
CHAPTER 1

The Physical Origins of Partial Differential

Equations

1. Mathematical Models

Exercise 1. The verification that u = 1√
4πkt

e−x2/4kt satisfies the heat equation

ut = kuxx is straightforward differentiation. For larger k, the profiles flatten out
much faster.

Exercise 2. The problem is straightforward differentiation. Taking the derivatives
is easier if we write the function as u = 1

2 ln(x2 + y2).

Exercise 3. Integrating uxx = 0 with respect to x gives ux = φ(t) where φ is an
arbitrary function. Integrating again gives u = φ(t)x+ψ(t). But u(0, t) = ψ(t) = t2

and u(1, t) = φ(t) · 1 + t2, giving φ(t) = 1 − t2. Thus u(x, t) = (1 − t2)x+ t2.

Exercise 4. Leibniz’s rule gives

ut =
1

2
(g(x+ ct) + g(x− ct))

Thus

utt =
c

2
(g′(x+ ct) − g′(x− ct))

In a similar manner

uxx =
1

2c
(g′(x+ ct) − g′(x− ct))

Thus utt = c2uxx.

Exercise 5. If u = eat sin bx then ut = aeat sin bx and uxx = −b2eat sin bx. Equat-
ing gives a = −b2.

Exercise 6. Letting v = ux the equation becomes vt + 3v = 1. Multiply by the
integrating factor e3t to get

∂

∂t
(ve3t) = e3t

Integrate with respect to t to get

v =
1

3
+ φ(x)e−3t

1
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where φ is an arbitrary function. Thus

u =

∫

vdx =
1

3
x+ Φ(x)e−3t + Ψ(t)

Exercise 7. Let w = eu or u = lnw Then ut = wt/w and ux = wx/w, giving
wxx = wxx/w − w2

x/w
2. Substituting into the PDE for u gives, upon cancellation,

wt = wxx.

Exercise 8. It is straightforward to verify that u = arctan(y/x) satisfies the
Laplace equation. We want u→ 1 as y → 0 (x > 0), and u→ −1 as y → 0 (x < 0).
So try

u = 1 − 2

π
arctan

y

x
We want the branch of arctan z with 0 < arctan z < π/2 for z > 0 and π/2 <
arctan z < π for z < 0.

Exercise 9. Differentiate under the integral sign to obtain

uxx =

∫ ∞

0

−ξ2c(ξ)e−ξy sin(ξx)dξ

and

uyy =

∫ ∞

0

ξ2c(ξ)e−ξy sin(ξx)dξ

Thus

uxx + uyy = 0

.

Exercise 10. In preparation.

2. Conservation Laws

Exercise 1. Since A = A(x) depends on x, it cannot cancel from the conservation
law and we obtain

A(x)ut = −(A(x)φ)x +A(x)f

Exercise 2. The solution to the initial value problem is u(x, t) = e−(x−ct)2 . When
c = 2 the wave forms are bell-shaped curves moving to the right at speed two.

Exercise 3. Letting ξ = x − ct and τ = t, the PDE ut + cux = −λu becomes
Uτ = −λU or U = φ(ξ)e−λt. Thus

u(x, t) = φ(x− ct)e−λt

Exercise 4. In the new dependent variable w the equation becomes wt + cwx = 0.

Exercise 5. In preparation.
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Exercise 6. From Exercise 3 we have the general solution u(x, t) = φ(x− ct)e−λt.
For x > ct we apply the initial condition u(x, 0) = 0 to get φ ≡ 0. Therefore
u(x, t) = 0 in x > ct. For x < ct we apply the boundary condition u(0, t) = g(t) to
get φ(−ct)e−λt = g(t) or φ(t) = eλt/cg(−t/c). Therefore u(x, t) = g(t− x/c)e−λx/c

in 0 ≤ x < ct.

Exercise 7. Making the transformation of variables ξ = x − t, τ = t, the PDE
becomes Uτ − 3U = τ , where U = U(ξ, τ). Multiplying through by the integrating
factor exp(−3τ) and then integrating with respect to τ gives

U = −
(

τ

3
+

1

9

)

+ φ(ξ)e3τ

or

u = −
(

t

3
+

1

9

)

+ φ(x− t)e3t

Setting t = 0 gives φ(x) = x2 + 1/9. Therefore

u = −
(

t

3
+

1

9

)

+ ((x− t)2 +
1

9
)e3t

Exercise 8. Letting n = n(x, t) denote the concentration in mass per unit volume,
we have the flux φ = cn and so we get the conservation law

nt + cnx = −r
√
n 0 < x < l, t > 0

The initial condition is u(x, 0) = 0 and the boundary condition is u(0, t) = n0. To
solve the equation go to characteristic coordinates ξ = x− ct and τ = t. Then the
PDE for N = N(ξ, τ) is Nτ = −r

√
N . Separate variables and integrate to get

2
√
N = −rτ + Φ(ξ)

Thus
2
√
n = −rt+ Φ(x− ct)

Because the state ahead of the leading signal x = ct is zero (no nutrients have
arrived) we have u(x, t) ≡ 0 for x > ct. For x < ct, behind the leading signal,
we compute Φ from the boundary condition to be Φ(t) = 2

√
no − rt/c. Thus, for

0 < x < ct we have

2
√
n = −rt+ 2

√
n0 −

r

c
(x− ct)

Along x = l we have n = 0 up until the signal arrives, i.e., for 0 < t < l/c. For
t > l/c we have

n(l, t) = (
√
n0 −

rl

2c
)2

Exercise 9. The graph of the function u = G(x+ ct) is the graph of the function
y = G(x) shifted to the left ct distance units. Thus, as t increases the profile
G(x+ ct) moves to the left at speed c. To solve the equation ut − cux = F (x, t, u)
on would transform the independent variables via x = x+ ct, τ = t.

Exercise 10. The conservation law for traffic flow is

ut + φx = 0
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If φ(u) = αu(β − u) is chosen as the flux law, then the cars are jammed at the
density u = β, giving no movement or flux; if u = 0 there is no flux because there
are no cars. The nonlinear PDE is

ut + (αu(β − u))x = 0

or

ut + α(β − 2u)ux = 0

Exercise 11. Transform to characteristic coordinates ξ = x− vt, τ = t to get

Uτ = − αU

β + U
, U = U(ξ, τ)

Separating variables and integrating yields, upon applying the initial condition and
simplifying, the implicit equation

u− αt− f(x) = β ln(u/f(x))

Graphing the right and left sides of this equation versus u (treating x and t > 0 as
parameters) shows that there are two crossings, or two roots u; the solution is the
smaller of the two.

Exercise 12. In preparation.

3. Diffusion

Exercise 1. We haveuxx(6, T ) ≈ (58− 2(64) + 72)/22 = 0.5. Since ut = kuxx > 0,
the temperatue will increase. We have

ut(T, 6) ≈ u(T + 0.5, 6) − u(T, 6)

0.5
≈ kuxx(T, 6) ≈ 0.02(0.5)

This gives u(T + 0.5, 6) ≈ 64.005.

Exercise 2. Taking the time derivative

E′(t) =
d

dt

∫ l

0

u2dx =

∫ l

0

2uutdx = 2k

∫ l

0

uuxxdx

= 2kuux |l0 −2k

∫

u2
x ≤ 0

Thus E in nonincreasing, so E(t) ≤ E(0) =
∫ l

0
u0(x)dx. Next, if u0 ≡ 0 then

E(0) = 0. Therefore E(t) ≥ 0, E′(t) ≤ 0, E(0) = 0. It follows that E(t) = 0.
Consequently u(x, t) = 0.

Exercise 3. Take

w(x, t) = u(x, t) − h(t) − g(t)

l
(x− l) − g(t)



3. DIFFUSION 5

Then w will satisfy homogeneous boundary conditions. We get the problem

wt = kwxx − F (x, t), 0 < x < l, t > 0

w(0, t) = w(l, t) = 0, t > 0

w(x, 0) = G(x), 0 < x < l

where

F (x, t) =
l − x

l
(h′(t) − g′(t)) − g′(t), G(x) = u(x, 0) − h(0) − g(0)

l
(x− l) − g(0)

Exercise 4. This is a straightforward calculation.

Exercise 5. The steady state problem for u = u(x) is

ku′′ + 1 = 0, u(0) = 0, u(1) = 1

Solving this boundary value problem by direct integration gives the steady state
solution

u(x) = − 1

2k
x2 = (1 +

1

2k
)x

which is a concave down parabolic temperature distribution.

Exercise 6. The steady-state heat distribution u = u(x) satisfies

ku′′ − au = 0, u(0) = 1, u(1) = 1

The general solution is u = c1 cosh
√

a/kx+ c2 sinh
√

a/kx. The constants c1 and
c2 can be determined by the boundary conditions.

Exercise 7. The boundary value problem is

ut = Duxx + ru(1 − u/K), 0 < x < l, t > 0

ux(0, t) = ux(l, t) = 0, t > 0

u(x, 0) = ax(l − x), 0 < x < l

For long times we expect a steady state density u = u(x) to satisfy −Du′′ + ru(1−
u/K) = 0 with insulated boundary conditions u′(0) = u′(l) = 0. There are two
obvious solutions to this problem, u = 0 and u = K. From what we know about
the logistics equation

du

dt
= ru(1 − u/K)

(where there is no spatial dependence and no diffusion, and u = u(t)), we might
expect the the solution to the problem to approach the stable equilibrium u = K.
In drawing profiles, note that the maximum of the initial condition is al2/4. So
the two cases depend on whether this maximum is below the carrying capacity or
above it. For example, in the case al2/4 < K we expect the profiles to approach
u = K from below.

Exercise 8 These facts are directly verified.
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4. PDE Models in Biology

Exercise 1. We have

ut = (D(u)ux)x = D(u)uxx +D(u)xux

= D(u)uxx +D′(u)uxux.

Exercise 2. The steady state equation is (Du′)′ = 0, where u = u(x). If D =
constant then u′′ = 0 which has a linear solution u(x) = ax+ b. Applying the two
end conditions (u(0) = 4 and u′(2) = 1) gives b = 4 and a = 1. Thus u(x) = x+ 4.
The left boundary condition means the concentration is held at the value u = 4,
and the right boundary condition means −Du′(2) = −D, meaning that the flux is
−D. So matter is entering the system at L = 2 (moving left). In the second case
we have

(

1

1 + x
u′
)′

= 0.

Therefore
1

1 + x
u′ = a

or

u′ = a(1 + x).

The right boundary condition gives a = 1/3. Integrating again and applying the
left boundary condition gives

u(x) =
1

3
x+

1

6
x2 + 4.

In the third case the equation is

(uu′)′ = 0,

or uu′ = a.This is the same as
1

2
(u2)′ = a,

which gives
1

2
u2 = ax+ b.

¿From the left boundary condition b = 8. Hence

u(x) =
√

2ax+ 16.

Now the right boundary condition can be used to obtain the other constant a .
Proceeding,

u′(2) =
a

2
√
a+ 4

= 1.

Thus a = 2 +
√

20.

Exercise 3. The general solution of Du′′ − cu′ = 0 is u(x) = a + becx/D. In the
second case the equation is Du′′ − cu′ + ru = 0. The roots of the characteristic
polynomial are

λ± =
c

2D
±

√
c2 − 4Dr

2D
.
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There are three cases, depending upon upon the discriminant c2−4Dr. If c2−4Dr =
0 then the roots are equal ( c

2D ) and the general solution has the form

u(x) = aecx/2D + bxecx/2D.

If c2 − 4Dr > 0 then there are two real roots and the general solution is

u(x) = aeλ+x + beλ
−

x.

If c2 − 4Dr < 0 then the roots are complex and the general solution is given by

u(x) = aecx/2D

(

a cos

√
4Dr − c2

2D
x+ b sin

√
4Dr − c2

2D
x

)

.

Exercise 4. If u is the concentration, use the notation u = v for 0 < x < L/2, and
u = w for L/2 < x < L.The PDE model is then

vt = vxx − λv, 0 < x < L/2,

wt = wxx − λw, L/2 < x < L.

The boundary conditions are clearly v(0, t) = w(L, t) = 0, and continuity at the
midpoint forces v(L/2) = w(L/2). To get a condition for the flux at the midpoint
we take a small interval [L/2 − ǫ, L/2 + ǫ]. The flux in at the left minus the flux
out at the right must equal 1, the amount of the source. In symbols,

−vx(L/2 − ǫ, t) + wx(L/2 + ǫ) = 1.

Taking the limit as ǫ→ 0 gives

−vx(L/2, t) + wx(L/2) = 1.

So, there is a jump in the derivative of the concentration at the point of the source.
The steady state system is

v′′ − λv = 0, 0 < x < L/2,

w′′ − λw = 0, L/2 < x < L,

with conditions

v(0) = w(L) = 0,

v(L/2) = w(L/2),

−v′(L/2) + w′(L/2) = 1.

Let r =
√
λ. The general solutions to the DEs are

v = aerx + be−rx, w = cerx + de−rx.

The four constants a, b, c, d may be determined by the four subsiduary conditions.

Exercise 5. The steady state equations are

v′′ = 0, 0 < x < ξ,

w′′ = 0, ξ < x < L,
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The conditions are

v(0) = w(L) = 0,

v(ξ) = w(ξ),

−v′(ξ) + w′(ξ) = 1.

Use these four conditions to determine the four constants in the general solution to
the DEs. We finally obtain the solution

v(x) =
ξ − L

L
x, w(x) =

x− L

L
ξ.

Exercise 6. The equation is

ut = uxx − ux, 0 < x < L

(With no loss of generality we have taken the constants to be equal to one). Inte-
grating from x = 0 to x = L gives

∫ L

0

utdx =

∫ L

0

uxxdx−
∫ L

0

uxdx.

Using the fundamental theorem of calculus and bringing out the time derivative
gives

∂

∂t

∫ L

0

udx = ux(L, t) − ux(0, t) − u(L, t) + u(0, t) = −flux(L, t) + flux(0, t) = 0.

Exercise 7. The model is

ut = Duxx + agux,

u(∞, t) = 0, −Dux(0, t) − agu(0, t) = 0.

The first boundary condition states the concentration is zero at the bottom (a great
depth), and the second condition states that the flux through the surface is zero,
i.e., no plankton pass through the surface. The steady state equation is

Du′′ + agu′ = 0,

which has general solution

u(x) = A+Be−agx/D.

The condition u(∞) = 0 forces A=0. The boundary condition −Du′(0)−agu(0) = 0
is satisfied identically. So we have

u(x) = u(0)e−agx/D.

Exercise 8. Notice that the dimensions of D are length-squared per unit time,
so we use D = L2/T , where L and T are the characteristic length and time,
respectively. For sucrose,

L =
√
DT =

√

(4.6 × 10−6)(60 × 60 × 24) = 0.63 cm.

For the insect,

T =
L2

D
=

100002

2.0 × 10−1
= 5 × 108 sec = 6000 days.
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Exercise 9. Solve each of the DEs, in linear, cylindrical, and spherical coordinates,
respectively:

Du′′ = 0,

D

r
(ru′)′ = 0,

D

ρ2
(ρ2u′)′ = 0.

Exercise 10. Let q = 1 − p and begin with the equation

u(x, t+ τ) − u(x, t) = pu(x− h, t) + qu(x+ h, t) − pu(x, t) − qu(x, t),

or

u(x, t+ τ) = pu(x− h, t) + qu(x+ h, t).

Expanding in Taylor series (u and its derivatives are evaluated at (x, t) ),

u+ utτ + · · · = pu− puxh+
1

2
puxxh

2 + qu+ quxh+
1

2
quxxh

2 + · · ·,
or

τut = (1 − 2p)uxh+
1

2
uxxh

2 + · · ·.
Then

ut = (1 − 2p)ux
h

τ
+
h2

2τ
uxx + · · ·.

Taking the limit as h, τ → 0 gives

ut = cux +Duxx,

with appropriately defined special limits.

Exercise 11. Similar to the example on page 30.

Exercise 12. Draw two concentric circles of radius r = a and r = b. The total
amount of material in between is

2π

∫ b

a

u(r, t)rdr.

The flux through the circle r = a is −2πaDur(a, t) and the flux through r=b is
−2πbDur(b, t). The time rate of change of the total amount of material in between
equals the flux in minus the flux out, or

2π
∂

∂t

∫ b

a

u(r, t)rdr. = −2πaDur(a, t) + 2πbDur(b, t),

or
∫ b

a

ut(r, t)rdr =

∫ b

a

D
∂

∂r
(rur(r, t))dr.

Since a and b are arbitrary,

ut(r, t)r = D
∂

∂r
(rur(r, t)).
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5. Vibrations and Acoustics

Exercise 1. In the vertical force balance the term −
∫ l

0
gρ0(x)dx should be added

to the right side to account for gravity acting downward.

Exercise 2. In the vertical force balance the term −intl0ρ0(x)kutdx should be
added to the right side to account for damping.

Exercise 4. The initial conditions are found by setting t = 0 to obtain

un(x, 0) = sin
nπx

l

The temporal frequency of the oscillation is ω ≡ nπc/l with period 2π/ω. As the
length l increases, the frequency decreases, making the period of oscillation longer.
The tension is τ satisfies ρ0c

2 = τ . As τ increases the frequency increases so
the oscillations are faster. Thus, tighter strings produce higher frequencies; longer
string produce lower frequencies.

Exercise 5. The calculation follows directly by applying the hint.

Exercise 6. We have

c2 =
dp

dρ
= kγργ−1 =

γp

ρ

Exercise 8. Assume ρ̃(x, t) = F (x − ct), a right traveling wave, where F is to
be determined. Then this satisfies the wave equation automatically and we have
ρ̃(0, t) = F (−ct) = 1 − 2 cos t, which gives F (t) = 1 − 2 cos(−t/c). Then

ρ̃(x, t) = 1 − 2 cos(t− x/c)

6. Quantum Mechanics

Exercise 1. This is a straightforward verification using rules of differentiation.

Exercise 2. Observe that

|Ψ(x, t)| = |y(x)||Ce−iEt/~| = C|y(x)|

Exercise 3. Substitute y = e−ax2

into the Schrödinger equation to get

E = ~
2a/m, a2 =

1

4
mk/~2

This gives

y(x) = Ce−0.5
√

mkx2/~

To find C impose the normality condition
∫

R
y(x)2dx = 1 and obtain

C =

(

mk

2π~

)1/4
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Exercise 5. Let b2 ≡ 2mE/~2. Then the ODE

y′′ + by = 0

has general solution
y(x) = A sin bx+B cos bx

The condition y(0) = 0 forces B = 0. The condition y(π) = 0 forces sin bπ = 0,
and so (assuming B 6= 0) b must be an integer, i.e., n2 ≡ 2mE/~2. The probability
density functions are

y2
n(x) = B2 sin2 nx

with the constants B chosen such that
∫ π

0
y2dx = 1. One obtains B =

√

2/π. The
probabilities are

∫ 0

0

.25y2
n(x)dx

7. Heat Flow in Three Dimensions

In these exercises we use the notation ∇ for the gradient operation grad.

Exercise 1. We have

div(∇u) = div(ux, uy, uz) = uxx + uyy + uzz

Exercise 2. For nonhomogeneous media the conservation law (1.40) becomes

cρut − div(K(x, y, z)∇u) = f

So the conductivity K cannot be brought out of the divergence.

Exercise 3. Integrate both sides of the PDE over Ω to get
∫

Ω

fdV =

∫

Ω

−K∆udV =

∫

Ω

−Kdiv(∇u)dV

=

∫

∂Ω

−K ∇u · ndA =

∫

∂Ω

gdA

The left side is the net heat generated inside Ω from sources; the right side is the
net heat passing through the boundary. For steady-state conditions, these must
balance.

Exercise 4. Follow the suggestion and use the divergence theorem.

Exercise 5. Follow the suggestion in the hint to obtain

−
∫

Ω

∇u · ∇u dV = λ

∫

Ω

u2dV

Both integrals are nonnegative, and so λ must be nonpositive. Note that λ 6= 0;
otherwise u = 0.

Exercise 6. This calculation is on page 137 of the text.

Exercise 7. In preparation.
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8. Laplace’s Equation

Exercise 1. The temperature at the origin is the average value of the temperature
around the boundary, or

u(0, 0) =
1

2π

∫ 2π

0

(3 sin 2θ + 1)dθ

The maximum and minimum must occur on the boundary. The function f(θ) =
3 sin 2θ + 1 has an extremum when f ′(θ) = 0 or 6 cos 2θ = 0. The maxima then
occur at θ = π/4, 5π/4 and the minima occur at θ = 3π/4, 7π/4.

Exercise 2. We have u(x) = ax+ b. But u(0) = b = T0 and u(l) = al + T0 = T1,
giving a = (T1 − T0)/l. Thus

u(x) =
T1 − T0

l
x+ T0

which is a straight line connecting the endpoint temperatures. When the right end
is insulated the boundary condition becomes u′(l) = 0. Now we have a = 0 and
b = T0 which gives the constant distribution

u(x) = T0

Exercise 3. The boundary value problem is

−((1 + x2)u′)′ = 0, u(0) = 1, u(1) = 4

Integrating gives (1 + x2)u′ = c1, or u′ = c1/(1 + x2). Integrating again gives

u(x) = c1 arctanx+ c2

But u(0) = c2 = 1, and u(1) = c1 arctan 1 + 1 = 4. Then c1 = 6/π.

Exercise 4. Assume u = u(r) where r =
√

x2 + y2. The chain rule gives

ux = u′(r)rx = u′(r)
x

√

x2 + y2

Then, differentiating again using the product rule and the chain rule gives

uxx =
x2

r2
u′′(r) +

y2

r3

Similarly

uyy =
y2

r2
u′′(r) +

x2

r3

Then

∆u = u′′ +
1

r
u′ = 0

This last equation can be written

(ru′)′ = 0

which gives the radial solutions

u = a ln r + b
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which are logrithmic. The one dimensional Laplace equation u′′ = 0 has linear
solutions u = ax + b, and the three dimensional Laplace equation has algebraic
power solutions u = aρ−1 + b. In the two dimensional problem we have u(r) =
a ln r + b with u(1) = 0 and u(2) = 10. Then b = 0 and a = 10/ ln 2. Thus

u(r) = 10
ln r

ln 2

Exercise 5. We have ∇V = E. Taking the divergence of both sides gives ∆V =
div∇V = div E = 0.

9. Classification of PDEs

Exercise 1. The equation

uxx + 2kuxt + k2utt = 0

is parabolic because B2 − 4AC = 4k2 − 4k2 = 0. Make the transformation

x = ξ, τ = x− (B/2C)t = x− t/k

Then the PDE reduces to the canonical form Uξξ = 0. Solve by direct integration.
Then Uξ = f(τ) and U = ξf(τ) + g(τ). Therefore

u = xf(x− t/k) + g(x− t/k)

where f, g are arbitrary functions.

Exercise 2. The equation 2uxx − 4uxt + ux = 0 is hyperbolic. Make the transfor-
mation ξ = 2x+ t, τ = t and the PDE reduces to the canonical form

Uξτ − 1

4
Uξ = 0

Make the substitution V = Uξ to get Vτ = 0.25V , or V = F (ξ)eτ/4. Then U =

f(ξ)eτ/4 + g(τ), giving

u = f(2x+ t)et/4 + g(t)

Exercise 3. The equation xuxx−4uxt = 0 is hyperbolic. Under the transformation
ξ = t, τ = t+ 4 lnx the equation reduces to

Uξτ +
1

4
U = 0

Proceeding as in Exercise 2 we obtain

u = f(t+ 4 lnx)et/4 + g(t)

.

Exercise 5. The discriminant for the PDE

uxx − 6uxy + 12uyy = 0
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is D = −12 is negative and therefore it is elliptic. Take b = 1/4 +
√

3i/12 and
define the complex transformation ξ = x+ by, τ = x+ by. Then take

α =
1

2
(ξ + τ) = x+

1

4
y

and

β =
1

2i
(ξ − τ) =

√
3

12
y

Then the PDE reduces to Laplace’s equation uαα + uββ = 0.

Exercise 6. In preparation.

Exercise 7. In preparation.


