 2 in Table 18.1, exchange Rows 1 and 2, so that the augmented matrix 1s

-5 7 2 -4

2 5 7 25

1 22 23 71
For k = 1 the operations in lines 3 and 4 of the table with j = 2 and 3 give

-5 17 2 -4
0 78 7.8 | 234 Row 2 + 0.4 Row 1 (D)

| 0 234 234 | 70.2 Row 3 + 0.2 Row 1.
For k = 2 the operations in lines 3 and 4 of the table with j = 3 give the new Row 3 as a row of zeros,

0 0 0| 0 ]Row3-3Row2
This was the elimination. Now begins the back substitution. From Row 2 in (D) you obtain

Xy = %(23.4 -7.8x3) =3-x;. (E)
With this, Row 1 in (D) gives
X = (4= Ty = 2x) = g (4473 1)+ 2x;) = +(5-51) = 5-x, ®
You see that you have no condition on xs; hence x; is arbitrary. Solving (E) for x3, you have
X3 =3-x,. (&)

Substituting (G) into (F), you obtain
x;=5-038-x;) =2+x,. (H)

This shows that you can leave x, arbitrary; then x, and x; are uniquely determined in terms of x,.
Equations (G) and (H) give the form of the solution shown on p. A39 in Appendix 2 of the book.
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Sec. 18.2  Linear Systems: LU-Factorization, Matrix Inversion

Example 1. Doolittle’s method (p.895). In the calculation of the entries of L and U (or LT in Cholesky’s
method) in the factorization A = LU with given A you employ the usual matrix multiplication

Row times Column.

In all three methods in this section, the point is that the calculation can proceed in an order such that you
solve only one equation at a time. This is possible because you are dealing with triangular matrices, so that
the sums of n = 3 products often reduce to sums of 2 products or even to a single product, as you will see.
This will be a discussion of the steps of the calculation on p. 895 in terms of the matrix equation A = LU,
written out (see the result on p, 896 at the top)

352 1 0 0 Uy Uy Uz
A= 08 2 =LU = ma 1 0 0 Uy Uy
6 2 8 my m3yp 1 0 0 usp J

Remember that in Doolittle’s method the main diagonal of L is 1,1, 1. Also, the notation m suggests
mulniplier, because in Doolittle’s method the matrix L is the matrix of the multipliers in the Gauss
elimination. Begin with Row 1 of A. The eniry a,; = 3 is the dot product of the first row of L and the first
column of U; thus,

3=[1 0 0] [u“ 0 0]T=1-u“,
where 1 is prescribed . Thus. u;, = 3. Similariy, a); = 5 = L-uy3 + 01y + 0-0 = uyy; thus 4y, = 5.
Finally, a,3 = 2 = u,3. This takes care of the first row of A. In ccnnnection with the second row of A you
have to consider the second row of L, which involves m,, and 1. You obtain

ay =0=myup+0 +0 =my.5, hence m,; = 0
Ay =8 =myup+ sy +0 = up, hence uy, = 8
aypy =2 =my 3+ Loty +0 = uy, hence u,3 = 2.
In connection with the third row of A you have to consider the third row of L, consisting of ms,, mj,, 1.
You obtain
ay =6=myu;+0+0 = my; -3, hence mj, = 2
3y =2 =my U3 +Myipn+0 =25+my-8 hence mj, = -1
a3y = 8 =my w3 +Myupyy+ Lottyy = 2.2~ 1.2+ ua;, hence u,; = 6.

In (4) on p. 896 the first line concerns the first row of A and the second line concerns the first column of
A hence in that respect the order of calculation is slightly different from that in Example 1.
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7. Cholesky’s method. You see that the given matrix A is symmetric. Its Cholesky factorization is

9 6 12 Ly 00 Iy Iy Iy
6 13 11 = 121 122 0 0 122 132
12 11 26 by, I3 Iss 0 0 I3

This matrix A is positive definite. For a larger matrix this may be difficult to check, although in some
cases it may be concluded from the kind of physical (or other) application. However, it is not necessary to
check for definiteness because all that might happen is that you obtain a complex triangular matrix L and
would then probably choose another method. Going through A row by row and applying matrix
multiplication (Row times Column) as just before you calculate the following.
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17.

ay=9=104,+0+0 = 3, hence I, =3
A, =6=1,1+0+0 =31y, hence [ =2
apy=12=1,1;+0+0 =31, hence I3, = 4.
In the second row of A you have a;; = a,, (symmetry!) and need only two calculations,
ayp =13=08,+1,+0 =4+10%, hence [y, =3
Ay = 11 =l 13 + 10l +0 = 2.4+ 31,,, hence [l = 1.

In the third row of A you have a3, = a,3 and as; = a,3 and need only one calculation,
a3z = 26 = l%l + [:2;2 + 1%3 =16+1+ l§3, hence ]33 =3,

Now solve Ax = b, where b = [17.4 23.6 30.8])7. You first use L and solve Ly = b, where

y = [y, y» y3]". Since L is triangular, you just do back substitution as in the Gauss algorithm. Now
since L is lower triangular, whereas the Gauss elimination produces an upper tringular matrix, begin with
the first equation and obtain y,. Then obtain y, and finally y;. This simple calculation is written to the
right of the corresponding equations.

300 |[ y 1 174 | yi=1-174=538
230 y2 |=| 236 y2= 1(23.6-2y,)=4
e ”3 308 y3 = $(30.8 -4y, —y;) = 1.2

In the second part of the procedure you solve L™x = y for x. This is another back substitution. Since L7 is
upper triangular, just as in the Gauss method after the elimination has been completed. the present back
substitution is exactly as in the Gauss method, beginning with the last equation, which gives x5, then using
the second equation to get x,, and finally the first equation to obtain x, . These calculations are again
written to the right of the corresponding equations.

324 X 5.8 Xy = %(5-8—2372“413) =0.6
031 X, | = 4 X2 =+(4-x3)=12
003 X3 1.2 x3=+.12=04

Check the solution by substituting it into the given linear system.

Matrix inversion. The method suggested in this section is illustrated by Example 1 in Sec. 6.7, at which
you may perhaps look first. The matrix in the present problem is

-2 4 -
-2 3 0
7 -12 2

To find its inverse, apply the Gauss-Jordan method to the 3 x 6 matrix
-2 4 -1]1100
G = -2 3 011010
7 -12 2 001

The left 3 x 3 submatrix is the given matrix. The right 3 x 3 submatrix is the 3 x 3 unit matrix. At the end
of the process the left 3 x 3 submatrix will be the 3 x 3 unit matrix, and the right 3 x 3 submatrix will be
the inverse of the given matrix. Leave Row 1 of G unchanged. Replace Row 2 by Row 2 — Row 1.
Replace Row 3 by Row 3 + 3.5 Row 1. This gives the new matrix
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0 2 -15]35 01
Now leave Rows 1 and 2 of H unchanged. Replace Row 3 by Row 3 + 2 Row 2. The new matrix is
-2 4 -1 I 00
J= 0 -1 1 -1 10
0 0 05|15 21

This was Gauss. The given matrix is triangularized. Now comes Jordan and diagonalizes it. Multiply Row
1 by —1/2, Row 2 by -1, and Row 3 by 2. This gives the matrix

1 -2 0505 0 O
K= 0 1 -1 1 -10
0 0 1 3 4 2

Now eliminate 0.5 and —1 from the third column of K. Replace Row 1 by Row | — 0.5 Row 3. Replace
Row 2 by Row 2 + Row 3. Leave Row 3 unchanged. The new matrix is

I 2 04f-2 -2 -1
M=| 01 0|4 3 2
0 0113 4 2

Finally eliminate —2 in the second column of M. Replace Row 1 of M by Row 1 + 2 Row 2. The new
matrix is

100|643
N=| 010|432
0011}13 42

The last three columns constitute the inverse of the given matrix. The following discussion may perhaps
help you to a better understanding of the method. Follow the discussion with paper and pencil and an
example of your own or in terms of the problem just solved. From Ax = b you have x = A™'b, the
existence of the inverse being assumed. The Gauss elimination converts the given system to Ux = b* with
upper triangular U and b* obtained from b in the calculations. x = U~'b"is then obtained by back
substitution. In the Gauss-Jordan method you go on and reduce U to the identity matrix I, so that the
system becomes Ix = b*" with b** obtained from b” in this process. Since Ix = x, you have directly

x = b*’, thatis, b*" is the solution, and back substitution is avoided. Now comes the crucial point of this
discussion. If for b you chose the first column of the unit matrix, call it b,, you are dealing with Ax = b,,
hence with x = A~'b,. But by the usual matrix multiplication, A™'b, is simply the first column of the
inverse matrix because this multiplication picks from each row of A™' the first entry. And by
Gauss-Jordan, this solution x appears as the transform of b, in this process, that is, you have actually
obtained the first column of the inverse (as Column 4 of your above 3 x 6 matrix G). Similarly, if you
choose the second column of the unit matrix, call it b,, Gauss-Jordan will give you as solution the second
column of the inverse matrix as the transform of b,. And so on.

Sec. 18.3 Linear Systems: Solution by Iteration

Problem Set 18.3. Page 905

5. Gauss-Seidel iteration. This is a case in which you reorder the equations so that the large entries stand on
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the main diagonal in order to obtain convergence. Thal is, the third equation becomes the first and is
solved for x,. The first equation becomes the second and is solved for x,. The second equation becomes
the third and is solved for x;. With this rearrangement you can expect convergence. Indeed, C in (7) can
be shown to have the eigenvalues 0, 0.151, and -0.061, approximately. (In verifying this, don’t forget to
divide the rows of the coefficient matrix of the rearranged system by 6, 9, 8, respectively.) Hence you can
expect rapid convergence (see the discussion between formulas (7) and (8) in the text). In contrast, if you
left the given order and solved the first equation for x,, the second for x,, and the third for x5, you do not
get convergence because then the eigenvalues of C are 0, 8.5, and —51, approximately.

7. Effect of starting values. The point of the problem is to show that there is surprisingly little difference
between corresponding values, as the answer on p. A40 in Appendix 2 shows, although the starting values
differ considerably. Hence it is hardly necessary to search extensively for “good” starting values.

13. Convergence. The matrix of the system is

To obtain convergence, reorder the rows as shown.

g8 21
6 2
05

- -
Then divide the rows by 8, 6, and 5, respectively, as required in (13) (see a; = 1 at the end of the
formula). This gives

1 /4 18
176 1 173
45 0 1
You now have to consider
0 -1/4 -1/8
B=I-A=| -1/6 0 -1/3
~4/5 0 0
The eigenvalues are obtained as the solutions of the characteristic equation
-A -1/4 -1/8
detB-AD)=1| -1/6 -4 -1/3
—4/5 0 A
=—A3+llT7OA—1]—5 =0.

A plot shows that there is a real root near —0.5, but there are no further real roots because for large il the
curve comes closer and closer to the curve of —A3. Hence the other eigenvalues must be complex
conjugates. A root-finding method (Sec. 17.2) gives a more accurate value —0.5196. Division of the
characteristic equation by A + 0.5196 gives the quadratic equation

- A2+0.51961 - 0.1283 = 0.

The roots are 0.2598 + 0.2466i. Since all the roots are less than 1 in absolute value, the spectral radius is
less than 1, by definition. This is necessary and sufficient for convergence (see at the end of the section).




160 Numerical Methods PartE

Section 18.3. Problem 13. Curve of the characteristic polynomial

15. Matrix norm. This simple problem illustrates that the three norms usually tend to give similar values. The
same is true with Prob. 19. Hence one often chooses the norm that is most convenient from a
computational point of view. See, however, in the next section that a matrix norm often results from a
choice of a vector norm, so that in that respect, one is not completely free to choose.

Sec. 18.4 Linear Systems: Ill-conditioning, Norms

Problem Set 18.4. Page 912

7. Matrix norms and condition numbers. You have to consider the given matrix

4 1 /4 -1/8
A= and its inverse A~ = )
02 0 1/2

Begin with the /,-norm. You have to remember that the /,-vector norm gives for matrices the column
“sum’ norm {the “...” indicating that we take sums of absolute values). This gives 4 for A (the first
column) and 5/8 for A™! (the second column). Hence k(A) = 4(5/8) = 2.5. Now turn to the /., norm. You
have to remember that this vector norm gives for matrices the row “sum” norm. This gives 5 for A (the
first row) and 1/2 for A™' (the second row). Hence x(A) = 5(1/2) = 2.5. This is the same value as before.
(Is this the case for all triangular real 2 x 2 matrices? For all real 2 x 2 matrices? How would you start to
experiment on these questions?)

15. Ill-conditioning. The given system is
4.50x, + 3.55x, = 5.20
3.55x, +2.80x, = 4.10.

450 3.55
A=
355 280

consists of two almost proportional rows. Indeed, the system is very ill-conditioned. Its column sum norm
is 4.50 + 3.55 = 8.05. Its row sum norm is the same because A is symmetric. The inverse of A is

A _| 1120 1420
1420  -1800

and has the column sum norm 1420 + 1800 = 3220, which equals the row sum norm, again for reasons of
symmetry. The product of the norms is the condition number

Its coefficient matrix
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x(A) = 8.05-3220 = 25921.

This is very large and makes it plausible that the small change from b, to b, by 0.1 in the second
component causes the solution to change from -2,4 to —144, 184, a change of about one thousand times
that of that component. Also, if you try to solve the system by the Gauss elimination with a small number
of decimals, you obtain nonsensical results, whereas for calculations with 8 or 9 decimals the results are
satisfactory.

17. Small residuals for poor solutions. In the present case, formula (1) with the suggested ¥ = [a  y]7 (see
p. A40 in Appendix 2 of the book) is

| S2 450 3.55 a
Tl a1 || 3ss 280 y |
In components this can be written
ry =52-4.50a-3.55y (A)

ry =4.1-355a-2.80y.

If;'ou setr, = 0,r, = 0, you would get the exact solution because this would be the given system in Prob.
15. Following the suggestion on p. A40, choose an a, say, a large a such as a = 100, and solve each
equation r; = 0 and r, = 0 separately, with a, and a, as given in (A). You obtain

5.2-450-3.55y =0, solution y = ﬁ(S.Z - 450) = -125.296

4.1 -355-2.80y = 0, solution y = =—L—(4.1 - 355) = —125.321.
2.80

From this you see that you can expect a small residual if you set
x,=a=100, x,=y=-1253.
Indeed, you obtain
r, =5.2-450-3.55(-125.3) = 0.015
r, = 4.1 -355-228(-125.3) = -0.060.

Sec. 18.5 Method of Least Squares
Problem Set 18.5. Page 916

1. Fitting by a straight line. As in Example 1 in the text, the straight line for fitting the points by the method
of least squares is obtained by solving the normal equations (4). In working with paper and pencil, it is
best to first make up an orderly table of the given data and auxiliary quantities needed in (4). This may
look as follows.

R
0 3 0 0
2 1 4 2
3 -1 9 3
5 =2 25 -10

Sum 10 1 38 -11

Since you have n = 4 pairs of values, with the sums in your table the augmented matrix of (4) has the
form
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4 10 1
10 38 -11 |

The solution is @ = 37/13 = 2.84615,b = -27/26 = —1.03846. Hence the desired straight line is
y = 2.84615 — 1.03846x.

-2 -

I 2 x 3 4 5

Section 18.6. Problem 1. Given data and straight line fitted by least squares

11. Fitting by a quadratic parabola. A quadratic parabola is uniquely determuined by three given points. In
this problem, five points are given. You can fit a quadratic parabola by solving the normal equations (8).
Arrange the data and auxiliary quantities in (8) again in a table.

x y x2 x x* xy xty
2 0 4 8 16 0 0
3 3 9 27 81 9 27
5 4 25 125 625 20 100
6 3 36 216 1296 18 108
7 1 49 343 2401 7 49
Sum 23 11 123 719 4419 54 284

Hence the augmented matrix of the system of normal equations is

5 23 123 11
23 123 719 54
123 719 4419 284
The solution obtained, for instance, by Gauss elimination is
b, = -8.357, b, =5.446, b, =-0.589.

Hence the desired quadratic parabola that fits the data by the least squares principle is
= -8.357 + 5.446x — 0.589x2,
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Section 18.6. Problem 11. Given points and quadratic parabola fitted by least squares

13. Comparison of linear and quadratic fit. The figure shows that a straight line obviously is not sufficient.
The quadratic parabola gives a much better fit. It depends on the physical or other law underlying the data
whether the fit by a quadratic polynomial is satisfactory and whether the remaining discrepancies can be
attributed to chance variations, such as inaccuracy of measurement. Calculation shows that the augmented
matrix of the normal equations for the straight line is

5 10 83
|: 10 30 175 :'
and gives y = 1.48 + 0.09x. The augmented matrix for the quadratic polynomial is
5 10 30 8.3

10 30 100 175
30 100 354 56.31

and gives y = 1.896 — 0.741x + 0.208x2.

35

0 ! ; 3 4

Section 18.6. Problem 13. Fit by a straight line and by a quadratic parabola

Sec. 18.7 Inclusion of Matrix Eigenvalues

Problem Set 18.7. Page 924

1. Gerschgorin circles. Gerschgorin’s theorem is one of the earliest theorems on the numerical
determination of matrix eigenvalues. The application of the theorem to a real or complex square matrix is
very simple. In the present problem the Gerschgorin disks have the centers 5.1, 4.9, and —6.8 and the radii
0.5, 0.7, and 0.4, respectively. These disks consist of two disjoint parts (see the figure). The right part is
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formed by the union of two disks; hence it contains two eigenvalues. The left part, consisting of a single
disk, must contain a single eigenvalue. This follows from Theorem 2. Note that the matrix is not
skew-symmetric because its main diagonal entries are not zero. Hence you cannot apply Theorem 5 in Sec.
18.6 and conclude that its eigenvalues are pure imaginary or zero. 3D-values of the eigenvalues are —6.791
and 4.996 + 0.387i. These can be determined, for instance, by sketching or plotting the curve of the
characteristic polynomial, which by developing the characteristic determinant is found to be

-A3+3.222+42.754-170.512.
The curve intersects the x-axis only once, near A = —7, a value that can be improved to —6.791 by
Newton's method. Then division by A + 6.791 gives a quadratic equation whose roots are complex

conjugates, as given before. You see that the left Gerschgorin disk does contain just one eigenvalue,
whereas the other two eigenvalues lie in the union of the other two Gerschgorin disks with centers at 5.1

and 4.9.

Section 18.7. Problem 1. Gerschgorin circles

7. Similarity transformation. The matrix in Prob. 3 shows a typical situation. It may have resulted from a
numerical method of diagonalization which left off-diagonal entries of various sizes but not exceeding
102 in absolute value. Gerschgorin's theorem then gives circles of radius 2 x 1072. These furnish upper
bounds for the deviation of the eigenvalues from the main diagonal entries. This describes the starting
situation for the present problem. Now in various applications, one is often interested in the eigenvalue of
largest or smallest absolute value. In your matrix, the smallest eigenvalue is about 5, with a maximum
possible deviation of 2 x 1072, as given by Gerschgorin’s theorem. You now wish to decrease the size of
this Gerschgorin disk as much as possible. Example 2 in the text shows how you should proceed. The
entry 5 stands in the first row and column. Hence you should apply to A a similarity transformation
involving a diagonal matrix T with main diagonal a, 1, 1, where a is as large as possible. The inverse of T
is the diagonal matrix with main diagonal 1/a, 1, 1. Leave a arbitrary and first determine the result of the

similarity transformation (as in Example 2)

/a 0 O
B = T'AT = 0 1 O
0 0 1

s 001 001 a 0 0
00 8 00l 0 1 0
001 001 9 0 0
[ 5 00l/a 0.0V/a

00la 8 001

L0.0la 001 9

You see that the Gerschgorin disks of the transformed matrix B are

Center

5
8
9

Radius
0.02/a
0.01(a+1)
0.01(a+1)

The last two disks must be small enough so that they do not touch or even overlap the first disk. Since
8 — 5 = 3, the radius of the second disk after the transformation must be less than 3 — 0.02/a, that is,
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0.0l(a+1) < 3-0.02/a.

Multiplication by 100a (> 0) gives a® + a < 300a - 2. If you replace the inequality sign by an equality
sign, you obtain the quadratic equation a? - 299a + 2 = 0. Hence a must be less than the larger root
298.9933 of this equation, say, for convenience, a = 298. Then the radius of the second disk is

0.01(a + 1) = 2.99, so that the disk will not touch the first one, and neither will the third, which is farther
away from the first. The first disk is substantially reduced in size, by a factor of almost 300, the radius of
the reduced disk being

0.02/298 = 0.000067114.

The choice of a = 100 would give a reduction by a factor 100, as requested in the problem. Your
systematic approach shows that you can do better.

11. Spectral radius. By definition, the spectral radius of a square matrix A is the absolute value of an
eigenvalue of A that is largest in absolute value. Since every eigenvalue of A lies in a Gerschgorin disk,
for every eigenvalue of A you must have (make a sketch)

lagl+ Y layl 2 1451

where you sum over all off-diagonal entries in Row j (and the eigenvalues of A are numbered suitably).
By taking this for a largest | 4;1, you accomplish two things. First, on the right you obtain the spectral
radius. Second, on the left you ob:ain the row “sum” norm. This proves the statement.

19. Collatz’s theorem. The matrix A has equal row sums 7; hence 7 must be an eigenvalue of A. The other
eigenvalue of A is 4; it has algebraic multiplicity 2, that is, it is a double root of the characteristic equaiion.
In the present case the characteristic equation can be solved by subtracting Row 2 of the characteristic
matrix from Row 1, then Row 3 from Row 2, obtaining

4-% -4+1 O
0 4-1 —4+2
1 1 5-4

Then add Column 1 to Column 2 and develop the determinant of this matrix by the first row (which now
contains two zeros); this gives

4-1 0 0
0 d4-2 -4+ | =W@=-D[(@-2)5-)+2(@-2)] = (4-1)5-1+2].
12 5-4

This shows that the eigenvalues are 7 and 4, as claimed, and 4 has the algebraic multiplicity 2.

Sec. 18.8  Eigenvalues by Iteration (Power Method)

Example 1. Six vectors are listed. The first was scaled. The others were obtained by multiplication by A and
subsequent scaling. You can use any of these vectors for obtaining a corresponding Rayleigh quotient g as
an approximate value of an (unknown) eigenvalue of A and a corresponding error bound § for g. Hence
you have six possibilities using one of the given vectors (and many more if you want to compute further
vectors). You must not use two of the given vectors because of the scaling. but just one vector, for
instance, x,, and then its product Ax,. That is,

0.49 0.02 0.22 0.890244 0.668415
A=]| 002 028 020 | x;=| 0.609756 |, Ax;=1| 0.388537
0.22 0.20 0.40 1 0.717805
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From these data you calculate the inner products
my = xTx, = 2.164337
m, = x1 Ax, = 1.549770
my = (Ax;)TAx, = 1.112983.
These now give the Rayleigh quotient ¢ and error bound é of ¢

qg=m;img = 0.716048

§ = Jmymy—q* =0.038887 .

q approximates the eigenvalue 0.72 of A, so that the error of g is

€e=072-¢ = 0.003952.
These values agree with those in the table on p. 928 of the book.

Problem Set 18.8. Page 928

1. Power method without scaling. Without scaling the components of the vectors successively obtained will
generally keep growing (or decreasing). Since the given matrix is symmetric, you can apply Theorem 1,
which yields error bounds for the approximations of A (usually the largest eigenvalue in absolute value,
but no general statements can be made). Our simple matrix has the eigenvalues 11 and 1, as can readily be
computed, and the problem serves only to explain the method in a very simple case in which you can see
what is going on in each step. The computation of the vectors needed gives the following results.

A X X, X3 X3

SID YR ]

In each step of the further calculations take two adjacent vectors x and y = Ax, that is, X, and x,, then x,
and x,, then x; and x;. For the first of these three pairs x, y, namely, for x4 and x,, now compute (see
Theorem 1)

my=x8xg=12+12=2,
m, =X(7).xl =1.13+1.7=20

m, =xJx, = 132+72 =218

q = m/mg = 20/2 = 10 (approximation of an eigenvalue)
8% = mofmy—q* = 218/2-102 =9
6=3 (error bound; see Theorem 1).

Since A is symmetric, its eigenvalues are real. Hence conclude from Theorem 1 that an eigenvalue of A
must lie in the closed interval

g-6=7SA£qg+6=13.
It is typical that the error bound is much larger than the actual error, but the intervalg- 6§ S A S q+ 6 is
best possible, that is, for values g and § calculated from a given symmetric matrix A (of any size) there is a
symmetric matrix B for which the endpoints of that interval are eigenvalues of B. (Another question

would be how to actually find such a matrix B in a concrete case. Problem 10 contributes to this in a very
special case.) For the next pair x, and x, you obtain
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my = X1x, = 132472 =218 (this is m of the previous step)
my = x]x, = 13.145+7-73 = 2396
my = x3x, = 1452 + 732 = 26354

q = m\/my = 10.99083 (approximation of an eigenvalue)
82 = mylmg — q* = 0.091659

6 = 0.302752 (error bound for g).

From this and Theorem 1 conclude that an eigenvalue of A must lie in the interval
g-6=10.68807< A £ g+d = 11.29358.

You see that the approximation has substantially increased in quality. The same is true for the error bound,
which is smaller than in the first step by a factor 10. But, again, the error is much smaller than the bound,
so that the latter does not give an indication of the size of the error. In the third step compute

my = xIx, = 26354 (this is m, of the previous step)
m, = x3x; = 145-1597 + 73.799 = 289892
) m, = xIx; = 15972 +799% = 3188810
q = m/my = 10.99992 (approximation of an eigenvalue)
82 = my/my — g% = 0.0007589
& = 0.027548 (error bound for g).

From this and Theorem 1 concludc that the interval
g-6=1097237£ 1 £q+6 =11.02747

must contain an eigenvalue of A. Again, the error 0.00008 of ¢ is much smaller than the error bound
0.027548.

13. Power method with scaling. The given matrix is

36 -1.8 1.8
A= -18 28 -26
1.8 -26 238

Use the same notation as in Example 1 in the text. Fromx, = [I 1 1]7 calculate Ax, and then scale
it as indiciated in the problem, calling the resulting vector x,. This is the first step. In the second step
calculate Ax, and then scale it, calling the resulting vector X,. And so on. The numerical results are as

follows.
Xo Axg X, Ax,
1 3.6 1 5.4
1 -1.6 —0.444444 —4.488889
1 20 0.555556 4511111
X, Ax, X3
1 6.6 1
-0.831276 —6.299588 —0.954483
0.835391 6.300412 0.954608

The calculation of approximations g (Rayleigh quotients) and error bounds & proceeds similarly to the
method without scaling (see the previous problem in this Manual). However, in the first step use
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X =Xp and y = Ax = Axy, (notx,).
In the second step use
x =X; and y = Ax = Ax, (notx,).
In the third step use
X =X, and y = Ax = Ax, (notxj).
The calculations that give approximations g (Rayleigh quotients) and error bounds are as follows.

M xixo =3 xTx, = 1.506173 xTx, = 2.388897

m, x[Ax, = 4 xTAX, = 9.901235 xTAx, = 17.100002

m, (Axo)TAx, = 19.52 (Ax;)TAx, = 69.660247 (Ax,)TAx, = 122.94000
g = m/mg 1.333333 6.573770 7.158115

5% = mylmy — q* 4.728889 3.035378 0.224465

5 2.174601 1.742234 0.47377

g-6 © —0.841267 4.831536 6.684337

g+é 3.507935 8.316004 7.631893

Solving the characteristic equation shows that the matrix has the eigenvalues 0.2, 1.8, and 7.2.
Corresponding eigenvectors are

zy=[0 1 117, z,=[2 1 -1}, z3=[1 -1 1]7,
respectively. You see that the interval obtained in the first step includes the eigenvalues 0.2 and 1.8. Only
in the second step and third step of the iteration did you obtain intervals that include the largest

eigenvalue, as is usually the case from the beginning on. The reason for this interesting observation is the
fact that x, is a linear combination of all three eigenvectors,

Xo =2, + %(Zz"‘za)v

as can be easily verified, and its needs several iterations until the powers of the largest eigenvalue make
the iterate x; come close (0 z3, the eigenvector corresponding to A = 7.2. This siutation occurs quite
frequently, and and one needs the more steps for obtaining satisfactory results the closer in absolute value
the other eigenvalues are to the absolutely largest one. See also Prob. 11 for some further explanation.

Sec. 18.9  Tridiagonalization and QR-Factorization

Example 2. The tridiagonalized matrix is (p.936)

6 -J1§ 0
B=| -/1i8 71 2
0 2 6

We use the abbreviations ¢,, s,, and ¢, for cos 6,, sin 8,, and tan 8,, respectively. We multiply B from the
left by

c, -5, 0
Ci=| -5, ¢, O
0 00

The purpose of this multiplication is to obtain a matrix C,B = [ b}f’] for which the off-diagonal entry b%%
is zero. Now this entry is the inner product of Row 2 of C, times Column 1 of B, that is,
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- 526+ c(~18) =0, thus 1, = -J18/6 = - [112.

From this and the formulas that express cos and sin in terms of tan we obtain

c,=UJ1+8 = 1/2/3 = 0.816496581,
sy=tlf1+8 = —,/1/3 = -0.577350269.

85 is determined similarly, with the purpose of obtaining b$) = 0 in C;C,B = [b].
Problem Set 18.9. Page 937

1. Tridiagonalization. The given matrix

0.49 0.02 0.22
A=] 0.2 0.28 0.20
0.22 0.20 040

is symmetric. Hence you can apply Householder’s method for obtaining a tridiagonal matrix (which will
have two zeros instead of the entries 0.22). Proceed as in Example 1 of the text. Since A is of size n = 3,
you have to perform n — 2 = 1 step. (In Example 1 we had n = 4 and needed n — 2 = 2 steps.) Calculate
the vector v, from (4). Denote it simply by v and its components by v,(= 0), v,, v; because you do only
one step. Similarly, denote S, in (4c) by S. Compute

S = Jal +a? = J0.022+ 0227 = 0.2209072203.

If you compute, using, say. 6 digits, you may expect that instead of those two zeros in the tridiagonalized
matrix you obtain entries of the order 1078 or even larger in absolute value. You always have v, = 0. From
(4a) you obtain the second component

_ F +a,/S J 1 +0.02/0.2209072203
Vy = =
2 2
From (4b) with j = 3 and sgn a,, = +1 (because a,, is positive) you obtain the third component
vy = ay/(2v,S) = 0.22/(2v,8) = 0.6743382884.
With these values you now compute P, from (2), where r = 1,..,n — 2, so that you have only r = 1 and

can denote P, simply by P. Note well that v7v would be the dot product of the vector by itself (thus the

square of its length), whereas vv7 is a 3 x 3 matrix because of the usual matrix multiplication. You thus
obtain from (2)

= (0.7384225572.

P=1-2vw7

V% Viva ViV;3

=21 wvvy v vovs

V3V V3V, V%

1-2v3 2vv, —2v,v,
= 2vyv, 1-2v3 2v,v,
=2vyy; =2vyy, 1-243
1 0 0

=1 0 -0.0905357460 -0.9958932066
0 -0.9958932064 0.0905357456

Finally use P and its inverse P~ = P for the similarity transformation that will produce the tridiagonal
matrix
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0.49 -0.2209072204 -1071°
B =PAP =P 0.02 -0.2245286502 -0.2607429487
0.22 -0.4164644318 -0.1629643431

0.49 -0.2209072204 -10-1°
=| -0.2209072204 0.4350819672 0.1859016396
-10710 0.1859016396 0.2449180330

The point of the use of similarity transformations is that they preserve the spectrum of A, consisting of the
eigenvalues

0.09, 036, 0.72,

which can be found, for instance, by plotting the characteristic polynomial of A and applying Newton’s
method for improving the values obtained.

9. QR-factorization. The purpose of this factorization is the determination of approximate values of all the
eigenvalues of a given matrix. To save work, one usually begins by tridiagonalizing a given matrix, which
must be symmetric. The given matrix

70 05 0
Bo=[bp]l =| 05 35 0.1
0 01 -15

is tridiagonal. Hence QR can begin. Proceed as in Example 2 on p. 935 of the book. (See also in this
Manual above.) Write c,. 55, f; for cos 8,, sin 8,, tan 8,, respectively. Consider the matrix

C; 5 0
C2 = =8 €y 0
0 01

with the angle of rotation 8, determined so that in the product Wy = C,B, = [w)] the entry wy, is zero.

By the usual matrix multiplication (row times column) w, is the inner product of Row 2 of C, times
Column 1 of By, that is,

—‘Szb“ +C2b2| = 0, hence tz = Sz/Cz = b2|/b“.
From this and the formulas for cos and sin in terms of tan (usually discussed in calculus) you obtain
1 J1 4+ (by/byy)? = 09974586997 v

C2

5 %zr_/ L+ (bufbyy)? = 0.0712470500.
11

Now calculate C,By (as in the middle of p. 936). Denote this matrix (which has no notation on p. 936) by
W = [w;,]. Thus
7.017834423 0.7480940249 0.0071247050
W = [w;] = C;Bg = 0 3.455481924 0.09974587000
0 0.1 -1.5

C, has served its purpose: instead of b,; = 0.5 you now have w,; = 0. (Instead of w,; = 0 on the

computer you may get —107'° or another very small entry.) Now use the abbreviations c;, 53, 5 for cos 03,
sin 85, tan 85. Consider the matrix
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1 0 0
Ci=| 0 ¢ 5
0 -53 ¢;
with the angle of rotation 85 such that the product matrix Rg = [r;] = C;W = C;C,B, the entry ry, is
zero. This entry is the inner product of Row 3 of C; times Column 2 of W. Hence
—S§3Way +Cywyy =0, sothat 13 = s3/c3 = wy/way = 0.02893952340.
This gives for c; and 53

¢y = 1/m = 0.9995815152, 53 = 13/ 1 + 1} = 0.0289274127. arn
Using this, you obtain
7.017834423 0.7480940249 0.0071247050
Ry = C3W = C,C;,Bg = 0 3.456928598 0.0563130089
0 0 -1.502257663

(Instead of O you may obtain 107'% or another very small term. Similarly in the further calculations.)
Finally, multiply R, from the right by CICI. This gives

B, = RoCIC] = C;C,B,CICT

7.053299490 0.2462959646 0

0.2462959646  3.448329498 -0.0434564273
0 -0.0434564273 -1.501628991

The given matrix By (and thus, also the matrix B,) has the eigenvalues

7.070049927, 3.431961091, - 1.502011018.

You see that the main diagonal entries of B, are approximations that are not very accurate. a fact that you
could have concluded from the relatively large size of the off-diagonal entries of B,. In practice, one
would perform further steps of the iteration until all off-diagonal elements have decreased in absolute
value to less than a given bound. The answer on p. A41 in Appendix 2 gives the results of two more steps,
which are obtained by the following calculations.

Step 2. The calculations are the same as before, with Bo = [b;] replaced by B, = [b “)] Hence, instead

of (I/1) you now have
1/,/1 + (bb1Y)? = 0.9993908803 (1/2)

WY1+ BDBD) = 0.0348979852.

You can now write the matrix C,, which has the same general form as before, and calculate the product

C2

52

W, = [wi’] = C;B,
7.057598419 0.3664856925 -0.0015165418
= 0 3437633820 -0.0434299571
0 —0.0434564273 -1.501628991
Now calculate the entries of C; from (II/1) with 1; = wj,/w,, replaced by t“) w,'z’/w“) that is,
cy = 1/,/1 +(157)?2 = 0.9999201074 (12)

= :;’1,/1 +(1")? = -0.0126403677.

You can now write Cj, which has the same general form as in Step 1, and calculate
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R] = C3\V, = C3C2B|

7.057598419 0.3664856925 -0.0015165418
0 3.437908483 -0.0244453448
0 0 -1.502057993

This gives the next result

B, = [bj] = R,CIC] = C;C;B,CIC]
7.066089109 0.1199760792 0
=| 0.1199760792 3.4358484889 0.0189865653
0 0.0189865653 -1.501937990

The approximations of the eigenvalues have improved. The off-diagonal entries are smaller than in B;.
Nevertheless, in practice the accuracy would still not be sufficient, so that one would do several more
steps. Do one more step, whose result is also given on p. A4! in Appendix 2 of the book.

Step 3. The calculations are the same as in Step 2, with B, = [b“)] replaced by B, = [b}f)]. Hence

calculate the entries of C, from
1/,/1 + (b)Y = 0.9998558858 U3)

bR 1 + (bF16$F)? = 0.0169766878.
You can now write the matrix C, and calculate the product
W, = [wi] = C,B,

(&

52

7.067107581 0.1782881229 0.0003223290
= 0 3.433316936 0.0189838291
0 0.0189865653 -1.501937990

Now calculate the entries of C, from (I/2) with 15" replaced by 152 = w2/w$?, that is,
Y Y

1/,/1 + (1$)? = 09999847092 (IW3)

53 = 1‘2’/,/1 +(#$P)? = 0.0055300094.
Write Cj and calculate

R, = C;W; = C;C,B,
7.067107581 0.1782881229 0.0003223290

= 0 3.433369434 0.0106778076
0 0 -1.502020005
and, finally,
B, = R,CIC} = C;C,B,CIC]
7.069115852  0.0582872409 0
= 0.0582872409  3.432881194 -0.0083061848
0 —-0.0083061848 -—1.501997039

This is again an improvement over the result of Step 2.



