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Preface

This book is intended to survey the most important algorithms in use on
computers today and to teach fundamental techniques to the growing number
of people who are interested in becoming serious computer users. It is ap-
propriate for use as a textbook for a second, third or fourth course in computer
science: after students have acquired some programming skills and familiarity
with computer systems, but before they have specialized courses in advanced
areas of computer science or computer applications. Additionally, the book
may be useful as a reference for those who aready have some familiarity with
the material, since it contains a number of computer implementations of useful
algorithms.

The book consists of forty chapters which are grouped into seven major
parts. mathematical algorithms, sorting, searching, string processing, geomet-
ric algorithms, graph algorithms and advanced topics. A major goa in the
development of this book has been to bring together the fundamental methods
from these diverse areas, in order to provide access to the best methods
that we know for solving problems by computer for as many people as pos-
sible. The treatment of sorting, searching and string processing (which may
not be covered in other courses) is somewhat more complete than the treat-
ment of mathematical algorithms (which may be covered in more depth in
applied mathematics or engineering courses), or geometric and graph algo-
rithms (which may be covered in more depth in advanced computer science
courses). Some of the chapters involve introductory treatment of advanced
material. It is hoped that the descriptions here can provide students with
some understanding of the basic properties of fundamental algorithms such
as the FFT or the simplex method, while at the same time preparing them
to better appreciate the methods when they learn them in advanced courses.

The orientation of the book is towards algorithms that are likely to be
of practical use. The emphasis is on teaching students the tools of their
trade to the point that they can confidently implement, run and debug useful
agorithms. Full implementations of the methods discussed (in an actua
progranming language) are included in the text, along with descriptions of
the operations of these programs on a consistent set of examples. Though not
emphasized, connections to theoretical computer science and the analysis of
algorithms are not ignored. When appropriate, analytic results are discussed
to illustrate why certain algorithms are preferred. When interesting, the
relationship of the practical algorithms being discussed to purely theoretical
results is described. More information of the orientation and coverage of the
material in the book may be found in the Introduction which follows.

One or two previous courses in computer science are recommended for
students to be able to appreciate the material in this book: one course in
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programming in a high-level language such as Pascal, and perhaps another
course which teaches fundamental concepts of programming systems. In short,
students should be conversant with a modern programming language and
have a comfortable understanding of the basic features of modern computer
systems. There is some mathematical material which requires knowledge of
calculus, but this is isolated within a few chapters and could be skipped.

There is a great deal of flexibility in the way that the materia in the
book can be taught. To a large extent, the individual chapters in the book
can each be read independently of the others. The material can be adapted
for use for various courses by selecting perhaps thirty of the forty chapters.
An elementary course on “data structures and algorithms’ might omit some
of the mathematical algorithms and some of the advanced graph algorithms
and other advanced topics, then emphasize the ways in which various data
structures are used in the implementation. An intermediate course on “design
and analysis of algorithms” might omit some of the more practically-oriented
sections, then emphasize the identification and study of the ways in which
good algorithms achieve good asymptotic performance. A course on “software
tools’ might omit the mathematical and advanced algorithmic material, then
emphasize means by which the implementations given here can be integrated
for use into large programs or systems. Some supplementary material might be
required for each of these examples to reflect their particular orientation (on
elementary data structures for “data structures and algorithms,” on math-
ematical analysis for “design and analysis of algorithms,” and on software
engineering techniques for “software tools’); in this book, the emphasis is on
the algorithms themselves.

At Brown University, we've used preliminary versions of this book in our
third course in computer science, which is prerequisite to all later courses.
Typically, about one-hundred students take the course, perhaps half of whom
are majors. Our experience has been that the breadth of coverage of material
in this book provides an “introduction to computer science” for our majors
which can later be expanded upon in later courses on analysis of algorithms,
systems programming and theoretical computer science, while at the same
time providing all the students with a large set of techniques that they can
immediately put to good use.

The programming language used throughout the book is Pascal. The
advantage of using Pascal is that it is widely available and widely known;
the disadvantage is that it lacks many features needed by sophisticated algo-
rithms. The programs are easily translatable to other modern programming
languages, since relatively few Pascal constructs are used. Some of the pro-
grams can be simplified by using more advanced language features (some not
available in Pascal), but this is true less often than one might think. A goal of
this book is to present the algorithms in as simple and direct form as possible.



The programs are not intended to be read by themselves, but as part of the
surrounding text. This style was chosen as an aternative, for example, to
having inline comments. Consistency in style is used whenever possible, so
that programs which are similar, look similar. There are 400 exercises, ten
following each chapter, which generaly divide into one of two types. Most
of the exercises are intended to test students' understanding of material in
the text, and ask students to work through an example or apply concepts
described in the text. A few of the exercises at the end of each chapter involve
implementing and putting together some of the algorithms, perhaps running
empirical studies to learn their properties.
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I ntroduction

The objective of this book is to study a broad variety of important and
useful algorithms: methods for solving problems which are suited for
computer implementation. We'll deal with many different areas of applica
tion, always trying to concentrate on “fundamental” algorithms which are
important to know and interesting to study. Because of the large number of
areas and algorithms to be covered, we won't have room to study many of
the methods in great depth. However, we will try to spend enough time on
each algorithm to understand its essential characteristics and to respect its
subtleties. In short, our goa is to learn a large number of the most impor-
tant algorithms used on computers today, well enough to be able to use and
appreciate them.

To learn an algorithm well, one must implement it. Accordingly, the
best strategy for understanding the programs presented in this book is to
implement and test them, experiment with variants, and try them out on
real problems. We will use the Pascal programming language to discuss and
implement most of the algorithms; since, however, we use a relatively small
subset of the language, our programs are easily translatable to most modern
programming languages.

Readers of this book are expected to have at least a year's experience
in programming in high- and low-level languages. Also, they should have
some familiarity with elementary agorithms on simple data structures such
as arrays, stacks, queues, and trees. (We'll review some of this material but
within the context of their use to solve particular problems.) Some elementary
acquaintance with machine organization and computer architecture is aso
assumed. A few of the applications areas that we'll deal with will require
knowledge of elementary calculus. We'll also be using some very basic material
involving linear algebra, geometry, and discrete mathematics, but previous
knowledge of these topics is not necessary.




4 INTRODUCTION

This book is divided into forty chapters which are organized into seven
major parts. The chapters are written so that they can be read independently,
to as great extent as possible. Generally, the first chapter of each part
gives the basic definitions and the “ground rules’ for the chapters in that
part; otherwise specific references make it clear when material from an earlier
chapter is required.

Algorithms

When one writes a computer program, one is generally implementing a method
of solving a problem which has been previously devised. This method is often
independent of the particular computer to be used: it's likely to be equally
appropriate for many computers. In any case, it is the method, not the
computer program itself, which must be studied to learn how the problem
is being attacked. The term algorithm is universally used in computer science
to describe problem-solving methods suitable for implementation as computer
programs. Algorithms are the “stuff” of computer science: they are central
objects of study in many, if not most, areas of the field.

Most algorithms of interest involve complicated methods of organizing
the data involved in the computation. Objects created in this way are called
data structures, and they are also central objects of study in computer science.
Thus agorithms and data structures go hand in hand: in this book we will
take the view that data structures exist as the byproducts or endproducts of
algorithms, and thus need to be studied in order to understand the algorithms.
Simple algorithms can give rise to complicated data structures and, conversely,
complicated algorithms can use simple data structures.

When a very large computer program is to be developed, a great deal
of effort must go into understanding and defining the problem to be solved,
managing its complexity, and decomposing it into smaller subtasks which can
be easily implemented. It is often true that many of the algorithms required
after the decomposition are trivial to implement. However, in most cases
there are a few algorithms the choice of which is critical since most of the
system resources will be spent running those algorithms. In this book, we will
study a variety of fundamental algorithms basic to large programs in many
applications areas.

The sharing of programs in computer systems is becoming more wide-
spread, so that while it is true that a serious computer user will use a large
fraction of the algorithms in this book, he may need to implement only a
somewhat smaller fraction of them. However, implementing simple versions
of basic algorithms helps us to understand them better and thus use advanced
versions more effectively in the future. Also, mechanisms for sharing software
on many computer systems often make it difficult to tailor standard programs



INTRODUCTION 5

to perform effectively on specific tasks, so that the opportunity to reimplement
basic algorithms frequently arises.

Computer programs are often overoptimized. It may be worthwhile to
take pains to ensure that an implementation is the most efficient possible only
if an algorithm is to be used for a very large task or is to be used many times.
In most situations, a careful, relatively simple implementation will suffice: the
programmer can have some confidence that it will work, and it is likely to
run only five or ten times slower than the best possible version, which means
that it may run for perhaps an extra fraction of a second. By contrast, the
proper choice of algorithm in the first place can make a difference of a factor
of a hundred or a thousand or more, which translates to minutes, hours, days
or more in running time. In this book, -we will concentrate on the simplest
reasonable implementations of the best algorithms.

Often severa different agorithms (or implementations) are available to
solve the same problem. The choice of the very best algorithm for a particular
task can be a very complicated process, often involving sophisticated mathe-
matical analysis. The branch of computer science where such questions are
studied is called analysis of agorithms. Many of the algorithms that we will
study have been shown to have very good performance through analysis, while
others are simply known to work well through experience. We will not dwell
on comparative performance issues: our goal is to learn some reasonable algo-
rithms for important tasks. But we will try to be aware of roughly how well
these algorithms might be expected to perform.

Outline of Topics

Below are brief descriptions of the mgjor parts of the book, which give some of
the specific topics covered as well as some indication of the general orientation
towards the material described. This set of topics is intended to allow us
to cover as many fundamental algorithms as possible. Some of the areas
covered are “core” computer science areas which we'll study in some depth
to learn basic algorithms of wide applicability. We'll also touch on other
disciplines and advanced fields of study within computer science (such as
numerical analysis, operations research, compiler construction, and the theory
of algorithms): in these cases our treatment will serve as an introduction to
these fields of study through examination of some basic methods.

MATHEMATICAL ALGORITHMS include fundamental methods from
arithmetic and numerical analysis. We study methods for addition and mul-
tiplication of integers, polynomials, and matrices as well as agorithms for
solving a variety of mathematical problems which arise in many contexts:
random number generation, solution of simultaneous equations, data fitting,
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and integration. The emphasis is on algorithmic aspects of the methods, not
the mathematical basis. Of course we can't do justice to advanced topics
with this kind of treatment, but the simple methods given here may serve to
introduce the reader to some advanced fields of study.

SORTING methods for rearranging files into order are covered in some
depth, due to their fundamental importance. A variety of methods are devel-
oped, described, and compared. Algorithms for several related problems are
treated, including priority queues, selection, and merging. Some of these
algorithms are used as the basis for other algorithms later in the book.

SEARCHING methods for finding things in files are also of fundamental
importance. We discuss basic and advanced methods for searching using trees
and digital key transformations, including binary search trees, balanced trees,
hashing, digital search trees and tries, and methods appropriate for very large
files. These methods are related to each other and similarities to sorting
methods are discussed.

STRING PROCESSING algorithms include a range of methods for deal-
ing with (long) sequences of characters. String searching leads to pattern
matching which leads to parsing. File compression techniques and cryptol-
ogy are also considered. Again, an introduction to advanced topics is given
through treatment of some elementary problems which are important in their
own right.

GEOMETRIC ALGORITHMS comprise a collection of methods for solv-
ing problems involving points and lines (and other simple geometric objects)
which have only recently come into use. We consider algorithms for finding
the convex hull of a set of points, for finding intersections among geometric
objects, for solving closest point problems, and for multidimensional search-
ing. Many of these methods nicely complement more elementary sorting and
searching methods.

GRAPH ALGORITHMS are useful for a variety of difficult and impor-
tant problems. A general strategy for searching in graphs is developed and
applied to fundamental connectivity problems, including shortest-path, min-
ima spanning tree, network flow, and matching. Again, this is merely an
introduction to quite an advanced field of study, but several useful and inter-
esting algorithms are considered.

ADVANCED TOPICS are discussed for the purpose of relating the materi-
a in the book to several other advanced fields of study. Special-purpose hard-
ware, dynamic programming, linear programming, exhaustive search, and NP-
completeness are surveyed from an elementary viewpoint to give the reader
some appreciation for the interesting advanced fields of study that are sug-
gested by the elementary problems confronted in this book.
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The study of algorithms is interesting because it is a new field (almost
al of the algorithms we will study are less than twenty-five years old) with
a rich tradition (a few algorithms have been known for thousands of years).
New discoveries are constantly being made, and few algorithms are completely
understood. In this book we will consider intricate, complicated, and difficult
algorithms as well as elegant, simple, and easy algorithms. Our challenge is
to understand the former and appreciate the latter in the context of many
different potential application areas. In doing so, we will explore a variety of
useful tools and develop a way of “agorithmic thinking” that will serve us
well in computational challenges to come. ’_’






1. Preview

To introduce the general approach that we'll be taking to studying
algorithms, we'll examine a classic elementary problem: “Reduce a given
fraction to lowest terms.” We want to write 2/3, not 4/6, 200/300, or 178468/
267702. Solving this problem is equivalent to finding the greatest common
divisor (gcd) of the numerator and the denominator: the largest integer which
divides them both. A fraction is reduced to lowest terms by dividing both
numerator and denominator by their greatest common divisor.

Pascal

A concise description of the Pascal language is given in the Wirth and Jensen
Pascal User Manual and Report that serves as the definition for the language.
Our purpose here is not to repeat information from that book but rather to
examine the implementation of a few simple algorithms which illustrate some
of the basic features of the language and. the style that we'll be using.

Pascal has a rigorous high-level syntax which allows easy identification of
the main features of the program. The variables (var) and functions (function)
used by the program are declared first, followed by the body of the program.
(Other major program parts, not used in the program below which are declared
before the program body are constants and types.) Functions have the same
format as the main program except that they return a value, which is set by
assigning something to the function name within the body of the function.
(Functions that return no value are called procedures.)

The built-in function readln reads a. line from the input and assigns the
values found to the variables given as arguments; writeln is similar. A standard
built-in predicate, eof, is set to true when there is no more input. (Input and
output within a line are possible with read, write, and eoln.) The declaration
of input and output in the program statement indicates that the program is
using the “standard” input and output streams.
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To begin, we'll consider a Pascal program which is essentially a transla-
tion of the definition of the concept of the greatest common divisor into a
programming language.

program example(input, output);
var X, y: integer;
function ged( u, v: integer) : integer;
var t: integer;
begin
if u<v then t:=u else t:=v;
while (u mod t<>0) or (vmod t<>0) do t:=t—1;
ged:=t
end ;
begin
while not eof do
begin
readin (x,y) ;
writeln(x, y, ged(abs(x), abs(y)));
end
end.

The body of the program above is trivial: it reads two numbers from the
input, then writes them and their greatest common divisor on the output.
The gcd function implements a “brute-force” method: start at the smaller of
the two inputs and test every integer (decreasing by one until 1 is reached)
until an integer is found that divides both of the inputs. The built-in function
abs is used to ensure that gcd is called with positive arguments. (The mod
function is used to test whether two numbers divide: y mod v is the remainder
when y is divided by v, so a result of O indicates that v divides u.)

Many other similar examples are given in the Pascal User Manual and
Report. The reader is encouraged to scan the manual, implement and test
some simple programs and then read the manual carefully to become reason-
ably comfortable with most of the features of Pascal.

Euclid’s Algorithm

A much more efficient method for finding the greatest common divisor than
that above was discovered by Euclid over two thousand years ago. Euclid's
method is based on the fact that if 4 is greater than v then the greatest
common divisor of ¢ and v is the same as the greatest common divisor of v
and u - v. Applying this rule successively, we can continue to subtract off
multiples of v from u until we get a number less than v. But this number is
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exactly the same as the remainder left after dividing u by v, which is what
the mod function computes: the greatest common divisor of v and v is the
same as the greatest common divisor of v and ¥ mod v. If ¥ mod v is O, then v
divides u exactly and is itself their greatest common divisor, so we are done.

This mathematical description explains how to compute the greatest
common divisor of two numbers by computing the greatest common divisor
of two smaller numbers. We can implement this method directly in Pascal
simply by having the gcd function call itself with smaller arguments:

function ged( u, v:integer) : integer;
begin
if v=0 then gecd:= u
else ged:=ged(v, u mad V)
end;

(Note that if u is less than v, then u mod v is just u, and the recursive call
just exchanges u and v so things work as described the next time around.)
If the two inputs are 461952 and 116298, then the following table shows the
values of u and v each time gcd is invoked:

(461952, 116298)
(116298,113058)
(113058, 3240)
(3240, 2898)
(2898,342)
(342,162)
(162,18)
(18,0)

It turns out that this algorithm always uses a relatively small number of
steps: we'll discuss that fact in some more detail below.

Recursion

A fundamental technique in the design of efficient algorithms is recursion:
solving a problem by solving smaller versions of the same problem, as in the
program above. We'll see this general approach used throughout this book,
and we will encounter recursion many tirnes. It is important, therefore, for us
to take a close look at the features of the above elementary recursive program.

An essential feature is that a recursive program must have a termination
condition. It can't aways call itself, there must be some way for it to do
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something else. This seems an obvious point when stated, but it's probably
the most common mistake in recursive programming. For similar reasons, one
shouldn’t make a recursive call for a larger problem, since that might lead to
a loop in which the program attempts to solve larger and larger problems.
Not al programming environments support a general-purpose recursion
facility because of intrinsic difficulties involved. Furthermore, when recursion
is provided and used, it can be a source of unacceptable inefficiency. For these
reasons, we often consider ways of removing recursion. This is quite easy to
do when there is only one recursive call involved, as in the function above. We
simply replace the recursive call with a goto to the beginning, after inserting
some assignment statements to reset the values of the parameters as directed
by the recursive call. After cleaning up the program left by these mechanical
transformations, we have the following implementation of Euclid’'s algorithm:

function ged(u, v:integer):integer;
var t: integer;
begin
while v<>0 do
begin t:= u mod v; u:=v; v:=t end,
gcd:=u
end ;

Recursion removal is much more complicated when there is more than
one recursive call. The algorithm produced is sometimes not recognizable, and
indeed is very often useful as a different way of looking at a fundamental al-
gorithm. Removing recursion almost always gives a more efficient implemen-
tation. We'll see many examples of this later on in the book.

Analysis of Algorithms

In this short chapter we've already seen three different algorithms for the same
problem; for most problems there are many different available algorithms.
How is one to choose the best implementation from all those available?

This is actually a well developed area of study in computer science.
Frequently, we'll have occasion to call on research results describing the per-
formance of fundamental algorithms. However, comparing algorithms can be
challenging indeed, and certain general guidelines will be useful.

Usually the problems that we solve have a natural “size” (usually the
amount of data to be processed; in the above example the magnitude of
the numbers) which we'll normally cal N. We would like to know the
resources used (most often the amount of time taken) as a function of N.
WEe're interested in the average case, the amount of time a program might be
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expected to take on “typical” input data, and in the worst case, the amount
of time a program would take on the worst possible input configuration.

Many of the algorithms in this book are very well understood, to the point
that accurate mathematical formulas are known for the average- and worst-
case running time. Such formulas are developed first by carefully studying
the program, to find the running time in terms of fundamental mathematical
quantities and then doing a mathematical analysis of the quantities involved.

For some algorithms, it is easy to figure out the running time. For ex-
ample, the brute-force algorithm above obviously requires min(u, v)—ged(u, v)
iterations of the while loop, and this quantity dominates the running time if
the inputs are not small, since all the other statements are executed either
0 or 1 times. For other algorithms, a substantial amount of analysis is in-
volved. For example, the running time of the recursive Euclidean agorithm
obviously depends on the “overhead” required for each recursive call (which
can be determined only through detailedl knowledge of the programming en-
vironment being used) as well as the number of such calls made (which can
be determined only through extremely sophisticated mathematical analysis).

Several important factors go into this analysis which are somewhat out-
side a given programmer's domain of influence. First, Pascal programs are
translated into machine code for a given computer, and it can be a challenging
task to figure out exactly how long even one Pascal statement might take to
execute (especialy in an environment where resources are being shared, so
that even the same program could have varying performance characteristics).
Second, many programs are extremely sensitive to their input data, and per-
formance might fluctuate wildly depending on the input. The average case
might be a mathematical fiction that is not representative of the actual data
on which the program is being used, and the worst case might be a bizarre
construction that would never occur in practice. Third, many programs of
interest are not well understood, and specific mathematical results may not
be available. Finally, it is often the case that programs are not comparable at
al: one runs much more efficiently on one particular kind of input, the other
runs efficiently under other circumstances.

With these caveats in mind, we'll use rough estimates for the running
time of our programs for purposes of classification, secure in the knowledge
that a fuller analysis can be done for important programs when necessary.
Such rough estimates are quite often easy to obtain via the old programming
saw “90% of the time is spent in 10% of the code.” (This has been quoted in
the past for many different values of “90%.”)

The first step in getting a rough estimate of the running time of a program
is to identify the inner loop. Which instructions in the program are executed
most often? Generally, it is only a few instructions, nested deep within the
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control structure of a program, that absorb all of the machine cycles. It is
always worthwhile for the programmer to be aware of the inner loop, just to
be sure that unnecessary expensive instructions are not put there.

Second, some analysis is necessary to estimate how many times the inner
loop is iterated. It would be beyond the scope of this book to describe the
mathematical mechanisms which are used in such analyses, but fortunately
the running times many programs fall into one of a few distinct classes. When
possible, we'll give a rough description of the analysis of the programs, but it
will often be necessary merely to refer to the literature. (Specific references
are given at the end of each major section of the book.) For example, the
results of a sophisticated mathematical argument show that the number of
recursive steps in Euclid’s algorithm when y is chosen at random less than v is
approximately (12 In 2)/7%) 1n v. Often, the results of a mathematical analysis
are not exact, but approximate in a precise technical sense: the result might
be an expression consisting of a sequence of decreasing terms. Just as we are
most concerned with the inner loop of a program, we are most concerned with
the leading term (the largest term) of a mathematical expression.

As mentioned above, most agorithms have a primary parameter N,
usually the number of data items to be processed, which affects the running
time most significantly. The parameter N might be the degree of a polyno-
mial, the size of a file to be sorted or searched, the number of nodes in a
graph, etc. Virtually al of the agorithms in this book have running time
proportional to one of the following functions:

1 Most instructions of most programs are executed once or at most
only a few times. If al the instructions of a program have this
property, we say that its running time is constant. This is obviously
the situation to strive for in algorithm design.

logN  When the running time of a program is logarithmic, the program
gets slightly slower as N grows.This running time commonly occurs
in programs which solve a big problem by transforming it into a
smaller problem by cutting the size by some constant fraction. For
our range of interest, the running time can be considered to be less
than a “large” constant. The base of the logarithm changes the
constant, but not by much: when N is a thousand, log N is 3 if the
base is 10, 10 if the base is 2; when N is a million, log N is twice
as great. Whenever N doubles, log N increases by a constant, but
log N doesn’t double until N increases to N2.

N When the running time of a program is linear, it generaly is the case
that a small amount of processing is done on each input element.
When N is a million, then so is the running time. Whenever N
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doubles, then so does the running time. This is the optimal situation
for an algorithm that must process N inputs (or produce N outputs).

Nlog N This running time arises in algorithms which solve a problem by
breaking it up into smaller subproblems, solving them independently,
and then combining the solutions. For lack of a better adjective
(linearithmic?), we'll say that the running time of such an algorithm
is“N log N.”  When N is a million, N log N is perhaps twenty
million. When N doubles, the running time more than doubles (but
not much more).

N? When the running time of an algorithm is quadratic, it is practical
for use only on relatively small problems. Quadratic running times
typically arise in algorithms which process al pairs of data items
(perhaps in a double nested loop). When N is a thousand, the
running time is a million. Whenever N doubles, the running time
increases fourfold.

N3 Similarly, an algorithm which processes triples of data items (perhaps
in a triple-nested loop) has a cubic running time and is practical for
use only on small problems. When N is a hundred, the running
time is a million. Whenever N doubles, the running time increases
eightfold.

2N Few algorithms with exponential running time are likely to be ap-
propriate for practical use, though such algorithms arise naturaly as
“brute-force” solutions to problems. When N is twenty, the running
time is a million. Whenever N doubles, the running time squares!

The running time of a particular program is likely to be some constant
times one of these terms (the “leading term”) plus some smaller terms. The
values of the constant coefficient and the terms included depends on the results
of the analysis and on implementation details. Roughly, the coefficient of the
leading term has to do with the number of instructions in the inner loop:
a any level of algorithm design it's prudent to limit the number of such
instructions. For large N the effect of the leading term dominates; for small
N or for carefully engineered algorithms, more terms may contribute and
comparisions of algorithms are more difficult. In most cases, we'll simply refer
to the running time of programs as “linear,” “N log N, " “cubic,” €tc., with
the implicit understanding that more detailed analysis or empirical studies
must be done in cases where efficiency is very important.

A few other functions do arise. For example, an algorithm with N2
inputs that has a running time that is cubic in N is more properly classed
as an N3/2 agorithm. Also some algorithms have two stages of subproblem
decomposition, which leads to a running time proportional to N(log N)2. Both
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of these functions should be considered to be much closer to N log N than to
N2 for large N.

One further note on the “log” function. As mentioned above, the base
of the logarithm changes things only by a constant factor. Since we usualy
deal with analytic results only to within a constant factor, it doesn't matter
much what the base is, so we refer to “logN,” etc. On the other hand,
it is sometimes the case that concepts can be explained more clearly when
some specific base is used. In mathematics, the natural logarithm (base e =
2.718281828.. .) arises so frequently that a special abbreviation is commonly
used: log, N =In N. In computer science, the binary logarithm (base 2) arises
so frequently that the abbreviation log, N = Ig N is commonly used. For
example, Ig N rounded up to the nearest integer is the number of bits required
to represent N in binary.

Implementing Algorithms

The agorithms that we will discuss in this book are quite well understood,
but for the most part we'll avoid excessively detailed comparisons. Our goal
will be to try to identify those algorithms which are likely to perform best for
a given type of input in a given application.

The most common mistake made in the selection of an agorithm is to
ignore performance characteristics. Faster algorithms are often more compli-
cated, and implementors are often willing to accept a slower agorithm to
avoid having to deal with added complexity. But it is often the case that
a faster agorithm is really not much more complicated, and dealing with
slight added complexity is a small price to pay to avoid dealing with a slow
algorithm. Users of a surprising number of computer systems lose substantial
time waiting for simple quadratic algorithms to finish when only dlightly more
complicated N log N algorithms are available which could run in a fraction
the time.

The second most common mistake made in the selection of an algorithm
is to pay too much attention to performance characteristics. An N log N
agorithm might be only slightly more complicated than a quadratic algorithm
for the same problem, but a better N log N algorithm might give rise to a
substantial increase in complexity (and might actually be faster only for very
large values of N). Also, many programs are realy run only a few times:
the time required to implement and debug an optimized algorithm might be
substantially more than the time required simply to run a slightly slower one.

The programs in this book use only basic features of Pascal, rather than
taking advantage of more advanced capabilities that are available in Pascal
and other programming environments. Our purpose is to study algorithms,
not systems programming nor advanced features of programming languages.
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It is hoped that the essential features of the algorithms are best exposed
through simple direct implementations in a near-universal language. For the
same reason, the programming style is somewhat terse, using short variable
names and few comments, so that the control structures stand out. The
“documentation” of the algorithms is the accompanying text. It is expected
that readers who use these programs in actual applications will flesh them out

somewhat in adapting them for a particular use.
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Exercises

1

10.

Solve our initial problem by writing a Pascal program to reduce a given
fraction z/y to lowest terms.

Check what values your Pascal system computes for u mod v when u and
v are not necessarily positive. Which versions of the gcd work properly
when one or both of the arugments are O?

Would our original gcd program ever be faster than the nonrecursive
version of Euclid's algorithm?

Give the values of u and v each time the recursive gcd is invoked after
the initial call ged(12345,56789).

Exactly how many Pascal statements are executed in each of the three
gcd implementations for the call in the previous exercise?

Would it be more efficient to test for u>v in the recursive implementation
of Euclid's agorithm?

Write a recursive program to compute the largest integer less than log, N
based on the fact that the value of this function for N div 2 is one greater
than for N if N > 1.

Write an iterative program for the problem in the previous exercise. Also,
write a program that does the computation using Pascal library sub-
routines. If possible on your computer system, compare the performance
of these three programs.

Write a program to compute the greatest common divisor of three integers
u, v, and w.

For what values of N is 10N1gN > 2N?? (Thus a quadratic algorithm
is not necessarily slower than an Nlog N one.)
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SOURCES for background material

A reader interested in learning more about Pascal will find a large number
of introductory textbooks available, for example, the ones by Clancy and
Cooper or Holt and Hune. Someone with experience programming in other
languages can learn Pascal effectively directly from the manual by Wirth and
Jensen. Of course, the most important thing to do to learn about the language
is to implement and debug as many programs as possible.

Many introductory Pascal textbooks contain some material on data struc-
tures. Though it doesn't use Pascal, an important reference for further infor-
mation on basic data structures is volume one of D.E. Knuth’'s series on The
Art of Computer Programming. Not only does this book provide encyclopedic
coverage, but also it and later books in the series are primary references for
much of the material that we'll be covering in this book. For example, anyone
interested in learning more about Euclid's algorithm will find about fifty pages
devoted to it in Knuth’s volume two.

Another reason to study Knuth's volume one is that it covers in detail
the mathematical techniques needed for the analysis of algorithms. A reader
with little mathematical background should be warned that a substantial
amount of discrete mathematics is required to properly analyze many algo-
rithms, a mathematically inclined reader will find much of this materia ably
summarized in Knuth's first book and applied to many of the methods we'll
be studying in later books.

M. Clancy and D. Cooper, Oh! Pascal, W. W. Norton & Company, New York,
1982.

R. Holt and J. P.Hume, Programming Standard Pascal, Reston (Prentice-Hall),
Reston, Virginia, 1980.

D. E. Knuth, The Art of Computer Programming. Volume 1: Fundamental
Algorithms, Addison-Wesley, Reading, MA, 1968.

D. E. Knuth, The Art of Computer Programming. Volume 2: Seminumerical
Algorithms, Addison-Wesley, Reading, MA, Second edition, 1981.

K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-Verlag,
New York, 1974.






MATHEMATICAL ALGORITHMS







2. Arithmetic

Algorithms for doing elementary arithmetic operations such as addition,
multiplication, and division have a. very long history, dating back to
the origins of algorithm studies in the work of the Arabic mathematician
al-Khowdrizmi, with roots going even further back to the Greeks and the
Babylonians.

Though the situation is beginning to change, the raison d’étre of many
computer systems is their capability for doing fast, accurate numerical cal-
culations. Computers have built-in capabilities to perform arithmetic on in-
tegers and floating-point representations of real numbers; for example, Pascal
allows numbers to be of type integer or real, with all of the normal arithmetic
operations defined on both types. Algorithms come into play when the opera-
tions must be performed on more complicated mathematical objects, such as
polynomials or matrices.

In this section, we'll look at Pascal implementations of some simple
algorithms for addition and multiplication of polynomials and matrices. The
algorithms themselves are well-known and straightforward; we'll be examining
sophisticated algorithms for these problems in Chapter 4. Our main purpose
in this section is to get used to treating these mathematical objects as objects
for manipulation by Pascal programs. This translation from abstract data to
something which can be processed by a computer is fundamental in algorithm
design. We'll see many examples throughout this book in which a proper
representation can lead to an efficient algorithm and vice versa In this
chapter, we'll use two fundamental ways of structuring data, the array and
the linked list. These data structures are used by many of the algorithms in
this book; in later sections we'll study some more advanced data structures.

Polynomials

Suppose that we wish to write a program that adds two polynomials: we would
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like it to perform calculations like
(142x=32%)+(2x)=3+x 3z°
In general, suppose we wish our program to be able to compute r(z) = p(x) +

g(x), where p and ¢ are polynomials with N coefficients. The following
program is a straightforward implementation of polynomia addition:

program polyadd(input, output);
const maxN=100;
var p, q, r:array [ 0..maxN]of real;

N, i integer;
begin
readln (N);

for i:=O to N-I do read(p[i});
for i:=O to N- do read(q[i]);
for =0 to N-J do r[i] :=pli]+q][i];
for i:=O to N-I do write(r[i]);
wri teln
end.

In this program, the polynomial p(z) = po + p1z + +++ + py—1z™¥ s

represented by the array p[0..N—1]with p [j]= p;, etc. A polynomial of degree
N-I is defined by N coefficients. The input is assumed to be N, followed by
the p coefficients, followed by the q coefficients. In Pascal, we must decide
ahead of time how large N might get; this program will handle polynomials
up to degree 100. Obviously, maxN should be set to the maximum degree
anticipated. This is inconvenient if the program is to be used at different
times for various sizes from a wide range: many programming environments
allow “dynamic arrays’ which, in this case, could be set to the size N. We'll
see another technique for handling this situation below.

The program above shows that addition is quite trivial once this repre-
sentation for polynomials has been chosen; other operations are also easily
coded. For example, to multiply we can replace the third for loop by

for i:=Oto 2«x(N—1) do rli] :=0;
for i:=O to N-I do
for _i:=0 to N-I do
rli+jl:=rli+jl+plil*q[];
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Also, the declaration of r has to be suitably changed to accomodate twice as
many coefficients for the product. Each of the N coefficients of p is multiplied
by each of the N coefficients of g, so this is clearly a quadratic algorithm.

An advantage of representing a polynomial by an array containing its
coefficients is that it's easy to reference any coefficient directly; a disadvantage
is that space may have to be saved for more numbers than necessary. For
example, the program above couldn't reasonably be used to multiply

(1 + xlOOOO)(l + 2:1:10000) =14 31;10000 + 21200007

even though the input involves only four coefficients and the output only three.

An alternate way to represent a polynomial is to use a linked list. This
involves storing items in noncontiguous memory locations, with each item
containing the address of the next. The Pascal mechanisms for linked lists are
somewhat more complicated than for arrays. For example, the following pro-
gram computes the sum of two polynomials using a linked list representation
(the bodies of the readlist and add functions and the writelist procedure are
given in the text following):

program polyadd(input, output);
type link . = tnode;
node = record c: red; next: link end ;

var N: integer; a link;
function readlist(N: integer) : link;
procedure writelist(r: link);
function add(p, o link) : link;
begin

readln(N); new(z);

writelist{add(readlist(N), readlist(N)))
end.

The polynomials are represented by linked lists which are built by the
readlist procedure. The format of these is described in the type statement:
the lists are made up of nodes, each node containing a coefficient and a link
to the next node on the list. If we have a link to the first node on a list, then
we can examine the coefficients in order, by following links. The last node
on each list contains a link to a special dummy node called a if we reach z
when scanning through a list, we know we're at the end. (It is possible to get
by without such dummy nodes, but they do make certain manipulations on
the lists somewhat simpler.) The type statement only describes the formats
of the nodes; nodes can be created only when the builtin procedure new is
called. For example, the call new(z) creates a new node, putting a pointer to
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it in a. (The other nodes on the lists processed by this program are created
in the readlist and add routines.)

The procedure to write out what’s on a list is the simplest. It simply
steps through the list, writing out the value of the coefficient in each node
encountered, until z is found:

procedure writelist(r: 1ink);
begin
while r<>z do
begin write(rf.c); r:=rt.next end,
wri teln
end;

The output of this program will be indistinguishable from that of the
program above which uses the simple array representation.

Building a list involves first caling new to create a node, then filling in
the coefficient, and then linking the node to the end of the partia list built so
far. The following function reads in N coefficients, assuming the same format
as before, and constructs the linked list which represents the corresponding
polynomia:

function readlist (N: integer) : link;
var i: integer; t: link;
begin
t:=z,
for i:=O to N-l do
begin new(tt.next); t:=tt.next; read(tt.c) end;
t1.next:=z; readlist:=z1.next; z1.next:=z
end;

The dummy node z is used here to hold the link which points to the first node
on the list while the list is being constructed. After this list is built, z is set
to link to itself. This ensures that once we reach the end of a list, we stay
there. Another convention which is sometimes convenient, would be to leave z
pointing to the beginning, to provide a way to get from the back to the front.

Finally, the program which adds two polynomials constructs a new list
in a manner similar to readlist, calculating the coefficients for the result
by stepping through the argument lists and adding together corresponding
coefficients:
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function add(p, g: link): link;
var ¢ : link ;
begin
t:=z;
repeat
new(t?.next); t:=t1.next;
tT.c:=pt.c+qf.c;
p:=pl.next; q:=ql.next
until (p=z) and (g=z);
tt.next:=z; add:=z1.next
end ;

Employing linked lists in this way, we use only as many nodes as are
required by our program. As N gets larger, we simply make more calls on new.
By itself, this might not be reason enough. to use linked lists for this program,
because it does seem quite clumsy compared to the array implementation
above. For example, it uses twice as much space, since a link must be stored
along with each coefficient. However, as suggested by the example above, we
can take advantage of the possibility that many of the coefficients may be zero.
We can have list nodes represent only the nonzero terms of the polynomia by
also including the degree of the term represented within the list node, so that
each list node contains values of ¢ and j to represent cz’. It is then convenient
to separate out the function of creating a node and adding it to a list, as
follows:

type link = Tnode;
node = record c: real; j: integer; next: link end;

function listadd(t: link; c: real; j: integer): link;

begin

new(t].next); t:=t1.next;

tT.c:=c; t1.j:=j;

listadd:=t;

end ;

The listadd function creates a new node, gives it the specified fields, and links
it into a list after node t. Now the readlist routine can be changed either to
accept the same input format as above (a:nd create list nodes only for nonzero
coefficients) or to input the coefficient and exponent directly for terms with
nonzero coefficient. Of course, the writelist function also has to be changed
suitably. To make it possible to process the polynomials in an organized
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way, the list nodes might be kept in increasing order of degree of the term
represented.

Now the add function becomes more interesting, since it has to perform
an addition only for terms whose degrees match, and then make sure that no
term with coefficient O is output:

function add(p, g: link): link;

begin
t:=2; 2z1.j:=N+1;
repeat
it (ptJ=q1.j) and (p1.c+qt.c<>0.0) then
begin

t:=listadd(t, pt.c+qt.c, pt.j);
p:=pt.next; q:=qf.next
end
else if pt.j<qf.j then
begin t:=listadd(t, pt.c, p1.j); p:=pt.next end
else if gf.j<pt.j then
begin t:=listadd(t, qf.c, q1.j); ¢:=qt.next end,
until (p=z) and (q=z);
t1.next:=z; add:=zl.next
end;

These complications are worthwhile for processing “sparse” polynomials
with many zero coefficients, but the array representation is better if there are
only a few terms with zero coefficients. Similar savings are available for other
operations on polynomials, for example multiplication.

Matrices

We can proceed in a similar manner to implement basic operations on two-
dimensional matrices, though the programs become more complicated. Sup-
pose that we want to compute the sum of the two matrices

| Lt R & O —dh
R T 2}[ 4+ 11 0}
A L U B SN B B I P

This is term-by-term addition, just as for polynomials, so the addition pro-
gram is a straightforward extension of our program for polynomials:



ARITHMETIC 29

program matrixadd(input, output);
const maxN=10;
var p, q, I: array [0..maxN, O.maxN] of real;

N, i, j: integer;
begin
readln (N) ;

for i:=O to N-l do for j;=O to N-I do read(p[i, j]);
for i:=O to N-I do for j:=O to N-lI do read(q[i, j]);
for i:=O to N-l dofor :=O to NI do rli, jl:=pli, jl+qli, il
for i:=O to N-I do for j:=O to N do
if j=N then writeln else write(r([i, j);
end.

Matrix multiplication is a more complicated operation. For our example,
e T v
S T S - S T LU R
{ L - =idd 1o 1}= 11 1 -0
L I L [ R ¥ I .
Element rlj, j] is the dot product of the ith row of p with the jth column
of g. The dot product is simply the sum of the N term-by-term multiplica-
tions pli, 1]*q(1, j]+pli, 2]*q[2, j]+-- p[i, N—1]*q[N—1, j] as in the following
program:

for i:=O to h-1 do
for j:=O to N-I do

begin

t:=0.0;

for k:=0 to N-l do t:=t+pli, k]*qlk, jl;
rli,jl=t

end ;

Each of the N2 elements in the result matrix is computed with N mul-
tiplications, so about N3 operations are required to multiply two N by N
matrices together. (As noted in the previous chapter, this is not realy a cubic
algorithm, since the number of data items in this case is about N2, not N.)

As with polynomials, sparse matrices (those with many zero elements) can
be processed in a much more efficient manner using a linked list representation.
To keep the two-dimensional structure intact, each nonzero matrix eement
is represented by a list node containing a value and two links: one pointing
to the next nonzero element in the same row and the other pointing to the
next nonzero element in the same column. Implementing addition for sparse
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matrices represented in this way is similar to our implementation for sparse
polynomials, but is complicated by the fact that each node appears on two
lists.

Data Structures

Even if there are no terms with zero coefficients in a polynomia or no zero

elements in a matrix, an advantage of the linked list representation is that we
don’t need to know in advance how big the objects that we'll be processing
are. This is a significant advantage that makes linked structures preferable
in many situations. On the other hand, the links themselves can consume a
significant part of the available space, a disadvantage in some situations. Also,
access to individual elements in linked structures is much more restricted than
in arrays.

We'll see examples of the use of these data structures in various algo-
rithms, and we'll see more complicated data structures that involve more
constraints on the elements in an array or more pointers in a linked repre-
sentation. For example, multidimensional arrays can be defined which use
multiple indices to access individual items. Similarly, we'll encounter many
“multidimensional” linked structures with more than one pointer per node.
The tradeoffs between competing structures are usualy complicated, and
different structures turn out to be appropriate for different situations.

When possible it is wise to think of the data and the specific operations
to be performed on it as an abstract data structure which can be realized in
several ways. For example, the abstract data structure for polynomials in the
examples above is the set of coefficients: a user providing input to one of the
programs above need not know whether a linked list or an array is being used.
Modern programming systems have sophisticated mechanisms which make
it possible to change representations easily, even in large, tightly integrated
systems.
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Exercises

1

10.

Another way to represent polynomials is to write them in the form ro(z—
r)(z = r2) ... (z = rn). How would you multiply two polynomials in this
representation?

How would you add two polynomials represented as in Exercise 17

Write a Pascal program that multiplies two polynomials, using a linked
list representation with a list node for each term.

Write a Pascal program that multiplies sparse polynomials, using a linked
list representation with no nodes for terms with O coefficients.

Write a Pascal function that returns the value of the element in the ith

row and jth column of a sparse matrix, assuming that the matrix is
represented using a linked list representation with no nodes for O entries.

Write a Pascal procedure that sets the value of the element in the ith
row and jth column of a sparse matrix to v, assuming that the matrix is
represented using a linked list representation with no nodes for O entries.

What is the running time of matrix multiplication in terms of the number
of data items?

Does the running time of the polynornial addition programs for nonsparse
input depend on the value of any of the coefficients?

Run an experiment to determine which of the polynomial addition pro
grams runs fastest on your computer system, for relatively large N.

Give a counterexample to the assertion that the user of an abstract data
structure need not know what representation is being used.






3. Random Numbers

Our next set of agorithms will be methods for using a computer to
generate random numbers. We will find many uses for random numbers
later on; let’s begin by trying to get a better idea of exactly what they are.

Often, in conversation, people use the term random when they really
mean arbitrary. When one asks for an arbitrary number, one is saying that
one doesn't really care what number one gets. aimost any number will do.
By contrast, a random number is a precisely defined mathematical concept:
every number should be equally likely to occur. A random number will satisfy
someone who needs an arbitrary number, but not the other way around.

For “every number to be equally likely to occur” to make sense, we must
restrict the numbers to be used to some finite domain. You can't have a
random integer, only a random integer in some range; you can’'t have a random
real number, only a random fraction in some range to some fixed precision.

It is almost always the case that not just one random number, but a
sequence of random numbers is needed (otherwise an arbitrary number might
do). Here's where the mathematics comes in: it's possible to prove many facts
about properties of sequences of random numbers. For example, we can expect
to see each value about the same number of times in a very long seguence
of random numbers from a small domain. Random sequences model many
natural situations, and a great deal is known about their properties. To be
consistent with current usage, we'll refer to numbers from random sequences
as random numbers.

There’s no way to produce true random numbers on a computer (or any
deterministic device). Once the program is written, the numbers that it will
produce can be deduced, so how could they be random? The best we can hope
to do is to write programs which produce sequences of numbers having many of
the same properties as random numbers. Such numbers are commonly called
pseudo-random numbers: they’re not really random, but they can be useful
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as approximations to random numbers, in much the same way that floating-
point numbers are useful as approximations to real numbers. (Sometimes it's
convenient to make a further distinction: in some situations, a few properties
of random numbers are of crucia interest while others are irrelevant. In
such situations, one can generate quasi-random numbers, which are sure to
have the properties of interest but are unlikely to have other properties of
random numbers. For some applications, quasi-random numbers are provably
preferable to pseudo-random numbers.)

It's easy to see that approximating the property “each number is equally
likely to occur” in along seguence is not enough. For example, each number in
the range (1,100] appears once in the sequence (1,2,. . .,100), but that sequence
is unlikely to be useful as an approximation to a random sequence. In fact,
in a random sequence of length 100 of numbers in the range [1,100], it is
likely that a few numbers will appear more than once and a few will not
appear at al. If this doesn’'t happen in a sequence of pseudo-random numbers,
then there is something wrong with the random number generator. Many
sophisticated tests based on specific observations like this have been devised
for random number generators, testing whether a long sequence of pseudo
random numbers has some property that random numbers would. The random
number generators that we will study do very well in such tests.

We have been (and will be) talking exclusively about uniform random
numbers, with each value equally likely. It is also common to deal with random
numbers which obey some other distribution in which some values are more
likely than others. Pseudo-random numbers with non-uniform distributions
are usualy obtained by performing some operations on uniformly distributed
ones. Most of the applications that we will be studying use uniform random
numbers.

Applications

Later in the book we will meet many applications in which random numbers
will be useful. A few of them are outlined here. One obvious application is in
cryptography, where the major goal is to encode a message so that it can’t be
read by anyone but the intended recipient. As we will see in Chapter 23, one
way to do this is to make the message look random using a pseudo-random
sequence to encode the message, in such a way that the recipient can use the
same pseudorandom sequence to decode it.

Another area in which random numbers have been widely used is in
simulation. A typical simulation involves a large program which models some
aspect of the real world: random numbers are natural for the input to such
programs. Even if true random numbers are not needed, simulations typically
need many arbitrary numbers for input, and these are conveniently provided
by a random number generator.
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When a very large amount of data is to be analyzed, it is sometimes
sufficient to process only a very small amount of the data, chosen according
to random sampling. Such applications are widespread, the most prominent
being national political opinion polls.

Often it is necessary to make a choice when all factors under consideration
seem to be equal. The national draft lottery of the 70’s or the mechanisms
used on college campuses to decide which students get the choice dormitory
rooms are examples of using random numbers for decision making. In this
way, the responsibility for the decision is given to “fate” (or the computer).

Readers of this book will find themselves using random numbers exten-
sively for simulation: to provide random or arbitrary inputs to programs.
Also, we will see examples of algorithms which gain efficiency by using random
numbers to do sampling or to aid in decision making.

Linear Congruential Method

The most well-known method for generating random numbers, which has been
used almost exclusively since it was introduced by D. Lehmer in 1951, is the
so-called linear congruential method. If a [1] contains some arbitrary number,
then the following statement fills up an array with N random numbers using
this method:

for i:=2to N do
ali]:=(a[i—1]*b $1) mod m

That is, to get a new random number, take the previous one, multiply
it by a constant b, add 1 and take the remainder when divided by a second
constant m. The result is always an integer between () and m-l. This is
attractive for use on computers because the mod function is usually trivial to
implement: if we ignore overflow on the arithmetic operations, then most com-
puter hardware will throw away the bits that overflowed and thus effectively
perform a mod operation with m equal to one more than the largest integer
that can be represented in the computer word.

Simple as it may seem, the linear congruential random number generator
has been the subject of volumes of detailed and difficult mathematical analysis.
This work gives us some guidance in choosing the constants b and m. Some
“common-sense” principles apply, but in this case common sense isn’'t enough
to ensure good random numbers. First, m should be large: it can be the
computer word size, as mentioned above, but it needn’t be quite that large
if that's inconvenient (see the implementation below). It will normaly be
convenient to make m a power of 10 or 2. Second, b shouldn’t be too large or
too small: a safe choice is to use a number with one digit less than m. Third,



36 CHAPTER 3

b should be an arbitrary constant with no particular pattern in its digits,
except that it should end with ---z21, with z even: this last requirement is
admittedly peculiar, but it prevents the occurrence of some bad cases that
have been uncovered by the mathematical analysis.

The rules described above were developed by D.E.Knuth, whose textbook
covers the subject in some detail. Knuth shows that these choices will make
the linear congruential method produce good random numbers which pass
several sophisticated statistical tests. The most serious potential problem,
which can become quickly apparent, is that the generator could get caught
in a cycle and produce numbers it has already produced much sooner than
it should. For example, the choice b=19, m=381, with g 1] =0, produces the
sequence 0,1,20,0,1,20 ,..., a not-very-random sequence of integers between 0
and 380.

Any initial value can be used to get the random number generator started
with no particular effect except of course that different initial values will give
rise to different random sequences. Often, it is not necessary to store the
whole sequence as in the program above. Rather, we simply maintain a global
variable a, initialized with some value, then updated by the computation
a:=(axb+1) mod m.

In Pascal (and many other programming languages) we're still one step
away from a working implementation because we're not allowed to ignore
overflow: it's defined to be an error condition that can lead to unpredictable
results. Suppose that we have a computer with a 32-bit word, and we choose
m =100000000, b=231415821, and, initialy, a=1234567. All of these values are
comfortably less than the largest integer that can be represented, but the first
a* b+1 operation causes overflow. The part of the product that causes the
overflow is not relevant to our computation, we're only interested in the last
eight digits. The trick is to avoid overflow by breaking the multiplication up
into pieces. To multiply p by g, we write p = 10%*p; + pg and ¢ = 104 + go,
so the product is

pq = (10*p1 + po)(10%qs1 + qo)
= 10%p1qs + 10*(p1g0 + Pog1) + Pogo-

Now, we're only interested in eight digits for the result, so we can ignore
the first term and the first four digits of the second term. This leads to the
following program:
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program random (inpu t, output) ;
const m=100000000; m1=10000; b=31415821;
var i, a, N: integer;
function mult(p, o integer): integer;
var pl, p0, q1, q0: integer;
begin
pl:=p divm ; p0:=p mod ml ;
ql :=q div ml; g0:=q mod ml;
mult:=( ((pOxql+plxg0) mod ml)*mi+p0+q0) mod m
end:

!
function random : integer ;

begin
a:=(mult(a, b)+1) mod m
random =g
end;
begin
read(N, a);
for j:=]1to N do writeln(random)
end.

The function mult in this program computes p*q mod m, with no overflow
as long as m is less than half the largest integer that can be represented. The
technique obviously can be applied with m=mi1*m1 for other values of ml.

Here are the ten numbers produced by this program with the input N =
10 and a = 1234567:

35884508
80001069
63512650
43635651
1034472
87181513
6917174
209855
67115956
59939877

There is some obvious non-randomness in these numbers: for example,
the last digits cycle through the digits O-9. It is easy to prove from the
formula that this will happen. Generaly speaking, the digits on the right are
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not particularly random. This leads to a common and serious mistake in the
use of linear congruential random number generators: the following is a bad
program for producing random numbers in the range [0, r — 1]:

function randombad(r: integer) : integer;
begin
a:=(mult(b, a)+1) mod m;
randombad:=a mad r;
end ;

The non-random digits on the right are the only digits that are used,
so the resulting sequence has few of the desired properties. This problem is
easily fixed by using the digits on the left. We want to compute a number
between 0 and r-l by computing a*xr mod m, but, again, overflow must be
circumvented, as in the following implementation:

function randomint(r: integer): integer;
begin
a:=(mult(a, b)+1) mod m;
randomint:=((a div m1)xr) div ml
end ;

Another common technique is to generate random real numbers between
0 and 1 by treating the above numbers as fractions with the decimal point
to the left. This can be implemented by simply returning the real value a/m
rather than the integer a Then a user could get an integer in the range [0,7)
by simply multiplying this value by r and truncating to the nearest integer.
Or, a random real number between 0 and 1 might be exactly what is needed.

Additive Congruential Method

Another method for generating random numbers is based on linear feedback
shift registers which were used for early cryptographic encryption machines.
The idea is to start with a register filled with some arbitrary pattern, then

shift it right (say) a step at a time, filling in vacated positions from the left

with a bit determined by the contents of the register. The diagram below
shows a simple 4-bit register, with the new bit taken as the “exclusive or” of
the two rightmost bits.
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Below are listed the contents of the register for the first sixteen steps of
the process:

0 1 2 3 4 5 6 7
1011 0101 1010 1101 1110 1111 0111 0011
8 9 10 11 12 13 14 15
0001 1000 0100 0010 1001 1100 0110 1011

Notice that all possible nonzero bit patterns occur, the starting value
repeats after 15 steps. As with the linear congruential method, the mathe-
matics of the properties of these registers has been studied extensively. For
example, much is known about the choices of “tap” positions (the bits used
for feedback) which lead to the generation of all bit patterns for registers of
various sizes.

Another interesting fact is that the calculation can be done a word at a
time, rather than a bit at a time, according to the same recursion formula
In our example, if we take the bitwise “exclusive or” of two successive words,
we get the word which appears three places later in the list. This leads
us to a random number generator suitable for easy implementation on a
general-purpose computer. Using a feedback register with bits b and ¢ tapped
corresponds to using the recursion: ak]=(alk—b]+alk—c]) mod m. To keep
the correspondence with the shift register model, the “+” in this recursion
should be a bitwise “exclusive or.” However, it has been shown that good
random numbers are likely to be produced even if normal integer addition is
used. This is termed the additive congruential method.

To implement this method, we need to keep a table of size ¢ which always
has the ¢ most recently generated numbers. The computation proceeds by
replacing one of the numbers in the table by the sum of two of the other
numbers in the table. Initially, the table should be filled with numbers that
are not too small and not too large. (One easy way to get these numbers
is to use a simple linear congruential generator!) Knuth recommends the
choices b=31, ¢=55 will work well for most applications, which leads to the
implementation below.
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procedure randinit (s integer)

begin
al0] :=s; j:=0;
repeat j:=j+1; a[j]:=(mult(b, a[j—1])+1) mod m until j=54;
end ;
function randomint(r: integer): integer;
begin

Jj:=(j+1) mod 55;

alj]:=(a[(j+23) mod 55]+a [ (j+54) mod 55]) mod m;
randomint:=((a[j] div mI)xr) div ml

end;

The program maintains the 55 most recently generated numbers, with the last
generated pointed to by j. Thus, the global variable a has been replaced by
a full table plus a pointer (j) into it. This large amount of “global state” is a
disadvantage of this generator in some applications, but it is also an advantage
because it leads to an extremely long cycle even if the modulus m is small.

The function randomint returns a random integer between 0 and r-l. Of
course, it can easily be changed, just as above, to a function which returns a
random real number between 0 and 1 (a [j|/m).

Testing Randomness

One can easily detect numbers that are not random, but certifying that a
sequence of numbers is random is a difficult task indeed. As mentioned above,
no sequence produced by a computer can be random, but we want a sequence
that exhibits many of the properties of random numbers. Unfortunately, it is
often not possible to articulate exactly which properties of random numbers
are important for a particular application.

On the other hand, it is always a good idea to perform some kind of test
on a random number generator to be sure that no degenerate situations have
turned up. Random number generators can be very, very good, but when
they are bad they are horrid.

Many tests have been developed for determining whether a sequence
shares various properties with a truly random sequence. Most of these tests
have a substantial basis in mathematics, and it would definitely be beyond the
scope of this book to examine them in detail. However, one statistical test,
the X2 (chi-square) test, is fundamental in nature, quite easy to implement,
and useful in severa applications, so we'll examine it more carefully.

The idea of the x? test is to check whether or not the numbers produced
are spread out reasonably. If we generate N positive numbers less than r, then
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we'd expect to get about N /r numbers o:f each value. (But the frequencies of
occurrence of all the values should not be exactly the same: that wouldn't be
random!) It turns out that calculating whether or not a sequence of numbers
is distributed as well as a random sequence is very simple, as in the following
program:

function chisquare(N, r, s: integer) : real;
var i, t: integer;
f: array [0..rmax| of integer;

begin
randinit(s);
for i:=0 to rmax do f[i] :=0;
for i:=1 to Ndo

begin

t:=randomint(r);

f[t]:=f[t]+1;

end ;
t:=0; for i:=0 to rl do t:=t+f[i]*f[i];
chisquare:= ((r¢t/N) = N);
end ;

We simply calculate the sum of the sguares of the frequencies of occur-
rence of each value, scaled by the expected frequency then subtract off the
size of the sequence. This number is called the “y? statistic,” which may be
expre%sed mathematically as

9 _ 20§i<r(fi ~N/r)?
X = N/r '

If the x? statistic is close to r, then the numbers are random; if it is too far
away, then they are not. The notions of “close” and “far away” can be more
precisely defined: tables exist which tell exactly how to relate the statistic to
properties of random sequences. For the simple test that we're performing,
the statistic should be within 2,/r of r. This is valid if N is bigger than about
107, and to be sure, the test should be tried a few times, since it could be
wrong about one out of ten times.

This test is so simple to implement that it probably should be included
with every random number generator, just to ensure that nothing unexpected
can cause serious problems. All the “good generators’ that we have discussed
pass this test; the “bad ones’ do not. Using the above generators to generate
a thousand numbers less than 100, we get a x? statistic of 100.8 for the
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linear congruential method and 105.4 for the additive congruential method,
both certainly well within 20 of 100. But for the “bad” generator which uses
the right-hand bits from the linear congruential generator the statistic is 0
(why?) and for a linear congruential method with a bad multiplier (101011)
the statistic is 77.8, which is significantly out of range.

Implementation  Notes

There are a number of facilities commonly added to make a random number
generator useful for a variety of applications. Usualy, it is desirable to set
up the generator as a function that is initialized and then called repeatedly,
returning a different random number each time. Another possibility is to call
the random number generator once, having it fill up an array with al the
random numbers that will be needed for a particular computation. In either
case, it is desirable that the generator produce the same sequence on successive
calls (for initial debugging or comparison of programs on the same inputs) and
produce an arbitrary sequence (for later debugging). These facilities all involve
manipulating the “state” retained by the random number generator between
calls. This can be very inconvenient in some programming environments. The
additive generator has the disadvantage that it has a relatively large state (the
array of recently produced words), but it has the advantage of having such a
long cycle that it is probably not necessary for each user to initiaize it.

A conservative way to protect against eccentricities in a random number
generator is to combine two generators. (The use of a linear congruential
generator to initialize the table for an additive congruential generator is
an elementary example of this) An easy way to implement a combination
generator is to have the first generator fill a table and the second choose
random table positions to fetch numbers to output (and store new numbers
from the first generator).

When debugging a program that uses a random number generator, it is
usually a good idea to use a trivial or degenerate generator at first, such as
one which always returns O or one which returns numbers in order.

As a rule, random number generators are fragile and need to be treated
with respect. It's difficult to be sure that a particular generator is good
without investing an enormous amount of effort in doing the various statistical
tests that have been devised. The moral is: do your best to use a good
generator, based on the mathematical analysis and the experience of others;
just to be sure, examine the numbers to make sure that they “look” random;
if anything goes wrong, blame the random number generator!
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Exercises

1

N

9.

10.

Write a program to generate random four-letter words (collections of
letters). Estimate how many words your program will generate before
a word is repeated.

How would you simulate generating random numbers by throwing two
dice and taking their sum, with the added complication that the dice are
nonstandard (say, painted with the numbers 1,2,3,5,8, and 13)?

What is wrong with the following linear feedback shift register?

Why wouldn’t the “or” or “and” function (instead of the “exclusive or”
function) work for linear feedback shift registers?

Write a program to produce a randorn two dimensional image. (Example:
generate random bits, write a “*” when 1 is generated, “ ” when 0 is

generated. Another example: use random numbers as coordinates in a
two dimensional Cartesian system, write a “*” at addressed points.)

Use an additive congruential random number generator to generate 1000
positive integers less than 1000. Design a test to determine whether or
not they’re random and apply the test.

Use a linear congruential generator with parameters of your own choos-
ing to generate 1000 positive integers less than 1000. Design a test to
determine whether or not they’re random and apply the test.

Why would it be unwise to use, for example, b=3 and ¢=6 in the additive
congruential generator?

What is the value of the x? statistic for a degenerate generator which
aways returns the same number?

Describe how you would generate random numbers with m bigger than
the computer word size.






4. Polynomials

The methods for doing arithmetic operations given in Chapter 2 are
simple and straightforward solutions to familiar problems. As such, they
provide an excellent basis for applying algorithmic thinking to produce more
sophisticated methods which are substantially more efficient. As we'll see, it
is one thing to write down a formula which implies a particular mathematical
calculation; it is quite another thing to write a computer program which
performs the calculation efficiently.

Operations on mathematical objects are far too diverse to be catalogued
here; we'll concentrate on a variety of agorithms for manipulating polyno-
mials. The principal method that we'll study in this section is a polyno-
mial multiplication scheme which is of no particular practical importance but
which illustrates a basic design paradigm called divide-and-conquer which is
pervasive in algorithm design. We'll see in this section how it applies to matrix
multiplication as well as polynomial multiplication; in later sections we'll see
it applied to most of the problems that we encounter in this book.

Evaluation

A first problem which arises naturally is to compute the value of a given
polynomial at a given point. For example, to evaluate

p(X):z4+3:c3—612+2x+1

for any given x, one could compute z*, then compute and add 3z3, etc. This
method requires recomputation of the powers of x; an alternate method, which
requires extra storage, would save the powers of x as they are computed.

A simple method which avoids recomputation and uses no extra space
is known as Homer’s rule: by alternating the multiplication and addition
operations appropriately, a degree-N polynomial can be evaluated using only
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N 1 multiplications and N additions. The parenthesization
p(z) = x(x(x(x +3) 6)+2) +1

makes the order of computation obvious:

y:=p[N]; _
for j:=N—1 downto 0 do y:=x*y+p[i];

This program (and the others in this section) assume the array representation
for polynomials that we discussed in Chapter 2.

A more complicated problem is to evaluate a given polynomia at many
different points. Different algorithms are appropriate depending on how many
evaluations are to be done and whether or not they are to be done simul-
taneously. If a very large number of evaluations is to be done, it may be
worthwhile to do some “precomputing” which can slightly reduce the cost
for later evaluations. Note that using Horner's method would require about
N2 multiplications to evaluate a degree-N polynomial at N different points.
Much more sophisticated methods have been designed which can solve the
problem in N(log N)? steps, and in Chapter 36 we'll see a method that uses
only N log N multiplications for a specific set of N points of interest.

If the given polynomial has only one term, then the polynomial evalua-
tion problem reduces to the exponentiation problem: compute zV. Horner's
rule in this case degenerates to the trivial algorithm which requires N = 1
multiplications. For an easy example of how we can do much better, consider
the following sequence for computing z32:

z, 2% 7 7% z'§2%2
Each term is obtained by squaring the previous term, so only five multiplica-
tions are required (not 31).

The “successive squaring” method can easily be extended to general N
if computed values are saved. For example, z5° can be computed from the
above values with four more multipl.cations:

Z55 — 2:321.16‘,1:41.22;1.

In general, the binary representation of N can be used to choose which
computed values to use. (In the example, since 55 = (110111),, al but z8
are used.) The successive squares can be computed and the bits of N tested
within the same loop. Two methods are available to implement this using only
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one “accumulator,” like Horner's method. One algorithm involves scanning
the binary representation of N from left to right, starting with 1 in the
accumulator. At each step, sguare the accumulator and also multiply by =z
when there is a 1 in the binary representation of N. The following sequence
of values is computed by this method for N = 55:

11,4, zz’ xa"xs,zm,zm’zze’xz? x84 55

o ’ s 8
Another well-known al?éﬁthih whks similarly, bht scans N from right to
left. This problem is a 'standard introductory programming exercise, but it is
hardly of practical interest.

Interpolation

The “inverse” problem to the problem of evaluating a polynomia of degree N
at N points simultaneously is the problem of polynomial interpolation: given
a set of N points z; ,zs,.. . ,zn and associated values yy,ys,. . . ,yn, find the
unique polynomial of degree N = 1 which has

P(Il?l) =y1, p(T2) =V2, . . .,p(a:N) - YN-

The interpolation problem is to find the polynomial, given a set of points and
values. The evaluation problem is to find the values, given the polynomial
and the points. (The problem of finding the points, given the polynomial and
the values, is root-finding.)

The classic solution to the interpolation problem is given by Lagrange's
interpolation formula, which is often used as a proof that a polynomial of
degree N = 1 is completely determined by N points:

r"Ii": = ':\_j' i H - T

PLELA im0 T

1=

This formula seems formidable at first but is actually quite simple. For
example, the polynomia of degree 2 which has p(l) = 3, p(2) = 7, and p(3) =
13 isgiven by

r 4 4 r _r & A I TS
T)= — i .= -14
o) =3yt T T NI
which simplifies to
T+l
For x from zy, z3, . . . , Zn, the formula is constructed so that p(zy) = v« for

1 < k < N, since the product evaluates to 0 unless j = k, when it evaluates
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to 1. In the example, the last two terms are O when z = 1, the first and last
terms are 0 when x = 2, and the first two terms are 0 when x = 3.

To convert a polynomial from the form described by Lagrange's formula
to our standard coefficient representation is not at all straightforward. At
least N2 operations seem to be required, since there are N terms in the sum,
each consisting of a product with N factors. Actualy, it takes some cleverness
to achieve a quadratic algorithm, since the factors are not just numbers, but
polynomials of degree N. On the other hand, each term is very similar to
the previous one. The reader might be interested to discover how to take
advantage of this to achieve a quadratic algorithm. This exercise leaves one
with an appreciation for the non-trivial nature of writing an efficient program
to perform the calculation implied by a mathematical formula

As with polynomial evaluation, there are more sophisticated methods
which can solve the problem in N(log N)2 steps, and in Chapter 36 we'll see
a method that uses only N log N multiplications for a specific set of N points
of interest.

Multiplication

Our first sophisticated arithmetic algorithm is for the problem of polynomial
multiplication: given two polynomias p(x) and q(x), compute their product
p(z)g(z). As noted in Chapter 2, polynomials of degree N — 1 could have
N terms (including the constant) and the product has degree 2N — 2 and as
many as 2N — 1 terms. For example,

1 +z+3z% 4L +2x = 5z% = 32%) = (1 + 3z = 62° = 262 + 112° + 1228,

The naive agorithm for this problem that we implemented in Chapter 2
requires N2 multiplications for polynomials of degree N - 1. each of the N
terms of p(x) must be multiplied by each of the N terms of q(x).

To improve on the naive algorithm, we'll use a powerful technique for
algorithm design called divide-and-conquer: split the problem into smaller
parts, solve them (recursively), then put the results back together in some
way. Many of our best algorithms are designed according to this principle.
In this section we'll see how divide-and-conquer applies in particular to the
polynomia multiplication problem. In the following section we'll look at some
analysis which gives a good estimate of how much is saved.

One way to split a polynomial in two is to divide the coefficients in half:
given a polynomial of degree N-I (with N coefficients) we can split it into two
polynomials with N/2 coefficients (assume that N is even): by using the N/2
low-order coefficients for one polynomial and the N/2 high-order coefficients
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for the other. For p(z) = pg + p1z +. v+ + pn_1z™V 1, define

plz) =po+piz+ "'+I71\l/2—1151\]/2_1

ph(l‘) = PN/2 + PN/241T -+ v+ pN—ll'N/Q‘l.

Then, splitting q(x) in the same way, we have:

p(z) = pu(z) + 2/ 2py(2),
q(z) = qz) + =V 2gn(2).

Now, in terms of the smaller polynomials;, the product is given by:

N/2

p(z)4(z) = pilz)qr(z) + (Pe(2)gn(z) + qu(z)pn(z)) + pu(z)gn ().

(We used this same split in the previous chapter to avoid overflow.) What's
interesting is that only three multiplications are necessary to compute these

products, because if we compute r;(z) = pi(z)q(z), a(z) = pu(z)gr(z), and

rm(z) = (p(@) + pa(2))(@(z) + gn(z)),we can get the product p(z)q(z) by
computing

pz)(z) =n(z) +(rmfz) n(z) (@)™ +m(z)z"

Polynomial addition requires a linear algorithm, and the straightforward poly-
nomia multiplication agorithm of Chapter 2 is quadratic, so it's worthwhile
to do a few (easy) additions to save one (difficult) multiplication. Below we'll
look more closely at the savings achieved by this method.

For the example given above, with p(z) =1 +z +3z2? —4z% and q(x) =
1+2X = 572 = 3z3, we have

r(z)= (14 z)(1+2X) = 1 + 3 + 222,
a() = B -4)(5 = 3) =-15 + 11z + 1227,
Tm(T) = @ =~ (4 =% = -16 +8 + 3z°,

Thus, 7,(z) = 7(z) —rp(z) = -2 = 6 — 1122, and the product is computed as
p(z)g(z) = (@ + 3 + 22%) + (2 6x  1DAR + (-15 + 11z + 12O
=143 = 62° 26z + 1125 + 1225,

This divide-and-conquer approach solves a polynomial multiplication problem
of size N by solving three subproblems of size N/2, using some polynomial

addition to set up the subproblems and to combine their solutions. Thus, this

procedure is easily described as a recursive program:
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function mult(p, g array[0..N—1] of real;
N: integer) : array [0..2xN—2] of real;
var pl, ql, ph, gh, t1, t2: array [0..(N div 2)—1] of real;
rl, rm, rh: array [0..N—1] of red;
i, N2: integer;
begin
if N=1then mult[0]:=p[0]*q[0|
else
begin
N2:=N div 2;
for i:=O to N2—1 do
begin pl|i]:=pli]; ql[i]:=q[i] end;
for i:=N2 to N-I do
begin ph|i—N2]:=pli]; gh[i—N2]:=qli] end;
for i:=0 to N2—1do t1[i}:=pl[i]+ph]i];
for i:=0 to N2—1do t2[i]:=ql[i]+qhli];
rm:=mult(t1, t2, N2);
rl:=mult(pl, ¢l, N2);
rh:=mult(ph, gh, N2);
for i:=0to N-2 do mult [i] :=rli]
mult [N-] :=0;
for i:=0to N-2 do mult [N+i] :=rh [i]
for i:=0O to N-2 do
AT = B I Y F P R TH IR T FIE 0] P
end;
end.

Although the above code is a succinct description of this method, it is (unfortu-

nately) not a legal Pascal program because functions can’t dynamically declare

arrays. This problem could be handled in Pascal by representing the polyno-

mials as linked lists, as we did in Chapter 2. This program assumes that N is a
power of two, though the details for general N can be worked out easily. The

main complications are to make sure that the recursion terminates properly

and that the polynomials are divided properly when N is odd.

The same method can be used for multiplying integers, though care must
be taken to treat “carries’ properly during the subtractions after the recursive
calls.

As with polynomial evaluation and interpolation, there are sophisticated
methods for polynomial multiplication, and in Chapter 36 we'll see a method
that works in time proportional to N log N.
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Divide-and-conquer Recurrences

Why is the divide-and-conquer method given above an improvement? In this
section, we'll look at a few simple recurrence formulas that can be used to
measure the savings achieved by a divide-and-conquer algorithm.

From the recursive program, it is clear that the number of integer multi-
plications required to multiply two polynomials of size N is the same as the
number of multiplications to multiply three pairs of polynomials of size N/2.
(Note that, for example, no multiplications are required to compute ry(z)z",
just data movement.) If M(N) is the number of multiplications required to
multiply two polynomials of size N, we have

M(N) = 3M(N/2)

for N > 1 with M(1) = 1. Thus M(2) . = 3, M(4) = 9, M(8) = 27, €c. In
general, if we take N = 2", then we can repeatedly apply the recurrence to
itself to find the solution:

M2") =3M(@2 ) =32M(2" %) =3 M(2"" %)= .. =3"M(1)=3".

If N = 27, then 3" = 2U83)n = 9nlg3 = Nl&3_ Although this solution is exact
only for N = 27", it works out in genera that

M(N) ~ N1g3 ~ N1.58’

which is a substantial savings over the N2 naive method. Note that if we were
to have used all four multiplications in the simple divide-and-conquer method,
the recurrence would be M(N) = 4M(N /2) with the solution M (2") = 4" =
N2,

The method described in the previous section nicely illustrates the divide-
and-conquer technique, but it is seldom used in practice because a much better
divide-and-conquer method is known, which we'll study in Chapter 36. This
method gets by with dividing the original into only two subproblems, with
a little extra processing. The recurrence describing the number of multiplica-
tions required is

M(N) = 2M(N/2) + N.
Though we don't want to dwell on the mathematics of solving such recur-
rences, formulas of this particular form arise so frequently that it will be

worthwhile to examine the development of an approximate solution. First, as
above, we write N = 2":

MM =2M(2 ) + 2,
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The trick to making it simple to apply this same recursive formula to itself is
to divide both sides by 2™:

M(zn) _M(Qn_l)
= L

Now, applying this same formula to itself n times ends up simply giving n
copies of the “1,” from which it follows immediately that M(2™) = n2™. Again,
it turns out that this holds true (roughly) for all N, and we have the solution

M(N) = NigN.

WEe'll see several agorithms from different applications areas whose perfor-
mance characteristics are described by recurrences of this type. Fortunately,
many of the recurrences that come up are so similar to those above that the
same techniques can be used.

For another example, consider the situation when an agorithm divides
the problem to be solved in half, then is able to ignore one half and (recursively)
solve the other. The running time of such an agorithm might be described
by the recurrence

M(N) = M(N/2) + 1.

This is easier to solve than the one in the previous paragraph. We immediately
have M(2™) = n and, again, it turns out that M(N) ~ IgN.

Of course, it's not always possible to get by with such trivial manipula-
tions. For a dightly more difficult example, consider an algorithm of the type
described in the previous paragraph which must somehow examine each ele-
ment before or after the recursive step. The running time of such an algorithm
is described by the recurrence

M(N) = M(N/2) + N.

Substituting N = 2™ and applying the same recurrence to itself n times now
gives
M@M) =242 42" 2 4 1

This must be evaluated to get the result M(27) = 2"*! = 1 which translates
to M(N) =~ 2N for genera N.

To summarize, many of the most interesting agorithms that we will
encounter are based on the divide-and-conquer technique of combining the
solutions of recursively solved smaller subproblems. The running time of such
algorithms can usualy be described by recurrence relationships which are a
direct mathematical translation of the structure of the agorithm. Though
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such relationships can be challenging to solve precisely, they are often easy to
solve for some particular values of N to get solutions which give reasonable
estimates for all values of N. Our purpose in this discussion is to gain some
intuitive feeling for how divide-and-conquer algorithms achieve efficiency, not
to do detailed analysis of the algorithms. Indeed, the particular recurrences
that we've just solved are sufficient to describe the performance of most of
the agorithms that we'll be studying, and we'll simply be referring back to
them.

Matrix Multiplication

The most famous application of the divide-and-conquer technique to an arith-
metic problem is Strassen's method for matrix multiplication. We won't go
into the details here, but we can sketch the method, since it is very similar to
the polynomial multiplication method that we have just studied.

The straightforward method for multiplying two N-by-N matrices re-
quires N3 scalar multiplications, since each of the N2 elements in the product
matrix is obtained by N multiplications.

Strassen’s method is to divide the size of the problem in half; this cor-
responds to dividing each of the matrices into quarters, each N/2 by N/2.
The remaining problem is equivalent to multiplying 2-by-2 matrices. Just as
we were able to reduce the number of multiplications required from four to
three by combining terms in the polynomia multiplication problem, Strassen
was able to find a way to combine terms to reduce the number of multiplica-
tions required for the 2-by-2 matrix multiplication problem from 8 to 7. The
rearrangement and the terms required are quite complicated.

The number of multiplications required for matrix multiplication using
Strassen’s method is therefore defined by the divide-and-conquer recurrence

M(N) = TM(N/2)

which has the solution
M(N) ~ N&7 o N281

This result was quite surprising when it first appeared, since it had previously
been thought that N3 multiplications were absolutely necessary for matrix
multiplication. The problem has been studied very intensively in recent years,
and slightly better methods than Strassen’s have been found. The “best”
algorithm for matrix multiplication has still not been found, and this is one
of the most famous outstanding problems of computer science.

It is important to note that we have been counting multiplications only.

Before choosing an algorithm for a practical application, the costs of the
extra additions and subtractions for combining terms and the costs of the



54 CHAPTER 4

recursive calls must be considered. These costs may depend heavily on the

particular implementation or computer used. But certainly, this overhead
makes Strassen’s method less efficient than the standard method for small

matrices. Even for large matrices, in terms of the number of data items input,
Strassen’s method really represents an improvement only from N1-%to N141

This improvement is hard to notice except for very large N. For example, N

would have to be more than a million for Strassen’s method to use four times

as few multiplications as the standard method, even though the overhead per
multiplication is likely to be four times as large. Thus the agorithm is a
theoretical, not practical, contribution.

This illustrates a general tradeoff which appears in all applications (though
the effect, is not aways so dramatic): simple algorithms work best for small
problems, but sophisticated algorithms can reap tremendous savings for large
problems.

L!
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Exercises

1

10.

Give a method for evaluating a polynomial with known roots 7y, rg, . . .
N, and compare your method with Horner's method.

Write a program to evaluate polynomials using Horner's method, where
a linked list representation is used for the polynomials. Be sure that your
program works efficiently for sparse polynomials.

Write an N? program to do Lagrang:ian interpolation.

Suppose that we know that a polynomial to be interpolated is sparse (has
few non-zero coefficients). Describe how you would modify Lagrangian
interpolation to run in time proportional to N times the number of non-
zero coefficients.

Write out all of the polynomial multiplications performed when the divide-
and-conquer polynomial multiplication method described in the text is
used to square 1 + z + 2+ 23 + 2% + 25 4+ 26 + 27 + 8.

The polynomia multiplication routine mult could be made more efficient
for sparse polynomials by returning 0 if al coefficients of either input are
0. About how many multiplications (to within a constant factor) would
such a program use to square 1 + gN?

Can 32 be computed with less than five multiplications? If so, say which
ones; if not, say why not.

Can 55 be computed with less than nine multiplications? If so, say which
ones; if not, say why not.

Describe exactly how you would modify mult to multiply a polynomia of
degree N by another of degree M, with N > M.

Give the representation that you would use for programs to add and
multiply multivariate polynomials such as zy?z + 31lwz3y32%0 + w. Give
the single most important reason for choosing this representation.






5. Gaussan Elimination

Certainly one of the most fundamental scientific computations is the
solution of systems of simultaneous equations. The basic algorithm for
solving systems of equations, Gaussian elimination, is relatively simple and
has changed little in the 150 years since it was invented. This algorithm has
come to be well understood, especially in the past twenty years, so that it can
be used with some confidence that it will efficiently produce accurate results.

This is an example of an algorithm that will surely be available in most
computer installations; indeed, it is a primitive in several computer languages,
notably APL and Basic. However, the basic algorithm is easy to understand
and implement, and special situations do arise where it might be desirable
to implement a modified version of the algorithm rather than work with a
standard subroutine. Also, the method deserves to be learned as one of the
most important numeric methods in use today.

As with the other mathematical material that we have studied so far, our
treatment of the method will highlight only the basic principles and will be
self-contained. Familiarity with linear algebra is not required to understand
the basic method. We'll develop a simple Pascal implementation that might
be easier to use than a library subroutine for simple applications. However,
we'll also see examples of problems which could arise. Certainly for a large or
important application, the use of an expertly tuned implementation is called
for, as well as some familiarity with the underlying mathematics.

A Smple Example

Suppose that we have three variables z,y and z and the following three
equations:

X+3y_4/w:81
T+y—22=2,
—r—2y+5z=—1.

57
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Our goa is to compute the values of the variables which simultaneously
satisfy the equations. Depending on the particular equations there may not
aways be a solution to this problem (for example, if two of the equations are

contradictory, suchas z + y =1, £+ y = 2) or there may be many solutions

(for example, if two equations are the same, or there are more variables than
equations). We'll assume that the number of equations and variables is the
same, and we'll look at an algorithm that will find a unique solution if one
exists.

To make it easier to extend the formulas to cover more than just three
points, we'll begin by renaming the variables, using subscripts:

1+ 322 —4z3 =38,
I1+T9—223=2,
—T1 = 229 + 5x3 = -1

To avoid writing down variables repeatedly, it is convenient to use matrix
notation to express the simultaneous equations. The above equations are
exactly equivalent to the matrix equation

ST B I
( L —2)'5:|—[ 2).
B - L

aatLy

There are several operations which can be performed on such equations which
will not alter the solution:
Interchange equations: Clearly, the order in which the equations are
written down doesn’t affect the solution. In the matrix representation,
this operation corresponds to interchanging rows in the matrix (and
the vector on the right hand side).
Rename variables: This corresponds to interchanging columns in the
matrix representation. (If columns ¢ and 5 are switched, then variables
z; and r; must also be considered switched.)
Multiply equations by a constant: Again, in the matrix representation,
this corresponds to multiplying a row in the matrix (and the cor-
responding element in the vector on the right-hand side) by a constant.
Add two equations and replace one of them by the sum. (It takes a
little thought to convince oneself that this will not affect the solution.)

For example, we can get a system of equations equivalent to the one above
by replacing the second equation by the difference between the first two:

[f I E :‘.-.Ilri:*_( :"I

T AT (Y LW ¥



GAUSSIAN  ELIMINATION 59

Notice that this eliminates z; from the second equation. In a similar manner,
we can eliminate xi from the third equation by replacing the third equation
by the sum of the first and third:

1 3 —-4\/T1 8
(0 2 —2)(%) = (6)
01 1/\z3 7

Now the variable z; is eliminated from all but the first equation. By sys-
tematically proceeding in this way, we can transform the original system of
equations into a system with the same solution that is much easier to solve.
For the example, this requires only one more step which combines two of the
operations above: replacing the third equation by the difference between the
second and twice the third. This makes all of the elements below the main
diagonal 0: systems of equations of this form are particularly easy to solve.
The simultaneous equations which result in our example are:

T1 + 3z — 413 =28,

29 — 223 =6,
—4123 = -8.
Now the third equation can be solved immediately: g3 = 2. If we substitute
this value into the second equation, we can compute the value of zg:
2Ty — 4 =2 6,
Tg == 5.
Similarly, substituting these two values in the first equation alows the value
of xi to be computed:
T +15 =§ = 8,
1 =1

which completes the solution of the equations.

This example illustrates the two basic phases of Gaussian elimination.
The first is the forward elimination phase, where the original system is trans-
formed, by systematically eliminating variables from equations, into a system
with all zeros below the diagonal. This process is sometimes called triangula-
tion. The second phase is the backward substitution phase, where the values
of the variables are computed using the triangulated matrix produced by the
first phase.

Outline of the Method

In general, we want to solve a system of N equations in N unknowns:
41171 + G19%2 + - + GININ = by,
a21%1 + Q22T+ ' v+ ANIN = bg,

aN1Z1 +angTo+ oo+ aNNIN = bn.
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In matrix form, these equations are written as a single matrix equation:;

JRSN DS P RERE P A Y o
Ly rfa - . apr o -

hoeg gy et bans Lh

or simply Az = b, where A represents the matrix, T represents the variables,
and b represents the right-hand sides of the equations. Since the rows of A
are manipulated along with the elements of b, it is convenient to regard b as

the (N + 1)st column of A and use an N-by-(N + 1) array to hold both.

Now the forward elimination phase can be summarized as follows:. first
eliminate the first variable in al but the first equation by adding the ap-
propriate multiple of the first equation to each of the other equations, then
eliminate the second variable in al but the first two equations by adding the
appropriate multiple of the second equation to each of the third through the
Nth equations, then eliminate the third variable in al but the first three
equations, etc. To eliminate the ith variable in the jth equation (for j be-
tween i + 1 and N) we multiply the ith equation by a,;/a;, and subtract it
from the jth equation. This process is perhaps more succinctly described by
the following program, which reads in N followed by an N-by-( N + 1) matrix,
performs the forward elimination, and writes out the triangulated result. In
the input, and in the output the ith line contains the ith row of the matrix
followed by b;.

program gauss(input, output);
const maxN=>50;
var a array [1..maxN, 1..maxN] of red;
i, j, k, N:integer;
begin
readln (N) ;
for j:==1to N do
begin for k:=1to N+1 do read(a[j, k]); readln end;
for i:==1to N do
for j:=i+1to N do
for k:=N+1 downto i do
alj, k]:=alj, k|—al[i, k]*alj, 1] /a[i, i];
for j:==1to N do
begin for k:=1to N+1do write(alj, K]); writeln end,
end.
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(As we found with polynomials, if we wtint to have a program that takes N
as input, it is necessary in Pascal to first decide how large a value of N will
be “legal,” and declare the array suitably.) Note that the code consists of
three nested loops, so that the total running time is essentially proportional
to N3. The third loop goes backwards so as to avoid destroying a[j, i] before
it is needed to adjust the values of other #elements in the same row.

The program in the above paragraph is too simple to be quite right: ali, i]
might be zero, so division by zero could ‘occur. This is easily fixed, because
we can exchange any row (from i+1 to N) with the ith row to meke ali, i]
non-zero in the outer loop. If no such row can be found, then the matrix is
singular: there is no unique solution.

In fact, it is advisable to do slightly more than just find a row with a
non-zero entry in the ith column. It's best to use the row (from j+1 to N)
whose entry in the ith column is the largest in absolute value. The reason for
this is that severe computational errors can arise if the ali, i] value which is
used to scale a row is very small. If a[i, i] is very small, then the scaling factor
alj, i|/ali, il which is used to eliminate the ith variable from the jth equation
(for j from j+1to N) will be very large. In fact, it could get so large as to
dwarf the actual coefficients alj, k], to the point where the a[j, k] value gets
distorted by “round-off error.”

Put simply, numbers which differ greatly in magnitude can't be accurately
added or subtracted in the floating point number system commonly used to
represent real numbers, but using a small a[i, i] value greatly increases the
likelihood that such operations will have to be performed. Using the largest
value in the ith column from rows j+1 to N will ensure that the scaling factor
is aways less than 1, and will prevent the occurrence of this type of error. One
might contemplate looking beyond the ith column to find a large element, but
it has been shown that accurate answers can be obtained without resorting to
this extra complication.

The following code for the forward elimination phase of Gaussian elimina-
tion is a straightforward implementation of this process. For each i from [ to
N, we scan down the ith column to find the largest element (in rows past the
ith). The row containing this element is exchanged with the ith , then the ith
variable is eliminated in the equations i1 to N exactly as before:
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procedure €eiminate;
var i, j, k, max: integer;
t: real,
begin
for i:=I to Ndo
begin
max:=i;
for j:=i+l to N do
if abs(alj, i])>abs(almax, i]) then max:=j;
for k:=i to N+1do
begin t=di, k]; a[i, k] :=g[max, K|; a[max, k] :=t end;
for j:=i+1to N do
for k:=N+1 downto i do
alj, k|:=alj, k]—ali, k]*a[j, | /a[i, i];
end
end ;

(A call to eliminate should replace the three nested for loops in the program
gauss given above.) There are some algorithms where it is required that the
pivot ali, i] be used to eliminate the ith variable from every equation but the
ith (not just the (i41)st through the Nth). This process is called full pivoting;
for forward elimination we only do part of this work hence the process is called
partial pivoting .

After the forward elimination phase has completed, the array a has
all zeros below the diagonal, and the backward substitution phase can be
executed. The code for this is even more straightforward:

procedure substitute;
var j, k: integer;
t: red;

begin

for j:=N downto 1 do
begin
t:=0.0;
for k:=j+l to N do t:=t+a[j, k]*x[k];
x[j]==(alj, N+1]-t)/alj, j]
end

end;

A cal to eliminate followed by a call to substitute computes the solution in
the N-element array x. Division by 0 could still occur for singular matrices.
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Obviously a “library” routine would check for this explicitly.

An dternate way to proceed after forward elimination has created all
zeros below the diagonal is to use precisely the same method to produce all
zeros above the diagonal: first make the last column zero except for aN, N]
by adding the appropriate multiple of a[N, N], then do the same for the next~
to-last column, etc. That is, we do “partial pivoting” again, but on the other
“part” of each column, working backwards through the columns. After this
process, caled Gauss- Jordan reduction, is complete, only diagonal elements
are non-zero, which yields a trivial solution.

Computational errors are a prime source of concern in Gaussian elimina-
tion. As mentioned above, we should be wary of situations when the mag-
nitudes of the coefficients vastly differ. Using the largest available element
in the column for partial pivoting ensures that large coefficients won't be ar-
bitrarily created in the pivoting process, but it is not always possible to avoid
severe errors. For example, very small coefficients turn up when two different
equations have coefficients which are quite close to one another. It is actually
possible to determine in advance whether such problems will cause inaccurate
answers in the solution. Each matrix has an associated numerical quantity
called the condition number which can be used to estimate the accuracy of
the computed answer. A good library subroutine for Gaussian elimination
will compute the condition number of the matrix as well as the solution, so
that the accuracy of the solution can be lknown. Full treatment of the issues
involved would be beyond the scope of this book.

Gaussian elimination with partial pivoting using the largest available
pivot is “guaranteed” to produce results with very small computational errors.
There are quite carefully worked out mathematical results which show that the
calculated answer is quite accurate, except for ill-conditioned matrices (which
might be more indicative of problems in the system of equations than in the
method of solution). The algorithm has been the subject of fairly detailed

theoretical studies, and can be recommended as a computational procedure
of very wide applicability.

Variations and Extensions

The method just described is most appropriate for N-by-N matrices with
most of the N2 elements non-zero. As we've seen for other problems, special
techniques are appropriate for sparse matrices where most of the elements are
0. This situation corresponds to systems of equations in which each equation
has only a few terms.

If the non-zero elements have no particular structure, then the linked

list representation discussed in Chapter 2 is appropriate, with one node for
each non-zero matrix element, linked together by both row and column. The
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standard method can be implemented for this representation, with the usual
extra complications due to the need to create and destroy non-zero elements.
This technique is not likely to be worthwhile if one can afford the memory to
hold the whole matrix, since it is much more complicated than the standard
method. Also, sparse matrices become substantially less sparse during the
Gaussian elimination process.

Some matrices not only have just a few non-zero elements but also have
a simple structure, so that linked lists are not necessary. The most common
example of this is a “band)) matrix, where the non-zero elements all fal very
close to the diagonal. In such cases, the inner loops of the Gaussian elimination
algorithms need only be iterated a few times, so that the total running time
(and storage requirement) is proportional to N, not N3,

An interesting special case of a band matrix is a “tridiagonal” matrix,
where only elements directly on, directly above, or directly below the diagonal
are non-zero. For example, below is the general form of a tridiagonal matrix
for N = 5:
fgi1a2 0 0 0
a1 a2 a23 0 0

0 a3y a33 034 0
0 0 a43 Qa4 045
V0O 0 0 asgasg

For such matrices, forward elimination and backward substitution each reduce
to asingle for loop:

for j:=1 to N-l do
begin
ali+1, N+1]:=ali+1, N+-1]—ali, N+1]*ali+1,1]/a[i, i;
ali+1, i+1]:=ali+1, i+1]—a[i, i+1]*afi+1, 1] /a[i, i
end ;
for j:=== N downto 1 do

x[j):=(ali, N+1)-alj, j+1]*x[j+1])/a[j, ]I

For forward elimination, only the case j=i+1 and k=i+1 needs to be included,
since ali, k]=0 for k>i+1. (The case k =i can be skipped since it sets to 0
an array element which is never examined again -this same change could be
made to straight Gaussian elimination.) Of course, a two-dimensional array
of size N2 wouldn’t be used for a tridiagonal matrix. The storage required for
the above program can be reduced to be linear in N by maintaining four arrays
instead of the a matrix: one for each of the three nongzero diagonals and one
for the (N + 1)st column. Note that this program doesn’'t necessarily pivot on
the largest available element, so there is no insurance against division by zero
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or the accumulation of computational errors. For some types of tridiagonal
matrices which arise commonly, it can be proven that this is not a reason for
concern.

Gauss-Jordan reduction can be implemented with full pivoting to replace
a matrix by its inverse in one sweep through it. The inverse of a matrix
A, written A~! has the property that a system of equations Ax = b could
be solved just by performing the matrix multiplication £ = A~1b, Stll, N3
operations are required to compute x given b. However, there is a way to
preprocess a matrix and “decompose’ it into component parts which make
it possible to solve the corresponding system of equations with any given
right-hand side in time proportional to N?, a savings of a factor of N over
using Gaussian elimination each time. Roughly, this involves remembering
the operations that are performed on the (N + 1)st column during the forward
elimination phase, so that the result of forward elimination on a new (N + 1)st
column can be computed efficiently and then back-substitution performed as
usual.

Solving systems of linear equations has been shown to be computationally
equivalent to multiplying matrices, so tlhere exist agorithms (for example,
Strassen’s matrix multiplication algorithm) which can solve systems of N
equations in N variables in time proportional to N28L-- As with matrix
multiplication, it would not be worthwhile to use such a method unless very
large systems of equations were to be processed routinely. As before, the
actual running time of Gaussian elimination in terms of the number of inputs
is N3/2, which is difficult to improve upon in practice.
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Exercises

1

10.

Give the matrix produced by the forward elimination phase of Gaussian
elimination (gauss, with eliminate) when used to solve the equations x +
Yy+2=06,2c+y+32=12, and 3z +y +32=14.

Give a system of three equations in three unknowns for which gauss as is
(without eliminate) fails, even though there is a solution.

What is the storage requirement for Gaussian elimination on an N-by-N
matrix with only 3N nonzero elements?

Describe what happens when eliminate is used on a matrix with a row of
al (’s.

Describe what happens when eliminate then substitute are used on a
matrix with a column of al 0’s.

Which uses more arithmetic operations: Gauss-Jordan reduction or back
substitution?

If we interchange columns in a matrix, what is the effect on the cor-
responding simultaneous equations?

How would you test for contradictory or identical equations when using
eliminate.

Of what use would Gaussian elimination be if we were presented with a
system of M equations in N unknowns, with M < N? What if M > N?

Give an example showing the need for pivoting on the largest available
element, using a mythical primitive computer where numbers can be
represented with only two significant digits (all numbers must be of the
form z.y x 107 for single digit integers z, y, and z).



6. Curve Fitting

The term curve fitting (or data fitting) is used to describe the general
problem of finding a function which matches a set of observed values at
a set of given points. Specifically, given the points

T1,225+++3 TN

and the corresponding values

Y1, 92, YN,
the goal is to find a function (perhaps of a specified type) such that

f(z1) = y1, f(za)=y2,. .. flan) = N

and such that f(z) assumes “reasonable” values at other data points. It could
be that the z's and y’'s are related by some unknown function, and our goal
is to find that function, but, in general, the definition of what is “reasonable”
depends upon the application. We'll see that it is often easy to identify
“unreasonable” functions.

Curve fitting has obvious application in the analysis of experimental data,
and it has many other uses. For example,, it can be used in computer graphics
to produce curves that “look nice” without the overhead of storing a large
number of points to be plotted. A related application is the use of curve fitting
to provide a fast algorithm for computing the value of a known function at
an arbitrary point: keep a short table of exact values, curve fit to find other
values.

Two principa methods are used to approach this problem. The first is
interpolation: a smooth function is to be found which exactly matches the
given values at the given points. The second method, least squares data fitting,
is used when the given values may not be exact, and a function is sought which
matches them as well as possible.
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Polynomial Interpolation

We've already seen one method for solving the data-fitting problem: if f is
known to be a polynomial of degree N ~ 1, then we have the polynomial inter-
polation problem of Chapter 4. Even if we have no particular knowledge about
f, we could solve the data-fitting problem by letting f(z) be the interpolating
polynomial of degree N -~ 1 for the given points and values. This could be
computed using methods outlined elsewhere in this book, but there are many
reasons not to use polynomial interpolation for data fitting. For one thing,
a fair amount of computation is involved (advanced N(log N)2 methods are
available, but elementary techniques are quadratic). Computing a polynomial
of degree 100 (for example) seems overkill for interpolating a curve through
100 points.

The man problem with polynomial interpolation is that high-degree
polynomials are relatively complicated functions which may have unexpected
properties not well suited to the function being fitted. A result from classical
mathematics (the Weierstrass approximation theorem) tells us that it is pos-
sible to approximate any reasonable function with a polynomial (of sufficiently
high degree). Unfortunately, polynomials of very high degree tend to fluctuate
wildly. It turns out that, even though most functions are closely approximated
amost everywhere on a closed interval by an interpolation polynomial, there
are aways some places where the approximation is terrible. Furthermore,
this theory assumes that the data values are exact values from some unknown
function when it is often the case that the given data values are only ap-
proximate. If the y’'s were approximate values from some unknown low-degree
polynomial, we would hope that the coefficients for the high-degree terms in
the interpolating polynomial would be 0. It doesn't usualy work out this
way; instead the interpolating polynomial tries to use the high-degree terms
to help achieve an exact fit. These effects make interpolating polynomials
inappropriate for many curve-fitting applications.

Spline Interpolation

Still, low-degree polynomials are simple curves which are easy to work with
analytically, and they are widely used for curve fitting. The trick is to abandon
the idea of trying to make one polynomial go through all the points and instead
use different polynomials to connect adjacent points, piecing them together
smoothly,, An elegant special case of this, which also involves relatively
straightforward computation, is called spline interpolation.

A “spline” is a mechanical device used by draftsmen to draw aesthetically
pleasing curves: the draftsman fixes a set of points (knots) on his drawing, then
bends a flexible strip of plastic or wood (the spline) around them and traces
it to produce the curve. Spline interpolation is the mathematical equivalent
of this process and results in the same curve.
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It can be shown from elementary mechanics that the shape assumed by
the spline between two adjacent knots is a third-degree (cubic) polynomial.
Translated to our data-fitting problem, this means that we should consider
the curve to be N = 1 different cubic polynomials

si@)=aixd + bzt 4z +d;, =12 ,..., N-I,

with s,(z) defined to be the cubic polynomial to be used in the interval between
z; and Z;11, as shown in the following diagram:

(gt}
5.,

- )

The spline can be represented in the obvious way as four one-dimensional
arrays (or a 4-by-(N = 1) two-dimensiona array). Creating a spline consists
of computing the necessary a, b, ¢, d coefficients from the given x points and
y values. The physical constraints on the spline correspond to simultaneous
equations which can be solved to yield the coefficients.

For example, we obviously must have s;(z;) = y; and s;(z;+1) = yi41 fOr
1=1,2,...,N = 1 because the spline must touch the knots. Not only does the
spline touch the knots, but also it curves smoothly around them with no sharp
bends or kinks. Mathematically, this means that the first derivatives of the
spline polynomials must be equal at the knots (s;_, (z:) = s;(z;) for i = 2,3,. . . ,
N = 1). In fact, it turns out that the second derivatives of the polynomials
must be equal at the knots. These conditions give a total of 4N — 6 equations
in the 4(N —1) unknown coefficients. Two more conditions need to be specified
to describe the situation at the endpoints of the spline. Several options are
available; we'll use the so-called “natural” spline which derives from sj(z4) =
0 and s _;(zn) = 0. These conditions give a full system of 4N — 4 equations
in 4N = 4 unknowns, which could be solved using Gaussian elimination to
calculate all the coefficients that describe the spline.

The same spline can be computed somewhat more efficiently because
there are actually only N — 2 “unknowns’: most of the spline conditions are
redundant. For example, suppose that p, is the value of the second derivative
of the spline at z;, so that s;_y(z:) = s/(z;)= psfori =2..., N — 1, with
p1 = pny = 0. If the values of pi, ... ,pn are known, then all of thea b, c, d
coefficients can be computed for the spline segments, since we have four
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equations in four unknowns for each spline segment: for 1 =1,2,. .., N = 1,
we must have
S-,‘(.’IL,;) =Y
5i(Tit1) = Yit1
s;(3:) = ps

3;’(3314—1) = Di41-
Thus, to fully determine the spline, we need only compute the values of
pa,...,PN—1. But this discussion hasn't even considered the conditions that
the first derivatives must match. These N -~ 2 conditions provide exactly
the N = 2 eguations needed to solve for the N = 2 unknowns, the p; second
derivative values.

To expressthe a, b, ¢, and d coefficientsin terms of the p second derivative
values, then substitute those expressions into the four equations listed above
for each spline segment, leads to some unnecessarily complicated expressions.
Instead it is convenient to express the equations for the spline segments in a
certain canonical form that involves fewer unknown coefficients. If we change
variables to ¢ = (z = z;)d¢i+1 = ;) then the spline can be expressed in the
following way:

$i(t) = thirr + (L= t)ys + (v = ) (B2 = O)pig1 = (A —1)* (1= t))my]

Now each spline is defined on the interval [0,1]. This equation is less formi-
dable than it looks because we're mainly interested in the endpoints O and 1,
and either ¢t or (1 —t) is O at these points. It's trivial to check that the spline
interpolates and is continuous because s;_1(1) = s4(0) = y;for 1 =2, .., N,
and it's only slightly more difficult to verify that the second derivative is con-
tinuous because s;(1) = s, ,(0) = p;4;. These are cubic polynomials which
satisfy the requisite conditions at the endpoints, so they are equivalent to the
spline segments described above. If we were to substitute for ¢ and find the
coefficient of z3, etc., then we would get the same expressions for the a's, b’s,
c's, and d's in terms of the x's, y’'s, and p’s as if we were to use the method
described in the previous paragraph. But there’s no reason to do so, because
we've checked that these spline segments satisfy the end conditions, and we
can evaluate each at any point in its interval by computing ¢ and using the
above formula (once we know the p’'s).

To solve for the p’s we need to set the first derivatives of the spline

segments equal at the endpoints. The first derivative (with respect to x) of
the above equation is

’

5it) = zi + (Tip1 = 23)((3% = 1)pyyy + (3(1=1)%+1)pj]
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where 2 = (y;41—Y;)/(Ti41—2;). Now, setting s;_,(1) = s;(0)for 1 = 2..., N—
1 givesour system of N 2 equations to solve:

(@ = Tie1)Pic1 + 2Tig1 = Tim1)pi + (Tigt — Ti)Pit1 = 2 — 2.

This system of equations is a simple “tridiagonal” form which is easily solved
with a degenerate version of Gaussian elimination as we saw in Chapter 5. If
we let u; = z;19 = T4y di = 2(Ty41 — T4—1), A w; = 2, 21, We have, for
example, the following simultaneous equations for N = 7:

Ay Al WY SR el
g il sy 01N O i-'a"l\lll
Doyl wg O )| Da|=¢ ity .
O D, Jsus | rs 'y

00 0 oy de s By '--"-""_'IJ'J

In fact, this is a symmetric tridiagona system, with the diagonal below the
main diagonal equal to the diagonal above the main diagonal. It turns out that
pivoting on the largest available element is not necessary to get an accurate
solution for this system of equations.

The method described in the above paragraph for computing a cubic
spline trandates very easily into Pascal:

procedure makespline,
var i: integer;
begin
readln (N) ;
for i:=1to N do readln(x[i], y[i]);
for i:=2 to N-l do d[i]:=2«(x[i+1]|—x[i—1]);
for i:=1to N-I do uli]:=x[i+1]—x]i];
for 1:=2 to N-I do
wlil. (pl4 ] 7 b= R il
p[1] :=0.0; p[N]:=0.0;
for i:=2 to N-2 do
begin
wli+1]:=w(i+1]—wli]*u[i]/d[i];
d(i+1):=d[i+1]—u[i]*u[i] /d[i]
end ;
for j:=N—1 downto 2 do
pli)=(wlil—ulil*pli+1])/dli};
end;
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The arrays d and u are the representation of the tridiagonal matrix that is
solved using the program in Chapter 5. We use d[i] where di, i] is used in
that program, u(i] where a[i+1, i] or a[i, i+1] is used, and z[i] where ali, N+1]
is used.

For an example of the construction of a cubic spline, consider fitting a
spline to the five data points

(10,2.0), (2.0,1.5), (40,1.25), (5.0,1.2), (8.0,1.125), (10.0,1.1).

(These come from the function 1 + I/z.) The spline parameters are found by
solving the system of equations

I"E 2 1 I Feas P PR
LT | 11 | Rlaall

1 :1] | lh')ll)
LET I B 11 KS-“ S ) P k%

with the result p; = 0.06590, ps = -0.01021, p4 = 0.00443, ps = -0.00008.
To evaluate the spline for any value of z inthe range [z, , ], we Simply

find the intervd [z;, z;44] containing z, then compute ¢ and use the formula

above for s;(z) (which, in turn, uses the computed values for p; and p; ;).

function eval(v: real): real;
var t red; i: integer;

function f(x: real): red;

begin fi=x*x*x—x end;

begin
i:=0; repeat j:=j+1 until v<=x[i+1];
b:=(v—x[i])/uli];

eval:=t*y[i+1]4+(1—t)*y]i]
rulileulif(f(tJepli+1]-f(1-t)p[i])

end;

This program does not check for the error condition when v is not between
x[1) and x[N]. If there are a large number of spline segments (that is, if N
is large), then there are more efficient “searching” methods for finding the
interval containing v, which we'll study in Chapter 14.

There are many variations on the idea of curvefitting by piecing together
polynomias in a “smooth” way: the computation of splines is a quite well-
developed field of study. Other types of splines involve other types of smooth-
ness criteria as well as changes such as relaxing the condition that the spline
must exactly touch each data point. Computationally, they involve exactly
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the same steps of determining the coefficients for each of the spline pieces by
solving the system of linear equations derived from imposing constraints on
how they are joined.

Method of Least Squares

A very common experimental situation is that, while the data values that we
have are not exact, we do have some idea of the form of the function which
is to fit the data. The function might depend on some parameters

fz)= fci,co,...,ca1,T)

and the curve fitting procedure is to find the choice of parameters that “best”
matches the observed values at the given points. If the function were a poly-
nomial (with the parameters being the coefficients) and the values were exact,
then this would be interpolation. But now we are considering more general
functions and inaccurate data. To simplify the discussion, we'll concentrate
on fitting to functions which are expressed as a linear combination of simpler
functions, with the unknown parameters being the coefficients:

f(x) =crfi(z)+eafolz) +-- + emfulz).

This includes most of the functions that we'll be interested in. After studying
this case, we'll consider more general functions.

A common way of measuring how well a function fits is the least-squares
criterion; the error is calculated by adding up the squares of the errors at
each of the observation points:

E = Y (fle)-w)
1<j<N
This is a very natural measure: the squaring is done to stop cancellations
among errors with different signs. Obviously, it is most desirable to find the
choice of parameters that minimizes E. It turns out that this choice can be
computed efficiently: this is the so-called method of least squares.

The method follows quite directly from the definition. To simplify the
derivation, we'll do the case M =2, N = 3, but the general method will follow
directly. Suppose that we have three points xi, zz, T3 and corresponding values
Y1, Y2, ys which are to be fitted to a function of the form f(x) = ¢ fi(z) +
¢ fo(z). Our job is to find the choice of the coefficients ¢1, c; which minimizes
the least-squares error

E =(c1 fi{z1) + cafo(z1) = y1)2
+ (c1f1(z2) + cafa(@2) = y2)?
+ (c1fi(zs) + ca fa(zs) = ya)?.
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To find the choices of ¢; and ¢, which minimize this error, we simply need to
set the derivatives dE/dc; and dE /de; to zero. For ¢; we have:

Z_CEII =2(61f1((1;1) + szg(ajl) yl)fl(l'l)

+2(c1 f1(z2) + cafa(z2) ~ y2) fi(x2)
+2(c1 f1(z3) + ca folzs) — y3) fr(z3).

Setting the derivative equal to zero leaves an equation which the variables ¢y
and ¢z must satisfy (fi(z), etc. are all “constants” with known values):

cilfilz)fi(za) + file2)fi(z2) + fi(z3)f1(zs)]

Fealfa(z1)f1(z1) + fa(z2)fi