
CHAPTER 5

PDEs in The Life Sciences

1. Age-Structured Models

Exercise 1: Write

1 =

∫ 8

3

4e−(r+0.03)ada = − 4

r + 0.03

(

e−8(r+0.03) − e−3(r+0.03)
)

,

and use a software package or calculator to solve for r.

Exercise 2: First note that u(a, t) = 0 for a > t + δ, since f(a) = 0 for
a > δ. For (a) observe that the renewal equation (5.9) is

B(t) =

∫ t

0

βB(t − a)e−γada +

∫

∞

0

βf(a − t)e−γtda.

The first integral becomes, upon changing variables to s = t − a,
∫ t

0

βB(t − a)e−γada =

∫ t

0

βB(s)e−γ(t−s)ds.

The second integral is
∫

∞

0

βf(a − t)e−γtda =

∫ t+δ

t

βu0e
−γtda = βu0δe

−γt.

For (b), differentiate (using Leibniz rule)

B(t) =

∫ t

0

βB(s)e−γ(t−s)ds + βu0δe
−γt

to get

B′(t) =

∫ t

0

βB(s)e−γ(t−s)ds(−γ) + βB(t) − γβu0δe
−γt = (β − γ)B(t).

For (c) note that the last equation is the differential equation for growth-
decay and has solution

B(t) = B(0)e(β−γ)t.

Therefore the solution from (5.7)–(5.8) is given by

u(a, t) =







0, a > t + δ
u0e

−γt, t < a < t + δ
B(0)e(β−γ)te−βa, 0 < a < t.
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Finally, for part (d) we have, using part (c),

N(t) =

∫ t

0

u(a, t)da +

∫ t+δ

t

u(a, t)da

=

∫ t

0

B(0)e(β−γ)te−βada +

∫ t+δ

t

u0e
−γtda

=
B(0)

β
e(β−γ)t(1 − e−βt) + δu0e

−γt.

Exercise 3: Integrate the PDE from a = 0 to a = ∞ to get

N(t) = −
∫

∞

0

uada − m(N)N = B(t) − m(N)N.

To get an equation for B we differentiate the B(t) equation to get

B′(t) =

∫

∞

0

b0e
−γautda =

∫

∞

0

b0e
−γa(−ua − m(N)u)da

= −m(N)B(t) −
∫

∞

0

b0e
−γa(ua)da

= −m(N)B(t) −
[

b0e
−γau|∞0 +

∫

∞

0

b0γe−γauda

]

= −m(N)B(t) − b0B(t) − γB(t).

To obtain the next-to-last line we used integration by parts. In summary
we have the dynamical system

N ′ = B − m(N)N,

B′ = (b0 − γ − m(N))B.

In the phase plane the paths or integral curves are defined by

dB

dN
=

(b0 − γ − m(N))B

B − m(N)N
.

Observe that B = (b0 − γ)N is easily shown to be a solution to this
equation. It represents a straight line in the NB plane. The line B=0 is
a horizontal nullcline where the vector field points to the left. Another
horizontal nullcline is the vertical line N = N∗, where N∗ is the root of
m(N) = (b0 − γ). The point P = (N∗, (b0 − γ)N∗) is an equilibrium that
lies on the straight line solution curve B = (b0−γ)N. The solution cannot
oscillate since that it would require it cross the straight line, violating
uniqueness. On the straight line solution, the direction is toward the
point P .

Exercise 4: In preparation.

Exercise 5: Let ξ = a − t, τ = t. In these characteristic coordinates the
PDE becomes

Uτ = − c

d − ξ − τ
U.
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Separating variable and integrating gives

U = (d − ξ − τ)cϕ(ξ)

or

u(a, t) = (d − a)cϕ(a − t),

which is the general solution. Now, for the region a > t we use the initial
condition to determine ϕ. We have

u(a, 0) = (d − a)cϕ(a) = f(a),

which gives ϕ(a) = f(a)(d − a)c. Hence

u(a, t) = (d − a)cf(a − t)(d − a − t)−c, a > t.

For the region a < t we use the boundary conditon. to determine ϕ. Thus,

u(0, t) = dcϕ(−t) = B(t),

or

ϕ(t) = B(−t)d−c.

Whence

u(a, t) = (d − a)cB(t − a)d−c, 0 < a < t.

Exercise 6: Using Taylor’s expansion to write

u(a + da, t + dt) = u(a, t) + ut(a, t)da + ut(a, t)dt + higher order terms.

2. Traveling Wave Fronts

Exercise 1: The traveling wave equation can be written

−cU ′ = DU ′′ − 1

2
(U2)′.

Integrating, we get

−cU = DU ′ − 1

2
U2 + A.

Using the boundary condition at z = +∞ forces A = 0. Using the bound-
ary condition at z = −∞ gives the wave speed c = 1/2. Therefore

DU ′ =
1

2
U(U − 1).

This DE has equilibria at U = 0, 1; the solution can be found by sepa-
rating variables or noting it is a Bernoulli equation (see the Appendix on
Differential Equations). The graph falls from left to right (decreasing),
approaching 0 at plus infinity and 1 at minus infinity.

Exercise 2: The traveling wave equation may be written

−cU ′ = U ′′ − 1

3
(U3)′.

Integrating, we find that the constant of integration is zero from the z =
+∞ boundary condition. Then

−cU = U ′ − 1

3
U3.
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Applying the condition at z = −∞ we get

−cUl = −1

3
U3

l ,

or

−cUl +
1

3
U3

l = −1

3
Ul(3c − U2

l ) = 0.

Therefore Ul =
√

3c.

Exercise 3: To have constant states at infinity we must have F (0, vr) = 0 =
F (ul, 0) = 0. The traveling wave equations are

−cU ′ = DU ′′ − γU ′ − aF (U, V ),

−cV ′ = −bF (U, V ).

Clearly we may write a single equation

−cU ′ = DU ′′ − γU ′ − ac

b
V ′.

Now we may integrate to get

−cU = DU ′ − γU − ac

b
V + A.

The right boundary condition forces A = acvr/b. The left boundary
condition then gives

−cul = −γul +
ac

b
vr

or

(γ − c)ul =
ac

b
vr > 0.

Therefore c < γ

Exercise 4: In preparation.

Exercise 5: The traveling wave equation is

−c
[

(1 + b)U − mU2
]′

= U ′′ − U ′.

Integrating gives

−c
[

(1 + b)U − mU2
]

= U ′ − U + A.

¿From the boundary condition U(+∞) = 0 we get A = 0. Since U(−∞) =
1, we get

c =
1

1 + b − m
> 0.

The differential equation then simplifies to

U ′ = (1 − c − cb)U + cmU2,

which is a Bernoulli equation. It is also separable.
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3. Equilibria and Stability

Exercise 1: The equilibria are roots of

f(u) = ru(1 − u/K) − hu = u(r − r

K
u − h) = 0.

So the equilibria are

u1 = 0, u2 =
r − h

r
K.

To check stability we calculate f ′(u1) = r − 2r
K

u− h. Then f ′(0) = r > 0,
so u1 = 0 is unstable. Next

f ′(
r − h

r
K) = r − 2r

K

r − h

r
K − h = r − 2r + 2h − h = −r + h.

Therefore u2 is stable if r > h and unstable if r < h.

Exercise 2: In preparation.

Exercise 3: In preparation.

Exercise 4: To obtain (a) just substitute ue(x) into the PDE and check the
boundary conditions. To get (b) substitute u = ue(x) + U(x, t) into the
PDE to obtain

Ut = u′′

e + Uxx + (ue(x) + U(x, t))(1 − ue(x) − U(x, t)),

or

Ut = u′′

e + Uxx + ue(x)(1 − ue(x)) − ue(x)U + U(1 − ue(x)) − U2(x, t).

But u′′

e + ue(x)(1 − ue(x)) = 0, and neglecting the nonlinear term gives

Ut = Uxx + (1 − 2ue(x))U,

which is the linearized perturbation equation. The boundary conditions
are U(±π/2) = 0. For part (c) assume that U = eσtg(x) and substitute
to get

σg = g′′ + (1 − 2ue(x))g,

or

g′′ +
cos x − 5

1 + cos x
g = σg,

with g = 0 at x = ±π/2. Finally, to prove (d), we proceed as in the
hint. If this BVP has a nontrivial solution, then it must be, say, positive
somewhere in the interval. (The negative case can be treated similarly).
So it must have a positive maximum in the interval. At this maximum,
g > 0, g′′ < 0. Therefore

cos x − 5

1 + cos x
g < 0.

So the left side of the DE is negative, so σ < 0.


