CHAPTER 19. Numerical Methods for Differential Equations

Sec. 19.1  Methods for First-Order Differential Equations

Problem Set 19.1. Page 951

3. Euler method. This method is hardly used in practice because it is not accurate enough for most purposes,
and there are other methods (Runge-Kutta methods, in particular) that give much more accurate values
without too much more work. However, the Euler method explains the principle underlying this class of
methods in the simplest possible form, and this is the purpose of the present problem. The latter has the
advantage that it concemns a differential equation that can easily be solved exactly, so that you can observe
the behavior of the error as the computation is progressing from step to step. The given inital value
problem is

y +5x*y*=0, y0)=1.
For the Euler method you have to write the differential equation in the form
y' =flry) = -5x‘y (A)

The required step size is & = 0.2, so that 10 steps will give approximate solution values from O to 2.0.
Because of (A) the formula (3) for the Euler method takes the form

Yar = Yo +02(=5x3y7) = y, - x3 5. (B)
Because of the initial condition y(0) = 1 your starting values are
x=x3=0 and y=yo =1l
The exact solution is obtained by separating variables. Dividing (A) by y* on both sides and integrating,

you obtain
y'lyt = -5x%, - % =-x’+c.
Taking the reciprocal and multiplying by —1 gives
y= (¢’ =-0).

X +ct

From this and the initial condition y(0) = 1 you obtain ¢* = 1. Hence the solution of the problem is
1

3+l

Use (C) in computing the error of the approximations obtained from (B). The computations with 10S

rounded to 6S give the values shown in the following table.

y= (&)
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Table for Problem 3. Computations with Euler’s Method

N Xn  Va y2 xiy? Exact Error

00 1 1 0 1 0

1 02 1 1 0.001600 0.999680 -0.000320
2 04 0.998400 0.996803 0.025518 0.989864 -0.008536
3 0.6 0.972882 0.946499 0.122666 0.927850 -0.045031
4 0.8 0.850216 0.722867 0.296086 0.753194 -0.097022
5 1.0 0.554129 0.307059 0.307059 0.500000 -0.054129
6
7
8
9

1.2 0.247070 0.061044 0.126580 0.286671 +0.039601
1.4 0.120490 0.014518 0.055772 0.156783 0.036293
1.6 0.064718 0.004188 0.027449 0.087064  0.022346
1.8 0.037269 0.001389 0.014581 0.050262 0.012993
10 2.0 0.022688 0.000515 0.008236 0.030303 0.007615

It is interesting that the error is neither monotone ircreasing nor of constant sign, as you might have
expected. Of course, this has to do with the particular form of the equation and its solution, which
approaches zero as x approaches infinity. The figure shows the behavior of the solution and the
approximate values marked as points.

1] 0.5 i 1.5 2

Section 19.1. Problem 3. Solution curve and approximations by Euler's method

13. Classical Runge-Kutta method. This is perhaps the most popular method. The given initial value
problem is (see Prob. 11)

f_ 2 0T !
y=x y—Inx + 5 y(1) = 0. (A)

In Prob. 11 this was solved by Euler’s method with h = 0.1 for 8 steps from 1.0 to 1.8. The error was
determined from the exact solution and was found to increase from O to 0.05, approximately. The exact

solution can be obtained as follows. The form of the differential equation suggests introducing the new
unknown function

z=y-Inx. Then z'=y'—%=%ﬁ, (B)
where the last equality sign follows by using (A). You can now separate the variables, obtaining
7 2
O

By integration, 2/z = 2lnx +¢*, hence Jz = In x + c. Squaring and then using (B), you have
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z=(nx+c¢)? y=z+lnx=(nx+c)?+Inx
Since In I = 0, you obtain from this and the initial condition y(1) = ¢? = 0. Hence the solution is
y = (Inx)? + In x, as shown in Prob. 11. The point of Prob. 13 is a comparison of the accuracy of Euler’s
method with that of the Runge-Kutta method. Now in the latter you have to compute four auxiliary
quantities ky, k,, k3, k, per step; hence in the required two steps this amounts to eight such computations,
compared to eight steps in the Euler method in Prob. 11; in this sense, the comparison seems fair. The

error will turn out to be about half of that of Euler's method. The results of the Runge-Kutta calculations
(108, rounded to 5S) are shown in the table.

Table for Problem 13. Computations with the Runge-Kutta method

Xn  Yn k, k, ks k, Exact  Error
1.0 0 0.4 0.42197 0.44621 0.47501 O 0

1.4 0.43522 0.46529 0.47241 0.47440 0.47436 0.44969 0.01446
1.8 0.90744 0.93328 0.02584

Sec. 19.2  Multistep Methods
Problem Set 19.2. Page 955

1. Adams-Moulton method. The initial value problem to be solved is

Y =flxy)=x+y y0)=0. (A)
The differential equation is linear. Hence you can solve it exactly, so that no numerical method would be
needed. Indeed, write the equation in (A) in the standard form (1), Sec. 1.6,

y-y=x
and solve it by (4), Sec. 1.6, withp = —1, hence h = —x, obtaining
y(x) = e‘(fe“xdx+c) =cef—x-1.

The initial condition gives y(0) = ¢~ 0~ 1 = 0,c = 1. Hence the solution of the initial value problem (A)
is

yx) = ef—x-1. (B)
You can later use (B) for determining the errors of the approximate values obtained by the
Adams-Moulton method. Now begin with the computation. From (A) you have

fn =f(xmyn) =X, + Y., fn—l =f(xn—|»)’n-|) = Xpo) t Yae
and similarly for the other terms in (7a). Hence (7a) takes the form
. 0.1
Yari = Yo+ 2_4[55(Xn + y::) - 59()’,,_1 +}’n-1) +37 (xn-Z + y»-Z) - 9(x,,_3 +yn-3)]'
This gives the predictor. Similarly, the corrector (7b) takes the form

0.1
Yol = Yo t 2_4[9(-xml + y:wl) + lg(xn +yn) -5 (xn—l +yn—l) + (xn-Z +yn—2)]°
Arrange the numerical values obtained as in Table 19.9 on p. 955.
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Starting Predicted Corrected Exact Error
X, Vn v ¥n Values  x 107
0 0
0.1 0.00517083
0.2 0.0214026
0.3 0.0498585
0.4 0.09182010 0.09182454 0.09182470 16
0.5 0.14871645 0.14872131 0.14872127 -4
0.6 0.22211367 0.22211908 0.22211880  -28
0.7 0.31374730 0.31375327 0.31375271 =56
0.8 0.42553524 0.42554183 0.42554093  -91]
0.9 0.55959713 0.55960442 0.55960311 -131
1.0 0.71827557 0.71828362 0.71828183 -180

You see that the differences between predictor and corrector are of the order 1076 to 1073, These

differences are monotone increasing, namely, in terms of the last three digits shown,
444, 486, 541, 597, 659, 729, 805.

The errors of the corrected values are much less, of the order 107 to 107¢. This shows that the process of
correcting the predicted values is definitely worthwhile. From x = 0.5 on, the error is negative and is
monotone increasing in absolute value. Monotonicity is typical of many cases, but other behavior also

appears, for instance, if the solution happens to be periodic. The solution of the present problem is

monotone increasing (see the figure) because its derivative is nonnegative. In the figure the approximate
values obtained lie practically on the curve; the errors are much too small for exhibiting them graphically.
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Section 19.2. Problem 1. Solution curve

Sec. 19.3  Methods for Systems and Higher Order Equations

Froblem Set 19.3. Page 961

1. Euler’s method for systems. The given system is

i =filxy) = 2y, — 4y,

Hence the recursion relation (5) with & = 0.1 takes the form (in components)

Y2 = f2(x,y) = y, = 3y,.

(A)



Chap. 19 Numerical Methods for Differential Equations 177

Yinan = yl,n+0'](2yl,n_4y2,n)v Yan = yZ.n+0'1(yl,n—3y2.n)' (B)
You see that this is not more complicated than Euler's method for a single equation, except for the fact
that in each step you now have to work on two equations and each of them involves the result of both y, ,
and y, , of the previous step. Solve the system exactly, so that you can calculate the errors and judge the
accuracy of the approximate values obtained by Euler’s method. Proceed as in Sec. 3.3. The matrix of the

system is
2 4
A= .
1 -3
Its characteristic equation is

det(A-AD) =2-)(-3-)-(4)1=22+1-2=(A+2)(A-1)=0.
Hence the eigenvalues of A are -2 and 1. Corresponding eigenvectors are found by inserting the
eigenvalues into the system of equations. Thus, for A = =2 you have

(2+2)z,-42, =0, hence z, =7z,

and you can take [1 1]7 as the first eigenvector. Note here that you have used z instead of x in Sec. 3.3
because x is supposed to be used as the independent variable. Similarly for A = 1 you obtain

(2-1)z,-42, =0, hence z, =4z
and you can take [4 1]7 as the second eigenvector. This gives the general solution

y(x) =c,[ 1 :|e'2‘+(:2|: ‘: Je‘. O

The given initial values are y,(0) = 3, y,(0) = 0, in vectorial form y(0) = [3 0]7. From this and (C) you

obtain
1 4 3 +t4c, =3
y(0) = ¢, +c, T = , in components, arie .
1 1 0 Cy+Cy = 0

The solution obtained by inspection, by elimination, or by Cramer’s rule is ¢, = -1, ¢, = 1. Hence the
given initial value problem has the solution

yx) = - 1 }-zx+[ T i|e‘,

yi(x) = —e7¥ + 4¢*

in components

y2(x) = -7 + ¢~
The recursion formula (B) gives the approximate values for x = 0,0.1,0.2,..., 1.0 shown in the table. The
errors €, and €, of y, and y,, respectively, are obtained by using (C). The first figure shows y,(x) as a
curve in the xy,-plane and the values obtained by Euler’'s method marked by crosses. The second figure
shows y,(x) in the xy,-plane and the approximate values as crosses. The third figure shows y, as a
function of y,. Hence this is the trajectory of the initial value problem plotted in the phase plane (the
¥1Y»-plane). The values obtained by Euler's method are again marked by crosses. From the table and from
the figures you see that the values are too inaccurate for practical purposes. This agrees with your
experience in the application of Euler’s method to a single differential equation.
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X N Y2 e(y,) e(y2)

0 3 0 0 0

0.1 3.6 0.3 0.0 0.0

0.2 420 0.57 0.02 -0.02

0.3 4.812 0.819 0.039 -0.018
0.4 5.4468 1.0545 0.0712 -0.0120
0.5 6.11436 1.28283 0.11265 -0.00199
0.6 6.824100 1.509417 0.163181 0.011508
0.7 7.585153 1.739002 0.223261 0.028154
0.8 8.406583 1975817 0.293684 0.047828
0.9 9.297573 2.223730 0.375541 0.070574
1.0 10.267596 2.486368 0.470964 0.096578
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Section 19.3. Problem 1. Exact solution y, (x) and approximate values (crosses)
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Section 19.3. Problem 1. Exact solution y,(x) and approximate values (crosses)
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03 4 S5 6 1 8 9 10
Section 19.3. Problem 1. Exact solution as a curve (trajectory) in the y,y,-plane and approximate values

5. Classical Runge-Kutta method. The initial value problem is the same as in Prob. 1. Two steps with the

required (very large) h = 0.5 will give approximations for x = 0.5 and 1.0, which you can compare with
the values in Prob. 1 obtained by Euler’s method. The system is (in component form)

Y1 =fixy) =2y -4y, (A)
¥2 = fr(xy) =y, -3y,
The initial values are y,(0) = 3, y,(0) = 0. Now use the formula (6) for the classical Runge-Kutta method
in Sec. 19.3. Formula (6b) consists of four vector formulas. Since (A) consists of two equations, each of

the vector functions in (6) has two components. This will give you 4.2 = 8 formulas for the components.
You could write

Ky = [ky k)" (B)
k, = [k2| kzz]T
ks = [k3; k3)7
ks = [kyy kaz]r-
However, a simpler notation is that in Example 2 of Sec. 19.3 of the text, namely, instead of k,, ..., k4 write

a=[a; a,)7 (&)
b = [b, bz]T
c=[c; ]
d=[d, 4]

(The text of the book uses the notation (B), which more distinctly shows the transition from the “scalar
case” of a single differential equation to the “vector case” of a system of differential equations. (If you
prefer (B), which forces you to carry along two indices, use it.) A further notational simplification giving

the computation a simpler look is
Y=Y Yy2=2 ®)
because then instead of y, , and y, , (as in the text) you simply have y, , = y, and y, , = z,. This will help
in work by hand as well as in writing up a computer program. (Again, if you don’t like (D), use y, and y,.)
From (6¢), written in the notations (C) and (D), you obtain the following equations for calculating the
auxiliary quantities occurring in the classical Runge-Kutta method
a, = hfl(xn' Yn» Zn)
a; = hfl(xm Yns Zn)
and so on. Inserting
Si=2y-4y, =2y-4z
fa=y1-3y,=y-32
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from (A) and /& = 0.5, as required, gives
a, = hfl (xm Yas Zn) = 05(2Yn - 4Zn)
a; = hf‘l(-xnv Yar zn) = Os(yn - 3Zn)'

Note that in the system the independent variable x does not appear explicitly. This is an advantage because

you need not pay attention to the place at which x is taken in each step ( x, or x, + h/2 or x,, + h).
Similarly,

b] = hf, (x,, + /1/2,)’,, + a|/2,z,, + 02/2) = 0-5[2()":1 + 01/2) - 4(Z,, + 02/2)]
by = hfy(x, + h2,y, + a\/2,2, + a,2) = 0.5[(y, + a,/2) - 3(z, + a,/2)].

Note that in the general formula, b, and b, differ only by f, and f;, so that from &, you can immediately
see the form of b, by looking at the given system. Furthermore,

¢y = hfi(xn + h12,y, + b1/2,2, + byf2) = 0.5[2(y, + b,/2) — 4(2, + by/2)]
c2 = hfa(x, + hi2,y, + b112,2, 4 byf2) = 0.5[y, + b,/2 - 3(z, + by/2)]
and finally
d) = hfi(xa + By, +¢1,2,+¢3) = 0.52(y, + ¢)) — 4(z2, + c3)]

dy = hfs(xa + By, + €. 2, + ¢3) = 0.5[y, + ¢, - 3 (2, + ¢3)].
The recursion for x is

Xpp1 = X, + h.
The next values fory, = y and y, = z are given by (6c), that is,

Ynel = Yn t %(ﬂl +2b, +2c, +d,)

Zot = 20+ (a2 +2b 4 20y + dy),
The computation gives
x ¥y ¥ Emror of y; Error of y,
0.5 6218750 1.273438 0.008256 0.007404
1.0 10.728760 2.576721 0.009032 0.006225

The errors are much smaller than the corresponding errors in Prob. 1. Of course, further accuracy can be

gained if we reduce i = 0.5 to, say, h = 0.1 (the value used in Prob. 1). The computation (10S rounded to
6D) gives the following values, exhibiting a very substantial reduction of the errors.
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X W y2 Error of y, Errorof y,
x 108 x 108
00 3 0 0 0

0.1 3.60150  0.286438 3
0.2 4.215286 0.551078 5
0.3 4.850617 0.801042 6
0.4 5517962 1.042490 7
0.5 6.226997 1.280835 8
0.6 6987272 1.520918 9
0.7 7.808404 1.767149 10
0.8 8.700257 2.023638 11
0.9 9.673102 2.294298 11
1.0 10.737779 2.582940 13

[, NN« NN« SN BTN e S N

Sec. 194 Methods for Eiliptic Partial Differential Equations

Problem Set 19.4. Page 969

1. Derivation of (6¢). For this derivation you have to know Taylor’s formula

ulx+hy+k)=u+hu,+ku,+ %(h2 Ug + 2hKug + k% uy) + .. (A)

where the function u and all the derivatives on the right are evaluated at (x, y). The further derivation is

now automatic. If you replace h by —h on the left, you get corresponding minus signs on the right, that is, a
minus sign in the second and fifth term,

u(x—-hy+k) =u—hu +ku, + %(h2 g — 2hkug + k% uy) + ... B)
The right side of (6¢) tells you what further expressions you should consider, namely,

ulx+hy—k)=u+hu, —ku, + %(h2 U = 2hkuy + Kk uy )+ ... (&)
and

u(x—hy—k) =u—hu,—ku,+ %(h2 Uee+ 2hKUg + k% up) + ... (D)

The idea of the proof of (6¢) now is to combine (A) ... (D) so that the derivative u,, will remain, whereas
all the other derivatives as well as the function u itself will drop out. In (A) minus (B) the function « and
the derivatives uy, u,,, and u,, drop out and you are left with

2hug+2hkug,. (E)
In (D) minus (C) the function u and the derivatives u,, u,,, and u,, drop out and you are left with
—2hu, +2hkuy,. 03]
Addition (E) plus (F) gives 4hku,,. Division by 4hk gives u,,, the left side of (6¢). Now
(E)+(F) = (A) - (B)-(C) + (D)
and this is precisely the right side of (6¢). This completes the derivation.

3. Potential. Liecbmann’s method (Gauss-Seidel iteration). Proceed as in Example 1. Sketch the square
and the grid and indicate the boundary potential as well the notation for the four interior points at which
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you have to find the potential. The linear system to be solved is (we indicate at each equation the point
from which it results)

(P.) =4y, + 1y + Up = =330
(Pyy) uy —4uy + uyy = =210
(P12) uy, —du, + uypy = =330
(Py) Uy + Uy —dupy = =210,

The augmented matrix of this system is

—

-4 1 1 0 -330
I -4 0 1 -210
1 0 -4 1 -330
0 1 1 -4 -210

Apply Gauss elimination. Row 1 is the pivot row. The next matrix is

—

4 1 i 0 -330 1|

0 -375 025 ] —2925 | Row2+0.25Row I
0 025 —375 I —4125 | Row3+0.25Row 1
0 1 1 4 210 | Rowd.

—

Row 2 is the pivot row. The next matrix is

-4 1 1 0 -330
0 -3.75 0.25 1 -2925
0 0 -3.733333 1.066667 -432 Row 3 + (1/15)Row 2

0 0 1.066667 -3.733333 -288 Row 4 + (4/15)Row 2.

Row 3 is the next (and last)_pivot row. Row 4 of the next matrix is Row 4 plus 2/7 times Row 3 of the
previous matrix, namely,

0 0 0 -3.428571 -411.428572].
Back substitution gives, in this order,
Uy = 120, Uy, = 150, Ug = 120. Uy = ]50.
The result reflects a symmetry (can you see it now?), which you could have used to reduce your 4 x 4
system to a 2 x 2 system and solve the latter. We emphasize again that in practice, such systems are very
large, due to much finer grids, and our problem serves to explain and illustrate the principle. For fine grids

the matrix is sparse, so that the Liebmann method (Gauss-Seidel iteration) becomes advantageous. In our
problem the iteration uses the system in the form (as in Example 1 of the text)

uy = 0.25uy, + 0.25u), + 82.5
uy = 0.25u, + 0.25u5;, + 525
u; = 0.25u,, + 0.25u,, + 82.5
Uy = 0.25u4, + 0.25u, + 52.5.

The iteration, starting with the suggested values 100, 100, 100, 100, gives the following values.
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Step | Step 2 Step 3 Step 4 Step 5 Step 10
100 1325 145.3125 148.828125 149.707031 149.926758 149.999928
100 110.625 117.65625 119.414062 119.853516 119.963379 119.999964

100 140.625 147.65625 149.414062 149.853516 149.963379 149.999 964
100 115.3125 118.828125 119.707031 119.926758 119.981690 119.999982

Fifteen steps give accurate 10S-values.

Sec 19.5 Neumann and Mixed Problems. Irregular Boundary

Problem Set 19.5. Page 975

3. Mixed boundary conditions for the Laplace equation. Proceed as in Example 1. The situation is
simpler because you are dealing with the Laplace equation, whereas Example 1 in the text concerns a
Poisson equation. Equation (1) in Example 1 is a list of boundary values, in which the values 0 are not

included. There are 10 grid points on the boundary. For Prob. 3 the 10 boundary values. beginning at 0
and going around counterclockwise, are

L,LL L L L u(Pp)=1, u,(Pp)=1 1 1. (A)
Here u,(Py) = u,(Py,) and u,(P2) = u,(P,;), just as in Example 1; that is, the outer normal direction at
the upper edge of the rectangle is the positive y-direction. For the two inner points you obtain two
equations, corresponding to (2a) in Example !, which you label ( P,;) and ( P;,); these are the inner points
from which (and from whose neighbors) you get the two equations. The left sides of the equations are the
same as in Example 1. The right sides differ; they are =2 (-1 from point P and —1 from point Pg,) and
-2 (-1 from point Py and -1 from Pj,), respectively. Hence these equations are

(Pu) —duy + Uy +oup =-2 (B)
(P21) uy —4uy +uy =-2.
(Labeling the equations would not be absolutely necessary because the term with the coefficient —4
indicates whose stencil you are considering.) uy, and u,, are unknown because at P,, and P, the normal
derivative is given, not the function value u. As in Example 1 you extend the rectangle and the grid in the
positive y-direction , introducing the points P 3 and P,; as in Fig. 426b and assuming that the Laplace
equation continues to hold in the extended rectangle. Then you can write down two more equations (the
analog of (2b) in the example), namely,

(P12) Uy —dup+ un +ug =-1

<)
(Pu) Uy +u,2—4u22 + Uy = -1.

In (P,,) the -1 on the right comes from Py,. In (P3,) the —1 comes from P,. You now have these two

additional equations, at the price of two new unknowns w3 and u,, so it looks as if you have gained

nothing. However, you have not yet used the condition on the upper edge of the original rectangle (the

normal derivative being 1 there), and this is what you do next, just as in Example 1. This gives (since
h = 0.5)

1= %“12 & _—ulsz_hu” = U3 — Uy,
hence
Up =uy +1
and

_ 0 ~ H23 ~ U
1——a7u22~T=1423—112]
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hence
Hyy = Uy + 1.

Now substitute the expressions for 3 and u; into (C) and simplify. In the first of these equations you
have uy, + w3 = 2u,, + 1. In the second equation, 1y, + uy, = 2u,, + 1. Taking the terms 1 to the right,
the equations in (C) thus become

2U” - 4“]2 -+ Ugp = -2 (D)
21[21 + Uy "’4”22 = -2,

Your system to be solved consists of the four equations in (B) and (D). Its augmented matrix looks as
tollows. (For better orientation write the unknowns in a row above the matrix, where rs denotes the right
side.)

ll“ Uy "12 uzz rs
4 1 1 0 -2
I -4 0 1 =2
2 0 -4 1 =2
0 2 1 -4 =2

You can solve this by Gauss elimination. To eliminate «,;, use Row 1 as pivot row. Then compute a new
matrix

—4 1 1 o =2
0 =375 025 1 =25 Row 2 + 0.25Row 1|
0 05 -35 1 =3 Row 3 +(0.5Row1

0 2 1 -4 -2 Row 4
Row 2 is the pivot row and is left unchanged. The next matrix is

-4 | 1 0 -2
0 -3.75 025 1 -2.5
00 -3.466667 1.133333  -3.333333 Row 3 + {0.5/3.75}Row 2

00 1.133333  —3.466667 -3.333333 Row 4 + {2/3.75}Row 2

Finally, Row 3 is the pivot row and Row 4 + (1.133333/3.466667) Row 3 is the new Row 4, which is of
the form

[0 0 0 -3.096154 -4.423077).
Back substitution now gives, in this order,

iy = 1428571, uyy = 1.428571. uy, = 1.142857, u,, = 1.142857.

The result indicates that you could have saved much of this work by using symmetry. In practice, this will
not happen too often because it requires that the region shows symmetry and, in addition, the given
boundary values exhibit the same symmetry. Our present problem satisfies these conditions; the rectangle
and the boundary values are both symmetric with respect to the vertical line x = 0.75.

13. Irregular boundary. First make a sketch of your own, showing the region, the grid, and the numerical
values of the given boundary data. (Use a red pencil for the latter, in order not to confuse them with
notations for the boundary points.) On the x-axis the boundary values at the grid points are ug, = 0 (which
will not be needed), u,g = 3, uyy = 6, 3o = 9 (not needed). On the y-axis you have ug, = ug, = ug = 0.
Furthermore, u = 9 — 3y on the right vertical boundary gives u;; = 9~ 3.1 = 6. On the upper horizontal
portion of the boundary the potential is 0, hence u,3 = 0. The sloping portion of the boundary is given by

y=45-x. Hence x=45-y.
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For the lowest point of it you have x = 3; hence y = 4.5 -3 = 1.5. For the next grid point on it you see
that y = 2, hence 4.5 — 2 = 2.5. The next grid point corresponds to x = 2, as you see from the figure;
hence y = 4.5 -2 = 2.5. For the highest point, y = 3, hence x = 4.5 -3 = 1.5. Hence the four points just
considered on the sloping portion of the boundary have the coordinates and potential

u(x,y) = x2 - 1.5x = x(x - 1.5) as follows.

(3.1.5) hence u=3(3-15)=45, (A)
(2.5,2) ” u=25025-15)=25

(2.2.5) ” u=2Q2-15)=1

(1.5,3) " =15(1.5-15)=0.

You will need only the second and third of these points and potentials. You are now ready to set up the
linear system of equations. You have 4 inner points Py, P,;, P32, P2. For the first three of these, you
obtain equations of the usual form, namely (see the figure and the boundary values given or derived from
the given formula referring to the portion of the boundary on the x-axis)

(P” . ) —4u“ + Uy t+ Uy =—lig— Uy = -3-0=-3
(Pu . ) Un —4U2] + Uy = —lUyyg— Uy = -6-6=-12
(P2 :) uy) U+ Uy =—Uup—u3=-0-0=0.

For P, the situation is as in Fig. 427 in the text with a = 1/2 and b = 1/2. This case is given as a
particular case of (5) on p. 973 at the bottom. From the stencil you see that the two points closer to P, get
a weight greater than 1, namely, 4/3, whereas the other two points (the ones that are at the usual distance h
from the center P,, of the stencil) now each have the reduced weight 2/3 instead of 1: this is physically
understandable. Accordingly, your fourth equation changes its usual form

Uy + Uy — 41122 = ..
to the form

(Pzz:) %“21 + %Ulz - 4“22 = %‘(_2.5) + —‘;"(“1) = —-4.666667.
If you had forgotten 4/3 on the right, you could have discovered it by checking whether the sum of the
coefficients of all terms when taken to the left equals 0, that is,
2 2 4 4

§+?—4+?+§=0,

Multiplication of the equation (P»,;) by 3 gives the simpler form
(Pzz:) 21[21+2U|2— ]2“22 = -14.
The augmented matrix of the linear system thus obtained is

-4 1
1 -4
1 0
0 2

By Gauss elimination you obtain the solution
uy =2, un=4, up=1, up=2.

Take a look at the solution. Insert these four values in your sketch. Although you do not have too many
values inside the region (just four), you can still obtain a qualitative picture of the equipotential lines
(curves) in the region. The highest potential (9) is at the right lower corner. Now find u# = 8 on the x-axis
and on the vertical portion and draw the line # = 8 in the region; this curve looks like a quarter-circle. Do
the same for u = 7,6,5,4. For u = 4 you have the help that it must pass through P,,, that is, (x,y) = (2,1).
Also, you can locate the endpoint of the curve on the sloping portion of the boundary. Next find u = 3,2,1
on the x-axis as well as on the sloping portion of the boundary. Draw the curves u = 3,2 (passing through
the points (1, 1) and (2, 2)), and u = | (passing through the point (1,2)). This gives you a good qualitative
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picture of the potential as well as the impression that the values obtained by our calculations are
reasonable approximate values of the potential at the four inner points.

Sec. 19.6  Methods for Parabolic Equations

Problem Set 19.6. Page 981

1. Nondimensional form of the heat equation. X ranges from 0 to L. Hence x = X/L ranges from 0 to 1.
Now apply the chain rule, obtaining

I u dr u ¢
.= U— = U, —
! dr

and

(&Y
b4 xx Cff xxLz-

Now multiply the heat equation by L? and divide it by ¢2.

3. Explicit method for the heat equation. h = | is the given step in x-direction. k = 0.5 is the given step in
r-direction. Hence, to reach t = 2, you have to do 4 time steps. The initial temperature is
f(x) = x-0.1x* = x(1 - 0.1x). It satisfies the conditions f(0) = 0 and f(10) = 0 at the ends of the bar.
At the grid points x = 0,1,2, ..., 10 the initial temperature u is

x=01 2 3 4 5 6 7 8 9 10
u=0 09 1.6 2.1 24 25 24 2.1 1.6 09 0 .

In (5) you have r = k/h? = 0.5. Hence the first term of (5) on the right is 0, and (5) takes the form

Uijer = 0.5z + 1y ). (A)
i runs in the x-direction and j in the r-direction (the time direction). In each time row the first value and the
last value are O this is the temperature at which the ends of the bar are kept at all times. From (A) you see
that for obtaining the new value you have to take the arithmetic mean of two values in the preceding time

row; one is one x-step to the left and the other one x-step to the right of the value which you want to
calculate. Hence the simple computation looks as follows.

x=0 0 1 2 3 4 5 6 7 8 9 10
t=0 0 09 1.6 2.1 24 25 24 21 1.6 0.9 0
t=05 0 038 1.5 2.0 23 24 23 20 1.5 0.8 0
r=10 0 075 1.4 1.9 22 23 22 19 1.4 0.75 0
r=15 0 07 1325 1.8 21 22 21 1.8 1.325 0.7 0
r=20 0 06625 125 17125 20 21 20 17125 125 0.6625 0O

9. Crank-Nicolson method. Formula (9) was obtained by taking r = k/h? = 1. Since h = 0.2 is required,
you must take
k = h? =0.04.

This is the same value as in Example 1 in the text. Hence you must do 5 time steps to reach t = 0.2. The
initial temperature is “triangular”, f(x) = xif0 £ x £0.5and f{x) = 1 —xif 0.5 £ x £ 1. Since h = 0.2,
you need the initial temperature at x = 0, 0.2, 0.4, 0.6, 0.8, 1.0. The values are
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i= 0 ] 2 3 4 5
x=0 02 04 06 08 10 (B)
u=0 02 04 04 02 O

Step 1 (t = 0.04). The use of (9) is required. For j = 0 this formula is

Quiy — Uiy = Ui = U0+ By (&)
In each time row you have 6 values. Now 2 of them are O for all 2. You have to determine the

temperature at the remaining 4 inner points x = 0.2, 0.4, 0.6, 0.8, corresponding to i = 1, 2, 3, 4. For
these values of i you obtain from (C) the system

(i=1) 4uy - Uy, — ug,

= Uz_o + llo_o
(i=2) Quy = usy— Uy, =UzotUo
(i=13) duy ) — ug) — Uy, = Uyt Usp
(i=4) Qug) —usy—Usy = Usg+Usg .

(Perhaps you will find it helpful that we have retained the commas in the indices, although this would
not have been absolutely necessary, as Example 1 in the book illustrates.) Since the initial temperature

is symmetric with respect to x = 0.5 (and the temperature is O at both endsi), so is the temperature at
the 4 inner points fcr all ¢, In forulas,

usj=uy; and  wug;=uy; (D)
If you insert (D) into your system of four equaticns and use that us; = u,; = 0, you see that the third
equation becomes identical with the second one, and the fourth one with the first one. Hence you can
restrict yourself to the first and second equations. In these equations, ug; = 0, ugo = 0, and
us g = Uy (see (B) or (C) with j = 0), so that these equations take the form

(i=1) 4du - uy =uyy =04 (E)
(l = 2) — Uy, +3u2‘| SUyptup = 04+0.2= 0.6,
where 3u,  results from 4u, | — usy, = 4u,, — u, . The augmented matrix of this system is

4 -1 04
-1 3 06 |
By Gauss elimination you obtain the solution

Uy, = 0.163636 = 1‘4_1, Uy = 0.254545 = Uy ). (F)

Step 2 (¢ = 0.08). The matrix of the system remains the same; only the right sides change. 0.4 was u, 4.
Hence you now have to take u,, since you are now dealing with j = 1. The term 0.6 was the sum of
u, ¢ and u; o. Hence you now have to take u, | + u, | as the right side of the second equation. This

gives the augmented matrix
4 -1 0.254545
-1 3 0418182 |

2= 0.107438 = Ug 2, Uaa = 0.175207 = U3 2.
Step 3 (¢ = 0.12). The augmented matrix is

4 -1 0.175207
-1 3 0282645 |

The solution is

The solution is
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ty 3 = 0.0734786 = u,,, uay = 0.118708 = 1, ;.
Step 4 (¢ = 0.16). The augmented matrix is

4 -1 0118708
-1 3 0192186 |

U4 = 0.049846 = Iy 4, Hyy = 0.080678 = U3.4-
Step 5 (£ = 0.20). The augmented matrix is

4 -1 0.080678
-1 3 0130524 |

Ill's = 0.033869 = 114_5. u2'5 = 0.054798 = ll3'5. (G)

The series in Example 3 of Sec. 11.5 with L = 1 and ¢ = | [the equation is assumed to be u, = u,,
hence c = 1; see (1)]is

The solution is

The solution is

4 . |
u(x,1) = —| sin mx e - g sin 3nx e 4 — .
n

Hence for r = 0.2 this becomes
u(x,0.2) = iz (sin nx 702 _ 1 sin 3mx e84 —) H)
T 9

The second term is already very small because n? is about 10 and e~'8 is about 1078, and the
exponential function in the next term would be e, which is about 107%'. Hence the values obtained
from the sum of the first two terms of (G) are very accurate. The computation gives

x=02 x=04
uin (G) 0.033869 0.054798
win (H) 0.033091  0.053543
Errorof uin G -0.000778 -0.001255

Your calculation illustrates that, although our 4 is relatively large, the values obtained by the
Crank-Nicolson method are rather accurate. Furthermore, you see that the series in Sec. 11.5 is very useful
numerically.

Sec. 19.7 Methods for Hyperbolic Equations

Problem Set 19.7. Page 984

1. Vibrating string problem (1)-(4). From (4) you see that the ends of the string are at x = O and x = 1. The
initial displacement is given by the parabola

f(x) = 0.1x(1 = x).
(The factor 0.1 has been included as a reminder that the wave equation (1) was derived under the
assumnptions that the string has a small displacement and makes small angles with the horizontal x-axis at

all times.) The initial velocity of the string is assumed to be zero. Since & = 0.2, you need f(x) at 0, 0.2,
0.4, 0.6, 0.8, 1.0, that is,
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x= 002 04 06 08 10
u(x,0) = f(x) = 0 0016 0.024 0.024 0.016 0 .

From this and (8) with g; = O (the initial velocity is zero!) and k = 0.2, as required in the problem, you
obtain [also using (4)]

(A)

u(x,0.2) 0 0.012 0.020 0.020 0.012 ¢ . (B)

For the remaining calculations you have to use (6), whose right side in each step includes values from nvo
preceding time rows. The numerical values obtained [including those in (A) and (B)] are as follows.

0.2 0.4 0.6 08 1.0
0016 0.024 0.024 0.016
0.012 0.020 0.020 0.012
t=04 0.004 0.008 0.008 0.004
t=0.6 -0.004 -0.008 -0.008 -0.004

x = 0
0
0
0
0

t=08 0 -0.012 -0.020 -0.020 -0.012
0
0
0
0
0

=0
t=02

t=1.0 -0.016 -0.024 -0.024 -0.016
t=12 -0.012 —0.020 -0.020 -0.012
t=14 -0.004 —0.008 -0.008 -0.004
t=1.6 0.004 0.008 0.008 0.004
t=138 0.012 0.020 0.020 0.012
t=20 0 0.016 0.024 0.024 0016 0

You see that these values correspond to one full cycle because the last line equals the first, so that for
continuing ¢ the string starts its next cycle. The reason can be seen from (11°*) and (11) in Sec. 11.3
because forc = 1 and L = 1 you have A, = (cnn/L)t = nrr and for ¢ = 2 this equals 2nx, which is a
period of the cosine and sine in (11).

o O o O 0 O Cc o o

7. Nonzero initial displacement and velocity. The initial displacement is
fix) =1-cos 2xx.

Since A = 0.1, you need its values at x = 0, 0.1, ..., 1.0. Now the curve of f(x) is symmetric with respect to
x = 1/2, as is clear by inspection; formally it is obtained from the addition formula for the cosine by
calculating

cos(2n(1-x)) =cos(2rn—-2nx) =cos2mcos2mx+sin2mwsin2xx
= l.cos 2nx+0.

Hence you may calculate f(0.1), ..., £(0.5) and then use f(0.6) = f(0.4), etc. The values are (6D)

x=0 0.1 0.2 0.3 0.4 0.5

flx) 0 0.190983 0.690983 1.309017 1.809017 2.000000.
The initial velocity is

glx) =x—-x*=x(1-x).

Its values for the same x will be needed in (8) to get started. g(x) is also symmetric with respect to x = 1/2,
so that it suffices to calculate kg(x) = 0.1g(x) forx = 0, 0.1, ..., 0.5. We include f(x) for convenience.

u(x,0.1) is then-calculated from (8) and u(x,0.2) from (6), with 10S and then rounded to 6D. Calculations
of u(x, 0.1) and u(x, 0.2) are given after the table.
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0.1 02 03 04 05

X

fx)

0

0 0.190983 0.690983 1.309017 1.809017 2.000000
0.1g(x) 0 0.009 0.016 0.021 0.024 0.025
u(x,0.1) 0 0.354492 0.766000 1.271000 1.678508 1.834017
u(x,0.2) 0 0.575017 0.934509 1.135491 1.296000 1.357017

For u(x, 0.1), formula (8) with i = 1,2,

uy,
Uz,
T3,
lg

Us,y

o0+ 14z,0) + 0.1, = L-(0+0690983) + 0.009 = 0354492

I
It

%‘(u"o + ll3'0) +0.1 >

= %(HZ.O + ll.;'o) + 0.] £3

= ‘%—(us.o +usg) +0.1g4

%‘(114'0 + llg_o) +0.1 gs

For the next time row (r = 0.2) you have to use (6), obtaining

W2 = Ugy + Uy — Uy = 0+0.766000 - 0.190983 = 0.575017

Upg = Uy, + U3, — Ugzg = 0.354492 + 1.271000 — 0.690983 = 0.934509
0.766000 + 1.678508 — 1.309017 = 1.135491
1.271000 + 1.834017 - 1.809017 = 1.296000

U3z = Ug t+lUsy — Uz

Ugy = U3 tHls) —Usg

Usa = Ugy +Ugy—Uso

... gives (we set again commas between the two indices)

%(0.190983 +1.309017) +0.016 = 0.766000
%(0.690983 +1.809017) +0.021 = 1.271000
%(1.309017 +2.000000) + 0.024 = 1.678508
%(1.809017 +1.809017) + 0.025 = 1.834017.

1.678508 + 1.678508 — 2.000000 = 1.357016.



