

• Table of
Contents

• Index

Applied XML Solutions

By Benoît Marchal

Publisher: Sams Publishing
Pub Date: August 29, 2000

ISBN: 0-672-32054-1
Pages: 360

Slots: 1

Applied XML Solutions presents a series of projects rather than a tutorial
format. The projects follow a natural progression from simple to complex.
Within each chapter, helpful sidebars highlight XML fundamentals necessary
to understand the project in progress. This will save readers' time having to
look to another source if they forget a key detail. The last project incorporates
techniques discussed throughout the book. The author will illustrate alternative
solutions wherever appropriate. Applied XML Solutions shows professional
developers how to apply XML to a variety of real-world applications, including:
XML as a scripting substitute, using RSS to syndicate content to multiple &
non-traditional browsers such as WAP-enabled handheld devices, using XSLT
to facilitate communication between incompatible systems, separating web
content from web code, importing data from various file formats.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of
Contents

• Index

Applied XML Solutions

By Benoît Marchal

Publisher: Sams Publishing
Pub Date: August 29, 2000

ISBN: 0-672-32054-1
Pages: 360

Slots: 1

 Copyright

 About the Author

 Acknowledgments

 Tell Us What You Think!

 Introduction

 Why a Solution Book?

 Who Should Read This Book

 How to Read This Book

 Conventions Used in This Book

 Additional Resources

 Chapter 1. Lightweight Data Storage

 Why Lightweight Data Storage?

 Meeting the Catalog Viewer

 The XML Side

 Designing with Patterns

 Meeting the Builder Pattern

 Meeting the Visitor Pattern

 Building and Running the Project

 Additional Resources

 Chapter 2. Scripted Configuration Files

 Configuration Files

 Meeting Survex

 Building and Running the Project

 Benefits

 Additional Resources

 Chapter 3. Electronic Forms

 The Event Form

 Creating a Form with an Editor

 Running the Project

 Customizing the Behavior

 Writing Macros

 Advantages

 Additional Resources

 Chapter 4. Content Syndication

 Architecture

 Publishing Formats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Publishing Formats

 Styling on Demand

 The Style Sheets

 Building and Running the Project

 Additional Resources

 Chapter 5. Export to Any Format

 Meeting EDIFACT

 EDI Meets XML

 Breaking Down the Conversion

 Building the Formatter

 Writing the Style Sheet

 Building and Running the Project

 Additional Resources

 Chapter 6. Import from Any Format

 Parsing EDIFACT

 The EDIFACT Parser

 The Conversion

 Building and Running the Project

 Additional Resources

 Chapter 7. Write an e-Commerce Server

 XML Marketplaces

 A Commercial Transaction

 Architecture

 The Post Manager

 Sending the Invoice

 Building and Running the Project

 Additional Resources

 Chapter 8. Organize Teamwork Between Developers and Designers

 Servlets and Teams

 Using XSL in Servlets

 Building XslServlet
 Writing Pesticide Using XslServlet
 Building and Running the Project

 Playing with Style Sheets

 Additional Resources

 Chapter 9. Provide Up-to-the-Minute Information to Business Partners

 Architecture

 The SOAP Protocol

 A SOAP Library

 The Stock Server

 The Stock Client

 Building and Running the Project

 Additional Resources

 Chapter 10. Where to Now

 XML As a File Format

 Publishing Versus Data

 Flexible, Generic Tools

 e-Commerce

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Appendix A. XML Reference

 XML Elements

 XML Document

 Entities

 Namespaces

 Appendix B. Parser Reference

 XMLReader
 ContentHandler
 DTDHandler
 ErrorHandler
 EntityResolver
 InputSource
 Attributes
 Locator
 Exceptions

 XMLFilter
 XMLReaderFactory
 DefaultHandler

 Appendix C. XSLT Reference

 Style Sheet

 Templates

 Template Content

 XPath

 Combining Style Sheets

 Parameters and Variables

 Tests and Conditions

 Functions

 Copying

 Extensions

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright

Copyright © 2000 by Sams

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 00-104353

Printed in the United States of America

First Printing: September 2000

02 01 00 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an "as is" basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Dedication

To Pascale

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Author
Benoît Marchal runs the consulting company Pineapplesoft, which specializes in Internet
applications, particularly e-commerce, XML, and Java. He has worked with major players in
Internet development, such as Netscape and EarthWeb, and is a regular contributor to Gamelan
and other Internet publications.

In 1997, he co-founded the XML/EDI Group, a think tank that promotes the use of XML in e-
commerce applications. Benoît frequently leads corporate training on XML and other Internet
technologies.

Benoît also publishes a free email magazine, Pineapplesoft Link. Each month it provides
technologies, trends, and facts of interest to Web developers. You can subscribe at
www.marchal.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments
I want to thank the readers of XML by Example, Pineapplesoft Link, and my technical articles. You
are the motivation and inspiration to explore new topics. I am particularly grateful to readers who
emailed me or otherwise commented on my work. Your opinions are always instructive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like to
see us publish in, and any other words of wisdom you're willing to pass our way.

As an Associate Publisher for Sams, I welcome your comments. You can fax, email, or write me
directly to let me know what you did or didn't like about this book—as well as what we can do to
make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and
phone or fax number. I will carefully review your comments and share them with the author and
editors who worked on the book.

Fax: 317-581-4770
Email: consumer@mcp.com
Mail: Associate Publisher

Sams
201 West 103rd Street
Indianapolis, IN 46290 USA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Why a Solution Book?

Who Should Read This Book

How to Read This Book

Conventions Used in This Book

Additional Resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why a Solution Book?

This book teaches you how to solve common problems in development, how to impress your boss
(or your customer if you're a freelancer), and how to use XML in your projects.

Through my experience lecturing and consulting, I know that the main problem for developers
trying to leverage XML in their applications is not a lack of information but too much of it! There is
an almost endless flow of announcements from standardization bodies and vendors and no
shortage of conferences, books, and magazines.

All this information is useful—it can solve real problems for some people—but it is not always
easy for the developer to decide whether the information applies to him or his problem.

I meet many developers, like you, who have learned the basics of XML (elements, tags,
attributes, DTDs, and more) and the most popular XML vocabularies (RSS, WML, SOAP, XSL,
and so on). But what these developers are missing is information on how it all works in real
projects.

When I started discussing this book with my editor, we worked hard to develop a book that would
address your concerns as a developer. We deliberately decided not to try to cover every XML
vocabulary or every technology but to concentrate on the few tools every programmer needs to
know to succeed in his or her project.

Furthermore, the feedback we received on my tutorial book, XML by Example, convinced us that
a practical book—a book that teaches by using carefully chosen examples and a lot of code—
would be useful. In that respect, Applied XML Solutions grew out of the readers'feedback, out of
your feedback.

We selected eight projects that are representative of real applications of XML. The eight projects
became nine chapters, with each chapter demonstrating how to build one project with XML (one
project required two chapters).

The eight projects we selected are as follows:

Linking an object data structure with XML. Most applications have an internal data structure
that might be close, but is seldom identical, to the XML format. A few simple patterns can
help bridge the differences.

Preparing advanced configuration files. Many applications benefit from a solid configuration
file format, and XML is a great solution for this. XML offers enormous flexibility. It also can
be used as a true scripting solution.

Using electronic forms and XML editors. A good XML editor is a powerful addition to any
programmer's toolbox because it makes it easy to create an efficient user interface on XML
applications.

Using multi-format publishing. With the advent of mobile phones, PDAs, and other devices,
the PC might not remain the dominant platform for Internet browsing. Web sites will need
increased flexibility to work with these multiple formats.

Integrating with legacy format. Even the most fanatic XML developer must recognize that
many non-XML formats exist. Few applications leave in isolation, therefore it is crucial to
integrate with legacy formats.

Conducting business-to-business e-commerce. XML profiles itself as the HTML of
business-to-business e-commerce. This is an important topic that deserved a project of its
own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using XML to organize the work of a team. Web development requires many talents, and
organizing them is not always easy. Furthermore, Web sites increasingly need to be multi-
lingual. This project addresses these two issues.

Integrating with an ERP. As organizations strive to streamline their operations, they will
increasingly need to place information from their ERPs online. SOAP is an interesting
approach in that arena.

As you can see, this is not a list of technologies but of solutions to problems. However, in building
these solutions, we will explore many useful technologies, such as SAX2 parsing, patterns, DOM
and JavaScript, CSS, XSLT, non-XML formatters, non-XML parsers, XSLT extensions, automatic
posting, servlets, SOAP, and more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Who Should Read This Book

Applied XML Solutions will be helpful to programmers, analysts, Web developers, and consultants
who need to use XML in their work. Developers will benefit directly from exposure to practical
solutions and a lot of code. However, analysts and consultants will also benefit from new ideas
and new solutions to problems.

Applied XML Solutions will be particularly valuable if you are currently working on XML projects or
if you will soon join such a team. It provides sample solutions to problems and plenty of code you
can reuse, teaches you new tools, and explains how to better use your current set of tools.

If you are not actively involved in an XML project, Applied XML Solutions will be a source of
inspiration for the future. As you read through the solutions, I am sure you will find several
examples that would work well for you.

Applied XML Solutions assumes that you know the XML syntax, how an XML parser works, and
how to write an XSLT style sheet. If this is your first XML book, you might want to turn to a tutorial
first. I think my previous book, XML by Example, is a good introduction to the material in Applied
XML Solutions.

Most of the code (the only exception is Chapter 3, "Electronic Forms") is written in Java. Most of
the solutions will port easily to C++, Delphi, Perl, Python, and other languages (I have included
pointers where appropriate), so you will benefit from reading this book even if you are not a Java
developer. However, you must be able to read and understand Java code.

Flip through the book and you will see several commented listings. As I have already indicated, I
listened to reader feedback in preparing Applied XML Solutions, so I tried to include as many
listings and examples as possible. This is clearly a hands-on book. The only persons who should
not read this book are developers who hate studying listings. Only a few such developers exist,
but if you are one of them, I hope I catch you in the bookstore, before you've bought the book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How to Read This Book

This book can be read in any order. If you are working on a project, you might want to jump to one
of the chapters to learn about that particular solution. In some cases, I have made references to
earlier chapters, so you might need to backtrack for a section or two.

However, this book can also be read from cover to cover. The chapters follow a logical
progression from simple to more complex.

Whenever possible, I have included refreshers that summarize the essential aspects of
technology and point you to more resources, as appropriate.

Finally, each chapter concludes with an Additional Resources section. This section points to Web
sites and other resources where you can learn more information on the topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventions Used in This Book

Tips on how to take advantage of XML are identified as follows:

Tip

Tips appear here.

When a risk of error exists, special warning notes are identified as follows:

Warning

Warnings appear here.

Additional information about a topic is marked as follows:

Note

Notes appear here.

Refreshers
Refreshers appear here.

Listings, code, and class names appear in a monospace font, such as the following:

<?xml version="1.0"?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

To save you some typing, all the listings are available on the enclosed CD-ROM. You also should
visit the Que Web site and my own site for updates and additional information.

The Que Web site is at http://www.macmillanusa.com. If required, we will post code updates, bug
fixes, and general updates there.

My site is at http://www.marchal.com. Here you will find links to articles and other useful
information on XML. You can also subscribe to my free email magazine, Pineapplesoft Link—your
source for technology news, trends, and facts of interest to Web developers.

If you use this book to solve an interesting problem or if you develop your own solutions, I'd like to
hear from you. Write to me at bmarchal@pineapplesoft.com.

I wish you a lot of success in your XML projects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Lightweight Data Storage
In this chapter, you build your first solution based on XML. The solution demonstrates XML as an
alternative to databases and proprietary file formats. Many applications benefit from this solution
and it is particularly valuable for the following:

Applications downloaded from the Internet, when it is not possible to ship a database at
runtime

CD-ROMs and DVDs where the files are read-only

Applications that work on a subset of a database, where it must be easy to unload the data
from the database

Applications running on multiple platforms or written in different languages, where it should
be possible to exchange files between, for example, the Windows (C++), UNIX (Java), and
Macintosh (Java) versions of the product

More importantly, this chapter will concentrate on how to structure the application, using two
simple patterns, for optimum flexibility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Lightweight Data Storage?

Applications must perform many duties, including taking care of the user interface (for example,
painting screens, opening dialog boxes, or responding to menu selections), providing help and
assistance, and increasingly being network savvy (such as sending and receiving emails or
connecting to the Web). Not to be forgotten is the capability to save work and later reload it, which
is our current topic of interest.

Java, similar to other programming languages, supports these functions through libraries. Two
libraries exist for the user interface: AWT (Abstract Window Toolkit) and Swing. In addition,
JavaHelp exists for documentation. Also, no less than four options are available for networking:
the java.net package, RMI (Remote Method Invocation), Jini, and CORBA.

Finally, Java supports permanent storage through the java.io package and JDBC (Java Database
Connectivity). However, for a number of applications, java.io is too limited and JDBC is too
complex. This chapter introduces a solution that sits somewhere in between. It is more powerful
than raw I/O but not as costly as full-blown SQL databases.

Databases are convenient because they store large amounts of data and access it rapidly.
Furthermore, they are well supported by third-party vendors. A typical Java development
environment offers wizards and other tools to help you build database-driven applications. Figure
1.1 demonstrates database support in JBuilder.

Figure 1.1. A dialog box helps configure and test the database connections in JBuilder.

Databases are also open, which means one application can share data easily with other
applications. This enables you, the developer, to quickly and inexpensively extend the application.
For example, if the user wants new reports, a report writer such as Crystal Report
(http://www.seagatesoftware.com) or Enterprise Report (http://www.enterprisesoft.com) is handy.

On the downside, databases tend to be costly. Database licenses can run in the tens of
thousands of dollars and they can require dedicated servers, which further adds to the cost.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I am reminded of one project in which a company installed a new sales system. It worked
brilliantly until they decided to give a laptop to each of their salespeople. The cost of the licenses
(and in particular, the database licenses) skyrocketed to the point where the laptops would have
cost ten times more than the central system in licenses only!

In addition, they needed high-end laptops to run the database and the sales software
concurrently. Worse, it was obvious to everybody involved that a full-blown database was overkill
in this setup because a salesperson managed only a few dozen customers and worked with a
limited set of about a thousand references.

Therefore, the developers needed to downscale from a full-blown database to a simpler file
format. Java is very convenient in this respect because it offers serialization
(java.io.ObjectInputStream and java.io.ObjectOutputStream).

However, while serialization makes it easy to save complex data structures to disk, it is a closed
format. It works only with the original application and no third-party tools are available, such as
report writers for serialized files.

In this chapter, we'll develop a solution, based on XML, that offers the following benefits:

XML keeps growing so no lack of third-party tools exists. For example, style sheets make it
easy to produce reports.

Most databases have an XML interface (either available now or in the making) that makes
loading and unloading a database in XML easy.

The data model behind XML is a tree of elements, which is a natural match for an object-
oriented data structure.

XML support is available to most programming languages on the major platforms, so it is
possible to share data between different applications (for example, a UNIX server and a PC
client).

Caution

This solution is appropriate for small to medium sets of data only because it loads the
file in memory. In other words, it is limited by the amount of memory available.

Yet, this is not a limitation of XML. XML databases, such as eXcelon
(http://www.exceloncorp.com), can manipulate documents of any size. However, the
cost of these databases is comparable to SQL databases, so it's no longer a solution to
our present problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Meeting the Catalog Viewer

The example I'll use in this chapter is a catalog viewer. Assume that you have been asked to
develop a catalog viewer. The specifications are as follows:

Customers and prospective customers receive a new version of the catalog viewer every
month. The monthly update presents the latest offerings (such as new products and
promotions).

The list of products is managed in the company's central database, and a file with the
month's offering will be automatically extracted from the database.

Product descriptions include the product name and either a picture of the product or a
textual description. The management expects to enhance product descriptions with video
and HTML in the future.

Customers browse through the catalog and mark those products they are interested in
buying.

The catalog viewer creates a file with the customer's selection. Customers can submit their
selections by email and receive more information on those products relevant to them.

The catalog viewer looks similar to Figure 1.2.

Note

A catalog can be as simple or as complex as one likes. In its simplest form it is just a
list of product names; in the most complex form it can include videos. It also can
compute the correct price (including any discounts) and even support online ordering.

In this chapter, I strove for the middle ground with a set of data rich enough to explore
all the problems you are likely to face in a real catalog application. However, I used a
limited user interface and a limited set of features so as not to bury the XML techniques
in a lot of Java programming.

Figure 1.2. The catalog viewer.

The catalog viewer needs a simple, inexpensive file format to store the list of products and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The catalog viewer needs a simple, inexpensive file format to store the list of products and the
prospective buyers'selections. Because the list of products is stored in a central database, you
need a format recognized by the database.

Figure 1.3 is the class model (in UML [Unified Modeling Language]) for the catalog. This model
abstracts product descriptions: The Product class holds only basic information about products
(such as the name). Descendants of Product implement more complete descriptions (in this
case, through an image or through text).

In particular, each product object is responsible for drawing its own description onscreen.
Therefore, if a future version of the catalog includes video, it suffices to add descendants to the
Product class.

Figure 1.3. The catalog class model.

Building the Catalog

Listings 1.1–1.6 implement this class model in Java. Listing 1.1 is the Catalog class. And as you
can see, Catalog is simply a list of Product objects.

Warning

Ignore the reference to the CatalogElement and CatalogVisitor interfaces as
well as the accept() method for the time being. These will be introduced in
subsequent sections.

Listing 1.1 Catalog.java

package com.psol.catalog;

import java.util.Vector;

import java.io.IOException;

public class Catalog

 implements CatalogElement

{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected Product[] products;

 public Catalog(Vector products)

 {

 this.products = new Product[products.size()];

 products.copyInto(this.products);

 }

 public Product productAt(int i)

 {

 return products[i];

 }

 public int getSize()

 {

 return products.length;

 }

 public void accept(CatalogVisitor visitor)

 throws IOException

 {

 visitor.visitCatalog(this);

 }

}

The Product class is declared in Listing 1.2. Product is an abstract class that implements
properties shared by all descendants, namely the product's name and whether the product was
selected (checked) by a customer.

Product also defines the abstract method getComponent(). Descendants of Product
implement this method and return an AWT component that knows how to draw the product
description.

For example, VisualProduct objects return a component that draws the image of the product.
TextualProduct objects return text labels.

If a VideoProduct class is introduced in the future, it will return components that play the
product's video.

Listing 1.2 Product.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 1.2 Product.java

package com.psol.catalog;

import java.io.IOException;

import java.awt.Component;

public abstract class Product

 implements CatalogElement

{

 protected String text,

 id;

 protected boolean checked;

 public Product(String text,

 String id,

 boolean checked)

 {

 this.text = text;

 this.id = id;

 this.checked = checked;

 }

 public String getText()

 {

 return text;

 }

 public String getId()

 {

 return id;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void setChecked(boolean checked)

 {

 this.checked = checked;

 }

 public boolean isChecked()

 {

 return checked;

 }

 public abstract Component getComponent();

}

Browsing the Catalog

The abstract method getComponent() is responsible for painting the product description, which
greatly simplifies the user interface. Listing 1.3 is the CatalogPanel class, a simple graphical
interface to the catalog.

CatalogPanel accepts a catalog in its constructor, builds a list of products on the right side of
the screen, and paints the appropriate product on the left side, as the customer browses through
the list. It also provides a checkbox for the customer to select the product.

itemStateChanged events are generated as the customer browses the list of products. Then
the event handler calls getComponent() to draw the appropriate product. Note that the event
handler does not know whether a given product is a VisualProduct or a TextualProduct,
but it doesn't need to know:

 public void itemStateChanged(ItemEvent evt)

 {

 if(evt.getStateChange() == ItemEvent.SELECTED)

 {

 viewer.removeAll();

 int idx = list.getSelectedIndex();

 Product product = catalog.productAt(idx);

 viewer.add(product.getComponent());

 checkbox.setState(product.isChecked());

 checkbox.setEnabled(true);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 checkbox.setEnabled(true);

 validate();

 }

}

Listing 1.3 CatalogPanel.java

package com.psol.catalog;

import java.awt.*;

import java.awt.event.*;

public class CatalogPanel

 extends Panel

{

 protected List list;

 protected Checkbox checkbox;

 protected Container viewer;

 protected Catalog catalog;

 public CatalogPanel(Catalog _catalog)

 {

 catalog = _catalog;

 setLayout(new GridBagLayout());

 list = new List();

 GridBagConstraints constraints = new GridBagConstraints();

 add(list,constraints);

 for(int i = 0;i < catalog.getSize();i++)

 list.add(catalog.productAt(i).getText());

 list.addItemListener(new ItemListener()

 {

 public void itemStateChanged(ItemEvent evt)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 if(evt.getStateChange() == ItemEvent.SELECTED)

 {

 viewer.removeAll();

 int idx = list.getSelectedIndex();

 Product product = catalog.productAt(idx);

 viewer.add(product.getComponent());

 checkbox.setState(product.isChecked());

 checkbox.setEnabled(true);

 validate();

 }

 }

 });

 viewer = new Panel();

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.weightx = 1.0;

 constraints.weighty = 1.0;

 add(viewer,constraints);

 checkbox = new Checkbox("More info?",false);

 constraints.gridwidth = 1;

 constraints.weightx = 0.0;

 constraints.weighty = 0.0;

 add(checkbox,constraints);

 checkbox.setEnabled(false);

 checkbox.addItemListener(new ItemListener()

 {

 public void itemStateChanged(ItemEvent evt)

 {

 int stateChange = evt.getStateChange();

 if(ItemEvent.SELECTED == stateChange ||

 ItemEvent.DESELECTED == stateChange)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ItemEvent.DESELECTED == stateChange)

 {

 int idx = list.getSelectedIndex();

 Product product = catalog.productAt(idx);

 product.setChecked(

 ItemEvent.SELECTED == stateChange);

 }

 }

 });

 }

}

Extending the Product

Listing 1.4 is a TextualProduct. A TextualProduct is a collection of Description objects.
To render itself onscreen, the TextualProduct creates a component with as many labels as
there are Description objects:

 public Component getComponent()

 {

 LayoutManager layout =

 new GridLayout(descriptions.length + 1,1);

 Panel panel = new Panel(layout);

 panel.add(new Label("Description:"));

 for(int i = 0;i < descriptions.length;i++)

 {

 String language = descriptions[i].getLanguage(),

 text = descriptions[i].getText();

 Label label = new Label(language + ": " + text);

 panel.add(label);

 }

 return panel;

 }

Listing 1.4 TextualProduct.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 1.4 TextualProduct.java

package com.psol.catalog;

import java.awt.*;

import java.util.Vector;

import java.io.IOException;

public class TextualProduct

 extends Product

{

 protected Description[] descriptions;

 public TextualProduct(String text,

 String id,

 boolean checked,

 Vector descriptions)

 {

 super(text,id,checked);

 this.descriptions = new Description[descriptions.size()];

 descriptions.copyInto(this.descriptions);

 }

 public Component getComponent()

 {

 LayoutManager layout =

 new GridLayout(descriptions.length + 1,1);

 Panel panel = new Panel(layout);

 panel.add(new Label("Description:"));

 for(int i = 0;i < descriptions.length;i++)

 {

 String language = descriptions[i].getLanguage(),

 text = descriptions[i].getText();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 text = descriptions[i].getText();

 Label label = new Label(language + ": " + text);

 panel.add(label);

 }

 return panel;

 }

 public Description descriptionAt(int i)

 {

 return descriptions[i];

 }

 public int getSize()

 {

 return descriptions.length;

 }

 public void accept(CatalogVisitor visitor)

 throws IOException

 {

 visitor.visitTextualProduct(this);

 }

}

Listing 1.5 is Description, which is simply a description and the description's language. We
can have multilingual catalogs!

Listing 1.5 Description.java

package com.psol.catalog;

import java.io.IOException;

import java.awt.Component;

public class Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class Description

 implements CatalogElement

{

 protected String language,

 text;

 public Description(String language,

 String text)

 {

 this.language = language;

 this.text = text;

 }

 public String getLanguage()

 {

 return language;

 }

 public String getText()

 {

 return text;

 }

 public void accept(CatalogVisitor visitor)

 throws IOException

 {

 visitor.visitDescription(this);

 }

}

Compare Listing 1.4 with Listing 1.6, the VisualProduct. Both are similar, but a
VisualProduct is rendered as an image onscreen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 1.6 VisualProduct.java

package com.psol.catalog;

import java.awt.*;

import java.io.IOException;

public class VisualProduct

 extends Product

{

 protected String image;

 protected class ImageCanvas

 extends Component

 {

 protected Image image = null;

 public ImageCanvas(String filename)

 {

 Toolkit toolkit = getToolkit();

 image = toolkit.getImage(filename);

 }

 public void paint(Graphics g)

 {

 if(null != image)

 g.drawImage(image,0,0,this);

 }

 public Dimension getPreferredSize()

 {

 int width = image.getWidth(this),

 height = image.getHeight(this);

 if(width == -1)

 width = 100;

 if(height == -1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 height = 100;

 return new Dimension(width,height);

 }

 }

 public VisualProduct(String text,

 String id,

 boolean checked,

 String image)

 {

 super(text,id,checked);

 this.image = image;

 }

 public String getImage()

 {

 return image;

 }

 public Component getComponent()

 {

 return new ImageCanvas(image);

 }

 public void accept(CatalogVisitor visitor)

 throws IOException

 {

 visitor.visitVisualProduct(this);

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XML Side

The object model is one side of the equation; the other side is the XML file. In an ideal world, the
XML file would match your object structure exactly and would be similar to the following:

 <?xml version='1.0'encoding='ISO-8859-1'?>

 <Catalog>

 <VisualProduct>

 <Id>wp01</Id>

 <Checked>false</Checked>

 <Name>WhizBang Word Processor</Name>

 <Image>images/wordprocessor.jpg</Image>

 </VisualProduct>

 <TextualProduct>

 <Id>li04</Id>

 <Checked>false</Checked>

 <Title>WhizBang Bright Light</Title>

 <Descriptions>

 <Description>

 <Language>EN</Language>

 <Text>With power saving.</Text>

 </Description>

 <Description>

 <Language>FR</Language>

 <Text>Avec gestion d'énergie.</Text>

 </Description>

 </Descriptions>

 </TextualProduct>

 </Catalog>

Crash Course on XML
XML stands for eXtensible Markup Language. Similar to HTML, it is a markup
language developed by the World Wide Web Consortium (W3C).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The syntax for XML is similar to HTML syntax, so it looks familiar. However, the X in
XML means that, unlike HTML, the language is not fixed.

Indeed, HTML has a fixed set of tags (<BODY>, <TITLE>, <P>, , and so on); the
list of acceptable tags was published by the W3C.

XML has no built-in tags and it is up to you, the developer, to create the tags you need.

Therefore, whereas HTML tags carry presentation instructions (for example, ,
<CENTER>, and <PRE>), XML tags tend to be related to the structure of the
information. For example, an address book will have tags such as <Name>, <Street>,
and <Phone>.

In other words, XML tags don't tell you how the information should be presented
onscreen (bold, italics, or centered) but rather what the information is. For example, the
tag

 <Name>John Doe</Name>

means that the person's name is John Doe.

The second major difference between XML and HTML is that XML enforces a very
strict syntax. Without going in the details, note the following:

Elements must be enclosed in a start tag and an end tag. It is no longer possible
to ignore the end tag. The following is an example:

<Phone>513-744-7098</Phone>

Empty elements (elements with no content) follow a special syntax, which looks
similar to the following:

<Email href="mailto:jdoe@emailaholic.com"/>

Attribute values must be enclosed in double or single quotes.

For a comprehensive introduction to XML, I recommend you read my other book, XML
by Example, published by Que.

However, that is the ideal case. In practice, the product information comes from the central
database, so chances are the XML file will be closer to the database organization than to your
object model. It is not unlikely that the file will look similar to Listing 1.7.

Obviously, because it is based on the same list of products, Listing 1.7 is not completely alien to
your object model either. The major difference is that it doesn't have a VisualProduct or
TextualProduct. In Listing 1.7, every entry is a product. Listing 1.7's structure is illustrated in
Figure 1.4.

Listing 1.7 catalog.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version='1.0'encoding='ISO-8859-1'?>

<Catalog>

 <Product id='wp01'checked='false'>

 <Text>WhizBang Word Processor</Text>

 <Image>images/wordprocessor.jpg</Image>

 </Product>

 <Product id='sf02'checked='false'>

 <Text>WhizBang Safest Safe</Text>

 <Image>images/safe.jpg</Image>

 </Product>

 <Product id='ca03'checked='false'>

 <Text>WhizBang Good Calculator</Text>

 <Image>images/calculator.jpg</Image>

 </Product>

 <Product id='li04'checked='false'>

 <Text>WhizBang Bright Light</Text>

 <Descriptions>

 <Text xml:lang='EN'>With power saving.</Text>

 <Text xml:lang='FR'>Avec gestion d'énergie.</Text>

 </Descriptions>

 </Product>

</Catalog>

Figure 1.4. XML document structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Designing with Patterns

This is where the interesting part begins. Your goal is to read the XML file in Listing 1.7 in the
object structure outlined in Figure 1.3.

The simplest solution is to add methods to the various classes to read and write the XML
document. A method to read a Description might look similar to

 public static Description readXML(Element element)

 {

 if(element.getTagName().equals("Text"))

 {

 String text = null;

 Node child = element.getFirstChild();

 if(child != null &&

 child.getNodeType() == Node.TEXT_NODE)

 {

 Text t = (Text)child;

 text = t.getData();

 }

 String language = element.getAttribute("xml:lang");

 return new Description(language,text);

 }

 else

 return null;

 }

Note that this method relies on a DOM (Document Object Model) parser to handle the XML
syntax. So, the Element parameter is a DOM Element object.

The method to write a Description object in XML would be as follows:

 public void writeXML(PrintWriter pw)

 throws IOException

 {

 pw.print("<Text xml:lang='" + language + "'>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pw.print("<Text xml:lang='" + language + "'>");

 pw.print(text);

 pw.println("</Text>");

 }

This is simple, but it is also limited. First, it mixes the XML into the data structure, which greatly
limits your ability to evolve one independently from the other. It also spreads the XML code over
the entire object hierarchy, which makes it more difficult to maintain.

We can do better using two patterns, the builder pattern and the visitor pattern, as described in
Design Patterns by Gamma, et al. (Addison-Wesley).

Use these patterns to separate the XML-related code from the object structure so that you can
change the file format without having to change your objects…or vice versa.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Meeting the Builder Pattern

Let's start with reading. To read the XML document and create the corresponding object
structure, use the builder pattern on top of the XML parser. Figure 1.5 illustrates the generic
builder pattern.

The various components of the pattern are as follows:

A builder interface and one (or more) concrete builders, which create the object structure.

A director that interacts with the builder to create the object structure. The director is driven
by the parser.

Product, which is a placeholder in the pattern for the object structure being created.

Figure 1.5. The builder pattern.

Applying the Builder Pattern

Figure 1.6 illustrates how to apply the pattern to your object structure. In addition to the Catalog,
Product, and Description classes introduced previously, this diagram has the following:

A CatalogBuilder interface that defines methods to create the various objects in the
structure (such as buildCatalog(), buildVisualProduct(), and so on)

A DefaultCatalogBuilder class that implements the CatalogBuilder interface

An XMLDirector class that drives the CatalogBuilder and is the class that implements
the SAX-defined DocumentHandler interface

In effect, XMLDirector convert SAX's events into calls to CatalogBuilder. The
CatalogBuilder is responsible for creating the various catalog objects.

Figure 1.6. Applying the builder pattern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Simple API for XML
SAX stands for the Simple API for XML. It declares an interface to an XML parser, and
in this respect, SAX is similar to W3C's Document Object Model (DOM). However, the
way SAX works is different the way DOM does. An XML parser is a library to read XML
documents. The parser enforces the XML syntax, decodes the elements, resolves the
entities, and more. In a nutshell, it takes care of low-level work for the programmer.

SAX is an event-based interface. Similar to AWT, your application must register for
events of interest. However, unlike AWT, SAX events are not related to buttons and
menus. SAX events relate to the XML document instead. Events exists for the
beginning and the end of the document, for the beginning and the end of an element,
for character data, for processing instructions, and more (see Figure 1.7).

Figure 1.7. A SAX parser generates events as it reads the XML document.

Because it is event based, SAX does not explicitly build the document tree in memory.
It is therefore more efficient than DOM and, in particular, it can process documents
larger than the available memory.

You can learn more about SAX at http://www.meggison.com/SAX.

In practice, CatalogBuilder is implemented in Listing 1.8. It declares one build method for
each object in the data structure: buildCatalog(), buildVisualProduct(), and so on.

Notice that it does not declare a buildProduct() because Product is an abstract class. It is
therefore impossible to instantiate it.

Listing 1.8 CatalogBuilder.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package com.psol.catalog;

public interface CatalogBuilder

{

 public void buildCatalog();

 public void buildVisualProduct(String text,

 String id,

 boolean checked,

 String image);

 public void buildTextualProduct(String text,

 String id,

 boolean checked);

 public void buildDescription(String language,

 String text);

 public Catalog getCatalog();

}

XMLDirector and DefaultCatalogBuilder are more interesting classes. XMLDirector is
demonstrated in Listing 1.9; let's walk through it step by step.

First, XMLDirector implements the SAX's DocumentHandler interface, which declares SAX
events related to the document:

 public class XMLDirector

 implements ContentHandler

The constructor accepts an object that implements the CatalogBuilder interface. As
XMLDirector progresses through the XML document, it collects information on the various
objects and calls the Catalogbuilder to create the Product objects:

 public XMLDirector(CatalogBuilder builder)

 {

 this.builder = builder;

 }

The meat of XMLDirector is in startElement() and endElement(). These two event
handlers track where the reader is in the document using the state variable. startElement()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handlers track where the reader is in the document using the state variable. startElement()
also initializes various buffers, depending on the current element. For the <Product> and
<Text> elements, it collects the value of their attributes:

 public void startElement(String namespaceURI,

 String localName,

 String tag,

 Attributes atts)

 {

 if(tag.equals("Catalog") && ROOT == state)

 state = CATALOG;

 else if(tag.equals("Product") && CATALOG == state)

 {

 state = PRODUCT;

 id = atts.getValue("id");

 String st = atts.getValue("checked");

 checked = Boolean.valueOf(st).booleanValue();

 text = null;

 image = null;

 }

 else if(tag.equals("Text") && PRODUCT == state)

 {

 state = PRODUCT_TEXT;

 buffer = new StringBuffer();

 }

 else if(tag.equals("Image") && PRODUCT == state)

 {

 state = IMAGE;

 buffer = new StringBuffer();

 }

 else if(tag.equals("Descriptions") && PRODUCT == state)

 state = DESCRIPTIONS;

 else if(tag.equals("Text") && DESCRIPTIONS == state)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 state = DESCRIPTIONS_TEXT;

 language = atts.getValue("xml:lang");

 buffer = new StringBuffer();

 }

 }

When an XML element corresponds to a Java object, endElement() calls the builder, passing it
the appropriate information.

This illustrates how the builder pattern works. The director accumulates just enough information to
construct one object and calls the builder to do the actual work:

 public void endElement(String namespaceURI,

 String localName,

 String tag)

 {

 if(tag.equals("Catalog") && CATALOG == state)

 {

 state = ROOT;

 builder.buildCatalog();

 }

 else if(tag.equals("Product") && PRODUCT == state)

 {

 state = CATALOG;

 if(null == image)

 builder.buildTextualProduct(text,id,checked);

 else

 builder.buildVisualProduct(text,id,checked,image);

 }

 else if(tag.equals("Text") && PRODUCT_TEXT == state)

 {

 state = PRODUCT;

 text = buffer.toString();

 }

 else if(tag.equals("Image") && IMAGE == state)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else if(tag.equals("Image") && IMAGE == state)

 {

 state = PRODUCT;

 image = buffer.toString();

 }

 else if(tag.equals("Descriptions") &&

 DESCRIPTIONS == state)

 state = PRODUCT;

 else if(tag.equals("Text") && DESCRIPTIONS_TEXT == state)

 {

 state = DESCRIPTIONS;

 builder.buildDescription(language,buffer.toString());

 }

 }

Tip

XMLDirector does not validate the structure of the XML document—for example, it
does not test whether the attributes or the elements exist.

If your applications need to validate the structure of the document, you should consider
using a validating parser.

As promised, the code for XMLDirector is in Listing 1.9.

Listing 1.9 XMLDirector.java

package com.psol.catalog;

import org.xml.sax.*;

public class XMLDirector

 implements DocumentHandler

{

 protected CatalogBuilder builder;

 protected static final int ROOT = 0,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected static final int ROOT = 0,

 CATALOG = 1,

 PRODUCT = 2,

 PRODUCT_TEXT = 3,

 IMAGE = 4,

 DESCRIPTIONS = 5,

 DESCRIPTIONS_TEXT = 6;

 protected int state;

 protected StringBuffer buffer;

 protected String text,

 id,

 image,

 language;

 protected boolean checked;

 public XMLDirector(CatalogBuilder builder)

 {

 this.builder = builder;

 }

 public void setDocumentLocator (Locator locator)

 { }

 public void startDocument()

 {

 state = ROOT;

 }

 public void endDocument()

 { }

 public void startElement(String tag,AttributeList atts)

 {

 if(tag.equals("Catalog") && ROOT == state)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(tag.equals("Catalog") && ROOT == state)

 state = CATALOG;

 else if(tag.equals("Product") && CATALOG == state)

 {

 state = PRODUCT;

 id = atts.getValue("id");

 String st = atts.getValue("checked");

 checked = Boolean.valueOf(st).booleanValue();

 text = null;

 image = null;

 }

 else if(tag.equals("Text") && PRODUCT == state)

 {

 state = PRODUCT_TEXT;

 buffer = new StringBuffer();

 }

 else if(tag.equals("Image") && PRODUCT == state)

 {

 state = IMAGE;

 buffer = new StringBuffer();

 }

 else if(tag.equals("Descriptions") && PRODUCT == state)

 state = DESCRIPTIONS;

 else if(tag.equals("Text") && DESCRIPTIONS == state)

 {

 state = DESCRIPTIONS_TEXT;

 language = atts.getValue("xml:lang");

 buffer = new StringBuffer();

 }

 }

 public void endElement(String tag)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 if(tag.equals("Catalog") && CATALOG == state)

 {

 state = ROOT;

 builder.buildCatalog();

 }

 else if(tag.equals("Product") && PRODUCT == state)

 {

 state = CATALOG;

 if(null == image)

 builder.buildTextualProduct(text,id,checked);

 else

 builder.buildVisualProduct(text,id,checked,image);

 }

 else if(tag.equals("Text") && PRODUCT_TEXT == state)

 {

 state = PRODUCT;

 text = buffer.toString();

 }

 else if(tag.equals("Image") && IMAGE == state)

 {

 state = PRODUCT;

 image = buffer.toString();

 }

 else if(tag.equals("Descriptions") &&

 DESCRIPTIONS == state)

 state = PRODUCT;

 else if(tag.equals("Text") && DESCRIPTIONS_TEXT == state)

 {

 state = DESCRIPTIONS;

 builder.buildDescription(language,buffer.toString());

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public void characters(char ch[],int start,int len)

 {

 if(PRODUCT_TEXT == state ||

 IMAGE == state ||

 DESCRIPTIONS_TEXT == state)

 buffer.append(ch,start,len);

 }

 public void ignorableWhitespace(char ch[],

 int start,

 int length)

 {}

 public void processingInstruction(String target,String data)

 {}

}

The builder pattern cleanly separates the work between the director (responsible for collecting the
information from the XML file) and the builder (responsible for creating and maintaining the object
structure).

Listing 1.10 is DefaultCatalogBuilder. Again, let's first review the salient points.

DefaultCatalogBuilder provides storage for the catalog in the making. It stores a list of
descriptions because it is being built through calls to buildDescription(). It also stores a list
of products because it's being built through calls to buildTextualProduct() and
buildVisualProduct():

 protected Catalog catalog = null;

 protected Vector products = new Vector(),

 descriptions = new Vector();

buildCatalog() is a very simple method. It simply creates a catalog object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void buildCatalog()

 {

 catalog = new Catalog(products);

 }

buildVisualProduct() creates new product objects and stores them in the products vector.
buildTextualProduct() and buildDescription() are very similar:

 public void buildVisualProduct(String text,

 String id,

 boolean checked,

 String image)

 {

 Product product = new VisualProduct(text,

 id,

 checked,

 image);

 products.addElement(product);

 }

As promised, the code for DefaultCatalogBuilder is in Listing 1.10.

Listing 1.10 DefaultCatalogBuilder.java

package com.psol.catalog;

import java.util.Vector;

public class DefaultCatalogBuilder

 implements CatalogBuilder

{

 protected Catalog catalog = null;

 protected Vector products = new Vector(),

 descriptions = new Vector();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void buildCatalog()

 {

 catalog = new Catalog(products);

 }

 public void buildVisualProduct(String text,

 String id,

 boolean checked,

 String image)

 {

 Product product = new VisualProduct(text,

 id,

 checked,

 image);

 products.addElement(product);

 }

 public void buildTextualProduct(String text,

 String id,

 boolean checked)

 {

 Product product = new TextualProduct(text,

 id,

 checked,

 descriptions);

 products.addElement(product);

 descriptions = new Vector();

 }

 public void buildDescription(String language,

 String text)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Description description = new Description(language,text);

 descriptions.addElement(description);

 }

 public Catalog getCatalog()

 {

 return catalog;

 }

}

To start the pattern, it suffices to create an XMLDirector and register it, as a
DocumentHandler, with a SAX parser:

 XMLReader xmlReader =

 XMLReaderFactory.createXMLReader(PARSER_NAME);

 CatalogBuilder builder = new DefaultCatalogBuilder();

 xmlReader.setContentHandler(new XMLDirector(builder));

 xmlReader.parse("catalog.xml");

 Catalog catalog = builder.getCatalog();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Meeting the Visitor Pattern

The visitor pattern is a sort of mirror of the builder pattern. Again, our goal will be to separate the
object structure from the writing of the XML document.

Figure 1.8 illustrates the generic visitor pattern. The various components are as follows:

The Element class and its descendants, which represent the object structure

The Structure class, which is the root of the structure

The Visitor and its descendant, which walk through the object structure, writing the XML
document as they progress

The client, which is the class that sends the visitor on to the data structure

Warning

Don't confuse the class Element with an XML element. In the visitor pattern, Element
stands for an element in the data structure.

Figure 1.8. Visitor pattern.

One of the remarkable aspects of this pattern is how a Visitor object recognizes a concrete
element. It would have been possible to explicitly test the various options, such as in the
following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(element instanceof Catalog)

 visitCatalog((Catalog)element);

 else if(element instanceof VisualProduct)

 visitVisualProduct((VisualProduct)element);

 // and more

However, this method is error prone. It is particularly easy to forget to update this list of tests
when new classes are added to the structure.

Instead, Element and Visitor use a two-step protocol to recognize each other. Element
implements the accept() method, which takes a Visitor as a parameter. When an Element
accepts a Visitor, it calls the appropriate visitConcreteElement() method, passing a
reference to itself, to the Visitor object.

Applying the Visitor Pattern

Figure 1.9 applies the visitor pattern to our object structure. It introduces two new interfaces and
two new classes:

The CatalogElement interface from which the various classes in the data structure
inherit. It declares the accept() method.

The CatalogVisitor interface declares various methods for visiting the object structure.

The XMLVisitor class is one visitor that writes the object structure in XML.

The CatalogViewer class implements the main() method for the application. It starts
the visitor pattern.

Figure 1.9. Applying the visitor pattern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CatalogElement interface is shown in Listing 1.11. It declares only one method:
accept().

Listing 1.11 CatalogElement.java

package com.psol.catalog;

import java.io.IOException;

public interface CatalogElement

{

 public void accept(CatalogVisitor visitor)

 throws IOException;

}

The accept() method is implemented in CatalogElement's descendants, such as the
Catalog class (refer to Listing 1.1):

 public void accept(CatalogVisitor visitor)

 throws IOException

 {

 visitor.visitCatalog(this);

 }

Listing 1.12 is the CatalogVisitor. It declares one method for each element in the object
structure.

Listing 1.12 CatalogVisitor.jar

package com.psol.catalog;

import java.io.IOException;

public interface CatalogVisitor

{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void visitCatalog(Catalog catalog)

 throws IOException;

 public void visitVisualProduct(VisualProduct product)

 throws IOException;

 public void visitTextualProduct(TextualProduct product)

 throws IOException;

 public void visitDescription(Description description)

 throws IOException;

}

XMLVisitor, as seen in Listing 1.13, is one implementation of CatalogVisitor that writes the
XML document.

For each object, it writes the corresponding XML code. If the object contains other objects, it calls
their accept() method, which causes these objects to be written as well:

 public void visitTextualProduct(TextualProduct product)

 throws IOException

 {

 pw.print("<Product");

 printAttribute("id",product.getId());

 Boolean bool = new Boolean(product.isChecked());

 printAttribute("checked",bool.toString());

 pw.println('>');

 printElement("Text",product.getText());

 pw.println("<Descriptions>");

 for(int i = 0;i < product.getSize();i++)

 product.descriptionAt(i).accept(this);

 pw.println("</Descriptions>");

 pw.println("</Product>");

 }

Listing 1.13 XMLVisitor.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package com.psol.catalog;

import java.io.*;

public class XMLVisitor

 implements CatalogVisitor

{

 protected PrintWriter pw;

 public XMLVisitor(PrintWriter pw)

 {

 this.pw = pw;

 }

 public void visitCatalog(Catalog catalog)

 throws IOException

 {

 pw.println("<?xml version='1.0'?>");

 pw.println("<Catalog>");

 for(int i = 0;i < catalog.getSize();i++)

 catalog.productAt(i).accept(this);

 pw.print("</Catalog>");

 pw.flush();

 }

 public void visitVisualProduct(VisualProduct product)

 throws IOException

 {

 pw.print("<Product");

 printAttribute("id",product.getId());

 Boolean bool = new Boolean(product.isChecked());

 printAttribute("checked",bool.toString());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printAttribute("checked",bool.toString());

 pw.println('>');

 printElement("Text",product.getText());

 printElement("Image",product.getImage());

 pw.println("</Product>");

 }

 public void visitTextualProduct(TextualProduct product)

 throws IOException

 {

 pw.print("<Product");

 printAttribute("id",product.getId());

 Boolean bool = new Boolean(product.isChecked());

 printAttribute("checked",bool.toString());

 pw.println('>');

 printElement("Text",product.getText());

 pw.println("<Descriptions>");

 for(int i = 0;i < product.getSize();i++)

 product.descriptionAt(i).accept(this);

 pw.println("</Descriptions>");

 pw.println("</Product>");

 }

 public void visitDescription(Description description)

 throws IOException

 {

 pw.print("<Text");

 printAttribute("xml:lang",description.getLanguage());

 pw.print('>');

 printContent(description.getText());

 pw.println("</Text>");

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void printElement(String tag,String content)

 throws IOException

 {

 pw.print('<'); pw.print(tag); pw.print('>');

 printContent(content);

 pw.print("</"); pw.print(tag); pw.println('>');

 }

 public void printContent(String content)

 throws IOException

 {

 // works with any Writer encoding but EBCDIC

 for(int i = 0;i < content.length();i++)

 {

 char c = content.charAt(i);

 if(c == '<')

 pw.print("<");

 else if(c == '&')

 pw.print("&");

 else if(c > '\ u007f')

 {

 pw.print("&#");

 pw.print(Integer.toString(c));

 pw.print(';');

 }

 else

 pw.print(c);

 }

 }

 public void printAttribute(String name,String value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws IOException

 {

 pw.print(''); pw.print(name); pw.print("='");

 // works with any Writer encoding but EBCDIC

 for(int i = 0;i < value.length();i++)

 {

 char c = value.charAt(i);

 if(c == '\ '')

 pw.print("'");

 else if(c == '&')

 pw.print("&");

 else if(c > '\ u007f')

 {

 pw.print("&#");

 pw.print(Integer.toString(c));

 pw.print(';');

 }

 else

 pw.print(c);

 }

 pw.print('\ '');

 }

}

The application's main class is shown in Listing 1.14, CatalogViewer. CatalogViewer
creates a frame on which it places an instance of CatalogPanel (refer to Listing 1.3). At startup,
it uses the builder pattern to read the catalog.xml file.

When the window is closed, it uses the visitor pattern to overwrite catalog.xml. This saves any
changes by the customer, such as selecting or deselecting a product:

 Writer writer = new FileWriter("catalog.xml");

 CatalogVisitor visitor =

 new XMLVisitor(new PrintWriter(writer));

 catalog.accept(visitor);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catalog.accept(visitor);

Tip

It would not be difficult to use JavaMail (the standard Java API for emailing) in
conjunction with the visitor pattern to automatically email the product selection. This is
left as an exercise for the reader.

Listing 1.14 CatalogViewer.java

package com.psol.catalog;

import java.io.*;

import java.awt.*;

import org.xml.sax.*;

import java.awt.event.*;

import org.xml.sax.helpers.XMLReaderFactory;

public class CatalogViewer

{

 public static final String PARSER_NAME =

 "org.apache.xerces.parsers.SAXParser";

 protected static class SaveOnClose

 extends WindowAdapter

 {

 protected Catalog catalog;

 public SaveOnClose(Catalog catalog)

 {

 this.catalog = catalog;

 }

 public void windowClosing(WindowEvent evt)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void windowClosing(WindowEvent evt)

 {

 try

 {

 Writer writer = new FileWriter("catalog.xml");

 CatalogVisitor visitor =

 new XMLVisitor(new PrintWriter(writer));

 catalog.accept(visitor);

 }

 catch(IOException e)

 { }

 System.exit(0);

 }

 }

 public static void main(String[] args)

 throws Exception

 {

 XMLReader xmlReader =

 XMLReaderFactory.createXMLReader(PARSER_NAME);

 CatalogBuilder builder = new DefaultCatalogBuilder();

 xmlReader.setContentHandler(new XMLDirector(builder));

 xmlReader.parse("catalog.xml");

 Catalog catalog = builder.getCatalog();

 Panel panel = new CatalogPanel(catalog);

 Frame frame = new Frame("Catalog Viewer");

 frame.add(panel);

 frame.setResizable(false);

 frame.setSize(400,200);

 frame.addWindowListener(new SaveOnClose(catalog));

 frame.show();

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building and Running the Project

The catalog viewer project is available on the CD that accompanies this book. Copy the project
directory from the CD to your hard disk and then go to the command line and change to the root
of the project. You can run the catalog viewer with the catalog command (see Figure 1.10).

Figure 1.10. Running the catalog viewer.

Caution

You need a version of Java 2 (JDK 1.2 or above) installed on your machine to run this
project. The project should run on JDK 1.1, but you will need to adapt the
catalog.bat file.

You also need a SAX 2.0–compliant XML parser to run this project. The project on the
accompanying CD uses Xerces, which is available on the CD and from
http://xml.apache.org.

If you switch to another parser, you will need to update PARSER_NAME in
CatalogViewer.

Pattern Benefits

The major benefits of the builder and visitor patterns are as follows:

They separate reading and writing XML documents from the object structure.

They centralize the XML-related code in a few classes that simplify maintenance. This is
particularly valuable in large projects where one developer is responsible for the object
structure and another one is in charge of XML-related aspects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Replacing the Director

The benefit of adopting a flexible design is that it is simple to change the application. For
example, you can

Change the structure of the XML document by adapting the director (and the visitor) with
no changes whatsoever to the object structure.

Only load a subset of the catalog, to save memory, by adapting the builder to discard those
objects you don't need. Again, changes are limited to one class.

Replace the SAX parser with a DOM parser or even a database by adapting the director.
Again, changes do not impact other classes.

Listing 1.15 demonstrates the last advantage. As the name implies, the DOMDirector is a director
built on a DOM parser. This director makes exactly the same calls to the builder, so changes are
really limited to one class!

Although a DOM parser is less efficient, because it uses more memory, it might be the only parser
available to you.

Listing 1.15 DOMDirector.java

package com.psol.catalog;

import org.w3c.dom.*;

public class DOMDirector

{

 protected CatalogBuilder builder;

 public DOMDirector(CatalogBuilder builder)

 {

 this.builder = builder;

 }

 public void walkDocument(Document document)

 {

 Element el = document.getDocumentElement();

 if(el.getTagName().equals("Catalog"))

 walkCatalog(el);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public void walkCatalog(Element element)

 {

 NodeList children = element.getChildNodes();

 for(int i = 0;i < children.getLength();i++)

 {

 Node node = children.item(i);

 if(node.getNodeType() == Node.ELEMENT_NODE)

 {

 Element el = (Element)node;

 if(el.getTagName().equals("Product"))

 walkProduct(el);

 }

 }

 builder.buildCatalog();

 }

 public void walkProduct(Element element)

 {

 NodeList children = element.getChildNodes();

 String text = null,

 image = null;

 for(int i = 0;i < children.getLength();i++)

 {

 Node node = children.item(i);

 if(node.getNodeType() == Node.ELEMENT_NODE)

 {

 Element el = (Element)node;

 if(el.getTagName().equals("Text"))

 text = extractContent(el);

 else if(el.getTagName().equals("Image"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 image = extractContent(el);

 else if(el.getTagName().equals("Descriptions"))

 walkDescriptions(el);

 }

 }

 String id = element.getAttribute("id"),

 st = element.getAttribute("checked");

 boolean checked = Boolean.valueOf(st).booleanValue();

 if(null == image)

 builder.buildTextualProduct(text,id,checked);

 else

 builder.buildVisualProduct(text,id,checked,image);

 }

 public void walkDescriptions(Element element)

 {

 NodeList children = element.getChildNodes();

 for(int i = 0;i < children.getLength();i++)

 {

 Node node = children.item(i);

 if(node.getNodeType() == Node.ELEMENT_NODE)

 {

 Element el = (Element)node;

 if(el.getTagName().equals("Text"))

 {

 String text = extractContent(el),

 lang = el.getAttribute("xml:lang");

 builder.buildDescription(lang,text);

 }

 }

 }

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public String extractContent(Element element)

 {

 // currently ignores entities, CDATA section, etc.

 element.normalize();

 Node child = element.getFirstChild();

 if(child != null && child.getNodeType() == Node.TEXT_NODE)

 {

 Text text = (Text)child;

 return text.getData();

 }

 else

 return null;

 }

}

Replacing the Visitor

The catalog viewer saves the complete catalog so the customer must email a file that is larger
than required. However, it would be more efficient to save a smaller file with the list of products
the customer selected.

This is easy to accomplish by writing a new visitor class, such as the XMLRequestVisitor
shown in Listing 1.16.

Listing 1.16 XMLRequestVisitor.java

package com.psol.catalog;

import java.io.*;

public class XMLRequestVisitor

 implements CatalogVisitor

{

 protected PrintWriter pw;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public XMLRequestVisitor(PrintWriter pw)

 {

 this.pw = pw;

 }

 public void visitCatalog(Catalog catalog)

 throws IOException

 {

 pw.println("<?xml version='1.0'?>");

 pw.println("<Request>");

 for(int i = 0;i < catalog.getSize();i++)

 catalog.productAt(i).accept(this);

 pw.print("</Request>");

 pw.flush();

 }

 public void visitVisualProduct(VisualProduct product)

 throws IOException

 {

 visitProduct(product);

 }

 public void visitTextualProduct(TextualProduct product)

 throws IOException

 {

 visitProduct(product);

 }

 public void visitProduct(Product product)

 throws IOException

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(product.isChecked())

 {

 pw.print("<Product id='");

 // works with any Writer encoding but EBCDIC

 String value = product.getId();

 for(int i = 0;i < value.length();i++)

 {

 char c = value.charAt(i);

 if(c == '\ '')

 pw.print("'");

 else if(c == '&')

 pw.print("&");

 else if(c > '\ u007f')

 {

 pw.print("&#");

 pw.print(Integer.toString(c));

 pw.print(';');

 }

 else

 pw.print(c);

 }

 pw.println("\ '/>");

 }

 }

 public void visitDescription(Description description)

 throws IOException

 { }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

The patterns and tools introduced in this chapter are not limited to the catalog viewer written in
Java.

Other Applications

Many applications will benefit from using XML as lightweight data storage. In addition, XML is
such a versatile format that it can be applied in any industry.

Many reasons exist to choose XML as a file format. The following are some of the most popular
reasons:

XML works well with object-oriented languages such as Java.

By choosing XML, your application has the backing of some of the biggest names in the
industry: Microsoft, IBM, Sun, Oracle, and Netscape. In practice, this means your files
interface more easily into their systems.

XML is easy to use and easy to learn. Plus, more professionals are learning XML, which
means even more support exists for it.

XML has good press. I saved this one for the end. Please note that I didn't write "there's a
lot of hype around XML." A few of my customers have adopted XML because it looks good
on their press release but more have adopted it because they want to benefit from the
growing XML industry.

Parsers in Other Languages

SAX parsers are available to most programming languages, including

C++— The C++ version of the Xerces parser also is available from http://xml.apache.org.

Python— SAX for Python is available from http://www.stud.ifi.uio.no/
~lmariusg/download/python/xml/saxlib.html.

Perl— XML::Parser::PerlSAX is available from http://www.bitsko.slc.ut.us/ libxml-perl.

Eiffel— eXML is available from exml.sourceforge.net.

And most languages on the Windows platform (Visual Basic, Delphi) through
ActiveSAX— ActiveSAX is a commercial COM component available from http://www.vivid-
creations.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Scripted Configuration Files
In the previous chapter, you saw how effective a file format XML is. This chapter addresses
similar issues but from a different angle. More specifically, you will concentrate on special files:
the configuration files.

You will see why XML is intrinsically a good replacement for most configuration files but, also, you
will see how XML makes it easy to extend the classical configuration file in scripted configuration
files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Configuration Files

Most applications use some sort of configuration files to store information such as paths, window
sizes, user preferences, and network addresses.

Because configuration files are so important, most programming languages, including Java, have
built-in support for them. In Java, this support takes the form of the java.util.Properties
class. Windows and other platforms use the ini files. Windows also has the Registry.

With the exception of the Windows Registry (which has other problems of its own), most
configuration files are flat text files. They store a list of properties similar to the following:

 # @(#)flavormap.properties 1.5

 TEXT=text/plain;charset=ascii

 UNICODE\ TEXT=text/plain;charset=unicode

 HTML\ Format=text/html;charset=unicode

 Rich\ Text\ Format=text/enriched;charset=ascii

 HDROP=application/x-java-file-list;class=java.util.List

In practice, many applications would benefit from a richer structure. Consider the following extract
from a Web server configuration file:

 SERVERS : main

 main.CLASS : com.mortbay.HTTP.HttpServer

 main.STACKS : root

 main.PROPERTY.SessionMaxInactiveInterval : 3600

 main.PROPERTY.MinListenerThreads : 10

 main.PROPERTY.MaxListenerThreads : 0

 main.PROPERTY.MaxListenerThreadIdleMs : 0

 main.LISTENER.all.CLASS : com.mortbay.HTTP.HttpListener

 main.LISTENER.all.ADDRS : 0.0.0.0:8080

 main.root.PATHS : /

 main.root.HANDLERS : file

 main.root.file.CLASS : com.mortbay.HTTP.Handler.FileHandler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 main.root.file.PROPERTY.FILES.FileBase.PATHS : /

 main.root.file.PROPERTY.FILES.FileBase.DIRECTORY : ./docs

Obviously, these properties are organized in a hierarchical format. For example,
main.root.file.CLASS and main.root.file.PROPERTY are related to the same process
within the server.

This chapter is a manifesto to encourage you to use XML as the preferred format for serious
configuration files. But it won't stop there. You will also explore how (and when) XML lends itself
to building a mini-script language.

Scripted Configuration Files

Take the example of an online survey application. Online surveys are popular, and Web sites are
struggling to come up with imaginative surveys. The survey in this example measures interest in
books on XML.

Imagine a survey engine. It presents questions to visitors and collects the answers. Most
questions are simple, simply requiring the visitor to pick the answer from a list of choices.
However, some questions can be open-ended, requiring the visitor to type his choice.

The list of questions will typically end up in a configuration file to make it easy to edit. Obviously,
XML is a good choice because it will support the relationship between the questions and their
choices, as in the following:

 <?xml version="1.0"?>

 <survey>

 <question>

 <label>Do you use XML?</label>

 <choice>

 <option>

 <label>I do</label>

 <value>yes</value>

 </option>

 <option>

 <label>No but I plan to use it</label>

 <value>planning</value>

 </option>

 <option>

 <label>No and I don't plan to use it</label>

 <value>no</value>

 </option>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </option>

 </choice>

 </question>

 <question>

 <label>Do you need more XML books?</label>

 <choice>

 <option>

 <label>Yes, I would like more XML books</label>

 <value>yes</value>

 </option>

 <option>

 <label>No, I have all the books I need</label>

 <value>no</value>

 </option>

 </choice>

 </question>

 <!-- more questions deleted -->

 </survey>

In all but the simplest survey, questions are linked to each other and the answer to one might
determine which question is asked next. For example, if the visitor has no plan to use XML, it
does not make a lot of sense to inquire whether that visitor would be interested in an XML book.
Move to another part of the survey instead.

How should you represent this linking in the configuration file? Again, traditional configuration files
are ill-equipped for this, but, with XML, you can build a nice answer: a scripted configuration file.

A scripted configuration file can store some of the logic, such as how to decide on the next
question, in the configuration file. It takes the form of a simple script, such as

 <if>

 <eq>

 <answer>usingxml</answer>

 <text>no</text>

 </eq>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </eq>

 <text>done</text>

 <text>morebook</text>

 </if>

If the visitor replies that he is not using XML, the survey is complete. Otherwise, you inquire about
more books.

Why Not a Real Scripting Language?

Why ponder on this hybrid, the scripted configuration file; why not adopt a real scripting
language? After all, ready-made interpreters are available for the most popular scripting
languages, such as VBScript, JavaScript, Tcl, Perl, and Python.

Scripted configuration files are a middle ground between a full-blown scripting language, which is
intimidating for many users, and a non-scripted configuration file, which is often too limited.

Furthermore, interpreters tend to be large. Because they support a full-blown language, they offer
many options at the cost of being larger and more complicated to use.

In other words, scripted configuration files strike the right balance between complexity and
usefulness for many projects. As you will see, building them in XML is not difficult.

Finally, users can take advantage of many XML tools, including editors, to help them prepare the
configuration files—and it does not require more work from you.

For completeness, I must stress that this does not replace your favorite scripting language. For
heavy-duty programming, adopting a real scripting language makes more sense, if only because
you will benefit from standard libraries and other facilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Meeting Survex

In the rest of this chapter, you'll build the Survex . Survex is a generic survey application. It is
configured for a specific survey through an XML file, such as Listing 2.1.

Listing 2.1 survey.xml

<?xml version="1.0"?>

<survey>

 <question>

 <name>email</name>

 <title>Welcome to our XML book survey</title>

 <label>Thank you for participating in our survey.</label>

 <input>Enter your email address</input>

 <next><text>usingxml</text></next>

 </question>

 <question>

 <name>usingxml</name>

 <title>XML and You</title>

 <label>Do you use XML?</label>

 <choice>

 <option>

 <label>I do</label>

 <value>yes</value>

 </option>

 <option>

 <label>No but I plan to use it</label>

 <value>planning</value>

 </option>

 <option>

 <label>No and I don't plan to use it</label>

 <value>no</value>

 </option>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </option>

 </choice>

 <next>

 <if>

 <eq>

 <answer>usingxml</answer>

 <text>no</text>

 </eq>

 <block>

 <save><answer>email</answer></save>

 <text>done</text>

 </block>

 <text>booktraining</text>

 </if>

 </next>

 </question>

 <question>

 <name>booktraining</name>

 <title>XML Books</title>

 <label>Do you need more XML books?</label>

 <choice>

 <option>

 <label>Yes, I would like more XML books</label>

 <value>yes</value>

 </option>

 <option>

 <label>No, I have all the books I need</label>

 <value>no</value>

 </option>

 </choice>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </choice>

 <next>

 <if>

 <eq>

 <answer>booktraining</answer>

 <text>yes</text>

 </eq>

 <text>timeframe</text>

 <block>

 <save><answer>email</answer></save>

 <text>done</text>

 </block>

 </if>

 </next>

 </question>

 <question>

 <name>timeframe</name>

 <title>Timeframe</title>

 <label>When do you plan to buy new XML books?</label>

 <choice>

 <option>

 <label>Now</label>

 <value>now</value>

 </option>

 <option>

 <label>Within 3 months</label>

 <value>months</value>

 </option>

 <option>

 <label>Within a year</label>

 <value>year</value>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <value>year</value>

 </option>

 <option>

 <label>I don't know yet</label>

 <value>unknown</value>

 </option>

 </choice>

 <next>

 <block>

 <save><answer>email</answer></save>

 <text>done</text>

 </block>

 </next>

 </question>

 <question>

 <name>done</name>

 <title>Thank you</title>

 <label>Thank you for your time!</label>

 <next><text>done</text></next>

 </question>

</survey>

The survey is a list of question in which each question has the following:

A name, which uniquely identifies a section

A title, which is presented to the visitor

A label or the text of the question itself

Either a list of options from which the visitor can choose an answer (for closed questions)
or an input field (for open questions)

A small script to decide on the next question

The first question in the listing will be rendered as in Figure 2.1. Note that the script could not be
simpler; it unconditionally moves to the next question:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <question>

 <name>email</name>

 <title>Welcome to our XML book survey</title>

 <label>Thank you for participating in our survey.</label>

 <input>Enter your email address</input>

 <next><text>usingxml</text></next>

 </question>

Figure 2.1. The survey first asks for your email address.

Designing Survex

The model behind Survex is shown in Figure 2.2. The main classes are

Survex—The servlet that runs it all.

Survey—The list of questions in the current survey.

Question—Stores information on one question.

Option—Stores information on an option in a list of options.

Statement—It and its descendants are used for scripting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SurveyReader—Parses the XML file and builds the corresponding Survey object .

Figure 2.2. The script is modeled as Statement descendants.

The Data Structure

At the heart of the data structure is the Question class (see Listing 2.2). The Question defines
a number of properties: the name , title , and label , as well as the input or the list of
options . Note that the code enforces an exclusive on the input and the list of options.
Finally, the script is used.

Listing 2.2 Question.java

package com.psol.survex;

import java.io.*;

import java.util.*;

public class Question

{

 protected String name,

 title,

 label,

 input;

 protected Option[] options;

 protected Statement script;

 public String getName()

 {

 return name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return name;

 }

 public void setName(String name)

 {

 this.name = name;

 }

 public String getTitle()

 {

 return title;

 }

 public void setTitle(String title)

 {

 this.title = title;

 }

 public String getLabel()

 {

 return label;

 }

 public void setLabel(String label)

 {

 this.label = label;

 }

 public Option[] getOptions()

 {

 return options;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void setOptions(Option[] options)

 {

 this.options = options;

 input = null;

 }

 public String getInput()

 {

 return input;

 }

 public void setInput(String input)

 {

 this.input = input;

 options = null;

 }

 public void setScript(Statement script)

 {

 this.script = script;

 }

 public Statement getScript()

 {

 return script;

 }

}

Question uses the Option class , in Listing 2.3, to store the properties for the various options.
Each option has a label and a value.

Listing 2.3 Option.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package com.psol.survex;

import java.io.*;

public class Option

{

 protected String label,

 value;

 public void setLabel(String label)

 {

 this.label = label;

 }

 public String getLabel()

 {

 return label;

 }

 public void setValue(String value)

 {

 this.value = value;

 }

 public String getValue()

 {

 return value;

 }

}

At the root of the data structure is the Survey class (see Listing 2.4). It maintains the list of
questions in a dictionary for fast retrieval.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 2.4 Survey.java

package com.psol.survex;

import java.io.*;

import java.util.*;

public class Survey

{

 protected String rootName;

 protected Dictionary questions = new Hashtable();

 public Enumeration getKeys()

 {

 return questions.keys();

 }

 public void addQuestion(Question question)

 {

 if(questions.isEmpty())

 rootName = question.getName();

 questions.put(question.getName(),question);

 }

 public Question getQuestion(String name)

 {

 return (Question)questions.get(name);

 }

 public Question getRootQuestion()

 {

 return (Question)questions.get(rootName);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

}

Building a Script Interpreter

A script is an object that implements the Statement interface (see Listing 2.5). The interface is
trivial, defining only one method, apply() , which executes the statement and returns a string.
For simplicity, the string is the only data type. Also, no local variables exist, only global
parameters.

Listing 2.5 Statement.java

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public interface Statement

{

 public String apply(Dictionary parameters)

 throws ServletException;

}

Looking back at Listing 2.1, you can identify the following statements:

<text>—Used for a text constant

<answer>—Retrieves an answer chosen by the visitor

<eq>—Tests for equality

<if>—Is the classical if/then/else construct

<save>—Saves the results to a file

<block>—Combines several statements

The <text> statement is implemented in the class named Constant (see Listing 2.6).
Constant has one property, text , and its apply() method returns the value of the text
property.

Listing 2.6 Constant.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public class Constant

 implements Statement

{

 protected String text;

 public void setText(String text)

 {

 this.text = text;

 }

 public String apply(Dictionary parameters)

 throws ServletException

 {

 return text;

 }

}

The <answer> XML element is implemented in the Parameter class in Listing 2.7. This class
has one property, name, and its apply() method returns the parameter whose name matches
the name property. As you will see, the servlet loads the parameters with the visitor's choices.

Listing 2.7 Parameter.java

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public class Parameter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 implements Statement

{

 protected String name;

 public void setName(String name)

 {

 this.name = name;

 }

 public String apply(Dictionary parameters)

 throws ServletException

 {

 String st = (String)parameters.get(name);

 return null != st ? st : "";

 }

}

Equal (in Listing 2.8) supports the <eq> statement . Equal has two properties, arg1 and arg2 ,
both of which are Statements themselves. Equal executes the two Statements (by calling
their apply() method) and compares the results.

Note

Equal illustrates how Statements are combined. The scripting language has a
distinct functional style: Each Statement is a function (it takes one or more
parameters and returns a value). Also, no global variables exist.

A functional style is simpler to understand and, remember, you are looking for a simple-
to-use scripting language. For more sophistication, you would have turned to an
existing scripting language.

Listing 2.8 Equal.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public class Equal

 implements Statement

{

 protected Statement arg1, arg2;

 public void setArgs(Statement arg1,Statement arg2)

 {

 this.arg1 = arg1;

 this.arg2 = arg2;

 }

 public String apply(Dictionary parameters)

 throws ServletException

 {

 String value1 = arg1.apply(parameters),

 value2 = arg2.apply(parameters);

 return value1.equals(value2) ? "true" : "false";

 }

}

If has three properties: cond , then , and _else . It executes the first statement: cond, the
condition. Depending on the result, it next executes the then or _else statement (see Listing
2.9).

Listing 2.9 If.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public class If

 implements Statement

{

 protected Statement cond,

 then,

 _else;

 public void setArgs(Statement cond,

 Statement then,

 Statement _else)

 {

 this.cond = cond;

 this.then = then;

 this._else = _else;

 }

 public String apply(Dictionary parameters)

 throws ServletException

 {

 if(cond.apply(parameters).equals("true"))

 return then.apply(parameters);

 else

 return _else.apply(parameters);

 }

}

Save is a special function because it has a side effect: It creates a file and writes the parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Save is a special function because it has a side effect: It creates a file and writes the parameters.
The script uses this before terminating the survey (see Listing 2.10).

Tip

Listing 2.10 saves the survey results under the visitor's email address. Email addresses
are a simple mechanism to identify visitors. Obviously, some people have several email
addresses, whereas some families share email addresses, but it's accurate enough for
our needs.

An added bonus is that when a visitor changes his mind and answers differently, the
new answer overrides the older one.

Listing 2.10 Save.java

package com.psol.survex;

import java.io.*;

import java.util.*;

import javax.servlet.ServletException;

public class Save

 implements Statement

{

 protected Statement filename;

 public void setFilename(Statement filename)

 {

 this.filename = filename;

 }

 public void escape(Writer w,String s)

 throws IOException

 {

 for(int i = 0;i < s.length();i++)

 {

 char c = s.charAt(i);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(c == '<')

 w.write("<");

 else if(c == '&')

 w.write("&");

 else if(c == '\ '')

 w.write("'");

 else if(c == '"')

 w.write(""");

 else if(c > '\ u007f')

 {

 w.write("&#");

 w.write(Integer.toString(c));

 w.write(';');

 }

 else

 w.write(c);

 }

 }

 public String apply(Dictionary parameters)

 throws ServletException

 {

 try

 {

 String fname = filename.apply(parameters);

 File file = new File("results",fname + ".xml");

 Writer writer = new FileWriter(file);

 writer.write("<?xml version='1.0'?><survex>");

 Enumeration keys = parameters.keys();

 while(keys.hasMoreElements())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 while(keys.hasMoreElements())

 {

 String name = (String)keys.nextElement();

 writer.write("<question><name>");

 escape(writer,name);

 writer.write("</name><answer>");

 escape(writer,(String)parameters.get(name));

 writer.write("</answer></question>");

 }

 writer.write("</survex>");

 writer.close();

 return fname;

 }

 catch(IOException e)

 {

 throw new ServletException(e);

 }

 }

}

Block offers a solution to combine several Statements. It executes each Statement and
returns the result of the last one. In effect, this is similar to the { } construct in Java (see Listing
2.11).

Listing 2.11 Block.java

package com.psol.survex;

import java.util.*;

import javax.servlet.ServletException;

public class Block

 implements Statement

{

 protected Statement[] statements;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void setStatements(Statement[] statements)

 {

 this.statements = statements;

 }

 public String apply(Dictionary parameters)

 throws ServletException

 {

 String result = "";

 // on the stack they are collected in reverse order

 for(int i = statements.length - 1;i >= 0;i--)

 result = statements[i].apply(parameters);

 return result;

 }

}

Reading the Configuration File

The extensive data structure must be read from the XML configuration file. This is the role of
SurveyReader , a class that implements the SAX's ContentHandler interface .
SurveyReader is demonstrated in Listing 2.12.

Listing 2.12 SurveyReader.java

package com.psol.survex;

import org.xml.sax.*;

import java.util.*;

public class SurveyReader

 implements ContentHandler

{

 protected Stack stack;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected StringBuffer buffer;

 public Survey getSurvey()

 {

 return (Survey)stack.pop();

 }

 public void setDocumentLocator(Locator locator)

 {}

 public void startDocument()

 {

 stack = new Stack();

 }

 public void endDocument()

 {}

 public void startElement(String namespaceURI,

 String localName,

 String tag,

 Attributes atts)

 {

 if(tag.equals("survey"))

 stack.push(new Survey());

 else if(tag.equals("question"))

 stack.push(new Question());

 else if(tag.equals("choice"))

 stack.push(new Vector());

 else if(tag.equals("option"))

 stack.push(new Option());

 else if(tag.equals("input"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 buffer = new StringBuffer();

 else if(tag.equals("text"))

 {

 stack.push(new Constant());

 buffer = new StringBuffer();

 }

 else if(tag.equals("answer"))

 {

 stack.push(new Parameter());

 buffer = new StringBuffer();

 }

 else if(tag.equals("if"))

 stack.push(new If());

 else if(tag.equals("eq"))

 stack.push(new Equal());

 else if(tag.equals("save"))

 stack.push(new Save());

 else if(tag.equals("block"))

 stack.push(new Block());

 else if(tag.equals("name") ||

 tag.equals("title") ||

 tag.equals("label") ||

 tag.equals("value"))

 buffer = new StringBuffer();

 }

 public void endElement(String namespaceURI,

 String localName,

 String tag)

 {

 if(tag.equals("question"))

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 Question question = (Question)stack.pop();

 Survey survey = (Survey)stack.peek();

 survey.addQuestion(question);

 }

 else if(tag.equals("choice"))

 {

 Vector vector = (Vector)stack.pop();

 Option[] options = new Option[vector.size()];

 vector.copyInto(options);

 Question question = (Question)stack.peek();

 question.setOptions(options);

 }

 else if(tag.equals("option"))

 {

 Option option = (Option)stack.pop();

 Vector vector = (Vector)stack.peek();

 vector.addElement(option);

 }

 else if(tag.equals("input"))

 {

 Question question = (Question)stack.peek();

 question.setInput(buffer.toString());

 buffer = null;

 }

 else if(tag.equals("text"))

 {

 Constant constant = (Constant)stack.peek();

 constant.setText(buffer.toString());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 constant.setText(buffer.toString());

 buffer = null;

 }

 else if(tag.equals("answer"))

 {

 Parameter parameter = (Parameter)stack.peek();

 parameter.setName(buffer.toString());

 buffer = null;

 }

 else if(tag.equals("if"))

 {

 Statement _else = (Statement)stack.pop(),

 then = (Statement)stack.pop(),

 cond = (Statement)stack.pop();

 If _if = (If)stack.peek();

 _if.setArgs(cond,then,_else);

 }

 else if(tag.equals("eq"))

 {

 Statement arg1 = (Statement)stack.pop(),

 arg2 = (Statement)stack.pop();

 Equal equal = (Equal)stack.peek();

 equal.setArgs(arg1,arg2);

 }

 else if(tag.equals("save"))

 {

 Statement filename = (Statement)stack.pop();

 Save save = (Save)stack.peek();

 save.setFilename(filename);

 }

 else if(tag.equals("block"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else if(tag.equals("block"))

 {

 Vector vector = new Vector();

 Statement s = (Statement)stack.pop();

 while(!(s instanceof Block))

 {

 vector.addElement(s);

 s = (Statement)stack.pop();

 }

 Statement[] statements = new Statement[vector.size()];

 vector.copyInto(statements);

 ((Block)s).setStatements(statements);

 stack.push(s);

 }

 else if(tag.equals("name"))

 {

 Question question = (Question)stack.peek();

 question.setName(buffer.toString());

 buffer = null;

 }

 else if(tag.equals("title"))

 {

 Question question = (Question)stack.peek();

 question.setTitle(buffer.toString());

 buffer = null;

 }

 else if(tag.equals("label"))

 {

 Object o = stack.peek();

 if(o instanceof Question)

 ((Question)o).setLabel(buffer.toString());

 else

 ((Option)o).setLabel(buffer.toString());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ((Option)o).setLabel(buffer.toString());

 buffer = null;

 }

 else if(tag.equals("value"))

 {

 Option option = (Option)stack.peek();

 option.setValue(buffer.toString());

 buffer = null;

 }

 else if(tag.equals("next"))

 {

 Statement script = (Statement)stack.pop();

 Question question = (Question)stack.peek();

 question.setScript(script);

 }

 }

 public void characters(char ch[],int start,int len)

 {

 if(null != buffer)

 buffer.append(ch,start,len);

 }

 public void ignorableWhitespace(char ch[],

 int start,

 int length)

 {}

 public void processingInstruction(String target,String data)

 {}

 public void skippedEntity(String name)

 {}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {}

 public void startPrefixMapping(String prefix,String uri)

 {}

 public void endPrefixMapping(String prefix)

 {}

}

Notice that this class uses a different approach to tracking states than the DocumentHandler
from Chapter 1, "Lightweight Data Storage." Specifically, instead of using constants, it uses a
stack.

In startElement(), it pushes objects on the stack:

 else if(tag.equals("option"))

 stack.push(new Option());

And in endElement(), it pops. In most cases, it will pass them (as properties) to their parents,
which are also in the stack:

 else if(tag.equals("option"))

 {

 Option option = (Option)stack.pop();

 Vector vector = (Vector)stack.peek();

 vector.addElement(option);

 }

Putting It All Together in the Servlet

From these building blocks, building the servlet is not difficult. The servlet class, Survex , is
shown in Listing 2.13.

Listing 2.13 Survex.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package com.psol.survex;

import java.io.*;

import java.util.*;

import org.xml.sax.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.xml.sax.helpers.*;

public class Survex

 extends HttpServlet

{

 public static final String PARSER_NAME =

 "org.apache.xerces.parsers.SAXParser";

 protected Survey survey;

 public void init()

 throws ServletException

 {

 try

 {

 XMLReader xmlReader =

 XMLReaderFactory.createXMLReader(PARSER_NAME);

 SurveyReader sreader = new SurveyReader();

 xmlReader.setContentHandler(sreader);

 xmlReader.parse("survey.xml");

 survey = sreader.getSurvey();

 }

 catch(IOException e)

 {

 throw new ServletException(e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw new ServletException(e);

 }

 catch(SAXException e)

 {

 throw new ServletException(e);

 }

 }

 public Dictionary getParameters(HttpServletRequest request)

 {

 Dictionary parameters = new Hashtable();

 Enumeration keys = survey.getKeys();

 while(keys.hasMoreElements())

 {

 String name = (String)keys.nextElement(),

 value = request.getParameter(name);

 if(null != value)

 parameters.put(name,value);

 }

 return parameters;

 }

 public void writeHTML(Question question,

 String servletpath,

 Writer writer,

 Dictionary parameters)

 throws IOException

 {

 writer.write("<HTML><HEAD><TITLE>");

 writer.write("A Survex Survey: ");

 writer.write(question.getTitle());

 writer.write("</TITLE></HEAD><BODY>");

 writer.write("<FORM ACTION='");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write("<FORM ACTION='");

 writer.write(servletpath);

 writer.write("'METHOD='POST'>");

 writer.write("<INPUT TYPE='HIDDEN'NAME='name'VALUE='");

 writer.write(question.getName());

 writer.write("'>");

 writer.write("<TABLE ALIGN='CENTER'BORDER='1'>");

 writer.write("<TR><TD BGCOLOR='black'>");

 writer.write("");

 writer.write(question.getTitle());

 writer.write("</TD></TR><TR><TD><P>");

 writer.write(question.getLabel());

 if(null != question.getOptions())

 {

 writer.write("<P>");

 Option[] options = question.getOptions();

 for(int i = 0;i < options.length;i++)

 {

 writer.write("<INPUT TYPE='RADIO'NAME='");

 writer.write(question.getName());

 writer.write("'VALUE='");

 writer.write(options[i].getValue());

 writer.write("'>");

 writer.write(options[i].getLabel());

 writer.write("
");

 }

 }

 else if(null != question.getInput())

 {

 writer.write("<P>");

 writer.write(question.getInput());

 writer.write(": <INPUT TYPE='TEXT'NAME='");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write(question.getName());

 writer.write("'>");

 }

 if(null != question.getOptions() ||

 null != question.getInput())

 writer.write("<P><INPUT TYPE='SUBMIT'VALUE='Next'>");

 writer.write("</TD><TR></TABLE>");

 Enumeration keys = parameters.keys();

 while(keys.hasMoreElements())

 {

 String parameter = (String)keys.nextElement();

 writer.write("<INPUT TYPE='HIDDEN'NAME='");

 writer.write(parameter);

 writer.write("'VALUE='");

 writer.write((String)parameters.get(parameter));

 writer.write("'>");

 }

 writer.write("</FORM></BODY></HTML>");

 writer.flush();

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 Question question = survey.getRootQuestion();

 if(null != question)

 writeHTML(question,

 request.getServletPath(),

 response.getWriter(),

 new Hashtable());

 else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 response.sendError(HttpServletResponse.SC_NOT_FOUND);

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 Dictionary parameters = getParameters(request);

 String name = request.getParameter("name");

 Question question = null;

 if(null == name)

 question = survey.getRootQuestion();

 else

 {

 question = survey.getQuestion(name);

 if(null != question)

 {

 Statement script = question.getScript();

 name = script.apply(parameters);

 question = survey.getQuestion(name);

 }

 }

 if(null != question)

 writeHTML(question,

 request.getServletPath(),

 response.getWriter(),

 parameters);

 else

 response.sendError(HttpServletResponse.SC_NOT_FOUND);

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Review the following listing step by step. The first method is init() , which reads the XML
configuration file upon loading.

Next, the class defines two helper methods: getParameters() and writeHTML() .
getParameters() collects the answers for all the questions. As you will see, the browser
always has the entire list of answers and passes them to the servlet with each request:

 public Dictionary getParameters(HttpServletRequest request)

 {

 Dictionary parameters = new Hashtable();

 Enumeration keys = survey.getKeys();

 while(keys.hasMoreElements())

 {

 String name = (String)keys.nextElement(),

 value = request.getParameter(name);

 if(null != value)

 parameters.put(name,value);

 }

 return parameters;

 }

writeHTML() prints a Question as an HTML page. Notice that the page includes the various
answers as hidden input fields. Another hidden field contains the name of the current question.
These hidden fields are returned to the server by the browser with each request, as in the
following:

 public void writeHTML(Question question,

 String servletpath,

 Writer writer,

 Dictionary parameters)

 throws IOException

 {

 writer.write("<HTML><HEAD><TITLE>");

 writer.write("A Survex Survey: ");

 writer.write(question.getTitle());

 writer.write("</TITLE></HEAD><BODY>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write("</TITLE></HEAD><BODY>");

 writer.write("<FORM ACTION='");

 writer.write(servletpath);

 writer.write("'METHOD='POST'>");

 writer.write("<INPUT TYPE='HIDDEN'NAME='name'VALUE='");

 writer.write(question.getName());

 writer.write("'>");

 writer.write("<TABLE ALIGN='CENTER'BORDER='1'>");

 writer.write("<TR><TD BGCOLOR='black'>");

 writer.write("");

 writer.write(question.getTitle());

 writer.write("</TD></TR><TR><TD><P>");

 writer.write(question.getLabel());

 if(null != question.getOptions())

 {

 writer.write("<P>");

 Option[] options = question.getOptions();

 for(int i = 0;i < options.length;i++)

 {

 writer.write("<INPUT TYPE='RADIO'NAME='");

 writer.write(question.getName());

 writer.write("'VALUE='");

 writer.write(options[i].getValue());

 writer.write("'>");

 writer.write(options[i].getLabel());

 writer.write("
");

 }

 }

 else if(null != question.getInput())

 {

 writer.write("<P>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write(question.getInput());

 writer.write(": <INPUT TYPE='TEXT'NAME='");

 writer.write(question.getName());

 writer.write("'>");

 }

 if(null != question.getOptions() ||

 null != question.getInput())

 writer.write("<P><INPUT TYPE='SUBMIT'VALUE='Next'>");

 writer.write("</TD><TR></TABLE>");

 Enumeration keys = parameters.keys();

 while(keys.hasMoreElements())

 {

 String parameter = (String)keys.nextElement();

 writer.write("<INPUT TYPE='HIDDEN'NAME='");

 writer.write(parameter);

 writer.write("'VALUE='");

 writer.write((String)parameters.get(parameter));

 writer.write("'>");

 }

 writer.write("</FORM></BODY></HTML>");

 writer.flush();

 }

doGet() outputs the first (or root) question to get the user started. doPost() , on the other
hand, is where all the fun is because it uses the script to decide on which question to post.

doPost() first retrieves the name of the current question and the answers to the various
questions. Next, it calls the script to compute the name of the next question. It couldn't be simpler!
The following demonstrates this:

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 Dictionary parameters = getParameters(request);

 String name = request.getParameter("name");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String name = request.getParameter("name");

 Question question = null;

 if(null == name)

 question = survey.getRootQuestion();

 else

 {

 question = survey.getQuestion(name);

 if(null != question)

 {

 Statement script = question.getScript();

 name = script.apply(parameters);

 question = survey.getQuestion(name);

 }

 }

 if(null != question)

 writeHTML(question,

 request.getServletPath(),

 response.getWriter(),

 parameters);

 else

 response.sendError(HttpServletResponse.SC_NOT_FOUND);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building and Running the Project

The survey project is available on the CD that accompanies this book. Copy the project directory
from the CD to your hard disk. Start the Web server with the survey command .

Next, open a browser and type the survey URL:

http://localhost:8080/survex

If everything works well, the result should look like Figure 2.3.

Figure 2.3. Taking your first survey.

For your convenience, the project ships with its own Web server. It uses Jetty , an open-source
Web server available from http://www.mortbay.com . Jetty is a very good Web server, but it is not
as user-friendly as commercial offerings. For example, to terminate the server, you must kill the
process (under Windows, Ctrl+C it).

However, Survex is a regular servlet, so you should be able to use it with any servlet-enabled
Web server.

Tip

Using JRun, you can add servlet support to all the popular Web servers (including
Apache, Netscape, and IIS). JRun is available from http://www.jrun.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Caution

You need a SAX 2.0–compliant XML parser to run this project. The project on the
enclosed CD uses Xerces , which is available on the CD, or you can download the
latest version from http://xml.apache.org.

If you switch to another parser, you will need to update PARSER_NAME in Survex.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Benefits

Scripted configuration files in XML have several benefits over the regular
java.util.Properties:

XML offers a hierarchical structure that matches the needs of all but the most trivial
applications.

XML files are text based, so they can be exchanged via email and are very readable.
Furthermore, XML editors are plentiful.

Building a simple scripting language in an XML file is easy. This can greatly enhance the
usefulness of configuration files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

Although this chapter concentrates on configuration files, other applications use XML-based
scripting language extensively. Some examples include

XSL (the XML Stylesheet Language) , which is a simple but powerful scripting language
used to manipulate XML documents. With its roots firmly at the W3C, XSL is written in
XML.

WebMethods has developed at least two XML-based scripting languages: WIDL and Flow .
Both extract information from Web sites. You can find more information about them at
http://www.webmethods.com.

Miva is an application server similar to ASP, except that it uses an XML scripting language
instead of VBScript. You can find more information about it at http://www.miva.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Electronic Forms
Shifting through the morning mail, I cannot help but notice how our society relies on forms. There
is a tax declaration form, the announcement for an e-commerce conference comes with a
registration form, there are a couple of invoices, and there is a royalties statement (so it's not all
bad news).

Companies and administrations stack forms in all their communications. We receive information
on forms (bank statements, wages bill, invoices) and we are requested to fill out forms throughout
the day: to buy goods (order form), to pay for them (check or card vouchers), to declare revenues
(tax forms), to claim benefits (insurance forms), to borrow books at the library (reader forms), and
so on.

The forms, of course, have found their way online. Many organizations make their forms available
for download as PDF (Adobe Acrobat) or Word files. You can print them, fill them out, and mail or
fax them. Other companies encourage you to fill in HTML forms to enter data directly in their
databases.

In this chapter, you see how an XML editor can replace a word processor or a browser. This is
advantageous because it produces an XML document (which can be parsed, read into a
database, transformed through a style sheet, or generally manipulated through the myriad of XML
tools available to us) in a familiar word processor–like environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Event Form

Imagine you are working for the local newspaper. The newspaper publishes much information,
including articles, advertisements, classifieds, and local information such as the agenda of local
events.

Event organizers call the newspaper and a clerk collects the data for the event. Obviously, he or
she has a form to fill out.

Recently, the newspaper began taking steps toward electronic publishing. The ultimate goal is to
make the newspaper available online. Therefore, the paper form must be replaced by an
electronic form.

Let's see how you can take advantage of an XML editor to build a simple and familiar editing
environment for the clerk. Our ultimate goal is shown in Figure 3.1. The main characteristics are
as follows:

It's a Word lookalike so it's familiar to the clerk. It is very likely that it will be more familiar
than even a browser.

It creates real XML documents that look similar to Listing 3.1.

Developing it is quick (less than a day) because the editor does all the hard work.

It mixes closed and open questions. The name, location, and contact information are fixed
fields but the description is open-ended. It can even include formatting (bold, italic) like a
word processor does.

Figure 3.1. A familiar environment to edit forms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One of the most interesting aspects of this project is that it illustrates how XML opens up your
application to tools. By choosing the XML format, you gain access to powerful tools, such as the
editor, but the underlying format remains XML. So, you always can access it through other
mechanisms (for example, building your own application, as you did in Chapter 1, "Lightweight
Data Storage"). You also can feed it to other tools (for example, browsers, using the publishing
mechanism introduced in Chapter 4, "Content Syndication").

Listing 3.1 bookfair.xml

<?xml version="1.0"?>

<!DOCTYPE Event SYSTEM "event.dtd">

<Event>

 <Name>Book Fair </Name>

 <Location>Exhibition Center, Namur</Location>

 <Date>

 <Start>6/3/00</Start>

 <End>6/4/00</End>

 </Date>

 <Contact>

 <Name>Robert Martin</Name>

 <Phone>081 22 87 34</Phone>

 </Contact>

 <Description>

 <Para>The largest book fair in the area! We're expecting

 <Bold>hundreds</Bold> of booksellers covering all genres:

 crime, biographies, science-fiction, how-to books and

 more!</Para>

 <Para>Free entrance and free parking.</Para>

 <Para>Join us on Saturday night for the "<Italic>all-books

 barbecue</Italic>."</Para>

 </Description>

</Event>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Form with an Editor

The XML editor used in this chapter is XMetaL from SoftQuad. If you are familiar with other XML
editors such as XML Spy or XML Notepad, you will find that XMetaL is significantly more powerful.

XMetaL provides tools to completely hide the markup language behind a word processor
interface. This is ideal for applications targeted at non-technicians: The newspaper clerk couldn't
care less about the structure document and the markup. He wants a simple form and a familiar
interface.

Compare XML Notepad in Figure 3.2 with XMetaL in Figure 3.1. XML Notepad throws the markup
in your face. It's great for developers—you and I love it—but it's a nightmare for average
computer users.

Figure 3.2. Which looks friendlier? XMetaL or XML Notepad?

However, XMetaL is a dual-face tool. It looks like a word processor to the user, but it's a
programming toolkit for the developer. In this chapter, you learn how to use this toolkit.

Installing XMetaL

To run this project, you need a copy of XMetaL. The companion CD includes an evaluation copy
of XMetaL 1.0, which you can use for testing.

For more information, visit the XMetaL Web site (http://www.xmetal.com) or the SoftQuad site
(http://www.softquad.com).

Warning

Note that XMetaL is a commercial product. Although it uses several standards, XMetaL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that XMetaL is a commercial product. Although it uses several standards, XMetaL
is not a standard itself. New versions might introduce incompatibilities that I could not
foresee at the time of this writing. You might want to check the Web site
(http://www.marchal.com) for an update.

In the following sections, you will completely configure the editor so it is optimized for your XML
document. The steps we will follow are

1. Define the model of the document; in other words, decide on which information to collect.

2. Create a template, which is an empty form the clerk uses to get started.

3. Style the document so it looks good onscreen.

4. Customize the behavior of the editor so it recognizes your elements.

5. Develop macros to customize toolbars and menus and to validate the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Running the Project

To save yourself a lot of clicking and typing, you can turn to the files on the accompanying CD. Copy the event project on
your hard disk and copy the following files in the appropriate directories. All these directories are under the XMetaL main
directory:

event.css goes under Display.

event.mcr goes under Macros.

event.dtd, event.ctm, and ~event.tbr go under Rules.

For Event Description Form.xml, you must first create a new Pineapplesoft directory under
Then, copy the file in the new directory.

Creating the Model

The first step is to model the information we want to capture. We must decide which information is relevant and how to
encode it in XML (which elements). We are not concerned with the presentation but with the structure of the document.

A form to record local events is not very complicated. Essentially, it must capture the name, location, and date of the
event, as well as contact information. Finally, it should provide a text area to describe the specifics of the event. You might
want to propose basic formatting options (bold and italic) for the description.

Figure 3.3 shows the structure for the form. Translated into DTD format, it looks similar to Listing 3.2

Figure 3.3. The event form starts with closed questions and ends with a free-text description.

Listing 3.2 event.dtd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT Event (Name,Location,Date,Contact,Description)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Location (#PCDATA)>

<!ELEMENT Date (Start,End)>

<!ELEMENT Contact (Name,Phone,Email?)>

<!ELEMENT Description (Para+)>

<!ELEMENT Start (#PCDATA)>

<!ELEMENT End (#PCDATA)>

<!ELEMENT Phone (#PCDATA)>

<!ELEMENT Email (#PCDATA)>

<!ELEMENT Para (#PCDATA | Bold | Italic)*>

<!ELEMENT Bold (#PCDATA | Italic)*>

<!ELEMENT Italic (#PCDATA | Bold)*>

XML Models
In XML, markup is used to encode the structure of a document. Most XML tools manipulate the structure,
making it important to have proper tools to model the structure of documents.

Therefore, XML has a modeling language, the Document Type Definition (DTD). A DTD defines which
elements appear in the document and what their relationships are (which element appears where). It also
defines which elements can repeat and which are optional. Finally, the DTD also declares attributes and
entities.

Listing 3.2 is a DTD. It lists all the elements and their content. For example,

 <!ELEMENT Event (Name,Location,Date,Contact,Description)>

means that the Event element must contain a Name, Location, Date, Contact, and Description
element.

XML documents fall into one of the following two categories:

Well-formed documents follow the XML syntax. So far, our documents have been well formed.

Valid documents follow the XML syntax and respect a model. This chapter uses valid documents.

Valid documents are helpful because XML tools will enforce their model. For example, XMetaL reports an
error if you create a document in which an Event has no Location. In practice, your application benefits
from a free validation routine.

For completeness, note that W3C is working on a replacement for DTD. The new modeling language, which
should be called XML Schema, will be more powerful and will support object-oriented concepts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a comprehensive introduction to DTD and XML models, I recommend you read my other book,
Example, published by Que.

Loading the Model in XMetaL

Copy event.dtd (refer to Listing 3.2) under the Rules directory underneath the XMetaL main directory (on my system
that is the C:\ Program Files\ SoftQuad\ XMetaL 1\ Rules directory). XMetaL can load DTDs from any
directory, but placing them in the Rules directory ensures they are always available.

In the menu, choose File, New to open the New dialog box. Under the General tab, select Blank XML Document and then
select the event.dtd file you have just created. XMetaL opens a dialog box to inquire about the space options; click the
Apply Layout button.

Note

The Preserve Space Options dialog box determines how XMetaL indents the XML code. For most documents,
you should choose Apply Layout, which produces more readable XML code.

However, if you write documents in which spaces are meaningful, you should opt to Preserve Space. You can
always change the setting later.

You now should see a blank editor window but be unable to type anything. To create the root XML element
Insert, Element in the menu and double-click Event.

The editor window fills with various entry fields for name, location, and more. Click { Name} and type
Location} and type Exhibition Center, Namur, as illustrated in Figure 3.4.

Figure 3.4. After inserting the root element, enter some data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

As you can see, XMetaL makes good use of the DTD. It extracts the list of elements and their relationships so
that, when you insert an Event element, it knows which elements must appear underneath—Name
Location, and so on. Therefore, it creates input fields for these elements.

In the menu, choose View, Plain Text to display the XML code you have just created. The screen should look similar to
Figure 3.5.

Figure 3.5. XMetaL shows the XML code.

What happened? To find out, close the document but don't save it. Look in the XMetaL directory and you will see several
new files:

event.rlx—Appears under the Rules directory and is a so-called rules file. Essentially, it's a compiled version of
the DTD.

event.ctm—Appears under the Rules directory and is the customization file. You will learn how to edit it soon.

~event.tbr—Appears in the same directory and represents the toolbars.

event.css—Appears in the Display directory and is a cascading style sheet for this document.

These files are created with default options. They give us a starting point, but we probably want to customize them to
better fit our event form.

Creating a Template

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our second step will be to create a template or an empty form that the clerk can use to get started. Create a new empty
event document as previously discussed: Choose File, New, select event.dtd, choose Insert, Element, and double-click
Event.

Choose View, Plain Text to edit the XML code. First, though, make sure the DOCTYPE statement uses a relative path. Edit
it until it looks exactly as follows (it might be correct already):

 <!DOCTYPE Event SYSTEM "event.dtd">

As you can see, in this empty document, the text is replaced by processing instructions such as the following:

 <?xm-replace_text { Name} ?>

These processing instructions are specific to XMetaL. The editor renders them as an input area, similar to the Click Me
fields in a word processor. When the user enters text, the text replaces the processing instruction.

To make the template more friendly, adopt more descriptive processing instructions, such as:

 <?xm-replace_text { Click here to enter the event's name} ?>

You should edit the document until it looks like Listing 3.3.

Listing 3.3 Event Description Form.xml

<?xml version="1.0"?>

<!DOCTYPE Event SYSTEM "event.dtd">

<Event>

 <Name><?xm-replace_text { Click here to enter the event's name} ?></Name>

 <Location><?xm-replace_text { Click here to enter the event's location} ?></Location>

 <Date>

 <Start><?xm-replace_text { Click here to enter the event's start date} ?></Start>

 <End><?xm-replace_text { And its end date} ?></End>

 </Date>

 <Contact>

 <Name><?xm-replace_text { Click here to enter the contact person's name} ?></Name>

 <Phone><?xm-replace_text { Click here to enter the contact person's phone number} ?></

Phone>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Phone>

 </Contact>

 <Description>

 <Para><?xm-replace_text { Click here to enter the event's description} ?></Para>

 </Description>

</Event>

Create a new directory, called Pineapplesoft, under the Template directory below the XMetaL main directory. Save
the template (Listing 3.3) under the Pineapplesoft directory and name it Event Description Form.xml

We now have created a new template. If you close the file and choose File, New, you will see that the New dialog has a
Pineapplesoft tab. The Pineapplesoft tab contains one entry: Event Description Form (see Figure 3.6

If you double-click Event Description Form, it creates an empty document based on your template.

Figure 3.6. Calling up the form is easy with custom templates.

Styling the Form

So far, thanks to the template, we have provided the clerk with an empty form he can fill in. Also, thanks to the DTD,
XMetaL makes sure the clerk provides all the required information.

However, the form is dull. At the minimum, fields should be labeled. To change the presentation of the document, you will
edit the cascading style sheet.

Cascading Style Sheet
XML markup is descriptive. Markup identifies the role of each element and its position in the structure, not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML markup is descriptive. Markup identifies the role of each element and its position in the structure, not
how it should look. XML tools (particularly editors and browsers) need additional information to describe how
to format the document for viewing.

The presentation rules are kept separated from the document itself in style sheets, which describe how to
render the elements onscreen.

Cascading Style Sheet, or CSS, was originally created for HTML, but it was quickly extended for XML. A
CSS is a list of rules, with each rule listing formatting properties associated with one or more elements.

For example, in XML, the Bold element does not automatically mean that the text must be bolded. However,
you can define a CSS rule that says so:

 Bold {

 font-weight: bold;

 display: inline;

 }

CSS defines an extensive list of formatting properties. For the complete description, see
http://www.w3.org/Style/CSS.

XMetaL includes a CSS editor that is convenient for getting you started. However, as you become more familiar with CSS,
you will find it is faster to edit the style code directly.

First, you should format the Name element. Indent the field from the left margin and include a label.

Next, click somewhere in the Name field and choose Tools, Editor Display Style, Current Element. Make sure you are
editing the Name element and then select the Box tab. Next, modify the margin-left property to 1em
button. Notice how the two Name elements are now indented from the left margin.

Tip

The em unit is relative to the height of the font. Using relative units makes it easier to grow or shrink the whole
document.

The Name rule you have just created applies to the element itself, so how can you insert a label before the element? The
trick is to use CSS pseudo-elements. Pseudo- elements are not XML elements, but the style sheet treats them as such.
You can think of them as virtual elements created by the style sheet.

In this case, you create a pseudo-element called Name:before. Name:before enables you to insert values before the
Name element.

Still from the CSS editor, click the More button. Then, click New to open the Edit Selectors in Rule dialog box
Name, click Add, and click Edit to open the Edit Simple Selector dialog box. In the Pseudo/class element list (bottom-right
of the box), select Before. Finally, click OK twice to return to the CSS editor.

You now have created an entry called Name:before (see Figure 3.7). Enter the following properties:

A content property (in the Other tab) with the value Name:.

A font-size property (in the Font tab) with the value smaller.

A color property (in the Text tab) with the value gray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click OK to close the dialog box. The content property is the label. Because it is attached to the Name:before
appears before the element itself. Notice that, per your selection, the label is in a smaller, gray font.

Continue adding rules for the other elements until your style sheet looks similar to Listing 3.4. Notice that the form title
appears in an Event:before rule.

You probably will find it easier to edit the CSS style sheet in a text editor. To do so, from the CSS editor, click Edit Style
Text.

Figure 3.7. Editing the Name:before rule.

Note

$DOCUMENT, $COMMENT, and $PROCINS are not elements. They are XMetaL-specific pseudo-elements that
point to the entire document, comments, and processing instructions, respectively.

Listing 3.4 event.css

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* Use Times New Roman for default font */

$DOCUMENT {

 font-family: "Times New Roman";

 font-size: 12pt;

 margin-top: 5px;

 margin-left: 5px;

}

$COMMENT {

 display: block;

 color: purple;

 white-space: pre;

}

$PROCINS {

 color: black;

 background-color: #c0c0c0;

}

Contact, Date, Description, Email, Event, Location, Name, Para, Phone {

 display: block;

}

Start, End {

 display: inline;

}

Event:before {

 content: "Event Description Form";

 display: block;

 font-size: large;

 font-weight: bold;

}

Name:before, Location:before, Date:before, Phone:before, Email:before, End:before {

 font-size: smaller;

 color: gray;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 color: gray;

}

Name:before {

 content: "Name: ";

}

Location:before {

 content: "Location: ";

}

Date:before {

 content: "Date: ";

}

Phone:before {

 content: "Phone: ";

}

Email:before {

 content: "Email: ";

}

End:before {

 content: " to ";

}

Description:before, Contact:before {

 display: block;

 font-weight: bold;

}

Description:before {

 content: "Description";

}

Contact:before {

 content: "Contact";

}

Bold {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bold {

 font-weight: bold;

 display: inline;

}

Italic {

 font-style: italic;

 display: inline;

}

Name, Location, Date, Phone, Email, Para {

 margin-left: 1em;

}

Contact, Description {

 margin-top: 0.5em;

}

Event>Name {

 margin-top: 0.5em;

}

The form in the editor should now look like Figure 3.8. This is a good layout for a form: The fields are clearly labeled and
the form is divided into sections separated by titles.

Remember that the labels and section titles are not part of the XML document; they appear only in the style sheet as
pseudo-elements. Review the XML code in plain text view (choose View, Plain Text) to convince yourself.

Figure 3.8. A good-looking form in XMetaL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Customizing the Behavior

If we review your progress so far, it looks good. Our clerk can create an empty form, the fields are clearly labeled, and the editor
still generates a valid XML document.

So far, we concentrated on the structure of the document and its presentation. In this section and the next, we customize
XMetaL behavior to better fit your needs. We will

Use the customization editor (in this section).

Write JScript macros (in the next section) to create a specialized toolbar.

Tip

To save you some typing, remember you can copy event.ctm from the accompanying CD.

Element Names

Most of the element names in the DTD, such as Name, Location, and Date, are easy to understand. Other names are not so
clear, however—for example, Start, End, and Para. You should start by defining better alternatives for these names.

In the menu, choose Tools, Customization to open the customization editor. Under the General tab, enter a name for the
following elements (you can leave the others empty), as follows:

For Bold, enter Bold text.

For Email, enter Email address.

For End, enter End date.

For Italic, enter Italic text.

For Para, enter Paragraph.

For Phone, enter Phone number.

For Start, enter Start date.

Figure 3.9 shows the customization editor.

While we are at it, let's update the change list for the Para element. Select the Change List tab and, for
and Italic. This option controls which elements appear in the list of styles in the toolbar.

Click OK to close the customization editor. Notice that the element names in the list of styles in the toolbar now reflect the
changes we made. XMetaL also uses the names in the status bar.

Figure 3.9. The customization editor controls the editor's behavior.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Mini-Templates

The form editor is really taking shape now. It enables easy editing of most values, with the notable exception of the email
address. In fact, because the email address is an optional element, it does not appear in the template. Therefore, to insert it, the
user must position it past the Phone element and choose Insert, Element. You can do much better.

Reopen the customization editor and tab to Treat As. Set the Email element as a paragraph. This controls what the editor does
when the user presses Enter. When the user presses Enter, XMetaL always tries to insert the next paragraph element. By
declaring Email as a paragraph, we make it easier to insert email addresses in the document, as you will see in a moment.

Tip

You don't need to explicitly declare the other elements as paragraphs because your DTD is very strict. The DTD lays
down strict rules on where each element should appear, and XMetaL uses these rules to insert most elements.

A further problem with email is that some people—particularly, AOL users—forget to include their domain name. Ideally, you
want to remind the clerk that an email address should have the form name@domain.com.

The best solution is to prompt the user through a dialog box that presents the format for the email address. Return to the
General tab and paste the following code in the On Insert field:

 var email = Application.Prompt("Enter the contact person's email address",

"name@domain.com",null,null,"Event Description Form")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"name@domain.com",null,null,"Event Description Form")

 if(email != null && email != "")

 {

 Selection.InsertElement("Email")

 Selection.TypeText(email)

 }

Next, select JScript as the scripting language (see Figure 3.10). Now, whenever an Email element is inserted, XMetaL will
run this script, which opens a dialog box.

Figure 3.10. Edit the element template.

To complete this round of customization, take a look at the On Insert field for the other elements. They always contain the XML
code for the element, such as <Location></Location>.

By changing this code, we can control the XML code generated when creating the element. We can use it to modify the code
and include the processing instructions. Edit the following elements (for these elements, leave the type as

For Contact, use

 <Contact>

 <Name><?xm-replace_text {Click here to enter the contact person's name} ?></Name>

 <Phone><?xm-replace_text {Click here to enter the contact person's phone number} ?></

Phone>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Phone>

 </Contact>

For Date, use

 <Date>

 <Start><?xm-replace_text {Click here to enter the event's start date} ?></Start>

 <End><?xm-replace_text {And its end date} ?></End>

 </Date>

For Description, use

 <Description><Para><?xm-replace_text {Click here to enter the event's description} ?></

Para></Description>

For End, use

 <End><?xm-replace_text {And its end date} ?></End>

For Location, use

 <Location><?xm-replace_text {Click here to enter the event's location} ?></Location>

For Phone, use

 <Phone><?xm-replace_text {Click here to enter the contact person's phone number} ?></

Phone>

For Start, use

 <Start><?xm-replace_text {Click here to enter the event's start date} ?></Start>

However, you must differentiate the event's name from the contact person's name. Right-click the Name
"In Parents" Item. Do this twice to create Name in Contact and Name in Event entries and give them different templates,
respectively:

 <Name><?xm-replace_text {Click here to enter the contact person's name} ?></Name>

and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Name><?xm-replace_text {Click here to enter the event's name} ?></Name>

Click OK to close the customization editor. Then, position the cursor on the Phone element and press Enter. A dialog box
prompts for the email address (see Figure 3.11). The following occurs internally:

XMetaL inserts the next paragraph element, which will be Email because it is marked as a paragraph.

XMetaL executes the script from the Email mini-template. The script opens a dialog box and inserts the element.

Peeking at event.ctm
If you are curious, you can open event.ctm in XMetaL because it is an XML document. Listing 3.5
applied all the customization described in this section.

Figure 3.11. Prompting for email information.

Caution

You should not modify event.ctm directly. It is both easier and safer to edit it through the customization editor.

Listing 3.5 event.ctm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0"?>

<!DOCTYPE DTDExtensions SYSTEM "ctm.dtd">

<DTDExtensions>

 <ElementPropertiesList>

 <ElementProperties>

 <Name>Contact</Name>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <IndentContent/>

 <NewLineBeforeEndTag/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Date</Name>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <NewLineBeforeEndTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Description</Name>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <NewLineBeforeEndTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Email</Name>

 <ShortDescription>Email address</ShortDescription>

 <PrettyPrintOptions>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>End</Name>

 <ShortDescription>End date</ShortDescription>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Event</Name>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <NewLineBeforeEndTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Location</Name>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Name</Name>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <IndentContent/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Para</Name>

 <ShortDescription>Paragraph</ShortDescription>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Phone</Name>

 <ShortDescription>Phone number</ShortDescription>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Start</Name>

 <ShortDescription>Start date</ShortDescription>

 <PrettyPrintOptions>

 <NewLineBeforeStartTag/>

 <IndentContent/>

 </PrettyPrintOptions>

 </ElementProperties>

 <ElementProperties>

 <Name>Bold</Name>

 <ShortDescription>Bold text</ShortDescription>

 </ElementProperties>

 <ElementProperties>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Name>Italic</Name>

 <ShortDescription>Italic text</ShortDescription>

 </ElementProperties>

 </ElementPropertiesList>

 <Paragraphs>

 <Paragraph>

 <Name>Email</Name>

 </Paragraph>

 </Paragraphs>

 <ChangeLists>

 <ChangeList>

 <Selectors>

 <Selector>

 <Name>#DEFAULT</Name>

 <Parent>Para</Parent>

 </Selector>

 </Selectors>

 <ChangeListElements>

 <ChangeListElement>Bold</ChangeListElement>

 <ChangeListElement>Italic</ChangeListElement>

 </ChangeListElements>

 </ChangeList>

 </ChangeLists>

 <Templates>

 <Template>

 <Name>Name</Name>

 <Parent>Contact</Parent>

 <MiniTemplate><![CDATA[<Name><?xm-replace_text { Click here to enter the contact

person's name} ?></Name>]]> </MiniTemplate>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

person's name} ?></Name>]]> </MiniTemplate>

 </Template>

 <Template>

 <Name>Name</Name>

 <Parent>Event</Parent>

 <MiniTemplate><![CDATA[<Name><?xm-replace_text { Click here to enter the event's

name} ?></Name>]]> </MiniTemplate>

 </Template>

 <Template>

 <Name>Description</Name>

 <MiniTemplate><![CDATA[<Description><Para><?xm-replace text { Click here to enter

the event's description} ?></Para> </Description>]]></MiniTemplate>

 </Template>

 <Template>

 <Name>Contact</Name>

 <MiniTemplate><![CDATA[<Contact>

 <Name><?xm-replace_text { Click here to enter the contact person's name} ?></Name>

 <Phone><?xm-replace_text { Click here to enter the contact person's phone number} ?></

Phone>

</Contact>]]></MiniTemplate>

 </Template>

 <Template>

 <Name>Date</Name>

 <MiniTemplate><![CDATA[<Date>

 <Start><?xm-replace_text { Click here to enter the event's start date} ?></Start>

 <End><?xm-replace_text { And its end date} ?></End>

</Date>]]></MiniTemplate>

 </Template>

 <Template>

 <Name>Location</Name>

 <MiniTemplate><![CDATA[<Location><?xm-replace_text { Click here to enter the

event's location} ?></Location>]]> </MiniTemplate>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event's location} ?></Location>]]> </MiniTemplate>

 </Template>

 <Template>

 <Name>Phone</Name>

 <MiniTemplate><![CDATA[<Phone><?xm-replace_text { Click here to enter the contact

person's phone number} ?></Phone>]]> </MiniTemplate>

 </Template>

 <Template>

 <Name>Start</Name>

 <MiniTemplate><![CDATA[<Start><?xm-replace_text { Click here to enter the event's

start date} ?></Start>]]> </MiniTemplate>

 </Template>

 <Template>

 <Name>End</Name>

 <MiniTemplate><![CDATA[<End><?xm-replace_text { And its end date} ?></End>]]></

MiniTemplate>

 </Template>

 </Templates>

 <OnInsertElementList>

 <OnInsertElement>

 <Name>Email</Name>

 <Lang>JScript</Lang>

 <InsertElemScript><![CDATA[var email = Application.Prompt("Enter the contact

person's email address", "name@domain.com",null,null,"Event Description Form")

if(email != null && email != "")

{

 Selection.InsertElement("Email")

 Selection.TypeText(email)

}]]></InsertElemScript>

 </OnInsertElement>

 </OnInsertElementList>

</DTDExtensions>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing Macros

The next and last level of customization is performed by using macros. Macros can, amongst other things

Add new menu items or new toolbar buttons

Control what happens at critical moments, such as when the document is saved

You can associate one macro file with each DTD. The macros file, event.mcr, is shown in Listing 3.6
it, one macro at a time, in the following sections.

Note that the macro file is an XML document, so you can use XMetaL to edit it. To create an empty macro file, choose
File, New, Blank XML Document and then select macros.dtd.

This causes a script error. You should immediately save the file as event.mcr under the Macros directory below the
XMetaL directory to avoid the script errors.

Tip

If a macro file exists for the current DTD, you can edit it by choosing Tools, Macros, selecting Open Document
Macros, and clicking Run.

Listing 3.6 event.mcr

<?xml version="1.0"?>

<!DOCTYPE MACROS SYSTEM "macros.dtd">

<MACROS>

<MACRO lang="JScript" name="Insert Email"><![CDATA[if(ActiveDocument.documentElement)

{

 var emails = ActiveDocument.getElementsByTagName("Email")

 if(0 == emails.length)

 {

 var contacts = ActiveDocument.getElementsByTagName("Contact")

 if(0 != contacts.length)

 {

 var phones = contacts(0).getElementsByTagName("Phone")

 if(0 != phones.length)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Selection.SelectAfterNode(phones(phones.length - 1))

 Selection.InsertWithTemplate("Email")

 }

 else

 {

 var names = contacts(0).getElementsByTagName("Name")

 if(0 != names.length)

 {

 Selection.SelectAfterNode(names(names.length - 1))

 Selection.InsertWithTemplate("Phone")

 Selection.SelectAfterNode(contacts(0).lastChild)

 Selection.InsertWithTemplate("Email")

 }

 else

 {

 Selection.SelectNodeContents(contacts(0))

 Selection.InsertWithTemplate("Name")

 Selection.SelectAfterNode(contacts(0).lastChild)

 Selection.InsertWithTemplate("Phone")

 Selection.SelectAfterNode(contacts(0).lastChild)

 Selection.InsertWithTemplate("Email")

 }

 }

 }

 }

}]]></MACRO>

<MACRO lang="JScript" name="Italic"><![CDATA[if(ActiveDocument.documentElement)

{

 if(Selection.ContainerName == "Italic")

 Selection.RemoveContainerTags()

 else if(Selection.CanSurround("Italic"))

 Selection.Surround("Italic")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}]]></MACRO>

<MACRO lang="JScript" name="Bold"><![CDATA[if(ActiveDocument.documentElement)

{

 if(Selection.ContainerName == "Bold")

 Selection.RemoveContainerTags()

 else if(Selection.CanSurround("Bold"))

 Selection.Surround("Bold")

}]]></MACRO>

<MACRO lang="JScript" name="On_Document_Save"><![CDATA[if(ActiveDocument.documentElement)

{

 var isStart = true,

 isEnd = true

 var invalidFields = null

 var starts = ActiveDocument.getElementsByTagName("Start")

 if(0 != starts.length)

 {

 starts(0).normalize()

 var startText = starts(0).firstChild

 if(null != startText &&

 3 == startText.nodeType) // 3 == DOMText

 isStart = !isNaN(Date.parse(startText.data))

 }

 var ends = ActiveDocument.getElementsByTagName("End")

 if(0 != ends.length)

 {

 ends(0).normalize()

 var endText = ends(0).firstChild

 if(null != endText &&

 3 == endText.nodeType) // 3 == DOMText

 isEnd = !isNaN(Date.parse(endText.data))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 var msg = null

 if(!isStart && !isEnd)

 msg = "Both event dates are invalid.\ n You should fix them and save again."

 else if(!isStart)

 msg = "Event start date is invalid.\ n You should fix it and save again."

 else if(!isEnd)

 msg = "Event end date is invalid.\ n You should fix it and save again."

 if(msg != null)

 Application.Alert(msg,"Event Description Form")

}]]></MACRO>

<MACRO lang="JScript"

name="On_Document_SaveAs"><![CDATA[Application.Run("On_Document_Save")]]></MACRO>

<MACRO name="On_Update_UI" lang="JScript"><![CDATA[if(!ActiveDocument.documentElement ||

 3 == ActiveDocument.ViewType)

{

 Application.DisableMacro("Insert Email")

 Application.DisableMacro("Italic")

 Application.DisableMacro("Bold")

}

else

{

 var emails = ActiveDocument.getElementsByTagName("Email")

 if(0 != emails.length)

 Application.DisableMacro("Insert Email")

 var contacts = ActiveDocument.getElementsByTagName("Contact")

 if(0 == contacts.length)

 Application.DisableMacro("Insert Email")

 if(!Selection.IsParentElement("Para"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(!Selection.IsParentElement("Para"))

 {

 Application.DisableMacro("Italic")

 Application.DisableMacro("Bold")

 }

}]]></MACRO>

</MACROS>

Creating a Toolbar Button

First, you should review the Italic macro (the Bold macro is almost identical):

 <MACRO lang="JScript" name="Italic"><![CDATA[if(ActiveDocument.documentElement)

 {

 if(Selection.ContainerName == "Italic")

 Selection.RemoveContainerTags()

 else if(Selection.CanSurround("Italic"))

 Selection.Surround("Italic")

 }]]></MACRO>

This macro inserts or removes the Italic element. Before running macros that will modify the document, it is good
practice to test whether a document object is available. ActiveDocument is a special object that always points to the
document in the active window.

The core of the macro is simple: It tests whether the cursor is within an Italic element, in which case the macro
removes it. Otherwise, it attempts to insert an Italic element around the current selection.

The RemoveContainerTags() and Surround() methods modify the document. The CanSurround()
against the DTD. Our macro uses both to test against the DTD before inserting the element. For your DTD,
CanSurround() returns true if the selection is within a Para element.

This macro implements the Italic command from word processors. You should add it to the toolbar. Make sure you
have opened an empty event.dtd document and then select Tools, Macros to open the Macros dialog box
select the Italic macro and assign it a shortcut of Ctrl+I. XMetaL warns you that Ctrl+I conflicts with another macro, but
ignore it.

Tip

When you edit macros in XMetaL, you can reload the macros with the Save and Refresh button
toolbar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click Choose Image to open the Choose Toolbar Button Image dialog box. In the Formatting images, select the slanted
I. Then close the macro box.

Choose View, Toolbars to open the Toolbars dialog box and click the New button. Enter event as the toolbar name.
Immediately, an empty toolbar appears onscreen. Tab to the Buttons panel and select event Macros
macros, choose Italic. Finally, drag the button to the toolbar (see Figure 3.12). Repeat these steps for the Bold macro.

Figure 3.12. Editing the toolbar.

Creating an XML Element

Although you have already improved things, inserting the Email element is still difficult. Specifically, the user must be in
the Phone field and press Enter. It's great if you know it, but almost impossible to find if you don't.

Add a button to the toolbar to insert the Email element. Because the button will be visible on the toolbar, it will be easier
for the user.

This is implemented in the Insert Email macro:

 <MACRO lang="JScript" name="Insert Email"><![CDATA[if(ActiveDocument.documentElement)

 {

 var emails = ActiveDocument.getElementsByTagName("Email")

 if(0 == emails.length)

 {

 var contacts = ActiveDocument.getElementsByTagName("Contact")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(0 != contacts.length)

 {

 var phones = contacts(0).getElementsByTagName("Phone")

 if(0 != phones.length)

 {

 Selection.SelectAfterNode(phones(phones.length - 1))

 Selection.InsertWithTemplate("Email")

 }

 else

 {

 var names = contacts(0).getElementsByTagName("Name")

 if(0 != names.length)

 {

 Selection.SelectAfterNode(names(names.length - 1))

 Selection.InsertWithTemplate("Phone")

 Selection.SelectAfterNode(contacts(0).lastChild)

 Selection.InsertWithTemplate("Email")

 }

 else

 {

 Selection.SelectNodeContents(contacts(0))

 Selection.InsertWithTemplate("Name")

 Selection.SelectAfterNode(contacts(0).lastChild)

 Selection.InsertWithTemplate("Phone")

 Selection.SelectAfterNode(contacts(0).lastChild)

 Selection.InsertWithTemplate("Email")

 }

 }

 }

 }

 }]]></MACRO>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Similar to Italic, this macro creates a new XML element. However, it is more complex because the Email
appear within the Contact element and more than one Email element can't exist.

The Insert Email macro starts by testing whether an Email element already exists. If none does, it tries to locate the
Contact element. If no Contact elements exist, it stops. However, if it finds Contact, it tries to locate a
Name element. If Phone or Name are missing, it inserts them before inserting Email.

Insert Email is more complex than the Italic macro because it must enforce the document structure. For example, it
might have to create other elements (Phone and Name) before creating the Email element.

Note

The macro uses InsertWithTemplate() to create the elements. InsertWithTemplate()
template defined in the customization editor, so it will end up prompting the user through a dialog box.

Don't forget to create a button on the toolbar. You can use the envelope image in the Quick Tools list.

Improving the User Interface

The next macro is On_Update_UI. XMetaL executes it when it needs to update the user interface—for example, when
the user moves to a new element or switches from normal to plain text view.

This macro is responsible for selectively disabling those macros that no longer work. For example, if the user moves
from a Para element to Location, the Italic and Bold macros must be disabled.

On_Update_UI disables all the macros if no document object is available. It also disables Insert Email if an email already
is in the document or if no Contact element exists. Finally, it disables Italic and Bold unless the cursor is within a

 <MACRO name="On_Update_UI" lang="JScript"><![CDATA[if(!ActiveDocument.documentElement

||

 3 == ActiveDocument.ViewType)

 {

 Application.DisableMacro("Insert Email")

 Application.DisableMacro("Italic")

 Application.DisableMacro("Bold")

 }

 else

 {

 var emails = ActiveDocument.getElementsByTagName("Email")

 if(0 != emails.length)

 Application.DisableMacro("Insert Email")

 var contacts = ActiveDocument.getElementsByTagName("Contact")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(0 == contacts.length)

 Application.DisableMacro("Insert Email")

 if(!Selection.IsParentElement("Para"))

 {

 Application.DisableMacro("Italic")

 Application.DisableMacro("Bold")

 }

 }]]></MACRO>

Validating the Form

The last two macros are On_Document_Save and On_Document_SaveAs. They perform additional validation before the
document is saved. Indeed, although XMetaL enforces the structure of the document, the user can always enter
incorrect information in the fields. The DTD offers much built-in validation, but it is not always powerful enough. You can
develop additional validations using On_Document_Save and On_Document_SaveAs.

Specifically, the macro extracts the start and end dates from the document and checks that they are indeed dates. In
case of errors, it warns the user through a dialog box (see Figure 3.13):

 <MACRO lang="JScript"

name="On_Document_Save"><![CDATA[if(ActiveDocument.documentElement)

 {

 var isStart = true,

 isEnd = true

 var invalidFields = null

 var starts = ActiveDocument.getElementsByTagName("Start")

 if(0 != starts.length)

 {

 starts(0).normalize()

 var startText = starts(0).firstChild

 if(null != startText &&

 3 == startText.nodeType) // 3 == DOMText

 isStart = !isNaN(Date.parse(startText.data))

 }

 var ends = ActiveDocument.getElementsByTagName("End")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(0 != ends.length)

 {

 ends(0).normalize()

 var endText = ends(0).firstChild

 if(null != endText &&

 3 == endText.nodeType) // 3 == DOMText

 isEnd = !isNaN(Date.parse(endText.data))

 }

 var msg = null

 if(!isStart && !isEnd)

 msg = "Both event dates are invalid.\ n You should fix them and save again."

 else if(!isStart)

 msg = "Event start date is invalid.\ n You should fix it and save again."

 else if(!isEnd)

 msg = "Event end date is invalid.\ n You should fix it and save again."

 if(msg != null)

 Application.Alert(msg,"Event Description Form")

 }]]></MACRO>

Tip

On_Document_Save does not prevent the user from saving an incorrect document; it only warns her. In
practice, this is a good compromise: Good reasons might exist for the user to temporarily enter an invalid
date.

If you need to prevent the user from saving incorrect documents, use the File_Save and File_SaveAs macros.

Figure 3.13. Oops! The dates are not acceptable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advantages

This chapter demonstrated how to use an XML editor to build a customized editing environment.
The main advantages of this solutions are as follows:

It's fast and easy. The editor does most of the job already, so you only need to customize it
for your DTD.

The user interface is simple and intuitive. It looks like a word processor, which is very
familiar to clerical personal.

The result is an XML document that you can pass to other XML tools such as parsers and
XSL processors (see Chapter 4).

In short, the editor is a great tool to create XML documents. Thanks to customization, you can be
sure it creates the correct documents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

Current generation browsers do not recognize XML forms. The W3C is working on a standard for
XML forms (XForms), but it is still a work in progress and it probably will take several years before
it is widely available in browsers. For more information, visit the W3C site at
http://www.w3.org/MarkUp/Forms.

If you need to edit forms in a browser, you can turn to special plug-ins developed by other
vendors. Popular products include the following:

PureEdge, available from http://www.pureedge.com

Jetform, available from http://www.xfa.org

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Content Syndication
The Web is many things to many people but, for publishers and authors, it is another media
comparable to print, radio, and TV. Don't get me wrong, I recognize that the Internet has unique
characteristics, but its reach is comparable to other popular media.

As proof, look at initiatives by existing publishers to offer their content online (visit
http://www.informit.com), the emergence of new publishers (such as http://www.earthweb.com),
and, of course, the growing involvement of authors (such as my own http://www.marchal.com).

Furthermore, a growing number of companies, who are not necessarily publishers, use their Web
sites to distribute information, articles, and reports (such as http://developer.iplanet.com).

However, the media is still young and changing. At the peak of the rivalry between Microsoft and
Netscape, the so-called "browser war," Web fashion was changing every six months. We are now
enjoying more stability, but, mark my words, the browser war is about to start again with new
actors. And this time, it will be more painful for the under-prepared.

According to the W3C, non-desktop browsers might account for as much as 75% of all surfers by
2002. Non-desktop browsers include mobile phones, PDAs (such as the PalmPilot), and WebTV.

Most of these devices simply won't use HTML. During the browser war, designers could at least
rely on some level of commonality between the two major browsers. This won't be the case
anymore because mobile phones use a special language, Wireless Markup Language (WML),
which is incompatible with HTML.

What to do? Should content providers (publishers, authors, and companies) limit themselves to
either HTML or WAP? Should they support both formats? Should they prepare for even more
formats?

Developing original content (articles, books, reports, and so on) is expensive. To offset the cost,
content owners want to distribute their content as widely as possible. Ideally, it should not matter
whether the reader uses a PC, a mobile phone, or another device.

In this chapter, we will see how XML helps address this challenge. As you know, XML's roots are
in the publishing industry, and that heritage guarantees that there is no lack of quality tools for
publishing problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Architecture

Webmasters typically edit their Web sites with an HTML editor. The major disadvantage of this
approach is that it freezes the site. Indeed, to change the presentation, you must manually re-edit
every page. It's possible to do, but it's a lot of work.

The XML solution is to separate authoring from publishing. The author of the pages writes the
document in XML. While doing so, she ignores presentation. She instead adopts an XML
vocabulary that focuses on the organization of the document: sections, titles, abstracts, and more.

Publishing the document then simply requires converting the document into HTML, WML, or
another popular format. Fortunately, this can be automated because the original XML document
is structure rich. The operative word here is automated.

For medium to large sites, it is more cost effective to automate publishing. Rewriting a couple of
pages by hand is feasible; however, for a hundred pages, it is too expensive.

Figure 4.1 illustrates how we'll apply these principles in this chapter. The tree main elements are
as follows:

Documents in structure-rich XML

XSLT style sheets that implement the conversion to HTML, WML, and RSS (more on RSS
in the next section)

A servlet that is responsible for applying the style sheets

Figure 4.1. XML separates authoring and publishing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML Stylesheet Language
To publish XML documents we will use XSL, the XML Stylesheet Language. More
specifically, we will use XSLT, XSL Transformation.

XSLT is a scripting language optimized for conversion between XML documents. In
that respect it differs from early style sheet languages, such as CSS (Cascading Style
Sheet), or word processor style sheets.

CSS describes how each element should be presented onscreen: which font, which
color, which size, and more.

XSLT transforms the XML document into another XML document. It goes much further
than simple presentation instructions. In fact, XSLT can completely reorganize a
document and, for example, add a table of contents or delete a section.

How does that help? The trick is to transform from a structure-rich XML document into
a format that contains display instructions, such as HTML or WML.

A browser (or another viewer) can render the second document onscreen or on paper.
What display format should you use? The following are some popular options:

HTML— Strictly speaking, HTML is not an XML vocabulary. This is not an XML-
to-XML transformation. However, HTML is so popular, and so close to XML, that
the W3C decided to support it.

XHTML— The XML version of HTML.

WML— The markup language for WAP devices.

Open eBook— The format for eBooks, based on HTML.

XSLFO— A new display language that is optimized for printed documents. At
the time of writing, two XSLFO viewers exist: a browser (http://www.indelv.com)
and a PDF converter (http://xml.apache.org).

The XSLT standard is available online at http://www.w3.org/TR/xslt.

XML Vocabulary

As we saw in the previous chapters, XML does not define any vocabulary. It is up to developers to
create vocabularies for their applications.

For this application, we have two realistic options. The first option is to use DocBook
(http://www.docbook.org) or another standard SGML/XML vocabulary for documents. DocBook is
particularly attractive because it is widely used and well supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, DocBook is so rich that it is too complicated for such a simple project.

The second option, and the one we'll adopt in this chapter, is to create our own vocabulary—one
that is simple and limited to only the tags we need.

Listing 4.1 illustrates the vocabulary we'll use in this chapter. As you can see, it is almost trivial:
It's just a list of news items.

Listing 4.1 index.xml

<?xml version="1.0"?>

<News>

 <URL>http://localhost:8080/publish/index</URL>

 <Item>

 <Title>Applied XML Solutions</Title>

 <Author>Benoît Marchal</Author>

 <Abstract>A new intermediate/advanced book for XML

 developers.</Abstract>

 <Para>Learn advanced XML programming with Applied XML

 Solutions. This hands-on teaching book is filled with

 practical examples.</Para>

 <Para>Applied XML Solutions is a great complement to XML by

 Example.</Para>

 </Item>

 <Item>

 <Title>Jetty</Title>

 <Author>Greg Wilkins</Author>

 <Abstract>Open Source Java Server.</Abstract>

 <Para>Jetty is a powerful, open-source Java web server. It

 supports standard Java servlets making it the ideal

 development environment.</Para>

 <Para>Jetty is also highly-configurable which helps custom

 developments.</Para>

 </Item>

 <Item>

 <Title>Hypersonic SQL</Title>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Title>Hypersonic SQL</Title>

 <Author>Thomas Müller</Author>

 <Abstract>Open Source SQL Database.</Abstract>

 <Para>Hypersonic SQL is an open source database that

 supports the JDBC API.</Para>

 <Para>Hypersonic SQL is efficient and can run in three

 modes: in-memory, standalone or client/server. This

 provides lots of flexibility when writing

 software.</Para>

 </Item>

</News>

The list starts with a URL that points to the server where the document resides. The W3C
suggests using the xml:base attribute for this purpose, but it turns out that Xalan, the XSLT
processor I use, has a problem with the xml namespace, so I use a URL element as a
workaround:

<URL>http://localhost:8080/publish/index</URL>

Each item has a title, author, abstract, and list of paragraphs:

 <Item>

 <Title>Applied XML Solutions</Title>

 <Author>Benoît Marchal</Author>

 <Abstract>A new intermediate/advanced book for XML

 developers.</Abstract>

 <Para>Learn advanced XML programming with Applied XML

 Solutions. This hands-on teaching book is filled with

 practical examples.</Para>

 <Para>Applied XML Solutions is a great complement to XML by

 Example.</Para>

 </Item>

Figure 4.2 illustrates the structure.

How can you develop such a format? When should you use existing formats (such as DocBook)
rather than develop your own? Unfortunately, there are no hard rules that you can follow to
guarantee success.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you develop your XML vocabulary, remember that a good vocabulary achieves a reasonable
compromise between two opposite goals: On the one hand, it must mark up as much information
as possible; on the other hand, it must be simple.

Figure 4.2. The document structure in XML.

It is important to mark up as much data as is realistically possible because the markup drives the
transformation to HTML, WML, and others. If something has not been marked up, transforming it
will be difficult (or outright impossible).

Yet, as you define the vocabulary, be realistic. If you provide too many tags and too many options,
you will confuse authors. This is particularly true if authors don't use the format regularly.

A format that is too complex can be dangerous because it gives the false impression that we're
creating quality documents, whereas, in fact, authors usually ignore most of the markup. I am
sure you have already encountered a database with a complex table organization. In most cases,
developers have misused it and retrieving useful information is difficult. The same could happen
with a markup vocabulary that is too complex.

Tip

Consider using an XML editor, as introduced in the previous chapter, to guide authors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Publishing Formats

Ultimately, a servlet takes the XML document in Listing 4.1 and publishes it in HTML, WML, or
RSS. WML is used for wireless applications, such as mobile phones, whereas RSS is used for
portals.

I assume you are familiar with HTML, but I will introduce WML and RSS.

WML

You can think of WML as an HTML for mobile users. You will recognize several HTML elements
in WML, such as <p>, , and <small>.

However, WML differs from HTML in at least one aspect: It is not organized in pages but as a
deck of cards. As we will see, this is to accommodate the smaller screens of mobile phones.

In effect, the user downloads not one page but a set of related pages (called cards). See Figure
4.3 for an illustration of this concept.

Figure 4.3. A WML document is a set of cards.

Another difference between HTML and WML is that WML is an XML application; it respects the
XML syntax. In other words, start and end tags must match. Listing 4.2 illustrates a WML
document.

Listing 4.2 WML Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

 "http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

<card title="Pineapplesoft Daily" id="toc">

 <p align="center">Today's News</p>

 <p><anchor>Applied XML Solutions<go href="#N8"/></anchor></p>

 <p><anchor>Jetty<go href="#N28"/></anchor></p>

 <p><anchor>Hypersonic SQL<go href="#N46"/></anchor></p>

</card>

<card title="Pineapplesoft Daily" id="N8">

 <p align="center">Applied XML Solutions</p>

 <p><small>by Benoît Marchal</small></p>

 <p>A new intermediate/advanced book for XML developers.</p>

 <p><small><anchor>More News...<go

 href="#toc"/></anchor></small></p>

 <p>Learn advanced XML programming with Applied XML Solutions.

 This hands-on teaching book is filled with practical

 examples.</p>

 <p>Applied XML Solutions is a great complement to XML by

 Example.</p>

 <p><anchor>More News...<go href="#toc"/></anchor></p>

</card>

<card title="Pineapplesoft Daily" id="N28">

 <p align="center">Jetty</p>

 <p><small>by Greg Wilkins</small></p>

 <p>Open Source Java Server.</p>

 <p><small><anchor>More News...<go

 href="#toc"/></anchor></small></p>

 <p>Jetty is a powerful, open-source Java web server.

 It supports standard Java servlets making it the ideal

 development environment.</p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 development environment.</p>

 <p>Jetty is also highly-configurable which helps custom

 developments.</p>

 <p><anchor>More News...<go href="#toc"/></anchor></p>

</card>

<card title="Pineapplesoft Daily" id="N46">

 <p align="center">Hypersonic SQL</p>

 <p><small>by Thomas Müller</small></p>

 <p>Open Source SQL Database.</p>

 <p><small><anchor>More News...<go

 href="#toc"/></anchor></small></p>

 <p>Hypersonic SQL is an open source database that supports

 the JDBC API.</p>

 <p>Hypersonic SQL is efficient and can run in three modes:

 in-memory, standalone or client/server. This provides

 lots of flexibility when writing software.</p>

 <p><anchor>More News...<go href="#toc"/></anchor></p>

</card>

</wml>

Thanks to the XML declaration, there is no mistaking an XML document. The DOCTYPE statement
is required and must point to the WAP DTD:

 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

 "http://www.wapforum.org/DTD/wml_1.1.xml">

The document itself is a deck of cards in which each card is presented independently. Cards are
used to break a large document into smaller pieces. When using a small screen (obviously mobile
phones have small screens), it is best to break information into smaller chunks:

 <card title="Pineapplesoft Daily" id="N8">

 <p align="center">Applied XML Solutions</p>

 <p><small>by Benoît Marchal</small></p>

 <p>A new intermediate/advanced book for XML developers.</p>

 <p><small><anchor>More News...<go

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <p><small><anchor>More News...<go

 href="#toc"/></anchor></small></p>

 <p>Learn advanced XML programming with Applied XML Solutions.

 This hands-on teaching book is filled with practical

 examples.</p>

 <p>Applied XML Solutions is a great complement to XML by

 Example.</p>

 <p><anchor>More News...<go href="#toc"/></anchor></p>

 </card>

As its name implies, the title attribute is the card title. The id attribute, on the other hand, is
used to navigate between cards.

The <p>, , and <small> elements correspond to paragraph, bold, and smaller font. They
work similarly to their HTML counterparts.

When used together, the <anchor> and <go> elements are equivalent to HTML's <A>. Internal
links (links that start with #) are used to navigate between cards. For example, <go
href="#toc"/> jumps to the toc card.

This chapter presents only a subset of WML. You will find more information at
http://www.wapforum.org.

To view a WAP site, you must have a WAP browser. It won't work with Internet Explorer or
Netscape. The main browsers available are as follows:

A WAP-enabled telephone— For example, the Ericsson R320 (http://www.ericsson.com)
or the Nokia 7710 (http://www.nokia.com)

A PalmPilot browser— For example, WAPman (http://www.wap.com.sg) or 4thpass
Kbrowser (http://www.4thpass.com/kbrowser)

A PC browser— For example, WinWAP (http://www.winwap.org) or, again, WAPman
(http://www.wap.com.sg)

A mobile phone emulator— For example, the Nokia WAP Toolkit
(http://www.forum.nokia.com)

The Nokia WAP Toolkit is particularly attractive for development. Figure 4.4 shows Listing 4.2 in
the Nokia emulator.

Figure 4.4. Using the Nokia emulator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

The WAP documentation mentions a WAP gateway sitting between the browser and
the Web server.

Because mobile phones are slow, typically running at 9,600bps, the WAP gateway is
used. This gateway is a specialized proxy that retrieves WML documents from regular
Web servers and compresses them before passing them to the phone. It also
communicates with the phone over a special protocol that is more efficient than HTTP.

WAP gateways are operated by phone companies and are required mainly for mobile
phones. However, other browsers, such as WinWAP, can read the raw WML.

Tip

WML is a new markup language. Expect some surprises as you develop for this young
medium. For example, I have found that the Ericsson R320 has difficulties with
accentuated characters.

RSS

RSS (Rich Site Summary) is a markup language for portals. Imagine your company is writing a
quality daily review of developer products. Wouldn't it be great if you could list these reviews on
the main portals such as Yahoo! and Netcenter? You bet it would.

So far Yahoo! does not support RSS, but Netcenter does as part of My Netscape. Figure 4.5
shows My Netscape. The various boxes are in fact RSS documents.

Figure 4.5. RSS on the My Netscape portal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

graphics/04fig05.gif

How does it work? The content provider publishes an RSS file on his Web site (see Figure 4.6).
Periodically, the portal fetches the file and presents it to visitors. This is called content
syndication: The content owner syndicates his content to the portal.

This takes the separation between authoring and publishing one step further. With RSS, the
content provider performs the authoring and the portal performs the publishing. As we will see,
RSS does not include formatting elements—formatting is the responsibility of the portal.

Figure 4.6. RSS enables content syndication.

Listing 4.3 is a simple RSS document.

Listing 4.3 RSS Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE rss PUBLIC

 "-//Netscape Communications//DTD RSS 0.91//EN"

 "http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91"><channel>

 <title>Pineapplesoft Daily</title>

 <description>Your source for technology news, trends and

 facts of interest to web developers.</description>

 <link>http://www.pineapplesoft.com</link>

 <language>en</language>

 <item>

 <title>Applied XML Solutions</title>

 <link>http://localhost:8080/publish/index#N8</link>

 <description>A new intermediate/advanced book for XML

 developers.</description>

 </item>

 <item>

 <title>Jetty</title>

 <link>http://localhost:8080/publish/index#N28</link>

 <description>Open Source Java Server.</description>

 </item>

 <item>

 <title>Hypersonic SQL</title>

 <link>http://localhost:8080/publish/index#N46</link>

 <description>Open Source SQL Database.</description>

 </item>

</channel></rss>

Again, this is unmistakably an XML document, and the DOCTYPE statement is required:

 <!DOCTYPE rss PUBLIC

 "-//Netscape Communications//DTD RSS 0.91//EN"

 "http://my.netscape.com/publish/formats/rss-0.91.dtd">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An RSS document contains one (and only one) channel. The channel must have at least the
following elements:

title—The channel title

description—A short introduction to the channel

link—The Web page associated with the channel

language—The channel's language

The channel also contains zero, one, or more <item> elements, where each <item> has a
title, link, and description. As you can see, RSS is optimized for portals and search
engines; it offers summaries and links to the complete articles on the content provider's Web site.

For more information on RSS, you can go to
http://my.netscape.com/publish/help/mnn20/quickstart.html. Other sites that have adopted RSS
include My Userland (http://my.userland.com) and XMLTree (http://www.xmltree.com). The latter
deserves a special mention: XMLTree is a catalog of all the XML content on the Internet. You will
find it useful when looking for documents to include on your own site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Styling on Demand

Listing 4.4 is a servlet that takes XML documents and style sheets and returns HTML, WML, or RSS
documents.

Listing 4.4 Publish.java

package com.psol.publish;

import java.io.*;

import java.util.*;

import org.xml.sax.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.xalan.xslt.*;

public class Publish

 extends HttpServlet

{

 protected final static String

 HTML_STYLESHEET = "stylesheet/html.xsl",

 WML_STYLESHEET = "stylesheet/wml.xsl",

 RSS_STYLESHEET = "stylesheet/rss.xsl";

 protected Dictionary cache = new Hashtable();

 protected String getDocPath(String path)

 {

 if(null == path || path.trim().equals("/"))

 path = "index";

 File file = new File("doc",path);

 path = file.getAbsolutePath();

 if(-1 != file.getName().lastIndexOf('.'))

 // there's a dot in the filename

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

path = path.substring(0,path.lastIndexOf('.'));

 return path + ".xml";

 }

 protected void style(String document,

 String stylesheet,

 OutputStream output)

 throws IOException, SAXException

 {

 // periodically cleans the cache

 if(cache.size() > 10)

 cache = new Hashtable();

 File file = new File(document);

 String key = document +

 stylesheet +

 Long.toString(file.lastModified());

 ByteArrayOutputStream cached =

 (ByteArrayOutputStream)cache.get(key);

 if(null == cached)

 {

 cached = new ByteArrayOutputStream();

 XSLTProcessor processor =

 XSLTProcessorFactory.getProcessor();

 XSLTInputSource source =

 new XSLTInputSource(document);

 XSLTInputSource styleSheet =

 new XSLTInputSource(new FileInputStream(stylesheet));

 XSLTResultTarget target = new XSLTResultTarget(cached);

 processor.process(source,styleSheet,target);

 cache.put(key,cached);

 }

 cached.writeTo(output);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cached.writeTo(output);

 }

 protected long getLastModified(HttpServletRequest request)

 {

 File file = new File(getDocPath(request.getPathInfo()));

 // read the warning in File.lastModified() but it's

 // the best thing we have :-(

 return file.lastModified();

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 String document = request.getPathInfo();

 String styleSheet = null;

 if(null != document &&

 document.endsWith(".rss"))

 {

 response.setContentType("text/xml");

 styleSheet = RSS_STYLESHEET;

 }

 String accept = request.getHeader("Accept");

 if(null != accept &&

 null == styleSheet)

 {

 StringTokenizer acceptTok =

 new StringTokenizer(accept,",",false);

 while(acceptTok.hasMoreTokens())

 {

 String mimeType = acceptTok.nextToken().trim();

 if(mimeType.equals("text/html"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(mimeType.equals("text/html"))

 {

 response.setContentType("text/html");

 styleSheet = HTML_STYLESHEET;

 break;

 }

 else if(mimeType.equals("text/vnd.wap.wml"))

 {

 response.setContentType("text/vnd.wap.wml");

 styleSheet = WML_STYLESHEET;

 break;

 }

 }

 }

 if(null == styleSheet)

 {

 if(null !=document &&

 document.endsWith(".wml"))

 {

 response.setContentType("text/vnd.wap.wml");

 styleSheet = WML_STYLESHEET;

 }

 else

 {

 response.setContentType("text/html");

 styleSheet = HTML_STYLESHEET;

 }

 }

 try

 {

 style(getDocPath(document),

 styleSheet,

 response.getOutputStream());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 response.getOutputStream());

 }

 catch(SAXException e)

 {

 Exception ex = e.getException() != null ?

 e.getException() : e;

 response.sendError(

 HttpServletResponse.SC_INTERNAL_SERVER_ERROR,

 ex.getMessage());

 }

 }

}

Selecting the Right Style Sheet

The servlet has three style sheets from which to choose: one for HTML, one for WML, and one for RSS. It
analyzes the request from the browser to decide which style sheet to apply and to which document.

Requests can take the following forms:

 http://localhost:8080/publish

 http://localhost:8080/publish/index

 http://localhost:8080/publish/index.wml

 http://localhost:8080/publish/index.rss

The servlet analyzes the request to select the XML document. The first request is a generic request to the
servlet so it returns the default document. The other requests point to a specific document, index, which
is really the index.xml document.

As we will see, to select an XML document, the servlet essentially discards the extension and replaces it
with .xml.

To decide which style sheet to apply, the servlet studies the request headers, in which the browser
passes a lot of information. A typical request looks similar to the following:

 GET /publish/index.html HTTP/1.1

 User-Agent: Mozilla/4.5 [en] (Win98; U)

 Host: localhost:8080

 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

 Accept-Encoding: gzip

 Accept-Language: fr-BE,fr,en

 Accept-Charset: iso-8859-1,*,utf-8

 Extension: Security/Remote-Passphrase

This code contains a lot of useful information, and the servlet is particularly interested in the Accept
Accept lists the MIME types that the browser recognizes.

The servlet iterates over the MIME types looking for a known type: text/html for HTML or
text/vnd.wap.wml for WML. This is enough for most requests. However, if it fails, the servlet looks at
the extension—.html selects HTML, and .wml selects WML.

Warning

If you are used to file extensions, this algorithm might be confusing. Why bother with MIME
types? Why not look at the extension the user requested? It is important to recognize that, on
the Internet, file extensions are not very important.

Browsers and servers rely on MIME type to decide what a file is. This algorithm reflects their
bias. In fact, many URLs have no extension, such as the following:

http://www.marchal.com/

For another example, point your browser to http://www.w3.org/Icons/WWW/w3c_home. This
URL returns the W3C logo in the best format for your browser: text, HTML, or graphics.

Notice that the servlet first analyzes the Accept header. I have found that it is more reliable than the
extension. For example, a mobile phone user might accidentally type an address of the form
http://localhost:8080/publish/index.html, even though he should actually be requesting the
WML document.

Even if visitors can make mistakes, the browser is always right. The Accept header field is the most
reliable source of information available:

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 String document = request.getPathInfo();

 String styleSheet = null;

 if(null != document &&

 document.endsWith(".rss"))

 {

 response.setContentType("text/xml");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 response.setContentType("text/xml");

 styleSheet = RSS_STYLESHEET;

 }

 String accept = request.getHeader("Accept");

 if(null != accept &&

 null == styleSheet)

 {

 StringTokenizer acceptTok =

 new StringTokenizer(accept,",",false);

 while(acceptTok.hasMoreTokens())

 {

 String mimeType = acceptTok.nextToken().trim();

 if(mimeType.equals("text/html"))

 {

 response.setContentType("text/html");

 styleSheet = HTML_STYLESHEET;

 break;

 }

 else if(mimeType.equals("text/vnd.wap.wml"))

 {

 response.setContentType("text/vnd.wap.wml");

 styleSheet = WML_STYLESHEET;

 break;

 }

 }

 }

 if(null == styleSheet)

 {

 if(null !=document &&

 document.endsWith(".wml"))

 {

 response.setContentType("text/vnd.wap.wml");

 styleSheet = WML_STYLESHEET;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 styleSheet = WML_STYLESHEET;

 }

 else

 {

 response.setContentType("text/html");

 styleSheet = HTML_STYLESHEET;

 }

 }

 }

Unfortunately, RSS requires a special procedure. It appears that portals don't set the Accept header
properly. To work around this, the servlet gives higher priority to the .rss extension.

Tip

This servlet supports only one style sheet per format—one HTML style sheet, one WML style
sheet, and one RSS style sheet.

However, for some applications, having different style sheets might be beneficial. For example,
you might use a different "My Netscape"-branded style sheet when the visitor is coming from
My Netscape. This style sheet would display a Netscape logo.

You will learn how to add this option through skins in Chapter 8, "Organize Teamwork Between
Developers and Designers."

Given the flexible approach we have chosen, the getDoc() method must do a lot of work to convert the
URLinto the proper XML file. The URL can be pointing to a file with or without an extension, and
getDoc() will turn it into a path to an .xml file:

 protected String getDocPath(String path)

 {

 if(null == path || path.trim().equals("/"))

 path = "index";

 File file = new File("doc",path);

 path = file.getAbsolutePath();

 if(-1 != file.getName().lastIndexOf('.'))

 // there's a dot in the filename

 path = path.substring(0,path.lastIndexOf('.'));

 return path + ".xml";

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

Applying the Style Sheet

Applying the style sheet is the responsibility of the style() method, which uses Xalan, the Apache XSL
processor:

 protected void style(String document,

 String stylesheet,

 OutputStream output)

 throws IOException, SAXException

 {

 // periodically cleans the cache

 if(cache.size() > 10)

 cache = new Hashtable();

 File file = new File(document);

 String key = document +

 stylesheet +

 Long.toString(file.lastModified());

 ByteArrayOutputStream cached =

 (ByteArrayOutputStream)cache.get(key);

 if(null == cached)

 {

 cached = new ByteArrayOutputStream();

 XSLTProcessor processor =

 XSLTProcessorFactory.getProcessor();

 XSLTInputSource source =

 new XSLTInputSource(document);

 XSLTInputSource styleSheet =

 new XSLTInputSource(new FileInputStream(stylesheet));

 XSLTResultTarget target = new XSLTResultTarget(cached);

 processor.process(source,styleSheet,target);

 cache.put(key,cached);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cached.writeTo(output);

 }

Warning

No standard API, which is similar to SAX or DOM, exists for XSL processors. Currently, the API
is specific to each processor. Therefore, this method works only with Xalan.

The style() method manages a small cache. Most documents will be called again and again, so it is
more cost-effective to apply the style sheet once and store the result until the next request.

The cache is very simple and effective. After styling, style() stores the result in a hash table; the key to
which is a combination of the filename, the style sheet, and a timestamp for the XML document.

Although this method is simple, it can be very costly. It runs the risk of the cache growing indefinitely,
consuming all the memory. Therefore, when the cache contains 10 documents, style() empties it.

The cache is emptied every 10 documents, not every 10 requests. If visitors make a thousand requests to
a single document, that document is styled only once and served for the cache for the next 999 requests.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Style Sheets

This section presents the three style sheets.

HTML Style Sheet

The style sheet for HTML documents is in Listing 4.5. It builds a short table of contents before
listing the various news items.

Listing 4.5 html.xsl

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://www.w3.org/TR/REC-html40"

 version="1.0">

<xsl:output method="html"/>

<xsl:template match="/">

<HTML><HEAD><TITLE>Pineapplesoft Daily</TITLE></HEAD>

<BODY><H1>Pineapplesoft Daily</H1>

 <H2>Today's News</H2>

 <xsl:for-each select="News/Item">

 <P>

 <xsl:value-of select="Title"/>

 <SMALL>by <xsl:value-of select="Author"/></SMALL>

 <xsl:value-of select="Abstract"/></P>

 </xsl:for-each>

 <H2>News Items</H2>

 <xsl:for-each select="News/Item">

 <H3><xsl:value-of

 select="Title"/></H3>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <P><I>by <xsl:value-of select="Author"/></I></P>

 <xsl:for-each select="Para">

 <P><xsl:value-of select="."/></P>

 </xsl:for-each>

 <SMALL>More News</SMALL>

 </xsl:for-each>

</BODY></HTML>

</xsl:template>

</xsl:stylesheet>

Figure 4.7 presents the result in a browser.

Figure 4.7. The HTML document in a browser.

Crash Course in XSL
The basics of XSL are easy to learn. An XSL style sheet is a list with one or more
templates. Each template describes how to transform one element (and its
descendants) from the original XML document into the output format.

Let's look at a very simple template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:template match="/">

 <HTML>

 <HEAD><TITLE>Today's News</TITLE></HEAD>

 <BODY><H1> Today's News </H1>

 <xsl:for-each select="News/Item/Para">

 <P><xsl:value-of select="."/></P>

 </xsl:for-each>

 </BODY>

 </HTML>

 </xsl:template>

As you can see, most of the template is a regular HTML document peppered with XSL
statements (xsl:for-each and xsl:value-of) to extract information from the
original XML document.

The match attribute points to the element to which the template applies: / is the root of
the document.

It is not possible, in this book, to include a more comprehensive introduction to XSL. If
you need more information, you can turn to Appendix C, "XSLT Reference," or to a
tutorial such as XML by Example.

WML Style Sheet

Listing 4.6 is the style sheet to generate WML. Again, it starts with a table of contents. Unlike the
HTML document, however, it places each news item on a different card.

Listing 4.6 wml.xsl

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output

 method="xml"

 doctype-public="-//WAPFORUM//DTD WML 1.1//EN"

 doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"/>

<xsl:template match="/">

<wml>

<card id="toc" title="Pineapplesoft Daily">

 <p align="center">Today's News</p>

 <xsl:for-each select="News/Item">

 <p><anchor><xsl:value-of select="Title"/><go

 href="#{ generate-id(.)} "/></anchor></p>

 </xsl:for-each>

</card>

<xsl:for-each select="News/Item">

 <card id="{ generate-id(.)} " title="Pineapplesoft Daily">

 <p align="center"><xsl:value-of select="Title"/></p>

 <p><small>by <xsl:value-of select="Author"/></small></p>

 <p><xsl:value-of select="Abstract"/></p>

 <p><small><anchor>More News...<go

 href="#toc"/></anchor></small></p>

 <xsl:for-each select="Para">

 <p><xsl:value-of select="."/></p>

 </xsl:for-each>

 <p><anchor>More News...<go href="#toc"/></anchor></p>

 </card>

</xsl:for-each>

</wml>

</xsl:template>

</xsl:stylesheet>

Unlike Listing 4.5, this style sheet generates an XML document. Indeed, WML follows the XML
syntax. The style sheet also issues a DOCTYPE statement, as required by the WML specification.

Figure 4.8 shows the result in a WAP browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.8. The WML document in a WAP browser.

RSS Style Sheet

The last style sheet is in Listing 4.7. This style sheet generates an RSS document. Unlike the
previous two style sheets, this one limits itself to a table of contents—you will recall that RSS is not
designed to handle large documents. RSS is essentially a table of contents of the portal Web site.

Listing 4.7 rss.xsl

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output

 method="xml"

 doctype-public="-//Netscape Communications//DTD RSS 0.91//EN"

 doctype-system="http://my.netscape.com/publish/formats/rss-0.91.dtd"/>

<xsl:template match="/">

<rss version="0.91"><channel>

<title>Pineapplesoft Daily</title>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<title>Pineapplesoft Daily</title>

<description>Your source for technology news, trends and

 facts of interest to web developers.</description>

<link>http://www.pineapplesoft.com</link>

<language>en</language>

<xsl:for-each select="News/Item">

 <item>

 <title><xsl:value-of select="Title"/></title>

 <link><xsl:value-of select="/News/URL"/>#<xsl:value-of

 select="generate-id(.)"/></link>

 <description><xsl:value-of select="Abstract"/></description>

 </item>

</xsl:for-each>

</channel></rss>

</xsl:template>

</xsl:stylesheet>

Warning

The RSS style sheet is tricky—it can be used safely with Xalan, but it might not work with
other XSL processors.

The problem is that the RSS document must include links to the news items. The easiest
path is from RSS to the servlet. When a visitor follows a link, RSS will retrieve the news
in the appropriate format: HTML or WML.

But how do you link it to a specific news item on the news page? You can simply use a
reference at the end of the URL: http://localhost:8080/publish/index#N8.
This is where it gets tricky.

The style sheet uses generate-id() to create the references. This works because
Xalan always generates an identifier based on the original XML document. If you run the
style sheet twice on the same document, you get the same identifier.

However, the XSL specification is not so strict. It guarantees only that generate-id()
will generate unique identifiers for each run. Theoretically, you could run the style sheet
twice on the same document and get different identifiers.

Therefore, you might find that this trick does not work with other processors. In that
case, simply include identifiers in the original XML document: <Item id="N8"/>.

Figure 4.9 illustrates the result with My Userland, an RSS portal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.9. Registering the RSS file on My Userland.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building and Running the Project

The publish project is available on the enclosed CD-ROM. Copy the project directory from the
CD-ROM to your hard disk. Under Windows, start the server by double-clicking publish.bat.
Next, open a browser and type the following URL (refer to Figure 4.7):

http://localhost:8080/publish

If possible, you should download at least one WAP browser and test the document again. You
also might want to register the RSS channel with a portal.

Warning

This project uses Xalan 1.0 as the XSLT processor. If you are using another processor,
you will need to adapt style().

The project also uses Jetty as the Web server. However, because it is based on
servlets, it should be easy to adapt to another Web server. You can add servlet support
to most Web servers through JRun.

If you develop your own documents, register the corresponding RSS channels with
http://www.xmltree.com, http://my.netscape.com, and http://my.userland.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

If you find this project useful, be sure you read Chapter 8 as well. Chapter 8 presents a different
twist on the same technique and many useful extensions to the servlet.

DocBook

As has already been indicated, for more complex documents, you can turn to the DocBook DTD
available from http://www.docbook.org. DocBook is a powerful DTD for document publishing and
is available in both SGML and XML.

XHTML

WML is the most popular markup language for mobile users, but the W3C is working on its own
solution. The W3C has developed XHTML, an XML version of HTML. The recommendation is
available from http://www.w3.org/TR/xhtml1.

The major advantage of XHTML is that it is based on HTML so it will be familiar for Web
designers. The major inconvenience of XHTML is also that it is based on HTML. This results in a
large and complex markup language. Therefore, XHTML currently is too complex for mobile
phones.

The W3C is working to simplify XHTML. Only time will tell whether XHTML will achieve
widespread acceptance.

Open eBook

Another interesting format for mobile users is the Open eBook specification. Open eBook was
designed for eBook, a different group of mobile users. An eBook can take many forms, but it is
generally a palm-sized device on which readers download books.

You will find more information on Open eBook from the Open eBook Forum at
http://www.openebook.org. A popular eBook reader is the Rocket eBook, available from
http://www.rocketebook.com. Unfortunately, it does not support the Open eBook format yet.

ICE

I introduced RSS as the content syndication format in this chapter because RSS is very popular.
RSS is not the only choice, however.

An alternative is ICE (Information Content and Exchange protocol). ICE is a more ambitious
project that aims to link content providers and publishers. You can find more information on ICE at
http://www.w3.org/TR/NOTE-ice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Export to Any Format
In this chapter and the next, we'll have more fun with XSLT. In the previous chapter, we were
syndicating content in a variety of formats. This led us to explore transformations and the XML
tool for transformation: XSLT.

Although powerful and effective, the transformations in the last chapter remained in the family
because we essentially converted documents from one DTD to another DTD. Although both
formats were different, they were based on XML. Yes, we also converted to HTML but, again,
XML and HTML are very similar. In this chapter and the next, we'll open the door to more alien
formats. Although an explosion in the number of XML-based formats has occurred, many non–
XML-based formats are still out there. Some examples include the following:

When you publish documents, you might want to convert them to RTF, which is recognized
by Word, or PDF, which is Adobe Acrobat's format.

If you are active in graphics and design, you probably don't want to throw away existing
Adobe Illustrator, CorelDRAW, or CGM files.

In electronic commerce, as we will see, legacy formats such as ANSI X12 and
UN/EDIFACT need to be supported.

This chapter concentrates on transformation from XML documents to documents in non-XML
format; in other words, exporting XML-based documents to other applications. The next chapter is
concerned with the reverse operation and discusses how to import non-XML documents in XML
applications.

These two chapters build around the same project that is related to e-commerce and, more
specifically, with converting EDIFACT documents to and from XML. The two reasons I chose
EDIFACT as the typical non–XML-based format are as follows:

I'm very familiar with EDIFACT and e-commerce.

EDIFACT gives me a chance to demonstrate both sides of the problem. It is common for an
e-commerce application to convert to and from EDIFACT, which is not the case with, say,
PDF.

However, the techniques introduced in these two chapters are not limited to EDIFACT. As
discussed previously, they are commonly used for PDF, RTF publishing. In e-commerce, you
might also consider other legacy formats such as X12. Essentially, you need to build such a
solution each time an XML application interfaces with a non-XML application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Meeting EDIFACT

Unfortunately, it is not possible to convert between two formats unless you are familiar with the input and output
formats. I assume you are familiar with XML, but you might not be familiar with EDIFACT. This section is a crash
course in EDIFACT. If you are in a hurry and want to jump straight into the code, I suggest you read at least the
section "EDIFACT Segments."

EDIFACT, or UN/EDIFACT as it is formally known, is short for Electronic Data Interchange For Administration,
Commerce, and Transport. It is a comprehensive e-commerce solution developed under the auspices of the
United Nations (hence, the UN part of the name).

Business-to-Business e-Commerce

e-Commerce is a commonly used term that has several meanings. When people think of e-commerce, though,
they usually think of http://Amazon.com or other online shops. Other popular and older forms of e-commerce do
exist, however.

Online shops cater primarily to the business-to-consumer (B2C) side of e-commerce. The other side is business-
to-business (B2B) e-commerce, or the buying, selling, and other commercial transactions that take place between
businesses.

Business-to-business commerce isn't as well known as the consumer-oriented side. This is mainly because it is
less visible and more abstract: We shop in various stores (online and offline) every day but few of us really care
from where the stores are buying their goods.

This is business-to-business commerce: stores (businesses) buying goods from their suppliers (other
businesses). What might surprise you is that it accounts for a very large volume because, behind the supplier is
another supplier, and another, and another.

Let's look at an example. Say you have bought Applied XML Solutions at a bookstore. The bookstore bought the
same book from a distributor, who bought it from Sams. Sams, in turn, had the book manufactured by a printer.
To manufacture the book, the printer bought paper and ink. You get the idea.

So, for a single consumer-oriented transaction (you buying the book), several business-to-business transactions
must occur. These transactions have a multiplying effect, which means that business-to-business commerce—
and consequently, business-to-business e-commerce—is destined to outnumber consumer activities by a wide
margin.

Electronic Data Interchange

One of the oldest forms of e-commerce is Electronic Data Interchange (EDI) . EDI is concerned solely with
business-to-business e-commerce. The idea behind EDI is very simple: To conduct business, companies have to
exchange an enormous amount of paperwork. Let's replace the paperwork with electronic files.

For example, if my company decides to buy goods from yours, we'll issue a purchase order. We also expect the
goods to come with an invoice. To pay the invoice, we might cut a check.

Do we write these documents with a pen and paper? This is unlikely, because like most companies we use some
sort of accounting software (by accounting software, I mean anything from QuickBooks to SAP) that tracks orders,
invoices, and payments.

Go through your incoming mail and you'll find that most documents were printed by a computer (incidentally, you'll
understand why Intuit makes so much money selling checkbooks). Follow the paper trail and you'll find the same
documents are being routed to…your own accounting software!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So, the process is to print commercial documents, send them by postal mail, and key them in at the receiving end.
The paperwork and all the manual processing it requires is just a small annoyance for small corporations such as
mine, but it's a major expense for larger organizations.

More than 20 years ago, some companies realized they could simplify things by building a more direct link
between the two accounting softwares. Instead of spitting out a paper purchase order, my computer produces a
file. I then can email you the file and you can feed it straight into your accounting package. No paper or postal
mail is required, and it's better than regular email because the commercial documents are automatically imported.

Some of the benefits of EDI include the following:

It is faster to exchange and process electronic documents.

Typing and retyping the same document is a major cause of errors (for example, it's easy to type 10,000
instead of 100,000). Electronic documents eliminate the retyping and associated errors.

Processing electronic documents requires less human resources.

How big is EDI? According to Forrester Research, business-to-business e-commerce was valued at $671 billion
in 1998. So, why don't we hear more about it? One of the reasons might be that most transactions take place on
private networks, not the Internet. In fact, Internet transactions represented only $92 billion.

Most transactions taking place on private networks are not based on XML. Instead, they use the EDI-specific
formats, such as UN/EDIFACT and ANSI X12.

However, it would be a mistake to discount XML in that space. The same study expects business-to-business e-
commerce to grow to $1.3 trillion (that's trillion, not billion) within three years. And guess where most of the growth
will take place? On the Internet, of course. Now guess which format will dominate on the Internet. If you chose
XML, you're right again.

To summarize, business-to-business e-commerce is very important. It is several times larger than consumer-
oriented activities and will remain so.

Currently, most of these transactions take place on private networks, using special formats. However, they are
expected to migrate to the Internet and XML within the next three years. This is why it's important to build a bridge
between the EDI formats and XML.

The Inner Working of EDIFACT

The two dominant EDI formats are ANSI X12 and UN/EDIFACT . X12 was developed by ANSI and is used
predominantly in the U.S. EDIFACT, on the other hand, enjoys a worldwide audience. Other popular formats
include Odette (used in the automotive industry, including IAEG in the U.S.), Tradacoms (which is UK-based), and
Swift (used in international banking).

Although they differ in details, the various EDI formats are based on the same principles.

The underlying idea is to develop electronic versions of most commercial documents. The list of documents is too
long to detail here. But, some examples include an electronic purchase order, electronic invoice, and electronic
catalog. An electronic custom declaration (when importing or exporting goods), electronic financial transactions
(to replace checks), and electronic tax and other tax-related forms have also been developed.

Finally, some industries have even developed documents specific to their needs—for example, electronic
versions of insurance contracts, reinsurance claims, statistics forms, and more.

With EDIFACT, the electronic documents are called UNSMs , which is short for United Nations Standard
Messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because the messages are developed by international (EDIFACT) or national (X12, Tradacoms, and so on)
bodies, they tend to be rather large. Imagine an invoice that satisfies the legal requirements of every country,
every industry, and every company in the world! Large and unmanageable? You bet.

Therefore, users must simplify these documents before using them. For example, American companies must
collect the sales tax, and European companies must collect the VAT (Value-Added Tax). The worldwide invoice
does both, though. So, an American company would need to simplify it to include only sales tax, whereas a
European company would limit it to VAT.

Incidentally, this is one of the major criticisms of the EDI formats: Because they are all-encompassing, they are
very complex. Furthermore, to bring them down to something manageable, users must spend significant effort in
simplifying the messages (a process known, in EDI circles, as creating subsets) .

A side effect is that this creates incompatibilities, which cause most of the benefits of standardized formats to be
lost. In the example, one company simplified to remove VAT, and the other to remove sales tax. Now, what
happens when the U.S. corporation sends a purchase order to the European one?

This problem has led a growing number of companies to look for alternatives to the EDI formats, and XML
appears to be a very attractive alternative because of the following:

XML is well supported by tools and vendors.

It is close to object-oriented modeling such as UML.

It offers superior conversion features.

The last point is worth reviewing. As I said, the international documents are so complex that companies must
simplify them. Yet, when you study EDIFACT, you find that it has not been designed to be simplified. No support
exists in the standard for simplifying orders.

On the other hand, XML has namespaces, which are a mechanism to organize large documents into smaller,
more manageable subsets. Look at how XSL is divided in XSLT and XSLFO for a good example on how
namespaces help simplify large standards. The standard is literally divided into two parts that can be used
independently or combined at will. XML could bring that sort of benefit to EDI. For example, sales tax and VAT
elements could be developed independently from the purchase order and then combined at will.

EDIFACT Segments

What do EDI messages look like? Listing 5.1 is an EDIFACT purchase order in which the bookstore, Playfield
Books, is ordering books from Que.

Warning

For simplicity, the purchase order in Listing 5.1 is minimalist. It has all the required information but little
extra.

Listing 5.1 orders.edi

UNH+1+ORDERS:D:96A:UN'BGM+220+AGL153+9+AB'DTM+137:20000310:102'DTM+61:20000410:

102'NAD+BY+++PLAYFIELD BOOKS+34 FOUNTAIN SQUARE

PLAZA+CINCINNATI+OH+45202+US'NAD+SE+++QUE+ 201 WEST 103RD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PLAZA+CINCINNATI+OH+45202+US'NAD+SE+++QUE+ 201 WEST 103RD

STREET+INDIANAPOLIS+IN+46290+US'LIN+1'PIA+5+0789722429:IB'QTY+21:5'PRI+AAA:24.99::

SRP'LIN+2'PIA+5+0789724308:IB'QTY+21:10'PRI+AAA:42.50::SRP'UNS+S'CNT+3:2'UNT+17+1'

We will look at this purchase order in more detail in the next section. This section serves as a crash course in
EDIFACT syntax. Don't worry if you don't remember everything, this is not "Applied EDIFACT Solutions."
However, to convert between any format and XML, you need to know the fundamentals of the non-XML format.

The building block for the EDIFACT message is the segment. Segments start with a tag followed by a set of data.
They end with the ' character . The tag identifies the segment. For example, the following is a price segment,
recognizable by its PRI tag:

PRI+AAA:42.50::SRP'

Within a segment, the fields are delineated by the + or : character . The fields have no tags but are identified by
their position. For example, in the PRI segment, the price is always the second field, which is $42.50.

The first and fourth fields are coded fields, which means their value is a code or an alphanumeric identifier for a
value. For example, in the first field, the code AAA means net price. Codes are similar to enumerated parameter
values in XML and are used for the same purposes.

If you are curious, SRP in the fourth field means suggested retail price. The meaning of the codes is specified by
the EDIFACT standard.

You'll notice that the third field is empty, which means it has no value. However, because fields are identified by
their position, the empty third field cannot be omitted. Indeed, I cannot write

PRI+AAA:42.50:SRP'

or SRP would be in the third field instead of the fourth field. The third field has a different meaning (it is reserved
for the price type) from the fourth field.

Note

When EDIFACT was originally conceived, bandwidth was more expensive than it is today. Therefore, a
lot of effort was directed toward achieving the smallest file possible.

If you are curious, compare Listing 5.1 with Listing 5.2, which is the same purchase order in XML.
EDIFACT is clearly the winner in terms of size.

What about the + and : characters? Fields in a segment can be either simple fields or composite fields
separated by + characters . A composite field is a list of simple fields separated by : characters .

Therefore, the PRI segment

PRI+AAA:42.50::SRP'

contains one composite field, which is made up of four simple fields (AAA, 42.50, empty, and SRP). Compare this
with the PIA segment (product identifier):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the PIA segment (product identifier):

PIA+5+0789722429:IB'

PIA starts with a simple data element (5) followed by a composite data element (0789722429:IB) for the ISBN
number. The composite data element has two simple data elements (0789722429 and IB).

Note that ISBN stands for International Standard Book Number . It is a worldwide identifier for books. The ISBN
appears on the back of the book with the bar code, and each book has a unique one. For example, this book has
been assigned ISBN 0-7897-2430-8.

Because each book has a different ISBN, using only the ISBN suffices when ordering books. In fact, less risk of
confusion is involved when ordering books by ISBN than by the title or author's name. It's easy to confuse two
books with the same title, but it is impossible to confuse two books'ISBNs.

Note

It's not always obvious why some elements become simple data elements while others end up as
composite data elements. You should refer to the EDIFACT documentation to decide which is which.

In theory, when two or more simple data elements are often used together, they have been grouped in
a composite data element.

You are now familiar with the basics of EDIFACT . However, we should consider the following two important rules
that we have not yet encountered:

Compression

Escape character

I explained that empty fields must be present so as not to impact the field positions. Thanks to the so-called
compression mechanism, you can remove empty fields when no risk of confusion is involved. For example, in the
PIA segment, the ISBN can repeat up to five times, so it could look similar to the following:

PIA+5+0789722429:IB+:+:+:+:'

But, because the four empty composite data elements are also the last elements in the segment, no risk of
confusion exists, so you must write the following segment:

PIA+5+0789722429:IB'

The same rule applies at the end of composite data elements. The definition for the BGM (beginning of message)
segment states that the first composite data element has four fields. However, if it looks like this

BGM+220:::+AGL153+9+AB'

the compression rule states that if the last three fields of the composite data elements are empty, they need not
appear in the segment. Therefore, we must write

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BGM+220+AGL153+9+AB'

The last syntactical rule is concerned with escape characters. Because + , : , and ' have a special role in
segments, they cannot appear in data. This is similar to the < and & characters in XML, which cannot appear in
data, either.

EDIFACT's solution is to escape these characters with the ? character ; therefore, we would not write

NAD+BY+++PLAYFIELD BELGIUM+43 RUE DE L'OUVRAGE+NAMUR++5000+BE'

because the ' would be confused with the end of the segment. Instead, we'd write the following:

NAD+BY+++PLAYFIELD BELGIUM+43 RUE DE L?'OUVRAGE+NAMUR++5000+BE'

The Message in Details

A message is a list of segments . The meaning of the segments, their positions in the message, the acceptable
code for coded data elements, and more are specified in the EDIFACT standard. To decode a message, you
must look up its definition in the EDIFACT standard.

The standard is conveniently available online at http://www.unece.org ; follow the links for UN/CEFACT and then
UN/EDIFACT. You can search by message and drill down to the list of segments. From the segments, you then
can zoom to the data elements and code lists . See Figures 5.1 and 5.2 for examples.

To save you this rather tedious task, here are the secrets of Listing 5.1, segment by segment.

UNH+1+ORDERS:D:96A:UN'

The UNH segment marks the document as an EDIFACT document and identifies the type of document, which in
this case is an order (ORDERS).

Warning

For completeness, note that EDIFACT groups messages in interchanges. The beginning and end of
interchanges are indicated through more segments. For simplicity, interchanges are not discussed in
this chapter.

Figure 5.1. Looking up the list of segments on the UN/ECE Web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.2. Zooming in on one segment in the invoice shows the fields.

The 1 in the first field is a message identifier; D, 96A, and UN in the last fields identify a specific revision of the
ORDERS message.

BGM+220+AGL153+9+AB'

BGM stands for beginning of message. The code 220 confirms that the document is indeed an order. Next is the
purchase order number, AGL153.

The 9 in the next field is a code that says this message is the original purchase order (other codes exist for
duplicates). The last field, AB, means we want the recipient to acknowledge reception.

DTM+137:20000310:102'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DTM segment in the previous line is the date (actually it's the Date and Time, hence the trailing M). The code
137 says this is the purchase order date. The actual date is next. The final code, 102, means that the date is in
ISO format, 10 March 2000, in this case.

When EDIFACT was originally conceived , other date formats were commonly used (including the dreadful two-
digit years such as 99). Lately, it seems everybody uses the ISO date format, so 102 is becoming some sort of a
constant for dates.

DTM+61:20000410:102'

The next segment is another date. This one has the code 61 in the first field, meaning it is the last date for
delivery. If the seller cannot deliver within a month (by 10 April 2000), he can forget the order.

NAD+BY+++PLAYFIELD BOOKS+34 FOUNTAIN SQUARE PLAZA+ CINCINNATI+OH+45202+US'

The next segment is an NAD , meaning name and address. The first field is a code (BY) to indicate this is the
buyer's address. After two unused fields, we find, in order of appearance, the name of the buyer (PLAYFIELD
BOOKS), the street address (34 FOUTAIN SQUARE PLAZA), the city (CINCINNATI), the state (OH), the ZIP code
or postal code (45202), and, finally, the country (US).

NAD+SE+++QUE+201 WEST 103RD STREET+INDIANAPOLIS+IN+46290+US'

A second NAD contains the seller's address (code SE).

LIN+1'

Next is the first line of the order, identified by a LIN segment and the line number (1 in this case).

PIA+5+0789722429:IB'

The PIA segment that follows contains the product identifier. The code 5, in the first field, specifies that the
product identifier is related to an order line. The identifier itself follows as ISBN 0-7897-2242-9. The last code (
identifies the code as an ISBN.

Note

Why do we need a code 5 to specify that the product identifier applies to a line order? Isn't it obvious by
reading the order message that this must be a line order?

Yes and no. One of the issues with EDIFACT is that it uses a very flat data structure. Essentially, a
message is a list of segments . With large messages, the placement of segments doesn't always
indicate what's what. Code such as this 5 identify relationships between segments ("this is not any
product identifier; it's the product identifier for the current product line"). These special codes are known
as qualifiers.

To be complete, note that EDIFACT has a notion of groups of segments , in which a group is a set of
related segments. However, groups have no special syntax, so they are not easy to recognize in a
message!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QTY+21:5'

The QTY segment indicates we are buying five books (in the last field). The 21 code (it's a qualifier again) states
that the quantity applies to a line order.

PRI+AAA:24.99::SRP'

This is the product price in a PRI segment . The first field is a code (AAA) meaning net price. It is followed by the
price itself (24.99), an empty field, and a code (SRP for suggested retail price).

LIN+2'PIA+5+0789724308:IB'QTY+21:10'PRI+AAA:42.50::SRP'

The second line is for the order of 10 books (ISBN 0-7897-2430-8) at a suggested retail price of $42.50.

UNS+S'

The next segment, UNS , means that the following segments are a summary of the message.

CNT+3:2'

In this case, the summary consists of only one CNT (count) segment . The code 3 in the first field indicates it
counts the number of order lines, which is 2 in this case.

UNT+17+1'

The last segment is a UNT with two fields. The first field counts the total number of segments in the message (
The second field, on the other hand, repeats the message identifier from the UNH segment (1 in this case).

The Message Structure

To summarize, the EDIFACT message follows the classic structure of an invoice: It starts with the name and
address of the parties, the date of the invoice, and a reference number. Next are order lines. Each line contains a
product identifier (ISBN), the quantity, and the price.

As has already been noted, this structure is not immediately apparent in EDIFACT because it is a rather flat list of
segments. In contrast, XML elements nest so the structure is immediately apparent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EDI Meets XML

The concept of EDI is even more relevant today than it was 20 years ago because

Paperwork is as costly today as it was then.

More companies have computerized their accounting functions and most are connected to
a worldwide network (the Internet). They could benefit from EDI.

EDI and the Internet

So, deploying EDI makes a lot of sense, but traditional EDI technologies, such as EDIFACT and
X12, have not really taken off on the Internet. A number of reasons have been proposed to
explain this lack of interest:

EDI technologies are not familiar and do not integrate naturally in an HTML-centric Web.

Few products, if any, ship with an EDI feature.

No matter how effective, EDI technologies look old-fashioned and are not popular with
developers.

EDI standards have focused on building "universal" messages that are too difficult to use,
as we have seen. Therefore, companies have implemented incompatible variations.

EDI standards are complex and costly to deploy.

Finding information on EDI on the Internet is difficult.

It is expected that XML could help alleviate some of these problems because

XML supports complex data structures and can easily encode commercial and
administrative documents as EDI does.

An ever-growing list of products are XML-enabled (including a growing number of ERP and
databases). In that respect, XML appears as the preferred format to exchange data.

XML is popular with Web developers and interfaces neatly with the Web-centric world.

XML supports modern, object-oriented modeling and programming.

As we have seen before, XML has been designed to facilitate reusing vocabulary without
putting unnecessary burden on the user. XML namespaces are helpful in this case.

No shortage of resources on XML exists on the Internet.

These are all valid reasons, and I think the most important one is the integration with the Web.
XML works as a natural extension of HTML for specific applications. See Figure 5.3 for an
illustration.

Figure 5.3. XML supports both users on a workstation and a more automated approach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The lower portion of Figure 5.3 is the familiar Web site, although this one is built on XML. The
server of the seller uses XSL to present information to a buyer. This is similar to what we built in
Chapter 4, "Content Syndication." However, instead of publishing news, it publishes commercial
documents such as purchase orders, invoices, and customs declarations.

The upper portion skips the style sheet to demonstrate an EDI-like exchange of information. The
same XML commercial documents are presented to the accounting system or the ERP of the
buyer. What is interesting about this setup is that it uses Web technologies to integrate the two
accounting systems.

The main benefit of this setup is that it enables the buyer to start with limited investments (a
browser) and upgrade to the more automatic mode as the volume of transactions grows.

XML/EDI

In 1997, the XML/EDI Group (http://www.xmledi.com) was established as a grassroots
effort to promote XML in business-to-business e-commerce. Since 1997, other groups, vendors,
and organizations (such as ebXML, BizTalk, CommerceOne, RosettaNet, and more) have
adopted XML as their preferred syntax for business-to-business e-commerce.

Unlike EDI, no worldwide, standardized XML version of the order and other commercial document
exists. In fact, it is very unlikely that there will ever be one.

Listing 5.2 is one possibility for an XML version of an order. Figure 5.4 is a graphical
representation of its structure. As you can see, it is a classic order with buyer and seller
information followed by order lines. The XML order is very close to the EDIFACT order for a good
reason: Most orders look alike.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.2 orders.xml

<?xml version="1.0"?>

<Order confirm="true">

 <Date>2000-03-10</Date>

 <Reference>AGL153</Reference>

 <DeliverBy>2000-04-10</DeliverBy>

 <Buyer>

 <Name>Playfield Books</Name>

 <Address>

 <Street>34 Fountain Square Plaza</Street>

 <Locality>Cincinnati</Locality>

 <PostalCode>45202</PostalCode>

 <Region>OH</Region>

 <Country>US</Country>

 </Address>

 </Buyer>

 <Seller>

 <Name>QUE</Name>

 <Address>

 <Street>201 West 103RD Street</Street>

 <Locality>Indianapolis</Locality>

 <PostalCode>46290</PostalCode>

 <Region>IN</Region>

 <Country>US</Country>

 </Address>

 </Seller>

 <Lines>

 <Product>

 <Code type="ISBN">0789722429</Code>

 <Description>XML by Example</Description>

 <Quantity>5</Quantity>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Quantity>5</Quantity>

 <Price>24.99</Price>

 </Product>

 <Product>

 <Code type="ISBN">0789724308</Code>

 <Description>Applied XML Solutions</Description>

 <Quantity>10</Quantity>

 <Price>42.50</Price>

 </Product>

 </Lines>

</Order>

Figure 5.4. The structure of the XML order is more readily apparent than its EDIFACT
counterpart.

Although they convey the same information, the XML and EDIFACT orders are not strictly
identical:

In XML, the internal organization of the order is apparent. It is clear when looking at the
document that product identifiers are included in order lines. Consequently, XML does not
need qualifiers to specify the relationship between elements as EDIFACT does.

Some codes are different. For example, the EDIFACT order relies on code AB to request
an acknowledgement, whereas the XML order uses a confirm attribute with a Boolean
(true or false). Likewise, the code IB translates into ISBN. Differences of this sort are
very common when transforming XML to and from other formats.

The XML document is significantly larger than the EDIFACT version. Again, EDIFACT was
developed to minimize bandwidth because it was more expensive at the time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the XML document, product lines include descriptions. In practice, this is very common
when building transformations. The two data structures are often similar, but they are rarely
identical. Our transformation must cope with these differences.

Our goal in the next sections is to convert one format into the other and vice versa.

Warning

The XML document includes product descriptions that have no equivalent in EDIFACT.
This is not a technical limitation of EDIFACT; it is more of a cultural one.

Specifically, including product descriptions using segment IMD is possible. However,
EDIFACT users tend to be conservative with bandwidth, so if the ISBN is enough to
identify the product, why waste resources?

Leverage EDI Experience in XML
As explained , it is expected that business-to-business e-commerce on the Internet will
be based on XML. So, if you move into that space, you will need to develop XML
versions of commercial documents such as purchase orders, catalogs, packing lists,
and more.

I strongly suggest that, to develop such documents, you start with an EDI basis. A lot of
effort has gone into making sure the EDIFACT (or X12) documents are complete and
usable. Don't reinvent the wheel.

The XML/EDI Group has been advocating precisely this approach since the early days.

Many proposals exist on how to best turn EDI into XML, but here is one that has been
field-tested:

Reverse-engineer EDI messages of interest in object-oriented models (for
example, using UML). If possible, start with real implementations instead of the
official standard.

Use aggregation to express relationships between classes. This makes the
structure of the original message visible.

Simplify. The original EDI message is always too complex.

Convert your model in XML—for example, create an XML element for every
class in the model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Breaking Down the Conversion

In this chapter , we'll write software to convert the XML order from Listing 5.2 into the EDIFACT
order in Listing 5.1. In the next chapter, we will see how to build the reverse transformation, from
EDIFACT to XML.

If we analyze the conversion, we realize at least three steps are involved:

1. The converter must read the XML document.

2. The converter must convert between the two structures. Specifically, it must transform XML
elements in EDI segments. This might involve splitting an XML element into several
segments or grouping several elements into a single segment. It also must transform codes
(such as ISBN) into their EDIFACT equivalents (IB).

3. It must write the EDIFACT document according to the rules of the EDIFACT syntax.

Which tools are available to help us? An XML parser can take care of the first step, but what
about the next two? It turns out that an XSLT processor can help with the second step. Missing is
the capability to write a document according to the EDIFACT rules.

Indeed, if we compare this transformation with the XML-to-HTML and XML-to-XML
transformations from Chapter 4, the major difference is that our output format (EDIFACT) is not in
the XML family (XML or HTML).

Text Conversion

The simplest solution is to use <xml:output method="text"/> to generate the EDIFACT
document. We could write rules similar to the following:

<xsl:template match="Price">

 <xsl:text>PRI+AAA:</xsl:text>

 <xsl:value-of select="Price"/>

 <xsl:text>::SRP</text>

</xsl:template>

However, in practice, this is difficult and error prone. The EDIFACT syntax is not complicated, but
it would not be easy to write XSL templates that handle compression (removing empty fields
where it is unambiguous) properly. Nor would it be easy to implement the escape rules (a
question mark before the +, :, ', and ? characters).

Introducing a Formatter

The trick then is to use XSLT for what it is good at, namely converting XML documents into other
XML documents. In addition, we should complement it with our own software to deal with the
idiosyncrasies of the EDIFACT format. Such software is called a formatter.

How does it work in practice? We can define an XML vocabulary that parallels the syntactic
components of EDIFACT: segment, composite data element, and simple data element. For
example, the segment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PRI+AAA:24.99::SRP'

would be rendered, in its XML form, as the following:

<Segment tag="PRI">

 <Composite>

 <Simple>AAA</Simple>

 <Simple>24.99</Simple>

 <Simple/>

 <Simple>SRP</Simple>

 </Composite>

</Segment>

The XSL formatter cannot produce the raw EDIFACT, but it can easily produce this XML-ized
version. Furthermore, writing a formatter that takes the XML-ized code and writes it according to
the EDIFACT syntax isn't that difficult. It's just a matter of putting the plus sign and quotation
marks in the right place. Figure 5.5 illustrates this.

Figure 5.5. Completing XSL with a custom formatter.

This gives us an interface into XSLT. The XSLT processor will generate the XML-ized version and
our own formatter will turn it into proper EDIFACT. This technique enables us to harness the
transformative power of XSLT for any file format, including EDIFACT, X12, RTF, Adobe Illustrator,
and anything else (with the appropriate formatters).

At this point, you might wonder, why bother? Do we have to use XSLT? Isn't it easier to write an
ad hoc Java application that parses the XML document and turns it immediately into EDIFACT?
No XSLT, no need to XML-ize EDIFACT, and no problem!

In practice, using XSLT has several advantages, such as the following:

XSLT processors are optimized for transformation and, in most cases, they are more
efficient than ad hoc solutions. Furthermore, when the XSLT processor is improved, our
application benefits from a free performance boost.

It is faster to debug transformation written in XSLT than Java code because XSLT is not
compiled.

In practice, we need to convert several documents: the purchase order, corresponding
invoice, order acknowledgement, and more. Using XSLT, we can build a generic
transformation engine that can be adapted to any document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In my experience, it is easier to teach nonprogrammers style sheet coding than it is to
teach them Java coding.

In my experience, it is easier to maintain XSLT style sheets than the corresponding Java
code because style sheets are declarative in nature.

Listing 5.3 is the XML-ized version of Listing 5.1. Compare it with Listing 5.1. Figure 5.6 illustrates
the structure of this document. As you can see, it's flat like EDIFACT.

Warning

Listing 5.3 is an intermediate format for our application. Using it as an XML order would
not make a lot of sense, if only because it is a flat structure like EDIFACT.

Listing 5.3 XML-ized Version of the EDIFACT Order

<?xml version="1.0"?>

<Message>

 <Segment tag="UNH">

 <Simple>1</Simple>

 <Composite>

 <Simple>ORDERS</Simple>

 <Simple>D</Simple>

 <Simple>96A</Simple>

 <Simple>UN</Simple>

 </Composite>

 </Segment>

 <Segment tag="BGM">

 <Composite>

 <Simple>220</Simple>

 </Composite>

 <Simple>AGL153</Simple>

 <Simple>9</Simple>

 <Simple>AB</Simple>

 </Segment>

 <Segment tag="DTM">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Composite>

 <Simple>137</Simple>

 <Simple>20000310</Simple>

 <Simple>102</Simple>

 </Composite>

 </Segment>

 <Segment tag="DTM">

 <Composite>

 <Simple>61</Simple>

 <Simple>20000410</Simple>

 <Simple>102</Simple>

 </Composite>

 </Segment>

 <Segment tag="NAD">

 <Simple>BY</Simple>

 <Composite><Simple/></Composite>

 <Composite><Simple/></Composite>

 <Composite>

 <Simple>PLAYFIELD BOOKS</Simple>

 </Composite>

 <Composite>

 <Simple>34 FOUNTAIN SQUARE PLAZA</Simple>

 </Composite>

 <Simple>CINCINNATI</Simple>

 <Simple>OH</Simple>

 <Simple>45202</Simple>

 <Simple>US</Simple>

 </Segment>

 <Segment tag="NAD">

 <Simple>SE</Simple>

 <Composite><Simple/></Composite>

 <Composite><Simple/></Composite>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Composite>

 <Simple>QUE</Simple>

 </Composite>

 <Composite>

 <Simple>201 WEST 103RD STREET</Simple>

 </Composite>

 <Simple>INDIANAPOLIS</Simple>

 <Simple>IN</Simple>

 <Simple>46290</Simple>

 <Simple>US</Simple>

 </Segment>

 <Segment tag="LIN">

 <Simple>1</Simple>

 </Segment>

 <Segment tag="PIA">

 <Simple>5</Simple>

 <Composite>

 <Simple>0789722429</Simple>

 <Simple>IB</Simple>

 </Composite>

 </Segment>

 <Segment tag="QTY">

 <Composite>

 <Simple>21</Simple>

 <Simple>5</Simple>

 </Composite>

 </Segment>

 <Segment tag="PRI">

 <Composite>

 <Simple>AAA</Simple>

 <Simple>24.99</Simple>

 <Simple/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Simple>SRP</Simple>

 </Composite>

 </Segment>

 <Segment tag="LIN">

 <Simple>2</Simple>

 </Segment>

 <Segment tag="PIA">

 <Simple>5</Simple>

 <Composite>

 <Simple>0789724308</Simple>

 <Simple>IB</Simple>

 </Composite>

 </Segment>

 <Segment tag="QTY">

 <Composite>

 <Simple>21</Simple>

 <Simple>10</Simple>

 </Composite>

 </Segment>

 <Segment tag="PRI">

 <Composite>

 <Simple>AAA</Simple>

 <Simple>42.50</Simple>

 <Simple/>

 <Simple>SRP</Simple>

 </Composite>

 </Segment>

 <Segment tag="UNS">

 <Simple>S</Simple>

 </Segment>

 <Segment tag="CNT">

 <Composite>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Composite>

 <Simple>3</Simple>

 <Simple>2</Simple>

 </Composite>

 </Segment>

 <Segment tag="UNT">

 <Simple>17</Simple>

 <Simple>1</Simple>

 </Segment>

</Message>

Figure 5.6. The structure of the XML-ized message closely mimics the EDIFACT syntax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building the Formatter

The only thing remaining is for us to write the EDIFACT formatter.

Application Organization

Figure 5.7 shows the UML model for our application. The major classes are as follows:

EdifactFormatter , which implements SAX's DocumentHandler. It interprets the
XML-ized document.

Segment, CompositeDataElement, SimpleDataElement, and EdifactElement are
used by EdifactFormatter to take care of the EDIFACT syntax.

XML2Edifact is the application's main method.

Figure 5.7. At the heart of our application are the XSL processor and our custom
formatter.

EdifactFormatter
Listing 5.4 is the code for EdifactFormatter . It uses a SAX parser to read the XML
document.

Listing 5.4 EdifactFormatter.java

package com.psol.xsledi;

import java.io.*;

import java.util.*;

import org.xml.sax.*;

public class EdifactFormatter

 implements DocumentHandler

{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{

 protected static final int NONE = 0,

 MESSAGE = 1,

 SEGMENT = 2,

 COMPOSITE_DATA = 3,

 SEGMENT_SIMPLE_DATA = 4,

 COMPOSITE_SIMPLE_DATA = 5;

 protected int state = NONE;

 protected Segment segment = null;

 protected CompositeData compositeData = null;

 protected StringBuffer buffer = null;

 protected Writer writer;

 public EdifactFormatter(OutputStream out)

 throws IOException

 {

 writer = new OutputStreamWriter(out,"ISO-8859-1");

 }

 public void setDocumentLocator(Locator locator)

 { }

 public void startDocument()

 throws SAXException

 { }

 public void endDocument()

 throws SAXException

 {

 try

 {

 writer.flush();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 catch(IOException e)

 {

 throw new SAXException(e);

 }

 }

 public void startElement(String name,AttributeList atts)

 throws SAXException

 {

 if(name.equals("Message") && state == NONE)

 state = MESSAGE;

 else if(name.equals("Segment") && state == MESSAGE)

 {

 state = SEGMENT;

 String segmentTag = atts.getValue("tag");

 if(null != segmentTag)

 segment = new Segment(segmentTag);

 else

 throw new SAXException("Empty 'tag'attribute");

 }

 else if(name.equals("Composite") && state == SEGMENT)

 {

 state = COMPOSITE_DATA;

 compositeData = new CompositeData();

 }

 else if(name.equals("Simple") && state == SEGMENT)

 {

 state = SEGMENT_SIMPLE_DATA;

 buffer = new StringBuffer();

 }

 else if(name.equals("Simple") && state == COMPOSITE_DATA)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 state = COMPOSITE_SIMPLE_DATA;

 buffer = new StringBuffer();

 }

 }

 public void endElement(String name)

 throws SAXException

 {

 try

 {

 if(name.equals("Message") && state == MESSAGE)

 state = NONE;

 else if(name.equals("Segment") && state == SEGMENT)

 {

 state = MESSAGE;

 segment.toEdifact(writer);

 }

 else if(name.equals("Composite") &&

 state == COMPOSITE_DATA)

 {

 state = SEGMENT;

 segment.add(compositeData);

 compositeData = null;

 }

 else if(name.equals("Simple") &&

 state == SEGMENT_SIMPLE_DATA)

 {

 state = SEGMENT;

 SimpleData sd = new SimpleData(buffer.toString());

 segment.add(sd);

 }

 else if(name.equals("Simple") &&

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 state == COMPOSITE_SIMPLE_DATA)

 {

 state = COMPOSITE_DATA;

 SimpleData sd = new SimpleData(buffer.toString());

 compositeData.add(sd);

 }

 }

 catch(IOException e)

 {

 throw new SAXException(e);

 }

 }

 public void characters(char[] ch,int start,int len)

 throws SAXException

 {

 if(state == SEGMENT_SIMPLE_DATA ||

 state == COMPOSITE_SIMPLE_DATA)

 buffer.append(ch,start,len);

 }

 public void ignorableWhitespace(char[] ch,int start,int len)

 { }

 public void processingInstruction(String target,String data)

 { }

}

Warning

As always, this project focuses on the XML side of things. The EdifactFormatter is
limited to the most useful options in the EDIFACT syntax. It leaves out a few, seldom
used, options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most of EdifactFormatter should be familiar, but let's review endElement() in more detail.
Note that startElement() is typical and is used to track the current state in the XML document.

endElement() also tracks state and create instances of simple data elements, composite data
elements, and segments. As soon as it reaches the end of a segment, endElement() calls the
toEdifact() method to write the segment in EDIFACT. Then, it discards the segment:

public void endElement(String name)

 throws SAXException

{

 try

 {

 if(name.equals("Message") && state == MESSAGE)

 state = NONE;

 else if(name.equals("Segment") && state == SEGMENT)

 {

 state = MESSAGE;

 segment.toEdifact(writer);

 }

 else if(name.equals("Composite") &&

 state == COMPOSITE_DATA)

 {

 state = SEGMENT;

 segment.add(compositeData);

 compositeData = null;

 }

 else if(name.equals("Simple") &&

 state == SEGMENT_SIMPLE_DATA)

 {

 state = SEGMENT;

 SimpleData sd = new SimpleData(buffer.toString());

 segment.add(sd);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 else if(name.equals("Simple") &&

 state == COMPOSITE_SIMPLE_DATA)

 {

 state = COMPOSITE_DATA;

 SimpleData sd = new SimpleData(buffer.toString());

 compositeData.add(sd);

 }

 }

 catch(IOException e)

 {

 throw new SAXException(e);

 }

}

Segment
Listing 5.5 is Segment.java . The Segment takes a tag in its constructor. It also maintains a list
of EdifactElement, which represents simple and composite data elements.

Listing 5.5 Segment.java

package com.psol.xsledi;

import java.io.*;

import java.util.*;

class Segment

{

 protected String tag;

 protected Vector elements = new Vector();

 protected boolean empty = true;

 public Segment(String tag)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 this.tag = tag;

 }

 public void add(EdifactElement element)

 {

 if(!element.isEmpty())

 empty = false;

 elements.addElement(element);

 }

 public EdifactElement elementAt(int i)

 {

 return (EdifactElement)elements.elementAt(i);

 }

 public int getSize()

 {

 return elements.size();

 }

 public void toEdifact(Writer writer)

 throws IOException

 {

 if(empty)

 return;

 writer.write(tag);

 int plus = 1;

 for(int i = 0;i < getSize();i++)

 {

 EdifactElement el = elementAt(i);

 if(el.isEmpty())

 plus++;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 plus++;

 else

 {

 for(int j = 0;j < plus;j++)

 writer.write('+');

 plus = 1;

 el.toEdifact(writer);

 }

 }

 writer.write('\ '');

 }

}

The most interesting part of Segment.java is probably toEdifact() , the method that takes
care of the EDIFACT syntax. As you can see, it loops over the EdifactElement and calls the
toEdifact() method:

public void toEdifact(Writer writer)

 throws IOException

{

 if(empty)

 return;

 writer.write(tag);

 int plus = 1;

 for(int i = 0;i < getSize();i++)

 {

 EdifactElement el = elementAt(i);

 if(el.isEmpty())

 plus++;

 else

 {

 for(int j = 0;j < plus;j++)

 writer.write('+');

 plus = 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 plus = 1;

 el.toEdifact(writer);

 }

 }

 writer.write('\ '');

}

The tricky part is to handle compression. For example, if the following is read

<Segment tag="NUL"><Simple/><Simple/><Simple>1</Simple></Segment>

toEdifact() must insert three plus signs before the third field:

NUL+++1'

However, simply printing a plus sign before each field is dangerous. Consider the following:

<Segment tag="NUL"><Simple>1</Simple><Simple/><Simple/></Segment>

Because the last two fields are empty, the compression rule dictates no plus sign should exist for
them. Therefore, it would read

NUL+1'

If toEdifact() printed a plus sign before each field, it would need to backtrack at the end of
most segments and erase unnecessary trailing plus signs. Instead, toEdifact() delays writing
the plus signs until it reaches a non-empty field.

The plus variable tracks how many empty fields were written, which is equal to the number of
plus signs to insert before the next non-empty field.

Note

We are not using the visitor pattern, as we did in Chapter 1, "Lightweight Data
Storage," because we don't expect to change the EDIFACT syntax any time soon.
Changes in the structure of the message (such as the order of segments or fields) are
being dealt with in the style sheet.

CompositeData and SimpleData
Listing 5.6 is the EdifactElement interface . It defines two methods: isEmpty() , which is
used for compression, and toEdifact() , which writes the field. Thanks to EdifactElement,
Segment doesn't need to worry about the differences between simple and composite data
elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.6 EdifactElement.java

package com.psol.xsledi;

import java.io.*;

public interface EdifactElement

{

 public boolean isEmpty();

 public void toEdifact(Writer writer)

 throws IOException;

}

Listing 5.7 is CompositeData . It maintains a list of SimpleData. Note that its toEdifact()
method counts colons like Segment's toEdifact() counts plus signs.

Listing 5.7 CompositeData.java

package com.psol.xsledi;

import java.io.*;

import java.util.*;

class CompositeData

 implements EdifactElement

{

 protected Vector simples = new Vector();

 protected boolean empty = true;

 public void add(SimpleData simple)

 {

 if(!simple.isEmpty())

 empty = false;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 simples.addElement(simple);

 }

 public int getSize()

 {

 return simples.size();

 }

 public SimpleData simpleDataAt(int i)

 {

 return (SimpleData)simples.elementAt(i);

 }

 public boolean isEmpty()

 {

 return empty;

 }

 public void toEdifact(Writer writer)

 throws IOException

 {

 if(isEmpty())

 return;

 // the empty simple data we have encountered so far

 // in other words, the number of colons to write

 // before the next non-empty simple data

 int colons = 0;

 for(int i = 0;i < getSize();i++)

 {

 SimpleData sd = simpleDataAt(i);

 if(sd.isEmpty())

 colons++;

 else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 for(int j = 0;j < colons;j++)

 writer.write(':');

 colons = 1;

 sd.toEdifact(writer);

 }

 }

 }

}

Listing 5.8 is the SimpleData class . As you can see, it's trivial: It stores a string. The most
involving part is in the toEdifact() method, which implements a simple algorithm to escape
special characters. Note that it also converts the text to uppercase; by default EDIFACT does not
use lowercase characters.

Listing 5.8 SimpleData.java

package com.psol.xsledi;

import java.io.*;

public class SimpleData

 implements EdifactElement

{

 protected String data;

 public SimpleData(String data)

 {

 this.data = data;

 }

 public String getData()

 {

 return data;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public boolean isEmpty()

 {

 return data.length() == 0;

 }

 public void toEdifact(Writer writer)

 throws IOException

 {

 if(isEmpty())

 return;

 for(int i = 0;i < data.length();i++)

 {

 char c = data.charAt(i);

 if(c == '\ '')

 writer.write("?'");

 else if(c == '+')

 writer.write("?+");

 else if(c == ':')

 writer.write("?:");

 else if(c == '?')

 writer.write("??");

 else

 writer.write(Character.toUpperCase(c));

 }

 }

}

XML2Edifact
The main() method is in class XML2Edifact , which is reproduced in Listing 5.9. As you can
see, it creates an EDIFACT formatter and an XSL processor and links the two together.

The Xalan XSL processor can generate its output as SAX events so that the EDIFACT formatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Xalan XSL processor can generate its output as SAX events so that the EDIFACT formatter
plugs directly into it. With other processors, you might need to explicitly write the XML file and
parse.

Listing 5.9 XML2Edifact.java

package com.psol.xsledi;

import java.io.*;

import java.util.*;

import org.xml.sax.*;

import org.apache.xalan.xslt.*;

public class XML2Edifact

{

 public static void main(String args[])

 throws SAXException, IOException

 {

 if(args.length < 3)

 throw new IllegalArgumentException(

 "Usage is XML2Edifact in.xml xsl.xsl out.edi");

 InputStream sin = new FileInputStream(args[0]),

 sxsl = new FileInputStream(args[1]);

 OutputStream sout = new FileOutputStream(args[2]);

 EdifactFormatter formatter = new EdifactFormatter(sout);

 XSLTProcessor processor =

 XSLTProcessorFactory.getProcessor();

 XSLTInputSource in = new XSLTInputSource(sin),

 xsl = new XSLTInputSource(sxsl);

 XSLTResultTarget out = new XSLTResultTarget(formatter);

 processor.process(in,xsl,out);

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing the Style Sheet

The most interesting side of the transformation is not performed in Java, but is performed by the
XSLT style sheet reproduced in Listing 5.10.

Listing 5.10 xml2edi.xsl

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output method="xml"/>

<xsl:template match="/">

 <Message>

 <xsl:apply-templates/>

 </Message>

</xsl:template>

<xsl:template name="format-date">

 <xsl:param name="date"/>

 <xsl:value-of select="substring($date,1,4)"/>

 <xsl:value-of select="substring($date,6,2)"/>

 <xsl:value-of select="substring($date,9,2)"/>

</xsl:template>

<xsl:template name="Address">

 <xsl:param name="code"/>

 <xsl:param name="value"/>

 <Segment tag="NAD">

 <Simple><xsl:value-of select="$code"/></Simple>

 <Composite><Simple/></Composite>

 <Composite><Simple/></Composite>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Composite>

 <Simple>

 <xsl:value-of select="$value/Name"/>

 </Simple>

 </Composite>

 <Composite>

 <Simple>

 <xsl:value-of select="$value/Address/Street"/>

 </Simple>

 </Composite>

 <Simple>

 <xsl:value-of select="$value/Address/Locality"/>

 </Simple>

 <Simple>

 <xsl:value-of select="$value/Address/Region"/>

 </Simple>

 <Simple>

 <xsl:value-of select="$value/Address/PostalCode"/>

 </Simple>

 <Simple>

 <xsl:value-of select="$value/Address/Country"/>

 </Simple>

 </Segment>

</xsl:template>

<xsl:template match="Order">

 <Segment tag="UNH">

 <Simple>1</Simple>

 <Composite>

 <Simple>ORDERS</Simple>

 <Simple>D</Simple>

 <Simple>96A</Simple>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Simple>96A</Simple>

 <Simple>UN</Simple>

 </Composite>

 </Segment>

 <Segment tag="BGM">

 <Composite>

 <Simple>220</Simple>

 </Composite>

 <Simple>

 <xsl:value-of select="Reference"/>

 </Simple>

 <Simple>9</Simple>

 <Simple>

 <xsl:choose>

 <xsl:when test="@confirm=true()">AB</xsl:when>

 <xsl:otherwise>NA</xsl:otherwise>

 </xsl:choose>

 </Simple>

 </Segment>

 <Segment tag="DTM">

 <Composite>

 <Simple>137</Simple>

 <Simple>

 <xsl:call-template name="format-date">

 <xsl:with-param name="date" select="Date"/>

 </xsl:call-template>

 </Simple>

 <Simple>102</Simple>

 </Composite>

 </Segment>

 <xsl:if test="DeliverBy">

 <Segment tag="DTM">

 <Composite>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Composite>

 <Simple>61</Simple>

 <Simple>

 <xsl:call-template name="format-date">

 <xsl:with-param name="date"

 select="DeliverBy"/>

 </xsl:call-template>

 </Simple>

 <Simple>102</Simple>

 </Composite>

 </Segment>

 </xsl:if>

 <xsl:call-template name="Address">

 <xsl:with-param name="code" select="'BY'"/>

 <xsl:with-param name="value" select="Buyer"/>

 </xsl:call-template>

 <xsl:call-template name="Address">

 <xsl:with-param name="code" select="'SE'"/>

 <xsl:with-param name="value" select="Seller"/>

 </xsl:call-template>

 <xsl:for-each select="Lines/Product">

 <Segment tag="LIN">

 <Simple><xsl:value-of select="position()"/></Simple>

 </Segment>

 <Segment tag="PIA">

 <Simple>5</Simple>

 <Composite>

 <Simple>

 <xsl:value-of select="Code"/>

 </Simple>

 <xsl:choose>

 <!-- ISSN for magazines -->

 <xsl:when test="Code/@type='ISSN'">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:when test="Code/@type='ISSN'">

 <Simple>IS</Simple>

 </xsl:when>

 <!-- or ISBN for books -->

 <xsl:otherwise>

 <Simple>IB</Simple>

 </xsl:otherwise>

 </xsl:choose>

 </Composite>

 </Segment>

 <Segment tag="QTY">

 <Composite>

 <Simple>21</Simple>

 <Simple><xsl:value-of select="Quantity"/></Simple>

 </Composite>

 </Segment>

 <Segment tag="PRI">

 <Composite>

 <Simple>AAA</Simple>

 <Simple><xsl:value-of select="Price"/></Simple>

 <Simple/>

 <Simple>SRP</Simple>

 </Composite>

 </Segment>

 </xsl:for-each>

 <Segment tag="UNS">

 <Simple>S</Simple>

 </Segment>

 <xsl:variable name="nr-lines"

 select="count(Lines/Product)"/>

 <Segment tag="CNT">

 <Composite>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Simple>3</Simple>

 <Simple>

 <xsl:value-of select="$nr-lines"/>

 </Simple>

 </Composite>

 </Segment>

 <Segment tag="UNT">

 <Simple>

 <xsl:choose>

 <xsl:when test="DeliverBy">

 <xsl:value-of select="9 + ($nr-lines * 4)"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="8 + ($nr-lines * 4)"/>

 </xsl:otherwise>

 </xsl:choose>

 </Simple>

 <Simple>1</Simple>

 </Segment>

</xsl:template>

</xsl:stylesheet>

The bulk of the transformation is in the template matching the Order element. The template lists
all the segments in the EDIFACT order. Note that this style sheet is specific to the order message,
so you would need a different style sheet for other messages.

Where appropriate, the template uses xsl:choose to convert between XML and EDIFACT
codes:

<Segment tag="BGM">

 <Composite>

 <Simple>220</Simple>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </Composite>

 <Simple>

 <xsl:value-of select="Reference"/>

 </Simple>

 <Simple>9</Simple>

 <Simple>

 <xsl:choose>

 <xsl:when test="@confirm=true()">AB</xsl:when>

 <xsl:otherwise>NA</xsl:otherwise>

 </xsl:choose>

 </Simple>

</Segment>

The loop over the product lines demonstrates clearly that the EDIFACT structure is flat. In XML,
the product lines are organized in a hierarchy of elements. In EDIFACT, however, it's a list of
segments:

<xsl:for-each select="Lines/Product">

 <Segment tag="LIN">

 <!-- deleted -->

 </Segment>

 <Segment tag="PIA">

 <!-- deleted -->

 </Segment>

 <Segment tag="QTY">

 <!-- deleted -->

 </Segment>

 <Segment tag="PRI">

 <!-- deleted -->

 </Segment>

</xsl:for-each>

The total number of segments (which we need for the UNT segment) depends on the number of
product lines and whether the optional DeliverBy element is present in the order:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

product lines and whether the optional DeliverBy element is present in the order:

<Segment tag="UNT">

 <Simple>

 <xsl:choose>

 <xsl:when test="DeliverBy">

 <xsl:value-of select="9 + ($nr-lines * 4)"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="8 + ($nr-lines * 4)"/>

 </xsl:otherwise>

 </xsl:choose>

 </Simple>

 <Simple>1</Simple>

</Segment>

The style sheet also declares a special template to reformat the date. In XML, the date is typically
written with minus characters between the year, month, and day. In contrast, EDIFACT (always
obsessed with size) compresses it:

<xsl:template name="format-date">

 <xsl:param name="date"/>

 <xsl:value-of select="substring($date,1,4)"/>

 <xsl:value-of select="substring($date,6,2)"/>

 <xsl:value-of select="substring($date,9,2)"/>

</xsl:template>

This template accepts a parameter, so it can be called similar to a function:

<xsl:call-template name="format-date">

 <xsl:with-param name="date" select="Date"/>

</xsl:call-template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building and Running the Project

The EDIFACT formatter project is available on the accompanying CD-ROM. Copy the project
directory from the CD-ROM to your hard disk, go to the command line, and change to the root of
the project. You can run the EDIFACT formatter with the xml2edi command (see Figure 5.8).
The parameters are the XML file, XSL style sheet, and output file.

Figure 5.8. Running with con as the output file prints the result on the console.

Warning

This project uses Xalan. You need Xalan and a SAX 1.0 parser to run it. The project on
the enclosed CD-ROM uses Xalan and Xerces. Both are available on the CD-ROM, or
you can download the latest version from http://xml.apache.org.

If you switch to another XSL processor, you will need to rewrite XML2Edifact to
accommodate your processor.

Warning

The compiler might issue deprecation warnings if you recompile the project . At the time
of this writing, Xalan uses SAX 1.0 event handlers only, but if your parser is SAX 2.0
compliant, it will warn you during recompilation.

XSLT Benefits

One of the major advantages of using XSLT with a formatter is that modifying the input or output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One of the major advantages of using XSLT with a formatter is that modifying the input or output
format is easy. Suppose you decide to include the product description in the EDIFACT order. You
need to include only the following rule between the PIA and QTY segments. You don't need to
modify Java code or recompile:

<Segment tag="IMD">

 <Simple>F</Simple>

 <Simple>81</Simple>

 <Composite>

 <Simple/>

 <Simple/>

 <Simple/>

 <Simple><xsl:value-of select="Description"/></Simple>

 </Composite>

</Segment>

In fact, the converter we have built is not limited to variations of purchase orders. It will work
equally well with invoices, reinsurance claims, and Social Security declarations. All it takes is a
different style sheet.

Tip

In my experience, XSL style sheets are less frightening than Java code for
nonprogrammers. So, I can use the style sheet and discuss it with customers who
would not understand my Java code. This alone is a major argument for using style
sheets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

This technique is not limited to EDIFACT, X12, and other EDI formats! Far from it—many
applications benefit from being capable of converting between XML and non-XML formats (such
as other popular formats or legacy formats). You can use the same technique for the following:

Conversion to and from RTF, the Rich Text Format recognized by most word processors.

Conversion to proprietary formats such as the fixed-length formats used by mainframes.

Conversion to Excel or Lotus 1-2-3 spreadsheets.

And more. In fact, provided you can write the formatter, there is no limit to the formats your
application can support.

The key to succeed is to properly analyze the output format and XML-ize it, or devise an XML
vocabulary that works. The rule of thumb is to keep it simple.

For example, I could have created a more ambitious XML mapping with a different element for
each EDIFACT segment, using the EDIFACT element name such as

<PRI>

 <C509>

 <S5125>AAA</S5125>

 <S5118>24.99</S5118>

 <S5375/>

 <S5387>SRP</S5387>

 </C509>

</PRI>

However, what's the point? It only makes the intermediate format and the formatter more
complicated.

Keep it simple. The goal is to move as much intelligence as possible in the XSLT style sheet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Import from Any Format
In the previous chapter, we saw how to extend XSLT with a formatter between XML and non-XML
documents. In this chapter, we'll look at the flip side—importing non-XML documents into an XML
application.

Many XML applications would benefit from the capability to read non-XML documents because
many formats commonly used are not based on XML. Obviously, if we can send EDIFACT orders,
we need to be able to decode responses and invoices (which will be in EDIFACT) and receive
EDIFACT orders from buyers.

To round off Chapter 5, "Export to Any Format," we will develop an EDIFACT-to-XML conversion.
Of course, the principles demonstrated here also work for other formats, such as turning office
documents (for example, RTF word processor files and Excel files) into an XML vocabulary such
as DocBook. Likewise for converting Adobe Illustrator images to SVG, which is an XML-based
vector graphics format currently under development at W3C.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parsing EDIFACT

We already know how to transform documents from one format into the other. Recall from
Chapter 5 that the three steps are as follows:

1. Read the input document.

2. Convert between the two structures, which can involve grouping or splitting EDIFACT
segments into one or several XML elements. It also requires transforming XML codes
(such as ISBN) into their EDIFACT equivalents (IB).

3. Write the resulting document.

Again, the XSLT processor takes care of the conversion step, provided we feed it an XML
document. Although the processor cannot read EDIFACT, it can write the XML document.

As the previous chapter clearly demonstrated, much can be gained from moving as much of the
transformation as possible in XSLT. Some of the advantages include the following:

Writing and maintaining style sheets is faster and easier than writing the equivalent Java
code.

Style sheets are declarative so it is easy to discuss them with non-developers.

The XSLT processor is optimized for transformation, and as it improves, so does our
application.

The only issue is that an XSLT processor chokes at EDIFACT. So, we need to roll up our sleeves
and write our own parser for EDIFACT. The parser will turn the EDIFACT document into the XML-
ization of EDIFACT we used in Chapter 5.

In other words, this chapter is the mirror of Chapter 5!

Warning

As in Chapter 5, we will limit ourselves to a reasonable subset of the EDIFACT syntax
(technically a subset of the EDIFACT syntax version 3). You might need to extend the
parser to recognize the most advanced (but seldom used) options of EDIFACT. The
goal remains to illustrate a useful technique (importing non-XML documents into XML),
not to compete with commercial products.

Architecture of the Parser

The typical parser is composed of two modules: a tokenizer (also called lexer) and the parser
itself. The tokenizer breaks the input file into its constituents. In particular, it separates special
characters (+, :, ', and ?) from regular text.

The parser receives the pre-digested input, as tokens, from the tokenizer and assembles them in
a higher-level construct.

Figure 6.1 illustrates how it works. The tokenizer breaks the segment into its constituents—text
and special characters. Each of these becomes a different token. The parser then reads through
the tokens and the higher-level constructs, such as data elements and segments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.1. The tokenizer interacts with the parser through tokens.

The separation between tokenizer and parser results in more manageable code. For example,
one option in the EDIFACT syntax replaces the +, :, ', and ? characters with other characters.
The parser introduced here does not support this option (if only because it is seldom used), but
you could easily add it by changing the tokenizer. Note that such changes are limited to the
tokenizer; they do not impact the parser itself.

Classes in the Parser

Figure 6.2 illustrates a UML class diagram of the parser. The various classes are as follows:

EdifactTokenizer—Breaks the input stream into tokens

EdifactParser—Interacts with the tokenizer to decode the stream

EdifactStructure—Is a helper class for the parser

UnexpectedTokenException—Signals a parsing error

Extensions—Implements extensions to XSL

Edifact2XML—Is the application's main program

Figure 6.2. The architecture of the application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

For some languages, a so-called compiler-compiler can simplify the coding. We will
review this option in the section Additional Resources at the end of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EDIFACT Parser

This parser recognizes a useful subset of the EDIFACT syntax. It translates the input in the intermediate XML
format introduced in Chapter 5. You will recall that segment

 PRI+AAA:24.99::SRP'

becomes the following, in our XML-ized EDIFACT format:

 <Segment tag="PRI">

 <Composite>

 <Simple>AAA</Simple>

 <Simple>24.99</Simple>

 <Simple/>

 <Simple>SRP</Simple>

 </Composite>

 </Segment>

In this chapter, we will use the same purchase order introduced in Chapter 5. It is reproduced in Listing 6.1

Listing 6.1 orders.edi

UNH+1+ORDERS:D:96A:UN'BGM+220+AGL153+9+AB'DTM+137:20000310:102'DTM+61:20000410:

102'NAD+BY+++PLAYFIELD BOOKS+34 FOUNTAIN SQUARE

PLAZA+CINCINNATI+OH+45202+US'NAD+SE+++QUE+ 201 WEST 103RD

STREET+INDIANAPOLIS+IN+46290+US'LIN+1'PIA+5+0789722429:IB'QTY+21:5'PRI+AAA:24.99::

SRP'LIN+2'PIA+5+0789724308:IB'QTY+21:10'PRI+AAA:42.50::SRP'UNS+S'CNT+3:2'UNT+17+1'

Writing the Tokenizer

Let's start with the tokenizer. Fortunately, the EDIFACT syntax has only four special characters:

+, :, and '—Separators (between fields in a segment, between fields in a composite data element, and
between segments, respectively)

?—The escape character

The rest of the message is made up of the fields themselves. We could try to differentiate tags (three letters only),
codes, and regular text, but it is easier to tokenize everything as text and sort it out in the parser itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.2 is EdifactTokenizer.java. It recognizes the separator in the input stream, resolves escape
characters, and returns text fields as strings.

Listing 6.2 EdifactTokenizer.java

package com.psol.xsledi;

import java.io.*;

public class EdifactTokenizer

{

 public static final int TK_EOF = 0,

 TK_APOSTROPHE = 1,

 TK_PLUS = 2,

 TK_COLON = 3,

 TK_DATA = 4;

 // allocate a 10K buffer

 // for larger messages recompile with a larger buffer

 protected static final int bufferSize = 1024 * 10;

 protected char[] buffer = new char[bufferSize],

 token = new char[bufferSize / 100];

 protected int bPos,

 bLen,

 tPos;

 protected void putc()

 {

 bPos--;

 }

protected int getc()

 {

 if(bPos < bLen)

 return buffer[bPos++];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else

 return -1;

 }

 public int nextToken()

 {

 tPos = 0;

 int c = getc();

 switch(c)

 {

 case -1:

 return TK_EOF;

 case '+':

 return TK_PLUS;

 case '\ '':

 return TK_APOSTROPHE;

 case ':':

 return TK_COLON;

 case '?':

 c = getc();

 if(c == -1)

 return TK_EOF;

 default:

 token[tPos++] = (char)c;

 }

 for(;;)

 {

 c = getc();

 switch(c)

 {

 case -1:

 return TK_EOF;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return TK_EOF;

 case '+':

 case '\ '':

 case ':':

 putc();

 return TK_DATA;

 case '?':

 c = getc();

 if(c == -1)

 return TK_EOF;

 default:

 token[tPos++] = (char)c;

 break;

 }

 }

 }

 public String getCurrentToken()

 {

 return new String(token,0,tPos);

 }

 public static String toString(int token)

 {

 switch(token)

 {

 case TK_EOF:

 return "end of file";

 case TK_APOSTROPHE:

 return "\ '";

 case TK_PLUS:

 return "+";

 case TK_COLON:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case TK_COLON:

 return ":";

 case TK_DATA:

 return "data";

 default:

 throw new IllegalArgumentException();

 }

 }

 public void tokenize(InputStream in)

 throws IOException

 {

 Reader reader = new InputStreamReader(in,"ISO-8859-1");

 bLen = reader.read(buffer);

 if(bLen == buffer.length)

 throw new IOException("buffer is too small");

 if(bLen == -1)

 throw new EOFException();

 bPos = 0;

 }

}

Let's take a closer look at Listing 6.2. The tokenizer declares constants for the various tokens. TK_EOF
the end of file, whereas TK_DATA signifies a textual field. The other constants are for separators. You will notice
that no constant exists for the escape character because the tokenizer resolves it transparently:

 public static final int TK_EOF = 0,

 TK_APOSTROPHE = 1,

 TK_PLUS = 2,

 TK_COLON = 3,

 TK_DATA = 4;

The tokenizer also allocates various buffers and defines two methods (getc() and putc()) to read from the
buffer or replace the last read character in the buffer. We will see how useful it is when reading data fields:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // allocate a 10K buffer

 // for larger messages recompile with a larger buffer

 protected static final int bufferSize = 1024 * 10;

 protected char[] buffer = new char[bufferSize],

 token = new char[bufferSize / 100];

 protected int bPos,

 bLen,

 tPos;

 protected void putc()

 {

 bPos--;

 }

 protected int getc()

 {

 if(bPos < bLen)

 return buffer[bPos++];

 else

 return -1;

 }

Warning

Note that the tokenizer assumes messages are smaller than 10KB. For larger messages, you need to
either allocate a large buffer or rewrite putc() and getc() to support more efficient buffering.

The heart of the tokenizer is the nextToken() method . It reads from the buffer and recognizes data and
separators. The parser will repetitively call nextToken() until it reaches the end of file.

nextToken() starts by testing whether the current character is a separator. If it is, it returns the appropriate
token constant.

However, if the current character is not a separator, it must be part of a field, so nextToken() loops until it
reaches a separator. During the loop, it fills the token array. Then, when it hits a separator, nextToken()
replaces the separator in the input (through putc()) so that it will be available for the next call to nextToken()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replaces the separator in the input (through putc()) so that it will be available for the next call to nextToken()

 public int nextToken()

 {

 tPos = 0;

 int c = getc();

 switch(c)

 {

 case -1:

 return TK_EOF;

 case '+':

 return TK_PLUS;

 case '\ '':

 return TK_APOSTROPHE;

 case ':':

 return TK_COLON;

 case '?':

 c = getc();

 if(c == -1)

 return TK_EOF;

 default:

 token[tPos++] = (char)c;

 }

 for(;;)

 {

 c = getc();

 switch(c)

 {

 case -1:

 return TK_EOF;

 case '+':

 case '\ '':

 case ':':

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case ':':

 putc();

 return TK_DATA;

 case '?':

 c = getc();

 if(c == -1)

 // could return TK_DATA but a single question

 // mark is a syntax error

 return TK_EOF;

 default:

 token[tPos++] = (char)c;

 break;

 }

 }

 }

Notice that nextToken() takes special care to resolve escape characters: When it hits a question mark, it
immediately reads the next character and discards the question mark.

Writing the Parser

The parser is not complicated either. It assembles the various tokens into higher-level elements: simple data
elements, composite data elements, and segments.

The various elements in the EDIFACT syntax were introduced in Chapter 5, in the section "Meet
EDIFACT."

The only potential pitfall stems from composite and simple data elements. Consider the following segment:

 BGM+220+AGL153+9+AC'

Is the first field (220) a simple data element or a composite data element? You can't tell from the segment, can
you? You must turn to the EDIFACT definition of the segment. (It is a composite data element.)

However, the parser must differentiate simple and composite data elements. The correct XML-ized document for
the BGM segment is as follows:

 <Segment tag="BGM">

 <Composite>

 <Simple>220</Simple>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Simple>220</Simple>

 </Composite>

 <Simple>AGL153</Simple>

 <Simple>AB</Simple>

 </Segment>

The following is incorrect:

 <Segment tag="BGM">

 <Simple>220</Simple>

 <Simple>AGL153</Simple>

 <Simple>AB</Simple>

 </Segment>

In other words, we need to provide the parser with segment definitions. One solution is to use Listing 6.3
essentially an XML document listing segments used in order. For each segment, it describes its content using the
following code: A simple field is represented with an S and a composite field is represented with a C.

Listing 6.3 edifactstructure.xml

<?xml version="1.0"?>

<Structure>

 <Segment tag="BGM" content="CSSSS"/>

 <Segment tag="CNT" content="C"/>

 <Segment tag="DTM" content="C"/>

 <Segment tag="LIN" content="SSCCSS"/>

 <Segment tag="NAD" content="SCCCCSSSS"/>

 <Segment tag="PIA" content="SCCCCC"/>

 <Segment tag="PRI" content="CS"/>

 <Segment tag="QTY" content="C"/>

 <Segment tag="RFF" content="C"/>

 <Segment tag="UNH" content="SCSC"/>

 <Segment tag="UNS" content="S"/>

 <Segment tag="UNT" content="SS"/>

</Structure>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

Listing 6.3 does not break the composite data element into a simple data element. The parser does not
know whether a given composite data element should be three or five simple data elements.

This is not a problem, though, because we are not too concerned about the EDIFACT message. In fact,
we don't even care whether a composite has the right number of simple data elements as long as we
can transform it in valid XML. Validating the order in XML using a validating parser is easier than trying
to validate the original EDIFACT document.

Listing 6.4 is EdifactStructure, a helper class that reads Listing 6.3. The EDIFACT parser calls
setSegment() to select a segment (for example, BGM) and repetitively calls nextContentType()
the type of each field in the segment. For BGM, successive calls to nextContentType() return C, S
as specified in Listing 6.3.

Listing 6.4 EdifactStructure.java

package com.psol.xsledi;

import java.util.*;

import org.xml.sax.*;

class EdifactStructure

 extends HandlerBase

{

 protected Dictionary dictionary = new Hashtable();

 protected String content = null;

 protected int cPos;

 public void startElement(String name,AttributeList atts)

 throws SAXException

 {

 if(name.equals("Segment"))

 {

 String tag = atts.getValue("tag"),

 content = atts.getValue("content");

 if(null != tag && null != content)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(null != tag && null != content)

 dictionary.put(tag,content);

 else

 throw new SAXException("Missing attribute in Segment");

 }

 }

 public void setSegment(String segment)

 {

 content = (String)dictionary.get(segment);

 cPos = 0;

 if(null == content)

 throw new NullPointerException("unknown: " + segment);

 }

 public char nextContentType()

 {

 if(cPos < content.length())

 return content.charAt(cPos++);

 else

 return content.charAt(content.length() - 1);

 }

}

The parser itself is demonstrated in Listing 6.5. It uses the EdifactTokenizer and EdifactStructure
classes .

Listing 6.5 EdifactParser.java

package com.psol.xsledi;

import java.io.*;

import java.util.*;

public class EdifactParser

{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{

 protected EdifactStructure structure;

 protected Writer writer = null;

 protected EdifactTokenizer tokenizer =

 new EdifactTokenizer();

 public EdifactParser(EdifactStructure structure)

 {

 this.structure = structure;

 }

 public void setWriter(Writer writer)

 {

 this.writer = writer;

 }

 protected void match(int token)

 throws UnexpectedTokenException

 {

 int t = tokenizer.nextToken();

 if(t != token)

 throw new UnexpectedTokenException(token,t);

 }

 public void parse(String filename)

 throws UnexpectedTokenException, IOException

 {

 tokenizer.tokenize(new FileInputStream(filename));

 writer.write("<?xml version=\ '1.0\ '?>");

 writer.write("<Message>");

 while(nextSegment() != EdifactTokenizer.TK_EOF)

 ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write("</Message>");

 writer.flush();

 }

 protected int nextSegment()

 throws UnexpectedTokenException, IOException

 {

 int token = tokenizer.nextToken();

 if(token == EdifactTokenizer.TK_EOF)

 return EdifactTokenizer.TK_EOF;

 else if(token != EdifactTokenizer.TK_DATA)

 throw new UnexpectedTokenException(token,

 EdifactTokenizer.TK_DATA);

 String tag = tokenizer.getCurrentToken();

 writer.write("<Segment tag=\ '");

 writeEscape(tag);

 writer.write("\ '>");

 match(EdifactTokenizer.TK_PLUS);

 structure.setSegment(tag);

 while(token != EdifactTokenizer.TK_EOF &&

 token != EdifactTokenizer.TK_APOSTROPHE)

 {

 switch(structure.nextContentType())

 {

 case 'C':

 token = nextComposite();

 break;

 case 'S':

 token = nextSimple();

 break;

 default:

 throw new IllegalStateException();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 }

 writer.write("</Segment>");

 return token;

 }

 protected int nextComposite()

 throws UnexpectedTokenException, IOException

 {

 writer.write("<Composite>");

 int token = nextSimple();

 while(token == EdifactTokenizer.TK_COLON)

 token = nextSimple();

 writer.write("</Composite>");

 return token;

 }

 protected int nextSimple()

 throws UnexpectedTokenException, IOException

 {

 int token = tokenizer.nextToken();

 switch(token)

 {

 case EdifactTokenizer.TK_DATA:

 writer.write("<Simple>");

 writeEscape(tokenizer.getCurrentToken());

 writer.write("</Simple>");

 int t = tokenizer.nextToken();

 return t;

 case EdifactTokenizer.TK_PLUS:

 case EdifactTokenizer.TK_COLON:

 case EdifactTokenizer.TK_APOSTROPHE:

 writer.write("<Simple/>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write("<Simple/>");

 return token;

 default:

 throw new UnexpectedTokenException(token);

 }

 }

 protected void writeEscape(String data)

 throws IOException

 {

 // assumes a Unicode encoding since

 // it does not escape non-ASCII characters

for(int i = 0;i < data.length();i++)

 {

 char c = data.charAt(i);

 switch(c)

 {

 case '<':

 writer.write("<");

 break;

 case '&':

 writer.write("&");

 break;

 case '\ '':

 writer.write("'");

 break;

 default:

 writer.write(c);

 }

 }

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The parse() method is the starting point. It uses the tokenizer to read the file. Next, it creates the root of the
XML document (Message) and iterates over all the segment, by repetitively calling nextSegment()
the TK_EOF token:

 public void parse(String filename)

 throws UnexpectedTokenException, IOException

 {

 tokenizer.tokenize(new FileInputStream(filename));

 writer.write("<?xml version=\ '1.0\ '?>");

 writer.write("<Message>");

 while(nextSegment() != EdifactTokenizer.TK_EOF)

 ;

 writer.write("</Message>");

 writer.flush();

 }

After reading the tag and writing the segment element, nextSegment() iterates over the various fields in the
segment, calling nextComposite() or nextSimple() according to the segment structure made available by
EdifactStructure:

 protected int nextSegment()

 throws UnexpectedTokenException, IOException

 {

 int token = tokenizer.nextToken();

 if(token == EdifactTokenizer.TK_EOF)

 return EdifactTokenizer.TK_EOF;

 else if(token != EdifactTokenizer.TK_DATA)

 throw new UnexpectedTokenException(token,

 EdifactTokenizer.TK_DATA);

 String tag = tokenizer.getCurrentToken();

 writer.write("<Segment tag=\ '");

 writeEscape(tag);

 writer.write("\ '>");

 match(EdifactTokenizer.TK_PLUS);

 structure.setSegment(tag);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 structure.setSegment(tag);

 while(token != EdifactTokenizer.TK_EOF &&

 token != EdifactTokenizer.TK_APOSTROPHE)

 {

 switch(structure.nextContentType())

 {

 case 'C':

 token = nextComposite();

 break;

 case 'S':

 token = nextSimple();

 break;

 default:

 throw new IllegalStateException();

 }

 }

 writer.write("</Segment>");

 return token;

 }

nextComposite() and nextSimple() are even simpler. They read as much data as possible until they reach
a separator:

 protected int nextComposite()

 throws UnexpectedTokenException, IOException

 {

 writer.write("<Composite>");

 int token = nextSimple();

 while(token == EdifactTokenizer.TK_COLON)

 token = nextSimple();

 writer.write("</Composite>");

 return token;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.6 is UnexpectedTokenException, which the parser uses to report errors.

Listing 6.6 UnexpectedTokenException.java

package com.psol.xsledi;

public class UnexpectedTokenException

 extends Exception

{

 public UnexpectedTokenException(int foundToken)

 {

 super("unexpected " +

 EdifactTokenizer.toString(foundToken) +

 " token found");

 }

 public UnexpectedTokenException(int expectedToken,

 int foundToken)

 {

 super("unexpected " +

 EdifactTokenizer.toString(foundToken) +

 " token found, was expecting " +

 EdifactTokenizer.toString(expectedToken));

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Conversion

The parser generates only the intermediate XML-ized format. This format is just that, a temporary step in the conversion.
It would not be sensible to use it as the real XML order. Therefore, the next step is to transform the intermediate format
into the real XML order (see Listing 6.7).

Listing 6.7 orders.xml

<?xml version="1.0"?>

<Order confirm="true">

 <Date>2000-03-10</Date>

 <Reference>AGL153</Reference>

 <DeliverBy>2000-04-10</DeliverBy>

 <Buyer>

 <Name>PLAYFIELD BOOKS</Name>

 <Address>

 <Street>34 FOUNTAIN SQUARE PLAZA</Street>

 <Locality>CINCINNATI</Locality>

 <PostalCode>45202</PostalCode>

 <Region>OH</Region>

 <Country>US</Country>

 </Address>

 </Buyer>

 <Seller>

 <Name>QUE</Name>

 <Address>

 <Street>201 WEST 103RD STREET</Street>

 <Locality>INDIANAPOLIS</Locality>

 <PostalCode>46290</PostalCode>

 <Region>IN</Region>

 <Country>US</Country>

 </Address>

 </Seller>

 <Lines>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Lines>

 <Product>

 <Code type="ISBN">0789722429</Code>

 <Description>XML by Example</Description>

 <Quantity>5</Quantity>

 <Price>24.99</Price>

 </Product>

 <Product>

 <Code type="ISBN">0789724308</Code>

 <Description>Applied XML Solutions</Description>

 <Quantity>10</Quantity>

 <Price>42.50</Price>

 </Product>

 </Lines>

</Order>

The Style Sheet

The main transformation is the responsibility of the XSLT style sheet in Listing 6.8.

Listing 6.8 edi2xml.xsl

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:axslt="http://xml.apache.org/xslt"

 xmlns:psol="http://www.psol.com/xsledi/extensions"

 extension-element-prefixes="psol"

 version="1.0">

<axslt:component prefix="psol"

 functions="lookupDescription"

 elements="register">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <axslt:script lang="javaclass"

 src="com.psol.xsledi.Extensions"/>

</axslt:component>

<xsl:output method="xml"/>

<xsl:template match="/Message">

 <psol:register isbn="0789722429"

 title="XML by Example"/>

 <psol:register isbn="0789724308"

 title="Applied XML Solutions"/> <Order>

 <xsl:attribute name="confirm">

 <xsl:variable name="ack"

 select="Segment[@tag='BGM']/Simple[2]"/>

 <xsl:value-of select="$ack != 'NA'"/>

 </xsl:attribute>

 <xsl:call-template name="Date"/>

 <xsl:call-template name="Reference"/>

 <xsl:call-template name="DeliverBy"/>

 <xsl:call-template name="Buyer"/>

 <xsl:call-template name="Seller"/>

 <xsl:call-template name="Lines"/>

 </Order>

</xsl:template>

<xsl:template name="format-date">

 <xsl:param name="date"/>

 <xsl:value-of select="substring($date,1,4)"/>

 <xsl:text>-</xsl:text>

 <xsl:value-of select="substring($date,5,2)"/>

 <xsl:text>-</xsl:text>

 <xsl:value-of select="substring($date,7,2)"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="substring($date,7,2)"/>

</xsl:template>

<xsl:template name="Date">

 <xsl:variable name="date"

 select="Segment[@tag='DTM'and

 child::Composite[Simple[1]='137']]"/>

 <Date>

 <xsl:call-template name="format-date">

 <xsl:with-param name="date"

 select="$date/Composite[1]/Simple[2]"/>

 </xsl:call-template>

 </Date>

</xsl:template>

<xsl:template name="Reference">

 <Reference>

 <xsl:value-of select="Segment[@tag='BGM']/Simple[1]"/>

 </Reference>

</xsl:template>

<xsl:template name="DeliverBy">

 <xsl:variable name="date"

 select="Segment[@tag='DTM'and

 child::Composite[Simple[1]='61']]"/>

 <xsl:if test="$date">

 <DeliverBy>

 <xsl:call-template name="format-date">

 <xsl:with-param

 name="date"

 select="$date/Composite[1]/Simple[2]"/>

 </xsl:call-template>

 </DeliverBy>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </DeliverBy>

 </xsl:if>

</xsl:template>

<xsl:template name="Address">

 <xsl:param name="address"/>

 <Name>

 <xsl:for-each select="$address/Composite[3]/Simple">

 <xsl:value-of select="."/>

 <xsl:if test="not(position()=last())">

 <xsl:text> </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </Name>

 <Address>

 <Street>

 <xsl:for-each select="$address/Composite[4]/Simple">

 <xsl:value-of select="."/>

 <xsl:if test="not(position()=last())">

 <xsl:text> </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </Street>

 <Locality>

 <xsl:value-of select="$address/Simple[2]"/>

 </Locality>

 <PostalCode>

 <xsl:value-of select="$address/Simple[4]"/>

 </PostalCode>

 <xsl:variable name="region"

 select="$address/Simple[3]"/>

 <xsl:if test="string-length($region) != 0">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Region>

 <xsl:value-of select="$region"/>

 </Region>

 </xsl:if>

 <Country>

 <xsl:value-of select="$address/Simple[5]"/>

 </Country>

 </Address>

</xsl:template>

<xsl:template name="Buyer">

 <xsl:variable name="buyer"

 select="Segment[@tag='NAD'and

 child::Simple[1]='BY']"/>

 <Buyer>

 <xsl:call-template name="Address">

 <xsl:with-param name="address" select="$buyer"/>

 </xsl:call-template>

 </Buyer>

</xsl:template>

<xsl:template name="Seller">

 <xsl:variable name="seller"

 select="Segment[@tag='NAD'and

 child::Simple[1]='SE']"/>

 <Seller>

 <xsl:call-template name="Address">

 <xsl:with-param name="address" select="$seller"/>

 </xsl:call-template>

 </Seller>

</xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsl:template name="Lines">

 <Lines>

 <xsl:for-each select="Segment[@tag='LIN']">

 <xsl:variable name="code"

 select="following-sibling::Segment [@tag='PIA']/Composite[1]/

Simple[1]"/>

 <xsl:variable name="type"

 select="following-sibling::Segment [@tag='PIA']/Composite[1]/

Simple[2]"/>

 <Product>

 <Code>

 <xsl:attribute name="type">

 <xsl:choose>

 <xsl:when test="$type = 'IS'">

 <xsl:text>ISSN</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>ISBN</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:attribute>

 <xsl:value-of select="$code"/>

 </Code>

 <Description>

 <xsl:value-of select="psol:lookupDescription(string($code),

string($type))"/>

 </Description>

 <Quantity>

 <xsl:value-of select="following-sibling::Segment [@tag='QTY']/Composite[1]/

Simple[2]"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Simple[2]"/>

 </Quantity>

 <Price>

 <xsl:value-of select="following-sibling::Segment [@tag='PRI']/Composite[1]/

Simple[2]"/>

 </Price>

 </Product>

 </xsl:for-each>

 </Lines>

</xsl:template>

</xsl:stylesheet>

The style sheet creates the XML document by extracting information from the EDIFACT document and placing it in the
right order. We'll look at the register elements in a moment:

 <xsl:template match="/Message">

 <psol:register isbn="0789722429"

 title="XML by Example"/>

 <psol:register isbn="0789724308"

 title="Applied XML Solutions"/>

 <Order>

 <xsl:attribute name="confirm">

 <xsl:variable name="ack"

 select="Segment[@tag='BGM']/Simple[2]"/>

 <xsl:value-of select="$ack != 'NA'"/>

 </xsl:attribute>

 <xsl:call-template name="Date"/>

 <xsl:call-template name="Reference"/>

 <xsl:call-template name="DeliverBy"/>

 <xsl:call-template name="Buyer"/>

 <xsl:call-template name="Seller"/>

 <xsl:call-template name="Lines"/>

 </Order>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </Order>

 </xsl:template>]

In these templates, the selection criteria is relatively complex. Look at the template for Date as an example. It extracts
data with a combination of the element name (Segment), one of its attributes (@tag='DTM'), and the value of one of its
children (child::Composite[Simple[1]='137']]).

Date needs this complex, multi-level selection to deal with EDIFACT qualifiers. You will recall that EDIFACT qualifiers are
used to encode relationships between segments, so they must be read to re-create the structure of the document.

Fortunately, the EDIFACT parser doesn't need to deal with these; otherwise, it would have been more complicated. The
parser performs a minimalist translation, and the more complex processing is relegated to the XSLT style sheet.

Incidentally, this illustrates why the XML-ized EDIFACT order should remain an intermediate format. It is more complex to
manipulate than it needs to be. Simplifying it makes more sense:

 <xsl:template name="Date">

 <xsl:variable name="date"

 select="Segment[@tag='DTM'and

 child::Composite[Simple[1]='137']]"/>

 <Date>

 <xsl:call-template name="format-date">

 <xsl:with-param name="date"

 select="$date/Composite[1]/Simple[2]"/>

 </xsl:call-template>

 </Date>

 </xsl:template>

The most complex template is probably the template for the Lines element because it groups information from several
segments. Recall that, in the previous chapter, the equivalent template broke the Product element

Unfortunately, because an EDIFACT message is a list of segments, it is not easy to extract the information from the
various segments. The least one could say is that XSLT is not optimized for relatively flat structures; it was designed for
more hierarchical structures.

Note

This illustrates a common problem when dealing with legacy formats (whether EDIFACT or another format):
Modern tools are not optimized to manipulate them.

The best solution is to use the next-sibling axis to retrieve specific segments after the current one:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:template name="Lines">

 <Lines>

 <xsl:for-each select="Segment[@tag='LIN']">

 <xsl:variable name="code"

 select="following-sibling::Segment [@tag='PIA']/Composite[1]/

Simple[1]"/>

 <xsl:variable name="type"

 select="following-sibling::Segment [@tag='PIA']/Composite[1]/

Simple[2]"/>

 <Product>

 <Code>

 <xsl:attribute name="type">

 <xsl:choose>

 <xsl:when test="$type = 'IS'">

 <xsl:text>ISSN</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>ISBN</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:attribute>

 <xsl:value-of select="$code"/>

 </Code>

 <Description>

 <xsl:value-of select="psol:lookupDescription(string($code),

string($type))"/>

 </Description>

 <Quantity>

 <xsl:value-of select="following-sibling::Segment [@tag='QTY']/

Composite[1]/Simple[2]"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Composite[1]/Simple[2]"/>

 </Quantity>

 <Price>

 <xsl:value-of select="following-sibling::Segment [@tag='PRI']/

Composite[1]/Simple[2]"/>

 </Price>

 </Product>

 </xsl:for-each>

 </Lines>

 </xsl:template>

Warning

For documents with more complex structures, grouping segments using the following-sibling
possible. The solution is either to use XSLT extensions (see the next section) or to enhance the parser to
produce a more structured intermediate format.

Extensions

The style sheet uses an XSLT extension to deal with product descriptions. The XSL standard proposes a mechanism to
recognize non-standard functions and elements.

However, the XSL standard doesn't specify how to write these extensions. This is left to the developers of the processor.

In this chapter, we use Xalan extensions , so we'll use the Xalan extension mechanism.

The XSL standard marks extensions with a specific namespace. The namespace must be registered with the
extension-element-prefixes attribute.

In the style sheet, extensions are located in the http://www.psol.com/xsledi/extensions namespace:

 <xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:axslt="http://xml.apache.org/xslt"

 xmlns:psol="http://www.psol.com/xsledi/extensions"

 extension-element-prefixes="psol"

 version="1.0">

Xalan declares the extensions with the component element , which is Xalan specific. We can declare one new element,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Xalan declares the extensions with the component element , which is Xalan specific. We can declare one new element,
register , and one new function, lookupDescription() . Both are implemented in the Java
com.psol.xsledi.Extensions:

 <axslt:component prefix="psol"

 functions="lookupDescription"

 elements="register">

 <axslt:script lang="javaclass"

 src="com.psol.xsledi.Extensions"/>

 </axslt:component>

The lookupDescription() retrieves a book title (product description) from its ISBN. register, on the other hand,
initializes the list of titles (an alternative is to read them from a database):

 <psol:register isbn="0789722429"

 title="XML by Example"/>

 <psol:register isbn="0789724308"

 title="Applied XML Solutions"/>

The implementation of register and lookupDescription() is shown in Listing 6.9. Xalan uses the Bean Scripting
Framework (BSF) to access the implementation, so the functions could have been written in any other BSF-compliant
language, such as JPython (which can be downloaded from http://www.jpython.org) or JavaScript (which can be
downloaded from http://www.mozilla.org/rhino).

Listing 6.9 Extensions.java

package com.psol.xsledi;

import java.util.Hashtable;

import org.apache.xalan.xslt.*;

public class Extensions

{

 protected Hashtable isbns = new Hashtable();

 public void register(XSLProcessorContext context,

 ElemExtensionCall extElem)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String isbn = extElem.getAttribute("isbn"),

 title = extElem.getAttribute("title");

 isbns.put(isbn,title);

 }

 public Extensions()

 {}

 public String lookupDescription(String code,String type)

 {

 String desc = type.equals("IB") ?

 (String)isbns.get(code) : null;

 return null != desc ? desc : "unknown";

 }

}

Edifact2XML
The starting point for the application is Edifact2XML (see Listing 6.10). It parses the EDIFACT stream into a character
array and applies the style sheet to the result.

Listing 6.10 Edifact2XML.java

package com.psol.xsledi;

import java.io.*;

import java.util.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import org.apache.xalan.xslt.*;

public class Edifact2XML

{

 public static final String PARSER_NAME =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "org.apache.xerces.parsers.SAXParser";

 public static void main(String args[])

 throws UnexpectedTokenException, SAXException,

 IOException, ClassNotFoundException,

 IllegalAccessException, InstantiationException

 {

 EdifactStructure structure = new EdifactStructures);

 Parser parser = ParserFactory.makeParser(PARSER_NAME);

 parser.setDocumentHandler(structure);

 parser.parse("edifactstructure.xml");

 CharArrayWriter writer = new CharArrayWriter();

 EdifactParser eparser = new EdifactParser(structure);

 eparser.setWriter(writer);

 eparser.parse(args[0]);

 writer.close();

 char[] carray = writer.toCharArray();

 Reader reader = new CharArrayReader(carray);

 InputStream sxsl = new FileInputStream(args[1]);

 OutputStream sout = new FileOutputStream(args[2]);

 XSLTProcessor processor =

 XSLTProcessorFactory.getProcessor();

 XSLTInputSource in = new XSLTInputSource(reader),

 xsl = new XSLTInputSource(sxsl);

 XSLTResultTarget out = new XSLTResultTarget(sout);

 processor.process(in,xsl,out);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building and Running the Project

The EDIFACT parser project is available on the accompanying CD-ROM. Copy the project
directory from the CD-ROM to your hard disk and then go to the command line and change to the
root of the project. You can run the EDIFACT formatter with the edi2xml command (see Figure
6.3). The parameters are the EDI file, XSL style sheet, and output file.

Warning

This project uses Xalan. You need Xalan and a SAX 1.0 parser to run it. The project on
the accompanying CD-ROM uses Xalan and Xerces. Both are available on the CD-
ROM, or you can download the latest version from http://xml.apache.org.

If you switch to another XSL processor, you must rewrite Edifact2XML and the
extensions to accommodate your processor.

Warning

The compiler might issue deprecation warnings if you recompile the project: Xalan
works with SAX 1.0, altought SAX 2.0 is the latest version.

Figure 6.3. Test the converted by converting back and forth between XML and EDIFACT.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

Again, the technique in this chapter is not limited to EDIFACT . Any file format can be XML-ized,
as was explained in Chapter 5. In fact, there is often value in designing an XML model from an
existing format. However, depending on the input file format, you will have to do more or less
work to parse it.

You should start by searching for existing parsers. For example, if you deal with Excel
spreadsheets, you can turn to the OpenExchange DDL, (available from http://www.gotovbs.com)
or, in Delphi only, to the TXLSRead and TXLSWrite components (available from
http://www.axolot.com/components/xlsreadwrite.htm). If you work with RTF or PostScript, you
should consider PCYACC (available from http://www.abxsoft.com) .

If you cannot find an existing parser, you must write your own. For some formats, such as
EDIFACT, I find it simpler to write the parser from scratch. In my experience, this is true for old
legacy formats. Over the years, the syntax has accumulated many exceptions, so writing code
around the exceptions is faster.

On the other hand, if you are lucky enough to work with a more modern format, chances are a
compiler-compiler will be useful. A compiler-compiler is a tool used to help write parsers. The idea
is that you write a high-level description of the format and the tool compiles it into an actual
parser.

Two advantages to this approach exist. First, you are working at a higher level of abstraction, so it
is faster. Second, the parsers are very efficient. The downside is that these tools work best with
formats that were designed rigorously…which excludes many legacy formats.

Some of the most interesting tools are as follows:

YACC is one of the oldest compiler-compilers . A PC version, PCYACC , is available
commercially from Abraxas (http://www.abxsoft.com) . The product ships with several pre-
built parsers, including RTF, VRML, HTML, and PostScript.

Bison is a GNU replacement for YACC. It is available from http://www.gnu.org.

ANTLR is a powerful open-source compiler-compiler. It is available from
http://www.antlr.org.

Visual Parse++ is a commercial product from Sandstone that offers a graphical
development environment. It is available from http://www.sand-stone.com.

For more information on this topic, read Compilers Principles, Techniques and Tools by Alfred V.
Aho, Ravi Sethi, and Jeffrey D. Ullman. This book is dubbed the "Dragon book" and enjoys an
almost religious following. However, at close to 800 pages in a small typeset, it is not for the faint
of heart.

If you want a shorter introduction, I recommend Compiler Construction from Niklaus Wirth (of
Pascal fame). At 180 pages, it is an easy read.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Write an e-Commerce Server
This chapter looks at solutions to conduct electronic business on the Internet using XML. More
specifically, it demonstrates a server for purchasing and invoicing.

I have made several simplifications in this project and I will particularly concentrate on two
aspects:

Automatically exchanging XML documents between Web servers, which is essential for
high-volume transactions

Accepting various formats through XSL style sheets for increased flexibility

If you follow the announcements of XML-based e-commerce products, you have probably heard
of XML marketplaces. These are promising solutions that enable e-commerce for businesses.
This chapter doesn't aim to compete with these products but to demonstrate a simple, low-cost
solution. The concepts introduced in the chapter can serve as a basis for more sophisticated
solutions as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML Marketplaces

I'd like to start this chapter by briefly looking at the impact the Internet is having on business. I will
keep it short because I assume that, if you are reading Applied XML Solutions, you must be close
to the revolution yourself.

However, at least two remarkable aspects exist when conducting business electronically. The first
aspect is that location is less important.

Therefore, despite some thorny regulatory and cultural differences, a local company can act
globally. My own business, Pineapplesoft, is active in Belgium, the U.S., France, the U.K., the
Netherlands, and other countries from our base in Namur, Belgium. Most of our international
business is conducted electronically.

Despite the physical distance, global organizations can become close to their customers by
offering targeted advice, tips, or discounts. In my view, Amazon is a prime example of this.

Secondly, and most importantly, small businesses can compete effectively in that space. Internet
access is so cheap no business can afford not to have it. Companies or individuals can have a
Web site for a few dollars per month. And, thanks to easy-to-use editors, they don't need an
HTML wizard either.

As their activities grow, small businesses can rent a shopping cart, again for a low monthly fee,
from their ISP or from a large mall such as Amazon's zShop or Yahoo! Store. With credit
authorization, searches, and quality ranking, these shops rank among the best offerings in e-
commerce.

The openness to small businesses is fundamental because they are the foundation of our various
economies, even though they seldom make it to the front page of magazines.

However, as explained in previous chapters, until recently e-commerce on the Internet was
geared toward business-to-consumer (B2C) activities. Indeed, any business can open shop on
Amazon, but having an Internet shop doesn't make sense when you're manufacturing windshields
sold directly to automakers in Detroit!

The needs of business-to-business (B2B) e-commerce are different from those of B2C and are
geared toward large-volume, more stable relationships, and a streamlined and more efficient
procurement.

To put it simply, it is not effective for a car manufacturer to hire an army of Web surfers to click the
online shops of its various suppliers. Instead, the manufacturer will look for a more integrated
solution, ideally a product that integrates with its ERP solution. Ideally, it's the ERP package that
does the clicking.

I call this "browsing on autopilot." Instead of asking a user to sit and click, the software simulates
the clicking automatically. Obviously, the software must be capable of decoding the responses
from the server, and the structure-centric XML is simply a better markup language for this
application than presentation-centric HTML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Commercial Transaction

It would not be possible to build a complete marketplace in one chapter. Indeed, such a solution
needs to be very flexible and support many activities—from procurement to payment to shipping
to much more.

Figure 7.1 illustrates how a company can buy goods from another electronically.

Figure 7.1. A transaction means several interactions and just as much paperwork!

The transaction includes the following steps:

1. The buyer (GoodBuy) issues a purchase order.

2. The supplier (GreatProducts) checks the purchase order. It could approve or reject it. Not
rejecting it is typically taken for approval.

3. GreatProducts manufactures the goods and delivers them through a shipper (NiceTruck).

4. GreatProducts invoices GoodBuy.

5. After receiving the goods and checking the invoice, GoodBuy pays GreatProducts.

This example has many simplifications, and many options are not covered in it. For example, it
does not show how the two organizations start their relationship: typically terms and conditions
must be agreed upon, including payment terms.

Furthermore, it hides the relationship between the shipper and the bank. Typically, the shipper
issues bills of lading, packing lists, and its own invoices.

Also, payment can be electronic, by check, or by other means. In the U.S. checks are very
popular, but other countries have different preferences. For example, in Belgium, most payments
are by direct transfer between accounts.

Finally, this scenario applies to goods but doesn't cover services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, there are probably as many variations as there are businesses, and a good e-
commerce product accounts for these variations. In this chapter, we will concentrate on a few
steps in the transaction, which clearly illustrate how to use XML (see Figure 7.2).

Figure 7.2. This chapter concentrates on ordering and invoicing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Architecture

So far, most chapters have included a UML model of the application under development.
However, in this chapter, the application consists of two servlets, several style sheets, and one
HTML page, so a class diagram is not helpful. Figure 7.3 illustrates the various pieces and their
relationships.

Figure 7.3. The various components of the e-commerce application.

The tree applications are as follows:

Post—A servlet to accept XML documents, such as orders and invoices. You can think of
it as an XML shopping cart.

Ship—A servlet to prepare invoices, after the goods have been shipped.

EditOrder—An JavaScript application to create orders.

XML Modeling

The main challenge when building an e-commerce solution with XML is not programming but the
creation of good, stable, and complete data models. The programming is straightforward.

The challenge is that you're modeling documents to use within and outside your organization.
This impacts modeling in the following ways:

The model must be well thought-out to cover the needs of all the parties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The model must be thoroughly documented because it will be widely distributed.

Let's look at the first requirement: the need to account for third-party needs. When modeling
documents for internal applications, you are concerned with only your own business. If your
business needs a tag, you add it. Conversely, if you never use certain tags, you toss them.

This, however, is not true with e-commerce. The documents must account for your needs as well
as the needs of your customers or suppliers.

Let's look at an example: In the textile industry, vendors use sizes (such as small, medium, and
large T-shirts). Their orders, invoices, packing lists, catalogs, and other documents include size
information. Therefore, they need a <Size> tag. However, this need is specific to the textile
industry.

If yours is a pharmaceutical company, you typically wouldn't include a <Size> tag in your
document. But what happens when you order gloves for the lab?

Likewise, requirements vary in an international context. The address is a good example—U.S.
addresses include a state (or province in Canada). There's no such thing in many other countries.

When we turn to the second requirement, documentation, we hit a very costly, and often
underestimated, issue. The ultimate purpose of this exercise is to communicate. When you adopt
an XML model, you want your partners (customers and suppliers) to understand it.

The alternatives are either to offer expensive support in the form of corporate training and
assistance to development or to develop top-notch documentation. Although developing quality
documentation is expensive, it is cheaper in the long run.

To save themselves some work, many organizations turn to existing models developed by
standard bodies or vendors. Oasis runs a repository of XML models, available online from
http://xml.org. A quick search for invoices turns up a dozen hits by the likes of Commerce One,
http://cXML.org, IBM, and Visa.

If you nevertheless decide to model your own documents, be sure your team includes
experienced modelers, preferably with experience modeling open systems, and technical writers.

I also recommend working in a high-level modeling language, such as UML. UML models buy you
a certain level of independence from XML. It makes it easier to design and maintain the
documents.

Furthermore, UML was designed for communication. It is a universal language readily understood
by all developers. It won't save you from serious technical writing, but it will reduce the effort.

In this chapter, we'll use simplified models for the order and invoice. In UML, they look similar to
Figures 7.4 and 7.5. Listing 7.1 is a sample order. As you can see, there's nothing fancy here: just
a list of products.

Warning

You will notice that this order differs from the order introduced in Chapter 6, "Import
from Any Format." That order was modeled after the EDIFACT order. The order in this
chapter was modeled independently and aims to be as simple as possible. In practice,
as discussed in the next section, you will find that you must deal with different
documents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.4. A model for a simple purchase order.

Figure 7.5. A model for a simple invoice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 7.1 A Simple Purchase Order in XML

<?xml version="1.0"?><Order>

 <Date>2000-03-31</Date>

 <Reference>AGL153</Reference>

 <Buyer>

 <Name>Playfield Books</Name>

 <Address>

 <Street>34 Fountain Square Plaza</Street>

 <Locality>Cincinnati</Locality>

 <PostalCode>45202</PostalCode>

 <Region>OH</Region>

 <Country>US</Country>

 </Address>

 </Buyer>

 <Seller>

 <Name>QUE</Name>

 <Address>

 <Street>201 West 103RD Street</Street>

 <Locality>Indianapolis</Locality>

 <PostalCode>46290</PostalCode>

 <Region>IN</Region>

 <Country>US</Country>

 </Address>

 </Seller>

 <Lines>

 <Product>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Description>XML by Example</Description>

 <Quantity>5</Quantity>

 <Price>24.99</Price>

 <Total>124.95</Total>

 </Product>

 <Product>

 <Description>Applied XML Solutions</Description>

 <Quantity>10</Quantity>

 <Price>44.99</Price>

 <Total>449.90</Total>

 </Product>

 </Lines>

 <Total>574.85</Total>

</Order>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Post Manager

Post is the first software installed at the seller site. It consists of a servlet and a style sheet.

Accepting Post

The servlet is presented in Listing 7.2. It waits for POST requests for XML documents and stores
them in a database.

Listing 7.2 Post.java

package com.psol.xcommerce;

import java.io.*;

import java.sql.*;

import org.xml.sax.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.xalan.xslt.*;

public class Post

 extends HttpServlet

{

 public void init()

 throws ServletException

 {

 try

 {

 Class.forName(getInitParameter("driver"));

 }

 catch(ClassNotFoundException e)

 {

 throw new ServletException(e);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 protected String style(String document,

 String stylesheet)

 throws IOException, SAXException

 {

 XSLTProcessor processor =

 XSLTProcessorFactory.getProcessor();

 XSLTInputSource source =

 new XSLTInputSource(new StringReader(document));

 XSLTInputSource styleSheet =

 new XSLTInputSource(new FileInputStream(stylesheet));

 StringWriter writer = new StringWriter();

 XSLTResultTarget target = new XSLTResultTarget(writer);

 processor.process(source,styleSheet,target);

 return writer.toString();

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException

 {

 Writer writer = response.getWriter();

 response.setContentType("text/xml");

 try

 {

 String original = request.getParameter("document"),

 address = request.getParameter("address");

 String url = getInitParameter("url"),

 username = getInitParameter("username"),

 password = getInitParameter("password"),

 stylesheet = getInitParameter("stylesheet");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Connection connection =

 DriverManager.getConnection(url,username,password);

 try

 {

 PreparedStatement stmt =

 connection.prepareStatement("insert into " +

 "documents (original, document, address, new) " +

 "values (?,?,?,true)");

 try

 {

 stmt.setString(1,original);

 if(stylesheet != null)

 {

 String document = style(original,stylesheet);

 stmt.setString(2,document);

 }

 else

 stmt.setNull(2,Types.VARCHAR);

 stmt.setString(3,address);

 stmt.executeUpdate();

 connection.commit();

 }

 finally

 {

 stmt.close();

 }

 writer.write("<result error='false'>ok</result>");

 }

 finally

 {

 connection.close();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 catch(SQLException e)

 {

 writer.write("<result error='true'><![CDATA[");

 writer.write(e.getMessage());

 writer.write("]]></result>");

 }

 catch(SAXException e)

 {

 writer.write("<result error='true'><![CDATA[");

 writer.write(e.getMessage());

 writer.write("]]></result>");

 }

 writer.flush();

 }

}

The servlet expects two parameters: the XML document itself and a return address. The return
address will be used to send invoices and other documents related to this order:

 String original = request.getParameter("document"),

 address = request.getParameter("address");

Usually, a company has several customers. So, in practice, not all these customers will use the
same XML documents. Some might use the invoice model introduced previously, while others
might use completely different models. Furthermore, even if everybody uses the same format,
different versions will coexist. This is illustrated in Figure 7.6.

The easiest solution to dealing with this multitude of formats is to convert them to the company's
own format as soon as they are received. So only one conversion is necessary, upon receiving the
message.

Figure 7.6. You face a multitude of slightly different variations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Therefore, the servlet starts by applying a style sheet. It also stores the document twice—in its
original form and in the converted version. It is good practice to store the document as you
received it, in case of later disputes:

 stmt.setString(1,original);

 if(stylesheet != null)

 {

 String document = style(original,stylesheet);

 stmt.setString(2,document);

 }

 else

 stmt.setNull(2,Types.VARCHAR);

 stmt.setString(3,address);

 stmt.executeUpdate();

 connection.commit();

Note

An alternative would be to parse the document and extract useful information, as we
saw in Chapter 1, "Lightweight Data Storage." However, it is still advisable to store the
original XML document, in case of later disputes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the servlet returns an XML document to indicate success or failure:

writer.write("<result error='false'>ok</result>");

Tip

A simple solution to enable security is to activate HTTP username/password on the
Web server.

The Post Manager Style Sheet

The conversion style sheet is illustrated in Listing 7.3. It outputs an XML document; this is a
conversion between two XML models.

Listing 7.3 tointernal.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output method="xml"/>

<xsl:template match="/Order">

 <Order>

 <xsl:apply-templates select="@*|node()" mode="identity"/>

 </Order>

</xsl:template>

<xsl:template match="@*|node()" mode="identity">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()" mode="identity"/>

 </xsl:copy>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:template>

<xsl:template match="/PurchaseOrder">

 <Order>

 <Date><xsl:value-of select="PODate"/></Date>

 <Reference><xsl:value-of select="Reference"/></Reference>

 <Buyer>

 <Name><xsl:value-of select="From/Company"/></Name>

 <Address>

 <Street><xsl:value-of

 select="From/Address"/></Street>

 <Locality><xsl:value-of

 select="From/City"/></Locality>

 <PostalCode><xsl:value-of

 select="From/ZIP"/></PostalCode>

 <Region><xsl:value-of

 select="From/StateProvince"/></Region>

 <Country>US</Country>

 </Address>

 </Buyer>

 <Seller>

 <Name><xsl:value-of select="To/Company"/></Name>

 <Address>

 <Street><xsl:value-of

 select="To/Address"/></Street>

 <Locality><xsl:value-of

 select="To/City"/></Locality>

 <PostalCode><xsl:value-of

 select="To/ZIP"/></PostalCode>

 <Region><xsl:value-of

 select="To/StateProvince"/></Region>

 <Country>US</Country>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </Address>

 </Seller>

 <Lines>

 <xsl:for-each select="Books/Book">

 <xsl:variable name="quantity"

 select="Unit"/>

 <xsl:variable name="price"

 select="Price"/>

 <Product>

 <Description><xsl:value-of

 select="Title"/></Description>

 <Quantity><xsl:value-of

 select="$quantity"/></Quantity>

 <Price><xsl:value-of

 select="$price"/></Price>

 <Total><xsl:value-of

 select="format-number($quantity * $price,'#0.00')"/></Total>

 </Product>

 </xsl:for-each>

 </Lines>

 <Total><xsl:value-of select="ToPay"/></Total>

 </Order>

</xsl:template>

</xsl:stylesheet>

The style sheet uses template matches to control the conversion. This single style sheet can
convert between any number of XML documents. The following template matches the seller's own
format (it simply copies the document unmodified):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsl:template match="/Order">

 <Order>

 <xsl:apply-templates select="@*|node()" mode="identity"/>

 </Order>

</xsl:template>

But this template matches a different structure:

<xsl:template match="/PurchaseOrder">

 <Order>

 <Date><xsl:value-of select="PODate"/></Date>

 <Reference><xsl:value-of select="Reference"/></Reference>

 <!-- some part deleted -->

Note

The selection procedure can be more involved. Remember that a match attribute can
contain any XPath. For example, matching an element, its namespace, and the value of
one of its attributes is as simple as

 <xsl:template match="/xmli:PurchaseOrder[@version='1.0']">

 <!-- template deleted -->

 <xsl:template match="/xmli:PurchaseOrder[@version='2.0'">

 <!-- template deleted -->

Tip

If writing many style sheets, you should acquire a visual XSL editor. For example, XSL
Editor, from IBM (illustrated in Figure 7.7) has a drag-and-drop editor that greatly
simplifies editing the style sheet. At the time of writing, XSL Editor is in pre-release and
available from http://www.alphaworks.ibm.com. IBM will probably turn it into a
commercial product, however.

Figure 7.7. Editing a style sheet is as simple as dragging and dropping elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tip

To learn more about accepting non-XML documents, such as EDI orders, see Chapter
5, "Export to Any Format," and Chapter 6.

The Customer's End

The customer will have its own application to generate orders. The application is typically
integrated with the ERP solution. However, in this chapter, we won't write an ERP package for the
sake of demonstrating integration. Instead, we'll use a simple JavaScript-based editor (see Listing
7.8).

Warning

The JavaScript editor is a simplification. In practice, the buyer probably relies on a
solution that is integrated with its own ERP package. However, in this chapter, we
concentrate on the merchant, not the customer.

Listing 7.8 editorder.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<HTML>

<HEAD><TITLE>Order</TITLE>

<SCRIPT LANGUAGE="JavaScript"><!--

var products = new Array();

function addProduct(form)

{

 // collects data from the form

 var title = form.title.value,

 quantity = form.quantity.value,

 price = form.price.value;

 doAddProduct(form,title,quantity,price);

}

function doAddProduct(form,title,quantity,price)

{

 var productList = form.productlist,

 product = new Product(title,quantity,price);

 // arrays are zero-based so products.length points

 // to one past the latest product

 // JavaScript automatically allocates memory

 var pos = products.length;

 products[pos] = product;

 var option = new Option(title + " (" + price +

")",pos);

 productList.options[productList.length] = option;

}

function deleteProduct(form)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function deleteProduct(form)

{

 var productList = form.productlist,

 pos = productList.selectedIndex;

 if(pos != -1)

 {

 var product = productList.options[pos].value;

 productList.options[pos] = null;

 products[product] = null;

 }

}

function exportProduct(form)

{

 var books = "";

 var i,

 total = 0;

 for(i = 0;i < products.length;i++)

 if(products[i] != null)

 {

 books += products[i].toXML();

 total += products[i].quantity * products[i].price;

 }

 books = element("Books",books);

 var from = element("Company",escapeXML(form.company.value));

 from += element("Address",escapeXML(form.street.value));

 from += element("City",escapeXML(form.city.value));

 from += element("ZIP",escapeXML(form.zip.value));

 from += element("StateProvince",escapeXML(form.state.value));

 from = element("From",from);

 var to = "<To><Company>QUE</Company>";

 to += "<Address>201 West 103RD Street</Address>";

 to += "<City>Indianapolis</City>";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 to += "<City>Indianapolis</City>";

 to += "<ZIP>46290</ZIP>";

 to += "<StateProvince>IN</StateProvince></To>";

 var header = element("PODate",escapeXML(form.date.value));

 header += element("Reference",

 escapeXML(form.reference.value));

 var toPay = element("ToPay",escapeXML(String(total)));

 var doc = element("PurchaseOrder",

 header + from + to + books + toPay);

 form.document.value = "<?xml version='1.0'?>" + doc;

}

function element(name,content)

{

 var result = "<" + name +">";

 result += content;

 result += "</" + name +">\ r";

 return result;

}

function escapeXML(string)

{

 var result = "",

 i,

 c;

 for(i = 0;i < string.length;i++)

 {

 c = string.charAt(i);

 if(c == '<')

 result += "<";

 else if(c == '&')

 result += "&";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 result += "&";

 else

 result += c;

 }

 return result;

}

// declares product object

function Product(title,quantity,price)

{

 this.title = title;

 this.quantity = quantity;

 this.price = price;

 this.toXML = product_toXML;

}

function product_toXML()

{

 var result = element("Title",escapeXML(this.title));

 result += element("Unit",escapeXML(this.quantity));

 result += element("Price",escapeXML(this.price));

 return element("Book",result);

}

function load(form)

{

 doAddProduct(form,"XML by Example","5","24.99");

 doAddProduct(form,"Applied XML Solutions","10","44.99");

}

// --></SCRIPT>

</HEAD>

<BODY ONLOAD="load(document.controls)">

 <CENTER>

 <FORM NAME="controls" METHOD="POST"

 ACTION="http://localhost:8080/post">

 Title: <INPUT TYPE="TEXT" NAME="title">

 Quantity: <INPUT TYPE="TEXT" NAME="quantity">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Quantity: <INPUT TYPE="TEXT" NAME="quantity">

 Price: <INPUT TYPE="TEXT" NAME="price">

 <SELECT NAME="productlist" SIZE="5"

 WIDTH="250"></SELECT>

 <INPUT TYPE="BUTTON" VALUE="Add"

 ONCLICK="addProduct(controls)">

 <INPUT TYPE="BUTTON" VALUE="Delete"

 ONCLICK="deleteProduct(controls)">

 Date: <INPUT TYPE="TEXT" NAME="date"

 VALUE="2000-03-31">

 Reference: <INPUT TYPE="TEXT" NAME="reference"

 VALUE="AGL153">

 Company: <INPUT TYPE="TEXT" NAME="company"

 VALUE="Books and More">

 Address: <INPUT TYPE="TEXT" NAME="street"

 VALUE="43 Fountain Street">

 City: <INPUT TYPE="TEXT" NAME="city"

 VALUE="Cincinnati">

 ZIP: <INPUT TYPE="TEXT" NAME="zip" VALUE="45202">

 State/Province: <INPUT TYPE="TEXT" NAME="state"

 VALUE="OH">

 Return address: <INPUT TYPE="TEXT"

 VALUE="http://localhost:8081"

 NAME="address">

 <INPUT TYPE="SUBMIT" VALUE="Post"

 ONCLICK="exportProduct(controls)">

 <INPUT TYPE="HIDDEN" NAME="document">

 </FORM>

 </CENTER>

</BODY></HTML>

This Web page is a poor man's editor for purchase order. It is illustrated in Figure 7.8.

Note

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This editor is written in portable JavaScript. It does not rely on the availability of an XML
parser, so it should run with most browsers.

Figure 7.8. The editor to create and edit purchase orders.

Let's review Listing 7.8 step by step. The script maintains an array of Product objects, where
Products have a title, quantity, and price:

 function Product(title,quantity,price)

 {

 this.title = title;

 this.quantity = quantity;

 this.price = price;

 this.toXML = product_toXML;

 }

The script uses functions to add and remove products from the array. The functions take care to
synchronize the display, in the HTML form, and the content of the array:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 function doAddProduct(form,title,quantity,price)

 {

 var productList = form.productlist,

 product = new Product(title,quantity,price);

 // arrays are zero-based so products.length points

 // to one past the latest product

 // JavaScript automatically allocates memory

 var pos = products.length;

 products[pos] = product;

 var option = new Option(title + " (" + price + ")",pos);

 productList.options[productList.length] = option;

 }

To send the purchase order, the script writes the corresponding XML document in a hidden field of
the form. The content of the form is posted to the server by the Web browser and, of course,
includes the hidden field and XML document:

 function exportProduct(form)

 {

 var books = "";

 var i,

 total = 0;

 for(i = 0;i < products.length;i++)

 if(products[i] != null)

 {

 books += products[i].toXML();

 total += products[i].quantity * products[i].price;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 books = element("Books",books);

 var from = element("Company",escapeXML(form.company.value));

 from += element("Address",escapeXML(form.street.value));

 from += element("City",escapeXML(form.city.value));

 from += element("ZIP",escapeXML(form.zip.value));

 from += element("StateProvince",escapeXML(form.state.value));

 from = element("From",from);

 var to = "<To><Company>QUE</Company>";

 to += "<Address>201 West 103RD Street</Address>";

 to += "<City>Indianapolis</City>";

 to += "<ZIP>46290</ZIP>";

 to += "<StateProvince>IN</StateProvince></To>";

 var header = element("PODate",escapeXML(form.date.value));

 header += element("Reference",

 escapeXML(form.reference.value));

 var toPay = element("ToPay",escapeXML(String(total)));

 var doc = element("PurchaseOrder",

 header + from + to + books + toPay);

 form.document.value = "<?xml version='1.0'?>" + doc;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sending the Invoice

After shipping the goods, the seller prepares an invoice for the buyer. We'll write a simple
application that relies on XSLT to prepare the invoice. The main point of this section is to illustrate
how to build the browser on autopilot, as I mentioned previously. Indeed, this application
generates an XML document (the invoice) and sends it automatically on behalf of the user. The
code for the servlet is in Listing 7.9.

Listing 7.9 Ship.java

package com.psol.xcommerce;

import java.io.*;

import java.net.*;

import java.sql.*;

import java.text.*;

import org.xml.sax.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.xml.sax.helpers.*;

import org.apache.xalan.xslt.*;

public class Ship

 extends HttpServlet

{

 public void init()

 throws ServletException

 {

 try

 {

 Class.forName(getInitParameter("driver"));

 }

 catch(ClassNotFoundException e)

 {

 throw new ServletException(e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw new ServletException(e);

 }

 }

 protected void style(String document,

 String stylesheet,

 Writer writer,

 String id,

 String servletPath)

 throws IOException, SAXException

 {

 XSLTProcessor processor =

 XSLTProcessorFactory.getProcessor();

 XSLTInputSource source =

 new XSLTInputSource(new StringReader(document));

 XSLTInputSource styleSheet =

 new XSLTInputSource(new FileInputStream(stylesheet));

 XSLTResultTarget target = new XSLTResultTarget(writer);

 processor.setStylesheetParam("id",'\ ''+ id + '\ '');

 processor.setStylesheetParam("servletPath",

 '\ ''+ servletPath +'\ '');

 processor.process(source,styleSheet,target);

 }

 protected String style(String document,

 String stylesheet,

 String id)

 throws IOException, SAXException

 {

 XSLTProcessor processor =

 XSLTProcessorFactory.getProcessor();

 XSLTInputSource source =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 new XSLTInputSource(new StringReader(document));

 XSLTInputSource styleSheet =

 new XSLTInputSource(new FileInputStream(stylesheet));

 StringWriter writer = new StringWriter();

 XSLTResultTarget target = new XSLTResultTarget(writer);

 processor.setStylesheetParam("id",'\ ''+ id + '\ '');

 SimpleDateFormat formatter =

 new SimpleDateFormat("yyyy-MM-dd");

 processor.setStylesheetParam("date",'\ ''+

 formatter.format(new java.util.Date()) + '\ '');

 processor.process(source,styleSheet,target);

 return writer.toString();

 }

 protected void writeOrder(Connection connection,

 String id,

 Writer writer,

 String servletPath)

 throws SQLException, SAXException, IOException

 {

 PreparedStatement stmt =

 connection.prepareStatement("select document from " +

 "documents where id=?");

 try

 {

 stmt.setString(1,id);

 ResultSet rs = stmt.executeQuery();

 try

 {

 if(rs.next())

 style(rs.getString(1),

 "stylesheet/toconfirm.xsl",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer,

 id,

 servletPath);

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

 protected void writeList(Connection connection,

 Writer writer,

 String servletPath)

 throws IOException, SQLException

 {

 Statement stmt = connection.createStatement();

 try

 {

 ResultSet rs = stmt.executeQuery("select id " +

 "from documents where new=true");

 try

 {

 writer.write("<HTML><HEAD><TITLE>Shipping");

 writer.write("</TITLE></HEAD><BODY>");

 writer.write("<H1>Choose an order</H1>");

 while(rs.next())

 {

 writer.write("<A HREF=\ "");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write("<A HREF=\ "");

 writer.write(servletPath);

 writer.write("?id=");

 writer.write(rs.getString(1));

 writer.write("\">order #");

 writer.write(rs.getString(1));

 writer.write("");

 }

 writer.write("</BODY></HTML>");

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

 protected void postInvoice(String document,

 String id,

 String post)

 throws IOException, SAXException

 {

 String toPost = style(document,

 "stylesheet/toinvoice.xsl",

 id);

 URL url = new URL(post);

 HttpURLConnection connection =

 (HttpURLConnection)url.openConnection();

 connection.setRequestProperty("Content-type",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 connection.setRequestProperty("Content-type",

 "application/x-www-form-urlencoded");

 connection.setRequestProperty("Accept:","text/xml");

 connection.setRequestMethod("POST");

 connection.setDoOutput(true);

 connection.setDoInput(true);

 OutputStream os = connection.getOutputStream();

 os.write(new String("document=").getBytes());

 os.write(URLEncoder.encode(toPost).getBytes());

 connection.connect();

 XMLReader reader =

 XMLReaderFactory.createXMLReader(

 "org.apache.xerces.parsers.SAXParser");

 reader.setContentHandler(new DefaultHandler()

 {

 public void startElement(String namespaceURI,

 String localName,

 String rawName,

 Attributes atts)

 throws SAXException

 {

 if(rawName.equals("result"))

 {

 String att = atts.getValue("error");

 if(att == null || !att.equalsIgnoreCase("false"))

 throw new SAXException("Error during POST");

 }

 }

 });

 reader.parse(new InputSource(connection.getInputStream()));

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException

 {

 Writer writer = response.getWriter();

 try

 {

 String url = getInitParameter("url"),

 username = getInitParameter("username"),

 password = getInitParameter("password");

 Connection connection =

 DriverManager.getConnection(url,username,password);

 try

 {

 String id = request.getParameter("id");

 if(null != id && id.length() != 0)

 writeOrder(connection,

 id,

 writer,

 request.getServletPath());

 else

 writeList(connection,

 writer,

 request.getServletPath());

 }

 finally

 {

 connection.close();

 }

 }

 catch(SQLException e)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 response.sendError(

 HttpServletResponse.SC_INTERNAL_SERVER_ERROR,

 e.getMessage());

 }

 catch(SAXException e)

 {

 response.sendError(

 HttpServletResponse.SC_INTERNAL_SERVER_ERROR,

 e.getMessage());

 }

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException

 {

 Writer writer = response.getWriter();

 try

 {

 String id = request.getParameter("id"),

 approved = request.getParameter("approved"),

 url = getInitParameter("url"),

 username = getInitParameter("username"),

 password = getInitParameter("password"),

 post = getInitParameter("post");

 Connection connection =

 DriverManager.getConnection(url,username,password);

 try

 {

 PreparedStatement stmt =

 connection.prepareStatement("select document, " +

 "address from documents where id=?");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 try

 {

 stmt.setString(1,id);

 ResultSet rs = stmt.executeQuery();

 try

 {

 if(rs.next())

 postInvoice(rs.getString(1),

 id,

 rs.getString(2));

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 stmt = connection.prepareStatement("update " +

 "documents set new=false where id=?");

 try

 {

 stmt.setString(1,id);

 stmt.executeUpdate();

 connection.commit();

 }

 finally

 {

 stmt.close();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 writer.write("<HTML><HEAD><TITLE>Payment " +

 "confirmation</TITLE></HEAD><BODY><P> " +

 "Successfully paid!<P><A HREF=\ '");

 writer.write(request.getServletPath());

 writer.write("\ '>Go to list</BODY></HTML>");

 }

 finally

 {

 connection.close();

 }

 }

 catch(SQLException e)

 {

 response.sendError(

 HttpServletResponse.SC_INTERNAL_SERVER_ERROR,

 e.getMessage());

 }

 catch(SAXException e)

 {

 response.sendError(

 HttpServletResponse.SC_INTERNAL_SERVER_ERROR,

 e.getMessage());

 }

 }

}

This servlet accepts both GET and POST requests. In response to a GET request, it displays the
list of invoices (see Figure 7.9) or the details of a given invoice (see Figure 7.10). The former
reads data from the database, whereas the latter applies a style sheet to an invoice.

Figure 7.9. The list of invoices.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.10. Details of one invoice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The heart of this servlet is the postInvoice() method, which is called in response to the user
clicking the Has been shipped button.

The method is roughly divided into three steps. First, the application uses a style sheet to convert
the order into an invoice. Both are XML documents, so a style sheet is a simple and effective
solution to transform one into the other:

 String toPost = style(document,

 "stylesheet/toinvoice.xsl",

 id);

Next, it posts the result using HttpURLConnection. HttpURLConnection, part of
http://java.net, implements the HTTP protocol:

 URL url = new URL(post);

 HttpURLConnection connection =

 (HttpURLConnection)url.openConnection();

 connection.setRequestProperty("Content-type",

 "application/x-www-form-urlencoded");

 connection.setRequestProperty("Accept:","text/xml");

 connection.setRequestMethod("POST");

 connection.setDoOutput(true);

 connection.setDoInput(true);

 OutputStream os = connection.getOutputStream();

 os.write(new String("document=").getBytes());

 os.write(URLEncoder.encode(toPost).getBytes());

 connection.connect();

Finally, it parses the result to test whether any errors have occurred:

 XMLReader reader =

 XMLReaderFactory.createXMLReader(

 "org.apache.xerces.parsers.SAXParser");

 reader.setContentHandler(new DefaultHandler()

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 public void startElement(String namespaceURI,

 String localName,

 String rawName,

 Attributes atts)

 throws SAXException

 {

 if(rawName.equals("result"))

 {

 String att = atts.getValue("error");

 if(att == null || !att.equalsIgnoreCase("false"))

 throw new SAXException("Error during POST");

 }

 }

 });

 reader.parse(new InputSource(connection.getInputStream()));

This is a prime example of a browser on autopilot. The application creates the document and
posts it on behalf of the user. It even interprets the response.

Tip

To test this application, you'll need a server that accepts XML calls. The easiest
solution is to run another copy of the Post servlet on a different server or on the same
server but on a different port.

Transforming Orders

The style sheet in Listing 7.10 is used to transform the order into an invoice.

Listing 7.10 toinvoice.xsl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output method="xml"/>

<xsl:param name="id"/>

<xsl:param name="date"/>

<xsl:template match="/Order">

<Invoice>

 <Reference><xsl:value-of select="$id"/></Reference>

 <YourReference><xsl:value-of

 select="Reference"/></YourReference>

 <Date><xsl:value-of select="$date"/></Date>

 <Due>30 days</Due>

 <Terms>Please make your check payable to Que.</Terms>

 <Seller>

 <Name>QUE</Name>

 <Address>

 <Street>201 West 103RD Street</Street>

 <Locality>Indianapolis</Locality>

 <PostalCode>46290</PostalCode>

 <Region>IN</Region>

 <Country>US</Country>

 </Address>

 </Seller>

 <Buyer>

 <Name><xsl:value-of select="Buyer/Name"/></Name>

 <Address>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Address>

 <Street><xsl:value-of

 select="Buyer/Address/Street"/></Street>

 <Locality><xsl:value-of

 select="Buyer/Address/Locality"/></Locality>

 <PostalCode><xsl:value-of

 select="Buyer/Address/PostalCode"/></PostalCode>

 <Region><xsl:value-of

 select="Buyer/Address/Region"/></Region>

 <Country><xsl:value-of

 select="Buyer/Address/Country"/></Country>

 </Address>

 </Buyer>

 <Lines>

 <xsl:for-each select="Lines/Product">

 <Product>

 <Description><xsl:value-of

 select="Description"/></Description>

 <Quantity><xsl:value-of

 select="Quantity"/></Quantity>

 <Price><xsl:value-of

 select="Price"/></Price>

 <Total><xsl:value-of

 select="Total"/></Total>

 </Product>

 </xsl:for-each>

 </Lines>

 <Total><xsl:value-of select="Total"/></Total>

</Invoice>

</xsl:template>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The only remarkable aspect of this style sheet is that it takes two parameters:

 <xsl:param name="id"/>

 <xsl:param name="date"/>

The style() method in Ship passes the parameter values to the style sheet:

 SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd");

 processor.setStylesheetParam("date",'\ ''+

 formatter.format(new java.util.Date()) + '\ '');

Note

To improve the conversion, you could create extensions, as we used in Chapter 6, and
validate the pricing against a database of products. As it stands, if the buyer sends an
order with incorrect pricing, he will be invoiced with these prices, which might not be
acceptable.

Viewing Invoices

For completeness, Listing 7.11 is the style sheet Ship uses to display invoices. It also takes a
parameter with the invoice number.

Listing 7.11 toconfirm.xsl

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://www.w3.org/TR/REC-html40"

 version="1.0">

<xsl:output method="html"

 encoding="ISO-8859-1"/>

<xsl:param name="id"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsl:template match="/Order">

 <HTML>

 <HEAD><TITLE>Order</TITLE></HEAD>

 <BODY><TABLE>

 <TR><TD><FORM ACTION="/ship" METHOD="POST">

 <INPUT TYPE="HIDDEN" NAME="id" VALUE="{ $id} "/>

 <INPUT TYPE="SUBMIT" VALUE="Has been shipped"/>

 </FORM></TD>

 <TD><FORM ACTION="/ship" METHOD="GET">

 <INPUT TYPE="SUBMIT" VALUE="Will ship later"/>

 </FORM></TD></TR></TABLE>

 <TABLE><TR><TD COLSPAN="2" BGCOLOR="black">

 Order</TD></TR>

 <TR><TD>Date:</TD>

 <TD><xsl:value-of select="Date"/></TD></TR>

 <TR><TD>Reference:</TD>

 <TD><xsl:value-of select="Reference"/></TD></TR>

 <TR><TD VALIGN="TOP">Seller:</TD>

 <TD>

 <xsl:value-of select="Seller/Name"/>

 <xsl:value-of select="Seller/Address/Street"/>

 <xsl:value-of select="Seller/Address/Locality"/>

 <xsl:if test="Seller/Address/Region">

 <xsl:text>, </xsl:text>

 <xsl:value-of select="Seller/Address/Region"/>

 </xsl:if>

 <xsl:text> </xsl:text>

 <xsl:value-of

 select="Seller/Address/PostalCode"/>

 <xsl:value-of select="Seller/Address/Country"/>

 </TD></TR>

 <TR><TD VALIGN="TOP">Buyer:</TD>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <TR><TD VALIGN="TOP">Buyer:</TD>

 <TD>

 <xsl:value-of select="Buyer/Name"/>

 <xsl:value-of select="Buyer/Address/Street"/>

 <xsl:value-of select="Buyer/Address/Locality"/>

 <xsl:if test="Buyer/Address/Region">

 <xsl:text>, </xsl:text>

 <xsl:value-of select="Buyer/Address/Region"/>

 </xsl:if>

 <xsl:text> </xsl:text>

 <xsl:value-of

 select="Buyer/Address/PostalCode"/>

 <xsl:value-of select="Buyer/Address/Country"/>

 </TD></TR>

 </TABLE><TABLE>

 <TR><TD>Qty</TD><TD>Description</TD>

 <TD>Price</TD><TD>Total</TD></TR>

 <xsl:for-each select="Lines/Product">

 <TR><TD><xsl:value-of select="Quantity"/></TD>

 <TD><xsl:value-of select="Description"/></TD>

 <TD><xsl:value-of select="Price"/></TD>

 <TD><xsl:value-of select="Total"/></TD></TR>

 </xsl:for-each>

 <TR>

 <TD><xsl:text

 disable-output-escaping="yes">&nbsp;</xsl:text>

 </TD><TD><xsl:text

 disable-output-escaping="yes">&nbsp;</xsl:text>

 </TD><TD><xsl:text

 disable-output-escaping="yes">&nbsp;</xsl:text>

 </TD><TD><xsl:value-of select="Total"/></TD></TR>

 </TABLE></BODY></HTML>

</xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:template>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building and Running the Project

The e-commerce project is available on the enclosed CD-ROM. Copy the project directory from the CD-ROM to your hard
disk. Under Windows, start the server by double-clicking server.bat. Next double-click http://PostOrder.html
in a browser. Create one or more orders and send them to the supplier.

Now, point your browser to http://localhost:8080/ship, which is the address for the shipping application. Review
the orders you have just created and confirm shipping. This will create invoices and post them to the buyer.

Warning

This project uses Xalan 1.0 as the XSLT processor. If you're using another processor, you will need to adapt
Post and Ship.

The project also uses Jetty as the Web server. However, because it is based on servlets, it should be easy to
adapt to another Web server. You can add servlet support to most Web servers through JRun.

The project on the CD includes a database, but if you need to re-create it, you can use the following statement:

 CREATE TABLE documents (id INTEGER IDENTITY,original VARCHAR, document VARCHAR,address

VARCHAR,new BIT);

Use Hypersonic SQL DatabaseManager to execute the statement. You must create two databases. To do so, follow these
steps:

1. Select Hypersonic SQL Standalone.

2. The URL is jdbc:HypersonicSQL:db/buyer.

3. Issue the previously mentioned CREATE TABLE statement.

4. Select File, Connect.

5. Select Hypersonic SQL Standalone.

6. The second URL is jdbc:HypersonicSQL:db/buyer.

7. Execute the statement again to create the second database.

Warning

The project uses Hypersonic SQL for the database. Because Hypersonic SQL is a JDBC database, adapting it
to other JDBC databases (including Access, Oracle, and SQL Server) should be easy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

In this chapter, we built a simple e-commerce application to illustrate browsing on autopilot and
explored the use of XSL for conversion. The three cornerstones of the project are

Good modeling of the XML document

The ability to accept XML documents in a variety of formats but convert them to your
internal format

The ability to post requests automatically, in effect implementing a browser on autopilot

If you are looking for ready-made models, you can turn to any of the following:

www.rosettanet.org—A group developing XML-based standards for e-commerce

www.ebxml.org—A group developing an XML-based framework for e-commerce

www.xmledi.com—A grassroots effort to promote the use of XML in e-commerce

www.ariba.com—A vendor developing XML marketplaces

www.bolero.net—An e-commerce marketplace for international trade

However, if you are looking for software, you should turn to the following:

www.iplanet.com—Look for the ECXpert range of products, one of the most mature range
of B2B e-commerce products.

www.commerceone.com—A vendor of XML marketplace software.

www.webmethods.com—A vendor of XML integration products.

www.mercator.com—Another vendor of integration products.

www.neonsoft.com—Another vendor of integration products.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Organize Teamwork Between Developers and
Designers
Over the years, the Web development team has grown in size and in sophistication. Although
many Web sites are still the work of one person (the mythical Webmaster), companies
increasingly rely on a multi-talented team to build and manage their Web sites.

The best teams employ many talents: not only graphic designers, HTML coders, and
programmers, but also copywriters, Flash animators, marketers, sales consultants, translators,
and sometimes even an ergonomist.

In practice, coordinating such a diverse team isn't always easy. In this chapter, you explore the
use of XML and XSL as tools to separate the work of engineers (programmers and the like) from
artistic personalities (designers). This separation matches the organization of many teams.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Servlets and Teams

Servlets come in two shapes: the regular servlets, which inherit from classes in
javax.servlet.http, and the newer Java Server Pages (JSP) located in the
javax.servlet.jsp package.

However, regardless of their form, servlets suffer from mixing HTML and Java code. The following
code sample illustrates the problem:

 protected void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException

 {

 Writer w = response.getWriter();

 String string = request.getParameter("string");

 w.write("<HTML><HEAD><TITLE>Upper Case</TITLE></HEAD>");

 w.write("<BODY><P>" + string + " in uppercase is ");

 w.write(string.toUpperCase());

 w.write("</BODY></HTML>");

 w.flush();

 }

This servlet is trivial, but it illustrates the mixing of Java and HTML code. The Java code
implements the application logic and is the responsibility of engineers, whereas the HTML code
deals with the look and feel of the application and is the responsibility of designers.

However, because of the mixing of Java and HTML, when the designer needs to change the look
and feel, he must rely on the programmer. This causes much frustration because

Designers often complain that developers are too slow to integrate their changes.

Programmers would rather focus their energy on improving performance or adding new
functions rather than on implementing so-called frivolous changes from designers.

In fact, the fundamental problem is that servlets, like CGI scripts and ASP, force a very close
collaboration between two groups (designers and developers) who have different priorities.
Understandably, designers are very concerned with presentation, while programmers concentrate
on coding.

Note

JSP does not solve this problem; it merely switches it around. Instead of having HTML
in the middle of Java code, JSP places Java code right in the middle of HTML.
Although writing JSP is often faster than writing regular servlets, it does not solve the
fundamental problem of mixing HTML and Java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In short, it's the old rivalry between engineers and artistic persons. The situation is particularly
difficult in Web design because Web teams are under enormous pressure to deliver quickly.

Creating an Interface

If you're reading this book, you are probably more like the Java programmers than the designers.
In this chapter, you build a solution to cleanly separate your work (Java development) from the
design work. The main goals are to

Separate HTML and Java coding in the servlet

Provide the designer with tools to modify the presentation without requiring the assistance
of the programmer

Allow the programmer to concentrate on the application logic

The solution is close to what you did in Chapter 4, "Content Syndication." In that chapter, you
relied on a presentation-neutral XML document and used XSLT style sheets to produce the
HTML. One of the major differences between that and what you'll do in this chapter is that the
XML document will be dynamically generated by the servlet in this chapter.

In other words, the programmer will generate presentation-neutral XML code, while the designer
will use XSLT to render it in an aesthetically pleasing layout. This provides a clear-cut separation
between the two groups that mimics the organization of the team.

Additional Benefits

Although the primary motivation to use XML was to improve the day-to-day working of the Web
team, the technique outlined in this chapter is also very valuable in the following cases:

A Web site revamping occurs and all the pages, including the servlets, must adopt the new
look. However, programmers are typically busy working on new applications.

An application is shared among different sites; each site has its own look and feel; and the
servlet must support them all.

Multilingual sites exist. For example, I live in Belgium where many sites are multilingual. In
practice, accommodating the differences is difficult—French words are often longer than
their English counterparts. This might force you to redesign the page to provide more room
on the button bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using XSL in Servlets

The servlets need to output XML and call an XSLT processor to turn it into HTML. If every servlet
is calling the XSLT processor, it makes sense to encapsulate this behavior in a library. The
library, in this chapter, is called XslServlet.

Encapsulating the XSL Processor

Figure 8.1 shows the UML class model for the library. The main classes are as follows:

XslServlet—Extends HttpServlet and redirects HTTP requests to XSL-enhanced
versions of doGet() and doPost().

XslServletLiaison—An interface for an additional parameter of the XSL-enhanced
version of doGet() and doPost(). As its name implies, it establishes the liaison with the
XSLT processor.

XslServletLiaisonImpl—An implementation of XslServletLiaison specialized for
Xalan. If you're using another XSLT processor, you must provide another implementation of
XslServletLiaison.

XslWriter—Derived from PrintWriter, it provides helper methods to escape XML
delimiters such as <.

BugList and BugForm—Examples of servlets built with the XslServlet library. They
inherit from XslServlet instead of inheriting directly from HttpServlet.

Figure 8.1. The XslServlet library encapsulates the XSL processor.

Introducing Pesticide

To illustrate the use of XslServlet, you will write a Web-based bug tracker called Pesticide.
Hopefully, the name will have a dissuasive effect on your code.

As always, your focus is on the application of XML, not on building an industrial-strength bug
tracker. Therefore, some simplifications will be made:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bug descriptions are limited to the essentials—a name, description, programmer, and
application name.

No mechanism exists to add new applications or programmers, other than typing SQL
commands.

No workflow management exists to notify programmers when new bugs have appeared.

Figure 8.2 is Pesticide's main screen. As you can see, it centers on the list of bugs.

Figure 8.2. Pesticide is a Web-based bug tracker.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building XslServlet
XslServlet and XslServletLiaisonImpl perform all the work of calling the XSLT
processor.

XslServlet
Listing 8.1 is XslServlet, your specialized HttpServlet. It replaces doGet() and doPost()
with its own version. The new methods have an additional parameter of type
XslServletLiaison.

Listing 8.1 XslServlet.java

package com.psol.pesticide;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class XslServlet

 extends HttpServlet

{

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 XslServletLiaisonImpl liaison =

 new XslServletLiaisonImpl(getClass(),request);

 doGet(request,response,liaison);

 liaison.writeResponse(response);

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response,

 XslServletLiaison liaison)

 throws ServletException, IOException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 response.sendError(HttpServletResponse.SC_BAD_REQUEST);

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 XslServletLiaisonImpl liaison =

 new XslServletLiaisonImpl(getClass(),request);

 doPost(request,response,liaison);

 liaison.writeResponse(response);

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response,

 XslServletLiaison liaison)

 throws ServletException, IOException

 {

 response.sendError(HttpServletResponse.SC_BAD_REQUEST);

 }

}

In answer to an HTTP request (GET or POST), the servlet creates an XslServletLiaisonImpl,
passes the request to the specialized doGet() or doPost(), and uses the liaison to write the
following response:

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 XslServletLiaisonImpl liaison =

 new XslServletLiaisonImpl(getClass(),request);

 doGet(request,response,liaison);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 liaison.writeResponse(response);

 }

XslServletLiaison
The declaration for XslServletLiaison is shown in Listing 8.2. It enables the servlet to
communicate with the XSL processor. The main methods are as follows:

getWriter()—Returns the Writer for the servlet to write the XML document. It replaces
HttpServletResponse.getWriter().

getXSL() and setXSL()—Select the XSL style sheet that will be applied.

getSkin()—Returns the servlet's skin, which is described in the next section.

Listing 8.2 XslServletLiaison.java

package com.psol.pesticide;

import java.io.*;

public interface XslServletLiaison

{

 public XslWriter getWriter()

 throws IOException;

 public File getXSL();

 public void setXSL(File xsl);

 public String getSkin();

}

Servlet Skins

XslServletLiaison must select the appropriate style before applying it. Experience shows
that the most flexible solution is to extract a reference to the style sheet from the URL. However, it
is not safe to pass it directly as a URL parameter, such as

http://catwoman.pineapplesoft.com/buglist?xsl=xsl/buglist.xsl

because hackers can forge URLs that point to their XSL files. In other words, it enables them to
run their own code (their style sheet) on your server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 http://catwoman.pineapplesoft.com/buglist? xsl=http://www.hacker.com/

malign-style-sheet.xsl

Instead, pass a shorter reference in the URL and turn into a safe file path on the server. In this
project, the shorter reference is called a skin. The skin is simply a generic name for a given look
and feel.

For example, the following URLs respectively apply the cool and fast skins to the buglist
servlet:

 http://catwoman.pineapplesoft.com/buglist/cool

 http://catwoman.pineapplesoft.com/buglist/fast

Tip

The alternatives to extracting the style sheet from the URL are

A configuration file, which is less flexible. In particular, it is more difficult to
provide the user with different links, such as a graphic-heavy (cool) and text-
only (fast) versions of the same page.

Having the servlet explicitly call setXSL(), which creates a dependency
between the designer and the programmer—precisely what we try to avoid.

XslServletLiaisonImpl maps the skin (cool) to a file. It builds the filename by
concatenating the skin to the servlet classname:

 // extract the "skin" from the URL

 String pathInfo = request.getPathInfo();

 if(null != pathInfo)

 {

 StringTokenizer tokenizer =

 new StringTokenizer(pathInfo,"/",false);

 if(tokenizer.hasMoreTokens())

 skin = tokenizer.nextToken();

 }

 // turn the skin in the path to the style sheet

 if(null != skin)

 if(skin.equals("none"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(skin.equals("none"))

 return;

 else

 xsl = new File("stylesheet",skin);

 else

 xsl = new File("stylesheet");

 StringTokenizer tokenizer =

 new StringTokenizer(clasz.getName(),".",false);

 while(tokenizer.hasMoreTokens())

 if(tokenizer.countTokens() == 1)

 xsl = new File(xsl,tokenizer.nextToken() + ".xsl");

 else

 xsl = new File(xsl,tokenizer.nextToken());

As you can see, the skin none is not converted to a filename. none returns the raw XML file
(applying no XSL style sheet). This is useful for debugging.

The following are several advantages of skins:

The style sheet is guaranteed to be a local file, which minimizes the chances of a hacker
substituting a rogue style sheet.

Different servlets have different style sheets, but all the style sheets are grouped by the
look and feel, or skin, that they implement.

The servlet can always use setXSL() for special cases.

Tip

Why use a special skin name, such as none, for raw XML? Why not reserve it for the
empty skin, as in the following:

http://catwoman.pineapplesoft.com/buglist

In practice, it is best to use a special name because visitors might forget the skin when
typing the URL. The empty skin should be reserved to a default style sheet rather than
raw XML.

XslServletLiaisonImpl
Listing 8.3 is XslServletLiaisonImpl, the default implementation of XslServletLiaison
using Xalan 1.0. If you elect another XSL processor, you must provide an implementation of
XslServletLiaison for that processor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.3 XslServletLiaisonImpl.java

package com.psol.pesticide;

import java.io.*;

import java.util.*;

import org.xml.sax.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.xalan.xslt.*;

public class XslServletLiaisonImpl

 implements XslServletLiaison

{

 protected String skin = null;

 protected File xsl = null;

 protected ByteArrayOutputStream ostream = null;

 protected XslWriter writer = null;

 protected static Dictionary stylesheets = new Hashtable();

 public XslServletLiaisonImpl(Class clasz,

 HttpServletRequest request)

 {

 // extract the "skin" from the path information

 String pathInfo = request.getPathInfo();

 if(null != pathInfo)

 {

 StringTokenizer tokenizer =

 new StringTokenizer(pathInfo,"/",false);

 if(tokenizer.hasMoreTokens())

 skin = tokenizer.nextToken();

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // turn the skin in the path to the style sheet

 if(null != skin)

 if(skin.equals("none"))

 return;

 else

 xsl = new File("stylesheet",skin);

 else

 xsl = new File("stylesheet");

 StringTokenizer tokenizer =

 new StringTokenizer(clasz.getName(),".",false);

 while(tokenizer.hasMoreTokens())

 if(tokenizer.countTokens() == 1)

 xsl = new File(xsl,tokenizer.nextToken() + ".xsl");

 else

 xsl = new File(xsl,tokenizer.nextToken());

 }

 public XslWriter getWriter()

 {

 if(null == writer)

 {

 ostream = new ByteArrayOutputStream();

 writer = new XslWriter(ostream);

 }

 return writer;

 }

 public File getXSL()

 {

 return xsl;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void setXSL(File xsl)

 {

 this.xsl = xsl;

 }

 public String getSkin()

 {

 return skin;

 }

 protected class Struct

 {

 public long lastModified;

 public StylesheetRoot stylesheet;

 public Struct(long lastModified,StylesheetRoot stylesheet)

 {

 this.lastModified = lastModified;

 this.stylesheet = stylesheet;

 }

 }

 protected void writeStyledXml(InputStream istream,

 HttpServletResponse response)

 throws SAXException, ServletException, IOException

 {

 XSLTProcessor processor =

 XSLTProcessorFactory.getProcessor();

 // deal with precompiled style sheets

 Struct s = (Struct)stylesheets.get(xsl);

 if(null == s ||

 s.lastModified < xsl.lastModified())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s.lastModified < xsl.lastModified())

 {

 XSLTInputSource source =

 new XSLTInputSource(new FileInputStream(xsl));

 s = new Struct(xsl.lastModified(),

 processor.processStylesheet(source));

 stylesheets.put(xsl,s);

 }

 else

 processor.setStylesheet(s.stylesheet);

 // set the content-type

 String ct = s.stylesheet.getOutputMediaType(),

 cs = s.stylesheet.getOutputEncoding();

 if(null == ct)

 {

 if(s.stylesheet.isOutputMethodSet())

 {

 String method = s.stylesheet.getOutputMethod();

 if(method.equalsIgnoreCase("xml"))

 ct = "text/xml";

 else if(method.equalsIgnoreCase("html"))

 ct = "text/html";

 else if(method.equalsIgnoreCase("text"))

 ct = "text/plain";

 else

 throw new ServletException("Unknown method");

 }

 else

 ct = "text/xml";

 }

 if(null != cs)

 ct += "; charset=\ "" + cs + "\ "";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ct += "; charset=\ "" + cs + "\ "";

 response.setContentType(ct);

 // transform and write the result

 XSLTInputSource source = new XSLTInputSource(istream);

 XSLTResultTarget target =

 new XSLTResultTarget(response.getOutputStream());

 processor.process(source,null,target);

 }

 protected void writeRawXml(InputStream istream,

 HttpServletResponse response)

 throws IOException

 {

 response.setContentType("text/xml");

 OutputStream ostream = response.getOutputStream();

 int c = istream.read();

 while(-1 != c)

 {

 ostream.write(c);

 c = istream.read();

 }

 }

 public void writeResponse(HttpServletResponse response)

 throws IOException, ServletException

 {

 if(null != writer)

 writer.flush();

 if(null == ostream || 0 == ostream.size())

 return;

 writer.flush();

 InputStream istream =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 InputStream istream =

 new ByteArrayInputStream(ostream.toByteArray());

 if(null == xsl)

 writeRawXml(istream,response);

 else

 try

 {

 writeStyledXml(istream,response);

 }

 catch(SAXException e)

 {

 throw new ServletException(e.getMessage());

 }

 }

}

You saw how the constructor selects the style sheet in the previous section. writeResponse()
is called by XslServlet to perform the XSL transformation. It then delegates the actual work to
writeRawXml() and writeStyledXml().

writeStyledXml() is the method that calls the XSL processor. It takes advantage of Xalan
precompiled style sheets, and it won't reread a style sheet unless it has been modified:

 // deal with precompiled style sheets

 Struct s = (Struct)stylesheets.get(xsl);

 if(null == s ||

 s.lastModified < xsl.lastModified())

 {

 XSLTInputSource source =

 new XSLTInputSource(new FileInputStream(xsl));

 s = new Struct(xsl.lastModified(),

 processor.processStylesheet(source));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 processor.processStylesheet(source));

 stylesheets.put(xsl,s);

 }

 else

 processor.setStylesheet(s.stylesheet);

The method also sets the content type, according to the media type and character set selected in
the style sheet:

 // set the content-type

 String ct = s.stylesheet.getOutputMediaType(),

 cs = s.stylesheet.getOutputEncoding();

 if(null == ct)

 {

 if(s.stylesheet.isOutputMethodSet())

 {

 String method = s.stylesheet.getOutputMethod();

 if(method.equalsIgnoreCase("xml"))

 ct = "text/xml";

 else if(method.equalsIgnoreCase("html"))

 ct = "text/html";

 else if(method.equalsIgnoreCase("text"))

 ct = "text/plain";

 else

 throw new ServletException("Unknown method");

 }

 else

 ct = "text/xml";

 }

 if(null != cs)

 ct += "; charset=\ "" + cs + "\ "";

 response.setContentType(ct);

Finally, the method calls Xalan to perform the transformation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // transform and write the result

 XSLTInputSource source = new XSLTInputSource(istream);

 XSLTResultTarget target =

 new XSLTResultTarget(response.getOutputStream());

processor.process(source,null,target);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building and Running the Project

The Pesticide project is available on the enclosed CD-ROM. Copy the project directory from the CD-ROM to your hard disk.
Under Windows, start the server by double-clicking pesticide.bat. Next, open a browser and type one of following URLs
(see Figure 8.4):

http://localhost:8080/buglist/cool

http://localhost:8080/buglist/fast

http://localhost:8080/buglist/fr

Figure 8.4. Navigate the list of bugs.

Warning

This project uses Xalan 1.0 as the XSLT processor. If you are using another processor, you will need to adapt
XslServletLiaisonImpl.

The project also uses Jetty as the Web server. However, because it is based on servlets, it should be easy to
adapt to another Web server. You can add servlet support to most Web servers through JRun.

The project on the CD-ROM includes a database, but if you need to re-create it, you can use Listing 8.9
HypersonicSQL Database Manager to execute the script. To connect to the database, perform the following (see

Select HypersonicSQL Standalone.

The URL is jdbc:HypersonicSQL:db/pesticide.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.5. Use the Database Manager to connect to the database.

Listing 8.9 Creating the Initial Database

CREATE TABLE software (id INTEGER IDENTITY,name VARCHAR);

CREATE TABLE programmer (id INTEGER IDENTITY,name VARCHAR);

CREATE TABLE bug (id INTEGER IDENTITY,name VARCHAR,created DATE, description LONGVARCHAR,

solution LONGVARCHAR,solved BIT, softwareid INTEGER,programmerid INTEGER);

INSERT INTO software (name) VALUES ('XML Editor 1.0 [Win]');

INSERT INTO software (name) VALUES ('XML Editor 1.0 [Mac]');

INSERT INTO software (name) VALUES ('XSL Editor 1.0 [Win]');

INSERT INTO programmer (name) VALUES ('John Doe');

INSERT INTO programmer (name) VALUES ('Jack Smith');

INSERT INTO bug (name,created,description,solved,softwareid, programmerid) SELECT 'User

login', '2000-05-10', 'Creating a new user throws an exception "Access Denied"', FALSE,

software.id, programmer.id FROM software, programmer WHERE software.name='XML Editor 1.0

[Win]'AND programmer.name='John Doe';

INSERT INTO bug (name,created,description,solved,solution, softwareid,programmerid)

SELECT 'Window size lost', '2000-05-10', 'Does not properly save the window size and

placement between sessions', TRUE,'Added new registry key', software.id, programmer.id

FROM software, programmer WHERE software.name='XML Editor 1.0 [Win]'AND

programmer.name='John Doe';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

programmer.name='John Doe';

INSERT INTO bug (name,created,description,solved,softwareid, programmerid) SELECT 'Crash

at startup', '2000-05-11', 'Random crash at startup when low-memory', FALSE, software.id,

 programmer.id FROM software, programmer WHERE software. name='XML Editor 1.0 [Win]'AND

programmer.name='John Doe';

INSERT INTO bug (name,created,description,solved,solution, softwareid,programmerid)

SELECT 'Splash screen', '2000-05-07', 'Splash screen does not go away until the user

clicks it', TRUE, 'Added timer', software.id, programmer.id FROM software, programmer

WHERE software.name='XML Editor 1.0 [Mac]'AND programmer.name='Jack Smith';

INSERT INTO bug (name,created,description,solved,softwareid, programmerid) SELECT 'Import

error', '2000-05-10', 'Cannot open legacy XSL files', FALSE, software.id, programmer.id

FROM software, programmer WHERE software.name='XSL Editor 1.0 [Win]'AND

programmer.name='Jack Smith';

INSERT INTO bug (name,created,description,solved,solution, softwareid,programmerid)

SELECT 'Mangled display', '2000-05-13', 'For large style sheets, the display is not

readable', TRUE, 'Added zoom', software.id, programmer.id FROM software, programmer WHERE

software.name='XSL Editor 1.0 [Win]'AND programmer.name='Jack Smith';

Warning

The project uses Hypersonic SQL for the database. Because Hypersonic SQL is a JDBC database, it should be
easy to adapt it to other JDBC databases (including Access, Oracle, and SQL Server).

However, you will need to adapt Listing 8.9 and the servlets to your database flavor of SQL. In particular, the
identity column must be converted into the auto-increment columns for your database.

You might also want to take advantage of foreign keys, which Hypersonic SQL currently does not support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing Pesticide Using XslServlet
Pesticide, the bug tracker application, demonstrates XslServlet in its two servlets, BugList
and BugForm.

Writing BugList
The first XslServlet is BugList, which prints the list of bugs (see Listing 8.4).

Listing 8.4 BugList.java

package com.psol.pesticide;

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BugList

 extends XslServlet

{

 public void init()

 throws ServletException

 {

 try

 {

 Class.forName(getInitParameter("driver"));

 }

 catch(ClassNotFoundException e)

 {

 throw new ServletException(e);

 }

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protected void writeBugList(Connection conn,

 String pid,

 String sid,

 XslWriter writer)

 throws SQLException, IOException

 {

 StringBuffer query = new StringBuffer("select " +

 "bug.id, bug.name, solved, created, software.name " +

 " from bug inner join software on " +

 "bug.softwareid=software.id");

 boolean isPid = null != pid && 0 != pid.length(),

 isSid = null != sid && 0 != sid.length();

 if(isPid)

 query.append(" where bug.programmerid=?");

 if(isSid)

 if(isPid)

 query.append(" and bug.softwareid=?");

 else

 query.append(" where bug.softwareid=?");

 query.append(" order by solved, created");

 PreparedStatement stmt =

 conn.prepareStatement(query.toString());

 try

 {

 if(isPid)

 stmt.setString(1,pid);

 if(isSid)

 if(isPid)

 stmt.setString(2,sid);

 else

 stmt.setString(1,sid);

 ResultSet rs = stmt.executeQuery();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 try

 {

 writer.write("<bug-list>");

 String[] fields =

 {

 "id", "name", "solved",

 "created", "software-name"

 } ;

 while(rs.next())

 SQLUtil.writeRow("bug",fields,rs,writer);

 writer.write("</bug-list>");

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response,

 XslServletLiaison liaison)

 throws IOException, ServletException

 {

 try

 {

 String url = getInitParameter("url"),

 username = getInitParameter("username"),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 username = getInitParameter("username"),

 password = getInitParameter("password");

 Connection conn =

 DriverManager.getConnection(url,username,password);

 XslWriter writer = liaison.getWriter();

 writer.write("<page>");

 try

 {

 String pid = request.getParameter("programmerid"),

 sid = request.getParameter("softwareid");

 if(null != pid)

 pid = pid.trim();

 if(null != sid)

 sid = sid.trim();

 writeBugList(conn,pid,sid,writer);

 SQLUtil.writeProgrammerList(conn,pid,writer);

 SQLUtil.writeSoftwareList(conn,sid,writer);

 }

 finally

 {

 conn.close();

 }

 writer.write("</page>");

 }

 catch(SQLException e)

 {

 throw new ServletException(e);

 }

 catch(Exception e)

 {

 throw new ServletException(e);

 }

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

}

Warning

For simplicity, the servlet does not maintain a pool of database connections. Although
this is not a problem with Hypersonic SQL (see the section Building and Running the
Project later in this chapter), it might negatively impact performances with other
databases.

BugList is very similar to a regular servlet. It connects to the database, extracts information, and
writes the result. The only remarkable aspect is that it overrides your version of doGet() and
writes the result in presentation-neutral XML. Some of the database code is shared between
BugList and BugForm. It has been moved to SQLUtil (see Listing 8.5).

Tip

You might wonder why the servlet uses a PreparedStatement, even though it runs
the statement only once. Briefly, it simplifies parameter processing because it is
possible to use the setString() methods.

Listing 8.5 SQLUtil.java

package com.psol.pesticide;

import java.io.*;

import java.sql.*;

public class SQLUtil

{

 public static void writeFields(String[] fields,

 ResultSet rs,

 XslWriter writer)

 throws SQLException, IOException

 {

 for(int i = 0;i < fields.length;i++)

 {

 String value = rs.getString(i + 1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String value = rs.getString(i + 1);

 writer.write('<');

 writer.write(fields[i]);

 writer.write('>');

 if(!rs.wasNull())

 writer.escape(value);

 writer.write("</");

 writer.write(fields[i]);

 writer.write('>');

 }

 }

 public static void writeRow(String name,

 String[] fields,

 ResultSet rs,

 XslWriter writer)

 throws SQLException, IOException

 {

 writeRow(name,null,null,fields,rs,writer);

 }

 public static void writeRow(String name,

 String id,

 String attribute,

 String[] fields,

 ResultSet rs,

 XslWriter writer)

 throws SQLException, IOException

 {

 writer.write('<');

 writer.write(name);

 if(null != attribute)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 String value = rs.getString(1);

 if(id != null && id.equals(value))

 {

 writer.write('');

 writer.write(attribute);

 }

 }

 writer.write('>');

 writeFields(fields,rs,writer);

 writer.write("</");

 writer.write(name);

 writer.write('>');

 }

 public static void writeSoftwareList(Connection conn,

 String id,

 XslWriter writer)

 throws SQLException, IOException

 {

 Statement stmt = conn.createStatement();

 try

 {

 ResultSet rs = stmt.executeQuery("select id, " +

 "name from software order by name");

 try

 {

 String[] fields =

 {

 "id", "name"

 } ;

 writer.write("<software-list>");

 while(rs.next())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 while(rs.next())

 writeRow("software",id,"selected='yes'",

 fields,rs,writer);

 writer.write("</software-list>");

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

public static void writeProgrammerList(Connection conn,

 String id,

 XslWriter writer)

 throws SQLException, IOException

 {

 Statement stmt = conn.createStatement();

 try

 {

 ResultSet rs = stmt.executeQuery("select id, " +

 "name from programmer order by name");

 try

 {

 String[] fields =

 {

 "id", "name"

 } ;

 writer.write("<programmer-list>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 while(rs.next())

 writeRow("programmer",id,"selected='yes'",

 fields,rs,writer);

 writer.write("</programmer-list>");

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

}

The BugList Style Sheet

Obviously, BugList needs a style sheet, such as that shown in Listing 8.6. Note that the
complete filename for this file is fast/com/psol/pesticide/BugList.xsl for the fast
skin.

The style sheet should be familiar; it turns a list of bugs into a nicely formatted HTML page. In a
browser, it looks similar to Figure 8.3.

Figure 8.3. The servlet with the fast skin.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.6 BugList.xsl (cool version)

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://www.w3.org/TR/REC-html40"

 version="1.0">

<xsl:output method="html"

 encoding="ISO-8859-1"/>

<xsl:template match="/">

 <HTML>

 <HEAD><TITLE>Bugs List</TITLE></HEAD>

 <BODY>

 <xsl:apply-templates/>

 Graphics

 </BODY>

 </HTML>

</xsl:template>

<xsl:template match="page">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <FORM METHOD="GET" ACTION="/buglist/fast">

 <SELECT NAME="programmerid">

 <OPTION VALUE="">All programmers</OPTION>

 <xsl:apply-templates select="programmer-list"/>

 </SELECT>

 <SELECT NAME="softwareid">

 <OPTION VALUE="">All applications</OPTION>

 <xsl:apply-templates select="software-list"/>

 </SELECT>

 <INPUT TYPE="SUBMIT" VALUE="Go"/>

 </FORM>

 <xsl:apply-templates select="bug-list"/>

</xsl:template>

<xsl:template match="software | programmer">

 <OPTION>

 <xsl:attribute name="VALUE">

 <xsl:apply-templates select="id"/>

 </xsl:attribute>

 <xsl:apply-templates select="name"/>

 </OPTION>

</xsl:template>

<xsl:template match="software[@selected='yes'] |

 programmer[@selected='yes']">

 <OPTION SELECTED="SELECTED">

 <xsl:attribute name="VALUE">

 <xsl:apply-templates select="id"/>

 </xsl:attribute>

 <xsl:apply-templates select="name"/>

 </OPTION>

</xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:template>

<xsl:template match="bug-list">

 <TABLE>

 <TR>

 <TD VALIGN="TOP"><TT>[]</TT></TD>

 <TD><SMALL>

 New bug

 Report a new bug.</SMALL></TD>

 <TD></TD>

 </TR>

 <xsl:apply-templates/>

 </TABLE>

</xsl:template>

<xsl:template match="bug">

 <TR>

 <TD VALIGN="TOP"><xsl:choose>

 <xsl:when test="solved='true'"><TT>[X]</TT></xsl:when>

 <xsl:otherwise><TT>[]</TT></xsl:otherwise>

 </xsl:choose></TD>

 <TD><SMALL>

 <A>

 <xsl:attribute name="HREF">

 <xsl:text>/bugform/fast?id=</xsl:text>

 <xsl:value-of select="id"/>

 </xsl:attribute>

 <xsl:apply-templates select="name"/>

 <xsl:apply-templates select="software-name"/>

 <xsl:text> @ </xsl:text>

 <xsl:apply-templates select="created"/></SMALL>

 </TD>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </TD>

 </TR>

</xsl:template>

</xsl:stylesheet>

Writing BugForm
Listing 8.7 illustrates BugForm, the servlet used to edit a bug. Again, the servlet is not remarkable
but for its use of XML.

Listing 8.7 BugForm.java

package com.psol.pesticide;

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BugForm

 extends XslServlet

{

 public void init()

 throws ServletException

 {

 try

 {

 Class.forName(getInitParameter("driver"));

 }

 catch(ClassNotFoundException e)

 {

 throw new ServletException(e);

 }

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 protected void writeEmptyForm(Connection conn,

 XslWriter writer)

 throws SQLException, IOException

 {

 writer.write("<bug><id/><name/><created/>");

 writer.write("<description/><solution/><solved/>");

 SQLUtil.writeProgrammerList(conn,null,writer);

 SQLUtil.writeSoftwareList(conn,null,writer);

 writer.write("</bug>");

 }

protected void writeNonEmptyForm(Connection conn,

 String id,

 XslWriter writer)

 throws SQLException, IOException

 {

 PreparedStatement stmt = conn.prepareStatement("select " +

 "id, name, created, description, solution, solved, " +

 "programmerid, softwareid from bug where id=?");

 try

 {

 stmt.setString(1,id);

 ResultSet rs = stmt.executeQuery();

 try

 {

 writer.write("<bug>");

 if(rs.next())

 {

 String[] fields =

 {

 "id", "name", "created", "description",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "solution", "solved"

 } ;

 SQLUtil.writeFields(fields,rs,writer);

 SQLUtil.writeProgrammerList(conn,

 rs.getString(7),

 writer);

 SQLUtil.writeSoftwareList(conn,

 rs.getString(8),

 writer);

 }

 writer.write("</bug>");

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

 protected void setValue(PreparedStatement stmt,

 int pos,

 String value,

 int type)

 throws SQLException

 {

 if(null == value)

 stmt.setNull(pos,type);

 else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 stmt.setString(pos,value);

 }

 protected void writePage(Connection conn,

 String id,

 HttpServletRequest request,

 HttpServletResponse response,

 XslServletLiaison liaison)

 throws IOException, SQLException

 {

 XslWriter writer = liaison.getWriter();

 writer.write("<page>");

 if(null != id && 0 != id.length())

 writeNonEmptyForm(conn,id,writer);

 else

 writeEmptyForm(conn,writer);

 writer.write("</page>");

 }

 protected String updateBug(Connection conn,

 String id,

 HttpServletRequest request)

 throws SQLException

 {

 PreparedStatement stmt = null;

 if(null != id && 0 != id.length())

 stmt = conn.prepareStatement("update bug set name=?," +

 " created=?, description=?, solution=?, solved=?," +

 " programmerid=?, softwareid=? where id=?");

 else

 stmt = conn.prepareStatement("insert into bug (name, " +

 "created, description, solution, solved, " +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "created, description, solution, solved, " +

 "programmerid, softwareid) values (?,?,?,?,?,?,?)");

 try

 {

 setValue(stmt,1,request.getParameter("name"),

 Types.VARCHAR);

 setValue(stmt,2,request.getParameter("created"),

 Types.DATE);

 setValue(stmt,3,request.getParameter("description"),

 Types.VARCHAR);

 setValue(stmt,4,request.getParameter("solution"),

 Types.VARCHAR);

 setValue(stmt,5,request.getParameter("solved"),

 Types.BIT);

 setValue(stmt,6,request.getParameter("programmerid"),

 Types.INTEGER);

 setValue(stmt,7,request.getParameter("softwareid"),

 Types.INTEGER);

 if(null != id && 0 != id.length())

 stmt.setString(8,id);

 stmt.executeUpdate();

 if(null == id || 0 == id.length())

 {

 Statement s = conn.createStatement();

 try

 {

 ResultSet rs = s.executeQuery(

 "select max(id) from bug");

 try

 {

 if(rs.next())

 id = rs.getString(1);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 s.close();

 }

 }

 }

 finally

 {

 stmt.close();

 }

 return id;

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response,

 XslServletLiaison liaison)

 throws IOException, ServletException

 {

 try

 {

 String url = getInitParameter("url"),

 username = getInitParameter("username"),

 password = getInitParameter("password");

 Connection conn =

 DriverManager.getConnection(url,username,password);

 try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 String id = request.getParameter("id");

 if(null != id)

 id = id.trim();

 writePage(conn,id,request,response,liaison);

 }

 finally

 {

 conn.close();

 }

 }

 catch(SQLException e)

 {

 throw new ServletException(e);

 }

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response,

 XslServletLiaison liaison)

 throws IOException, ServletException

 {

 try

 {

 String url = getInitParameter("url"),

 username = getInitParameter("username"),

 password = getInitParameter("password");

 Connection conn =

 DriverManager.getConnection(url,username,password);

 try

 {

 String id = request.getParameter("id");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(null != id)

 id = id.trim();

 id = updateBug(conn,id,request);

 writePage(conn,id,request,response,liaison);

 }

 finally

 {

 conn.close();

 }

 }

 catch(SQLException e)

 {

 throw new ServletException(e);

 }

 }

}

You should notice writeEmptyForm(), which writes an empty XML document. The style sheet
needs an empty XML document to produce an empty HTML form:

protected void writeEmptyForm(Connection conn,

 XslWriter writer)

 throws SQLException, IOException

{

 writer.write("<bug><id/><name/><created/>");

 writer.write("<description/><solution/><solved/>");

 SQLUtil.writeProgrammerList(conn,null,writer);

 SQLUtil.writeSoftwareList(conn,null,writer);

 writer.write("</bug>");

}

The BugForm Style Sheet

Listing 8.8 is the style sheet for BugForm, using the fast skin.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.8 is the style sheet for BugForm, using the fast skin.

Listing 8.8 BugForm.xsl (fast version)

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://www.w3.org/TR/REC-html40"

 version="1.0">

<xsl:output method="html"

 encoding="ISO-8859-1"/>

<xsl:template match="/">

 <HTML>

 <HEAD><TITLE>Edit a Bug</TITLE></HEAD>

 <BODY>

 <xsl:apply-templates/>

 Graphics

 </BODY>

 </HTML>

</xsl:template>

<xsl:template match="page">

 <FORM ACTION="/buglist/fast" METHOD="GET">

 <SELECT NAME="programmerid">

 <OPTION VALUE="">All programmers</OPTION>

 <xsl:apply-templates select="bug/programmer-list"

 mode="menu"/>

 </SELECT>

 <SELECT NAME="softwareid">

 <OPTION VALUE="">All applications</OPTION>

 <xsl:apply-templates select="bug/software-list"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:apply-templates select="bug/software-list"

 mode="menu"/>

 </SELECT>

 <INPUT TYPE="SUBMIT" VALUE="Go"/>

 </FORM>

 <xsl:apply-templates select="bug"/>

</xsl:template>

<xsl:template match="software | programmer" mode="menu">

 <OPTION>

 <xsl:attribute name="VALUE">

 <xsl:value-of select="id"/>

 </xsl:attribute>

 <xsl:apply-templates select="name"/>

 </OPTION>

</xsl:template>

<xsl:template match="software[@selected='yes'] |

 programmer[@selected='yes']"

 mode="menu">

 <OPTION SELECTED="SELECTED">

 <xsl:attribute name="VALUE">

 <xsl:value-of select="id"/>

 </xsl:attribute>

 <xsl:apply-templates select="name"/>

 </OPTION>

</xsl:template>

<xsl:template match="bug">

 <xsl:choose>

 <xsl:when test="count(child::*) = 0">

 <P>Empty!</P>

 </xsl:when>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:otherwise>

 <FORM ACTION="/bugform/fast" METHOD="POST">

 <TABLE>

 <xsl:apply-templates/>

 <TR><TD>

 <INPUT TYPE="SUBMIT" VALUE="Save"/>

 </TD></TR>

 </TABLE>

 </FORM>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:template match="bug/id">

 <INPUT TYPE="HIDDEN" NAME="id">

 <xsl:attribute name="VALUE">

 <xsl:value-of select="."/>

 </xsl:attribute>

 </INPUT>

</xsl:template>

<xsl:template match="bug/name">

 <TR>

 <TD VALIGN="TOP"><SMALL>Name:</SMALL></TD>

 <TD><INPUT NAME="name">

 <xsl:attribute name="VALUE">

 <xsl:value-of select="."/>

 </xsl:attribute>

 </INPUT></TD>

 </TR>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </TR>

</xsl:template>

<xsl:template match="created">

 <TR>

 <TD VALIGN="TOP"><SMALL>Created:</SMALL></TD>

 <TD><INPUT NAME="created">

 <xsl:attribute name="VALUE">

 <xsl:value-of select="."/>

 </xsl:attribute>

 </INPUT><SMALL> (yyyy-mm-dd)</SMALL></TD>

 </TR>

</xsl:template>

<xsl:template match="description">

 <TR>

 <TD VALIGN="TOP"><SMALL>Description:</SMALL></TD>

 <TD><TEXTAREA NAME="description">

 <xsl:value-of select="."/>

 </TEXTAREA></TD>

 </TR>

</xsl:template>

<xsl:template match="solved">

 <TR>

 <TD VALIGN="TOP"><SMALL>Status:</SMALL></TD>

 <TD><SELECT NAME="solved">

 <xsl:choose>

 <xsl:when test="text()='true'">

 <OPTION VALUE="TRUE"

 SELECTED="SELECTED">Resolved</OPTION>

 <OPTION VALUE="FALSE">Unresolved</OPTION>

 </xsl:when>

 <xsl:otherwise>

 <OPTION VALUE="TRUE">Resolved</OPTION>

 <OPTION VALUE="FALSE"

 SELECTED="SELECTED">Unresolved</OPTION>

 </xsl:otherwise>

 </xsl:choose>

 </SELECT></TD>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </SELECT></TD>

 </TR>

</xsl:template>

<xsl:template match="solution">

 <TR>

 <TD VALIGN="TOP"><SMALL>Solution:</SMALL></TD>

 <TD><TEXTAREA NAME="solution">

 <xsl:value-of select="."/>

 </TEXTAREA></TD>

 </TR>

</xsl:template>

<xsl:template match="programmer-list">

 <TR>

 <TD VALIGN="TOP"><SMALL>Programmer:</SMALL></TD>

 <TD><SELECT NAME="programmerid">

 <xsl:apply-templates/>

 </SELECT></TD>

 </TR>

</xsl:template>

<xsl:template match="software-list">

 <TR>

 <TD VALIGN="TOP"><SMALL>Application:</SMALL></TD>

 <TD><SELECT NAME="softwareid">

 <xsl:apply-templates/>

 </SELECT></TD>

 </TR>

</xsl:template>

<xsl:template match="software | programmer">

 <OPTION>

 <xsl:attribute name="VALUE">

 <xsl:value-of select="id"/>

 </xsl:attribute>

 <xsl:apply-templates select="name"/>

 </OPTION>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </OPTION>

</xsl:template>

<xsl:template match="software[@selected='yes'] |

 programmer[@selected='yes']">

 <OPTION SELECTED="SELECTED">

 <xsl:attribute name="VALUE">

 <xsl:value-of select="id"/>

 </xsl:attribute>

 <xsl:apply-templates select="name"/>

 </OPTION>

</xsl:template>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Playing with Style Sheets

Even if you are convinced of the virtue of XML and XSL as tools to organize your team's next
Web project, you might still have some questions. This section deals with frequent issues that
arise when deploying this solution.

Teaching XSL

One of the hypotheses behind XslServlet is that designers know XSL. Clearly, at the time of
this writing, this is optimistic. So is it worth all the effort?

Not necessarily. First, XSLT is not so complicated that it can't be learned in a few days. You might
find it easier to start with style sheets based on <xsl:for-each>. Listing 8.10 illustrates this. It
looks almost like an HTML document peppered with <xsl:for-each> and <xsl:value-of>
to extract values from the XML document.

Listing 8.10 BugList.xsl (version cool)

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://www.w3.org/TR/REC-html40"

 version="1.0">

<xsl:output method="html"

 encoding="ISO-8859-1"/>

<xsl:template match="/">

 <HTML>

 <HEAD><TITLE>Bugs List</TITLE></HEAD>

 <BODY BGCOLOR="#ffcc33" TEXT="#000000" LINK="#0000ff"

 VLINK="#800080" ALINK="#ffff00">

 <TABLE BORDER="0" ALIGN="CENTER" BGCOLOR="#ffffff"

 WIDTH="600" CELLSPACING="0" CELLPADDING="0">

 <TR><TD ALIGN="CENTER">

 <IMG SRC="/images/psol.gif" ALIGN="LEFT" ALT="Pineapplesoft"

 HEIGHT="93" WIDTH="60"/>

 <xsl:for-each select="page/software-list/software">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:for-each select="page/software-list/software">

 <A><xsl:attribute name="HREF">

 <xsl:text>/buglist/cool?softwareid=</xsl:text>

 <xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:if test="not(position()=last())">| </xsl:if>

 </xsl:for-each>

 <xsl:for-each select="page/programmer-list/programmer">

 <A><xsl:attribute name="HREF">

 <xsl:text>/buglist/cool?programmerid=</xsl:text>

 <xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:text> | </xsl:text>

 </xsl:for-each>

 All bugs

 <P><SMALL>This is the bug tracker application. Use it to

 report new bugs and/or fixes.

 Use the above links to narrow your selection.</SMALL></P>

 </TD></TR>

 </TABLE>

 <TABLE BORDER="0" ALIGN="CENTER" BGCOLOR="#ffffff"

 WIDTH="600" CELLSPACING="0" CELLPADDING="0">

 <TR><TD>

 <P>

 New bug

 Report a new bug.

 <BR CLEAR="LEFT"/></P>

 <xsl:for-each select="page/bug-list/bug">

 <P><xsl:attribute name="SRC">

 <xsl:text>/images/</xsl:text>

 <xsl:value-of select="solved"/>

 <xsl:text>.gif</xsl:text>

 </xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsl:attribute>

 <A><xsl:attribute name="HREF">

 <xsl:text>/bugform/cool?id=</xsl:text>

 <xsl:value-of select="id"/>

 </xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:value-of select="software-name"/>

 <xsl:text> from </xsl:text>

 <xsl:value-of select="created"/>

 <BR CLEAR="LEFT"/></P>

 </xsl:for-each>

 </TD></TR>

 </TABLE>

 <TABLE BORDER="0" ALIGN="CENTER" BGCOLOR="#ffffff"

 WIDTH="600" CELLSPACING="0" CELLPADDING="0">

 <TR><TD ALIGN="CENTER">

 <xsl:for-each select="page/software-list/software">

 <A><xsl:attribute name="HREF">

 <xsl:text>/buglist/cool?softwareid=</xsl:text>

 <xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:if test="not(position()=last())">| </xsl:if>

 </xsl:for-each>

 Text only |

 <xsl:for-each select="page/programmer-list/programmer">

 <A><xsl:attribute name="HREF">

 <xsl:text>/buglist/cool?programmerid=</xsl:text>

 <xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:text> | </xsl:text>

 </xsl:for-each>

 All bugs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </TD></TR>

 </TABLE>

 <TABLE BORDER="0" ALIGN="CENTER" BGCOLOR="#d3d3d3"

 WIDTH="600" CELLSPACING="0" CELLPADDING="0">

 <TR><TD VALIGN="MIDDLE" ALIGN="CENTER">

 <P><SMALL><I>Applied XML Solutions</I>

 by Benoît Marchal (ISBN 0-7897-2430-8),

Que.

 Follow this link

 for the latest updates.</SMALL></P>

 </TD></TR>

 </TABLE>

 </BODY>

 </HTML>

</xsl:template>

</xsl:stylesheet>

Second, several companies are readying XSLT editors. Although not (yet) as convivial as HTML
editors, they really simplify coding. Figure 8.6 shows the XSL Editor from IBM (still in preview at
the time of this writing).

Figure 8.6. IBM's XSL Editor simplifies style sheet writing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Casting Your Servlet Skin

Incidentally, Listing 8.10 demonstrates an added benefit of this technique. By selecting another
skin, the visitor enjoys a different presentation. Compare Figure 8.7 with Figure 8.2.

Figure 8.7. Change the URL for a different skin.

Furthermore, you can use the same technique to translate the Web site. Listing 8.11 is the style
sheet for the French version of Pesticide. In a browser, it looks similar to Figure 8.8. Obviously,
though, the data (coming from the database) is not translated.

Figure 8.8. The French version requires no programming.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.11 BugList.xsl (French version)

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://www.w3.org/TR/REC-html40"

 version="1.0">

<xsl:output method="html"

 encoding="ISO-8859-1"/>

<xsl:template match="/">

 <HTML>

 <HEAD><TITLE>Liste des Bogues</TITLE></HEAD>

 <BODY BGCOLOR="#ffcc33" TEXT="#000000" LINK="#0000ff"

 VLINK="#800080" ALINK="#ffff00">

 <TABLE BORDER="0" ALIGN="CENTER" BGCOLOR="#ffffff"

 WIDTH="600" CELLSPACING="0" CELLPADDING="0">

 <TR><TD ALIGN="CENTER">

 <IMG SRC="/images/psol.gif" ALIGN="LEFT" ALT="Pineapplesoft"

 HEIGHT="93" WIDTH="60"/>

 <xsl:for-each select="page/software-list/software">

 <A><xsl:attribute name="HREF">

 <xsl:text>/buglist/fr?softwareid=</xsl:text>

 <xsl:value-of select="id"/></xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:if test="not(position()=last())">| </xsl:if>

 </xsl:for-each>

 <xsl:for-each select="page/programmer-list/programmer">

 <A><xsl:attribute name="HREF">

 <xsl:text>/buglist/fr?programmerid=</xsl:text>

 <xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:text> | </xsl:text>

 </xsl:for-each>

 Tous les bogues

 <P><SMALL>Voici l'application de suivi de bogues. Signalez

 les nouveaux bogues et/ou corrections.

 Les liens ci-dessus adaptent la sélection.</SMALL></P>

 </TD></TR>

 </TABLE>

 <TABLE BORDER="0" ALIGN="CENTER" BGCOLOR="#ffffff"

 WIDTH="600" CELLSPACING="0" CELLPADDING="0">

 <TR><TD>

 <P>

 Nouveau bogue

 Signalez un nouveau bogue.<BR CLEAR="LEFT"/></P>

 <xsl:for-each select="page/bug-list/bug">

 <P><xsl:attribute name="SRC">

 <xsl:text>/images/</xsl:text>

 <xsl:value-of select="solved"/>

 <xsl:text>.gif</xsl:text>

 </xsl:attribute>

 <A><xsl:attribute name="HREF">

 <xsl:text>/bugform/fr?id=</xsl:text>

 <xsl:value-of select="id"/>

 </xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:value-of select="software-name"/>

 <xsl:text> du </xsl:text>

 <xsl:value-of select="created"/>

 <BR CLEAR="LEFT"/></P>

 </xsl:for-each>

 </TD></TR>

 </TABLE>

 <TABLE BORDER="0" ALIGN="CENTER" BGCOLOR="#ffffff"

 WIDTH="600" CELLSPACING="0" CELLPADDING="0">

 <TR><TD ALIGN="CENTER">

 <xsl:for-each select="page/software-list/software">

 <A><xsl:attribute name="HREF">

 <xsl:text>/buglist/fr?softwareid=</xsl:text>

 <xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:if test="not(position()=last())">| </xsl:if>

 </xsl:for-each>

 Version texte |

<xsl:for-each select="page/programmer-list/programmer">

 <A><xsl:attribute name="HREF">

 <xsl:text>/buglist/fr?programmerid=</xsl:text>

 <xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="name"/>

 <xsl:text> | </xsl:text>

 </xsl:for-each>

 Tous les bogues

 </TD></TR>

 </TABLE>

 <TABLE BORDER="0" ALIGN="CENTER" BGCOLOR="#d3d3d3"

 WIDTH="600" CELLSPACING="0" CELLPADDING="0">

 <TR><TD VALIGN="MIDDLE" ALIGN="CENTER">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <TR><TD VALIGN="MIDDLE" ALIGN="CENTER">

 <P><SMALL><I>Applied XML Solutions</I>

 par Benoît Marchal (ISBN 0-7897-2430-8),

Que.
Visitez

 www.marchal.com

 ou abonnez-vous à la lettre gratuite,

 Pineapplesoft

 Link, pour les dernières nouvelles.</SMALL></P>

 </TD></TR>

 </TABLE>

 </BODY>

 </HTML>

</xsl:template>

</xsl:stylesheet>

You could also use different style sheets to do the following:

Optimize your pages for a given browser. You would need to detect the browser type and
select the style sheet that works best with the browser.

Support non-PC devices. In fact, by combining the techniques introduced in Chapter 4 with
the technique in this chapter, you can write servlets that support HTML and WAP devices!

What About Speed?

How fast is the XSL processing? Does it penalize the servlet to go through all these steps? Of
course, the XSL processing is one more step and it is doomed to slow down the servlet, but, in
practice, it is rarely a problem.

Indeed, unless your application has very strict time constraints, the user is unlikely to notice the
difference. Furthermore, one of the beauties of adopting a standard such as XSL is that you
benefit from improvements to the processor.

When new and faster processors appear on the market, you can integrate them in your servlet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

In this chapter, we built a simple but effective framework to implement XSL in servlets. Although it
is primarily intended to provide a clean interface between programmers and designers, the
technique offers additional benefits.

If you like the approach but would prefer a more extensive framework, you can turn to the Cocoon
project, part of XML Apache at http://xml.apache.org

Finally, this approach is not limited to Java servlets. All you need is an XSL processor in the
language of your choice. I can almost hear you inquiring about Perl scripts. Well, it works with
XML::XSLT, which is available from http://www.sci.kun.nl/sigma/Persoonlijk/egonw/xslt.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Provide Up-to-the-Minute Information to
Business Partners
For the purpose of this chapter, imagine that you are in the wholesale business. Your company
buys goods from different suppliers, stores them in one or more warehouses, and resells them to
retailers. Although you ship most products to the retailers, increasingly, you ship directly to the
end buyer.

At the heart of this business is a strong commitment to managing logistics: A wholesaler is a
buffer between manufacturing and retailing. Obviously, this business is highly computerized.
Wholesalers typically accept orders electronically, possibly using a server similar to the one
introduced in Chapter 7, "Write an e-Commerce Server."

Furthermore, imagine that your company decides to improve services to its retailers. You
participate in a brainstorming session and one of the conclusions is to provide more timely
information—for example, up-to-the-minute inventory information over the Internet. You are
tasked with the implementation.

The availability of products in your warehouse is precious information for your retailers,
particularly the online ones. It enables them to better inform their customers: "This product is
available, you'll have it tomorrow morning" or "Looks like this item is very popular. I'm afraid it
might take longer for delivery." In exchange for the improved service, they might have to sign an
exclusive agreement with your company.

Note

Some companies do just the opposite: They ask their suppliers (not customers) to
check their stock and proactively supply goods when their warehouse is empty.

In effect, the supplier manages the stock on behalf of the customer.

In this chapter, we'll see how to build a solution to provide timely information to retailers with the
Simple Object Access Protocol (SOAP). SOAP supports Web-based remote procedure calls
(RPC).

Obviously, SOAP is not specific to wholesalers. Many businesses would benefit from opening
their information systems to some or all of their customers. For example, a manufacturer in a
competitive industry might publish regular price updates; an airline can make flight information
available online; a hotel can report free rooms; and an auction site can publish bids.

For completeness, SOAP also can be used in totally different contexts: Userland used XML-RPC
(an early version of SOAP) in a distributed publishing application, which enabled the editor to
interact with the Web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Architecture

As you review your options, after the brainstorming, you find you essentially have three
possibilities.

A Web Site

The first option is to build a private Web site for retailers. After logging in to the site, retailers
could check the availability of products.

The main argument in favor of this approach is that it is likely to be familiar to your developers. It
would require connecting your Web server to the warehouse management application. You can
find tools on the market (known as application servers) to help you build this solution.

The main issue with this solution is that it involves yet another Web site: To access stock data,
the retailer must start his browser, log in to your site, and type his query. Your Web site is
completely independent from the retailer's own inventory manager.

However, chances are that the retailer employees need to first search the product in their local
warehouse. It's only when the product is not available locally that they will order from you.

Figure 9.1 illustrates this. Notice the two applications: the retailer's own stock manager and yours,
which is Web accessible.

Figure 9.1. The wholesaler Web site is independent from the retailer's stock manager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In practice, companies are increasingly reluctant to train their clerical staff to access third-party
Web sites. For the retailer's IT people, it's yet another application to learn and support. For the
clerk, it's an annoyance to have to enter her search twice.

Finally, you should consider online retailers. An online retailer wants to publish as much
information as possible on its own Web site. This setup forces them to redirect their customers to
the wholesaler's Web site, which is seldom a good idea.

Distributed Objects

Having established that a Web site does not properly serve your customers'needs, you'll strive to
offer a more integrated solution.

Traditionally, to integrate applications running on different computers, you would use a distributed
object architecture (middleware), such as OMG's CORBA, Microsoft's DCOM, or Java's RMI.

Essentially, the middleware wraps objects, such as Java or C++ objects, with a network layer. In
this case, it would wrap the objects in your warehouse management application on a server.

This setup is illustrated in Figure 9.2. For the retailer, this is more attractive because he can
integrate your data into his application. He has only one application to support.

Figure 9.2. Because objects are available on a server, the retailer can integrate them in his
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, this solution suffers from the following problems:

CORBA, DCOM, and RMI have a reputation of being complex. I believe that if you give
them the benefit of doubt, you'll find that most horror stories are unjustified but, still, it will
be a tough sell.

Distributed object architectures were designed primarily to work over local networks and
are not optimized for the wider Internet.

One of the first practical problems is the use of firewalls. Most corporate firewalls accept only
HTTP and SMTP traffic and will block CORBA and DCOM.

Furthermore, because it's an object server, you literally expose the guts of your application. The
retailer can grab one of your application's objects and call its methods. This creates a very tight
coupling between the two applications.

Who really wants to share her live application objects with outsiders? What happens if they
inadvertently issue the wrong calls and crash your server? And we have not even touched on
security.

Likewise, who wants to be responsible if problems occur with the retailer's application? He who
publishes an object is responsible for its support. Do you really want to take over such a burden?

Warning

To be fair to CORBA, DCOM, and RMI, I must mention that they provide mechanisms
to alleviate these problems. For example, HTTP gateways are available to work around
firewalls. Also, completely isolating your application from the objects on the server is
possible.

Yet, it is when you have to deploy these advanced features that you find distributed
object architectures can deserve their reputation for complexity!

SOAP

Back to square one. At this point, you re-examine the Web site idea. Its main advantages were as
follows:

It is easy to set up because it uses technology with which you are already familiar.

It is cheap to operate for the same reason.

It has a proven track record for being deployed over the Internet.

The only problem is the integration issue. However, if you replace HTML with XML, you would
have a format that can efficiently transport structured information and that enables integration. In
essence, this is the idea behind SOAP.

SOAP is a protocol that formalizes how a Web client and Web browser can integrate using HTTP
and XML. The most popular application of SOAP is XML-based remote procedure calls.

The SOAP approach is illustrated in Figure 9.3. As you can see, it combines the best of Figure
9.1 (reliance on Web protocols) with the best of Figure 9.2 (integrated applications).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifically, SOAP

Works across firewalls because it runs over HTTP

Is as easy to set up and manage as a Web site

Is based on well-known technologies

Is not limited to a local network but is designed for the wider Internet

Figure 9.3. SOAP offers the same benefits as an object server but over the Web.

However, there is no such thing as a free lunch. The price you pay for the flexibility is efficiency.
SOAP is significantly slower than distributed object architectures for the following reasons:

SOAP uses text-based messages that must be parsed on the receiving end and tend to be
larger than binary protocols.

SOAP relies on HTTP for communication, and HTTP is not the fastest protocol around.

Note

SOAP is another solution to implement a browser on autopilot, as introduced in Chapter
7. However, SOAP specifies what the request and response should look like.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SOAP Protocol

If you know HTTP and XML, you'll learn SOAP in minutes. Essentially, SOAP defines how a client
should format its request and how the server should format its answer.

Warning

This discussion is based on SOAP 1.1, the latest version at the time of writing. At the time of
writing, SOAP is not formally an Internet standard, but it appears that W3C might define its
own XML-based RPC protocol. This new protocol would be based on the same principle as
SOAP but might differ in the details.

I will post articles and news as the status of SOAP clarifies at http://www.marchal.com.

SOAP Request

Listing 9.1 is a SOAP request. As you can see, it's an HTTP 1.1 POST request with an XML payload.
The SOAP specification mandates the use of HTTP 1.1, POST, and XML. It also mandates the
presence of the Content-Length and SOAPAction headers in the request.

SOAPAction is specific to SOAP. It is loosely defined in the specification as a URI identifying the
intent of the request. However, it need not be the URL of the Web server (indeed, if you read the
header, the request is for localhost/stockq, not http://www.psol.com/xmlns/stockq).

You should not worry too much about SOAPAction. It was introduced primarily to help firewalls
separate SOAP traffic from regular Web requests.

Listing 9.1 A SOAP Request

POST /stockq HTTP/1.1

Host: localhost

Content-Type: text/xml

Content-Length: 422

SOAPAction: "http://www.psol.com/xmlns/stockq"

<?xml version='1.0'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <psol:getStock

 xmlns:psol='http://www.psol.com/xmlns/stockq'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>

 <manufacturer>Playfield</manufacturer>

 <sku>101</sku>

 </psol:getStock>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The RPC is encoded as an XML document. SOAP defines the SOAP-ENV:Envelope, SOAP-
ENV:Body, and SOAP-ENV:Header elements (in the http://schemas.xmlsoap.org/soap/envelope/
namespace).

SOAP-ENV:Envelope must be the root of SOAP requests. SOAP-ENV:Envelope can contain a
SOAP-ENV:Header and must contain a SOAP-ENV:Body. In Listing 9.1, the optional SOAP-
ENV:Header is not present.

The SOAP-ENV:Header carries extensions to SOAP. Headers were introduced to manage
transactions, payments, or authentication. So far, though, they are not used frequently.

The SOAP-ENV:Body contains the RPC data. The name of the RPC is encoded as an XML element:
psol:getStock for the getStock RPC in Listing 9.1.

The parameters of the call are also encoded as elements. SOAP offers a default encoding for
parameters, which Listing 9.1 uses. However, your application can use any encoding, provided it is
declared in the SOAP-ENV:encodingStyle attribute. For example, SOAP for Java from IBM can
encode parameters following the SOAP rules or XMI.

The SOAP encoding lists the parameters as XML elements whose names match the parameter
names. In Listing 9.1, the two parameters are manufacturer and sku. Their values are Playfield
and 101.

Note

SOAP provides a mechanism to signal the type of the parameters. The specification states
that values are always encoded as strings. For example, the integer fifty-three is
represented by the string 53.

SOAP defines an optional attribute (xsi:type) that you would use as follows:

 <manufacturer xsi:type="xsd:string">101</manufacturer>

However, xsi:type is not required if the parameter supports only one type. In practice, you
mainly use xsi:type for object parameters because, through inheritance and
polymorphism, recognizing the actual parameter's type is not always easy.

SOAP Response

When the server recognizes a SOAP request, it parses the payload and extracts the RPC name and its

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the server recognizes a SOAP request, it parses the payload and extracts the RPC name and its
parameters. It executes the call and prepares a response, again as an XML document sent over
HTTP.

Listing 9.2 is the response for the query in Listing 9.1. As you can see, it's a regular HTTP response
with an XML payload.

Listing 9.2 The SOAP Response

HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: 555

<?xml version='1.0'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <psol:getStockResponse

 xmlns:psol='http://www.psol.com/xmlns/stockq'

 SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>

 <stockq>

 <manufacturer>Playfield</manufacturer>

 <sku>101</sku>

 <available>true</available>

 <level>10</level>

 </stockq>

 </psol:getStockResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

You are now familiar with SOAP-ENV:Envelope and SOAP-ENV:Body. The body of the response is
again an XML element, but the specification does not specify its name. It could be anything, even
though the specification suggests you'd use the RPC name suffixed with Response
(psol:getStockResponse).

The first element within the response is the return value (again, the specification does not enforce its
name). In this example, the return value is a structure with four fields.

SOAP's rule to encode structures is that the names of the elements must match the names of the
fields. So, in Listing 9.2, the four fields are manufacturer, sku, available, and level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fields. So, in Listing 9.2, the four fields are manufacturer, sku, available, and level.

Although Listing 9.2 does not illustrate it, a response can include out parameters. They simply appear
after the response element.

SOAP Fault

As you have seen, in most cases, the content of SOAP-ENV:Body is defined by the application.
However, SOAP defines one special element to report errors: SOAP-ENV:Fault. SOAP-ENV:Fault
is a structure with four fields, the first two of which are mandatory:

faultcode—Indicates the type of error (acceptable values are SOAP-
ENV:VersionMismatch, SOAP-ENV:MustUnderstand, SOAP-ENV:Client, and SOAP-
ENV:Server).

faultstring—A human-readable description of the error.

faultfactor—Used primarily when relaying SOAP messages (for example, when using a
proxy). It is a URI that indicates on which relay the request failed.

detail—Intended for application-specific errors.

Listing 9.3 is a response with an error. Note that SOAP mandates the use of the HTTP 500 return
code.

Listing 9.3 A SOAP Fault

HTTP/1.1 500 Internal Server Error

Content-Type: text/xml

Content-Length: 333

<?xml version='1.0'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:VersionMismatch</faultcode>

 <faultstring>Unknown SOAP version</faultstring>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A SOAP Library

The two main approaches to implementing SOAP are as follows:

Use a networking library that wraps Java objects in a SOAP network layer. This is similar to
a CORBA broker: It takes Java objects and exposes them, as SOAP requests, on a Web
server. The reference implementation from IBM (available from
http://www.alphaworks.ibm.com) follows this approach.

Treat SOAP requests as regular POST requests and write a servlet, or a JSP page, to
handle them.

In this chapter, we'll use the second solution. At the time of writing, the SOAP libraries for Java
are in the alpha stage and not suitable for inclusion in a book.

However, even if I had had the choice, I would have been inclined to treat SOAP requests as
other Web requests. Remember, one of our goals is to build a flexible solution that does not
depend directly on the specifics of a Java application.

In the remainder of the chapter, we will write the server to report product availability. We also will
write a simple client to test and demonstrate the server. In so doing, we will cover both the
wholesaler and the retailer situations.

As always, the focus is on XML, not on building the best stock management system. Indeed, as
you will see, I have greatly simplified the inventory management!

Architecture

Figure 9.4 shows the UML model for the client and the server.

Figure 9.4. The architecture of the client and the server.

The various classes in Figure 9.4 are

SoapService—A servlet specialized to process SOAP requests.

StockQService—The inventory management server.

XMLWriter—A helper class to escape XML characters, such as <.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StockResponse—Parses getStock requests and prepares the responses.

SoapRequest—Encapsulates the creation of a SOAP request.

StockRequest—Inherits from SoapRequest and generates the getStock request.

Constants—Holds various constants.

StockQClient, StockQPanel—The inventory management client.

SoapException—Encapsulates SOAP-ENV:Fault.

SoapEnvelope—A SAX filter that parses the SOAP elements. Both SoapRequest and
SoapService use it.

SAX's XMLFilter
A filter is both an event handler and an event source: It intercepts events, performs
some processing, and generates events of its own. In doing so, it also might remove or
add events.

Filters are similar to AWT adapters. Typically you will use one or more filters to pre-
process XML documents.

Figure 9.5 illustrates how this works. The document flows through a chain of filters
where each filter transforms the document and passes the result to the next stage.

Figure 9.5. Filters are chained to process XML documents.

Filters are typically used to recognize special vocabularies. For example, you can use
filters that recognize XLink hyperlinks or use them to decode and validate digital
signatures.

In this project, SoapEnvelope is a filter. It processes SOAP-defined elements, such
as SOAP-ENV:Envelope and SOAP-ENV:Fault. This frees up the application-
specific content handler to concentrate on application-specific elements, such as
getProduct.

This supports code reuse (indeed, we use SoapEnvelope on the client and the
server). It also isolates the SOAP protocol from the rest of the application, so if SOAP
changes, updates will be limited to SoapEnvelope.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Stock Server

We'll start with the server. The server is connected to the warehouse database, accepts
getStock RPC, and returns the latest status on product availability.

SoapEnvelope
The first class we will look at, SoapEnvelope, is not specific to the server. This class is
demonstrated in Listing 9.4.

Listing 9.4 SoapEnvelope.java

package com.psol.stockq;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class SoapEnvelope

 extends XMLFilterImpl

{

 protected static final int NONE = 0,

 ENVELOPE = 1,

 HEADER = 2,

 BODY = 3,

 FAULT = 4,

 FAULT_CODE = 5,

 FAULT_STRING = 6;

 protected int status = NONE;

 protected static final String SOAP_URI =

 "http://schemas.xmlsoap.org/soap/envelope/";

 protected StringBuffer buffer = null;

 protected String[] data = null;

 public void startDocument()

 throws SAXException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throws SAXException

 {

 status = NONE;

 getContentHandler().startDocument();

 }

 public void startElement(String namespaceURI,

 String localName,

 String rawName,

 Attributes atts)

 throws SAXException

 {

 if(BODY == status)

 if(localName.equals("Fault") &&

 namespaceURI.equals(SOAP_URI))

 {

 status = FAULT;

 data = new String[2];

 }

 else

 getContentHandler().startElement(namespaceURI,

 localName,

 rawName,

 atts);

 else if(localName.equals("Envelope") && NONE == status)

 if(namespaceURI.equals(SOAP_URI))

 status = ENVELOPE;

 else

 throw new SoapException("VersionMismatch",

 "Unknown SOAP version");

 else if(localName.equals("Body") &&

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else if(localName.equals("Body") &&

 namespaceURI.equals(SOAP_URI) &&

 ENVELOPE == status)

 status = BODY;

 else if(localName.equals("Header") &&

 namespaceURI.equals(SOAP_URI) &&

 ENVELOPE == status)

 status = HEADER;

 else if(status == HEADER)

 {

 // IMHO it really should be in the SOAP namespace

 String mu = atts.getValue("mustUnderstand");

 if(mu != null && mu.equals("1"))

 throw new SoapException("MustUnderstand",

 rawName + " unknown");

 }

 else if(localName.equals("faultcode") &&

 status == FAULT)

 {

 status = FAULT_CODE;

 buffer = new StringBuffer();

 }

 else if(localName.equals("faultstring") &&

 status == FAULT)

 {

 status = FAULT_STRING;

 buffer = new StringBuffer();

 }

 }

 public void endElement(String namespaceURI,

 String localName,

 String rawName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String rawName)

 throws SAXException

 {

 if(BODY == status)

 getContentHandler().endElement(namespaceURI,

 localName,

 rawName);

 else if(localName.equals("Envelope") &&

 namespaceURI.equals(SOAP_URI) &&

 ENVELOPE == status)

 status = NONE;

 else if(localName.equals("Body") &&

 namespaceURI.equals(SOAP_URI) &&

 BODY == status)

 status = ENVELOPE;

 else if(localName.equals("Header") &&

 namespaceURI.equals(SOAP_URI) &&

 HEADER == status)

 status = ENVELOPE;

 else if(localName.equals("Fault") &&

 namespaceURI.equals(SOAP_URI) &&

 status == FAULT)

 throw new SoapException(data[0],data[1]);

 else if(localName.equals("faultcode") &&

 status == FAULT_CODE)

 {

 status = FAULT;

 data[0] = buffer.toString();

 buffer = null;

 }

 else if(localName.equals("faultstring") &&

 status == FAULT_STRING)

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 status = FAULT;

 data[1] = buffer.toString();

 buffer = null;

 }

 }

 public void characters(char[] ch,int start,int len)

 throws SAXException

 {

 if(BODY == status)

 getContentHandler().characters(ch,start,len);

 else if(FAULT_CODE == status ||

 FAULT_STRING == status)

 buffer.append(ch,start,len);

 }

 public void skippedEntity(String name)

 throws SAXException

 {

 if(BODY == status)

 getContentHandler().skippedEntity(name);

 }

 public void ignorableWhitespace(char[] ch,

 int start,

 int len)

 throws SAXException

 {

 if(BODY == status)

 getContentHandler().ignorableWhitespace(ch,start,len);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void processingInstruction(String target,String data)

 throws SAXException

 {

 if(BODY == status)

 getContentHandler().processingInstruction(target,data);

 }

}

SoapEnvelope passes most events unmodified to its ContentHandler:

public void startDocument()

 throws SAXException

{

 status = NONE;

 getContentHandler().startDocument();

}

The main methods are startElement() and endElement(). The filter intercepts events
related to SOAP elements but passes other events unmodified.

SOAP-ENV:Header requires special attention. You will remember that header elements are not
defined by SOAP. However, the header might influence how the server should process the
request—for example, when a client makes a request within the context of a transaction, it might
impact the server response. What happens if a server does not recognize the transaction
elements?

SOAP suggests you label mandatory elements in the header with a mustUnderstand attribute.
The server must either recognize the element or signal an error. The filter enforces this rule:

else if(localName.equals("Header") &&

 namespaceURI.equals(SOAP_URI) &&

 ENVELOPE == status)

 status = HEADER;

else if(status == HEADER)

{

 // IMHO it really should be in the SOAP namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // IMHO it really should be in the SOAP namespace

 String mu = atts.getValue("mustUnderstand");

 if(mu != null && mu.equals("1"))

 throw new SoapException("MustUnderstand",

 rawName + " unknown");

}

The filter also enforces version control. SOAP uses namespaces for versioning. Elements not in
the SOAP namespace indicate a new, incompatible version:

else if(localName.equals("Envelope") && NONE == status)

 if(namespaceURI.equals(SOAP_URI))

 status = ENVELOPE;

 else

 throw new SoapException("VersionMismatch",

 "Unknown SOAP version");

SoapService
SoapService, in Listing 9.5, inherits from a servlet to implement the SOAP protocol. Its
descendants must worry about only the RPC.

Listing 9.5 SoapService.java

package com.psol.stockq;

import java.io.*;

import java.sql.*;

import org.xml.sax.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.xml.sax.helpers.*;

public abstract class SoapService

 extends HttpServlet

{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public abstract void doSoap(XMLReader reader,

 InputSource source,

 XMLWriter writer)

 throws IOException, SoapException, SAXException;

 // to optimize, we could manage a pool of XMLReader

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException

 {

 try

 {

 // check for SOAPAction, ignore its value

 // because the spec is unclear on what the server

 // should do with SOAPAction

 String soapAction = request.getHeader("SOAPAction");

 if(null == soapAction)

 throw new SoapException("Client",

 "Missing SOAPAction");

 XMLReader xmlReader =

 XMLReaderFactory.createXMLReader(

 Constants.SAXPARSER);

 xmlReader.setFeature(Constants.SAXNAMESPACES,true);

 SoapEnvelope soapEnvelope = new SoapEnvelope();

 soapEnvelope.setParent(xmlReader);

 CharArrayWriter payload = new CharArrayWriter();

 payload.write("<?xml version='1.0'?>");

 payload.write("<SOAP-ENV:Envelope xmlns:SOAP-ENV='");

 payload.write(Constants.SOAPENV_URI);

 payload.write("'><SOAP-ENV:Body>");

 InputSource source =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 new InputSource(request.getReader());

 doSoap(soapEnvelope,source,new XMLWriter(payload));

 payload.write("</SOAP-ENV:Body></SOAP-ENV:Envelope>");

 Writer writer = response.getWriter();

 response.setContentType("text/xml");

 payload.writeTo(writer);

 writer.flush();

 }

 catch(SoapException e)

 {

 response.setStatus(

 HttpServletResponse.SC_INTERNAL_SERVER_ERROR);

 response.setContentType("text/xml");

 e.writeTo(new XMLWriter(response.getWriter()));

 response.getWriter().flush();

 }

 catch(SAXException e)

 {

 // when SAXException embeds another exception

 // it does a poor job at returning the embedded

 // exception message, so extract it

 response.setStatus(

 HttpServletResponse.SC_INTERNAL_SERVER_ERROR);

 response.setContentType("text/xml");

 Exception ex = e.getException() != null ?

 e.getException() : e;

 new SoapException("Client",ex.getMessage()).

 writeTo(new XMLWriter(response.getWriter()));

 response.getWriter().flush();

 }

 catch(Exception e)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catch(Exception e)

 {

 response.setStatus(

 HttpServletResponse.SC_INTERNAL_SERVER_ERROR);

 response.setContentType("text/xml");

 new SoapException("Server",e.getMessage()).

 writeTo(new XMLWriter(response.getWriter()));

 response.getWriter().flush();

 }

 }

}

SoapService parses the envelope (through SoapEnvelope) but delegates processing of the
request to its descendants (through a call to doSoap()). Likewise, it writes the SOAP envelope
but lets its descendants write the response.

Notice how it creates a parser, turns on namespace processing, and activates the
SoapEnvelope as an XML filter:

XMLReader xmlReader =

 XMLReaderFactory.createXMLReader(Constants.SAXPARSER);

xmlReader.setFeature(Constants.SAXNAMESPACES,true);

SoapEnvelope soapEnvelope = new SoapEnvelope();

soapEnvelope.setParent(xmlReader);

Next, it uses SoapEnvelope as if it were the parser itself:

doSoap(soapEnvelope,source,new XMLWriter(payload));

XMLWriter
XMLWriter, in Listing 9.6, should look familiar. It provides a helper method to escape reserved
characters (<, &, and more).

Listing 9.6 XMLWriter.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package com.psol.stockq;

import java.io.*;

public class XMLWriter

 extends PrintWriter

{

 public XMLWriter(Writer writer)

 {

 super(writer);

 }

 public void escape(String s)

 throws IOException

 {

 for(int i = 0;i < s.length();i++)

 {

 char c = s.charAt(i);

 if(c == '<')

 write("<");

 else if(c == '&')

 write("&");

 else if(c == '\ '')

 write("'");

 else if(c == '"')

 write(""");

 else if(c > '\ u007f')

 {

 write("&#");

 write(Integer.toString);

 write(';');

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 else

 write;

 }

 }

}

SoapException
SoapException, in Listing 9.7, stores the faultcode and faultstring. It also provides a
convenient writeTo() method to write the fault in XML.

Listing 9.7 SoapException.java

package com.psol.stockq;

import java.io.*;

import org.xml.sax.*;

public class SoapException

 extends SAXException

{

 protected String code;

 public SoapException(String code,String string)

 {

 super(string != null ? string : "Unknown error");

 this.code = code;

 }

 public String getCode()

 {

 return code;

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void writeTo(XMLWriter writer)

 throws IOException

 {

 writer.write("<?xml version='1.0'?>");

 writer.write("<SOAP-ENV:Envelope xmlns:SOAP-ENV='");

 writer.write(Constants.SOAPENV_URI);

 writer.write("'><SOAP-ENV:Body>");

 writer.write("<SOAP-ENV:Fault><faultcode>SOAP-ENV:");

 writer.escape(code);

 writer.write("</faultcode><faultstring>");

 writer.escape(getMessage());

 writer.write("</faultstring></SOAP-ENV:Fault>");

 writer.write("</SOAP-ENV:Body></SOAP-ENV:Envelope>");

 }

}

Database

So far, we have looked at generic SOAP classes. To study the specifics of the stock server, we'll
start with the database.

Again, because our focus is on XML, not stock management, I've kept the database simple. It
contains a single table, products, which lists products and their availability (negative numbers
indicate back orders). Products are identified by their manufacturer name and a product number
(sku).

Warning

This chapter does not include a tool to update inventory levels. You will need to edit
them through your database user interface.

However, it is probably not a good idea to let retailers remotely manipulate product
availability! You want the database to reflect actual levels in the warehouse.

StockResponse
StockResponse, in Listing 9.8, implements ContentHandler. Because it comes after a
SoapEnvelope filter, it never sees the SOAP elements. As far as StockResponse is
concerned, the root of the document is getProduct.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

concerned, the root of the document is getProduct.

Listing 9.8 StockResponse.java

package com.psol.stockq;

import java.io.*;

import java.sql.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class StockResponse

 extends DefaultHandler

{

 protected StringBuffer manufacturer = null,

 sku = null;

 protected final static int NONE = 0,

 GET_STOCK = 1,

 MANUFACTURER = 2,

 SKU = 3;

 protected int status = NONE;

 public void startDocument()

 throws SAXException

 {

 status = NONE;

 manufacturer = null;

 sku = null;

 }

 public void startElement(String namespaceURI,

 String localName,

 String rawName,

 Attributes atts)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Attributes atts)

 throws SAXException

 {

 if(localName.equals("getStock") &&

 namespaceURI.equals(Constants.PSOL_URI) &&

 NONE == status)

 status = GET_STOCK;

 else if(rawName.equals("manufacturer") &&

 GET_STOCK == status &&

 null == manufacturer)

 {

 manufacturer = new StringBuffer();

 status = MANUFACTURER;

 }

 else if(rawName.equals("sku") &&

 GET_STOCK == status &&

 null == sku)

 {

 sku = new StringBuffer();

 status = SKU;

 }

 }

 public void endElement(String namespaceURI,

 String localName,

 String rawName)

 throws SAXException

 {

 if(localName.equals("getStock") &&

 namespaceURI.equals(Constants.PSOL_URI) &&

 GET_STOCK == status)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GET_STOCK == status)

 status = NONE;

 else if(rawName.equals("manufacturer") &&

 MANUFACTURER == status)

 status = GET_STOCK;

 else if(rawName.equals("sku") && SKU == status)

 status = GET_STOCK;

 }

 public void characters(char[] ch,int start,int len)

 throws SAXException

 {

 if(SKU == status)

 sku.append(ch,start,len);

 else if(MANUFACTURER == status)

 manufacturer.append(ch,start,len);

 }

 public void writeResponse(Connection connection,

 XMLWriter writer)

 throws SQLException, IOException, SoapException

 {

 if(manufacturer == null || sku == null)

 throw new SoapException("Client",

 "Missing manufacturer or sku");

 PreparedStatement stmt =

 connection.prepareStatement("select level " +

 "from products where manufacturer=? and sku=?");

 try

 {

 stmt.setString(1,manufacturer.toString());

 stmt.setString(2,sku.toString());

 ResultSet rs = stmt.executeQuery();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ResultSet rs = stmt.executeQuery();

 try

 {

 writer.write("<psol:getStockResponse xmlns:psol='");

 writer.write(Constants.PSOL_URI);

 writer.write("'SOAP-ENV:encodingStyle='");

 writer.write(Constants.SOAPENCODING_URI);

 writer.write("'><stockq><manufacturer>");

 writer.write(manufacturer.toString());

 writer.write("</manufacturer><sku>");

 writer.write(sku.toString());

 writer.write("</sku><available>");

 if(rs.next())

 {

 writer.write("true</available><level>");

 writer.escape(rs.getString(1));

 }

 else

 writer.write("false</available><level>0");

 writer.write("</level></stockq>");

 writer.write("</psol:getStockResponse>");

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

StockResponse is also responsible for querying the database and writing the response in the
writeResponse() method. Notice that in so doing, it ignores the SOAP envelope that will be
added by SoapService:

public void writeResponse(Connection connection,

 XMLWriter writer)

 throws SQLException, IOException, SoapException

{

 if(manufacturer == null || sku == null)

 throw new SoapException("Client",

 "Missing manufacturer or sku");

 PreparedStatement stmt =

 connection.prepareStatement("select level " +

 "from products where manufacturer=? and sku=?");

 try

 {

 stmt.setString(1,manufacturer.toString());

 stmt.setString(2,sku.toString());

 ResultSet rs = stmt.executeQuery();

 try

 {

 writer.write("<psol:getStockResponse xmlns:psol='");

 writer.write(Constants.PSOL_URI);

 writer.write("'SOAP-ENV:encodingStyle='");

 writer.write(Constants.SOAPENCODING_URI);

 writer.write("'><stockq><manufacturer>");

 writer.write(manufacturer.toString());

 writer.write("</manufacturer><sku>");

 writer.write(sku.toString());

 writer.write("</sku><available>");

 if(rs.next())

 {

 writer.write("true</available><level>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write("true</available><level>");

 writer.escape(rs.getString(1));

 }

 else

 writer.write("false</available><level>0");

 writer.write("</level></stockq>");

 writer.write("</psol:getStockResponse>");

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

}

StockQService
StockQService, in Listing 9.9, is the actual servlet. It parses SOAP requests and writes the
response through StockResponse.

Listing 9.9 StockQService.java

package com.psol.stockq;

import java.io.*;

import java.sql.*;

import org.xml.sax.*;

import javax.servlet.*;

public class StockQService

 extends SoapService

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 extends SoapService

{

 public void init()

 throws ServletException

 {

 try

 {

 Class.forName(getInitParameter("driver"));

 }

 catch(ClassNotFoundException e)

 {

 throw new ServletException(e);

 }

 }

 public void doSoap(XMLReader reader,

 InputSource source,

 XMLWriter writer)

 throws IOException, SoapException, SAXException

 {

 StockResponse response = new StockResponse();

 reader.setContentHandler(response);

 reader.parse(source);

 try

 {

 String url = getInitParameter("url"),

 username = getInitParameter("username"),

 password = getInitParameter("password");

 Connection connection =

 DriverManager.getConnection(url,username,password);

 try

 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 response.writeResponse(connection,writer);

 }

 finally

 {

 connection.close();

 }

 }

 catch(SQLException e)

 {

 throw new SoapException("Server",

 "SQL: " + e.getMessage());

 }

 }

}

Warning

For SOAP, a one-to-one mapping between servlets and RPCs is not available. A
servlet can accept different RPCs: It should recognize them by their names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Stock Client

This section presents a simple client. In practice, the wholesaler would not write the client. It
would be left to the retailers to try to integrate the SOAP server in their existing applications.
However, for completeness and to enable testing, we will write a simple SOAP client.

Figure 9.6 illustrates the stock client. As always, little effort has gone into the user interface so
that the XML is more visible. The beauty of this client, however, is that it integrates the local
(retailer) and remote (wholesaler) databases.

Figure 9.6. The client provides an integrated view of the retailer and wholesaler data bases.

The client application starts by looking in the local database. It is only if the product is not
available locally that it connects to the wholesaler site and inquires about remote availability. The
client interprets the results as follows:

If the product is in stock locally, the client announces shipment within 24 hours.

If the product is not available locally but is available from the wholesaler, the client reports
shipment within 2–3 days.

If the product is back-ordered both locally and at the wholesaler, the client announces
shipment within 3–5 weeks.

Finally, if the product is not available with the wholesaler, the client announces a special
order.

SoapRequest
SoapRequest, in Listing 9.10, implements the SOAP protocol for requests: It prepares the
request, sends it over HTTP (as a POST request, ensuring it includes the required SOAPAction
header), and uses SoapEnvelope to decode the response.

Listing 9.10 SoapRequest.java

package com.psol.stockq;

import java.io.*;

import java.net.*;

import java.util.*;

import org.xml.sax.*;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public abstract class SoapRequest

 extends DefaultHandler

{

 protected String soapAction;

 public SoapRequest(String soapAction)

 {

 if(null == soapAction)

 soapAction = "\ "\ "";

 this.soapAction = '"'+ soapAction + '"';

 }

 public void invoke(URL server)

 throws IOException, SoapException, SAXException

 {

 HttpURLConnection conn =

 (HttpURLConnection)server.openConnection();

 conn.setDoOutput(true);

 conn.setDoInput(true);

 CharArrayWriter payload = new CharArrayWriter();

 payload.write("<?xml version='1.0'?>");

 payload.write("<SOAP-ENV:Envelope xmlns:SOAP-ENV='");

 payload.write(Constants.SOAPENV_URI);

 payload.write("'><SOAP-ENV:Body>");

 writeRequest(new XMLWriter(payload));

 payload.write("</SOAP-ENV:Body></SOAP-ENV:Envelope>");

 conn.setRequestProperty("Content-Length",

 String.valueOf(payload.size()));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 conn.setRequestMethod("POST");

 conn.setFollowRedirects(true);

 conn.setRequestProperty("Content-Type","text/xml");

 conn.setRequestProperty("SOAPAction",

 '"'+ soapAction + '"');

 Writer writer =

 new OutputStreamWriter(conn.getOutputStream(),"UTF-8");

 payload.writeTo(writer);

 writer.flush();

 conn.connect();

 XMLReader xmlReader =

 XMLReaderFactory.createXMLReader(Constants.SAXPARSER);

 xmlReader.setFeature(Constants.SAXNAMESPACES,true);

 SoapEnvelope soapEnvelope = new SoapEnvelope();

 soapEnvelope.setParent(xmlReader);

 soapEnvelope.setContentHandler(this);

 InputSource is = new InputSource(conn.getInputStream());

 soapEnvelope.parse(is);

 }

 public abstract void writeRequest(XMLWriter writer)

 throws IOException;

}

Actual requests must inherit from SoapRequest and overwrite its writeRequest() method.

Note that SoapRequest inherits from DefaultHandler and registers itself as a
ContentHandler while parsing the response. Therefore, descendants should implement
ContentHandler to extract data they need:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ContentHandler to extract data they need:

XMLReader xmlReader =

 XMLReaderFactory.createXMLReader(Constants.SAXPARSER);

xmlReader.setFeature(Constants.SAXNAMESPACES,true);

SoapEnvelope soapEnvelope = new SoapEnvelope();

soapEnvelope.setParent(xmlReader);

soapEnvelope.setContentHandler(this);

InputSource is = new InputSource(conn.getInputStream());

soapEnvelope.parse(is);

Warning

SoapRequest uses HttpURLConnection to execute the POST request. There is,
however, one caveat in using HttpURLConnection: If the server replies with a 500
code (for example, if a SOAP Fault has occurred), HttpURLConnection throws an
exception, and the application does not have a chance to parse the Fault object.

This is a hotly debated issue with SOAP. SOAP mandates the use of HTTP return
codes, but many proxies and libraries already interpret these codes and might choose
to discard the SOAP-ENV:Fault content.

StockRequest
As its name implies, StockRequest, in Listing 9.11, enables SoapRequest to handle stock
requests.

Listing 9.11 StockRequest.java

package com.psol.stockq;

import java.io.*;

import java.awt.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class StockRequest

 extends SoapRequest

{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{

 protected StringBuffer available = null,

 level = null;

 protected String manufacturer = null,

 sku = null,

 responseTag = null,

 responseNamespaceURI = null,

 resultTag = null,

 resultNamespaceURI = null;

 // ignore the manufacturer & sku

 protected final static int NONE = 0,

 RESPONSE = 1,

 RESULT = 2,

 AVAILABLE = 3,

 LEVEL = 4;

 protected int status = NONE;

 protected Label message;

 public StockRequest(Label message)

 {

 super(Constants.PSOL_URI);

 this.message = message;

 }

 public void startDocument()

 throws SAXException

 {

 status = NONE;

 available = null;

 level = null;

 manufacturer = null;

 sku = null;

 responseTag = null;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 responseTag = null;

 resultTag = null;

 }

 public void startElement(String namespaceURI,

 String localName,

 String rawName,

 Attributes atts)

 throws SAXException

 {

 if(NONE == status)

 {

 status = RESPONSE;

 responseNamespaceURI = namespaceURI;

 responseTag = localName;

 }

 else if(RESPONSE == status &&

 null == resultTag)

 {

 resultNamespaceURI = namespaceURI;

 resultTag = localName;

 status = RESULT;

 }

 else if(RESULT == status &&

 rawName.equals("available") &&

 null == available)

 {

 status = AVAILABLE;

 available = new StringBuffer();

 }

 else if(RESULT == status &&

 rawName.equals("level") &&

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 null == level)

 {

 status = LEVEL;

 level = new StringBuffer();

 }

 }

 public void endElement(String namespaceURI,

 String localName,

 String rawName)

 throws SAXException

 {

 if(namespaceURI.equals(resultNamespaceURI) &&

 localName.equals(resultTag) &&

 RESPONSE == status)

 status = NONE;

 else if(namespaceURI.equals(responseNamespaceURI) &&

 localName.equals(responseTag) &&

 RESULT == status)

 {

 status = RESPONSE;

 if(Boolean.valueOf(

 available.toString()).booleanValue())

 {

 int lvl = Integer.parseInt(level.toString());

 if(lvl <= 0)

 message.setText("Ships in 3-5 weeks");

 else

 message.setText("Ships in 2-3 days");

 }

 else

 message.setText("Special order");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 else if(rawName.equals("available") &&

 status == AVAILABLE)

 status = RESULT;

 else if(rawName.equals("level") &&

 status == LEVEL)

 status = RESULT;

 }

 public void characters(char[] ch,int start,int len)

 throws SAXException

 {

 if(AVAILABLE == status)

 available.append(ch,start,len);

 else if(LEVEL == status)

 level.append(ch,start,len);

 }

 public void setManufacturer(String manufacturer)

 {

 this.manufacturer = manufacturer;

 }

 public void setSku(String sku)

 {

 this.sku = sku;

 }

 public void writeRequest(XMLWriter writer)

 throws IOException

 {

 writer.write("<psol:getStock xmlns:psol='");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.write(Constants.PSOL_URI);

 writer.write("'SOAP-ENV:encodingStyle='");

 writer.write(Constants.SOAPENCODING_URI);

 writer.write("'><manufacturer>");

 writer.escape(manufacturer);

 writer.write("</manufacturer><sku>");

 writer.escape(sku);

 writer.write("</sku></psol:getStock>");

 }

}

StockRequest parses getStockResponse. It does not worry about SoapEnvelope because
the filter has already taken care of these events.

Parsing the response is not as easy as parsing the request. The SOAP protocol specifies that the
names of the response and result elements are irrelevant—they could be anything.
startElement() and endElement() must be careful not to make any assumptions about
them. In practice, startElement() uses variables to dynamically record the names of the
elements (an alternative would be to manage a stack):

public void startElement(String namespaceURI,

 String localName,

 String rawName,

 Attributes atts)

 throws SAXException

{

 if(NONE == status)

 {

 status = RESPONSE;

 responseNamespaceURI = namespaceURI;

 responseTag = localName;

 }

 else if(RESPONSE == status &&

 null == resultTag)

 {

 resultNamespaceURI = namespaceURI;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 resultTag = localName;

 status = RESULT;

 }

 else if(RESULT == status &&

 rawName.equals("available") &&

 null == available)

 {

 status = AVAILABLE;

 available = new StringBuffer();

 }

 else if(RESULT == status &&

 rawName.equals("level") &&

 null == level)

 {

 status = LEVEL;

 level = new StringBuffer();

 }

}

endElement() analyzes the result and computes the expected shipment dates for the user.
Note that this ContentHandler ignores the manufacturer and sku elements in the response:

else if(namespaceURI.equals(responseNamespaceURI) &&

 localName.equals(responseTag) &&

 RESULT == status)

{

 status = RESPONSE;

 if(Boolean.valueOf(

 available.toString()).booleanValue())

 {

 int lvl = Integer.parseInt(level.toString());

 if(lvl <= 0)

 message.setText("Ships in 3-5 weeks");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else

 message.setText("Ships in 2-3 days");

 }

 else

 message.setText("Special order");

}

StockQPanel
StockQPanel, in Listing 9.12, supports the user interface for the client application.

Listing 9.12 StockQPanel.java

package com.psol.stockq;

import java.io.*;

import java.sql.*;

import java.net.*;

import java.awt.*;

import org.xml.sax.*;

import java.awt.event.*;

public class StockQPanel

 extends Panel

{

 protected Connection connection;

 protected Choice products;

 protected TextComponent server;

 protected Label message;

 public StockQPanel(Connection connection)

 throws ClassNotFoundException, SQLException

 {

 this.connection = connection;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.connection = connection;

 setLayout(new BorderLayout());

 Panel topFields = new Panel();

 topFields.setLayout(new GridLayout(2,2));

 topFields.add(new Label("Server:"));

 server = new TextField("http://localhost:8080/stockq");

 topFields.add(server);

 topFields.add(new Label("Products:"));

 products = new Choice();

 topFields.add(products);

 Panel bottomFields = new Panel();

 bottomFields.setLayout(new GridLayout(2,1));

 Button check = new Button("Check");

 bottomFields.add(check);

 message = new Label("No product selected");

 bottomFields.add(message);

 add(topFields,"Center");

 add(bottomFields,"South");

 check.addActionListener(new ActionListener()

 {

 public void actionPerformed(ActionEvent evt)

 {

 checkStockLevel();

 }

 });

 Statement stmt = connection.createStatement();

 try

 {

 ResultSet rs = stmt.executeQuery(

 "select name from products");

 try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 while(rs.next())

 products.addItem(rs.getString(1));

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

 public void checkStockLevel()

 {

 message.setText("Checking...");

 try

 {

 PreparedStatement stmt =

 connection.prepareStatement("select level, " +

 "manufacturer, sku from products where name=?");

 try

 {

 stmt.setString(1,products.getSelectedItem());

 ResultSet rs = stmt.executeQuery();

 try

 {

 if(rs.next())

 {

 if(rs.getInt(1) > 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 message.setText("Ships in 24 hours");

 else

 {

 URL url = new URL(server.getText());

 StockRequest request =

 new StockRequest(message);

 request.setManufacturer(

 rs.getString(2));

 request.setSku(rs.getString(3));

 request.invoke(url);

 }

 }

 }

 finally

 {

 rs.close();

 }

 }

 finally

 {

 stmt.close();

 }

 }

 catch(SQLException e)

 {

 message.setText(e.getMessage());

 }

 catch(IOException e)

 {

 message.setText(e.getMessage());

 }

 catch(SoapException e)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catch(SoapException e)

 {

 message.setText(e.getCode() + ''+

 e.getMessage());

 }

 catch(SAXException e)

 {

 Exception ex = null == e.getException() ?

 e : e.getException();

 message.setText(e.getMessage());

 }

 }

}

checkStockLevel() packs all the fun. When the user clicks the button, it queries the local
database for the local stock level. If it finds that the product is in back order locally, it sends a
SOAP request to the wholesaler:

PreparedStatement stmt =

 connection.prepareStatement("select level, " +

 "manufacturer, sku from products where name=?");

try

{

 stmt.setString(1,products.getSelectedItem());

 ResultSet rs = stmt.executeQuery();

 try

 {

 if(rs.next())

 {

 if(rs.getInt(1) > 0)

 message.setText("Ships in 24 hours");

 else

 {

 URL url = new URL(server.getText());

 StockRequest request = new StockRequest(message);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 StockRequest request = new StockRequest(message);

 request.setManufacturer(rs.getString(2));

 request.setSku(rs.getString(3));

 request.invoke(url);

 }

 }

 }

 finally

 {

 rs.close();

 }

}

finally

{

 stmt.close();

}

StockQClient
StockQClient, in Listing 9.13, is the main() method of the application. It opens a window,
opens a connection to the local database, and adds the StockQPanel to the window.

Listing 9.13 StockQClient.java

package com.psol.stockq;

import java.io.*;

import java.net.*;

import java.sql.*;

import java.awt.*;

import java.util.*;

import org.xml.sax.*;

import java.awt.event.*;

import org.xml.sax.helpers.*;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class StockQClient

{

 public final static void main(String args[])

 throws IOException, SoapException, SAXException,

 ClassNotFoundException, SQLException

 {

 Properties properties = new Properties();

 properties.load(new FileInputStream("./cfg/client.prp"));

 Class.forName(properties.getProperty("driver"));

 String url = properties.getProperty("url"),

 username = properties.getProperty("username"),

 password = properties.getProperty("password");

 Connection connection =

 DriverManager.getConnection(url,username,password);

 try

 {

 Frame frame = new Frame();

 frame.add(new StockQPanel(connection));

 frame.pack();

 frame.setTitle("StockQ Client");

 frame.addWindowListener(new WindowAdapter()

 {

 public void windowClosing(WindowEvent evt)

 {

 System.exit(0);

 }

 });

 frame.show();

 try

 {

 Thread.currentThread().join();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 catch(InterruptedException e)

 { }

 }

 finally

 {

 connection.close();

 }

 }

}

Constants
Constants, in Listing 9.14, is a list of constants used throughout the project.

Listing 9.14 Constants.java

package com.psol.stockq;

public class Constants

{

 public static final String PSOL_URI =

 "http://www.psol.com/xmlns/stockq";

 public static final String SOAPENV_URI =

 "http://schemas.xmlsoap.org/soap/envelope/";

 public static final String SOAPENCODING_URI =

 "http://schemas.xmlsoap.org/soap/encoding/";

 public static final String SAXPARSER =

 "org.apache.xerces.parsers.SAXParser";

 public static final String SAXNAMESPACES =

 "http://xml.org/sax/features/namespaces";

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building and Running the Project

The StockQ project is available on the enclosed CD-ROM. Copy the project directory from the CD-ROM to your hard
disk. Under Windows, start the server by double-clicking server.bat. Next, you can double-click client.bat
inquire about the availability of the various products.

Warning

This project uses Jetty as its Web server. However, because it is based on servlets, it should be easy to adapt
to Web servers. You can add servlet support to most Web servers with JRun.

The project on the CD-ROM includes databases for the client and the server, but if you need to re-create them, you can
use Listings 9.15 and 9.16. Use Hypersonic SQL DatabaseManager to execute the script. To connect to the database,
do the following:

Select Hypersonic SQL Standalone.

The URLs are jdbc:HypersonicSQL:db/client and jdbc:HypersonicSQL:db/server

Listing 9.15 client.sql

CREATE TABLE products(name VARCHAR,manufacturer VARCHAR,sku VARCHAR,level INTEGER);

INSERT INTO products(name,manufacturer,sku,level) VALUES ('Email Client','Emailaholic',

'100',10);

INSERT INTO products(name,manufacturer,sku,level) VALUES ('Email Server','Emailaholic',

'200',-1);

INSERT INTO products(name,manufacturer,sku,level) VALUES ('Arcade Games','Playfield',

'101',1);

INSERT INTO products(name,manufacturer,sku,level) VALUES ('Mind Games','Playfield','202',

0);

INSERT INTO products(name,manufacturer,sku,level) VALUES ('Exclusive Games','Playfield',

'303',-1);

Listing 9.16 server.sql

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TABLE products(manufacturer VARCHAR,sku VARCHAR, level INTEGER);

INSERT INTO products(manufacturer,sku,level) VALUES ('Emailaholic','100',1000);

INSERT INTO products(manufacturer,sku,level) VALUES ('Emailaholic','200',-500);

INSERT INTO products(manufacturer,sku,level) VALUES ('Playfield','101',10);

INSERT INTO products(manufacturer,sku,level) VALUES ('Playfield','202',2);

Note

The project uses Hypersonic SQL for the database. Because Hypersonic SQL is a JDBC database, it should
be easy to adapt it to other JDBC databases (including Access, Oracle, and SQL Server).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Additional Resources

For some projects, you might want to turn to XML-RPC (http://www.xml-rpc.com). XML-RPC is
simpler to implement but also less efficient than SOAP. In particular, XML-RPC requests are
larger than SOAP requests.

However, because it was introduced before SOAP, XML-RPC has established a loyal user base.
It is expected that SOAP will gradually replace XML-RPC. In fact, you will find that the developers
of XML-RPC are among the editors of the SOAP protocol.

Another alternative to SOAP is WDDX from Allaire (http://www.wddx.org). WDDX specifies how to
encode data structure to send requests between different languages, such as ColdFusion, Java,
and JavaScript.

If you like SOAP but find it's too much work to implement it, you might want to use object libraries,
which essentially hide the protocol from you. At the time of writing, you can choose between the
following:

SOAP for Java (the reference implementation from IBM), available from
http://www.alphaworks.ibm.com

The reference implementation from DevelopMentor, available from
http://www.develop.com/SOAP

As has been discussed already, these libraries take a different approach and wrap Java objects in
a SOAP layer. In that respect, they are closer to distributed object brokers. As we discussed, it
might be seen as a blessing or a shortcoming, depending on the specifics of the project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Where to Now
This chapter concludes the set of projects and solutions based on XML. I hope that, as you read
through the solutions, you picked up valuable techniques, useful tips, and good ideas for your
next project.

As explained in the Introduction, I deliberately organized this book as a set of solutions because I
believe programmers learn more by studying listings and by sharing applications than by
reviewing more theoretical lessons.

However, I recognize that one of the dangers of the hands-on, solution-oriented format is that,
although this book covers a lot of ground, it is not always easy to see how things fit together. After
many exercises and listings, I'd like to use this chapter to review the lessons we have learned.

Although this chapter is more abstract than the other chapters, I hope you will find it to be useful
as you prepare to implement XML in your projects.

As you become more familiar with the techniques introduced in this book, I hope that you will see
how your regular projects can benefit from XML.

If you are unsure about which is the best approach, remember that action always beats inaction:
Flip through this book to find one or more examples that match your needs, reread the
appropriate chapters, and copy the listings. You're on your way to success. Don't be afraid to
make mistakes. You can learn a lot by reviewing your mistakes as well as those others make.

You will find that XML is a very flexible technology that works well for a wide range of problems. I
wish you lots of success.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML As a File Format

As you know, XML is an extensible syntax. It does not define elements or attributes—it's up to
you, the developer, to define them. One of the main issues for XML users is deciding on the
vocabulary they need for their applications. In some cases, they can turn to standard
vocabularies, such as RSS; in other cases, they will need to create their own.

I strongly believe that the best approach when deciding on a vocabulary for a given project is the
following two-step process:

1. Survey the market for existing vocabularies that match your needs. (xml.org is an
invaluable resource in that respect.)

2. Failing this, model your own vocabulary after existing file formats.

Unfortunately, XML is still young. After all, it was introduced only in 1998. Popular SGML DTDs,
such as DocBook and HTML, have been ported to XML. XSLFO is also available, so if you are
developing a publishing application, you will find good and stable vocabularies.

However, for other applications, chances are that no standard format exists yet. A lot of work is in
progress to define XML vocabularies for applications as diverse as multimedia (SMIL and SVG),
e-commerce (RosettaNet and ebXML), and content synchronization (SynchML), but the market
has not decided on the winning formats yet.

Therefore, for the time being, you might be stuck with developing your own vocabulary. As you go
through this process, I urge you to review existing file formats or legacy formats. Basing your new
format on something already in existence is more efficient than starting from scratch. Legacy
formats have accumulated tremendous experience and only a fool would want to ignore them.

However, you must walk a fine line between inspiration (not copying outright) and plagiarism. As
you review legacy formats, use them for inspiration but don't feel bound by their limitations. Often,
legacy formats have technical limitations that are no longer relevant with XML.

For example, in Chapters 5, "Export to Any Format," and 6, "Import from Any Format," I
introduced an XML order that is inspired by a legacy order (EDIFACT). The XML order follows the
same data model as the EDIFACT order with buyer, seller, and product lines. However, the
similarities end there—the XML document takes advantage of XML, for example, by making the
relationship between lines and products more explicit than in EDIFACT.

As you can see, I used EDIFACT for inspiration, but I didn't feel limited by EDIFACT's technical
constraints.

To help you succeed, I urge you to use a modeling language, such as UML. In most cases, it is
safer than trying to create a DTD from scratch—particularly if you are not yet experienced with
XML.

The following are two serious advantages to going through a data model:

1. UML is well accepted and widely understood. This enables you to share your design with
other programmers who might not be familiar with XML. Therefore, you can benefit from
their experience.

2. The UML model is more abstract than the underlying XML vocabulary. The effort required
to model at a higher level of abstraction guarantees that you will tend toward inspiration
rather than plagiarism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Publishing Versus Data

Most people classify XML applications as either publishing or data applications. Publishing
applications are related to Web publishing, printing, and email. Data applications deal with
databases, application integration, and e-commerce.

This is a sound distinction at the modeling and architectural levels. You would not want to design
an e-commerce solution in the same way you would design a publishing solution.

Yet, at the technical level, the distinction blurs. In fact, I have often found that to benefit from
XML, you must think creatively, outside the two boxes.

Let's look at a few examples. Chapter 3, "Electronic Forms," presents an XML editor, which is a
publishing tool. However, it is used in a forms-based application, and forms are typically classified
as database applications. So, Chapter 3 uses a publishing tool in a non-publishing context…with
great success.

Another example is XSLT. XSLT is a style sheet language—originally a publishing technology.
Yet, as Chapter 7, "Write an e-Commerce Server," demonstrates, it works very well for data
applications such as e-commerce.

Conversely, Chapter 8, "Organize Teamwork Between Developers and Designers," uses a data
solution (servlets) for a publishing application (Web site publishing).

This is what I mean by thinking outside the two boxes. Knowing whether you are building a
publishing or data application is useful, but these distinctions do not necessarily hold at the
technical level.

In my experience, the maximum benefits are often derived at the edges—when you take a
solution that was originally developed in one context and apply it in the other context.

To me, this is what makes XML powerful and attractive. It is a flexible technology that works well
across a broad range of applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Flexible, Generic Tools

This leads me to generic and flexible tools. As a programmer, what makes XML attractive to me is
the ample supply of quality tools.

This book covers three important tools with which any XML programmer should be familiar:

The XSLT processor— XSLT is a very effective scripting language that you need to
master if you are serious about XML programming. As Chapters 5 and 6 demonstrate,
XSLT easily can be extended with new elements, functions, or formatters.

The XML parser— Chapter 3 uses a DOM parser, but the other chapters rely on a SAX
parser. A DOM parser is ideal if the application manipulates XML documents (such as an
editor). SAX is the best choice for other applications. In other words, SAX is appropriate
when the application has its own object structure.

The XML editor— I found that many developers neglect the XML editor. However, a good
editor is an ideal starting point for a data-entry application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

e-Commerce

e-Commerce is one of my pet topics. In 1997, with three colleagues, I founded the XML/EDI
Group (http://www.xmledi.com). We believed that an open, extensible, standard format was
required for business-to-business e-commerce.

I have debated this point at length in various forums (one of the most recent examples is at
http://www.pineapplesoft.com/newsletter/20000601_ecommerce.html). Let me try to summarize it
for you.

One of the fundamental laws of a capitalist economy is that the transparent market, one in which
every player has access to all product and pricing information, is the ideal market. The
transparent market will, over time, converge toward the best pricing for the best products with the
best level of services.

That's the economic theory, at least. In practice, creating transparent markets is very difficult. The
stock market and, possibly, eBay are the best approximations in existence. Yet, the theory is
useful in guiding our actions. For example, anti-trust laws are derived directly from this theory.

When it comes to the Internet, you can read this law in many interesting ways, and XML is one of
the most interesting readings. The Internet has proven such a fertile soil for the development of e-
commerce and the so-called new economy because it is a good basis on which to build a
relatively transparent market.

To achieve a transparent market, it is essential that every actor, no matter how big or small it is,
no matter which operating system it uses, and no matter which accounting package it has
installed, can participate.

In the consumer space, HTML fits the bill. HTML is a neutral format that enables buyers and
sellers to meet and conduct business activities electronically.

However, because HTML is a formatting language, it is appropriate only for low volumes of
transactions. As we saw in Chapter 5, to handle larger volumes (as required in business-to-
business e-commerce), HTML is not appropriate. Instead we need a more structured format, such
as XML.

I'm often asked, "Why XML? Why not [insert a format name here]?" One of the reasons is that
XML is a standard. It is not only a formal standard maintained by the W3C but, more importantly,
it is an industry standard. It is used and adopted by most e-commerce players.

The second reason is that it is an open standard. As discussed before, it is crucial that every
business—no matter how small or how exotic their operating systems—can participate. If you are
curious, I am running Windows, but it does not mean I don't want to do business with Linux, Mac,
and Palm users.

Furthermore, the solution must be cheap. Expensive solutions are accessible only to large
businesses. To reach a more transparent market, a cheap solution is necessary—a solution that
is affordable for large and small businesses.

Frankly, at the time of writing, we're not there yet. Chapter 7 is an e-commerce application, and,
although it is not complex, it remains costly to build and costly to deploy.

However, I am confident that we will witness the same evolution as we have in the consumer
arena. Until 1996 or 1997, if you had come to me and inquired about building an online shop, I
would have fired up my programmer's editor and written one for you. Few businesses could afford
it, though.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In 1997, I would have sold you a product. I don't remember the exact figures, but depending on
the options, the cost was between $3,500 and $10,000. That was still expensive.

Today, most ISPs offer shopping carts for $50–$200 per month. In addition, HTML editors, such
as NetObjects, enable you to edit and manage your shop from your desktop.

At the time of writing, XML is similar to what HTML was like in 1996. It requires a lot of custom
programming, but the first generation of products (the expensive ones) is appearing on the
market.

I would be surprised if prices don't go down. In a couple of years, most ISPs will offer an XML-
based e-commerce module as part of their standard package. At that point, we'll have a more
transparent market.

I hope this book succeeded in teaching you how to write applications for this new market.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. XML Reference
XML Elements

XML Document

Entities

Namespaces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML Elements

Elements are the basis of XML documents. Indeed, an XML document is essentially a tree of
elements. Elements are made of the following:

A name

An optional content

An optional list of attributes

The following is a library element made up of two loan elements. Each loan in turn contains
a member and a title element. loan elements have a date attribute, whereas member and
title contain text:

 <library>

 <loan date="2000-03-27">

 <member>Jack Smith</member>

 <title>XML by Example</title>

 </loan>

 <loan date="2000-03-12">

 <member>John Doe</member>

 <title>Applied XML Solutions</title>

 </loan>

 </library>

Unlike HTML, no element is predefined by XML. It is up to you, the developer, to create tags that
are meaningful in your application.

Element Name

The element name must start with a Unicode letter, followed by zero or more Unicode letters or
digits. Also, spaces are not allowed. Names are case sensitive and cannot start with the three
letters XML (upper- or lowercase).

In the document, the element name appears within tags (start tag and end tag). The tags
surrounds the content, as in

 <title>Applied XML Solutions</title>

Content

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If an element has no content, it is said to be empty. Non-empty elements contain text, other
elements, or a combination of both. In other words, elements can nest to form a tree.

Empty elements have a simplified syntax where the slash (/) from the end tag migrates at the end
of the start tag:

 <book isbn='0-672-32054-1'/>

Attribute

An attribute is made up of a name and a value attached to an element. Attribute names follow the
same rules as element names.

Attributes appear in the element's start tag. The element name and its value are separated by an
equal sign, and the value is located between single or double quotes. For example

 <book isbn='0-672-32054-1'/>

or

 <loan date="2000-03-12">

 <member>John Doe</member>

 <title>Applied XML Solutions</title>

 </loan>

Predefined Attributes

Two attributes are predefined by the XML standard:

xml:lang, which is the content language

xml:space, which indicates that spaces must be preserved in the content of the element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML Document

In its simplest form, an XML document is one (and only one) element. This top-level element is
called the root. However, because an element can contain other elements, the document can be
large and complex.

The only rule to remember is that the document cannot have more than one root. The following is
a valid XML document:

 <set>

 <book isbn='0-672-32054-1'/>

 <book isbn='0-7897-2215-1'/>

 </set>

XML Declaration

The document can start with an optional XML declaration. The declaration has a number of
attributes to specify:

The version of XML in use (at this time 1.0). This attribute is required.

The character set encoding in use (if not using a standard Unicode encoding such as UTF-
8 or UTF-16). This attribute is optional.

Whether the document is standalone; in other words, whether the XML parser must read
an external file (such as the external DTD subset) to properly decode it. This attribute is
optional.

The following document has a declaration with optional encoding and standalone attributes:

 <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

 <set>

 <book isbn='0-672-32054-1'/>

 <book isbn='0-7897-2242-9'/>

 </set>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document Type Declaration

An optional model can be associated to the document, such as a Document Type Definition
(DTD), or another model, such as the forthcoming XML Schema. The document references the
model in the document type declaration (not to be confused with the DTD):

 <?xml version="1.0"?>

 <!DOCTYPE set SYSTEM "http://www.psol.com/axs/bookset.dtd">

 <set>

 <book isbn='0-672-32054-1'/>

 <book isbn='0-7897-2242-9'/>

 </set>

The document type declaration can be any of the following:

SYSTEM, pointing to a system identifier (a file or an URI)

PUBLIC, including a so-called public identifier of the form -//Pineapplesoft//Book
Set//EN

A copy of the model between square brackets

A combination of the above

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Entities

The content of an element can include entities. An entity is shorthand for a piece of text. Entities
are declared in the DTD (see the previous section) and have a name and a content. In addition,
entities are inserted in the document between the & and ; characters.

Assuming the entity axs was declared with the content Applied XML Solutions, the parser
will resolve

 <title>&axs;</title>

as

 <title>Applied XML Solutions</title>

Predefined Entities

XML predefines a small number of entities to escape special characters:

<—Stands for <

&—Stands for &

>—Stands for >

'—Stands for '

"—Stands for "

Character Entities

XML also defines character entities. A character entity references a single Unicode character.
They are typically used to call characters that are not legal in the current encoding.

The name of character entities has the form # number , where number is the Unicode code for
the character. For example, © is Unicode character 169, so

 <notice>© 2000, Pineapplesoft</notice>

is equivalent to

 <notice>© 2000, Pineapplesoft</notice>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Namespaces

Because XML is extensible, anybody or any organization can draft its own tags. This raises the risk that two different
organizations or people will use the same tag with different meanings.

The namespace mechanism is a small extension to XML to clearly label the owner of a tag. The mechanism builds on
the familiar URIs (URLs and URNs).

For example, the following uses the element title as defined in the context of namespace
http://www.psol.com/axs/library. The namespace is declared (with the xmlns attribute) and bound to a prefix (

 <psol:title xmlns:psol="http://www.psol.com/axs/library">Applied XML Solutions</psol:

title>

Although simple, namespace is the source of much confusion so let's debunk two of the most common errors:

The URI is only an identifier; it doesn't need to point to a description of the element.

The prefix is used only as a shorthand for the URI because the URIs are typically large and include characters not
valid for XML names.

It is probably easier if you forget the prefix and think of the document as

 <http://www.psol.com/axs/library:title>Applied XML Solutions </http://www.psol.com/

axs/library:title>

In practice, however, this would be verbose and the element name would include illegal characters (such as
the prefix mechanism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Parser Reference
This appendix is a reference of the main SAX2 API for Java. The definitive reference is at
http://www.megginson.com/SAX . The SAX2 distribution includes SAX1 as deprecated classes,
interfaces, and methods. This appendix concentrates on SAX2 only.

Unless otherwise noted, these classes and interfaces reside in the org.xml.sax package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XMLReader
XMLReader is the main interface to the parser. The application must create an instance of
XMLReader and register the appropriate event handlers with it.

Registering Event Handlers

The following methods are used to register event handlers:

void setContentHandler(ContentHandler handler)/ContentHandler
getContentHandler()—Register a ContentHandler.

void setDTDHandler(DTDHandler handler)/DTDHandler getDTDHandler()—
Register a DTDHandler.

void setErrorHandler(ErrorHandler handler)/ErrorHandler
getErrorHandler()—Register an ErrorHandler.

void setEntityResolver(EntityResolver resolver)/EntityResolver
getEntityResolver()—Register an EntityResolver.

Parsing

The following are the two parse() methods:

void parse(InputSource input)—Parses an XML document identified by an
InputSource.

void parse(String systemId)—Parses an XML document from a system identifier
(typically a URI).

Features and Properties

XMLReader also offers methods to parsing options:

void setFeature(String name,boolean value)/boolean getFeature(String
name)—Set a feature; a feature has a Boolean value and is identified by a name.

void setProperty(String name,Object value)/Object getProperty(String
name)—Set a property; a property has an object value and is identified by a name.

Similar to namespaces, feature and property names are URIs. This limits the risk that two
developers would define conflicting features or properties with the same name.

Parser developers are free to implement their own features and properties. The SAX2
specification defines the following standard features. The first two features are mandatory for
SAX2 parsers:

http://xml.org/sax/features/namespaces—When true, the parser must process
namespaces. When false, the parser is free to process them as it sees fit.

http://xml.org/sax/features/namespace-prefixes—When true, the parser must report the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://xml.org/sax/features/namespace-prefixes—When true, the parser must report the
original prefixed names and attributes used for namespace declarations.

http://xml.org/sax/features/string-interning—when true , all names are internalized strings.
When false, strings are internalized as the parser sees fit.

http://xml.org/sax/features/validation—Turns on and off validation errors.

http://xml.org/sax/features/external-general-entities— Controls the inclusion of external
general entities.

http://xml.org/sax/features/external-parameter-entities— Controls the inclusion of external
parameter entities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ContentHandler
The ContentHandler interface defines the events for the content of the document. To register
for content-related events, applications must implement this interface. The events are as follows:

void setDocumentLocator(Locator locator)—Optionally called by the parser
before any other event to pass a locator to the event handler

void startDocument()/void endDocument()—Start/end of document

void startPrefixMapping(String prefix,String uri)/void
endPrefixMapping(String prefix)—Start/end of scope for prefix mapping when
processing namespaces

void startElement(String namespaceURI,String localName,String
qName, Attributes atts)/void endElement(String namespaceURI,String
localName, String qName)—Start/end of element

void characters(char[] ch,int start,int length)—Character data

void ignorableWhitespace(char] ch,int start,int length)—Ignorable
whitespaces, as defined by the XML recommendation

void processingInstruction(String target, String data)—Processing
instruction

void skippedEntity(String name)—Skipped entity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DTDHandler
The DTDHandler interface defines events for a minimalist processing of DTD. The two events
are as follows:

void notationDecl(String name, String publicId,String systemId)—
Notation declaration

void unparsedEntityDecl(String name,String publicId,String
systemId, String notationName)—Unparsed entity declaration

Tip

For more comprehensive information on the DTD, turn to the DeclHandler interface
in the org.xml.sax.ext package. However, this is a SAX2 extension and not every
parser recognizes it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ErrorHandler
The ErrorHandler interface receives notifications of errors. It defines three methods to match
the three levels of errors in the XML recommendation:

void warning(SAXParseException exception)—A warning

void error(SAXParseException exception)—A recoverable error

void fatalError(SAXParseException exception)—A non-recoverable error

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EntityResolver
Few applications will need to implement the EntityResolver interface. EntityResolver
enables the application to resolve external entities—for example, by loading the entity from a
database. By default, the parser resolves most external entities as URIs.

The interface defines only one method:

InputSource resolveEntity(String publicId,String systemId)—Enables
the application to return the appropriate InputSource for this entity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InputSource
The parser uses this class to read entities. In most cases, the application creates an
InputSource with one of its four constructors. The constructors with InputStream and
Reader are particularly useful:

InputSource()—Default constructor.

InputSource(InputStream byteStream)—The source is an InputStream.

InputSource(Reader characterStream)—The source is a character reader.

InputSource(String systemId)—The source is a URI that the parser must resolve.

InputSource also defines the following methods. They read the entity:

void setByteStream(InputStream byteStream)/InputStream
getByteStream()—Get the InputStream for this input source

void setCharacterStream(Reader characterStream)/Reader
getCharacterStream()—Get the reader for this input source

void setEncoding(String encoding)/String getEncoding()—Get the
character encoding for the InputStream or URI

void setPublicId(String publicId)/String getPublicId()—Get the public
identifier for this entity

void setSystemId(String systemId)/String getSystemId()—Get the system
identifier for this entity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attributes
This interface, used by startElement(), enables the application to access the element
attributes. The various methods are as follows:

int getLength()—Returns the number of attributes in the list

String getValue(int index)/String getValue(String qName)/String
getValue(String uri, String localName)—Return the attribute's value by index
or by XML 1.0 qualified name, respectively

String getType(int index)/String getType(java.lang.String
qName)/String getType(String uri,String localName)—Return the attribute's
type by index, by XML 1.0 qualified name, or by namespace, respectively

String getQName(int index)—Returns the attribute XML 1.0 qualified name by index

String getURI(int index)—Returns the attribute's namespace URI by index

String getLocalName(int index)—Returns the attribute local name by index

int getIndex(String qName)/int getIndex(String uri,String
localPart)—Return the index of an attribute from XML 1.0 qualified name or by using its
namespace, respectively

Warning

Beware that Attributes is valid only during the call to startElement(). If you
need to store Attributes for later processing, make a copy with
org.xml.sax.helpers.AttributeImpl.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Locator
The SAX parser uses an instance of Locator to provide location information (line and column).
The four methods are as follows:

int getColumnNumber()—The column where the current event ends

int getLineNumber()—The line where the current event ends

String getPublicId()—The public identifier for the current event

String getSystemId()—The system identifier for the current event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exceptions

SAX2 also defines the following exceptions:

SAXException—A generic exception

SAXParseException—Indicates a parsing error

SAXNotRecognizedException—Thrown by getFeature/setFeature/
getProperty/setProperty to indicate an unknown feature or property

SAXNotSupportedException—Thrown by getFeature/setFeature/
getProperty/setProperty to indicate a feature or property that is known but not
supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XMLFilter
XMLFilter extends XMLReader with two methods:

XMLReader getParent()—Gets the parent reader

void setParent(XMLReader parent)—Sets the parent reader

An XMLFilter is similar to an XMLReader, but it obtains its events from another XMLReader.
Typically, the XMLFilter filters some or all of the events.

Tip

XMLFilterImpl , in the org.xml.sax.helpers package, is convenient when
implementing filters. The class forwards the events from its parents to the appropriate
event handlers. Your application needs to override only those events it must filter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XMLReaderFactory
XMLReaderFactory helps create XMLReader. This class is in the org.xml.sax.helpers
package. It defines two static methods:

static XMLReader createXMLReader()—Creates an XML reader using the value of
the org.xml.sax.driver system property as the parser classname

static XMLReader createXMLReader(String className)—Creates an XML
reader from a classname

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DefaultHandler
This class provides default implementations for events in the ContentHandler, DTDHandler,
EntityResolver, and ErrorHandler interfaces.

This is convenient when your application needs to register with only a few events. It derives from
DefaultHandler instead of implementing the original interface.

This class is in the org.xml.sax.helpers package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. XSLT Reference
This appendix summarizes the most commonly used XSLT aspects. It does not pretend to be a
complete reference, but a reference to the most commonly used XSLT elements and functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Style Sheet

An XSLT style sheet is an XML document. Its root element is an xsl:stylesheet where the
xsl prefix is bound to http://www.w3.org/1999/XSL/Transform. Its main attribute is version,
which, for the time being, must have the value "1.0":

 <xsl:stylesheet

 version="1.0"

 xmlns:xsl=" http://www.w3.org/1999/XSL/Transform">

 <!-- content deleted -->

 </xsl:stylesheet>

Output

One of the first elements within xsl:stylesheet should be xsl:output. xsl:output
specifies how the processor should write the output. Note that the processor may elect to ignore
this recommendation:

 <xsl:output method="xml"/>

The most commonly used attributes are as follows:

method—Its value can be xml, html, text, or another name. The method selects the
formatter; for example, xml follows the XML syntax (
), whereas html follows the
HTML syntax (
).

encoding—Controls the XML encoding; for example, UTF-8, UTF-16, ISO-8859-1, and
so on.

media-type—Is the MIME type of the result; for example, text/xml,
application/xml, text/plain, and so on.

omit-xml-declaration—Controls whether the processor should output an XML
declaration. The value is either yes or no.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Templates

The bulk of a style sheet is a list of templates (xsl:template). The templates describe the
various steps in the transformation. Most templates match an XPath (see the section XPath later
in this chapter). The template content describes the corresponding output:

 <xsl:template match="Title">

 <H1><xsl:apply-templates/></H1>

 </xsl:template>

Priority and Mode

The priority and mode attributes control which template is used when two or more templates
match the same name. priority boosts or lowers a template's priority:

 <xsl:template match="Title" priority="-1">

 <H1><xsl:apply-templates/></H1>

 </xsl:template>

mode allows an element to be processed several times by various templates:

 <xsl:template match="Title" mode="toc">

 <H1><xsl:apply-templates mode="toc"/></H1>

 </xsl:template>

Named Templates

Named templates are similar to functions: They can be invoked by their names (a name attribute)
and accept parameters:

 <xsl:template name="label-it">

 <xsl:param name="label"/>

 <xsl:value-of select="$label">: <xsl:apply-templates/>

 </xsl:template>

Named templates are called through an xsl:call-template element. xsl:call-template
applies the template to the current node:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:call-template name="label-it">

 <xsl:with-param name="">Title</xsl:with-param>

 </xsl:call-template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Template Content

The content of the template specifies what output it will generate. Typically, the template contains a
mixture of text, XML elements, and XSL instructions.

Two styles for writing templates exist. A template can be input directed or output controlled. The two
modes are not exclusive; in fact, many style sheets effectively combine the two.

Input Directed

These templates are guided by the input document. Essentially, the processor recursively walks the
input document, selects a template that matches the current node, and applies it.

The xsl:apply-templates element moves one level down in the input document, kicking in the
recursion:

 <xsl:template match="Title">

 <H1><xsl:apply-templates/></H1>

 </xsl:template>

The select and mode attributes control how the processor walks the input tree. For more information
about mode, see the section Priority and Mode earlier in the chapter. select is an XPath that controls
which nodes the processor visits next:

 <xsl:template match="Body">

 <H1><xsl:apply-templates select="Section/Title"/></H1>

 </xsl:template>

Output Controlled

When the output is regular and well defined, it is more efficient to use xsl:for-each in combination
with xsl:value-of elements:

 <xsl:template match="Body">

 <xsl:for-each select="Title">

 <H1><xsl:value-of select="."/></H1>

 </xsl:for-each>

 </xsl:template>

XML Elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To generate XML elements in the output document, insert them in a template:

 <xsl:template match="Date">

 <PODate><xsl:apply-templates/></PODate>

 </xsl:template>

Alternatively, a style sheet can compute elements with xsl:element, which can compute the
element name from the style sheet:

 <xsl:template match="Field">

 <xsl:element name="{ @id}">

 <xsl:apply-templates/>

 </xsl:element>

 </xsl:template>

Tip

The xsl:namespace-alias enables you to transform namespaces between the input and
output documents. It is typically used for style sheets that need to output elements in the
XSL namespace:

 <xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:alias="http://www.psol.com/XSL/Alias">

 <xsl:namespace-alias stylesheet-prefix="alias"

 result-prefix="xsl"/>

 <!-- templates deleted-->

 </xsl:stylesheet>

XML Attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Likewise, to generate attributes in the output document, insert them in the template:

 <xsl:template match="Date">

 <PODate format="ISO"><xsl:apply-templates/></PODate>

 </xsl:template>

If the value of the attribute is an XPath, you must enclose it in curly brackets:

 <xsl:template match="Date">

 <PODate format="{ Format}"><xsl:apply-templates/></PODate>

 </xsl:template>

On the other hand, a style sheet can compute elements with xsl:attribute, which computes the
attribute name or value from the style sheet:

 <xsl:template match="Date">

 <PODate><xsl:attribute name="format"/>

 <xsl:call-template name="get-format"/>

 </xsl:attribute></PODate>

 </xsl:template>

Text

In most cases, to output text, you type it in the template. However, to gain better control on how the
processor interprets whitespaces, you should mark up the text with an xsl:text element:

 <xsl:template match="Date">

 <xsl:text>Date: </xsl:text>

 <xsl:value-of select=".">

 </xsl:template>

Tip

To insert entities in the output—particularly HTML entities such as —write the
following:

 <xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XPath

XPath select elements in the source XML document. The paths are very similar to paths on a file
system. Elements are separated by the / character. A single / points to the root of the document.
The *, ., and .. characters behave as you would expect (all nodes, current node, and node
parent). Here are some absolute paths, starting from the root of the document:

 /

 /Body/Title

 /Body/attribute::*

 /Body/Section/Para/Image

The following, on the other hand, are some relative paths, starting from the current node:

 .

 Title

 Invoice/Date

 ../Code

The / separator selects only direct descendants, whereas the // separator selects all
descendants:

 //Para

 Body//Image

To select attributes, prefix them with the @ character:

 Total/Amount/@Currency

 @xml:lang

For the text content of a node, use the text() function:

 Para/text()

Use predicates to restrict the path to elements that meet a certain condition. Predicates appear
between square brackets after the element to which they apply:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /Body/Para[2]

 Invoice/Product[@type="book"]/Code

 Section[Status="Draft" and Editor="PZ"]

Axes

XPath uses axes to control how the processor walks the tree. By default, the processor uses the
child axis, but you can select any axis by prefixing the element with the axis name followed by
::. Axes are used for advanced style sheets when you need fine control over which nodes will be
selected:

 child::Para

 Section/following::Footnote

The most useful axes are as follows:

following and preceding—Contain the nodes that are after or before the current node,
excluding descendants, attributes, and namespace nodes.

following-sibling and preceding-sibling—Contain the following or preceding
siblings of the current node.

attribute—Contains the attributes of the current node.

namespace—Contains the namespace nodes of the context node.

self—Contains the context node itself.

descendant-or-self and ancestor-or-self—Contain the current node and its
descendant or ancestor nodes.

Note

The .., //, and @ characters are shorthand for the parent, descendant-or-self,
and attribute axes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Combining Style Sheets

Two solutions to combine two or more style sheets are available: inclusion or importing. Style
sheet inclusion, through xsl:include, appends the templates of the included style sheet in the
current style sheet. If a template is defined in both style sheets, a duplicate definition results:

 <xsl:include href="common.xsl"/>

Importing is more sophisticated. Similar to inclusion, it appends templates from the imported style
sheet in the current one. However, the current style sheet can redefine some (or all, although it is
less useful) of the imported templates. The redefined templates take precedence over the
imported ones:

 <xsl:import href="common.xsl"/>

Templates that override imported templates can call the original definition with xsl:apply-
imports:

 <xsl:template match="Title">

 <xsl:apply-imports/>

 </xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parameters and Variables

Style sheets and templates can use parameters and variables. Both are names bound to a value.
The difference is that a parameter only binds a default value, which can be overridden by the
caller:

 <xsl:variable name="amount" select="/Invoice/Total"/>

 <xsl:param name="label">Date: </xsl:param>

The value of the variable or parameter is accessible in XPath by prefixing the name with a dollar
sign ($):

 $date/Currency

 $label

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tests and Conditions

xsl:if offers the equivalent of an if statement. The content of xsl:if is generated if the test is
true:

 <xsl:if test="not(position()=last())">| </xsl:if>

xsl:choose is the equivalent of the Java switch statement. It selects one among a number of
possible alternatives:

 <xsl:choose>

 <xsl:when test="Currency='USD'">Dollars</xsl:when>

 <xsl:when test="Currency='EUR'">Euros</xsl:when>

 <xsl:when test="Currency='BEF'">Belgian Francs</xsl:when>

 <xsl:when test="Currency='CAD'">Canadian Dollars</xsl:when>

 </xsl:choose>

Tip

There is no direct equivalent for the if/then/else statement in XSLT, but it can be
simulated as follows:

 <xsl:choose/>

 <xsl:when test="Confidential='true'">

 For Your Eyes Only

 </xsl:when>

 <xsl:otherwise>You Can Circulate</xsl:otherwise>

 </xsl:choose>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Functions

XPath and XSLT define many functions. Most of these functions take an XPath for a parameter.
However, when called with no parameter, they apply to the current node:

 position("//Product")

 position()

The following are the most useful functions:

position()—Returns the position of the expression evaluation context.

last()—Returns the position of the last node from the expression evaluation context.

count()—Returns the number of nodes from the expression evaluation context.

string()—Converts its parameter to a string.

substring()—Returns a substring of the first argument.

not()—Performs a logical not.

format-number()—Converts its first argument to a string using a format pattern.

generate-id()—Returns a string that uniquely identifies the current node. If the function
is called again on the same node, it will return the same ID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copying

xsl:copy creates a copy of the current node in the output document. The identity transformation
is written as follows:

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extensions

It is possible to extend XSLT with new elements and new functions. However, extensions must be
introduced in a special namespace. For elements, the extension namespace must be registered
with either the extension-element-prefixes of xsl:stylesheet or an xsl:extension-
element-prefixes attribute attached to an element:

 <xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:axslt="http://xml.apache.org/xslt"

 xmlns:psol="http://www.psol.com/xsledi/extensions"

 extension-element-prefixes="psol"

 version="1.0">

 <!-- deleted -->

 </xsl;stylesheet>

Extension functions must also be declared in a special namespace, although it doesn't need to be
registered with xsl:extension-element-prefixes or a similar attribute. A function with a
namespace prefix is an extension function:

 psol:query-db($name)

Warning

XSLT does not specify how to link extension elements and functions with Java code.
This is left to the processor writer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

(pound sign)
$ (dollar sign)
$COMMENT pseudo-element
$DOCUMENT pseudo-element
$PROCINS pseudo-element
&
 (ampersand)
 amp[semicolon] entity
 apos[semicolon] entity
 lt[semicolon] entity
 qt[semicolon] entity
 quot[semicolon] entity
() (colon) 2nd 3rd 4th 5th 6th
() (less than sign)
()anchor() element
()answer() statement 2nd
()b() elements
()block() statement
()eq() statement 2nd
()go() element
()if() statement
()item() elements
()p() element
()save() statement
()small() element
()text() statement 2nd
+ (plus sign) 2nd 3rd 4th 5th 6th
.. (double dot). [See also parent axis]
.rss extensions
/ (slash) 2nd 3rd 4th
// (double slash)
// (double slash). [See also descendant-or-self axis]
? (question mark) 2nd 3rd 4th
@ (at sign)
@ (at sign). [See also attribute axis]
~event.tbr file 2nd
4thpass Kbrowser
4thpass Web site

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Abraxas Web site 2nd
absolute paths
Abstract Window Toolkit. [See AWT]
Accept field
Accept headers 2nd 3rd
accept() method 2nd 3rd 4th 5th
accepting
 RPCs
 servlets
ActiveSAX
adding
 servlet support to Web servers 2nd
additional resources
 converting XML documents
 DocBook DTD
 EDIFACT 2nd
 ICE (Information Content and Exchange Protocol)
 models
 Open eBook
 XHTML 2nd
 XML-based scripting languages
address
 email
 inserting into documents 2nd 3rd 4th
Aho, Alfred V., et al.
 Compilers Principles, Techniques and Tools [ital]
ampersand (&
)
ancestor-or-self axis
ANSI X12
ANTLR compiler-compiler
ANTLR Web site
Apache Web site 2nd 3rd 4th
APIs
application servers
applications
 data 2nd
 e-commerce
 architecture 2nd
 publishing 2nd
applications (JavaScript)
 EditOrder
Apply Layout button
apply() method 2nd 3rd
applying
 builder pattern 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 style sheets 2nd 3rd 4th
 visitor pattern 2nd 3rd 4th 5th 6th 7th 8th
architecture
 e-commerce applications 2nd
arg1 property
arg2 property
Ariba Web site
at sign (@)
at sign (@). [See also attribute axis]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

attribute
 media-type
attribute axis 2nd
Attributes 2nd 3rd
attributes
 encoding
 id
 match 2nd
 method
 mode 2nd 3rd
 mustUnderstand
 omit-xml-declaration
 priority 2nd
 select
 selecting
 SOAP-ENV()encodingStyle
 title
 version
 XML
 generating 2nd
 xsi()type
attributes (elements) 2nd
 defined
 predefined attributes 2nd
authoring
 Web pages 2nd
 RSS
automating
 publishing 2nd
available field
avoiding
 script errors
AWT (Abstract Window Toolkit)
axes 2nd 3rd
 ancestor-or-self
 attribute 2nd
 child
 descendant-or-self 2nd
 following
 following-sibling
 namespace
 parent
 preceding
 preceding-sibling
 selecting
 self
axis
 next-sibling
Axolot Web site

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

B2B (business-to-business)
B2B (business-to-business) commerce 2nd
B2B (business-to-business) e-commerce
B2C (business-to-consumer)
B2C (business-to-consumer) e-commerce
Bean Scripting Framework. [See BSF]
beginning of message segment. [See BGM segment]
behavior
 XMetaL
 customizing 2nd
BGM (beginning of message) segment
BGM segment
Bison compiler-compiler
Blank XML Document command (New menu)
Block class
Bolero Web site
boolean getFeature(String name) method
Box tab
browsers
 PalmPilot
 PC
 WAP 2nd
browsing
 catalogs 2nd
BSF (Bean Scripting Framework)
bug trackers
 Pesticide 2nd
 writing
BugForm class
BugForm servlet 2nd 3rd 4th
BugForm style sheet
BugList class
BugList servlet 2nd 3rd
BugList style sheet 2nd 3rd
bugs
 editing
buildCatalog() method 2nd
buildDescription() method 2nd
builder pattern 2nd 3rd
 advantages 2nd
 applying 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
building
 EDIFACT formatter project 2nd 3rd 4th
 Pesticide project 2nd 3rd
 projects
 catalog viewer 2nd 3rd
 e-commerce 2nd 3rd 4th
 StockQ 2nd
 survey 2nd 3rd
 publish project 2nd
 servlets 2nd 3rd 4th 5th
buildTextualProduct() method 2nd
buildVisualProduct() method 2nd 3rd
business-to-business e-commerce. [See B2B e-commerce]
business-to-consumer e-commerce. [See B2C e-commerce]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

buttons
 Apply
 Has been shipped
 Save and Refresh

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C++
 Xerces parser
calling
 XSL processor
CanSurround() method
cards 2nd
 navigating
 titles
 toc
Cascading Style Sheet. [See CSS]2nd [See CSS]
Catalog class 2nd 3rd
catalog class model
catalog command
catalog viewer project
 building/running 2nd 3rd
catalog viewers 2nd 3rd 4th
catalog.bat file
catalog.xml file
CatalogBuilder interface 2nd 3rd 4th
CatalogElement interface 2nd 3rd 4th
CatalogPanel class
catalogs
 browsing 2nd
CatalogViewer class 2nd
CatalogVisitor interface 2nd 3rd
Change List tab
change lists
 updating
channels
 RSS documents 2nd
character entities 2nd
checkStockLevel() method 2nd
child axis
Choose Toolbar Button Image dialog box
class
 Visitor
class models
 catalog
classes
 Block
 BugForm
 BugList
 Catalog 2nd 3rd
 CatalogPanel
 CatalogViewer 2nd
 CompositeData
 Constant
 Constants 2nd
 DefaultCatalogBuilder
 Description
 Edifact2XML
 EdifactParser
 EdifactStructure 2nd
 EdifactTokenizer 2nd
 Element 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Equal 2nd 3rd
 Extensions
 Option 2nd
 Parameter
 Product 2nd 3rd 4th 5th
 Question 2nd
 Segment
 toEdifact() method
 SimpleData
 SoapEnvelope 2nd 3rd 4th
 SoapException 2nd
 SoapRequest 2nd 3rd 4th
 SoapService 2nd 3rd 4th 5th 6th
 Statement 2nd
 StockQClient 2nd
 StockQPanel 2nd
 StockQService
 StockRequest 2nd 3rd
 StockResponse 2nd 3rd 4th
 StockService
 Structure
 Survex 2nd
 Survey 2nd 3rd 4th 5th
 UnexpectedTokenException
 VideoProduct
 visitor
 replacing
 XML2Edifact
 XMLDirector 2nd 3rd 4th
 XMLVisitor
 XMLWriter 2nd
 XslServlet 2nd 3rd 4th 5th
 XslServletLiaison 2nd
 XslServletLiaisonImpl 2nd 3rd 4th 5th 6th
 XslWriter
clients
 stock
 writing 2nd 3rd
CNT segment
COBRA
Cocoon project
code
 XML
 displaying
 editing
code listings
 Block.java 2nd
 bookfair.xml 2nd
 BugForm.java 2nd 3rd 4th 5th 6th 7th 8th
 BugForm.xsl (fast version) 2nd 3rd 4th 5th 6th 7th
 BugList.java 2nd 3rd 4th 5th
 BugList.xsl (cool version) 2nd 3rd 4th 5th 6th 7th 8th
 BugList.xsl (French version) 2nd 3rd 4th
 Catalog.java 2nd 3rd
 catalog.xml 2nd
 CatalogBuilder.java 2nd
 CatalogElement.java 2nd
 CatalogPanel.java 2nd 3rd 4th
 CatalogViewer.java 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CatalogVisitor.jar 2nd
 client.sql 2nd
 CompositeData.java 2nd 3rd
 Constant.java 2nd
 Constants.java 2nd
 creating initial database (Pesticide project) 2nd 3rd
 DefaultCatalogBuilder.java 2nd 3rd
 Description.java 2nd
 DOMDirector.java 2nd 3rd 4th
 edi2xml.xsl 2nd 3rd 4th 5th 6th
 Edifact2XML.java 2nd 3rd
 EdifactElement.java 2nd
 EdifactFormatter.java 2nd 3rd 4th 5th
 EdifactParser.java 2nd 3rd 4th 5th
 EdifactStructure.java 2nd 3rd
 edifactstructure.xml
 EdifactTokenizer.java 2nd 3rd 4th 5th
 editorder.html 2nd 3rd 4th 5th 6th
 Equal.java 2nd
 Event Description Form.xml 2nd
 event.css file 2nd 3rd 4th
 event.ctm file 2nd 3rd 4th 5th 6th 7th
 event.dtd file 2nd
 event.mcr file 2nd 3rd 4th 5th
 Extensions.java 2nd
 html.xsl 2nd
 If.java 2nd
 index.xml 2nd
 Option.java 2nd
 orders.edi 2nd
 orders.edi file 2nd
 orders.xml 2nd 3rd 4th 5th
 Parameter.java 2nd
 Post.java 2nd 3rd 4th
 Product.java 2nd 3rd
 Publish.java 2nd 3rd 4th 5th
 purchase orders in XML 2nd 3rd
 Question.java 2nd 3rd 4th
 RSS document 2nd
 rss.xsl 2nd
 Save.java 2nd 3rd 4th
 Segment.java 2nd 3rd
 server.sql 2nd
 Ship.java 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 SimpleData.java 2nd 3rd
 SOAP fault 2nd
 SOAP request 2nd
 SOAP response 2nd
 SoapEnvelope.java 2nd 3rd 4th 5th 6th 7th
 SoapException.java 2nd 3rd
 SoapRequest.java 2nd 3rd
 SoapService.java 2nd 3rd 4th
 SQLUtil.java 2nd 3rd 4th 5th
 Statement.java 2nd
 StockQClient.java 2nd 3rd
 StockQPanel.java 2nd 3rd 4th 5th 6th
 StockQService.java 2nd 3rd
 StockRequest.java 2nd 3rd 4th 5th 6th
 StockResponse.java 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Survex.java 2nd 3rd 4th 5th 6th 7th
 Survey.java 2nd
 survey.xml 2nd 3rd 4th 5th
 SurveyReader.java 2nd 3rd 4th 5th 6th 7th 8th 9th
 TextualProduct.java 2nd 3rd
 toconfirm.xsl 2nd 3rd 4th
 tointernal.xsl 2nd 3rd
 toinvoice.xsl 2nd 3rd 4th
 VisualProduct.java 2nd 3rd
 WML document 2nd 3rd
 wml.xsl 2nd
 XML-ized version of EDIFACT order 2nd 3rd 4th 5th
 xml2edi.xsl 2nd 3rd 4th 5th 6th 7th
 XML2Edifact.java 2nd
 XMLDirector.java 2nd 3rd 4th 5th
 XMLRequestVisitor.java 2nd 3rd 4th
 XMLVisitor.java 2nd 3rd 4th 5th
 XMLWriter.java 2nd 3rd
 XslServlet.java 2nd 3rd
 XslServletLiaison.java
 XslServletLiaisonImpl.java 2nd 3rd 4th 5th 6th
code lists
 zooming in
colon () 2nd 3rd 4th 5th 6th
color property
combining
 style sheets
 importing 2nd
 inclusion
commands
 catalog
 Connect menu
 Hypersonic SQL Standalone
 edi2xml
 Editor Display menu
 Current Element
 File menu
 Connect
 New 2nd
 Insert menu
 Element 2nd
 Macros menu
 Open Document Macros
 New menu
 Blank XML Document
 survey
 Tools menu
 Customization
 Editor Display Style
 Macros
 View menu
 Plain Text
 Toolbars
 xml2edi
CommerceOne Web site
commercial transactions 2nd 3rd
comparing
 WML to HTML 2nd
 XMetaL to XML Notepad

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XML to EDI 2nd 3rd
 XML to HTML
 e-commerce 2nd 3rd
Compiler Construction [ital] (Niklaus Wirth)
compiler-compilers
 ANTLR
 Bison
 PCYACC
 Visual Parse++
 YACC
Compilers Principles, Techniques and Tools [ital] (Alfred V. Aho, et al.)
component element
composite fields 2nd
CompositeData class
compression 2nd 3rd
cond property
conditions 2nd
configuration files 2nd 3rd
 reading 2nd 3rd
 scripted 2nd 3rd
 advantages
 scripting 2nd 3rd 4th
Connect command (File menu)
Connect menu commands
 Hypersonic SQL Standalone
connections
 HttpURLConnection
Constants class 2nd
constructors
 InputSource
 InputSource(InputStream byteStream)
 InputSource(Reader characterStream)
 InputSource(String systemId)
Contant class
content property 2nd
content syndication
Content-Length header
ContentHandler 2nd
 registering
ContentHandler getContentHandler() method
ContentHandler interface
controlling
 inclusion
 external general entities
 external parameter entities
converting
 orders to invoices 2nd 3rd 4th 5th
 URLs to XML files 2nd
 XML documents
 additional resources
copying
 nodes 2nd
CORBA 2nd 3rd 4th
count() function
CREATE TABLE statement
creating
 databases
 Hypersonic SQL 2nd 3rd
 elements 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 extensions
 interfaces 2nd
 mini-templates 2nd 3rd 4th 5th 6th 7th
 root XML elements
 subsets
 templates 2nd 3rd 4th
 toolbar buttons 2nd
 XML models 2nd 3rd 4th
 XML vocabularies 2nd 3rd 4th 5th
Crystal Report report writer
CSS
 editing 2nd
CSS (Cascading Style Sheet) 2nd
Current Element command (Editor Display menu)
customers
 generating orders
Customization command (Tools menu)
customization editor
customizing
 behavior
 XMetaL 2nd
 element names 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

data applications 2nd
data elements
 zooming in
database licenses
databases
 creating
 Hypersonic SQL 2nd 3rd
 open
 stock server 2nd
 XML
date formats
 EDIFACT 2nd
DCOM 2nd 3rd 4th
declarations (XML documents)
 document type declarations 2nd
 XML declarations 2nd
DefaultCatalogBuilder class
DefaultHandler
descendant-or-self axis 2nd
Description class
Description objects 2nd
 reading 2nd
 writing 2nd
detail field
developing
 vocabularies 2nd 3rd
DevelopMentor
DevelopMentor Web site
dialog boxes
 Choose Toolbar Button Image
 Edit Selectors in Rule
 Edit Simple Selector
 Macros
 New
 Preserve Space Options
directories
 Display
 Macros
 Pineapple
 Rules
directors
 DOMDirector
 replacing
Display directory
displaying
 XML code
distributed objects. [See also middleware]
DocBook 2nd
DocBook DTD
DocBook Web site 2nd
DOCTYPE statement 2nd 3rd 4th
Document Object Model parser. [See DOM parser]
document structure
 encoding
Document Type Definition. [See DTD]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentHandler interface
documents
 EDI
 converting to XML documents 2nd
 EDIFACT
 converting XML documents to
 converting XML documents to. [See XML documents, converting to EDIFACT documents]
 inserting email addresses 2nd 3rd 4th
 RSS
 channels 2nd
 valid
 well-formed
 XML
 converting 2nd
documents (XML) 2nd
 document type declarations 2nd
 root elements
 XML declarations 2nd
doGet() method
dollar sign ($)
DOM
DOM (Document Object Model) parser
DOM parser
DOM parsers
DOMDirector
doPost() method 2nd
double dot (..). [See also parent axis]
double slash (//)
double slash (//). [See also descendant-or-self axis]
downloading
 JavaScript
 JPython
 Xalan 2nd
 Xerces 2nd
DTD
DTD (Document Type Definition)
DTDHandler 2nd
 registering
DTDHandler getDTDHandler handler() method
DTM segment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

e-commerce
 B2B 2nd 3rd
 B2C
 comparing XML to HTML 2nd 3rd
e-commerce applications
 architecture 2nd
e-commerce project
 building/running 2nd 3rd 4th
eBook
eBook readers
 Rocket eBook
ebXML Web site
EDI 2nd 3rd 4th
 comparing to XML 2nd 3rd
 reasons for lack of interest in 2nd
EDI (Electronic Data Interchange)
EDI documents
 converting to XML documents 2nd
EDI formats
 ANSI X12
 EDIFACT 2nd 3rd
edi2xml command
EDIFACT 2nd 3rd 4th 5th
 additional resources 2nd
 compression 2nd
 date formats 2nd
 escape characters 2nd
 name and address format 2nd
 orders
 comparing to XML orders 2nd
 parsing 2nd
 segments 2nd 3rd
 UNSMs
EDIFACT documents
 converting XML documents to 2nd 3rd 4th
EDIFACT formatter project
 building/running 2nd 3rd 4th
EDIFACT parser
 running the project 2nd 3rd
 writing 2nd 3rd 4th 5th 6th 7th 8th 9th
 writing tokenizer 2nd 3rd 4th 5th
EDIFACT standard Web site
Edifact2XML
Edifact2XML class
EdifactElement interface
EdifactFormatter 2nd 3rd 4th 5th
EdifactParser class
EdifactStructure class 2nd
EdifactTokenizer class 2nd
Edit Selectors in Rule dialog box
Edit Simple Selector dialog box
editing
 bugs
 CSS 2nd
 elements 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 macros
 style sheets
 Web pages 2nd
 XML code
Editor Display menu commands
 Current Element
Editor Display Style command (Tools menu)
EditOrder application (JavaScript)
editororder.html 2nd 3rd 4th
editors
 customization
 JavaScript
 editororder.html 2nd 3rd 4th
 XML
 advantages 2nd
 XMetaL. [See XMetaL]
 XSL
 XSLT
Eiffel
 eXML
Electronic Data Interchange For Administration, Commerce, and Transportation. [See EDIFACT]
Electronic Data Interchange. [See EDI]
electronic forms 2nd 3rd
Element class 2nd
Element command (Insert menu) 2nd
element names
 customizing 2nd
Element object
Element objects
Element parameter
elements 2nd
 ()anchor()
 ()b()
 ()go()
 ()item()
 ()p()
 ()small()
 attributes 2nd
 defined
 predefined attributes 2nd
 component
 creating 2nd 3rd 4th
 editing 2nd
 Email
 inserting
 setting as paragraph
 empty 2nd 3rd 4th 5th 6th
 entities 2nd
 character entities 2nd
 defined
 predefined entities 2nd
 library
 Lines
 Name
 namespaces 2nd
 naming conventions 2nd
 Para
 Product
 register

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SOAP-ENV()Body 2nd 3rd
 SOAP-ENV()Envelope 2nd
 SOAP-ENV()Fault 2nd
 SOAP-ENV()Header 2nd 3rd
 XML
 generating 2nd 3rd
else property
em unit
email addresses
 inserting into documents 2nd 3rd 4th
Email element
 inserting
Email elements
 setting as paragraph
empty elements 2nd 3rd 4th 5th 6th
emulators
 mobile phone
enabling
 security
encoding
 document structure
encoding attribute
endElement() event handler 2nd
endElement() method 2nd 3rd 4th 5th 6th
Enterprise Report report writer
EnterpriseSoft Web site
entities 2nd
 character entities 2nd
 defined
 inserting into output
 predefined entities 2nd
EntityResolver
 registering
EntityResolver getEntityResolver() method
Equal class 2nd 3rd
Ericsson R320 telephone
Ericsson Web site
ERP solutions
ErrorHandler 2nd
 registering
ErrorHandler getErrorHandler() method
errors
 validation
 turning on/off
escape characters 2nd
Event Description Form.xml file
event handlers
 endElement() 2nd
 registering 2nd
 startElement()
event handlers. [See also filters]
event sources. [See also filters]
event.css file 2nd
event.ctm file 2nd 3rd
 modifying
event.dtd file
event.mcr file 2nd
event.rlx file
events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 itemStateChanged
 void characters(char[] ch,int start,int length)
 void endDocument()
 void endElement(String namespaceURI,String localName, String qName
 void endPrefixMapping(String prefix)
 void ignorableWhitespace(char[] ch,int start,int length)
 void notationDecl(String name, String publicId,String systemId)
 void processingInstruction(String target, String data)
 void setDocumentLocator(Locator locator)
 void skippedEntity(String name)
 void startDocument()
 void startElement(String namespaceURI,String localName,String qName, Attributes atts)
 void startPrefixMapping(String prefix,String uri)
 void unparsedEntityDecl(String name,String publicId,String systemId, String notationName)
eXcelon
eXcelon Corporation Web site
exceptions
 SAXException
 SAXNotRecognizedException
 SAXNotSupportedException
 SAXPar [See xception]
executing
 POST requests
eXML
eXML Web site
eXtensible Markup Language. [See XML]
extension functions
extensions
 .rss
 creating
 Xalan 2nd
 XSLT 2nd 3rd
Extensions class
external general entities
 controlling inclusion of
external parameter entities
 controlling inclusion of
extracting
 style sheets from URLs 2nd
 alternatives 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

faultcode field
faultfactor field
faults
 writing
faultstring field
features
 http(colon)//xml.org/sax/features/external-general-entities
 http(colon)//xml.org/sax/features/external-parameter-entities
 http(colon)//xml.org/sax/features/namespaces
 http(colon)//xml.org/sax/features/namespaces-prefixes
 http(colon)//xml.org/sax/features/string-interning
 http(colon)//xml.org/sax/features/validation
fields
 Accept
 available
 composite 2nd
 detail
 faultcode
 faultfactor
 faultstring
 level
 manufacturer
 Name
 On Insert
 simple 2nd
 sku
File menu commands
 Connect
 New 2nd
File_Save macro
files
 ~event.tbr 2nd
 catalog.bat
 catalog.xml
 configuration 2nd 3rd
 reading 2nd 3rd
 scripted 2nd 3rd 4th
 scripting 2nd 3rd 4th
 Event Description Form.xml
 event.css 2nd
 event.ctm 2nd 3rd
 modifying
 event.dtd
 event.mcr 2nd
 event.rlx
 macros.dtd
 XML 2nd 3rd
 converting URLs to 2nd
filters 2nd
 SoapEnvelope 2nd
 XML
filters. [See also event handlers, event sources]
firewalls
Flow
following axis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following-sibling axis
font-size property
format-number() function
formats
 dates
 EDIFACT 2nd
 name and address
 EDIFACT 2nd
formatters
 writing
 XSL 2nd
formatting
 forms 2nd 3rd 4th 5th 6th 7th 8th
forms
 electronic 2nd 3rd
 formatting 2nd 3rd 4th 5th 6th 7th 8th
 validating 2nd 3rd
forward slash (/)
functions
 count()
 extension
 format-number()
 generate-id()
 last()
 lookupDescription
 not()
 position()
 Save 2nd
 string()
 substring()
 text()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

gateways
 HTTP
 WAP 2nd
generate-id()
generate-id() function
generating
 orders
 customers
 XML attributes 2nd
 XML elements 2nd 3rd
GET requests
getc() method 2nd
getComponent() method 2nd
getDoc() method
getParameters() method
getSkin() method
getStock requests
getStock RPC
getWriter() method
getXSL() method
GNU Web site
grouping
 messages
 segments
groups
 segments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

handling
 stock requests
Has been shipped button
headers
 Accept 2nd 3rd
 Content-Length
 request
 SOAPAction 2nd 3rd
HoTMetaL. [See XMetaL]
HTML 2nd
 comparing to WML 2nd
 comparing to XML
 e-commerce 2nd 3rd
HTML style sheets
HTML tags 2nd
HTTP gateways
http(colon)//xml.org/sax/features/external-general-entities feature
http(colon)//xml.org/sax/features/external-parameter-entities feature
http(colon)//xml.org/sax/features/namespaces feature
http(colon)//xml.org/sax/features/namespaces-prefixes feature
http(colon)//xml.org/sax/features/string-interning feature
http(colon)//xml.org/sax/features/validation feature
HttpURLConnection connection
Hypersonic SQL 2nd 3rd
 creating databases 2nd 3rd
Hypersonic SQL DatabaseManager 2nd
Hypersonic SQL Standalone command (Connect menu)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

IBM Web sites
 XSL Editor
ICE (Information Content and Exchange protocol)
id attributes
if statements. [See xsl(colon)if]
if/then/else statement
implementing
 SOAP 2nd
importing
 style sheets 2nd
inclusion
 external general entities
 controlling
 external parameter entities
 controlling
 style sheets
InDelv Web site
Information Content and Exchange protocol. [See ICE]
init() method
input property
input-directed templates 2nd
InputSource 2nd
InputSource resolveEntity(String publicId,String systemId)
InputSource() constructor
InputSource(InputStream byteStream) constructor
InputSource(Reader characterStream) constructor
InputSource(String systemId) constructor
InputStream getByteStream() method
Insert Email macro 2nd 3rd
Insert menu commands
 Element 2nd
inserting
 email addresses into documents 2nd 3rd 4th
 Email elements
 entities
 output
InsertWithTemplate() method
installing
 XMetaL 2nd 3rd
int getColumnNumber() method
int getIndex(String qName) method
int getIndex(String uri,String localPart) method
int getLength() method
int getLineNumber() method
interfaces
 CatalogBuilder 2nd 3rd 4th
 CatalogElement 2nd 3rd 4th
 CatalogVisitor 2nd 3rd
 ContentHandler
 creating 2nd
 DocumentHandler
 EdifactElement
 Statement
 user
 updating 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

internal links
International Standard Book Number. [See ISBN]
inventory levels
 updating 2nd
invoices
 converting orders to 2nd 3rd 4th 5th
 sending 2nd 3rd 4th 5th
 testing
 viewing
iPlanet Web site
ISBN (International Standard Book Number)
isEmpty() method
itemStateChanged events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Java 2nd
Java 2
Java Database Connectivity. [See JDBC]
java.io package
java.net package
JavaHelp
JavaMail
JavaScript
 downloading
JavaScript editors
 editororder.html 2nd 3rd 4th
JBuilder
JDBC (Java Database Connectivity)
JDK 1.1
JDK 1.2
Jetty 2nd 3rd
Jetty Web server
Jini
JPython
 downloading
JPython Web site
JRun 2nd
JRun Web site
JSP servlets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

label property
lang attribute
last() function
legacy formats
less than sign ()
level field
lexer. [See also tokenizer]
libraries
 SOAP 2nd
 Swing
 XslServlet
library element
libxml-perl Web site
licenses
 database
LIN segment
Lines element
links
 internal
lists
 change
 updating
 Quick Tools
loading
 XML models
 in XMetaL 2nd
Locator 2nd
lookupDescription() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

macros
 editing
 File_Save
 Insert Email 2nd 3rd
 On_Document_Save 2nd
 On_Document_SaveAs
 On_Update_UI
 reloading
 writing 2nd
Macros command (Tools menu)
Macros dialog box
Macros directory
Macros menu commands
 Open Document Macros
macros.dtd file
main() method 2nd
manufacturer field
manufacturer parameter
margin-left property
marketplaces
 XML 2nd 3rd
match attribute
match attributes
media-type attribute
Mercator Web site
message identifiers
messages 2nd 3rd
 grouping
 segments 2nd 3rd 4th
 BGM
 CNT
 DTM
 LIN
 NAD 2nd
 PIA
 PRI
 QTY
 UNH
 UNS
 UNT
method attribute
methods
 accept() 2nd 3rd 4th 5th
 apply() 2nd 3rd
 boolean getFeature(String name)
 buildCatalog() 2nd
 buildDescription() 2nd
 buildTextualProduct() 2nd
 buildVisualProduct() 2nd 3rd
 CanSurround()
 checkStockLevel() 2nd
 ContentHandler getContentHandler()
 doGet()
 doPost() 2nd
 DTDHandler getDTDHandler()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 endElement
 endElement() 2nd 3rd 4th 5th
 EntityResolver getEntityResolver()
 ErrorHandler get ErrorHandler()
 getc() 2nd
 getComponent() 2nd
 getDoc()
 getParameters()
 getSkin()
 getWriter()
 getXSL()
 init()
 InputSource resolveEntity(String publicId,String systemId)
 InputStream getByteStream()
 InsertWithTemplate
 int getColumnNumber()
 int getIndex(String qName)
 int getIndex(String uri,String localPart)
 int getLength()
 int getLineNumber()
 isEmpty()
 main() 2nd
 nextToken() 2nd 3rd
 parse()
 postInvoice()
 putc() 2nd
 Reader getCharacterStream()
 reading Description objects 2nd
 RemoveContainerTags()
 setString()
 setXSL 2nd 3rd
 startElement() 2nd 3rd
 static XMLReader createXMLReader()
 static XMLReader createXMLReader(String className)
 String getEncoding()
 String getLocalName(int index)
 String getPublicId() 2nd
 String getQName(int index)
 String getSystemId() 2nd
 String getType(int index)
 String getType(java.lang.String qName)
 String getType(String uri,String localName)
 String getURI(int index)
 String getValue(int index)
 String getValue(String qName)
 String getValue(String uri, String localName)
 style() 2nd 3rd 4th 5th
 Surround()
 toEdifact 2nd
 toEdifact() 2nd
 visitConcreteElement()
 void error(SAXPar [See xception exception)]
 void fatalError(SAXPar [See xception exception)]
 void parse(InputSource input)
 void parse(String systemId)
 void setByteStream(InputStream byteStream)
 void setCharacterStream(Reader characterStream)
 void setContentHandler(ContentHandler handler)
 void setDTDHandler(DTDHandler handler)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void setEncoding(String encoding)
 void setErrorHandler(ErrorHandler handler)
 void setFeature(String name, boolean value)
 void setParent(XMLReader parent)
 void setProperty(String name,Object value)
 void setPublicId(String publicId)
 void setSystemId(String systemId)
 void warning(SAXPar [See xception exception)]
 writeHTML() 2nd
 writeRawXml()
 writeRequest()
 writeResponse
 writeResponse()
 writeStyledXml() 2nd 3rd 4th
 writeTp
 writing Description objects 2nd
 XMLReader getParent()
middleware 2nd 3rd
MIME types 2nd 3rd 4th
mini-templates
 creating 2nd 3rd 4th 5th 6th 7th
mobile phone emulators
mode attribute 2nd
mode attributes
modeling 2nd
 tags 2nd
modeling languages
 DTD 2nd
models
 additional resources
 UML
modifying
 event.ctm file
modules
 parsers 2nd
Mort Bay Web site
Mozilla Web site
mustUnderstand attribute
My Userland Web site

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

NAD segment 2nd
name and address formats
 EDIFACT 2nd
Name element
Name field
name property 2nd
Name rule
named templates 2nd
names
 elements
 customizing 2nd
namespace axis
namespaces 2nd
 processing
naming conventions
 elements 2nd
navigating
 cards
NeonSoft Web site
Netcenter
New command (File menu) 2nd
New dialog box
New menu commands
 Blank XML Document
next-sibling axis
nextToken() method 2nd 3rd
nodes
 copying 2nd
Nokia 7710 telephone
Nokia WAP Toolkit 2nd
Nokia Web site 2nd
not() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Õ
 (single guotation mark) 2nd
 (single quotation mark) 2nd
objects
 Description 2nd
 reading 2nd
 writing 2nd
 Element 2nd
 Product
 Survey
 TextualProduct 2nd 3rd 4th
 Visitor 2nd
 VisualProduct 2nd 3rd
omit-xml-declaration attribute
On Insert field
On_Document_Save macro 2nd
On_Document_SaveAs macro
On_Update_UI macro
open databases
Open Document Macros command (Macros menu)
Open eBook 2nd
Open eBook Forum Web site
Option class 2nd
options property
orders
 converting to invoices 2nd 3rd 4th 5th
 generating
 customers
 XML
 comparing to EDIFACT orders 2nd
output
 entities
 inserting
 XSLT style sheets 2nd
output-controlled templates 2nd
outputting
 text 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

packages
 java.io
 java.net
PalmPilot browsers
Para element
Parameter class
parameters 2nd
 Element
 manufacturer
 Post.java servlet
 sku
 SOAP 2nd
parent axis
parse() method
parser
 classes
 Edifact2XML
 EdifactParser
 EdifactStructure
 EdifactTokenizer
 Extensions
 UnexpectedTokenException
parsers
 DOM 2nd
 DOM (Document Object Model)
 EDIFACT
 running the project 2nd 3rd
 writing 2nd 3rd 4th 5th 6th 7th 8th 9th
 writing tokenizer 2nd 3rd 4th 5th
 modules 2nd
 SAX 2nd 3rd
 SAX 1.0
 SAX2
 Attributes 2nd 3rd
 ContentHandler 2nd
 DefaultHandler
 DTDHandler 2nd
 EntityResolver
 ErrorHandler 2nd
 exceptions 2nd
 InputSource 2nd
 Locator 2nd
 XMLFilter 2nd
 XMLReader 2nd 3rd 4th
 XMLReaderFactory 2nd
 Xerces 2nd
 XML
parsing 2nd
 EDIFACT 2nd
paths
 absolute
 relative
 restricting
patterns
 builder 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 advantages 2nd
 applying 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 visitor 2nd 3rd 4th 5th
 advantages 2nd
 applying 2nd 3rd 4th 5th 6th 7th 8th
PC browsers
PCYACC compiler-compiler
performing
 XSL
Perl
 XML()Parser()PerlSAX
Pesticide 2nd
 writing
Pesticide projects
 building/running 2nd 3rd
PIA segment
Pineapplesoft directory
Pineapplesoft tab
Plain Text command (View menu)
plus sign (+) 2nd 3rd 4th 5th 6th
plus variable
position() function
Post Manager
 servlet 2nd 3rd 4th
 parameters
 style sheet 2nd 3rd
POST requests 2nd
 executing
Post servlet
Post.java servlet 2nd 3rd 4th
 parameters
postInvoice() method
pound sign (#)
preceding axis
preceding-sibling axis
predefined attributes 2nd
predefined entities 2nd
predicates
PreparedStatement
Preserve Space Options dialog box
PRI segment
priority attribute 2nd
processing
 namespaces
processors
 Xalan XSL
 XSL
 calling
 speed 2nd
 XSLT
Product class 2nd 3rd 4th 5th
product descriptions 2nd
Product elements
Product objects
projects
 catalog viewer
 building/running 2nd 3rd
 Cocoon
 e-commerce

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 building/running 2nd 3rd 4th
 Pesticide
 building/running 2nd 3rd
 publish
 building/running 2nd
 recompiling
 running 2nd
 StockQ
 building/running 2nd
 survey
 building/running 2nd 3rd
properties
 arg1
 arg2
 color
 cond
 content 2nd
 else
 font-size
 input
 label
 margin-left
 name 2nd
 options
 script
 text
 then
 title
providing
 information to retailers
 Web sites 2nd 3rd 4th
pseudo-elements
 $COMMENT
 $DOCUMENT
 $PROCINS
PUBLIC document type declaration
publish project
 building/running 2nd
publishing
 automating 2nd
 Web pages
 RSS
publishing applications 2nd
PureEdge Web site
putc() method 2nd
Python
 SAX for Python

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QTY segment
qualifiers
Question class 2nd
question mark (?) 2nd 3rd 4th
Quick Tools list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

RCPs
 accepting
 servlets
Reader getCharacterStream() method
readers
 eBook
 Rocket eBook
reading
 configuration files 2nd 3rd
 Description objects 2nd
recompiling
 projects
register element
registering
 event handlers 2nd
relative paths
reloading
 macros
Remote Method Invocation. [See RMI]
remote procedure calls. [See RPC]
RemoveContainerTags() method
replacing
 directors
 visitor classes
report writers
 Crystal Report
 Enterprise Report
request headers
requests
 GET
 getStock
 POST 2nd
 executing
 SOAP 2nd 3rd
 stock
 handling
responses
 SOAP 2nd 3rd
restricting
 paths
retailers
 providing information to
 Web sites 2nd 3rd 4th
Rich Site Summary. [See RSS]
RMI 2nd 3rd 4th
RMI (Remote Method Invocation)
Rocket eBook
Rocket eBook Web site
root elements
root XML elements
 creating
RosettaNet Web site
RPC (remote procedure calls)
RPCs 2nd
 getStock

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RSS
 Web pages
 authoring
 publishing
RSS (Rich Site Summary) 2nd
RSS documents
 channels 2nd
RSS style sheets 2nd 3rd
rules
 Name
Rules directory
running
 EDIFACT formatter project 2nd 3rd 4th
 EDIFACT parser project 2nd 3rd
 Pesticide project 2nd 3rd
 projects 2nd
 catalog viewer 2nd 3rd
 e-commerce 2nd 3rd 4th
 StockQ 2nd
 survey
 publish project 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Sand-Stone Web site
Save and Refresh button
Save function 2nd
SAX (Simple API for XML) 2nd 3rd 4th
SAX 1.0 parser
SAX for Python
SAX for Python Web site
SAX parser 2nd
SAX parsers
SAX Web site
SAX2 parser
 Attributes 2nd 3rd
 ContentHandler 2nd
 DefaultHandler
 DTDHandler 2nd
 EntityResolver
 ErrorHandler 2nd
 exceptions 2nd
 InputSource 2nd
 Locator 2nd
 XMLFilter 2nd
 XMLReader 2nd 3rd 4th
 XMLReaderFactory 2nd
SAX2 parser reference
 Web site
SAXException exception
SAXNotRecognizedException exception
SAXNotSupportedException exception
SAXPar [See xception exception]
script errors
 avoiding
script property
scripted configuration files 2nd 3rd
 advantages
scripting
 configuration files 2nd 3rd 4th
scripting languages
 XML-based
 additional resources
 Flow
 WIDL
 XSL
scripts
Seagate Software Web site
security
 enabling
Segment class
 toEdifact() method
Segment.java
 toEdifact() method
segments 2nd 3rd 4th 5th 6th 7th
 BGM
 BGM (beginning of message)
 CNT
 DTM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fields
 composite 2nd
 simple 2nd
 grouping
 groups of
 LIN
 NAD 2nd
 PIA
 PRI
 QTY
 UNH
 UNS
 UNT
select attributes
selecting
 attributes
 axes
 style sheets 2nd 3rd 4th 5th
self axis
sending
 invoices 2nd 3rd 4th 5th
 testing
serialization 2nd
servers
 application
 stock
 database 2nd
 Web
 adding servlet support 2nd
 Jetty 2nd 3rd
servlet skins 2nd 3rd 4th 5th 6th 7th
 advantages 2nd
servlet support
 adding to Web servers
servlets
 accepting RPCs
 additional resources
 BugForm 2nd 3rd 4th
 BugList 2nd 3rd
 building 2nd 3rd 4th 5th
 disadvantages 2nd 3rd 4th
 JSP
 Post
 Post.java 2nd 3rd 4th
 parameters
 Ship
 style sheets
 support
 adding to Web servers
 XSL
setString() method
setting
 Email element as paragraph
setXSL() method 2nd 3rd
Ship servlet
Simple API for XML. [See SAX]
simple fields 2nd
Simple Object Access Protocol. [See SOAP]
SimpleData class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

single quotation mark (Ô
) 2nd 3rd 4th 5th
sku field
sku parameter
slash (/) 2nd 3rd 4th
SOAP 2nd 3rd 4th 5th 6th 7th 8th
 implementing 2nd
 parameters 2nd
 requests
 responses 2nd 3rd
SOAP (Simple Object Access Protocol)
SOAP for Java
SOAP for Java Web site
SOAP library 2nd
SOAP requests 2nd
SOAP-ENV()Body element 2nd 3rd
SOAP-ENV()encodingStyle attribute
SOAP-ENV()Envelope element 2nd
SOAP-ENV()Fault element 2nd
SOAP-ENV()Header element 2nd 3rd
SOAPAction header 2nd 3rd
SoapEnvelope class 2nd 3rd 4th
SoapEnvelope filter 2nd
SoapException class 2nd
SoapRequest class 2nd 3rd 4th
SoapService class 2nd 3rd 4th 5th 6th
SoftQuad
 XMetaL
SoftQuad Web site
solutions
 ERP
space attribute
speed
 XSL processors 2nd
stacks 2nd
startElement() event handler
startElement() method 2nd 3rd
state variables
Statement class 2nd
Statement interface
statements
 ()answer() 2nd
 ()block()
 ()eq() 2nd
 ()if()
 ()save()
 ()text() 2nd
 CREATE TABLE
 DOCTYPE 2nd 3rd 4th
 if. [See xsl(colon)if]
 if/then/else
 switch. [See xsl(colon)choose]
static XMLReader createXMLReader() method
static XMLReader createXMLReader(String className) method
stock clients
 writing 2nd 3rd
stock requests
 handling
stock server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 database 2nd
stock servers
StockQ project
 building/running 2nd
StockQClient class 2nd
StockQPanel class 2nd
StockQService class
StockRequest class 2nd 3rd
StockResponse class 2nd 3rd 4th
StockService class
String getEncoding() method
String getLocalName(int index) method
String getPublicId() method 2nd
String getQName(int index) method
String getSystemId() method 2nd
String getType(int index) method
String getType(java.lang.String qName) method
String getType(String uri,String localName) method
String getURI(int index) method
String getValue(int index) method
String getValue(String qName) method
String getValue(String uri, String localName) method
string() function
structure
 documents
 encoding
Structure class
style sheets 2nd 3rd
 advantages 2nd
 applying 2nd 3rd 4th
 BugForm
 BugList 2nd 3rd
Style Sheets
 Cascading. [See CSS]
style sheets
 combining
 importing 2nd
 inclusion
 editing
 extracting from URLs 2nd
 alternatives 2nd
 HTML
 parameters 2nd
 Post Manager 2nd 3rd
 RSS 2nd 3rd
 selecting 2nd 3rd 4th 5th
 variables 2nd
 WML 2nd
 writing 2nd 3rd 4th 5th
 XSL 2nd 3rd
 XSLT 2nd 3rd 4th 5th 6th
 output 2nd
style() method 2nd 3rd 4th 5th
subsets
 creating
substring() function
support
 servlet
 adding to Web servers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 servlets
 adding to Web servers
Surround() method
Survex 2nd 3rd 4th 5th 6th
Survex class 2nd
survey applications
 Survex 2nd 3rd 4th 5th
Survey class 2nd
survey command
Survey object
survey project
 building/running 2nd 3rd
SurveyReader class 2nd 3rd
surveys 2nd
Swing
switch statements. [See xsl(colon)choose]
syntax
 XML 2nd 3rd
SYSTEM document type declaration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tabs
 Box
 Change List
 Pineapplesoft
tags
 HTML 2nd
 XML 2nd
 XML modeling 2nd
telephones
 Ericsson R320
 Nokia 7710
 WAP-enabled
templates
 creating 2nd 3rd 4th
templates (XSLT) 2nd 3rd 4th
 attributes 2nd
 input-directed 2nd
 named 2nd
 output-controlled 2nd
testing
 sending invoices
tests 2nd
text
 outputting 2nd
text property
text() function
TextualProduct objects 2nd 3rd 4th
then property
title attribute
title property
titles
 cards
toc card
toEdifact() method 2nd 3rd 4th
toinvoice.xsl 2nd
tokenizer
tokenizer. [See also lexer]
tokenizers
 writing
 EDIFACT parser 2nd 3rd 4th 5th
toolbar buttons
 creating 2nd
Toolbars command (View menu)
Tools menu commands
 Customization
 Editor Display Style
 Macros
translating
 Web sites
transparent markets
turning on/off
 validation errors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UML 2nd 3rd
UML (Unified Modeling Language)
UML model
UN/EDIFACT. [See EDIFACT]
UnexpectedTokenException class
UnexpectedTokenException.java 2nd
UNH segment
Unified Modeling Language. [See UML]
United Nations Standard Messages. [See UNSMs]
units
 em
UNS segment
UNSMs
UNT segment
updating
 change list
 inventory levels 2nd
 user interface 2nd 3rd
 XMetaL
URIs
URLs
 converting to XML files 2nd
 extracting style sheets 2nd
 alternatives 2nd
user interface
 updating 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

valid documents
validating
 forms 2nd 3rd
validation errors
 turning on/off
variables 2nd
 plus
 state
VB Systems Web site
version attribute
versioning
VideoProduct class
View menu commands
 Plain Text
 Toolbars
viewers
 XSLFO
viewing
 invoices
visitConcreeteElement() method
Visitor class
visitor classes
 replacing
Visitor object 2nd
visitor pattern 2nd 3rd 4th 5th
 advantages 2nd
 applying 2nd 3rd 4th 5th 6th 7th 8th
Visual Parse++ compiler-compiler
VisualProduct objects 2nd 3rd
Vivid Creations Web site
vocabularies 2nd 3rd
 developing 2nd 3rd
 legacy formats
 Web sites
 XML
 creating 2nd 3rd 4th 5th
void characters(char[] ch,int start,int length) event
void endDocument() event
void endElement(String namespaceURI,String localName, String qName event
void endPrefixMapping(String prefix) event
void error(SAXPar [See xception exception) method]
void fatalError(SAXPar [See xception exception) method]
void ignorableWhitespace(char[] ch,int start,int length) event
void notationDecl(String name, String publicId,String systemId) event
void parse(InputSource input) method
void parse(String systemId) method
void processingInstruction (String target, String data) event
void setByteStream(InputStream byteStream) method
void setCharacterStream(Reader characterStream) method
void setContentHandler(ContentHandler handler) method
void setDocumentLocator(Locator locator) event
void setDTDHandler(DTDHandler handler) method
void setEncoding(String encoding) method
void setEntityResolver(EntityResolver resolver)
void setErrorHandler(ErrorHandler handler) method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void setFeature(String name, boolean value) method
void setParent(XMLReader parent) method
void setProperty(String name,Object value) method
void setPublicId(String publicId) method
void setSystemId(String systemId) method
void skippedEntity(String name) event
void startDocument() event
void startElement(String namespaceURI,String localName,String qName, Attributes atts event
void startPrefixMapping(String prefix,String uri) event
void unparsedEntityDecl(String name,String publicId,String systemId, String notationName) event
void warning(SAXPar [See xception exception) method]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

W3C 2nd
W3C (World Wide Web Consortium)
W3C Web site 2nd
WAP browsers 2nd
WAP Forum Web site
WAP gateways 2nd
WAP-enabled telephones
WAPman 2nd
WAPman Web site 2nd
WDDX
WDDX Web site
Web pages
 authoring 2nd
 RSS
 editing 2nd
 publishing
 RSS
Web servers
 adding servlet support 2nd
 Jetty 2nd 3rd 4th
Web sites
 4thpass
 Abraxas 2nd
 ANTLR
 Apache 2nd 3rd 4th
 Ariba
 Axolot
 Bolero
 CommerceOne
 DevelopMentor
 DocBook 2nd
 ebXML
 EDIFACT standard
 EnterpriseSoft
 Ericsson
 excelon Corporation
 eXML
 GNU
 IBM
 XSL Editor
 InDelv
 iPlanet
 JPython
 JRun
 libxml-perl
 Mercator
 Mort Bay
 Mozilla
 My Userland
 NeonSoft
 Nokia 2nd
 Open eBook Forum
 providing information to retailers 2nd 3rd 4th
 PureEdge
 Rocket eBook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RosettaNet
 Sand-Stone
 SAX
 SAX for Python
 SAX2 parser reference
 Seagate Software
 SOAP for Java
 SoftQuad
 translating
 VB Systems
 Vivid Creations
 W3C 2nd
 WAP Forum
 WAPman 2nd
 WDDX
 WebMethods 2nd
 WinWAP
 XMetal
 XML
 vocabularies
 XML-RPC
 XML/EDI
 XML/EDI Group
 XMLEDI
 XMLTree
 XSLT standard
WebMethods Web site 2nd
well-formed documents
WIDL
WinWAP
WinWAP Web site
Wirth, Niklaus
 Compiler Construction [ital]
WML 2nd 3rd 4th
 cards 2nd
 navigating
 titles
 toc
 comparing to HTML 2nd
WML style sheets 2nd
World Wide Web Consortium. [See W3C]
writeHTML() method 2nd
writeRawXML() method
writeRequest() method
writeResponse() method 2nd
writeStyledXml() method 2nd 3rd 4th
writeTo() method
writing
 Description objects 2nd
 EDIFACT parser 2nd 3rd 4th 5th 6th 7th 8th 9th
 faults
 formatters
 macros 2nd
 Pesticide
 stock clients 2nd 3rd
 style sheets 2nd 3rd 4th 5th
 tokenizers
 EDIFACT parser 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Xalan 2nd 3rd 4th 5th
 downloading 2nd
Xalan extensions 2nd
Xalan XSL processors
Xerces
 downloading 2nd
Xerces parser
XHTML 2nd 3rd
XMetaL 2nd
 behavior
 customizing 2nd
 comparing to XML Notepad
 installing 2nd 3rd
 loading XML models in 2nd
 updating
XMetaL Web site
XML 2nd 3rd
 advantages 2nd 3rd 4th
 comparing to EDI 2nd 3rd
 comparing to HTML
 e-commerce 2nd 3rd
 faults
 writing
 orders
 comparing to EDIFACT orders 2nd
 syntax 2nd 3rd
 vocabularies 2nd 3rd
 developing 2nd 3rd
 legacy formats
XML (eXtensible Markup Language)
XML attributes
 generating 2nd
XML code
 displaying
 editing
XML databases
XML documents 2nd
 converting
 additional resources
 converting EDI documents to 2nd
 converting to EDIFACT documents 2nd 3rd 4th
 document type declarations 2nd
 root elements
 XML declarations 2nd
XML editor
XML editors
 advantages 2nd
 XMetaL. [See XMetaL]
XML elements
 generating 2nd 3rd
XML files 2nd 3rd
 converting URLs to 2nd
XML filters
XML marketplaces 2nd 3rd
XML modeling 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tags 2nd
XML models
 creating 2nd 3rd 4th
 loading in XMetaL 2nd
XML Notepad
 comparing to XMetaL
XML parser
XML Stylesheet Language. [See XSL]
XML tags 2nd
XML vocabularies
 creating 2nd 3rd 4th 5th
XML Web sites
 vocabularies
XML-based scripting language
 additional resources
 Flow
 WIDL
 XSL
XML-RPC 2nd 3rd
XML-RPC Web site
XML/EDI Group
XML/EDI Group Web site 2nd
xml2edi command
XML2Edifact class
XMLDirector class 2nd 3rd 4th
XMLEDI Web site
XMLFilter 2nd
XMLFilterImpl
XMLReader 2nd 3rd 4th
XMLReader getParent() method
XMLReaderFactory 2nd
XMLTree Web site
XMLVisitor class
XMLWriter class 2nd
XPath 2nd 3rd
 axes 2nd 3rd
 functions 2nd
XPaths
xsi()type attribute
XSL 2nd
XSL (XML Stylesheet Language)
XSL editor
XSL formatter 2nd
XSL processor
 calling
XSL processors
 speed 2nd
XSL servlets
XSL style sheets 2nd 3rd
XSL transformation
 performing
XSL Transformation. [See XSLT]
xsl(colon)apply-imports
xsl(colon)attribute
xsl(colon)call-template
xsl(colon)choose
xsl(colon)copy 2nd
xsl(colon)element
xsl(colon)for-each

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xsl(colon)if
xsl(colon)include 2nd
xsl(colon)namespace-alias
xsl(colon)output
xsl(colon)stylesheet 2nd
xsl(colon)template 2nd
xsl(colon)text
xsl(colon)value-of
XSL. [See also XSLT]
XSLFO 2nd
XSLFO viewers
XslServlet class 2nd 3rd 4th 5th
XslServlet library
XslServletLiaison class 2nd
XslServletLiaisonImpl class 2nd 3rd 4th 5th 6th
XSLT 2nd 3rd 4th 5th 6th
 adantages 2nd
 advantages 2nd
 extensions 2nd
 functions 2nd
 templates 2nd 3rd 4th
 attributes 2nd
 input-directed 2nd
 named 2nd
 output-controlled 2nd
XSLT (XSL Transformation). [See also XSL]
XSLT editors
XSLT extension
XSLT processor 2nd
XSLT standard
 Web site
XSLT style sheet 2nd 3rd 4th 5th 6th
 output 2nd
XslWriter class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YACC compiler-compiler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zooming in
 code lists
 data elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

