
CHAPTER 1

Orthogonal Expansions

1. The Fourier Method

Exercise 1. Form the linear combination

u(x, t) =

∞
∑

n=1

an cosnct sinnx

Then

u(x, 0) = f(x) =

∞
∑

n=1

an sinnx

Using the exactly same calculation as in (3.5)–(3.7) in the text, we obtain

an =
2

π

∫ π

0

f(x) sinnx dx

Observe that ut(x, 0) = 0 is automatically satisfied.
When the initial conditions are changed to u(x, 0) = 0, ut(x, 0) = g(x) then a

linear combination of the fundamental solutions un(x, t) = cosnct sinnx does not
suffice. But, observe that un(x, t) = sinnct sinnx now works and form the linear
combination

u(x, t) =

∞
∑

n=1

bn sinnct sinnx

Now u(x, 0) = 0 is automatically satisfied and

ut(x, 0) = g(x) =

∞
∑

n=1

ncbn sinnx

Again using the argument in (3.5)–(3.7), one easily shows the bn are given by

bn =
2

ncπ

∫ π

0

g(x) sinnx dx

2. Orthogonal Expansions

Exercise 1. The requirement for orthogonality is
∫ π

0

cosmx cosnx dx = 0, m 6= n

1
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For the next part make the substitution y = πx/l to get
∫ l

0

cos(mπx/l) cos(nπx/l); dx =

∫ π

0

cosmy cosny dy = 0, m 6= n

We have

cn =
(f, cos(nπx/l))

|| cos(nπx/l)||2
Thus

c0 =
1

l

∫ l

0

f(x)dx, cn =
2

l

∫ l

0

f(x) cos(nπx/l)dx, n ≥ 1

Exercise 3. Up to a constant factor, the Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x

The coefficients cn in the expansion are given by the generalized Fourier coefficients

cn =
1

||Pn||2
(f, Pn) =

∫ 1

−1
exPn(x)dx

∫ 1

−1
Pn(x)2dx

The pointwise error is

E(x) = ex −
3
∑

n=0

cnPn(x)

The mean square error is

E =

(

∫ 1

−1

[ex −
3
∑

n=0

cnPn(x)]2dx

)1/2

The maximum pointwise error is max−1≤x≤1 |E(x)|.

Exercise 4. Use the calculus facts that
∫ b

0

1

xp
dx <∞, p < 1

and
∫ ∞

a

1

xp
dx <∞, p > 1 (a > 0)

Otherwise the improper integrals diverge. Thus xr ∈ L2[0, 1] if r > −1/2 and
xr ∈ L2[0,∞] if r < −1/2 and r > −1/2, which is impossible.

Exercise 5. We have

cosx =

∞
∑

n=1

bn sin 2nx, bn =
4

π

∫ π/2

0

cosx sin 2nx dx

Also

sinx =
∞
∑

n=1

bn sinnx

clearly forces b1 = 1 and bn = 0 for n ≥ 1. Therefore the Fourier series of sinx on
[0, π] is just a single term, sinx.
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Exercise 6. (a) We find

H0(x) = 1, H1(x) = 2x, H2(x) = 2(2x2 − 1)

H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12

(b) This is a straightforward verification. (c) To verify orthogonality, note that

−v′′n + x2vn = (2n+ 1)vn, −v′′m + x2vm = (2m+ 1)vn

Multiply the first equation by vm and the second by vn, subtract, and then integrate
over R to get

∫

R

(−v′′nvm + v′′mvn)dx = 2(n−m)

∫

R

vmvndx

But integrating by parts twice gives
∫

R

vmv
′′
ndx =

∫

R

vnv
′′
mdx

The boundary terms generated by the parts integration go to zero since the vn and
v′n go to zero as x→ ±∞. Thus the left side of the equation above is zero, forcing

∫

R

vmvndx = 0 when m 6= n

(d) If f(x) =
∑∞

n=0 cnvn(x), then

cn = (f, vn)/||vn||2 =

∫

R
f(x)vn(x)dx
∫

R
vn(x)2dx

(e) Notice that

vn(x)2 = Hn(x)2e−x2

Thus
v0(x)

2 = e−x2

, v1(x)
2 = 4x2e−x2

, v2(x)
2 = 4(2x−1)2e−x2

The graphs are shown in the following figures (these plots are not normalized).

Exercise 7. A plot of ψmn(x) is shown in the figure. The coefficients are given by

cmn =

∫

R
f(x)ψmn(x)dx
∫

R
ψ2

mn(x)dx

Easily
∫

R

ψ2
mn(x)dx = 1

and
∫

R

f(x)ψmn(x)dx = 2m/2

(

∫ (n+1/2)/2m

n/2m

f(x)dx−
∫ (n+1)/2m

(n+1/2)/2m

f(x)dx

)

Exercise 8. Expanding

q(t) = (f + tg, f + tg)

= ||g||2t2 + 2(f, g)t+ ||f ||2

which is a quadratic in t. Because q(t) is nonnegative (a scalar product of a function
with itself is necessarily nonnegative because it is the norm-squared), the graph of
the quadratic can never dip below the t axis. Thus it can have at most one real root.
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Figure 1. Unnormalized wave functions for problem 6(e).

Thus the discriminant b2 − 4ac must be nonpositive. In this case the discriminant
is

b2 − 4ac = 4(f, g)2 − 4||g||2||f ||2 ≤ 0

This gives the desired inequality.
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Figure 2. Graph of the wavelet ψmn(x).

3. Classical Fourier Series

Exercise 1. Since f is an even function, bn = 0 for all n. We have

a0 =
1

π

∫ π

−π

f(x)dx =
1

π

∫ π/2

−π/2

dx = 1

and for n = 1, 2, 3, . . . ,

an =
1

π

∫ π/2

−π/2

sinnx dx =
2

nπ
sin(nπ/2)

Thus the Fourier series is

1

2
+

2

π

∞
∑

n=1

1

n
sin(nπ/2) cosnx

=
1

2
+

2

π

(

cosx− 1

3
cos 3x+ · · ·

)

A plot of a two-term and a four-term approximation is shown in the figure.

Exercise 2. Because the function is even, bn = 0. Then

a0 =
1

π

∫ π

−π

x2dx = 2π2/3

and

an =
1

π

∫ π

−π

x2 cosnx dx =
4(−1)n

n2
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Figure 3. Exercise 1.

So the Fourier series is
π2

3
+

∞
∑

n=0

4(−1)n

n2
cosnx

This series expansion of f(x) = x2 must converge to f(0) = 0 at x = 0 since f is
piecewise smooth and continuous there. This gives

0 =
π2

3
+

∞
∑

n=0

4(−1)n

n2

which implies the result.
The frequency spectrum is

γ0 =
2π2

3
√

2
, γn =

4

n2
, n ≥ 1

Exercise 3. This problem suits itself for a computer algebra program to calculate
the integrals. We find a0 = 1 and an = 0 for n ≥ 1. Then we find

bn =
1

2π

∫ 0

−2π

(x+ 1) sin(nx/2)dx+
1

2π

∫ 2π

0

x sin(nx/2)dx

=
1

π

−1 + (−1)n + 4π(−1)n+1

n

Note that bn = −4/nπ if n is even and bn = (−2 + 4π)/nπ if n is odd. So the
Fourier series is

f(x) =
1

2
+

1

π

∞
∑

n=1

−1 + (−1)n + 4π(−1)n+1

n
sin(nx/2)

A five-term approximation is shown in the figure.
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Figure 4. Five-term approximation in Exercise 3.

Exercise 4. Because cos ax is even we have bn = 0 for all n. Next

a0 =
1

π

∫ π

−π

cos ax dx =
2 sin aπ

aπ

and, using a table of integrals or a software program, for n ≥ 1,

an =
1

π

∫ π

−π

cos ax cosnx dx

=
1

π

(

sin(a− n)x

2(a− n)
+

sin(a+ n)x

2(a+ n)

)π

−π

=
2a(−1)n

π(a2 − n2)
sin aπ

Therefore the Fourier series is

cos ax =
sin aπ

aπ
+

∞
∑

n=1

2a(−1)n

π(a2 − n2)
sin aπ cosnx

Substitute x = 0 to get the series for csc aπ.

Exercise 5. Here f(x) is odd so an = 0 for all n. Then

bn =
1

π

∫ 0

−π

−1

2
sinnx dx+

1

π

∫ π

0

1

2
sinnx dx

=
1

nπ
(1 − (−1)n)

Therefore

b=
2

(2k − 1)π
, k = 1, 2, 3, . . .
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Figure 5. S3(x) and S7(x) in Exercise 5.

The Fourier series is
∑

k=1

∞ 2

(2k − 1)π
sin(2k − 1)x

Graph of S3(x) and S7(x) are shown in the figure. In the accompanying figure
a graph of S10(x) is presented; it still shows the overshoot near the discontinuity
(Gibbs phenomenon). Here SN (x) is the sum of the first N terms.

4. Sturm-Liouville Problems

Exercise 1. Substituting u(x, t) = g(t)y(x) into the PDE

ut = (p(x)ux)x − q(x)u

gives

g′(t)y(x) =
d

dx
(p(x)g(t)y′(x)) − q(x)g(t)y(x)

Dividing by g(t)y(x) gives
g′

g
=

(py′)′ − q

y

Setting these equal to −λ gives the two differential equations for g and y.

Exercise 2. When λ = 0 the ODE is −y′′ = 0 which gives y(x) = ax+b. Applying
the boundary conditions forces a = b = 0 and so zero is not and eigenvalue. When
λ = −k2 < 0 then the ODE has general solution y(x) = aekx + be−kx, which are
exponentials. If y = 0 at x = 0 and x = l, then it is not difficult to show a = b = 0,
which means that there are no negative eigenvalues (this is similar to the argument
in the text). If λ = k2 > 0 then y(x) = a sin kx + b cos kx. Then y(0) = 0 forces
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Figure 6. S10(x) showing overshoot of the Fourier approximation
in Exercise 5.

b = 0 and then y(l) = a sin kl = 0. So kl = nπ, n = 1, 2, . . . giving eigenvalues and
eigenfunctions as stated.

Exercise 3. When λ = 0 the ODE is −y′′ = 0 which gives y(x) = ax + b. But
y′(0) = a = 0 and y(l) = al + b = 0, and so a = b = 0 and so zero is not
an eigenvalue. When λ = −k2 < 0 then the ODE has general solution y(x) =
aekx + be−kx, which are exponentials. If y = 0 at x = 0 and x = l, then it is not
difficult to show a = b = 0, which means that there are no negative eigenvalues. If
λ = k2 > 0 then y(x) = a sin kx + b cos kx. Then y′(0) = 0 forces a = 0 and then
y(l) = b cos kl = 0. But the cosine function vanishes at π/2 plus a multiple of π,
i.e.,

kl =
√
λl = π/2 + nπ

for n = 0, 1, 2, . . .. This gives the desired eigenvalues and eigenfunctions as stated
in the problem.

Exercise 4. When λ = 0 the ODE is −y′′ = 0 which gives y(x) = ax + b.
The boundary conditions force a = 0 but do not determine b. Thus λ = 0 is
an eigenvalue with corresponding constant eigenfunctions. When λ = −k2 < 0
then the ODE has general solution y(x) = aekx + be−kx, which are exponentials.
Easily, exponential functions cannot satisfy periodic boundary conditions, so there
are no negative eigenvalues. If λ = k2 > 0 then y(x) = a sin kx + b cos kx. Then
y′(x) = ak cos kx− bk sin kx. Applying the boundary conditions

b = a sin kl + b cos kl, a = a cos kl − b sin kl
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We can rewrite this system as a homogeneous system

a sin kl + b(cos kl − 1) = 0

a(cos kl − 1) − b sin kl = 0

A homogeneous system will have a nontrivial solution when the determinant of the
coefficient matrix is zero, which is in this case reduces to the equation

cos kl = 0

Therefore kl must be a multiple of 2π, or

λn = (2nπ/l)2, n = 1, 2, 3, . . .

The corresponding eigenfunctions are

yn(x) = an sin(2nπx/l) + bn cos(2nπx/l)

Exercise 6. The problem is

−y′′ = λy, y(0) + y′(0) = 0, y(1) = 0

If λ = 0 then y(x) = ax + b and the boundary conditions force b = −a. Thus
eigenfunctions are

y(x) = a(1 − x)

If λ < 0 then y(x) = a cosh kx+b sinh kx where λ = −k2. The boundary conditions
give

a+ bk = 0, a cosh k + b sinh k = 0

Thus sinh k − k cosh k = 0 or k = tanh k which has no nonzero roots. Thus there
are no negative eigenvalues.

If λ = k2 > 0 then y(x) = a cos kx+ b sin kx. The boundary conditions imply

a+ bk = 0, a cos k + b sin k = 0

Thus k = tan k which has infinity many positive roots kn (note that the graphs
of k and tan k cross infinitely many times). So there are infinitely many positive
eigenvalues given by λn = k2

n.

Exercise 7. The SLP is

−y′′ = λy, y(0) + 2y′(0) = 0, 3y(2) + 2y′(2) = 0

If λ = 0 then y(x) = ax+b. The boundary conditions give b+2a = 0 and 8a+3b = 0
which imply a = b = 0. So zero is not an eigenvalue. Since this problem is a regular
SLP we know by the fundamental theorem that there are infinitely many positive
eigenvalues.

If λ = −k2 < 0, then y(x) = a cosh kx + b sinh kx. The boundary conditions
force the two equations

a+ 2bk = 0, (3 cosh 2k + 2k sinh 2k)a+ (3 sinh 2k + 2k cosh 2k) = 0

This is a homogeneous linear system for a and b and it will have a nonzero solution
when the determinant of the coefficient matrix is zero, i.e.,

tan 2k =
4k

3 − 4k2
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This equation has nonzero solutions at k ≈ ±0.42. Therefore there is one negative
eigenvalue λ ≈ −0.422 = −0.176. (This nonlinear equation for k can be solved
graphically using a calculator, or using a computer algebra package, or using the
solver routine on a calculator).

Exercise 8. When λ = 0 the ODE is y′′ = 0, giving y(x) = Ax + B. Now apply
the boundary conditions to get

B − aA = 0, Al +B + bA = 0

This homogeneous system has a nonzero solution for A and B if and only if a+ b =
−abl. (Note that the determinant of the coefficient matrix must be zero).

Exercise 9. Multiplying the differential equation by y and integrating from x = 1
to x = π gives

−
∫ π

1

y(x2y′)′dx = λ

∫ π

1

y2dx

or, upon integrating the left side by parts,

−xyy′ |π1 −
∫ π

1

x2(y′)2dx = λ

∫ π

1

y2dx

The boundary term vanishes because of the boundary conditions. Therefore, be-
cause both integrals are nonnegative we have λ ≥ 0. If λ = 0 then y′ =const= 0
(by the boundary conditions). So λ 6= 0 and the eigenvalues are therefore positive.

If λ = k2 > 0, then the ODE becomes

x2y′′ + 2xy′ + k2y = 0

which is a Cauchy-Euler equation (see the Appendix on differential equations in
the text). This can be solved to determine eigenvalues

λn =
( nπ

lnπ

)2

+
1

4

with corresponding eigenfunctions

yn(x) =
1√
x

sin
( nπ

lnπ
lnx
)

Exercise 10. The operator on the left side of the equation has variable coefficients
and the ODE cannot be solved analytically in terms of simple functions.

Exercise 11. Multiply the equation by y and integrate from x = 0 to x = l to get

−
∫ l

0

yy′′dx+

∫ l

0

qy2dx = λ

∫ l

0

y2dx

Integrate the first integral by parts; the boundary term will be zero from the bound-
ary conditions; then solve for λ to get

λ =

∫ l

0
(y′)2dx+

∫ l

0
qy2dx

||y||2
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Clearly (note y(x) 6= 0) the second integral in the numerator and the integral in
the denominator are positive ,and thus λ > 0. y(x) cannot be constant because the
boundary conditions would force that constant to be zero.

Exercise 12. Let y and u be two independent eigenfunctions corresponding to the
single eigenvalue λ for the problem in Exercise 11. Then

−y′′ + qy = λy, −u′′ + qu = λu

and both y and u satisfy the boundary conditions. Multiply the first by u and the
second by y and subtract to get

u′′y − uy′′ = 0

or
(uy′ − yu′)′ = 0

Thus uy′−yu′ = const. = 0. The constant is zero by the boundary conditions. But,
by the quotient rule for derivatives, this last equation is equivalent to (y/u)′ = 0.
Hence y/u = C for some constant C and so y = Cu, which means y and u are not
independent.

Observe that the periodic boundary value problem in Exercise 4 does have
linear independent eigenfunctions cos(2nπx/l) and sin(2nπx/l) corresponding to
the eigenvalue λ = (2nπ/l)2.

Exercise 13. By Exercise 6 in Section 3.2 the differential equation is identified as
Hermite’s equation, and it has solutions in L2(R) when λ = λn = 2n + 1 and the
corresponding eigenfunctions are the Hermite functions

yn(x) = Hn(x)e−x2/2

for n = 0, 1, 2, . . ..


