CHAPTER 3. Systems of Differential Equations, Phase Plane,
Qualitative Methods

Sec. 3.1 Introductory Examples

Example 2. Spend time on Fig. 76 until you feel that you fully understand the difference between (b) (the
usual representation in calculus) and (c). because trajectories will play an important role throughout this
chapter. Try to understand the reasons for the following. The trajectory starts at the origin. It reaches its
highest point where y, has a maximum (before ¢ = 1). It has a vertical tangent where /, has a maximum,
short after £ = 1. As t increases from there to ¢ = 5, the trajectory goes downward until it almost reaches
the /;-axis at 3; this point is a limit as ¢ — oo. In terms of 7 the trajectory goes up faster than it comes down.
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S. Electrical network. The problem amounts to the determination of the two arbitrary constants in a general
solution of a system of two differential equations in two unknown functions /, and /. representing the
currents in an electrical network shown in Fig. 76 in Sec. 3.1. You will see that this is quite similar to the
corresponding task for a single second-order differential equation. That solution is given by (6), in
components

L) =2c e +ce08 43, L(t) =c,e¥+0.8c,e 0¥,
Setting r = 0 and using the given initial conditions /,(0) = 9, /,(0) = 0 gives
1H(0)=2¢c,+¢c,+3 =9 (a)
12(0) =C[+O.86‘2 = Q. (b)
From (b) you have ¢, = —0.8¢,. Substituting this into (a) and simplifying gives 2(-0.8¢,) + ¢, = 6, hence
—0.6¢c, = 6 orc, = -10, and ¢, = 8. The answer is (note that 2¢, = 16)
1,(f) = 1672~ 10e08 + 3
I,(1) = 8e2 — 8¢08¢,

These currents are shown in the figure. /,(r) has the limit 3, as expected. I,(r) comes out negative: this
means it is directed opposiie to the arrows shown in Fig. 76(a), which had been assumed arbitrarily at the
beginning of the process of modeling: this had to be done because at the beginning, one does not know in
what directions the currents will actually flow.
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Section 3.1. Problem 5. Currents [, (upper curve) and its limit 3 and /,

9. Conversion of single differential equations to a system is an important process, which always follows
the pattern shown in formulas (9) and (10) of Sec. 3.1. The present equation y” — 9y = 0 can be readily




24

Ordinary Differential Equations Part A

solved. A general solution is y = ¢, ¢ + ¢, e7*'. The point of the problem is not to explain a (complicated)
solution method for a simple problem, but to explain the relation between systems and single equations
and their solutions. In the present case the formulas (9) and (10) give y, = y, y, = y' and

Yi =y
y2 =9
(because the given equation can be written y" = 9y, hence y| = y,, but ¥} = y3). In matrix form (as in

Example 3 of the text) this is
"= Ay 01 y
y = = .
90

-A 1
9 -4

The characteristic equation is

det (A-Al) = = At-9=0.

The eigenvalues are A, = 3 and A, = —3. For A, you obtain an eigenvector from (13) in Sec. 3.0 with

A =, thatis,
-3 1 -3
(A -2 D)x = s SUC I )
9 -3 X3 9x| - 3X2

From the first equation -3 x, + x, = 0 you have x, = 3x,. An eigenvector is determined only up to a
nonzero constant. Hence, in the present case, a convenient choice isx; = 1, x, = 3. The second equation
gives the same result and is not needed. For the second eigenvalue, A, = -3, the procedure is the same,

namely,
31 3x, +
(A~ A)x = ool TR oo
9 3 Xy 9x, +3x,

You now have 3x, + x, = 0, hence x, = —3x,, and can choose x; = 1, x, = -3. The eigenvectors
obtained are

xM=[1 31" and x®=[1 -3]"
Multiplying these by e3 and e~3', respectively, and taking a linear combination involving two arbitrary
constants ¢, and ¢, gives a general solution of the present system in the form
y=ci[1  3]Te¥+c,[1 -3]Te

In components, this is

yi=c e¥+ce

y2 = 3c,e¥ -3ce7.
Here you see that y, = y is a general solution of the given equation, and y, = y} = y' is the derivative of

this solution, as had to be expected beccause of the definition of y, at the beginning of the process.
Incidentally, you can use y, = y) for checking your result.

Sec. 3.3 Homogeneous Systems with Constant Coefficients. Phase Plane, Critical Points

Example 2. The characteristic equation is

1-4 O
0 1-2

det (A - AI) = =(A-1)*=0.

Thus A = 1 is an eigenvalue. Any nonzero vector with two components is an eigenvector because Ax = X
for any x; indeed, A is the 2 x 2 unit matrix! Hence you can take x("’ = [1 0]" and x® = [0 1]” or any
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other two linearly independent vectors with two components. This gives the solution on p. 165.
Example 3. (1 -A)(-1-4) = (A-1)(A+1)=0, and so on.
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3. General solution. The matrix of the system is
I 1
A= .

1-24 1
3 -1-4

The characteristic equation is

det (A - AI) = =(1-(-1-2)-13=2%-4=0.

Hence the eigenvalues are A, = 2 and A, = —2. An eigenvector corresponding to A, is obtained by solving
(A -7 Dx = (A-2Dx = 0, in components,

(] - 2)x| + Xz = 0
I, + (-1 -2)x; = 0.
Each of the equations gives x;, = x, (and you need only one of them). Hence you can take x( = [1 1]7
as an eigenvector corresponding to A, = 2. For &, = -2 those component equations are (1 + 2)x, +x, = 0

(both of the same form) and you can take x, = 1, x, = =3, so that an eigenvector corresponding to
A, = =2isx® = [1 -3]7. This gives as a general solution of the system

1 2t 1 -2t
Y= 1 e- +C2 3 e -,

y, =c,e¥ +ce?

in components,

Y =G e - 3C2 e,

This agrees with the answer in Appendix 2, with ¢; and ¢, interchanged. (Of course, the notation for
arbitrary constants is up to us.)

5. General solution. In this problem you will see the typical calculations in the case of complex eigenvalues.

The matrix of the system is
1 -1
A= .
1 1

-4 -1
1-4

The eigenvalues are complex conjugates, A, = 1 +iand A, = 1 — i. Eigenvectors x are obtained from

(A — A)x = 0, as before. This is a vector equation, and you need only the first of the two corresponding
scalar equations. ForA = A, = 1 +iitis

(1= (1 +))x, —x, = 0,

This gives the characteristic equation

det (A - AI) = =(1-2)?+1=22-21+2=0.

thus
—ix; = Xy say, xy=1 and x, =-i

So the new aspect is that this eigenvector X" = [1 - {]7 is no longer real but is complex. Similarly, for
A =2, =1 —1iyou getan eigenvector from
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(I-( - -x, =0,
thus
ix;=xy, say, x;=1 and x,=1i
This gives the eigenvector xX® = [1  {]7. Using the Euler formula
e =cost+isint, e =cost—isint
(see Sec. 2.3) you can write a complex general solution

1 1
y=cl|: ] ]e'(cost+isint)+c2|: ) i|e’(cost—isin 1).
-t 1

Writing this in terms of components and collecting cosine and sine terms, you obtain
y, =c,e'(cost+isint)+cye'(cost—isint)

= e/(Acost+ Bsin i), A=c +c;, B=ic-ic
y, = —ic,e'(cos t+1isin 1) + ic,e’(cost—isin )
= e'(Ccos t+ Dsin i), C=-ic,+ic,, D=¢c +cs.

You see that C = —B and D = A. You can now write a real general solution in vector form, namely,

aEge

15. Initial value problem. The matrix of the given system is

-14 10
A= .
-5 1
From A you obtain the characteristic equation
-14-2 10
-5 1-24

Simplification gives A? + 134 + 36 = 0. Hence the eigenvalues are A, = =9 and A, = —4. Corresponding
eigenvectors are obtained from

[-14 = (-9)x, + 10x, =0, thus —=5x,+10x, =0, say, x; =2, x;=1

det (A - AI) = ‘ =(-14-1)(1-1)+50=0.

and

[-14 - (4)}x; +10x, =0, thus —10x; +10x, =0, say, x; =1, x;=1
Hence the corresponding general solution is

2 1
y=r¢ e +cy e,
1 1
From this and the initial conditions y,(0) = -1, y,{(0) = 1, written in vector form, you obtain
2 1 -1 2¢ci+¢, =-1
y(0) = ¢, + ¢, = , thus cire .
1 1 1 ci+cy =1
The solution is ¢, = =2, ¢, = 3, so that you obtain the particular solution
2 1 = —4g™% 4+ 3o~
y=-2 e +3 e, thus ¢ e
i I y, = —2e7% +3e7¥

The figure shows that both y, (the lower curve) and y, have a maximum and then approach zero in a
monotone fashion.
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Section 3.3. Problem 15. Particular solutions y, (lower curve) and y,

Sec. 3.4 Criteria for Critical Points. Stability

Problem Set 3.4. Page 174

3. Saddle. The type of a critical point is determined by quantities closely related to the eigenvalues of the
matrix of a system, namely, the trace p, which is the sum of the eigenvalues, the determinant g, which is
the product of the eigenvalues, and the discriminant A, which equals p? — 4q; see (9) in Sec. 3.4. In Prob. 3

the matrix is
1 2
A= .

Hencep=1+1=2,g=1-4=-3,and A = 4-4.(-3) = 16. Since g < 0, the system has a saddle
point at 0, which is aiways unstable, as follows from (10c) in Sec. 3.4, and is plausible from Fig. 80 in Sec.

3.3. To solve the system, you need the eigenvalues, which you obtain as solutions of the characteristic
equation

1-4 2
2 1-2

det (A - AI) = =A2-21-3=(1-3)(A+1)=0.

Hence the eigenvalues are -1 and 3. Their signs differ, which makes ¢ negative and causes a saddle point.
An eigenvector x" for —1 is obtained from

(I-(-D)x; +2x, =0, thus x,=-x,, say, x,=1 x,=-1.
Hence x! = [1 - 1]". Similarly, for the eigenvalue 3 you obtain an eigenvector from
(1-3)x;+2x, =0, thus x,=x, say, x; =1 x,=1.
This gives the eigenvector x? = [1 1]7. Hence a general solution is

1 1
=c e’ +c e,

17. Perturbation of center. Example 4 in Sec. 3.3, to which the problem refers, shows two methods of
solution, a systematic method and the shortcut. The first of them is similar to the procedure explained in
this Manual in Prob. 5 of Problem Set 3.3 and can be completed following that method. The purpose of
this Prob. 17 is to become aware of the fact that inaccuracies in the coefficients of a system (errors caused
by rounding or in the process of physical measurements, etc.) can change the type of a critical point. In

this problem it is suggested to go from A to B = A + 0.11, but it will be obvious from the analysis that
smaller deviations would have a similar effect. Given
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1 .
A= 0 , hence B=A+0.11= 0.1 ! .
-4 0 -4 0.1

For A youhavep = 0+0 =0, ¢ = —1-(—4) = 4. This confirms that the system in Example 4 has a center
as its critical point; see (9¢) in Sec. 3.4. For B you have p = 0.1 +0.1 = 0.2 # 0, ¢ = 0.01 +4 = 4.01,
and A = p?—4q = 0.04 - 16.04 = —16 < 0, which gives a spiral point by (9d) in Sec. 3.4. The
eigenvalues of A are pure imaginary, 2/ and -2 (see Example 4 in Sec. 3.3), and it is interesting that the
eigenvalues of B are 0.1 + 2i and 0.1 — 2i, that is, they were changed by the same amount by which the
main diagonal entries were changed (this reflects a general “shifting property”). Indeed, the characteristic
equation of B is

0.1-2 1
-4  0.1-4

det (B-Al) = =(01-2)2+4=27-021+4.01=0.

The roots (the eigenvalues of B) are 0.1 + 2i and 0.1 — 2i.

Sec. 3.5 Qualitative Methods for Nonlinear Systems

Example 1. The critical point at (0, 0) turns out to be a center. This follows from the general criteria in Sec.

3.4. This is the first result. The next result follows from this and the periodicity of sin 8 = sin y, with 2.
Namely, the points +27, +47, ... must also be centers. (Keep in mind that y, is just another notation for 6,
introduced to fit the notation of our general discussions in this chapter.) The third result concerns the
critical point (7,0) at = = of the §-axis. The trick now is to move the origin to this point because our
criteria were derived under the assumption that the critical point to be discussed is at the origin. This is the
idea of the transformation (a translation)

6-7=y, thus 8=m+y,. (A)
You see that @ = & now corresponds to our new y, = 0; we are at the new origin. Think about this before
going on. From (A), sin = 0, and cos # = —1 it follows that

, 3
sin@ =sin(z+y,) =sinmcosy, +cosasiny, =-siny; = -y, + % e

as indicated in the example.
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£

. Linearizatior begins with the determination of the positions of the critical points. As a system the given

equation y" — y + y2 = 0 becomes (see Sec. 3.1 for the general formula)
Yi =y (a)
¥ =y =y
The critical points are obtained from y, = 0 (then yj = 0), y, —y? = y,(1 —y,) = O (then y; = 0). Hence
they are at 0 and | on the y,-axis. Linearization is then done for each critical point separately. and in each
case the point is first shifted to the origin by a suitable change of coordinates, as explained in somewhat
more detail just above (in connection with Example 1). Accordingly, begin with the critical point (0, 0).
No transformation of y, or y, is necessary because the point already has the required position. From (a)

you obtain the system linearized at the origin simply by dropping the quadratic term. This linearized
system is

Its matrix is

c m— — e — e
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01
Al= .

Calculatep = 0+0 = 0,9 = -1-1 = -1, and A = p? — 49 = 4. Since g < 0, this is a saddle by (9b) in
Sec. 3.4. (You do not need p and A.) The second critical point is at y, = 1, y, = 0. Hence make a shift by
setting y, = 1 +¥,,y2 = y2. Then y} = j1,

Y=yt =y(l=-y) = +3)H) =-5 -
and (a) takes the form
=5
Y2 = =% -5t
Linearize this by dropping the nonlinear term (the last term in the second differential equation). This gives
the linearized system

i =3 0 1
i' yi whose matrix is  Ap = .
Y2 =N -10

Calculate p = 0, ¢ = 1, and conclude from (9¢) in Sec. 3.4 that the critical point at (1, 0) is a center.

13. Trajectories. yy" + y = (yy')’ = 0. By integration, yy' = const or y,y, = const. These are the familiar
hyperbolas with the coordinate axes as asymptotes.

Sec. 3.6 Nonhomogeneous Linear Systems

Example 1. The solution of the homogeneous system (not shown in the text) proceeds as before. That is, the
characteristic equation of the matrix A is

Q-ADEB-)-(D-1=22+2-2=(A-1)A+2)=0.
Hence the eigenvalues are 1 and -2. Eigenvectors are obtained for A = 1 from
2-1)x;-4x, =0, say, x, =4, x,=1
and for A = -2 from
R-(C2))x;—4x, =0, say, x; =1, x,=1.
This gives the solution of the homogeneous equation shown in the answer on p. 185.

Problem Set 3.6. Page 189

3. General solution. ¢ and —3e3' are such that you can apply the method of undetermined coefficients for
determining a particular solution of the nonhomogeneous system. For this purpose you must first
determine a general solution of the homogeneous system, The matrix of the latter is

A{?é].

It has the characteristic equation 2% — 1 = 0. Hence the eigenvalues of A are A, = -1 and A, = 1.
Eigenvectors x = x(" and x® are obtained from (A — AI)x = Owith A =4, = -landA =&, = [,
respectively. For A, = —1 you obtain

Xy +x,=0, thus x,=-x,, say, x; =1 x;=-1

Similarly, for A, = 1 you obtain
—x;+x, =0, thus x; =x,, say, x; =1, x,=1.

Hence eigenvectors are XV = [1 - 1]7 and x@ =[] 177. This gives the general solution of the
homogeneous system
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1 1
y® = ¢, e+ ¢, e',
-1 I

Now determine a particular solution of the nonhomogeneous system. Using the notation in thc text (Sec.
3.6) you have on the right g = [1 - 3]7¢*". This suggests the choice

yO =ued = [u;, ] e (a)

Here u is a constant vector to be determined. The Modification Rule is not needed because 3 is not an
eigenvalue of A. Substitution of (a) into the given systemy' = Ay + g yields

y»' = 3ued=Ay® +g = 01 S PET I )
1 0 Uy -3

Omitting the common factor e, you obtain in terms of components

3u;, =us+1 ordered 3uy— uy = 1
3u2=u,—3 —u1+3u2=—3.
Solution by elimination or by Cramer’s rule (Sec. 6.6) gives u; = 0 and u; = —1. Hence the answer is

1 1
y = cll: ]e" +c2[: :le’ +[ 0 ]e".
-1 1 -1

17. Network. First derive the model. For the left loop of the electrical network you obtain from Kirchhoff’s
voltage law

LI+R (U, -1,) =E (@)

because both currents flow through R,, but in opposite directions, so that you have to take their difference.
For the right loop you similarly obtain

R,(12-1[)+R212+lfj’1zdz=o. (b)

Insert the given numerical values in (a). Do the same in (b) and differentiate (b) in order to get rid of the
integral. This gives

Iy+2(,-1,) =200
205 - 1))+ 815421, = 0.
Write the terms in the first of these two equations in the usual order, obtaining
Iy = =21, + 21, + 200. (al)
Do the same in the second equation as follows. Collecting terms and then dividing by 10, you first have
105-211+21, =0 or I5-02l}+0.2l, =0.
To obtain the usual form, you have to get rid of the term in /|, which you replace by using (al). This gives
-0.2(-21,+21,+200) + 0.2, = 0.
Collecting terms and ordering them as usual, you obtain
I5 = -0.41, + 0.2/, + 40. (®1)
(al) and (b1) are the two equations of the system that you use in your further work. The matrix of the

corresponding homogeneous system is
-2 2
A= .
|: -0.4 0.2 :I

Its characteristic equation is (I is the unit matrix)
det (A-AI) = (-2-4)(02-1)-(-0.4).2 = A2+ 1.84+ 04 = 0.
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This gives the eigenvalues
A, = —0.9+ /041 = -0.259688
and
A, = 0.9 - J0.41 = —1.540312.
Eigenvectors are obtained from (A — AI)x = 0 with 1 = &, and 4 = },. For A, this gives
(2-2))x;+2x, =0, say, x; =2 and x; =2+4,.
Similarly, for A, you obtain
(2-A)x,+2x, =0, say, x;, =2 and x, =2+A4,.
The eigenvectors thus obtained are

x(l) = =
2+4 1.1+ /041

and

[ 2 3 2 ]
x® = ,
241, 1.1 - JOAT

This gives as a general solution of the homogeneous system
I = ¢ xM eM? 4 ¢, x@ ehat,

You finally need a particular solution I®? of the given nonhomogeneous system J' = AJ + g, where

g = [200 40]7isconstant,and J = [/, 1,)7 is the vector of the currents. The method of undetermined
coefficients applies. Since g is constant, you can choose a constant I®? = u = [u, ,]7 = const and
substitute it into the the system, obtaining, sinceu’ = 0,

, -2 2 u, 200 —2u,y + 2u, + 200
[P =0=Au+g= + = .
-04 0.2 Uy 40 =0.41, +0.2u, + 40
Hence you can determine «; and u, from the system
-2u, + 2u, = -200
—0.4u, +0.2u, = —40.

The solution is u; = 100, u, = 0. The answer is
J=1®41@),



