CHAPTER 4.  Series Solutions of Differential Equations.
Special Functions

Sec. 4.2  Theory of the Power Series Method

Problem Set 4.2. Page 204

1. Power series solution. The equation y' = —2xy can readily be solved by separating variables,
dyly = —2xdx. Inlyl = —x?+C, y =ce™,
If for some reason a Maclaurin series of this solution is wanted, you can obtain it by substituting —x? for x
in the familiar series for e*. Hence this problem (as well as the others) just serves to explain the techniques
in a simple case (in which you would not need them), as a preparation for equations, such as Legendre's,

Bessel's, and the hypergeometric equations, to name the most important ones, where you do need these
techniques. Start from the series

y=ao+a,Xx+ayx’+ayx3 + ... @)

and differentiate it termwise, obtaining

Yy =a,+2a3x+3asx* +4a,x3 + ... (b)
Leave space behind each series on your sheet, so that you can add terms if necessary. From (a) obtain the
right side of the given differential equation (write corresponding powers below each other; this will
facilitate your further work)

-2y = —2agx-2a,x*-2a,x3 —2a3x* — ..

For each power x%, x, x2, x*.... equate the two corresponding terms. Denote these equations for
determining the coefficients by [0] (constant terms), [1] (first power of x), etc. This looks as follows.

a =0 [0]
2a; = -2ay, hence a, = —aq, ag arbitrary [1]
3a; =-2a,=0 [2]
4a, = -2a,, hence ay = (-2/4)a, = (112)a, [3]
S5as =-2a,;=0 (4]
6as = —2a,, hence ag = (-2/6)as = —(1/3V)a, [5]

and so on. With a little more skill, you may use power series notation and write
<« >+
Y +2xy = Z na,x"! + ZxZ a,x™ = Q.
n=| m=l)

In the second series multiply each term by 2x. Then you have the general power x™'. To get the same
power in the first series, set 7 = m + 2; this gives x*' = x™! (this was the reason for choosing different
summation letters in the two series). Also pull out the first term a, of the first series; then both summations
begin with m = 0 and you can take the two series together, obtaining

-] w
a, + Z (m+2)ap,x™" + Z 2a,x™!
m=0

m=0

=a,+ Z [(m+2)a,., +2a,]x™! =0.
m=0

You see now that a; = 0 and get the recursion

(m+2)anm+2a,=0 or aupa=-2a,/(m+2), m=01,..
Choosing m = 0, 1, ..., you obtain successively
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4 1
@ = =50 43 = 0, a,= T34 = 54 4= 0,...

as before.

17. Radius of convergence. A power series in powers of x may converge for all x (this is the best possible
case) or within an interval with the center x, as midpoint (in the complex plane: within a disk with center
xo) or only at the center (the practically useless case). In the second case the interval of convergence has
length 2R, where R is called the radius of convergence (it is a radius in the complex case, as has just been
said) and is given by (7a) or (7b) of Sec. 4.2. Here it is assumed that the limits in these formulas exist. This
will be the case in most applications. (For help when this is not the case, see Sec. 14.2.) The convergence
radius is important whenever you want to use series for computing values, exploring properties of
functions represented by series, or proving relations between functions, tasks of which you will gain a first
impression in Secs. 4.3-4.7 and corresponding problems. In Prob. 17 you may set x2 = r. Then you have a
power series in ¢ with coefficients of absolute value la,,| = 1/1kI™ . Hence the root in (7a) is 1/1kl, so that
the radius of convergence of the power series in ¢ is |k |. That is, the series converges for Itl < lkl. This
implies Ix| = [Tt < Jikl. Hence the given series has the convergence radius Jkl. Confirm this by using
(7b). The quotient in (7b) is

la . /a,l = 11kl

This leads to the same result as before. Note that the problem is special; in general, the sequences of those
roots and quotients in (7) will not be constant, that is, the terms of such a sequence of quotients (or roots)
will not be all the same.

Sec. 4.3 Legendre’s Equation. Legendre Polynomials P, (x)
Problem Set 4.3. Page 209

1. Legendre functions for n = 0. The power series and Frobenius methods were instrumental in establishing
large portions of the very extensive theory of special functions (see, for instance, Refs. [1], [11], [12] in
Appendix 1), as needed in engineering, physics (astronomy!), and other areas, simply because many
special functions appeared first in the form of power series solutions of differential equations. In general,
this concerns properties and relationships between higher transcendental functions. The point of Prob. 1 is
an illustration that sometimes such functions may reduce to elementary functions known from calculus. If
you set n = 0 in (7), it was observed in ihe problem that y, (x) becomes % In ((1 +x)/(1 — x)). In this case,
the answer suggests using

In(l+x)=x- —;—xz + %x3—+... .
Replacing x by —x and multiplying by ~1 on both sides gives
~-In(1-x) = lnﬁ =x+%x2+%x3+... .
Addition of these two series and division by 2 verifies the last equality sign in the formula of Prob. 1. You
are requested to obtain this result directly by solving the Legendre equation (1) with n = 0, that is,

(1-x¥)y"-2xy' =0 or (1-x?)7 =2xz, where z=Yy.
Separation of variables and integration gives

izz— = —Z{—dx, Inlzi=-Inll —x%l+c, z=CJ(1 -x%).
1 -x?

y is now obtained by another integration, using partial fractions

1 _1 11
1-x2 2lx+1 x-1)

This gives
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= [zdx = %C,(ln(x+l) In(x-1)) +c = -—c in "*} +e.

Since y, (x) in (6), Sec. 4.3, reduces to 1 if n = 0, you can now readlly express your solution obtained in
terms of the standard functions y; and y, in (6) and (7). namely,

y = ey () + Cya(x).

7. Differential equation. Set x = az and apply the chain rule, according to which
d ddz _1d d? 1 4

&G dq ™M ET T

Substitution now gives

(a® - a?® z)—Z Py %)i—+3 4y = Q.

The factors a cancel and you are left with
(1-2)y" -2z’ +3.4y = 0.
Hence the solution is P4(z) = P;(x/a), as claimed in Appendix 2.

Sec. 4.4 Frobenius Method

Problem Set 4.4. Page 216

5. Basis of solutions. Substitute y, y', and y", given by (2) and (2*) in Sec. 4.4, into the differential equation
xy" + 2y’ + xy = 0. This gives

Z (m+r)(m+r-1)a,x™! +Z2(m+r)a xmer-l +Za x =0,

m=0

The first two series have the same general power, and you can take them together. In the third series set
n = m— 2o get the same general power. n = O then gives m = 2. You obtain

Z (m+r)(m+r+1)a,x™! TZ A X™1 =0, (A)

m=2

For m = 0 this gives the mdmal equation
rr+1)=20

The roots are r = 0 and —1. They differ by an integer. This is Case 3 of Theorem 2 in Sec. 4.4. Consider
the larger root r = 0. Then (A) takes the form

Z (m+ 1a, x"’"+Za,,,_2x’"" =0.

m=0 m=2
m = 1 gives 2a, = 0. This implies a3 = a5 = ... = 0, as is seen by taking m = 3,5,... . Furthermore,
m = 2 gives 2-3a, + a, = 0, hence a, arbitrary, a; = —a/3!

m = 4 gives 4.5a, + a, = 0, hence a4 = —a,/(4:5) = +a,/5!
and so on. Since you want a basis and a, is arbitrary, you can take a; = 1. Recognize that you then have
the Maclaurin series of
y, = (sin x)/x.
Now determine an independent solution y,. Since in Case 3 one would have to assume a term involving

the logarithm (which may turn out to be zero), reduction of order (Sec. 2.1) seems to be simpler. This
begins by writing the equation in standard form (divide by x):

y'+ (2x)y +y=0.



Chap. 4 Series Solutions of Differential Equations. Special Functions 35

In (2) of Sec. 2.1 you then have p = 2/x, —Ipdx = —2In Ix! = In (1/x?), hence exp (—Ipdx) = 1/x2,
Insertion of this and y? into (9) and cancellation of a factor x? gives

U= lsin’x, u= Ide= —cotx, y,=uy =- coxsx.

9. Basis of solutions. Try the substitution x + 2 = t. Can you see why?

13. Euler-Cauchy equation. The point of this problem is that you should recognize how Euler-Cauchy
equations fit into the Frobenius theory.

Sec. 4.5 Bessel’s Equation. Bessel Functions J ,(x)

Problem Set 4.5. Page 226

3. Reduction to Bessel's equation. Bessel’s equation gains additional importance by the fact that numerous
other differential equations can be reduced to this equation, so that the extensive theory of Bessel
functions becomes applicable to the solutions of those other equations and their engineering uses. The
corresponding transformations involve applications of the chain rule in transforming derivatives. From
x2 = z you obtain y' = 2x(dy/dx) and y" by differentiating this; in detail

il e i
w_ dy dy ,d’y _ _dy d*y
y de"zd +4x d—zz_zdz+4z7zz—.

By substitution,

xty" +xy' + (4x* ——)y—z(4ﬂ+2d—y)+22 +(4z ——)y 0.

Division by 4 gives the Bessel equation

d®y dy 1
28 Y 2oy =
s -l-za’z-'-(Z 16)y 0
Hence a general solution is
y = AJyy(2) + BJ_ys(2) = AJ s (x?) + BJ_y s (x?). (A)

The figures show the two Bessel functions that form the basis in (A), plotted as functions of z (their usual
appearance) and as functions of x? over the x-axis, in which case the oscillations hecome more and more

rapid with increasing x.
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Section 4.5. Problem 3. Bessel function J_,;,(x?)

9. Reduction to Bessel's equation. Here you may first transform the dependent variable (the unknown

function y) by the given transformation y = x'3u. You need the derivatives

1
y = gx‘mu +x'By’,

2 2
"= —g-x‘”u + =—x Py 4 X8y,

3
Substitute this into the given equation, order terms, and drop a common factor x'?. This gives
81x%u" + 8lxu' + (9x¥ - u = 0. B)

Now comes the second step: introduce z = x' as the new independent variable. You have to transform
the derivatives
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p_dude _duf 1) oy 1 ,du
ek T @\3 ) T3t 4

d2u 1 du { 2 1 ,d*u 2 _.du
vo_ 1Y wm auf 2\ sp_ 1 4du & sdu
“ dzz(9)" +dz( 9)" 9r 42 T 9 d

Substitution into (B) and collection of terms gives

26 d? 6 d 301 \du
2 4u gz d¢ KA L N2 2 Yy =
9z4 i 1825 dz+8122(3)dz+(9z Du=0.
Dividing this by 9 gives the Bessel equation with parameter 1/3 and unknown function u(z), whose

solution is
u(z) = Al \5(2) + BJ_15(2).
Replacing z by x' and multiplying by x'* gives y = x"®u(x'?), as shown in Appendix 2.

Sec. 4.6  Bessel Functions of the Second Kind Y, (x)

Problem Set 4.6. Page 232

7. Reduction to Bessel's equation. You have to transform the independent variable x by setting z = kx?/2
as well as the unknown function y by setting y = J/x u. Using the chain rule, you can perform the two
transformations one after another — this would be similar to Prob. 9 in Problem Set 4.5 — or
simultaneously, as we shall now explain. You will need dz/dx = kx. Differentiation with respect to x gives

dy 1

du
_ -1n n
j 2 x4+ x e kx

= lx"“ u+ lo:mﬂ.

2 dz
Differentiating this again, you obtain the second derivative

2
dy _ BRLI T ix‘”"d—lz‘k.x+ 3 kxmﬂ+kxmd2u

&r 4 2 &2 4 =

== %x'mu + 2kx"2‘;—: 4 k? xm%.
Substituting this expression for y" as well as y into the given equation and dividing the whole equation by
k2x? gives

du + 2 du +(1- S

dz?  kx? dz 4 k% x*
Now recall that kx2/2 = z. Hence kx? = 2z. Substitute this into the last equation to get

d*u 1
dz? +%f1_lz+( _1617)“0‘
This is Bessel's equation with parameter v = 1/4. Hence a general solution of the given equation is
y = x"2u(z) = x'"*(AJ14(2) + BY 14(2)) = x'2(AT g (kx?12) + BY s (kx?/2)).

Ju=0.

11. Y, for small x. Use (6). Neglect the series in (6), which is O for x = 0; hence solve In (x/2) = —y. This
gives x = 1.1, approximately. The actual 2S-value of the zero is 0.89; see Ref. [1], p. 410.

Sec. 4.7 Sturm-Liouville Problems. Orthogonal Functions

Example 5 and Theorem 2. In (13), n is fixed. The smallest n is n = 0. Hence then (13) concerns J,. It then
takes the form
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R
jo xJo(kmox)Jolkgx)dx =0  (j # m, both integer).

If n = 0 were the only possible value of n, you could simply write k,, and k; instead of ko and ky; write it
down for youself to see what (13) then looks like. Recall that & is related to the zero a g of J, by

kno = am/R. In applications (vibrating drumhead in Sec. 11.10, for instance) the number R can have any
value depending on the problem (in Sec. 11.10 it is the radius of the drumhead); this is the reason for
introducing the arbitrary k near the beginning of the example; it gives us the flexibility needed in practice.

Problem Set 4.7. Page 238

1. Case 3 of Theorem 1. In this case the proof runs as follows. By assumption, r(a) = 0 and r(b) # 0. The
starting point of the proof is (8), as before. Since r(a) = 0, you see that (8) reduces to

r(B)yn(b)ym(b) — yu(B)ya(b)]
and you have to show that this is zero. Now from (2b) you have (we write L instead of /, to avoid
confusion with the number 1)

Lyn(b) + Lyya() = 0
Liym(b) + Lyya(b) = 0.

At least one of the two coefficients is different from zero, by assumption, say, L, = 0. Now multiply the
first equation by y,,(b) and the second by —y,(b) and add, obtaining

Ly[yn(8)ym(b) — yu(b)ya(b)] = 0.
Since L, is not zero, the expression in the brackets must be zero. But this expression is identical with that
in the brackets in the first line of (8), which we have written above. The second line of (8) is zero because
of the assumption r(a) = 0. Hence (8) is zero, and from (7) you obtain the relationship (9) to be proved.
(For L, # O the proof is similar. Supply the details; this will show you whether you really understand the
present proof.)

3. Sturm-Liouville problem. The given equation and boundary conditions do constitute a Sturm-Liouville
problem. The equation is of the form (1) with r = 1, g = 0, p = 1. The interval in which solutions are
sought is given by @ = 0 and b = 1 as its endpoints. In the boundary conditions, k; = 1,k, = 0,/, = 0,
I, = 1. You first have to find a general soluiion. In Prob. 3 it is

y = A cos kx + Bsin kx where k= J4. (A)

You obtain eigenvalues and functions by using the boundary conditions. The first condition gives
y(0) = A = 0. Differentiation of the remaining part of equation (A) gives

y'(x) = kB cos kx, hence y'(1) = kBcosk =0,
thus cos k = 0. This yields k = k, = (2n+ 1)n/2, where n = 0, 1,...; these are the positive values for
which the cosine is zero. You need not consider negative values of n because the cosine is even, so that

you would get the same eigenfunctions. The eigenvalues are 2 = A, = k2. The corresponding
eigenfunctions are

y(x) = y,(x) = sin (k,x) = sin ((2n + )7x/2).
The figure shows the first few eigenfunctions. All of them start at 0 and have a horizontal tangent at the
other end of the interval from O to 1. This is the geometric meaning of the boundary conditions. y, has no
zero in the interior of this interval. Its graph shown corresponds to 1/4 of the period of the cosine. y, has

one such zero (at 2/3), and its graph shown corresponds to 3/4 of that period. y; has two such zeros (at 0.4
and 0.8). y, has three, and so on.
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Section 4.7. Problem 3. First four eigenfunctions of the Sturm-Liouville problem

13. Change of x. Equate cr + & to the endpoints of the given interval and solve for ¢ to get the new interval on
which you can prove orthogonality.

Sec. 4.8 Orthogonal Eigenfunction Expansions

Example 2. Answers to the questions near the end. a3 P, is the next term. a;, = a4 = ... = 0 because sin nx
is odd. P;(x) resembles —sin mx more closely than any other term does; see Fig.101 in Sec. 4.3.

Problem Set 4.8. Page 246

1. Fourier-Legendre series. In Example 2 of the text we had to determine the coefficients by integration. In

the present case this would be possible, but the method of undetermined coefficients is much simpler. The
given function

f(x) = T0x* - 84x% + 30

is of degree 4, hence you need only Py, P,,...,P4. Since f is an even function, you actually need only
Po, Pz, P4. Write

f(x) = a4 Py(x) + a; Pa(x) + ag Po(x) = 70x* - 84x? + 30.

Begin by determining a, so that the x*-terms on both sides agree. Since P4(x) = +(35x* — 30x? + 3) (see
Sec. 4.3), you have the condition

a,(35/8) = 70, hence a4 = 70-8/35 = 16.
Calculate the remaining function
fi(x) = f(x) — 16P4(x) = 70x* — 84x2 + 30 — (16/8)(35x* — 30x? + 3)
= —84x?+30+60x2-6 = -24x2 + 24.

Now determine a, by the same process so that the x?-terms on both sides of the last equation agree. Using
P,(x) = (1/2)(3x% - 1), you obtain

a,(3/2) = 24, hence a, = -24.2/3 = -16.
Calculate the remaining function (a constant!)
f,(x) = fi(x) = (-16)Py(x) = —24x? + 24 — (-16/2)(3x* - 1) = 16.
Hence aq = 16 because Py(x) = 1. The answer is
f=16(Py—- P, + P,).

5. Fourier-Legendre series. The coefficients are given by (7) in the form
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X

a, = (m+l/2)'[il cos( - )P,,,(x)dx.

For m = 0 this gives a, = 2/ = 0.6366 by calculus. For even m you obtain by two successive

integrations by parts
- X _4 4dm(@m-1) ' X
I_lx cos( > )dx— 7T p I_Ix cos | — dx.

Thus for m = 2 this gives 4/n — (8/n2)(4/x), where 4/n (= 2a,) is the value of the integral of cos (7x/2)
just calculated. From this you further obtain

{
a, = %J-n cos (”—;—) —;—(3x2— 1)dx

s(.(4 32) 4
7(3(7 _ F) - ?) = ~0.687085,

and similarly for the further coefficients as given in the answer in Appendix 2 (which were calculated by a
CAS).



