This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

. Table of
Contents

e Index

Applied XML Solutions
By Benoit Marchal

Publisher: Sams Publishing
Pub Date: August 29, 2000
ISBN: 0-672-32054-1
Pages: 360
Slots: 1 Buy Pt Warsion |

Applied XML Solutions presents a series of projects rather than a tutorial
format. The projects follow a natural progression from simple to complex.
Within each chapter, helpful sidebars highlight XML fundamentals necessary
to understand the project in progress. This will save readers' time having to
look to another source if they forget a key detail. The last project incorporates
techniques discussed throughout the book. The author will illustrate alternative
solutions wherever appropriate. Applied XML Solutions shows professional
developers how to apply XML to a variety of real-world applications, including:
XML as a scripting substitute, using RSS to syndicate content to multiple &
non-traditional browsers such as WAP-enabled handheld devices, using XSLT
to facilitate communication between incompatible systems, separating web
content from web code, importing data from various file formats.

:-u-h.:r ¥

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« revioos [l s

Applied XML Solutions
By Benoit Marchal

Publisher: Sams Publishing
Pub Date: August 29, 2000
ISBN: 0-672-32054-1

R Table of Pages: 360
Contents Slots: 1 Buy Puind Wargion
e Index - '
Copyright

About the Author
Acknowledgments
Tell Us What You Think!
Introduction
Why a Solution Book?
Who Should Read This Book
How to Read This Book
Conventions Used in This Book
Additional Resources

Chapter 1. Lightweight Data Storage
Why Lightweight Data Storage?
Meeting the Catalog Viewer
The XML Side
Designing with Patterns
Meeting the Builder Pattern
Meeting the Visitor Pattern
Building and Running the Project
Additional Resources

Chapter 2. Scripted Configuration Files
Configuration Files
Meeting Survex
Building and Running the Project
Benefits
Additional Resources

Chapter 3. Electronic Forms
The Event Form
Creating a Form with an Editor
Running the Project
Customizing the Behavior
Writing Macros
Advantages
Additional Resources

Chapter 4. Content Syndication
Architecture
Publishing Formats

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Styling on Demand

The Style Sheets

Building and Running the Project
Additional Resources

Chapter 5. Export to Any Format
Meeting EDIFACT
EDI Meets XML
Breaking Down the Conversion
Building the Formatter
Writing the Style Sheet
Building and Running the Project
Additional Resources

Chapter 6. Import from Any Format
Parsing EDIFACT
The EDIFACT Parser
The Conversion
Building and Running the Project
Additional Resources

Chapter 7. Write an e-Commerce Server
XML Marketplaces
A Commercial Transaction
Architecture
The Post Manager
Sending the Invoice
Building and Running the Project
Additional Resources

Chapter 8. Organize Teamwork Between Developers and Designers
Servlets and Teams
Using XSL in Servlets
Building xs1serviet
Writing Pesticide Using xslserviet
Building and Running the Project
Playing with Style Sheets
Additional Resources

Chapter 9. Provide Up-to-the-Minute Information to Business Partners
Architecture
The SOAP Protocol
A SOAP Library
The Stock Server
The Stock Client
Building and Running the Project
Additional Resources

Chapter 10. Where to Now
XML As a File Format
Publishing Versus Data
Flexible, Generic Tools
e-Commerce

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Appendix A. XML Reference
XML Elements
XML Document
Entities
Namespaces

Appendix B. Parser Reference
XMLReader
ContentHandler
DTDHandler
ErrorHandler
EntityResolver
InputSource
Attributes
Locator
Exceptions
XMLFilter
XMLReaderFactory

DefaultHandler

Appendix C. XSLT Reference
Style Sheet
Templates
Template Content
XPath
Combining Style Sheets
Parameters and Variables
Tests and Conditions
Functions
Copying
Extensions

Index

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« rrivious vt o
Copyright

Copyright © 2000 by Sams

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 00-104353
Printed in the United States of America

First Printing: September 2000

0201004321

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fithess is implied. The information provided is on an "as is" basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Dedication

To Pascale

[+ revioos W s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

o rnwvious [l eaxt v
About the Author

Benoit Marchal runs the consulting company Pineapplesoft, which specializes in Internet
applications, particularly e-commerce, XML, and Java. He has worked with major players in
Internet development, such as Netscape and EarthWeb, and is a regular contributor to Gamelan
and other Internet publications.

In 1997, he co-founded the XML/EDI Group, a think tank that promotes the use of XML in e-
commerce applications. Benoit frequently leads corporate training on XML and other Internet
technologies.

Benoit also publishes a free email magazine, Pineapplesoft Link. Each month it provides
technologies, trends, and facts of interest to Web developers. You can subscribe at
www.marchal.com.

4 ruwvious [l waxt o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rrivisui]
Acknowledgments

| want to thank the readers of XML by Example, Pineapplesoft Link, and my technical articles. You
are the motivation and inspiration to explore new topics. | am particularly grateful to readers who
emailed me or otherwise commented on my work. Your opinions are always instructive.

rrvvions Wi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[paivisus |
Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like to
see us publish in, and any other words of wisdom you're willing to pass our way.

As an Associate Publisher for Sams, | welcome your comments. You can fax, email, or write me
directly to let me know what you did or didn't like about this book—as well as what we can do to
make our books stronger.

Please note that | cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail | receive, | might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and
phone or fax number. | will carefully review your comments and share them with the author and
editors who worked on the book.

Fax: 317-581-4770

Email: consumer@mcp.com

Mail: Associate Publisher
Sams
201 West 103rd Street
Indianapolis, IN 46290 USA

[« esinous W s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Introduction
Why a Solution Book?
Who Should Read This Book
How to Read This Book
Conventions Used in This Book

Additional Resources

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Jean LB (4 Fuivisus] i v +]
Why a Solution Book?

This book teaches you how to solve common problems in development, how to impress your boss
(or your customer if you're a freelancer), and how to use XML in your projects.

Through my experience lecturing and consulting, | know that the main problem for developers
trying to leverage XML in their applications is not a lack of information but too much of it! There is
an almost endless flow of announcements from standardization bodies and vendors and no
shortage of conferences, books, and magazines.

All this information is useful—it can solve real problems for some people—but it is not always
easy for the developer to decide whether the information applies to him or his problem.

I meet many developers, like you, who have learned the basics of XML (elements, tags,
attributes, DTDs, and more) and the most popular XML vocabularies (RSS, WML, SOAP, XSL,
and so on). But what these developers are missing is information on how it all works in real
projects.

When | started discussing this book with my editor, we worked hard to develop a book that would
address your concerns as a developer. We deliberately decided not to try to cover every XML
vocabulary or every technology but to concentrate on the few tools every programmer needs to
know to succeed in his or her project.

Furthermore, the feedback we received on my tutorial book, XML by Example, convinced us that
a practical book—a book that teaches by using carefully chosen examples and a lot of code—
would be useful. In that respect, Applied XML Solutions grew out of the readers'feedback, out of
your feedback.

We selected eight projects that are representative of real applications of XML. The eight projects
became nine chapters, with each chapter demonstrating how to build one project with XML (one
project required two chapters).

The eight projects we selected are as follows:

e Linking an object data structure with XML. Most applications have an internal data structure
that might be close, but is seldom identical, to the XML format. A few simple patterns can
help bridge the differences.

¢ Preparing advanced configuration files. Many applications benefit from a solid configuration
file format, and XML is a great solution for this. XML offers enormous flexibility. It also can
be used as a true scripting solution.

¢ Using electronic forms and XML editors. A good XML editor is a powerful addition to any
programmer's toolbox because it makes it easy to create an efficient user interface on XML
applications.

¢ Using multi-format publishing. With the advent of mobile phones, PDAs, and other devices,
the PC might not remain the dominant platform for Internet browsing. Web sites will need
increased flexibility to work with these multiple formats.

e Integrating with legacy format. Even the most fanatic XML developer must recognize that
many non-XML formats exist. Few applications leave in isolation, therefore it is crucial to
integrate with legacy formats.

e Conducting business-to-business e-commerce. XML profiles itself as the HTML of
business-to-business e-commerce. This is an important topic that deserved a project of its
own.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

¢ Using XML to organize the work of a team. Web development requires many talents, and

organizing them is not always easy. Furthermore, Web sites increasingly need to be multi-
lingual. This project addresses these two issues.

e Integrating with an ERP. As organizations strive to streamline their operations, they will

increasingly need to place information from their ERPs online. SOAP is an interesting
approach in that arena.

As you can see, this is not a list of technologies but of solutions to problems. However, in building
these solutions, we will explore many useful technologies, such as SAX2 parsing, patterns, DOM
and JavaScript, CSS, XSLT, non-XML formatters, non-XML parsers, XSLT extensions, automatic
posting, servlets, SOAP, and more.
[privioos [l o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[+ Frwvious vt o]
Who Should Read This Book

Applied XML Solutions will be helpful to programmers, analysts, Web developers, and consultants
who need to use XML in their work. Developers will benefit directly from exposure to practical
solutions and a lot of code. However, analysts and consultants will also benefit from new ideas
and new solutions to problems.

Applied XML Solutions will be particularly valuable if you are currently working on XML projects or
if you will soon join such a team. It provides sample solutions to problems and plenty of code you
can reuse, teaches you new tools, and explains how to better use your current set of tools.

If you are not actively involved in an XML project, Applied XML Solutions will be a source of
inspiration for the future. As you read through the solutions, | am sure you will find several
examples that would work well for you.

Applied XML Solutions assumes that you know the XML syntax, how an XML parser works, and
how to write an XSLT style sheet. If this is your first XML book, you might want to turn to a tutorial
first. | think my previous book, XML by Example, is a good introduction to the material in Applied
XML Solutions.

Most of the code (the only exception is Chapter 3, "Electronic Forms") is written in Java. Most of
the solutions will port easily to C++, Delphi, Perl, Python, and other languages (I have included
pointers where appropriate), so you will benefit from reading this book even if you are not a Java
developer. However, you must be able to read and understand Java code.

Flip through the book and you will see several commented listings. As | have already indicated, |
listened to reader feedback in preparing Applied XML Solutions, so | tried to include as many
listings and examples as possible. This is clearly a hands-on book. The only persons who should
not read this book are developers who hate studying listings. Only a few such developers exist,
but if you are one of them, | hope | catch you in the bookstore, before you've bought the book.

[recvioor W sy

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[+ Fruvisui |
How to Read This Book

This book can be read in any order. If you are working on a project, you might want to jump to one
of the chapters to learn about that particular solution. In some cases, | have made references to
earlier chapters, so you might need to backtrack for a section or two.

However, this book can also be read from cover to cover. The chapters follow a logical
progression from simple to more complex.

Whenever possible, | have included refreshers that summarize the essential aspects of
technology and point you to more resources, as appropriate.

Finally, each chapter concludes with an Additional Resources section. This section points to Web
sites and other resources where you can learn more information on the topic.

nEn SO

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rrrvioos Wi o)
Conventions Used in This Book
Tips on how to take advantage of XML are identified as follows:

Tip

Tips appear here.

When a risk of error exists, special warning notes are identified as follows:
Warning

Warnings appear here.

Additional information about a topic is marked as follows:
Note

Notes appear here.

Refreshers

Refreshers appear here.

Listings, code, and class names appear in a monospace font, such as the following:

<?xml version="1.0"?2>

[« revioos [l s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(4 Frsvisui]
Additional Resources

To save you some typing, all the listings are available on the enclosed CD-ROM. You also should
visit the Que Web site and my own site for updates and additional information.

The Que Web site is at http://www.macmillanusa.com. If required, we will post code updates, bug
fixes, and general updates there.

My site is at http://www.marchal.com. Here you will find links to articles and other useful
information on XML. You can also subscribe to my free email magazine, Pineapplesoft Link—your
source for technology news, trends, and facts of interest to Web developers.

If you use this book to solve an interesting problem or if you develop your own solutions, I'd like to
hear from you. Write to me at bmarchal@pineapplesoft.com.

| wish you a lot of success in your XML projects.

[« esiious W v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Chapter 1. Lightweight Data Storage

In this chapter, you build your first solution based on XML. The solution demonstrates XML as an
alternative to databases and proprietary file formats. Many applications benefit from this solution
and it is particularly valuable for the following:

e Applications downloaded from the Internet, when it is not possible to ship a database at
runtime

e CD-ROMs and DVDs where the files are read-only

e Applications that work on a subset of a database, where it must be easy to unload the data
from the database

¢ Applications running on multiple platforms or written in different languages, where it should
be possible to exchange files between, for example, the Windows (C++), UNIX (Java), and
Macintosh (Java) versions of the product

More importantly, this chapter will concentrate on how to structure the application, using two
simple patterns, for optimum flexibility.

[crrvvious Wi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Fanvisis] v +]
Why Lightweight Data Storage?

Applications must perform many duties, including taking care of the user interface (for example,
painting screens, opening dialog boxes, or responding to menu selections), providing help and
assistance, and increasingly being network savvy (such as sending and receiving emails or
connecting to the Web). Not to be forgotten is the capability to save work and later reload it, which
is our current topic of interest.

Java, similar to other programming languages, supports these functions through libraries. Two
libraries exist for the user interface: AWT (Abstract Window Toolkit) and Swing. In addition,
JavaHelp exists for documentation. Also, no less than four options are available for networking:
the java.net package, RMI (Remote Method Invocation), Jini, and CORBA.

Finally, Java supports permanent storage through the java.io package and JDBC (Java Database
Connectivity). However, for a number of applications, java.io is too limited and JDBC is too
complex. This chapter introduces a solution that sits somewhere in between. It is more powerful
than raw I/O but not as costly as full-blown SQL databases.

Databases are convenient because they store large amounts of data and access it rapidly.
Furthermore, they are well supported by third-party vendors. A typical Java development
environment offers wizards and other tools to help you build database-driven applications. Figure
1.1 demonstrates database support in JBuilder.

Figure 1.1. A dialog box helps configure and test the database connections in JBuilder.

Databases are also open, which means one application can share data easily with other
applications. This enables you, the developer, to quickly and inexpensively extend the application.
For example, if the user wants new reports, a report writer such as Crystal Report
(http://www.seagatesoftware.com) or Enterprise Report (http://www.enterprisesoft.com) is handy.

On the downside, databases tend to be costly. Database licenses can run in the tens of
thousands of dollars and they can require dedicated servers, which further adds to the cost.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I am reminded of one project in which a company installed a new sales system. It worked
brilliantly until they decided to give a laptop to each of their salespeople. The cost of the licenses
(and in particular, the database licenses) skyrocketed to the point where the laptops would have
cost ten times more than the central system in licenses only!

In addition, they needed high-end laptops to run the database and the sales software
concurrently. Worse, it was obvious to everybody involved that a full-blown database was overkill
in this setup because a salesperson managed only a few dozen customers and worked with a
limited set of about a thousand references.

Therefore, the developers needed to downscale from a full-blown database to a simpler file
format. Java is very convenient in this respect because it offers serialization
(java.io.ObjectInputStreamand java.io.0ObjectOutputStream).

However, while serialization makes it easy to save complex data structures to disk, it is a closed
format. It works only with the original application and no third-party tools are available, such as
report writers for serialized files.

In this chapter, we'll develop a solution, based on XML, that offers the following benefits:

e XML keeps growing so no lack of third-party tools exists. For example, style sheets make it
easy to produce reports.

* Most databases have an XML interface (either available now or in the making) that makes
loading and unloading a database in XML easy.

e The data model behind XML is a tree of elements, which is a natural match for an object-
oriented data structure.

e XML support is available to most programming languages on the major platforms, so it is
possible to share data between different applications (for example, a UNIX server and a PC
client).

Caution

This solution is appropriate for small to medium sets of data only because it loads the
file in memory. In other words, it is limited by the amount of memory available.

Yet, this is not a limitation of XML. XML databases, such as eXcelon
(http://www.exceloncorp.com), can manipulate documents of any size. However, the
cost of these databases is comparable to SQL databases, so it's no longer a solution to
our present problem.

[« ruvvious [l o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(4 Fuivisus] i v +]
Meeting the Catalog Viewer

The example I'll use in this chapter is a catalog viewer. Assume that you have been asked to
develop a catalog viewer. The specifications are as follows:

e Customers and prospective customers receive a new version of the catalog viewer every

month. The monthly update presents the latest offerings (such as new products and
promotions).

¢ The list of products is managed in the company's central database, and a file with the
month's offering will be automatically extracted from the database.

¢ Product descriptions include the product name and either a picture of the product or a

textual description. The management expects to enhance product descriptions with video
and HTML in the future.

e Customers browse through the catalog and mark those products they are interested in
buying.

e The catalog viewer creates a file with the customer's selection. Customers can submit their
selections by email and receive more information on those products relevant to them.

The catalog viewer looks similar to Figure 1.2.
Note

A catalog can be as simple or as complex as one likes. In its simplest form it is just a
list of product names; in the most complex form it can include videos. It also can
compute the correct price (including any discounts) and even support online ordering.

In this chapter, | strove for the middle ground with a set of data rich enough to explore
all the problems you are likely to face in a real catalog application. However, | used a

limited user interface and a limited set of features so as not to bury the XML techniques
in a lot of Java programming.

Figure 1.2. The catalog viewer.

The catalog viewer needs a simple, inexpensive file format to store the list of products and the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

prospective buyers'selections. Because the list of products is stored in a central database, you
need a format recognized by the database.

Figure 1.3 is the class model (in UML [Unified Modeling Language]) for the catalog. This model
abstracts product descriptions: The product class holds only basic information about products
(such as the name). Descendants of product implement more complete descriptions (in this
case, through an image or through text).

In particular, each product object is responsible for drawing its own description onscreen.

Therefore, if a future version of the catalog includes video, it suffices to add descendants to the
Product class.

Figure 1.3. The catalog class model.

Building the Catalog

Listings 1.1-1.6 implement this class model in Java. Listing 1.1 is the catalog class. And as you
can see, Catalog is simply a list of Product objects.

Warning
Ignore the reference tothe catalogElement and Catalogvisitor interfaces as

well as the accept () method for the time being. These will be introduced in
subsequent sections.

Listing 1.1 catalog.java

package com.psol.catalog;

import java.util.Vector;

import java.io.IOException;

public class Catalog

implements CatalogElement

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

protected Product[] products;

public Catalog (Vector products)

this.products = new Product|[products.size()];

products.copyInto(this.products);

public Product productAt (int i)

{

return products[i];

public int getSize ()

{

return products.length;

public void accept (CatalogVisitor visitor)

throws IOException

visitor.visitCatalog(this);

The product class is declared in Listing 1.2. product is an abstract class that implements
properties shared by all descendants, namely the product's name and whether the product was
selected (checked) by a customer.

product also defines the abstract method getCcomponent (). Descendants of Product
implement this method and return an AWT component that knows how to draw the product
description.

For example, visualpProduct objects return a component that draws the image of the product.
TextualProduct objects return text labels.

IfavideoProduct class is introduced in the future, it will return components that play the
product's video.

Listing 1.2 Product. java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.catalog;

import java.io.IOException;

import java.awt.Component;

public abstract class Product

implements CatalogElement

protected String text,
id;

protected boolean checked;

public Product(String text,
String id,

boolean checked)

this.text = text;
this.id = id;

this.checked = checked;

public String getText ()

{

return text;

public String getId()
{

return 1id;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

public void setChecked (boolean checked)

{

this.checked = checked;

public boolean isChecked ()

return checked;

public abstract Component getComponent () ;

Browsing the Catalog

The abstract method getCcomponent () is responsible for painting the product description, which
greatly simplifies the user interface. Listing 1.3 isthe catalogpPanel class, a simple graphical
interface to the catalog.

CatalogPanel accepts a catalog in its constructor, builds a list of products on the right side of
the screen, and paints the appropriate product on the left side, as the customer browses through
the list. It also provides a checkbox for the customer to select the product.

itemStateChanged events are generated as the customer browses the list of products. Then
the event handler calls getCcomponent () to draw the appropriate product. Note that the event
handler does not know whether a given productisa visualProduct ora TextualProduct,
but it doesn't need to know:

public void itemStateChanged (ItemEvent evt)

{

if(evt.getStateChange () == ItemEvent.SELECTED)

viewer.removeAll () ;

int idx = list.getSelectedIndex();
Product product catalog.productAt (idx) ;
viewer.add (product.getComponent ()) ;
checkbox.setState (product.isChecked()) ;

checkbox.setEnabled (true) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

validate () ;

Listing 1.3 CatalogPanel. java

package com.psol.catalog;

import java.awt.*;

import java.awt.event.*;

public class CatalogPanel

extends Panel

protected List list;
protected Checkbox checkbox;
protected Container viewer;

protected Catalog catalog;

public CatalogPanel (Catalog catalog)
{
catalog = catalog;

setLayout (new GridBagLayout());

list = new List();

GridBagConstraints constraints = new GridBagConstraints();

add(list,constraints);

for(int i = 0;1i < catalog.getSize();i++)
list.add(catalog.productAt (i) .getText ()) ;

list.addItemlListener (new ItemListener ()

public void itemStateChanged(ItemEvent evt)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (evt.getStateChange () == ItemEvent.SELECTED)
{
viewer.removeAll () ;
int idx = list.getSelectedIndex();
Product product = catalog.productAt (idx) ;
viewer.add (product.getComponent ()) ;
checkbox.setState (product.isChecked()) ;
checkbox.setEnabled (true) ;

validate () ;

}o);
viewer = new Panel ();

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.weightx = 1.0;
constraints.weighty = 1.0;

add (viewer,constraints) ;

checkbox = new Checkbox ("More info?", false);
constraints.gridwidth = 1;
constraints.weightx = 0.0;
constraints.weighty = 0.0;

add (checkbox, constraints) ;
checkbox.setEnabled (false) ;

checkbox.addItemlListener (new ItemListener ()

public void itemStateChanged(ItemEvent evt)
{
int stateChange = evt.getStateChange();
if(ItemEvent.SELECTED == stateChange ||

ItemEvent .DESELECTED == stateChange)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

int idx = list.getSelectedIndex();
Product product = catalog.productAt (idx) ;
product.setChecked(

ItemEvent.SELECTED == stateChange);

Extending the Product

Listing1.4isa TextualProduct. A TextualProduct is a collection of bescription objects.
To render itself onscreen, the TextualpProduct creates a component with as many labels as
there are bescription objects:
public Component getComponent ()
{
LayoutManager layout =
new GridLayout (descriptions.length + 1,1);
Panel panel = new Panel (layout);

panel.add (new Label ("Description:"));

for(int i = 0;1i < descriptions.length;i++)
{
String language = descriptions[i].getLanguage(),
text = descriptions[i].getText () ;
Label label = new Label (language + ": " + text);

panel.add(label);

return panel;

Listing 1.4 TextualProduct. java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.catalog;

import java.awt.*;
import java.util.Vector;

import java.io.IOException;

public class TextualProduct

extends Product

protected Description[] descriptions;

public TextualProduct (String text,
String id,
boolean checked,

Vector descriptions)

super (text,id, checked) ;
this.descriptions = new Description[descriptions.size()];

descriptions.copyInto(this.descriptions);

public Component getComponent ()
{
LayoutManager layout =
new GridLayout (descriptions.length + 1,1);
Panel panel = new Panel (layout);
panel.add (new Label ("Description:"));
for(int i = 0;1i < descriptions.length;i++)
{
String language = descriptions[[i].getLanguage(),

text = descriptions[i].getText ()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Label label = new Label (language + ": " + text);

panel.add(label);

return panel;

public Description descriptionAt (int 1)

{

return descriptions([i];

public int getSize ()

{

return descriptions.length;

public void accept (CatalogVisitor visitor)

throws IOException

visitor.visitTextualProduct (this) ;

Listing 1.5 is bescription, which is simply a description and the description's language. We
can have multilingual catalogs!

Listing 1.5 Description. java

package com.psol.catalog;

import java.io.IOException;

import java.awt.Component;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public class Description

implements CatalogElement

protected String language,

text;

public Description(String language,

String text)

this.language = language;

this.text = text;

public String getLanguage ()

{

return language;

public String getText ()

{

return text;

public void accept (CatalogVisitor visitor)

throws IOException

visitor.visitDescription(this);

Compare Listing 1.4 with Listing 1.6, the visualproduct. Both are similar, but a
VisualProduct is rendered as an image onscreen.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Listing 1.6 VisualProduct.java

package com.psol.catalog;

import java.awt.*;
import java.io.IOException;
public class VisualProduct

extends Product

protected String image;

protected class ImageCanvas

extends Component

protected Image image = null;
public ImageCanvas (String filename)
{

Toolkit toolkit = getToolkit();

image = toolkit.getImage (filename) ;

}

public void paint (Graphics g)

{

if(null != image)

g.drawImage (image, 0,0, this) ;

}

public Dimension getPreferredSize ()

{

int width = image.getWidth (this),

height = image.getHeight (this);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

height = 100;

return new Dimension(width,height);

public VisualProduct (String text,
String id,
boolean checked,

String image)

super (text,id, checked) ;

this.image = image;

public String getImage ()

{

return image;

public Component getComponent ()

{

return new ImageCanvas (image) ;

}
public void accept (CatalogVisitor visitor)

throws IOException

visitor.visitVisualProduct (this);

Team LiE

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« ruivisus Jflwxt v
The XML Side

The object model is one side of the equation; the other side is the XML file. In an ideal world, the
XML file would match your object structure exactly and would be similar to the following:
<?xml version='1l.0'encoding='IS0-8859-1"'7?>
<Catalog>
<VisualProduct>
<Id>wp0l</Id>
<Checked>false</Checked>
<Name>WhizBang Word Processor</Name>
<Image>images/wordprocessor.jpg</Image>
</VisualProduct>
<TextualProduct>
<Id>1104</Id>
<Checked>false</Checked>
<Title>WhizBang Bright Light</Title>
<Descriptions>
<Description>
<Language>EN</Language>
<Text>With power saving.</Text>
</Description>
<Description>
<Language>FR</Language>
<Text>Avec gestion d'énergie.</Text>
</Description>
</Descriptions>
</TextualProduct>

</Catalog>

Crash Course on XML

XML stands for eXtensible Markup Language. Similar to HTML, it is a markup
language developed by the World Wide Web Consortium (W3C).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The syntax for XML is similar to HTML syntax, so it looks familiar. However, the X in
XML means that, unlike HTML, the language is not fixed.

Indeed, HTML has a fixed set of tags (<BoDY>, <TITLE>, <P>, , and so on); the
list of acceptable tags was published by the W3C.

XML has no built-in tags and it is up to you, the developer, to create the tags you need.

Therefore, whereas HTML tags carry presentation instructions (for example, ,
<CENTER>, and <PRrRE>), XML tags tend to be related to the structure of the
information. For example, an address book will have tags such as <name>, <street>,
and <Phone>.

In other words, XML tags don't tell you how the information should be presented

onscreen (bold, italics, or centered) but rather what the information is. For example, the
tag

<Name>John Doe</Name>

means that the person's name is John Doe.

The second major difference between XML and HTML is that XML enforces a very
strict syntax. Without going in the details, note the following:

¢ Elements must be enclosed in a start tag and an end tag. It is no longer possible
to ignore the end tag. The following is an example:

<Phone>513-744-7098</Phone>

¢ Empty elements (elements with no content) follow a special syntax, which looks
similar to the following:

<Email href="mailto:jdoe@emailaholic.com"/>

e Attribute values must be enclosed in double or single quotes.

For a comprehensive introduction to XML, | recommend you read my other book, XML
by Example, published by Que.

However, that is the ideal case. In practice, the product information comes from the central
database, so chances are the XML file will be closer to the database organization than to your
object model. It is not unlikely that the file will look similar to Listing 1.7.

Obviously, because it is based on the same list of products, Listing 1.7 is not completely alien to
your object model either. The major difference is that it doesn't have a visualproduct or
TextualProduct. In Listing 1.7, every entry is a product. Listing 1.7's structure is illustrated in
Figure 1.4.

Listing 1.7 catalog.xml

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?xml version='1l.0'encoding='IS0-8859-1"'7?>
<Catalog>

<Product id='wpOl'checked="'false'>
<Text>WhizBang Word Processor</Text>
<Image>images/wordprocessor.jpg</Image>

</Product>

<Product id='sf02'checked='false'>
<Text>WhizBang Safest Safe</Text>
<Image>images/safe.jpg</Image>

</Product>

<Product id='calO3'checked="'false'>
<Text>WhizBang Good Calculator</Text>
<Image>images/calculator.jpg</Image>

</Product>

<Product id='1i104'checked="'false'>
<Text>WhizBang Bright Light</Text>
<Descriptions>

<Text xml:lang='EN'>With power saving.</Text>
<Text xml:lang='FR'>Avec gestion d'énergie.</Text>

</Descriptions>

</Product>

</Catalog>

Figure 1.4. XML document structure.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Fanvisis] v +]
Designing with Patterns

This is where the interesting part begins. Your goal is to read the XML file in Listing 1.7 in the
object structure outlined in Figure 1.3.

The simplest solution is to add methods to the various classes to read and write the XML
document. A method to read a bescription mightlook similar to

public static Description readXML (Element element)
{
if (element.getTagName () .equals ("Text"))
{
String text = null;

Node child = element.getFirstChild() ;

if(child != null &s&

child.getNodeType () == Node.TEXT NODE)
{

Text t = (Text)child;

text = t.getDbatal();
}
String language = element.getAttribute("xml:lang");
return new Description (language, text);

}
else

return null;

Note that this method relies on a DOM (Document Object Model) parser to handle the XML
syntax. So, the E1ement parameter is a DOM Element object.

The method to write a bescription objectin XML would be as follows:
public void writeXML (PrintWriter pw)

throws IOException

pw.print ("<Text xml:lang='" + language + "'>");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pw.print (text) ;

pw.println ("</Text>");

This is simple, but it is also limited. First, it mixes the XML into the data structure, which greatly
limits your ability to evolve one independently from the other. It also spreads the XML code over
the entire object hierarchy, which makes it more difficult to maintain.

We can do better using two patterns, the builder pattern and the visitor pattern, as described in
Design Patterns by Gamma, et al. (Addison-Wesley).

Use these patterns to separate the XML-related code from the object structure so that you can
change the file format without having to change your objects...or vice versa.

[« recvsos Woesr]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« rnwvious [z
Meeting the Builder Pattern

Let's start with reading. To read the XML document and create the corresponding object

structure, use the builder pattern on top of the XML parser. Figure 1.5 illustrates the generic
builder pattern.

The various components of the pattern are as follows:
¢ A builder interface and one (or more) concrete builders, which create the object structure.

e A director that interacts with the builder to create the object structure. The director is driven
by the parser.

e product, which is a placeholder in the pattern for the object structure being created.

Figure 1.5. The builder pattern.

Applying the Builder Pattern

Figure 1.6 illustrates how to apply the pattern to your object structure. In addition to the catz10q,
product, and Description classes introduced previously, this diagram has the following:

e ACcatalogBuilder interface that defines methods to create the various objects in the
structure (such as buildCatalog (), buildvisualProduct (), and soon)

e ADefaultCatalogBuilder class thatimplements the catalogruilder interface

e An xMLDirector class that drives the catalogBuilder and is the class that implements
the SAX-defined DocumentHandler interface

In effect, xMLDirector convert SAX's events into callsto catalogBuilder. The
Catalogbuilder is responsible for creating the various catalog objects.

Figure 1.6. Applying the builder pattern.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A Simple API for XML

SAX stands for the Simple API for XML. It declares an interface to an XML parser, and
in this respect, SAX is similar to W3C's Document Object Model (DOM). However, the

way SAX works is different the way DOM does. An XML parser is a library to read XML
documents. The parser enforces the XML syntax, decodes the elements, resolves the

entities, and more. In a nutshell, it takes care of low-level work for the programmer.

SAX is an event-based interface. Similar to AWT, your application must register for
events of interest. However, unlike AWT, SAX events are not related to buttons and
menus. SAX events relate to the XML document instead. Events exists for the
beginning and the end of the document, for the beginning and the end of an element,
for character data, for processing instructions, and more (see Figure 1.7).

Figure 1.7. A SAX parser generates events as it reads the XML document.

Because it is event based, SAX does not explicitly build the document tree in memory.
It is therefore more efficient than DOM and, in particular, it can process documents
larger than the available memory.

You can learn more about SAX at http://www.meggison.com/SAX.

In practice, catalogBuilder is implemented in Listing 1.8. It declares one build method for
each object in the data structure: buildcatalog (), buildvisualProduct (), and so on.

Notice that it does not declare a buildrroduct () because Product is an abstract class. It is
therefore impossible to instantiate it.

Listing 1.8 CatalogBuilder.java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.catalog;

public interface CatalogBuilder
{
public void buildCatalog() ;
public void buildVisualProduct (String text,
String id,
boolean checked,
String image) ;
public void buildTextualProduct (String text,
String id,
boolean checked);
public void buildDescription(String language,
String text);

public Catalog getCatalog() ;

¥MLDirector and DefaultCatalogBuilder are more interesting classes. xMI.Director is
demonstrated in Listing 1.9; let's walk through it step by step.

First, xML.Di rector implements the SAX's DocumentHandler interface, which declares SAX
events related to the document:

public class XMLDirector

implements ContentHandler

The constructor accepts an object that implements the catalogBuilder interface. As
XMLDirector progresses through the XML document, it collects information on the various
objects and calls the catalogbuilder to create the Product objects:

public XMLDirector (CatalogBuilder builder)

{

this.builder = builder;

The meat of xMIL.Directorisin startElement () and endElement (). These two event
handlers track where the reader is in the document using the state variable. startElement ()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

also initializes various buffers, depending on the current element. For the <product> and
<Text> elements, it collects the value of their attributes:
public void startElement (String namespaceURI,
String localName,
String tag,

Attributes atts)

if(tag.equals ("Catalog") && ROOT == state)
state = CATALOG;
else if(tag.equals ("Product") && CATALOG == state)
{
state = PRODUCT;
id = atts.getValue ("id");
String st = atts.getValue ("checked");
checked = Boolean.valueOf (st) .booleanValue () ;
text = null;
image = null;
}
else if(tag.equals ("Text") && PRODUCT == state)
{
state = PRODUCT TEXT;

buffer = new StringBuffer();

else if(tag.equals ("Image") && PRODUCT == state)
{
state = IMAGE;

buffer = new StringBuffer();

}

else if(tag.equals("Descriptions"™) && PRODUCT state)
state = DESCRIPTIONS;
else if(tag.equals ("Text") && DESCRIPTIONS == state)

{

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

state = DESCRIPTIONS TEXT;
language = atts.getValue("xml:lang");

buffer = new StringBuffer();

When an XML element corresponds to a Java object, endelement () calls the builder, passing it
the appropriate information.

This illustrates how the builder pattern works. The director accumulates just enough information to
construct one object and calls the builder to do the actual work:
public void endElement (String namespaceURI,
String localName,

String tag)

if(tag.equals ("Catalog") && CATALOG == state)
{
state = ROOT;
builder.buildCatalog() ;
}
else if(tag.equals("Product") && PRODUCT == state)
{
state = CATALOG;
if(null == image)
builder.buildTextualProduct (text, id, checked) ;
else
builder.buildVisualProduct (text, id, checked, image) ;
}
else if (tag.equals("Text") && PRODUCT TEXT == state)
{
state = PRODUCT;

text = buffer.toString();

B O - B 2 L SR | N — A o~T SR

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

else 1r(tag.equals (- lmage”) && LMAGLEK == state)
{

state = PRODUCT;

image = buffer.toString();
}
else if(tag.equals ("Descriptions") &&

DESCRIPTIONS == state)

state = PRODUCT;

else if(tag.equals("Text") && DESCRIPTIONS TEXT == state)

{
state = DESCRIPTIONS;

builder.buildDescription(language,buffer.toString());

Tip

¥MLDirector does not validate the structure of the XML document—for example, it

does not test whether the attributes or the elements exist.

If your applications need to validate the structure of the document, you should consider

using a validating parser.

As promised, the code for xMLDirector isin Listing 1.9.

Listing 1.9 XMLDirector. java

package com.psol.catalog;

import org.xml.sax.*;

public class XMLDirector

implements DocumentHandler

protected CatalogBuilder builder;

protected static final int ROOT

0,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CATALOG = 1,
PRODUCT = 2,

PRODUCT TEXT = 3,

IMAGE 4,
DESCRIPTIONS = 5,
DESCRIPTIONS TEXT = 6;
protected int state;
protected StringBuffer buffer;
protected String text,
id,
image,
language;

protected boolean checked;

public XMLDirector (CatalogBuilder builder)

{

this.builder = builder;

public void setDocumentLocator (Locator locator)

{1}

public void startDocument ()

{

state = ROOT;

public void endDocument ()

{1}

public void startElement (String tag,AttributelList atts)

{

A F A~y AN AT AN A ST AT cc DNANM —— A+ a4+ A0

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

liltay.cyuals | Laldluy) «x [UUL —— SLate)
state = CATALOG;
else if(tag.equals ("Product") && CATALOG == state)
{
state = PRODUCT;
id = atts.getValue ("id");
String st = atts.getValue ("checked");
checked = Boolean.valueOf (st) .booleanValue () ;
text = null;
image = null;
}
else if(tag.equals ("Text") && PRODUCT == state)
{
state = PRODUCT TEXT;
buffer = new StringBuffer();
}
else if(tag.equals("Image") && PRODUCT == state)
{
state = IMAGE;

buffer = new StringBuffer();

}

else if(tag.equals("Descriptions™) && PRODUCT == state)
state = DESCRIPTIONS;
else if(tag.equals ("Text") && DESCRIPTIONS == state)

{

state = DESCRIPTIONS TEXT;
language = atts.getValue ("xml:lang");

buffer = new StringBuffer();

public void endElement (String tag)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if(tag.equals("Catalog") && CATALOG == state)
{
state = ROOT;
builder.buildCatalog() ;
}
else if(tag.equals ("Product") && PRODUCT == state)
{
state = CATALOG;
if(null == image)
builder.buildTextualProduct (text,id, checked) ;
else
builder.buildVisualProduct (text, id, checked, image) ;
}
else if(tag.equals("Text") && PRODUCT TEXT == state)
{
state = PRODUCT;
text = buffer.toString();

}

else if(tag.equals ("Image") && IMAGE == state)
{
state = PRODUCT;
image = buffer.toString();
}
else if(tag.equals("Descriptions") &&
DESCRIPTIONS == state)

state = PRODUCT;
else if(tag.equals("Text") && DESCRIPTIONS TEXT == state)
{

state = DESCRIPTIONS;

builder.buildDescription (language,buffer.toString())

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void characters(char ch[],int start,int len)

{

if (PRODUCTiTEXT == state ||
IMAGE == state ||
DESCRIPTIONS TEXT == state)

buffer.append(ch,start, len);

public void ignorableWhitespace (char chl[],
int start,

int length)

public void processingInstruction(String target,String data)

{}

The builder pattern cleanly separates the work between the director (responsible for collecting the
information from the XML file) and the builder (responsible for creating and maintaining the object
structure).

Listing 1.10is befaultCatalogBuilder. Again, let's first review the salient points.

DefaultCatalogBuilder provides storage for the catalog in the making. It stores a list of
descriptions because it is being built through calls to buildbescription (). It also stores a list
of products because it's being built through calls to buildTextualProduct () and
buildVisualProduct ():

protected Catalog catalog = null;
protected Vector products = new Vector(),
descriptions = new Vector();

buildCatalog () is a very simple method. It simply creates a catalog object:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void buildCatalog()
{

catalog = new Catalog(products) ;

buildvisualProduct () creates new product objects and stores them in the products vector.
buildTextualProduct () andbuildbescription () are very similar:

public void buildVisualProduct (String text,
String id,
boolean checked,

String image)

Product product = new VisualProduct (text,
id,
checked,
image) ;

products.addElement (product) ;

As promised, the code for befaultCatalogBuilder isin Listing 1.10.

Listing 1.10 DefaultCatalogBuilder. java

package com.psol.catalog;

import java.util.Vector;

public class DefaultCatalogBuilder
implements CatalogBuilder

protected Catalog catalog null;
protected Vector products = new Vector(),

descriptions = new Vector();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void buildCatalog()
{

catalog = new Catalog(products);

public void buildVisualProduct (String text,
String id,
boolean checked,

String image)

Product product = new VisualProduct (text,
id,
checked,
image) ;

products.addElement (product) ;

}
public void buildTextualProduct (String text,
String id,

boolean checked)

Product product = new TextualProduct (text,
id,
checked,

descriptions);
products.addElement (product) ;

descriptions = new Vector();

public void buildDescription(String language,

String text)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Description description = new Description (language, text);

descriptions.addElement (description);

public Catalog getCatalog ()

{

return catalog;

To start the pattern, it suffices to create an xML.Director and registerit, as a
DocumentHandler, with a SAX parser:

XMLReader xmlReader =
XMLReaderFactory.createXMLReader (PARSER NAME) ;
CatalogBuilder builder = new DefaultCatalogBuilder();
xmlReader.setContentHandler (new XMLDirector (builder)) ;

xmlReader.parse ("catalog.xml") ;

Catalog catalog = builder.getCatalog();

[+ Faivisvs Jflwxt v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Fanvisis] v +]
Meeting the Visitor Pattern

The visitor pattern is a sort of mirror of the builder pattern. Again, our goal will be to separate the
object structure from the writing of the XML document.
Figure 1.8 illustrates the generic visitor pattern. The various components are as follows:

e The mlement class and its descendants, which represent the object structure

e The st ructure class, which is the root of the structure

e The visitor and its descendant, which walk through the object structure, writing the XML
document as they progress

¢ The client, which is the class that sends the visitor on to the data structure

Warning

Don't confuse the class ©1ement with an XML element. In the visitor pattern, =1 ement
stands for an element in the data structure.

Figure 1.8. Visitor pattern.

One of the remarkable aspects of this pattern is how a vi si tor object recognizes a concrete

element. It would have been possible to explicitly test the various options, such as in the
following:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (element instanceof Cataloqg)
visitCatalog((Catalog)element) ;
else if (element instanceof VisualProduct)
visitVisualProduct ((VisualProduct)element) ;
// and more
However, this method is error prone. It is particularly easy to forget to update this list of tests
when new classes are added to the structure.

Instead, E1ement and visitor use a two-step protocol to recognize each other. Element
implements the accept () method, which takes a visitor as a parameter. When an £ lement
accepts a visitor, it calls the appropriate visitConcreteElement () method, passing a
reference to itself, to the vi si+tor object.

Applying the Visitor Pattern

Figure 1.9 applies the visitor pattern to our object structure. It introduces two new interfaces and
two new classes:

e The catalogElement interface from which the various classes in the data structure
inherit. It declares the accept () method.

e The catalogvisitor interface declares various methods for visiting the object structure.
e The xMLVisitor class is one visitor that writes the object structure in XML.

e The catalogViewer class implements the main () method for the application. It starts
the visitor pattern.

Figure 1.9. Applying the visitor pattern.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The catalogrlement interface is shown in Listing 1.11. It declares only one method:
accept ().

Listing 1.11 CatalogElement. java

package com.psol.catalog;

import java.io.IOException;

public interface CatalogElement

{
public void accept (CatalogVisitor visitor)

throws IOException;

The accept () method is implemented in catalogilement's descendants, such as the
Catalog class (refer to Listing 1.1):

public void accept(CatalogVisitor visitor)

throws IOException

visitor.visitCatalog(this);

Listing 1.12 isthe catalogvisitor. It declares one method for each element in the object
structure.

Listing 1.12 cCatalogVisitor.jar

package com.psol.catalog;

import java.io.IOException;

public interface CatalogVisitor

{

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void visitCatalog(Catalog cataloq)
throws IOException;

public void visitVisualProduct (VisualProduct product)
throws IOException;

public void visitTextualProduct (TextualProduct product)
throws IOException;

public void visitDescription (Description description)

throws IOException;

XMLVisitor, as seen in Listing 1.13, is one implementation of catalogvisitor that writes the
XML document.

For each object, it writes the corresponding XML code. If the object contains other objects, it calls
their accept () method, which causes these objects to be written as well:
public void visitTextualProduct (TextualProduct product)

throws IOException

pw.print ("<Product") ;

printAttribute ("id",product.getId()) ;

Boolean bool = new Boolean (product.isChecked()) ;

printAttribute ("checked",bool.toString());

pw.println('>");

printElement ("Text",product.getText ()) ;

pw.println ("<Descriptions>");

for(int i = 0;1i < product.getSize();i++)
product.descriptionAt (i) .accept (this);

pw.println("</Descriptions>");

pw.println ("</Product>") ;

Listing 1.13 XMLVisitor. java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.catalog;

import java.io.*;

public class XMLVisitor

implements CatalogVisitor

protected PrintWriter pw;

public XMLVisitor (PrintWriter pw)
{

this.pw = pw;

public void visitCatalog(Catalog catalog)

throws IOException

pw.println ("<?xml version='1.0'?>");

pw.println ("<Catalog>");

for(int i = 0;1i < catalog.getSize();i++)
catalog.productAt (i) .accept (this);

pw.print ("</Catalog>");

pw.flush () ;

public void visitVisualProduct (VisualProduct product)

throws IOException

pw.print ("<Product") ;
printAttribute ("id", product.getId()) ;

Boolean bool = new Boolean (product.isChecked());

Nnrinthttrihntal"ArharlbaA" hanl +AQtvaina~a ()) .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PLLLLALLLLIUULS | CILSURASU jUUUL . LUDLL LIty \/) s
pw.println('>");

printElement ("Text",product.getText ());
printElement ("Image",product.getImage()) ;

pw.println ("</Product>") ;

public void visitTextualProduct (TextualProduct product)

throws IOException

pw.print ("<Product") ;

printAttribute ("id",product.getId());

Boolean bool = new Boolean (product.isChecked());

printAttribute ("checked",bool.toString());

pw.println('>");

printElement ("Text",product.getText ());

pw.println ("<Descriptions>");

for(int i = 0;1i < product.getSize();i++)
product.descriptionAt (i) .accept (this);

pw.println("</Descriptions>");

pw.println ("</Product>") ;

public void visitDescription (Description description)

throws IOException

pw.print ("<Text");

printAttribute ("xml:lang",description.getLanguage()) ;
pw.print ('>");

printContent (description.getText ()) ;

pw.println ("</Text>");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void printElement (String tag,String content)

throws IOException

pw.print ('<'); pw.print(tag); pw.print('>");

printContent (content) ;

pw.print ("</"); pw.print(tag); pw.println('>"');

public void printContent (String content)

throws IOException

// works with any Writer encoding but EBCDIC

for (int 1 0;1 < content.length();i++)

char ¢ content.charAt (i) ;

pw.print ("& ") ;

else if(c > '\ ul007f")

pw.print ("&#");
pw.print (Integer.toString(c));

pw.print (';"');

pw.print (c) ;

public void printAttribute (String name, String wvalue)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

throws IOException

pw.print (''); pw.print (name); pw.print("='");

// works with any Writer encoding but EBCDIC

for(int i = 0;1i < value.length() ;i++)
{

char ¢ = value.charAt(i);

if(c == '\ ')

pw.print ("' ") ;
else 1if(c == '&")
pw.print ("&") ;

else if(c > "\ ul007f")

pw.print ("&#") ;
pw.print (Integer.toString(c));

pw.print (';"');

pw.print (c);

pw.print ('\ '');

The application's main class is shown in Listing 1.14, catalogViewer. CatalogViewer
creates a frame on which it places an instance of catalogpranel (refer to Listing 1.3). At startup,
it uses the builder pattern to read the catalog. xml file.

When the window is closed, it uses the visitor pattern to overwrite catalog.xml1. This saves any
changes by the customer, such as selecting or deselecting a product:
Writer writer = new FileWriter ("catalog.xml");
CatalogVisitor visitor =
new XMLVisitor (new PrintWriter (writer)):;

catalog.accept(visitor);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tip
It would not be difficult to use JavaMail (the standard Java API for emailing) in

conjunction with the visitor pattern to automatically email the product selection. This is
left as an exercise for the reader.

Listing 1.14 CatalogViewer. java

package com.psol.catalog;

import java.io.*;

import java.awt.*;
import org.xml.sax.*;
import java.awt.event.*;

import org.xml.sax.helpers.XMLReaderFactory;

public class CatalogViewer

public static final String PARSER NAME =

"org.apache.xerces.parsers.SAXParser";

protected static class SaveOnClose

extends WindowAdapter

protected Catalog catalog;
public SaveOnClose (Catalog cataloqg)
{

this.catalog = catalog;

}

public void windowClosing (WindowEvent evt)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

try

Writer writer = new FileWriter ("catalog.xml");
CatalogVisitor visitor =
new XMLVisitor (new PrintWriter (writer));
catalog.accept (visitor);
}
catch (IOException e)
{3}

System.exit (0) ;

public static void main(String[] args)

throws Exception

XMLReader xmlReader =

XMLReaderFactory.createXMLReader (PARSER NAME) ;
CatalogBuilder builder = new DefaultCatalogBuilder():;
xmlReader.setContentHandler (new XMLDirector (builder));
xmlReader.parse ("catalog.xml") ;

Catalog catalog = builder.getCatalog();

Panel panel = new CatalogPanel (catalog);

Frame frame = new Frame ("Catalog Viewer");
frame.add (panel) ;

frame.setResizable (false);

frame.setSize (400,200) ;
frame.addWindowListener (new SaveOnClose (catalog));

frame.show () ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Fanvisis] v +]
Building and Running the Project

The catalog viewer project is available on the CD that accompanies this book. Copy the project
directory from the CD to your hard disk and then go to the command line and change to the root
of the project. You can run the catalog viewer with the ca+210g command (see Figure 1.10).

Figure 1.10. Running the catalog viewer.

Caution

You need a version of Java 2 (JDK 1.2 or above) installed on your machine to run this
project. The project should run on JDK 1.1, but you will need to adapt the
catalog.bat file.

You also need a SAX 2.0—compliant XML parser to run this project. The project on the
accompanying CD uses Xerces, which is available on the CD and from
http://xml.apache.org.

If you switch to another parser, you will need to update PARSER NAME in
CatalogViewer.

Pattern Benefits

The major benefits of the builder and visitor patterns are as follows:

¢ They separate reading and writing XML documents from the object structure.

e They centralize the XML-related code in a few classes that simplify maintenance. This is
particularly valuable in large projects where one developer is responsible for the object
structure and another one is in charge of XML-related aspects.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Replacing the Director

The benefit of adopting a flexible design is that it is simple to change the application. For
example, you can

e Change the structure of the XML document by adapting the director (and the visitor) with
no changes whatsoever to the object structure.

¢ Only load a subset of the catalog, to save memory, by adapting the builder to discard those
objects you don't need. Again, changes are limited to one class.

¢ Replace the SAX parser with a DOM parser or even a database by adapting the director.
Again, changes do not impact other classes.

Listing 1.15 demonstrates the last advantage. As the name implies, the DOMDirector is a director
built on a DOM parser. This director makes exactly the same calls to the builder, so changes are
really limited to one class!

Although a DOM parser is less efficient, because it uses more memory, it might be the only parser
available to you.

Listing 1.15 DOMDirector. java

package com.psol.catalog;

import org.w3c.dom.*;

public class DOMDirector
{

protected CatalogBuilder builder;

public DOMDirector (CatalogBuilder builder)
{

this.builder = builder;

public void walkDocument (Document document)
{
L
Element el = document.getDocumentElement () ;

if(el.getTagName () .equals ("Catalog"))

walkCatalog(el) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void walkCatalog(Element element)

{

NodeList children = element.getChildNodes{() ;

for(int i = 0;1i < children.getLength();i++)
{
Node node = children.item(1);
if (node.getNodeType () == Node.ELEMENT NODE)
{
Element el = (Element)node;

if(el.getTagName () .equals ("Product"))

walkProduct (el) ;

}

builder.buildCatalog() ;

public void walkProduct (Element element)

{
NodeList children = element.getChildNodes{() ;
String text = null,
image = null;

for(int i = 0;1i < children.getlLength();i++)

{

Node node

children.item (i) ;

if (node.getNodeType () == Node.ELEMENT NODE)

{
Element el = (Element)node;
if(el.getTagName () .equals ("Text"))
text = extractContent (el);

else if (el.getTagName () .equals ("Image"))

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

image = extractContent (el);
else if (el.getTagName () .equals ("Descriptions"))

walkDescriptions (el) ;

}
String id = element.getAttribute("id"),
st = element.getAttribute ("checked");
boolean checked = Boolean.valueOf (st) .booleanValue () ;
if(null == image)
builder.buildTextualProduct (text, id, checked) ;
else

builder.buildVisualProduct (text, id, checked, image) ;

public void walkDescriptions (Element element)

{

NodeList children = element.getChildNodes{() ;

for(int i = 0;1i < children.getlLength () ;i++)
{
Node node = children.item (1) ;
if (node.getNodeType () == Node.ELEMENT NODE)
{
Element el = (Element)node;

if(el.getTagName () .equals ("Text"))
{
String text = extractContent(el),
lang = el.getAttribute ("xml:lang");

builder.buildDescription(lang, text) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public String extractContent (Element element)

{

// currently ignores entities, CDATA section, etc.
element.normalize () ;
Node child = element.getFirstChild() ;

if(child != null && child.getNodeType () == Node.TEXT NODE)

Text text = (Text)child;

return text.getDatal();

else

return null;

Replacing the Visitor

The catalog viewer saves the complete catalog so the customer must email a file that is larger
than required. However, it would be more efficient to save a smaller file with the list of products
the customer selected.

This is easy to accomplish by writing a new visitor class, such as the xMIL.RequestvVisitor
shown in Listing 1.16.

Listing 1.16 XMLRequestVisitor. java

package com.psol.catalog;

import java.io.*;

public class XMLRequestVisitor

implements CatalogVisitor

protected PrintWriter pw;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public XMLRequestVisitor (PrintWriter pw)

{

this.pw = pw;

public void visitCatalog(Catalog cataloq)

throws IOException

pw.println ("<?xml version='1.0"'2>");

pw.println ("<Request>") ;

for(int i = 0;1 < catalog.getSize();i++)
catalog.productAt (i) .accept (this);

pw.print ("</Request>");

pw.flush();

public void visitVisualProduct (VisualProduct product)

throws IOException

visitProduct (product) ;

public void visitTextualProduct (TextualProduct product)

throws IOException

visitProduct (product) ;

public void visitProduct (Product product)

throws IOException

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (product.isChecked())
{
pw.print ("<Product id='");
// works with any Writer encoding but EBCDIC
String value = product.getId();
for(int 1 = 0;1i < value.length() ;i++)

{

char c¢ value.charAt (i) ;
if(c == "\ '")

pw.print ("'");

pw.print ("&") ;

else if(c > "\ ul007f")

pw.print ("&#") ;
pw.print (Integer.toString(c));

pw.print (';");

pw.print (c);
}

pw.println("™\ '/>");

public void visitDescription (Description description)

throws IOException

{3

T earn LiE

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(4 runvisun Il waxt o]
Additional Resources

The patterns and tools introduced in this chapter are not limited to the catalog viewer written in
Java.

Other Applications

Many applications will benefit from using XML as lightweight data storage. In addition, XML is
such a versatile format that it can be applied in any industry.

Many reasons exist to choose XML as a file format. The following are some of the most popular
reasons:

e XML works well with object-oriented languages such as Java.
¢ By choosing XML, your application has the backing of some of the biggest names in the
industry: Microsoft, IBM, Sun, Oracle, and Netscape. In practice, this means your files

interface more easily into their systems.

e XML is easy to use and easy to learn. Plus, more professionals are learning XML, which
means even more support exists for it.

e XML has good press. | saved this one for the end. Please note that | didn't write "there's a
lot of hype around XML." A few of my customers have adopted XML because it looks good

on their press release but more have adopted it because they want to benefit from the
growing XML industry.

Parsers in Other Languages

SAX parsers are available to most programming languages, including
e C++— The C++ version of the Xerces parser also is available from http://xml.apache.org.

e Python— SAX for Python is available from http://www.stud.ifi.uio.no/
~Imariusg/download/python/xmli/saxlib.html.

e Perl— XML::Parser::PerlSAX is available from http://www.bitsko.slc.ut.us/ libxml-perl.
e Eiffel— eXML is available from exml.sourceforge.net.
e And most languages on the Windows platform (Visual Basic, Delphi) through

ActiveSAX— ActiveSAX is a commercial COM component available from http://www.vivid-
creations.com.

[« recvisos [l s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4 Fawvisii]
Chapter 2. Scripted Configuration Files

In the previous chapter, you saw how effective a file format XML is. This chapter addresses
similar issues but from a different angle. More specifically, you will concentrate on special files:
the configuration files.

You will see why XML is intrinsically a good replacement for most configuration files but, also, you
will see how XML makes it easy to extend the classical configuration file in scripted configuration
files.

(< rious Wiy

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Configuration Files

[+rrvvions l s

Most applications use some sort of configuration files to store information such as paths, window

sizes, user preferences, and network addresses.

Because configuration files are so important, most programming languages, including Java, have
built-in support for them. In Java, this support takes the form of the java.util.Properties
class. Windows and other platforms use the ini files. Windows also has the Registry.

With the exception of the Windows Registry (which has other problems of its own), most
configuration files are flat text files. They store a list of properties similar to the following:

Q@ (#)flavormap.properties 1.5
TEXT=text/plain;charset=ascii

UNICODE\ TEXT=text/plain;charset=unicode

HTML\ Format=text/html;charset=unicode

Rich\ Text\ Format=text/enriched;charset=ascii

HDROP=application/x-java-file-list;class=java.util.List

In practice, many applications would benefit from a richer structure. Consider the following extract

from a Web server configuration file:

SERVERS : main

main.CLASS : com.mortbay.HTTP.HttpServer

main.STACKS : root
main.PROPERTY.SessionMaxInactiveInterval : 3600
main.PROPERTY.MinListenerThreads : 10
main.PROPERTY.MaxListenerThreads : O
main.PROPERTY.MaxListenerThreadIdleMs : O
main.LISTENER.all.CLASS : com.mortbay.HTTP.HttpListener

main.LISTENER.all.ADDRS : 0.0.0.0:8080

main.root.PATHS : /

main.root.HANDLERS : file

main.root.file.CLASS : com.mortbay.HTTP.Handler.FileHandler

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

main.root.file.PROPERTY.FILES.FileBase.PATHS : /
main.root.file.PROPERTY.FILES.FileBase.DIRECTORY : ./docs
Obviously, these properties are organized in a hierarchical format. For example,
main.root.file.CLASSandmain.root.file.PROPERTY are related to the same process

within the server.

This chapter is a manifesto to encourage you to use XML as the preferred format for serious
configuration files. But it won't stop there. You will also explore how (and when) XML lends itself
to building a mini-script language.

Scripted Configuration Files

Take the example of an online survey application. Online surveys are popular, and Web sites are
struggling to come up with imaginative surveys. The survey in this example measures interest in
books on XML.

Imagine a survey engine. It presents questions to visitors and collects the answers. Most
questions are simple, simply requiring the visitor to pick the answer from a list of choices.
However, some questions can be open-ended, requiring the visitor to type his choice.

The list of questions will typically end up in a configuration file to make it easy to edit. Obviously,
XML is a good choice because it will support the relationship between the questions and their
choices, as in the following:
<?xml version="1.0"?2>
<survey>
<gquestion>
<label>Do you use XML?</label>
<choice>
<option>
<label>I do</label>
<value>yes</value>
</option>
<option>
<label>No but I plan to use it</label>
<value>planning</value>
</option>
<option>
<label>No and I don't plan to use it</label>
<value>no</value>

</option>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</choice>
s/ 1A/ 4
</question>
<question>

<label>Do you need more XML books?</label>

<option>
<label>Yes, I would like more XML books</label>
<value>yes</value>

</option>

<option>
<label>No, I have all the books I need</label>

<value>no</value>

</survey>

In all but the simplest survey, questions are linked to each other and the answer to one might
determine which question is asked next. For example, if the visitor has no plan to use XML, it
does not make a lot of sense to inquire whether that visitor would be interested in an XML book.
Move to another part of the survey instead.

How should you represent this linking in the configuration file? Again, traditional configuration files
are ill-equipped for this, but, with XML, you can build a nice answer: a scripted configuration file.

A scripted configuration file can store some of the logic, such as how to decide on the next
question, in the configuration file. It takes the form of a simple script, such as
<if>
<eqg>
<answer>usingxml</answer>
<text>no</text>

</eqg>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<text>done</text>
<text>morebook</text>
</i1f>

If the visitor replies that he is not using XML, the survey is complete. Otherwise, you inquire about
more books.

Why Not a Real Scripting Language?

Why ponder on this hybrid, the scripted configuration file; why not adopt a real scripting
language? After all, ready-made interpreters are available for the most popular scripting
languages, such as VBScript, JavaScript, Tcl, Perl, and Python.

Scripted configuration files are a middle ground between a full-blown scripting language, which is
intimidating for many users, and a non-scripted configuration file, which is often too limited.

Furthermore, interpreters tend to be large. Because they support a full-blown language, they offer
many options at the cost of being larger and more complicated to use.

In other words, scripted configuration files strike the right balance between complexity and
usefulness for many projects. As you will see, building them in XML is not difficult.

Finally, users can take advantage of many XML tools, including editors, to help them prepare the
configuration files—and it does not require more work from you.

For completeness, | must stress that this does not replace your favorite scripting language. For
heavy-duty programming, adopting a real scripting language makes more sense, if only because
you will benefit from standard libraries and other facilities.

nEn SO

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« reivious Jfxt v
Meeting Survex

In the rest of this chapter, you'll build the Survex . Survex is a generic survey application. It is
configured for a specific survey through an XML file, such as Listing 2.1.

Listing 2.1 survey.xml

<?xml version="1.0"7?>
<survey>
<question>
<name>email</name>
<title>Welcome to our XML book survey</title>
<label>Thank you for participating in our survey.</label>
<input>Enter your email address</input>
<next><text>usingxml</text></next>
</question>
<question>
<name>usingxml</name>
<title>XML and You</title>
<label>Do you use XML?</label>
<choice>
<option>
<label>I do</label>
<value>yes</value>
</option>
<option>
<label>No but I plan to use it</label>
<value>planning</value>
</option>
<option>
<label>No and I don't plan to use it</label>
<value>no</value>

</option>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</choice>
<next>
<if>
<eq>
<answer>usingxml</answer>
<text>no</text>
</eqg>
<block>
<save><answer>email</answer></save>
<text>done</text>
</block>
<text>booktraining</text>
</if>
</next>
</question>
<question>
<name>booktraining</name>
<title>XML Books</title>
<label>Do you need more XML books?</label>
<choice>
<option>
<label>Yes, I would like more XML books</label>
<value>yes</value>
</option>
<option>
<label>No, I have all the books I need</label>
<value>no</value>
</option>

</choice>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<next>
<if>
<eqg>
<answer>booktraining</answer>
<text>yes</text>
</eqg>
<text>timeframe</text>
<block>
<save><answer>email</answer></save>
<text>done</text>
</block>
</if>
</next>
</question>
<guestion>
<name>timeframe</name>
<title>Timeframe</title>
<label>When do you plan to buy new XML books?</label>
<choice>
<option>
<label>Now</label>
<value>now</value>
</option>
<option>
<label>Within 3 months</label>
<value>months</value>
</option>
<option>
<label>Within a year</label>

<value>year</value>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</option>
<option>
<label>I don't know yet</label>
<value>unknown</value>
</option>
</choice>
<next>
<block>
<save><answer>email</answer></save>
<text>done</text>
</block>
</next>
</question>
<gquestion>
<name>done</name>
<title>Thank you</title>
<label>Thank you for your time!</label>
<next><text>done</text></next>
</question>

</survey>

The survey is a list of question in which each question has the following:
¢ A name, which uniquely identifies a section
e A title, which is presented to the visitor
e A label or the text of the question itself

e Either a list of options from which the visitor can choose an answer (for closed questions)
or an input field (for open questions)

e A small script to decide on the next question

The first question in the listing will be rendered as in Figure 2.1. Note that the script could not be
simpler; it unconditionally moves to the next question:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<question>
<name>email</name>
<title>Welcome to our XML book survey</title>
<label>Thank you for participating in our survey.</label>
<input>Enter your email address</input>
<next><text>usingxml</text></next>

</question>

Figure 2.1. The survey first asks for your email address.

Designing Survex

The model behind Survex is shown in Figure 2.2. The main classes are

survex—The servlet that runs it all.

survey—The list of questions in the current survey.

e Question—Stores information on one question.

Option—Stores information on an option in a list of options.

e statement—It and its descendants are used for scripting.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e surveyReader—Parses the XML file and builds the corresponding survey object .

Figure 2.2. The script is modeled as statement descendants.

The Data Structure

At the heart of the data structure is the cuestion class (see Listing 2.2). The Question defines
a number of properties: the name , title ,and 1abel , as well as the input or the list of
options . Note that the code enforces an exclusive on the input and the list of options.
Finally, the script is used.

Listing 2.2 Question. java

package com.psol.survex;

import java.io.*;

import java.util.*;

public class Question
{
protected String name,
title,
label,
input;
protected Option[] options;

protected Statement script;

public String getName ()

{

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

return namey

public void setName (String name)

{

this.name = name;

public String getTitle ()

{

return title;

public void setTitle(String title)

{

this.title = title;

public String getLabel ()

{

return label;

public void setLabel (String label)

{

this.label = label;

public Option[] getOptions ()
{

return options;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void setOptions (Option|[] options)

{
this.options = options;

input = null;

public String getInput ()

{

return input;

public void setInput (String input)

{
this.input = input;

options = null;

public void setScript(Statement script)

{

this.script = script;

public Statement getScript ()

{

return script;

Question usesthe Option class, in Listing 2.3, to store the properties for the various options.
Each optionhas a 1abel anda value.

Listing 2.3 Option. java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.survex;

import java.io.*;

public class Option

{

protected String label,

value;

public void setLabel (String label)
{

this.label = label;

public String getLabel ()

{

return label;

public void setValue (String value)
{

this.value = value;

public String getValue ()

{

return value;

At the root of the data structure is the survey class (see Listing 2.4). It maintains the list of
questions in a dictionary for fast retrieval.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Listing 2.4 survey.java

package com.psol.survex;

import java.io.*;

import java.util.*;

public class Survey
{
protected String rootName;

protected Dictionary questions = new Hashtable();

public Enumeration getKeys ()
{

return questions.keys ()

public void addQuestion (Question question)
{
if (questions.isEmpty())
rootName = question.getName () ;

questions.put (question.getName (), question);

public Question getQuestion (String name)
{

return (Question)qgquestions.get (name) ;

public Question getRootQuestion ()
{

return (Question)qguestions.get (rootName) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Building a Script Interpreter

A script is an object that implements the stztement interface (see Listing 2.5). The interface is
trivial, defining only one method, =2pp1v () , which executes the statement and returns a string.
For simplicity, the string is the only data type. Also, no local variables exist, only global
parameters.

Listing 2.5 statement. java

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public interface Statement

{

public String apply(Dictionary parameters)

throws ServletException;

Looking back at Listing 2.1, you can identify the following statements:
e <text>—Used for a text constant
e <answer>—Retrieves an answer chosen by the visitor

e <cg>—Tests for equality

<if>—Is the classical if/then/else construct

e <save>—Saves the results to a file

<block>—Combines several statements
The <text> statement is implemented in the class named constant (see Listing 2.6).

Constant has one property, text ,andits apply () method returns the value of the text
property.

Listing 2.6 Constant.java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public class Constant

implements Statement

protected String text;

public void setText (String text)

{

this.text = text;

public String apply(Dictionary parameters)

throws ServletException

return text;

The <answer> XML element is implemented in the parameter class in Listing 2.7. This class
has one property, name, and its app 1y () method returns the parameter whose name matches
the name property. As you will see, the servlet loads the parameters with the visitor's choices.

Listing 2.7 Parameter. java

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public class Parameter

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

implements Statement

protected String name;

public void setName (String name)

{

this.name = name;

public String apply(Dictionary parameters)

throws ServletException

String st = (String)parameters.get (name) ;

return null != st ? st : "";

Equal (in Listing 2.8) supports the <c> statement . mqua1 has two properties, arg1 and arg2 ,
both of which are statements themselves. mqual executes the two statements (by calling
their app1v () method) and compares the results.

Note

Equal illustrates how statements are combined. The scripting language has a
distinct functional style: Each statement is a function (it takes one or more
parameters and returns a value). Also, no global variables exist.

A functional style is simpler to understand and, remember, you are looking for a simple-
to-use scripting language. For more sophistication, you would have turned to an
existing scripting language.

Listing 2.8 Equal.java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public class Equal

implements Statement

protected Statement argl, argZ;

public void setArgs (Statement argl, Statement arg2)

{

this.argl = argl;

this.arg2 = arg2;

public String apply(Dictionary parameters)

throws ServletException

String valuel = argl.apply(parameters),
value?2 = arg2.apply(parameters);
return valuel.equals (value2) ? "true" : "false";

1t has three properties: cond , then ,and else . It executes the first statement: cond, the
condition. Depending on the result, it next executes the then or e1se statement (see Listing
2.9).

Listing 2.9 If.java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.survex;

import java.util.Dictionary;

import javax.servlet.ServletException;

public class If

implements Statement

protected Statement cond,
then,

_else;

public void setArgs (Statement cond,
Statement then,

Statement else)

this.cond = cond;
this.then = then;

this. else = else;

public String apply(Dictionary parameters)

throws ServletException

if (cond.apply(parameters) .equals ("true"))
return then.apply (parameters) ;
else

return else.apply(parameters);

Save is a special function because it has a side effect: It creates a file and writes the parameters.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The script uses this before terminating the survey (see Listing 2.10).
Tip

Listing 2.10 saves the survey results under the visitor's email address. Email addresses
are a simple mechanism to identify visitors. Obviously, some people have several email
addresses, whereas some families share email addresses, but it's accurate enough for
our needs.

An added bonus is that when a visitor changes his mind and answers differently, the
new answer overrides the older one.

Listing 2.10 save. java

package com.psol.survex;
import java.io.*;
import java.util.*;

import javax.servlet.ServletException;

public class Save

implements Statement

protected Statement filename;

public void setFilename (Statement filename)

this.filename = filename;

public void escape (Writer w,String s)

throws IOException

for(int i = 0;1i < s.length();i++)

char ¢ = s.charAt (i) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if(c == '<")

else if(c == '&")
w.write ("&") ;
else if(c == "\ '")

w.write ("'");
else if(c == "'"")
w.write (""");

else if(c > "\ u007f")

w.write ("&#");
w.write(Integer.toString(c));

w.write(';");

else

w.write (c);

public String apply(Dictionary parameters)

throws ServletException

try

{
String fname = filename.apply(parameters);
File file = new File("results", fname + ".xml");
Writer writer = new FileWriter(file);

writer.write ("<?xml version='1l.0'?><survex>");
Enumeration keys = parameters.keys();

while (keys.hasMoreElements())

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

String name = (String)keys.nextElement () ;
writer.write ("<question><name>") ;
escape (writer, name) ;
writer.write ("</name><answer>");
escape (writer, (String)parameters.get (name)) ;
writer.write ("</answer></question>") ;

}

writer.write ("</survex>");

writer.close () ;

return fname;

catch (IOException e)

{

throw new ServletException(e);

Block offers a solution to combine several statements. It executes each statement and
returns the result of the last one. In effect, this is similar to the { } construct in Java (see Listing
2.11).

Listing 2.11 Block. java

package com.psol.survex;

import java.util.*;

import javax.servlet.ServletException;

public class Block

implements Statement

protected Statement|[] statements;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void setStatements (Statement|[] statements)

{

this.statements = statements;

public String apply(Dictionary parameters)
throws ServletException
String result = "";

// on the stack they are collected in reverse order

for(int i = statements.length - 1;1i >= 0;i--)
result = statements[i].apply(parameters);

return result;

Reading the Configuration File

The extensive data structure must be read from the XML configuration file. This is the role of
SurveyReader , a class that implements the SAX's contentHandler interface .
SurveyReader is demonstrated in Listing 2.12.

Listing 2.12 SsurveyReader . java

package com.psol.survex;

import org.xml.sax.*;

import java.util.*;

public class SurveyReader

implements ContentHandler

protected Stack stack;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

protected StringBuffer buffer;

public Survey getSurvey ()
{

return (Survey)stack.pop()

public void setDocumentLocator (Locator locator)

{3

public void startDocument ()
{

stack = new Stack{();

public void endDocument ()

{1

public void startElement (String namespaceURI,
String localName,
String tag,

Attributes atts)

if(tag.equals ("survey"))
stack.push (new Survey());
else if(tag.equals("question"))
stack.push (new Question());
else if(tag.equals("choice"))
stack.push (new Vector()):;
else if(tag.equals("option"))
stack.push (new Option());

else if(tag.equals ("input"))

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

buffer = new StringBuffer();
else if(tag.equals ("text"))
{
stack.push (new Constant());
buffer = new StringBuffer();
}
else if(tag.equals("answer"))
{
stack.push (new Parameter()):;
buffer = new StringBuffer();
}
else if(tag.equals ("if"))
stack.push (new If());
else if(tag.equals("eg"))
stack.push (new Equal());
else if(tag.equals("save"))
stack.push (new Save());
else if(tag.equals("block"))
stack.push (new Block());
else if(tag.equals ("name") ||
tag.equals("title") ||
tag.equals ("label") ||
tag.equals ("value"))

buffer = new StringBuffer();

public void endElement (String namespaceURI,
String localName,

String tag)

if(tag.equals ("question"))

{

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Question question = (Question)stack.pop();
Survey survey = (Survey)stack.peek();
survey.addQuestion (question);

}

else if(tag.equals("choice"))

{
Vector vector = (Vector)stack.pop():;
Option[] options = new Option[vector.size()];
vector.copyInto (options);
Question question = (Question)stack.peek();
question.setOptions (options) ;

}

else if(tag.equals("option"))

{

Option option = (Option)stack.pop():;

Vector vector = (Vector)stack.peek();
vector.addElement (option) ;

}

else if(tag.equals ("input"))

{
Question question = (Question)stack.peek();
question.setInput (buffer.toString()):
buffer = null;

}

else if(tag.equals("text"))

{
Constant constant = (Constant)stack.peek();

constant.setText (buffer.toString());

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

buffer = null;
}
else if(tag.equals("answer"))
{
Parameter parameter = (Parameter)stack.peek();
parameter.setName (buffer.toString())
buffer = null;
}
else if(tag.equals("if"))

{

Statement else = (Statement)stack.pop(),
then = (Statement)stack.pop(),
cond = (Statement)stack.pop():;

If if = (If)stack.peek();

_if.setArgs(cond, then, else);

}

else if(tag.equals("egq"))

{

Statement argl = (Statement)stack.popl(),
arg?2 = (Statement)stack.pop():;
Equal equal = (Equal)stack.peek();

equal.setArgs (argl,arg2);

}

else if(tag.equals("save"))

{
Statement filename = (Statement)stack.pop();
Save save = (Save)stack.peek();
save.setFilename (filename) ;

}

else if(tag.equals ("block"))

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Vector vector = new Vector();
Statement s = (Statement)stack.popl();
while (! (s instanceof Block))

{
vector.addElement (s) ;

s = (Statement)stack.pop():;

Statement[] statements = new Statement[vector.size()];
vector.copyInto (statements);
((Block)s) .setStatements (statements) ;
stack.push (s);

}

else if(tag.equals ("name"))

{
Question question = (Question)stack.peek();
question.setName (buffer.toString());
buffer = null;

}

else if(tag.equals("title"))

{
Question gquestion = (Question)stack.peek():;
question.setTitle (buffer.toString())
buffer = null;

}

else if(tag.equals("label"))

{
Object o = stack.peek();
if (o instanceof Question)

((Question)o) .setLabel (buffer.toString())

else

[[N+ An)Y AN catTahal (hinffar +AQ+trina (V) .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

VAUM LAV U« O LLGUS L \WULLSL « LUDLL LY \)] s
buffer = null;

}

else if(tag.equals("value"))

{
Option option = (Option)stack.peek();
option.setValue (buffer.toString());
buffer = null;

}

else if(tag.equals ("next"))

{
Statement script = (Statement)stack.popl():
Question question = (Question)stack.peek();

question.setScript(script);

public void characters(char ch[],int start,int len)

{
if (null != buffer)

buffer.append(ch,start, len);

public void ignorableWhitespace (char chl[],
int start,
int length)

{1

public void processingInstruction(String target,String data)

{3

public void skippedEntity (String name)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

{3

public void startPrefixMapping (String prefix, String uri)

{}

public void endPrefixMapping (String prefix)

{1

Notice that this class uses a different approach to tracking states than the bocumentHandler
from Chapter 1, "Lightweight Data Storage." Specifically, instead of using constants, it uses a
stack.

InstartElement (), it pushes objects on the stack:

else if (tag.equals ("option"))
stack.push (new Option());

Andin endeElement (), it pops. In most cases, it will pass them (as properties) to their parents,
which are also in the stack:

else if (tag.equals ("option"))

{
Option option = (Option)stack.pop();
Vector vector = (Vector)stack.peek();

vector.addElement (option) ;

Putting It All Together in the Serviet

From these building blocks, building the servlet is not difficult. The servlet class, survex , is
shown in Listing 2.13.

Listing 2.13 Survex. java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package com.psol.survex;

import java.io.*;

import java.util.x*;

import org.xml.sax.*;

import javax.servlet.*;
import javax.servlet.http.*;

import org.xml.sax.helpers.*;

public class Survex

extends HttpServlet

public static final String PARSER NAME =

"org.apache.xerces.parsers.SAXParser";

protected Survey survey;

public void init ()

throws ServletException

try

XMLReader xmlReader =

XMLReaderFactory.createXMLReader (PARSER NAME) ;
SurveyReader sreader = new SurveyReader ()
xmlReader.setContentHandler (sreader) ;
xmlReader.parse ("survey.xml") ;

survey = sreader.getSurvey () ;

catch (IOException e)

+thvnaw noauw QawvsrlatTvrantinn (o) .«

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

LILLUW LITW OTLVLITULLACTHLLULL T 4

catch (SAXException e)

{

throw new ServletException(e);

public Dictionary getParameters (HttpServletRequest request)

Dictionary parameters = new Hashtable();
Enumeration keys = survey.getKeys();
while (keys.hasMoreElements ())

{

String name = (String)keys.nextElement(),
value = request.getParameter (name) ;
if(null != wvalue)

parameters.put (name,value) ;

return parameters;

public void writeHTML (Question question,
String servletpath,
Writer writer,
Dictionary parameters)

throws IOException

writer.write ("<HTML><HEAD><TITLE>") ;
writer.write ("A Survex Survey: ");
writer.write (question.getTitle())

writer.write ("</TITLE></HEAD><BODY>") ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

writer.write ("<FORM ACTION='");
writer.write (servletpath);
writer.write (" '"METHOD='POST'>");
writer.write ("<INPUT TYPE='HIDDEN'NAME='name'VALUE="");
writer.write (question.getName()) ;
writer.write("'>");

writer.write ("<TABLE ALIGN='CENTER'BORDER='1'>");
writer.write ("<TR><TD BGCOLOR='black'>");
writer.write ("");
writer.write (question.getTitle())

writer.write ("</TD></TR><TR><TD><P>") ;
writer.write (question.getLabel ());

if(null != gquestion.getOptions())

writer.write ("<pP>");

Option[] options = question.getOptions{();

for(int i = 0;1i < options.length;i++)

writer.write ("<INPUT TYPE='RADIO'NAME='");

writer.write (question.getName()) ;
writer.write ("'VALUE="");
writer.write (options[i].getValue()):
writer.write ("'>");

writer.write (options[i].getLabel()):;

writer.write ("
");

}

else if(null != question.getInput())

writer.write ("<P>");
writer.write (question.getInput()):

writer.write (": <INPUT TYPE='TEXT'NAME='");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

writer.write (question.getName()) ;

writer.write("'>");

}

if(null != question.getOptions() ||
null != question.getInput())

writer.write ("<P><INPUT TYPE='SUBMIT'VALUE='Next'>");
writer.write ("</TD><TR></TABLE>") ;
Enumeration keys = parameters.keys();
while (keys.hasMoreElements ())
{
String parameter = (String)keys.nextElement ();
writer.write ("<INPUT TYPE='HIDDEN'NAME='");
writer.write (parameter) ;
writer.write ("'VALUE="'");
writer.write ((String)parameters.get (parameter)) ;
writer.write ("'>");
}
writer.write ("</FORM></BODY></HTML>") ;

writer.flush();

public void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

Question question = survey.getRootQuestion();
if (null != gquestion)
writeHTML (question,
request.getServletPath(),
response.getWriter (),
new Hashtable());

else

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

response.sendError (HttpServletResponse.SC NOT FOUND) ;

public void doPost (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

Dictionary parameters = getParameters (request);
String name = request.getParameter ("name");
Question question = null;
if(null == name)

question = survey.getRootQuestion();

else

question = survey.getQuestion (name) ;

if(null != question)

Statement script = question.getScript();
name = script.apply(parameters);

question = survey.getQuestion (name) ;

}
if (null != gquestion)
writeHTML (question,
request.getServletPath(),
response.getWriter (),
parameters) ;
else

response.sendError (HttpServletResponse.SC NOT FOUND) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Review the following listing step by step. The first method is init () , which reads the XML
configuration file upon loading.

Next, the class defines two helper methods: getpParameters () and writeHTML () .
getpParameters () collects the answers for all the questions. As you will see, the browser
always has the entire list of answers and passes them to the servlet with each request:
public Dictionary getParameters (HttpServletRequest request)
{
Dictionary parameters = new Hashtable () ;
Enumeration keys = survey.getKeys () ;

while (keys.hasMoreElements ())

{

String name = (String)keys.nextElement (),
value = request.getParameter (name) ;
if(null !'= wvalue)

parameters.put (name,value) ;

return parameters;

writeHTML () prints a ouestion as an HTML page. Notice that the page includes the various
answers as hidden input fields. Another hidden field contains the name of the current question.
These hidden fields are returned to the server by the browser with each request, as in the
following:
public void writeHTML (Question question,
String servletpath,
Writer writer,

Dictionary parameters)

throws IOException

writer.write ("<HTML><HEAD><TITLE>") ;
writer.write ("A Survex Survey: ");
writer.write (question.getTitle()):;

writer.write ("</TITLE></HEAD><BODY>") ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

writer.write ("<FORM ACTION='");
writer.write (servletpath);
writer.write (" '"METHOD='POST'>") ;
writer.write ("<INPUT TYPE='HIDDEN'NAME='name'VALUE="'");
writer.write (question.getName ()) ;

writer.write ("'>");

writer.write ("<TABLE ALIGN='CENTER'BORDER='1'"'>");
writer.write ("<TR><TD BGCOLOR='black'>");
writer.write ("");
writer.write (question.getTitle())

writer.write ("</TD></TR><TR><TD><P>") ;
writer.write (question.getLabel ());

if(null != question.getOptions{())

writer.write ("<P>");

Option[] options = question.getOptions{();

for(int 1 = 0;1i < options.length;i++)

writer.write ("<INPUT TYPE='RADIO'NAME='");

writer.write (question.getName ()) ;
writer.write ("'VALUE="'");
writer.write (options[i].getValue()):
writer.write ("'>");

writer.write (options[i].getLabel()):;

writer.write ("
");

}

else if(null != question.getInput())

{

writer.write ("<P>");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

}

if (null

writer.

writer.

writer.

writer.

null !=

writer.

write (question.getInput());
write (": <INPUT TYPE='TEXT'NAME='");
write (question.getName ()) ;

write("'>");

!= question.getOptions () ||

question.getInput())

write ("<P><INPUT TYPE='SUBMIT'VALUE='Next'>");

writer.write ("</TD><TR></TABLE>") ;

Enumeration keys = parameters.keys();

while (keys.hasMoreElements ())

{

}

String

writer.
writer.
writer.
writer.

writer.

parameter = (String)keys.nextElement () ;
write ("<INPUT TYPE='HIDDEN'NAME='");
write (parameter) ;

write ("'VALUE="");
write ((String)parameters.get (parameter));

write ("'>");

writer.write ("</FORM></BODY></HTML>") ;

writer.flush () ;

doGet () outputs the first (or root) question to get the user started. dorost () , on the other
hand, is where all the fun is because it uses the script to decide on which question to post.

dopost () first retrieves the name of the current question and the answers to the various
questions. Next, it calls the script to compute the name of the next question. It couldn't be simpler!
The following demonstrates this:

public void doPost (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

Dictionary parameters = getParameters (request);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

String name = request.getParameter ("name");

Question question = null;

question = survey.getRootQuestion () ;

else

question = survey.getQuestion (name) ;

if(null != question)
Statement script = question.getScript();
name = script.apply(parameters);

question = survey.getQuestion (name) ;

}
if (null != gquestion)
writeHTML (question,
request.getServletPath(),
response.getWriter (),
parameters) ;
else

response.sendError (HttpServletResponse.SC NOT FOUND) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« ruvvious [lwaxi v
Building and Running the Project

The survey project is available on the CD that accompanies this book. Copy the project directory
from the CD to your hard disk. Start the Web server with the survey command .

Next, open a browser and type the survey URL:

http://localhost:8080/survex

If everything works well, the result should look like Figure 2.3.

Figure 2.3. Taking your first survey.

For your convenience, the project ships with its own Web server. It uses Jetty , an open-source
Web server available from http://www.mortbay.com . Jetty is a very good Web server, but it is not
as user-friendly as commercial offerings. For example, to terminate the server, you must kill the
process (under Windows, Ctrl+C it).

However, Survex is a regular servlet, so you should be able to use it with any servlet-enabled
Web server.

Tip

Using JRun, you can add servlet support to all the popular Web servers (including
Apache, Netscape, and IIS). JRun is available from http://www.jrun.com.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Caution

You need a SAX 2.0—compliant XML parser to run this project. The project on the
enclosed CD uses Xerces , which is available on the CD, or you can download the
latest version from http://xml.apache.org.

If you switch to another parser, you will need to update PARSER NAME in Survex.

(< rious Wiy

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[+ Frivisu |
Benefits

Scripted configuration files in XML have several benefits over the regular
java.util.Properties:

o XML offers a hierarchical structure that matches the needs of all but the most trivial
applications.

e XML files are text based, so they can be exchanged via email and are very readable.
Furthermore, XML editors are plentiful.

¢ Building a simple scripting language in an XML file is easy. This can greatly enhance the
usefulness of configuration files.

[« recvisos [l s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(4 Frsvisui]
Additional Resources

Although this chapter concentrates on configuration files, other applications use XML-based
scripting language extensively. Some examples include

e XSL (the XML Stylesheet Language) , which is a simple but powerful scripting language

used to manipulate XML documents. With its roots firmly at the W3C, XSL is written in
XML.

¢ WebMethods has developed at least two XML-based scripting languages: WIDL and Flow .
Both extract information from Web sites. You can find more information about them at
http://www.webmethods.com.

e Miva is an application server similar to ASP, except that it uses an XML scripting language
instead of VBScript. You can find more information about it at http://www.miva.com.

[+ revioos W s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« xavioun i o]
Chapter 3. Electronic Forms

Shifting through the morning mail, | cannot help but notice how our society relies on forms. There
is a tax declaration form, the announcement for an e-commerce conference comes with a
registration form, there are a couple of invoices, and there is a royalties statement (so it's not all
bad news).

Companies and administrations stack forms in all their communications. We receive information
on forms (bank statements, wages bill, invoices) and we are requested to fill out forms throughout
the day: to buy goods (order form), to pay for them (check or card vouchers), to declare revenues
(tax forms), to claim benefits (insurance forms), to borrow books at the library (reader forms), and
SO on.

The forms, of course, have found their way online. Many organizations make their forms available
for download as PDF (Adobe Acrobat) or Word files. You can print them, fill them out, and mail or
fax them. Other companies encourage you to fill in HTML forms to enter data directly in their
databases.

In this chapter, you see how an XML editor can replace a word processor or a browser. This is
advantageous because it produces an XML document (which can be parsed, read into a
database, transformed through a style sheet, or generally manipulated through the myriad of XML
tools available to us) in a familiar word processor—like environment.

[« revioos [l s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[+ Frwvious vt o]
The Event Form

Imagine you are working for the local newspaper. The newspaper publishes much information,
including articles, advertisements, classifieds, and local information such as the agenda of local
events.

Event organizers call the newspaper and a clerk collects the data for the event. Obviously, he or
she has a form to fill out.

Recently, the newspaper began taking steps toward electronic publishing. The ultimate goal is to
make the newspaper available online. Therefore, the paper form must be replaced by an
electronic form.

Let's see how you can take advantage of an XML editor to build a simple and familiar editing

environment for the clerk. Our ultimate goal is shown in Figure 3.1. The main characteristics are
as follows:

e It's a Word lookalike so it's familiar to the clerk. It is very likely that it will be more familiar
than even a browser.

e |t creates real XML documents that look similar to Listing 3.1.
¢ Developing it is quick (less than a day) because the editor does all the hard work.
¢ |t mixes closed and open questions. The name, location, and contact information are fixed

fields but the description is open-ended. It can even include formatting (bold, italic) like a
word processor does.

Figure 3.1. A familiar environment to edit forms.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

One of the most interesting aspects of this project is that it illustrates how XML opens up your
application to tools. By choosing the XML format, you gain access to powerful tools, such as the
editor, but the underlying format remains XML. So, you always can access it through other
mechanisms (for example, building your own application, as you did in Chapter 1, "Lightweight
Data Storage"). You also can feed it to other tools (for example, browsers, using the publishing
mechanism introduced in Chapter 4, "Content Syndication").

Listing 3.1 bookfair.xml

<?xml version="1.0"?>
<!DOCTYPE Event SYSTEM "event.dtd">
<Event>
<Name>Book Fair </Name>
<Location>Exhibition Center, Namur</Location>
<Date>
<Start>6/3/00</Start>
<End>6/4/00</End>
</Date>
<Contact>
<Name>Robert Martin</Name>
<Phone>081 22 87 34</Phone>
</Contact>
<Description>
<Para>The largest book fair in the area! We're expecting
<Bold>hundreds</Bold> of booksellers covering all genres:
crime, biographies, science-fiction, how-to books and
more!</Para>
<Para>Free entrance and free parking.</Para>
<Para>Join us on Saturday night for the "<Italic>all-books
barbecue</Italic>."</Para>
</Description>

</Event>

[« revioos [l s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Fanvisis] v +]
Creating a Form with an Editor

The XML editor used in this chapter is XMetalL from SoftQuad. If you are familiar with other XML
editors such as XML Spy or XML Notepad, you will find that XMetaL is significantly more powerful.

XMetal provides tools to completely hide the markup language behind a word processor
interface. This is ideal for applications targeted at non-technicians: The newspaper clerk couldn't
care less about the structure document and the markup. He wants a simple form and a familiar
interface.

Compare XML Notepad in Figure 3.2 with XMetaL in Figure 3.1. XML Notepad throws the markup

in your face. It's great for developers—you and | love it—but it's a nightmare for average
computer users.

Figure 3.2. Which looks friendlier? XMetalL or XML Notepad?

However, XMetal is a dual-face tool. It looks like a word processor to the user, but it's a
programming toolkit for the developer. In this chapter, you learn how to use this toolkit.

Installing XMetalL

To run this project, you need a copy of XMetaL. The companion CD includes an evaluation copy
of XMetaL 1.0, which you can use for testing.

For more information, visit the XMetalL Web site (http://www.xmetal.com) or the SoftQuad site
(http://www.softquad.com).

Warning

Note that XMetal is a commercial product. Although it uses several standards, XMetalL

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

is not a standard itself. New versions might introduce incompatibilities that | could not
foresee at the time of this writing. You might want to check the Web site
(http://www.marchal.com) for an update.

In the following sections, you will completely configure the editor so it is optimized for your XML
document. The steps we will follow are

1. Define the model of the document; in other words, decide on which information to collect.
2. Create a template, which is an empty form the clerk uses to get started.

3. Style the document so it looks good onscreen.

4. Customize the behavior of the editor so it recognizes your elements.

5

. Develop macros to customize toolbars and menus and to validate the document.

[« recvisos [l s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« rnwvious [z
Running the Project

To save yourself a lot of clicking and typing, you can turn to the files on the accompanying CD. Cop
your hard disk and copy the following files in the appropriate directories. All these directories are un
directory:

® cvent.css goesunder Display.

e cvent.mcr goes under Macros.

e cvent.dtd,event.ctm,and ~event.tbr gounder Rules.

e For Event Description Form.xml, you must first create a new pincapplesoft directc
Then, copy the file in the new directory.

Creating the Model

The first step is to model the information we want to capture. We must decide which information is r
encode it in XML (which elements). We are not concerned with the presentation but with the structu

A form to record local events is not very complicated. Essentially, it must capture the name, locatior
event, as well as contact information. Finally, it should provide a text area to describe the specifics ¢
want to propose basic formatting options (bold and italic) for the description.

Figure 3.3 shows the structure for the form. Translated into DTD format, it looks similar to Listing 3..

Figure 3.3. The event form starts with closed questions and ends with a free-text d

Listing 3.2 event.dtd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

<!ELEMENT Event (Name, Location,Date,Contact, Description) >
<!ELEMENT Name (#PCDATA) >

<!ELEMENT Location (#PCDATA) >

<!ELEMENT Date (Start, End) >

<!ELEMENT Contact (Name, Phone, Email?) >

<!ELEMENT Description (Para+)>

<!ELEMENT Start (#PCDATA) >

<!ELEMENT End (#PCDATA) >

<!ELEMENT Phone (#PCDATA) >

<!ELEMENT Email (#PCDATA) >

<!ELEMENT Para (#PCDATA | Bold Italic) *>
<!ELEMENT Bold (#PCDATA | Italic)*>
<!ELEMENT Italic (#PCDATA | Bold) *>

XML Models

In XML, markup is used to encode the structure of a document. Most XML tools manipulate the strt
making it important to have proper tools to model the structure of documents.

Therefore, XML has a modeling language, the Document Type Definition (DTD). A DTD defines wh
elements appear in the document and what their relationships are (which element appears where).
defines which elements can repeat and which are optional. Finally, the DTD also declares attributes
entities.

Listing 3.2 is a DTD. It lists all the elements and their content. For example,

<!ELEMENT Event

(Name, Location,Date,Contact,Description)>
means that the Event element must contain a Name, Location, Date, Contact, and Descript
element.

XML documents fall into one of the following two categories:
¢ Well-formed documents follow the XML syntax. So far, our documents have been well forme:
¢ Valid documents follow the XML syntax and respect a model. This chapter uses valid docum
Valid documents are helpful because XML tools will enforce their model. For example, XMetaL rep«
error if you create a document in which an =vent has no Location. In practice, your application b

from a free validation routine.

For completeness, note that W3C is working on a replacement for DTD. The new modeling langua¢
should be called XML Schema, will be more powerful and will support object-oriented concepts.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

For a comprehensive introduction to DTD and XML models, | recommend you read my other book,
Example, published by Que.

Loading the Model in XMetalL

Copy event .dtd (refer to Listing 3.2) under the ru1es directory underneath the XMetaL main dire
thatisthe c:\ Program Files\ SoftQuad\ xMetal, 1\ Rules directory). XMetal can load |
directory, but placing them in the rules directory ensures they are always available.

In the menu, choose File, New to open the New dialog box. Under the General tab, select Blank XV
select the event . dtd file you have just created. XMetal opens a dialog box to inquire about the sg
Apply Layout button.

Note

The Preserve Space Options dialog box determines how XMetalL indents the XML code. For v
you should choose Apply Layout, which produces more readable XML code.

However, if you write documents in which spaces are meaningful, you should opt to Preserve ¢
always change the setting later.

You now should see a blank editor window but be unable to type anything. To create the root XML ¢
Insert, Element in the menu and double-click Event.

The editor window fills with various entry fields for name, location, and more. Click { Name} and type
Location} and type Exhibition Center, Namur, as illustrated in Figure 3.4.

Figure 3.4. After inserting the root element, enter some data.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Note

As you can see, XMetal makes good use of the DTD. It extracts the list of elements and their |
that, when you insert an Event element, it knows which elements must appear underneath-
Location, and so on. Therefore, it creates input fields for these elements.

In the menu, choose View, Plain Text to display the XML code you have just created. The screen st
Figure 3.5.

Figure 3.5. XMetaL shows the XML code.

What happened? To find out, close the document but don't save it. Look in the XMetaL directory an
new files:

e cvent . r1x—Appears under the Rules directory and is a so-called rules file. Essentially, it's
the DTD.

e cvent . ctm—Appears under the rRules directory and is the customization file. You will learn
e ~cvent.tbr—Appears in the same directory and represents the toolbars.
e cvent .css—Appears in the Display directory and is a cascading style sheet for this docur

These files are created with default options. They give us a starting point, but we probably want to ¢
better fit our event form.

Creating a Template

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Our second step will be to create a template or an empty form that the clerk can use to get started.
event document as previously discussed: Choose File, New, select cvent . dtd, choose Insert, Elel
Event.

Choose View, Plain Text to edit the XML code. First, though, make sure the bocTvrE statement us
it until it looks exactly as follows (it might be correct already):

<!DOCTYPE Event SYSTEM "event.dtd">

As you can see, in this empty document, the text is replaced by processing instructions such as the

<?xm-replace text { Name} 2>

These processing instructions are specific to XMetalL. The editor renders them as an input area, sin
fields in a word processor. When the user enters text, the text replaces the processing instruction.

To make the template more friendly, adopt more descriptive processing instructions, such as:

<?xm-replace text { Click here to enter the event's name} ?>

You should edit the document until it looks like Listing 3.3.

Listing 3.3 Event Description Form.xml

<?xml version="1.0"?2>

<!DOCTYPE Event SYSTEM "event.dtd">

<Event>
<Name><?xm-replace text { Click here to enter the event's name} ?></Nam
<Location><?xm-replace text { Click here to enter the event's location}
<Date>
<Start><?xm-replace text { Click here to enter the event's start date
<End><?xm-replace text { And its end date} ?></End>
</Date>

<Contact>
<Name><?xm-replace text { Click here to enter the contact person's nail

<Phone><?xm-replace text { Click here to enter the contact person's p

DhAno S

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</Contact>
<Description>
<Para><?xm-replace text { Click here to enter the event's description
</Description>
</Event>
Create a new directory, called pincapplesoft, under the Template directory below the XMetal |
the template (Listing 3.3) under the pinecapplesoft directory and name it Event Description

We now have created a new template. If you close the file and choose File, New, you will see that tt
Pineapplesoft tab. The Pineapplesoft tab contains one entry: Event Description Form (see Figure 3.

If you double-click Event Description Form, it creates an empty document based on your template.

Figure 3.6. Calling up the form is easy with custom templates.

Styling the Form

So far, thanks to the template, we have provided the clerk with an empty form he can fill in. Also, th:
XMetal makes sure the clerk provides all the required information.

However, the form is dull. At the minimum, fields should be labeled. To change the presentation of t
edit the cascading style sheet.

Cascading Style Sheet

XML markup is descriptive. Markup identifies the role of each element and its position in the structL

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

how it should look. XML tools (particularly editors and browsers) need additional information to des:
to format the document for viewing.

The presentation rules are kept separated from the document itself in style sheets, which describe |
render the elements onscreen.

Cascading Style Sheet, or CSS, was originally created for HTML, but it was quickly extended for XN
CSS is a list of rules, with each rule listing formatting properties associated with one or more eleme

For example, in XML, the 201 d element does not automatically mean that the text must be bolded.
you can define a CSS rule that says so:

Bold {
font-weight: bold;
display: inline;

CSS defines an extensive list of formatting properties. For the complete description, see
http://www.w3.0rg/Style/CSS.

XMetal includes a CSS editor that is convenient for getting you started. However, as you become n
you will find it is faster to edit the style code directly.

First, you should format the name element. Indent the field from the left margin and include a label.

Next, click somewhere in the name field and choose Tools, Editor Display Style, Current Element. |
editing the name element and then select the Box tab. Next, modify the margin-1eft property to 1
button. Notice how the two name elements are now indented from the left margin.

Tip

The em unit is relative to the height of the font. Using relative units makes it easier to grow or s
document.

The name rule you have just created applies to the element itself, so how can you insert a label befc
trick is to use CSS pseudo-elements. Pseudo- elements are not XML elements, but the style sheet
You can think of them as virtual elements created by the style sheet.

In this case, you create a pseudo-element called Name : before. Name : be fore enables you to insi
Name element.

Still from the CSS editor, click the More button. Then, click New to open the Edit Selectors in Rule d

Name, click Add, and click Edit to open the Edit Simple Selector dialog box. In the Pseudo/class elel

of the box), select Before. Finally, click OK twice to return to the CSS editor.

You now have created an entry called nzame : be fore (see Figure 3.7). Enter the following propertie
e A content property (in the Other tab) with the value name :.

e A font-size property (in the Font tab) with the value sma1ler.

e A color property (in the Text tab) with the value gray.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Click OK to close the dialog box. The content property is the label. Because it is attached to the 1
appears before the element itself. Notice that, per your selection, the label is in a smaller, gray font.

Continue adding rules for the other elements until your style sheet looks similar to Listing 3.4. Notice
appears in an Event :before rule.

You probably will find it easier to edit the CSS style sheet in a text editor. To do so, from the CSS ec
Text.

Figure 3.7. Editing the Name :before rule.

Note

SDOCUMENT, SCOMMENT, and $PROCTINS are not elements. They are XMetal-specific pseudo-
point to the entire document, comments, and processing instructions, respectively.

Listing 3.4 event.css

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/* Use Times New Roman for default font */

SDOCUMENT {
font-family: "Times New Roman";
font-size: 12pt;
margin-top: 5px;

margin-left: 5px;

SCOMMENT {
display: block;
color: purple;

white-space: pre;

SPROCINS {
color: black;

background-color: #c0c0cO;

Contact, Date, Description, Email, Event,

display: block;

Start, End {

display: inline;

Event:before {
content: "Event Description Form";
display: block;
font-size: large;

font-weight: bold;

Name:before, Location:before, Date:before,

font-size: smaller;

Location, Name,

Phone:before,

Para, Phone

Email:before,

{

En

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Name:before {

content: "Name: ";

Location:before {

content: "Location: ";

Date:before {

content: "Date: ";

Phone:before {

content: "Phone: ";

Email:before {

content: "Email: ";

End:before {

content: " to ";

Description:before, Contact:before {
display: block;

font-weight: bold;

Description:before {

content: "Description";

Contact:before {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

font-weight: bold;

display: inline;

Italic {
font-style: italic;

display: inline;

Name, Location, Date, Phone, Email, Para {

margin-left: lem;

Contact, Description {

margin-top: 0.5em;

Event>Name {

margin-top: 0.5em;

The form in the editor should now look like Figure 3.8. This is a good layout for a form: The fields ar
the form is divided into sections separated by titles.

Remember that the labels and section titles are not part of the XML document; they appear only in t
pseudo-elements. Review the XML code in plain text view (choose View, Plain Text) to convince yo

Figure 3.8. A good-looking form in XMetaL.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(4 Fuivisus] i v +]
Customizing the Behavior

If we review your progress so far, it looks good. Our clerk can create an empty form, the fields are c
still generates a valid XML document.

So far, we concentrated on the structure of the document and its presentation. In this section and th
XMetal behavior to better fit your needs. We will

¢ Use the customization editor (in this section).
» Write JScript macros (in the next section) to create a specialized toolbar.
Tip

To save you some typing, remember you can copy event . ctm from the accompanying CD.

Element Names

Most of the element names in the DTD, such as Name, Location, and Date, are easy to understai
clear, however—for example, start, End, and Para. You should start by defining better alternative

In the menu, choose Tools, Customization to open the customization editor. Under the General tab,
following elements (you can leave the others empty), as follows:

e Forsold,enterrold text.

e Forrmail, enterEmail address.

e For End, enter End date.

eForitalic,enteritalic text.

e For rara, enter Paragraph.

e For Phone, enter Phone number.

e Forstart,enterstart date.
Figure 3.9 shows the customization editor.

While we are at it, let's update the change list for the r=ra element. Select the Change List tab and
and Tta11ic. This option controls which elements appear in the list of styles in the toolbar.

Click OK to close the customization editor. Notice that the element names in the list of styles in the
changes we made. XMetal also uses the names in the status bar.

Figure 3.9. The customization editor controls the editor's behavior

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Creating Mini-Templates

The form editor is really taking shape now. It enables easy editing of most values, with the notable ¢
address. In fact, because the email address is an optional element, it does not appear in the templa
user must position it past the pPhone element and choose Insert, Element. You can do much better.

Reopen the customization editor and tab to Treat As. Set the mma 11 element as a paragraph. This
when the user presses Enter. When the user presses Enter, XMetalL always tries to insert the next |
declaring Ema i1 as a paragraph, we make it easier to insert email addresses in the document, as y

Tip

You don't need to explicitly declare the other elements as paragraphs because your DTD is ve
down strict rules on where each element should appear, and XMetal uses these rules to inser

A further problem with email is that some people—particularly, AOL users—forget to include their d«
want to remind the clerk that an email address should have the form name@domain.com.

The best solution is to prompt the user through a dialog box that presents the format for the email a
General tab and paste the following code in the On Insert field:
var email = Application.Prompt ("Enter the contact person's email addres:

WA AAMmaTin AAMT a1] nit 11 "Txrant Naoacrrintimnn FAarm™)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

LIUALLLG O MANVLLLGA L1l o ULl g L1 UL Ly 11Ul Ly v iie

if (email = null && email !'= "")
Selection.InsertElement ("Email")

Selection.TypeText (email)

Next, select Jscript as the scripting language (see Figure 3.10). Now, whenever an £mai1 eleme
run this script, which opens a dialog box.

Figure 3.10. Edit the element template.

To complete this round of customization, take a look at the On Insert field for the other elements. Tt
code for the element, such as <1.ocation></Location>.

By changing this code, we can control the XML code generated when creating the element. We can
and include the processing instructions. Edit the following elements (for these elements, leave the t

e For Contact, use

<Contact>

<Name><?xm-replace text {Click here to enter the contact person'

<Phone><?xm-replace text {Click here to enter the contact persor

o

- DohAneS

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</Contact>

e For Date, use

<Date>
<Start><?xm-replace text {Click here to enter the event's start
<End><?xm-replace text {And its end date} ?></End>

</Date>

e For Description, use

<Description><Para><?xm-replace text {Click here to enter the event

™ para></Description>

e For End, use

<End><?xm-replace text {And its end date} ?></End>

e For Location, use

<Location><?xm-replace text {Click here to enter the event's locat:

e For Phone, use

<Phone><?xm-replace text {Click here to enter the contact person's

= Phone>

e For start, use

<Start><?xm-replace text {Click here to enter the event's start dat

However, you must differentiate the event's name from the contact person's name. Right-click the n
"In Parents" Item. Do this twice to create Name in Contact and Name in Event entries and giv
respectively:

<Name><?xm-replace text {Click here to enter the contact person's name}

and

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Name><?xm-replace text {Click here to enter the event's name} ?></Name:

Click OK to close the customization editor. Then, position the cursor on the rhone element and pre
prompts for the email address (see Figure 3.11). The following occurs internally:

¢ XMetal inserts the next paragraph element, which will be Ema i 1 because it is marked as a p

e XMetalL executes the script from the Email mini-template. The script opens a dialog box and i

Peeking at event.ctm

If you are curious, you can open event . ctm in XMetaL because it is an XML document. Listing 3.5
applied all the customization described in this section.

Figure 3.11. Prompting for email information.

Caution

You should not modify event . ctm directly. It is both easier and safer to edit it through the cus

Listing 3.5 event.ctm

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?xml version="1.0"?2>
<!DOCTYPE DTDExtensions SYSTEM "ctm.dtd">
<DTDExtensions>
<ElementPropertiesList>
<ElementProperties>
<Name>Contact</Name>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<IndentContent/>
<NewLineBeforeEndTag/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Date</Name>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<NewLineBeforeEndTag/>
<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Description</Name>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<NewLineBeforeEndTag/>
<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Email</Name>

<ShortDescription>Email address</ShortDescription>

<DrattrDrintNntiAance>S

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

NLLCLLyLLicUpLLULio-
<NewLineBeforeStartTag/>
<IndentContent/>

</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>End</Name>
<ShortDescription>End date</ShortDescription>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Event</Name>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<NewLineBeforeEndTag/>
<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Location</Name>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Name</Name>
<PrettyPrintOptions>

<NewLineBeforeStartTag/>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Para</Name>
<ShortDescription>Paragraph</ShortDescription>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Phone</Name>
<ShortDescription>Phone number</ShortDescription>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Start</Name>
<ShortDescription>Start date</ShortDescription>
<PrettyPrintOptions>
<NewLineBeforeStartTag/>
<IndentContent/>
</PrettyPrintOptions>
</ElementProperties>
<ElementProperties>
<Name>Bold</Name>
<ShortDescription>Bold text</ShortDescription>
</ElementProperties>

<ElementProperties>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Name>Italic</Name>
<ShortDescription>Italic text</ShortDescription>
</ElementProperties>
</ElementPropertiesList>
<Paragraphs>
<Paragraph>
<Name>Email</Name>
</Paragraph>
</Paragraphs>
<Changelists>
<ChangeList>
<Selectors>
<Selector>
<Name>#DEFAULT</Name>
<Parent>Para</Parent>
</Selector>
</Selectors>
<ChangelistElements>
<ChangelistElement>Bold</ChangelistElement>
<ChangelListElement>Italic</ChangelListElement>
</ChangelListElements>
</ChangeList>
</ChangelLists>
<Templates>
<Template>
<Name>Name</Name>
<Parent>Contact</Parent>
<MiniTemplate><! [CDATA[<Name><?xm-replace text { Click here to ente

W oerson's name} ?></Name>]]> </MiniTemplate>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</Template>
<Template>
<Name>Name</Name>
<Parent>Event</Parent>
<MiniTemplate><! [CDATA [<Name><?xm-replace text { Click here to ente
= name} ?></Name>]]> </MiniTemplate>
</Template>
<Template>
<Name>Description</Name>
<MiniTemplate><! [CDATA[<Description><Para><?xm-replace text { Click
W he event's description} ?></Para> </Description>]]></MiniTemplate>
</Template>
<Template>
<Name>Contact</Name>
<MiniTemplate><![CDATA[<Contact>
<Name><?xm-replace text { Click here to enter the contact person's nam
<Phone><?xm-replace text { Click here to enter the contact person's ph
= Phone>
</Contact>]]></MiniTemplate>
</Template>
<Template>
<Name>Date</Name>
<MiniTemplate><! [CDATA[<Date>
<Start><?xm-replace text { Click here to enter the event's start date}
<End><?xm-replace text { And its end date} ?></End>
</Date>]]1></MiniTemplate>
</Template>
<Template>
<Name>Location</Name>
<MiniTemplate><![CDATA[<Location><?xm-replace text { Click here to

W cvent's location} ?></Location>]]> </MiniTemplate>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</Template>
<Template>
<Name>Phone</Name>
<MiniTemplate><! [CDATA[<Phone><?xm-replace text { Click here to ent
W oerson's phone number} ?2></Phone>]]> </MiniTemplate>
</Template>
<Template>
<Name>Start</Name>
<MiniTemplate><! [CDATA[<Start><?xm-replace text { Click here to ent
W start date} ?></Start>]]> </MiniTemplate>
</Template>
<Template>
<Name>End</Name>
<MiniTemplate><! [CDATA[<End><?xm-replace text { And its end date} ?
= MiniTemplate>
</Template>
</Templates>
<OnInsertElementList>
<OnInsertElement>
<Name>Email</Name>
<Lang>JScript</Lang>
<InsertElemScript><![CDATA[var email = Application.Prompt ("Enter th
W berson's email address", "name@domain.com",null,null,"Event Description

if (email != null && email != "")

Selection.InsertElement ("Email")
Selection.TypeText (email)
} 11></InsertElemScript>
</OnInsertElement>
</OnInsertElementList>

</DTDExtensions>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(< esivions Wi
Writing Macros
The next and last level of customization is performed by using macros. Macros can, amongst other
e Add new menu items or new toolbar buttons
¢ Control what happens at critical moments, such as when the document is saved

You can associate one macro file with each DTD. The macros file, event .mcr, is shown in Listing -
it, one macro at a time, in the following sections.

Note that the macro file is an XML document, so you can use XMetal to edit it. To create an empty
File, New, Blank XML Document and then select macros.dtd.

This causes a script error. You should immediately save the file as event .mcr under the Macros ¢
XMetal directory to avoid the script errors.

Tip

If a macro file exists for the current DTD, you can edit it by choosing Tools, Macros, selecting (
Macros, and clicking Run.

Listing 3.6 event .mcr

<?xml version="1.0"?2>

<!DOCTYPE MACROS SYSTEM "macros.dtd">

<MACROS>
<MACRO lang="JScript" name="Insert Email"><![CDATA[if (ActiveDocument.docul
{

var emails = ActiveDocument.getElementsByTagName ("Email™)

if(0 == emails.length)

var contacts = ActiveDocument.getElementsByTagName ("Contact")

if(0 !'= contacts.length)

var phones = contacts(0).getElementsByTagName ("Phone™)

if (0 !'= phones.length)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Selection.SelectAfterNode (phones (phones.length - 1))

Selection.InsertWithTemplate ("Email")

else
{
var names = contacts (0).getElementsByTagName ("Name")
if (0 !'= names.length)
{
Selection.SelectAfterNode (names (names.length - 1))
Selection.InsertWithTemplate ("Phone")
Selection.SelectAfterNode (contacts (0).lastChild)
Selection.InsertWithTemplate ("Email")
}
else

Selection.SelectNodeContents (contacts (0))
Selection.InsertWithTemplate ("Name")
Selection.SelectAfterNode (contacts (0) .lastChild)
Selection.InsertWithTemplate ("Phone")
Selection.SelectAfterNode (contacts (0) .lastChild)

Selection.InsertWithTemplate ("Email")

}
} 11></MACRO>
<MACRO lang="JScript" name="Italic"><![CDATA[if (ActiveDocument.documentEl
{
if (Selection.ContainerName == "Italic")
Selection.RemoveContainerTags ()
else i1if (Selection.CanSurround ("Italic"))

Selection.Surround ("Italic")

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

} 11></MACRO>

<MACRO lang="JScript" name="Bold"><![CDATA[if (ActiveDocument.documentElem
{
if(Selection.ContainerName == "Bold")
Selection.RemoveContainerTags ()
else if(Selection.CanSurround ("Bold"))
Selection.Surround ("Bold")

} 11></MACRO>

<MACRO lang="JScript" name="On_ Document Save"><![CDATA[if (ActiveDocument.:

var isStart = true,
isEnd = true
var invalidFields = null
var starts = ActiveDocument.getElementsByTagName ("Start")

if(0 != starts.length)

starts (0) .normalize ()
var startText = starts(0).firstChild
if(null != startText &&
3 == startText.nodeType) // 3 == DOMText

isStart = !isNaN(Date.parse(startText.data))

var ends = ActiveDocument.getElementsByTagName ("End")
if (0 != ends.length)
{
ends (0) .normalize ()
var endText = ends(0).firstChild
if (null != endText &&
3 == endText.nodeType) // 3 == DOMText

isEnd = !isNaN (Date.parse (endText.data))

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

var msg = null
if(!isStart && !isEnd)
msg = "Both event dates are invalid.\ n You should fix them and sav
else 1if(!isStart)
msg = "Event start date is invalid.\ n You should fix it and save a
else 1f(!isEnd)
msg = "Event end date is invalid.\ n You should fix it and save aga
if(msg != null)
Application.Alert (msg, "Event Description Form")
}11></MACRO>
<MACRO lang="JScript"

I'|'name:"On_Document_SaveAs"><![CDATA[Application.Run("On_Document_Save")]

<MACRO name="On Update UI" lang="JScript"><![CDATA[if (!ActiveDocument.doc:

3 == ActiveDocument.ViewType)

Application.DisableMacro ("Insert Email")
Application.DisableMacro ("Italic")

Application.DisableMacro ("Bold")

else
{
var emails = ActiveDocument.getElementsByTagName ("Email")
if(0 !'= emails.length)
Application.DisableMacro ("Insert Email")
var contacts = ActiveDocument.getElementsByTagName ("Contact")
if (0 == contacts.length)

Application.DisableMacro ("Insert Email")

if (1 Qalertinn TaeParentRFlamant ("Para™))

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Application.DisableMacro ("Italic")

Application.DisableMacro ("Bold")

} 1]></MACRO>

</MACROS>

Creating a Toolbar Button

First, you should review the Italic macro (the Bold macro is almost identical):

<MACRO lang="JScript" name="Italic"><![CDATA[if (ActiveDocument.documen

if(Selection.ContainerName == "Italic")

wn

Selection.RemoveContainerTags ()
else if(Selection.CanSurround ("Italic"))

Selection.Surround ("Italic")

This macro inserts or removes the 1tz1 1 c element. Before running macros that will modify the doc
practice to test whether a document object is available. ~ctivebocument is a special object that a
document in the active window.

The core of the macro is simple: It tests whether the cursor is within an 1t211c element, in which ¢
removes it. Otherwise, it attempts to insert an 1+-z11c element around the current selection.

The RemoveContainerTags () and surround () methods modify the document. The cansurro
against the DTD. Our macro uses both to test against the DTD before inserting the element. For yol
CanSurround () returns true if the selection is within a pzra element.

This macro implements the 1+-=211ic command from word processors. You should add it to the toolb

have opened an empty event . dtd document and then select Tools, Macros to open the Macros d
select the Italic macro and assign it a shortcut of Ctrl+l. XMetal warns you that Ctrl+| conflicts with :
ignore it.

Tip

When you edit macros in XMetal, you can reload the macros with the Save and Refresh butto
toolbar.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Click Choose Image to open the Choose Toolbar Button Image dialog box. In the Formatting image
I. Then close the macro box.

Choose View, Toolbars to open the Toolbars dialog box and click the New button. Enter event ast
Immediately, an empty toolbar appears onscreen. Tab to the Buttons panel and select event Macs
macros, choose ltalic. Finally, drag the button to the toolbar (see Figure 3.12). Repeat these steps f

Figure 3.12. Editing the toolbar.

Creating an XML Element

Although you have already improved things, inserting the =ma i1 element is still difficult. Specifically
the rhone field and press Enter. It's great if you know it, but almost impossible to find if you don't.

Add a button to the toolbar to insert the =ma1i 1 element. Because the button will be visible on the to
for the user.

This is implemented in the Insert Email macro:

<MACRO lang="JScript" name="Insert Email"><![CDATA[if (ActiveDocument.d

{
var emails ActiveDocument.getElementsByTagName ("Email™)

if(0 == emails.length)

var contacts = ActiveDocument.getElementsByTagName ("Contact")

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if(0 != contacts.length)

{
var phones = contacts(0) .getElementsByTagName ("Phone")
if (0 != phones.length)

Selection.SelectAfterNode (phones (phones.length - 1))

Selection.InsertWithTemplate ("Email")

else
{
var names = contacts (0).getElementsByTagName ("Name")
if (0 != names.length)
{
Selection.SelectAfterNode (names (names.length - 1))
Selection.InsertWithTemplate ("Phone™)
Selection.SelectAfterNode (contacts (0) .lastChild)
Selection.InsertWithTemplate ("Email")
}
else

Selection.SelectNodeContents (contacts (0))
Selection.InsertWithTemplate ("Name")
Selection.SelectAfterNode (contacts (0) .lastChild)
Selection.InsertWithTemplate ("Phone™)
Selection.SelectAfterNode (contacts (0) .lastChild)

Selection.InsertWithTemplate ("Email")

}

} 11></MACRO>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Similar to ltalic, this macro creates a new XML element. However, it is more complex because the &
appear within the contact element and more than one mmzi 1 element can't exist.

The Insert Email macro starts by testing whether an £mz 11 element already exists. If none does, it 1
Contact element. If no contact elements exist, it stops. However, if it finds contact, it tries to lo
Name element. If Phone or Name are missing, it inserts them before inserting =mai1.

Insert Email is more complex than the Italic macro because it must enforce the document structure.
might have to create other elements (Phone and name) before creating the mmai1 element.

Note

The macrouses InsertWithTemplate () to create the elements. TnsertWithTemplate (
template defined in the customization editor, so it will end up prompting the user through a dial

Don't forget to create a button on the toolbar. You can use the envelope image in the Quick Tools li¢

Improving the User Interface

The next macro is On_Update_UI. XMetalL executes it when it needs to update the user interface—
the user moves to a new element or switches from normal to plain text view.

This macro is responsible for selectively disabling those macros that no longer work. For example, i
from a para elementto Locat ion, the Italic and Bold macros must be disabled.

On_Update_Ul disables all the macros if no document object is available. It also disables Insert Em
is in the document or if no contact element exists. Finally, it disables Italic and Bold unless the cul

<MACRO name="On Update UI" lang="JScript"><![CDATA[if (!ActiveDocument.

3 ActiveDocument.ViewType)
Application.DisableMacro ("Insert Email")

Application.DisableMacro("Italic")

Application.DisableMacro ("Bold")

else

var emails ActiveDocument.getElementsByTagName ("Email")
if(0 !'= emails.length)
Application.DisableMacro ("Insert Email")

we

var contacts = ActiveDocument.getElementsByTagName ("Contact")

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (0 == contacts.length)
Application.DisableMacro ("Insert Email")

if(!Selection.IsParentElement ("Para"))

Application.DisableMacro ("Italic")
Application.DisableMacro ("Bold")

}

} 11></MACRO>

Validating the Form

The last two macros are On_Document_Save and On_Document_SaveAs. They perform additional
document is saved. Indeed, although XMetaL enforces the structure of the document, the user can
incorrect information in the fields. The DTD offers much built-in validation, but it is not always power
develop additional validations using On_Document_Save and On_Document_SaveAs.

Specifically, the macro extracts the start and end dates from the document and checks that they are

case of errors, it warns the user through a dialog box (see Figure 3.13):

<MACRO lang="JScript"

-%nm@:"OniDocumentisave"><![CDATA[if(ActiveDocument.documentElement)

{
var isStart = true,
isEnd = true

var invalidFields = null

var starts = ActiveDocument.getElementsByTagName ("Start")

if(0 !'= starts.length)

starts (0) .normalize ()

var startText = starts(0).firstChild

if(null != startText &&
3 == startText.nodeType) // 3 == DOMText
isStart = !isNaN (Date.parse(startText.data))

var ends = ActiveDocument.getElementsByTagName ("End")

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if(0 !'= ends.length)

ends (0) .normalize ()

var endText = ends(0).firstChild

if(null !'= endText &&
3 == endText.nodeType) // 3 == DOMText
iskEnd = !isNaN (Date.parse (endText.data))
}
var msg = null

if(!isStart && !isEnd)

msg = "Both event dates are invalid.\ n You should fix them and
else if(!isStart)

msg = "Event start date is invalid.\ n You should fix it and sav
else if (!isEnd)

msg = "Event end date is invalid.\ n You should fix it and save
if (msg !'= null)

Application.Alert (msg,"Event Description Form")

} 11></MACRO>

Tip

On_Document_Save does not prevent the user from saving an incorrect document; it only war
practice, this is a good compromise: Good reasons might exist for the user to temporarily entel
date.

If you need to prevent the user from saving incorrect documents, use the File_Save and File_¢

Figure 3.13. Oops! The dates are not acceptable.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Faivinin]
Advantages

This chapter demonstrated how to use an XML editor to build a customized editing environment.
The main advantages of this solutions are as follows:

e |t's fast and easy. The editor does most of the job already, so you only need to customize it
for your DTD.

e The user interface is simple and intuitive. It looks like a word processor, which is very
familiar to clerical personal.

e The result is an XML document that you can pass to other XML tools such as parsers and
XSL processors (see Chapter 4).

In short, the editor is a great tool to create XML documents. Thanks to customization, you can be
sure it creates the correct documents.

[+ revioos W s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(4 Frsvisui]
Additional Resources

Current generation browsers do not recognize XML forms. The W3C is working on a standard for
XML forms (XForms), but it is still a work in progress and it probably will take several years before
it is widely available in browsers. For more information, visit the W3C site at
http://www.w3.org/MarkUp/Forms.

If you need to edit forms in a browser, you can turn to special plug-ins developed by other
vendors. Popular products include the following:

e PureEdge, available from http://www.pureedge.com

e Jetform, available from http://www.xfa.org

[« revioos [l s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« rrivious vt o
Chapter 4. Content Syndication

The Web is many things to many people but, for publishers and authors, it is another media
comparable to print, radio, and TV. Don't get me wrong, | recognize that the Internet has unique
characteristics, but its reach is comparable to other popular media.

As proof, look at initiatives by existing publishers to offer their content online (visit
http://www.informit.com), the emergence of new publishers (such as http://www.earthweb.com),
and, of course, the growing involvement of authors (such as my own http://www.marchal.com).

Furthermore, a growing number of companies, who are not necessarily publishers, use their Web
sites to distribute information, articles, and reports (such as http://developer.iplanet.com).

However, the media is still young and changing. At the peak of the rivalry between Microsoft and
Netscape, the so-called "browser war," Web fashion was changing every six months. We are now
enjoying more stability, but, mark my words, the browser war is about to start again with new
actors. And this time, it will be more painful for the under-prepared.

According to the W3C, non-desktop browsers might account for as much as 75% of all surfers by
2002. Non-desktop browsers include mobile phones, PDAs (such as the PalmPilot), and WebTV.

Most of these devices simply won't use HTML. During the browser war, designers could at least
rely on some level of commonality between the two major browsers. This won't be the case
anymore because mobile phones use a special language, Wireless Markup Language (WML),
which is incompatible with HTML.

What to do? Should content providers (publishers, authors, and companies) limit themselves to
either HTML or WAP? Should they support both formats? Should they prepare for even more
formats?

Developing original content (articles, books, reports, and so on) is expensive. To offset the cost,
content owners want to distribute their content as widely as possible. Ideally, it should not matter
whether the reader uses a PC, a mobile phone, or another device.

In this chapter, we will see how XML helps address this challenge. As you know, XML's roots are
in the publishing industry, and that heritage guarantees that there is no lack of quality tools for
publishing problems.

[« revioos [l s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« rruvious vt o]
Architecture

Webmasters typically edit their Web sites with an HTML editor. The major disadvantage of this
approach is that it freezes the site. Indeed, to change the presentation, you must manually re-edit
every page. It's possible to do, but it's a lot of work.

The XML solution is to separate authoring from publishing. The author of the pages writes the
document in XML. While doing so, she ignores presentation. She instead adopts an XML
vocabulary that focuses on the organization of the document: sections, titles, abstracts, and more.
Publishing the document then simply requires converting the document into HTML, WML, or
another popular format. Fortunately, this can be automated because the original XML document
is structure rich. The operative word here is automated.

For medium to large sites, it is more cost effective to automate publishing. Rewriting a couple of
pages by hand is feasible; however, for a hundred pages, it is too expensive.

Figure 4.1 illustrates how we'll apply these principles in this chapter. The tree main elements are
as follows:

e Documents in structure-rich XML

e XSLT style sheets that implement the conversion to HTML, WML, and RSS (more on RSS
in the next section)

¢ A servlet that is responsible for applying the style sheets

Figure 4.1. XML separates authoring and publishing.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

XML Stylesheet Language

To publish XML documents we will use XSL, the XML Stylesheet Language. More
specifically, we will use XSLT, XSL Transformation.

XSLT is a scripting language optimized for conversion between XML documents. In
that respect it differs from early style sheet languages, such as CSS (Cascading Style
Sheet), or word processor style sheets.

CSS describes ho