CHAPTER 2. Linear Differential Equations
of Second and Higher Order

Sec. 2.1 Homogeneous Linear Equations of Second Order
Problem Set 2.1. Page 71

7. Reduction to first order. y" + e’y = 0 is of the form F(y.y'.y") = 0, so that you can set z = y' and
y" = (dz/dy) z (see Prob. 2). Substitution of this and division by z gives dz/dy + e*z? = 0. By separation of
variables, dz/z2 = —e* dy. Integration on both sides and multiplication by —1 gives 1/z = e* + ¢,. Now by
calculus, z = dy/dx implies dx/dy = 1/z. Hence you can separate again and then integrate,

dx = (¥ +c))dy

x=e"+c)y+cs.

13. Motion. Expressing the given data in formulas gives y'y" = 1, y(0) = 2, y'(0) = 2. By integration,
y?12 =t+C hencey' = f21+c, , where c, = 2C. If you wish, you can now use the second initial

condition to get y'(0) = 1/c, = 2, hence ¢, = 4, sothaty’ = J21+ 4. By another integration and the use
of the first initial condition you obtain

1 8

=—:]3-(2t+4)3’2+62, y(0) = =437 + ¢, §+c2=2, cy=-

W)
w| o

This gives the answer

y= %(2z+4)3'2 -

w|w

Sec. 2.2 Second-Order Homogeneous Equations with Constant Coefficients

Problem Set 2.2. Page 75

7. General solution. Problems 1-9 amount to solving a quadratic equation (3), the characteristic equation.
Observe that the solutions (4) refer to the case that y” has the coefficient 1. For the present equation you
can write y" — (30/9) y' + (25/9) y = 0. Then the radicand in (4) is 225/81 — 25/9 = 0, so that you have a
double root 15/9 = 5/3. The corresponding general solution isy = (¢, + ¢; x) exp (5x/3).

15. Initial value problem. To solve an initial value problem, first determine a general solution by solving the

characteristic equation A2 + 2.2 + 1.17 = 0. The roots (4) are —1.3 and —0.9. The corresponding general
solution is

y = e 4 ¢, o095, (a)
Because of the second initial condition you also need the derivative

y =-13c,e '35 -0.9¢c, e, (b)
In (a) and (b) you now put x = 0 and equate the result to 2 and —2.6, respectively (the given initial values),

that is,
C|+C2=2, —1.3Cl—0.9C2=_2.6.

The solution is ¢|, = 2, ¢; = 0, so that you get the answer y = 2 ¢!+, Note that, in general, both solutions
of a basis of solutions would appear; in that sense our present initial conditions are special.

21. Linear independence and dependence. This problem is typical of cases where one must use functional
relations to prove linear dependence. Namely, In x and In (x*) = 41n x are linearly dependent on any
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interval of the positive semi-axis. Graphs may help when the functions are very complicated and
transformations are not so obvious as in this problem; then you may find out whether the curves of the
functions look “proportional.

Sec.2.3 Case of Complex Roots. Complex Exponential Function
Problem Set 2.3. Page 80

5. General solution. y" + 1.6 y' + 0.64 y = 0O (the given equation divided by 2.5) has the characteristic
equation A% + 1.6 A+ 0.64 = (1 +0.8)? = 0 with the double root —0.8. This is Case II, with the general
solution as given in Appendix 2.

7. General solution. Division by 16 gives y" — 0.5y" + 0.3125y = 0. From (3) you thus obtain the roots

A, =025+05/025-125 =0.25+0.5/ and A, =025-05i

Note that if an equation (with real coefficients) has a complex root, the conjugate of the root must also be
a root. The real part is 0.25 and gives the exponential function exp (0.25x). The imaginary parts are 0.5
and —0.5 and give the cosine and sine terms. Together,

y = %% (A cos 0.5x + B sin 0.5x),
which is oscillating with an increasing maximum amplitude.

21. Boundary value problems will be less important to us than initial value problems. The determination of a
particular solution by using given boundary conditions is similar to that for an initial value problem. In the
present problem the characteristic equation is A> + 24 + 2 = 0. Its roots are

M =-1+J1-2=-1+iand Ap=-1-i
This gives the real general solution
y =¢e*(Acosx+Bsinx).

On the left boundary, y(0) = A = 1. On the right boundary, y(#/2) = Bexp (-n/2) = 0, hence B = 0.
Hence the answerisy = e cos x.

Sec.2.4 Differential Operators. Optional
Problem Set 2.4. Page 83

3. Differential operators. (D — 2) (D + 1) e?* = 0 because
(D-2)e?* =22 - 2% = (),
For the second of the four given functions you first have
(D-2)xe¥ = e¥ + 2xe?* — 2xel™ = o
and then
(D + 1)e** = 2% 4+ ¥ = 3%,
Similarly for the other functions.

13. General solution. The optional Sec. 2.4 introduces to the operator notation and shows how it can be
applied to linear differential equations with constant coefficients. The facts considered are essentially as
before, merely the notation changes. The given equation, divided by 10, is

(D?2+12D+0.36)y = (D+0.6)2y = 0.

It shows that the characteristic equation has the double root —0.6, so that the corresponding general
solution is
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y = (¢, +cx) e85,

Sec. 2.5 Modeling: Free Oscillations (Mass-Spring Systems)

Problem Set 2.5. Page 90

1. Harmonic oscillations. Formula (4*) gives a better impression than a sum of cosine and sine terms
because the maximum amplitude C and phase shift 6 readily characterize the harmonic oscillation. The
result follows by direct calculation, starting from the general solution

Yy =Acoswgt+ Bsinwyt
and using the initial conditions, first y(0) = A = y, and then
y' =asineterm+wyBcoswgt,  Y'(0) = @yB = v,
where v suggests ‘velocity’. This gives the particular solution
Y = Y0 €08 Wyt + (volwg) sin wyt.

2
C = y02+(ﬁ) , [an&:vO/ﬂ.
J @ Yo

The derivation of (4*) suggested in the text begins with
y(1) = Ccos (wet — 6) = C(cos wyt cos § + sin wyt sin §)

Accordingly, in (4*),

= Ccos & cos gt + C sin & sin wgt = A cos wy? + B sin ogt.
By comparing you see that
A%+ B? = C?cos?6 + C?sin?s = C?
and

tan § = sin6 _ Csiné _ B
~cosé Ccosés A

7. Determination of frequencies. wg, = 1/k/m ; see (4). Hence the frequencies are

respectively. To prove k = k, + k,, fix s = s, (for instance, s, = 1), choose W, = k50 and W, = k,so ,
and add (couple the two systems), where  is the spring constant of the two systems

W=W, +W, =(k +ky)s0 = ksg
combined.

15. Underdamping. Equate the derivative to zero.

Sec. 2.6 Euler-Cauchy Equation
Problem Set 2.6. Page 96

3. General solution. Problems 2-13 are solved as explained in the text by determining the roots of the
auxiliary equation (3). This is similar to the method for constant-coefficient equations in Secs. 2.2 and 2.3,
but note well that the linear term in (3) is (@ — 1) m, not am. Thus in Prob. 3 you have

m(m-1)—-20=m?-m-20=0.
The roots are —4 and 5. Hence a general solution is y = ¢, x™* + ¢, x5 . The value x = 0 is excluded.
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Similarly, the case of a double root of (3) gives a logarithmic term {see (7) in Sec. 2.6] and x = 0 and all
negative x must be excluded.

. Pure imaginary roots. The auxiliary equation is m? + 1 = 0. It has the roots i = =1 and —i . Hence in-
(8) of Sec, 2.6 you have p = O (the real part of the roots is zero) and v = 1, so that (8) becomes simply
y = Acos (In x) + Bsin (In x). '

15. Initial value problems for Euler-Cauchy equations are solved as for constant-coefficient equations by first

determining a general solution. The initial values must not be given at 0, where the coefficients of (1),
written in standard form

y”+§y'+%y=0,
become infinite, but must refer to some other point, for instance, to x = 1. In Prob. 15 the auxiliary
equation is
4mm—-1)+24m+25=0 or m*+5m+6.25=0.
It has the double root —2.5. The corresponding general solution (7). Sec. 2.6, is
y = (c; + ¢, Inx)x25,

The first initial condition gives y(1) = ¢, = 2. For the second initial condition y'(1) = —6 you need the
derivative. With ¢, = 2 the latter is
y' = Cx—z,\:'15 -2.5(2+cyInx)x33,
Setting x = 1, you thus obtain (since In | = 0)
y(1)=¢>-5=-6, hence c,=-1.
The figure shows the particular solution obtained, y = (2 — In x)x 25, For x > 7.4 the logarithm is greater

than 2, su that for these x the solution becomes negative. but this can hardly be seen from the figure
because the x-factor is very small in absolute value when x is large.

9

0.51
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Section 2.6. Problem 15. Particular solution satisfying y(1) = 2, y'(1) = -6

Sec. 2.7 Existence and Uniqueness Theory. Wronskian

The Wronskian W(y,, y,) of two solutions y, and y, of a differential equation is defined by (5),
Sec. 2.7. It is conveniently written as a second-order determinant (but this is not essential for using
it; you need not be familiar with determinants here). It serves for checking linear independence or
dependence, which is important in obtaining bases of solutions. The latter are needed, for instance,
in connection with initial value problems, where a single solution will generally not be sufficient
for satisfying two given initial conditions. Of course, two functions are linearly independent if and
only if their quotient is not constant. To check this, you would not need Wronskians, but we
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discuss them here in the simple case of second-order differential equations as a preparation for

Secs. 2.13-2.15 on higher order equations, where Wronskians will show their power and are
extremely useful.

Problem Set 2.7. Page 100

3. Basis, Wronskian. For a > 0 these solutions
y, =e*cos3x and y, = e sin3x

represent damped vibrations, x being time. Their Wronskian is obtained by straightforward differentiation
or by the following trick. From the quotient rule and (5), Sec. 2.7, it follows that

W= (rafy))'yt, (A)
where the prime denotes the derivative. In the present problem, y,/y, = tan 3x has the derivative 3/cos?3x

(chain rule!). Furthermore, y} = e™*cos® 3x. The product of the two expressions is the Wronskian
W = 3e™1,

5. Wronskian. Formula (A) in Prob. 3 gives (x*(Inx)/x*)'x® = (Inx)'x8 = x7.

7. Wronskian. Formula (A) in Prob. 3 contains

(tan (21nx))' = [1/cos? (2In x)]. 2,
the last factor resulting from the chain rule. Now y? = x?#cos?(21In x), and the product is W = 2x?#-!,

11. Equation for a given basis. Problems 9-17 survey the most important types of equations discussed so far.
The form in Prob. 11 suggests an Euler-Cauchy equation with a double root (because of the logarithmic
term). Now

(m-=2)2=m@m-1)-3m+4 showsthat x%y" -3xy' +4y = 0.
From (5) you obtain the Wronskian

W=x22xInx+x)—(x*lnx)2x = x3.
Check this by (A) in Prob. 3, obtaining (In x)'x* = x3.

Sec. 2.8 Nonhomogeneous Equations

Verification of solutions proceeds for nonhomogeneous equations as it does for homogeneous
equations, namely, by the calculation of y' and y" and substitution of y, y', and y". It is interesting
that in Probs. 1-8 most solutions to some extent resemble the form of the functions on the right side

of the equation. This observation gives the idea of a method for determining particular solutions to
be discussed in the next section.

Problem Set 2.8. Page 103

7. General solution. y, = In zx = In x + In 7 has the derivatives 1/x and —1/x2. Substitution gives

y" +y = —Hx? + In mx. A general solution of the homogeneous equation is A cos x + Bsin x. Hence the
answer (a general solution of the nonhomogeneous equation) is y = Acos x + Bsin x + In zx.

11. Initial value problem. To solve an initial value problem, you must first determine a general solution of the
nonhomogeneous equation (because if you first determine a particular solution of the homogeneous
equation satisfying the initial conditions, the addition of a solution y, will generally change the value of
the entire solution and its derivative at the point at which the initial conditions are given). Now a general
solution of the homogeneous equation y” —y = 0 is ¢, ¢* + ¢, ¢™* . The particular solution ¥, = xe* may
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come as a surprise because 2e* on the right might have suggested y, = ke* with a suitable constant k, but
if you substitute this, you get 0 = 2e¢*. Choosing y, = xe* gives y, = (x + 1)e* and ¥p = (x+2)e*, so that
substitution yields (x + 2)e* — xe* = 2¢* and verifies that y, is indeed a solution. Hence a general solution
of the given equation is
y = c\e* +cre™ + xe’. ‘

From the first initial condition, y(0) = ¢, + ¢, = —1. From the derivative and the second initial condition,

Y =cef-ce*+(x+1)ef, y(0)=c¢c,-c;+1=0.
The solution of this system of two equations is ¢, = —1, ¢, = 0. This gives the answer
y = —e* +xe* = (x— 1) e* shown in the figure.

o _os —1 15 2
Section 2.8. Problem 11. Solution of the initial value problem

Sec.2.9 Solution by Undetermined Coefficients

New in this section and problem set is the determination of a particular solution y, by the method
of undetermined coefficients. Because of the Modification Rule it is necessary to first determine a
general solution of the homogeneous equation since the form of y, differs depending on whether or
not the function (or a term of it) on the right side of the differential equation is a solution of the
homogeneous equation. If you forget to take this into account, you will not be able to determine the
coefficients; in this sense the method will warn you that you made a mistake.

Problem Set 2.9. Page 107

1. General solution. A general solution of the homogeneous equation (1) y" + 4y = 0 is
y, = Acos 2x + Bsin 2x. The function sin 3x on the right is not a solution of (1). Hence the Modification
Rule does not apply. Table 2.1 requires that you start fromy, = Kcos 3x + Msin 3x. Two differentiations
give y, = 9K cos 3x — 9M sin 3x. Substituting this and y, into the given equation yields

-9Kcos3x-9Msin3x+4(Kcos3x+ Msin3x) = sin 3x.

Since there is no cosine term on the right, this implies -9K + 4K = 0, hence K = 0. For the sine terms,
—9M +4M =1, hence M = —0.2 . This gives the answery = A cos 2x + Bsin2x - 0.2 sin 3x.

11. Modification rule. The characteristic equation of the homogeneous equation is
A2+ 101 +25 = (A+5)% = 0. Hence it has the double root -5, so that a genera!l solution of the
homogeneous equation is y, = (¢, + c,x) e>*. This shows that =3~ is a solution of the homogeneous
equation. Hence you must apply the Modification Rule. More precisely, since you are dealing with a
double root, you must multiply the usual choice e7>* by x2, (In the case of a simple root you would have to
multiply by x.) Accordingly, choose y, = kx?e™*. By differentiation,
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¥p = kQQx-5x2) e  y, = k(2-10x—-10x+25x%) e75%.

Substitution of these expressions into the differential equation y” + 10y’ + 25y = ¢~°* and omission of the
common factor e~3* on both sides of the equation gives

k(2-20x+25x%) + 10k(2x - 5x%) + 25kx? = 1.
In this equation, x? has the coefficient 25k + 10k (-5) + 25k = 0. Similarly, x has the coefficient

—20k + 10k-2 = 0. Finally, the constant terms give 2k = I, & = 0.5. Hence the answer (a general solution
of the given nonhomogeneous equation) is

y=(c;+cx)e ¥ +0.5x2e7",

17. Initial value problem. A general solution of the homogeneous equation y" — 4y = 0 is
yu = ¢, ¥ +c,e7** . The right side e72* — 2x has two terms. The first is a solution of the homogeneous
equation, the corresponding root of the characteristic equation being simple. Hence the Modification rule
calls for kxe~2* instead of the usual ke~2* . By Table 2.1 in Sec. 2.9 the second term —2x calls for the
choice ax + b (line 2 of the table. with a more convenient notation). Together, y, = kxe?* +ax+b. By
differentiation,

yp = k(1 -2x)e® +q, ¥p = k(-2-2+4x)e>,
Substitution into the nonhomogeneous equation gives
k(-4 +4x)e —4kxe®* —4(ax+b) = e72* - 2x.

The terms in xe~2* drop out. The e72*-terms give -4k = 1, k = —1/4, The x-terms give <4a = -2,a = 1/2.
The constant terms give b = 0. Hence a general solution of the given equation is

y=c e +ce*+0.5x-0.25xe7 %",
y(0) = 0 gives y(0) = ¢, + ¢, = 0. By differentiation of y,
y =2c e =2c,e ¥ +05-0.25(1 - 2x) e

y'(0) = O thus gives ¥y'(0) = 2¢, — 2¢, + 0.5 - 0.25 = 0. The solution of these two equations is
¢, = —1/16,c, = 1/16. Hence the answer is

,__L 2x _ p,-2x l _l -2x
y= 16(e e )+2x zre

The exponential terms combine into —(sinh 2x)/8, as given in Appendix 2.

Sec. 2.10  Solution by Variation of Parameters
Problem Set 2.10. Page 111

1. General solution. The right side e?*/x does not permit the method of undetermined coefficients (which
would be simpler than the present method). The homogeneous equation y” — 4y’ + 4y = 0 has the
characteristic equation A2 =41 +4 = (1 —-2)? = 0. It has the double root 2. Hence a basis of solutions is
y; = e?* and y, = xe?*. Now determine a particular solution of the given equation by (2), Sec. 2.10. In (2)
you need the Wronskian

W = e25(xe?*)' — xe?* (e?*)' = e** (1 + 2x) — e**2x = %%,
The integrands of the integrals in (2) are
xe*(e¥x)le** =1 and e*(e**Ix)le** = l/x.
Integration gives x and In Wi, respectively. From (2) you thus obtain the particular solution
yp = —xe** +xe¥Inlxl.
Hence the corresponding general solution of the given nonhomogeneous equation is
y = (¢, + ¢y x)e** + (—x + xIn Ixl)e?*.
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3. General solution. This equation can also be solved by undetermined coefficients, starting from
¥p = e* (K cos x+ M sin x). Try it.

11. Euler-Cauchy equation. The homogeneous equation x2y" — 4x y' + 6y = 0 has the auxiliary equation
m? —5m+ 6 = 0. The roots are m; = 2 and m, = 3. Hence a general solution of the homogeneous
equation is y, = ¢, x* + ¢,x>. Try to find a particular solution of the nonhomogeneous equation by
undetermined coefficients, setting y, = Cx™*. Then y, = -4Cx~%, y, = 20Cx™%, and substitution into the
given equation yields

20Cx*+16Cx* +6Cx* =21x*, 42C=21, C=1.7.

Hence a general solution of the given nonhomogeneous equation is

y=c xl+cxd + %x"“.

15. Euler-Cauchy equation. Determine y, by (2) in Sec. 2.10. It is quite important that you first write the
given equation in standard form
y"'=2y'Ix +2y/x* = xcosx. Hence r=xcosx (notx3cosx!).

The auxiliary equation of the homogeneous differential equation is m? — 3m + 2 = 0 and has the roots

m, = 1, m, = 2. This gives the basis of solutions y, = x, y, = x2. In (2) you need the Wronskian

W = x(2x) — 1.x? = x%. Hence the first integral in (2) has the integrand x?(x cos x)/x? = xcos x.
Integration by parts gives xsin x minus the integral of sin x, which is +cos x. Together, xsin x + cos x. The

second integral in (2) has the integrand x(xcos x)/x? = cos x. Integration gives sin x. From this and (2) you
obtain

¥p = —x(x sin x +cos x) + x? sin x = —x cos x.
The answer (a general solution of the nonhomogeneous equation) is

Yy = X+ Cyx? — X COS X.

Sec. 2.11 Modeling: Forced Oscillations. Resonance

In the solution a, b of (4) (the formula after (4) without number) the denominator is the coefficient
determinant. The numerator of a is the determinant

F
o 9 N F (k-ma?).
0 k-mo’

Similarly for b.
Problem Set 2.11. Page 117

Problems 1-17 involve driving forces such that the method of undetermined coefficients (Sec. 2.9)
can be applied.

3. Steady-state solution, Because of the function sin 0.2 on the right you have to choose
¥p = Kcos 0.21+ M sin 0.21. By differentiation,

y;, =-0.2Ksin0.2¢+02Mcos 0.2,
yp = —0.04K cos 0.21 - 0.04 M sin 0.2+.

Substitute this into the equation y” + 2y’ + 4y = sin 0.2¢. To get a simple formula, use the abbreviations
C =cos0.2rand S = sin 0.21. Then

-0.04KC-0.04MS+2(-02KS+02MC)+4(KC+MS) = S.
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Now collect the C-terms and the S-terms on the left and equate their sums to O (there is no C-term on the
right) and 1, respectively,

-004K+04M+4K=396K+04M =0

-0.04M-04K+4M = -04K+396M = 1.

Elimination or Cramer’s rule (Sec. 6.6) gives the solution X = -0.02525,M = 0.2500 (more exactly,
K = -0.025249975, M = 0.249974750). Hence the steady-state solution is

y = -0.02525 cos 0.27 + 0.2500 sin 0.21¢.

15. Initial value problem. Divide by 4 to have the standard form y" + 2y’ + 0.75y = 106.25sin 2. (This is
convenient, although not absolutely necessary.). The characteristic equation of the homogeneous equation
is A2+ 24 +0.75 = 0. The roots are —1/2 and —3/2. Hence a general solution of the homogeneous
equation is y, = ¢, €73 + ¢, 75" . Now determine a particular solution y,. The right side calls for the
choice y, = K cos 2t + M sin 2¢. Both terms will be needed because the equation has a damping term,
which causes a phase shift (in contrast to Prob. 13, where there is no damping and y, is a sine term). By
differentiation,

yp =-2Ksin2t+2Mcos21, y, =-4Kcos2t—4Msin 2t
Using the abbreviations C = cos 2¢, S = sin 2 and substituting y, and its derivatives into the given
equation yields

-4KC—-4MS+2(-2KS+2MC)+0.75(KC+ MS) = 106.25S.

The sum of the cosine terms on the left must equal 0 since there is no cosine term on the right. Similarly,
the sum of the sine terms on the left must equal 106.25. This gives the linear system of two equations

-4K+4M+0.75K = -325K+4.00M =0
-4M-4K+075M = 400K -3.25M = 106.25.

By elimination or by Cramer’s rule (Sec. 6.6) you obtain the solution K = —16, M = —13. This gives the
general solution

y(&) = c,e ¥ +c e - 16 cos 27— 13 sin 2t
From this and the first initial condition, y(0) = ¢, + ¢, — 16 = —16. The derivative is
y'(f) = =0.5¢, 795" — 1.5¢, 75" + 32 sin 21 — 26 cos 21,

and the second initial condition gives y'(0) = -0.5¢, - 1.5¢; — 26 = —26. By inspection or by
elimination, ¢, = 0, ¢; = 0. This gives the answer y = —16 cos 21— 13 sin 2. This is a harmonic

oscillation of period 7 and maximum amplitude V162 + 132 = 20.62 (see the figure). It is interesting that
because of the initial conditions the solution of the homogeneous equation does not contribute to the
answer, so that there is no transition period.

LA N
IR

Section 2.11. Problem 15. Solution without transition period

(=]
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Sec.2.12 Modeling of Electric Circuits

Example 1. The linear system of equations near the end of the example consists of (7) and an unnumbered
equation, namely,

c, + c, = 0.484 (from I(0) = 0)
-10¢, = 990¢, = ~1.380.377 = -520.26 (from [1'(0) = 0).
It can be solved by elimination, namely, ¢, = 0.484 — ¢,, hence

- 10¢, —990(0.484 — ¢;) = -520.26
and from this,

1
= 55 (47916 - 520.26) = -0.041939,

so that ¢, = 0.484000 + 0.041939 = 0.525939.

<y

Problem Set 2.12. Page 122

7. Transient current. In the model (1) the right side is the derivative of the elctromotive force
E = 25cos 100¢, that is, E' = —2500 sin 100¢. Hence (1), divided by L = 0.5, is

I" + 801" + 15007 = —5000 sin 100. @)

The characteristic equation 22 + 804 + 1500 = 0 has the roots —30 and ~50. Hence a general solution of
the homogeneous equation is

I, =c, e 4 ¢ e,
This solution approaches zero as r goes to infinity, regardless of initial conditions. A particular solution /,

of the nonhomogeneous equation is obtained by substituting /, = K cos 1007+ M sin 1001 and its
derivatives

I, = ~100K sin 1007+ 100M cos 100,

I, = ~10000K cos 1007 — 10000 M sin 100¢
into (a). Writing C = cos 100¢, S = sin 100¢, you obtain
- 1000KC - 10000M S + 80 (—100KS + 100M C) + 1500(KC + M S) = -50008S.

The sum of the cosine coefficients must be zero since there is no cosine term on the right side of (a).

Similarly, the sum of the sine coefficients must equal —5000. This gives a system for determining K and
M, namely,

- 10000K + 8000M + 1500K = —-8500K + 8000M =0
— 10000M - 8000 K + 1500M = -8000K — 8500 M = -5000.
Solving the first equation for M gives M = 1.0625K. Substituting this into the second equation, you find
—8000K — 8500M = -17031.25K = -5000, K = 0.293578.
From this, M = 1.0625K = 0.311927. Hence the answer is
I=c,e™ +c,e750" +0.293578 cos 100¢ + 0.311927 sin 100+

The exponential terms go to zero and the steady-state solution is a harmonic oscillation whose frequency
equals that of the electromotive force. (The decimal fractions are approximations of the exact coefficients
32/109 and 34/109 given in the answer in Appendix 2.)

15. LC-circuit. Differentiating E = 220 sin 4¢ gives E' = 880 cos 41. Hence the mode! of the circuit is
21" + 2007 = 880 cos 4. Division by 2 gives

I" + 100/ = 440cos 4.

A general solution of the homogeneous equation is I, = Acos 10r + Bsin 10t. You can find a particular
solution of the form /, = Kcos 4. It is not necessary to add a term M sin 41 because there is no term in /'
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(physically: no damping, no phase shift). Substitution gives K(—16 + 100) cos 4t = 440cos 4. Hence
K = 110/21 = 5.238. Consequently, a general solution of the model is

I(®) = Acos 101+ Bsin 10¢ + 5.238 cos 41. (b)

This is a superposition of two harmonic oscillations.
Now use the initial conditions. For the first condition this is simple:
I(0) = A+5.238 =0, hence A =-5.238.
The second initial condition is Q(0) = 0, meaning that at r = O the capacitor is uncharged. To use this
condition, proceed as in Example 1 on p. 121. From (1) on p. 119 with R = 0 (an LC-circuit has R = 0!)
and fldt = @ you have
LI' + QIC = 220 sin 4.

For t = 0 and Q(0) = O this gives LI'(0) + 0 = 0, hence I'(0) = 0. Now by differentiating (b) you obtain
two sine terms, which are 0 when ¢ = 0, and the cosine term 10B cos 10¢, which equals 10B when ¢ = 0.
From this and I'(0) = 0 you have B = 0. You thus obtain the answer

I = 5.238(cos 4r — cos 101).

Note that the term in cos 4t appears regardless of the initial conditions, whereas the other term is present
because of these conditions. The figure shows that the oscillation is periodic (what is the shortest period?)

and looks rather complicated. Additional insight into its character is obtained from (12) in Appendix A3.1,
which gives

cos 4t —cos 10r = 2 sin 71 sin 31,
This is similar to Fig. 59 in Sec. 2.11, but less distinct because 3¢ is not small enough compared to 7¢.
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Section 2.12. Problem 15. Superposition of two harmonic oscillations in an LC-circuit

Sec.2.13  Higher Order Linear Differential Equations

Example 2. The determinant of this homogeneous system is not zero (add Row 1 to Row 2, then develop by
Row 2); hence the system has only the trivial solution (all unknowns zero). Or, calling the equations (a),
(b), (c), you obtain k, = k, + k5 from (a), then k, = O from this and (b), then k5 = —k, from (a), then
—6k, = 0 from (c), then k; = 0O from (b).

Problem Set 2.13. Page 131
3. Wronskian. Initial value problem. Calculate the Wronskian W. Since f = 73 has the derivatives

f' = -3fand f" = 9f, you obtain a factor f in each column, so that you can factor out f> = ¢™* from the
determinant, the remaining determinant bein
g g
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1 X x?

-3 1-3x 2x - 3x?

9 -6+9x 2-12x+9x?
To simplify this, add 3 times Row 1 to Row 2 and subtract 9 times Row 1 from Row 3. The result is a
determinant that can readily be developed by the first column, giving the value 2, that is,

1 X x?

0 1 2x =1(2-12x)+12x = 2.
0 -6 2-1x
Hence the Wronskian is W = 2e~%*. The corresponding differential equation is obtained by first noting that

because of the form of these solutions the characteristic equation must have the triple root -3, that is, it
must be of the form (use the binomial formula)

(A+3)3 =A349A2+274+27 =0.
Hence these functions are solutions of the differential equation
Yy +9"+27y' +27y =0,
as claimed, and they are linearly independent because their Wronskian is not zero. Now write down the

corresponding general solution and its first and second derivatives for general x as well as for x = 0, and
use the initial conditions to determine the three arbitrary constants. This looks as follows.

y(x) = (¢ + cax + c3xP) e,
y(0) =c, =4
y'(x) = (ca+2c3x-3¢,-3c,x=3c3xY) e
y'(0) =¢c,-3.4 =-13, ¢ = -1
y'(x) = (2¢c3 = 3¢5 - 3(cy - 3¢,) + further terms) e=3*
Y'(0) = 2¢5 = 3(=1) = 3(-1 - 3.4) = 2¢c; +42 = 46, ;=2

where *further terms” are those that give zero when x = 0, so you do not need to write them down. This
gives the answer

y=(d4-x+2x)e3*,
11. Linear dependence. Use cos?x + sinx = 1.

15. Linear dependence. Consider the difference of the first two functions.

Sec. 2.14 Higher Order Homogeneous Equations with Constant Coefficients

Example 1. In the Wronskian, pull out a factor e~ from the first column, ¢ from the second, and e* from the
third. Hence the Wronskian equals e times the determinant

The latter is not zero (subtract Column 1 from Column 2 and develop by Column 2, to get 2(4 — 1) = 6).
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Problem Set 2.14. Page 137

3. General solution. Use that the characteristic equation is a quadratic equation in A2. Thus,

13.

AM-222+ 1= -1 =(A+D)@A-1))? =+ 1) (A-1)2=0.

In some of the other problems in this set it may be necessary to overcome the practical difficulty of
determining the roots by using a numerical method, such as Newton’s method (Sec. 17.2) (although we
have chosen values such that one root, A, , may often be found by inspection and the remaining roots then
by dividing the characteristic equation by A — ).

Initial value problem. A, = 1 by inspection. Dividing by 4 - 1 now gives

A -22-2+1)+A-1)=22-1=@A+1)@A-1).

From this and the given initial values you get the corresponding general solution, its derivatives, the values
at zero, and conditions (a)-(c) for the arbitrary constants in the general solution, as follows.

y(x) = (¢, +cyx) e +c3e™*

y(0) = ¢, +¢c3 =2  (from the first initial condition) (a)
Y (x) = (ca+cy+cyx)ef —cye™
y'(0) =c,+c¢,—c3 =1 (from the second) (b)
y'(x) = (cp+ca+c, +eyx) e +cye™*

y'(0) = ¢, +2c,+¢c3 =0  (from the third). (©)
Write the system (a)-(c) more orderly,

c +cy3 =2 (a)
Ci+ €C—-€C3 = 1 (b)
c,+2c;+¢c3 =0. ©

To solve this, apply the Gauss elimination or Cramer’s rule or simply form (c) minus (a) to get 2¢, = -2,
hence ¢, = -1, then form (a) plus (b), obtaining 2¢, +¢; = 2¢; - 1 = 3, ¢y = 2, and finally use (a),
obtaining ¢3 = 2 — ¢, = 0. Together, this gives the answer y = (2 — x) e*.

The figure shows that y has a maximum at x = 1; this can be confirmed by using the derivative. From
the change of the tangent direction with increasing x conclude that for positive x the second derivative

must always be negative. Indeed, the previous formula for y"(x) with the constants as just determined
shows that y" = —xe*,

-6

Section 2.14. Problem 13. Solution of the initial value problem
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19. CAS Project. (c) Without a computer, the equation can be solved as follows. The auxiliary equation is
m(m-1D(m-2)+m(m-1)-2m+2=0.

The sum of the last two terms is —2 (m — 1). Hence you now have a common factor m — 1 and can write
the auxiliary equation as

m-D(mm=-2)+m-2)=(m-D(m*-m=-2)=(m-1)(m-2)(m+1).
The corresponding general solution is y = ¢, x + ¢ x2 + ¢3/x.

Sec. 2.15 Higher Order Nonhomogeneous Equations

Problem Set 2.15. Page 141

1. General solution. The characteristic equation of the homogeneous equation is
AB4+3224+34+1 =(A+1)3,
It has the triple root —1, so that a basis of solutions is
yi=e* yy=xe*, y;=xte”
and the corresponding general solution of the homogeneous equation is
yi = (1 +cax+cyx?)e™.
The right side is such that you can use the method of undetermined coefficients. The Modification Rule is

not needed since none of the terms on the right is a solution of the homogeneous equation. Start from (see
Table 2.1 in Sec, 2.9 if necessary)

¥, = Ce* + K, x + K,.

Substitution of this and the derivatives

yp=Ce*+K,, y,=Ce y,/ =Ce
into the given equation

y'+3y" +3y' +y=8e"+x+3
gives
C(O+3+3+1)e*+3K, +K\x+ Ky =8e*+x+3.

From this you see that C = 1, K, = 1, 3K, + K¢ = 3, K, = 0, and the answer is

y=ynty, =(cr+crx+c3xt)e™ +e +x.

11. Initial value problem. The auxiliary equation of this Euler-Cauchy equation is
mm-1Ym-2)-3m(m-1)+6m-6=0. (A)
Ordering terms gives
m*-6mi+1lm-6=0. (B)

m = 1 is a root. This can be seen from (B) by inspection or from (A) by noting that6m — 6 = 6(m — 1),
so that (A) has a common factor m — 1 . Division of (B) by m — 1 gives
m}-6m2+1lm—-6)+(m-1)=m*-5Sm+6 = (m-2)(m-23).
Hence 2 and 3 are roots, and a general solution of the homogeneous equation is
Vi = C X+ Cyx2+c3x3.

Now determine a particular solution of the nonhomogeneous equation. Try the method of undetermined
coefficients, setting

y, = Kx*.  Then y, = 5Kx*, y, =20Kx? 'y, = 60Kx%.
Differentiation has reduced the exponent, but this will be compensated by the increasing power in
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successive coefficients, so that you obtain a common factor x3, namely, since the equation is
x3y" —3x2y" + 6xy' - 6y = 24x5,
you obtain
(60-3.20+6-5-6)Kx> = 24Kx® = 24x%, hence K =1.

This gives the general solution of the nonhomogeneous equation, its derivatives, their values at x = 1, and
three equations (a), (b), (c) for determining the arbitrary constants by using the initial conditions, as
follows.

y(x) = ¢ x+cyx? -'I-C3)c3 +x3
Y1) =c +cy+c3+1 =1, Cy+c,+¢c3=0 ()

Y(x)=c, +2c,x+3cyx2 +5x%

Y1) =c;+2c,+3¢;+5 =3, Ci+2¢,+3¢c; =-2 (b)
y'(x) = 2¢, + 6c3x + 20x3
y'(1) =2¢, +6¢3+20 = 14, 2¢,+6c3 =-6. (c)
You can solve (a), (b), (c) by elimination. (b) minus (a) gives
Ccy+2¢3 =-2. (d)

(c) minus 2(d) gives 2 ¢; = -2, hence ¢3 = —1. From this and (d) there follows ¢, = =2 — 2¢; = 0. From
this and (a) you finally have ¢, = —c; — ¢ = 1. This gives the answery = x— x> + x5 .




