
  < Day Day Up > 

  
• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
BSD Hacks

By Dru Lavigne
 

Publisher: O'Reilly

Pub Date: May 2004

ISBN: 0-596-00679-9

Pages: 300

   

Looking for a unique set of practical tips, tricks, and tools for administrators and power users of BSD systems? From
hacks to customize the user environment to networking, securing the system, and optimization, BSD Hacks takes a
creative approach to saving time and accomplishing more with fewer resources. If you want more than the average
BSD user--to explore and experiment, unearth shortcuts, create useful tools--this book is a must-have.

  < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

  
• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
BSD Hacks

By Dru Lavigne
 

Publisher: O'Reilly

Pub Date: May 2004

ISBN: 0-596-00679-9

Pages: 300

   

   Credits

    About the Author

    Contributors

    Acknowledgments

   Preface

    Why BSD Hacks?

    How to Use this Book

    How This Book Is Organized

    Conventions Used in This Book

    Using Code Examples

    We'd Like to Hear from You

     Chapter 1.  Customizing the User Environment

    Section 0.  Introduction

    Section 1.  Get the Most Out of the Default Shell

    Section 2.  Useful tcsh Shell Configuration File Options

    Section 3.  Create Shell Bindings

    Section 4.  Use Terminal and X Bindings

    Section 5.  Use the Mouse at a Terminal

    Section 6.  Get Your Daily Dose of Trivia

    Section 7.  Lock the Screen

    Section 8.  Create a Trash Directory

    Section 9.  Customize User Configurations

    Section 10.  Maintain Your Environment on Multiple Systems

    Section 11.  Use an Interactive Shell

    Section 12.  Use Multiple Screens on One Terminal

     Chapter 2.  Dealing with Files and Filesystems

    Section 12.  Introduction

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 13.  Find Things

    Section 14.  Get the Most Out of grep

    Section 15.  Manipulate Files with sed

    Section 16.  Format Text at the Command Line

    Section 17.  Delimiter Dilemma

    Section 18.  DOS Floppy Manipulation

    Section 19.  Access Windows Shares Without a Server

    Section 20.  Deal with Disk Hogs

    Section 21.  Manage Temporary Files and Swap Space

    Section 22.  Recreate a Directory Structure Using mtree

    Section 23.  Ghosting Systems

     Chapter 3.  The Boot and Login Environments

    Introduction

    Section 24.  Customize the Default Boot Menu

    Section 25.  Protect the Boot Process

    Section 26.  Run a Headless System

    Section 27.  Log a Headless Server Remotely

    Section 28.  Remove the Terminal Login Banner

    Section 29.  Protecting Passwords With Blowfish Hashes

    Section 30.  Monitor Password Policy Compliance

    Section 31.  Create an Effective, Reusable Password Policy

    Section 32.  Automate Memorable Password Generation

    Section 33.  Use One Time Passwords

    Section 34.  Restrict Logins

     Chapter 4.  Backing Up

    Introduction

    Section 35.  Back Up FreeBSD with SMBFS

    Section 36.  Create Portable POSIX Archives

    Section 37.  Interactive Copy

    Section 38.  Secure Backups Over a Network

    Section 39.  Automate Remote Backups

    Section 40.  Automate Data Dumps for PostgreSQL Databases

    Section 41.  Perform Client-Server Cross-Platform Backups with Bacula

     Chapter 5.  Networking Hacks

    Introduction

    Section 42.  See Console Messages Over a Remote Login

    Section 43.  Spoof a MAC Address

    Section 44.  Use Multiple Wireless NIC Configurations

    Section 45.  Survive Catastrophic Internet Loss

    Section 46.  Humanize tcpdump Output

    Section 47.  Understand DNS Records and Tools

    Section 48.  Send and Receive Email Without a Mail Client

    Section 49.  Why Do I Need sendmail?

    Section 50.  Hold Email for Later Delivery

    Section 51.  Get the Most Out of FTP

    Section 52.  Distributed Command Execution

    Section 53.  Interactive Remote Administration

     Chapter 6.  Securing the System

    Introduction

    Section 54.  Strip the Kernel

    Section 55.  FreeBSD Access Control Lists

    Section 56.  Protect Files with Flags

    Section 57.  Tighten Security with Mandatory Access Control

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 57.  Tighten Security with Mandatory Access Control

    Section 58.  Use mtree as a Built-in Tripwire

    Section 59.  Intrusion Detection with Snort, ACID, MySQL, and FreeBSD

    Section 60.  Encrypt Your Hard Disk

    Section 61.  Sudo Gotchas

    Section 62.  sudoscript

    Section 63.  Restrict an SSH server

    Section 64.  Script IP Filter Rulesets

    Section 65.  Secure a Wireless Network Using PF

    Section 66.  Automatically Generate Firewall Rules

    Section 67.  Automate Security Patches

    Section 68.  Scan a Network of Windows Computers for Viruses

     Chapter 7.  Going Beyond the Basics

    Introduction

    Section 69.  Tune FreeBSD for Different Applications

    Section 70.  Traffic Shaping on FreeBSD

    Section 71.  Create an Emergency Repair Kit

    Section 72.  Use the FreeBSD Recovery Process

    Section 73.  Use the GNU Debugger to Analyze a Buffer Overflow

    Section 74.  Consolidate Web Server Logs

    Section 75.  Script User Interaction

    Section 76.  Create a Trade Show Demo

     Chapter 8.  Keeping Up-to-Date

    Introduction

    Section 77.  Automated Install

    Section 78.  FreeBSD from Scratch

    Section 79.  Safely Merge Changes to /etc

    Section 80.  Automate Updates

    Section 81.  Create a Package Repository

    Section 82.  Build a Port Without the Ports Tree

    Section 83.  Keep Ports Up-to-Date with CTM

    Section 84.  Navigate the Ports System

    Section 85.  Downgrade a Port

    Section 86.  Create Your Own Startup Scripts

    Section 87.  Automate NetBSD Package Builds

    Section 88.  Easily Install Unix Applications on Mac OS X

     Chapter 9.  Grokking BSD

    Introduction

    Section 89.  How'd He Know That?

    Section 90.  Create Your Own Manpages

    Section 91.  Get the Most Out of Manpages

    Section 92.  Apply, Understand, and Create Patches

    Section 93.  Display Hardware Information

    Section 94.  Determine Who Is on the System

    Section 95.  Spelling Bee

    Section 96.  Leave on Time

    Section 97.  Run Native Java Applications

    Section 98.  Rotate Your Signature

    Section 99.  Useful One-Liners

    Section 9.13.  Fun with X

   Index

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Credits
About the Author

Contributors

Acknowledgments

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

About the Author
Dru Lavigne is the author of ONLamp.com's FreeBSD Basics column and has been an avid BSD user since FreeBSD
2.2.1. As an IT instructor, she specializes in networking, routing, and security. She is also responsible for ISECOM's
Protocol Database, which can be found at http://www.isecom.org.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Contributors
The following people contributed their hacks, writing, and inspiration to this book:

John Richard, known locally as JR, is a system administrator in Kingston, Ontario, Canada. His trademark in the
field is his insistence on a FreeBSD box as the primary firewall on a network. He has enjoyed working with the
author in the past at a private college in Kingston. In his spare time, he experiments with FreeBSD and rides his
Harley-Davidson.

[Hack #64]

Joe Warner is a Technical Analyst for Siemens Medical Solutions Health Services Corporation and has been
using FreeBSD as a server and desktop since October of 2000. Joe has lived in Salt Lake City, Utah for most of
his life and enjoys *BSD, computing, history, and The Matrix.

[Hacks #35 and #59]

Dan Langille (http://www.langille.org/) runs a consulting group in Ottawa, Canada. He has fond memories of his
years in New Zealand, where the climate is much more conducive to year-round mountain biking. He lives in a
house ruled by felines.

[Hack #41]

Robert Bernier's professional career has included engineering, accident investigation, and Olympic trials. In the
1980s, his interest returned to IT when he realized he wouldn't have to use a punch card anymore. Eventually
he discovered Linux and by the mid-1990s had developed a passion for all things open source. Today, Robert
teaches at the local community college and writes for a number of IT publications based in North America and
Europe.

[Hack #12]

Kirk Russell (kirk@qnx.com) is a kernel tester at QNX Software Systems (http://www.qnx.com/).

[Hack #36]

Karl Vogel is a system administrator for the C-17 Program Office. He's worked at Wright-Patterson Air Force
Base for 22 years and has a BS in Mechanical & Aerospace Engineering from Cornell University.

[Hack #32]

Howard Owen discovered computers by reading about Conway's "Life" in Life magazine. It took many years
from that discovery to the time he could actually make a living with the godforsaken things. Once that
happened, however, Howard turned into a "major geek." He has worked as a sysadmin, systems engineer, and
systems architect. He is currently employed by IBM in Silicon Valley supporting Linux, but he still runs FreeBSD
and OpenBSD at home.

[Hacks #61 and #62]

Daniel Harris is a student and occasional consultant in West Virginia. He is interested in computer networking,
documentation, and security; he also enjoys writing, armchair politics, and amateur radio.

[Hack #55]

Andrew Gould, CPA, performs financial and clinical data analysis for a hospital in Texas. His primary tool for
data integration is a PostgreSQL database server running on FreeBSD. Andrew has been using FreeBSD at both
work and home for four years. Andrew has a BS in Education and a BBA in Accounting from the University of
Texas at Austin.

[Hacks #17 2.6, #40, #44, and #68]

Jim Mock is a FreeBSD admin and developer turned Mac OS X user and developer. He's a FreeBSD committer,
as well as an OpenDarwin committer, and he currently maintains 50+ DarwinPorts. Jim is also a member of the
DarwinPorts Port Manager team. He can be reached at jim@bsdnews.org or through his personal site at
http://soupnazi.org/.

[Hack #88]

Avleen Vig is a systems administrator at EarthLink (http://www.earthlink.net/), where he maintains the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Avleen Vig is a systems administrator at EarthLink (http://www.earthlink.net/), where he maintains the
company's web, mail, news, and other Internet services for over 8 million users. He spends his spare time with
his newborn son, contributing to the various Internet and Unix communities, and enjoying life. After seizing the
day in 2001 and moving to LA from London, he's waiting to see where life will take him next.

[Hack #69]

Alexandru Popa is a CCNA studying for a CCNP, and is actively involved in the FreeBSD community in his spare
time. At the time of this writing, he was studying Computer Science at the Politechnica University of Bucharest.
He also maintains cvsup.ro.freebsd.org out of a basement in a deserted building, using a large hamster array
for power. He can be contacted at alex@bsdnews.org.

[Hack #70]

Jens Schweikhardt is a German software engineer and Internet wizard who is constantly looking for interesting
things to do. As a seven-time IOCCC winner, he is well-known for taking C compilers to their limits. He
contributes to Unix standardization and, of course, to God's Own Operating System. When not hacking, Jens
has been caught writing romantic poetry and riding his Italian Moto Guzzi around the Swabian hills and valleys.
If he were given one modest wish, it would be clear skies when he goes stargazing with his telescope.

[Hack #78]

Matthew Seaman is 38 years old and a former scientist and academic (Oxford University postgraduate). He is
now a specialist in computer system administration, network architecture, and infrastructure design.

[Hacks #49, #50, and #97]

Nathan Rosenquist first tried FreeBSD in 1996, and has been using Unix ever since. During the day, he can be
found developing Perl-based web applications and business automation software. He lives in Shadow Hills,
California with his girlfriend Carrie and their dog Nutmeg.

[Hack #39]

Adrian Mayo (http://unix.1dot1.com/) has worked with computers for 20 years, specializing in the design of
safety and mission-critical software for the aerospace and medical industries. He has gained exposure to BSD
Unix through Apple's Mac OS X operating system. He is Editor for the news and support site
http://www.osxfaq.com, writing most of the technical content, including the Unix tutorials and Daily Unix tips.

[Hacks #14, #15, and #16]

Sebastian Stark (seb@biskalar.de) works as a system administrator at the Max Planck Institute for Biological
Cybernetics in Germany. He manages a bunch of workstations, as well as a computer cluster that is used for
machine-learning research.

[Hack #52]

Marlon Berlin (marlon@biskalar.de) studies linguistics, comparative literature, and mathematics in Berlin. He
works for DNS:NET, a German ISP, as a systems developer.

[Hack #52]

David Maxwell (david@netbsd.org) is a NetBSD Developer and member of the NetBSD Security-Officer team.
He attended Unix Unanimous in Toronto since the first meeting in the early `80s, and still visits when he can.
He was an avid Amiga user, and relishes a good (or bad) pun when he can muster one. David currently works
at Integrated Device Technology, Inc. (IDT).

[Hacks #10, #53, #73, #75, and #76]

Julio Merino Vidal is studying Informatics Engineering at the UPC University of Barcelona, Spain. He has been a
NetBSD developer since November 2002, working on the NetBSD Packages Collection (http://www.pkgsrc.org/)
and translating the web site to Spanish. He also maintains his own free software projects, including Buildtool
(http://buildtool.sourceforge.net/). You can contact him at jmmv@NetBSD.org.

[Hacks #27 and #87]

Jan L. Peterson (jlp@peterson.ath.cx) is a professional system administrator with 16 years of experience
working with multiple Unix versions (and the occasional Windows machine). Laid off from his last job when the
company was acquired by a direct competitor, he has spent the last couple of years as a consultant. More about
Jan can be found at http://www.peterson.ath.cx/~jlp/.

[Hack #74]

Michael Vince was born in 1977. His initial interest in computers was video games, but he soon ventured into

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Michael Vince was born in 1977. His initial interest in computers was video games, but he soon ventured into
many other areas, such as programming, Unix, the Web, and networks. Having completed a Diploma in
Computer Systems and a CCNA, he is an IT administrator for software companies and has been involved in
large software projects that put his development skills to good use. A tech news junkie, he is always interested
in the future of computing. He also enjoys staying up late solving difficult problems that require complex regular
expressions in Perl, going to the gym, and hanging out in cafes. He is currently working on a software product
called Ezmin.

[Hack #64]

Daniel Carosone has been involved with NetBSD as a user, advocate, and developer for over 10 years. He is a
member of the NetBSD Security Officer team, which provides leadership for security matters within the project
and coordinates responses to public incidents and vulnerabilities. He is Chief Technologist for e-Secure,
specializing in security consulting and management services to financial, government, and telecommunications
organizations. He promotes security awareness through conference presentations and university lectures. He
lives in Melbourne, Australia, and—when not working too hard—enjoys hiking, driving, and astronomy.

[Hack #60]

Aaron Crandall, BSEE, has used OpenBSD since 2.7. He currently works for the Oregon Graduate Institute
running computers as a part-time Master's student. He's built and given away more OpenBSD firewalls than he
can count. Contact him at aaron.crandal@cse.ogi.edu.

[Hack #45]

 chromatic is the Technical Editor of the O'Reilly Network. In practice, that means he edits ONLamp.com (open
source administration and development) and, occasionally, books like this one. Outside of work, he enjoys
cooking and somehow produces a whole slew of weird software hacks like SDL Parrot, tiny mail tools, and that
Perl 6 thing. Wade through the disarray of his web site at http://wgz.org/chromatic/.

[Hack #92]

Brett Warden, BSEE, specializes in Perl programming and embedded systems. He lives in the Northwest with his
wife, son, and two antisocial cats. He's currently keeping an eye out for contracting and permanent positions.
You can find a collection of odd projects at http://www.wgz.org/bwarden/.

[Hack #65]

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Acknowledgments
I would like to thank the many BSD and open source users who so willingly shared their experiences, ideas, and
support. You serve as a constant reminder that BSD is more than an operating system—it is a community.

I would also like to thank all of my students and the readers of the FreeBSD Basics column. Your questions and
feedback fuel my curiosity; may this book return that favor.

Thanks to David Lents and Rob Flickenger for reviews and advice. Special thanks to Jacek Artymiak for his invaluable
input from the OpenBSD and NetBSD perspectives. And finally, special thanks to chromatic. A writer couldn't have
asked for a better editor.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Preface
"What was it about UNIX that won my heart? . . . UNIX is mysterious when you first approach. A little
intimidating, too. But despite an unadorned and often plain presentation, the discerning suitor can tell
there's lot going on under the surface."

—Thomas Scoville, http://unix.oreilly.com/news/unix_love_0299.html

When the above-mentioned article was first published, I was still very much a BSD newbie. My spare hours were spent
struggling with kernel recompiles, PPP connectivity (or lack thereof), rm and chmod disasters, and reading and rereading
every bit of the then available documentation. Yet, that article gave voice to my experience, for, like the quoted author,
I had stumbled upon operating system love. In other words, I was discovering how to hack on BSD.

Since then, I've learned that there is an unspoken commonality between the novice Unix user and the seasoned guru. It
doesn't matter whether you've just survived your first successful installation or you've just executed a complex script
that will save your company time and money, the feeling is the same. It's the excitement of venturing into unknown
territory and discovering something new and wonderful. It's that sense of accomplishment that comes with figuring
something out for yourself, with finding your own solution to the problem at hand.

This book contains 100 hacks written by users who love hacking with BSD. You'll find hacks suited to both the novice
user and the seasoned veteran, as well as everyone in between. Read them in any order that suits your purpose, but
keep the "onion principle" in mind. While each hack does present at least one practical solution to a problem, that's just
the outer layer. Use your imagination to peel away deeper layers, exposing new solutions as you do so.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Why BSD Hacks?
The term hacking has an unfortunate reputation in the popular press, where it often refers to someone who breaks into
systems or wreaks havoc with computers. Among enthusiasts, on the other hand, the term hack refers to a "quick-n-
dirty" solution to a problem or a clever way to do something. The term hacker is very much a compliment, praising
someone for being creative and having the technical chops to get things done. O'Reilly's Hacks series is an attempt to
reclaim the word, document the ways people are hacking (in a good way), and pass the hacker ethic of creative
participation on to a new generation of hackers. Seeing how others approach systems and problems is often the
quickest way to learn about a new technology.

BSD Hacks is all about making the most of your BSD system. The BSDs of today have a proud lineage, tracing back to
some of the original hackers—people who built Unix and the Internet as we know it today. As you'd expect, they faced
many problems and solved problems both quickly and elegantly. We've collected some of that wisdom, both classic and
modern, about using the command line, securing systems, keeping track of your files, making backups, and, most
importantly, how to become your own BSD guru along the way.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

How to Use this Book
One of the beauties of Unix is that you can be very productive with surprisingly little knowledge. Even better, each new
trick you learn can shave minutes off of your day. We've arranged the chapters in this book by subject area, not by any
suggested order of learning. Skip around to what interests you most or solves your current problem. If the current hack
depends on information in another hack, we'll include a link for you to follow.

Furthermore, the "See Also" sections at the end of individual hacks often include references such as man fortune. These
refer to the manual pages installed on your machine. If you're not familiar with these manpages, start with [Hack
#89] .

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

How This Book Is Organized
To master BSD, you'll have to understand several topics. We've arranged the hacks loosely into chapters. They are:

Chapter 1Customizing the User Environment

Though modern BSDs have myriad graphical applications and utilities, the combined wisdom of 35 years of
command-line programs is just a shell away. This chapter demonstrates how to make the most of the command
line, customizing it to your needs and preferences.

Chapter 2Dealing with Files and Filesystems

What good is knowing Unix commands if you have no files? You have to slice, dice, and store data somewhere.
This chapter explains techniques for finding and processing information, whether it's on your machine or on a
server elsewhere.

Chapter 3The Boot and Login Environments

The best-laid security plans of administrators often go out the window when users enter the picture. Keeping
the bad guys off of sensitive machines requires a two-pronged approach: protecting normal user accounts
through good password policies and protecting the boxes physically. This chapter explores several options for
customizing and securing the boot and login processes.

Chapter 4Backing Up

After you start creating files, you're bound to run across data you can't afford to lose. That's where backups
come in. This chapter offers several ideas for various methods of ensuring that your precious data will persist in
the face of tragedy.

Chapter 5Networking Hacks

Unless you're a die-hard individualist, you're likely connected to a network. That fact presents several new
opportunities for clever hacks as well as mystifying failures. This chapter illuminates ways to take advantage of
your network connection.

Chapter 6Securing the System

Security is as much a mindset as it is a process. Knowing the tools at your disposal will help. This chapter
delves into multiple tools and ideas for increasing the security of your systems, whether keeping out the bad
guys or staying on top of updates.

Chapter 7Going Beyond the Basics

With years and years of refinement, the BSDs provide powerful and maintainable environments. Are you taking
full advantage of everything your system has to offer? This chapter pushes the envelope of what you can
accomplish.

Chapter 8Keeping Up-to-Date

No bragging about BSD is complete without mentioning the ports or packages system that keeps thousands of
applications right at your fingertips. Keeping up-to-date could never be easier, could it? This chapter tackles the
subject of installing and updating software, including the core system.

Chapter 9Grokking BSD

You cannot be a true BSD master until you grok the Unix mindset. How did the gurus become gurus? Is the true
path still open? This chapter reveals some secrets of the masters and has a little fun along the way.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Conventions Used in This Book
This book uses the following typographical conventions:

Italic

Indicates new terms, URLs, email addresses, filenames, pathnames, and directories.

Constant width

Indicates commands, options, switches, variables, attributes, functions, user and group names, the contents of
files, and the output from commands.

Constant width bold

In code examples, shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

Color

The second color is used to indicate a cross-reference within the text.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

The thermometer icons, found next to each hack, indicate the relative complexity of the hack:

beginner moderate expert

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN, for
example: "BSD Hacks by Dru Lavigne. Copyright 2004 O'Reilly Media, Inc., 0-596-00679-9."

If you feel your use of code examples falls outside fair use or the permission given here, feel free to contact us at
permissions@oreilly.com.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

We'd Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this
page at:

http://www.oreilly.com/catalog/bsdhks

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com/

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 1. Customizing the User Environment
Section 0.  Introduction

Section 1.  Get the Most Out of the Default Shell

Section 2.  Useful tcsh Shell Configuration File Options

Section 3.  Create Shell Bindings

Section 4.  Use Terminal and X Bindings

Section 5.  Use the Mouse at a Terminal

Section 6.  Get Your Daily Dose of Trivia

Section 7.  Lock the Screen

Section 8.  Create a Trash Directory

Section 9.  Customize User Configurations

Section 10.  Maintain Your Environment on Multiple Systems

Section 11.  Use an Interactive Shell

Section 12.  Use Multiple Screens on One Terminal

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 0 Introduction
Users of open source (http://opensource.org) Unix operating systems are an interesting breed. They like to poke under
the surface of things, to find out how things work, and to figure out new and interesting ways of accomplishing common
computing tasks. In short, they like to "hack."

While this book concentrates on the BSDs, many of the hacks apply to any open source operating system. Each hack is
simply a demonstration of how to examine a common problem from a slightly different angle. Feel free to use any of
these hacks as a springboard to your own customized solution. If your particular operating system doesn't contain the
tool used in the solution, use a tool that does exist, or invent your own!

This chapter provides many tools for getting the most out of your working environment. You'll learn how to make
friends with your shell and how to perform your most common tasks with just a few keystrokes or mouse clicks. You'll
also uncover tricks that can help prevent command-line disasters. And, above all, you'll discover that hacking BSD is
fun. So, pull your chair up to your operating system of choice and let's start hacking.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 1 Get the Most Out of the Default Shell

 

Become a speed daemon at the command line.

For better or for worse, you spend a lot of time at the command line. If you're used to administering a Linux system,
you may be dismayed to learn that bash is not the default shell on a BSD system, for either the superuser or regular
user accounts.

Take heart; the FreeBSD superuser's default tcsh shell is also brimming with shortcuts and little tricks designed to let
you breeze through even the most tedious of tasks. Spend a few moments learning these tricks and you'll feel right at
home. If you're new to the command line or consider yourself a terrible typist, read on. Unix might be a whole lot
easier than you think.

NetBSD and OpenBSD also ship with the C shell as their default shell. However, it is not
always the same tcsh, but often its simpler variant, csh, which doesn't support all of the
tricks provided in this hack.

However, both NetBSD and OpenBSD provide a tcsh package in their respective package
collections.

1.2.1 History and Auto-Completion

I hate to live without three keys: up arrow, down arrow, and Tab. In fact, you can recognize me in a crowd, as I'm the
one muttering loudly to myself if I'm on a system that doesn't treat these keys the way I expect to use them.

tcsh uses the up and down arrow keys to scroll through your command history. If there is a golden rule to computing, it
should be: "You should never have to type a command more than once." When you need to repeat a command, simply
press your up arrow until you find the desired command. Then, press Enter and think of all the keystrokes you just
saved yourself. If your fingers fly faster than your eyes can read and you whiz past the right command, simply use the
down arrow to go in the other direction.

The Tab key was specifically designed for both the lazy typist and the terrible speller. It can be painful watching some
people type out a long command only to have it fail because of a typo. It's even worse if they haven't heard about
history, as they think their only choice is to try typing out the whole thing all over again. No wonder some people hate
the command line!

Tab activates auto-completion. This means that if you type enough letters of a recognizable command or file, tcsh will fill
in the rest of the word for you. However, if you instead hear a beep when you press the Tab key, it means that your
shell isn't sure what you want. For example, if I want to run sockstat and type:

% so

then press my Tab key, the system will beep because multiple commands start with so. However, if I add one more
letter:

% soc

and try again, the system will fill in the command for me:

% sockstat

1.2.2 Editing and Navigating the Command Line

There are many more shortcuts that can save you keystrokes. Suppose I've just finished editing a document. If I press
my up arrow, my last command will be displayed at the prompt:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


my up arrow, my last command will be displayed at the prompt:

% vi mydocs/today/verylongfilename

I'd now like to double-check how many words and lines are in that file by running this command:

% wc mydocs/today/verylongfilename

I could pound on the backspace key until I get to the vi portion of the command, but it would be much easier to hold
down the Ctrl key and press a. That would bring me to the very beginning of that command so I could replace the vi
with wc. For a mnemonic device, remember that just as a is the first letter of the alphabet, it also represents the first
letter of the command at a tcsh prompt.

I don't have to use my right arrow to go to the end of the command in order to press Enter and execute the command.
Once your command looks like it should, you can press Enter. It doesn't matter where your cursor happens to be.

Sometimes you would like your cursor to go to the end of the command. Let's say I want to run the word count
command on two files, and right now my cursor is at the first c in this command:

% wc mydocs/today/verylongfilename

If I hold down Ctrl and press e, the cursor will jump to the end of the command, so I can type in the rest of the desired
command. Remember that e is for end.

Finally, what if you're in the middle of a long command and decide you'd like to start from scratch, erase what you've
typed, and just get your prompt back? Simply hold down Ctrl and press u for undo.

If you work in the Cisco or PIX IOS systems, all of the previous tricks work at the IOS
command line.

Did you know that the cd command also includes some built-in shortcuts? You may have heard of this one: to return to
your home directory quickly, simply type:

% cd

That's very convenient, but what if you want to change to a different previous directory? Let's say that you start out in
the /usr/share/doc/en_US.ISO8859-1/books/handbook directory, then use cd to change to the /usr/X11R6/etc/X11
directory. Now you want to go back to that first directory. If you're anything like me, you really don't want to type out
that long directory path again. Sure, you could pick it out of your history, but chances are you originally navigated into
that deep directory structure one directory at a time. If that's the case, it would probably take you longer to pick each
piece out of the history than it would be to just type the command manually.

Fortunately, there is a very quick solution. Simply type:

% cd -

Repeat that command and watch as your prompt changes between the first and the second directory. What, your
prompt isn't changing to indicate your current working directory? Don't worry, [Hack #2] will take care of that.

1.2.3 Learning from Your Command History

Now that you can move around fairly quickly, let's fine-tune some of these hacks. How many times have you found
yourself repeating commands just to alter them slightly? The following scenario is one example.

Remember that document I created? Instead of using the history to bring up my previous command so I could edit it, I
might have found it quicker to type this:

% wc !$

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% wc !$

  wc mydocs/today/verylongfilename

        19        97        620 mydocs/today/verylongfilename

The !$ tells the shell to take the last parameter from the previous command. Since that command was:

% vi mydocs/today/verylongfilename

it replaced the !$ in my new command with the very long filename from my previous command.

The ! (or bang!) character has several other useful applications for dealing with previously issued commands. Suppose
you've been extremely busy and have issued several dozen commands in the last hour or so. You now want to repeat
something you did half an hour ago. You could keep tapping your up arrow until you come across the command. But
why search yourself when ! can search for you?

For example, if I'd like to repeat the command mailstats, I could give ! enough letters to figure out which command to
pick out from my history:

$ !ma

! will pick out the most recently issued command that begins with ma. If I had issued a man command sometime after
mailstats command, tcsh would find that instead. This would fix it though:

% !mai

If you're not into trial and error, you can view your history by simply typing:

% history

If you're really lazy, this command will do the same thing:

% h

Each command in this history will have a number. You can specify a command by giving ! the associated number. In
this example, I'll ask tcsh to reissue the mailstats command:

% h

  165  16:51  mailstats

  166  16:51  sockstat

  167  16:52  telnet localhost 25

  168  16:54  man sendmail

% !165

1.2.4 Silencing Auto-Complete

The last tip I'll mention is for those of you who find the system bell irritating. Or perhaps you just find it frustrating
typing one letter, tabbing, typing another letter, tabbing, and so on until auto-complete works. If I type:

% ls -l b

then hold down the Ctrl key while I press d:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


then hold down the Ctrl key while I press d:

backups/  bin/   book/  boring.jpg

ls -l b

I'll be shown all of the b possibilities in my current directory, and then my prompt will return my cursor to what I've
already typed. In this example, if I want to view the size and permissions of boring.jpg, I'll need to type up to here:

% ls -l bor

before I press the Tab key. I'll leave it up to your own imagination to decide what the d stands for.

1.2.5 See Also

man tcsh

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 2 Useful tcsh Shell Configuration File Options

 

Make the shell a friendly place to work in.

Now that you've had a chance to make friends with the shell, let's use its configuration file to create an environment
you'll enjoy working in. Your prompt is an excellent place to start.

1.3.1 Making Your Prompt More Useful

The default tcsh prompt displays % when you're logged in as a regular user and hostname# when you're logged in as the
superuser. That's a fairly useful way to figure out who you're logged in as, but we can do much better than that.

Each user on the system, including the superuser, has a .cshrc file in his home directory. Here are my current prompt
settings:

dru@~:grep prompt ~/.cshrc

if ($?prompt) then

        set prompt = "%B%n@%~%b: "

That isn't the default tcsh prompt, as I've been using my favorite customized prompt for the past few years. The
possible prompt formatting sequences are easy to understand if you have a list of possibilities in front of you. That list is
buried deeply within man cshrc, so here's a quick way to zero in on it:

dru@~:man cshrc

/prompt may include

Here I've used the / to invoke the manpage search utility. The search string prompt may include brings you to the right
section, and is intuitive enough that even my rusty old brain can remember it.

If you compare the formatting sequences shown in the manpage to my prompt string, it reads as follows:

set prompt = "%B%n@%~%b: "

That's a little dense. Table 1-1 dissects the options.

Table 1-1. Prompt characters
Character Explanation

" Starts the prompt string.

%B Turns on bold.

%n Shows the login name in the prompt.

@ I use this as a separator to make my prompt more visually appealing.

%~ Shows the current working directory. It results in a shorter prompt than %/, as my home directory is
shortened from /usr/home/myusername to ~

%b Turns off bold.

: Again, this is an extra character I use to separate my prompt from the cursor.

" Ends the prompt string.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


With this prompt, I always know who I am and where I am. If I also needed to know what machine I was logged into
(useful for remote administration), I could also include %M or %m somewhere within the prompt string.

Switching to the Superuser
The superuser's .cshrc file (in /root, the superuser's home directory) has an identical prompt string. This
is very fortunate, as it reveals something you might not know about the su command, which is used to
switch users. Right now I'm logged in as the user dru and my prompt looks like this:

dru@/usr/ports/net/ethereal:

Watch the shell output carefully after I use su to switch to the root user:

dru@/usr/ports/net/ethereal: su

Password:

dru@/usr/ports/net/ethereal:

Things seem even more confusing if I use the whoami command:

dru@/usr/ports/net/ethereal: whoami

dru

However, the id command doesn't lie:

dru@/usr/ports/net/ethereal: id

uid=0(root) gid=0(wheel) groups=0(wheel), 5(operator)

It turns out that the default invocation of su doesn't actually log you in as the superuser. It simply gives
you superuser privileges while retaining your original login shell.

If you really want to log in as the superuser, include the login (-l) switch:

dru@/usr/ports/net/ethereal: su -l

Password:

root@~: whoami

root

root@~: id

uid=0(root) gid=0(wheel) groups=0(wheel), 5(operator)

I highly recommend you take some time to experiment with the various formatting sequences and hack a prompt that
best meets your needs. You can add other features, including customized time and date strings and command history
numbers [Hack #1], as well as flashing or underlining the prompt.

1.3.2 Setting Shell Variables

Your prompt is an example of a shell variable. There are dozens of other shell variables you can set in .cshrc. My trick
for finding the shell variables section in the manpage is:

dru@~:man cshrc

/variables described

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/variables described

As the name implies, shell variables affect only the commands that are built into the shell itself. Don't confuse these
with environment variables, which affect your entire working environment and every command you invoke.

If you take a look at your ~/.cshrc file, environment variables are the ones written in uppercase and are preceded with
the setenv command. Shell variables are written in lowercase and are preceded with the set command.

You can also enable a shell variable by using the set command at your command prompt. (Use unset to disable it.) Since
the variable affects only your current login session and its children, you can experiment with setting and unsetting
variables to your heart's content. If you get into trouble, log out of that session and log in again.

If you find a variable you want to keep permanently, add it to your ~/.cshrc file in the section that contains the default
set commands. Let's take a look at some of the most useful ones.

If you enjoyed Ctrl-d from [Hack #1], you'll like this even better:

set autolist

Now whenever you use the Tab key and the shell isn't sure what you want, it won't beep at you. Instead, the shell will
show you the applicable possibilities. You don't even have to press Ctrl-d first!

The next variable might save you from possible future peril:

set rmstar

I'll test this variable by quickly making a test directory and some files:

dru@~:mkdir test

dru@~:cd test

dru@~/test:touch a b c d e

Then, I'll try to remove the files from that test directory:

dru@~/test:rm *

Do you really want to delete all files? [n/y]

Since my prompt tells me what directory I'm in, this trick gives me one last chance to double-check that I really am
deleting the files I want to delete.

If you're prone to typos, consider this one:

set correct=all

This is how the shell will respond to typos at the command line:

dru@~:cd /urs/ports

CORRECT>cd /usr/ports (y|n|e|a)?

Pressing y will correct the spelling and execute the command. Pressing n will execute the misspelled command, resulting
in an error message. If I press e, I can edit my command (although, in this case, it would be much quicker for the shell
to go with its correct spelling). And if I completely panic at the thought of all of these choices, I can always press a to
abort and just get my prompt back.

If you like to save keystrokes, try:

set implicitcd

You'll never have to type cd again. Instead, simply type the name of the directory and the shell will assume you want to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You'll never have to type cd again. Instead, simply type the name of the directory and the shell will assume you want to
go there.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 3 Create Shell Bindings

 

Train your shell to run a command for you whenever you press a mapped key.

Have you ever listened to a Windows power user expound on the joys of hotkeys? Perhaps you yourself have been
known to gaze wistfully at the extra buttons found on a Microsoft keyboard. Did you know that it's easy to configure
your keyboard to launch your most commonly used applications with a keystroke or two?

One way to do this is with the bindkey command, which is built into the tcsh shell. As the name suggests, this command
binds certain actions to certain keys. To see your current mappings, simply type bindkey. The output is several pages
long, so I've included only a short sample. However, you'll recognize some of these shortcuts from [Hack #1].

Standard key bindings

"^A"           ->  beginning-of-line

"^B"           ->  backward-char

"^E"           ->  end-of-line

"^F"           ->  forward-char

"^L"           ->  clear-screen

"^N"           ->  down-history

"^P"           ->  up-history

"^U"           ->  kill-whole-line

Arrow key bindings

down           -> history-search-forward

up             -> history-search-backward

left           -> backward-char

right          -> forward-char

home           -> beginning-of-line

end            -> end-of-line

The ^ means hold down your Ctrl key. For example, press Ctrl and then l, and you'll clear your screen more quickly
than by typing clear. Notice that it doesn't matter if you use the uppercase or lowercase letter.

1.4.1 Creating a Binding

One of my favorite shortcuts isn't bound to a key by default: complete-word-fwd. Before I do the actual binding, I'll first
check which keys are available:

dru@~:bindkey | grep undefined

"^G"           ->  is undefined

"\305"         ->  is undefined

"\307"         ->  is undefined

<snip>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<snip>

Although it is possible to bind keys to numerical escape sequences, I don't find that very convenient. However, I can
very easily use that available Ctrl-g. Let's see what happens when I bind it:

dru@~:bindkey "^G" complete-word-fwd

When I typed in that command, I knew something worked because my prompt returned silently. Here's what happens if
I now type ls -l /etc/, hold down the Ctrl key, and repeatedly press g:

ls -l /etc/COPYRIGHT

ls -l /etc/X11

ls -l /etc/aliases

ls -l /etc/amd.map

I now have a quick way of cycling through the files in a directory until I find the exact one I want. Even better, if I know
what letter the file starts with, I can specify it. Here I'll cycle through the files that start with a:

ls -l /etc/a

ls -l /etc/aliases

ls -l /etc/amd.map

ls -l /etc/apmd.conf

ls -l /etc/auth.conf

ls -l /etc/a

Once I've cycled through, the shell will bring me back to the letter a and beep.

If you prefer to cycle backward, starting with words that begin with z instead of a, bind your key to complete-word-back
instead.

When you use bindkey, you can bind any command the shell understands to any understood key binding. Here's my trick
to list the commands that tcsh understands:

dru@~ man csh

/command is bound

And, of course, use bindkey alone to see the understood key bindings. If you just want to see the binding for a particular
key, specify it. Here's how to see the current binding for Ctrl-g:

dru@~:bindkey "^G"

"^G"   ->    complete-word-fwd

1.4.2 Specifying Strings

What's really cool is that you're not limited to just the commands found in man csh. The s switch to bindkey allows you to
specify any string. I like to bind the lynx web browser to Ctrl-w:

dru@~:bindkey -s "^W" "lynx\n"

I chose w because it reminds me of the World Wide Web. But why did I put \n after the lynx? Because that tells the shell
to press Enter for me. That means by simply pressing Ctrl-w, I have instant access to the Web.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


to press Enter for me. That means by simply pressing Ctrl-w, I have instant access to the Web.

Note that I overwrite the default binding for Ctrl-w. This permits you to make bindings that are more intuitive and
useful for your own purposes. For example, if you never plan on doing whatever ^J does by default, simply bind your
desired command to it.

There are many potential key bindings, so scrolling through the output of bindkeys can be tedious. If you only stick with
"Ctrl letter" bindings, though, it's easy to view your customizations with the following command:

dru@~:bindkey | head -n 28

As with all shell modifications, experiment with your bindings first by using bindkey at the command prompt. If you get
into real trouble, you can always log out to go back to the defaults. However, if you find some bindings you want to
keep, make them permanent by adding your bindkey statements to your .cshrc file. Here is an example:

dru@~:cp ~/.cshrc ~/.cshrc.orig

dru@~:echo 'bindkey "^G" complete-word-fwd' >> ~/.cshrc

Notice that I backed up my original .cshrc file first, just in case my fingers slip on the next part. I then used >> to
append the echoed text to the end of .cshrc. If I'd used > instead, it would have replaced my entire .cshrc file with just
that one line. I don't recommend testing this on any file you want to keep.

Along those lines, setting:

set noclobber

will prevent the shell from clobbering an existing file if you forget that extra > in your redirector. You'll know you just
prevented a nasty accident if you get this error message after trying to redirect output to a file:

.cshrc: File exists.

1.4.3 See Also

man tcsh

[Hack #2]

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 4 Use Terminal and X Bindings

 

Take advantage of your terminal's capabilities.

It's not just the tcsh shell that is capable of understanding bindings. Your FreeBSD terminal provides the kbdcontrol
command to map commands to your keyboard. Unfortunately, neither NetBSD nor OpenBSD offer this feature. You can,
however, remap your keyboard under X, as described later.

1.5.1 Creating Temporary Mappings

Let's start by experimenting with some temporary mappings. The syntax for mapping a command with kbdcontrol is as
follows:

kbdcontrol -f number "command"

Table 1-2 lists the possible numbers, each with its associated key combination.

Table 1-2. Key numbers
Number Key combination

1, 2, . . . 12 F1, F2, . . . F12

13, 14, . . . 24 Shift+F1, Shift+F2, . . . Shift+F12

25, 26, . . . 36 Ctrl+F1, Ctrl+F2, . . . Ctrl+F12

37, 38, . . . 48 Shift+Ctrl+F1, Shift+Ctrl+F2, . . . Shift+Ctrl+F12

49 Home

50 Up arrow

51 Page Up

52 Numpad - (Num Lock off)

53 Left arrow (also works in editor)

54 Numpad 5 (without Num Lock)

55 Right arrow

56 Numpad + (without Num Lock)

57 End

58 Down arrow (affects c history)

59 Page Down

60 Ins

61 Del

62 Left GUI key (Windows icon next to left Ctrl)

63 Right GUI key (Windows icon next to right Alt)

64 Menu (menu icon next to right Ctrl)

Those last three key combinations may or may not be present, depending upon your keyboard. My Logitech keyboard
has a key with a Windows icon next to the left Ctrl key; that is the left GUI key. There's another key with a Windows
icon next to my right Alt key; this is the right GUI key. The next key to the right has an icon of a cursor pointing at a
square containing lines; that is the Menu key.

Now that we know the possible numbers, let's map lynx to the Menu key:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Now that we know the possible numbers, let's map lynx to the Menu key:

% kbdcontrol -f 64 "lynx"

Note that the command must be contained within quotes and be in your path. (You could give an absolute path, but
there's a nasty limitation coming up soon.)

If I now press the Menu key, lynx is typed to the terminal for me. I just need to press Enter to launch the browser. This
may seem a bit tedious at first, but it is actually quite handy. It can save you from inadvertently launching the wrong
application if you're anything like me and tend to forget which commands you've mapped to which keys.

Let's see what happens if I modify that original mapping somewhat:

% kbdcontrol -f 64 "lynx www.google.ca"

kbdcontrol: function key string too long (18 > 16)

When doing your own mappings, beware that the command and its arguments can't exceed 16 characters. Other than
that, you can pretty well map any command that strikes your fancy.

1.5.2 Shell Bindings Versus Terminal Bindings

Before going any further, I'd like to pause a bit and compare shell-specific bindings, which we saw in [Hack #3], and
the terminal-specific bindings we're running across here.

One advantage of using kbdcontrol is that your custom bindings work in any terminal, regardless of the shell you happen
to be using. A second advantage is that you can easily map to any key on your keyboard. Shell mappings can be
complicated if you want to map them to anything other than "Ctrl letter".

However, the terminal mappings have some restrictions that don't apply to the tcsh mappings. For example, shell
mappings don't have a 16 character restriction, allowing for full pathnames. Also, it was relatively easy to ask the shell
to press Enter to launch the desired command.

Terminal bindings affect only the current user's terminal. Any other users who are logged in on different terminals are
not affected. However, if the mappings are added to rc.conf (which only the superuser can do), they will affect all
terminals. Since bindings are terminal specific, even invoking su won't change the behavior, as the user is still stuck at
the same terminal.

1.5.3 More Mapping Caveats

There are some other caveats to consider when choosing which key to map. If you use the tcsh shell and enjoy viewing
your history [Hack #1], you'll be disappointed if you remap your up and down arrows. The right and left arrows can
also be problematic if you use them for navigation, say, in a text editor. Finally, if you're physically sitting at your
FreeBSD system, F1 through F8 are already mapped to virtual terminals and F9 is mapped to your GUI terminal. By
default, F10 to F12 are unmapped.

If you start experimenting with mappings and find you're stuck with one you don't like, you can quickly return all of
your keys to their default mappings with this command:

% kbdcontrol -F

On the other hand, if you find some new mappings you absolutely can't live without, make them permanent. If you
have superuser privileges on a FreeBSD system you physically sit at, you can carefully add the mappings to
/etc/rc.conf. Here, I've added two mappings. One maps lynx to the Menu key and the other maps startx to the left GUI
key:

keychange="64 lynx"

keychange="62 startx"

Since the superuser will be setting these mappings, the mapped keys will affect all users on that system. If you want to
save your own personal mappings, add your specific kbdcontrol commands to the end of your shell configuration file. For
example, I've added these to the very end of my ~/.cshrc file, just before the last line which says endif:

% kbdcontrol -f 64 "lynx"

% kbdcontrol -f 62 "startx"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


1.5.4 Making Mappings Work with X

This is all extremely handy, but what will happen if you try one of your newly mapped keys from an X Window session?
You can press that key all you want, but nothing will happen. You won't even hear the sound of the system bell beeping
at you in protest. This is because the X protocol handles all input and output during an X session.

You have a few options if you want to take advantage of keyboard bindings while in an X GUI. One is to read the
documentation for your particular window manager. Most of the newer window managers provide a point and click
interface to manage keyboard bindings. My favorite alternative is to try the xbindkeys_config application, which is
available in the ports collection [Hack #84] :

# cd /usr/ports/x11/xbindkeys_config

# make install clean

This port also requires xbindkeys:

# cd /usr/ports/x11/xbindkeys

# make install clean

Rather than building both ports, you could instead add this line to
/usr/ports/x11/xbindkeys_config/Makefile:

BUILD_DEPENDS=  xbindkeys:${PORTSDIR}/x11/xbindkeys

This will ask the xbindkeys_config build to install both ports.

Once your builds are complete, open an xterm and type:

% xbindkeys --defaults  ~/.xbindkeysrc

% xbindkeys_config

The GUI in Figure 1-1 will appear.

Figure 1-1. The xbindkeys_config program

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Creating a key binding is a simple matter of pressing the New button and typing a useful name into the Name: section.
Then, press Get Key and a little window will appear. Press the desired key combination, and voilà, the correct mapping
required by X will autofill for you. Associate your desired Action:, then press the Save & Apply & Exit button.

Any keyboard mappings you create using this utility will be saved to a file called ~/.xbindkeysrc.

1.5.5 See Also

man kbdcontrol

man atkbd

The xbindkeys web site (http://hocwp.free.fr/xbindkeys/xbindkeys.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 5 Use the Mouse at a Terminal

 

Use your mouse to copy and paste at a terminal.

If you're used to a GUI environment, you might feel a bit out of your element while working at the terminal. Sure, you
can learn to map hotkeys and to use navigational tricks, but darn it all, sometimes it's just nice to be able to copy and
paste!

Don't fret; your mouse doesn't have to go to waste. In fact, depending upon how you have configured your system, the
mouse daemon moused may already be enabled. The job of this daemon is to listen for mouse data in order to pass it to
your console driver.

Of course, if you're using screen [Hack #12], you can also take advantage of its copy and
paste mechanism.

1.6.1 If X Is Already Installed

If you installed and configured X when you installed your system, moused is most likely started for you when you boot
up. You can check with this:

% grep moused /etc/rc.conf

moused_port="/dev/psm0"

moused_type="auto"

moused_enable="YES"

Very good. moused needs to know three things:

The mouse port (in this example, /dev/psm0, the PS/2 port)

The type of protocol (in this example, auto)

Whether to start at boot time

If you receive similar output, you're ready to copy and paste.

To copy text, simply select it by clicking the left mouse button and dragging. Then, place the mouse where you'd like to
paste the text and click the middle button. That's it.

To select an entire word, double-click anywhere on that word. To select an entire line,
triple-click anywhere on that line.

1.6.1.1 Configuring a two-button mouse

What if you don't have three mouse buttons? As the superuser, add the following line to /etc/rc.conf (assuming it's not
already there):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


already there):

moused_flags="-m 2=3"

This flag tells moused to treat the second, or right, mouse button as if it were the third, or middle, mouse button. Now
you can use the right mouse button to paste your copied text.

To apply that change, restart moused:

# /etc/rc.d/moused restart

Stopping moused.

Starting moused:.

Test your change by copying some text with the left mouse button and pasting with the right mouse button.

1.6.2 If X Is Not Installed

You can achieve the same results on a system without X installed. You'll have to add the lines to /etc/rc.conf manually,
though.

The example I've given you is for a PS/2 mouse. If you're using another type of mouse, read the "Configuring Mouse
Daemon" section of man moused. It gives explicit details on figuring out what type of mouse you have and what type of
protocol it understands. It even includes a section on configuring a laptop system for multiple mice: one for when on
the road and one for when the laptop is attached to the docking station.

For example, if you're using a USB mouse, the only difference is that the port is /dev/usm0 instead of /dev/psm0.

A serial mouse physically plugged into COM1 would be /dev/cuaa0. You may have to experiment with the type, as auto
doesn't work with all serial mice. Again, the manpage is your best reference.

1.6.3 See Also

man moused

Documentation on enabling mouse support in NetBSD at http://www.netbsd.org/Documentation/wscons/

Documentation on enabling mouse support in OpenBSD at http://www.openbsd.org/faq/faq7.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 6 Get Your Daily Dose of Trivia

 

Brighten your day with some terminal eye candy.

As the saying goes, all work and no play makes Jack a dull boy. But what's a poor Jack or Jill to do if your days include
spending inordinate amounts of time in front of a computer screen? Well, you could head over to
http://www.thinkgeek.net/ to stock up on cube goodies and caffeine. Or, you could take advantage of some of the
entertainments built into your operating system.

1.7.1 A Fortune a Day

Let's start by configuring some terminal eye candy. Does your system quote you a cheery, witty, or downright strange
bit of wisdom every time you log into your terminal? If so, you're receiving a fortune:

login: dru

Password:

Last login: Thu Nov 27 10:10:16 on ttyv7

"You can't have everything. Where would you put it?"

                -- Steven Wright

If you're not receiving a fortune, as the superuser type /stand/sysinstall. Choose Configure, then Distributions, and select
games with your spacebar. Press Tab to select OK, then exit out of sysinstall when it is finished.

Then, look for the line that runs /usr/games/fortune in your ~/.cshrc file:

% grep fortune ~/.cshrc

/usr/games/fortune

If for some reason it isn't there, add it:

% echo '/usr/games/fortune' >> ~/.cshrc

Don't forget to use both greater-than signs; you don't want to erase the contents of your .cshrc file! To test your
change, use the source shell command, which re-executes the contents of the file. This can come in handy if you've
updated an alias and want to take advantage of it immediately:

% source ~/.cshrc

Indifference will be the downfall of mankind, but who cares?

If you'd also like to receive a fortune when you log out of your terminal, add this line to the end of your .logout file. If
you don't have one, and there isn't one by default, you can create it and add this line in one step:

% echo '/usr/games/fortune' > ~/.logout

Note that this time I used only one greater-than sign, as I was creating the file from scratch. If the file already exists,
use two greater-than signs to append your new line to the end of the existing file.

Believe it or not, fortune comes with switches, some of which are more amusing than others. I'll leave it to you to
peruse man fortune.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


peruse man fortune.

1.7.2 Pursuing Trivia

I'm a trivia buff, so I love using the calendar command. Contrary to logic, typing calendar won't show me this month's
calendar (that's the job of cal). However, I will get an instant dose of trivia, related to the current date:

% calendar

Nov 27         Alfred Nobel establishes Nobel Prize, 1895

Nov 27         Friction match invented, England, 1826

Nov 27         Hoosac Railroad Tunnel completed, 1873, in NW Massachusetts

Nov 28         Independence Day in Albania and Mauritania

Nov 28         Independence from Spain in Panama

Nov 28         Proclamation of the Republic in Chad

Nov 27         Jimi Hendrix (Johnny Allen Hendrix) is born in Seattle, 1942

Cool. I had forgotten it was the anniversary of the Hoosac tunnel, an event that put my hometown on the map.

It's an easy matter to automate the output provided by calendar. If you want to see your trivia when you log in or log
out, simply add a line to your .cshrc or .logout file. Because the line you add is really just a path to the program, use
the output of the which command to add that line for you:

% echo `which calendar` >> .cshrc

Again, don't forget to append with >>, or have noclobber set in your .cshrc file [Hack #2].

1.7.3 Sundry Amusements

Of course, there are several other date and time related mini-hacks at your disposal. Here are two you might enjoy.

1.7.3.1 The current time

Ever wonder what time it is while you're working on the terminal? Sure, you could use date, but the output is so small
and boring. Try this the next time you want to know what time it is:

% grdc

Whoa, you can see that one from across the room. That's not a bad idea if you want to send your cubicle buddy a hint.

I've been known to add /usr/games/grdc to my ~/.logout. When I log out, my terminal displays the time until I press
Ctrl-c and log in again. That's sort of a built-in password protected screen saver for the terminal.

1.7.3.2 The phase of the moon

Have you ever read man pom? It has one of the more useful descriptions I've seen:

The pom utility displays the current phase of the moon. Useful for selecting software completion target
dates and predicting managerial behavior.

Sounds like Dilbert had a hand in that one. If I add the line /usr/games/pom to my ~/.cshrc, I'll learn a bit about
astronomy when I log in:

% pom

The Moon is Waxing Gibbous (53% of Full)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Moon is Waxing Gibbous (53% of Full)

There's a one-liner to promote water cooler conversation.

1.7.4 Adding Some Color to Your Terminal

Have you ever tried this command?

% vidcontrol show         

0                  8 grey               

1 blue             9 lightblue

2 green           10 lightgreen

3 cyan            11 lightcyan

4 red             12 lightred

5 magenta         13 lightmagenta

6 brown           14 yellow

7 white           15 lightwhite

Gee, that reminds me of my old DOS days when I discovered ansi.sys. Yes, your terminal is capable of color and you're
looking at your possible color schemes! (It likely looks much more exciting on your terminal, since it's not in color in
this book.)

If you see some colors that appeal to you, add them to your terminal. For example, this command will set the
foreground color to yellow and the background color as blue:

% vidcontrol yellow blue

Note that you can use only colors 1 through 7 as background colors; you'll receive a syntax error if you try to use colors
8-15 in your background. Try out the various combinations until you find one that appeals to your sense of taste. You
can even add a border if you like:

% vidcontrol -b red

These settings affect only your own terminal. If you want, add the desired vidcontrol lines to your ~/.cshrc file so your
settings are available when you log into your terminal.

If you have problems finding your cursor, try:

% vidcontrol -c blink

or:

% vidcontrol -c destructive

Changing the cursor affects all virtual terminals on the system. If other users complain about your improvement, this
will bring things back to normal:

% vidcontrol -c normal

1.7.5 See Also

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man fortune

man calendar

man vidcontrol

The games packages, in NetBSD and OpenBSD

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 7 Lock the Screen

 

Secure your unattended terminal from prying eyes.

If you work in a networked environment, the importance of locking your screen before leaving your workstation has
probably been stressed to you. After all, your brilliant password becomes moot if anyone can walk up to your logged in
station and start poking about the contents of your home directory.

If you use a GUI on your workstation, your Window Manager probably includes a locking feature. However, if you use a
terminal, you may not be aware of the mechanisms available for locking your terminal.

As an administrator, you may want to automate these mechanisms as part of your security policy. Fortunately,
FreeBSD's screen locking mechanism is customizable.

1.8.1 Using lock

FreeBSD comes with lock (and it's available for NetBSD and OpenBSD). Its default invocation is simple:

% lock

Key: 1234

Again: 1234

lock /dev/ttyv6 on genisis. timeout in 15 minutes.

time now is Fri Jan 2 12:45:02 EST 2004

Key:

Without any switches, lock will request that the user input a key which will be used to unlock the terminal. This is a good
thing, as it gives the user an opportunity to use something other than her login password. If the user tries to be smart
and presses Enter (for an empty password), the lock program will abort.

Once a key is set, it is required to unlock the screen. If a user instead types Ctrl-c, she won't terminate the program.
Instead, she'll receive this message:

Key: lock: type in the unlock key. timeout in 10:59 minutes

Did you notice that timeout value of 15 minutes? At that time, the screen will unlock itself, which sorta diminishes the
usefulness of locking your screen. After all, if you run into your boss in the hall, your 5-minute coffee break might turn
into a 25-minute impromptu brainstorming session.

To lock the terminal forever, or at least until someone types the correct key, use the -n switch. If the system is a
personal workstation, -v is also handy; this locks all of the virtual terminals on the system, meaning a passerby can't
use Alt-Fn to switch to another terminal.

As an administrator, you can assist users in using the desired switches by adding an alias to /usr/share/skel/dot.cshrc
[Hack #9]. This alias removes the timeout and locks all terminals:

alias lock   /usr/bin/lock -nv

1.8.2 Using autologout

If you use the tcsh shell, you also have the ability either to lock your session or to be logged out of your session
automatically after a set period of inactivity. As an administrator, you can set your policy by adding a line to
/usr/share/skel/dot.cshrc.

Do be aware, though, that a user can edit her own ~/.cshrc file, which will negate your

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Do be aware, though, that a user can edit her own ~/.cshrc file, which will negate your
customized setting.

The autologout variable can accept two numbers. The first number represents the number of minutes of inactivity before
logging out the user. The second number represents the number of minutes of inactivity before locking the user's
screen. Once the screen is locked, the user must input the password to unlock it. If the screen is not unlocked in time,
the user will be logged out once the shell has been idle for the logout period of minutes.

The manpage is pretty vague on how to set those two numbers. For example, if you try:

set autologout = 30 15

users will receive this error message when they try to log in:

set: Variable name must begin with a letter.

That's a deceptive error message, as this variable does accept numerals. The correct invocation is to enclose the two
numbers between parentheses:

set autologout = (30 15)

This particular setting will log out a user after 15 minutes of inactivity. The user will know this happened as the terminal
will resemble:

% 

Password:

After 30 minutes of inactivity (or 15 minutes after the screen was locked), the user will be logged out and see this:

% 

Password:auto-logout

Consider whether or not your users tend to run background jobs before globally
implementing autologout. Also see [Hack #11], which allows users to reattach to their
terminals.

1.8.3 Enforcing Logout

What if you do want to enforce a logout policy that users can't change in their shell configuration files? Consider using
idled, which can be installed from /usr/ports/sysutils/idled or built from source. This utility was designed to log out users
either after a configured period of inactivity or after they've been logged in for a certain amount of time.

Once you've installed idled, copy the template configuration file:

# cd /usr/local/etc/

# cp idled.cf.template idled.cf

Open /usr/local/etc/idled.cf using your favorite editor. You'll find this file to be well commented and quite
straightforward. You'll be able to configure the time before logout as well as when the user will receive a warning
message. In addition, you can refuse logins, set session timeouts, and provide for exemptions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


message. In addition, you can refuse logins, set session timeouts, and provide for exemptions.

1.8.4 See Also

man lock

man tcsh man idled

man idled.cf

The idled web site (http://www.darkwing.com/idled/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 8 Create a Trash Directory

 

Save "deleted" files until you're really ready to send them to the bit bucket.

One of the first things Unix users learn is that deleted files are really, really gone. This is especially true at the
command line where there isn't any Windows-style recycling bin to rummage through should you have a change of
heart regarding the fate of a removed file. It's off to the backups! (You do have backups, don't you?)

Fortunately, it is very simple to hack a small script that will send removed files to a custom trash directory. If you've
never written a script before, this is an excellent exercise in how easy and useful scripting can be.

1.9.1 Shell Scripting for the Impatient

Since a script is an executable file, you should place your scripts in a directory that is in your path. Remember, your
path is just a list of directories where the shell will look for commands if you don't give them full pathnames. To see
your path:

% echo $PATH

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/

local/bin:/usr/X11R6/bin:/home/dru/bin

In this output, the shell will look for executables in the bin subdirectory of dru's home directory. However, it won't look
for executables placed directly in my home directory, or /home/dru. Since bin isn't created by default, I should do that
first:

% cd

% mkdir bin

As I create scripts, I'll store them in /home/dru/bin, since I don't have permission to store them anywhere else.
Fortunately, no one else has permission to store them in my bin directory, so it's a good match.

The scripts themselves contain at least three lines:

#!/bin/sh

# a comment explaining what the script does

the command to be executed

The first line indicates the type of script by specifying the program to use to execute the script. I've chosen to use a
Bourne script because that shell is available on all Unix systems.

Your script should also have comments, which start with the # character. It's surprising how forgetful you can be six
months down the road, especially if you create a lot of scripts. For this reason, you should also give the script a name
that reminds you of what it does.

The third and subsequent lines contain the meat of the script: the actual command(s) to execute. This can range from a
simple one-liner to a more complex set of commands, variables, and conditions. Fortunately, we can make a trash
script in a simple one-liner.

1.9.2 The Code

Let's start with this variant, which I found as the result of a Google search:

% more ~/bin/trash

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% more ~/bin/trash

#!/bin/sh

# script to send removed files to trash directory

mv $1 ~/.trash/

You should recognize the path to the Bourne shell, the comment, and the mv command. Let's take a look at that $1.
This is known as a positional parameter and specifically refers to the first parameter of the trash command. Since the mv
commands takes filenames as parameters, the command:

mv $1 ~/.trash/

is really saying, mv the first filename, whatever it happens to be, to a directory called .trash in the user's home
directory (represented by the shell shortcut of ~). This move operation is our custom "recycle."

Before this script can do anything, it must be set as executable:

% chmod +x ~/bin/trash

And I must create that trash directory for it to use:

% mkdir ~/.trash

Note that I've chosen to create a hidden trash directory; any file or directory that begins with the . character is hidden
from normal listings. This really only reduces clutter, though, as you can see these files by passing the -a switch to ls. If
you also include the F switch, directory names will end with a /:

% ls -aF ~

.cshrc    .history    .trash/

bin/      images/     myfile

1.9.3 Replacing rm with ~/bin/trash

Now comes the neat part of the hack. I want this script to kick in every time I use rm. Since it is the shell that executes
commands, I simply need to make my shell use the trash command instead. I do that by adding this line to ~/.cshrc:

alias rm        trash

That line basically says: when I type rm, execute trash instead. It doesn't matter which directory I am in. As long as I
stay in my shell, it will mv any files I try to rm to my hidden trash directory.

1.9.4 Running the Code Safely

Whenever you create a script, always test it first. I'll start by telling my shell to reread its configuration file:

% source ~/.cshrc

Then, I'll make some test files to remove:

% cd

% mkdir test

% cd test

% touch test1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% touch test1

% rm test1

% ls ~/.trash

test1

Looks like the script is working. However, it has a flaw. Have you spotted it yet? If not, try this:

% touch a aa aaa aaaa

% rm a*

% ls ~/.trash

test1         a

% ls test

aa         aaa         aaaa

What happened here? I passed the shell more than one parameter. The a* was expanded to a, aa, aaa, and aaaa before
trash could execute. Those four parameters were then passed on to the mv command in my script. However, trash
passes only the first parameter to the mv command, ignoring the remaining parameters. Fortunately, they weren't
removed, but the script still didn't achieve what I wanted.

You can actually have up to nine parameters, named $1 to $9. However, our goal is to catch all parameters, regardless
of the amount. To do that, we use $@:

mv $@ ~/.trash/

Make that change to your script, then test it by removing multiple files. You should now have a script that works every
time.

1.9.5 Taking Out the Trash

You should occasionally go through your trash directory and really remove the files you no longer want. If you're really
on your toes you may be thinking, "But how do I empty the trash directory?" If you do this:

% rm ~/.trash/*

your trash directory won't lose any files! This time you really do want to use rm, not trash. To tell your shell to use the
real rm command, simply put a \ in front of it like so:

% \rm /trash/*

Voila, empty recycling bin.

1.9.6 Hacking the Hack

One obvious extension is to keep versioned backups. Use the date command to find the time of deletion and append
that to the name of the file in the trash command. You could get infinitely more complicated by storing a limited number
of versions or deleting all versions older than a week or a month. Of course, you could also keep your important files
under version control and leave the complexity to someone else!

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 9 Customize User Configurations

 

Now that you know how to set up a useful environment for yourself, it's time to share the wealth.

It's very easy for a system administrator to ensure that each newly created user starts out with the same configuration
files. For example, every user can receive the same customized prompt, shell variables, or hotkeys.

Whenever you create a new user, several default (and hidden, or dot, files) are copied into the new user's home
directory. In FreeBSD, the source of these files is /usr/share/skel/. Any customizations you make to these files will be
seen by all subsequently created users. Do note that you'll have to manually copy over any modified files to existing
users.

It's useful to understand these files, as they apply to every user you create. Depending upon your needs, you'll
probably end up removing some of the defaults, customizing others, and even adding a few of your own.

1.10.1 Default Files

Let's take a quick tour of the default files:

% ls -l /usr/share/skel

total 24

drwxr-xr-x   2 root  wheel  512 Jul 28 16:09 ./

drwxr-xr-x  27 root  wheel  512 Jul 28 16:06 ../

-rw-r--r--   1 root  wheel  921 Jul 28 16:09 dot.cshrc

-rw-r--r--   1 root  wheel  248 Jul 28 16:09 dot.login

-rw-r--r--   1 root  wheel  158 Jul 28 16:09 dot.login_conf

-rw-------   1 root  wheel  371 Jul 28 16:09 dot.mail_aliases

-rw-r--r--   1 root  wheel  331 Jul 28 16:09 dot.mailrc

-rw-r--r--   1 root  wheel  797 Jul 28 16:09 dot.profile

-rw-------   1 root  wheel  276 Jul 28 16:09 dot.rhosts

-rw-r--r--   1 root  wheel  975 Jul 28 16:09 dot.shrc

Note that each starts with the word dot. However, when the files are copied into a user's home directory, the dots turn
into literal dots (.). Also, the files in this directory are owned by root, but when a new user is created, the copied over
files will change ownership as they are placed in that user's home directory.

1.10.1.1 dot.cshrc

Let's examine each default file, starting with dot.cshrc. ( [Hack #2] introduced several .cshrc hacks.) If you'd like new
users to receive your customizations, simply replace /usr/share/skel/dot.cshrc with your hacked version of .cshrc. Don't
forget to rename the file as you copy it:

# cp /root/.cshrc /usr/share/skel/dot.cshrc

Here, I overwrote the default dot.cshrc by copying over the superuser's customized version of .cshrc. Although you
could edit /usr/share/skel/dot.cshrc directly, you may find it more convenient to have a customized copy stored
elsewhere.

All isn't lost if you already have existing users whom you'd like to receive this file. First, find out what users already
exist and have home directories. This is a quick way to do so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


exist and have home directories. This is a quick way to do so:

# ls /usr/home

dru    test

Since this system has only two existing users, it's an easy matter to copy over my customized .cshrc. I'm also a lazy
typist, so I use ~ instead of typing out /usr/home. Also note that I have to remember to manually change ownership:

# cp /root/.cshrc ~dru/

# chown dru ~dru/.cshrc

# cp /root/.cshrc ~test/

# chown test ~test/.cshrc

If your system already contains many users, you'll probably prefer to write a script. Here is an example:

#!/usr/bin/perl -w

# copydotfiles.pl

#    - copy default files to user directories

#    - change ownership of those files

# You may wish to change these constants for your system:

use constant HOMEDIR => '/usr/home';

use constant SKELDIR => '/usr/share/skel';

use constant PREFIX  => 'dot';

use strict;

use File::Copy;

use File::Spec::Functions;

die "Usage: $0 <files> <to> <copy>\n" unless @ARGV;

for my $user ( get_users( ) )

{

    for my $dotfile (@ARGV)

    {

        my $source = catfile( SKELDIR( ),         PREFIX( ) . $dotfile );

        my $dest   = catfile( $user->{homedir},              $dotfile );

        if (-e $dest)

        {

            warn "Skipping existing dotfile $dest...\n";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            next;

        }

        copy(  $source,      $dest )

            or die "Cannot copy $source to $dest: $!\n";

        chown( $user->{uid}, $dest );

    }

}

sub get_users

{

    local *DIRHANDLE;

    opendir( DIRHANDLE, HOMEDIR( ) )

        or die "Cannot open home directory: $!\n";

    my @users;

    while (my $directory = readdir( DIRHANDLE ))

    {

        next if $directory =~ /^\./;

        my $path = File::Spec->catdir( HOMEDIR( ), $directory );

        my $uid  = getpwnam( $directory );

        next unless -d $path;

        next unless $uid;

        push @users, { homedir => $path, uid => $uid };

    }

    return @users;

}

This script first examines all of the users with home directories, returning a list of those directories and the user IDs. It
loops through that list, copying each dot file you provided on the command line to that user's home directory and
changing the ownership to the user.

If you run it as:

# copydotfiles.pl .cshrc

all users will receive a new .cshrc file, unless one already exists.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


all users will receive a new .cshrc file, unless one already exists.

1.10.1.2 dot.login

The next file, dot.login, is used only by the csh and tcsh shells. If your users don't plan on using these shells, you can
safely remove this file from /usr/share/skel. If your users do use those shells, consider whether there are any
commands you would like to run when users log in. Note that this file is read after .cshrc.

By default, the only uncommented line in this file is:

% grep -v '#' /usr/share/skel/dot.login

[ -x /usr/games/fortune ] && /usr/games/fortune freebsd-tips

Here, I used the reverse filter switch -v to the grep search utility to look for all the lines that do not begin with the #
comment symbol.

The resulting line tells the shell to run the fortune program. If you chose to install the games distribution when you
installed FreeBSD, your fortune appears just before the MOTD whenever you login. Have you ever noticed that you don't
receive a fortune when you use su? That's because .login is only read when you log in, and the default invocation of su
does not actually log you in.

Instead, it opens what is known as a nonlogin shell. You also get one of those every time you open an xterm. Basically,
the only time you get a real login shell is when you type in your username and password at a login prompt.

Herein lies the difference between .cshrc and .login. Place what you would like to happen only when you log in into
.login, and place what you would like to happen whenever you use the csh shell, even if it isn't a login shell, into .cshrc.
If you don't see the need for a difference, you don't need /usr/share/skel/dot.login.

1.10.1.3 dot.login_conf

Reading the default contents of dot.login_conf will give you an idea of its purpose and where to go for additional
information:

% more /usr/share/skel/dot.login_conf

# $FreeBSD: src/share/skel/dot.login_conf,v 1.3 2001/06/10 17:08:53 ache Exp $

#

# see login.conf(5)

#

#me:\

#        :charset=iso-8859-1:\

#        :lang=de_DE.ISO8859-1:

Note that this file is commented by default, but shows the syntax a user can use to create a customized .login.conf.
Usually such settings are set in the globally administrated /etc/login.conf file, and individual users can override only
some of those settings. If your users don't have a need or the know-how to configure those settings, you can safely
remove this file from /usr/share/skel.

1.10.1.4 dot.mail_aliases and dot.mailrc

The next two files work hand in hand and customize the behavior of man mail. Since it is quite rare to find users who still
rely on the original mail program, you can safely remove those files.

1.10.1.5 dot.profile

The dot.profile file is read by the Bourne, bash, and Korn shells. It is the only file read when a user logs into a Bourne
shell, the first file read when a user logs into the Korn shell, and is optional for bash users.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


shell, the first file read when a user logs into the Korn shell, and is optional for bash users.

If your users don't use the Bourne or Korn shells, there's not much sense populating their home directories with this
file. Depending upon your slant, you may wish to keep this file in order to place path statements and environment
variables for use with Bourne shell scripts. However, most users tend to place those directly into the script itself to
allow for portability.

If your users wish to use the bash shell, which isn't installed by default, keep in mind that .profile allows a user to
override the settings found in the global /etc/profile file. You may find it easier to make your edits to the global file and
then remove /usr/share/skel/dot.profile. More sophisticated users can always create their own ~/.profile. However,
most bash users tend to make their modifications to ~/.bash_profile.

1.10.1.6 dot.rhosts

Did you happen to notice in the earlier long listing that this file has different permissions from most of the other files? If
you read man rhosts, you'll see that this file is ignored if it is writable by any user other than the owner of the file.

So, when is this file used? It's used when a user types one of the r* commands: rsh, rcp, or rlogin. I won't show you how
to set up this file or use those commands, as they were designed for use back in the days when networks were
considered trusted. They've pretty well been replaced by ssh and scp, which provide a much safer way to log into
remote systems and to transfer files. For this reason, I always remove /usr/share/skel/dot.rhosts from my systems.

1.10.1.7 dot.shrc

The last default file is dot.shrc. As you may have guessed, it is the rc file for sh, the Bourne shell. Again, if your users
don't log into that shell, they won't miss this file.

1.10.2 Missing (but Useful) Dot Files

Now that we've had the opportunity to look at the default files, it's time to consider any useful missing files.

1.10.2.1 dot.logout

We've already seen that ~/.login is read when a user logs into the csh or tcsh shells. Not surprisingly, ~/.logout is read
when a user logs out of their login shell. This is an excellent place to put commands you would like to execute as a user
logs out. It could be something as simple as:

# more dot.logout

# this line clears your screen when you logout

clear

# add your own commands or scripts, one line at a time, 

# which you would like to execute

# whenever you logout and leave your terminal

This dot.logout will clear the user's terminal, making it much neater for the next person who logs in. Notice that I
commented this file, so the user is aware of its use. When creating your own dot files, use lots of comments. If you
intend for your users to customize their own dot files, use comments that explain the syntax they can use when they do
their modifications.

dot.logout can run any command or script that suits a user's needs. Here are some ideas to get your imagination
rolling:

A script that backs up the user's home directory

A script that shows how much time the user spent online

A script that displays other statistics, such as available disk space

1.10.2.2 dot.xinitrc

I also find it very useful to create a custom dot.xinitrc. By default, users receive the extremely lightweight twm window

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I also find it very useful to create a custom dot.xinitrc. By default, users receive the extremely lightweight twm window
manager. Since I usually install KDE, this line ensures that each user will receive that window manager instead:

# more dot.xinitrc

exec startkde

You can also specify which programs you would like to launch when a user types startx and their ~/.xinitrc file kicks in.
For example, this is a popular line to add:

# more dot.xinitrc 

exec xterm &

exec startkde

This starts an xterm in the background. Notice the & at the end of its line—this is to ensure that once xterm loads, it
doesn't interfere with any other programs that are still loading. When you're creating your own dot.xinitrc, you can start
any program you like. However, start your window manager last. Start your other programs, one line at a time, putting
an & at the end of each line. The only line that does not have an & will be the very last line, the one that loads your
window manager.

Since I prefer to start my browser instead of an xterm, here is my customized dot.xinitrc:

#to start another program when you "startx", type:

#exec path_to_program &

#before these lines

exec /usr/X11R6/bin/mozilla &

exec startkde

There are dozens of possibilities for customized dot files. Take stock of your own systems, and ask yourself: "What
programs do my users use?" For example, if your users use bash, vim, screen, procmail, or fetchmail, why not start them
off with a customized configuration file that contains comments on how to add their own customizations and URLs of
where to go for further ideas? A little homework and creativity on your part can help your users get the most out of the
utilities they use on a daily basis.

1.10.3 Editing /usr/src/share/skel/Makefile

Let's end this hack by examining where the default dot files in /usr/share/skel came from in the first place. You'll find
the answer here:

% ls /usr/src/share/skel

./            dot.login           dot.profile

../           dot.login_conf      dot.rhosts

Makefile      dot.mail_aliases    dot.shrc

dot.cshrc     dot.mailrc

That Makefile controls the installation of those files:

# more /usr/src/share/skel/Makefile

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# more /usr/src/share/skel/Makefile

#        @(#)Makefile        8.1 (Berkeley) 6/8/93

# $FreeBSD: src/share/skel/Makefile,v 1.8 2002/07/29 09:40:13 ru Exp $

FILES1= dot.cshrc dot.login dot.login_conf dot.mailrc dot.profile dot.shrc

FILES2=        dot.mail_aliases dot.rhosts 

MODE1=        0644

MODE2=        0600

NOOBJ=        noobj

all clean cleandir depend lint tags:

install:

        ${INSTALL} -o ${BINOWN} -g ${BINGRP} -m ${MODE1} ${FILES1} \

            ${DESTDIR}${BINDIR}/skel

        ${INSTALL} -o ${BINOWN} -g ${BINGRP} -m ${MODE2} ${FILES2} \

            ${DESTDIR}${BINDIR}/skel

.include <bsd.prog.mk>

Even if you've never read a Makefile before, you'll find it's not too hard to figure out what's going on if you already
know which results to expect. In this Makefile, FILES=1 is simply a list of files to install. Take a look at MODE1; it tells the
chmod command what permissions to set on those files.

Similarly, FILES=2 is another list of files. Those two files had different permissions, which were defined by MODE2.

Move down to the install section. Don't worry so much about the syntax; rather, notice the pattern. The first set of files
are installed and their mode is applied. Then the second set of files are installed with their mode.

It's an easy matter to customize this file to reflect the dot files you'd like to see installed. In this example, I only want
to install my custom versions of dot.cshrc, dot.login, and dot.xinitrc. Since they all require the first mode, I'll remove
any references to the second set of files:

# cd /usr/src/share/skel

# cp Makefile Makefile.orig

# vi Makefile

#        @(#)Makefile        8.1 (Berkeley) 6/8/93

# my customized dot files to be installed into /usr/share/skel

FILES1= dot.cshrc dot.login dot.xinitrc

MODE1=        0644

NOOBJ=        noobj

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


all clean cleandir depend lint tags:

install:

        ${INSTALL} -o ${BINOWN} -g ${BINGRP} -m ${MODE1} ${FILES1} \

            ${DESTDIR}${BINDIR}/skel

.include <bsd.prog.mk>

Now let's try a test run. I'll replace the default dot files found in /usr/src/share/skel with my customized versions. I'll
then remove the contents of /usr/share/skel and see what happens when I run my customized Makefile:

# cd /usr/src/share/skel

# rm dot.*

# cp ~/mystuff/dot.* .

# rm /usr/share/skel/*

# ls /usr/share/skel

# make install

install -o root -g wheel -m 0644 dot.cshrc dot.login dot.xinitrc 

    /usr/share/skel

# ls /usr/share/skel

dot.cshrc    dot.login    dot.xinitrc

I find it very handy to keep a copy of my customized Makefile and dot files in a separate directory, in this case
~/mystuff. This ensures they are backed up. It's easy for me to grab those files whenever I want to customize a
particular system.

It's especially important to use a separate location if you use cvsup to keep your system up-to-date. Otherwise, your
next update will notice your modified src and happily replace those missing original source files. But don't worry; it
won't touch your new /usr/share/skel.

Of course, sometimes this is a very useful trick in itself. If you ever mess up a file located somewhere within /usr/src, a
quick cvsup will put everything back the way it was. See [Hack #80] for details on automating cvsup.

1.10.4 The Other BSDs

The preceding discussion is based on FreeBSD, but it also applies to NetBSD and OpenBSD systems, save for a few tiny
differences outlined here.

1.10.4.1 NetBSD

NetBSD administrators will find the skeleton home directory in /etc/skel. Specify a different location by passing the -k
option to useradd.

1.10.4.2 OpenBSD

OpenBSD systems store the skeleton home directory in /etc/skel. Specify a different skeleton directory location by
passing the -dotdir option to adduser.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


passing the -dotdir option to adduser.

1.10.5 See Also

man adduser

The manpages returned by apropos user

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 10 Maintain Your Environment on Multiple Systems

 

The sign of a true Unix guru is the ability to perform a task quickly when confronted with an unfamiliar
shell, keyboard, terminal, window manager, or operating system.

A large part of using Unix systems effectively involves configuring a comfortable environment using familiar tools
available from the Unix shell prompt. It's much easier to perform a task quickly when all of the shortcuts your fingers
have learned work on the first try.

Even something as simple as setting up your prompt the way you like it can steal significant time from your productivity
if you need to do it on several hosts. If you're going to spend significant time in a Unix shell, it's worth getting
organized. A bit of onetime effort will reward you later, every time you sit down at the keyboard.

1.11.1 Enter unison

unison is a tool for maintaining synchronized copies of directories. I've used it to maintain a central repository of all of
my dot files, shell scripts, signatures file, SpamAssassin configuration—basically any file I'd like to have available,
regardless of which host I happen to be logged into.

You can install unison from the NetBSD pkgsrc collection:

# cd /usr/pkgsrc/net/unison

# make install clean

FreeBSD and OpenBSD ports also include net/unison.

Even better, this utility is available for most Unix and Windows platforms. See the main unison web site for details.

1.11.2 Using unison

Whenever I configure a new Unix host or get a shell on another system, I install unison. Then, I create a directory to
receive the files I've stored in the /usr/work/sync directory at host.example.com. I call the local directory ~/sync.

To synchronize those two directories:

% unison ~/sync ssh://username@host.example.com://usr/work/sync

p = /home/david/.unison; bn = .unison

Contacting server...

p = /home/david/sync; bn = sync

username@host.example.com's password:

After ssh prompts for a password or pass phrase, the unison exchange begins. On a first-time synchronization, unison will
ask only one question: whether you wish to copy the remote directory to the local host.

Looking for changes

Warning: No archive files were found for these roots.  This can happen 

either because this is the first time you have synchronized these roots, 

or because you have upgraded Unison to a new version with a different

archive format.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Update detection may take a while on this run if the replicas are large.

unison will assume that the last synchronized state of both replicas was completely empty. This means that any files that
are different will be reported as conflicts, and any files that exist only on one replica will be judged as new and
propagated to the other replica. If the two replicas are identical, then unison will report no changes:

Press return to continue.

Waiting for changes from server

Reconciling changes

local          host.example.com              

         <---- dir        /  [f] 

Proceed with propagating updates? [  ] y

Propagating updates

UNISON started propagating changes at 11:44:39 on 02 Feb 2004

[BGN] Copying 

from //host.example.com//usr/work/sync

to /home/david/sync

bin

dotfiles

spamassassin

bin/randomsig2.pl

bin/sy

bin/testaspam

dotfiles/.c

dotfiles/.cshrc

dotfiles/.login

dotfiles/.muttrc

dotfiles/.profile

dotfiles/.tcshrc

dotfiles/.xinitrc

spamassassin/user_prefs

[...]

[END] Copying 

UNISON finished propagating changes at 11:44:41 on 02 Feb 2004

Saving synchronizer state

Synchronization complete

I now have a populated ~/sync directory on the new system, organized into subdirectories. Each subdirectory contains
the files I find useful to carry around with my various accounts on multiple Unix machines.

Notice also that although my preferred shell is tcsh, I maintain a .cshrc and .profile for use on systems where tcsh is not

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notice also that although my preferred shell is tcsh, I maintain a .cshrc and .profile for use on systems where tcsh is not
available.

1.11.3 Automating the Process

I've automated the process with a simple shell script called sy in my bin directory. sy runs the unison command to
synchronize the ~/sync directory.

#!/bin/sh

unison ~/sync ssh://username@host.example.com://usr/work/sync

1.11.4 Creating Portable Files

Making good use of the sync directory requires some discipline. It's one thing to be able to copy files easily; it's another
thing to be able to use them without modification on several hosts.

To take advantage of this hack, when you copy the dot files to your home directory and notice that something doesn't
work exactly the way you like it to, make sure you don't simply change it for the local host.

Instead, update the dot files so that they use conditional if statements, shell backticks (e.g., `hostname`), or
environment variables, to make them behave correctly on the new hosts without breaking them on the systems where
you already use them. Then, copy the dot file back into your ~/sync directory and run the sy script. unison will prompt
for a password or passphrase for the ssh connection, then ask you to verify that you want to update your files back to
the main server.

The first few times you do this, you may introduce breakage when the new dot file is used on another host. With a bit of
practice you'll learn how to avoid that. The most important trick is to test. Open a shell to the host and update the dot
file, and then open a second shell to the host without closing the first one. If you broke anything that affects your ability
to log in, you can fix it with the first shell and test again.

There's no need to resynchronize every other host you use for each file you change. I generally wait until I'm logged
onto a given host and need a newer script, or need to make some additional changes to the local copy of the dot file.
Then I synchronize, make the changes in the sync directory, test them locally, and resync them back to the main host.

Using this approach means that I don't have to reinvent the wheel every time I want to perform a procedure I've done
before. Any process useful enough to be done a couple of times becomes a script in my toolkit, and is conveniently
available anywhere I have a shell. With unison, I don't have to keep track of which files were modified on which end of
the connection since my last update.

Keep in mind that using a tool like unison can provide a mechanism for someone to attempt to feed updates into your
central file repository. When you log into a host and run the update, be conscious of whether unison asks for approval to
send back changes. If you don't remember making those changes, you might be helping an attacker feed a Trojan
horse into your .login, which could end up giving the attacker access to every system you use that script on. unison will
ask for confirmation for every file change. Presumably, your central host is secure, but you need to be particularly
conscious when permitting file uploads.

1.11.5 See Also

The unison home page (http://www.cis.upenn.edu/~bcpierce/unison/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 11 Use an Interactive Shell

 

Save and share an entire login session.

How many times have you either struggled with or tried to troubleshoot another user through a thorny problem? Didn't
you wish you had another set of eyes behind you so you could simply type your command set, point at the troublesome
output, and say, "That's the problem." Well, if you can't bring another user to your output, you can still share that real-
time output using an interactive shell.

1.12.1 Recording All Shell Input and Output

There are actually several ways to share what is happening on your screen. Let's start by recording all of your input and
output to a file. Then we'll see how we can also allow another user to view that output from another terminal.

Your BSD system comes with the script command which, not surprisingly, allows you to script your session. This
command is extremely simple to use. Simply type script:

% script

Script started, output file is typescript

By default, script will create an output file named typescript in your current directory. If you prefer, you can specify a
more descriptive name for your script file:

% script configure.firewall.nov.11.2003

Script started, output file is configure.firewall.nov.11.2003

Regardless of how you invoke the command, a new shell will be created. This means that you will see the MOTD and
possibly a fortune, and your .cshrc will be reread.

You can now carry on as usual and all input and output will be written to your script file. When you are finished, simply
press Ctrl-d. You will see this message:

Script done, output file is configure.firewall.nov.11.2003

If you've ended a script and decide later to append some more work to a previous session, remember the -a (append)
switch:

% script -a configure.firewall.nov.11.2003

This will append your current scripting session to the named file.

I find script extremely useful, especially when I'm learning how to configure something for the first time. I can easily
create a written record of which commands I used, which commands were successful, and which commands caused
which error messages. It also comes in handy when I need to send an error message to a mailing list or a program's
maintainer. I can simply copy or attach my script file into an email.

1.12.2 Cleaning Up script Files

The script utility is a very quick and dirty way to record a session, and it does have its limitations. One of its biggest is
that it records everything, including escape characters. For example, here is the first line from one of my script files:

[1mdru@~ [m: cd /s  [K/ysr/  [K  [K  [K  [K  [Kusr/ports/security/sn o rt

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


It's a bit hard to tell, but this is what script was recording:

cd /usr/ports/security/snort

This isn't really script's fault; it's ugly for several reasons. One, my customized prompt contains control characters.
Those display as [1m and [m around my username. Second, I had problems typing that day. Instead of /usr, I typed /s
and had to backspace a character. Then I typed /ysr and had to backspace three characters. Finally, I used tab
completion. You can see that I tried to tab at sn but received a beep; I then tried to tab at sno and had my input
completed to snort.

Granted, if I had first used the file utility on my script file, I would have received a warning about this behavior:

% file configure.firewall.nov.11.2003

configure.firewall.nov.11.2003: ASCII English text, with CRLF, CR, LF line

terminators, with escape sequences

All is not lost, though. This command will get rid of most of the garbage characters:

% more configure.firewall.nov.11.2003 | \

  col -b > configure.firewall.nov.11.2003.clean

col is an interesting little utility. It silently filters out what it doesn't understand. Here's an example where this actually
works to our advantage. col doesn't understand control characters and escape sequences, which is exactly what we wish
to get rid of. Including -b also asks col to remove backspaces.

The result is much more readable:

1mdlavigne6@~m: cd /usr/ports/security/snort

% file configure.firewall.nov.11.2003.clean

configure.firewall.nov.11.2003.clean: ASCII English text

I've found that using an editor during a script session also produces very messy output into my script file. The
preceding col -b command will clean up most of the mess, but I still won't have a very good idea of exactly what I typed
while I was in that editor. For this reason, I use the echo command to send little comments to myself:

% echo # once you open up /etc/rc.conf

% echo # change this line: linux_enable="NO"

% echo # to this: linux_enable="YES"

% echo # and add this line: sshd_enable="YES"

If you really want to get fancy, map one key to "start echo" and another to "end echo" as
in [Hack #4].

1.12.3 Recording an Interactive Shell Session

Let's look at an alternate way of recording a session. This time I'll use the -i (or interactive) switch of my shell:

% csh -i | & tee test_session.nov.12.2003

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% csh -i | & tee test_session.nov.12.2003

tcsh is linked to csh in FreeBSD. It doesn't matter which one I type; I'll still end up with the
tcsh shell.

In that command, I used -i to start an interactive tcsh shell. I then piped (|) both stdout and stderr (&) to the tee
command. If you've ever looked at physical pipe plumbing, you'll recognize the job of a "tee" in a pipe: whatever is
flowing will start going in both directions when it hits the "tee." In my case, all stdout and stderr generated by my shell
will flow to both my monitor and to the test_session.nov.12.2003 file. When I'm finished recording my session, I can
type Ctrl-c, Ctrl-d, or exit to quit.

Like the previous script command, an interactive csh shell will present me with a new shell. However, this method does
not record escape characters, meaning I won't need to use the col -b command to clean up the resulting file.

But if I try to use vi during my session, the shell will refuse to open the editor and will instead present me with this
interesting error message:

ex/vi: Vi's standard input and output must be a terminal.

If I try to use ee, it will open, but none of the commands will work. pico works nicely but still throws garbage into the
session file. So, if I need to use an editor during my session, I'll still echo some comments to myself so I can remember
what I did while I was in there.

Appending works almost exactly like it does for script, again with the -a (append) switch:

% csh -i | & tee -a test_session.nov.12.2003

1.12.4 Letting Other People Watch Your Live Shell Sessions

Regardless of which method you choose to record a session, another user can watch your session as it occurs. In order
for this to work, that user must:

Be logged into the same system

Know the name and location of your script file

For example, I've created a test account on my system and configured sshd. I'll now see if I can ssh into my system as
the user test and watch the results of dru's test_session.nov.12.2003.

% ssh -l test 192.168.248.4

Password:

%

Once I successfully log in, my customized prompt indicates I'm the test user. I can now use the tail command to watch
what is happening in dru's session:

% tail -f ~dru/test_session.nov.12.2003

My prompt will appear to change to indicate I am the user dru. However, I'm not. I'm simply viewing dru's session. In
fact, I can see everything that the user dru is seeing on her terminal. This includes all of her input, output, and any
error messages she is receiving.

While tail is running, I won't be able to use my prompt. If I try typing anything, nothing will happen. I also can't interact
with the user or change what is happening on her terminal. However, I do have a bird's eye view of what that user is
experiencing on her terminal. When I'm ready to return to my own prompt, which will also end my view of the session,
I simply need to press Ctrl-c.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I simply need to press Ctrl-c.

1.12.5 See Also

man script

man file

man col

man tee

man tail

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 12 Use Multiple Screens on One Terminal

 

Running a graphical environment is great. You can have numerous applications and utilities running, and you can
interact with all of them at the same time. Many people who have grown up with a GUI environment look down upon
those poor souls who continue to work in a terminal console environment. "After all," they say, "you can only do one
thing at a time and don't get the same information and control that you have in a desktop environment."

It's true; they do say those things. (I am curious to know who they are, however.)

It's also true that the utility of a graphical environment diminishes when you need to administer machines remotely. Do
you really want to squander network bandwidth just to maintain a GUI session?

Here are some more questions to ask yourself regarding remote administration:

Are you worried about making your services vulnerable just so you can administer them across the Internet?

Do you want a secure connection?

Do you want to run multiple terminal sessions from a single login?

Do you want to be able to password protect your session to prevent unauthorized access?

Do you want multiple windows with labels and of different sizes?

Do you want to copy and paste between the windows?

Are you prepared to lose a connection to your remote machine in the middle of a critical operation?

Would you like to be able keep the session active even after you've lost it or you've logged off the remote
server?

Do you want to take over a session that you launched from another machine?

Would you like to keep a hardcopy log of your sessions?

You are indeed a poor soul if you've reconciled yourself to the standard ssh login without any hope of resolving these
questions. But all is not lost—the solution is screen.

1.13.1 What Is screen?

screen is a terminal screen window manager. That means you can use a console and run multiple terminals at the same
time. The fancy term for this ability is multiplexing.

Getting and installing screen is straightforward using the ports facility:

# cd /usr/ports/misc/screen

# make install clean

I'm working with Version 4.00.01 (FAU) 18-Sep-03.

1.13.2 Getting Started

screen has many options, settings, and commands. Although we'll attempt to address the major features, the definitive
reference is, of course, the manpage.

There are three methods of command-line invocation:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are three methods of command-line invocation:

screen [ - options ] [ cmd [ args ] ]

For invoking screen for the first time and running specific options and commands

screen -r [[ pid.]tty[ .host]]

For attaching to and detaching from running sessions

screen -r sessionowner/[[ pid.]tty[ .host]]

For attaching to and detaching from existing sessions being run by other users

1.13.3 Multitasking with screen

The best way to understand screen's power is to give you an example of how you can take advantage of it.

Suppose you are sitting at workstation alpha. You want to access your machine, bravo, to download and compile the
latest PostgreSQL source code. Log into host bravo as user charlie using SSH:

% ssh -l charlie bravo

Invoke screen. If you give it a session name, with the -s flag, you can address this session by name. This will pay off
shortly.

% screen -s A

Go ahead and download the source code now:

% ftp ftp://ftp3.ca.postgresql.org/pub/source/v7.4/postgresql-7.4.tar.gz

1.13.3.1 Using windows with screen

So far, this has no advantage over a normal SSH login. Yet suppose you need to send some email while you're
downloading. Instead of putting the download into the background, create another screen window with the key
sequence C-a c. This symbolizes that the Ctrl key is pressed with the lowercase letter a and then, after releasing them,
you press a second key, in this case c.

At this point the console will go blank. You'll be presented with a second window. Use your favorite email client to
compose your message.

1.13.3.2 Switching between windows

You'll probably want to switch between the download and mailer windows. Cycle forward in the window list with C-a n.
Cycle backward with C-a p, although you'll likely see no difference with two windows.

1.13.3.3 Splitting windows

Being the efficient person that you are, you'd like to compile the source code as soon as it has downloaded. Even
though you haven't completed your email, go back to the original window and extract the tarball:

% tar -xzpvf  postgresql-7.4.tar.gz

Wise administrators read the INSTALL file to make sure all the correct options are invoked. It'd be very handy to be
able to read the instructions as you compose the configure command in the same console. screen comes to the rescue
here, too: split the window horizontally, running configure in the top half and reading the documentation in the bottom
half.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


half.

Type C-a S to split the screen, where the S is uppercase. You should see a wide horizontal bar in the middle of the
screen. The top window will show whatever existed when you split the window. You'll also see the window's ID on the
left side of the middle bar, along with the name of the shell.

The bottom window doesn't yet have a shell running. Set the focus to the other window with C-a Tab. Create a new
window with C-a c, as usual. Notice that the window has the ID of 2 (shown in the bottom lefthand corner); that's
because the email window that you created after starting the download has the ID of 1.

1.13.3.4 Better window switching

To list all windows associated with this session, use the command C-a ".

If cycling through windows is onerous, you can also switch between windows by ID. For example, C-a ' 1 will go to
window 1.

Be prepared for a little confusion because the screen remains split and now shows the window of your choice in the
currently focused window. You can quite easily show the same window in both the top and bottom halves.

Enter window 0 with C-a ' 0, and extract the tarball into its own directory. Enter window 2 with C-a ' 2, and navigate to
the uppermost directory of the source code to read the INSTALL file.

1.13.3.5 Naming windows

ID numbers identify windows pretty well, but I prefer to use names of my own choosing. Change a window's name with
the command C-a A. For example, C-a A email, C-a A source, and C-a A doc seem like a big improvement for the currently
active windows.

Now, listing the active windows with C-a " will show the following:

NUM NAME

0   source

1   email

2   doc

At this point, you have one screen session with three windows. Your terminal is split such that it shows two windows at
the same time.

1.13.4 Attaching and Deattaching

Suppose you are called away from the workstation in the middle of a sensitive operation (that is, you haven't yet sent
your email). Type C-a x to protect your session. Depending on your configuration, you will either input a password for
the screen or use the default account password.

Now suppose you don't return to your workstation. What do you do? You can ssh into bravo from a new location and
attach to your existing screen session with screen -dr A. Remember, A was the name of the screen session.

After finishing and sending your email, kill off that screen. Type the command C-a k in the email window.

With that business finished, scroll back through the INSTALL text file to find interesting configuration switches. You
could retype them, but screen has a perfectly capable copy mode. Type C-a ESC.

Use the cursor keys to navigate to the portions of the document you want to copy. Hit the space bar to mark the
beginning of the text to copy. Scroll around to the end of the text with the cursor keys. The current selection will display
in reverse video. When you're satisfied, hit the space bar to copy the current selection into the buffer.

Switch to the source window and use C-a ] to paste the copied text.

You don't need the doc window anymore, so switch into it and either exit the shell or use the key sequence C-a k to kill it.
You could also merge the split screens together with the key sequence C-a X.

Once you've started compiling, you can close the terminal but leave the session active by detaching it; just type C-a d.
One of the nice features about detaching the screen is that it is done automatically if you lose connection with the
server, so you won't lose your session. You can reattach to the session later from the same location or from another
workstation altogether.

1.13.5 Additional Features

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


These are only the basics of what screen can do. Here's a quick listing of other features you might enjoy:

Since the key bindings are not cast in stone, you change them as you see fit in the .screenrc resource file.

It's possible to authorize other users access to your screen session via an access control list.

More than one user can access the same screen session.

You can create any number of windows in a given screen session.

It's possible to hardcopy all activity in a screen session to a buffer and even a file.

An extensive system of copy and paste features exist within the screen session.

You can control all of these features with the .screenrc resource file. See man screen for details.

1.13.6 See Also

man screen

The GNU Screen home page (http://www.gnu.org/software/screen)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 2. Dealing with Files and Filesystems
Section 12.  Introduction

Section 13.  Find Things

Section 14.  Get the Most Out of grep

Section 15.  Manipulate Files with sed

Section 16.  Format Text at the Command Line

Section 17.  Delimiter Dilemma

Section 18.  DOS Floppy Manipulation

Section 19.  Access Windows Shares Without a Server

Section 20.  Deal with Disk Hogs

Section 21.  Manage Temporary Files and Swap Space

Section 22.  Recreate a Directory Structure Using mtree

Section 23.  Ghosting Systems

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 12 Introduction
Now that you're a bit more comfortable with the Unix environment, it's time to tackle some commands. It's funny how
some of the most useful commands on a Unix system have gained themselves a reputation for being user-unfriendly.
Do find, grep, sed, tr, or mount make you shudder? If not, remember that you still have novice users who are intimidated
by—and therefore aren't gaining the full potential of—these commands.

This chapter also addresses some useful filesystem manipulations. Have you ever inadvertently blown away a portion of
your directory structure? Would you like to manipulate /tmp or your swap partition? Do your Unix systems need to play
nicely with Microsoft systems? Might you consider ghosting your BSD system? If so, this chapter is for you.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 13 Find Things

 

Finding fles in Unix can be an exercise in frustration for a novice user. Here's how to soften the learning
curve.

Remember the first time you installed a Unix system? Once you successfully booted to a command prompt, I bet your
first thought was, "Now what?" or possibly, "Okay, where is everything?" I'm also pretty sure your first foray into man
find wasn't all that enlightening.

How can you as an administrator make it easier for your users to find things? First, introduce them to the built-in
commands. Then, add a few tricks of your own to soften the learning curve.

2.2.1 Finding Program Paths

Every user should become aware of the three w's: which, whereis, and whatis. (Personally, I'd like to see some why and
when commands, but that's another story.)

Use which to find the path to a program. Suppose you've just installed xmms and wonder where it went:

% which xmms

/usr/X11R6/bin/xmms

Better yet, if you were finding out the pathname because you wanted to use it in a file, save yourself a step:

% echo `which xmms` >> somefile

Remember to use the backticks (`), often found on the far left of the keyboard on the same key as the tilde (~). If you
instead use the single quote (') character, usually located on the right side of the keyboard on the same key as the
double quote ("), your file will contain the echoed string which xmms instead of the desired path.

The user's current shell will affect how which's switches work. Here is an example from the C shell:

% which -a xmms

-a: Command not found.

/usr/X11R6/bin/xmms

% which which

which: shell built-in command.

This is a matter of which which the user is using. Here, the user used the which which is built into the C shell and doesn't
support the options used by the which utility. Where then is that which? Try the whereis command:

% whereis -b which

which: /usr/bin/which

Here, I used -b to search only for the binary. Without any switches, whereis will display the binary, the manpage path,
and the path to the original sources.

If your users prefer to use the real which command instead of the shell version and if they are only interested in seeing
binary paths, consider adding these lines to /usr/share/skel/dot.cshrc [Hack #9] :

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


binary paths, consider adding these lines to /usr/share/skel/dot.cshrc [Hack #9] :

alias which     /usr/bin/which -a

alias whereis   whereis -b

The -a switch will list all binaries with that name, not just the first binary found.

2.2.2 Finding Commands

How do you proceed when you know what it is that you want to do, but have no clue which commands are available to
do it? I know I clung to the whatis command like a life preserver when I was first introduced to Unix. For example, when
I needed to know how to set up PPP:

% whatis ppp

i4bisppp(4)              - isdn4bsd synchronous PPP over ISDN B-channel network driver

ng_ppp(4)                - PPP protocol netgraph node type

ppp(4)                   - point to point protocol network interface

ppp(8)                   - Point to Point Protocol (a.k.a. user-ppp)

pppctl(8)                - PPP control program

pppoed(8)                - handle incoming PPP over Ethernet connections

pppstats(8)              - print PPP statistics

On the days I had time to satisfy my curiosity, I tried this variation:

% whatis "(1)"

That will show all of the commands that have a manpage in section 1. If you're rusty on your manpage sections, whatis
intro should refresh your memory.

2.2.3 Finding Words

The previous commands are great for finding binaries and manpages, but what if you want to find a particular word in
one of your own text files? That requires the notoriously user-unfriendly find command. Let's be realistic. Even with all
of your Unix experience, you still have to dig into either the manpage or a good book whenever you need to find
something. Can you really expect novice users to figure it out?

To start with, the regular old invocation of find will find filenames, but not the words within those files. We need a
judicious use of grep to accomplish that. Fortunately, find's -exec switch allows it to use other utilities, such as grep,
without forking another process.

Start off with a find command that looks like this:

% find . -type f -exec grep "word" {  } \;

This invocation says to start in the current directory (.), look through files, not directories (-type f), while running the
grep command (-exec grep) in order to search for the word word. Note that the syntax of the -exec switch always
resembles:

-exec command with_its_parameters {  } \;

What happens if I search the files in my home directory for the word alias?

% find . -type f -exec grep "alias" {  } \;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% find . -type f -exec grep "alias" {  } \;

alias h                history 25

alias j                jobs -l

Antialiasing=true

Antialiasing arguments=-sDEVICE=x11 -dTextAlphaBits=4 -dGraphicsAlphaBits=2 

-dMaxBitmap=10000000

(proc-arg 0 "antialiasing" "Apply antialiasing (TRUE/FALSE)")

(proc-arg 0 "antialiasing" "Apply antialiasing (TRUE/FALSE)")

While it's nice to see that find successfully found the word alias in my home directory, there's one slight problem. I have
no idea which file or files contained my search expression! However, adding /dev/null to that command will fix that:

# find . -type f -exec grep "alias" /dev/null {  } \; 

./.cshrc:alias h                history 25

./.cshrc:alias j                jobs -l

./.kde/share/config/kghostviewrc:Antialiasing=true

./.kde/share/config/kghostviewrc:Antialiasing arguments=-sDEVICE=x11 

-dTextAlphaBits=4 -dGraphicsAlphaBits=2 -dMaxBitmap=10000000

./.gimp-1.3/pluginrc:        (proc-arg 0 "antialiasing" "Apply antialiasing (TRUE/FALSE)")

./.gimp-1.3/pluginrc:        (proc-arg 0 "antialiasing" "Apply antialiasing (TRUE/FALSE)")

Why did adding nothing, /dev/null, automagically cause the name of the file to appear next to the line that contains the
search expression? Is it because Unix is truly amazing? After all, it does allow even the state of nothingness to be
expressed as a filename.

Actually, it works because grep will list the filename whenever it searches multiple files. When you just use { }, find will
pass each filename it finds one at a time to grep. Since grep is searching only one filename, it assumes you already
know the name of that file. When you use /dev/null { }, find actually passes grep two files, /dev/null along with whichever
file find happens to be working on. Since grep is now comparing two files, it's nice enough to tell you which of the files
contained the search string. We already know /dev/null won't contain anything, so we just convinced grep to give us the
name of the other file.

That's pretty handy. Now let's make it friendly. Here's a very simple script called fstring:

% more ~/bin/fstring

#!/bin/sh

# script to find a string

# replaces $1 with user's search string

find . -type f -exec grep "$1" /dev/null {  } \;

That $1 is a positional parameter. This script expects the user to give one parameter: the word the user is searching
for. When the script executes, the shell will replace "$1" with the user's search string. So, the script is meant to be run
like this:

% fstring 

word_to_search

If you're planning on using this script yourself, you'll probably remember to include a search string. If you want other
users to benefit from the script, you may want to include an if statement to generate an error message if the user
forgets the search string:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


forgets the search string:

#!/bin/sh

# script to find a string

# replaces $1 with user's search string

# or gives error message if user forgets to include search string

if test $1

then

   find . -type f -exec grep "$1" /dev/null {  } \;

else

   echo "Don't forget to include the word you would like to search for"

   exit 1

fi

Don't forget to make your script executable with chmod +x and to place it in the user's path. /usr/local/bin is a good
location for other users to benefit.

2.2.4 See Also

man which

man whereis

man whatis

man find

man grep

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 14 Get the Most Out of grep

 

You may not know where its odd name originated, but you can't argue the usefulness of grep.

Have you ever needed to find a particular file and thought, "I don't recall the filename, but I remember some of its
contents"? The oddly named grep command does just that, searching inside files and reporting on those that contain a
given piece of text.

2.3.1 Finding Text

Suppose you wish to search your shell scripts for the text $USER. Try this:

% grep -s '$USER' *

add-user:if [ "$USER" != "root" ]; then

bu-user:  echo "  [-u user] - override $USER as the user to backup"

bu-user:if [ "$user" = "" ]; then user="$USER"; fi

del-user:if [ "$USER" != "root" ]; then

mount-host:mounted=$(df | grep "$ALM_AFP_MOUNT/$USER")

.....

mount-user:  echo "  [-u user] - override $USER as the user to backup"

mount-user:if [ "$user" = "" ]; then user="$USER"; fi

In this example, grep has searched through all files in the current directory, displaying each line that contained the text
$USER. Use single quotes around the text to prevent the shell from interpreting special characters. The -s option
suppresses error messages when grep encounters a directory.

Perhaps you only want to know the name of each file containing the text $USER. Use the -l option to create that list for
you:

% grep -ls '$USER' *

add-user

bu-user

del-user

mount-host

mount-user

2.3.2 Searching by Relevance

What if you're more concerned about how many times a particular string occurs within a file? That's known as a
relevance search . Use a command similar to:

% grep -sc '$USER' * | grep -v ':0' | sort  -k 2 -t : -r

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% grep -sc '$USER' * | grep -v ':0' | sort  -k 2 -t : -r

mount-host:6

mount-user:2

bu-user:2

del-user:1

add-user:1

How does this magic work? The -c flag lists each file with a count of matching lines, but it unfortunately includes files
with zero matches. To counter this, I piped the output from grep into a second grep, this time searching for ':0' and
using a second option, -v, to reverse the sense of the search by displaying lines that don't match. The second grep reads
from the pipe instead of a file, searching the output of the first grep.

For a little extra flair, I sorted the subsequent output by the second field of each line with sort -k 2, assuming a field
separator of colon (-t :) and using -r to reverse the sort into descending order.

2.3.3 Document Extracts

Suppose you wish to search a set of documents and extract a few lines of text centered on each occurrence of a
keyword. This time we are interested in the matching lines and their surrounding context, but not in the filenames. Use
a command something like this:

% grep -rhiw -A4 -B4 'preferences' *.txt > research.txt

% more research.txt

This grep command searches all files with the .txt extension for the word preferences. It performs a recursive search (-r)
to include all subdirectories, hides (-h) the filename in the output, matches in a case-insensitive (-i) manner, and
matches preferences as a complete word but not as part of another word (-w). The -A4 and -B4 options display the four
lines immediately after and before the matched line, to give the desired context. Finally, I've redirected the output to
the file research.txt.

You could also send the output straight to the vim text editor with:

% grep -rhiw -A4 -B4 'preferences' *.txt | vim -

Vim: Reading from stdin...

vim can be installed from /usr/ports/editors/vim.

Specifying vim - tells vim to read stdin (in this case the piped output from grep) instead of a file. Type :q! to exit vim.

To search files for several alternatives, use the -e option to introduce extra search patterns:

% grep -e 'text1' -e 'text2' *

Q. How did grep get its odd name?

A. grep was written as a standalone program to simulate a commonly performed command
available in the ancient Unix editor ex. The command in question searched an entire file for
lines containing a regular expression and displayed those lines. The command was g/re/p:
globally search for a regular expression and print the line.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.3.4 Using Regular Expressions

To search for text that is more vaguely specified, use a regular expression. grep understands both basic and extended
regular expressions, though it must be invoked as either egrep or grep -E when given an extended regular expression.
The text or regular expression to be matched is usually called the pattern.

Suppose you need to search for lines that end in a space or tab character. Try this command (to insert a tab, press Ctrl-
V and then Ctrl-I, shown as <tab> in the example):

% grep -n '[ <tab>]$' test-file

2:ends in space 

3:ends in tab

I used the [...] construct to form a regular expression listing the characters to match: space and tab. The expression
matches exactly one space or one tab character. $ anchors the match to the end of a line. The -n flag tells grep to
include the line number in its output.

Alternatively, use:

% grep -n '[[:blank:]]$' test-file

2:ends is space 

3:ends in tab

Regular expressions provide many preformed character groups of the form [[:description:]]. Example groups include all
control characters, all digits, or all alphanumeric characters. See man re_format for details.

We can modify a previous example to search for either "preferences" or "preference" as a complete word, using an
extended regular expression such as this:

% egrep -rhiw -A4 -B4 'preferences?' *.txt > research.txt

The ? symbol specifies zero or one of the preceding character, making the s of preferences optional. Note that I use egrep
because ? is available only in extended regular expressions. If you wish to search for the ? character itself, escape it
with a backslash, as in \?.

An alternative method uses an expression of the form (string1|string2), which matches either one string or the other:

% egrep -rhiw -A4 -B4 'preference(s|)' *.txt > research.txt

As a final example, use this to seek out all bash, tcsh, or sh shell scripts:

% egrep '^#\!/bin/(ba|tc|)sh[[:blank:]]*$' *

The caret (^) character at the start of a regular expression anchors it to the start of the line (much as $ at the end
anchors it to the end). (ba|tc|) matches ba, tc, or nothing. The * character specifies zero or more of [[:blank:]], allowing
trailing whitespace but nothing else. Note that the ! character must be escaped as \! to avoid shell interpretation in tcsh
(but not in bash).

Here's a handy tip for debugging regular expressions: if you don't pass a filename to grep,
it will read standard input, allowing you to enter lines of text to see which match. grep will
echo back only matching lines.

2.3.5 Combining grep with Other Commands

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


grep works well with other commands. For example, to display all tcsh processes:

% ps axww | grep -w 'tcsh'

saruman 10329  0.0  0.2    6416  1196  p1  Ss  Sat01PM  0:00.68 -tcsh (tcsh)

saruman 11351  0.0  0.2    6416  1300 std  Ss  Sat07PM  0:02.54 -tcsh (tcsh)

saruman 13360  0.0  0.0    1116     4 std  R+  10:57PM  0:00.00 grep -w tcsh

%

Notice that the grep command itself appears in the output. To prevent this, use:

% ps axww | grep -w '[t]csh'

saruman 10329  0.0  0.2    6416  1196  p1  Ss  Sat01PM  0:00.68 -tcsh (tcsh)

saruman 11351  0.0  0.2    6416  1300 std  Ss  Sat07PM  0:02.54 -tcsh (tcsh)

%

I'll let you figure out how this works.

2.3.6 See Also

man grep

man re_format (regular expressions)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 15 Manipulate Files with sed

 

If you've ever had to change the formatting of a file, you know that it can be a time-consuming process.

Why waste your time making manual changes to files when Unix systems come with many tools that can very quickly
make the changes for you?

2.4.1 Removing Blank Lines

Suppose you need to remove the blank lines from a file. This invocation of grep will do the job:

% grep -v '^$' letter1.txt > tmp ; mv tmp letter1.txt

The pattern ^$ anchors to both the start and the end of a line with no intervening characters—the regexp definition of a
blank line. The -v option reverses the search, printing all nonblank lines, which are then written to a temporary file, and
the temporary file is moved back to the original.

grep must never output to the same file it is reading, or the file will end up empty.

You can rewrite the preceding example in sed as:

% sed '/^$/d' letter1.txt > tmp ; mv tmp letter1.txt

'/^$/d' is actually a sed script. sed's normal mode of operation is to read each line of input, process it according to the
script, and then write the processed line to standard output. In this example, the expression '/^$/ is a regular
expression matching a blank line, and the trailing d' is a sed function that deletes the line. Blank lines are deleted and all
other lines are printed. Again, the results are redirected to a temporary file, which is then copied back to the original
file.

2.4.2 Searching with sed

sed can also do the work of grep:

% sed -n '/$USER/p' *

This command will yield the same results as:

% grep '$USER' *

The -n (no-print, perhaps) option prevents sed from outputting each line. The pattern /$USER/ matches lines containing
$USER, and the p function prints matched lines to standard output, overriding -n.

2.4.3 Replacing Existing Text

One of the most common uses for sed is to perform a search and replace on a given string. For example, to change all
occurrences of 2003 into 2004 in a file called date, include the two search strings in the format 's/oldstring/newstring/', like
so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


so:

% sed 's/2003/2004/' date

Copyright 2004

...

This was written in 2004, but it is no longer 2003.

...

Almost! Noticed that that last 2003 remains unchanged. This is because without the g (global) flag, sed will change only
the first occurrence on each line. This command will give the desired result:

% sed 's/2003/2004/g' date

Search and replace takes other flags too. To output only changed lines, use:

% sed -n 's/2003/2004/gp' date

Note the use of the -n flag to suppress normal output and the p flag to print changed lines.

2.4.4 Multiple Transformations

Perhaps you need to perform two or more transformations on a file. You can do this in a single run by specifying a
script with multiple commands:

% sed 's/2003/2004/g;/^$/d' date

This performs both substitution and blank line deletion. Use a semicolon to separate the two commands.

Here is a more complex example that translates HTML tags of the form <font> into PHP bulletin board tags of the form
[font]:

% cat index.html

<title>hello

</title>

% sed 's/<\(.*\)>/[\1]/g' index.html

[title]hello

[/title]

How did this work? The script searched for an HTML tag using the pattern '<.*>'. Angle brackets match literally. In a
regular expression, a dot (.) represents any character and an asterisk (*) means zero or more of the previous item.
Escaped parentheses, \( and \), capture the matched pattern laying between them and place it in a numbered buffer. In
the replace string, \1 refers to the contents of the first buffer. Thus the text between the angle brackets in the search
string is captured into the first buffer and written back inside square brackets in the replace string. sed takes full
advantage of the power of regular expressions to copy text from the pattern to its replacement.

% cat index1.html

<title>hello</title>

% sed 's/<\(.*\)>/[\1]/g' index1.html

[title>hello</title]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[title>hello</title]

This time the same command fails because the pattern .* is greedy and grabs as much as it can, matching up to the
second >. To prevent this behavior, we need to match zero or more of any character except <. Recall that [...] is a
regular expression that lists characters to match, but if the first character is the caret (^), the match is reversed. Thus
the regular expression [^<] matches any single character other than <. I can modify the previous example as follows:

% sed 's/<\([^<]*\)>/[\1]/g' index1.html

[title]hello[/title]

Remember, grep will perform a case-insensitive search if you provide the -i flag. sed, unfortunately, does not have such
an option. To search for title in a case-insensitive manner, form regular expressions using [...], each listing a character
of the word in both upper- and lowercase forms:

% sed 's/[Tt][Ii][Tt][Ll][Ee]/title/g' title.html

2.4.5 See Also

man grep

man sed

man re_format (regular expressions)

"sed & Regular Expressions" at http://main.rtfiber.com.tw/~changyj/sed/

Cool sed tricks at http://www.wagoneers.com/UNIX/SED/sed.html

The sed FAQ (http://doc.ddart.net/shell/sedfaq.htm)

The sed Script Archive (http://sed.sourceforge.net/grabbag/scripts/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 16 Format Text at the Command Line

 

Combine basic Unix tools to become a formatting expert.

Don't let the syntax of the sed command scare you off. sed is a powerful utility capable of handling most of your
formatting needs. For example, have you ever needed to add or remove comments from a source file? Perhaps you
need to shuffle some text from one section to another.

In this hack, I'll demonstrate how to do that. I'll also show some handy formatting tricks using two other built-in Unix
commands, tr and col.

2.5.1 Adding Comments to Source Code

sed allows you to specify an address range using a pattern, so let's put this to use. Suppose we want to comment out a
block of text in a source file by adding // to the start of each line we wish to comment out. We might use a text editor to
mark the block with bc-start and bc-end:

% cat source.c

  if (tTd(27, 1))

    sm_dprintf("%s (%s, %s) aliased to %s\n",

        a->q_paddr, a->q_host, a->q_user, p);

  bc-start

    if (bitset(EF_VRFYONLY, e->e_flags))

  {

    a->q_state = QS_VERIFIED;

    return;

  }

  bc-end

  message("aliased to %s", shortenstring(p, MAXSHORTSTR));

and then apply a sed script such as:

% sed '/bc-start/,/bc-end/s/^/\/\//' source.c

to get:

if (tTd(27, 1))

    sm_dprintf("%s (%s, %s) aliased to %s\n",

        a->q_paddr, a->q_host, a->q_user, p);

  //bc-start

  //  if (bitset(EF_VRFYONLY, e->e_flags))

  //  {

  //      a->q_state = QS_VERIFIED;

  //      return;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  //      return;

  //  }

  //bc-end

message("aliased to %s", shortenstring(p, MAXSHORTSTR));

The script used search and replace to add // to the start of all lines (s/^/\/\//) that lie between the two markers (/bc-
start/,/bc-end/). This will apply to every block in the file between the marker pairs. Note that in the sed script, the /
character has to be escaped as \/ so it is not mistaken for a delimiter.

2.5.2 Removing Comments

When we need to delete the comments and the two bc- lines (let's assume that the edited contents were copied back to
source.c), we can use a script such as:

% sed '/bc-start/d;/bc-end/d;/bc-start/,/bc-end/s/^\/\///' source.c

Oops! My first attempt won't work. The bc- lines must be deleted after they have been used as address ranges. Trying
again we get:

% sed '/bc-start/,/bc-end/s/^\/\///;/bc-start/d;/bc-end/d' source.c

If you want to leave the two bc- marker lines in but comment them out, use this piece of trickery:

% sed '/bc-start/,/bc-end/{/^\/\/bc-/\!s/\/\///;}' source.c

to get:

if (tTd(27, 1))

    sm_dprintf("%s (%s, %s) aliased to %s\n",

        a->q_paddr, a->q_host, a->q_user, p);

  //bc-start

if (bitset(EF_VRFYONLY, e->e_flags))

{

    a->q_state = QS_VERIFIED;

    return;

}

  //bc-end

message("aliased to %s", shortenstring(p, MAXSHORTSTR));

Note that in the bash shell you must use:

% sed '/bc-start/,/bc-end/{/^\/\/bc-/!s/\/\///;}' source.c

because the bang character (!) does not need to be escaped as it does in tcsh.

What's with the curly braces? They prevent a common mistake. You may imagine that this example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


What's with the curly braces? They prevent a common mistake. You may imagine that this example:

% sed -n '/$USER/p;p' *

prints each line containing $USER twice because of the p;p commands. It doesn't, though, because the second p is not
restrained by the /$USER/ line address and therefore applies to every line. To print twice just those lines containing
$USER, use:

% sed -n '/$USER/p;/$USER/p' *

or:

% sed -n '/$USER/{p;p;}' *

The construct {...} introduces a function list that applies to the preceding line address or range.

A line address followed by ! (or \! in the tcsh shell) reverses the address range, and so the function (list) that follows is
applied to all lines not matching. The net effect is to remove // from all lines that don't start with //bc- but that do lie
within the bc- markers.

2.5.3 Using the Holding Space to Mark Text

sed reads input into the pattern space, but it also provides a buffer (called the holding space) and functions to move
text from one space to the other. All other functions (such as s and d) operate on the pattern space, not the holding
space.

Check out this sed script:

% cat case.script 

# Sed script for case insensitive search

#

# copy pattern space to hold space to preserve it

h

y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/

# use a regular expression address to search for lines containing:

/test/ {

i\

vvvv

a\

^^^^

}

# restore the original pattern space from the hold space

x;p

First, I have written the script to a file instead of typing it in on the command line. Lines starting with # are comments
and are ignored. Other lines specify a sed command, and commands are separated by either a newline or ; character.
sed reads one line of input at a time and applies the whole script file to each line. The following functions are applied to
each line as it is read:

h

Copies the pattern space (the line just read) into the holding space.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Copies the pattern space (the line just read) into the holding space.

y/ABC/abc/

Operates on the pattern space, translating A to a, B to b, and C to c and so on, ensuring the line is all lowercase.

/test/ {...}

Matches the line just read if it includes the text test (whatever the original case, because the line is now all
lowercase) and then applies the list of functions that follow. This example appends text before (i\) and after (a\)
the matched line to highlight it.

x

Exchanges the pattern and hold space, thus restoring the original contents of the pattern space.

p

Prints the pattern space.

Here is the test file:

% cat case

This contains text         Hello

that we want to            TeSt

search for, but in         test

a case insensitive         XXXX 

manner using the sed       TEST

editor.                    Bye bye.

%

Here are the results of running our sed script on it:

% sed -n -f case.script case

This contains text         Hello

vvvv

that we want to            TeSt

^^^^

vvvv

search for, but in         test

^^^^

a case insensitive         XXXX 

vvvv

manner using the sed       TEST

^^^^

editor.                    Bye bye.

Notice the vvv ^^^ markers around lines that contain test.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.5.4 Translating Case

The tr command can translate one character to another. To change the contents of case into all lowercase and write the
results to file lower-case, we could use:

% tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' \

  < case > lower-case

tr works with standard input and output only, so to read and write files we must use redirection.

2.5.5 Translating Characters

To translate carriage return characters into newline characters, we could use:

% tr \\r \\n < 

cr

 > 

lf

where cr is the original file and lf is a new file containing line feeds in place of carriage returns. \n represents a line feed
character, but we must escape the backslash character in the shell, so we use \\n instead. Similarly, a carriage return is
specified as \\r.

2.5.6 Removing Duplicate Line Feeds

tr can also squeeze multiple consecutive occurrences of a particular character into a single occurrence. For example, to
remove duplicate line feeds from the lines file:

% tr -s \\n < lines > tmp ; mv tmp lines

Here we use the tmp file trick again because tr, like grep and sed, will trash the input file if it is also the output file.

2.5.7 Deleting Characters

tr can also delete selected characters. If for instance if you hate vowels, run your documents through this:

% tr -d aeiou < file

2.5.8 Translating Tabs to Spaces

To translate tabs into multiple spaces, use the -x flag:

% cat tabs

col     col     col

% od -x tabs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% od -x tabs

0000000     636f    6c09    636f    6c09    636f    6c0a    0a00        

0000015

% col -x < tabs > spaces

% cat spaces

col     col     col

% od -h spaces

0000000     636f    6c20    2020    2020    636f    6c20    2020    2020

0000020     636f    6c0a    0a00                                        

0000025

In this example I have used od -x to octal dump in hexadecimal the contents of the before and after files, which shows
more clearly that the translation has worked. (09 is the code for Tab and 20 is the code for Space.)

2.5.9 See Also

man sed

man tr

man col

man od

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 17 Delimiter Dilemma

 

Deal with double quotation marks in delimited files.

Importing data from a delimited text file into an application is usually painless. Even if you need to change the delimiter
from one character to another (from a comma to a colon, for example), you can choose from many tools that perform
simple character substitution with great ease.

However, one common situation is not solved as easily: many business applications export data into a space- or
comma-delimited file, enclosing individual fields in double quotation marks. These fields often contain the delimiter
character. Importing such a file into an application that processes only one delimiter (PostgreSQL for example) may
result in an incorrect interpretation of the data. This is one of those situations where the user should feel lucky if the
process fails.

One solution is to write a script that tracks the use of double quotes to determine whether it is working within a text
field. This is doable by creating a variable that acts as a text/nontext switch for the character substitution process. The
script should change the delimiter to a more appropriate character, leave the delimiters that were enclosed in double
quotes unchanged, and remove the double quotes. Rather than make the changes to the original datafile, it's safer to
write the edited data to a new file.

2.6.1 Attacking the Problem

The following algorithm meets our needs:

1. Create the switch variable and assign it the value of 1, meaning "nontext". We'll declare the variable tswitch and
define it as tswitch = 1.

2. Create a variable for the delimiter and define it. We'll use the variable delim with a space as the delimiter, so
delim = ' '.

3. Decide on a better delimiter. We'll use the tab character, so new_delim = '\t'.

4. Open the datafile for reading.

5. Open a new file for writing.

Now, for every character in the datafile:

1. Read a character from the datafile.

2. If the character is a double quotation mark, tswitch = tswitch * -1.

3. If the character equals the character in delim and tswitch equals 1, write new_delim to the new file.

4. If the character equals that in delim and tswitch equals -1, write the value of delim to the new file.

5. If the character is anything else, write the character to the new file.

2.6.2 The Code

The Python script redelim.py implements the preceding algorithm. It prompts the user for the original datafile and a
name for the new datafile. The delim and new_delim variables are hardcoded, but those are easily changed within the
script.

This script copies a space-delimited text file with text values in double quotes to a new, tab-delimited file without the
double quotes. The advantage of using this script is that it leaves spaces that were within double quotes unchanged.

There are no command-line arguments for this script. The script will prompt the user for source and destination file
information.

You can redefine the variables for the original and new delimiters, delim and new_delim, in the script as needed.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can redefine the variables for the original and new delimiters, delim and new_delim, in the script as needed.

#!/usr/local/bin/python

import os

print """ Change text file delimiters.

# Ask user for source and target files.

sourcefile = raw_input('Please enter the path and name of the source file:')

targetfile = raw_input('Please enter the path and name of the target file:')

# Open files for reading and writing.

source = open(sourcefile,'r')

dest   = open(targetfile,'w')

# The variable 'm' acts as a text/non-text switch that reminds python

# whether it is working within a text or non-text data field.

tswitch = 1

# If the source delimiter that you want to change is not a space,

# redefine the variable delim in the next line.

delim = ' '

# If the new delimiter that you want to change is not a tab,

# redefine the variable new_delim in the next line.

new_delim = '\t'

for charn in source.read( ):

        if tswitch =  = 1:

              if charn =  = delim:

                       dest.write(new_delim)

              elif charn =  = '\"':

                       tswitch = tswitch * -1

              else:

                       dest.write(charn)

     elif tswitch =  = -1:

              if charn =  = '\"':

                      tswitch = tswitch * -1

              else:

                      dest.write(charn)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                      dest.write(charn)

source.close( )

dest.close( )

Use of redelim.py assumes that you have installed Python, which is available through the ports collection or as a binary
package. The Python module used in this code is installed by default.

2.6.3 Hacking the Hack

If you prefer working with Perl, DBD::AnyData is another good solution to this problem.

2.6.4 See Also

The Python home page (http://www.python.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 18 DOS Floppy Manipulation

 

Bring simplicity back to using floppies.

If you're like many Unix users, you originally came from a Windows background. Remember your initial shock the first
time you tried to use a floppy on a Unix system? Didn't Windows seem so much simpler? Forever gone seemed the days
when you could simply insert a floppy, copy some files over, and remove the disk from the drive. Instead, you were
expected to plunge into the intricacies of the mount command, only to discover that you didn't even have the right to
use the floppy drive in the first place!

There are several ways to make using floppies much, much easier on your FreeBSD system. Let's start by taking stock
of the default mechanisms for managing floppies.

2.7.1 Mounting a Floppy

Suppose I have formatted a floppy on a Windows system, copied some files over, and now want to transfer those files
to my FreeBSD system. In reality, that floppy is a storage media. Since it is storing files, it needs a filesystem in order
to keep track of the locations of those files. Because that floppy was formatted on a Windows system, it uses a
filesystem called FAT12.

In Unix, a filesystem can't be accessed until it has been mounted. This means you have to use the mount command
before you can access the contents of that floppy. While this may seem strange at first, it actually gives Unix more
flexibility. An administrator can mount and unmount filesystems as they are needed. Note that I used the word
administrator. Regular users don't have this ability, by default. We'll change that shortly.

Unix also has the additional flexibility of being able to mount different filesystems. In Windows, a floppy will always
contain the FAT12 filesystem. BSD understands floppies formatted with either FAT12 or UFS, the Unix File System. As
you might expect from the name, the UFS filesystem is assumed unless you specify otherwise.

For now, become the superuser and let's pick apart the default invocation of the mount command:

% su

Password:

# mount -t msdos /dev/fd0 /mnt

#

I used the type (-t) switch to indicate that this floppy was formatted from an msdos-based system. I could have used the
mount_msdosfs command instead:

# mount_msdosfs /dev/fd0 /mnt

Both commands take two arguments. The first indicates the device to be mounted. /dev/fd0 represents the first (0)
floppy drive (fd) device (/dev).

The second argument represents the mount point. A mount point is simply an empty directory that acts as a pointer to
the mounted filesystem. Your FreeBSD system comes with a default mount point called /mnt. If you prefer, create a
different mount point with a more useful name. Just remember to keep that directory empty so it will be available as a
mount point, because any files in your mount point will become hidden and inaccessible when you mount a device over
it.

This can be a feature in itself if you have a filesystem that should always be mounted.
Place a README file in /mnt/important_directory containing: "If you can see this file,
contact the administrator at this number . . . ."

In this example, I'll create a mount point called /floppy, which I'll use in the rest of the examples in this hack:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In this example, I'll create a mount point called /floppy, which I'll use in the rest of the examples in this hack:

# mkdir /floppy

2.7.2 Common Error Messages

This is a good place to explain some common error messages. Trust me, I experienced them all before I became
proficient at this whole mount business. At the time, I wished for a listing of error messages so I could figure out what I
had done wrong and how to fix it.

Let's take a look at the output of this command:

# mount /dev/fd0 /mnt

mount: /dev/fd0 on /mnt: incorrect super block

Remember my first mount command? I know it worked, as I just received my prompt back. I know this command didn't
work, because mount instead wrote me a message explaining why it did not do what I asked.

That error message isn't actually as bad as it sounds. I forgot to include the type switch, meaning mount assumed I was
using UFS. Since this is a FAT12 floppy, it simply didn't understand the filesystem.

This error message also looks particularly nasty:

fd0: hard error cmd=read fsbn 0 of 0-3 (No status)

msdosfs: /dev/fd0: Input/output error

If you get that one, quickly reach down and push in the floppy before anyone else notices. You forgot to insert it into
the bay.

Here's another error message:

msdosfs: /dev/fd0: Operation not permitted

Oops. Looks like I didn't become the superuser before trying that mount command.

How about this one:

mount: /floppy: No such file or directory

Looks like I forgot to make that mount point first. A mkdir /floppy should fix that one.

The one error message you do not want to see is a system panic followed by a reboot. It took me a while to break
myself of the habit of just ejecting a floppy once I had copied over the files I wanted. That's something you just don't
do in Unix land.

You must first warn your operating system that you have finished using a filesystem before you physically remove it
from the computer. Otherwise, when it goes out looking for a file, it will panic when it realizes that it has just
disappeared off of the edge of the universe! (Well, the computer's universe anyway.) Put yourself in your operating
system's shoes for a minute. The user entrusted something important to your care. You blinked for just a split second
and it was gone, nowhere to be found. You'd panic too!

2.7.3 Managing the Floppy

How do you warn your operating system that the universe has shrunk? You unmount the floppy before you eject it from
the floppy bay. Note that the actual command used is missing the first n and is instead spelled umount:

# umount /floppy

Also, the only argument is the name of your mount point. In this example, it's /floppy.

How can you tell if a floppy is mounted? The disk free command will tell you:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


How can you tell if a floppy is mounted? The disk free command will tell you:

# df

Filesystem  1K-blocks    Used   Avail Capacity  Mounted on

/dev/ad0s1a    257838   69838  167374    29%    /

devfs               1       1       0   100%    /dev

/dev/ad0s1e    257838     616  236596     0%    /tmp

/dev/ad0s1f  13360662 2882504 9409306    23%    /usr

/dev/ad0s1d    257838   28368  208844    12%    /var

/dev/fd0         1424       1    1423     0%    /floppy

as will the mount command with no arguments:

# mount

/dev/ad0s1a on / (ufs, local)

devfs on /dev (devfs, local)

/dev/ad0s1e on /tmp (ufs, local, soft-updates)

/dev/ad0s1f on /usr (ufs, local, soft-updates)

/dev/ad0s1d on /var (ufs, local, soft-updates)

/dev/fd0 on /floppy  (msdosfs, local)

This system currently has a floppy /dev/fd0 mounted on /floppy, meaning you'll need to issue the umount command
before ejecting the floppy.

Several other filesystems are also mounted, yet I only used the mount command on my floppy drive. When did they get
mounted and how? The answer is in /etc/fstab , which controls which filesystems to mount at boot time. Here's my
/etc/fstab; it's pretty similar to the earlier output from df:

# more /etc/fstab

# Device     Mountpoint          FStype       Options    Dump  Pass#

/dev/ad0s1b  none                swap         sw         0     0

/dev/ad0s1a  /                   ufs          rw         1     1

/dev/ad0s1e  /tmp                ufs          rw         2     2

/dev/ad0s1f  /usr                ufs          rw         2     2

/dev/ad0s1d  /var                ufs          rw         2     2

/dev/acd0    /cdrom              cd9660       ro,noauto  0     0

proc         /proc               procfs       rw         0     0

linproc      /compat/linux/proc  linprocfs    rw         0     0

Each mountable filesystem has its own line in this file. Each has its own unique mount point and its filesystem type
listed. See how the /cdrom mount point has the options ro,noauto instead of rw? The noauto tells your system not to
mount your CD-ROM at bootup. That is a good thing—if there's no CD in the bay at boot time, the kernel will either give
an error message or pause for a few seconds, looking for that filesystem.

However, you can mount a data CD-ROM at any time by simply typing:

# mount /cdrom

That command was shorter than the usual mount command for one reason: there was an entry for /cdrom in /etc/fstab.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


That command was shorter than the usual mount command for one reason: there was an entry for /cdrom in /etc/fstab.
That means you can shorten the command to mount a floppy by creating a similar entry for /floppy. Simply add this line
to /etc/fstab:

/dev/fd0    /floppy    msdos    rw,noauto    0    0

Test your change by inserting a floppy and issuing this command:

# mount /floppy

If you receive an error, check /etc/fstab for a typo and try again.

2.7.4 Allowing Regular Users to Mount Floppies

Now that the superuser can quickly mount floppies, let's give regular users this ability. First, we have to change the
default setting of the vfs.usermount variable:

# sysctl vfs.usermount=1

vfs.usermount: 0 -> 1

By changing the default 0 to a 1, we've just enabled users to mount virtual filesystems. However, don't worry about
your users running amok with this new freedom—the devices themselves are still owned by root. Check out the
permissions on the floppy device:

# ls -l /dev/fd0

crw-r-----  1 root  operator   9,  0 Nov 28 08:31 /dev/fd0

If you'd like any user to have the right to mount a floppy, change the permissions so everyone has read and write
access:

# chmod 666 /dev/fd0

Now, if you don't want every user to have this right, you could create a group, add the
desired users to that group, and assign that group permissions to /dev/fd0.

You're almost there. The only kicker is that the user has to own the mount point. The best place to put a user's mount
point is in his home directory. So, logged in as your usual user account:

% mkdir ~/floppy

Now, do you think the mount command will recognize that new mount point?

% mount ~/floppy

mount: /home/dru/floppy: unknown special file or file system

Oh boy. Looks like we're back to square one, doesn't it? Remember, that entry in /etc/fstab only refers to root's mount
point, so I can't use that shortcut to refer to my own mount point. While it's great to have the ability to use the mount
command, I'm truly too lazy to have to type out mount -t msdos /dev/fd0 ~/floppy, let alone remember it.

Thank goodness for aliases. Try adding these lines to the alias section of your ~.cshrc file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Thank goodness for aliases. Try adding these lines to the alias section of your ~.cshrc file:

alias mf    mount -t msdos /dev/fd0 ~/floppy

alias uf    umount ~/floppy

Now you simply need to type mf whenever you want to mount a floppy and uf when it's time to unmount the floppy. Or
perhaps you'll prefer to create a keyboard shortcut [Hack #4].

2.7.5 Formatting Floppies

Now that you can mount and unmount floppies with the best of them, it's time to learn how to format them. Again, let's
start with the default invocations required to format a floppy, then move on to some ways to simplify the process.

When you format a floppy on a Windows or DOS system, several events occur:

1. The floppy is low-level formatted, marking the tracks and sectors onto the disk.

2. A filesystem is installed onto the floppy, along with two copies of its FAT table.

3. You are given the opportunity to give the floppy a volume label.

The same process also has to occur when you format a floppy on a FreeBSD system. On a 5.x system, the order goes
like this:

% fdformat -f 1440 /dev/fd0

Format 1440K floppy `/dev/fd0'? (y/n): y

Processing ----------------------------------------

% bsdlabel -w /dev/fd0 fd1440

% newfs_msdos /dev/fd0

/dev/fd0: 2840 sectors in 355 FAT12 clusters (4096 bytes/cluster)

bps=512 spc=8 res=1 nft=2 rde=512 sec=2880 mid=0xf0 spf=2 spt=18 hds=2 hid=0

First, notice that we don't use the mount command. You can't mount a filesystem before you have a filesystem! (You do
have to have the floppy in the drive, though.) Take a look at the three steps:

1. fdformat does the low-level format.

2. bsdlabel creates the volume label.

3. newfs_msdos installs the FAT12 filesystem.

If I see the following error message when I try to mount the floppy, I'll realize that I forgot that third step:

% mf 

msdosfs: /dev/fd0: Invalid argument

Because my mf mount floppy alias uses the msdos filesystem, it will complain if the floppy isn't formatted with FAT12.

2.7.6 Automating the Format Process

Any three-step process is just begging to be put into a shell script. I like to keep these scripts under ~/bin. If you don't
have this directory yet, create it. Then create a script called ff (for format floppy):

% cd

% mkdir bin

% cd bin

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% cd bin

% vi ff

#!/bin/sh

#this script formats a floppy with FAT12

#that floppy can also be used on a Windows system

# first, remind the user to insert the floppy

echo "Please insert the floppy and press enter"

read pathname

# then, proceed with the three format steps

fdformat -f 1440 /dev/fd0

bsdlabel -w /dev/fd0 fd1440

newfs_msdos /dev/fd0

echo "Format complete."

Note that this script is basically those three commands, with comments thrown in so I remember what the script does.
The only new part is the read pathname line. I added it to force the user to press Enter before the script proceeds.

Remember to make the script executable:

% chmod +x ff

I'll then return to my home directory and see how it works. Since I use the C shell, I'll use the rehash command to make
the shell aware that there is a new executable in my path:

% cd

% rehash

% ff

Please insert the floppy and press enter

Format 1440K floppy `/dev/fd0'? (y/n): y

Processing ----------------------------------------

/dev/fd0: 2840 sectors in 355 FAT12 clusters (4096 bytes/cluster)

bps=512 spc=8 res=1 nft=2 rde=512 sec=2880 mid=0xf0 spf=2 spt=18 hds=2 hid=0

Format complete.

Not too bad. I can now manipulate floppies with my own custom mf, uf, and ff commands.

2.7.7 See Also

man fstab

man fdformat

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man fdformat

man bsdlabel

man newfs

The Creating and Using Floppies section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/floppies.html)

The Mounting and Unmounting File Systems section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mount-unmount.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 19 Access Windows Shares Without a Server

 

Share files between Windows and FreeBSD with a minimum of fuss.

You've probably heard of some of the Unix utilities available for accessing files residing on Microsoft systems. For
example, FreeBSD provides the mount_smbfs and smbutil utilities to mount Windows shares and view or access resources
on a Microsoft network. However, both of those utilities have a caveat: they require an SMB server. The assumption is
that somewhere in your network there is at least one NT or 2000 Server.

Not all networks have the budget or the administrative expertise to allow for commercial server operating systems.
Sure, you can install and configure Samba, but isn't that overkill for, say, a home or very small office network?
Sometimes you just want to share some files between a Windows 9x system and a Unix system. It's a matter of using
the right-sized tool for the job. You don't bring in a backhoe to plant flowers in a window box.

2.8.1 Installing and Configuring Sharity-Light

If your small network contains a mix of Microsoft and Unix clients, consider installing Sharity-Light on the Unix systems.
This application allows you to mount a Windows share from a Unix system. FreeBSD provides a port for this purpose
(see the Sharity-Light web site for other supported platforms):

# cd /usr/ports/net/sharity-light

# make install clean

Since Sharity-Light is a command-line utility, you should be familiar with UNC or the Universal Naming Convention. UNC
is how you refer to Microsoft shared resources from the command line. A UNC looks like \\NetBIOSname\sharename. It
starts with double backslashes, then contains the NetBIOS name of the computer to access and the name of the share
on that computer.

Before using Sharity-Light, you need to know the NetBIOS names of the computers you wish to access. If you have
multiple machines running Microsoft operating systems, the quickest way to view each system's name is with nbtstat.
From one of the Windows systems, open a command prompt and type:

C:> nbtstat -A 192.168.2.10

       NETBIOS Remote Machine Name Table

   Name        Type        Status

-----------------------------------------

LITTLE_WOLF  <00> UNIQUE    Registered

<snip>

Repeat for each IP address in your network. Your output will be several lines long, but the entry (usually the first)
containing <00> is the one with the name you're interested in. In this example, LITTLE_WOLF is the NetBIOS name
associated with 192.168.2.10.

Even though nbtstat ? indicates that -A is used to view a remote system, it also works with
the IP address of the local system. This allows you to check all of the IP addresses in your
network from the same system.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once you know which IP addresses are associated with which NetBIOS names, you'll need to add that information to
/etc/hosts on your Unix systems:

# more /etc/hosts

127.0.0.1          localhost

192.168.2.95       genisis        #this system

192.168.2.10       little_wolf    #98 system sharing cygwin2

You'll also need to know the names of the shares you wish to access. Again, from a Microsoft command prompt, repeat
this command for each NetBIOS name and make note of your results:

C:> net view \\little_wolf

Shared resources at \\LITTLE_WOLF

Sharename     Type       Comment

---------------------------------------

CYGWIN2      Disk

The command was completed successfully.

Here the computer known as LITTLE_WOLF has only one share, the CYGWIN2 directory.

Finally, you'll need a mount point on your Unix system, so you might as well give it a useful name. Since the typical
floppy mount point is /floppy and the typical CD mount point is /cdrom, let's use /windows:

# mkdir /windows

2.8.2 Accessing Microsoft Shares

Once you know the names of your computers and shares, using Sharity-Light is very easy. As the superuser, mount the
desired share:

# shlight //little_wolf/cygwin2 /windows

Password: 

Using port 49923 for NFS.

Watch your slashes. Microsoft uses the backslash (\) at the command line, whereas Unix
and Sharity-Light use the forward slash (/).

Note that I was prompted for a password because Windows 9x and ME users have the option of password protecting
their shares. This particular share did not have a password, so I simply pressed Enter.

Adding -n to the previous command will forego the password prompt. Type shlight -h to see
all available options.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


However, if the share is on a Windows NT Workstation, 2000 Pro, or XP system, you must provide a username and
password valid on that system. The syntax is:

# shlight //2000pro/cdrom /windows -U 

username

 -P 

password

Once the share is mounted, it works like any other mount point. Depending on the permissions set on the share, you
should be able to browse that shared directory, copy over or add files, and modify files. When you're finished using the
share, unmount it:

$ unshlight /windows

2.8.3 See Also

The Sharity-Light README and FAQ (/usr/local/share/doc/Sharity-Light/)

The Sharity-Light web site (http://www.obdev.at/products/sharity-light/index.html)

The Samba web site (http://www.samba.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 20 Deal with Disk Hogs

 

Fortunately, you no longer have to be a script guru or a find wizard just to keep up with what is happening
on your disks.

Think for a moment. What types of files are you always chasing after so they don't waste resources? Your list probably
includes temp files, core files, and old logs that have already been archived. Did you know that your system already
contains scripts capable of cleaning out those files? Yes, I'm talking about your periodic scripts.

2.9.1 Periodic Scripts

You'll find these scripts in the following directory on a FreeBSD system:

% ls /etc/periodic/daily | grep clean

100.clean-disks

110.clean-tmps

120.clean-preserve

130.clean-msgs

140.clean-rwho

150.clean-hoststat

Are you using these scripts? To find out, look at your /etc/periodic.conf file. What, you don't have one? That means
you've never tweaked your default configurations. If that's the case, copy over the sample file and take a look at what's
available:

# cp /etc/defaults/periodic.conf /etc/periodic.conf

# more /etc/periodic.conf

2.9.1.1 daily_clean_disks

Let's start with daily_clean_disks. This script is ideal for finding and deleting files with certain file extensions. You'll find it
about two pages into periodic.conf, in the Daily options section, where you may note that it's not enabled by default.
Fortunately, configuring it is a heck of a lot easier than using cron to schedule a complex find statement.

Before you enable any script, test it first, especially if it'll delete files based on pattern-
matching rules. Back up your system first!

For example, suppose you want to delete old logs with the .bz2 extension. If you're not
careful when you craft your daily_clean_disks_files line, you may end up inadvertently
deleting all files with that extension. Any user who has just compressed some important
data will be very miffed when she finds that her data has mysteriously disappeared.

Let's test this scenario. I'd like to prune all .core files and any logs older than .0.bz2. I'll edit that section of
/etc/periodic.conf like so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/periodic.conf like so:

# 100.clean-disks

daily_clean_disks_enable="YES"                     # Delete files daily

daily_clean_disks_files="*.[1-9].bz2 *.core"       # delete old logs, cores

daily_clean_disks_days=1                           # on a daily basis

daily_clean_disks_verbose="YES"                    # Mention files deleted

Notice my pattern-matching expression for the .bz2 files. My expression matches any filename (*) followed by a dot and
a number from one to nine (.[1-9]), followed by another dot and the .bz2 extension.

Now I'll verify that my system has been backed up, and then manually run that script. As this script is fairly resource-
intensive, I'll do this test when the system is under a light load:

# /etc/periodic/daily/100.clean-disks

Cleaning disks:

/usr/ports/distfiles/MPlayer-0.92.tar.bz2

/usr/ports/distfiles/gnome2/libxml2-2.6.2.tar.bz2

/usr/ports/distfiles/gnome2/libxslt-1.1.0.tar.bz2

Darn. Looks like I inadvertently nuked some of my distfiles. I'd better be a bit more explicit in my matching pattern. I'll
try this instead:

# delete old logs, cores

daily_clean_disks_files="messages.[1-9].bz2 *.core"       

# /etc/periodic/daily/100.clean-disks

Cleaning disks:

/var/log/messages.1.bz2

/var/log/messages.2.bz2

/var/log/messages.3.bz2

/var/log/messages.4.bz2

That's a bit better. It didn't delete /var/log/messages or /var/log/messages.1.bz2, which I like to keep on disk.
Remember, always test your pattern matching before scheduling a deletion script. If you keep the verbose line at YES,
the script will report the names of files it deletes.

2.9.1.2 daily_clean_tmps

The other cleaning scripts are quite straightforward to configure. Take daily_clean_tmps, for example:

# 110.clean-tmps

daily_clean_tmps_enable="NO"                   # Delete stuff daily

daily_clean_tmps_dirs="/tmp"                   # Delete under here

daily_clean_tmps_days="3"                      # If not accessed for

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


daily_clean_tmps_days="3"                      # If not accessed for

daily_clean_tmps_ignore=".X*-lock quota.user quota.group" # Don't delete

                                                          # these

daily_clean_tmps_verbose="YES"                 # Mention files deleted

This is a quick way to clean out any temporary directories. Again, you get to choose the locations of those directories.
Here is a quick way to find out which directories named tmp are on your system:

# find / -type d -name tmp

/tmp

/usr/tmp

/var/spool/cups/tmp

/var/tmp

That command asks find to start at root (/) and look for any directories (-type d) named tmp (-name tmp). If I wanted to
clean those daily, I'd configure that section like so:

# 110.clean-tmps

# Delete stuff daily

daily_clean_tmps_enable="YES"                        

daily_clean_tmps_dirs="/tmp /usr/tmp /var/spool/cups/tmp /var/tmp"        

# If not accessed for

daily_clean_tmps_days="1"                            

# Don't delete these

daily_clean_tmps_ignore=".X*-lock quota.user quota.group" 

# Mention files deleted

daily_clean_tmps_verbose="YES"

Again, I immediately test that script after saving my changes:

# /etc/periodic/daily/110.clean-tmps

Removing old temporary files:

  /var/tmp/gconfd-root

This script will not delete any locked files or temporary files currently in use. This is an excellent feature and yet
another reason to run this script on a daily basis, preferably at a time when few users are on the system.

2.9.1.3 daily_clean_preserve

Moving on, the next script is daily_clean_preserve:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Moving on, the next script is daily_clean_preserve:

# 120.clean-preserve

daily_clean_preserve_enable="YES"              # Delete files daily

daily_clean_preserve_days=7                    # If not modified for

daily_clean_preserve_verbose="YES"             # Mention files deleted

What exactly is preserve? The answer is in man hier. Use the manpage search function (the / key) to search for the word
preserve:

# man hier

/preserve

       preserve/ temporary home of files preserved after an accidental 

                 death of an editor; see (ex)1

Now that you know what the script does, see if the default settings are suited for your environment. This script is run
daily, but keeps preserved files until they are seven days old.

The last three clean scripts deal with cleaning out old files from msgs, rwho and sendmail's hoststat cache. See man
periodic.conf for more details.

Incidentally, you don't have to wait until it is time for periodic to do its thing; you can manually run any periodic script at
any time. You'll find them all in subdirectories of /etc/periodic/.

2.9.2 Limiting Files

Instead of waiting for a daily process to clean up any spills, you can tweak several knobs to prevent these files from
being created in the first place. For example, the C shell itself provides limits, any of which are excellent candidates for
a customized dot.cshrc file [Hack #9].

To see the possible limits and their current values:

% limit

cputime         unlimited

filesize        unlimited

datasize        524288 kbytes

stacksize       65536 kbytes

coredumpsize    unlimited

memoryuse       unlimited

vmemoryuse      unlimited

descriptors     4557 

memorylocked    unlimited

maxproc         2278 

sbsize          unlimited

You can test a limit by typing it at the command line; it will remain for the duration of your current shell. If you like the
limit, make it permanent by adding it to .cshrc. For example:

% limit filesize 2k

% limit | grep filesize

filesize     2 kbytes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


filesize     2 kbytes

will set the maximum file size that can be created to 2 KB. The limit command supports both k for kilobytes and m for
megabytes. Do note that this limit does not affect the total size of the area available to store files, just the size of a
newly created file. See the Quotas section of the FreeBSD Handbook if you intend to limit disk space usage.

Having created a file limit, you'll occasionally want to exceed it. For example, consider decompressing a file:

% uncompress largefile.Z

Filesize limit exceeded

% unlimit filesize

% uncompress largefile.Z

%

The unlimit command will allow me to override the file-size limit temporarily (for the duration of this shell). If you really
do want to force your users to stick to limits, read man limits.

Now back to shell limits. If you don't know what a core file is, you probably don't need to collect them. Sure, periodic can
clean those files out for you, but why make them in the first place? Core files are large. You can limit their size with:

limit coredumpsize 1m

That command will limit a core file to 1 MB, or 1024 KB. To prevent core files completely, set the size to 0:

limit coredumpsize 0

If you're interested in the rest of the built-in limits, you'll find them in man tcsh . Searching for coredumpsize will take you
to the right spot.

2.9.3 The Other BSDs

The preceding discussion is based on FreeBSD. Other BSD systems ship with similar scripts that do identical tasks, but
they are kept in a single file instead of in a separate directory.

2.9.3.1 NetBSD

For daily, weekly, and monthly tasks, NetBSD uses the /etc/daily, /etc/weekly, and /etc/monthly scripts, whose
behavior is controlled with the /etc/daily.conf, /etc/weekly.conf, and /etc/monthly.conf configuration files. For more
information about them, read man daily.conf, man weekly.conf, and man monthly.conf.

2.9.3.2 OpenBSD

OpenBSD uses three scripts, /etc/daily, /etc/weekly, and /etc/monthly. You can learn more about them by reading man
daily.

2.9.4 See Also

man periodic.conf

man limits

man tcsh

The Quotas section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/quotas.html)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


1/books/handbook/quotas.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 21 Manage Temporary Files and Swap Space

 

Add more temporary or swap space without repartitioning.

When you install any operating system, it's important to allocate sufficient disk space to hold temporary and swap files.
Ideally, you already know the optimum sizes for your system so you can partition your disk accordingly during the
install. However, if your needs change or you wish to optimize your initial choices, your solution doesn't have to be as
drastic as a repartition—and reinstall—of the system.

man tuning has some practical advice for guesstimating the appropriate size of swap and
your other partitions.

2.10.1 Clearing /tmp

Unless you specifically chose otherwise when you partitioned your disk, the installer created a /tmp filesystem for you:

% grep tmp /etc/fstab

/dev/ad0s1e    /tmp    ufs    rw    2    2

% df -h /tmp

Filesystem    Size   Used  Avail Capacity  Mounted on

/dev/ad0s1e   252M   614K   231M     0%    /tmp

Here I searched /etc/fstab for the /tmp filesystem. This particular filesystem is 256 MB in size. Only a small portion
contains temporary files.

The df (disk free) command will always show you a number lower than the actual partition
size. This is because eight percent of the filesystem is reserved to prevent users from
inadvertently overflowing a filesystem. See man tunefs for details.

It's always a good idea to clean out /tmp periodically so it doesn't overflow with temporary files. Consider taking
advantage of the built-in periodic script /etc/periodic/daily/110.clean-tmps [Hack #20] .

You can also clean out /tmp when the system reboots by adding this line to /etc/rc.conf:

clear_tmp_enable="YES"

2.10.2 Moving /tmp to RAM

Another option is to move /tmp off of your hard disk and into RAM. This has the built-in advantage of automatically
clearing the filesystem when you reboot, since the contents of RAM are volatile. It also offers a performance boost,
since RAM access time is much faster than disk access time.

Before moving /tmp, ensure you have enough RAM to support your desired /tmp size. This command will show the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Before moving /tmp, ensure you have enough RAM to support your desired /tmp size. This command will show the
amount of installed RAM:

% dmesg | grep memory

real memory  = 335462400 (319 MB)

avail memory = 320864256 (306 MB)

Also check that your kernel configuration file contains device md (or memory disk). The GENERIC kernel does; if you've
customized your kernel, double-check that you still have md support:

% grep -w md /usr/src/sys/i386/conf/CUSTOM

device        md    # Memory "disks"

Changing the /tmp line in /etc/fstab as follows will mount a 64 MB /tmp in RAM:

md /tmp mfs rw,-s64m 2 0

Next, unmount /tmp (which is currently mounted on your hard drive) and remount it using the new entry in /etc/fstab:

# umount /tmp

# mount /tmp

# df -h /tmp

Filesystem    Size   Used  Avail Capacity  Mounted on

/dev/md0       63M   8.0K    58M     0%    /tmp

Notice that the filesystem is now md0, the first memory disk, instead of ad0s1e, a partition on the first IDE hard drive.

2.10.3 Creating a Swap File on Disk

Swap is different than /tmp. It's not a storage area for temporary files; instead, it is an area where the filesystem
swaps data between RAM and disk. A sufficient swap size can greatly increase the performance of your filesystem. Also,
if your system contains multiple drives, this swapping process will be much more efficient if each drive has its own swap
partition.

The initial install created a swap filesystem for you:

% grep swap /etc/fstab

/dev/ad0s1b    none     swap    sw    0    0

% swapinfo

Device          1K-blocks     Used    Avail Capacity  Type

/dev/ad0s1b        639688       68   639620     0%    Interleaved

Note that the swapinfo command displays the size of your swap files. If you prefer to see that output in MB, try the
swapctl command with the -lh flags (which make the listing more human):

% swapctl -lh

Device:       1048576-blocks      Used:

/dev/ad0s1b          624          0

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/dev/ad0s1b          624          0

To add a swap area, first determine which area of disk space to use. For example, you may want to place a 128 MB
swapfile on /usr. You'll first need to use dd to create this as a file full of null (or zero) bytes. Here I'll create a 128 MB
swapfile as /usr/swap0:

# dd if=/dev/zero of=/usr/swap0 bs=1024k count=128

128+0 records in

128+0 records out

134217728 bytes transferred in 4.405036 secs (30469156 bytes/sec)

Next, change the permissions on this file. Remember, you don't want users storing data here; this file is for the
filesystem:

# chmod 600 /usr/swap0

Since this is really a file on an existing filesystem, you can't mount your swapfile in /etc/fstab. However, you can tell the
system to find it at boot time by adding this line to /etc/rc.conf:

swapfile="/usr/swap0"

To start using the swapfile now without having to reboot the system, use mdconfig:

# mdconfig -a -t vnode -f /usr/swap0 -u 1 && swapon /dev/md1

The -a flag attaches the memory disk. -t vnode marks that the type of swap is a file, not a filesystem. The -f flag sets the
name of that file: /usr/swap0.

The unit number -u 1 must match the name of the memory disk /dev/md1. Since this system already has /tmp mounted
on /dev/md0, I chose to mount swap on /dev/md1. && swapon tells the system to enable that swap device, but only if
the mdconfig command succeeded.

swapctl should now show the new swap partition:

% swapctl -lh

Device:       1048576-blocks      Used:

/dev/ad0s1b          624          0

/dev/md1             128          0

2.10.4 Monitoring Swap Changes

Whenever you make changes to swap or are considering increasing swap, use systat to monitor how your swapfiles are
being used in real time:

% systat -swap

The output will show the names of your swap areas and how much of each is currently in use. It will also include a
visual indicating what percentage of swap contains data.

2.10.5 OpenBSD Differences

You can make this hack work on OpenBSD, as long as you remember that the RAM disk device is rd and its
configuration tool is rdconfig. Read the relevant manpages, and you'll be hacking away.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


configuration tool is rdconfig. Read the relevant manpages, and you'll be hacking away.

2.10.6 See Also

man tuning (practical advice on /tmp and swap)

man md

man mdconfig

man swapinfo

man swapctl

man systat

The BSD Handbook entry on adding swap (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/adding-swap-space.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 22 Recreate a Directory Structure Using mtree

 

Prevent or recover from rm disasters.

Someday the unthinkable may happen. You're doing some routine maintenance and are distracted by a phone call or
perhaps another employee's question. A moment later, you're faced with the awful realization that your fingers typed
either a rm * or a rm -R in the wrong place, and now a portion of your system has evaporated into nothingness.

Painful thought, isn't it? Let's pause for a moment to catch our breath and examine a few ways to prevent such a
scenario from happening in the first place.

Close your eyes and think back to when you were a fresh-faced newbie and were introduced to the omnipotent rm
command. Return to the time when you actually read man rm and first discovered the -i switch. "What a great idea," you
thought, "to be prompted for confirmation before irretrievably deleting a file from disk." However, you soon discovered
that this switch can be a royal PITA. Face it, it's irritating to deal with the constant question of whether you're sure you
want to remove a file when you just issued the command to remove that file.

2.11.1 Necessary Interaction

Fortunately, there is a way to request confirmation only when you're about to do something as rash as rm *. Simply
make a file called -i. Well, actually, it's not quite that simple. Your shell will complain if you try this:

% touch -i

touch: illegal option -- i

usage: touch [-acfhm] [-r file] [-t [[CC]Y]MMDDhhmm[.SS]] file ...

You see, to your shell, -i looks like the -i switch, which touch doesn't have. That's actually part of the magic. The reason
why we want to make a file called -i in the first place is to fool your shell: when you type rm *, the shell will expand *
into all of the files in the directory. One of those files will be named -i, and, voila, you've just given the interactive
switch to rm.

So, how do we get past the shell to make this file? Use this command instead:

% touch ./-i

The ./ acts as a sort of separator instruction to the shell. To the left of the ./ go any options to the command touch; in
this case, there are none. To the right of the ./ is the name of the file to touch in "this directory."

In order for this to be effective, you need to create a file called -i in every directory that you would like to protect from
an inadvertent rm *.

An alternative method is to take advantage of the rmstar shell variable found in the tcsh shell. This method will always
prompt for confirmation of a rm *, regardless of your current directory, as long as you always use tcsh. Since the default
shell for the superuser is tcsh, add this line to /root/.cshrc:

set rmstar

This is also a good line to add to /usr/share/skel/dot.cshrc [Hack #9].

If you want to take advantage of the protection immediately, force the shell to reread its configuration file:

# source /root/.cshrc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# source /root/.cshrc

2.11.2 Using mtree

Now you know how to protect yourself from rm *. Unfortunately, neither method will save you from a rm -R. If you do
manage to blow away a portion of your directory structure, how do you fix the mess with a minimum of fuss, fanfare,
and years of teasing from your coworkers? Sure, you can always restore from backup, but that means filling in a form
in triplicate, carrying it with you as you walk to the other side of the building where backups are stored, and sheepishly
handing it over to the clerk in charge of tape storage.

Fortunately for a hacker, there is always more than one way to skin a cat, or in this case, to save your skin. That
directory structure had to be created in the first place, which means it can be recreated.

When you installed FreeBSD, it created a directory structure for you. The utility responsible for this feat is called mtree.

To see which directory structures were created with mtree:

% ls /etc/mtree/

./                    BSD.root.dist           BSD.x11-4.dist

../                   BSD.sendmail.dist       BSD.x11.dist

BSD.include.dist      BSD.usr.dist

BSD.local.dist        BSD.var.dist

Each of these files is in ASCII text, meaning you can read, and more interestingly, edit their contents. If you're a
hacker, I know what you're thinking. Yes, you can edit a file to remove the directories you don't want and to add other
directories that you do.

Let's start with a simpler example. Say you've managed to blow away /var. To recreate it:

# mtree -deU -f /etc/mtree/BSD.var.dist -p /var

where:

-d

Ignores everything except directory files.

-e

Doesn't complain if there are extra files.

-U

Recreates the original ownerships and permissions.

-f /etc/mtree/BSD.var.dist

Specifies how to create the directory structure; this is an ASCII text file if you want to read up ahead of time on
what exactly is going to happen.

-p /var

Specifies where to create the directory structure; if you don't specify, it will be placed in the current directory.

When you run this command, the recreated files will be echoed to standard output so you can watch as they are
created for you. A few seconds later, you can:

% ls /var

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% ls /var

./            crash/          heimdal/        preserve/       yp/

../           cron/           lib/            run/

account/      db/             log/            rwho/

at/           empty/          mail/           spool/

backups/      games/          msgs/

That looks a lot better, but don't breathe that sigh of relief quite yet. You still have to recreate all of your log files. Yes,
/var/log is still glaringly empty. Remember, mtree creates a directory structure, not all of the files within that directory
structure. If you have a directory structure containing thousands of files, you're better off grabbing your backup tape.

There is hope for /var/log, though. Rather than racking your brain for the names of all of the missing log files, do this
instead:

% more /etc/newsyslog.conf

# configuration file for newsyslog

# $FreeBSD: src/etc/newsyslog.conf,v 1.42 2002/09/21 12:07:35 markm Exp $

#

# Note: some sites will want to select more restrictive protections than the

# defaults.  In particular, it may be desirable to switch many of the 644

# entries to 640 or 600.  For example, some sites will consider the

# contents of maillog, messages, and lpd-errs to be confidential.  In the

# future, these defaults may change to more conservative ones.

#

# logfilename           [owner:group]    mode count size when  [ZJB] 

[/pid_file] [sig_num]

/var/log/cron                            600  3     100  *      J

/var/log/amd.log                         644  7     100  *      J

/var/log/auth.log                        600  7     100  *      J

/var/log/kerberos.log                    600  7     100  *      J

/var/log/lpd-errs                        644  7     100  *      J

/var/log/xferlog                         600  7     100  *      J

/var/log/maillog                         640  7     *    @T00   J

/var/log/sendmail.st                     640  10    *    168    B

/var/log/messages                        644  5     100  *      J

/var/log/all.log                         600  7     *    @T00   J

/var/log/slip.log        root:network    640  3     100  *      J

/var/log/ppp.log         root:network    640  3     100  *      J

/var/log/security                        600  10    100  *      J

/var/log/wtmp                            644  3     *    @01T05 B

/var/log/daily.log                       640  7     *    @T00   J

/var/log/weekly.log                      640  5     1    $W6D0  J

/var/log/monthly.log                     640  12    *    $M1D0  J

/var/log/console.log                     600  5     100  *      J

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/var/log/console.log                     600  5     100  *      J

There you go, all of the default log names and their permissions. Simply touch the required files and adjust their
permissions accordingly with chmod.

2.11.3 Customizing mtree

Let's get a little fancier and hack the mtree hack. If you want to be able to create a homegrown directory structure, start
by perusing the instructions in /usr/src/etc/mtree/README.

The one rule to keep in mind is don't use tabs. Instead, use four spaces for indentation. Here is a simple example:

% more MY.test.dist

#home grown test directory structure

/set type=dir uname=test gname=test mode=0755

.

    test1

    ..

      test2

          subdir2a

          ..

          subdir2b

              ..

              subsubdir2c    mode=01777

              ..

              ..

    ..

Note that you can specify different permissions on different parts of the directory structure.

Next, I'll apply this file to my current directory:

# mtree -deU -f MY.test.dist

and check out the results:

# ls -F

test1/

test2/

# ls -F test1

#

# ls -F test2

subdir2a/

subdir2b/

# ls -F test2/subdir2b

subsubdir2c/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


subsubdir2c/

As you can see, mtree can be a real timesaver if you need to create custom directory structures when you do
installations. Simply take a few moments to create a file containing the directory structure and its permissions. You'll
gain the added bonus of having a record of the required directory structure.

2.11.4 See Also

man mtree

 The Linux mtree port (http://www.wie-auch-immer.de/mtree/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 23 Ghosting Systems

 

Do you find yourself installing multiple systems, all containing the same operating system and applications? As an IT
instructor, I'm constantly installing systems for my next class or trying to fix the ramifications of a misconfiguration
from a previous class.

As any system administrator can attest to, ghosting or hard drive-cloning software can be a real godsend. Backups are
one thing; they retain your data. However, an image is a true timesaver—it's a copy of the operating system itself,
along with any installed software and all of your configurations and customizations.

I haven't always had the luxury of a commercial ghosting utility at hand. As you can well imagine, I've tried every
homegrown and open source ghosting solution available. I started with various invocations of dd, gzip, ssh, and dump,
but kept running across the same fundamental problem: it was easy enough to create an image, but inconvenient to
deploy that image to a fresh hard drive. It was doable in the labs that used removable drives, but, otherwise, I had to
open up a system, cable in the drive to be deployed, copy the image, and recable the drive into its own system.

Forget the wear and tear on the equipment; that solution wasn't working out to be much of a timesaver! What I really
needed was a floppy that contained enough intelligence to go out on the network and retrieve and restore an image. I
tried several open source applications and found that Ghost For Unix, g4u, best fit the bill.

2.12.1 Creating the Ghost Disk

You're about two minutes away from creating a bootable g4u floppy. Simply download g4u-1.12fs from
http://theatomicmoose.ca/g4u/ and copy it to a floppy:

# cat g4u-1.12fs > /dev/fd0

Your only other requirement is a system with a drive capable of holding your images. It can be any operating system,
as long as it has an installed FTP server. If it's a FreeBSD system, you can configure an FTP server through
/stand/sysinstall. Choose Configure from the menu, then Networking. Use your spacebar to choose Anon FTP.

Choose Yes to the configuration message and accept the defaults by tabbing to OK. The welcome message is optional.
Exit sysinstall once you're finished.

You'll then need to remove the remark (#) in front of the FTP line in /etc/inetd.conf, so it looks like this:

ftp   stream   tcp   nowait   root   /usr/libexec/ftpd    ftpd -l

If inetd is already running, inform it of the configuration change using killall -1 inetd. Otherwise, start inetd by simply
typing inetd. To ensure the service is running:

# sockstat | grep 21

root   inetd   22433  4  tcp4   *:21     *:*

In this listing, the local system is listening for requests on port 21, and there aren't any current connections listed in the
remote address section (*:*).

g4u requires a username and a password before it will create or retrieve an image. The default account is install, but you
can specify another user account when you use g4u. To create the install account on a FreeBSD FTP server:

# pw useradd install -m -s /bin/csh

Make sure that the shell you give this user is listed in /etc/shells or FTP authentication will
fail.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Then, use passwd install to give this account a password you will remember.

2.12.2 Creating an Image

Before you create an image, fully configure a test system. For example, in my security lab, I usually install the latest
release of FreeBSD, add my customized /etc/motd and shell prompt, configure X, and install and configure the
applications students will use during their labs.

It's a good idea to know ahead of time how large the hard drive is on the test system and how it has been partitioned.
There are several ways to find out on a FreeBSD system, depending upon how good you are at math. One way is to go
back into /stand/sysinstall and choose Configure then Fdisk. The first long line will give the size of the entire hard drive:

Disk name:       ad0

DISK Geometry:   19885 cyls/16 heads/63 sectors = 20044080 sectors (9787MB)

Press q to exit this screen. If you then type fdisk at the command line, you'll see the size of your partitions:

# fdisk

<snip>

The data for partition 1 is:

sysid 165 (0xa5), (FreeBSD/NetBSD/386BSD)

    start 63, size 4095441 (1999 Meg), flag 80 (active)

<snip>

The data for partition 2 is:

<UNUSED>

The data for partition 3 is:

<UNUSED>

The data for partition 4 is:

<UNUSED>

This particular system has a 9787 MB hard drive that has one 1999 MB partition containing FreeBSD.

Whenever you're using any ghosting utility, create an image using the smallest hard drive
size that you have available, but which is also large enough to hold your desired data. This
will reduce the size of the image and prevent the problems associated with trying to
restore an image to a smaller hard drive.

Once you're satisfied with your system, insert the floppy and reboot.

g4u will probe for hardware and configure the NIC using DHCP. Once it's finished, you'll be presented with this screen:

Welcome to g4u Harddisk Image Cloning V1.12!

* To upload disk-image to FTP, type:    uploaddisk serverIP [image] [disk]

* To upload partition to FTP, type:     uploadpart serverIP [image] [disk+part]

* To install harddisk from FTP, type:   slurpdisk  serverIP [image] [disk]

* To install partition from FTP, type:  slurppart  serverIP [image] [disk+part]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


* To install partition from FTP, type:  slurppart  serverIP [image] [disk+part]

* To copy disks locally, type:          copydisk disk0 disk1

[disk] defaults to wd0 for first IDE disk, [disk+part] defaults to wd0d 

for the whole first IDE disk. Use wd1 for second IDE disk, sd0 for first 

SCSI disk, etc. Default image for slurpdisk is 'rwd0d.gz'. Run 'dmesg' to 

see boot messages, 'disks' for recognized disks, 'parts <disk>' for list 

of (BSD-type!) partitions on disk '<disk>" (wd0, ...), run any other 

commands without args to see usage message.

Creating the image is as simple as invoking uploaddisk with the IP address of the FTP server. If you wish, include a useful
name for the image; in this example, I'll call the image securitylab.gz:

# uploaddisk 192.168.2.95 securitylab.gz

( cat $tmpfile ; dd progress=1 if=/dev/rwd0d bs=1m | gzip -9 ) | ftp -n

tmpfile:

open 192.168.2.95

user install

bin

put - securitylab.gz

bye

5

4

3

2

1

working...

Connected to 192.168.2.95.

220 genisis FTP server (Version 6.00LS) ready.

331 Password required for install.

Password: 

type_password_here

230 User install logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

200 Type set to I.

remote: securitylab.gz

227 Entering Passive Mode (192,168,2,95,192,1)

150 Opening BINARY mode data connection for 'securitylab.gz'.

...................

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


...................

This will take a while. How long depends upon the size of the drive and the speed of your network. When it is finished,
you'll see a summary:

9787+1 records in

9787+1 records out

10262568960 bytes transferred in 6033.533 secs (1700921 bytes/sec)

226 Transfer complete.

3936397936 bytes sent in 1:40:29 (637.58 KB/s)

221 Goodbye.

#

You can also check out the size of the image on the FTP server:

% du -h ~install/securitylab.gz

3.7G /home/install/securitylab.gz

That's not too bad. It took just over an hour and a half to compress that 9 GB drive to a 3.7 GB image. The g4u web
site also has some hints for further reducing the size of the image or increasing the speed of the transfer.

If you use images on a regular basis, consider upgrading hubs or older switches to 100 MB
switches. This can speed up your transfer rates significantly.

It's also possible to create an image of each particular filesystem, but I find it easier just to image a fairly small drive.
This is because an image of the entire drive includes the master boot record (MBR) or the desired partitioning scheme.

2.12.3 Deploying the Image

When you wish to install the image, use the floppy to boot the system to receive the image. Once you receive the
prompt, specify the name of the image and the IP address of the FTP server:

# slurpdisk 192.168.2.95 securitylab.gz

It doesn't matter what was previously on that drive. Since the MBR is recreated, the new drive will just contain the
imaged data. Once the deployment is finished, simply reboot the system without the floppy.

If the new drive is bigger than the image, you'll have free space left over on the drive that
you can partition with a partitioning utility. Remember, don't try to deploy an image to a
smaller drive!

2.12.4 See Also

 The Ghost For Unix web site (http://www.feyrer.de/g4u/)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 3. The Boot and Login Environments
Introduction

Section 24.  Customize the Default Boot Menu

Section 25.  Protect the Boot Process

Section 26.  Run a Headless System

Section 27.  Log a Headless Server Remotely

Section 28.  Remove the Terminal Login Banner

Section 29.  Protecting Passwords With Blowfish Hashes

Section 30.  Monitor Password Policy Compliance

Section 31.  Create an Effective, Reusable Password Policy

Section 32.  Automate Memorable Password Generation

Section 33.  Use One Time Passwords

Section 34.  Restrict Logins

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
When it comes to configuring systems, many users are reluctant to change the default boot process. Visions of
unbootable systems, inaccessible data, and reinstalls dance in their heads. Yes, it is good to be mindful of such things
as they instill the necessary attention to detail you'll need to use when making changes. However, once you've taken
the necessary precautions, do take advantage of the hacks found in this chapter. Many of them will increase the
security of your system.

This chapter also includes several password hacks. You'll learn how to create an effective password policy and monitor
compliance to that policy. You'll find tools designed to assist you and your users in making good password choices.
You'll also learn how to configure OTP, an excellent choice for when you're on the road and wish to access your
network's resources securely.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 24 Customize the Default Boot Menu

 

Configure a splash screen.

You're not quite sure what you did to give the impression that you don't already have enough to do. Somehow, though,
you were elected at the latest staff meeting to create a jazzy logo that will appear on every user's computer when they
boot up in the morning.

While you may not be able to tell from first glance, the FreeBSD boot menu supports a surprising amount of
customization. Let's start by examining your current menu to see which tools you have to work with.

3.2.1 The Default Boot Menu

Your default boot menu will vary slightly depending upon your version of FreeBSD and whether you chose to install the
boot menu when you installed the system. Let's start with the most vanilla boot prompt and work our way up from
there. In this scenario, you'll see this message as your system boots:

Hit [Enter] to boot immediately, or any other key for command prompt.

Booting [/boot/kernel/kernel] in 10 seconds...

FreeBSD 5.1 introduced a quasi-graphical boot menu that includes a picture of Beastie and the following options:

Welcome to FreeBSD!

  1. Boot FreeBSD [default]

  2. Boot FreeBSD with ACPI disabled

  3. Boot FreeBSD in Safe Mode

  4. Boot FreeBSD in single user mode

  5. Boot FreeBSD with verbose logging

  6. Escape to loader prompt

  7. Reboot

          Select option, [Enter] for default

          or [Space] to pause timer  10

It is possible to get this menu without doing a full install of FreeBSD 5.1. If you're like me and use cvsup [Hack #80]
and buildworld to keep up-to-date, you already have the necessary files but need to do a bit of editing to enable this
boot menu. Even if you already have the boot menu, follow along because we're about to discover some of the logic
behind the FreeBSD boot process. This will be excellent preparation for learning how to hack in your own
customizations.

Let's start by taking a look at the directory that contains all of the boot information. Not surprisingly, it's called /boot:

# ls /boot -F

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls /boot -F

beastie.4th     cdboot*         kernel.old/     loader.rc      support.4th

boot            defaults/       loader*         mbr

boot0           device.hints    loader.4th      modules/

boot1           frames.4th      loader.conf     pxeboot

boot2           kernel/         loader.help     screen.4th

The actual file containing the new menu is beastie.4th. If your sources are out-of-date and you don't have this file, you
can download it from http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/boot/forth/. Be sure to download also the latest
versions of frames.4th and screen.4th.

The /boot directory also contains the loader executable. This application is responsible for finishing the boot process. To
do so, it depends on two configuration files, loader.rc and loader.conf. Let's take a peek at loader.rc:

# more loader.rc

\ Loader.rc

\ $FreeBSD: src/sys/boot/forth/loader.rc,v 1.2 1999/11/24 17:59:37 dcs Exp $

\

\ Includes additional commands

include /boot/loader.4th

\ Reads and processes loader.rc

start

\ Tests for password -- executes autoboot first if a password was defined

check-password

\ Unless set otherwise, autoboot is automatic at this point

We're aiming to be hackers here, not destroyers of systems. A system that refuses to boot
completely is not a very fun system to work on. So, before mucking about with any of the
files in /boot, make sure you have your Emergency Repair Kit ready (see [Hack #71] and
[Hack #72] for more information). Also, take extra care in your editing and be especially
alert for typos before saving your changes.

Lines that begin with a backslash (\) are comments. Additionally, you can add your own comments to lines containing a
command by preceding your comment with a # like this:

include /boot/loader.4th    # do NOT remove this line!

start                       # do NOT remove this line!

Those are good comments to add, as you want to make sure you never remove those two lines—they are necessary to
the workings of your boot loader.

Before editing this file, make a backup copy first:

# cp loader.rc loader.rc.orig

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cp loader.rc loader.rc.orig

Then, to tell your system to use beastie.4th, carefully add the following lines to the bottom of /boot/loader.rc.

\ Load in the boot menu

include /boot/beastie.4th

\ Do the normal initialization and startup

initialize drop

\ Start the boot menu

beastie-start

Triple-check for typos. When you're ready, make sure that you've saved all of your work and check that no one else is
connected to the system. In order to test out the change, you're going to have to reboot:

# reboot

If all went well, you now have a Beastie menu to assist you in your bootup selection. If your boss had something else in
mind other than the ultracool Beastie menu, let him know that have you not yet begun to customize!

3.2.2 Configuring the Splash Screen

Remember the other file I mentioned, loader.conf? Well, you should actually have two files with that name.
/boot/defaults/loader.conf is the system default, and you should never edit this file. Instead, copy it over to
/boot/loader.conf and make your changes there. That way, not only do you have a chance to see what is available for
customization, you also reduce your risk of typos. Each line in this file is commented and additional information can be
gleaned from man loader.conf.

Locate the Splash screen configuration section so you can configure that company logo your boss keeps insisting on. This is
what it looks like by default:

splash_bmp_load="NO"          # Set this to YES for bmp splash screen!

splash_pcx_load="NO"          # Set this to YES for pcx splash screen!

vesa_load="NO"                # Set this to YES to load the vesa module

bitmap_load="NO"              # Set this to YES if you want splash screen!

bitmap_name="splash.bmp"      # Set this to the name of the bmp or pcx file

bitmap_type="splash_image_data" # and place it on the module_path

Obviously, we'll have to change the NO in one of those splash lines to a YES. Which one depends upon your picture
format. The two types of images that can be loaded are bmp or pcx. Depending upon the image you have to work with,
change the appropriate NO to a YES.

If the image also happens to have eight or more bits of color, set vesa_load to YES. If you have no idea what type or size
of picture you're dealing with, use the file command:

# file logo.bmp

logo.bmp:  PC bitmap data, Windows 3.x format, 408 x 167 x 8

This particular logo is a bitmap that is 408 167 pixels at 8 bits of color.

Don't forget to set the path of your bitmap file, and make sure you remember to copy that bitmap to the specified
location:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


location:

bitmap_name="/boot/logo.bmp"

Leave this line as is:

bitmap_type="splash_image_data"     # and place it on the module_path

Finally, enable bitmap loading:

bitmap_load="YES"

When you're editing /boot/loader.conf, keep in mind that you are asking the loader program to load various portions of
the kernel. If you have changed your kernel configuration file [Hack #54], double-check that you haven't stripped
your kernel of a function you're now asking loader to load. For example, before rebooting I should double-check that
splash functionality is still in my kernel. Here, my new kernel configuration file is named NEW:

# grep splash /usr/src/sys/i386/conf/NEW

device        splash        # Splash screen and screen saver support

splash also requires device sc, so ensure that is your console type:

# grep -w sc /usr/src/sys/i386/conf/NEW

device    sc

The -w flag tells grep to treat sc as a word rather than attempt to match any word containing the letters sc.

Once you're happy with your changes, make sure no one is working on the system and then reboot. Your bitmap image
should appear right after you make your choice at the Beastie menu. It will remain on the screen until you press a key.
This behavior has the advantage of displaying your company logo instead of the usual startup messages. However, if
you ever need to see those messages, simply press a key and your bitmap will disappear.

3.2.3 The Terminal Screensaver

As it is set up now, the bitmap will also act as a terminal screensaver that will kick in after five minutes. To change the
screensaver's timeout value, add this line to /etc/rc.conf:

blanktime="60"

The number you choose represents the number of seconds. If you decide you don't like the screensaver functionality,
add this line to /etc/rc.conf:

saver="NO"

Those changes to /etc/rc.conf won't take effect until you reboot the system. To enforce those settings immediately, at
least until the next reboot, use the vidcontrol command:

# vidcontrol -t 60

# vidcontrol -t off

Regardless of your timeout setting, you can still launch the screensaver at will—say, when you leave your terminal—by
pressing the Shift and Pause keys simultaneously. You may just want to do that before you go grab your boss to show
him that jazzy company logo.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.2.4 See Also

man loader

man splash

/usr/share/examples/bootforth/ (bootloader examples for the experienced hacker who understands Forth)

The Boot section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/boot.html)

http://www.baldwin.cx/splash (splash images to get you started)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 25 Protect the Boot Process

 

Thwart unauthorized physical access to a system.

Creating a snazzy boot environment for users is one thing. However, when it comes to booting up servers, your mind
automatically shifts gears to security mode. Your goal is to ensure that only a very precious few on very rare occasions
ever see the boot process on a server. After all, the golden rule in security land is "physical access equals complete
access."

Here's a prime example—consider recovering from an unknown or forgotten root password. Go into the server closet,
reboot that system, and press a key to interrupt the boot process to change the password. A few moments later, the
system continues to boot as normal. This can be a real lifesaver if an admin leaves without divulging the root password.
However, consider the security implications of an unauthorized user gaining physical access to that server: instant root
access!

3.3.1 Limiting Unauthorized Reboots

Let's start by ensuring that regular users can't reboot the system either inadvertently or maliciously. By default, if a
user presses Ctrl-Alt-Delete, the system will clean up and reboot. Typically this isn't an issue for servers, as most
administration is done remotely and the server is safely locked away in a server closet. However, it can wreak havoc on
workstations, especially if the user is used to working in a Windows environment and has become accustomed to
pressing Ctrl-Alt-Delete. It's also worthwhile disabling on a server, as it ensures that a person has to first become the
superuser in order to issue the reboot command.

If you're logged into a remote machine over SSH and try Ctrl-Alt-Delete, it will affect your
own machine, not the remote machine. reboot works well over the network, though.

Disabling this feature requires a kernel rebuild. (See [Hack #54] for detailed instructions.) Add one of these lines to
your kernel configuration file, then rebuild and reinstall the kernel:

options SC_DISABLE_REBOOT  # if using syscons console driver

# or

options PCVT_CTRL_ALT_DEL  # if using pcvt console driver

You're probably thinking, "If I wanted to reboot a system and didn't know the superuser password, I'd simply hit the
power button." Yup! That kernel option certainly won't prevent that, but a carefully thought out CMOS[1] configuration
will decide if and how that system will reboot.

[1] CMOS is battery-powered memory that holds system settings such as the time, date, and system configuration.

At a minimum, the CMOS configuration should allow only one boot device. This is to prevent an intruder from trying to
boot an alternate kernel from a floppy, CD-ROM drive, or other supported boot device. Additionally, you should set a
password for CMOS and record it in a safe place. This will prevent an intruder from simply changing the CMOS
configuration. Keep in mind that this is not fail-proof; you are merely adding layers of inconvenience. A determined
intruder can simply pop open the case and drain the CMOS battery, but that takes time and additional effort.

3.3.2 Password Protecting Single-User Mode

All the magic happens when you interrupt the boot process. This is where you can change the superuser password

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


All the magic happens when you interrupt the boot process. This is where you can change the superuser password
without having to first know the superuser password. This is where you can unload the currently loaded kernel and
replace it with another. This is where you can change any configuration file or binary without worrying about
securelevels or system flags [Hack #56] . This is the reason why you lock up your servers, monitor access to the
server room, and run them headless [Hack #26] .

Fortunately, interrupting the boot process requires keyboard input, meaning the user needs physical access to the
system. What happens when a malicious user does bypass your physical security measures, gaining physical access to
the system? All she has to do is interrupt that boot process, and the system is hers to do as she wishes.

On a system without the graphical boot menu [Hack #24], pressing any key at the timer will pause the boot process.
If the system has the graphical boot menu, pressing 6 to Escape to loader prompt will show the same timer. The timer
option looks like this:

Hit [Enter] to boot immediately, or any other key for command prompt.

Booting [/boot/kernel/kernel] in 10 seconds...

If you press any key other than Enter, you'll receive this:

Type '?' for a list of commands, 'help' for more detailed help.

OK boot -s

Type boot -s to enter single-user mode. The kernel will appear to load normally, but, instead of processing the rc scripts,
this prompt will appear:

Enter full pathname of shell or RETURN for /bin/sh:

#

Once you've finished making your desired changes, simply type exit. The system will continue to boot into multiuser
mode.

Now, how do you prevent a user from doing that? Password protect single-user mode by editing /etc/ttys. Find this line:

# If console is marked "insecure", then init will ask for the root password

# when going to single-user mode.

console none              unknown off secure

Follow the comments and change the word secure to insecure. While that may seem nonintuitive, you're saying the
system is considered to be insecure, thus you want a password. The next time a user attempts single-user mode, the
kernel will load, but the user will receive this prompt instead:

Enter root password, or ^D to go multi-user

Password:

You must not forget the root password if you password protect single-user mode!

3.3.3 Password Protecting loader

Let's return to the timer section of the boot process. A user can type more than boot -s after interrupting the boot
process. In fact, if you press ? at that OK prompt, you'll see that you can unload the current kernel, load another kernel,
load and unload kernel modules, and view and change variables. You can muck about with just about every part of the
boot process that would normally be controlled by the loader command.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


boot process that would normally be controlled by the loader command.

Fortunately, you can also require a user to input a password before receiving that OK prompt. Set the password by
adding this line to /boot/loader.conf:

password=12345

Of course, your password should be harder to guess than 12345. Now the boot process will prompt the user for a
password. Without that password, you cannot enter single-user mode or load or unload kernel modules. You can still
boot; you just cannot interrupt the boot process.

Also, if your CMOS supports it, you can require a password to boot the machine. However, this is often considered to be
a bad thing, especially on a co-located web or mail server.

The password in /boot/loader.conf is in clear text. Although you can't encrypt this
password, you can tighten up its permissions so only the superuser can read it:

# chmod 600 /boot/loader.conf

3.3.4 See Also

man boot

man loader

The Boot Process section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/boot-blocks.html)

Resetting the Root Password in the FreeBSD FAQ (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/faq/admin.html#FORGOT-ROOT-PW)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 26 Run a Headless System

 

For those times when you want to run a system "headless."

Sometimes it is a simple matter of economy. Perhaps you've managed to scrounge up another system, but you don't
have enough monitors, keyboards, or mice to go around. You also don't have the budget to purchase either those or a
KVM switch. Sometimes it is a matter of security. Perhaps you're introducing a PC to a server closet and your physical
security policy prevents server closet devices from being attached to monitors, keyboards, and mice.

Before you can run a system "headless," you need to have an alternative for accessing that system. Once you've
removed input and output peripherals, your entry point into the system is now either through the network card or a
serial port.

Going in through the network card is the easiest and is quite secure if you're using SSH. However, you should also
consider a plan B. What if for some reason the system becomes inaccessible over the network? How do you get into the
system then? Do you really want to gather up a spare monitor, keyboard, and mouse and carry them into the server
closet?

A more attractive plan B may be to purchase a null modem cable as insurance. This is a crossed serial cable that is
designed to go from one computer's serial port to another computer's serial port. This type of cable allows you to
access a system without going through the network, which is a real lifesaver when the system isn't responding to the
network. You can purchase this type of cable at any store that sells networking cables.

Your last consideration is whether the system BIOS will cooperate with your plan. Most newer BIOSes will. Many have a
CMOS option that can be configured to disable "halt on errors." It's always a good idea to check out your available
CMOS options before you start unplugging your peripherals.

3.4.1 Preparing the System

I've just installed a new FreeBSD 5.1 system. Since I didn't have a null modem cable handy, I installed the old-
fashioned way with the monitor and keyboard attached. If you do have a null modem cable and want to experiment
with a headless install, follow the directions in the Handbook section referenced at the end of this hack.

Since I want to access the server over the network, I'll double-check that the NIC is properly configured and that sshd is
running:

% ifconfig ed0

ed0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.2.94 netmask 0xffffff00 broadcast 192.168.2.255

        ether 00:80:ad:79:4e:fd

% sockstat | grep sshd

root     sshd       389   4  tcp4   *:22                  *:*

The ifconfig command is used to verify an interface's configuration; in this example, the interface is ed0. The flags
indicate that this interface is UP and RUNNING. The interface also has an IP address of 192.168.2.94.

The sockstat command is similar to the netstat command, but I find it provides a more intuitive output. For each open
port it will display the owner of the service (root), the name of the service (sshd), the PID (389), the socket file
descriptor (4), the transport (tcp4), the local address (*:22), and the foreign address (*.*).

The PID is useful if you need to send a signal to the process. The local address indicates which interfaces on this system
(in this case, all, or *) are listening on which port number (22). There aren't any current sessions, as the foreign
address section is *.*. If there were a current session, it would show the address of the other system followed by the
socket number being used for the connection.

If for some reason sshd isn't running on your system, add the following line to /etc/rc.conf:

sshd_enable="YES"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sshd_enable="YES"

and double-check that it'll be available at bootup, like so:

# /etc/rc.d/sshd rcvar

#sshd

$sshd_enable=YES

Finally, typing sshd as the superuser should start the daemon. You can prove this by checking that it's listening with
sockstat | grep sshd.

One last test—I'll make sure I can log into the system over the network:

% ssh 192.168.2.94

Password:

%

Now that I knew the system was accessible over the network, it was time for the moment of truth. After halting the
system, I entered its CMOS configuration. I was a little bit worried because there weren't any options dealing with "halt
errors." Undaunted, I left CMOS and powered off and unplugged the monitor, keyboard, and mouse. I then opened the
case and physically removed the video card.

When I powered up, the system responded with a longer than ordinary beep. But after a few seconds, my hard drive
light flashed and I could hear the operating system probing my devices and loading the drivers. After a moment or so, I
tried to ssh into the system and was greeted with my password prompt! Assuming your BIOS is willing to cooperate,
FreeBSD has no problem loading headless.

3.4.2 If the Headless System Becomes Inaccessible

Should your system ever stop responding over the network, you'll be glad you purchased that null modem serial cable.
Connect one end to the COM port of the headless system, and the other end to the COM port of another system that
you can access either directly or over the network.

If that other system is running a Windows operating system, go to Start  Programs  Accessories 
Communications  HyperTerminal (or open hypertrm.exe). You'll need to create a new connection, so choose a
name and icon for it. Under Connect using:, choose the COM port to which the serial cable is attached.

You'll also have to configure the port properties for that COM port. Change the default 2400 bits per second to 9600.
Finally, change hardware flow control to none. Press Enter, and you should be connected to the headless system. If
you're not, double-check that you chose the correct COM port.

If you're attaching from a system running any variant of Unix, you can use either the cu or tip commands to connect via
the serial cable.

To use cu, simply specify your COM port using the line switch -l and a speed of 9600 baud using the speed switch -s. For
example, this syntax allows you to connect to COM2 or cuaa1:

# cu -l /dev/cuaa1 -s 9600

Connected.

You should now be able to see what is happening on your headless system. One of the advantages of connecting
through a serial cable is that you can watch the boot process of the system. You can't do this over a network
connection, because initializing the network occurs toward the end of a successful boot.

Before the network can be initialized, the kernel must successfully load into memory and the necessary hardware must
be probed. If you're having problems booting a system, it is usually due to a missing or corrupt kernel or a hardware
problem.

To disconnect from the cu session, type ~., then press the Enter key. You should receive a Disconnected. message and
receive the prompt of the system you started from.

The tip utility doesn't use line or speed switches. It instead expects you to use one of the finger friendly shortcuts found
at the end of the /etc/remote file. Let's take a look at that section:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


at the end of the /etc/remote file. Let's take a look at that section:

# tail /etc/remote

# Hardwired line

cuaa0b|cua0b:dv=/dev/cuaa0:br#2400:pa=none:

cuaa0c|cua0c:dv=/dev/cuaa0:br#9600:pa=none:

# Finger friendly shortcuts

com1:dv=/dev/cuaa0:br#9600:pa=none:

com2:dv=/dev/cuaa1:br#9600:pa=none:

com3:dv=/dev/cuaa2:br#9600:pa=none:

com4:dv=/dev/cuaa3:br#9600:pa=none:

Notice that there is an entry for each COM port. This means that to connect to COM2, you simply have to type:

# tip com2

connected

You need a little bit more coordination to disconnect, though. Hold down Shift while you press the ~ key. Keep your
finger on Shift as you press the Ctrl key, then the letter D:

# ~^D

[EOT]

3.4.3 See Also

man tip

man cu

The Advanced Installation Guide in the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/install-advanced.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 27 Log a Headless Server Remotely

 

More on headless systems, but this time from the NetBSD perspective.

We've already seen in [Hack #26] that it's important to have an alternative method for connecting to a headless
server. It's also important to be able to receive a headless system's console messages. This hack will show how to
configure both on a NetBSD system.

3.5.1 Enabling a Serial Console

If you have another machine close to your headless server, it may be convenient to enable the serial console so that
you can connect to it using a serial communication program. tip, included in the base system, and minicom , available
through the packages collection, allow you to handle the server as if you were working on a real physical console.

To enable the serial console under NetBSD, simply tell the bootblocks to use the serial port as the console; they will
configure the kernel on the fly to use it instead of the physical screen. You also need kernel support for the serial port
device, which is included in the default GENERIC kernel.

However, changing the bootblocks configuration is a bit tricky because you need write permissions to the raw root
device. As we are talking about a server, I assume the securelevel functionality is enabled; you must temporarily
disable it by adding the options INSECURE line to your kernel. While in the kernel configuration file, double-check that it
includes serial port support. Then, recompile your kernel.

Once you have access to the raw partition, update the bootblocks using the installboot utility. The process depends on
the NetBSD version you are using.

If you are running 2.0 or higher, use the command shown next. Replace the bootxx_ffsv1 file with the one that matches
your root filesystem type; failure to do so will render your system unbootable.

# /usr/sbin/installboot -o console=com0 /dev/rwd0a /usr/mdec/bootxx_ffsv1

If you are running 1.6, use the following command instead:

# /usr/mdec/installboot /usr/mdec/biosboot_com0.sym /dev/rwd0a

When done, rebuild your kernel without the options INSECURE line to reenable securelevel. You can also remove the
console drivers wscons and pccons to reduce the kernel size, though you must keep the serial port driver.

As an alternative to building an insecure kernel, you can boot from a floppy disk to get
direct access to the partition and update the bootblocks as described earlier. The floppies
you used to install the system are fine.

3.5.2 Setting Up the Logging Server

Even if you have configured a serial console, you won't always be connected to it. Therefore, it is very convenient to
redirect important console messages to another machine that has a physical screen connected to it. syslogd lets you do
this.

Start by allowing incoming syslogd connections on the machine that will be receiving log messages. (I call mine
logger.local.) To do this, add the following lines to /etc/rc.conf:

syslogd=YES

syslogd_flags=

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


syslogd_flags=

The first option is not really needed, as syslogd is enabled by default. The second option overrides the secure (s) flag
that otherwise would be passed to the daemon through /etc/defaults/rc.conf. This flag tells syslogd not to listen on a
UDP socket, and in this scenario we want to receive log messages over the network.

Then, restart the daemon:

# /etc/rc.d/syslogd restart

logger.local can now receive incoming syslogd connections from any host. If required, you can restrict this by using the
built-in firewall, ipf.

3.5.3 Setting Up the Headless System

You are ready to configure your headless server to send messages to the logger machine. As an example, we are going
to redirect all messages that are actually sent to the serial console to logger.local.

Open /etc/syslog.conf in your favorite editor. You will notice that the first uncommented line directs messages to
/dev/console. Append the @logger.local string to it, separated by a comma. After the changes, you should end up with
something like:

*.err;kern.*;auth.notice;authpriv.none;mail.crit  /dev/console,@logger.local

Repeat for any other categories you want to redirect. When done, restart syslogd as shown earlier.

3.5.4 Shutting Down the Server Using wsmoused

The next two sections of this hack require NetBSD 2.0 and above.

If you are running a headless system at home, you may want to shut it down at night. You could do this by sshing into
the server and executing shutdown manually, but this requires a second system. However, since you have physical
access to the headless system, you can simply use wsmoused, which will let you execute two or three commands from a
mouse—one for each mouse button.

wsmoused's "action mode" lets you assign commands to mouse buttons. Here's a sample configuration file to shut down
and reboot the machine, which you can copy to /etc/wsmoused.conf:

device = /dev/wsmoused;

modes = action;

mode action {

        button_0_down = "shutdown -p now";

        button_2_down = "shutdown -r now";

}

Here I've mapped the left mouse button, 0, to the command that will halt the system and the right mouse button, 2, to
the command that will reboot the system. (The middle mouse button is 1.) Since I don't plan on using this mouse for its
usual input functions, such as copy and paste, this is a really convenient way to power off the system quickly and
safely.

Enable the startup of wsmoused at boot time:

# echo "wsmoused=YES" >> /etc/rc.conf

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# echo "wsmoused=YES" >> /etc/rc.conf

If you have a dial-up connection, you could use a similar configuration to connect and
disconnect the link.

3.5.5 Beep on Halt

Some headless servers don't support APM or ACP, so the kernel can't power them down automatically. The i386
architecture has another option: beep on halt. It beeps the speaker multiple times when it is safe to power off the
machine after a successful halt.

To enable this feature, add the following line to your kernel configuration file and rebuild it:

options BEEP_ONHALT

In case you do not like the default tone, you have several other options. Here they're shown with their default values:

options BEEP_ONHALT_COUNT=3    # Times to beep

options BEEP_ONHALT_PITCH=1500 # Default frequency (in Hz)

options BEEP_ONHALT_PERIOD=250 # Default duration (in msecs)

3.5.6 See Also

man 8 installboot

man syslogd

man wsmoused

man shutdown

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 28 Remove the Terminal Login Banner

 

Give users the information you want them to receive when they log in.

The default login process on a FreeBSD system produces a fair bit of information. The terminal message before the login
prompt clearly indicates that the machine is a FreeBSD system. After logging in, a user will receive a copyright message
and a Message of the Day (or motd), both of which contain many references to FreeBSD.

This may or may not be a good thing, depending upon the security requirements of your network. Your organization
may also require you to provide legal information regarding network access or perhaps a banner touting the benefits of
your corporation. Fortunately, a few simple hacks are all that stand between the defaults and your network's particular
requirements.

3.6.1 Changing the Copyright Display

Let's start with the copyright information. That's this part of the default login process:

Copyright (c) 1992-2003 The FreeBSD Project.

Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.

To prevent users from seeing this information, simply:

# touch /etc/COPYRIGHT

3.6.2 Changing the Message of the Day

Technically, you could add your own information to /etc/COPYRIGHT instead of leaving it as an empty file. However, it
is common practice to put your information in /etc/motd instead. The default /etc/motd contains very useful information
to the new user, but it does get rather old after a few hundred logins.

You can edit /etc/motd to say whatever suits your purposes—anything from your favorite sci-fi excerpt to all the nasty
things that will happen to someone if they continue to try to log into your system. Here's a very simple example:

# more /etc/motd

*********************************************************

*****            Authorized users only!!            *****

*********************************************************

You'll note that after you customize your motd, users will still see this text prepended to it:

FreeBSD 5.1-RELEASE (GENERIC) #0: Thu Jun 5 02:55:42 GMT 2003

If you don't want to advertise your operating system version and kernel information, you'll need one more hack. Add
this line to /etc/rc.conf:

update_motd="NO"

If you're using FreeBSD 5.x, you no longer have to reboot or go into single-user mode to initialize a change to
/etc/rc.conf. Instead, you can use one of the many scripts available in /etc/rc.d. Let's see if there's a script that deals

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/rc.conf. Instead, you can use one of the many scripts available in /etc/rc.d. Let's see if there's a script that deals
with motd:

# ls -F /etc/rc.d | grep motd

motd*

Excellent. Let's see what syntax that command expects:

# /etc/rc.d/motd

Usage: /etc/rc.d/motd [fast|force](start|stop|restart|rcvar)

Parameters in square brackets are optional, whereas parameters in parentheses are mandatory. Notice each option is
separated by the or symbol (|), meaning you just pick one out of the list. In our case, we want to use the rcvar
parameter. This will tell the motd script to reread its setting in /etc/rc.conf:

# /etc/rc.d/motd rcvar

# motd

$update_motd=NO

OpenBSD users, read man motd and /etc/rc (search for motd) to understand how the
system constructs the banner. Otherwise, it'll update when you least expect it!

3.6.3 Changing the Login Prompt

Finally, let's change the text that first appears at the login prompt. This requires an edit to /etc/gettytab. This is a fairly
important file as it controls access to your terminals, which is how users access the system. Before editing this file,
always make a backup copy first:

# cp /etc/gettytab /etc/gettytab.orig

Next, open up /etc/gettytab in your favorite text editor and look for this line:

default:\

:cb:ce:ck:lc:fd#1000:im=\r\n %s/%m (%h) (%t) \r\n\r\n:sp#1200:\

See the part in bold? That's the part you can replace with what you'd like the world to see when they receive their login
prompt. Right now, they see this:

FreeBSD/i386 (host.domain.com) (ttyv1)

That's because that default string contains the variables in Table 3-1.

Table 3-1. Login prompt variables
Variable Meaning

%s Operating system

%m Architecture

%h Hostname

%t tty name

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can very carefully change those characters to something else. For example, mine looks like this:

:cb:ce:ck:lc:fd#1000:im=\r\n I'm a node in Cyberspace. Who are you? \

\r\n\r\n:sp#1200:\

Again, I've put my changes in bold for emphasis. Carefully double-check that you didn't lose any carriage return (\r) or
newline (\n) characters along the way, then save your change.

3.6.4 Testing Your Changes

It's important to test your change immediately at a different terminal to ensure you can still log into your system. This
way, if you did make a typo that prevents logins, you can return to your previous terminal and fix it.

I'll press Alt-F4 to go to a terminal with a login prompt. I'll probably still see the old terminal message, so I'll log in, log
out, then log in again:

login:

Password:

% exit

logout

I'm a node in cyberspace. Who are you?

login:

3.6.5 See Also

man motd

man gettytab

The /etc/rc.d section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/configtuning-rcng.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 29 Protecting Passwords With Blowfish Hashes

 

Take these simple steps to thwart password crackers.

All good administrators know that passwords can be a weak link in the security chain. A malicious and determined user
armed with a password cracker could conceivably guess enough of your network's passwords to access unauthorized
resources.

3.7.1 Protecting System Passwords in General

Fortunately, you can make a password cracker's life very difficult in several ways. First, educate your users to choose
complex, hard-to-guess passwords that are meaningful enough for them to remember. This will thwart dictionary
password crackers [Hack #30], which use lists of dictionary and easy-to-guess words.

Second, be aware of who has superuser privileges and who has the right to backup /etc. This directory contains the two
password databases that are required to run a brute-force password cracker. As the name implies, this type of cracker
will eventually guess every password in your password databases as it systematically tries every possible keyboard
combination. Your best protection from this type of cracker is to prevent access to those password databases. This
includes locking up your backup tapes and monitoring their access.

It is also a good idea to increase the amount of time it would take a brute-force cracker to crack a password database.
FreeBSD, like most Unix systems, adds a magic bit of randomness—known as a salt—to the password when it is stored
in the password database. The upshot is that a password cracker may have to try up to 4,096 different combinations for
each and every password it tries to guess.

Using a strong algorithm to protect your passwords can also slow down a brute-force cracker. FreeBSD supports a hard-
to-crack algorithm known as Blowfish. One of the first things I do after a FreeBSD install is to configure the password
database to use Blowfish. While it is easier to do this before you create your users, it is still worth your while to
implement it after you've created your user accounts.

3.7.2 Protecting System Passwords with Blowfish

To use Blowfish, start by opening up /etc/login.conf in your favorite editor. Look for this line:

:passwd_format=md5:\

Carefully edit it so it looks like this:

:passwd_format=blf:\

Check for typos before saving your change.

You may have noticed this comment when you modified /etc/login.conf:

# Remember to rebuild the database after each change to this file:

#

#        cap_mkdb /etc/login.conf

#

Let's take a closer look at what we're being asked to do. According to that comment, login.conf is more than a
configuration file, it is a database. Not only that, it is a capability database, a database that supports different
capabilities. That is the reason behind the weird syntax within login.conf. Whenever you edit a capability database, you
have to use the cap_mkdb command to integrate your changes within the database.

So, follow the directions:

# cap_mkdb /etc/login.conf

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cap_mkdb /etc/login.conf

3.7.2.1 Converting existing passwords

If you have any existing users, you need to convert their passwords from MD5 to Blowfish. This is why it's a good idea
to make the change before you create your users.

If you've already created users, it's back to the password database to find all of the active accounts. Inactive accounts
—accounts that don't allow logins—have the * character instead of an encrypted password. Since we want to find all of
the lines in the password database that do not contain an asterisk, we need an inverted grep:

# grep -v '*' /etc/master.passwd

root:$1$ywXbyPT/$GC8tXN91c.lsKRpLZori61:0:0::0:0:Charlie &:/root:/bin/csh

dru:$1$GFm1nh6I$jh3v4I.QNf450ARgltZU5.:1008:0::0:0:User &:/home/dru:/bin/csh

Well, that worked, but we could make the output look much prettier:

# grep -v '*' /etc/master.passwd | cut -d ':' -f 1

root

dru

Let's pick apart that command syntax. grep -v creates a reverse filter. In effect, it says, "Show me the lines in
/etc/master.passwd that do not contain an *." Since those lines are long and contain much more than just the
username, I piped the output to the cut utility to literally cut out the portions I don't need to see. Notice that the
usernames are the very first thing in each line, and they are always followed by the : field separator. -d tells cut to
consider the colon character, not the tab character, as the separator. -f 1 tells cut that I'm interested in the very first
field of that line.

It looks like my particular system has two active accounts: root and dru. Notice in the original output the long sequence
of characters that starts with $1 and ends with :. No, my users' passwords aren't quite that complex. Rather, you're
seeing the password after it's been encrypted by the MD5 algorithm. That $1 means MD5. It'll be $2 after we switch to
Blowfish encryption. (Be aware that you can't edit the file directly; the entire password must be changed.)

I'll now change those two passwords:

# passwd dru

Changing local password for dru

New Password:

Retype New Password:

# passwd

Changing local password for root

New Password:

Retype New Password:

Note that the superuser can change any user's password by specifying the appropriate username. If you don't specify a
name, you will instead change the root password.

When you're finished, repeat the original grep -v command and double-check that all of the encrypted passwords now
start with $2.

Don't forget to tell your users that you have changed their passwords! Also caution them
to use passwd to reset their password to a value known only to themselves.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.7.2.2 Forcing new passwords to use Blowfish

Finally, configure the adduser utility to use Blowfish whenever you create a new user by editing /etc/auth.conf. Look for
this line:

# crypt_default = md5 des

and carefully change it to:

crypt_default = blf

Once you've saved your change, test it by creating a new user. The easiest way to do this is to type adduser and follow
the prompts.

3.7.3 See Also

man passwd

man adduser

Blowfish information by Bruce Schneier, the creator of the algorithm, at http://www.schneier.com/blowfish.html

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 30 Monitor Password Policy Compliance

 

When to use a password cracker utility.

Now that you've tightened up your password policy to thwart password crackers, it's time to learn how to use a
password cracker to monitor the effectiveness of that password policy.

You're probably thinking, "Hey, wait a minute! Isn't that some sort of oxymoron? An administrator cracking
passwords?" Well, it depends upon the type of password cracker you plan on using.

A brute-force password cracker such as John the ripper or slurpie will systematically try every possible keyboard
combination until it has cracked every password in the password database. Does an administrator need to know every
password in his network? Definitely not.

However, an administrator does need to know if her users are choosing easy-to-guess passwords, especially if she's
responsible for enforcing compliance to the network's password policy. A properly tweaked dictionary password cracker
such as crack is an effective way to monitor that compliance.

It is important that a network's security policy indicates in writing who runs the dictionary cracker, when it is run, and
how the results are handled. For example, if the password policy forces users to change their passwords every 30 days,
the following day is an excellent time for the delegated administrator to run the cracker. Ideally, the cracker will return
no results. This means all users chose a strong password. Should the cracker find some weak passwords, the security
policy should clearly outline the procedure used to ensure that noncompliant users change their passwords to ones that
are harder to guess.

3.8.1 Installing and Using crack

Let's take a look at the most commonly used dictionary password cracker used on Unix systems, crack. You'll have to be
the superuser for this entire hack because, fortunately, only the superuser has permission to crack the passwd database.
crack should build on any Unix system; I'll demonstrate on FreeBSD:

# cd /usr/ports/security/crack

# make install clean

On my system, this creates the /usr/local/crack directory which only the superuser can access. I need to cd into that
directory in order to crack passwords. I'll start with a simple crack, then show you how to tweak this utility to serve
your particular network.

# cd /usr/local/crack

# ./Crack -fmt bsd /etc/master.passwd

Crack is a Bourne shell script contained within this directory, so you'll have to run it with the command ./Crack. Use the -
fmt switch to indicate the type of system; in my case, it is bsd. Finally, pass the path of the database containing the
actual password hashes. On my system, this is the BSD shadow password database at /etc/master.passwd. The
command and output on my test system is:

# ./Crack -fmt bsd /etc/master.passwd

Crack 5.0a: The Password Cracker.

(c) Alec Muffett, 1991, 1992, 1993, 1994, 1995, 1996

System: FreeBSD genisis 5.1-RELEASE FreeBSD 5.1-RELEASE #7: \

    Tue Jul 29 09:54:11 EDT 2003 dru@genisis:/usr/obj/usr/src/sys/NEW i386

Home: /usr/local/crack

Invoked: ./Crack -fmt bsd /etc/master.passwd

Stamp: freebsd-5-i386_

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Crack: making utilities in run/bin/freebsd-5-i386_

find . -name "*~" -print | xargs -n50 rm -f

( cd src; for dir in * ; do ( cd $dir ; make clean ) ; done )

rm -f dawglib.o debug.o rules.o stringlib.o *~

/bin/rm -f *.o tags core rpw destest des speed libdes.a .nfs* *.old \

    *.bak destest rpw des speed

rm -f *.o *~

`../../run/bin/freebsd-5-i386_/libc5.a' is up to date.

all made in util

Crack: The dictionaries seem up to date...

Crack: Sorting out and merging feedback, please be patient...

Crack: Merging password files...

Crack: Creating gecos-derived dictionaries

mkgecosd: making non-permuted words dictionary

mkgecosd: making permuted words dictionary

Crack: launching: cracker -kill run/Kgenisis.27478   

Done

Note that the word Done is a bit of a misnomer. The gecos test is finished, but the actual dictionary attack has just
begun and is quietly perking along in the background:

# ps -acux | grep cracker

root      14013 97.0  2.8  9448 8916  v5  R    10:32AM   4:17.68 cracker

3.8.1.1 Monitoring the results

Let's take a look at my current results, then analyze what is happening here:

# ./Reporter -quiet

---- passwords cracked as of Mon Nov 17 10:33:18 EST 2003 ----

1069099872:Guessed test [test]  User & [/etc/master.passwd /bin/csh]

---- done ----

The Reporter script, which is also found in the /usr/local/crack/ directory, sends the current results of the dictionary
crack to standard output. I ran Reporter shortly after Crack had returned my prompt. Notice that it found that the
password for the test account was test.

The reason why it found this password so quickly is because of the gecos field in /etc/master.passwd. If you're familiar
with man master.passwd, you know that the gecos field contains the user's full name, possibly followed by her extension,
office phone number, and home phone number. This means that if a user uses any of those values for a password, her
password can be cracked within a second or two.

The actual dictionary attack will take a while to run. How long will depend upon the speed of your CPU. However, you
should expect crack to run for a good portion of a business day.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


should expect crack to run for a good portion of a business day.

Why so long? If you've ever had the opportunity to run a dictionary cracker on a non-Unix system, you may have had
your results back in well under an hour. The answer is that BSD password hashes are protected by a salt. In simple
terms, the salt adds random characters to a user's password before the encryption algorithm creates the hash. Those
are encrypted hashes, not the actual passwords, stored in /etc/master.passwd. In order for the password cracker to
bypass the salt, it has to try many variations of the same word before it can determine if that word is indeed the user's
password.

You may want to write a script that will tell you when Crack is finished. Here is a simple example:

#!/bin/sh

#script to see if Crack is still running

#and to display current report

while ps -acux | grep -l "cracker" > /dev/null

do sleep 600

    echo "Still running. Here's the latest report:"

    cd /usr/local/crack && ./Reporter -quiet

done

echo "Execution is complete."

This script uses a simple while loop that runs every ten minutes (600 seconds). If cracker still shows up as a running
process in the ps output, the ./Reporter -quiet script will run. Otherwise, the script ends, printing Execution is complete.

If you'd like to receive a pop-up message showing the results of the script, see [Hack
#100] .

3.8.1.2 Cleanup

Your security policy should also provide guidelines on how to clean up after crack finishes. The program stores several
working files in the run subdirectory. They will all have a numeric extension:

# ls run

D.boot.69783      Egenisis.69783    bin/

Dgenisis.69783    Kgenisis.69783    dict/

When you remove those files, ensure you leave the subdirectories intact:

# cd run

# rm *.69783

# ls

bin/    dict/

3.8.2 Customizing Password Dictionaries

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once you implement regular dictionary cracks, you'll find that after a few months, your users will start to consistently
choose strong passwords. However, bear in mind that a dictionary cracker is only as good as its dictionaries. The
dictionaries that come with crack are a good start if your users speak English.

Let's start by seeing what dictionaries crack included:

# ls dict/1/

abbr.dwg                        list.dwg

assurnames.dwg                  male-names.dwg

asteroids.dwg                   movies.dwg

bad_pws.dat.dwg                 myths-legends.dwg

biology.dwg                     names.french.dwg

cartoon.dwg                     numbers.dwg

chars.dwg                       other-names.dwg

common-passwords.txt.dwg        paradise.lost.dwg

crl.words.dwg                   phrases.dwg

dosref.dwg                      places.dwg

family-names.dwg                python.dwg

famous.dwg                      roget.words.dwg

fast-names.dwg                  sf.dwg

female-names.dwg                sports.dwg

given-names.dwg                 trek.dwg

jargon.dwg                      unix.dict.dwg

junk.dwg                        yiddish.dwg

lcarrol.dwg

Notice that each built-in dictionary ends with a dwg extension. However, crack understands any dictionary or word list,
even if it is compressed (i.e., its filename ends in either .Z or .gz).

If you use the file command on the dwg files, you'll find that each file is ASCII text. Mind you, the contents don't look
like the average dictionary file:

# head abbr.dwg

#!xdawg

02bon2b

04sa7ya

0bbroyg

6bvgw

0egbdf

0fsasya

0gok

0oottfogvh

0roygbiv

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Don't worry, those aren't the actual words. Instead, the numbers sort the words by likelihood. That is, the words don't
appear in alphabetical order, but rather in the order they're likely to appear as a password. For example, the word
password is much more likely to be used as a password than pasul.

If your users speak other languages, consider downloading additional dictionaries. Start at the Cerias site mentioned at
the end of this hack. It's well worth your while to browse through the site's dictionaries, local, and wordlists
subdirectories looking for dictionaries that suit your particular needs.

Let's go there now and check out the possible word lists:

# ftp ftp.cerias.purdue.edu

Connected to ftp.cerias.purdue.edu.

<snip long banner>

Name (ftp.cerias.purdue.edu:dru): anonymous

331 Guest login ok, send your complete e-mail address as password.

230 Logged in anonymously.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd pub/dict/wordlists

250 "/pub/dict/wordlists" is new cwd.

ftp> ls

227 Entering Passive Mode (128,10,252,10,169,45)

150 Data connection accepted from 1.2.3.4:49460; transfer starting.

-rw-rw-r--   1 ftpuser  ftpusers      1971 Jun 14  2000 README.gz

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 aussie

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 chinese

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 computer

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 danish

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 dictionaries

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 dutch

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 french

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 german

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 italian

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 japanese

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 literature

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 movieTV

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 names

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 norwegian

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 places

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 random

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 religion

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 science

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 spanish

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 swedish

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 swedish

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 yiddish

226 Listing completed.

My network includes several French-speaking users, so I'll take a look at the French word list:

ftp> cd french 

250 "/pub/dict/wordlists/french" is new cwd.

ftp> ls 

227 Entering Passive Mode (128,10,252,10,175,158)

150 Data connection accepted from 1.2.3.4:49530; transfer starting.

-rw-rw-r--   1 ftpuser  ftpusers    332537 Jun 14  2000 dico.gz

226 Listing completed.

Before downloading the word list, I'll use the local change directory command to ensure I'm downloading the file to the
correct directory on my system:

ftp> lcd /usr/local/crack/dict/1

Local directory now /usr/local/crack/dict/1

ftp> get dico.gz 

local: dico.gz remote: dico.gz

227 Entering Passive Mode (128,10,252,10,175,160)

150 Data connection accepted from 1.2.3.4:49531; 

    transfer starting for dico.gz (332537 bytes).

226 Transfer completed.

332537 bytes received in 00:02 (142.24 KB/s)

ftp> bye 

221 Goodbye.

Now that I have a new word list in /usr/local/crack/dict/1/, I'll run the following command:

# cd /usr/local/crack

# make rmdict 

# rm -rf run/dict

That's it. The next time I run ./Crack, I'll see the following message appended to the usual Crack message:

Crack: making dictionary groups, please be patient...

doing group 1...

doing group 2...

doing group 3...

mkdictgrps: uniq'ing dictionary groups...

group 1 and 2...

group 1 and 3...

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


group 1 and 3...

group 2 and 3...

mkdictgrps: compressing dictionary groups...

Crack: Created new dictionaries...

Crack: Sorting out and merging feedback, please be patient...

Crack: Merging password files...

Crack: Creating gecos-derived dictionaries

mkgecosd: making non-permuted words dictionary

mkgecosd: making permuted words dictionary

Crack: launching: cracker -kill run/Kgenisis.55941   

Done

This indicates that crack has found the new dictionary and is merging it into its logic.

3.8.3 See Also

The crack web site (http://www.crypticide.org/users/alecm)

The Cerias FTP site containing cracker dictionaries (ftp://ftp.cerias.purdue.edu/pub/dict/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 31 Create an Effective, Reusable Password Policy

 

Traditionally, it has been difficult for a Unix administrator to create and enforce a reusable password
policy. Fortunately, PAM addresses this.

If you're using FreeBSD 5.0 or higher, your system has a PAM (Pluggable Authentication Modules) module specifically
designed to assist in the creation and enforcement of a reusable password policy. If you're running a different version of
BSD, see the end of this hack for other sources for this module.

3.9.1 Introducing pam_passwdqc

Before using this module, spend some time reading man pam_passwdqc, as it thoroughly covers each option and its
possible values. Any values contained within parentheses are defaults. As you read through this manpage, compare
those defaults with your own network's security policy and make note of any values that will require a change.

This PAM module is fairly comprehensive, allowing you to enable many of the features expected in a password policy.
Here's an overview of the configurable features:

Minimum and maximum password lengths

Force a mix of digits, lowercase, uppercase, symbols, and non-ASCII characters

Minimum number of words in a passphrase

Minimum number of characters to consider as a string (dictionary word)

Ability to search for strings that are words written backwards, or are words written in a mix of upper- and
lowercase

Check new password for similar string contained within old password

Suggest a randomly generated password

Setting to either warn about weak passwords or enforce strong passwords

How many times a user is allowed to retry setting a password if he fails to choose a strong password

3.9.2 Enabling pam_passwdqc

Once you've finished perusing the manpage, you should have a list of values that you'll want to modify to reflect your
network's security policy. Enabling pam_passwdqc is simply a matter of adding or editing a line so that it contains your
customized options.

On FreeBSD 4.x, add that line to the password section of /etc/pam.conf. On 5.x, edit instead the password section of
/etc/pam.d/passwd. Let's look at that file on a FreeBSD 5.1 system:

# more /etc/pam.d/passwd

# $FreeBSD: src/etc/pam.d/passwd,v 1.1 2002/04/15 03:01:31 des Exp $

# PAM configuration for the "passwd" service

# passwd(1) does not use the auth, account or session services.

# password

#password        requisite        pam_passwdqc.so        enforce=users

password        required        pam_unix.so        no_warn try_first_pass

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


password        required        pam_unix.so        no_warn try_first_pass

Obviously, you'll need to uncomment the pam_passwdqc.so line to enable the module. Note the one included option,
enforce=users, overrides the default setting of enforce=everyone.

Let's see what happens when I remove that remark and then try to use passwd as a regular user named test. Even
though passwords aren't echoed to the terminal, I've shown in this output the passwords that I typed in:

% passwd 

Changing local password for test

Old Password: test

You can now choose the new password or passphrase.

A valid password should be a mix of upper and lower case letters,

digits and other characters.  You can use an 8 character long

password with characters from at least 3 of these 4 classes, or

a 7 character long password containing characters from all the

classes.  Characters that form a common pattern are discarded by

the check.

A passphrase should be of at least 3 words, 12 to 40 characters

long and contain enough different characters.

Alternatively, if noone else can see your terminal now, you can

pick this as your password: "inward!smell:Milan".

As you can see, the password policy is provided, along with an example of a strong password that meets the policy
requirements. Except for that one option, this particular policy includes the default settings mentioned in man
pam_passwdqc.

Enter new password: test

Weak password: is the same as the old one.

Try again.

Here I tried to use the same password. Even worse, it doesn't meet any of the password policy's requirements.
However, pam_passwdqc rejected the password, gave me another try, and patiently repeated the password policy along
with another password suggestion:

You can now choose the new password or passphrase.

A valid password should be a mix of upper and lower case letters,

digits and other characters.  You can use an 8 character long

password with characters from at least 3 of these 4 classes, or

a 7 character long password containing characters from all the

classes.  Characters that form a common pattern are discarded by

the check.

A passphrase should be of at least 3 words, 12 to 40 characters

long and contain enough different characters.

Alternatively, if noone else can see your terminal now, you can

pick this as your password: "Sony,seed,cereal".

Enter new password: test1 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Enter new password: test1 

Weak password: too short.

Try again.

Well, I tried another variation of my old password, but it is still too short. Here we go again:

You can now choose the new password or passphrase.

A valid password should be a mix of upper and lower case letters,

digits and other characters.  You can use an 8 character long

password with characters from at least 3 of these 4 classes, or

a 7 character long password containing characters from all the

classes.  Characters that form a common pattern are discarded by

the check.

A passphrase should be of at least 3 words, 12 to 40 characters

long and contain enough different characters.

Alternatively, if noone else can see your terminal now, you can

pick this as your password: "torso&lotus_burly".

Enter new password: test1234

Weak password: not enough different characters or classes for this length.

passwd: pam_chauthtok( ): authentication token failure

%

Looks like the default retry count is three, as I was booted out after three tries. This time the password was long
enough at eight characters, but only contained numbers and lowercase characters. The instructions clearly state that an
eight-character password needs a mix of three different types of characters.

It's important to note that if the superuser changes a user's password, she will receive the same error messages if the
password does not comply with the policy. However, after the error message, the superuser will be asked to retype that
poor password and it will be accepted. Why? Because of that enforce=users option. If you remove that option, it will
default back to enforce=everyone, which requires even the superuser to choose good passwords. The method you choose
will depend upon the security requirements of your password policy.

3.9.3 Adding Your Own Options

It's easy to change the default settings. Simply add your option to the end of the pam_passwdqc.so line. Then, test
your change as a regular user to see what effect it has. You may want to create a test account for just this purpose.

For example, to force users to choose a password that is 10 characters long and a mix of uppercase letters, lowercase
letters, numbers, and symbols, set N4 to 10 and disable the other options. Don't know what N4 is? Better reread that
section of the manpage before changing this parameter.

password  requisite  pam_passwdqc.so \

min=disabled,disabled,disabled,disabled,10

Or, to force users to use the randomly picked password:

password        requisite        pam_passwdqc.so        random=42,only

Here I've used the default random value of 42. You can experiment by increasing that number until the randomly
generated passwords meet your strength requirements. Settings much higher than 70 may produce error messages;
this is what the end user will see:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


this is what the end user will see:

System configuration error. Please contact your administrator.

passwd: pam_chauthtok(1): authentication token failure

The superuser will see:

This system is configured to use randomly generated passwords

only, but the attempt to generate a password has failed. This

could happen for a number of reasons: you could have requested

an impossible password length, or the access to kernel random

number pool could have failed.

passwd: pam_chauthtok(1): authentication token failure

That's your hint to choose a lower random number.

Once you've settled on a reasonable number, this is what users will see when they change their passwords:

% passwd

Changing local password for test

Old Password:

You can now choose the new password.

This system is configured to permit randomly generated passwords

only.  If noone else can see your terminal now, you can pick this

as your password: "lounge-mummy:cellar-dozen".  Otherwise, come back later.

Enter new password:

A user who hates that password can retry a few times to see other possibilities. Pressing Enter will generate another
random password. Typing in anything other than the randomly generated password will cause the password change to
fail.

3.9.4 Additional Configuration

You may have noticed that pam_passwdqc does not control how often a user is forced to change his password. Set this
instead in /etc/login.conf. Besides the actual expiry period, you can also change the amount of advance warning users
will receive about an impending password change.

If you make any changes to /etc/login.conf, test your changes by immediately logging in at another terminal. A typo in
this file can prevent logins to a system!

For example, adding these lines to the default:\ section will set a password expiry of 30 days, giving 5 days warning:

:warnpassword=5d:\

:passwordtime=30d:\

If one of those entries happens to be the final entry in the default:\ section, don't include
the trailing \ in that last entry.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Don't forget to rebuild the database once you've saved your changes:

# cap_mkdb /etc/login.conf

3.9.5 See Also

man pam_passwdqc

man login.conf

The Pluggable Password Checking web site (http://www.openwall.com/passwdqc/README.shtml)

The PAM Essentials section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/pam/index.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 32 Automate Memorable Password Generation

 

Make it easier for your users to choose good passwords.

It doesn't matter whether you're an administrator responsible for enforcing a password policy or an end user trying to
comply with said policy. You're struggling against human nature when you ask users to choose—and remember—hard-
to-guess passwords. Passwords that aren't random are easy to guess, and passwords that are too random tend to
manifest themselves on sticky notes under users' keyboards or in their top drawers.

Wouldn't it be great if you could somehow offer users random but memorable password choices? There's a standard
designed for just this purpose: APG, the Automated Password Generator.

3.10.1 Installing and Using apg

If you're running FreeBSD, you can install apg from the ports collection:

# cd /usr/ports/security/apg

# make install clean

Once the port is installed, any user can run apg to generate a list of random, but pronounceable and memorable,
passwords:

% apg -q -m 10 -x 10 -M NC -n 10

plerOcGot5 (pler-Oc-Got-FIVE)

fobEbpigh6 (fob-Eb-pigh-SIX)

Ekjigyerj7 (Ek-jig-yerj-SEVEN)

CaujIvOwk8 (Cauj-Iv-Owk-EIGHT)

yenViapag0 (yen-Viap-ag-ZERO)

Fiwioshev3 (Fi-wi-osh-ev-THREE)

Twomitvac4 (Twom-it-vac-FOUR)

varbidCyd2 (varb-id-Cyd-TWO)

KlepezHap0 (Klep-ez-Hap-ZERO)

Naccudhav8 (Nac-cud-hav-EIGHT)

Notice that each password comes with a pronunciation guide, since it's easier to remember something you can
pronounce.

Also, note that syntax. We're definitely going to have to do something about all of those switches! But first, let's take a
look at Section 3.2 and make sure we understand them.

Table 3-2. apg switches
Option Explanation

-q Suppresses warnings (think quiet), which will be useful when we write a script

-m 10 Sets the minimum password length to 10 characters

-x 10 Sets the maximum password length to 10 characters

-M NC Requires numerals and capitals

-n 10 Generates 10 password choices

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


While this utility is very handy, we can definitely hack in our own improvements. For starters, users aren't going to use
a utility that requires a line's worth of switches. Second, we don't want to install this utility on every system in our
network. Instead, let's work out a CGI script. That way users can access the script from their web browsers.

3.10.2 Improving apg

First, let's sort out all of the switches we'll use in the script. We need something to add a punctuation character in the
middle, or we won't meet Air Force password regulations. The simplest fix is to run apg twice with smaller password
requirements, concatenating the results. The first run, without punctuation characters, looks like this:

% apg -q -m 4 -x 4 -M NC -E Ol -n 10

Dij6 (Dij-SIX)

Voj6 (Voj-SIX)

Pam0 (Pam-ZERO)

Dev9 (Dev-NINE)

Non6 (Non-SIX)

Eyd7 (Eyd-SEVEN)

Vig9 (Vig-NINE)

Not8 (Not-EIGHT)

Nog2 (Nog-TWO)

Von9 (Von-NINE)

Here I've reduced the minimum and maximum password length to four characters. I've also added the option -E Ol to
exclude capital "oh" and small "ell" from passwords, because they're easily confused with the digits zero and one.

The second run includes the -S option, which makes the password generator use special characters:

% apg -q -m 4 -x 4 -M S -E Ol -n 10

orc) (orc-RIGHT_PARENTHESIS)

tof| (tof-VERTICAL_BAR)

fed^ (fed-CIRCUMFLEX)

gos@ (gos-AT_SIGN)

sig& (sig-AMPERSAND)

eif) (eif-RIGHT_PARENTHESIS)

eds{ (eds-LEFT_BRACE)

lek> (lek-GREATER_THAN)

tij: (tij-COLON)

rot] (rot-RIGHT_BRACKET)

Now for a CGI script to paste the results together. I've numbered each line of the script for explanation purposes. Don't
include line numbers when you create your own script.

This script is written in the Korn shell, but can be modified for any shell. To run as is, install the Korn shell from
/usr/ports/shells/ksh93.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


1  #!/bin/ksh

2  # run apg twice, concatenate results.

3  # exclude most special characters requiring shift key,

4  # capital "oh" (looks like zero),

5  # lowercase "ell" (looks like digit "one")

6  PATH=/bin:/usr/bin:/usr/local/bin; export PATH

7  umask 077

8  a=/tmp/apg.$RANDOM

9  b=/tmp/apg.$RANDOM

10  cat << EOF

11  Content-type: text/html

12  <!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">

13  <html>

14    <head>

15      <title>Help generating a new password</title>

16    </head>

17    <body>

18      <h3>Help generating a new password</h3>

19      <blockquote>

20        These passwords should be reasonably safe.

21        Feel free to use one, or reload the page

22        for a new batch.</p>

23        <blockquote> <pre> <font size="+1">

24  EOF

25  apg -q -m 4 -x 4 -M NC -E '!@#$%^&*( )\\' -n 10 > $a

26  apg -q -m 4 -x 4 -M S  -E '!@#$%^&*( )\\' -n 10 > $b

27  # tr command is for bug workaround; apg is not supposed to

28  # include characters specified after -E option.

29  paste $a $b |

30      tr 'l' 'L' |

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


30      tr 'l' 'L' |

31      awk '

32        BEGIN {

33          printf "Password\tRough guess at pronunciation\n<hr />"

34        }

35        {

36          printf "%s%s\t%s %s\n", $1, $3, $2, $4

37        }'

38  cat << EOF

39        </font>

40        </pre>

41        </blockquote>

42      </blockquote>

43      <hr />

44    </body>

45  </html>

46  EOF

47  rm $a $b

48  exit 0

3.10.3 Script Walkthrough

Line 6 sets the PATH to a known safe value. This lessens the possibility that an attacker can cause this program to
execute a hazardous binary. Make sure apg is in this path.

Line 7 sets the umask so that only this user can read the temporary files to be generated later.

Lines 8 and 9 work because Korn shell scripts generate random numbers automatically. If /bin/ksh is not on your
system, use mktemp to generate temporary files safely.

Lines 10-24 print the page header. I usually make a sample page and then run it through /usr/ports/www/tidy to get a
decent DOCTYPE header and indentation.

Lines 25 and 26 issue apg commands to generate two separate files containing four-character passwords.

Lines 31-37 use an awk script to print the password plus its pronunciation. The BEGIN section prints only once, before
any lines are read. The printf section expects lines with four fields: two pairs of password and pronunciation strings from
the temporary files. The first and third fields are printed together to form the password, and the second and fourth
fields are printed together to form the pronunciation guess.

Lines 38-46 finish the page.

Lines 47 and 48 clean up the temporary files.

3.10.4 See Also

man apg

man mktemp

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man mktemp

The APG web site (http://www.adel.nursat.kz/apg/)

FIPS 181, the APG Standard (http://www.itl.nist.gov/fipspubs/fip181.htm)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 33 Use One Time Passwords

 

Sometimes even a complex password may not meet your security needs.

If you are on the road and need to access the corporate network from a non-secure computer in a public place, the risk
of password leakage increases. Could the person next to you be shoulder surfing, watching as you log into the network?
Does the computer you're using have some sort of installed spyware or keystroke logger? Is there a packet sniffer
running somewhere on the network? In such a situation, a One Time Password can be a real lifesaver.

3.11.1 Configuring OPIE

FreeBSD comes with OPIE, or One-time Passwords In Everything, a type of software OTP system. It is easy to configure
and doesn't require any additional hardware or proprietary software running on a server. Ideally, you should configure
OPIE before leaving your secure network. For example, if you plan on traveling with your laptop, configure OPIE while
connected to the office network. Make sure you are logged in as your regular user account to the particular system
you'll need to access while on the road.

Start by adding yourself to the OPIE database, or /etc/opiekeys, using opiepasswd. If you intend to access your
workstation while on the road, run this command while physically sitting at your workstation. Include the console switch
(-c) to indicate you are at that station's console, so it is safe to enter a passphrase:

% opiepasswd -c

Adding dru:

Only use this method from the console; NEVER from remote. If you are using

telnet, xterm, or a dial-in, type ^C now or exit with no password.

Then run opiepasswd without the -c parameter.

Using MD5 to compute responses.

Enter new secret pass phrase: 

Secret pass phrases must be between 10 and 127 characters long.

Enter new secret pass phrase: 

Again new secret pass phrase: 

ID dru OTP key is 499 dh0391

CHUG ROSA HIRE MALT DEBT EBEN

See that warning at the beginning? If you don't have physical access to the system's keyboard—say, you're logging into
a server—make sure you use ssh to log into that system before running the opiepasswd -c command. Your only
protection from another user using your one-time password is your passphrase, which is basically a long password that
can include spaces. If that passphrase is transmitted over the network in clear text, you've defeated the whole purpose
of this exercise.

Note that the passphrase isn't used as a password per se; instead, it is used to prove who added the account to the
database and is therefore the rightful owner of the resulting response or one-time password. You'll need to issue that
passphrase whenever you need to view your responses. Responses are always comprised of six uppercase nonsense
words.

Next, verify that you are indeed in the OPIE database:

% opieinfo

498 dh0391

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


498 dh0391

The opieinfo command displays the count (498) that will be used at the next login. It will also display the seed associated
with that count (dh0391). In this example, it is expecting the response associated with 498, but I only know the
response for 499. I'll need to use an OTP password calculator to figure out the correct response; that calculator is really
just the opiekey command.

You could use the calculator from a separate terminal every time you login, but it is usually more convenient to print a
list of responses and regenerate a new list whenever you run out of responses.

3.11.2 Generating Responses

In order to use the calculator, you need to know three things:

Your current counter

Your seed

Your secret passphrase

The challenge at the login prompt will display the current counter and seed. However, it is important that only you know
your secret passphrase. Otherwise, anyone could calculate the response and log into your account.

To generate a list of responses, use the number switch (-n), followed by the number of desired responses and your
current count and seed:

% opiekey -n 5 498 dh0391

Using the MD5 algorithm to compute response.

Reminder: Don't use opiekey from telnet or dial-in sessions.

Enter secret pass phrase: 

494: MEAN ADD NEON CAIN LION LAUD

495: LYLE HOLD HIGH HOME ITEM MEL

496: WICK BALI MAY EGO INK TOOK

497: RENT ARM WARN ARC LICE DOME

498: LEAD JAG MUCH MADE NONE WRIT

You can either direct that output to a printer or record those responses by hand. Either way, store those responses in a
safe place such as your wallet, as these are your next five one-time passwords. The next time you log in, use the
response that matches the count at your login prompt:

login: dru 

otp-md5 498 dh0391 ext

Password:  (here I pressed Enter)

otp-md5 498 dh0391 ext

Password [echo on]: LEAD JAG MUCH MADE NONE WRIT 

Once you configure OPIE on a 5.1 FreeBSD system, you will be required to respond to the OTP challenge whenever you
log into that system. If you press Enter, you'll turn on echo so you can see the response as you type it.

Echo is usually a bad thing when logging in because anyone can see your password. However, with a one-time
password, it doesn't matter if anyone sees that password, as it can't be reused. Also, unlike a reusable password, the
response is not case-sensitive, so it doesn't matter if you type it in upper- or lowercase. Do take care, though, that no
one sees your list of responses or your passphrase.

If your counter gets low—say, 10 or less—reset it before it hits 0. Use opiepasswd again, but this time specify a new
count and a new seed. Here I'll use a count of 499 and a new seed of dh1357:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


count and a new seed. Here I'll use a count of 499 and a new seed of dh1357:

% opiepasswd -n 499 -s dh1357

Updating dru:

You need the response from an OTP generator.

Old secret pass phrase:

        otp-md5 8 dh0391 ext

        Response: loot omit safe eric jolt dark

New secret pass phrase:

        otp-md5 499 dh1357

        Response: hewn as dot mel mali mann

How long it will take you to cycle through your OTP passwords will depend upon how often you need to log in. You may
find it convenient to generate a week's worth of responses at the beginning of each week.

It's also a good idea to consider how often to change your passphrase. You'll be prompted to when you reset your
counter. For example, if you plan on changing your passphrase every 100 responses, specify -n 100 when you run
opiepasswd. The passphrase itself needs to be memorable. Fortunately, it can contain spaces, so you can input, say, a
line from a song or a poem.

3.11.3 Choosing When to Use OTP

Starting with FreeBSD 5.1-RELEASE, users are forced to use OTP once they've added themselves to the OPIE database.
It doesn't matter if the user logs into that system using a local keyboard or over the network using ssh. This behavior is
controlled by PAM, or, to be more specific, the auth section of /etc/pam.d/login:

% more /etc/pam.d/login

#

# $FreeBSD: src/etc/pam.d/login,v 1.11 2002/05/08 00:33:02 des Exp $

#

# PAM configuration for the "login" service

#

# auth

auth    required      pam_nologin.so      no_warn

auth    sufficient    pam_self.so         no_warn

auth    sufficient    pam_opie.so         no_warn no_fake_prompts

auth    requisite     pam_opieaccess.so   no_warn

#auth   sufficient    pam_kerberosIV.so   no_warn try_first_pass

#auth   sufficient    pam_krb5.so         no_warn try_first_pass

#auth   sufficient    pam_ssh.so          no_warn try_first_pass

auth    required      pam_unix.so         no_warn try_first_pass nullok

snip

Perhaps you'd like users to have the option of using their regular password when logging in locally, but force them to
use OTP when logging in over the network. To achieve that, add the allow_local option to the opieaccess line so it looks
like this:

auth    requisite    pam_opieaccess.so    allow_local no_warn

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


auth    requisite    pam_opieaccess.so    allow_local no_warn

This option lets the user type either her regular password or her OTP response if she's logging in locally. However, if
she's logging in over the network, the login attempt will fail unless she gives the correct OTP response.

3.11.4 See Also

man opiepasswd

man opieinfo

man opiekey

man pam_opie

/usr/share/doc/en_US.ISO8859-1/articles/pam/article.html (FreeBSD PAM documentation)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 34 Restrict Logins

 

In this chapter, we've covered many methods of securing the boot and login environments. It's probably no surprise
that you can further control who can log into your system and when: Unix systems contain many built-in mechanisms,
allowing you to choose the most appropriate means and policy for your network.

Furthermore, the defaults may not always suit your needs. Do you really want users to be logged into multiple
terminals when they can effectively do their work from one? For that matter, do you want any user, including
nonemployees, to try his hand at logging into your systems at any hour of the night and day? Here's how to tighten up
some defaults.

3.12.1 /etc/ttys

Since users log into terminals, a logical file to secure is the terminal configuration file, /etc/ttys. We briefly saw this file
in [Hack #24] when we password protected single-user mode.

This file is divided into three sections, one for each of the three types of terminals. Let's concern ourselves with the
virtual terminals, ttyv, which are the terminals available for users physically seated at the system's keyboard.

# grep ttyv /etc/ttys

ttyv0      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv1      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv2      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv3      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv4      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv5      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv6      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv7      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv8      "/usr/X11R6/bin/xdm -nodaemon"      xterm        off  secure

The word on indicates that that terminal is available for logins. By default, the first eight terminals, ttyv0 through ttyv7,
will accept logins. You've probably discovered this yourself by pressing Alt-Fx, where x is a number between 1 and 8.
On a server system, you may need only one virtual terminal. Disable the other terminals by changing the word on to off.

If the system is running headless [Hack #26], disable all of the virtual terminals only
after you've ensured that you have an alternate way to access the system.

The word secure means that the system is physically secure, implying that it's okay for a user to walk up to the
keyboard and log in as root. Since it's never okay for a user to log in as root, you should disable that default. For
whatever virtual terminals you've left on, either change the word secure to insecure or simply remove the word secure.

Be careful when editing /etc/ttys. A typo could prevent logins to your system. Always log
in from another terminal before making changes, and test your changes immediately
before logging out.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.12.2 /etc/login.access

Now let's see what can be done with /etc/login.access. At its most stringent, you can use this file to prevent all remote
logins, meaning you can log in only if you are physically sitting at that system:

-:ALL:ALL EXCEPT LOCAL

Note the syntax that is used for each line in this file. The - means access denied. Its alter ego is +, which means access
granted. The first ALL is a wildcard for all users. The second ALL is a wildcard for all locations. The EXCEPT LOCAL is the
exception that allows just the local location.

You could modify that rule slightly to disallow remote and local root logins:

-:root:ALL

Take some care when modifying this file. Its syntax supports both user and group names, allowing you to specify
exactly who is allowed to log into a system. This can be extremely useful in limiting access to a server system.

The syntax also supports IP addresses. This can also be useful in ensuring that only hosts in your network or a
particular subnet can access certain systems. But, as in any security mechanism that relies on IP addresses, do keep in
mind that IP addresses can be spoofed.

Finally, if you make changes to this file, test your changes immediately. If you restrict access to certain users, ensure
those users can still log in. Further, try to log in as other users to ensure that they are actually being denied access.

3.12.3 /etc/ssh/sshd_config

Think for a moment. Other than logins to virtual terminals, how else do your users log into systems? Most likely (and,
hopefully) through ssh. You can control exactly who can ssh into a system by adding a line to the /etc/ssh/sshd_config
file of the system running the SSH daemon.

There are two ways you can control this. One is through AllowGroups. By default, all groups—meaning all users—can ssh
into a system. The other way is through AllowUsers, where again, all users are allowed by default.

Suppose I want to allow only the users genisis, biko, and dru to ssh into a particular system. I could create a group called
remote that contains those users:

# grep 100 /etc/group

#

# pw groupadd remote -g 100 -M genisis biko dru

In this example, I first double-checked that the group ID of 100 was not currently in use. I then created, with pw
groupadd, the remote group with a GID of 100 (-g 100) and with those three members (-M genisis biko dru).

Now I can limit ssh access to just the members of that group:

# echo 'AllowGroups remote' >> /etc/ssh/sshd_config

Alternatively, I could have just added those three users directly:

# echo 'AllowUsers genisis biko dru' >> /etc/ssh/sshd_config

Any user who does not match either AllowGroups or AllowUsers will still receive a password prompt when attempting to
connect to the SSH daemon. However, the connection attempt will fail with a permission denied message, even if the user
provides a correct username and password. The SSH daemon will print a message regarding the failed attempt to its
console, sending a copy to /var/log/messages and emailing to root as part of the daily security run output.

To be even pickier, if your users always log in from the same system, you can do this:

AllowUsers genisis@10.0.0.2 biko@10.0.0.3 dru@10.0.0.4

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AllowUsers genisis@10.0.0.2 biko@10.0.0.3 dru@10.0.0.4

However, don't be that picky if your users don't have static IPs!

Remember, if you make any changes to the SSH daemon's configuration file, you'll need to send a "signal one" to sshd
to notify it of the changes:

# killall -1 sshd

After informing sshd of the changes, immediately use a ssh client to test your changes. For example, if I instead add the
line Allowusers genisis biko dru, I'll find that user nastygirl is still able to connect. Why? The parameters in
/etc/ssh/sshd_config are case-sensitive. You don't want to find out six months later that anyone was allowed to connect
when you thought you had restricted connections to certain users.

3.12.4 /etc/login.conf

We've restricted who can log in and from where for both local and remote ssh logins, but we still haven't restricted
when those users can log in. To do that, let's look at some other options that are available in our old friend
/etc/login.conf [Hack #30] .

This file supports the options times.allow and times.deny. For example, to allow all users to log in between 9:00 AM and
5:00 PM every Monday through Friday, add this line to the default:\ section:

:times.allow=Mo-Fr0900-1700:\

Once you introduce the times.allow option, access will automatically be denied for the time period not listed.

The converse also works. That is, you can specify the denied times in times.deny, and all other times will be allowed.

Remember, whenever you make a change to /etc/login.conf, rebuild the database with cap_mkdb /etc/login.conf and test
your changes.

3.12.5 See Also

man ttys

man login.access

man sshd_config

man login.conf

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 4. Backing Up
Introduction

Section 35.  Back Up FreeBSD with SMBFS

Section 36.  Create Portable POSIX Archives

Section 37.  Interactive Copy

Section 38.  Secure Backups Over a Network

Section 39.  Automate Remote Backups

Section 40.  Automate Data Dumps for PostgreSQL Databases

Section 41.  Perform Client-Server Cross-Platform Backups with Bacula

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
I began gathering contributions for this book, it soon become obvious that there would be an entire chapter on
backups. Not only do BSD users follow the mantra "backup, backup, backup," but every admin seems to have hacked
his own solution to take advantage of the tools at hand and the environment that needs to be backed up.

If you're looking for tutorials on how to use dump and tar, you won't find them here. However, you will find nonobvious
uses for their less well-known counterparts pax and cpio. I've also included a hack on backing up over ssh, to introduce
the novice user to the art of combining tools over a secure network connection.

You'll also find scripts that fellow users have created to get the most out of their favorite backup utility. Finally, there
are hacks that introduce some very useful open source third-party utilities.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 35 Back Up FreeBSD with SMBFS

 

A good backup can save the day when things go wrong. A bad—or missing—backup can ruin the whole
week.

Regular backups are vital to good administration. You can perform backups with hardware as basic as a SCSI tape drive
using 8mm tape cartridges or as advanced as an AIT tape library system using cartridges that can store up to 50 GB of
compressed data. But what if you don't have the luxury of dedicated hardware for each server?

Since most networks are comprised of multiple systems, you can archive data from one server across the network to
another. We'll back up a FreeBSD system using the tar and gzip archiving utilities and the smbutil and mount_smbfs
commands to transport that data to network shares. These procedures were tested on FreeBSD 4.6-STABLE and 5.1-
RELEASE.

4.2.1 Adding NETSMB Kernel Support

Since SMB is a network-aware filesystem, we need to build SMB support into the kernel. This means adding the proper
options lines to the custom kernel configuration file. For information on building a custom kernel, see [Hack #54], the
Building and Installing a Custom Kernel section (9.3) of the FreeBSD Handbook, and relevant information contained in
/usr/src/sys/i386/conf.

Add the following options under the makeoptions section:

options    NETSMB            # SMB/CIFS requester

options    NETSMBCRYPTO      # encrypted password support for SMB

options    LIBMCHAIN         # mbuf management library

options    LIBICONV

options    SMBFS

Once you've saved your changes, use the make buildkernel and make installkernel commands to build and install the new
kernel.

4.2.2 Establishing an SMB Connection with a Host System

The next step is to decide which system on the network to connect to. Obviously, the destination server needs to have
an active share on the network, as well as enough disk space available to hold your archives. It will also need a valid
user account with which you can log in. You'll probably also want to choose a system that's backed up regularly to
removable media. I'll use a machine named smbserver1.

The smbutil and mount_smbfs commands both come standard with the base install of
FreeBSD. Their only requirements are the five kernel options listed in the preceding
section.

Once you have chosen the proper host, make an SMB connection manually with the smbutil login command. This
connection will remain active, allowing you to interact with the SMB server, until you issue the smbutil logout command.
So, to log in:

# smbutil login //jwarner@smbserver1

Password:

Connected to smbserver1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Connected to smbserver1

And to log out:

# smbutil logout //jwarner@smbserver1

Password:

Connection unmarked as permanent and will

be closed when possible

4.2.3 Mounting a Share

Once you're sure you can manually initiate a connection with the host system, create a mount point where you can
mount the remote share. I'll create a mount point directory called /backup:

# mkdir /backup

Next, reestablish a connection with the host system and mount its share:

# smbutil login //jwarner@smbserver1

Password:

Connected to smbserver1

# mount_smbfs -N //jwarner@smbserver1/sharename /backup

Note that I used the -N switch to mount_smbfs to avoid having to supply a password a second time. If you prefer to be
prompted for a password when mounting the share, simply omit the -N switch.

4.2.4 Archiving and Compressing Data with tar and gzip

After connecting to the host server and mounting its network share, the next step is to back up and copy the necessary
files. You can get as complicated as you like, but I'll create a simple shell script, bkup, inside the mounted share that
compresses important files and directories.

This script will make compressed archives of the /boot, /etc, /home, and /usr/local/etc directories. Add to or edit this
list as you see fit. At a minimum, I recommend including the /etc and /usr/local/etc directories, as they contain
important configuration files. See man hier for a complete description of the FreeBSD directory structure.

#!/bin/sh

# script that backs up the following four directories:

tar cvvpzf boot.tar.gz /boot

tar cvvpzf etc.tar.gz  /etc

tar cvvpzf home.tar.gz /home

tar cvvpzf usr_local_etc.tar.gz /usr/local/etc

This script is an example to get you started. There are many ways to use tar. Read man 1
tar carefully, and tailor the script to suit your needs.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Be sure to make this file executable:

# chmod 755 bkup

Run the script to create the archives:

# ./bkup

tar: Removing leading / from absolute path names in the archive.

drwxr-xr-x root/wheel        0 Jun 23 18:19 2002 boot/

drwxr-xr-x root/wheel        0 May 11 19:46 2002 boot/defaults/

-r--r--r-- root/wheel    10957 May 11 19:46 2002 boot/defaults/loader.conf

-r--r--r-- root/wheel      512 Jun 23 18:19 2002 boot/mbr

(snip)

After the script finishes running, you'll have *.tar.gz files of the directories you chose to archive:

# ls | more

bkup

boot.tar.gz

etc.tar.gz

home.tar.gz

usr_local_etc.tar.gz

Once you've tested your shell script manually and are happy with your results, add it to the cron scheduler to run on
scheduled days and times.

Remember, how you choose to implement your backups isn't important—backing up regularly is. Facing the problem of
deleted or corrupted data isn't a matter of "if" but rather a matter of "when." This is why good backups are essential.

4.2.5 Hacking the Hack

Things to consider when modifying the script to suit your own purposes:

Add entries to automatically mount and unmount the share (see [Hack #68] for an example).

Use your backup utility of choice. You're not limited to just tar!

4.2.6 See Also

man 1 smbutil

man 8 mount_smbfs

man 7 hier

man 1 tar

man 1 gzip

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man 1 gzip

The Building and Installing a Custom Kernel section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-building.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 36 Create Portable POSIX Archives

 

Create portable tar archives with pax.

Some POSIX operating systems ship with GNU tar as the default tar utility (NetBSD and QNX6, for example). This is
problematic because the GNU tar format is not compatible with other vendors' tar implementations. GNU is an acronym
for "GNU's not UNIX"—in this case, GNU's not POSIX either.

4.3.1 GNU Versus POSIX tar

For filenames or paths longer than 100 characters, GNU uses its own @LongName tar format extension. Some vendors'
tar utilities will choke on the GNU extensions. Here is what Solaris's archivers say about such an archive:

% pax -r < gnu-archive.tar

pax: ././@LongLink : Unknown filetype

% tar xf gnu-archive.tar

tar: directory checksum error

There definitely appears to be a disadvantage with the distribution of non-POSIX archives. A solution is to use pax to
create your tar archives in the POSIX format. I'll also provide some tips about using pax's features to compensate for
the loss of some parts of GNU tar's extended feature set.

4.3.2 Replacing tar with pax

The NetBSD and QNX6 pax utility supports a tar interface and can also read the @LongName GNU tar format extension.
You can use pax as your tar replacement, since it can read your existing GNU-format archives and can create POSIX
archives for future backups. Here's how to make the quick conversion.

First, replace /usr/bin/tar. That is, rename GNU tar and save it in another directory, in case you ever need to restore
GNU tar to its previous location:

# mv /usr/bin/tar /usr/local/bin/gtar

Next, create a symlink from pax to tar. This will allow the pax utility to emulate the tar interface if invoked with the tar
name:

# ln -s /bin/pax /usr/bin/tar

Now when you use the tar utility, your archives will really be created by pax.

4.3.3 Compress Archives Without Using Intermediate Files

Let's say you're on a system that doesn't have issues with tar. Why else would you consider using pax as your backup
solution?

For one, you can use pax and pipelines to create compressed archives, without using intermediate files. Here's an
example pipeline:

% find /home/kirk -name '*.[ch]' | pax -w | pgp -c

The pipeline's first stage uses find to generate the exact list of files to archive. When using tar, you will often create the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The pipeline's first stage uses find to generate the exact list of files to archive. When using tar, you will often create the
file list using a subshell. Unfortunately, the subshell approach can be unreliable. For example, this user has so much
source code that the complete file list does not fit on the command line:

% tar cf kirksrc.tar $(find /home/kirk -name '*.[ch]')

/bin/ksh: tar: Argument list too long

However, in more cases, the pipeline approach will work as expected.

During the second stage, pax reads the list of files from stdin and writes the archive to stdout. The pax found on all of
the BSDs has built-in gzip support, so you can also compress the archive during this stage by adding the -z argument.

When creating archives, invoke pax without the -v (verbose) argument. This way, if there are any pax error messages,
they won't get lost in the extra output.

The third stage compresses and/or encrypts the archive. An intermediate tar archive isn't required as the utility reads its
data from the pipeline. This example uses pgp, the Pretty Good Privacy encryption system, which can be found in the
ports collection.

4.3.4 Attribute-Preserving Copies

POSIX provides two utilities for copying file hierarchies: cp -R and pax -rw. For regular users, cp -R is the common
method. But for administrative use, pax -rw preserves more of the original file attributes, including hard-link counts and
file access times. pax -rw also gives you a better copy of the original file hierarchy.

For an example, let's back up three executables. Note that egrep, fgrep, and grep are all hard links to the same
executable.The link count is three, and all have the same inode number. ls -li displays the inode number in column 1
and the link count in column 3:

# ls -il /usr/bin/egrep /usr/bin/fgrep /usr/bin/grep

31888 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 /usr/bin/egrep

31888 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 /usr/bin/fgrep

31888 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 /usr/bin/grep

With pax -rw, we will create one executable with the same date as the original:

# pax -rw /usr/bin/egrep /usr/bin/fgrep /usr/bin/grep /tmp/

# ls -il /tmp/usr/bin/

47 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 egrep

47 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 fgrep

47 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 grep

Can we do the same thing using cp -R? Nope. Instead, we create three new files, each with a unique inode number, a
link count of one, and a new date:

# rm /tmp/usr/bin/*

# cp -R /usr/bin/egrep /usr/bin/fgrep /usr/bin/grep /tmp/usr/bin/

# ls -il /tmp/usr/bin/

49 -r-xr-xr-x  1 root  wheel  73784 Dec 19 11:26 egrep

48 -r-xr-xr-x  1 root  wheel  73784 Dec 19 11:26 fgrep

47 -r-xr-xr-x  1 root  wheel  73784 Dec 19 11:26 grep

4.3.5 Rooted Archives and the Substitution Argument

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you have ever used GNU tar and received this message:

tar: Removing leading `/' from absolute path names in the archive

then you were using a tar archive that was rooted, where the files all had absolute paths starting with the forward slash
(/). It is not a good idea to clobber existing files unintentionally with foreign binaries, which is why the GNU tar utility
automatically strips the leading / for you.

To be safe, you want your unarchiver to create files relative to your current working directory. Rooted archives try to
violate this rule by creating files relative to the root of the filesystem, ignoring the current working directory. If that
archive contained /etc/passwd, unarchiving it could replace your current password file with a foreign copy. You may be
surprised when you cannot log into your system anymore!

You can use the pax substitution argument to remove the leading /. This will ensure that the unarchived files will be
created relative to your current working directory, instead of at the root of your filesystem:

# pax -A -r -s '-^/--' < rootedarchive.tar

Here, the -A argument requests that pax not strip the leading / automatically, as we want to do this ourselves. This
argument is required only to avoid a bug in the NetBSD pax implementation that interferes with the -s argument. We
also want pax to unarchive the file, so we pass the -r argument.

The -s argument specifies an ed-style substitution expression to be performed on the destination pathname. In this
example, the leading / will be stripped from the destination paths. See man ed for more information.

If we used the traditional / delimiter, the substitution expression would be /^\///. (The second / isn't a delimiter, so it
has to be escaped with a \.) You will find that / is the worst delimiter, because you have to escape all the slashes found
in the paths. Fortunately, you can choose another delimiter. Pick one that isn't present in the paths, to minimize the
number of escape characters you have to add. In the example, we used the - character as the delimiter, and therefore
no escapes were required.

The substitution argument can be used to rename files for a beta software release, for example. Say you develop
X11R6 software and have multiple development versions on your box:

/usr/X11R6.saturday

/usr/X11R6.working

/usr/X11R6.notworking

/usr/X11R6.released

and you want to install the /usr/X11R6.working directory as usr/X11R6 on the beta system:

# pax -A -w -s '-^/usr/X11R6.working-usr/X11R6-' /usr/X11R6.working \ 

  > /tmp/beta.tar

This time, the -s argument specifies a substitution expression that will replace the beginning of the path
/usr/X11R6.working with usr/X11R6 in the archive.

4.3.6 Useful Resources for Multiple Volume Archives

POSIX does not specify the format of multivolume archive headers, meaning that every archiver may use a different
intervolume header format. If you have a lot of multivolume tar archives and plan to switch to a different tar
implementation, you should test whether you can still recover your old multivolume archives.

This practice may have been more common when Minix/QNX4 users archived their 20 MB hard disks to a stack of floppy
disks. Minix/QNX4 users had the vol utility to handle multiple volumes; instead of adding the multivolume functionality
to the archiver itself, it was handled by a separate utility. You should be able to switch archiver implementations
transparently because vol did the splitting, not the archiver.

The vol utility performs the following operations:

At the end-of-media, prompts for the next volume

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


At the end-of-media, prompts for the next volume

Verifies the ordering of the volumes

Concatenates the multiple volumes

Unfortunately, the vol utility isn't part of the NetBSD package collection. If you create a lot of multivolume archives, you
may want to look into porting one of the following utilities:

vol

Creates volume headers for tar; developed by Brian Yost and available at http://groups.google.com/groups?
selm=80%40mirror.UUCP&output=gplain

multivol

Provides multiple volume support; created by Marc Schaefer and available at
http://www.ibiblio.org/pub/Linux/system/backup/multivol-2.1.tar.bz2

4.3.7 See Also

man pax

NetBSD's PGP package (ftp://ftp.NetBSD.org/pub/NetBSD/packages/pkgsrc/security/pgp2/README.html)

The GNU tar manpage on GNU tar and POSIX tar
(http://www.gnu.org/software/tar/manual/html_node/tar_117.html)

The pax -A bug report and fix (http://www.NetBSD.org/cgi-bin/query-pr-single.pl?number=23776)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 37 Interactive Copy

 

When cp alone doesn't quite meet your copy needs.

The cp command is easy to use, but it does have its limitations. For example, have you ever needed to copy a batch of
files with the same name? If you're not careful, they'll happily overwrite each other.

4.4.1 Finding Your Source Files

I recently had the urge to find all of the scripts on my system that created a menu. I knew that several ports used
scripts named configure and that some of those scripts used dialog to provide a menu selection.

It was easy enough to find those scripts using find:

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \;

/usr/ports/audio/mbrolavox/scripts/configure

/usr/ports/devel/kdesdk3/work/kdesdk-3.2.0/configure

/usr/ports/emulators/vmware2/scripts/configure

(snip)

This command asks find to start in /usr/ports, looking for files -named configure. For each found file, it should search for
the word dialog using -exec grep. The -l flag tells grep to list only the names of the matching files, without including the
lines that match the expression. You may recognize the /dev/null { } \; from [Hack #13] .

Normally, I could tell cp to use those found files as the source and to copy them to the specified destination. This is
done by enclosing the find command within a set of backticks (`), located at the far top left of your keyboard. Note what
happens, though:

% mkdir ~/scripts

% cd ~/scripts

% cp `find /usr/ports -name configure -exec grep -l "dialog" \ 

    /dev/null {  } \;` .

% ls ~/scripts

configure

Although each file that I copied had a different pathname, the filename itself was configure. Since each copied file
overwrote the previous one, I ended up with one remaining file.

4.4.2 Renaming a Batch of Source Files

What's needed is to rename those source files as they are copied to the destination. One approach is to replace the
slash (/) in the original file's pathname with a different character, resulting in a unique filename that still reflects the
source of that file.

As we saw in [Hack #15], sed is designed to do such replacements. Here's an approach:

% pwd

/usr/home/dru/scripts

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \; \ 

    -exec sh -c 'cp {  } `echo {  } | sed s:/:=:g`' \;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    -exec sh -c 'cp {  } `echo {  } | sed s:/:=:g`' \;

% ls

=usr=ports=audio=mbrolavox=scripts=configure

=usr=ports=devel=kdesdk3=work=kdesdk-3.2.0=configure

=usr=ports=emulators=vmware2=scripts=configure

(snip)

This invocation of find starts off the same as my original search. It then adds a second -exec, which passes an argument
-c as input to the sh shell. The shell will cp the source files (specified by { }), but only after sed has replaced each slash
in the pathname with an equals sign (=). Note that I changed the sed delimiter from the default slash to the colon (:) so
I didn't have to escape my / string. You don't have to use = as the new character; choose whatever suits your
purposes.

awk can also perform this renaming feat. The following command is more or less equivalent to the previous command:

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \; \

    | awk '{dst=$0;gsub("/","=",dst); print "cp",$0,dst}' | sh

4.4.3 Renaming Files Interactively

Depending upon how many files you plan on copying over and how picky you are about their destination names, you
may prefer to do an interactive copy.

Despite its name, cp's interactive switch (-i) will fail miserably in my scenario:

% cp -i `find /usr/ports -name configure -exec grep -l "dialog" \

    /dev/null {  } \;` .

overwrite ./configure? (y/n [n]) n

not overwritten

overwrite ./configure? (y/n [n])

(snip)

Since each file is still named configure, my only choices are either to overwrite the previous file or to not copy over the
new file. However, both cpio and pax are capable of interactive copies. Let's start with cpio:

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \; \ 

    | cpio -o > ~/scripts/test.cpio && cpio -ir < ~/scripts/test.cpio

Here I've piped my find command to cpio. Normally, I would invoke cpio once in copy-pass mode. Unfortunately, that
mode doesn't support -r, the interactive rename switch. So, I directed cpio to send its output (-o >) to an archive named
~/scripts/test.cpio. Instead of piping that archive, I used && to delay the next cpio operation until the previous one
finishes. I then used -ir to perform an interactive copy in that archive so I could type in the name of each destination
file.

Here are the results:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Here are the results:

cpio: /usr/ports/audio/mbrolavox/scripts/configure: truncating inode number

cpio: /usr/ports/devel/kdesdk3/work/kdesdk-3.2.0/configure: truncating 

inode number

cpio: /usr/ports/emulators/vmware2/scripts/configure: truncating inode number

(snip other archive messages)

5136 blocks

rename /usr/ports/audio/mbrolavox/scripts/configure -> mbrolavox.configure

rename /usr/ports/devel/kdesdk3/work/kdesdk-3.2.0/configure -> 

kdesdk3.configure

rename /usr/ports/emulators/vmware2/scripts/configure -> vmware2.configure

(snip remaining rename operations)

5136 blocks

After creating the archive, cpio showed me the source name so I could rename the destination file. While requiring
interaction on my part, it does let me fine-tune exactly what I'd like to call each script. I must admit that my names are
much nicer than those containing all of the equals signs.

pax is even more efficient. In the preceding command, the first cpio has to wait until find completes, and the second cpio
has to wait until the first cpio finishes. Compare that to this command:

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \; \

    | pax -rwi .

Here, I can pipe the results of find directly to pax, and pax has very user-friendly switches. In this command, I asked to
read and write interactively to the current directory. There's no temporary archive required, and everything happens at
once. Even better, pax starts working on the interaction before find finishes. Here's what it looks like:

ATTENTION: pax interactive file rename operation.

-rwxr-xr-x Nov 11 07:53 /usr/ports/audio/mbrolavox/scripts/configure

Input new name, or a "." to keep the old name, or a "return" to skip 

this file.

Input > mbrovalox.configure

Processing continues, name changed to: mbrovalox.configure

This repeats for each and every file that matched the find results.

4.4.4 See Also

man cp

man cpio

man pax

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 38 Secure Backups Over a Network

 

When it comes to backups, Unix systems are extremely flexible. For starters, they come with built-in utilities that are
just waiting for an administrator's imagination to combine their talents into a customized backup solution. Add that to
one of Unix's greatest strengths: its ability to see everything as a file. This means you don't even need backup
hardware. You have the ability to send your backup to a file, to a media, to another server, or to whatever is available.

As with any customized solution, your success depends upon a little forethought. In this scenario, I don't have any
backup hardware, but I do have a network with a 100 Mbps switch and a system with a large hard drive capable of
holding backups.

4.5.1 Initial Preparation

On the system with that large hard drive, I have sshd running. (An alternative to consider is the scponly shell; see [Hack
#63] ). I've also created a user and a group called rembackup:

# pw groupadd rembackup

# pw useradd rembackup -g rembackup -m -s /bin/csh

# passwd rembackup

Changing local password for rembackup

New Password:

Retype New Password:

#

If you're new to the pw command, the -g switch puts the user in the specified group (which must already exist), the -m
switch creates the user's home directory, and the -s switch sets the default shell. (There's really no good mnemonic;
perhaps no one remembers what, if anything, pw stands for.)

Next, from the system I plan on backing up, I'll ensure that I can ssh in as the user rembackup. In this scenario, the
system with the large hard drive has an IP address of 10.0.0.1:

% sshd -l rembackup 10.0.0.1

The authenticity of host '10.0.0.1 (10.0.0.1)' can't be established.

DSA key fingerprint is e2:75:a7:85:46:04:71:51:db:a8:9e:83:b1:5c:7a:2c.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.2.93' (DSA) to the list of known hosts. 

Password:

%

% exit

logout

Connection to 10.0.0.1 closed.

Excellent. Since I can log in as rembackup, it looks like both systems are ready for a test backup.

4.5.2 The Backup

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I'll start by testing my command at a command line. Once I'm happy with the results, I'll create a backup script to
automate the process.

# tar czvf - /usr/home | ssh rembackup@10.0.0.1 "cat > genisis_usr_home.tgz" 

usr/home/

usr/home/dru/

usr/home/dru/.cshrc

usr/home/dru/mail/

usr/home/mail/sent-mail

Password:

This tar command creates (c) a compressed (z) backup to a file (f) while showing the results verbosely (v). The minus
character (-) represents the specified file, which in this case is stdout. This allows me to pipe stdout to the ssh
command. I've provided /usr/home, which contains all of my users' home directories, as the hierarchy to back up.

The results of that backup are then piped (|) to ssh, which will send that output (via cat) to a compressed file called
genisis_usr_home.tgz in the rembackup user's home directory. Since that directory holds the backups for my network, I
chose a filename that indicates the name of the host, genisis, and the contents of the backup itself.

4.5.2.1 Automating the backup

Now that I can securely back up my users' home directories, I can create a script. It can start out as simple as this:

# more /root/bin/backup

#!/bin/sh

# script to backup /usr/home to backup server

tar czvf - /usr/home | ssh rembackup@10.0.0.1 "cat > genisis_usr_home.tgz"

However, whenever I run that script, I'll overwrite the previous backup. If that's not my intention, I can include the
date as part of the backup name:

tar czvf - /usr/home | ssh rembackup@10.0.0.1 "cat > \

    genisis_usr_home.`date +%d.%m.%y`.tgz"

Notice I inserted the date command into the filename using backticks. Now the backup file will include the day, month,
and year separated by dots, resulting in a filename like genisis_usr_home.21.12.03.tgz.

Once you're happy with your results, your script is an excellent candidate for a cron job.

4.5.3 See Also

man tar

man ssh

man pw

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 39 Automate Remote Backups

 

Make remote backups automatic and effortless.

One day, the IDE controller on my web server died, leaving the files on my hard disk hopelessly corrupted. I faced what
I had known in the back of my mind all along: I had not been making regular remote backups of my server, and the
local backups were of no use to me now that the drive was corrupted.

The reason for this, of course, is that doing remote backups wasn't automatic and effortless. Admittedly, this was no
one's fault but my own, but my frustration was sufficient enough that I decided to write a tool that would make
automated remote snapshots so easy that I wouldn't ever have to worry about it again. Enter rsnapshot.

4.6.1 Installing and Configuring rsnapshot

Installation on FreeBSD is a simple matter of:

# cd /usr/ports/sysutils/rsnapshot

# make install

I didn't include the clean target here, as I'd like to keep the work subdirectory, which includes some useful scripts.

If you're not using FreeBSD, see the original HOWTO at the project web site for detailed
instructions on installing from source.

The install process neither creates nor installs the config file. This means that there is absolutely no possibility of
accidentally overwriting a previously existing config file during an upgrade. Instead, copy the example configuration file
and make changes to the copy:

# cp /usr/local/etc/rsnapshot.conf.default /usr/local/etc/rsnapshot.conf

The rsnapshot.conf config file is well commented, and much of it should be fairly self-explanatory. For a full reference of
all the various options, please consult man rsnapshot.

rsnapshot uses the /.snapshots/ directory to hold the filesystem snapshots. This is referred to as the snapshot root. This
must point to a filesystem where you have lots of free disk space.

Note that fields are separated by tabs, not spaces. This makes it easier to specify file paths
with spaces in them.

4.6.1.1 Specifying backup intervals

rsnapshot has no idea how often you want to take snapshots. In order to specify how much data to save, you need to tell
rsnapshot which intervals to keep, and how many of each.

By default, a snapshot will occur every four hours, or six times a day (these are the hourly intervals). It will also keep a
second set of snapshots, taken once a day and stored for a week (or seven days):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


second set of snapshots, taken once a day and stored for a week (or seven days):

interval    hourly  6

interval    daily   7

Note that the hourly interval is specified first. This is very important, as the first interval line is assumed to be the
smallest unit of time, with each additional line getting successively bigger. Thus, if you add a yearly interval, it should
go at the bottom, and if you add a minutes interval, it should go before the hourly interval. It's also worth noting that
the snapshots are pulled up from the smallest interval to the largest. In this example, the daily snapshots are pulled
from the oldest hourly snapshot, not directly from the main filesystem.

The backup section tells rsnapshot which files you actually want to back up:

backup      /etc/      localhost/etc/

In this example, backup is the backup point, /etc/ is the full path to the directory we want to take snapshots of, and
localhost/etc/ is a subdirectory inside the snapshot root where the snapshots are stored. If you are taking snapshots of
several machines on one dedicated backup server, it's a good idea to use hostnames as directories to keep track of
which files came from which server.

In addition to full paths on the local filesystem, you can also back up remote systems using rsync over ssh. If you have
ssh enabled (via the cmd_ssh parameter), specify a path similar to this:

backup      backup@example.com:/etc/     example.com/etc/

This behaves fundamentally the same way as specifying local pathnames, but you must take a few extra things into
account:

The ssh daemon must be running on example.com.

You must have access to the specified account on the remote machine (in this case, the backup user on
example.com). See [Hack #38] for instructions on setting this up.

You must have key-based logins enabled for the specified user at example.com, without passphrases.

This backup occurs over the network, so it may be slower. Since this uses rsync, this is most noticeable during
the first backup. Depending on how much your data changes, subsequent backups should go much faster.

One thing you can do to mitigate the potential damage from a backup server breach is to
create alternate users on the client machines with their UIDs and GIDs set to 0, but with a
more restrictive shell, such as scponly [Hack #63] .

4.6.1.2 Preparing for script automation

With the backup_script parameter, the second column is the full path to an executable backup script, and the third
column is the local path in which you want to store it. For example:

backup_script      /usr/local/bin/backup_pgsql.sh     localhost/postgres/

You can find the backup_pgsql.sh example script in the utils/ directory of the source
distribution. Alternatively, if you didn't include the clean target when you installed the
FreeBSD port, the file will be located in /usr/ports/sysutils/rsnapshot/work/rsnapshot-
1.0.9/utils.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Your backup script only needs to dump its output into its current working directory. It can create as many files and
directories as necessary, but it should not put its files in any predetermined path. This is because rsnapshot creates a
temp directory, changes to that directory, runs the backup script, and then syncs the contents of the temp directory to
the local path you specified in the third column. A typical backup script might look like this:

#!/bin/sh

/usr/bin/mysqldump -uroot mydatabase > mydatabase.sql

/bin/chown 644 mydatabase.sql

There are a couple of example scripts in the utils/ directory of the rsnapshot source distribution to give you more ideas.

Remember that backup scripts will be invoked as the user running rsnapshot. Make sure
your backup scripts are not writable by anyone else.

4.6.1.3 Testing your config file

After making your changes, verify that the config file is syntactically valid and that all the supporting programs are
where you think they are:

# rsnapshot configtest

If all is well, the output should say Syntax OK. If there's a problem, it should tell you exactly what it is.

The final step to test your configuration is to run rsnapshot with the -t flag, for test mode. This will print out a verbose
list of the things it will do, without actually doing them. For example, to simulate an hourly backup:

# rsnapshot -t hourly

4.6.1.4 Scheduling rsnapshot

Now that you have your config file set up, it's time to schedule rsnapshot to run from cron. Add the following lines to
root's crontab:

0 */4 * * *       /usr/local/bin/rsnapshot hourly

30 23 * * *       /usr/local/bin/rsnapshot daily

4.6.2 The Snapshot Storage Scheme

All backups are stored within a configurable snapshot root directory. In the beginning it will be empty. rsnapshot creates
subdirectories for the various defined intervals. After a week, the directory should look something like this:

# ls -l /.snapshots/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls -l /.snapshots/

drwxr-xr-x    7 root     root         4096 Dec 28 00:00 daily.0

drwxr-xr-x    7 root     root         4096 Dec 27 00:00 daily.1

drwxr-xr-x    7 root     root         4096 Dec 26 00:00 daily.2

drwxr-xr-x    7 root     root         4096 Dec 25 00:00 daily.3

drwxr-xr-x    7 root     root         4096 Dec 24 00:00 daily.4

drwxr-xr-x    7 root     root         4096 Dec 23 00:00 daily.5

drwxr-xr-x    7 root     root         4096 Dec 22 00:00 daily.6

drwxr-xr-x    7 root     root         4096 Dec 29 00:00 hourly.0

drwxr-xr-x    7 root     root         4096 Dec 28 20:00 hourly.1

drwxr-xr-x    7 root     root         4096 Dec 28 16:00 hourly.2

drwxr-xr-x    7 root     root         4096 Dec 28 12:00 hourly.3

drwxr-xr-x    7 root     root         4096 Dec 28 08:00 hourly.4

drwxr-xr-x    7 root     root         4096 Dec 28 04:00 hourly.5

Each of these directories contains a full backup of that point in time. The destination directory paths you specified as
the backup and backup_script parameters are placed directly under these directories. In the example:

backup          /etc/           localhost/etc/

the /etc/ directory will initially back up into /.snapshots/hourly.0/localhost/etc/.

Each subsequent time rsnapshot is run with the hourly command, it will rotate the hourly.X directories, "copying" the
contents of the hourly.0 directory (using hard links) into hourly.1.

When rsnapshot daily runs, it will rotate all the daily.X directories, then copy the contents of hourly.5 into daily.0.

hourly.0 will always contain the most recent snapshot, and daily.6 will always contain a snapshot from a week ago.
Unless the files change between snapshots, the full backups are really just multiple hard links to the same files. This is
how rsnapshot uses space so efficiently. If the file changes at any point, the next backup will unlink the hard link in
hourly.0, replacing it with a brand new file. This will now use twice the disk space it did before, but it is still considerably
less space than 13 full, unique copies would occupy.

Remember, if you are using different intervals than the ones in this example, the first interval listed is the one that gets
updates directly from the main filesystem. All subsequently listed intervals pull from the previous snapshots.

4.6.3 Accessing Snapshots

When rsnapshot first runs, it will create the configured snapshot_root directory. It assigns this directory the permissions
0700 since the snapshots will probably contain files owned by all sorts of users on your system.

The simplest but least flexible solution is to disallow access to the snapshot root altogether. The root user will still have
access, of course, and will be the only one who can pull backups. This may or may not be desirable, depending on your
situation. For a small setup, this may be sufficient.

If users need to be able to pull their own backups, you will need to do a little extra work up front. The best option
seems to be creating a container directory for the snapshot root with 0700 permissions, giving the snapshot root
directory 0755 permissions, and mounting the snapshot root for the users as read-only using NFS or Samba.

Let's explore how to do this using NFS on a single machine. First, set the snapshot_root variable in rsnapshot.conf:

snapshot_root       /usr/.private/.snapshots/

Then, create the container directory, the real snapshot root, and a read-only mount point:

# mkdir /usr/.private/

# mkdir /usr/.private/.snapshots/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# mkdir /usr/.private/.snapshots/

# mkdir /.snapshots/

Set the proper permissions on these new directories:

# chmod 0700 /usr/.private/

# chmod 0755 /usr/.private/.snapshots/

# chmod 0755 /.snapshots/

In /etc/exports, add /usr/.private/.snapshots/ as a read-only NFS export:

/usr/.private/.snapshots/  127.0.0.1(ro)

If your version of NFS supports it, include the no_root_squash option. (Place it within the
brackets after ro with a comma—not a space—as the separator.) This option allows the
root user to see all the files within the read-only export.

In /etc/fstab, mount /usr/.private/.snapshots/ read-only under /.snapshots/:

localhost:/usr/.private/.snapshots/   /.snapshots/   nfs    ro   0 0

Restart your NFS daemon and mount the read-only snapshot root:

# /etc/rc.d/nfsd restart

# mount /.snapshots/

To test this, try adding a file as the superuser:

# touch /.snapshots/testfile

This should fail with insufficient permissions. This is what you want. It means that your users won't be able to mess
with the snapshots either.

Users who wish to recover old files can go into the /.snapshots directory, select the interval they want, and browse
through the filesystem until they find the files they are looking for. NFS will prevent them from making modifications,
but they can copy anything that they had permission to read in the first place.

4.6.4 See Also

man rsnapshot

The original rsnapshot HOWTO (http://www.rsnapshot.org/rsnapshot-HOWTO.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 40 Automate Data Dumps for PostgreSQL Databases

 

Building your own backup utility doesn't have to be scary.

PostgreSQL is a robust, open source database server. Like most database servers, it provides utilities for creating
backups. PostgreSQL's primary tools for creating backup files are pg_dump and pg_dumpall. However, if you want to
automate your database backup processes, these tools have a few limitations:

pg_dump dumps only one database at a time.

pg_dumpall dumps all of the databases into a single file.

pg_dump and pg_dumpall know nothing about multiple backups.

These aren't criticisms of the backup tools—just an observation that customization will require a little scripting. Our
resulting script will backup multiple systems, each to their own backup file.

4.7.1 Creating the Script

This script uses Python and its ability to execute other programs to implement the following backup algorithm:

1. Change the working directory to a specified database backup directory.

2. Rename all backup files ending in .gz so that they end in .gz.old. Existing files ending in .gz.old will be
overwritten.

3. Clean up and analyze all PostgreSQL databases using its vacuumdb command.

4. Get a current list of databases from the PostgreSQL server.

5. Dump each database, piping the results through gzip, into its own compressed file.

Why Python? My choice is one of personal preference; this task is achievable in just about any scripting language.
However, Python is cross-platform and easy to learn, and its scripts are easy to read.

4.7.2 The Code

#!/usr/local/bin/python

# /usr/local/bin/pg2gz.py

# This script lists all PostgreSQL

# databases and pipes them separately

# through gzip into .gz files.

# INSTRUCTIONS

# 1.  Review and edit line 1 to reflect the location

#     of your python command file.

# 2.  Redefine the save_dir variable (on line 22) to

#     your backup directory.

# 3.  To automate the backup process fully, consider

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# 3.  To automate the backup process fully, consider

#     scheduling the regular execution of this script

#     using cron.

import os, string

# Redefine this variable to your backup directory.

# Be sure to include the slash at the end.

save_dir = '/mnt/backup/databases/'

# Rename all *.gz backup files to *.gz.old.

curr_files = os.listdir(save_dir)

for n in curr_files:

        if n[len(n)-2:] =  = 'gz':

                os.popen('mv ' + save_dir + n + " " + save_dir + n + '.old')

        else:

                pass

# Vacuum all databases

os.popen('vacuumdb -a -f -z')

# 'psql -l' produces a list of PostgreSQL databases.

get_list = os.popen('psql -l').readlines( )

# Exclude header and footer lines.

db_list = get_list[3:-2]

# Extract database names from first element of each row.

for n in db_list:

        n_row = string.split(n)

        n_db = n_row[0]

        # Pipe database dump through gzip

        # into .gz files for all databases

        # except template*.

        if n_db =  = 'template0':

                pass

        elif n_db =  = 'template1':

                pass

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                pass

        else:

                os.popen('pg_dump ' + n_db + ' | gzip -c > ' + save_dir + 

                          n_db + '.gz')

4.7.3 Running the Hack

The script assumes that you have a working installation of PostgreSQL. You'll also need to install Python, which is
available through the ports collection or as a binary package. The Python modules used are installed by default.

Double-check the location of your Python executable using:

% which python

/usr/local/bin/python

and ensure the first line of the script reflects your location. Don't forget to make the script executable using chmod +x.

On line 22 of the script, redefine the sav_dir variable to reflect the location of your backup directory. As is, the script
assumes a backup directory of /mnt/backup/databases/.

You'll probably want to add the script to the pgsql user's crontab for periodic execution. To schedule the script for
execution, log in as pgsql or, as the superuser, su to pgsql. Once you're acting as pgsql, execute:

% crontab -e

to open the crontab file in the default editor.

Given the following crontab file, /usr/local/bin/pg2gz.py will execute at 4 AM every Sunday.

# more /var/cron/tabs/pgsql

SHELL=/bin/sh

PATH=/var/cron/tabs:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin

#minute    hour    mday    month    wday     command

0          4       *       *        0        /usr/local/bin/pg2gz.py

4.7.4 See Also

The PostgreSQL web site (http://www.postgresql.org/)

The Python web site (http://www.python.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 41 Perform Client-Server Cross-Platform Backups with Bacula

 

Don't let the campy name fool you. Bacula is a powerful, flexible, open source backup program. .

Having problems finding a backup solution that fits all your needs? One that can back up both Unix and Windows
systems? That is flexible enough to back up systems with irregular backup needs, such as laptops? That allows you to
run scripts before or after the backup job? That provides browsing capabilities so you can decide upon a restore point?
Bacula may be what you're looking for.

4.8.1 Introducing Bacula

Bacula is a client-server solution composed of several distinct parts:

Director

The Director is the most complex part of the system. It keeps track of all clients and files to be backed up. This
daemon talks to the clients and to the storage devices.

Client/File Daemon

The Client (or File) Daemon runs on each computer which will be backed up by the Director. Some other backup
solutions refer to this as the Agent.

Storage Daemon

The Storage Daemon communicates with the backup device, which may be tape or disk.

Console

The Console is the primary interface between you and the Director. I use the command-line Console, but there
is also a GNOME GUI Console.

Each File Daemon will have an entry in the Director configuration file. Other important entries include FileSets and Jobs.
A FileSet identifies a set of files to back up. A Job specifies a single FileSet, the type of backup (incremental, full, etc.),
when to do the backup, and what Storage Device to use. Backup and restore jobs can be run automatically or manually.

4.8.2 Installation

Bacula stores details of each backup in a database. You can use either SQLite or MySQL, and starting with Bacula
Version 1.33, PostgreSQL. Before you install Bacula, decide which database you want to use.

FreeBSD 4.x (prior to 4.10-RELEASE) and FreeBSD 5.x (Version 5.2.1 and earlier) have a
pthreads bug that could cause you to lose data. Refer to platform/freebsd/pthreads-fix.txt
in your Bacula source directory for full details.

The existing Bacula documentation provides detailed installation instructions if you're installing from source. To install
instead the SQLite version of the FreeBSD port:

# cd /usr/ports/sysutils/bacula

# make install

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Or, if you prefer to install the MySQL version:

# cd /usr/ports/sysutils/bacula

# make -DWITH_MYSQL install

Don't use the clean target with your make command, because there are some scripts in the
work directory you'll need to use.

4.8.3 Configuration Files

Bacula installs several configuration files that should work for your environment with few modifications.

4.8.3.1 File Daemon on the backup client

The first configuration file, /usr/local/etc/bacula-fd.conf, is for the File Daemon. This file needs to reside on each
machine you want to back up. For security reasons, only the Directors specified in this file will be able to communicate
with this File Daemon. The name and password specified in the Director resource must be supplied by any connecting
Director.

You can specify more than one Director { } resource. Make sure the password matches the one in the Client resource in
the Director's configuration file.

The FileDaemon { } resource identifies this system and specifies the port on which it will listen for Directors. You may
have to create a directory manually to match the one specified by the Working Directory.

4.8.3.2 Storage Daemon on the backup server

The next configuration file, /usr/local/etc/bacula-sd.conf, is for the Storage Daemon. The default values should work
unless you need to specify additional storage devices.

As with the File Daemon, the Director { } resource specifies the Director(s) that may contact this Storage Daemon. The
password must match that found in the Storage resource in the Director's configuration file.

4.8.3.3 Director on the backup server

The Director's configuration is by necessity the largest of the daemons. Each Client, Job, FileSet, and Storage Device is
defined in this file.

In the following example configuration, I've defined the Job Client1 to back up the files defined by the FileSet Full Set on
a laptop. The backup will be performed to the File storage device, which is really a disk located at laptop.example.org.

This isn't an optimal solution for a real backup, as I'm just backing up files from the laptop
to somewhere else on the laptop. It is sufficient for demonstration and testing, though.

# more /usr/local/etc/bacula-dir.conf

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# more /usr/local/etc/bacula-dir.conf

  Director {

    Name                    = laptop-dir

    DIRport                 = 9101

    QueryFile               = "/usr/local/etc/query.sql"

    WorkingDirectory        = "/var/db/bacula"

    PidDirectory            = "/var/run"

    Maximum Concurrent Jobs = 1

    Password                = "lLftflC4QtgZnWEB6vAGcOuSL3T6n+P7jeH+HtQOCWwV"

    Messages                = Standard

  }

   Job {

    Name            = "Client1"

    Type            = Backup

    Client          = laptop-fd

    FileSet         = "Full Set"

    Schedule        = "WeeklyCycle"

    Storage         = File

    Messages        = Standard

    Pool            = Default

    Write Bootstrap = "/var/db/bacula/Client1.bsr"

    Priority        = 10

  }

  FileSet {

    Name = "Full Set"

    Include = signature=MD5 {

      /usr/ports/sysutils/bacula/work/bacula-1.32c

    }

  # If you backup the root directory, the following two excluded

  #   files can be useful

  #

    Exclude = { /proc /tmp /.journal /.fsck }

  }

  Client {

    Name           = laptop-fd

    Address        = laptop.example.org

    FDPort         = 9102

    Catalog        = MyCatalog

    Password       = "laptop-client-password"

    File Retention = 30 days

    Job Retention  = 6 months

    AutoPrune      = yes

  }

  # Definition of file storage device

  Storage {

    Name       = File

    Address    = laptop.example.org

    SDPort     = 9103

    Password   = "TlDGBjTWkjTS/0HNMPF8ROacI3KlgIUZllY6NS7+gyUp"

    Device     = FileStorage

    Media Type = File

  }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  }

Note that the password given by any connecting Console must match the one here.

4.8.4 Database Setup

Now that you've modified the configuration files to suit your needs, use Bacula's scripts to create and define the
database tables that it will use.

To set up for MySQL:

# cd /usr/ports/sysutils/bacula/work/bacula-1.32c/src/cats

# ./grant_mysql_privileges

# ./create_mysql_database

# ./make_mysql_tables

If you have a password set for the MySQL root account, add -p to these commands and you will be prompted for the
password. You now have a working database suitable for use by Bacula.

4.8.5 Testing Your Tape Drive

Some tape drives are not standard. They require their own proprietary software and can be temperamental when used
with other software. Regardless of what software it uses, each drive model can have its own little quirks that need to be
catered to. Fortunately, Bacula comes with btape, a handy little utility for testing your drive.

My tape drive is at /dev/sa1. Bacula prefers to use the non-rewind variant of the device, but it can handle the raw
variant as well. If you use the rewinding device, then only one backup job per tape is possible. This command will test
the non-rewind device /dev/nrsa1:

# /usr/local/sbin/btape -c /usr/local/etc/bacula-sd.conf /dev/nrsa1

4.8.6 Running Without Root

It is a good idea to run daemons with the lowest possible privileges. The Storage Daemon and the Director Daemon do
not need root permissions. However, the File Daemon does, because it needs to access all files on your system.

In order to run daemons with nonroot accounts, you need to create a user and a group. Here, I used vipw to create the
user. I selected a user ID and group ID of 1002, as they were unused on my system.

bacula:*:1002:1002::0:0:Bacula Daemon:/var/db/bacula:/sbin/nologin

I also added this line to /etc/group:

bacula:*:1002:

The bacula user (as opposed to the Bacula daemon) will have a home directory of /var/db/bacula, which is the default
location for the Bacula database.

Now that you have both a bacula user and a bacula group, you can secure the bacula home directory by issuing this
command:

# chown -R bacula:bacula /var/db/bacula/

4.8.7 Starting the Bacula Daemons

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To start the Bacula daemons on a FreeBSD system, issue the following command:

# /usr/local/etc/rc.d/bacula.sh start

To confirm they are all running:

# ps auwx | grep bacula

root 63416 0.0 0.3 2040 1172 ?? Ss 4:09PM 0:00.01

    /usr/local/sbin/bacula-sd -v -c /usr/local/etc/bacula-sd.conf

root 63418 0.0 0.3 1856 1036 ?? Ss 4:09PM 0:00.00

    /usr/local/sbin/bacula-fd -v -c /usr/local/etc/bacula-fd.conf

root 63422 0.0 0.4 2360 1440 ?? Ss 4:09PM 0:00.00

    /usr/local/sbin/bacula-dir -v -c /usr/local/etc/bacula-dir.conf

4.8.8 Using the Bacula Console

The console is the main interface through which you run jobs, query system status, and examine the Catalog contents,
as well as label, mount, and unmount tapes. There are two consoles available: one runs from the command line, and
the other is a GNOME GUI. I will concentrate on the command-line console.

To start the console, I use this command:

#  /usr/local/sbin/console -c /usr/local/etc/console.conf

Connecting to Director laptop:9101

1000 OK: laptop-dir Version: 1.32c (30 Oct 2003)

*

You can obtain a list of the available commands with the help command. The status all command is a quick and easy way
to verify that all components are up and running. To label a Volume, use the label command.

Bacula comes with a preset backup job to get you started. It will back up the directory from which Bacula was installed.
Once you get going and have created your own jobs, you can safely remove this job from the Director configuration file.

Not surprisingly, you use the run command to run a job. Once the job runs, the results will be sent to you via email,
according to the Messages resource settings within your Director configuration file.

To restore a job, use the restore command. You should choose the restore location carefully and ensure there is
sufficient disk space available.

It is easy to verify that the restored files match the original:

# diff -ruN \

  /tmp/bacula-restores/usr/ports/sysutils/bacula/work/bacula-1.32c \

  /usr/ports/sysutils/bacula/work/bacula-1.32c

#

4.8.9 Creating Backup Schedules

For my testing, I wanted to back up files on my Windows XP machine every hour. I created this schedule:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For my testing, I wanted to back up files on my Windows XP machine every hour. I created this schedule:

Schedule {

  Name = "HourlyCycle"

  Run  = Full 1st sun at 1:05

  Run  = Differential 2nd-5th sun at 1:05

  Run  = Incremental Hourly

}

Any Job that uses this schedule will be run at the following times:

A full backup will be done on the first Sunday of every month at 1:05 AM.

A differential backup will be run on the 2nd, 3rd, 4th, and 5th Sundays of every month at 1:05 AM.

Every hour, on the hour, an incremental backup will be done.

4.8.10 Creating a Client-only Install

So far we have been testing Bacula on the server. With the FreeBSD port, installing a client-only version of Bacula is
easy:

# cd /usr/ports/sysutils/bacula

# make -DWITH_CLIENT_ONLY install

You will also need to tell the Director about this client by adding a new Client resource to the Director configuration file.
You will also want to create a Job and FileSet resource.

When you change the Bacula configuration files, remember to restart the daemons:

# /usr/local/etc/rc.d/bacula.sh restart

Stopping the Storage daemon

Stopping the File daemon

Stopping the Director daemon

Starting the Storage daemon

Starting the File daemon

Starting the Director daemon

#

4.8.11 See Also

The Bacula web site (http://www.bacula.org/)

http://www.onlamp.com/pub/a/onlamp/2004/01/09/bacula.html (the original Bacula article from ONLamp)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 5. Networking Hacks
Introduction

Section 42.  See Console Messages Over a Remote Login

Section 43.  Spoof a MAC Address

Section 44.  Use Multiple Wireless NIC Configurations

Section 45.  Survive Catastrophic Internet Loss

Section 46.  Humanize tcpdump Output

Section 47.  Understand DNS Records and Tools

Section 48.  Send and Receive Email Without a Mail Client

Section 49.  Why Do I Need sendmail?

Section 50.  Hold Email for Later Delivery

Section 51.  Get the Most Out of FTP

Section 52.  Distributed Command Execution

Section 53.  Interactive Remote Administration

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
You probably spend most of your time accessing servers on the Internet or on your own network. In fact, networking
has become so prevalent, it's becoming increasingly difficult to tolerate even short periods of network outages.

This chapter contains many ideas for accessing networking services when the conventional avenues seem to be
unavailable. Have you ever wanted to train your system to notify you of its new network configuration when its primary
link becomes unavailable? Would you like to check your email from a system that doesn't contain a preconfigured email
client? How can you maintain network connectivity when your ISP's DHCP server no longer recognizes your DHCP
client?

You'll also gain insight into how some of the networking services and tools we often take for granted work. Become a
tcpdump guru—or at least lose the intimidation factor. Understand your DNS messages and how to troubleshoot your
DNS servers. Tame your sendmail daemon.

Finally, meet two excellent open source utilities that allow you to perform routine tasks simultaneously on all of your
servers.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 42 See Console Messages Over a Remote Login

 

View a server's console messages remotely

As a Unix system administrator, you can do 99% of your work remotely. In fact, it is very rare indeed that you'll need
to sit down in front of a server (assuming the server even has an attached keyboard! [Hack #26]).

However, one of the key functionalities you lose in remote administration is the ability to see the remote server's
console. All is not lost, though. First, let's answer these questions: "What do you mean by the console, and why would
you want to see it?"

5.2.1 The Console

If you're physically sitting at a system, the console is the virtual terminal you see when you press Alt-F1. If you've ever
logged into this particular virtual terminal, you've probably noticed that error messages appear here. These messages
can be rather disconcerting when you're working at the console, especially if you're fighting your way through vi and
bright white error messages occasionally overwrite your text.

If you ever find yourself in that situation, Esc-Ctrl-r will refresh your screen. Better yet, don't log into Alt-F1 when
you're physically sitting at a system. Instead, log into a different terminal, say, the one at Alt-F2.

However, when you access a remote system, you can't log into a virtual terminal, and the console is considered to be a
virtual terminal. (You access it by pressing Alt-F1 at the local keyboard, after all). Instead, you log into a
pseudoterminal (also known as a network terminal).

Here's an example. I'm sitting at a system and have logged into the virtual terminals at Alt-F2 and Alt-F3. From Alt-F3,
I've used ssh to log into the localhost. If I run the w command, I'll see this:

% w

12:25  up 22 mins, 3 users, load averages: 0:00, 0:00, 0:00

USER           TTY      FROM              LOGIN@  IDLE WHAT

genisis         v1      -                12:25PM     - -csh (csh)

genisis         v2      -                12:25PM     - ssh localhost

genisis         p0      localhost        12:25PM     - w

Notice that the virtual (or physical access to keyboard) terminals begin with a v in the TTY section. Since terminals start
numbering at 0, I'm logged into the second (v1) and third (v2) virtual terminals. I'm also connected to the first
pseudoterminal, p0, so I'm currently the only user logged in over the network.

In my ssh session, if I press Alt-F1, I'll access the console on my local system (where I am sitting), not the console on
the remote system.

5.2.2 Seeing Remote Console Messages

If Alt-F1 won't do it, how can you see remote console messages? A quick hack for your current session is to run this
command:

% tail -f /var/log/messages &

tail shows the end of a file, much like head shows the start. In this case, the file is /var/log/messages. This particular log
contains a copy of the messages that appear on the system console. When run with the -f switch, tail will remain open,
allowing you to see when new entries are added to that logfile. The trailing ampersand (&) runs the command in the
background, so you'll get your prompt back if you press Enter or type in another command.

As the system writes console entries to this file, tail will also display to your current pseudoterminal. If you're in the
middle of typing something when a log message is displayed, Ctrl-r will refresh your command prompt line so you can
see where you left off typing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


see where you left off typing.

5.2.3 An Alternate Method

There's always more than one way to skin a cat. Since syslog is responsible for logfiles, you can also change its
configuration file. Let's start by seeing why messages are sent to the console:

% grep console /etc/syslog.conf

*.err;kern.debug;auth.notice;mail.crit       /dev/console

# uncomment this to log all writes to /dev/console to /var/log/console.log

#console.info                                /var/log/console.log

See how messages are sent to /dev/console by default? This file also gives a hint on how to send those messages
elsewhere—to a file called console.log. By uncommenting that console.info line, you can send those messages to
/var/log/console.log.

If you decide to remove that #, don't forget to create an empty logfile with the specified name and to inform syslogd of
your changes by sending it a signal one:

# touch /var/log/console.log

# killall -1 syslogd

Now you're probably thinking, big deal. So I've sent console messages to a different filename. I still have to run that tail
-f command to see them.

Well, how about changing that console.info line to this instead:

console.info                                root,genisis

Don't forget to killall -1 syslogd once you save your changes.

Now when I ssh into that system as the user genisis, I don't have to remember to run the tail command. As long as I'm
the user genisis, even if I become the superuser, all console messages will be sent to my terminal.

5.2.4 Hacking the Hack

You may have noticed that uncommenting the console.info line results in messages being sent twice: once to
/var/log/console.log and once to either the original console or the specified users. If you prefer to only have messages
sent to either the log or the console or user, recomment the console.info line and indicate in the line that originally
specified /dev/console where you want the information to go.

For example, to log only to a file:

*.err;kern.debug;auth.notice;mail.crit       /var/log/console

Or to log only to the specified users:

*.err;kern.debug;auth.notice;mail.crit       root,genisis

Again, don't forget to inform syslogd of any changes you make to /etc/syslog.conf.

5.2.5 See Also

man w

man syslog.conf

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 43 Spoof a MAC Address

 

Even good guys can use secret identities.

Okay, I know what you're thinking. There's never a legitimate reason to spoof any type of address, right? Even if there
were, why would you bother to spoof a MAC address, other than to prove that it can be done?

Consider the following scenario. I was administrating a small network where the ISP restricted the number of IP
addresses a DHCP client was allowed to receive. Their DHCP server kept track of the leased addresses by using a
combination of the client's MAC address and an OS identifier. One day I needed to replace that network's external NIC.
It took me a while to figure out why the new NIC refused to pick up a DHCP address from the ISP. Once the restriction
was explained to me, I contemplated my available courses of action. One was to spend the afternoon listening to Musak
in the hopes that I'd eventually get to speak to one of the ISP's customer service representatives. I decided my time
would be better spent if I instead took 30 seconds and spoofed the old MAC address. This provided a quick solution that
allowed the owner to get back online until he could make arrangements with the ISP regarding the new MAC address.

5.3.1 Spoofing on FreeBSD

Before I could accomplish the spoof, I needed two pieces of information. The first was the MAC address for the old NIC.
Fortunately, I record such things in a binder. However, I initially found out that information using ifconfig. In this
scenario, the interface in question was called rl0:

% ifconfig rl0

rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.2.12 netmask 0xffffff00 broadcast 192.168.2.255

        ether 00:05:5d:d2:19:b7

        media: Ethernet autoselect (10baseT/UTP)

The MAC address is the hex number immediately following ether.

Second, I needed to know the identifier used by the ISP's DHCP server. This was found in the DHCP lease:

% more /var/db/dhclient.leases | grep host

option host-name "00-05-5d-d2-19-b7-36-33"

Some ISPs use option host-name, while others use option dhcp-client-identifier. Choose the option in the lease that is
associated with the MAC address. In this example, my identifier was the MAC address, followed by -36-33.

Armed with the information I needed, I could spoof the old MAC address onto the new NIC card. In my case, the new
card was an ed0:

# ifconfig ed0 ether 00:05:5d:d2:19:b7

#

# ifconfig ed0 | grep ether

ether 00:05:5d:d2:19:b7

Note that you have to be the superuser to change these settings.

This particular change won't survive a reboot, as the NIC will give the kernel its burnt-in MAC address during the
hardware probe that occurs during bootup. If you intend to reboot before sorting out the situation with the ISP,
carefully add this line to /etc/rc.conf:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


carefully add this line to /etc/rc.conf:

ifconfig_ed0_alias0="ether 00:05:5d:d2:19:b7"

This will create an alias for ed0 that uses the desired MAC address, rather than the MAC address burnt into the physical
card. Think of an alias as an alternate set of instructions an interface can give to the kernel—a kind of networking
nickname.

Next, I'll edit /etc/dhclient.conf:

# vi /etc/dhclient.conf

# $FreeBSD: src/etc/dhclient.conf,v 1.3 2001/10/27 03:14:37 rwatson Exp $

#

#        This file is required by the ISC DHCP client.

#        See ``man 5 dhclient.conf'' for details.

#

#        In most cases an empty file is sufficient for most people as the

#        defaults are usually fine.

#

interface "ed0" {

    send host-name "00-05-5d-d2-19-b7-36-33";

    send dhcp-client-identifier "00-05-5d-d2-19-b7-36-33";

}

By default, this file contains only comments; I added a section for interface ed0. When editing your own file, remember
to include the opening and closing curly braces ({}). Each statement must also end in a semicolon (;). Here, I've set
both the host-name and the dhcp-client-identifier options to the values expected by the ISP.

Now it's time to test that these changes did indeed work. You don't need to reboot in order to test that alias in
/etc/rc.conf. This command will do the trick:

# /etc/netstart

Doing stage one network startup:

Doing initial network setup:.

ed0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.2.95 netmask 0xffffff00 broadcast 192.168.2.255

        ether 00:05:5d:d2:19:b7

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

        inet 127.0.0.1 netmask 0xff000000 

Additional routing options: ignore ICMP redirect=YES log ICMP redirect=YES drop SYN+FIN 

packets=YESsysctl: unknown oid 'net.inet.tcp.drop_synfin'

.

Routing daemons:.

Excellent. The new NIC kept the spoofed MAC address. Now let's see how the DHCP server responds when I release and
try to renew an address:

# dhclient -r ed0

#

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


#

Using -r with dhclient forces the DHCP client to give up its old address and request a new lease from the DHCP server. If
this succeeds, the prompt will return without any error messages. Running ifconfig ed0 will show that the ISP's DHCP
server did indeed give this interface a public IP address.

5.3.2 Spoofing on NetBSD

The current version of ifconfig that ships with NetBSD does not support this functionality. To allow MAC address changes,
try Dheeraj Reddy's ifconfig patch, available from
http://news.gw.com/netbsd.tech.net/%3C20030808072355.GA616%40bharati.sudheeraj.net%3E.

You will need to apply this patch to NetBSD sources and build a new version of ifconfig. To begin, download the system
sources, unpack them, and change the working directory to src/sbin/ifconfig. Download the patch and apply it with:

# patch > ifconfig.patch

Build a new binary with:

# make

Remember that this code is experimental and may not always work as advertised, so it is crucial that you back up the
original ifconfig binary in some safe place.

When you have the new binary, run it with:

# ifconfig interface-name lladdr MAC-addr

5.3.3 Spoofing with OpenBSD

The standard ifconfig that ships with OpenBSD does not contain an option to change the MAC addresses of interface
cards. If you need it, you will have to build your own tool for that purpose with sea.c. Download it from
http://www.devguide.net/books/openbsdfw-02-ed/

Build sea as follows:

# gcc -Wall -o sea sea.c -lkvm

Next, boot OpenBSD into single-user mode:

# reboot

boot> boot -s

Then, once in single-user mode, use sea to spoof the desired address on the specified NIC:

# sea  interface-name   MAC-addr

5.3.4 See Also

man ifconfig

man dhclient.conf

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 44 Use Multiple Wireless NIC Configurations

 

Take the pain out of configuring your laptop's wireless interface.

If you use a laptop and have remote sites that you visit regularly, configuring your wireless interface can be interesting.
For example, every wireless network has a unique service set identifier (SSID). Each site that uses WEP will also require
a unique encryption key. Some networks may use static IP addresses, while others may use a DHCP server.

You could keep a copy of each network's configuration in your wallet and reconfigure your NIC manually at each site,
but wouldn't you rather automate the various network configurations and choose the desired configuration after
bootup?

For the purpose of this exercise, we will assume that the wireless access points have been properly configured and
activated.

5.4.1 Initial Preparation

Before you can script the network configurations, you'll need to collect the information listed next. I've associated the
necessary information with ifconfig's keywords where possible. You will see these keywords in the configuration script.

ssid, the name of the wireless network

authmode, the network's authorization mode (none, open, or shared)

nwkey, the encryption key, in hexadecimal

Whether to use a static IP address or dhclient to obtain dynamic IP address information

inet, the static IP address, if necessary

netmask, the netmask, for static network configuration

The default gateway, for static IP configuration

Nameservers, for static IP configuration

The network device (wi0, an0, etc.)

You can obtain all but the final item from whoever set up the wireless access points for each site.

If you don't know the name of your network device, review the output of dmesg for networking protocol names
(Ethernet, 802.11) and MAC addresses. Here's the command I use and the relevant lines from my laptop:

# dmesg | grep address

rl0: Ethernet address: 00:08:02:9e:df:b8

wi0: 802.11 address: 00:06:25:17:74:be

rl0 is the device name for the cabled Ethernet port, and wi0 is the device name for the wireless PCMCIA card.

5.4.2 Preparing the Script

Here are a few notes regarding the network device configuration script:

The script is named for the network device it controls.

The script will live in /usr/local/etc/rc.d. Since we do not want the script activated at bootup, the script name

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The script will live in /usr/local/etc/rc.d. Since we do not want the script activated at bootup, the script name
must not end in .sh.

Each network device should have its own script so that the connection can be easily dropped using the
argument stop.

Each configuration will have its own section in a case construct.

Each section's name will consist of a d (to use DHCP) or an s (to use a static IP address) followed by a location
name.

The script will accept a section name as a command line argument for configuration selection.

In order to use WEP with DHCP, the device must be configured with the encrypted code prior to calling dhclient.

A status section will give us current network information for the device.

A wildcard section will print a list of the section names when given an invalid argument.

Since my network device is wi0, I'll save the script as /usr/local/etc/rc.d/wi0. I tend to use my laptop in three locations:
at home with DHCP and WEP, at home with a static IP address and WEP, and at my sister's home with DHCP and WEP.
Tables Table 5-1 through Table 5-3 list the appropriate configurations.

Table 5-1. Using DHCP and WEP in my home network
Option name Value

section name dhome

ssid myhome

authmode shared

nwkey 0x123456789a

ip address Use dhclient to obtain the IP address, netmask, gateway, and nameservers

Table 5-2. Using a static IP address and WEP in my home network
Option name Value

section name shome

ssid myhome

authmode shared

nwkey 0x123456789a

ip address 192.168.1.21

netmask 255.255.255.0

gateway 192.168.1.1

name servers 24.204.0.4, 24.204.0.5

Table 5-3. Using DHCP and WEP at my sister's home
Option name Value

section name dsister

ssid sisterhome

authmode shared

nwkey 0x987654321a

ip address Use dhclient to obtain the IP address, netmask, gateway, and nameservers

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.4.3 The Code

Here is the resulting script:

#!/bin/sh

# /usr/local/etc/rc.d/wi0

# Configure wireless interface

# See the ifconfig(8), dhclient(8) and route(8) man pages for further 

# assistance.

NIC=wi0

case $1 in 

dhome)

       ifconfig ${NIC} ssid "myhome" authmode "shared" nwkey 0x123456789a

       dhclient ${NIC}

       echo ${NIC}

       ;;

shome)

       ifconfig ${NIC} inet 192.168.1.21 ssid "myhome" authmode "shared" 

       nwkey 0x123456789a netmask 255.255.255.0

       route add default 192.168.1.1

       echo nameserver 24.204.0.4 > /etc/resolv.conf

       echo nameserver 24.204.0.5 >> /etc/resolv.conf

       echo ${NIC}

       ;;

dsister)

       ifconfig ${NIC} ssid "sisterhome" authmode "shared" nwkey \

           0x987654321a

       dhclient ${NIC}

       echo ${NIC}

       ;;

stop)

       [ -s /var/run/dhclient.pid ] && kill `cat /var/run/dhclient.pid` \ 

           && rm /var/run/dhclient.pid

       ifconfig ${NIC} remove

       echo " ${NIC} removed"

       ;;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       ;;

status)

       ifconfig ${NIC}

       ;;

*)

       echo "usage: /usr/local/etc/${NIC} [dhome|shome|dsister|stop|status]"

       ;;

esac

Note that the stop option kills dhclient. If you will be using multiple network interfaces, you may wish to delete the line
that reads:

[ -s /var/run/dhclient.pid ] && kill `cat /var/run/dhclient.pid` && rm \

      /var/run/dhclient.pid

The script should be owned by root and be readable by root only. If you create your script as a normal user, you need to
change its owner. Become the superuser, and:

# chown root:wheel /usr/local/etc/rc.d/wi0

# chmod 700 /usr/local/etc/wi0

5.4.4 Running the Hack

Using the script is fairly straightforward. To activate the dhome configuration (DHCP at home):

# /usr/local/etc/rc.d/wi0 dhome

wi0

To remove the wi0 interface and kill the connection:

# /usr/local/etc/rc.d/wi0 stop

wi0 removed

If I enter an erroneous argument, I'll get a list of valid arguments:

# /usr/local/etc/rc.d/wi0 badargument

usage: /usr/local/etc/wi0 [dhome|shome|dsister|stop|status]

Now you can choose an existing network configuration without having to remember any network details.

A similar script will work for cabled network devices. Simply change the device name and remove the wireless keywords
(ssid, authmode, and nwkey) and values.

5.4.5 Hacking the Hack

For all the geek points, you could put your wireless card in promiscuous mode (if it supports it), sniff for the available
ESSIDs and their signal strengths, and choose the appropriate configuration based on that information. If you go this
route, install the net/bsd-airtools port and remember to ask for permission before using someone else's resources.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.4.6 See Also

man dhclient

man ifconfig

man route

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 45 Survive Catastrophic Internet Loss

 

Set up your network to recover from a full Internet loss.

Someday this all too common event may happen: while you're away from your network, your connection dies. Whether
the ISP drops it, the cable gets unplugged or the server behind your NAT box dies, it is gone. You are now lost at sea,
not knowing what is actually going on back at home. You ping, telnet, and pray to the network gods, but nothing seems
to work.

Wouldn't it be better if your network could recognize that it has lost that connection and find a way for you to get back
in touch? The system that I set up did just that. All it took was a well-configured OpenBSD firewall with NAT and a short
Ruby program that uses the Jabber protocol to get my attention.

5.5.1 Hardware Configuration

I use OpenBSD on a 486 to make my network resistant to total connectivity failure. The computer has two network
cards, one for the DSL bridge and the other for the rest of the network. In addition, I managed to find a 56k ISA
modem.

Since this computer provides little more than firewall and NAT services, it's more than capable of serving a small home
or business network. The DSL bridge provides the primary Internet connection with a static IP. The service through my
provider is usually quite good, but there have been troubled times. The house has only one phone line, which is plugged
into the 56k modem in the same computer as the DSL line. You could easily make the modem computer a different
machine entirely, but I found that this 486 is quite compact and sufficient for my purposes.

5.5.2 Connectivity Software

The current OpenBSD operating system (Version 3.4 as of this writing) comes with a wonderful firewall and NAT
package, named Packet Filter (PF). PF works well on a day-to-day basis moving my packets from the network to the
Internet. Unfortunately, it does not handle the loss of the connection to the ISP. A full discussion for configuring PF is
beyond the scope of this hack, but you can find what you need from the OpenBSD PF FAQ at
http://www.openbsd.org/faq/pf/index.html.

When the unthinkable happens and your network falls off the Internet, you may fall back to your trusty 56k modem.
The idea is that the modem will dial out automatically once your main connection goes away. First, though, you need
some way to detect that your connection is lost. I use a slow ping to the router on the other end of my DSL connection.

I run this heartbeat from cron instead of using a daemon process. It sends three pings at two-second intervals every 10
minutes—a very conservative test, especially if you are only sending to your local gateway. Here is the cron entry:

*/10 * * * * /usr/local/testconnect/testconnect.sh

The testconnect.sh script resembles this:

#!/bin/sh

# First gather data about your connection

PINGS=`ping -c 1 -i 2 [your gateway] | wc -l`

# Apply test and execute on result

if [ -f /tmp/lostconnection.lock ]

then

  echo "Lockfile in place"

else

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  echo "No lockfile"

  if [ $PINGS -lt 8 ]

  then

    echo "Connection lost, commencing dialup"

    touch /tmp/lostconnection.lock

    pfctl -d

    ppp -nat internet

    ruby /usr/local/testconnect/send_new_ip.rb

  else

    echo "All is well"

  fi

fi

If the gateway is unavailable, then the pings will time out and generate a short ping result. By counting the number of
letters (with wc -l) and applying a length test (if [ $PINGS -lt 8]), the script can tell if the pings failed. In the case of
failure, the script goes through the steps to give you connectivity through alternative means and to stop it from doing it
every 10 minutes if things go really wrong.

First, it creates a lockfile to ensure future runs of this script do not dial out over and over again. Second, it shuts down
the current NAT interface to make way for the next step. Third, it fires up the modem and connects to my emergency
ISP using a preconfigured ppp.conf profile called internet. Here, I enabled NAT (-nat) over PPP so that computers at my
house will only notice that the service is slow. The Internet connection will still function in the same way. Finally, I run a
script to alert me to the failure.

You may have noticed one flaw in this setup. Most cheap ISP services usually do not give you the same IP address
when you dial into them. How do you know how to contact your reconnected gateway from the outside? Easy: have the
computer tell you.

5.5.3 Jabber and Ruby to the Rescue!

There are many ways a computer can contact you with its current status. I decided to use Jabber because I spend a fair
amount of time with a Jabber session running. This script will notify me quickly if something untoward happens to my
connection at home, such as an incident involving the vacuum cleaner.

I figured that a message from my computer with the current network configuration would provide enough information
to allow me to log in remotely. The most important information is the current IP address of the backup PPP connection.
I decided to create a Ruby script using the Jabber4r module to accomplish this:

require 'jabber4r/jabber4r'

now    = `date`.chomp!

ipdata = `/sbin/ifconfig tun0`

session = Jabber::Session.bind_digest("user@jabberserver/modem", "secret")

session.new_chat_message("user@jabberserver").

   set_body("I had to dial up for internet access at #{now}.\n#{ipdata}\n")

      .send

sleep 5

session.close

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


session.close

The Ruby script grabs the current time and state of the tun0 interface, which contains the current IP address assigned
by the dial-up ISP. Armed with that IP address, you can then ssh into your computer and begin to diagnose the
situation.

The Jabber4r module lives at http://jabber4r.rubyforge.org/. You will also need the REXML module from
http://www.germane-software.com/software/rexml/. Both of these installed without issue on top of the Ruby package
that shipped with OpenBSD 3.4.

5.5.4 The Last Piece

After your connection has been restored, you need to clean up. You will need to stop ppp, start PF again—hopefully with
pfctl—and remove the lockfile that prevents the /tmp/testconnect.sh script from dialing out over and over. After that,
you should be back to normal, at least until the next mishap.

5.5.5 See Also

The Jabber web site (http://www.jabber.org/)

The Ruby web site (http://www.ruby-lang.org/en/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 46 Humanize tcpdump Output

 

Make friends with tcpdump.

One of the most useful utilities in a network administrator's tool belt is tcpdump. While you probably agree, I bet the
very thought of wading through a tcpdump sniff makes you groan. Take heart: I'll walk you through some concrete
examples that show how to zero in on the information you need to solve the particular network problem that prompted
you to consider doing a packet sniff in the first place.

You might be thinking, "Why bother? There are much nicer utilities out there." That's true. My personal favorite
happens to be ethereal. However, you don't always have the luxury of working on a system that allows you to install
third-party utilities or, for that matter, even has X installed. tcpdump is guaranteed to be on your BSD system. It's
there, it's quick, it's dirty, and it's darn effective if you know how to harness its power.

5.6.1 The Basics

Let's start with the basics: starting a capture. Before you can capture any packets, you need to be the superuser. You
also need to have the bpf device in your kernel. If you're using the GENERIC kernel, you're set. If you've created your
own custom kernel [Hack #54], double-check you still have that device. In this example, my kernel configuration file
is called CUSTOM:

# grep bpf /usr/src/sys/i386/conf/CUSTOM

# The 'bpf' device enables the Berkeley Packet Filter.

device    bpf    #Berkeley packet filter

You also need to know the names of your interfaces and which interface is cabled to the network you wish to sniff. You
can find this with ifconfig:

# ifconfig

rl0: flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.3.20 netmask 0xffffff00 broadcast 192.168.3.255

        ether 00:05:5d:d2:19:b7

        media: Ethernet autoselect (10baseT/UTP)

rl1: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.12.43 netmask 0xffffff00 broadcast 192.168.12.255

        ether 00:05:5d:d1:ff:9d

        media: Ethernet autoselect (10baseT/UTP)

ed0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.2.95 netmask 0xffffff00 broadcast 192.168.2.255

        ether 00:50:ba:de:36:33

lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

        inet 127.0.0.1 netmask 0xff000000

This particular system has three Ethernet (ether) cards attached to three different networks. Since I'm interested in the
traffic on the 192.168.2.0 network, I'll use the ed0 interface.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


traffic on the 192.168.2.0 network, I'll use the ed0 interface.

To start a capture, simply specify the interface you're interested in, with the interface (-i) switch:

# tcpdump -i ed0

tcpdump: listening on ed0

Ctrl t

tcpdump: 24 packets received by filter, 0 packets dropped by kernel

Ctrl c

33 packets received by filter

0 packets dropped by kernel

You will lose your prompt for the duration of the dump, and captured packets will be displayed to your terminal (these
weren't shown in this example's output). If you press Ctrl-t, you can see how many packets have been captured so far
and how many have been dropped, if any. If you're dropping packets, that means packets are arriving faster than
tcpdump can process them. To end your sniff, press Ctrl-c and you'll return to your prompt.

Unless you're a speed reader or have a very boring network, you'll probably prefer to send the captured packets to a
file. Use the -w (write) switch to specify the name of the file you'd like to create:

# tcpdump -i ed0 -w dumpfile

tcpdump: listening on ed0

Ctrl t

load: 0:00  cmd: tcpdump 1458 [bpf] 0.01u 0.00s 0% 1576k

Ctrl c

56 packets received by filter

0 packets dropped by kernel

Note that you won't be able to read that file with a pager or editor, as it is written in a format that only tcpdump or
another packet-sniffer utility can understand. Instead, use the -r (read) switch and specify the name of the file:

# tcpdump -r dumpfile | more

5.6.2 Display Filters

If you try the previous examples on a moderately busy network, you'll probably remind yourself why you don't like
using tcpdump. In a minute you can capture hundreds of seemingly unintelligible lines of numbers. You're wasting time
and brain cells if you're wading through hundreds of lines and you're interested in only two or three of them. You can
save on both of those precious resources if you spend a few minutes creating a display filter.

There's always a reason behind a packet sniff. tcpdump is a very intelligent utility, but it's not a mind reader. However, if
you can convert your reason into syntax that tcpdump understands, you can create a filter that will display only
interesting packets.

Let's say that you suspect broadcast packets are slowing down a network segment. This incantation will capture only
broadcast packets:

# tcpdump -i ed0 broadcast

When you end your capture, you'll find that the number of packets received by the filter will be greater than the
number of packets displayed to your screen. This means that tcpdump will still capture all packets, but will display only
the packets matching your filter. This can give you a good idea of ratio. For example, if you captured 100 packets in a
minute and only 4 of those packets were broadcasts, then broadcasts probably aren't an issue on that network.

Next example: a particular workstation is having problems connecting to a server. Create a filter that zeros in on the
packets between those two systems, in this case, genisis and server1:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


packets between those two systems, in this case, genisis and server1:

# tcpdump -i ed0 host genisis and server1

In this example, I only have to use the host keyword once, as it is assumed until I specify a different keyword. If I really
like to type (which I don't), it would have been just as correct to type host genisis and host server1.

You can also fine-tune that syntax to unidirectional traffic like so:

# tcpdump -i ed0 src host genisis and dst host server1

That will show only the traffic that was created at genesis and is destined for server1. This time I had to repeat the word
host, as one incantation was src host while the other was dst host.

Suppose you're interested in only ICMP traffic:

# tcpdump -i ed0 icmp

or perhaps only ARP traffic:

# tcpdump -i ed0 arp

Perhaps you're having a problem with IKE, which uses UDP port 500:

# tcpdump -i ed0 udp port 500

As you can see, tcpdump comes with many keywords that assist you in creating a display filter suited to your needs.
These keywords are building blocks for more complex expressions. When you do your own combinations, you might find
it easier to use the words and, or, and not. For example, this will capture all traffic on network 192.168.2.0 that is not
ARP-based:

# tcpdump -i ed0 net 192.168.2 and not arp

Of course, you can find all of the keywords, along with examples, in man tcpdump. I've highlighted only the most
commonly used keywords.

5.6.3 More Complicated Filters

tcpdump is capable of zeroing in on any particular field in a packet. In order to harness this power, it's useful to have a
picture of the various types of headers in front of you. Once you have a picture of the fields contained within the
particular header you're interested in, the examples in man tcpdump will make a lot more sense.

You'll know you're creating a very specific filter if your tcpdump expression contains the name of a protocol followed by
square brackets ([ ]). Let's take a look at this example from the manpage, which is designed to capture only SYN-1s,
the first packet in the TCP three-way handshake. Remember that square brackets may have special meaning to the
shell, so quote complex expressions to prevent weird syntax errors:

# tcpdump -i ed0 'tcp[13] =  = 2'

If you're familiar with the three-way handshake, you know that it involves the flags field of a TCP header. Let's find that
particular field within the TCP header. Figure 5-1 shows the header fields of a TCP packet.

Figure 5-1. TCP packet headers

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 5-1. TCP packet headers

The number enclosed within the [ ] represents how many octets into the header a particular field occurs. Each line, or
word, of a header is 4 octets long. The Flags field is after the first three words (i.e., 12 octets) and occurs one more
octet in, just after the Data Offset and Reserved fields. So, this particular TCP field occurs in octet 13 and is represented
by tcp[13].

Still with me? Okay, where'd the = = 2 come from? For that one, you need to know the names of the flags as well as
the decimal equivalents for each binary bit that represents a flag. These are listed in Table 5-4.

Table 5-4. TCP flags and their decimal equivalents
Flag name Decimal equivalent

URG 32

ACK 16

PSH 8

RST 4

SYN 2

FIN 1

Finally, you need to know that the first packet in the three-way handshake is distinguished by just the SYN flag being
turned on. Since all of the other flags will be turned off and will therefore contain a value of 0, a value of 2 in this field
indicates that only the SYN bit is enabled.

If math isn't your strong point, there is an alternate way to write this particular expression:

# tcpdump -i ed0 'tcp[tcpflags] =  =tcp-syn'

If the particular field you're interested in happens to be the TCP flags field, the ICMP type field, or the ICMP code field,
you're in luck. Those three fields are predefined, so you don't have to count how many octets in that field occurs in the
header. So:

tcp[13] is the same expression as tcp[tcpflags].

icmp[1] is the same expression as icmp[icmpcode].

icmp[2] is the same expression as icmp[icmptype].

Again, the manpage lists which ICMP types have predefined keywords. To specify the other types or the codes, look up
the desired number from the official list at http://www.iana.org/assignments/icmp-parameters.

5.6.4 Deciphering tcpdump Output

Okay, you've managed to capture just the packets you're interested in. Now, can you understand your results?

Let's look at some sample lines from a dumpfile. This particular dump is the first few packets from a POP3 session:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Let's look at some sample lines from a dumpfile. This particular dump is the first few packets from a POP3 session:

# tcpdump -r dumpfile

17:22:36.611386 arp who-has 192.168.2.100 tell genisis.

17:22:36.611642 arp reply 192.168.2.100 is-at 0:48:54:1e:2c:76

ARP packets are fairly comprehensible. In this example, my ARP table didn't contain an entry for my default gateway,
192.168.2.100. My system, genisis, sent out a request looking for that gateway. The gateway responded with its MAC
address, 0:48:54:1e:2c:76.

17:22:36.620320 genisis..49570 > nscott11.bellnexxia.net.domain:  40816+ 

\A? pop1.sympatico.ca. (35)

17:22:36.628557 nscott11.bellnexxia.net.domain > genisis..49570:  40816 

\1/4/4 A 209.226.175.83 (203) (DF)

Once ARP had sorted out the MAC address, a DNS lookup had to occur. The word domain in these lines indicate a DNS
lookup request followed by a DNS reply. Let's see if we can decipher both the request and the reply.

Each starts with a timestamp, which is composed of the time and a random number, separated by a dot. Since many
packets can be sent within the same second, the random number is used to differentiate between packets.

The two hosts are separated by a greater-than sign. If you can visualize it as an arrow, like -->, you can see that genisis
sent that first packet to nscott11.bellnexxia.net.domain. Each hostname has an extra dot, followed by either a port number
or a resolved port name. In this case, genisis used port 49570, and nscott11.bellnexxia.net used the domain port. If you
come across a port name you're not familiar with, look it up in /etc/services:

% grep -w domain /etc/services

domain    53/tcp    #Domain Name Server

domain    53/udp    #Domain Name Server

The next number, 40816, is an ID number that is shared by both the DNS client (genisis) and the DNS server. The client
then asked a question (?) regarding the A record for pop1.sympatico.ca. The entire packet itself was 35 bytes long.

The second packet, from the DNS server, shared the same ID number. It was also a longer packet, 203 bytes, as it
contained the answer. See the 1/4/4? This means that there is one entry in the answer section, four entries in the
authority section, and four entries in the additional section. (See [Hack #47] for an explanation of these sections.) The
DNS server also sent the requested A record, which contains the requested IP address, 209.226.175.83.

Now that name resolution has succeeded, a packet can be sent to the POP3 server:

17:22:36.629268 genisis..49499 > 209.226.175.83.pop3: S 

\2697729992:2697729992(0) win 65535 <mss 1460,nop,wscale 1,nop,nop,timestamp 

2474141 0> (DF)

17:22:36.642617 209.226.175.83.pop3 > genisis..49499: S 

\2225396806:2225396806(0) ack 2697729993 win 25920 <nop,nop,timestamp 

\3293621409 2474141,nop,wscale 0,mss 1452> (DF)

This output is much easier to read if you have a picture of a TCP header handy, as the output details the information
found in that header. Each line starts out as before: the timestamp, source port, >, and destination port. We then see
an S, which refers to that SYN flag.

This is followed by the sequence number and, almost always, by the ack number. The only packet that doesn't have an
ack number is the SYN-1, the first packet in this example. This is because a SYN-1 is the first TCP packet, so there is
nothing to acknowledge yet. All other TCP packets after the SYN-1 will have an ack.

Next comes the window size. If the packet has any options, they will be enclosed within angle brackets. Finally, the IP
header had the "don't fragment" flag, DF, set. This is important enough to be printed at the end of any line representing
a TCP or UDP header.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.6.5 See Also

man tcpdump

http://www.tcpdump.org/

http://www.ethereal.com/

"TCP Protocol Layers Explained," a FreeBSD Basics column
(http://www.onlamp.com/pub/a/bsd/2001/03/14/FreeBSD_Basics.html)

"Examining ICMP Packets," a FreeBSD Basics column
(http://www.onlamp.com/pub/a/bsd/2001/04/04/FreeBSD_Basics.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 47 Understand DNS Records and Tools

 

Demystify DNS records.

DNS is one of those network services that has to be configured carefully and tested regularly. A misconfigured DNS
server can prevent the world from finding your web and mail servers. Worse, a misconfigured DNS server can allow the
world to find more than just your web and mail servers.

Even if you're not a DNS administrator, you should still know some handy DNS commands. The simple truth is, if DNS
isn't working, you're not going anywhere. That means no surfing, no downloading, and no email for you.

5.7.1 Exploring Your ISP's DNS

On your home system, you most likely receive your DNS information from your ISP's DHCP server. Do you know where
to find your primary and secondary DNS server addresses? If not, try this:

% more /etc/resolv.conf

search domain.org

nameserver 204.101.251.1

nameserver 204.101.251.2

Another method is to use the dig (domain information groper) utility. Here, I'll ask for the nameservers (ns) for the
sympatico.ca network:

% dig ns sympatico.ca

; <<>> DiG 8.3 <<>> ns sympatico.ca 

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 4

;; QUERY SECTION:

;;        sympatico.ca, type = NS, class = IN

;; ANSWER SECTION:

sympatico.ca.                8h29m IN NS        ns5.bellnexxia.net.

sympatico.ca.                8h29m IN NS        ns6.bellnexxia.net.

sympatico.ca.                8h29m IN NS        dns1.sympatico.ca.

sympatico.ca.                8h29m IN NS        dns2.sympatico.ca.

;; ADDITIONAL SECTION:

ns5.bellnexxia.net.        23m45s IN A        209.226.175.236

ns6.bellnexxia.net.        32m47s IN A        209.226.175.237

dns1.sympatico.ca.         27m28s IN A        204.101.251.1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


dns1.sympatico.ca.         27m28s IN A        204.101.251.1

dns2.sympatico.ca.         22m26s IN A        204.101.251.2

;; Total query time: 2038 msec

;; FROM: genisis to SERVER: default -- 198.235.216.111

;; WHEN: Sun Nov 23 17:22:31 2003

;; MSG SIZE  sent: 30  rcvd: 182

5.7.1.1 Understanding DNS entries

dig results are divided into sections. Not surprisingly, the ANSWER SECTION answers the question asked; in this case,
"What are the nameservers for sympatico.ca?" In DNS, each entry in the DNS database is called a record. The answer
indicates that sympatico.ca has four nameservers. Their hostnames are:

ns5.bellnexxia.net

ns6.bellnexxia.net

dns1.sympatico.ca

dns2.sympatico.ca

The next section, ADDITIONAL SECTION, maps each hostname in the ANSWER SECTION to its corresponding IP address. As
an end user, you're really interested in the IP addresses of your nameservers, not their names. You need the address of
least one DNS server before you can resolve any name to an address.

The other thing I'd like to point out is the type of records that were returned in the output. Notice that each nameserver
record had an NS. If you ever see NS in a DNS database, you know you're looking at a DNS server record. Also, all
hosts, regardless of whether they also happen to be a DNS server, web server, or mail server, have an A record. An A
record maps a hostname to an IP address. In other words, a DNS server has two records: the NS record indicates that it
is a DNS server, and the A record lists its IP address.

Can you tell which of the four nameservers in this output is the primary nameserver? You could look at the names and
try to figure it out from there. However, it is possible to find out for sure, and it's easy once you know that SOA, the
start of authority record, indicates the primary nameserver. Let's ask dig to show us the SOA record:

% dig soa sympatico.ca

<snip banner>

;; ANSWER SECTION:

sympatico.ca.                16m18s IN SOA        dns1.sympatico.ca. 

dns-admin.sympatico.ca. (

<snip>

;; AUTHORITY SECTION:

sympatico.ca.                3h22m20s IN NS        dns2.sympatico.ca.

sympatico.ca.                3h22m20s IN NS        ns5.bellnexxia.net.

sympatico.ca.                3h22m20s IN NS        ns6.bellnexxia.net.

sympatico.ca.                3h22m20s IN NS        dns1.sympatico.ca.

;; ADDITIONAL SECTION:

dns2.sympatico.ca.          8m36s IN A        204.101.251.2

ns5.bellnexxia.net.         9m55s IN A        209.226.175.236

ns6.bellnexxia.net.        18m57s IN A        209.226.175.237

dns1.sympatico.ca.         13m38s IN A        204.101.251.1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


dns1.sympatico.ca.         13m38s IN A        204.101.251.1

;; Total query time: 239 msec

;; FROM: genisis to SERVER: default -- 198.235.216.111

;; WHEN: Sun Nov 23 17:36:22 2003

;; MSG SIZE  sent: 30  rcvd: 228

Notice the answer? Looks like dns1.sympatico.ca or 204.101.251.1 is the primary nameserver. We also received an extra
section, the AUTHORITY SECTION. Every query except ns will show which nameservers have the "authority" to answer
your question.

You may prefer to try an any query instead of ns. This will show both the NS records and the SOA record, all in one shot.

While you're digging through your ISP's DNS information, you might want to find the name of your SMTP server. Since
these servers have mail exchange (MX) records, use an mx query:

% dig mx sympatico.ca

<snip banner>

;; ANSWER SECTION:

sympatico.ca.                27m48s IN MX        5 smtpip.sympatico.ca.

sympatico.ca.                27m48s IN MX        5 mta1.sympatico.ca.

sympatico.ca.                27m48s IN MX        5 mta2.sympatico.ca.

sympatico.ca.                27m48s IN MX        5 mta3.sympatico.ca.

;; AUTHORITY SECTION:

sympatico.ca.                2h34m29s IN NS        dns2.sympatico.ca.

sympatico.ca.                2h34m29s IN NS        ns5.bellnexxia.net.

sympatico.ca.                2h34m29s IN NS        ns6.bellnexxia.net.

sympatico.ca.                2h34m29s IN NS        dns1.sympatico.ca.

;; ADDITIONAL SECTION:

smtpip.sympatico.ca.        28m30s IN A        209.226.175.84

mta1.sympatico.ca.          13m56s IN A        209.226.175.80

mta2.sympatico.ca.          28m30s IN A        209.226.175.81

mta3.sympatico.ca.          13m56s IN A        209.226.175.82

<snip>

Looks like my ISP has four SMTP servers; I'd better remember which one I'm supposed to use!

MX records always include a priority number. In this example, each mail server has a priority of 5, so they all have the
same priority. Sometimes you'll see records where one mail server has a higher number than another. Always try
sending your email to the server with a lower number—that server has a higher priority. If the priority is 0, you should
always use that mail server. This bit of information is good to know if you plan to send someone an email without using
a mail client [Hack #48] .

5.7.2 Securing DNS

Put on your administrator's hat for a moment and re-examine these dig outputs. Did you happen to notice that the
nameservers live on different networks? Let's take another look at those A records for the DNS servers:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


nameservers live on different networks? Let's take another look at those A records for the DNS servers:

dns2.sympatico.ca.         8m36s IN A        204.101.251.2

ns5.bellnexxia.net.        9m55s IN A        209.226.175.236

ns6.bellnexxia.net.       18m57s IN A        209.226.175.237

dns1.sympatico.ca.        13m38s IN A        204.101.251.1

Two of the four nameservers live on network 204.101.252, and the other two live on network 209.226.175. This is
actually a good network design. Several attacks against high-profile companies have succeeded because their DNS
servers were all on the same subnet of the same network. (See this article about DNS troubles at Microsoft for an
example: http://www.findarticles.com/cf_dls/m0FOX/3_6/75645162/p1/article.jhtml.)

Realistically, to provide such protection, your company has to enter into an agreement with another company willing to
host a copy of your DNS database. That other company may be your ISP, or perhaps a sister company. While adding
redundancy, this also adds complexity and another element of trust. It's one thing to keep your own DNS servers up-
to-date, fully patched, and securely configured. It's quite another to work with another administrator and assume that
she has the resources to devote the same time and effort to your DNS servers.

Regardless of how the network is organized, someone has to address the issue of zone transfers. In DNS, your
database is called a zone, as it really is just a portion of the globally distributed DNS database. When you need to make
a change to your zone, you edit the database on the primary DNS server. However, you have to implement at least one
secondary DNS server to provide redundancy. How are those changes propagated to the secondary DNS server(s)? If
you guessed "via a zone transfer," you're right!

It's important to make a distinction here. Resolving a hostname is one thing. As an end user, you need that
functionality in order to access Internet resources. As an administrator, you want your DNS servers to provide name
resolution. Otherwise, you have to listen to a lot of unhappy end users.

However, your end users do not need to know the entire contents of your DNS database. The world at large certainly
doesn't need to know the name and IP address of every host in your network. Think about that one for a moment. You
probably have machines right now called finance, hr, patents, store, or admin. What tasty names those are to fire the
imaginations of a malicious user!

5.7.2.1 The two-pronged approach

You can use a two-pronged approach to prevent your DNS servers from leaking information you'd rather not have the
world see. The first approach is called split DNS. Run your full DNS zone within your internal network, and run a very
small subset of that zone in your DMZ. That small subset is all the world sees. If you think about it for a moment, which
records does the world need to know about? Probably just the record for your DNS server (the one in the DMZ, with its
secondary preferably hosted at your ISP or somewhere else), the record for your web server, and the record for your
SMTP server. Those are the only records that this mini-zone should contain.

The second approach is to control zone transfers tightly. The last thing you want to happen is for the DNS server in the
DMZ to ask for a copy of your full internal zone. For that matter, you also don't want a user on the Internet to ask your
internal DNS server for all of the records in your network.

There are multiple ways to control zone transfers, and you should implement all of them. First, read the documentation
for your DNS server to see how to restrict the IP addresses that are allowed to ask for zone transfers. (The "Securing
an Internet Name Server" link in this hack's Section 5.7.3 section explains how to do this for BIND.)

Second, configure your firewalls to control zone transfers. DNS is an interesting protocol, as it uses port 53 with both
TCP and UDP. Your firewalls must allow UDP 53; if you deny this, all name resolution will stop. That is a bad thing.
However, TCP 53 is used for zone transfers. You must carefully construct a firewall rule that allows TCP 53 only for the
specific IP addresses of the DNS servers that need to participate in a zone transfer. Remember, you do want to transfer
changes to your secondary servers.

Third, create guidelines to test your DNS servers periodically. Notice how complex it was to secure those nameservers.
How many things could go wrong? Perhaps an OS patch or a DNS server application patch will introduce a new hole.
Perhaps a change in a firewall rulebase will unwittingly reallow zone transfers. You're dealing with multiple DNS servers
—probably in multiple locations—and multiple firewalls, which only increases the possibility of error. A routine testing
schedule increases the chance of catching those errors before they remain for very long.

5.7.2.2 Testing DNS

You can use the axfr switch with dig to test your DNS servers, but I prefer the output provided by host -al. When you run
this utility against your own domain name, you should see a result similar to this one:

% host -al sympatico.ca

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% host -al sympatico.ca

rcode = 0 (Success), ancount=4

Found 1 addresses for ns5.bellnexxia.net

Found 1 addresses for ns6.bellnexxia.net

Found 1 addresses for dns1.sympatico.ca

Found 1 addresses for dns2.sympatico.ca

Trying 209.226.175.236

Server failed, trying next server: Query refused

Trying 209.226.175.237

Server failed, trying next server: Query refused

Trying 204.101.251.1

Server failed, trying next server: Query refused

Trying 204.101.251.2

Server failed: Query refused

Remember, host -al asks for a zone transfer. You want your DNS servers to refuse this request. In this example, all four
DNS servers received the request, so I know they are up and working. The host utility then requested a zone transfer
from each server. Note the order: the first IP address is for the first listed nameserver, and so on. This is important,
especially if one of those nameservers responds with a zone transfer. I can't count the number of times I've tested DNS
servers and two out of three will refuse the query, but one will allow the zone transfer. You'll know which DNS server
was the culprit if you make note of the server response order.

This test is especially important if one or more of your DNS servers is hosted elsewhere. Make sure your agreement
indicates that you will be regularly testing your DNS servers for misconfigurations.

5.7.3 See Also

man dig

man host

Implementing Split DNS (http://www.relevanttechnologies.com/splitdns_081000.asp)

"Securing an Internet Name Server" (http://www.acmebw.com/resources/papers/securing.pdf)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 48 Send and Receive Email Without a Mail Client

 

Learn to speak SMTP and POP3.

Contrary to popular belief, you don't have to go to the trouble of configuring an email client just because you want to
check your email or send off a quick email message.

Normally when you use the telnet application, you use a Telnet client to attach to a Telnet server listening on port 23.
Once you're connected, you can log in and do anything on that device as if you were physically there, typing at its
keyboard.

The Telnet client has even more powerful capabilities than this. If you specify a port number with the telnet command,
you will attach directly to the TCP server listening on that port. If you know which commands that server can respond
to, and if the service understands plain text commands, you can talk directly to that server. This essentially means that
you no longer require a client application specific to that server.

5.8.1 Sending Email with telnet

Whenever you send an email, you connect to an SMTP server listening on port 25. Let's use telnet to see what really
happens in the background and which commands the client and the SMTP server exchange. Note that in the following
examples, the names and addresses have been changed to protect the innocent.

% telnet smtp.mycompany.com 25

Trying 1.2.3.4...

Connected to smtp.mycompany.com.

Escape character is '^]'.

220 smtp.mycompany.com ESMTP server (InterMail version x) ready Sun, 2 

Nov 2003 09:54:18 -0500

mail from:<moi@mycompany.com>

250 Sender <moi@mycompany.com> Ok

rcpt to:<you@mycompany.com>

250 Recipient <you@mycompany.com> Ok

data

354 Ok Send data ending with <CRLF>.<CRLF>

This is a test message.

Not very interesting, really.

.

250 Message received: 20031102145448.QON15340.smtp.mycompany.com@[1.2.3.4]

quit

Let's pick apart that output. Note the 25 at the end of the telnet command. If you forget the port number, your prompt
will probably hang. This is because instead of trying to connect to the SMTP service, you're trying to receive a login
prompt from your ISP's mail server. If you actually do receive a login prompt, it is time to switch ISPs, as security is
obviously not one of their concerns!

Next, the output indicates when you successfully connect to the SMTP service. Notice that there are very few secrets in
TCP/IP-land. The SMTP server readily shows its banner, which indicates the type of SMTP application running on that
server, its version and patch level, as well as the time and date you connected. We'll talk more about banners later.

After connecting to the server, I issued two SMTP commands: MAIL FROM and RCPT TO. Some SMTP servers are pickier

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After connecting to the server, I issued two SMTP commands: MAIL FROM and RCPT TO. Some SMTP servers are pickier
than others and won't recognize these commands unless you say hello first. If your SMTP server complains about your
lack of politeness, try typing HELO or EHLO. I know that this SMTP server accepted my commands because the
responses start with 2xx and end with Ok. Responses that begin with 5xx indicate errors—you either made a typo or
used the wrong command. Most SMTP servers try to be helpful by giving the syntax of the command they expect to
receive.

After providing the sender and recipient email addresses, I issued the DATA command and pressed Enter. The SMTP
server then asked me to type my message. To indicate I was finished, I put a dot (.) on a line by itself. The server
responded with a message number, and I ended the session by typing QUIT.

Some interesting things happen if I play a bit with the SMTP commands. For example, the MAIL FROM command does
not verify that the given email address is valid. This has some interesting ramifications, as I could pretend to be
santa@northpole.com, satan@hell.org, or any other address my imagination could dream up. Remember this quirk
when you read your email. There is no guarantee that any given email was actually sent from the email address it
purports to be from.

Additionally, I'll have mixed results if I start playing with the RCPT TO address. I might start receiving error messages
like this:

550 relaying mail to nowhere.com is not allowed

This is actually a good error message to receive, as SMTP relaying is considered to be a bad thing. In this particular
instance, I've asked the SMTP server of mycompany.com to send my message to a recipient at nowhere.com. The
server rightfully complained, as it should only be responsible for the recipients at mycompany.com. If I want to send a
message to a recipient at nowhere.com, I should instead attach to nowhere.com's SMTP server.

Since you're supposed to connect to the correct SMTP server in order to send email, how
can you find out the name of a recipient's SMTP server? This is a very easy matter, since a
company's DNS server has to maintain an MX record for just this purpose. See [Hack
#47] for details.

5.8.2 Testing for Relaying

As mentioned before, relaying is considered harmful because it allows spammers to use another company's SMTP
server to relay spam. If you're responsible for an SMTP server, be sure to read your SMTP documentation to see
whether relaying is off by default and how to turn it off if it isn't. You can then initiate a quick telnet session to port 25 to
ensure your SMTP server does indeed refuse to relay email. For example, I don't want the mycompany.com SMTP
server to respond like this:

rcpt to:<beastie@unix.ca>

250 Recipient <beastie@unix.ca> Ok

If it does, it is willing to relay to the unix.ca SMTP server.

What else should you look for when you telnet to your own SMTP server? Take a careful look at your banner. Does it
freely advertise that you're one or two patch levels behind? Do you really want to tell anyone who knows enough to ask
which particular SMTP product you're using? If they know enough to use telnet, they probably know how to use Google
to look for known vulnerabilities in that product. It's always good to know exactly what the world sees. You can then
determine if you prefer to change the banner to something a little less chatty. Read the documentation for your
particular product to see how to do so.

5.8.3 Testing SMTP Server Availability

Finally, telnet is an invaluable troubleshooting tool. For example, if users complain that they can no longer access the
mail server, your first step is to check connectivity by pinging the mail server. If the mail server responds, you can telnet
to its SMTP port to verify that the SMTP service is still running.

5.8.4 Reading Email with telnet

Let's move on to POP3, so we can pick up our email messages. Here I'll pick up that message I sent previously:

% telnet pop.mycompany.com 110

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% telnet pop.mycompany.com 110

Trying 1.2.3.4...

Connected to pop.mycompany.com.

Escape character is '^]'.

+OK InterMail POP3 server ready.

user you

+OK please send PASS command

pass thecleartextpassword

+OK you is welcome here

list

+OK 1 messages

1 544

.

retr 1

+OK 544 octets

Return-Path: <moi@mycompany.com>

Received: from [1.2.3.4] by smtp.mycompany.com

        (InterMail version x) with SMTP

        id: <20031102145448.QON15340.smtp.mycompany.com@[1.2.3.4]>

        for <you@mycompany.com>; Sun, 2 Nov 2003 09:54:18 -0500

Message-Id: <20031102145448.QON15340.smtp.mycompany.com@[1.2.3.4]>

Date: Sun, 2 Nov 2003 09:57:34 -0500

From: <moi@mycompany.com>

This is a test message.

Not very interesting, really.

.

quit

+OK you InterMail POP3 server signing off.

Connection closed by foreign host.

Notice that you use port 110 to connect to a POP3 server. Also, the commands used by POP3 are very different than
those understood by SMTP. In this session, I used the USER command to indicate my username and the PASS command
for my password. Unlike SMTP, you do have to authenticate to use POP3.

Once I successfully authenticated, I used the LIST command to see how many email messages were waiting for me. I
had one message, which was 544 bytes long. I then used the RETR command to display that message, including the
headers as well as its contents, and typed the QUIT command to end the POP3 session.

There are several things you should be aware of regarding the POP3 protocol. The first is that every single packet—
including those containing your username, password, and the contents of each email message—are sent in clear text.
That means that a packet sniffer running on your network would have full access to that information.

Second, anyone who knows your email password could conceivably connect to your POP3 server and read your email.
Worse, they could use the DELE command to delete your email before you had a chance to receive it.

5.8.5 Security Considerations

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


That doesn't sound very good, does it? There are several things you can do as an end-user to protect your email. One is
to use a third-party email encryption product, which will protect the contents of your email (but not your username and
password) from packet sniffers. The other is to use different passwords for different functions. For example, don't use
the same password to pick up email, do online banking, log into your office network, etc. And always pick a password
that your friends and family won't be able to guess.

As an email administrator, you can also create a safer environment for your users. Create a different username for each
user, something other than the names contained within their email addresses. For example: moi@mycompany.com
usually indicates a username of moi. That means I could connect to the POP3 server at mycompany.com and try to
guess the password for the user moi. However, if the administrator had given that user a username such as l2tn4g and
instructed that user never to give out his username, it would be much more difficult for someone else to access his
email.

5.8.6 See Also

RFC 2821, the latest SMTP RFC (including valid SMTP commands), at http://www.ietf.org/rfc/rfc2821.txt

RFC 1939, the latest POP3 RFC (including valid POP3 commands), at http://www.ietf.org/rfc/rfc1939.txt

The Relaying FAQ (http://ordb.org/faq/)

How to Read Email Headers (http://www.stopspam.org/email/headers.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 49 Why Do I Need sendmail?

 

As an end user, you've probably asked yourself: "If all I'm doing is running a FreeBSD machine for personal use, why
should I need to run a heavyweight MTA daemon like sendmail?"

sendmail is the standard Mail Transport Agent (MTA) on FreeBSD, as it is on most Unix systems. In fact, the majority of
email passing over the Internet will probably travel through a sendmail server at some point. However, sendmail isn't the
easiest software package to manage, and the configuration file syntax gives most people a headache. There are several
alternative MTA packages available, but these are also industrial-strength programs suitable for demanding use.

Many modern graphical email clients, such as Netscape Mail or Evolution, can send email directly to a mail server
machine across the network. So, no, you won't need an MTA on your local machine to send email. (However, you will
need an MTA if you use one of the more traditional Unix mail clients, such as mail, mutt, or pine.)

Regardless of your email client, if you want to see any automatic emails the system sends—usually from the periodic
scripts—then you do require an MTA. More precisely, Unix programs expect to be able to send email by piping its text
into the standard input of /usr/sbin/sendmail, and have the system take care of the rest of the work for them.

The venerable sendmail is only one of many MTAs available. Choosing another MTA does
not always mean that you need to change the habits you picked up while working with
sendmail. All three major BSD systems have a translator file, /etc/mailer.conf, that
identifies which commands to execute when the user or another process executes sendmail,
mailq, or newaliases.

For example, if you install postfix, you still use the sendmail command, even though the real
job is done by the commands from the postfix package. The existence of /etc/mailer.conf
makes it easy to replace one MTA with another without turning the whole mail subsystem
upside down.

5.9.1 Closing Port 25

Since most systems aren't mail servers, you can disable the receiving of email. In other words, there's no reason to
have sendmail listening on port 25 on any exposed interface.

Port 25 must be open on SMTP mail servers, but it does not have to be open in order to
send an email as a client. Remember, any unnecessary open port is a potential security
risk.

It is possible to close port 25 (except on the loopback interface) and still allow sendmail to run occasionally in order to
process outgoing messages. Add the following line to /etc/rc.conf:

sendmail_enable="NO"

With the release of sendmail-8.12.2 in 2002, sendmail has been split into two parts, each with a separate configuration
file. These are the MTA process, which uses SMTP to copy the mail from machine to machine, and the Mail Submission
Process (MSP), whose job is to read in the complete text of any new email and reliably inject it into the MTA. When
programs run /usr/sbin/sendmail, they interact with the MSP.

You can either run an MTA process locally or not run it at all, configuring the MSP to deliver straight to the MTA on your
provider's smart host. In order to deliver any email, it has to pass from the MSP to an MTA. The MSP talks SMTP to the
MTA to do that, which requires the MTA to be listening on port 25.

5.9.2 Simple sendmail Configuration with a Local MTA

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Setting sendmail_enable="NO" in /etc/rc.conf does not turn off sendmail—use sendmail_enable="NONE" for that—but it does
stop sendmail from receiving incoming email. In fact, sendmail_enable="NO" will result in starting up two sendmail
processes: an MSP queue manager and an MTA process that listens on the loopback address only. Having the MTA
listen only on the loopback interface means that it can be accessed only from the local machine. This is an acceptably
secure compromise between having port 25 open generally and not having access to the local MTA at all.

If you want to send emails to external recipients, edit the sendmail configuration file slightly to tell it the name of your
provider's email smart host:

# cd /etc/mail

# cp freebsd.mc `hostname`.mc

where `hostname` turns into the system's hostname.

Open <hostname>.mc in your favorite editor. Change the line that says:

dnl define(`SMART_HOST', `your.isp.mail.server')

to read:

define(`SMART_HOST', `smtp.yourprovider.net')

Replace smtp.yourprovider.net with the correct name of your provider's SMTP server. dnl stands for "Delete until New
Line"—it's used to comment out text in .mc files, so this change simply uncomments an example line in the default .mc
file. Note that in .mc files, the left tick (`) is different from the right tick (').

By default, the submission port (587) is also open. This port is part of the SMTP standard,
but there is very little application support at the moment, so you won't miss it if you close
it. Add this line to your hostname.mc:

FEATURE(no_default_msa)dnl

Now process the .mc file into a .cf file, and install and activate it:

# make

# make install

# make restart-mta

You don't need to make any changes to the default sendmail MSP configuration. This setup will send all messages for
nonlocal users to the provider's smart host for processing. It doesn't provide any means of receiving incoming emails
over the network.

5.9.3 Simple sendmail Configuration Without a Local MTA

Instead of running both a sendmail MSP queue runner and a sendmail MTA process, an alternative is to use just an MSP
queue runner. Don't worry about the sendmail MTA, as you're not using it. In addition to sendmail_enable="NO", add
these lines to /etc/rc.conf:

sendmail_submit_enable="NO"

sendmail_outbound_enable="NO"

You'll also need to customize the sendmail configuration slightly, this time for the MSP rather than the MTA.

# cd /etc/mail

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cd /etc/mail

# cp freebsd.submit.mc submit.mc

Change the last line in submit.mc from:

FEATURE(`msp', `[127.0.0.1]')dnl

to:

FEATURE(`msp', `smtp.yourprovider.net')dnl

where, as before, smtp.yourprovider.net is your ISP's mail smart host.

Then, install and activate the new configuration:

# make

# make install

# make restart-msp

Again, this will permit you to send email anywhere in the world, but not to receive incoming messages. This differs from
the preceding "with MTA" configuration, in that this has to send all outgoing messages—without exception—through the
provider's smart host. In return, there is no longer a sendmail process listening on port 25.

A third alternative to send-only SMTP i s ssmtp, which is available in the FreeBSD ports
collection or from source at the main web site. You can find detailed instructions in Bill
Moran's "Setting up to send only" article at
http://www.potentialtech.com/wmoran/outgoing-only.html.

5.9.4 See Also

man sendmail

man mailer.conf

man rc.conf

The ssmtp web site (http://packages.debian.org/testing/mail/ssmtp.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 50 Hold Email for Later Delivery

 

Control when sendmail uses an intermittent Internet connection.

The default sendmail configuration assumes that you have a constant network connection. What if you're on a dial-up
system and want to be able to work on emails without causing your modem to dial up immediately? In this scenario,
you want to queue your sent messages to send later, the next time you go online.

5.10.1 Configuring sendmail Queueing

Fortunately, sendmail has a "hold expensive" function designed for this purpose. To activate it, add the following lines to
the /etc/mail/<hostname>.mc file:

define(`confCON_EXPENSIVE', `True')dnl

MODIFY_MAILER_FLAGS(`RELAY', `+e')dnl

MODIFY_MAILER_FLAGS(`SMTP', `+e')dnl

MODIFY_MAILER_FLAGS(`ESMTP', `+e')dnl

MODIFY_MAILER_FLAGS(`SMTP8', `+e')dnl

define(`confTO_QUEUEWARN', `12h')dnl

The first line enables the feature. The next four lines add the letter e to the flags for each named mailer, to indicate that
it is "expensive" and that email should first be queued rather than immediately delivered. The last line just extends the
length of time the system will wait before it warns you that your message hasn't been delivered yet (the default is four
hours).

Now just build the configuration file, install it, and restart sendmail as usual:

# cd /etc/mail

# make

# make install

# make restart-mta

The four mailers listed (RELAY, SMTP, ESMTP, and SMTP8) will handle the bulk of all transmissions over the network. The
configuration of both local and remote mail systems will determine which one to use. However, if you send out all of
your mail via your provider's smart host, the RELAY mailer is the best choice.

So far so good. However, you still need to make some more changes to the way sendmail runs. Queued messages will sit
in the mail queue (/var/spool/mqueue) until the next sendmail queue run. These occur every 30 minutes when using the
default sendmail command-line flags. The following settings in /etc/rc.conf will suppress that default:

sendmail_enable="NO"

sendmail_submit_flags="-L sm-mta -bd -ODaemonPortOptions=Addr=localhost"

Note the deletion of -q30m from the default value of sendmail_submit_flags. Those lines assume that you don't want a
sendmail process listening on port 25 on your network interface for incoming emails, which can be problematic on a
transient link, such as dial-up. (See [Hack #49] for an alternate approach.)

5.10.2 Configuring PPP

Having effectively prevented the system from ever flushing the mail queue, you'll now need to add a mechanism for

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Having effectively prevented the system from ever flushing the mail queue, you'll now need to add a mechanism for
sending all queued email when the PPP link activates. If you're running the user land ppp daemon, create
/etc/ppp/ppp.linkup with these contents:

papchap:

    !bg /usr/sbin/sendmail -q

/etc/ppp/ppp.linkup should be owned by the root user and the wheel group, and be writable only by root, although it can
be readable by all.

Alternatively, add the line /usr/sbin/sendmail -q to an existing auth-up file. (pppd uses the shell script /etc/ppp/auth-up to
run commands after the link has come up and the systems have authenticated successfully.)

If you don't have an existing /etc/ppp/auth-up, copy it from
/usr/share/examples/pppd/auth-up.sample.

5.10.3 Dealing with DNS

There is a huge gotcha in this whole discussion. sendmail makes extensive use of the DNS while it processes email. That
DNS traffic will usually trigger on-demand dialing, and bringing up the PPP link—triggering an immediate queue flush—
defeats the whole purpose of what you've done so far.

There are several things you can do to ameliorate this problem:

Add DNS traffic to the dial filter in /etc/ppp/ppp.conf if you use user-mode ppp. This is effective, but leads to
annoying delays waiting for DNS lookups to time out.

0 and 1 are just the rule numbers for the dial filter set: modify these as necessary if you
already have some dial filter rules.

Run your own DNS server either just as a local cache or as the authoritative host for your local networks.

Record the hostnames and IP numbers of your systems and your provider's mail systems in /etc/hosts, and
configure the system to use the flat files instead of DNS. (See man host.conf for FreeBSD 4.x and man
nsswitch.conf for 5.x.)

Alternatively, use other local databases to do host lookups, such as NIS or LDAP.

Specify hostnames in the sendmail configuration using square brackets around the [hostname].

This last option tells sendmail not to look up MX records, which are available only from DNS; instead, it will only look up
IP numbers. For example, specify your ISP's SMTP server's hostname in this line of /etc/mail/<hostname>.mc:

define(`SMART_HOST', `[smtp.example.com]')dnl

Then, rebuild the configuration file as before.

Note that these hacks will only mitigate the DNS problem. Unfortunately, it is all but impossible to eliminate
inconvenient DNS lookups.

5.10.4 See Also

man ppp

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man ppp

man pppd

man host.conf

man nsswitch.conf

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 51 Get the Most Out of FTP

 

Get the most out of stock ftp with macros and scripts.

In this age of GUIs and feature-rich browsers, it's easy to forget how quick and efficient command-line ftp can be. That
is, until you're logged into a system that doesn't have X installed, nor a browser, nor any fancy FTP programs. If it's
really your lucky day, it won't even have any manpages. And, of course, you'll need to download something.

Perhaps you find yourself using ftp all the time, always going to the same FTP servers and downloading from or
uploading to the same directories. Clearly, it's time for some FTP automation.

5.11.1 Automating Logins

Have you ever noticed how easy it is to use FTP from a modern browser? Simply click on a hyperlink to start a
download. At the command line, though, you can't even browse the FTP directory structure until you successfully log
into the FTP server. Well, guess what: you always have to log into an FTP server. It's just that your web browser hides
this little detail by doing it for you in the background.

You can achieve the same transparency for command-line ftp by creating a file called .netrc in your home directory and
placing the following line in that file:

% more ~/.netrc

default login anonymous password genisis@istar.ca

This line will work for any FTP server on the Internet that accepts anonymous logins. (Most do, unless it's a private
server.) When creating your own file, use your own email address as the password.

Test your change with this command:

% ftp ftp.freebsd.org

Compare your results to the FTP output in [Hack #71] . You should receive the same banner shown there without
having to first type in a username and password.

If you're a webmaster who uses FTP to upload your new files, you do have to log in first. After all, you don't want just
anyone uploading files, so you require a username and password. To automate that process, add a section to your
~.netrc that reflects the name of your server and your username and password:

machine ftp.myserver.com

login myusername

password mypassword

Since you've just inserted your password into a plain text file, it's important to change the permissions on this file so
that only you can read it:

% chmod 600 ~/.netrc

If you forget to change the permissions and try to access an FTP server that requires a username and password, your
login attempt should fail and result in this error message:

ftp: Error: .netrc file is readable by others.

ftp: Remove password or make file unreadable by others.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To be extra safe, exclude the password line completely. When you connect to the FTP server, your username will be
provided for you, but you will still be prompted for the password.

5.11.2 Automating Transfers

Now, let's say that you visit ftp.freebsd.org on a regular basis and always access its pub/FreeBSD/releases/i386
directory. Rather than cding every time, you can automate that process by creating an FTP macro. Add these lines to
~/.netrc:

macdef fbsd

bin

cd /pub/FreeBSD/releases/i386

Macros are defined by macdef, and the name of the macro follows. Keep the name short but useful, as a macro is
supposed to be a timesaver. Once you've declared the macro, add the FTP commands you want to execute, one line at
a time. This particular macro contains the bin (or binary) command. That command is useful when downloading because
it ensures all files, including non-ASCII files such as applications, will download correctly. I also included a cd command
to automatically take me to my usual working directory.

It's important that a macro always ends with a blank line.

There are two ways to use your macro. If you're already connected to the FTP server, type $ macroname at the ftp
prompt:

ftp> $ fbsd

bin

200 Type set to I.

cd /pub/FreeBSD/releases/i386

250 "/pub/FreeBSD/releases/i386" is new cwd.

Note that each command in the macro will be executed, followed by its results.

The second way to run the macro is when you first invoke the ftp command:

% echo "$ fbsd" | ftp ftp.freebsd.org

Now, if you try that one, you'll notice that all of your commands will succeed. Then, your FTP session will abruptly end,
and you'll receive your regular prompt back! Rather disappointing if you were planning on typing some more commands
at the ftp prompt, but absolutely perfect if your intention is to script an entire FTP session.

5.11.3 Scripting an Entire Session

If you already know what you want to do, and especially if you need to do it more than once, why type in everything at
the ftp prompt? Suppose you want to download the latest XFree86 distribution directly from ftp://ftp.xfree86.org/.
Consider placing this macro in ~/.netrc:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Consider placing this macro in ~/.netrc:

macdef X

bin

bell

prompt

cd /pub/XFree86/4.3.0/source

mget *

bye

This macro assumes that this ~/.netrc file already contains the line that allows anonymous logins.

The bell command, which is optional, should produce a sound after each successful file transfer. The prompt command is
very important, though. By default, the FTP server expects interaction from the user. That is, when you ask to
download multiple files with mget, the FTP server will wait for you to confirm every transfer by typing y. Obviously, we
want to disable that behavior when we're scripting a download.

To run this macro:

% echo "$ X" | ftp ftp.xfree86.org

By default, ftp will save the downloaded files in your current working directory. If you prefer, you can specify an
alternate location in your macro with the lcd (local change directory) command. For example:

lcd /usr/local/Xsource

will save the downloaded files to the /usr/local/Xsource directory. Make sure your directory exists and put the lcd line
before your mget line.

5.11.4 A Better FTP?

No matter how hard you try to make the default FTP client user-friendly, it is still a very basic command, and you may
find a little too primitive, especially if you use ftp often. If you would like to try a more convenient and user-friendly
command-line tool, try ncftp, which is available as a port or package for FreeBSD, NetBSD, and OpenBSD.

5.11.5 See Also

man ftp

The ncftp web site (http://www.ncftp.com/ncftp/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 52 Distributed Command Execution

 

Use tentakel for parallel, distributed command execution.

Often you want to execute a command not only on one computer, but on several at once. For example, you might want
to report the current statistics on a group of managed servers or update all of your web servers at once.

5.12.1 The Obvious Approach

You could simply do this on the command line with a shell script like the following:

# for host in hostA hostB hostC

> do ssh $host do_something

> done

However, this has several disadvantages:

It is slow because the connections to the remote hosts do not run in parallel. Every connection must wait for the
previous one to finish.

Managing many sets of hosts can become a complicated task because there is no easy way to define groups of
hosts (e.g., mailservers or workstations).

The output is provided by the program that is run remotely.

The output is hard to read because there are no marks indicating when the output for a specific host begins or
ends.

5.12.2 How tentakel Can Help

While you could write a shell script to address some of these disadvantages, you might want to consider tentakel, which
is available in the ports collection. Its execution starts multiple threads that run independently of each other. The
maximum waiting time depends on the longest running remote connection, not on the sum of all of them. After the last
remote command has returned, tentakel displays the results of all remote command executions. You can also configure
how the output should look, combining or differentiating the results from individual hosts.

tentakel operates on groups of hosts. A group can have two types of members: hosts or references to other groups. A
group can also have parameters to control various aspects of the connection, including username and access method
(rsh or ssh, for example).

5.12.3 Installing and Configuring tentakel

Install tentakel from the ports collection:

# cd /usr/ports/sysutils/tentakel

# make install clean

You can instead install tentakel by hand; consult the INSTALL file in the distribution. A make install should work in most
cases, provided that you have a working Python environment installed.

After the installation, create the configuration file tentakel.conf in the directory $HOME/.tentakel/. See the example file
in /usr/local/share/doc/tentakel/tentakel.conf.example for a quick overview of the format.

Alternatively, copy the file into /usr/local/etc/ or /etc/, depending on your system's policy, in order to have a site-wide

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Alternatively, copy the file into /usr/local/etc/ or /etc/, depending on your system's policy, in order to have a site-wide
tentakel.conf that will be used when there is no user-specific configuration. As an administrator, you may predefine
groups for your users this way.

Assuming that you have a farm of three servers, mosel, aare, and spree, of which the first two are web servers, your
configuration might resemble this:

set format="%d\n%o\n"

group webservers(user="webmaster")

  +mosel +aare

group servers(user="root")

  @webservers +spree

With this definition, you can use the group name servers to execute a command on all your servers as root and the group
name webservers to execute it only on your web servers as user webmaster.

The first line defines the output format, as explained in Figure 5-1.

Table 5-5. tentakel output format characters
Character Output

%d The hostname

%o The output of the remotely executed commands

\n A newline character

This commands tentakel to print the hostname, followed by the lines of the remote output for each server sequentially.
You can enrich the format string with additional directives, such as %s for the exit status from commands. See the
manpage for more information.

As you can see from the servers definition, there is no need to list all servers in each group; include servers from other
groups using the @groupname notation.

On the remote machines, the only required configuration is to ensure that you can log into them from the tentakel
machine without entering a password. Usually that will mean using ssh and public keys, which is also tentakel's default.
tentakel provides the parameter method for using different mechanisms, so refer to the manpage for details.

5.12.4 Using tentakel

To update the web pages on all web servers from a CVS repository:

% tentakel -g webservers "cd /var/www/htdocs && cvs update"

### mosel(0):

cvs update: Updating .

U index.html

U main.css

### aare(1):

C main.css

cvs update: Updating .

%

Note the use of quotes around the command to be executed. This prevents the local shell from interpreting special
characters such as & or ;.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


characters such as & or ;.

If no command is specified, tentakel invokes interactive mode:

% tentakel 

interactive mode

tentakel(default)> use webservers

tentakel(webservers)> exec du -sh /var/www/htdocs

### mosel(0):

364k    /var/www/htdocs

### aare(0):

364k    /var/www/htdocs

tentakel(webservers)> quit

%

While in interactive mode, the command help prints further information.

5.12.5 See Also

man tentakel

 The tentakel web site (http://tentakel.biskalar.de/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 53 Interactive Remote Administration

 

Managing a large network can be a daunting task. Even with the Unix utilities available for remote administration,
making changes on many systems can be taxing. Scripting tools make life easier to some extent, but some tasks
require hands- and eyes-on interaction.

Several system utilities allow you to execute the same command on multiple hosts. This form of loosely coupled
clustering is useful for information gathering and some monitoring purposes. However, on some occasions, you not only
need to run a process on multiple hosts, but you must also observe it and interact with the process to resolve host-
specific issues. An administration shell script will save typing and minimize mistakes, but it's hard to write a script that
will work correctly on every machine on a diverse network.

Wouldn't it be nice if there were a program that allowed you to interact with your remote hosts while running parallel
commands? Enter ClusterIt.

5.13.1 Why ClusterIt?

ClusterIt is a set of tools written by Tim Rightnour, designed to place all of your network hosts at your fingertips.
ClusterIt includes utilities for running a single command on all of the hosts in your cluster. It also allows automatic
distribution of the tasks to any available hosts in a defined group. It uses a remote login method, such as sshd on the
target hosts, so you only need to install it on the control host.

Scripts can also synchronize between task completions on different hosts. For example, you can set two hosts to
compile an application and install it on the other machine. Neither host should begin the installation until the other host
has finished compiling, but it is impossible to predict which host will finish first. ClusterIt defines barrier operations that
can be included in a script to prevent passing a synchronization point until all hosts have caught up.

In most clustering systems for Unix, once you issue a command, you cannot interact with the hosts in the cluster
individually; you only see the final output of each command run on each of the hosts. ClusterIt does not have this
limitation, making it ideal for dealing with processes that need continual monitoring.

5.13.2 Installation and Configuration

Install ClusterIt from the NetBSD pkgsrc collection:

# cd /usr/pkgsrc/parallel/clusterit

# make install clean

It is also available in FreeBSD's /usr/ports/parallel/clusterit.

Before using any ClusterIt utility, you must create a list of machines in your cluster. Create the file ~/.cluster,
containing a list of host names. Be sure not to put any whitespace after GROUP:, as in this example:

GROUP:setB

Bester

Brust

GROUP:setOther

Clarke

Dick

Niven

Pohl

Zelazny

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Set an environment variable to tell ClusterIt where to find the list of hosts, and set two more to specify ssh as the tool
to start remote shells and terminals. Run this from the command line or add the commands to your ~.cshrc or
equivalent file [Hack #1] :

% export CLUSTER=$HOME/.cluster

% export RCMD_CMD=ssh

% export RLOGIN_CMD=ssh

Use ssh-agent or an equivalent method to prevent ClusterIt from prompting for a password
every time you connect to a host. If you're unfamiliar with ssh-agent, see "What is SSH
agent, and how do I use it?" at http://security.sdsc.edu/help/ssh/agent.shtml.

5.13.3 Testing Noninteractive Commands

Now you're ready to issue commands to the cluster. You can run simple commands that require no interactivity from
the command line with the dsh (distributed shell) command. Let's start by checking the version of the operating system
on each of the hosts in a group:

% dsh -g setB uname -a

Bester: SunOS bester 5.7 Generic_106541-11 sun4u sparc 

SUNW,UltraSPARC-IIi-Engine

Brust: NetBSD brust 1.6ZC NetBSD 1.6ZC (GENERIC.MP) #1: Fri Sep 26 

23:33:56 EDT 2003  

david@pohl:/usr/obj/usr/src/sys/arch/i386/compile/GENERIC.MP i386

The -g groupname option specifies which hosts in the cluster should run this command. Every ClusterIt command allows
you to specify a list of hosts, a named group of hosts, the entire cluster, or any of those options minus a list of excluded
hosts.

As you can see, not much can go wrong with the uname command. Interestingly, the two hosts that I've chosen to use
for examples are running different operating systems.

5.13.4 Using dvt

Many maintenance operations require different steps on machines running different operating systems. ClusterIt also
includes a command called dvt (distributed virtual terminal), which allows you to interact with several hosts
simultaneously or individually. This is where dvt shines!

Suppose that I want to install a Perl module on both of these example machines. First, I'll open the distributed
terminals:

% dvt -g setB

Three terminal windows have opened up to my screen: one window for each of the two hosts and one control window.
Anything I type in the control window goes to all of the host windows, as if I typed the same thing in each one. (I can
also type within an individual host window, which will send my input only to that particular host.)

I have windows open to the hosts in the group now, but I'll need to be root to install the module.

In the control window, I'll type su. If the root password is the same on all the hosts, I can type it everywhere at once by
typing in the command window. If the passwords are different on different hosts, I'll have to activate each host window
in turn, typing the appropriate password in each one.

For simplicity, imagine I've already copied the module to my home directory on each host. I now need to un-tar it, run
Perl on the Makefile.PL, run make, and run make install:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Perl on the Makefile.PL, run make, and run make install:

# tar xzvf Perl-Package-1.0.tgz && cd Perl-Package-1.0 && perl \ 

  Makefile.PL && make && make install

If I knew that this command would work without any errors, I could have used dsh instead. However, any number of
differences between these two machines could cause one or both to fail to complete this process. This Perl package may
not have been tested on Solaris yet, or either machine could be missing some prerequisite package.

Since each host has its own window that I can view and type into, I can monitor the progress of the installation. If
either host encounters a problem, I can focus my mouse on that window and manually correct and continue the
process, without interfering with the other host.

5.13.5 Hacking the Hack

This technique is useful in several other situations. You can monitor a set of hosts by running ps, who, or top in several
windows. You can diagnose network issues by running tcpdump on the source host, destination host, and any machines
routing the packets in between the two.

An interesting way to troubleshoot networking is to have every host in your cluster ping or traceroute to the problem
host. The missing route or mistyped filter rule quickly becomes obvious.

A sysadmin must troubleshoot all sorts of issues, including diagnosing name service troubles, NFS mount permissions,
sysctl values, disk space, routing tables, backups, and logfiles. You can solve these problems more easily when you have
a consolidated view of your systems.

5.13.6 See Also

man dvt

man dsh

The ClusterIt web site (http://www.garbled.net/clusterit.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 6. Securing the System
Introduction

Section 54.  Strip the Kernel

Section 55.  FreeBSD Access Control Lists

Section 56.  Protect Files with Flags

Section 57.  Tighten Security with Mandatory Access Control

Section 58.  Use mtree as a Built-in Tripwire

Section 59.  Intrusion Detection with Snort, ACID, MySQL, and FreeBSD

Section 60.  Encrypt Your Hard Disk

Section 61.  Sudo Gotchas

Section 62.  sudoscript

Section 63.  Restrict an SSH server

Section 64.  Script IP Filter Rulesets

Section 65.  Secure a Wireless Network Using PF

Section 66.  Automatically Generate Firewall Rules

Section 67.  Automate Security Patches

Section 68.  Scan a Network of Windows Computers for Viruses

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
This chapter includes several hacks that demonstrate some security mechanisms that aren't well-documented
elsewhere. I've also provided some new twists on old security favorites. Everyone has heard of sudo, but are you also
aware of the security pitfalls it can introduce? You're probably also well-versed in ssh and scp, but you may have yet to
harness the usefulness of scponly.

You'll also find several scripts to automate some common security practices. Each provides an excellent view into
another administrator's thought processes. Use their examples to fuel your imagination and see what security solutions
you can hack for your own network.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 54 Strip the Kernel

 

Don't be shy. A kernel stripped down to the bare essentials is a happy kernel.

Picture the typical day in the life of a system administrator. Your mission, if you choose to accept it, is to achieve the
impossible. Today, you're expected to:

Increase the security of a particular server

Attain a noticeable improvement in speed and performance

Although there are many ways to go about this, the most efficient way is to strip down the kernel to its bare-bones
essentials. Having this ability gives an administrator of an open source system a distinct advantage over his closed
source counterparts.

The first advantage to stripping the kernel is an obvious security boost. A vulnerability can't affect an option the kernel
doesn't support. The second is a noticeable improvement in speed and performance. Kernels are loaded into memory
and must stay in memory. You may be wasting precious memory resources if you're loading options you have no
intention of ever using.

If you've never compiled a kernel or changed more than one or two kernel options, I can hear you groaning now. You're
probably thinking, "Anything but that. Kernels are too complicated to understand." Well, there is a lot of truth in the
idea that you haven't really used an operating system until you've gone through that baptism of fire known as kernel
compiling. However, you may not have heard that compiling a kernel isn't all that difficult. So, grab a spare afternoon
and a test system; it's high time to learn how to hack a BSD kernel.

I'll demonstrate on a FreeBSD system, but you'll find resources for other systems at the end of this hack.

Before you start, double-check that you have the kernel source installed. On an Intel FreeBSD system, it lives in
/usr/src/sys/i386/conf. If that directory doesn't exist, become the superuser and install it:

# /stand/sysinstall

Configure

Distributions

spacebar [  ] src to select it

spacebar [  ] sys to select it

tab to OK

Next, navigate into that directory structure and check out its contents:

# cd /usr/src/sys/i386/conf

# ls

 ./        GENERIC.hints    OLDCARD        gethints.awk

../        Makefile         PAE            GENERIC

NOTES      SMP

Two files are important: the original kernel configuration file, GENERIC, and NOTES. Note that NOTES is instead called
LINT on 4.x FreeBSD systems.

6.2.1 Customizing Your Kernel

Customizing a kernel is a very systematic process. Basically, you examine each line in the current configuration file,
asking yourself, "Is this applicable to my situation?" If so, keep it. Otherwise, remove it. If you don't know, read NOTES

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


asking yourself, "Is this applicable to my situation?" If so, keep it. Otherwise, remove it. If you don't know, read NOTES
for that option.

I always customize my kernel in several steps. First, I strip out what I don't need. Then, I use buildkernel to test my new
configuration file. If it doesn't build successfully, I know I've inadvertently removed something essential. Using the error
message, I go back and research that missing line.

If the build succeeds, I read through NOTES to see if there are any options I wish to add to the kernel. If I add
anything, I'll do another buildkernel, followed by an installkernel if the build is successful. I find it much easier to
troubleshoot if I separate my deletions from my additions.

Let's copy over GENERIC and see about stripping it down:

# cp GENERIC STRIPPED

# vi STRIPPED

#

# GENERIC -- Generic kernel configuration file for FreeBSD/i386

#

# For more information on this file, please read the handbook section on

# Kernel Configuration Files:

#

#    http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-config.html

#

# The handbook is also available locally in /usr/share/doc/handbook

# if you've installed the doc distribution, otherwise always see the

# FreeBSD World Wide Web server (http://www.FreeBSD.org/) for the

# latest information.

#

# An exhaustive list of options and more detailed explanations of the

# device lines is also present in the ../../conf/NOTES and NOTES files. 

# If you are in doubt as to the purpose or necessity of a line, check first 

# in NOTES.

6.2.1.1 CPU options

The first thing you'll notice is that this file is very well commented. It's also divided into sections, making it easier to
remove things such as ISA NIC, SCSI, and USB support. The first section deals with CPU type:

machine    i386

cpu        I486_CPU

cpu        I586_CPU

cpu        I686_CPU

ident      GENERIC

Whenever you come across a section you're not sure about, look for that section in NOTES. Here, I'll search for CPU:

# grep CPU NOTES

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Your output will include a few pages worth of CPU information. The first few lines describe which CPUs belong with the
I486, I586, and I686 entries. Once you find your CPU, remove the two entries that don't apply. If you're not sure what
type of CPU is installed on the system you're configuring, try:

# grep CPU /var/run/dmesg.boot

CPU: Intel(R) Pentium(R) III CPU         1133MHz (1138.45-MHz 686-class CPU)

acpi_cpu0: <CPU> port 0x530-0x537 on acpi0

Since a Pentium III is considered to be an I686_CPU, I'll remove the I486_CPU and I586_CPU lines from this system's
configuration file.

The rest of the output from grep CPU NOTES contains extra lines that can be added to the kernel. Read through these to
see if any apply to your specific CPU and the needs of the machine you are configuring. If so, make a note to try adding
these later.

6.2.1.2 System-specific options

The next section contains a heck of a lot of options. If this is your first kernel, most of your research will be deciding
which options you need for your particular system. I find the handbook most helpful here, as it lists the pros and cons
of nearly every option. I always keep these options on all of my systems:

options     SCHED_4BSD       # 4BSD scheduler

options     INET             # InterNETworking

options     FFS              # Berkeley Fast Filesystem

options     COMPAT_FREEBSD4  # Compatible with FreeBSD4

options     COMPAT_43        # Compatible with BSD 4.3 [KEEP THIS!]

Note that that last listed option tells you to keep it. Do keep anything that contains such a comment.

The rest of the options are specific to that system's needs. For example, does it need to support IPv6? Do you wish to
use softupdates or the new MAC framework? Does this system need to be an NFS server or NFS client? Does this
system have a CD-ROM attached or any SCSI devices?

Does the system have multiple processors? If so, uncomment the next two lines; otherwise, you can safely remove
them:

# To make an SMP kernel, the next two are needed

#options     SMP            # Symmetric MultiProcessor Kernel

#options     APIC_IO        # Symmetric (APIC) I/O

6.2.1.3 Supported buses and media devices

The next section deals with devices. First, we start with the buses:

device        isa

device        eisa

device        pci

If you grep device NOTES, you'll see that you can also add the agp and mca buses if your system requires them. If your
system doesn't use the isa or eisa buses, you can remove those lines.

If you wish to disable floppy support on your server, removing these lines will do it:

# Floppy drives

device        fdc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


device        fdc

Next, does your server use IDE or SCSI devices? If it uses IDE, the next section applies:

# ATA and ATAPI devices

device      ata

device      atadisk            # ATA disk drives

device      atapicd            # ATAPI CDROM drives

device      atapifd            # ATAPI floppy drives

device      atapist            # ATAPI tape drives

options     ATA_STATIC_ID      # Static device numbering

Remember, you can remove the CD-ROM, floppy, and tape lines to suit your requirements. However, keep the other
lines if you use an IDE hard drive. Conversely, if your system is all SCSI, delete the ATA lines and concentrate on this
section:

# SCSI Controllers

device        ahb        # EISA AHA1742 family

device        ahc        # AHA2940 and onboard AIC7xxx devices

<snip>

Keep the entries for the SCSI hardware your system is using, and remove the entries for the other devices. If your
system doesn't have SCSI hardware, you can safely delete the entire SCSI section.

The same logic applies to the following RAID section:

# RAID controllers interfaced to the SCSI subsystem

device        asr        # DPT SmartRAID V, VI and Adaptec SCSI RAID

device        ciss       # Compaq Smart RAID 5*

device        dpt        # DPT Smartcache III, IV - See NOTES for options!

device        iir        # Intel Integrated RAID

device        mly        # Mylex AcceleRAID/eXtremeRAID

and for the SCSI peripherals and RAID controllers sections:

# SCSI peripherals

device        scbus     # SCSI bus (required)

device        ch        # SCSI media changers

<snip>

# RAID controllers

device        aac        # Adaptec FSA RAID

device        aacp       # SCSI passthrough for aac (requires CAM)

<snip>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


6.2.1.4 Peripheral support and power management

The next few entries are usually keepers as it's always nice to have a working keyboard, unless you're using a headless
system [Hack #26] .

# atkbdc0 controls both the keyboard and the PS/2 mouse

device        atkbdc       # AT keyboard controller

device        atkbd        # AT keyboard

The next line depends on whether you're using a serial or a PS/2 mouse:

device        psm        # PS/2 mouse

You'll probably want to keep your video driver:

device        vga        # VGA video card driver

However, you'll probably remove the splash device, unless you plan on configuring a splash screen [Hack #24] .

device        splash        # Splash screen and screen saver support

You'll have to choose a console driver. It can be either the default SCO driver or the pcvt driver (see the handbook for
details):

# syscons is the default console driver, resembling an SCO console

device       sc

# Enable this for the pcvt (VT220 compatible) console driver

#device      vt

#options     XSERVER           # support for X server on a vt console

#options     FAT_CURSOR        # start with block cursor

The next options refer to power management on laptops, as well as laptop PCMCIA cards. Unless your server is a
laptop, you can remove these:

# Power management support (see NOTES for more options)

#device       apm

# Add suspend/resume support for the i8254.

device        pmtimer

# PCCARD (PCMCIA) support

# Pcmcia and cardbus bridge support

device        cbb            # cardbus (yenta) bridge

#device       pcic           # ExCA ISA and PCI bridges

device        pccard         # PC Card (16-bit) bus

device        cardbus        # CardBus (32-bit) bus

Do you plan on using your serial and parallel ports? If not, the next section allows you to disable them:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Do you plan on using your serial and parallel ports? If not, the next section allows you to disable them:

# Serial (COM) ports

device        sio        # 8250, 16[45]50 based serial ports

# Parallel port

device        ppc

device        ppbus      # Parallel port bus (required)

device        lpt        # Printer

device        plip       # TCP/IP over parallel

device        ppi        # Parallel port interface device

#device       vpo        # Requires scbus and da

6.2.1.5 Interface support

Now it's time to support your system's NICs. Here's one way to find out the device names of your interfaces:

# grep Ethernet /var/run/dmesg.boot

rl0: Ethernet address: 00:05:5d:d2:19:b7

rl1: Ethernet address: 00:05:5d:d1:ff:9d

ed0: <NE2000 PCI Ethernet (RealTek 8029)> port 0x9800-0x981f irq 10 at device 11.0 on pci0

Once you know which interfaces are in your system, remove the NICs that aren't. If your system doesn't contain any
ISA or wireless NICs, you can safely remove those entire sections.

Do make note of this comment, though:

# PCI Ethernet NICs that use the common MII bus controller code.

# NOTE: Be sure to keep the 'device miibus' line in order to use these NICs!

device        miibus    # MII bus support

device        dc        # DEC/Intel 21143 and various workalikes

<snip>

Any NICs underneath that comment require that miibus entry. If you forget it, your kernel won't build. Fortunately, the
error message will have the word miibus in it.

Next come the pseudodevices. If you plan on using encryption, keep the random device. You'll probably also need to
keep the loop and ether devices.

If you use an analog modem to connect to your service provider, keep the ppp and tun devices. Otherwise, remove
them, along with the slip device.

Several applications—including emacs, xterm, script, and the notorious telnet—require the pty device. Depending upon the
use of your server, you may be able to remove that device. If it breaks needed functionality, you can always recompile
it back into your kernel.

Are you planning on using memory disks? If not, you can remove md. If you're not sure, try reading man mdmfs.

If you previously removed IPv6 support with options INET6, you might as well remove these two devices as well:

device        gif        # IPv6 and IPv4 tunneling

device        faith      # IPv6-to-IPv4 relaying (translation)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


device        faith      # IPv6-to-IPv4 relaying (translation)

The next device has some security implications, as it is required in order to run a packet sniffer such as tcpdump.
However, it's also required if your system is a DHCP client. If neither applies, remove the bpf device:

# The `bpf' device enables the Berkeley Packet Filter.

# Be aware of the administrative consequences of enabling this!

device        bpf        # Berkeley packet filter

6.2.1.6 USB support

Does your system have any USB devices? If so, you need a host controller as well as USB bus support. First, determine
which type of USB host controller you have. man uhci and man ohci describe which hardware goes with which controller.
Once you've found your hardware, keep the appropriate interface entry:

# USB support

device        uhci        # UHCI PCI->USB interface

device        ohci        # OHCI PCI->USB interface

Also, don't forget to keep that USB bus line:

device        usb        # USB Bus (required)

Are you confused about the next three USB options? Fortunately, each has a manpage. Try man udbp, man ugen, and
man uhid to see if any apply to your particular situation.

#device       udbp        # USB Double Bulk Pipe devices

device        ugen        # Generic

device        uhid        # "Human Interface Devices"

Next, keep the devices you have installed and remove the rest. Again, note that USB NICs need that miibus entry we
saw earlier. Also, some entries require device scbus and device da. Double-check your SCSI sections. If you removed
these devices earlier and need them, add them to this section.

device        ukbd        # Keyboard

device        ulpt        # Printer

device        umass       # Disks/Mass storage - Requires scbus and da

device        ums         # Mouse

device        urio        # Diamond Rio 500 MP3 player

device        uscanner    # Scanners

# USB Ethernet, requires mii

device        aue        # ADMtek USB ethernet

device        axe        # ASIX Electronics USB ethernet

device        cue        # CATC USB ethernet

device        kue        # Kawasaki LSI USB ethernet

Finally, the only option group left is Firewire support. If you need it, keep the entire section, and double-check that you
have a device scbus and device da entry somewhere in your configuration file. If you don't need Firewire support, remove

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


have a device scbus and device da entry somewhere in your configuration file. If you don't need Firewire support, remove
the entire section:

# FireWire support

device        firewire   # FireWire bus code

device        sbp        # SCSI over FireWire (Requires scbus and da)

device        fwe        # Ethernet over FireWire (non-standard!)

Whew. We finally made it through the configuration file. Congratulations! You now have a much better idea of the
hardware on your system and can rest easily in the knowledge that soon no extra drivers will be wasting memory
resources. Not only that, your next kernel configuration will go much more quickly as you've already researched the
possibilities.

6.2.2 Building the New Kernel

Now comes the moment of truth. Will the configuration file actually build? To find out:

# cd /usr/src

# make buildkernel KERNCONF=

STRIPPED

Replace STRIPPED with whatever name you called your kernel configuration file. If all goes well, you should just get your
prompt back after a period of time, which varies depending upon the speed of your CPU. If you instead get an error
message, you probably forgot miibus, scbus, or da, and the message will reflect that. Add the missing line and try again.

Occasionally you'll get a kernel that just refuses to build, even when you're sure the configuration file is fine. If that's
the case, try building GENERIC. If that fails, you have a hardware issue.

I once inherited a system with a flaky motherboard. I tried a few kernel compiles, which took forever before finally
resulting in an error code 1. Fortunately, I use removable drives, so I simply inserted the drive into another system,
successfully compiled the kernel, and then returned the drive to the flaky system for the actual kernel install.

6.2.3 Keeping Track of Your Options

Once I have a successful build, I like to document what I removed from the original kernel. This is easily done:

# echo "These are the lines I deleted" > changes.txt \

    & diff GENERIC STRIPPED >> changes.txt

The diff utility will list the differences between the original and my version of the kernel configuration file. Note that I
used >> to append those differences without removing my previously echoed comment. See [Hack #92] for more
examples that use diff.

Before installing the kernel, read through NOTES to see if there are any lines you wish to add. Additionally, if you wish
to take advantage of memory addresses over 4 GB, carefully read through PAE and its section in the handbook to see if
it is appropriate for your situation.

If you add any lines, repeat the make buildkernel command when you are finished. I also like to append my additions to
my changes.txt file:

# echo "And these are the lines I added" >> changes.txt \

    & diff GENERIC STRIPPED >> changes.txt

Note that this time it is very important I remember to append both my comment and the output of diff by using two >
characters.

6.2.4 Installing the New Kernel

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Now, let's install the kernel:

# cd /usr/src

# make installkernel KERNCONF=STRIPPED

This process is much quicker than building the kernel. However, the kernel won't actually be loaded into memory until
you reboot. Before you do that, it's always a good idea to print out the "If Something Goes Wrong" page of the FreeBSD
Handbook, just in case something goes wrong. See http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/kernelconfig-trouble.html#KERNELCONFIG-NOBOOT.

It's rare that a kernel will install but not boot, but it never hurts to be prepared ahead of time.

6.2.5 See Also

The Kernel Configuration section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/kernelconfig.html)

The "Why would I want to create my own custom kernel?" section of the OpenBSD FAQ
(http://www.openbsd.org/faq/faq5.html#Why)

The NetBSD Kernel FAQ (http://www.netbsd.org/Documentation/kernel)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 55 FreeBSD Access Control Lists

 

Unix permissions are flexible and can solve almost any access control problem, but what about the ones
they can't?

Do you really want to make a group every time you want to share a file with another user? What if you don't have root
access and can't create a group at will? What if you want to be able to make a directory available to a web server or
other user without making the files world-readable or -writable? Root-owned configuration files often need to be edited
by those without root privileges; instead of using a program like sudo (see [Hack #61] and [Hack #62] ), it would be
better just to allow certain nonowners to edit these files.

Access Control Lists (ACLs) solve these problems. They allow more flexibility than the standard Unix user/group/other
set of permissions. ACLs have been available in commercial Unixes such as IRIX and Solaris, as well as Windows NT, for
years. Now, thanks to the TrustedBSD project's work, ACLs are available in FreeBSD 5.0-RELEASE and beyond.

ACLs take care of access control problems that are overly complicated or impossible to solve with the normal Unix
permissions system. By avoiding the creation of groups and overuse of root privileges, ACLs can keep administrators
saner and servers more secure.

6.3.1 Enabling ACLs

ACLs are enabled by an option in the file system superblock, which contains internal housekeeping information for the
file system.

Edit the superblock with the tunefs command, which can be used only on a read-only or unmounted file system. This
means that you must first bring the system into single-user mode. Make sure there aren't any active connections to the
system, then shut it down:

# shutdown now

*** FINAL System shutdown message from root@mycompany.com ***

System going down IMMEDIATELY

Dec 11 10:28:07 genisis shutdown: shutdown by root:

System shutdown time has arrived

Writing entropy file:.

Shutting down daemon processes:.

Saving firewall state tables:.

Dec 11 10:28:10 genisis syslogd: exiting on signal 15

Enter full pathname of shell or RETURN for /bin/sh:

#

At the prompt, type:

# /sbin/tunefs -a enable /

# /sbin/tunefs -a enable /usr

# exit

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To see if ACLs are already set on your system, type mount.

If you use the UFS2 file system, you are done. The UFS_ACL option is enabled in the default GENERIC kernel, so reboot
and enjoy. If you use UFS1, though, don't reboot yet.

To check your version of UFS, try dumpfs [mountpoint] | grep UFS, where [mountpoint] is
something like ad0s1a. mount will list the names of your particular mount points.

6.3.2 Additional UFS1 Configuration

Things are more difficult if you, like most FreeBSD 5.0 users, use UFS1. (FreeBSD 5.1 and later come with UFS2 as the
default file system.) ACLs are built on top of extended attributes, which are not native to UFS1. To enable extended
attributes, you must add options UFS_EXTATTR and options UFS_EXTATTR_AUTOSTART to your kernel configuration and
compile and install the new kernel [Hack #54] . Don't reboot yet; you still need to initialize the extended attributes on
each file system.

For example, to initialize extended attributes on the /var filesystem, use extattrctl, the extended attributes control
command:

# mkdir -p /var/.attribute/system

# cd /var/.attribute/system

# extattrctl initattr -p /var 388 posix1e.acl_access

# extattrctl initattr -p /var 388 posix1e.acl_default

Repeat for each filesystem on which you wish to enable ACL support. Just replace /var with the mount point of the
desired file system. After initializing the attributes with reboot, the extended attributes should be enabled.

6.3.3 Viewing ACLs

Okay, you've successfully enabled ACLs. Now what? Let's start by viewing ACLs. Looking at ACLs is simple. Files with
ACLs will be designated with a + in the long listing provided by ls -l:

% ls -l acl-test

-rw-rw-r--+ 1 rob  rob  0 Apr 19 17:27 acl-test

Use the getfacl command to see information about the ACL:

% getfacl acl-test

#file:acl-test

#owner:1000

#group:1000

user::rw-

user:nobody:rw-

group::r--

group:wheel:rw-

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mask::rw-

other::r--

The user::, group::, and other:: fields should all be familiar. They are simply the ACL representations of the standard Unix
permissions system. The nobody and wheel lines, however, are new. These specify permissions for specific users and
groups (in this case, the nobody user and the wheel group) in addition to the normal set of permissions.

The mask field sets maximum permissions, so an r-- mask (set with m::r) in combination with an rw- permission for a
user will give the user only r-- permissions on the file.

6.3.4 Adding and Subtracting ACLs

The setfacl command adds, changes, and deletes ACLs. Like chmod, only the file's owner or the superuser can use this
command. You only need to use a few of its options to start manipulating ACLs.

First, a word on syntax. ACLs are specified just as they're printed by getfacl. Let's remove and reconstruct the ACL for
acl-test:

% setfacl -b acl-test

% setfacl -m user:nobody:rw-,group:wheel:rw- acl-test

The -b option removes all ACLs, except for the standard user, group, and other lines. The -m option modifies the ACL
with the specified entry (or comma-separated entries). Entries may also be abbreviated: the code here could have been
shortened to u:nobody:rw-,g:wheel:rw-.

You can even use setfacl to modify traditional permissions; setting a user::rw- ACL entry is equivalent to running chmod
u=rw on a file.

Removing ACLs is almost identical: setfacl -x u:nobody:rw-,g:wheel:rw- removes that ACL. You can also specify ACLs in
files. The -M and -X options perform the functions of their lowercase relatives, but read their entries from a file. Consider
the acl-test file again:

% cat test-acl-list

u:nobody:rw-

# this is a comment

g:wheel:rw-

% setfacl -X test-acl-list acl-test

% getfacl acl-test

#file:acl-test

#owner:1000

#group:1000

user::rw-

group::r--

mask::r--

other::r--

6.3.5 Using ACLs with Samba and Windows

If you compile Samba with ACL support, you can edit ACLs on files shared by Samba with the native Windows ACL
tools. Simply compile (or recompile) Samba with ACL support:

# cd /usr/ports/net/samba

# make -DWITH_ACL_SUPPORT install clean

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# make -DWITH_ACL_SUPPORT install clean

You will see the Samba port configuration dialog with ACL support enabled, as shown in Figure 6-1.

Figure 6-1. Configuring Samba with ACLs

Once you have Samba up and running, browse to a share on an ACL-enabled file system. Right-click any file and select
Properties, and you'll see something like Figure 6-2. Go to the Security tab, and you can see and change the ACL as
though it were on a Windows server.

Figure 6-2. Manipulating ACLs on FreeBSD from a Samba client

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you've been reluctant to move from a Windows server to Samba because of its lack of ACLs, you can start thinking
seriously about deploying Samba and FreeBSD on your file servers.

6.3.6 Setting Default ACLs

Let's consider a more advanced example. You want to make your cool_widgets directory accessible to Bob, your partner
in coolness, but not to the world. If you just add an ACL entry, added files won't automatically pick up the directory's
ACL. You should instead set a default ACL on the directory. Any files created in the directory will inherit the default ACL.

Passing the -d option to either getfacl or setfacl will operate on the default ACL of a directory, instead of on the directory
itself:

% mkdir cool_widgets

% chmod o-rwx cool_widgets

% ls -l

drwxr-x---  2 rob  rob   512 Apr 19 21:21 cool_widgets

% getfacl -d cool_widgets

#file:cool_widgets

#owner:1000

#group:1000

Pretty boring, isn't it? Let's try to add a default ACL:

% setfacl -d -m u:bob:rw- cool_widgets

setfacl: acl_calc_mask( ) failed: Invalid argument

setfacl: failed to set ACL mask on cool_widgets

Oops. Default ACLs don't work quite like regular ACLs do. You cannot set specific entries on a default ACL until you add
the generic user::, group::, and other:: entries:

% setfacl -d -m u::rw-,g::r--,o::---,u:bob:rw- cool_widgets

% setfacl -m u:bob:r-x cool_widgets

Note the nondefault r-x entry for bob on the directory. The default ACL affects files that will be created inside the
directory but not the directory itself. An ACL entry u:bob:rw- will now be added to any file created in cool_widgets.

Now you have a cool_widgets directory whose files can be read and written by both yourself and Bob, without the use
of a group. If you later decide to get rid of the default ACL, the -k option to setfacl works for directory ACLs just as the -b
option does for file ACLs.

Use getfacl -d to view the new directory's default ACL.

6.3.7 See Also

man tunefs

man extattrctl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man extattrctl

man getfacl

man setfacl

"FreeBSD Access Control Lists," as originally published on ONLamp's BSD DevCenter
(http://www.onlamp.com/pub/a/bsd/2003/08/14/freebsd_acls.html)

The TrustedBSD project (http://www.trustedbsd.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 56 Protect Files with Flags

 

Ever feel limited when tightening up Unix permissions? Really, there's only so much you can do with r, w, x,
s, and t.

When you consider the abilities of the superuser account, traditional Unix permissions become moot. That's not very
comforting if you're a regular user wishing to protect your own files or an administrator trying to protect the files on a
network server from a rootkit.

Fortunately, the BSDs support a set of extended permissions known as flags. Depending upon your securelevel, these
flags may prevent even the superuser from changing the affected file and its flags.

6.4.1 Preventing File Changes

Let's start by seeing what flags are available. Figure 6-1 summarizes the flags, their meanings, and their usual usage.

Table 6-1. Extended permissions flags
Flag name Meaning Usage

arch archive Forces or prevents a backup

nodump nodump Excludes files from a dump

sappnd system append Applies to logs

schg system immutable Applies to binaries and /etc

sunlnk system undeletable Applies to binaries and /etc

uappnd user append-only Prevents changes to existing data

uchg user immutable Prevents any type of changes

uunlnk user undeletable Prevents deletion or rename

Any user can use any flag that starts with u to protect her own files. Let's say you have an important file that you don't
want to change inadvertently. That's a candidate for the uchg flag. To turn that flag on, use the chflags (change flags)
command:

% chflags uchg important_file

% ls -lo important_file

-rw-r--r-- 1 dru wheel uchg 14 Dec  1 11:13 important_file

Use ls -lo to view a file's flags. (I tend to think o was the only letter left. Perhaps a mnemonic would be "Hello, this is
why I can't modify that file!" Perhaps not.) Let's see exactly how immutable this file is now. I'll start by opening the file
in vi, adding a line, and trying to save my changes:

Read-only file, not written; use ! to override.

Okay, I'll use wq! instead:

Error: important_file: Operation not permitted.

Looks like I can no longer make changes to my own file. I'll receive the same results even if I try as the superuser.

Next, I'll try to use echo to add some lines to that file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Next, I'll try to use echo to add some lines to that file:

% echo "test string" >> important_file

important_file: Operation not permitted.

Finally, I'll try moving, deleting, and copying that file:

% mv important_file test

mv: rename important_file to test: Operation not permitted

% rm important_file

override rw-r--r--  dru/wheel uchg for important_file? y

rm: important_file: Operation not permitted

% cp important_file test

%

Notice an important difference between the mv and rm commands and the cp command. Since mv and rm require a
change to the original file itself, they are prevented by that unchangeable flag. However, the cp command doesn't try to
change the original file; it simply creates a new file with the same contents. However, if you try ls -lo on that new file,
the uchg flag will not be set. This is because new files inherit permissions and flags from the parent directory. (Okay,
that's not the whole story. See man umask for more gory details.)

6.4.2 Watch Your Directories

What do you think will happen if you place all of your important files in a directory and recursively set uchg on that
directory?

% mkdir important_stuff

% cp resume important_stuff/

% chflags -R important_stuff/

% ls -lo important_stuff/

drwxr-xr-x   2 dru  wheel  uchg     512 Dec  1 11:23 ./

drwxr-xr-x  34 dru  wheel  -       3072 Dec  1 11:36 ../

-rw-r--r--   1 dru  wheel  uchg      14 Dec  1 11:13 resume

So far so good. That file inherited the uchg flag from the directory, so it is now protected from changes. What if I try to
add a new file to that directory?

% cp coverletter important_stuff

cp: important_stuff/coverletter: Operation not permitted

Because the directory itself is not allowed to change, I can't add or remove any files from the directory. If that's what
you want, great. If not, keep that in mind when playing with directory flags.

What if you change your mind and really do want to change a file? If you own the file, you can unset the flag by
repeating the chflags command with the no word. For example:

% chflags nouchg resume

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


will allow me to make edits to my résumé. However, I won't be able to delete it from that protected directory unless I
also use the nouchg flag on the important_stuff directory.

6.4.3 Preventing Some Changes and Allowing Others

Sometimes, the uchg flag is a bit too drastic. For example, if you want to be able to edit a file but not inadvertently
delete that file, use this flag instead:

% chflags uunlnk thesis

%

I can now edit that file to my heart's content. However, if I try to move or delete that file, I'll receive those Operation not
permitted error messages again.

The uappnd flag is more interesting. It allows you to append changes to a file but prevents you from modifying the
existing contents. This might be useful for a blog:

% chflags uappnd myblog

%

Then again, it might not. echoing comments to the end of the file works nicely. However, opening it in an editor does
not. Note that this flag also prevents you from moving or deleting the file.

6.4.4 Log Protection

Let's move on to the rest of the flags, which can be managed only by the superuser. sappnd, schg, and sunlnk work
exactly the same as their u equivalents. So, think s for superuser and u for user.

The append flag was a bit weird for a regular user, but it is ideal for protecting the system logs. One of the first things
an intruder will do after breaking into a system is to cover up his tracks by changing or deleting logs. This command will
thwart those attempts:

# chflags -R sappnd /var/log

Now is a good time to mention a security truth: security is a myth. In reality, security is a process of making things
more inconvenient in the hopes that a miscreant will go elsewhere. Remember, though, that inconvenience doesn't just
affect the bad guys; it also affects you.

That command seems ideal because it allows logs to be appended to but not modified or deleted. That's great if you live
in the world of unlimited disk space. Of course, it also just broke newsyslog, and you've just delegated yourself the joys
of manual log rotation.

There's one other thing you need to consider when you start playing with the superuser flags. If your securelevel is set
to 0 or -1, the superuser can unset any flag by adding no to it. If your attacker has heard of flags before and has
managed to gain access to the superuser account, all of your flag setting was for naught.

Having said that, suppose you're hardening a server and want to protect the logs. Your securelevel is set at 1 or higher,
and you plan on using that previous chflags command. Since you're now responsible for log rotation, you might as well
start by taking stock of the contents of /var/log before turning on that sappnd flag. Remove any unnecessary logs now,
before setting the flag.

Next, edit /etc/crontab and comment the newsyslog line so it looks like this:

# Rotate log files every hour, if necessary.

#0        *        *        *        *        root        newsyslog

Comment out any lines in /etc/syslog.conf that refer to logs you removed.

You should also consider using something like the following script to warn you if a partition is filling up:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You should also consider using something like the following script to warn you if a partition is filling up:

#!usr/local/bin/bash

# checkfreespace.sh

# check that a device has sufficient free space

# thanks to David Lents and Arnold Robbins for awk/gawk/nawk suggestions

# set the following variables as necessary 

PARTITION="/var/log"

THRESHOLD="80"

USED=$(

    eval "df | awk -- '\$6 =  = ENVIRON[\"PARTITION\"]

        { printf( \"%0.d\", \$5 ) }'"

);

if [ "$USED" -ge $THRESHOLD ]

then

  echo "Used space of $USED above $THRESHOLD on $PARTITION"

else

  # disable this if running through cron

  echo "Enough free space"

fi

If you schedule this program through cron, it will mail any output to the user owning the cron job. Edit the two variables
at the top of the script to change the partition to scan and the threshold above which the script will warn. With the
variables set as shown, the script will warn if /var/log is more than 80% full.

Remember, once you disable newsyslog, it becomes your responsibility to monitor disk space in /var/log. You won't be
able to compress or delete log files unless the superuser temporarily unsets the sappnd flag. This can be a real pain if
your securelevel is 1 or higher, as the system first has to be dropped down to single-user mode. This usually isn't an
option on busy systems as it will disconnect all current connections. Carefully consider the size of /var/log and how
often the system realistically can be put into single-user mode before setting this flag.

6.4.5 Protecting Binaries

When a system is compromised, the attacker may install a rootkit that will try to change your system's binaries. For
example, it might replace ps with a version that doesn't display the rootkit's processes. Or, it might replace a commonly
used utility with another program that executes something nastier than expected.

[Hack #58] shows how to create your own file integrity checking program that will alert you if any of your binaries or
other important files are changed. An additional layer of protection is to use chflags to prevent those files from being
changed in the first place. Usually, the schg flag is used to prevent any modifications. Useful candidates for this flag are:

/usr/bin, which contains user programs

/usr/sbin, which contains system programs

/etc, which contains system configurations

Again, evaluate your particular scenario before implementing this flag. The protection provided by this flag usually far
outweighs the inconvenience. The only time the contents of /usr/bin or /usr/sbin should change is when you upgrade

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


outweighs the inconvenience. The only time the contents of /usr/bin or /usr/sbin should change is when you upgrade
the operating system or rebuild your world. Doing that requires a reboot anyway, so dropping to single-user mode to
unset schg shouldn't be a problem.

How often do you change your configuration files in /etc? If you typically configure a system only when it is installed
and rarely make changes afterward, protect your configurations with schg. However, keep in mind that a rare
configuration change may require you to drop all connections in order to implement it. Also, if you need to add more
users to your system, remember to remove that flag from /etc/passwd, /etc/master.passwd, and /etc/group first.

Things are a bit more problematic for a system running installed applications. Most ports install their binaries into
/usr/local/bin or /usr/X11R6/bin. If you set the schg flag on those directories, you won't be able to patch or upgrade
those binaries unless you temporarily unset the flag. You'll have to balance your need to keep your server up and
running with the protection you gain from the schg flag and how often you have to patch a particular binary.

6.4.6 Controlling Backups

The last two flags, arch and nodump, affect backups. The superuser can ensure a particular file or directory will always
be backed up, regardless of whether the contents have been altered, by setting the arch flag.

Similarly, when using dump to back up an entire filesystem, the superuser can specify which portions of that filesystem
will not be included by setting the nodump flag.

6.4.7 See Also

man securelevel

man -a chflags (to view all manpages that match chflags, not just the first one)

man newsyslog

[Hack #58]

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 57 Tighten Security with Mandatory Access Control

 

Increase the security of your systems with MAC paranoia.

Ever feel like your Unix systems are leaking out extra unsolicited information? For example, even a regular user can
find out who is logged into a system and what they're currently doing. It's also an easy matter to find out what
processes are running on a system.

For the security-minded, this may be too much information in the hands of an attacker. Fortunately, thanks to the
TrustedBSD project, there are more tools available in the admin's arsenal. One of them is the Mandatory Access Control
(MAC) framework.

As of this writing, FreeBSD's MAC is still considered experimental for production systems.
Thoroughly test your changes before implementing them on production servers.

6.5.1 Preparing the System

Before you can implement Mandatory Access Control, your kernel must support it. Add the following line to your kernel
configuration file:

options MAC

You can find full instructions for compiling a kernel in [Hack #54] .

While your kernel is recompiling, take the time to read man 4 mac, which lists the available MAC modules. Some of the
current modules support simple policies that can control an aspect of a system's behavior, whereas others provide more
complex policies that can affect every aspect of system operation. This hack demonstrates simple policies designed to
address a single problem.

6.5.2 Seeing Other Users

One problem with open source Unix systems is that there are very few secrets. For example, any user can run ps -aux to
see every running process or run sockstat -4 or netstat -an to view all connections or open sockets on a system.

The MAC_SEEOTHERUIDS module addresses this. You can load this kernel module manually to experiment with its
features:

# kldload mac_seeotheruids

Security policy loaded: TrustedBSD MAC/seeotheruids (mac_seeotheruids)

If you'd like this module to load at boot time, add this to /boot/loader.conf:

mac_seeotheruids_load="YES"

If you need to unload the module, simply type:

# kldunload mac_seeotheruids

Security policy unload: TrustedBSD MAC/seeotheruids (mac_seeotheruids)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


When testing this module on your systems, compare the before and after results of these commands, run as both a
regular user and the superuser:

ps -aux

netstat -an

sockstat -4

w

Your before results should show processes and sockets owned by other users, whereas the after results should show
only those owned by the user. While the output from w will still show which users are on which terminals, it will not
display what other users are currently doing.

By default, this module affects even the superuser. In order to change that, it's useful to know which sysctl MIBs control
this module's behavior:

# sysctl -a | grep seeotheruids

security.mac.seeotheruids.enabled: 1

security.mac.seeotheruids.primarygroup_enabled: 0

security.mac.seeotheruids.specificgid_enabled: 0

security.mac.seeotheruids.specificgid: 0

sysctl is used to modify kernel behavior without having to recompile the kernel or reboot
the system. The behaviors that can be modified are known as MIBs.

See how there are two MIBs dealing with specificgid? The enabled one is off, and the other one specifies the numeric
group ID that would be exempt if it were on. So, if you do this:

# sysctl -w security.mac.seeotheruids.specificgid_enabled=1

security.mac.seeotheruids.specificgid_enabled: 0 -> 1

you will exempt group 0 from this policy. In FreeBSD, the wheel group has a GID of 0, so users in the wheel group will
see all processes and sockets.

You can also set that primarygroup_enabled MIB to 1 to allow users who share the same group ID to see each other's
processes and sockets.

Note that while you can change these MIBs from the command line, you will be able to see them only with the
appropriate kernel module loaded.

6.5.3 Quickly Disable All Interfaces

ifconfig allows you to enable and disable individual interfaces as required. For example, to stop traffic on ed0:

# ifconfig ed0 down

To bring the interface back up, simply repeat that command, replacing the word down with up.

However, ifconfig does not provide a convenient method for stopping or restarting traffic flow on all of a system's
interfaces. That ability can be quite convenient for testing purposes or to quickly remove a system from a network that
is under attack. The MAC_IFOFF module is a better tool for this purpose. Let's load this module and see how it affects the
system:

# kldload mac_ifoff

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# kldload mac_ifoff

Security policy loaded: TrustedBSD MAC/ifoff (mac_ifoff)

# sysctl -a | grep ifoff

security.mac.ifoff.enabled: 1

security.mac.ifoff.lo_enabled: 1

security.mac.ifoff.other_enabled: 0

security.mac.ifoff.bpfrecv_enabled: 0

By default, this module disables all interfaces, except the loopback lo device. When it's safe to reenable those
interfaces, you can either unload the module:

# kldunload mac_ifoff

Security policy unload: TrustedBSD MAC/ifoff (mac_ifoff)

or leave the module loaded and enable the interfaces:

# sysctl -w security.mac.ifoff.other_enabled=1

security.mac.ifoff.other_enabled: 0 -> 1

Perhaps you have a system whose interfaces you'd like to disable at bootup until you explicitly enable them. If that's
the case, add this line to /boot/loader.conf:

mac_ifoff_load="YES"

6.5.4 See Also

man 4 mac

man mac_seeotheruids

man mac_ifoff

man sysctl

The TrustedBSD project (http://www.trustedbsd.org/)

The sysctl section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/configtuning-sysctl.html)

The MAC section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/mac.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 58 Use mtree as a Built-in Tripwire

 

Why configure a third-party file integrity checker when you already have mtree?

If you care about the security of your server, you need file integrity checking. Without it, you may never know if the
system has been compromised by a rootkit or an active intruder. You may never know if your logs have been modified
and your ls and ps utilities replaced by Trojaned equivalents.

Sure, you can download or purchase a utility such as tripwire, but you already have the mtree utility [Hack #54] ; why
not use it to hack your own customized file integrity utility?

mtree lists all of the files and their properties within a specified directory structure. That resulting list is known as a
specification. Once you have a specification, you can ask mtree to compare it to an existing directory structure, and
mtree will report any differences. Doesn't that sound like a file integrity checking utility to you?

6.6.1 Creating the Integrity Database

Let's see what happens if we run mtree against /usr/bin:

# cd /usr/bin

# mtree -c -K cksum,md5digest,sha1digest,ripemd160digest -s 123456789 \

          > /tmp/mtree_bin

mtree: /usr/bin checksum: 2126659563

Let's pick apart that syntax in Figure 6-2.

Table 6-2. mtree command syntax
Command Explanation

-c This creates a specification of the current working directory.

-K This specifies a keyword. In our case, it's cksum.

md5digest,
sha1digest,ripemd160digest

Here, I've specified the three cryptographic checksums understood by mtree. This is how it
detects file modifications: any change to a file will result in a different hash. While it may be
mathematically feasible for an attacker to bypass one cryptographic hash, it's darn near
impossible for her to bypass all three cryptographic hashes.

-s This gives the numeric seed that is used to create the specification's checksum. Remember
that seed to verify the specification.

> This redirects the results to the file /tmp/mtree_bin instead of stdout.

If you run that command, it will perk along for a second or two, then write the value of the checksum to your screen
just before giving your prompt back. That's it; you've just created a file integrity database.

Before we take a look at that database, take a moment to record the seed you used and the checksum you received.
Note that the more complex the seed, the harder it is to crack the checksum. Those two numbers are important, so you
may consider writing them on a small piece of paper and storing them in your wallet. (Don't forget to include a hint to
remind you why you have that piece of paper in your wallet!)

Now let's see what type of file we've just created:

# file /tmp/mtree_bin

/tmp/mtree_bin: ASCII text

# ls -l /tmp/mtree_bin

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls -l /tmp/mtree_bin

-rw-r--r--  1 root  wheel  111503 Nov 23 11:46 /tmp/mtree_bin

It's an ASCII text file, meaning you can edit it with an editor or print it directly. It's also fairly large, so let's use head to
examine the first bit of this file. Here I'll ask for the first 15 lines:

# head -n 15 /tmp/mtree_bin

#           user: dru

#        machine: genisis

#           tree: /usr/bin

#           date: Sun Nov 23 11:46:21 2003

# .

/set type=file uid=0 gid=0 mode=0555 nlink=1 flags=none

.               type=dir mode=0755 nlink=2 size=6656 time=1065005676.0

    CC          nlink=3 size=78972 time=1059422866.0 cksum=1068582540 \

                md5digest=b9a5c9a92baf9ce975eee954994fca6c \

                sha1digest=a2e4fa958491a4c2d22b7f597f05885bbe8f6a6a \

                ripemd160digest=33c74b4200c9507b4826e5fc8621cddb9e9aefe2

    Mail        nlink=3 size=72964 time=1059422992.0 cksum=2235502998 \

                md5digest=44739ae79f3cc89826f6e34a15f13ed7 \

                sha1digest=a7b89996ffae4980ad87c6e7c56cb207af41c1bd \

The specification starts with a nice summary section. In my example, the user that created the specification was dru.
Note that I used the su utility to become the superuser before creating the specification, but my login shell knew that I
was still logged in as the user dru. The summary also shows the system name, genisis, the directory structure in
question, /usr/bin, and the time the specification was created.

The /set type=file line shows the information mtree records by default. Notice that it keeps track of each file's uid, gid,
mode, number of hard links, and flags.

Then, each file and subdirectory in /usr/bin is listed one at a time. Since I used -K to specify three different
cryptographic hashes, each file has three separate hashes or digests.

6.6.2 Preparing the Database for Storage

Once you've created a specification, the last place you want to leave it is on the hard drive. Instead, sign that file,
encrypt it, transfer it to a different medium (such as a floppy), and place it in a secure storage area.

To sign the file:

# md5 /tmp/mtree_bin

MD5 (/tmp/mtree_bin) = e05bab7545f7bdbce13e1bb04a043e47

You may wish to redirect that resulting fingerprint to a file or a printer. Keep it in a safe place, as you'll need it to check
the integrity of the database.

Next, encrypt the file. Remember, right now it is in ASCII text and susceptible to tampering. Here I'll encrypt the file
and send the newly encrypted file to the floppy mounted at /floppy:

# openssl enc -e -bf -in /tmp/mtree_bin -out /floppy/mtree_bin_enc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# openssl enc -e -bf -in /tmp/mtree_bin -out /floppy/mtree_bin_enc

enter bf-cbc encryption password:

Verifying - enter bf-cbc encryption password:

The syntax of the openssl command is fairly straightforward. I decided to encrypt enc -e with the Blowfish -bf algorithm. I
then specified the input file, or the file to be encrypted. I also specified the output file, or the resulting encrypted file. I
was then prompted for a password; this same password will be required whenever I need to decrypt the database.

Once I verify that the encrypted file is indeed on the floppy, I must remember to remove the ASCII text version from
the hard drive:

# rm /tmp/mtree_bin

The ultra-paranoid, experienced hacker would zero out that file before removing it using dd
if=/dev/zero of=/tmp/mtree_bin bs=1024k count=12.

I'll then store the floppy in a secure place, such as the safe that contains my backup tapes.

6.6.3 Using the Integrity Database

Once you have an integrity database, you'll want to compare it periodically to the files on your hard drive. Mount the
media containing your encrypted database, and then decrypt it:

# openssl enc -d -bf -in /floppy/mtree_bin_enc -out /tmp/mtree_bin

enter bf-cbc encryption password:

Notice that I used basically the same command I used to encrypt it. I simply replaced the encrypt switch (-e) with the
decrypt switch (-d). The encrypted file is now the input, and the plain text file is now the output. Note that I was
prompted for the same password; if I forget it, the decryption will fail.

Before using that database, I first want to verify that its fingerprint hasn't been tampered with. Again, I simply repeat
the md5 command. If the resulting fingerprint is the same, the database is unmodified:

# md5 /tmp/mtree_bin

MD5 (/tmp/mtree_bin) = e05bab7545f7bdbce13e1bb04a043e47

Next, I'll see if any of my files have been tampered with on my hard drive:

# cd /usr/bin

# mtree -s 123456789 < /tmp/mtree_bin

mtree: /usr/bin checksum: 2126659563

If none of the files have changed in /usr/bin, the checksum will be the same. In this case it was. See why it was
important to record that seed and checksum?

What happens if a file does change? I haven't built world on this system in a while, so I suspect I have source files that
haven't made their way into /usr/bin yet. After some poking about, I notice that /usr/src/usr.bin has a bluetooth
directory containing the source for a file called btsockstat. I'll install that binary:

# cd /usr/src/usr.bin/bluetooth/btsockstat

# make

# make install

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# make install

# ls -F /usr/bin | grep btsockstat

btsockstat*

Now let's see if mtree notices that extra file:

# cd /usr/bin

# mtree -s 123456789 < /tmp/mtree_bin

. changed

        modification time expected Wed Oct  1 06:54:36 2003 

              found Sun Nov 23 16:10:32 2003

btsockstat extra

mtree: /usr/bin checksum: 417306521

Well, it didn't fool mtree. That output is actually quite useful. I know that btsockstat was added as an extra file, and I
know the date and time it was added. Since I added that file myself, it is an easy matter to resolve. If I hadn't and
needed to investigate, I have a time to assist me in my research. I could talk to the administrator who was responsible
at that date and time, or I could see if there were any network connections logged during that time period.

Also note that this addition resulted in a new checksum. Once the changes have been resolved, I should create a new
database that represents the current state of /usr/bin. To recap the necessary steps:

1. Use mtree -c to create the database.

2. Use md5 to create a fingerprint for the database.

3. Use openssl to encrypt the database.

4. Move the database to a removable media, and ensure no copies remain on disk.

6.6.4 Deciding on Which Files to Include

When you create your own integrity database, ask yourself, "Which files do I want to be aware of if they change?" The
answer is usually your binaries or applications. Here is a list of common binary locations on a FreeBSD system:

/bin

/sbin

/usr/bin

/usr/sbin

/usr/local/bin

/usr/X11R6/bin

/usr/compat/linux/bin

/usr/compat/linux/sbin

The sbin directories are especially important because they contain system binaries. Most ports will install to
/usr/local/bin or /usr/X11R6/bin.

The second question to ask yourself is "How often should I check the database?" The answer will depend upon your
circumstances. If the machine is a publicly accessible server, you might consider this as part of your daily maintenance
plan. If the system's software tends to change often, you'll also want to check often, while you can still remember when
you installed what software.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


you installed what software.

6.6.5 See Also

man mtree

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 59 Intrusion Detection with Snort, ACID, MySQL, and FreeBSD

 

How the alert administrator catches the worm.

With the current climate of corporate force reductions and the onslaught of new, fast-spreading viruses and worms,
today's administrators are faced with a daunting challenge. Not only is the administrator required to fix problems and
keep things running smoothly, but in some cases he is also responsible for keeping the network from becoming worm
food. This often entails monitoring the traffic going to and from the network, identifying infected nodes, and loading
numerous vendor patches to fix associated vulnerabilities.

To get a better handle on things, you can deploy an Intrusion Detection System (IDS) on the LAN to alert you to the
existence of all the nastiness associated with the dark side of the computing world.

This hack will show you how to implement a very effective and stable IDS using FreeBSD, MySQL, Snort, and the
Analysis Console for Intrusion Databases (ACID). While that means installing and configuring a few applications, you'll
end up with a feature-rich, searchable IDS capable of generating custom alerts and displaying information in many
customizable formats.

6.7.1 Installing the Software

We'll assume that you already have FreeBSD 4.8-RELEASE or newer installed with plenty of disk space. The system is
also fully patched and the ports collection is up-to-date. It also helps to be familiar with FreeBSD and MySQL
commands.

6.7.1.1 Install PHP4, Apache, and MySQL

We'll start by installing PHP4, Apache, and the MySQL client. As the superuser:

# cd /usr/ports/www/mod_php4

# make install clean

When the PHP configuration options screen appears, choose the GD Library Support option. Leave the other default
selections, and choose OK.

The build itself will take a while because it must install Apache and the MySQL client in addition to PHP.

6.7.1.2 Install MySQL-server

You'll also need the MySQL server, which is a separate port. To ensure this port installs correctly, temporarily set the
system hostname to localhost:

# hostname localhost

# cd /usr/ports/databases/mysql40-server

# make install clean

This one will also take a while.

6.7.1.3 More installations

There are a few other ports to install. The next three applications are used by ACID to create graphs of the output.
ACID supports bar graphs (as shown in Figure 6-3), line graphs (Figure 6-4), and pie charts (Figure 6-5).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 6-3. An ACID bar graph

Figure 6-4. An ACID line graph

Figure 6-5. An ACID pie chart

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 6-5. An ACID pie chart

We'll need adodb , a database library for PHP:

# cd /usr/ports/databases/adodb

# make install clean

PHPlot adds a graph library to PHP so it will support charts:

# cd /usr/ports/graphics/phplot

# make install clean

JPGraph adds more support to PHP for graphs:

# cd /usr/ports/graphics/jpgraph

# make install clean

Finally, we must install ACID and Snort. Start by modifying snort's Makefile to include MySQL support:

# cd /usr/local/ports/security/snort

# vi Makefile

Change:

CONFIGURE_ARGS= --with-mysql=no

to:

CONFIGURE_ARGS= --with-mysql=yes

Save your changes and exit.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Save your changes and exit.

Finally, install acid, which will also install snort using your modified Makefile:

# cd /usr/ports/security/acid

# make install clean

6.7.2 Configuring

Now that we've installed all the necessary pieces for our IDS, it's time to configure them to work together.

6.7.2.1 Configure Apache and PHP

You'll need to make two changes to Apache's configuration file, /usr/local/etc/apache/httpd-conf. First, search for
#ServerName, remove the hash mark (#), and change www.example.com to your actual server name. Then, for security
reasons, change ServerSignature On to ServerSignature Off. This prevents the server from providing information such as
HTTP server type and version. Most admins who run IDSs on their networks like to keep their presence somewhat
hidden, since there are exploits/tools written to defeat IDS detection.

6.7.2.2 Configure PHP

After installing PHP, you will notice two sample configuration files in /usr/local/etc, php.ini-dist and php.ini-
recommended. As the name suggests, the latter is the recommended PHP 4-style configuration file. It contains settings
that make PHP "more efficient, more secure, and [encourage] cleaner coding." Since our focus is security, I recommend
using this file.

Configuring PHP is as simple as copying the sample configuration file to /usr/local/etc/php.ini:

# cd /usr/local/etc

# cp php.ini-recommended php.ini

6.7.2.3 Configure MySQL

MySQL supports several configurations. Use my-small.cnf or my-medium.cnf if you have less than 64 M of memory,
my-large.cnf if you have 512 M, and my-huge.cnf if you have 1-2 G of memory. Later, if you find your system running
out of swap space, you can stop mysql and copy one of the smaller *.cnf files to fix the problem. In my example, I'll
copy over my-large.cnf:

# cp /usr/local/share/mysql/my-large.cnf /etc/my.cnf

Next, set up the initial databases and install the server:

# /usr/local/bin/mysql_install_db

# /usr/local/etc/rc.d/mysql-server.sh start

You can use the sockstat command to confirm that the MySQL server is running. You should see MySQL listening on port
3306:

# sockstat | grep mysql

USER     COMMAND    PID   FD PROTO  LOCAL ADDRESS         FOREIGN ADDRESS

mysql    mysqld     16262 5  tcp4   *:3306                *:*

mysql    mysqld     16262 6  stream /tmp/mysql.sock

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mysql    mysqld     16262 6  stream /tmp/mysql.sock

Then, set the password for the root MySQL user. You'll have to use the FLUSH PRIVILEGES command to tell MySQL to
reload all of the user privileges, or the server will continue using the old (blank) password until it restarts:

# /usr/local/bin/mysql -u root

Welcome to the MySQL monitor.  Commands end with ; or \g.

Your MySQL connection id is 1 to server version: 4.0.16-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>SET PASSWORD FOR root@localhost=PASSWORD('

your_password_here

');

mysql>FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

Then, you can create the snort database:

mysql>CREATE DATABASE snort;

Query OK, 1 row affected (0.00 sec)

Now we can create a MySQL user with sufficient permissions to access the new snort database. Do not use the MySQL
root user! By creating a new user who has access to only one database, we've limited the damage an attacker could do
if he ever gained access to this account.

MySQL uses the GRANT command to give users access to databases. You can control which types of statements the user
can issue, as well as the network hosts from which the user can access MySQL. localhost is a nice, safe setting, as we
only need to access the database from the local machine. Again, this restricts the damage that an attacker could do
from another compromised host.

mysql> GRANT INSERT,SELECT ON snort.* to 

snort_user_here

@localhost \

        IDENTIFIED BY '

snort_users_password

';

Query OK, 0 rows affected (0.00 sec)

mysql> GRANT INSERT,SELECT,CREATE,DELETE on snort.* \

        to 

snort_user_here

@localhost IDENTIFIED BY '

snort_users_password

';

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


';

Query OK, 0 rows affected (0.01 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.01 sec)

mysql> quit

Bye

6.7.2.4 Configure Snort

First you'll need to download the latest sources from http://www.snort.org (currently v2.0.5). After unpacking, use the
create_mysql file to create the necessary tables in the snort database. That's all the configuration you need; you can now
simply delete the unpacked directory.

# tar xvfz snort-2.0.5.tar.gz 

# cd snort-2.0.5/contrib 

# cp create_mysql /tmp 

# /usr/local/bin/mysql -p < /tmp/create_mysql snort 

Enter password:            Enter the MySQL root password here

# cd /usr/local/etc 

# cp snort.conf-sample snort.conf 

# vi snort.conf 

Scroll down until you reach the # output database: log, mssql, dbname=snort user=snort password=test line. Insert the
following lines beneath it:

output database: log, mysql, user=mysql_user_name password=mysql_users_

    password dbname=snort host=localhost

output database: alert, mysql, user=mysql_user_name password=mysql_users_

    password dbname=snort host=localhost

Now page down toward the bottom of the file and select the types of rules you want to monitor for. Keep in mind that
the more rules you use, the more work snort will have to do, using up CPU cycles and memory that might be better
used elsewhere. For example, if you don't want to monitor X11 or Oracle on any computer on your network, comment
out those rules. When you're done, save your changes and exit.

Finish by creating the snort log directory:

# cd /var/log

# mkdir snort

6.7.2.5 Configure ACID

Start by tightening the permissions of the configuration file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Start by tightening the permissions of the configuration file:

# chmod 644 /usr/local/www/acid/acid_conf.php

Have a good read through the Security section of /usr/local/www/acid/README when
you're configuring ACID. It contains many good pointers to ensure your configuration is
secure.

Then, change the section that contains alert_dbname = "snort_log"; to include the appropriate entries:

$alert_dbname   = "snort";

$alert_host     = "localhost";

$alert_port     = "";

$alert_user     = "mysql_snort_user";

$alert_password = "mysql_snort_users_password";

Leave the Archive parameters alone, unless you want to create a separate database for snort to store archived alert
messages in. To do this, you'll need to log into MySQL, create an archive database, set the appropriate permissions, and
run the mysql_create script again as described earlier. The Snort and ACID documentation describe this in more detail.

You do need to tell ACID where to find some of the libraries installed earlier. In particular, change:

$ChartLib_path = "";

to:

$ChartLib_path = "/usr/local/share/jpgraph";

6.7.3 Running ACID

It's time to start Apache:

# /usr/local/sbin/apachectl start

/usr/local/sbin/apachectl start: httpd started

Then, link the ACID web directory. Of course, for security reasons, I recommend giving the link name something other
than acid.

# cd /usr/local/www/

# ln -s /usr/local/www/acid /usr/local/www/snort

Point your web browser to http://localhost/snort/acid_main.php and click the Setup link. Click the Create ACID AG
button to create the extended tables that ACID will use. When it finishes, you should see something similar to the
following:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


following:

Successfully created 'acid_ag'

Successfully created 'acid_ag_alert'

Successfully created 'acid_ip_cache'

Successfully created 'acid_event'

Now click the Main page link to be taken to ACID's main display page. At this point you might ask, "Where are the
alerts?" There aren't any—we didn't start snort!

6.7.4 Running Snort

First, try starting snort manually to make sure it works. Use the -i switch to specify the network interface that will be
monitoring traffic. In my case, it is xl0.

# cd /usr/local/etc

# /usr/local/bin/snort -c snort.conf -i xl0               

database: using the "alert" facility

1458 Snort rules read...

1458 Option Chains linked into 146 Chain Headers

0 Dynamic rules

+++++++++++++++++++++++++++++++++++++++++++++++++++

Rule application order: ->activation->dynamic->alert->pass->log

        --=  = Initialization Complete =  =--

-*> Snort! <*-

Version 2.0.5 (Build 98)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

If snort doesn't show any errors, as depicted here, pat yourself on the back: snort is running!

Quit snort by pressing Ctrl-C, and restart it in daemon mode:

# /usr/local/bin/snort -c snort.conf -i xl0 -D

Now flip on over to the ACID display page in your web browser. You should start to see alerts coming in. Figure 6-6
shows a sample alert listing.

Figure 6-6. ACID alerts

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 6-6. ACID alerts

Note that each detected signature includes a hyperlink to information about that particular type of attack. Snort also
keeps track of how many packets matched that signature, the number of unique source and destination addresses, and
the time frame between the first and last packet.

You can also configure your own alert groups to better organize your results, as shown in Figure 6-7.

Figure 6-7. ACID alert groups

ACID can also display each rogue packet in intimate detail, as seen in Figure 6-8.

Figure 6-8. An ACID packet in detail

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 6-8. An ACID packet in detail

Keep in mind that you'll probably start getting false positives, depending on the types of traffic on your network.
However, these can easily be weeded out by making the appropriate changes to your /usr/local/etc/snort.conf file and
the rule files in /usr/local/share/snort.

If you start noticing a bunch of alerts that look like Figure 6-9, it's a good indication that some nodes on your network
are infected with a virus or worm.

Figure 6-9. Suspicious Snort alerts

6.7.5 Hacking the Hack

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Snort and ACID have many additional features. For example, you can use your favorite mail transfer agent, such as
Sendmail or Postfix, to send out email alerts, and you can create an archive database to store alerts generated by snort.
There's even a snort plug-in for the Big Brother System and Network Monitor that can alert you when 30 or more alerts
are generated.

You can also add additional security to MySQL, Snort, and ACID by creating a nonprivileged snort user and locking down
the /usr/local/www/acid directory with the use of a properly configured .htaccess file. Configuration of these features
goes beyond the scope of this hack, but I encourage you to read all the documentation included with these applications,
as well as the documentation at each application's home page, to find out how you can tailor them to suit your needs.

6.7.6 See Also

The MySQL Reference Manual (http://www.mysql.com/documentation/index.html)

The Snort web site (http://www.snort.org/)

The Analysis Console for Intrusion Databases (ACID) web site (http://www.cert.org/kb/acid/)

The Big Brother Network and System Monitor web site (http://bb4.com/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 60 Encrypt Your Hard Disk

 

Keep your secrets secret by keeping everything secret.

People often store sensitive information on their hard disks and have concerns about this information falling into the
wrong hands. This is particularly relevant to users of laptops and other portable devices, which might be stolen or
accidentally misplaced.

File-oriented encryption tools like GnuPG are great for encrypting particular files that will be sent across untrusted
networks or stored on disk. But sometimes these tools are inconvenient, because the file must be decrypted each time
it is to be used; this is especially cumbersome when you have a large collection of files to protect. Any time a security
tool is cumbersome to use, there's a chance you'll forget to use it properly, leaving the files unprotected for the sake of
convenience.

Worse, readable copies of the encrypted contents might still exist on the hard disk. Even if you overwrite these files
(using rm -P) before unlinking them, your application software might make temporary copies that you don't know about
or that have been paged to swapspace. Even your hard disk might have silently remapped failing sectors with data still
in them.

The solution is simply never to write the information unencrypted to the hard disk. Rather than taking a file-oriented
approach to encryption, consider a block-oriented approach—a virtual hard disk that looks just like a normal hard disk
with normal filesystems, but which encrypts and decrypts each block on the way to and from the real disk.

NetBSD includes the encrypting block device driver cgd(4) to help you accomplish this task; the other BSDs have similar
virtual devices that, with somewhat different commands, can achieve the same thing. This hack concentrates on
NetBSD's cgd.

6.8.1 The Cryptographic Disk Device

To the rest of the operating system, the cgd(4) device looks and behaves like any other disk driver. Rather than driving
real hardware directly, it provides a logical function layered on top of another block device. It has a special
configuration program, cgdconfig , to create and configure a cgd device and point it at the underlying disk device that will
hold the encrypted data. You can stack several logical block devices together; cgd(4) on top of vnd(4) is handy for
making an encrypted volume in a regular file without repartitioning, or you can make an encrypted raid(4).

Once you have a cgd configured, you can put a disklabel on it to divide it up into partitions, make filesystems or enable
swapping to those partitions, or mount and use those filesystems, just like any other new disk.

Roland C. Dowdeswell wrote the cgd driver. It first appeared in NetBSD-current after the 1.6 release branch. As a
result, it is not in the 1.6 release series; it will be in the 2.0 release and, in the meantime, many people are using it
with -current.

In order to use cgd, ensure that you have the line:

pseudo-device            cgd    4    # cryptographic disk devices

in your kernel configuration file; otherwise, build and install a new kernel. You'll also need a running system, as the
NetBSD installer currently doesn't support installing new systems directly into a cgd.

6.8.2 Preparing the Disk

First, decide which filesystems you want to move to an encrypted device. You need to leave at least the small root
filesystem (at /) unencrypted in order to load the kernel and run init, cgdconfig, and the rc.d scripts that configure your
cgd. In this example, we'll encrypt everything except /.

We are going to delete and remake partitions and filesystems, and will require a backup to restore the data. So, make
sure you have a current, reliable backup stored on a different disk or machine. Do your backup in single-user mode,
with the filesystems unmounted, to ensure you get a clean dump. Make sure you back up the disklabel of your hard disk
as well, so you have a record of the original partition layout.

With the system in single-user mode, / mounted as read-write, and everything else unmounted, delete all the data
partitions you want to move into cgd.

Then, make a single new partition in all the space you just freed up, say, wd0e. Set the type for this partition to ccd.
(There's no code specifically for cgd, but ccd is very similar. Though it doesn't really matter what it is, it will help remind

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


(There's no code specifically for cgd, but ccd is very similar. Though it doesn't really matter what it is, it will help remind
you that it's not a normal filesystem.) When finished, label the disk to save the new partition table.

6.8.3 Scrubbing the Disk

We've removed the partition table information, but the existing filesystems and data are still on disk. Even after we
make a cgd device, create filesystems, and restore our data, some of these disk blocks might not yet be overwritten and
might still contain our data in plain text. This is especially likely if the filesystems are mostly empty. We want to scrub
the disk before we go further.

We could use dd to write /dev/zero over the new wd0e partition, but this will leave our disk full of zeros, except where
we later write encrypted data. We might not want to give an attacker any clues about which blocks contain real data
and which are free space, so we want to write noise into all the disk blocks. We'll create a temporary cgd, configured
with a random, unknown key.

First, we make a parameters file to tell cgd to use a random key:

# cgdconfig -g -k randomkey -o /tmp/wd0e-rnd aes-cbc

Then, we use that file to configure a temporary cgd:

# cgdconfig cgd0 /dev/wd0e /tmp/wd0e-rnd

If this seems to get stuck, it may be that /dev/random doesn't have enough entropy for
cgdconfig. Hit some keys on the console to generate entropy until it returns.

Now we can write zeros into the raw partition of our cgd (this device will be cgdxd on NetBSD/i386 and cgdxc on most
other platforms):

# dd if=/dev/zero of=/dev/rcgd0d bs=32k

The encrypted zeros will look like random data on disk. This might take a while if you have a large disk. Once finished,
unconfigure the random-key cgd:

# cgdconfig -u cgd0

6.8.4 Creating the Encrypted Disk Device

The cgdconfig program, which manipulates cgd devices, uses parameters files to store such information as the encryption
type, key length, and a random password salt for each cgd. These files are very important and must be kept safe—
without them, you will not be able to decrypt the data!

We'll generate a parameters file and write it into the default location (make sure the directory /etc/cgd exists and is
mode 600):

# cgdconfig -g -V disklabel -o /etc/cgd/wd0e aes-cbc 256

This creates a parameters file describing a cgd using aes-cbc encryption, a key verification (-V) method of disklabel, and a
key length of 256 bits. Remember, you'll want to save this file somewhere safe later.

Now it's time to create our cgd, for which we'll need a passphrase. This passphrase must be entered every time the cgd
is opened, usually at each reboot, and it is from this passphrase that the encryption key used is derived. Make sure you
choose something you won't forget and others won't guess.

The first time we create the cgd, there is no valid disklabel, so the validation mechanism we want to use later won't
work. We override it this one time:

# cgdconfig -V re-enter cgd0 /dev/wd0e

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cgdconfig -V re-enter cgd0 /dev/wd0e

This will prompt twice for a matching passphrase.

Now that we have a new cgd, we need to partition it and create filesystems. Recreate your previous partitions with all
the same sizes, although the offsets will be different because they're starting at the beginning of this virtual disk.
Remember to include the -I argument to disklabel, because you're creating an initial label for a new disk.

Then, use newfs to create filesystems on all the relevant partitions. This time your partitions will reflect the cgd disk
names:

# newfs /dev/rcgd0h

6.8.5 Modifying Configuration Files

We've moved several filesystems to another disk, and we need to update /etc/fstab accordingly. Each partition will have
the same letter but will be on cgd0 rather than wd0. So, you'll have /etc/fstab entries that are similar to these:

/dev/wd0a   /     ffs     rw,softdep    1 1

/dev/cgd0b  none  swap    sw            0 0

/dev/cgd0b  /tmp  mfs     rw,-s=132m    0 0 

/dev/cgd0e  /var  ffs     rw,softdep    1 2

/dev/cgd0f  /usr  ffs     rw,softdep    1 2

/dev/cgd0h  /home ffs     rw,softdep    1 2

Note that /tmp should be a separate filesystem, either mfs or ffs, inside the cgd, so that your temporary files are not
stored in plain text in the / filesystem.

Each time you reboot, you're going to need your cgd configured early, before fsck runs and filesystems are mounted.

Put the following line in /etc/cgd/cgd.conf:

cgd0    /dev/wd0e

and the following line into /etc/rc.conf:

cgd=YES

You should now be prompted for cgd0's passphrase whenever rc starts.

6.8.6 Restoring Data

Next, mount your new filesystems, and restore your data into them. It often helps to have /tmp mounted properly first,
as restore can use a fair amount of space when restoring a large dump.

To test your changes to the boot configuration, unmount the filesystems and unconfigure the cgd, so when you exit the
single-user shell, rc will run as it does on a clean boot. Now you can bring the system up to multiuser and make sure
everything works as before.

6.8.7 Hacking the Hack

Here are some other things you might consider doing, for extra hack value:

Use two separate cgds: one with a random key just for swap and one like the cdg in this hack.

Use multiple cgds for different kinds of data, e.g., one mounted all the time and others mounted only when

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Use multiple cgds for different kinds of data, e.g., one mounted all the time and others mounted only when
needed.

Use a cgd configured on top of a vnd made from a file on a remote network file server (NFS, SMBFS, CODA, etc.)
to safely store private data on a shared system.

Build a kernel with a special minimized, embedded ramdisk root image containing init, cgdconfig, your
parameters file, and any other required tools. Boot that image from removable media (such as a USB flash
device) that you carry securely on your person, and remount / from the cgd on the hard disk. This can help
defend against someone tampering with the kernel or cgdconfig binary in the unencrypted portion of the hard
disk and using it to steal your passphrase.

6.8.8 Final Thoughts and Warnings

Prevent cryptographic disasters by making sure you can always recover your passphrase and parameters file. Protect
the parameters file from disclosure, perhaps by storing it on removable media as just mentioned, because the salt it
contains helps protect against dictionary attacks on the passphrase.

Keeping the data encrypted on your disk is all very well, but what about other copies? You already have at least one
other such copy (the backup we used during this setup), and it's not encrypted. Piping dump through a file-based
encryption tool such as gpg can be one way of addressing this issue, but make sure you can decrypt it to restore after a
disaster.

Like any form of software encryption, the cgd key stays in kernel memory while the device is configured and may be
accessible to privileged programs and users, such as kmem grovelers. Running your system with an elevated securelevel
is highly recommended.

Once the cgd volumes are mounted as normal filesystems, their accessibility is just like any other file. Take care of file
permissions, and ensure that your running system is protected against application and network security attacks.

Avoid using suspend and resume, especially for laptops with a BIOS suspend-to-disk function. If an attacker can
resume your laptop with the key still in memory or read it from the memory image on disk later, the whole point of
using cgd is lost.

6.8.9 See Also

man cgd

man cgdconfig

man disklabel

The Encrypting Disk Partitions (using gdbe) section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/disks-encrypting.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 61 Sudo Gotchas

 

Be aware of these limitations when configuring sudo.

sudo is a handy utility for giving out some, but not all root privileges to users of Unix and Unix-like systems. sudo has
some limitations and gotchas, however.

On FreeBSD, build sudo from the ports collection in /usr/ports/security/sudo.

6.9.1 Limitations of sudo

Tools like sudo exist because the standard Unix privilege model is monolithic. That is, you are either root, with all the
privileges and dangers attendant, or you aren't, in which case you lack the ability to affect the system in significant
ways. sudo is a workaround of this model. As such, there are limits to what it can achieve, and many of these limitations
show up in interactions with the shell. For example:

% sudo cd /some/protected/dir

Password:

sudo: cd: command not found

Because a process cannot affect the environment of its parent, cd can't be implemented as a program external to the
shell. The command is therefore built into the shell itself. sudo can confer privilege only on programs, not pieces of
programs. So, the only way to cd to a protected directory using sudo is to execute the shell itself with sudo:

% sudo bash

# cd /some/protected/dir

# pwd

/some/protected/dir

A workaround is to write a script like the following:

#!/usr/local/bin/bash

cd /some/protected/dir;/bin/ls

If you enable access to this command in /usr/local/etc/sudoers, authorized users will be able to ls the contents of a
protected directory. This won't allow you to cd to a protected directory, but it will allow you to do work in one.

Another possibility is to allow the user to run a restricted shell, for example, bash -r. This is not a good general solution,
though, since most such shells are very restrictive. For example, bash -r disallows use of cd!

Another interaction between the shell and sudo involves I/O redirection.

% sudo echo "secret stuff"  > /some/protected/dir/secret

bash: /some/protected/dir/secret: Permission denied

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


bash: /some/protected/dir/secret: Permission denied

The problem here is that the bash shell does the I/O direction, not the echo command. This time there is a workaround,
however:

% echo "secret stuff" | sudo tee -a  /some/protected/dir/secret \

    > /dev/null

% sudo cat /some/protected/dir/secret

secret stuff

Here we use sudo to run tee with the -a (append) switch, which dumps the I/O stream coming from stdin to a file. We
throw away the stdout stream since we just want the file. Now sudo can confer privilege on the program tee, and we get
the desired result, although it's a bit awkward.

The same problem exists when trying to redirect stdin. In this case, we can use the similar, but less unusual, expedient
of sudo cat to get at the data.

The following interaction is not really a limitation, but more of a wart:

% sudo cat /some/protected/dir/secret | wc | sudo tee \

    /some/protected/dir/count > /dev/null

Password:Password:

Here we have no cached credentials, so sudo prompts us for our password. But since there are two sudo commands in
the pipeline, we get two password prompts, one right after the other. When we enter our password and press Return,
nothing happens—our cursor stays put on the next line. We are actually at the second password prompt, but there is no
indication of this. Entering our password again will get us out of the mysteriously hung pipeline.

6.9.2 sudo Configuration Gotchas

sudo is very flexible. The /usr/local/etc/sudoers file has rich semantics to implement a nearly infinite set of policies that
can range from very open to very restrictive. Of course, open policies are easier to understand and implement than the
restrictive ones, because there are so many ways to subvert many seemingly restrictive policies.

The earlier examples of sudo limitations assumed that all the commands used were authorized for our use in the
sudoers file. However, both cat and tee are dangerous commands that could allow a user to easily take control of a
system. (Consider sudo tee /etc/spwd.db < myevilspwd.db.) This underlines the generic risk of enabling commands with
sudo. It is difficult to analyze all the possible ways a particular command could be misused to subvert a closed security
policy. The more commands you enable with sudo, the harder this task becomes. In general, beware of commands that
are capable of modifying files, such as editors, dd, cat, and tee, or those that allow shells to be run from within them,
such as emacs and vi.

vim provides an rvim variant that disallows shell escapes. This variant is installed to
/usr/local/bin/rvim when you build the port /usr/ports/editors/vim.

You can try restricting what arguments can be given to dangerous commands, but beware of alternate methods for
supplying those arguments. For example, the following configuration entry recently came up on the sudo-users mailing
list:

Cmnd_Alias      PASSWD   = /usr/bin/passwd, !/usr/bin/passwd root

This works great if the user types passwd root:

% sudo passwd root

Sorry, user test is not allowed to execute '/usr/bin/passwd root' as root on ****.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sorry, user test is not allowed to execute '/usr/bin/passwd root' as root on ****.

Consider, though:

% sudo passwd -l root

Changing local password for root

New Password:

Oops! The addition of the -l flag causes the pattern in the sudoers file not to match the equivalent command.

The moral is: to restrict parameters in sudoers, you must disallow all permutations of arguments and switches that you
deem undesirable.

man sudoers warns about another danger:

It is generally not effective to "subtract" commands from ALL using the

'!' operator.  A user can trivially circumvent this by copying the

desired command to a different name and then executing that.  For exam-

ple:

    bill        ALL = ALL, !SU, !SHELLS

Doesn't really prevent bill from running the commands listed in SU or

SHELLS since he can simply copy those commands to a different name, or

use a shell escape from an editor or other program.  Therefore, these

kind of restrictions should be considered advisory at best (and rein-

forced by policy).

6.9.3 Shell Access with sudo

Authorizing shell access with sudo obviously opens your security policy to the largest possible extent, since any available
command can then be run in the root-enabled shell. This may be exactly what you want, but you also lose sudo's audit
trail, since subsequent commands issued from the shell are not logged.

One way to allow shell access to trusted users without losing the audit trail is to use sudoscript [Hack #62] .

6.9.4 See Also

man sudo

man sudoers

man passwd

The sudo web site (http://www.courtesan.com/sudo/)

The Sudo-users mailing list archive (http://www.sudo.ws/pipermail/sudo-users/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 62 sudoscript

 

sudo can help enforce strict security policies, but what about situations in which you don't want to restrict
what commands your users run?

Maybe you're looking for a way to keep track of what your sysadmin team does as root, so you can quickly find out what
happened when something goes wrong. Even if you're the only administrator, it's possible to make a bad error as root
without realizing it. An audit trail allows you to go back and see exactly what you did type during that 3:00 AM hacking
session.

As mentioned in [Hack #61], giving access to a shell with sudo means that you lose your audit trail the moment the
root shell executes. One answer to this problem is sudoscript.

Another scenario where sudoscript is useful is one similar to the situation that caused me to write sudoscript in the first
place. I was a sysadmin in a small startup whose engineers all had the root password. The IT crew all used sudo, but
they had tried without success to convince the engineers to use it. Upon investigation, I discovered that the principal
reason for this was the prohibition on running shells with sudo.

In fact, the sysadmins used the "everything-but-shells" method the sudoers manpage
warns against [Hack #61] .

It quickly became clear that I wasn't going to be able to argue that sudo, as implemented, was equivalent to having a
root shell; positions had hardened long before I showed up. So, I wrote sudoscript to bring these engineers back into the
IT department's supported circle. It worked, and having the audit trail saved my bacon several times.

6.10.1 sudoscript Overview

sudoscript is a pair of Perl scripts. One is called sudoshell , or just ss. Contrary to its name, sudoshell is not a shell like tcsh
or bash. Instead, it is a frontend script that uses authorization from sudo to run as root and runs script(1) on a FIFO
(named pipe) managed by the second script. That script is a daemon, called sudoscriptd . It takes data from the FIFO
opened by sudoscript and tags it with the user's name, PID, and a timestamp before writing it to a log file. This log file,
/var/log/sudoscript, is managed by the daemon and rotated if its size exceeds 2 MB. The effect of all this is a root shell
that saves its terminal input and output in a log file.

FreeBSD provides sudoscript in the ports collection in /usr/ports/security/sudoscript.
Download OpenBSD and NetBSD ports from http://egbok.com/sudoscript/.

6.10.2 Is sudoscript Secure?

The answer is yes and no. The answer is "yes" because sudoscript doesn't confer any privilege of its own; it relies on
sudo for that. For that reason, programming or architecture errors in sudoscript (which I have worked hard to avoid)
shouldn't increase the security risk to a system. The user of sudoscript already has the privilege to do anything at all on
the system.

The answer is "no" if you expect the audit trail provided by sudoscript to be bulletproof. It isn't. For one thing, an xterm
will produce a shell that is not audited. Additionally, the FIFO that the scripts use must be writable by the effective user
running it. If that effective user is root, then of course there are many, many ways to avoid the audit trail. Simply killing
the daemon (but not sudoshell) would do the trick nicely, for example.

The moral is: don't give sudoscript to users you don't trust with root. If you have to give it to such users, though, it is
probably better than nothing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


6.10.3 Using sudoscript

Build sudoscript from source in the ports tree or install it from a binary package. (Note that both are misnomers with
respect to sudoscript, since it is pure Perl. These mechanisms install the scripts and supporting files.) If you want to
enable only root shells, sudoscript configuration is easy. Add an entry like the following to /usr/local/etc/sudoers:

Cmnd_Alias      SS    = /usr/local/bin/sudoshell, /usr/local/bin/ss

You can then grant sudoscript access to chosen users through the usual mechanisms. For example:

%wheel          ALL=SS

joe             joesbox=SS

Now when a user runs ss:

% ss

The sudoscriptd doesn't appear to be running!

Would you like me to start it for you? (requires root sudo privilege)? yes

This will be a one-off startup of the daemon. You may have

to arrange for it to be started when the system starts, if that's

what you want. See the INSTALL file in the distribution for details.

sudoscriptdwaiting for the daemon ..done

Script started, output file is

        /var/run/sudoscript/ssd.test_root_1667/test1667.fifo

#

The INSTALL file mentioned lives in /usr/local/share/doc/sudoscript-version/, along with lots of other documentation.

As shown in the example, sudoshell will start sudoscriptd if it isn't running already. You probably want to add sudoscriptd to
the system startup, which you can do by renaming /usr/local/rc.d/sudoscriptd.sh.sample to
/usr/local/rc.d/sudoscriptd.sh. Unfortunately, this script isn't a true rc-style startup script in the manner of SysV init, in
that it doesn't have start and stop targets; however, this will change in the next release. (As of this writing, sudoscript is
at Version 2.1.1.)

The impatient can modify the startup script using [Hack #86] .

sudoscript can enable shells as users other than root. This could be handy for auditing activity of the dba user, for
instance. If you want to use this feature, you must also add a Unix group called ssers. If this group exists when
sudoscriptd starts, it will make some changes to the files in /var/run/sudoscript (where the FIFOs live) to accomodate
group access to those files. This has security implications in that anyone in the ssers group will have access to the FIFOs
being used by any other concurrent user of sudoscript. Both the user that will run ss and the user ss will enable must be
in the ssers group.

To get nonroot shells to work, you also have to change your sudoers entries like so:

Host_Alias      DBBOXES    = db1,db2,db3

Cmnd_Alias      SS         = /usr/local/bin/sudoshell, \

                             /usr/local/bin/ss

Cmnd_Alias      SSASDBA    = /usr/local/bin/sudoshell -u dba, \

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Cmnd_Alias      SSASDBA    = /usr/local/bin/sudoshell -u dba, \

                             /usr/local/bin/ss -u dba

%wheel          ALL=SS

joe             joesbox=SS

datamonkey      DBBOXES=(dba) SSASDBA

Once the ssers group and the preceding entries in are place:

% id

uid=1004(datamonkey) gid=1004(datamonkey) groups=1004(datamonkey), 92(ssers)

% ss -u dba

Password:

Script started, output file is

        /var/run/sudoscript/ssd.datamonkey_dba_2223/datamonkey2223.fifo

bash-2.05b$ id

uid=1005(dba) gid=1005(dba) groups=1005(dba), 92(ssers)

6.10.4 The sudoscript Log File

The sudoscript log file lives in /var/log/sudoscript. It contains entries like the following:

Mon Dec 22 00:32:19 New logger for datamonkey with pid 2223

Mon Dec 22 00:32:19 datamonkey:2223 Script started on Mon Dec 22 00:32:19

    2003

Mon Dec 22 00:32:25 datamonkey:2223 bash-2.05b$ id

Mon Dec 22 00:32:25 datamonkey:2223 uid=1005(dba) gid=1005(dba)

        groups=1005(dba), 92(ssers)

Mon Dec 22 00:49:09 datamonkey:8603 bash-2.05b$ vi .bashrc

(Tons and tons of garbage)

Mon Dec 22 00:49:54 datamonkey:8603 bash-2.05b$ exit

Mon Dec 22 00:49:54 datamonkey:8603 

Mon Dec 22 00:49:54 datamonkey:8603 Script done on Mon Dec  22 00:49:54 2003

Mon Dec 22 00:49:54 logger (datamonkey,8603) caught signal. Exiting

This looks pretty bad! The problem is that the script command faithfully stores all the input and output in the shell,
including all the escape codes that the terminal emulator turns into things like cursor movement and screen refreshes.
The problem is particularly acute when the user enters a full screen editor, such as vi. There are two approaches to this
problem that help turn the gibberish into useful data. First, this sed script from Unix Power Tools, Third Edition (O'Reilly)
will remove simple escape codes from script output.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


will remove simple escape codes from script output.

#!/bin/sh

# Public domain.

# Put CTRL-M in $m and CTRL-H in $b.

# Change \010 to \177 if you use DEL for erasing.

eval `echo m=M b=H | tr 'MH' '\015\010'`

exec sed "s/$m\$//

:x

s/[^$b]$b//

t x" $*

Run the previous output through this script. You'll see something like:

Mon Dec 22 00:32:19 New logger for datamonkey with pid 2223

Mon Dec 22 00:32:19 datamonkey:2223 Script started on Mon Dec 22 00:32:19

    2003

Mon Dec 22 00:32:25 datamonkey:2223 bash-2.05b$ id

Mon Dec 22 00:32:25 datamonkey:2223 uid=1005(dba) gid=1005(dba)

        groups=1005(dba), 92(ssers)

Mon Dec 22 00:49:09 datamonkey:8603 bash-2.05b$ vi .bashrc

(Still tons of garbage)

Mon Dec 22 00:49:54 datamonkey:8603 ESC[Mon Dec 22 00:49:54 datamonkey:8603 bash-2.05b$ 

exit

Mon Dec 22 00:49:54 datamonkey:8603

Mon Dec 22 00:49:54 datamonkey:8603 Script done on Mon Dec  22 00:49:54 2003

Mon Dec 22 00:49:54 logger (datamonkey,8603) caught signal. Exiting

That's a more intelligible version of the output, but the vi session is still scrambled. We can take advantage of the fact
that we probably are running the same terminal emulator as the user. If we snip out just the vi session from the log and
then cat it to the screen, we get:

This is a normal line in a file

Why does this look so bad??

~

~

.. many more ~ lines..

~

~

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


~

:q

That's recognizable as a vi screen. In fact, our screen has been updated several times, once for every time the screen
was refreshed in the original session. The final display shows the final state of the vi session.

Why not clean this up in the logging daemon? Because information is invariably lost when
you do that kind of thing. It's better to clean up after the log file is written. In case you
filter out something important, you still have the original log to fall back on.

6.10.5 See Also

man sudoscript

man sudoscriptd

man sudoshell

The sudoscript web site (http://egbok.com/sudoscript/)

The Sudoscript-user mailing list subscription link (http://lists.sourceforge.net/mailman/listinfo/sudoscript-user)

The Problem of PORCMOLSULB (http://egbok.com/sudoscript/PORCMOLSULB.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 63 Restrict an SSH server

 

Control your ssh scripts by placing them in a jail.

Using SSH increases the security of file transfers and network logins. Many network tasks, however, don't really need
the shell associated with a user account—remote backups, for example. After all, a shell brings with it commands and
an entry point into a system's directory structure. That's somewhat scary when you consider that many of your SSH
tasks are scripted.

Configuring a restricted SSH shell such as scponly can mitigate this risk. Not only does it provide noninteractive (read
scripted) logins into the SSH server, it limits the set of available commands. Additionally, it provides a chroot option,
allowing you to restrict the scponly user account to its own directory structure.

6.11.1 Installing scponly

Before installing this port, read through the available options in its Makefile:

# cd /usr/ports/shells/scponly

# more Makefile

Depending on the scripts you plan on using, consider disabling wildcard processing (which can help prevent accidents
like rm -R *). You can also enable rsync support, which is ideal if you're using rsnapshot for backups [Hack #35] . If you
want to restrict the account to its own directory, preventing your scripts from accessing anything else on the SSH
server, include the chroot option.

Once you've chosen your desired options, pass them to the make command. Here I'll enable chroot support:

# make -DWITH_SCPONLY_CHROOT install

If you include the chroot option, do not use the clean target at the end of your make
command. make clean will remove the work/ directory, which contains a script that will set
up the chroot for you.

Toward the end of the installation, you'll see this message:

Run following script to setup chroot cage:

/usr/ports/shells/scponly/work/scponly-3.8/setup_chroot.sh

Before running this script, choose a new name for the user account you wish to restrict. The script will abort if you use
an existing user account.

Here I'll create a chroot for an account named backup:

# cd work/scponly-3.8/

# chown +x setup_chroot.sh

# ./setup_chroot.sh

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ./setup_chroot.sh

Next we need to set the home directory for this scponly user.

please note that the user's home directory MUST NOT be writable

by the scponly user. this is important so that the scponly user

cannot subvert the .ssh configuration parameters.

for this reason, an "incoming" subdirectory will be created that

the scponly user can write into. if you want the scponly user to

automatically change to this incoming subdirectory upon login, you

can specify this when you specify the user's home directory as

follows:

set the home dir to /chroot_path//incoming

when scponly chroots, it will only chroot to chroot_path and

afterwards, it will chdir to incoming.

enter the home directory you wish to set for this user: 

/usr/home/rembackup/

Install for what username? backup

ls: /lib/libnss_compat*: No such file or directory

creating  /usr/home/rembackup/incoming directory for uploading files

6.11.2 Testing the chroot

The script will have created the following directory structure for you:

# ls -l /usr/home/rembackup

total 10

drwxr-xr-x  2 root   wheel  512 Jan 22 12:37 bin/

drwxr-xr-x  2 root   wheel  512 Jan 22 12:38 etc/

drwxr-xr-x  2 backup wheel  512 Jan 22 12:38 incoming/

drwxr-xr-x  2 root   wheel  512 Jan 22 12:37 lib/

drwxr-xr-x  7 root   wheel  512 Jan 22 12:37 usr/

# ls -l /usr/home/rembackup/bin/

total 1868

-rwxr-xr-x  1 root  wheel   88808 Jan 22 12:37 chmod*

-rwxr-xr-x  1 root  wheel   14496 Jan 22 12:37 echo*

-rwxr-xr-x  1 root  wheel   72240 Jan 22 12:37 ln*

-rwxr-xr-x  1 root  wheel  567772 Jan 22 12:37 ls*

-rwxr-xr-x  1 root  wheel   73044 Jan 22 12:37 mkdir*

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


-rwxr-xr-x  1 root  wheel   73044 Jan 22 12:37 mkdir*

-rwxr-xr-x  1 root  wheel  437684 Jan 22 12:37 mv*

-rwxr-xr-x  1 root  wheel   80156 Jan 22 12:37 pwd*

-rwxr-xr-x  1 root  wheel  439812 Jan 22 12:37 rm*

-rwxr-xr-x  1 root  wheel   69060 Jan 22 12:37 rmdir*

# ls -l /usr/home/rembackup/usr/bin/

total 48

-rwxr-xr-x  1 root  wheel   7016 Jan 22 12:37 chgrp*

-rwxr-xr-x  1 root  wheel   7688 Jan 22 12:37 groups*

-rwxr-xr-x  1 root  wheel   7688 Jan 22 12:37 id*

-rwxr-xr-x  1 root  wheel  22616 Jan 22 12:37 scp*

# ls -l /usr/home/rembackup/usr/sbin/

total 8

-rwxr-xr-x  1 root  wheel  7016 Jan 22 12:37 chown*

There you have it; these are the only commands that account can use during an SSH session.

You can also verify that the specified user account was created for you. I'll check for that backup account:

# grep backup /etc/master.passwd

backup:*:1015:1015::0:0:User \ 

&:/usr/home/rembackup//incoming:/usr/local/sbin/scponlyc

Notice that the account is restricted to the scponlyc shell. The trailing c indicates that this is a chroot.

6.11.3 Now What?

Now that you have a restricted account, test it with one of your SSH scripts. Don't forget to set up your authentication
method. Either set a password on the account or configure key-based authentication.

You can use this hack in conjunction with [Hack #38] and [Hack #39] .

6.11.4 See Also

man scponly

The scponly home page (http://www.sublimation.org/scponly/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 64 Script IP Filter Rulesets

 

One firewall ruleset isn't always enough.

As a firewall administrator, you know that it takes a bit of creative genius to create a ruleset that best reflects your
network's security needs. Things can get more interesting if those needs vary by time of day. For example, you may
need to allow Internet access between business hours but ban it during the evening hours. This is easy to do with two
rulebases, a couple of scripts, and trusty old cron.

6.12.1 Limiting Access with IP Filter

I have a FreeBSD firewall/router guarding my home network. I also happen to have a daughter who would spend her
life online if she were allowed. There's a simple solution to restricting her access to the Internet to certain times of the
day without having to use a proxy.

I use FreeBSD's IP Filter as my firewall software. My normal set of firewall rules, /etc/ipf.rules, allows unrestricted access
to the Internet. Here's the section of that rulebase that controls my daughter's access:

# --------------------------comment area begin------------------------------

# Internal Interface: ed0

# Allow internal traffic to flow freely.

# -------------------------- comment area end ------------------------------

pass in  on ed0 all

pass out on ed0 all

Note that this is not my entire rulebase, just the section controlling the interface, ed0, connected to the portion of the
network containing my daughter's computer.

Also note that I did not use the normal pass in quick on ed0 all or pass out quick on ed0 all. This is because the use of the
word quick in IP Filter tells the program not to look any further for rules applying to the flow of traffic on an interface. If
that were the case, this hack would not work.

I saved a copy of my unrestricted rulebase as /etc/ipf.rules.allow for safekeeping. This will be my first rulebase.

# cp /etc/ipf.rules /etc/ipf.rules.allow

I next edited a copy of the original rulebase file, /etc/ipf.rules, to block Natasha's computer (IP 10.0.0.3) from
accessing the outside world while still allowing her to do homework:

# --------------------------comment area begin------------------------------

# Internal Interface: ed0

# Allow internal traffic to flow freely.

# -------------------------- comment area end ------------------------------

pass in  on ed0 all

pass out on ed0 all

# --------------------------block Natasha's computer------------------------

block in  on ed0 from any to 10.0.0.3

block out on ed0 from any to 10.0.0.3

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


block out on ed0 from any to 10.0.0.3

I saved this rule file as /etc/ipf.rules.block, my second rulebase. This second ruleset will effectively block her from
surfing and using the usual plethora of messaging programs.

6.12.2 Switching Rules on a Schedule

To implement these restrictions at a specific time, I wrote a small script:

#!/bin/sh

# copy the restrictive rules to the default ipfilter rulebase 

cp /etc/ipf.rules.block /etc/ipf.rules 

# cause ipfilter to re-read and apply the new rulebase

/sbin/ipf -Fa -f /etc/ipf.rules

Notice that this is a very simple Bourne shell script. As the comments state, it copies the second, restrictive rulebase to
the rulebase used by IP Filter. It then tells IP Filter to reread and apply the newly copied rulebase.

I saved this script as /usr/local/bin/block.sh and made it executable:

# chmod 751 /usr/local/bin/block.sh

From there, I used cron to schedule the restriction. First, I open up the crontab editor:

# crontab -e

and then add the line:

# minute, hour, all days, all weeks, on these days, script to run

  0       21    *         *          0-4            /usr/local/bin/block.sh

which will effectively shut down access to the outside world starting at 9:00 PM, Sunday through Thursday (i.e., school
nights).

To allow access to the Internet in the morning, I need another script:

#!/bin/sh

# copy the non-restrictive rules to the default ipfilter rulebase 

cp /etc/ipf.rules.allow /etc/ipf.rules 

# cause ipfilter to re-read and apply the new rulebase

/sbin/ipf -Fa -f /etc/ipf.rules

This script is very similar to the first one, except that it copies over the non-restrictive rulebase. I saved this file as
/usr/local/bin/allow.sh and made it executable:

# chmod 751 /usr/local/bin/allow.sh

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# chmod 751 /usr/local/bin/allow.sh

Once again, I launched crontab -e to add the following line:

# minute, hour, all days, all weeks, on these days, script to run

  0       7     *         *          1-5            /usr/local/bin/allow.sh

This will allow access to resume at 7:00 AM, Monday to Friday. Obviously there are no restrictions on the weekends.

6.12.3 Hacking the Hack

While I've successfully used this hack at home for several years, it is easy to see how the same logic could apply to
schedule multiple rulebases to suit any network's needs. This gives an administrator much more flexible control over
traffic, without the overhead of additional firewall software.

6.12.4 See Also

man crontab

The IP Filter HOWTO (http://www.obfuscation.org/ipf/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 65 Secure a Wireless Network Using PF

 

Protect your private wireless network from unauthorized use.

The abundance of 802.11 wireless networks has raised an important question. How can you secure a wireless network
so that only recognized systems can use it?

Wireless Encryption Protocol (WEP) and MAC access lists offer some protection against unauthorized users; however,
they can be difficult to maintain. With OpenBSD's PF, we can maintain tables of recognized clients and update those
tables with a single shell command. Known clients can access the Internet; unknown clients will only ever see a web
page informing them that this is a private network.

For this hack, we will use dhcpd, PF, and Apache.

6.13.1 DHCP Configuration

We'll use a simple DHCP configuration in /etc/dhcpd.conf like this:

shared-network GUEST-NET {

        max-lease-time 300;

        default-lease-time 120;

        option     domain-name-servers 192.168.0.1;

        option     routers 192.168.0.1;

   subnet 192.168.0.0 netmask 255.255.255.0 {

          range 192.168.0.101 192.168.0.254;

     }

}

In this case, we're using the subnet 192.168.0.0/24. Our firewall and NAT gateway is 192.168.0.1, and it's also
configured as the DNS server for our network.

We've allocated a range of IP addresses (192.168.0.101 to 192.168.0.254) for distribution on a first-come, first-served
basis to any host that requests an address via DHCP. Anybody that connects to our network will be able to request a
valid IP address in that range. The security will come from our PF configuration.

6.13.2 PF Configuration

OpenBSD has an excellent FAQ on PF, along with an example of how to write a ruleset for a home or small office
network. We'll use this example as a template.

We'll start with the sample PF configuration that allows any host on the internal interface (represented by the macro
$int_if) full access to the Internet. Then, we will modify the rules in /etc/pf.conf so that only authorized hosts have
access and set up a web server to respond to requests from unauthorized hosts. We will also allow unauthorized hosts
direct access to our DNS server, to simplify our rules and to avoid more complex split-horizon DNS configuration.

First, let's create the table for authorized hosts and macros for the web server and the DNS server:

auth_server = "127.0.0.1 port 8080"

dns_server  = "192.168.0.1"

table <authorized_hosts> { 192.168.0.1, 192.168.0.11 };

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


table <authorized_hosts> { 192.168.0.1, 192.168.0.11 };

These lines go near the top of /etc/pf.conf, before any queue, NAT, or filter rules.

We've initialized the table to contain the addresses of our NAT gateway and one other host, 192.168.0.11, a statically
configured box we'd like to have access to as well. While PF has a ruleset loaded, we can add a host to the table on the
fly:

# pfctl -t authorized_hosts -Tadd 192.168.0.101

We can also delete a host:

# pfctl -t authorized_hosts -Tdelete 192.168.0.102

and list all the authorized hosts:

# pfctl -t authorized_hosts -Tshow

Now we need to modify the filter rules so only our authorized hosts have access. These rules allow any host on our
network to have access:

pass in  on $int_if from $int_if:network to any             keep state

pass out on $int_if from any             to $int_if:network keep state

We'll change them like this to use our table:

pass in  on $int_if from <authorized_hosts> to any keep state

pass out on $int_if from any to <authorized_hosts> keep state

Right after those rules, we'll add the following rules to allow unauthorized hosts to access our web server and DNS
server:

pass in  on $int_if proto tcp from !<authorized_hosts> to $auth_server

pass in  on $int_if proto {tcp, udp} from any to $dns_server port domain \

    keep state

Now any host in the authorized_hosts table will have full access to the Internet. Any other hosts will only be able to
lookup names and reach the web server. We'll add some simple rules so unauthorized users will see a rejection page if
they try to go to any web site.

In the NAT section, we'll add this rule:

rdr on $int_if proto tcp from !<authorized_hosts> to any port www -> \

    $auth_server

This rule redirects any unknown host attempting to access a remote machine on the www port to the web server that
will return the rejection page. We could install a web server on the firewall box or on some separate machine. In my
case, I'll run Apache on the firewall, listening at 127.0.0.1 and port 8080, so it won't be confused with any other web
servers I'm running.

6.13.3 Apache Configuration

Apache is installed by default with OpenBSD, so we'll reconfigure it to listen on port 8080 of the gateway (with IP
address 127.0.0.1) and return the same page for every URL requested. (Apache is also available in the FreeBSD ports
collection and NetBSD packages collection.)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


collection and NetBSD packages collection.)

First, we'll enable Apache with the httpd_flags parameter in /etc/rc.conf. Next, we need to edit Apache's configuration
file, /var/www/conf/httpd.conf. Find the Listen directive and add 127.0.0.1:8080. Next, create a VirtualHost entry like this:

<VirtualHost 127.0.0.1:8080>

  ServerAdmin none

  DocumentRoot /var/www/auth

  ErrorDocument 404 /index.html

</VirtualHost>

This tells Apache to listen to the appropriate port and IP address. For every incoming request, Apache will try to serve a
page beneath the given directory. Any time it can't find a page, it will serve the index.html page instead.

We don't have either yet, so create the directory /var/www/auth and place an index.html like this in it:

<html>

  <head>

    <title>Unauthorized -- This is a private network</title>

  </head>

  <body>

    <h1>Unauthorized</h1>

    <p>This is a private network and you are not authorized to use 

        it.</p>

  </body>

</html>

6.13.4 Putting it All Together

Start or restart dhcpd, pf, and Apache like this, where [interfaces] is the list of interfaces on which you provide DHCP:

# kill `cat /var/run/dhcpd.pid`; dhcpd -q 

[interfaces]

# pfctl -f /etc/pf.conf

# apachectl stop && apachectl start

Congratulations! When a new host connects to your network, it should request an address with DHCP. If so, it will
receive an address in the range of 192.168.0.101 to 192.168.0.254. If the assigned address is not already in the
authorized_hosts table, any time that host attempts to load a web page it will receive your Unauthorized page. The firewall
will silently discard any packets destined for any other ports outside of your network.

If you want to allow a new host to use your network, just use pfctl to add it to the table. To make the change
permanent, add the address or a range of addresses to the table definition in /etc/pf.conf, or even create an external
file listing allowed addresses. See the PF FAQ section on tables for more.

6.13.5 Security Concerns

This technique only controls the ability of hosts on your network to route packets through your firewall. It will not

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This technique only controls the ability of hosts on your network to route packets through your firewall. It will not
protect other hosts on the same subnet from unauthorized access, so they should have reasonable local firewall rules. A
wise approach might be to build a firewall with three interfaces: one external and two internal. One internal subnet
would host your regular machines, and the other subnet would allow guest access with this technique, separating the
subnets with additional PF rules.

6.13.6 Hacking the Hack

Running the web server on the firewall is a simple approach. However, you can redirect to another host, such as a
dedicated authentication server. For simplicity, this server should not be on the $int_if:network subnet; if it is, the
redirection becomes more complicated. The PF FAQ has a section devoted to port forwarding in this manner.

I used Apache because it is installed by default with OpenBSD and because its configuration is trivial in this case.
Almost any HTTP server will do the job, though.

6.13.7 See Also

OpenBSD's PF FAQ (http://www.openbsd.org/faq/pf/)

NoCat.net's NoCatAuth, authentication software for open wireless nodes (http://nocat.net/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 66 Automatically Generate Firewall Rules

 

Easily protect any FreeBSD workstation with a fully configured firewall.

You know the importance of being protected by a firewall. You know where to look in the manpages for details. Given
enough time and trouble, you could write a firewall configuration for any situation. They're all reasonably similar,
though, so why not generate the configuration by answering a few questions?

That's the purpose of the IPFilter setup script: to generate configuration rules for typical SOHO firewalls using FreeBSD
and IPFilter. Even novice users can retain the full benefits of a firewall without first having to learn syntax. In fact, with
this script, you should be able to set up a typical firewall with no FreeBSD configuration knowledge at all.

Even if you're not a novice user, this is a great script to refer friends to as they discover FreeBSD. Now you can rest
easy in the thought that your friends are protected—and you didn't even have to find the time to show them how to set
up their systems.

6.14.1 What the Script Does

The script uses a simple question and answer text interface. It has four main parts:

Network settings and IPFilter firewall and IPNAT configuration

This configures internal and external network card interface IP address settings either manually or via DHCP. It
creates stateful firewall rules on the external network interface and configures NAT to provide Internet
connection sharing on the internal network interface.

ADSL PPPOE configuration

This prompts for a login name, password, and Ethernet NIC to generate the /etc/ppp/ppp.conf file. It then
inserts the required PPP variables in /etc/rc.conf. This starts userland PPP at bootup.

DHCP server configuration

This checks for the installation of the ISC DHCP server. If it's not installed, the script offers to install the latest
version from the ports system or via a precompiled package.

Once installed, the script will configure the DHCP server by prompting for the addresses of the ISP's DNS
servers, the address of the internal NIC to use as the default gateway, and the IP address range and subnet
mask to use for the internal LAN.

Serial console setup

Answer "yes" to this section of the script if you plan on running the firewall headless [Hack #26] .

6.14.2 Installation

The easiest way to install the script is to download it to the system that will become the firewall. I prefer the fetch
command:

% fetch http://www.roq.com/bsd/ipfilterscript.tar.gz

If networking isn't configured on that system yet, you can copy the file from another device, such as a USB flash key:

# mount -t msdos /dev/da0s1 /mnt 

# cp /mnt/ipfilterscript.tar.gz /tmp/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cp /mnt/ipfilterscript.tar.gz /tmp/

Once you have the script, extract it and run it:

# tar -zxf ipfilterscript.tar.gz

# ./ipfilter.pl

######################################################################

1: Would you like to setup PPPoE DSL connection (Choose 1)

2: Setup IP configuration, Firewalling and NAT (Choose 2) or

3: Setup a DHCP server (Choose 3 and hit enter)

4: Setup serial console support

5: Exit

######################################################################

If you use ADSL with PPPoE, choose 1 and press Enter. If you have ADSL but use it with a static IP, instead choose 2,
which combines IP configuration, Firewalling, and NAT setup. Choosing 3 will install and configure a DHCP server. First,
however, configure your network, as the script will attempt to download and install the DHCP server.

6.14.3 Example Usage

For this example, I will choose 2 for IP configuration. The script lists my three Ethernet cards, rl0, xl0, and rl0, two of
which I haven't configured.

rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet6 fe80::202:44ff:fe36:8259%rl0 prefixlen 64 scopeid 0x1

        inet 10.0.0.5 netmask 0xff000000 broadcast 10.255.255.255

        ether 00:02:44:36:82:59

        media: Ethernet autoselect (10baseT/UTP)

        status: active

xl0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

        options=3<RXCSUM,TXCSUM>

        ether 00:50:da:89:bc:9f

        media: Ethernet 10baseT/UTP (10baseT/UTP <half-duplex>)

rl1: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

        ether 00:02:44:04:14:2c

        media: Ethernet autoselect (10baseT/UTP)

        status: no carrier

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

        inet6 ::1 prefixlen 128

        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4

        inet 127.0.0.1 netmask 0xff000000

#####################################################################

 Choose your external Nic, eg "fxp0" . If you are firewalling for a PPPoE

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 Choose your external Nic, eg "fxp0" . If you are firewalling for a PPPoE

 / ADSL setup use "tun0"

#####################################################################

At the moment, I have only one Ethernet card plugged into something. Only rl0 has active status, so it is plugged into
my ADSL modem. I'll configure it with a static IP address by typing in rl0 and pressing Enter. The script now asks for my
internal network card, which is rl1.

#######################################################################

 choose your internal Nic, eg "rl0"

#######################################################################

rl1

#######################################################################

 Internal nic IP, Recommended "192.168.1.1" . Hit "ENTER" for recommended

 defaults

#######################################################################

Now the script needs to know the IP address of the gateway device, behind which all of my internal machines live. The
defaults are fine, so I can simply press Enter for the next few questions.

Setting Internal nic IP to 192.168.1.1

#######################################################################

 Internal nic Netmask, Just hit enter for 255.255.255.0

#######################################################################

Setting Internal nic Netmask to 255.255.255.0

When asked for my external IP, I type it in manually since I am setting up a static IP connection:

#######################################################################

 External nic IP, or type "DHCP" for DHCP, for connections like ADSL type

"NONE" for no dhclient on external nic

#######################################################################

10.6.1.2

Setting External nic IP to 10.6.1.2

#######################################################################

 External nic netmask, eg 255.255.255.0

#######################################################################

255.255.255.254

Setting External Netmask to 255.255.255.254

#######################################################################

Do you want to enter a gateway default IP address? if you ISP provided 

you with a default gateway choose Yes Y/N, default = no

y

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


y

What is your gateway IP for your firewall machine to route to, (eg: 

111.1.1.1)

10.6.1.1

#######################################################################

 Do you want statefull firewall or just allow everything and rely on

 IPNAT to protect you, I recommend firewalling :)

 Choose: "y" for statefull firewall or "n" for allow everything

#######################################################################

 y

#######################################################################

Do you want to forward any ports from the firewall to a internal host ip?

 n

#######################################################################

Do you want IP Filter to log denied packets? Y/N, default = yes

 y

#### Denied packets will be logged to /var/log/firewall.log ####

#######################################################################

Do you want to install a /etc/ipfrestart script so you can easily reset

your rules? Handy if you are trying out new rulesets. Y/N, default = yes

 y

#######################################################################

Do you want ftp active mode supprt? when ftping out behind a basic NAT

firewall, active mode ftp wont work.

This is because normal active mode ftp actually initiates a FTP

connection from the server back to YOU! and requires more then basic nat

to work.

The day FTP is gone and fully replaced by something more secure like 

SSH's sftp will be a day when the internet is large degree more secure.

Choose: "y" to switch on active ftp support (recommended) or "n"

 y

Going to write the data to these files

/etc/rc.conf

/etc/ipf.rules

/etc//etc/ipnat.rules

/etc/newsyslog.conf

hit ctrl+c to abort

All done, type "reboot" for changes to take effect

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


########################################################################

Settings for internal machines behind the firewall:

Gateway: 192.168.1.1

Netmask: 255.255.255.0

DNS: (Your ISPS DNS)

Clients IP: 192.168.1.2 or higher

########################################################################

Finally, the script writes the necessary information to the required configuration files. When I reboot, the system is fully
configured to access the ISP and provide NAT and DHCP services to the internal LAN, and it will protect all packets
through its firewall.

6.14.4 See Also

The IPFilterscript web site (http://www.roq.com/bsd/)

The IPFilter web site (http://coombs.anu.edu.au/~avalon/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 67 Automate Security Patches

 

Keep up-to-date with security patches.

We all know that keeping up-to-date with security patches is important. The trick is coming up with a workable plan
that ensures you're aware of new patches as they're released, as well as the steps required to apply those patches
correctly.

Michael Vince created quickpatch to assist in this process. It allows you to automate the portions of the patching process
you'd like to automate and manually perform the steps you prefer to do yourself.

6.15.1 Preparing the Script

quickpatch requires a few dependencies: perl, cvsup, and wget. Use which to determine if you already have these installed
on your system:

% which perl cvsup wget

/usr/bin/perl

/usr/local/bin/cvsup

wget: Command not found.

Install any missing dependencies via the appropriate port (/usr/ports/lang/perl5, /usr/ports/net/cvsup-without-gui, and
/usr/ports/ftp/wget, respectively).

Once you have the dependencies, download the script from http://roq.com/projects/quickpatch and untar it:

% tar xzvf quickpatch.tar.gz

This will produce an executable Perl script named quickpatch.pl. Open this script in your favorite editor and review the
first two screens of comments, up to the #Stuff you probably don't want to change line.

Make sure that the $release line matches the tag you're using in your cvs-supfile [Hack #80] :

# The release plus security patches branch for FreeBSD that you are

# following in cvsup. 

# It should always be a long the lines of RELENG_X_X , example RELENG_4_9

$release='RELENG_4_9';

The next few paths are fine as they are, unless you have a particular reason to change them:

# Ftp server mirror from where to fetch FreeBSD security advisories

$ftpserver="ftp.freebsd.org";

# Path to store patcher program files

$patchdir="/usr/src/";

# Path to store FreeBSD security advisories

$advdir="/var/db/advisories/";

$advdirtmp="$advdir"."tmp/";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$advdirtmp="$advdir"."tmp/";

If you're planning on applying the patches manually and, when required, rebuilding your kernel yourself, leave the next
section as is. If you're brave enough to automate the works, make sure that the following paths accurately reflect your
kernel configuration file and build directories:

# Path to your kernel rebuild script for source patches that require kernel  

#rebuild

$kernelbuild="/usr/src/buildkernel";

#$kernelbuild="cd /usr/src ; make buildkernel KERNCONF=GENERIC && make 

#installkernel KERNCONF=GENERIC ; reboot";

# Path to your system recompile scipt for patches that require full

# operating system recompile

$buildworld="/usr/src/buildworld";

#$buildworld="cd /usr/src/ ; make buildworld && make installworld ; reboot";

#Run patch command after creation, default no

$runpatchfile="0";

# Minimum advisory age in hours. This is to make sure you don't patch 

# before your local cvsup server has had a

# chance to recieve the source change update to your branch, in hours

$advisory_age="24";

Review the email accounts so the appropriate account receives notifications:

# Notify email accounts, eg: qw(billg@microsoft.com root@localhost);

@emails = qw(root);

6.15.2 Running the Hack

Run the script without any arguments to see the available options:

# /.quickpatch.pl

# Directory /var/db/advisories/ does not exist, creating

# Directory /var/db/advisories/tmp/ does not exist, creating

Quickpatch - Easy source based security update system

"./quickpatch.pl updateadv" to download / update advisories db

"./quickpatch.pl patch" or "./quickpatch.pl patch > big_patch_file" to 

create patch files

"./quickpatch.pl notify" does not do anything but email you commands of what 

it would do

"./quickpatch.pl pgpcheck" to PGP check advisories

Before applying any patches, it needs to know which patches exist. Start by downloading the advisories:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Before applying any patches, it needs to know which patches exist. Start by downloading the advisories:

# ./quickpatch.pl updateadv

This will connect to ftp://ftp.freebsd.org/pub/FreeBSD/CERT/advisories and download all of the advisories to
/var/db/advisories. The first time you use this command, it will take a while. However, once you have a copy of the
advisories, it takes only a second or so to compare your copies with the FTP site and, if necessary, download any new
advisories.

After downloading the advisories, see if your system needs patching:

# ./quickpatch.pl notify

#

If the system is fully patched, you'll receive your prompt back. However, if the system is behind in patches, you'll see
output similar to this:

# ./quickpatch.pl notify

######################################################################

####### FreeBSD-SA-04%3A02.shmat.asc

####### Stored in file /var/db/advisories/tmp/FreeBSD-SA-04%3A02.shmat

####### Topic: shmat reference counting bug

####### Hostname: genisis - 20/2/2004 11:57:30

####### Date Corrected: 2004-02-04 18:01:10

####### Hours past since corrected: 382

####### Patch Commands

cd /usr/src

# patch < /path/to/patch

### c) Recompile your kernel as described in 

<URL:http://www.freebsd.org/handbook/kernelconfig.html> and reboot the 

system.

/usr/src/buildkernel

## Emailed root

It looks like this system needs to be patched against the "schmat reference counting bug." While running in notify mode,
quickpatch emails this information to the configured address but neither creates nor installs the patch.

To create the patch, use:

# ./quickpatch.pl patch

#########################################################

####### FreeBSD-SA-04%3A02.shmat.asc

####### Stored in file /usr/src/FreeBSD-SA-04%3A02.shmat

####### Topic: shmat reference counting bug

####### Hostname: genisis - 21/2/2004 10:41:54

####### Date Corrected: 2004-02-04 18:01:10

####### Hours past since corrected: 405

####### Patch Commands

cd /usr/src

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


cd /usr/src

# patch < /path/to/patch

### c) Recompile your kernel as described in 

#<URL:http://www.freebsd.org/handbook/kernelconfig.html> and reboot the 

#system.

/usr/src/buildkernel

# file /usr/src/FreeBSD-SA-04%3A02.shmat

/usr/src/FreeBSD-SA-04%3A02.shmat: Bourne shell script text executable

This mode creates the patch as a Bourne script and stores it in /usr/src. However, it is up to you to apply the patch
manually. This may suit your purposes if you intend to review the patch and read any notes or caveats associated with
the actual advisory.

6.15.3 Automating the Process

One of the advantages of having a script is that you can schedule its execution with cron. Here is an example of a
typical cron configuration for quickpatch.pl; modify to suit your own purposes. Remember to create your logging
directories and touch your log files before the first run.

# Every Mon, Wed, and Fri at 3:05 do an advisory check and download any 

# newly released security advisories

5  3  *  *  1,3,5   root  /etc/scripts/quickpatch.pl updateadv > \

    /var/log/quickpatch/update.log 2>1

# 20 minutes later, check to see if any new advisories are ready for use 

# and email the patch commands to the configured email address 

25  3   *   *  1,3,5  root   /etc/scripts/quickpatch.pl notify >> \

    /var/log/quickpatch/notify.log 2>&1

# 24 hours later patch mode is run which will run the patch commands if 

# no one has decided to interfere.

25  3  *   *  2,4,6   root  /etc/scripts/quickpatch.pl patch >> \

    /var/log/quickpatch/patch.log 2>&1

6.15.4 See Also

The quickpatch.pl web site (http://roq.com/projects/quickpatch)

The FreeBSD Security Advisories page (http://www.freebsd.org/security/index.html#adv)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 68 Scan a Network of Windows Computers for Viruses

 

Regardless of the size of your network, the cost of annual subscriptions for antivirus software can quickly become a
pain in the . . . checkbook. Using FreeBSD's strength as a network server, how hard could it be to hack an easier and
cheaper way to administer the antivirus battle?

The solution I found uses a combination of FreeBSD and ClamAV and Sharity-Light, both of which are found in the ports
collection. As seen in [Hack #19], Sharity-Light can mount Windows shares. Once the shares are mounted, ClamAV
will scan them for viruses.

6.16.1 Preparing the Windows Systems

For the systems you wish to virus scan, share their drives as follows:

1. Open My Computer and right-click on the drive you wish to share.

Select Sharing from the list of options that appear.

If Sharing is not available, you will need to activate file sharing in the Network
setting in Control Panel. Use Help if you're unsure of where to find this setting.

2. In the Sharing tab of the Properties window, assign a name to the new share. I'll use cdrive in this example.
Choose a name that is both useful to you and not already in use. (If a share already exists, click on New
Share.)

3. Unless your network is completely closed to the outside world, click on Permissions and limit the access to your
user. You should only need read access for scanning purposes.

4. If you need further assistance, search for "sharing" in Windows Help. (Click on the Start button and select
Help.)

Once you've configured the Windows systems for sharing, it's time to prepare the FreeBSD system.

6.16.2 Preparing the FreeBSD System

Install and configure Sharity-Light [Hack #19] . Remember to edit /etc/hosts to reflect the NetBIOS names of the
Microsoft systems.

Then, create a mount point. Since I'll be automating the process later on with a script, I need only one mount point. For
now, I'll test the required steps using one system:

# mkdir /mnt/winshare

# shlight //winbox1/cdrive /mnt/winshare -U algould -P pwd

Using port 1653 for NFS.

Here, I've mounted the cdrive share located on winbox1 to the /mnt/winshare mount point. This particular share has a
username and password.

6.16.3 Installing and Running the Virus Scanner

ClamAV is a GPL antivirus application that can be used alone or as a daemon in conjunction with mail server tools such
as milter or pop3vscan (both are available in the ports collection). Although ClamAV can detect and remove files that have
been contaminated with viruses, it does not disinfect these files.

First, install ClamAV from the ports system:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


First, install ClamAV from the ports system:

# cd /usr/ports/security/clamav

# make install clean

The ClamAV port installs several executables, including clamd, clamdscan, clamscan, freshclam, and sigtool. Each of these
commands has a manpage, as does clamav.conf, the configuration file.

For the purposes of this project, we will be using only clamscan and freshclam. Since we will not be activating clamd, we
do not need to change the configuration file.

To update ClamAV's virus database, execute freshclam:

# freshclam

Current working dir is /usr/local/share/clamav

Checking for a new database - started at Tue Dec 30 14:55:43 2003

Connected to clamav.elektrapro.com.

Reading md5 sum (viruses.md5): OK

viruses.db is up to date.

Reading md5 sum (viruses2.md5): OK

Downloading viruses.db2 ........... done

Database updated (containing in total 11983 signatures).

Database updated from clamav.elektrapro.com.

Once you've updated the virus definitions, use clamscan to scan for viruses. You don't need to be the superuser, but you
must be able to read the files and directories that you're scanning. Here's what happens when I scan an arbitrary file in
my home directory:

% clamscan todo.txt

todo.txt: OK

----------- SCAN SUMMARY -----------

Known viruses: 11982

Scanned directories: 0

Scanned files: 1

Infected files: 0

Data scanned: 0.00 Mb

I/O buffer size: 131072 bytes

Time: 0.241 sec (0 m 0 s)

One file scanned and no viruses found—good. When we scan the Windows share, however, we will want to scan
directories recursively (using the -r option) and log the resulting report to a file (using the -l filename option).

To scan the Windows share mounted at /mnt/winshare and save the scan report to /var/log/clamscan.log, execute:

# clamscan -l /var/log/clamscan.log -r /mnt/winshare

At this point, thousands of filenames fly by the console, ending in a report similar to the one shown earlier, which is
saved to /var/log/clamscan.log. clamscan will create the report file if it does not exist. If the report file exists, it will
append the new report to the existing file. You can review the report with any text editor.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


append the new report to the existing file. You can review the report with any text editor.

By default, clamscan only reports that a file has been infected—it is up to you to remove the virus.

6.16.4 Automating the Process

Scanning a single share is nice, but it would be even better to scan all of the computers in the network at night. Since I
can mount and scan a share without being prompted for additional information, I can automate these commands in a
script.

I want each Windows system to be mounted, scanned, and unmounted in turn, and I want each system to have its own
scan report log. Since I also want to put the report logs in a clamscan directory in /var/log, I need to create the
directory. While I'm at it, I'll create the script file and make it readable and executable only by root:

# mkdir /var/log/clamscan

# touch /root/scanscript

# chmod u+x,go-rwx /root/scanscript

Next, I'll use my favorite editor to add the commands to /root/scanscript:

# more /root/scanscript

#! /bin/sh

# /root/scanscript

# Sequentially mount Windows shares, scan them for viruses and unmount them.

# update virus databases

freshclam

# winbox1

shlight //winbox1/cdrive /mnt/winshare -U algould -P pwd

clamscan -l /var/log/clamscan/winbox1 -r /mnt/winshare

unshlight /mnt/winshare

# winbox2

shlight //winbox2/cdrive /mnt/winshare -U algould -P pwd

clamscan -l /var/log/clamscan/winbox2 -r /mnt/winshare

unshlight /mnt/winshare

# winbox3

shlight //winbox3/cdrive /mnt/winshare -U algould -P pwd

clamscan -l /var/log/clamscan/winbox3 -r /mnt/winshare

unshlight /mnt/winshare

Now I can execute the script at will or schedule its execution using cron.

As with any antivirus scanning policy, execute the script when users will be least affected
and the scanned computers are up and running.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


6.16.5 See Also

man clamscan

man freshclam

man clamd

man clamdscan

man clamav.conf

man sigtool

The Sharity-Light README and FAQ (/usr/local/share/doc/Sharity-Light/)

The Sharity-Light web site (http://www.obdev.at/products/sharity-light/)

The ClamAV web site (http://clamav.elektrapro.com/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 7. Going Beyond the Basics
Introduction

Section 69.  Tune FreeBSD for Different Applications

Section 70.  Traffic Shaping on FreeBSD

Section 71.  Create an Emergency Repair Kit

Section 72.  Use the FreeBSD Recovery Process

Section 73.  Use the GNU Debugger to Analyze a Buffer Overflow

Section 74.  Consolidate Web Server Logs

Section 75.  Script User Interaction

Section 76.  Create a Trade Show Demo

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
Have you ever wondered what modifications a web or mail administrator makes to her servers? Maybe you're curious
about what policies other administrators use to implement bandwidth control? How do busy administrators manage the
log data from a server farm?

Perhaps you've contemplated using the Expect scripting language. However, there's a good chance you've never
thought of using eesh, a totally undocumented but useful scripting utility.

This chapter also includes two hacks on the emergency repair process, as many users prefer to hope that they'll never
need an emergency repair kit. Instead, learn to overcome your fear of the inevitable and master the art of repairing
before the emergency.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 69 Tune FreeBSD for Different Applications

 

Know how to tune and what to tune on your FreeBSD system

As an administrator, you want to tune your server systems so they work at peak efficiency. How do you know what to
tune? The answer depends heavily upon the system's function. Will the system perform a lot of small network
transactions? Will it perform a small number of large transactions? How will disk operations factor in?

How you answer these and other questions determines what you need to do to improve the performance of your
systems. This hack starts with general optimizations and then looks at function-specific tunables.

7.2.1 Optimizing Software Compiling

A good place to start is with software compiling, as you want to compile software and updates as efficiently as possible.
Whenever you compile, your compiler makes assumptions about your hardware in order to create binaries. If you have
an x86-compliant CPU, for example, your compiler will create binaries that can run on any CPU from a 386 onward.
While this allows portability, it won't take advantage of any new abilities of your CPU, such as the extended MMX, SSE,
SSE2, or 3DNow! instruction sets. This is also why using precompiled binaries on your system is a surefire way to
reduce your overall performance.

To ensure that software will be compiled efficiently, update your compiler flags in /etc/make.conf . This file does not
exist on new systems, but you can copy it from /usr/share/examples/etc/defaults/make.conf.

Start by editing the CPUTYPE= line to reflect your CPU type; you'll find supported types listed as comments just before
this line. While this will take advantage of your CPU's features, the disadvantage is that your compiled binaries may not
run on different CPU types. However, if all of your systems run the same CPU platform, any optimizations you make to
shared binaries will affect all of your systems equally well.

Next, change the CFLAGS line to CFLAGS= -O2 -pipe -funroll-loops. The -pipe option can significantly decrease the amount of
time it takes to compile software, by using pipes to communicate between compiler processes instead of temporary
files, but at the expense of using slightly more memory. The -funroll-loops saves one CPU register that would otherwise
be tied up in tracking the iteration of the loop, but at the expense of making a slightly larger binary.

The make.conf file also contains a line for CXXFLAGS. These options are similar to the
CFLAGS options but apply to C++ code.

7.2.2 Kernel Optimizations

In your kernel configuration, add the following line after the machine i386 line:

makeoptions    COPTFLAGS="-O2 -pipe -funroll-loops -ffast-math"

This is similar to the CLAGS option in /etc/make.conf, except that it optimizes kernel compilation.

See [Hack #54] for instructions on how to strip and compile a kernel.

You can also add this line:

TOP_TABLE_SIZE=number

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TOP_TABLE_SIZE=number

where number is a prime number that is at least twice the number of lines in /etc/passwd. This statement sets the size
of the hash that top uses.

Set the following option if you have an AMD K5/K6/K6-2 or Cyrix 6x86 chip. It enables cache write allocation for the L1
cache, which is disabled by default for these chips.

options         CPU_WT_ALLOC

This option will disable NFS server code, so include it when you know that you will not be acting as an NFS server:

options        NFS_NOSERVER

Another way of saving kernel memory is to define the maximum number of swap devices, as shown in the next
example. Your kernel needs to allocate a fixed amount of bitmapped memory so that it can interleave swap devices. I
set the number to 1 on my workstation and 2 on my servers. If I need to add more to a server, I can easily create
another partition.

options         NSWAPDEV=number

If you plan on compiling all your requisites into the kernel (NIC driver, IPF/IPFW, etc.) and won't be loading any of
these options as modules, you can include this line to skip module compiling. This saves significantly on the time taken
to compile a kernel (sometimes reducing it by two-thirds).

makeoptions     MODULES_OVERRIDE=""

By default, all kernel options are compiled as modules. This allows you to use kldload to load a module even though it
isn't specified in your kernel configuration file.

The advantage of MODULES_OVERRIDE is the decrease in kernel compilation time. The disadvantage is that you'll need to
recompile your kernel if you ever need to add additional functionality, since you will have lost the ability to load the
kernel module separately.

7.2.3 Optimizing Network Performance

Most modern network cards and switches support the ability to auto-negotiate the communication speed. While this
reduces administration, it comes at the cost of network throughput. If your switch, server, or workstation is set to use
auto-negotiation, it will stop transferring network traffic every few moments to renegotiate its speed.

If your network driver supports it, you can set network speed with ifconfig at runtime or in /etc/rc.conf at boot time.
Here is an example:

% grep fxp0 /etc/rc.conf

ifconfig_fxp0="inet x.x.x.x netmask x.x.x.x media 100BaseTX mediaopt 

    full-duplex"

Read the manpage for your NIC driver to see whether it supports mediaopt. For example, if
your NIC is rl0, read man 4 rl.

Next, you can enable DEVICE_POLLING in your kernel, which changes the method by which data travels from your
network card to the kernel. Without this setting, frequent interrupt calls may never free the kernel. This is known as
livelock and can leave your machine unresponsive. Those of us unfortunate enough to be on the wrong side of certain
denial-of-service attacks know about this.

The DEVICE_POLLING option causes the kernel to poll the network card at certain predefined times, during idle loops, or

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The DEVICE_POLLING option causes the kernel to poll the network card at certain predefined times, during idle loops, or
on clock interrupts. This allows the kernel to decide when it is most efficient to poll a device for updates and for how
long, and ultimately results in a significant increase in performance.

To take advantage of DEVICE_POLLING, you need to compile two options into your kernel: options DEVICE_POLLING and
options HZ=1000. The latter option slows the clock interrupts to 1,000 times per second, which prevents the kernel from
polling too often.

Once you've recompiled your kernel, you'll still need to enable the feature. Add this line to /etc/sysctl.conf:

kern.polling.enable=1

The DEVICE_POLLING option does not work with SMP-enabled kernels by default. If you are compiling an SMP kernel with
DEVICE_POLLING, first remove the following lines from /usr/src/sys/kern/kern_poll.c:

#ifdef SMP

#include "opt_lint.h"

#ifndef COMPILING_LINT

#error DEVICE_POLLING is not compatible with SMP

#endif

#endif

7.2.4 Optimizing Mail Servers

Mail servers typically have a very large number of network connections, during which they transfer a small amount of
data for a short period of time before closing the connection. In this case, it is useful to have a large number of small
network buffers.

Network connections have two buffers, one for sending and one for receiving. The size of the buffer dictates how
quickly data will funnel through the network and, in the event of a network delay, how much data can back up the
server for that connection before there is a problem. Having a network buffer that is too small will cause a data backlog
as the CPU waits for the network to clear, which causes greater CPU overhead. Having a network buffer that is too large
wastes memory by using the buffer inefficiently. Finding a balance is the key to tuning.

I find that multiplying the number of established connections by 32 leaves me with room to breathe in the event that I
see an abnormally high surge of traffic. I've come to this number over time through trial and error. So, if you expect to
have a peak of 128 servers sending you mail, having 8,192 network buffer clusters would be good (128 2 per
connection 32). Also, remember that connections can take up to two full minutes or more to close completely. If you
expect more than 128 emails in any given two-minute period, increase the number accordingly.

Another important value to control is the maximum number of sockets. Start with the same number of sockets as there
are network buffers, and then tune as appropriate.

You can find out how many network buffer clusters are in use with the command netstat -m. You can specify the values
you want in /boot/loader.conf. For example:

kern.ipc.nmbclusters=8192

kern.ipc.maxsockets=8192

As with any performance tuning, monitor your system after making changes. Did you go overboard or underestimate
what you would need? Always check and adjust accordingly.

7.2.5 Optimizing File Servers

File servers generally have longer-lived and less frequent network connections than those on mail servers. They usually
transfer larger files.

To determine the optimal number of network buffer clusters, consider how many clients you have. Multiplying the
number of network buffers by two is good practice, though some admins prefer to multiply by four to accommodate
multiple file transfers. If you have 128 clients connecting to the file server, set the number of network buffer clusters to
1,024 (128 2 per connection 4).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


7.2.6 Optimizing Web Servers

If you have more than one element on your web page (for example, multiple images or frames), expect web browsers
to make multiple connections to your web server. It's common to see four connections per page served. Also count any
database or network connections made in server-side scripting.

Web servers go through periods of highs and lows. While you might serve 100 pages per minute on average, at your
low you might serve 10 pages per minute and at peak over 1,000 pages per minute. At a peak of 1,000 pages per
minute, your clusters and sockets should be around 16,384 (1,000 pages 2 per connection 4 connections 2 for growth).

7.2.7 See Also

man tuning

man gcc (the GCC manpage, which explains CPU compiling optimizations)

man ifconfig

"Tuning FreeBSD for different applications" (http://silverwraith.com/papers/freebsd-tuning.php)

"Optimizing FreeBSD and its kernel" (http://silverwraith.com/papers/freebsd-kernel.php)

Notes on tuning Apache servers at http://www.bolthole.com/uuala/webtuning.txt

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 70 Traffic Shaping on FreeBSD

 

Allocate bandwidth for crucial services.

If you're familiar with your network traffic, you know that it's possible for some systems or services to use more than
their fair share of bandwidth, which can lead to network congestion. After all, you have only so much bandwidth to work
with.

FreeBSD's dummynet may provide a viable method of getting the most out of your network, by sharing bandwidth
between departments or users or by preventing some services from using up all your bandwidth. It does so by limiting
the speed of certain transfers on your network—also called traffic shaping.

7.3.1 Configuring Your Kernel for Traffic Shaping

To take advantage of the traffic shaping functionality of your FreeBSD system, you need a kernel with the following
options:

options IPFIREWALL

options DUMMYNET

options HZ=1000

dummynet does not require the HZ option, but its manpage strongly recommends it. See [Hack #69] for more about HZ
and [Hack #54] for detailed instructions about compiling a custom kernel.

The traffic-shaping mechanism delays packets so as not to exceed the transfer speed limit. The delayed packets are
stored and sent later. The kernel timer triggers sending, so setting the frequency to a higher value will smooth out the
traffic by providing smaller delays. The default value of 100 Hz will trigger sends every 10 milliseconds, producing
bursty traffic. Setting HZ=1000 will cause the trigger to happen every millisecond, resulting in less packet delay.

7.3.2 Creating Pipes and Queues

Traffic shaping occurs in three stages:

1. Configuring the pipes

2. Configuring the queues

3. Diverting traffic through the queues and/or pipes

Pipes are the basic elements of the traffic shaper. A pipe emulates a network link with a certain bandwidth, delay, and
packet loss rate.

Queues implement weighted fair queuing and cannot be used without a pipe. All queues connected to a pipe share the
bandwidth of that pipe in a certain configurable proportion.

The most important parameter of a pipe configuration is its bandwidth. Set the bandwidth with this command:

# ipfw pipe 1 config bw 120kbit/s

This is a sample command run at the command prompt. However, as the hack progresses,
we'll write the actual dummynet policy as rules within an ipfw rulebase.

This command creates pipe 1 if it does not already exist, assigning it 120 kilobits per second of bandwidth. If the pipe
already exists, its bandwidth will be changed to 120 Kbps.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


already exists, its bandwidth will be changed to 120 Kbps.

When configuring a queue, the two most important parameters are the pipe number it will connect to and the weight of
the queue. The weight must be in the range 1 to 100, and it defaults to 1. A single pipe can connect to multiple queues.

# ipfw queue 5 config pipe 1 weight 20

This command instructs dummynet to configure queue 5 to use pipe 1, with a weight of 20. The weight parameter allows
you to specify the ratios of bandwidth the queues will use. Queues with higher weights will use more bandwidth.

To calculate the bandwidth for each queue, divide the total bandwidth of the pipe by the total weights, and then
multiply each weight by the result. For example, if a 120 Kbps pipe sees active traffic (called flows) from three queues
with weights 3, 2, and 1, the flows will receive 60 Kbps, 40 Kbps, and 20 Kbps, respectively.

If the flow from the queue with weight 2 disappears, leaving only the flows with weights 3 and 1, those will receive 90
Kbps and 30 Kbps, respectively. (120 / (3+1) = 30, so multiply each weight by 30.)

The weight concept may seem strange, but it is rather simple. Queues with equal weights will receive the same amount
of bandwidth. If queue 2 has double the weight of queue 1, it has twice as much bandwidth. Queues that have no traffic
are not taken into account when dividing traffic. This means that in a configuration with two queues, one with weight 1
(for unimportant traffic) and the other with weight 99 (for important business traffic), having both queues active will
result in 1%/99% sharing, but if there is no traffic on the 99 queue, the unimportant traffic will use all of the
bandwidth.

7.3.3 Using Masks

Another very useful option is to create a mask by adding mask mask-specifier at the end your config line. Masks allow you
to turn one flow into several flows; the mask will distinguish the different flows.

The default mask is empty, meaning all packets fall into the same flow. Using mask all would make all connections
significant, meaning that every TCP or UDP connection would appear as a separate flow.

When you apply a mask to a pipe, each of that pipe's flows acts as a separate pipe. Yet, each of those flows is an exact
clone of the original pipe, in that they all share the same parameters. This means that the three active flows from our
example pipe will use 360 Kbps, or 120 Kbps each.

For a queue, the flows will act as several queues, each with the same weight as the original one. This means you can
use the mask to share a certain bandwidth equally. For our example with three flows and the 120 Kbps pipe, each flow
will get a third of that bandwidth, or 40 Kbps.

This hack assumes that you will integrate these rules in your firewall configuration or that you are using ipfw only for
traffic shaping. In the latter case, having the IPFIREWALL_DEFAULT_TO_ACCEPT option in the kernel will greatly simplify
your task.

In this hack, we sometimes limit only incoming or outgoing bandwidth. Without this option, we would have to allow
traffic in both directions, traffic through the loopback interface, and through the interface we will not limit.

However, you should consider disabling the IPFIREWALL_DEFAULT_TO_ACCEPT option, as it will drop packets that your
policy does not specifically allow. Additionally, enabling the option may cause you to accept potentially malicious traffic
you hadn't considered. The example configurations in this hack were tested with an ipf-based firewall that had an
explicit deny rule at the end.

When integrating traffic shaping into an existing ipfw firewall, keep in mind that an ipfw pipe or ipfw queue rule is
equivalent to "ipfw accept after slow down . . . " if the sysctl net.inet.ip.fw.one_pass is set to 1 (the default). If the sysctl is
set to 0, that rule is just a delay in a packet's path to the next rule, which may well be a deny or another round of
shaping. This hack assumes that the default behavior of the pipe and queue commands is to accept or an equivalent
action.

7.3.4 Simple Configurations

There are several ways of limiting bandwidth. Here are some examples that assume an external interface of ed0:

# only outgoing gets limited

ipfw pipe 1 config bw 100kbits/s

ipfw add 1 pipe 1 ip from any to any out xmit ed0

To limit both incoming and outgoing to 100 and 50 Kbps, respectively:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To limit both incoming and outgoing to 100 and 50 Kbps, respectively:

ipfw pipe 1 config bw 100kbits/s

ipfw pipe 2 config bw 50kbits/s

ipfw add 100 pipe 1 ip from any to any in  recv ed0

ipfw add 100 pipe 2 ip from any to any out xmit ed0

To set a limitation on total bandwidth (incoming plus outgoing):

ipfw pipe 1 config bw 100kbits/s

ipfw add 100 pipe 1 ip from any to any in  recv ed0

ipfw add 100 pipe 1 ip from any to any out xmit ed0

In this example, each host gets 16 Kbps of incoming bandwidth (outgoing is not limited):

ipfw pipe 1 config bw 16kbits/s mask dst-ip 0xffffffff

ipfw add 100 pipe 1 ip from any to any in recv ed0

7.3.5 Complex Configurations

Here are a couple of real-life examples. Let's start by limiting a web server's outgoing traffic speed, which is a
configuration I have used on one of my servers. The server had some FreeBSD ISO files, and I did not want it to hog all
the outgoing bandwidth. I also wanted to prevent people from gaining an unfair advantage by using download
accelerators, so I chose to share the total outgoing bandwidth equally among 24-bit networks.

# pipe configuration, 2000 kilobits maximum

ipfw pipe 1 config bw 2000kbits/s

# the queue will be used to enforce the /24 limit mentioned above

ipfw queue 1 config pipe 1 mask dst-ip 0xffffff00

# with this mask, only the first 24 bits of the destination IP

# address are taken into consideration when generating the flow ID

# divert outgoing traffic from the web server (at 1.1.1.1)

ipfw add queue 1 tcp from 1.1.1.1 80 to any out

Another real-life example involves limiting incoming traffic by department. This configuration limits the incoming
bandwidth for a small company behind a 1 Mbps connection. Before this was applied, some users were using peer-to-
peer clients and download accelerators, and they were hogging almost all the bandwidth. The solution was to
implement some weighted sharing between departments and let the departments take care of their own hogs.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


implement some weighted sharing between departments and let the departments take care of their own hogs.

# Variables we will use

# External interface

EXTIF=fxp0

# My IP address

ME=192.168.1.1

# configure the pipe, 95% of total incoming capacity

ipfw pipe 1 config bw 950kbits/s

# configure the queues for the departments

# departments 1 and 2 heavy net users

ipfw queue 1 config pipe 1 weight 40

ipfw queue 2 config pipe 1 weight 40

# accounting, they shouldn't use the network a lot

ipfw queue 3 config pipe 1 weight 5

# medium usage for others

ipfw queue 4 config pipe 1 weight 20

# incoming mail (SMTP) to this server, HIGH priority

ipfw queue 10 config pipe 1 weight 100

# not caught by the previous categories - VERY LOW bandwidth

ipfw queue 11 config pipe 1 weight 1

# classify the traffic

# only incoming traffic is limited, outgoing is not affected.

ipfw add 10 allow ip from any to any out xmit via $EXTIF

# department 1

ipfw add 100 queue 1 ip from any to 192.168.0.16/28 in via $EXTIF

# department 2

ipfw add 200 queue 2 ip from any to 192.168.0.32/28 in via $EXTIF

# accounting

ipfw add 300 queue 3 ip from any to 192.168.0.48/28 in via $EXTIF

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ipfw add 300 queue 3 ip from any to 192.168.0.48/28 in via $EXTIF

# mail

ipfw add 1000 queue 10 ip from any to $ME 25 in via $EXTIF

# others

ipfw add 1100 queue 11 ip from any to any in via $EXTIF

The incoming limit is set to 95% of the true available bandwidth. This will allow the shaper to delay some packets. If
this were not the case and the pipe had the same bandwidth as the physical link, all of the delay queues for the pipe
would have been empty. The extra 5% of bandwidth on the physical link fills the queues. The shaper chooses packets
from the queues based on weight, passing through packets from queues with a higher weight before packets from
queues with lower weight.

dummynet can limit incoming or outgoing bandwidth in multiple ways. Pairing it with well
thought out ipfw rules can produce good results when your requirements are not extremely
complex. However, keep in mind that dummynet cannot guarantee bandwidth or quality of
service.

7.3.6 See Also

man dummynet

man ipfw

man ipf

"Using Dummynet for Traffic Shaping on FreeBSD" (http://www.bsdnews.org/02/dummynet.php)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 71 Create an Emergency Repair Kit

 

The Boy Scout and system administrator motto: "Be prepared!"

As a good administrator, you back up on a regular basis and periodically perform a test restore. You create images
[Hack #23] of important servers so you can quickly recreate a system that is taken out of commission.

Are you prepared if a system simply refuses to boot?

Some parts of your drives are as important as your data, yet few backup programs back them up. I'm talking about
your partition table and your boot blocks. Pretend for a moment that these somehow become corrupted. The good news
is that your operating system and all of your data still exist. The bad news is that you can no longer access them.

Fortunately, this is recoverable, but only if you've done some preparatory work before the disaster. Let's see what's
required to create an emergency repair kit.

7.4.1 Inventory of the Kit

When you install a system, particularly a server, invest some time preparing for an emergency. On a FreeBSD system,
your kit should include:

The original install CD (or two floppies containing kern.flp and mfsroot.flp or one floppy containing boot.flp)

A floppy containing additional drivers, drivers.flp

A fixit floppy, fixit.flp (or a CD containing the live filesystem; this will be the second, third, or fourth CD in a set,
but not the first CD)

A printout of your partition table, /etc/fstab, and /var/run/dmesg.boot

Place these items in an envelope and store it in a secure location with your backup tapes. Make a note on the envelope
of the system to which this kit should apply, along with the version of the operating system. Ideally, you should have
two copies of both your emergency kit and backup media. Store the second copy off-site.

7.4.2 Preparing the Floppies

Regardless of how you install a system, take a few minutes to download the *.flp files found in the floppies directory.
This is especially important if you use cvsup to upgrade a system, as you can go months or years without the installation
CD-ROM or floppy media. Your aim is to test these floppies on your system before a disaster strikes. The last thing you
want to be doing in an emergency is scurrying around creating floppies only to find that an essential driver is missing.

Here, I'll connect to the main FreeBSD FTP server and download the files for an i386, 5.1-RELEASE system:

# ftp ftp.freebsd.org

Trying 62.243.72.50...

Connected to ftp.freebsd.org.

<snip banner>

220 

Name (ftp.freebsd.org:dlavigne6): anonymous

331 Guest login ok, send your complete e-mail address as password.

Password:

ftp> cd pub/FreeBSD/releases/i386/5.1-RELEASE/floppies 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ftp> cd pub/FreeBSD/releases/i386/5.1-RELEASE/floppies 

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> mget *.flp 

mget boot.flp [anpqy?]? a

Prompting off for duration of mget.

<snip transfer of five files>

ftp> bye 

221 Goodbye.

I find it convenient to create a floppies directory with subdirectories for each version of FreeBSD I have running in my
network. I then download the appropriate *.flp files to the appropriate subdirectory so they are available when I wish to
create an emergency repair kit for a new system.

Once you have all five files, you can decide which ones you'll need for your particular system. To perform an emergency
repair, you'll need some way to load your version of the operating system into memory so you can access the utilities
on the fixit floppy and restore whatever damage has happened to your own operating system. There are several ways
to load an operating system.

The first approach is to boot directly from the install CD-ROM, assuming it is bootable and your BIOS supports this. If
this is your scenario, you don't need boot.flp, kern.flp, or mfsroot.flp.

If booting from the CD-ROM isn't an option, you can use either boot.flp or both kern.flp and mfsroot.flp. boot.flp is
basically the contents of the other two floppies placed onto one floppy. The kicker is that you need a floppy capable of
holding 2.88 MB of data.

Depending upon your hardware, you may or may not need drivers.flp. If the installer detected all of your hardware, you
won't need this floppy. Otherwise, you will. Finally, if you don't have a CD containing the live filesystem, you'll need
fixit.flp, as this floppy contains the actual repair utilities.

Use dd to transfer these files to floppies. Repeat this for each *.flp file you require, using a different floppy for each file:

# dd if=fixit.flp of=/dev/fd0

Label each floppy with its name and version of FreeBSD and write protect the floppies.

7.4.3 The Rest of the Kit

Before testing your floppies, print some important system information—you won't remember all of these details in an
emergency. First, you'll want a copy of your filesystem layout:

# more /etc/fstab

# Device       Mountpoint          FStype     Options      Dump  Pass#

/dev/ad0s1b    none                swap       sw           0     0

/dev/ad0s1a    /                   ufs        rw           1     1

/dev/ad0s1e    /tmp                ufs        rw           2     2

/dev/ad0s1f    /usr                ufs        rw           2     2

/dev/ad0s1d    /var                ufs        rw           2     2

/dev/acd0      /cdrom              cd9660     ro,noauto    0     0

proc           /proc               procfs     rw           0     0

linproc        /compat/linux/proc  linprocfs  rw           0     0

/dev/fd0       /floppy             msdos      rw,noauto    0     0

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/dev/fd0       /floppy             msdos      rw,noauto    0     0

Here, I've just sent the output to a pager for viewing. Depending upon how printing is set up on your system, redirect
that output either directly to lpr or to a file that you can send to a printer.

Notice that all of my hard drive partitions start with /dev/ad0s1. The name of your hard drive is needed in order to view
the partition table, or what FreeBSD calls the disklabel:

# bsdlabel ad0s1

# /dev/ad0s1:

8 partitions:

#        size   offset  fstype  [fsize bsize bps/cpg]

  a:   524288        0  4.2BSD    2048 16384 32776 

  b:  1279376   524288    swap                   

  c: 30008097        0  unused       0     0 # "raw" part, don't edit

  d:   524288  1803664  4.2BSD    2048 16384 32776 

  e:   524288  2327952  4.2BSD    2048 16384 32776 

  f: 27155857  2852240  4.2BSD    2048 16384 28512

Once you have a printout of your disklabel, complete your kit by printing the contents of /var/run/dmesg.boot. This file
contains your startup messages, including the results of the kernel probing your hardware.

7.4.4 Testing the Recovery Media

Now you're ready to test that your kit works before sealing the envelope and sending it off for secure storage. First,
boot the system using either your CD-ROM or the emergency floppies. Once the kernel has loaded and probed your
hardware, the screen will ask: Would you like to load kernel modules from the driver floppy? If you choose yes, you will be
asked to insert the drivers.flp floppy and will be presented with a list of modules to choose from:

cd9660.ko   

if_awi.ko

if_fwe.ko

if_sk.ko

if_sl.ko

if_sn.ko

<snip>

Taking a look at those modules, aren't you glad you're testing your kit before an emergency? While the modules don't
have the most descriptive names, it's easy to find out what each module represents if you have access to a working
system. For example, the modules that begin with if are interfaces. To see what type of interface if_awi.ko is:

% whatis awi

awi(4)      - AMD PCnetMobile IEEE 802.11 PCMCIA wireless network driver

You can whatis each name; just don't include the beginning if or the trailing .ko. If you do need any of these drivers,
save yourself some grief and write yourself a note explaining which drivers to choose off of the drivers.flp. The lucky
bloke who has to repair the system will thank you for this bit of homework.

Once you exit from this menu, you'll be prompted to remove the floppy. You'll then be presented with the sysinstall Main
Menu screen. Choose Fixit from the menu and insert fixit.flp. You should be prompted to press Alt F4, and you should
then see a Good Luck! screen with a Fixit# prompt. Excellent, your floppy is good and your repair kit is complete. Type
exit to return to the menu and exit your way out of the install utility.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


exit to return to the menu and exit your way out of the install utility.

If this had been an actual emergency, you'd definitely want to read the next hack [Hack #72] .

7.4.5 See Also

man bsdlabel

The Emergency Restore Procedure section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/backup-basics.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 72 Use the FreeBSD Recovery Process

 

Learn how to use your emergency repair kit before the emergency.

Now that you have an emergency repair kit, it's worth your while to do a dry run so you know ahead of time what
options will be available to you. You may even decide to modify your kit as a result of this test.

Let's go back to that sysinstall Main Menu screen [Hack #71] and see what happens when you choose Fixit. You'll be
presented with the following options:

Please choose a fixit option

  There are three ways of going into "fixit" mode:

  - you can use the live filesystem CDROM/DVD, in which case there will be

    full access to the complete set of FreeBSD commands and utilities,

  - you can use the more limited (but perhaps customized) fixit floppy,

  - or you can start an Emergency Holographic Shell now, which is

    limited to the subset of commands that is already available right now.

  X Exit       Exit this menu (returning to previous)

  2 CDROM/DVD  Use the "live" filesystem CDROM/DVD

  3 Floppy     Use a floppy generated from the fixit image

  4 Shell      Start an Emergency Holographic Shell

If you choose the Shell option, you'll find that they weren't kidding when they warned you'd be limited to a subset of
commands. Nearly all of the commands you know and love will result in a not found error message. This is why you
went to the trouble of either creating that fixit floppy or purchasing/burning a CD-ROM/DVD that contains the live
filesystem.

7.5.1 Using the fixit Floppy

Let's see what you can repair with the fixit floppy. When you choose that option, follow the prompts: insert the floppy,
then press Alt F4. Do make note of the message you receive:

+-----------------------------------------------------------------------+

| You are now running from FreeBSD "fixit" media.                       |

| --------------------------------------------------------------------- |

| When you're finished with this shell, please type exit.               |

| The fixit media is mounted as /mnt2.                                  |

|                                                                       |

| You might want to symlink /mnt/etc/*pwd.db and /mnt/etc/group         |

| to /etc/ after mounting a root filesystem from your disk.             |

| tar(1) will not restore all permissions correctly otherwise!          |

|                                                                       |

| Note: you might use the arrow keys to browse through the              |

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


| Note: you might use the arrow keys to browse through the              |

| command history of this shell.                                        |

+-----------------------------------------------------------------------+

Good Luck!

Fixit#

It's not a bad idea to create those symlinks now, before you forget. You'll have to mount your root slice first, so refer to
your /etc/fstab printout for the proper name of that slice. In this example, / is on /dev/ad0s1a. I'll mount it with the
read-write option:

Fixit# mount -o rw /dev/ad0s1a /mnt

Fixit#

If your command is successful, you'll receive the prompt back. A quick ls through /mnt should convince you that you
now have access to the hard disk's root filesystem.

If your command is not successful, run fsck_ffs until the filesystem is clean, then mount the filesystem:

Fixit# fsck_ffs /dev/ad0s1

** /dev/ad0s1

** Last Mounted on /mnt

** Phase 1 - Check blocks and Sizes

** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts

** Phase 5 - Check Cyl groups

821 files, 27150 used, 99689 free (985 frags, 12338 blocks, 0.8% fragmentation)

Fixit# mount -u -o rw /dev/ad0s1 /mnt

Now for those symlinks:

Fixit# ln -f -s /mnt/etc/*pwd.db /etc

Fixit# ln -f -s /mnt/etc/group /etc

Note that you need to include the force (-f) switch when you make your symbolic (-s) links. You need to overwrite the
existing link that links mnt2, or the fixit floppy, to /etc. You instead want to link the files on your hard drive (/mnt) to
/etc.

You'll also notice that while in the Fixit# prompt, the up arrow will recall history, but tab completion does not work.

At that Fixit# prompt, you have two command sets available to you. The first is that limited command set that comes
with the sysinstall utility. Note that these are the only commands available at that holographic shell prompt:

Fixit# ls stand

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Fixit# ls stand

-sh*               gunzip*       route*

[*                 gzip*         rtsol*

arp*               help/         sed*

boot_crunch*       hostname*     sh*

camcontrol*        ifconfig*     slattach*

cpio*              minigzip*     sysinstall*

dhclient*          mount_nfs*    test*

dhclient-script*   newfs*        tunefs*

etc/               ppp*          usbd*

find*              pwd*          usbdevs*

fsck_ffs*          rm*           zcat*

The second command set is on the floppy itself, mounted as mnt2:

Fixit# ls mnt2/stand

bsdlabel*    dd*         fixit_crunch*    mount_cd9660*    sleep*

cat*         df*         ftp*             mount_msdosfs*   swapon*

chgrp*       disklabel*  kill*            mv*              sync*

chmod*       dmesg*      ln*              reboot*          tar*

chown*       echo*       ls*              restore*         telnet*

chroot*      ex*         mkdir*           rm*              umount*

clri*        expr*       mknod*           rmdir*           vi*

cp*          fdisk*      mount*           rrestore*        view*

You'll also find a minimal set of notes in:

Fixit# ls stand/help

One of the first things you'll notice, especially if you try to read one of those help documents, is the lack of a pager. You
won't have any luck with more or less. However, cat and view are available for viewing files. If you've never used view
before, remember to type :q to quit the viewer.

Also note that all of the restore utilities are on hand, unless you've used pax as your backup utility.

7.5.2 Using the Live Filesystem

Let's pause here for a moment and compare the fixit floppy to the live filesystem. There's one CD marked as live in a
purchased set. If you burn your own ISO images, the second image for your release will contain the live filesystem. For
example, here is the listing for ftp://ftp.freebsd.org/pub/FreeBSD/ISO-IMAGES/5.1-RELEASE/:

5.1-RELEASE-i386-disc1.iso      630048 KB    06/05/03    00:00:00

5.1-RELEASE-i386-disc2.iso      292448 KB    06/05/03    00:00:00

5.1-RELEASE-i386-miniinst.iso   243488 KB    06/05/03    00:00:00

CHECKSUM.MD5                         1 KB    06/05/03    00:00:00

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


disc1.iso is the install CD, and disc2.iso is the live filesystem CD.

There are several advantages to using the live filesystem. First, you don't have to make any floppies. In fact, your
entire kit can be as simple as this one CD and your printouts specific to that system. Second, the CD is bootable, so you
can reach that Fixit# prompt in under a minute.

Third, you have the entire built-in command set available to you. When you enter the Fixit screen, you'll see the same
welcome message as before. This time, it is the CD that is mounted as /mnt2, which is really a link to /dist:

Fixit# ls -l /mnt2

lrwxr-xr-x  1 root  wheel  5 Dec  8 08:22 /mnt2@ -> /dist

Fixit# ls /dist

.cshrc        boot/          etc/        root/        tmp/

.profile      boot.catalog   floppies/   rr_moved/    usr/

COPYRIGHT     cdrom.inf      mnt/        sbin/        var/

bin/          dev/           proc/       sys@

A quick ls /dist/bin and ls /dist/sbin will display all of the commands that come with a FreeBSD system. There isn't a
limited command set with the live filesystem.

7.5.3 Emergency Repair

Now that I've shown you the various ways to enter the Fixit facility, you're probably wondering what you should be
doing at that prompt. FreeBSD is quite robust and is usually capable of booting your hard drive to some sort of prompt.
However, if the disk fails completely or is somehow incapable of booting to a prompt, the fixit facility is one of your
options.

From here, you can run fsck on your various filesystems, which may fix the problem. You can see which filesystems are
still mountable, allowing you to assess the extent of the damage. If some files were damaged, you can restore those
files from backup.

If it turns out that the drive is damaged beyond repair, you can rest easy in the fact that you have a printout of your
hardware and partitioning scheme, a floppy containing any necessary drivers, and a backup of all of your data. Above
all, you were prepared.

7.5.4 See Also

The Backup Basics section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/backup-basics.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 73 Use the GNU Debugger to Analyze a Buffer Overflow

 

You don't have to be a programmer to use a debugger.

As an end user, you may not realize that you have the ability to analyze security exploits. After all, the organization
that distributes your operating system of choice or the provider of a given application will deal with security issues and
make updates available.

However, keep in mind that Security Officers apply the same tools and techniques that end users use for debugging
programs. Knowing how to analyze a problem will help you to troubleshoot any misbehaving process in a Unix
environment.

7.6.1 An Example Exploit

Analyzing a malfunctioning process starts with basic information, such as error messages and return values. Sometimes
those aren't enough, though. Some error messages are unclear. In the case of security vulnerabilities, there may not be
an error code or return value, because the program may crash or misbehave silently.

The BSDs provide several tools to analyze a program's execution. You can monitor system calls with ktrace and
resources with fstat. You can run a debugger such as GDB, the GNU Debugger, and watch your operating system's
internal operation.

In some cases, a program must run in a particular environment, which may make it difficult to analyze due to the
limitations of some tools. For example, a telnetd advisory from 2001 (http://www.cert.org/advisories/CA-2001-21.html)
affected most Unix operating systems. This particular vulnerability came to light when a group called TESO released an
example exploit for it.

On Unix systems, telnetd runs as root, so that once the system authenticates the user, the process has the privileges
required to set the user ID of the login shell to that of the user who logged in. This means that a remote entity who can
cause telnetd to misbehave by sending it carefully designed input could execute processes as root on your system.

On most Unix systems, telnetd does not run as a standalone daemon. Since logins are relatively infrequent (on the
system timescale compared to thousands of interrupts per second), the inetd service starts telnetd as needed.

This is a simple example of the data stream sufficient to crash vulnerable telnetds using perl and nc (netcat):

% perl -e 'print "\377\366"x512' |  nc testhost telnet

This was the example I used to diagnose the problem and test the fix. If you run this command against an impervious
Telnet daemon, you'll see the following output:

% perl -e 'print "\377\366"x512' | nc testhost telnet

[Yes]

[Yes]

[Yes]

The [Yes] message will repeat 512 times because the characters you sent, \377\366, represent the Telnet protocol's "ARE
YOU THERE" control message, and you asked the question 512 times.

If you run this command against a vulnerable telnetd, the output can vary. In some cases, your connection may close
before you get 512 [Yes] responses because telnetd crashed. In other cases, you may receive seemingly random output
from portions of the telnetd memory space. These both indicate that the program did something it was not supposed to,
due to the specific input you gave it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


7.6.2 Using the GNU Debugger

In order to fix the problem, we need to find out where the executable did something incorrectly. We would like to run
the program under the control of GDB, but we cannot start telnetd from the command line the way we usually would
when debugging most executables. Normally, GDB is invoked in one of three ways.

First, to run a program and debug it, type:

% gdb 

programname

GNU gdb 5.3nb1

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are welcome to change it and/or distribute copies of it under certain 

conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB.  Type "show warranty" for details.

This GDB was configured as "i386--netbsdelf"...(no debugging symbols found)...

(gdb) run

If this is your first time using gdb, type help at the (gdb) prompt. Type quit when you are
finished using the debugger.

Second, to examine the core file of a program that has already crashed, use:

% gdb 

programname

 

programname

.core

Third, to examine a program that is already running, type:

% gdb 

programname

 

processid

In the case of telnetd, we cannot use the first method, because inetd must start telnetd in order to attach it to a network
socket and operate properly. We cannot use the second method, because processes that run with root privileges do not
leave core files, since the program's memory image could contain sensitive data.

That leaves the third method. Attaching to a running process is problematic because telnetd isn't running until someone
connects. We'll need to modify our attack script:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


connects. We'll need to modify our attack script:

% perl -e 'sleep 30; print "\377\366"x512' |  nc testhost telnet

Now nc opens a socket to the testhost, inetd spawns a telnetd in response, and perl waits for 30 seconds before sending
the attack string.

In another terminal, on the testhost, we say:

% ps -ax | grep telnetd

27857 ??  S      0:00.05 telnetd

27859 pd  S+     0:00.02 grep telnetd

% gdb /usr/libexec/telnetd 27857

GNU gdb[...]

Attaching to program `/usr/libexec/telnetd', process 27857

From here we can allow telnetd to crash and observe the exact type of error that caused the crash. If we've built telnetd
with debugging information, GDB will even display the line of source code the program was executing when it crashed.
Now we can use our favorite debugging techniques and either insert debugging messages or use GDB and set
breakpoints and watchpoints to discover at what point the program went off course. We can then determine what
changes to make to correct the error and prevent the exploit.

If you're not a programmer, you can save the information and send it to the developers.

7.6.3 Hacking the Hack

We were fortunate in this example because we had details of the exploit. That made it easy to experiment and try
different approaches. In many cases, however, you won't know the details of an exploit, and you may only know that
there is a problem because of error messages in your logs.

You can use tcpdump to capture the traffic on the relevant port. Once you can correlate the timestamp of the log's error
message with some of your tcpdump traffic, you can take the data sent in an attack and create a Perl script to resend it.
You can then apply the techniques already described to analyze and correct the problem.

7.6.4 See Also

man ktrace

man fstat

man gdb

The Netcat web site; see the Read Me file (http://www.atstake.com/research/tools/network_utilities)

The "Debugging with GDB" tutorial (http://www.delorie.com/gnu/docs/gdb/gdb_toc.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 74 Consolidate Web Server Logs

 

Automate log processing on a web farm.

As the administrator of multiple web servers, I ran across a few logging problems. The first was the need to collect logs
from multiple web servers and move them to one place for processing. The second was the need to do a real-time tail
on multiple logs so I could watch for specific patterns, clients, and URLs.

As a result, I wrote a series of Perl scripts collectively known as logproc. These scripts send the log line information to a
single log host where some other log analysis tool can work on them, solving the first problem. They also multicast the
log data, letting you watch live log information from multiple web servers without having to watch individual log files on
each host. A primary goal is never to lose log information, so these scripts are very careful about checking exit codes
and such.

The basic model is to feed logs to a program via a pipe. Apache supports this with its standard logging mechanism, and
it is the only web server considered in this hack. It should be possible to make the system work with other web servers
—even servers that can only write logs to a file—by using a named pipe.

I've used these scripts on production sites at a few different companies, and I've found that they handle high loads
quite well.

7.7.1 logproc Described

Download logproc from http://www.peterson.ath.cx/~jlp/software/logproc.tar.gz. Then, extract it:

% gunzip logproc.tar.gz

% tar xvf logproc.tar

% ls -F logproc

./    ../    logserver.bin/    webserver.bin/

% ls -F logserver.bin

./    apache_rrd*    cleantmp*    logwatch*    mining/

../   arclogs*       collect*     meter*

% ls -F webserver.bin

./    ../    batcher*    cleantmp*    copier*

As you can see, there are two parts. One runs on each web server and the other runs on the log server.

The logs are fed to a process called batcher that runs on the web server and writes the log lines to a batch file as they
are received. The batch file stays small, containing only five minutes' worth of logs. Each completed batch file moves off
to a holding area. A second script on each web server, the copier , takes the completed batch files and copies them to
the centralized log host. It typically runs from cron. On the log host, the collect process, also run from cron, collects the
batches and sorts the log lines into the appropriate daily log files.

The system can also monitor log information in real time. Each batcher process dumps the log lines as it receives them
out to a multicast group. Listener processes can retrieve those log lines and provide real-time analysis or monitoring.
See the sample logwatch script included with logproc for details.

7.7.2 Preparing the Web Servers

First, create a home directory for the web server user. In this case, we'll call the user www. Make sure that www's home
directory in /etc/master.passwd points to that same location, not to /nonexistent. If necessary, use vipw to modify the
location in the password file.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


location in the password file.

# mkdir ~www

# chown www:www ~www

Next, log in as the web server user and create a public/private SSH keypair:

# su www

% ssh-keygen -t dsa

Create the directories used by the log processing tools, and copy the scripts over:

% cd ~www

% mkdir -p bin logs/{work,save}/0 logs/tmp logs/work/1

% cp $srcdir/logproc/webserver.bin/* bin/

Examine those scripts, and edit the variables listed in Table 7-1 to reflect your situation.

Table 7-1. Variables and values for logproc's web server scripts
Script Variable Value

batcher $loguser The name of the web server user

 $mcast_if The name of the interface that can reach the log host

 $logroot The home directory of the web server user

cleantmp $logroot The home directory of the web server user

copier $loghost The name of the host where the logs will collect

 $logroot The home directory of the web server user

 $loghost_logroot The directory on the collector host where the logs will be collected

 $loghost_loguser The user on the log host who owns the logs

 $scp_prog The full path to the scp program, plus any additional options

 $ssh_prog The full path to ssh, plus any options

Then, make sure you have satisfied all of the dependencies for these programs:

# perl -wc batcher; perl -wc cleantmp; perl -wc copier

The only dependency you likely won't have is IO::Socket::Multicast. Install it via the /usr/ports/net/p5-IO-Socket-Multicast
port on FreeBSD systems or from the CPAN site (http://www.cpan.org/).

Next, configure httpd.conf to log to the batcher in parallel with normal logging. Note that the batcher command line must
include the instance (site, virtual, secure) and type (access, error, ssl) of logging:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" "%{User-Agent}i\" \

    \"%{Cookie}i\" %v" full

CustomLog "|/home/www/bin/batcher site access" full

ErrorLog  "|/home/www/bin/batcher site error"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can adjust the LogFormat directive as necessary to log the information you or your log summarization software
needs.

Finally, restart Apache and verify that the batchers are creating batches:

# apachectl configtest  

# apachectl graceful 

# cd $wwwhome/logs/ 

# ls tmp         Should list error log files for each batcher instance

# ls work/0      Should list the working batches for each batcher instance

# ls save/0      Verify that batches have moved into the save directory after a 

                                   five-minute batch interval

# ls work/0      and that new batches are currently being created

7.7.3 Preparing the Log Host

Start by creating a log user to receive the logs, complete with a home directory. Become the log user and copy the
public key from the web server into ~log/.ssh/authorized_keys2. Then, as the log user, create the directories the log
collection tools use:

# su log

% cd ~log

% mkdir -p bin web/{work,save}/{0,1} web/tmp web/{current,archive}

7.7.4 Testing the Configuration

From a web server (as the web server's user), ssh to the log host manually to verify the configuration of the
authorized_keys2:

# su www

% ssh loghost -l loguser date

If your command fails, check that the permissions on that file are set to 600.

Then, run copier manually to verify that the log files actually make it to the log server. Watch your run output on the
web server, then check that save/0 on the log server contains the newly copied logs.

Once you're satisfied with these manual tests, schedule a cron job that copies and cleans up log files. These jobs should
run as the web server user:

# crontab -e -u www

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# crontab -e -u www

----------------------------- cut here -----------------------------

# copy the log files down to the collector host every 15 minutes

0,15,30,45 * * * * /home/www/bin/copier

# clean the tmp directory once an hour

0 * * * * /home/www/bin/cleantmp

----------------------------- cut here -----------------------------

Finally, wait until the next copier run and verify that the batches appear on the log host.

7.7.5 Configuring Scripts on the Log Host

You should now have several batches sitting in save/0 in the log tree. Each batch contains the log lines collected over
the batch interval (by default, five minutes) and has a filename indicating the instance (site, virtual, secure), type (access,
error, ssl), web server host, timestamp indicating when the batch was originally created, and PID of the batcher process
that created each batch.

Now, install the log processing scripts into bin/:

# cp $srcdir/collector/{arclogs,cleantmp,collect} bin/

Edit them to have valid paths for their new location and any OS dependencies, as shown in Table 7-2.

Table 7-2. Variables and values for logproc's log host scripts
Script Variable Value

arclogs $logroot The location of the logs

 $gzip_prog The full path to the gzip binary

cleantmp $logroot The location of the logs

collect $logroot The location of the logs

 $gzip_prog The full path to the gzip binary

Again, make sure all dependencies are satisfied:

# perl -wc arclogs; perl -wc cleantmp; perl -wc collect

If you don't have Time::ParseDate, then install it from the /usr/ports/devel/p5-Time-modules port on FreeBSD or from
CPAN.

Run collect manually as the log user to verify that the log batches get collected and that log data ends up in the
appropriately dated log file. Once you're satisfied, automate these tasks in a cron job for the log user:

# crontab -e -u log

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# crontab -e -u log

----------------------------- cut here -----------------------------

# run the collector once an hour

0 * * * * /home/log/bin/collect

# clean the tmp directory once an hour

0 * * * * /home/log/bin/cleantmp

----------------------------- cut here -----------------------------

Wait until the next collect run and verify that the batches are properly collected.

Compare the collected log files with the contents of your old logging mechanism's log file on the web servers. Make sure
every hit makes it into the collected log files for the day. You might want to run both logging mechanisms for several
days to get a good feel that the system is working as expected.

7.7.6 Viewing Live Log Data

The log server programs provide additional tools for monitoring and summarizing live log data. On a traditional single
web server environment, you can always tail the log file to see what's going on. This is no longer easy to do, because
the logs are now written in small batches. (Of course, if you have multiple web servers, multiple tail processes would
have to run on each web server.)

The batcher process helps with this by multicasting the logs out to a multicast group. Use the logwatch tool on the log
server to view the live log data:

% cd ~log/bin

% ./logwatch

<lines of log data spew out here>

On a high-volume web site, there is likely to be too much data to scan manually. logwatch accepts arguments to specify
which type of log data you want to see. You can also specify a Perl regular expression to limit the output.

The meter script watches the log data on the multicast stream, in real time, and summarizes some information about
the log data. It also stores information in an RRDTool (http://www.rrdtool.org/) database.

The mining directory contains a checklog script that produces a "top ten clients" and "top ten vhosts" report.
Alternatively, you can feed the collected log files to your existing web server log processing tools.

7.7.7 See Also

 The logproc web site (http://www.peterson.ath.cx/~jlp/software/logproc.tar.gz)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 75 Script User Interaction

 

Use an expect script to help users generate GPG keys.

There are occasions when you can take advantage of Unix's flexibility to control some other tool or system that is less
flexible. I've used Unix scripts to update databases on user-unfriendly mainframe systems when the alternative was an
expensive mainframe-programming service contract. You can use the same approach in reverse to let the user interact
with a tool, but with a constrained set of choices.

The Expect scripting language is ideal for creating such interactive scripts. It is available from NetBSD pkgsrc as
pkgsrc/lang/tcl-expect or pkgsrc/lang/tk-expect, as well as from the FreeBSD ports and OpenBSD packages collections.
We'll use the command-line version for this example, but keep in mind that expect-tk allows you to provide a GUI
frontend to a command-line process if you're willing to write a more complex script.

In this case, we'll script the generation of a GPG key. Install GPG from either pkgsrc/security/gnupg or the appropriate
port or package.

7.8.1 The Key Generation Process

During the process of generating a GPG key, the program asks the user several questions. We may wish to impose
constraints so that a set of users ends up with keys with similar parameters. We could train the users, but that would
not guarantee correct results. Scripting the generation makes the process easier and eliminates errors.

First, let's look at a typical key generation session:

% gpg --gen-key

gpg (GnuPG) 1.2.4; Copyright (C) 2003 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the file COPYING for details.

Please select what kind of key you want:

   (1) DSA and ElGamal (default)

   (2) DSA (sign only)

   (4) RSA (sign only)

Your selection? 4

What keysize do you want? (1024) 2048

Requested keysize is 2048 bits

Please specify how long the key should be valid.

         0 = key does not expire

      <n>  = key expires in n days

      <n>w = key expires in n weeks

      <n>m = key expires in n months

      <n>y = key expires in n years

Key is valid for? (0) 0

Key does not expire at all

Is this correct (y/n)? y

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Is this correct (y/n)? y

You need a User-ID to identify your key; the software constructs the user id

from Real Name, Comment and Email Address in this form:

    "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name:

Let's pause there to consider the elements we can constrain.

You probably want to specify the cryptographic algorithm and key length for all users consistently, based on your
security and interoperability requirements. I'll choose RSA signing and encryption keys, but GPG doesn't provide a
menu option for that. I'll have to create the signing key first and then add the encryption subkey.

7.8.2 A Simple Script

Here's an expect script that would duplicate the session shown so far:

#!/usr/pkg/bin/expect -f

set timeout -1

spawn gpg --gen-key

match_max 100000

expect "(4) RSA (sign only)"

expect "Your selection? "

send "4\r"

expect "What keysize do you want? (1024) "

send "2048\r"

expect "Key is valid for? (0) "

send -- "0\r"

expect "Key does not expire at all"

expect "Is this correct (y/n)? "

send -- "y\r"

expect "Real name: "

The script begins by setting timeout to infinite, or -1, so expect will wait forever to match the provided input. Then we
spawn the process that we're going to control, gpg --gen-key. match_max sets some buffer size constraints in bytes, and
the given value is far more than we will need.

After the initial settings, the script simply consists of strings that we expect from the program and strings that we send in
reply. This means that the script will answer all of the questions GPG asks until Real name: , without waiting for the
user's input.

Note that in several places we expect things besides the prompt. For example, before responding to the Your selection?
prompt, we verify that the version of GPG we have executed still has the same meaning for the fourth option, by
expecting that the text of that menu choice is still RSA (sign only). If this were a real, production-ready script, we should
print a warning message and terminate the script if the value does not match our expectations, and perhaps include a
check of the GPG version number. In this simple example, the script will hang, and you must break out of it with Ctrl-c.

7.8.3 Adding User Interaction

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are several ways of handling the fields we do want the user to provide. For the greatest degree of control over
the user experience, we could use individual expect commands, but here we will take a simpler approach. Here's some
more of the script:

interact "\r" return

send "\r"

expect "Email address: "

interact "\r" return

send "\r"

expect "Comment: "

interact "\r" return

send "\r"

expect "Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? "

interact "\r" return

send "\r" 

expect "Enter passphrase: "

interact "\r" return

send "\r"

expect "Repeat passphrase: "

interact "\r" return

send "\r"

The interact command allows the user to interact directly with the spawned program. We place a constraint that the
user's interaction ends as soon as the user presses the Enter key, which sends the carriage return character, \r. At that
point, the interact command returns and the script resumes. Note that we have to send the \r from the script; expect
intercepted the carriage return and GPG did not see it.

7.8.4 Handling Incorrect Input

Again, a correct script would have a more complex flow of execution and allow for cases where the spawned program
rejects the user's input with an error message. For example, the Real Name field must be more than five characters long.
If a user types less than five characters, GPG will prompt him to retype his username. However, the expect script just
shown will not accept the new user input, because it is now waiting for the Email address: prompt.

Alternatively, we could replace these three lines:

interact "\r" return

send "\r"

expect "Email address: "

with:

interact -o "Email address: " return

send_user "Email address: "

Instead of stopping interaction when the user presses return, we stop interaction when the program outputs the Email
address: prompt. That's the difference between interact and interact -o; the former stops interaction based on input from
the user, and the latter on output from the program. This time, we don't need to send the carriage return, because the
user's keypress is passed through to GPG. However, we do need to echo the prompt, because expect has consumed it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


user's keypress is passed through to GPG. However, we do need to echo the prompt, because expect has consumed it.
This method lets GPG handle the error conditions for us:

Real name: abc

Name must be at least 5 characters long

Real name: abcde

Email address:

7.8.5 Hacking the Hack

After GPG receives the information it needs to generate the key, it might not be able to find enough high-quality
random data from the system. The script ought to handle that by spawning a process to generate more system activity,
such as performing a lot of disk activity by running a find across the entire disk.

After generating the signing key, the script could spawn a new instance of GPG with the --edit-key option, to generate
the desired RSA encryption key.

Although the final script may end up executing three processes, the whole process is seamless to the user. You can hide
even more of the guts by using expect's log_user setting to hide the output of the programs at points where the user
does not need to see them.

You can use a script like this in conjunction with any Unix command-line program. By combining expect with telnet or ssh,
you can control non-Unix systems, thereby leveraging the flexibility of Unix into a non-Unix domain. This even works
with programs for which you do not have source code, such as control utilities for commercial databases or application
software.

In the case of GPG, we do have source code, so we could modify the program, but writing an expect script is easier. A
carefully designed expect script may not require changes when a new version of GPG is released. Source code changes
to GPG would require integration with any new version of GPG.

7.8.6 See Also

man expect

The expect web site, which includes sample scripts (http://expect.nist.gov/)

Exploring Expect , by Don Libes, the author of expect (http://www.oreilly.com/catalog/expect/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 76 Create a Trade Show Demo

 

I frequently represent NetBSD at trade shows. It's challenging to attract attention because there are many booths at a
show—people will walk by quickly unless something catches their eye. You also need to balance eye-candy with
functionality so that you can attract and keep a visitor's attention. I needed an enticing demo to run on one of the
computers in the booth.

I wanted to show off several applications, such as office productivity tools, video, and games, and have music playing,
but there's only so much screen real estate. Cramming all of those things on the screen at once would clutter the
screen, and the point would be lost.

Most X window managers have some concept of virtual desktops, separate work spaces that you can flip between. For
example, Enlightenment (pkgsrc/wm/enlightenment) not only has the concept of virtual desktops, but as an added
bonus for the trade show environment offers a nice sliding effect as you transition from one desktop to the next.

7.9.1 Introducing eesh

Normally in Enlightenment, to switch from one virtual desktop to the next, you move the mouse pointer to the edge of
the screen and then push past it, or you use a key sequence to move to an adjacent desktop. For an unattended demo,
we need to automate this process. Enlightenment provides an undocumented utility called eesh that can control most
aspects of the Enlightenment window manager. You can write scripts to move windows, resize them, or flip between
desktops.

Note that eesh isn't a friendly utility; it doesn't even produce a prompt when you run it. Type help for the menu or exit to
quit:

% eesh

help

Enlightenment IPC Commands Help

commands currently available:

use "help all" for descriptions of each command

use "help <command>" for an individual description

actionclass             active_network          advanced_focus   sfa  

autosave                background              border                

button                  button_show             colormod              

configpanel             copyright               current_theme    tc   

cursor                  default_theme           dialog_ok        dok  

dock                    dump_mem_debug          exit             q    

focus_mode       sf     fx                      general_info          

geominfo_mode    sgm    goto_area        sa     goto_desktop     sd   

group            gc     group_info       gl     group_op         gop  

help             ?      imageclass              internal_list    il   

list_class       cl     list_remember           list_themes      tl   

module                  move_mode        smm    nop

Unfortunately, the eesh utility seems to be untested. It sometimes behaves inconsistently by not accepting commands

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Unfortunately, the eesh utility seems to be untested. It sometimes behaves inconsistently by not accepting commands
until you enter them a second time or by withholding output until you press Enter again. As an example, there are
actually more commands than those indicated in the help listing. Look in the Enlightenment source's ipc.c file for a
complete list.

7.9.2 Discovering Commands

We'll start our script by making sure that Enlightenment is configured the way we want for our demo. We want six work
spaces (3 by 2) to display our programs. Within eesh, try the following commands:

num_areas ?

Number of Areas: 2 2

help num_areas

Enlightenment IPC Commands Help : num_areas (sna)

--------------------------------

Change the size of the virtual desktop

Use "num_areas <width> <height>" to change the size of the virtual desktop.

Example: "num_areas 2 2" makes 2x2 virtual destkops

Use "num_areas ?" to retrieve the current setting

num_areas 3 2

Now we have the number of areas we want. areas is the Enlightenment name for virtual desktops, since Enlightenment
also supports multiple desktops, but that's different. Now we'd like our screen to display the first area, so that the
programs our script runs will open there:

goto_area 0 0

If your terminal wasn't on the first area, it just moved off the screen. Use the mouse to return to that area.

eesh also lets us write commands on the command line with the -e (execute command) flag:

% eesh -e "goto_area 0 0"

7.9.3 Sample Scripts

Now we know enough to write a simple demo script:

#!/bin/sh

eesh -e "num_desks 1"

eesh -e "num_areas 3 2"

sleep 1

eesh -e "goto_area 0 0"

# Configure the default gqmpeg playlist to play your desired music

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# Configure the default gqmpeg playlist to play your desired music

gqmpeg

# Show an interesting avi file.

xanim -geometry +50x+10 netbsd3.avi &

# Give the programs time to start, to make sure they 

# open on the correct area.

# Also, lets people watching see what started up.

sleep 3

eesh -e "goto_area 1 0"

# Word Processing

abiword sampledoc.abw &

sleep 2

eesh -e "goto_area 2 0"

# Spreadsheet

gnumeric samplesheet.gnumeric &

sleep 2

eesh -e "goto_area 0 1"

# A lively game

battleball &

sleep 2

eesh -e "goto_area 1 1"

# Web Browsing (of a local hierarchy, in case you don't have net 

# connectivity at a trade show)

firebird file://index.html &

sleep 3

eesh -e "goto_area 2 1"

sleep 1

# Insert your favorite application here

# Leave screen back at page 1.

eesh -e "goto_area 0 0"

When you run the script, the screen will slide around to the various areas and pause a few seconds between program
launches. We have most of the things we wanted: music, video, and applications. The next step is to keep it moving.
Try the following script:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Try the following script:

#!/bin/sh

while [ 1 ]

do

        eesh -e "goto_area 0 0"

        sleep 2

        eesh -e "goto_area 1 0"

        sleep 2

        eesh -e "goto_area 2 0"

        sleep 2

        eesh -e "goto_area 0 1"

        sleep 2

        eesh -e "goto_area 1 1"

        sleep 2

        eesh -e "goto_area 2 1"

        sleep 2

done

To stop the moving display, you have to get your keyboard focus into the xterm where the script is running so that you
can press Ctrl-c. That can be difficult, but we'll address it shortly.

7.9.4 More Complex Scripts

For a complex demonstration, you can have different sets of these scripts that visit different sets of areas. You can also
change the delay so that complex areas display for a longer period. I also made a script that clears all of the viewing
areas. That way, when visitors to the booth play around with the machine, I can easily reset to a clean state and then
start the demo again.

Since many of the utilities you'll demonstrate don't create .pid files, I find it easiest to use pkill, the "kill process by
name" utility. (FreeBSD provides killall.)

I'll also leave you with two example scripts that show how to extract information about Enlightenment's current settings
for use in a more complex script.

The first script is retitle:

#!/bin/sh

WIN=`eesh -ewait "set_focus ?" | sed 's/^focused: //' `

xterm -geometry 47x7+227+419 -fn -*-courier-*-o-*-*-34-*-*-*-*-*-*-* -e \

/home/david/bin/retitle2 $WIN

The second is retitle2:

#!/bin/sh

WIN=$1

echo "enter new title:"

read TITLE

eesh -e "win_op $WIN title $TITLE"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


eesh -e "win_op $WIN title $TITLE"

With these scripts and e16keyedit , you can bind a key combination to change the title of any window. This makes it
much easier to keep track of xterms, if you prefer task-oriented titles.

Now back to the control issue. When I first wrote this demo, I used a switch wired to a serial port to start and stop the
demo so that keyboard focus did not matter. However, wiring switches is more work than configuring software, so I
found a better way.

The e16keyedit utility, written by Geoff "Mandrake" Harrison and Carsten "Raster" Haitzler (the primary developers of
Enlightenment), allows you to bind function keys and Meta keys to run programs or perform the same functions that
you can with eesh. Using e16keyedit, you can define function keys to set up the demo, clean up the demo, and start and
stop the area rotations. Since the function keys can be bound to work anywhere within Enlightenment, keyboard focus
no longer matters. You're ready to give a fantastic demo!

e16keyedit is not part of the main Enlightenment distribution. Download it from SourceForge
(http://sourceforge.net/project/showfiles.php?group_id=2).

7.9.5 See Also

The Enlightenment web site (http://www.enlightenment.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 8. Keeping Up-to-Date
Introduction

Section 77.  Automated Install

Section 78.  FreeBSD from Scratch

Section 79.  Safely Merge Changes to /etc

Section 80.  Automate Updates

Section 81.  Create a Package Repository

Section 82.  Build a Port Without the Ports Tree

Section 83.  Keep Ports Up-to-Date with CTM

Section 84.  Navigate the Ports System

Section 85.  Downgrade a Port

Section 86.  Create Your Own Startup Scripts

Section 87.  Automate NetBSD Package Builds

Section 88.  Easily Install Unix Applications on Mac OS X

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
One of the distinguishing characteristics of the BSDs is the ease with which you can keep your operating system source
and installed software up-to-date. In fact, each of the BSDs provides multiple alternatives, allowing users to choose the
approaches that best match their time and bandwidth requirements.

This chapter provides a plethora of ways to maintain an updated system. While many are written from the FreeBSD
perspective, don't let that stop you from hacking your own customized NetBSD or OpenBSD solutions. In fact, this
chapter concludes with one user demonstrating how to enjoy the benefits of the BSD ports and packages collections on
Mac OS X!

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 77 Automated Install

 

If you're responsible for installing multiple systems, hopefully you've discovered the art of automating
installs.

Most operating systems have some sort of scripting mechanism that allows you to predefine the answers to the
questions asked by the install program. Once you've started the actual install, you can leave and return to a fully
installed system. The alternative is to sit there, answering every prompt when it appears. No, thank you!

Even as a home user, it's well worth your while to spend a few minutes customizing the install script that comes with
FreeBSD. Try this hack once and you'll never want to sit and watch an install again.

8.2.1 Preparing the Install Script

Before installing any system, you need to know the following:

The IP settings and hostname of the host you're installing

The FreeBSD name of that host's NIC

Which distributions, or parts of the OS, to install

Your desired partitioning scheme

Which packages (applications) to install

Of course, it's always a good idea to record this information and include it with the documentation for the system.

FreeBSD's install mechanism lives in /stand/sysinstall. Not surprisingly, man sysinstall describes all of the scriptable bits
of this program. I'll go over some useful parameters, but you'll definitely want to skim through the manpage to see if
there are additional parameters suited to your particular environment.

FreeBSD also comes with a commented, ready-to-customize install script, located in
/usr/src/usr.sbin/sysinstall/install.cfg. Copy this file, then edit the copy in your favorite editor. Start by inserting your
own network settings:

# This is the installation configuration file for my test machine,

# crate.cdrom.com.

# It is included here merely as a sort-of-documented example.

#

# $FreeBSD: src/usr.sbin/sysinstall/install.cfg,v 1.11 2001/09/06 10:04:27 murray Exp $

# Turn on extra debugging.

debug=yes

################################

# My host specific data

hostname=crate.cdrom.com

domainname=cdrom.com

nameserver=204.216.27.3

defaultrouter=204.216.27.228

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ipaddr=204.216.27.230

netmask=255.255.255.240

################################

Replace the example network information with the name and IP settings associated with the specific host you'd like to
install. If you're using DHCP to obtain this information, fill in the hostname line and replace the other lines with:

tryDHCP=YES

Next, replace the name of the NIC and the path to the FTP site. In this example, the NIC is rl0 and I'm using the default
FTP site:

################################

# Which installation device to use 

_ftpPath=ftp://ftp.freebsd.org/pub/FreeBSD/

netDev=rl0

mediaSetFTP

################################

Next come the desired distributions. (See man sysinstall for more details.) Include them all on the one dists= line,
separated by a space:

################################

# Select which distributions we want.

dists=bin doc games manpages dict compat4x ports src sbase ssys Xbin Xcfg \

      Xdoc Xlib Xman Xset Xfnt Servers/XS3V Xfsrv

distSetCustom

################################

Note that distSetCustom allows you to customize which distributions to install. If you'd like
to install the works, use distSetEverything and don't specify any dists=.

The partitioning scheme section is very important. If you don't want to use the default scheme which uses the entire
disk, read this section of the manpage carefully.

Also, the default file gives examples for three disks. Make sure you remove the examples and replace them with your
own partitioning scheme.

The following example is the equivalent of choosing a for "all," followed by a for "auto defaults":

#############################################################

# Set the parameters for the partition editor

# ad = IDE, da = SCSI

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ad = IDE, da = SCSI

disk=ad0

partition=exclusive

diskPartitionEditor

#############################################################

# - All sizes are expressed in 512 byte blocks!

# - "Size in MB" = sectors * 512 / 1024 / 1024 

# - "Number of blocks" = xsize in mb * 1024 * 1024 / 512

# The non-zero value after the mountpoint means enable soft updates

# 256MB UFS ad0s1a

ad0s1-1=ufs 524288 /

# 240MB SWAP ad0s1b

ad0s1-2=swap 491520 none

# 256MB UFS ad0s1d

ad0s1-3=ufs 524288 /var

# 256MB UFS ad0s1e

ad0s1-4=ufs 524288 /tmp

# Rest of FreeBSD partition ad0s1f

ad0s1-5=ufs 0 /usr

diskLabelEditor

# runs diskLabelCommit diskPartitionWrite

installCommit

Finally, list which applications you would like to install. List each package on its own line, followed by the packageAdd
command:

# Install some packages at the end.

package=fetchmail-6.2.0

packageAdd

package=pine-4.55

packageAdd

package=lynx-2.8.5d14

packageAdd

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


packageAdd

The FreeBSD package list (ftp://ftp.freebsd.org/pub/FreeBSD/releases/i386/5.1-RELEASE/packages/All) has the exact
names of each available package. Replace i386/5.1-RELEASE with your platform and desired operating system version.

8.2.2 Test-Drive

Now that you've created a customized version of install.cfg, prepare a freshly formatted UFS floppy:

# fdformat -f 1440 /dev/fd0

# bsdlabel -w /dev/fd0 fd1440

# newfs /dev/fd0

Once the floppy is ready, copy install.cfg onto it.

On a test system, start the install process either by booting from a FreeBSD CD-ROM/DVD or with the two install
floppies. When you receive the sysinstall Main Menu screen, choose Load Config. Insert the floppy containing your
customized install.cfg and press OK. Once the configuration file has been loaded, you'll receive the message You may
remove the floppy from floppy drive unit A.

While this is meant to be an unattended install, you should be present during your first test install. This will give you the
opportunity to ensure that your script runs smoothly, without hanging at any portion of the install. If it does hang,
check your install.cfg for a typo in that section.

Once the install is complete, you'll return to the sysinstall Main Menu. At this point, you can either configure the system
interactively by choosing Configure or use a prepared post-configuration script, as found in /usr/doc/en_US.ISO8859-
1/articles/pxe/post.

install.cfg is not responsible for post-install configuration.

Once you're happy with your floppy, label it with your operating system version. Store it where you can find it the next
time you're ready to install a version of that operating system.

8.2.3 See Also

man sysinstall

/usr/src/usr.sbin/sysinstall/install.cfg (the sample installation configuration file)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 78 FreeBSD from Scratch

 

For those who prefer to wipe their disks clean before they upgrade their systems.

Have you ever upgraded your system with make world? If you have only one system on your disks, you may run into a
problem: if the installworld fails partway through, you may end up with a broken system that might not even boot. It's
also possible that the installworld will run smoothly, but the new kernel will not boot.

What if you're like me and believe in the "wipe your disks when upgrading systems" paradigm? Reformatting ensures
there is no old cruft left lying around. It also means you have to recompile or reinstall all your ports and packages and
then redo all your carefully crafted configuration tweaks.

FreeBSD From Scratch solves all these problems. The strategy is simple: use a running system to install a new system
under an empty directory tree, mounting new partitions in that tree as appropriate. Many config files can copy straight
across, and mergemaster can take care of those that cannot. You can perform arbitrary post-configuration of the new
system from within the old system, up to the point where you can chroot to the new system.

This upgrade has three stages, where each stage either runs a shell script or invokes make:

stage_1.sh

Creates a new bootable system under an empty directory, merges or copies as many files as are necessary, and
then boots the new system

stage_2.sh

Installs your desired ports

stage_3.mk

Does post-configuration for software installed in the previous stage

From now on, whenever you feel like an update is in order, simply toggle the partitions you want to wipe and reinstall.

While compiling the ports during stage two, the system will not be available for its usual
duties. If you run a production server, consider the downtime caused by stage two. If time
is an issue, consider using precompiled packages instead of ports.

8.3.1 Stage One: System Installation

This hack uses several scripts and configuration files that you can download from the original document's site (listed in
this hack's Section 8.3.4 section). Also, if you keep your docs up-to-date with cvsup, the scripts and original document
can be found in /usr/doc/en_US.ISO8859-1/articles/fbsd-from-scratch.

The script for stage one is stage_1.sh. When run with exactly one argument:

# ./stage_1.sh default

it will read its configuration from stage_1.conf.default and write a log to stage_1.log.default.

You'll need to customize stage_1.conf.default to match your idea of the perfect system. I have tried to comment all of
the sections you should adapt. In addition to the customized sections, the configuration script must provide four shell
functions:

create_file_systems

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


create_file_systems

create_etc_fstab

copy_files

all_remaining_customization

Before you run stage_1.sh, make sure you have completed the usual tasks in preparation for make
installworld/installkernel:

Configure your kernel config file.

Complete make buildworld.

Complete make buildkernel KERNCONF=whatever.

The stage_1.sh script will stop at the first command that fails, so you cannot overlook errors. It will also stop if you use
an unset environment variable, which is probably due to a typo.

Answer no or press Enter when mergemaster asks if whether should delete /var/tmp/temproot.stage1. This directory
contains some files that must be copied to the new system later.

*** Comparison complete

Do you wish to delete what is left of /var/tmp/temproot.stage1? [no] no

After that, it will list the files it installed:

*** You chose the automatic install option for files that did not

    exist on your system.  The following were installed for you:

      /newroot/etc/defaults/rc.conf

      ...

      /newroot/COPYRIGHT

(END)

Type q to quit the pager. Then, you'll have to deal with login.conf:

*** You installed a login.conf file, so make sure that you run

    '/usr/bin/cap_mkdb /newroot/etc/login.conf'

    to rebuild your login.conf database

    Would you like to run it now? y or n [n]

The answer does not matter, since we will run cap_mkdb in either case.

You can download the author's stage_1.conf.default, which you'll need to modify substantially. The comments should
give you enough information regarding what to change.

Pay attention to the newfs commands. While you cannot create new filesystems on mounted partitions, the script will
happily erase any unmounted partitions. This can be enough to ruin your day, so be sure to modify the device names to
match your scenario.

Running this script installs a system that, when booted, provides inherited users and groups, firewalled Internet
connectivity over Ethernet and PPP, correct time zone settings and NTP, and more minor configurations, such as
/etc/ttys and /etc/inetd.conf.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/ttys and /etc/inetd.conf.

Other areas of configuration will not work until stage two completes. For example, we have copied files to configure
printing and X11. Printing, however, needs applications not found in the base system. Similarly, X11 will not run before
we have compiled the server, libraries, and programs.

8.3.2 Stage Two: Ports Installation

It is possible to install precompiled packages at this stage instead of compiling ports. In this case, stage_2.sh will be
nothing more than a scripted list of pkg_add commands.

I install my favorite ports via the downloadable stage_2.sh script. You can run it multiple times safely, as it will skip all
ports that are already installed. It also supports the dry run option (-n), which will show what would be done. Run it like
stage_1.sh, with exactly one argument to denote a config file:

# ./stage_2.sh default

This example will read the list of ports from stage_2.conf.default.

The actual list of ports consists of lines with two or more space-separated words: the category and the port, optionally
followed by an installation command that will compile and install the port. By default, this is make install. Most of the
time, it suffices to name only the category and port. You can fine-tune some ports by specifying make variables, as
found in the port's Makefile:

www mozilla make WITHOUT_MAILNEWS=yes WITHOUT_CHATZILLA=yes install

mail procmail make BATCH=yes install

In fact, you can specify arbitrary shell commands, so you are not restricted to simple make invocations:

java linux-sun-jdk14 yes | make install

news inn-stable CONFIGURE_ARGS="--enable-uucp-rnews --enable-setgid-inews" \

    make install

Note that the line for news/inn-stable includes an example of a one-shot shell variable assignment to CONFIGURE_ARGS.
The port's Makefile will use this as an initial value and augment some other essential args.

The difference between specifying a make variable on the command line (as in the last example) and the following:

news inn-stable make CONFIGURE_ARGS="--enable-uucp-rnews \

    --enable-setgid-inews" install

is that the latter will override instead of augment.

Be careful that your ports do not use an interactive install; they should not try to read
from stdin. If they do, they will read the next line or lines from your list of ports and get
confused. If stage_2.sh mysteriously skips a port or stops processing, this is likely the
reason.

Finally, this script will create a log file named LOGDIR/category+port for each port it installs.

When you download the stage_2.sh script, you may want to modify these variables at the
beginning of the script to reflect your environment:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DBDIR="/var/db/pkg"

PORTS="/usr/ports"

LOGDIR="/home/root/setup/ports.log"; mkdir -p \

    ${LOGDIR}

8.3.3 Stage Three: Post-Configuration

You installed your beloved ports during stage two, but some ports require a little bit of configuration. This is the job of
stage three, the post-configuration stage. I have chosen to implement stage three as a Makefile because this allows
easy selection of what you want to configure simply by running:

# make -f stage_3.mk target

As with stage_2.sh, make sure you have stage_3.mk available after booting the new system, either by putting it on a
shared partition or by copying it somewhere on the new system.

Automating the installation of a port may prove difficult if it is interactive and does not support make BATCH=YES install.
For a few ports, the interaction is nothing more than typing yes when asked to accept some license. If such input is read
from the standard input, we simply pipe the appropriate answers to the installation command, usually make install. This
is how I dealt with java/linux-sun-jdk14 in the previous example.

This strategy, however, does not work for editors/staroffice52, which requires that X11 is running. The installation
procedure involves a fair amount of clicking and typing, so it cannot be automated like other ports can. However, the
following workaround does the trick for me. First, I created a staroffice package on the old system with:

# cd /usr/ports/editors/staroffice52

# make package

=  ==>  Building package for staroffice-5.2_1

Creating package /usr/ports/editors/staroffice52/staroffice-5.2_1.tbz

Registering depends:.

Creating bzip'd tar ball in

'/usr/ports/editors/staroffice52/staroffice-5.2_1.tbz'

During stage two, I used pkg_add to add this package:

# pkg_add /usr/ports/editors/staroffice52/staroffice-5.2_1.tbz

Upgrading Configuration Files
Be aware of upgrade issues for config files. In general, you do not know when and if the format or
contents of a config file changes. A new group may be added to /etc/group, or /etc/passwd may gain
another field. Simply copying a config file from the old to the new system may be enough most of the
time, but in these cases it is not. Unfortunately, mergemaster is available only for base system files, not
for anything installed by ports. All you can do is be alert, especially when the major version number
bumps. All actively maintained software programs are prime candidates for config file scrutiny. To detect
such silent changes, I keep a copy of the modified config files in the same place where I keep
stage_3.mk and compare the result with a make rule. For example, I examine Apache's httpd.conf in
target config_apache with:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


target config_apache with:

# ... automated httpd.conf modifications here ...

@if ! cmp -s /usr/local/etc/apache2/httpd.conf httpd.conf; then \

    echo "ATTENTION: the httpd.conf has changed. Please examine if"; \

    echo "the modifications are still correct. Here is the diff:"; \

    diff -u /usr/local/etc/apache2/httpd.conf httpd.conf; \

fi

If the diff is innocuous, I can make the message go away with cp /usr/local/etc/apache2/httpd.conf httpd.conf.
See [Hack #92] for more on this strategy.

The downloadable stage_3.mk will give you an idea of how to automate all reconfiguration.

8.3.4 See Also

"FreeBSD From Scratch" (includes links to the scripts) at http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/fbsd-from-scratch/article.html

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 79 Safely Merge Changes to /etc

 

Use a three-way merge to deal with upgraded configuration files.

Even though you probably run cvsup on a daily basis, you likely run make world only a few times a year, whenever a new
version of the OS is released. The steps required to upgrade your system are well documented and fairly
straightforward. That is, it's easy until it's time to run mergemaster.

mergemaster is an important step, as it integrates changes to /etc. For example, occasionally a core utility such as
Sendmail will require a new user or group in /etc/passwd. Problems can occur if those changes aren't integrated.

If you've used mergemaster before, you know it's not the most user-friendly utility out there. Misinterpret a diff, and you
might lose your configuration file changes or, worse, miss a necessary change. You might even end up blowing away
your own users in /etc/passwd—not the most convenient way to start off a new upgrade.

8.4.1 Initial Preparations

An alternative is to use etcmerge (/usr/ports/sysutils/etcmerge). This utility does most of the work for you. Unlike the
two-way diff used by mergemaster, this utility can compare the changes between three sets of edits:

The /etc from your original version of FreeBSD

Any changes you've made to /etc since then

The /etc for your new version of FreeBSD

Before any upgrade, you definitely want a fresh, tested backup of all of your data,
including /etc.

Once you've installed etcmerge, ensure you have a backup copy of /etc:

# tar czvf etc.tgz /etc

Here, I've saved a copy only to the local hard drive. Be sure to copy it to another location as well, just to be safe: to
another system, a removable media, or even your email account.

The next step is to locate a copy of /etc that is original to your current operating system and save it to /var/db/etc.
(This is a good step to add to your regime when you install a new system.) Assuming this isn't a fresh install and you've
made changes to /etc, you can get the original, unmodified /etc for your operating system version at
http://people.freebsd.org/~eivind/etc/.

Here, I've downloaded the 5.1-RELEASE version and untarred it to the correct place:

# tar -C /var/db -zxvpf etc-5.1-RELEASE.tar.gz

# ls /var/db/etc/

So, now you have a copy of the original /etc, as well as your own customized /etc. You'll receive the /etc for a newer
version of FreeBSD once you've changed your cvs-supfile to reflect the newer tag [Hack #80] .

For example, I'm currently running 5.1-RELEASE, so my custom supfile contains this line:

*default tag=RELENG_5_1_0_RELEASE

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


*default tag=RELENG_5_1_0_RELEASE

When I'm ready to upgrade to 5.2, I'll change that line to reflect the new tag:

*default tag=RELENG_5_2_0_RELEASE

My next cvsup will grab the sources for the new operating system version.

None of the changes to /usr/src will be integrated until you make buildworld and make
installworld as per the instructions in the handbook. Simply downloading the changes does
not upgrade your operating system.

Once cvsup has finished downloading all of the changes, take the time to read /usr/src/UPDATING, which lists all of the
known gotchas for this release. For example, there may be mandatory options for the kernel process of the upgrade,
certain stages may require a reboot before the next stage works, or perhaps directory structures such as /etc have
seen major changes.

Once you've made your necessary preparations, ensure these steps have succeeded before using etcmerge:

make buildworld

make buildkernel

make installkernel

make installworld

8.4.2 Using etcmerge

Now that you have a new world, use etcmerge to integrate any changes to /etc. As per its manpage, start with the
initialization step:

# etcmerge init

The script will perk along for a moment or two before producing a screen full of lines that start with ETCMERGE. Here's
the beginning of that output:

ETCMERGE: >>>     Finding classes of files

ETCMERGE: >>>     Working from

ETCMERGE: >>>     Active:    /etc

ETCMERGE: >>>     Reference: /var/db/etc

ETCMERGE: >>>     New:       /root/etc-work/200401191624/etc-new

Note the name of the directory in the last line. It contains the working files that are ready for your review.

You'll then receive lines for different classes—see man etcmerge for a description of each conflict class. Here's a sample
output from a system I recently upgraded:

ETCMERGE: >>>> Class 7:       3 conflict(s)

A class 7 conflict means a file existed for all three versions of /etc. Any differences will appear with diff-style markers.
This particular system has three files containing conflicts. Their names are in the file called 7.conflicts:

# more /root/etc-work/200401191624/7.conflicts

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# more /root/etc-work/200401191624/7.conflicts

./manpath.config

./pwd.db

./spwd.db

The etc-merged subdirectory contains copies of those files with the differences marked. Look there and examine each
file listed as containing conflicts:

# cd /root/etc-work/200401191624/etc-merged

# vi manpath.config

Don't send pwd.db or spwd.db to an editor—these are the database versions of your
password files. Instead, use diff to see if the conflict is because you've added users or
because FreeBSD has added a new user:

# diff etc-new/master.passwd /etc/master.passwd

Remove the two .db lines from 7.conflicts manually so etcmerge is aware that you've
resolved the conflicts to your password databases.

As you review your own files, the angle bracket markers indicate which lines have changed. Next to each angle bracket
marker is the name of the file containing the conflicting lines. For example, if the name of the file includes the /etc-new
directory, the lines in question belong to the new version of the file. Once you've decided which version of the lines you
wish to keep, remove the angle bracket lines as well as the unwanted version of the lines.

Once you're finished your edits, this command will integrate them:

# etcmerge install

/etc/mail/aliases: 24 aliases, longest 10 bytes, 246 bytes total

Install done - removing copies of old /etc/ and old reference.

Done.

#

Congratulations! You've successfully upgraded your operating system while maintaining your customizations to /etc.

8.4.3 See Also

[Hack #92]

man mergemaster

man etcmerge

man build

The makeworld section of the FreeBSD Handbook, which includes directions for using mergemaster
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 80 Automate Updates

 

FreeBSD provides many tools to make software upgrades as painless as possible. In fact, the entire process
is fully scriptable. Simply choose the pieces you want and how up-to-date you want to be.

End users and administrators alike share a desire to keep their operating systems and applications as up-to-date as
possible. However, if you're an operating systems veteran, you're well aware that this desire doesn't always translate
into foolproof, easy execution. For example, do you have to scour the far corners of the Internet to find the latest
updates? Once you find them, is it possible to upgrade safely without overwriting the dependencies required by other
applications?

8.5.1 Assembling the Pieces

The cvsup process provides the latest updates to the FreeBSD operating system, ports collection, and documents
collection. You no longer have to scour the Internet looking for the latest sources. Simply run cvsup!

Since our intention is to script the whole process, install the cvsup-without-gui port:

# cd /usr/ports/net/cvsup-without-gui

# make install clean

If you've never used cvsup before, take the time to read its section in the FreeBSD Handbook so you have an overview
of how the process works.

When the install finishes, copy /usr/share/examples/cvsup/cvs-supfile to a location that makes sense to you (e.g., /root
or /usr/local/etc). Use the comments in that file and the instructions in the handbook to customize the file so it reflects
your closest mirror, operating system (tag), and what you would like to update.

Here's my cvs-supfile. It uses a Canadian mirror and updates all sources, ports, and documents on a FreeBSD 5.1-
RELEASE system:

# more /root/cvs-supfile

#use the Canadian mirror

*default host=cvsup.ca.freebsd.org

#keep these lines as-is!

*default base=/usr/local/etc/cvsup

*default prefix=/usr

#this is a 5.1-RELEASE system

*default tag=RELENG_5_1_0_RELEASE

#keep this line as-is!

*default release=cvs delete use-rel-suffix compress

#update all src, ports, and docs

src-all

ports-all tag=.

doc-all tag=.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


doc-all tag=.

If you want to specify which source, ports, and docs to install, see the handbook for
directions on creating a refuse file.

If your cvs-supfile includes the ports-all tag=. line, install portupgrade. This port will not only keep track of which ports
need upgrading, it will also track dependencies and automate the entire application upgrade process:

# cd /usr/ports/sysutils/portupgrade

# make install clean

We can also take advantage of the fastest-cvsup port. As the name implies, it looks for the fastest cvsup mirror:

# cd /usr/ports/sysutils/fastest-cvsup

# make install clean

8.5.2 An Example Dry Run

With the necessary pieces in place, let's run them from the command line to see how they work. First, use cvsup to
download any changes to the operating system, software, or documents tree:

# cvsup -L2 /root/cvs-supfile

Parsing supfile "/root/cvs-supfile"

Connecting to cvsup.ca.freebsd.org

Connected to cvsup.ca.freebsd.org

Server software version: SNAP_16_1f

Negotiating file attribute support

Establishing collection information

Establishing multiplexed-mode data connection

Running

Updating collection src-all/cvs

Updating collection ports-all/cvs

<snip downloaded sources>

Updating collection doc-all/cvs

<snip downloaded sources>

Shutting down connection to server

Finished successfully

The -L2 switch turns on verbosity. Substitute /root/cvs-supfile with the location of your customized cvs-supfile.

It's rare for src to change. When it does, it is usually due to a security patch. If you notice
changes to src, go to http://www.freebsd.org/security/#adv to see if the security incident
affects you and how to apply the patch if it does.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


affects you and how to apply the patch if it does.

Once cvsup is complete, integrate the changes to the ports and the documents trees. This will take care of the document
changes:

# cd /usr/doc

# make install

You need the docproj-nojadetex port [Hack #89] for this command to succeed.

For the ports, first update your ports index:

# cd /usr/ports

# make index

Generating INDEX-5 - please wait.. Done.

An alternative is to instead run portsdb -Uu. Note that if you've created a refuse file, either command will produce a
screen or two of error messages. You can safely ignore these.

Once your ports tree is up-to-date, see if any of your installed applications need upgrading:

# portversion -l "<"

[Updating the pkgdb <format:bdb1_btree> in /var/db/pkg ...

256 packages found (-0 +1) . done]

ghostscript-gnu             <

gimp-print                  <

linux-sun-jdk               <

p5-MIME-Base64              <

subversion                  <

xmlcatmgr                   <

The -l "<" flag tells portversion to list only the ports matching that pattern (which represents ports that need upgrading).
This particular system has 256 installed ports. I've added one (+1) new port since my last cvsup, and six packages need
upgrading.

To perform the actual upgrade:

# portupgrade -arR

-a means to upgrade all ports requiring an upgrade. -rR is very important—it will ensure that the upgrade takes care of
all dependencies properly.

I've only scratched the surface of all of these utilities. Spend some time reviewing the resources at the end of this hack
to ensure you're getting the most out of your upgrade process.

8.5.3 Automating the Process

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once you have a few dry runs under your belt and are happy with your results, create a shell script to automate the
process. You can start out with something as simple as a Bourne script that strings together the desired commands and
switches. Here, the only new command I've introduced is fastest-cvsup. I've also added an else statement to terminate
the script if there is a problem with cvsup—for example, if the network connection fails.

# more /root/bin/mycustomupgrade.sh

#!/bin/sh

# script to automate cvsup of latest src, ports, and doc

# then rebuilds doc and ports trees

# then checks for and upgrades out-of-date software

# when finished, prints date and time

# use fastest_cvsup to find fastest Canadian or US mirror

# store the results in $SERVER to be passed to cvsup command

# substitute /root/cvs-supfile with path to custom cvs-supfile

# terminate the script if a connection is not available to 

# the cvsup server

if SERVER=`fastest_cvsup -q -c ca,us`

then

  echo "Running cvsup"

  cvsup -L2 -h $SERVER /root/cvs-supfile

else

  echo "There's a problem!" 1>&2

  exit 1

fi

echo "Updating docs"

cd /usr/ports

make install  

echo "Updating ports index"

cd /usr/ports

make index

echo "The following ports need upgrading"

portversion -l "<"

echo "Upgrading ports"

portupgrade -arR

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


echo "Finished at `/bin/date`."

exit

Don't forget to make your script executable with chmod +x and to test it to ensure all of the steps execute as desired.
On some of my systems, I'm really picky about which software updates to apply, so I don't include the portupgrade -arR
command in my script. This allows me to review which ports need upgrading so I can manually upgrade the ones I
deem necessary.

8.5.4 See Also

man portversion

man portupgrade

man fastest-cvsup

The cvsup section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/cvsup.html)

The CVS tags section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/cvs-tags.html)

"portupgrade," from the FreeBSD Basics column
(http://www.onlamp.com/pub/a/bsd/2003/08/28/FreeBSD_Basics.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 81 Create a Package Repository

 

Combine the advantages of compiling from source and installing packages.

We saw in [Hack #69] that compiling applications from source, i.e., by making their ports, has several advantages.
You can tune /etc/make.conf to take advantage of your architecture. You can also customize the installation by passing
various arguments to make.

However, if you're responsible for maintaining software on multiple machines, do you always want to install from
source? If your systems run similar hardware, why not create your own customized packages on one machine and
make them available to your other systems via a package repository?

Creating your own custom packages allows you to retain all the benefits of make. Even better, the resulting package
installs the desired software very quickly. This can be a real time-saver when you maintain multiple systems.

The experienced hacker may prefer to use /usr/ports/devel/distcc to provide multiple
builds.

8.6.1 Creating Custom Packages

Pick a machine in your network to contain the package repository, and install the ports collection on that system. The
rest of your systems won't need the ports collection, which saves their disk space for other purposes.

On the system containing the ports collection, create a directory to store the packages:

# mkdir /usr/ports/packages

Then, decide which packages you'd like to create. I'll start with Exim. Before creating the package, I'll search through
the port's Makefile to see if there are any make options:

# grep WITH /usr/ports/mail/exim/Makefile

#WITH_TCP_WRAPPERS=   yes

#WITH_MYSQL=          yes

#WITH_SASLAUTHD=      yes

#WITHOUT_TLS=         yes

#WITHOUT_PERL=        yes

#WITHOUT_PAM=         yes

<snip>

This particular port has dozens of tweakables. After a more careful read-through of the Makefile, I've chosen to use
WITHOUT_IPV6 and WITH_SASLAUTHD.

Next, I need to determine if there are any dependencies:

# grep DEP /usr/ports/mail/exim/Makefile

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# grep DEP /usr/ports/mail/exim/Makefile

LIB_DEPENDS=    iconv.3:${PORTSDIR}/converters/libiconv

RUN_DEPENDS=    ${LOCALBASE}/sbin/eximon:${PORTSDIR}/mail/exim-monitor

LIB_DEPENDS+=    db4.0:${PORTSDIR}/databases/db4

LIB_DEPENDS+=    db41.1:${PORTSDIR}/databases/db41

LIB_DEPENDS+=    db-4.2.2:${PORTSDIR}/databases/db42

RUN_DEPENDS+=    ${LOCALBASE}/sbin/saslauthd:${PORTSDIR}/security/

                  cyrus-sasl2-saslauthd

RUN_DEPENDS+=    ${LOCALBASE}/sbin/pwcheck:${PORTSDIR}/security/cyrus-sasl

LIB_DEPENDS+=    pq.3:${PORTSDIR}/${POSTGRESQL_PORT}

Yup. Lots of those as well. This means I'll pass an extra argument to make to ensure the package also creates packages
for each dependency. Once I know the desired make arguments, I create the package:

# cd /usr/ports/mail/exim

# make package -DWITHOUT_IPV6 -DWITH_SASLAUTHD DEPENDS_TARGET=package

Notice that I used make package rather than the usual make install. I then included my two make options. I ended the
command with the DEPENDS_TARGET=package option. (I found this argument on a mailing list as the result of a Google
search.) If you're building any package that has dependencies, remember to include that option.

make package does two things. First, it creates and stores the package in a subdirectory of /usr/ports/packages. In this
example, that subdirectory will be mail. Second, it installs the port on the local machine, if necessary. If you don't want
to keep the application installed on the machine acting as the package repository, simply type make deinstall after
creating the package.

8.6.2 Creating the NFS Share

Once you've populated /usr/ports/packages with the packages required by your network, set up an NFS mount to share
the package repository. The easiest way to do this is with stand/sysinstall. On the machine holding the packages:

# /stand/sysinstall

Choose Configure, then Networking, and then NFS server. You should see the following message:

Operating as an NFS server means that you must first configure an 

/etc/exports file to indicate which hosts are allowed certain kinds of 

access to your local file systems. Press [ENTER] now to invoke an editor 

on /etc/exports

Unless you've changed your default editor, /etc/exports will open in vi. The default file contains some example syntax;
see man exports for additional tips.

I added this line to reflect my network settings:

/usr/ports/packages -network 192.168.2.0 -mask 255.255.255.0

Once you've saved your changes, initialize and start the NFS server:

# /etc/rc.d/nfsd rcvar

# /etc/rc.d/nfsd start

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# /etc/rc.d/nfsd start

Then, ensure the NFS server is listening for requests:

# sockstat | grep nfs

root   nfsd   3973   tcp4*:2049   *:*

Next, you'll need to create an NFS client on each machine that will use the package repository. This time, in
/stand/sysinstall, choose NFS client instead of NFS server. There are no prompts, so just select the box. Once you've
exited the utility, type:

# nfsiod -n 4

This will optimize the performance of the NFS client.

Then, check to see if you can access your package repository. In my example, the machine containing the packages has
an IP address of 192.168.2.12 and the local machine has a mount point called /packages:

# mkdir /packages

# mount 192.168.2.12:/usr/ports/packages /packages

# ls /packages

All    Latest    ipv6            mail    security    sysutils

These various subdirectories contain the Exim package and its dependencies. To get an idea of which packages are
available, use ls /packages/All.

It's also a good idea to try a test installation of a package:

# pkg_add /packages/mail/exim-4.30.tbz

Don't forget to unmount the NFS share when you're finished:

# umount /packages

8.6.3 See Also

man exports

man nfsiod

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 82 Build a Port Without the Ports Tree

 

While the ports tree is one of the most useful FreeBSD directory structures, you may have systems where
it's not appropriate to maintain the entire ports structure.

On some of your systems, disk space may be an issue. The ports tree tarball itself is a 21 MB download. Once untarred,
it will occupy around 500 MB of disk space. That space will continue to grow as you install ports since, by default,
source files download into /usr/ports/distfiles.

Does this mean that installing packages is your only alternative? Packages are convenient, but since they are
precompiled, you don't have the option of providing your own make arguments to optimize the install for your
environment.

One alternative is the anonymous CVS system. Even a minimal install of FreeBSD includes the cvs command. This allows
you to check out only the particular port skeleton you need. You'll still have the convenience of the ports collection
without actually having to install it.

8.7.1 Connecting to Anonymous CVS

The first time you use cvs, create an empty CVS password file, as CVS will complain if this file is missing:

# touch ~root/.cvspass

Then, ensure your present working directory is /usr:

# cd /usr

When using cvs to maintain your ports, be sure you are in /usr. cvs downloads the
requested files to your current working directory and will overwrite any files of the same
name.

Then, use the cvs login command to connect to a CVS server. There are five FreeBSD anonymous CVS servers; see the
Handbook reference at the end of this hack for their names and passwords. Use the setenv command to specify the
server to log into:

# setenv CVSROOT :pserver:anoncvs@anoncvs.at.FreeBSD.org/home/ncvs

# cvs login

Logging in to :pserver:anoncvs@anoncvs.at.freebsd.org:2401/home/ncvs

CVS password: anoncvs

#

Once you've successfully logged in, you'll receive your normal prompt back. You'll remain connected to the CVS server
until you explicitly log off. In the meantime, you now have the ability to issue commands either on the CVS server or on
your own system.

8.7.2 Checking Out Port Skeletons

Let's assume you have a minimum install and don't have an existing /usr/ports directory structure. To install a port, you
need the Mk and Templates directories as well as the port's Makefile.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


need the Mk and Templates directories as well as the port's Makefile.

Use the cvs checkout command to retrieve the necessary files from the CVS server:

# cvs checkout -A -P -l ports/Mk

cvs server: Updating ports/Mk

U ports/Mk/bsd.emacs.mk

U ports/Mk/bsd.gnome.mk

U ports/Mk/bsd.gnustep.mk

U ports/Mk/bsd.java.mk

U ports/Mk/bsd.kde.mk

U ports/Mk/bsd.openssl.mk

U ports/Mk/bsd.port.mk

U ports/Mk/bsd.port.post.mk

U ports/Mk/bsd.port.pre.mk

U ports/Mk/bsd.port.subdir.mk

U ports/Mk/bsd.python.mk

U ports/Mk/bsd.ruby.mk

U ports/Mk/bsd.sites.mk

# cvs checkout -A -P -l ports/Templates

cvs server: Updating ports/Templates

U ports/Templates/README.category

U ports/Templates/README.port

U ports/Templates/README.top

U ports/Templates/config.guess

U ports/Templates/config.sub

#

Since you're in the /usr directory, cvs will create /usr/ports for you and will populate the Mk and Templates
subdirectories with their sets of files. It's interesting to note how little disk space this bare-minimum ports tree
requires:

# du -h /usr/ports | tail -n1

418K    ports

That's a pretty big difference from 500 MB!

8.7.3 Finding a Port and Its Dependencies

Next, decide which port you'd like to install. The only disadvantage to not having the entire ports structure is that you
need an alternate method of discovering the name of the port you'd like to install. For example, in order to install lynx, I
need to know that it is in the www subdirectory and that there are three different versions of lynx to choose from. The
easiest way to discover this information is to use the search utility at http://www.freshports.org.

Once you find the port you're looking for, it will indicate the name of its directory. In my example, lynx-2.8.5d17 lives
in www/lynx-current.

Now it's a simple matter of checking out that port's skeleton:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Now it's a simple matter of checking out that port's skeleton:

# cvs checkout -A -P -l ports/www/lynx-current

cvs server: Updating ports/www/lynx-current

U ports/www/lynx-current/Makefile

U ports/www/lynx-current/distinfo

U ports/www/lynx-current/pkg-descr

U ports/www/lynx-current/pkg-plist

Next, check the port's Makefile to see if there are any dependencies:

# grep DEPENDS /usr/ports/www/lynx-current/Makefile

LIB_DEPENDS=    intl.5:${PORTSDIR}/devel/gettext

As it stands right now, this port will not install, as I don't have the ports skeleton for the dependency devel/gettext. So,
I'll download that port skeleton and double-check that that port doesn't have any dependencies:

# cvs checkout -A -P -l ports/devel/gettext

<snip output>

# grep DEPENDS /usr/ports/devel/gettext/Makefile

#

Okay, it looks like all dependencies are there. I'm ready to build the port:

# cd /usr/ports/www/lynx-current

# make install clean

If disk space is an issue, instead use make install distclean, which will delete the source from
/usr/ports/distfiles once the build successfully completes.

That's it. As long as you remember to look for dependencies before you issue your make install command, your minimal
ports structure should work as flawlessly as the full ports collection.

Don't forget to use cvs logout when you're finished retrieving the files you need from the CVS server.

8.7.4 See Also

man cvs

The AnonCVS section of the FreeBSD Handbook, which includes the names of the BSD CVS servers
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/anoncvs.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 83 Keep Ports Up-to-Date with CTM

 

Keep your ports up-to-date without using cvsup.

If you have a slow Internet connection, it can take a while to download the ports tree; the current tarball is over 21 MB
in size. Once you have the ports collection, keeping up-to-date with cvsup might not be such an attractive option if it
involves tying up your phone line.

Perhaps bandwidth isn't the problem. Perhaps you're just looking for an alternative way to stay current, without having
to install and configure cvsup. After all, why install additional software if you can achieve the same results using
commands that come with the base system?

Regardless of which category you fall into, CTM may be what you're looking for.

CTM was originally CVS Through Email, meaning you could receive the changes you usually receive through cvsup via
email. (In the case of numerous changes, you'd receive several, smaller mails instead of one monolithic message.) This
can be a cheaper alternative to cvsup if you're charged for the amount of time you are connected to the Internet.

However, it's even easier to retrieve these changes with ftp. FreeBSD maintains several CTM servers that contain the
changes, or deltas, to the FreeBSD source and the ports collection. This hack will concentrate on keeping your ports up-
to-date using ftp and the CTM servers.

8.8.1 Using ftp and ctm to Stay Current

Let's start with a system that doesn't have the ports collection installed. First, I'll create an empty ports directory for
ctm to work with:

# mkdir /usr/ports/

# cd /usr/ports

Then, instead of downloading and untarring the ports tree tarball, I'll ftp into a CTM server and download the latest ports
tree delta. The Handbook's section on CTM includes the addresses of the CTM mirrors.

# ftp ftp.freebsd.org

<snip banner and login>

ftp> cd pub/FreeBSD/development/CTM/ports-cur

ftp> ls

<snip most of long listing>

-rw-r--r--  1 110    root    22332066 Jan 23 08:46 ports-cur.5100xEmpty.gz

-rw-r--r--  1 110    root       67953 Jan 24 00:43 ports-cur.5101.gz

-rw-r--r--  1 110    root       14256 Jan 24 16:51 ports-cur.5102.gz

Look toward the end of the listing for the large file closest to the present date. It will have the word xEmpty in its name.
That file is your starting delta. Download that and any subsequent deltas.

ftp> get ports-cur.5100xEmpty.gz

ftp> get ports-cur.5101.gz

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ftp> get ports-cur.5101.gz

ftp> get ports-cur.5102.gz

ftp> quit

Your first ftp transfer will be the largest and longest, as you are downloading the elements
necessary to build the ports tree structure. Subsequent sessions will be very quick.

Note the .gz extension; leave the files compressed. CTM will still work, and you'll save disk space.

Save your deltas to /usr/ports, and remain in this directory when you use the ctm command.

Now that you have your starting deltas, apply them with ctm:

# ctm ports-cur.5100xEmpty.gz

ctm: warning: .ctm_status not found

<snip long output>

The first time you use ctm, it will complain about a missing .ctm_status file. Don't worry; it will create it for you. After a
few seconds, it will send a lot of output to stdout. Once the command has finished, you'll have a fully installed version
of the ports tree.

That .ctm-status file will tell you the delta number of that ports tree:

# more .ctm-status

ports-cur 5100

Then, simply apply any subsequent deltas in ascending order. This will correctly incorporate all of the changes to the
ports tree.

# ctm ports-cur.5101.gz

# ctm ports-cur.5102.gz

# more .ctm-status

ports-cur 5102

That's it. Whenever you want to update your ports tree, ftp into your CTM mirror, download the deltas containing a
higher number than your current version, and apply them in order.

It's up to you whether to keep the compressed versions of the files you download. Once you've successfully applied a
delta—as indicated by .ctm-status—you no longer need to store that delta file. However, if download speed or time is an
issue, consider keeping a copy of that large starting delta, just in case you ever want to recreate your ports tree from
scratch.

8.8.2 Hacking the Hack

If you're too lazy or forgetful to ftp for changes periodically, consider receiving them automatically via email. Changes
occur once or twice a day. Subscribe to the ctm-ports-cur mailing list to receive them
(http://lists.freebsd.org/mailman/listinfo/ctm-ports-cur/).

Complete the online subscription form, and reply to the email that asks you to confirm your subscription.

However, do not subscribe to that mailing list until you've configured your system to handle those emails. Basically, you
want the system to intercept those CTM updates instead of sending them directly to your mailbox. There are two ways
to do this: either create a sendmail alias or create a procmail recipe. See man ctm_rmail for detailed instructions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


to do this: either create a sendmail alias or create a procmail recipe. See man ctm_rmail for detailed instructions.

It's also a good idea to verify the PGP signatures before applying those updates. You can find detailed instructions for
this, as well as for using ctm_rmail to handle incoming deltas, in this message from the ctm-users mailing list:
http://lists.freebsd.org/pipermail/ctm-users/2003-October/000039.html.

8.8.3 See Also

man ctm_rmail

The CTM section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/ctm.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 84 Navigate the Ports System

 

Use built-in commands to keep abreast of the FreeBSD ports collection.

What first attracted me to FreeBSD—and what has definitely kept my attention since—is the ports collection. Over
10,000 applications are a mere make install clean away. For a software junkie like myself, it is indeed Nerdvana to no
longer scour the Internet for software or fight my way through dependency hell just to convince an application to
install.

Admittedly, it's easy to get lost in a sea of ports. How do you choose which application best suits your needs? How do
you keep track of which ports have been installed on your system? How do you make sure you don't inadvertently
delete a dependency? Read on to see how to get the most out of the built-in utilities for managing ports.

8.9.1 Finding the Right Port

You know you want to install some software to add functionality to your system. Wouldn't it be great if you could
generate a list of all the ports that are available for your specific need? Well, you can, and it's almost too easy with the
built-in port search facility. In this example, I'll look for ports dealing with VPN software:

% cd /usr/ports

% make search key=vpn | more

Port:        poptop-1.1.4.b4_2

Path:        /usr/ports/net/poptop

Info:        Windows 9x compatible PPTP (VPN) server

Maint:        ports@FreeBSD.org

Index:        net

B-deps:        expat-1.95.6_1 gettext-0.12.1 gmake-3.80_1 libiconv-1.9.1_3

R-deps:

<snip>

I snipped the results for brevity as this command gives the details of each port associated with VPNs. The format of the
output is quite useful, as it gives the name of the port itself, its location in the ports tree, a brief description, the
address of the maintainer, as well as the build and run dependencies.

If you're only interested in seeing how many ports are available, pipe the results to grep instead of more:

% make search key=vpn | grep Port

Port:        poptop-1.1.4.b4_2

Port:        pptpclient-1.3.1

Port:        ike-scan-1.2

Port:        openvpn-1.5.0

Port:        tinc-1.0.2

Port:        vpnd-1.1.0

Perhaps you'd prefer to know their locations:

% make search key=vpn | grep Path

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% make search key=vpn | grep Path

Path:        /usr/ports/net/poptop

Path:        /usr/ports/net/pptpclient

Path:        /usr/ports/security/ike-scan

Path:        /usr/ports/security/openvpn

Path:        /usr/ports/security/tinc

Path:        /usr/ports/security/vpnd

What if you already know the name of the port you want to install but aren't sure what versions are available? Use
search name= instead. For example, this command will search for all ports with netscape in their names:

% make search name=netscape | grep Port

Port:        pt_BR-netscape7-7.02

Port:        netscape-remote-1.0_1

Port:        netscape-wrapper-2000.07.07

Port:        netscape-communicator-4.78

Port:        netscape-navigator-4.78

Port:        linux-netscape-communicator-4.8

Port:        linux-netscape-navigator-4.8

Port:        netscape7-7.1

If you find the search facility useful, it is a good idea to update your ports index periodically. Become the superuser and
issue the following command (it may take a while, so don't execute it if you're in a hurry):

# cd /usr/ports

# make index

Finally, if you really want to fine-tune your search results, spend a few moments reading the examples in
/usr/ports/Tools/scripts/README.portsearch.

8.9.2 Dealing with Installed Ports

You've spent a few months installing software and trying out new applications. How do you keep track of all of that
software and all of those dependencies? pkg_info is your friend.

My favorite pkg_info switch is definitely -x. (There's not really a mnemonic for this switch; I tend to think of it as "give
me version x.") If I stack it with any other switch, I don't need to know the full name (including the complete version
number) of a port. For example:

% pkg_info -xc lynx

will show the one-line comment (-c) of every application that starts with lynx, regardless of the version number. Besides
saving memory cells for other purposes, it's an excellent way to find out if you have more than one version of lynx
installed.

After installing a port, it's useful to see if there were any messages, as these often contain configuration instructions:

% pkg_info -xD xmms

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% pkg_info -xD xmms

Information for xmms-esound-1.2.8_2:

Install notice:

Xmms supports Gzipped and uncompressed skins.  If you would like to use

Zip format skins you will need to ensure archivers/unzip is installed.

How many times have you installed a port and had no clue regarding the name of the executable, much less the names
and locations of any configuration files or documentation? Thank goodness for -L, the file-listing flag:

% pkg_info -xL lynx | more

Information for lynx-2.8.4.1d:

Files:

/usr/local/man/man1/lynx.1.gz

/usr/local/bin/lynx

/usr/local/etc/lynx.cfg.default

/usr/local/share/doc/lynx/CHANGES

<snip>

Depending upon the application, the listing may be quite long. A judicious pipe to grep bin, grep man, or grep doc may
better suit your purposes.

8.9.3 Checking Dependencies Before Uninstalling

Before uninstalling an application, it is always a good idea to see if any other packages require that application as a
dependency. For example, you've typed pkg_info | more and see the application ORBit-0.5.17. You think to yourself, "I
don't remember installing, or even ever using, this application. Where did it come from? Maybe I should just get rid of
it." This command will clear up your mini-mystery:

% pkg_info -xR ORBit

Information for ORBit-0.5.17_1:

Required by:

bonobo-1.0.22

flashplugin-mozilla-0.4.10_4

<snip>

Since the snipped output took up most of a page, it looks like this application is useful after all. Don't worry; if you did
try to uninstall that application, pkg_delete would refuse since it is required by those other applications. However, it is
always nice to be aware of these things ahead of time.

If you really do want to force the uninstall of an application, use -F (force) with pkg_delete.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8.9.4 Checking the Disk Space Your Ports Use

What happens if you go a little install-crazy and end up with more applications than disk space? Use the -s (size) switch
to determine how much space an application uses. Send the output either to a pager:

% pkg_info -as | more

or to a file that you can read at your leisure:

% pkg_info -as > sizes

You'll then have an idea of which applications are using the most space so that you can decide which ones are worth
uninstalling. Remember, you also have the comment and dependencies switches to help you decide.

Yet another way to find out what software you have installed is to use pkg_version:

% pkg_version | more

This will list each installed application, in alphabetical order. You'll note that each application is followed by one of the
three symbols in Table 8-1.

Table 8-1. pkg_version symbols
Symbol Meaning

= The application is up-to-date.

< There is a newer version of the application available.

> Your index may be out-of-date.

So, to determine which applications require upgrading:

% pkg_version -l "<"

Note that you need to place quotes around the less-than sign or your shell will complain about a missing name for your
redirect. If you don't receive any output, congratulations! All of your applications are up-to-date. If you do receive some
output, you know which applications require an upgrade.

Alternately, this command will show all applications that are out-of-date:

% pkg_version -L "="

See man pkg_version if you didn't catch the difference between -l and -L.

If you prefer a more verbose output than =, >, or <, try this command:

% pkg_version -v | more

If for some reason you're not using cvsup to keep your ports tree up-to-date, you can still check your installed ports
against the latest ports tree:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


against the latest ports tree:

% pkg_version -v ftp://ftp.freebsd.org/pub/FreeBSD/branches/-current \

    /ports/INDEX | more

8.9.5 See Also

/usr/ports/README

man pkg_info

man pkg_delete

man pkg_version

man ports

The Installing Packages and Ports section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/ports.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 85 Downgrade a Port

 

It doesn't happen often, but occasionally portupgrade will upgrade a port to a newer version that doesn't
sit well with your system.

It can be very frustrating when an application that was working just fine an hour ago suddenly stops working after an
upgrade. Now what?

At first glance, the solution isn't obvious. Because ports don't contain revision labels, you can't just cvsup back to an
earlier version. However, the commits or changes to each port are tracked in the CVS repository. You could learn the
syntax of the cvs command and use it to connect to the CVS repository, manually review the port's commit history, find
an earlier version that worked on your system, check out that version, and rebuild the port. Whew! There must be an
easier way.

That's what Heiner Eichmann thought when he created portdowngrade . His script does all of the work for you; you only
need to choose which version of the port to use.

8.10.1 Using portdowngrade

Installing portdowngrade is easy enough:

# cd /usr/ports/sysutils/portdowngrade

# make install clean

A few moments later, you'll have the script and an informative manpage. To run the script, simply specify which port
you'd like to downgrade. Here, I'll demonstrate an arbitrary port:

# portdowngrade apinger

portdowngrade 0.1 by Heiner Eichmann

Please note, that nothing is changed in the ports tree

unless it is explicitly permitted in step 6!

Seeking port apinger ... found: net/apinger

Step 1: Checking out port from CVS repository

CVS root directory: :pserver:anoncvs:anoncvs@anoncvs.FreeBSD.org/home/ncvs

Step 2: Reading the port history from the CVS repository

Step 3: Analyzing the port history from the CVS repository

Step 4: Load port version numbers and present results

Keys: <space> : next page                      d : details

            p : previous page

      <enter> : leave presentation and downgrade if wanted

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


number     date         portversion  comment

  1  2003/11/05 15:39:39             Fix whitespace.

  2  2003/06/07 11:43:13             Fix breakage.

  3  2003/06/04 09:49:31             Add startup script for apinger.

  4  2003/05/07 11:37:52             Change maintainer email to my @FreeBSD.

  5  2003/03/28 03:41:45             Update to 0.6.1

  6  2003/02/21 13:14:34             De-pkg-comment.

  7  2003/01/02 17:54:17             Update to 0.6

  8  2002/10/14 14:02:52             upgrade to 0.5

  9  2002/10/05 19:06:00             Upgrade to 0.4.1.

 10  2002/07/19 23:02:53             Update to 0.3

 11  2002/07/18 12:55:14             Alarm Pinger (apinger) is a little tool

Here are the first four of six steps run by portdowngrade. It has logged into the CVS server, found the desired port, and
presented you with its commit history. This particular port has had 11 revisions and number 1 is the latest.

At this point, the script pauses for user input. I'm going to go back a few revisions to Version 4:

Total lines: 11. Command: press enter

Enter version number to change port to (0: exit): 4

Step 5: Checking out chosen date of the port from the CVS repository

Step 6: Modifying the port

Port: net/apinger

at : 2003/05/07 11:37:52

Type 'yes' to bring the port to the state of the date above

or 'no' to exit without changing anything. Note, that this only changes

the port, not the installed software! yes or no: yes

The port has been set to the selected version. Install it if you wish.

If you have portupgrade installed, you should run portsdb -Uu now, 

to see the changes in the ports database. In any case

portupgrade -f apinger will install the changed port. 

Note: if you run cvsup, the port

is changed back to the chosen label!

#

When I typed yes, I chose to change the port version in the ports tree. The downgrade won't actually take place until I
run portupgrade -f apinger. Note the use of the -f flag to force the reinstallation of an installed port. Since this port has
changed in my tree, the reinstallation will overwrite my previously installed version.

# portupgrade -f apinger

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# portupgrade -f apinger

[Updating the pkgdb <format:bdb1_btree> in /var/db/pkg ... - 288 

packages found (-0 +2) .. done]

--->  Downgrading 'apinger-0.6.1_1' to 'apinger-0.6.1' (net/apinger)

<snip build output>

=  ==>   Registering installation for apinger-0.6.1

=  ==>  Cleaning for apinger-0.6.1

--->  Cleaning out obsolete shared libraries

[Updating the pkgdb <format:bdb1_btree> in /var/db/pkg ... - 288 

packages found (-0 +1) . done]

8.10.2 Preventing Automated Re-Upgrades

You'll notice that the next time you run your cvsup process [Hack #80], your downgraded port will appear as needing
upgrading. If you've totally automated the process, it may re-upgrade to that new, buggy version.

It's easy to prevent that from happening. In fact, you can prevent automated upgrading of any port by using the
HOLD_PKGS array in pkgtools.conf. Start by copying the sample configuration file to the real configuration file:

# cp /usr/local/etc/pkgtools.conf.sample /usr/local/etc/pkgtools.conf

Then, open /usr/local/etc/pkgtools.conf in your favorite editor and search for this section:

# HOLD_PKGS: array

# This is a list of ports you don't want portupgrade(1) to upgrade,

# portversion(1) to suggest upgrading, or pkgdb(1) to fix.

# You can use wildcards ("ports glob" and "pkgname glob").

# -f/--force with each command will override the held status.

# e.g.:

#   HOLD_PKGS = [

#     'bsdpan-*',

#     'x11*/XFree86*',

#   ]

HOLD_PKGS = [

  'bsdpan-*',

]

Simply follow the syntax to add the packages you want to keep as is:

HOLD_PKGS = [

  'bsdpan-*',

  'apinger-*',

]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8.10.3 See Also

man cvs

man portdowngrade

The portdowngrade home page (http://portdowngrade.sourceforge.net)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 86 Create Your Own Startup Scripts

 

Ensure your favorite installed applications start at boot time.

Some ports are nice enough to create their own startup scripts in /usr/local/etc/rc.d when you install them.
Unfortunately, not all ports do. You may wonder why you're not receiving any email, only to discover a week later that
your mail server didn't start at your last bootup!

In those cases, you'll have to write your own startup script. Fortunately, that's easy.

8.11.1 Was a Script Installed?

Every port comes with a packing list of installed executables, files, and manpages. To see if a particular port will install
a startup script, search its pkg-plist for the word rc. Here, I'll check the packing lists for the stunnel and messagewall
ports:

% grep -w rc /usr/ports/security/stunnel/pkg-plist

etc/rc.d/stunnel.sh.sample

% grep -w rc /usr/ports/mail/messagewall/pkg-plist

%

Use the -w switch so grep searches for the full word rc, not just words containing those two characters. If there isn't a
startup script, as is the case for messagewall, you'll just get your prompt back.

If the startup script ends with .sample, you'll need to copy it to a new file without that extension. This is often the case
with applications that expect you to change the sample configuration file to suit your system's requirements.

Also, note the relative path. The packing list knows that, by default, the files installed by a port will start with the prefix
/usr/local. That is, in the previous example, you'll find stunnel's startup script in /usr/local/etc/rc.d, not in /etc/rc.d.

The converse is also true. If you don't want an installed application starting itself at boot
time, either remove the .sh extension from its startup script or use chmod -x to make it
nonexecutable.

8.11.2 Creating Your Own Startup Script

Suppose you'd like to have messagewall start automatically at boot time. That means you'll need to write a script.
Fortunately, you don't have to reinvent the wheel, as all startup scripts follow the same pattern. If you've installed
some applications, you most likely already have startup scripts populating /usr/local/etc/rc.d. If you don't, use the
template startup script from the Handbook:

#!/bin/sh

echo -n ' FooBar'

case "$1" in

start)

        /usr/local/bin/foobar

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        /usr/local/bin/foobar

        ;;

stop)

        kill -9 `cat /var/run/foobar.pid`

        ;;

*)

        echo "Usage: `basename $0` {start|stop}" >&2

        exit 64

        ;;

esac

exit 0

This script starts a generic application named foobar. When you copy the template, copy it to /usr/local/etc/rc.d with the
name of the application followed by a .sh extension. In my case, I'll call the file /usr/local/etc/rc.d/messagewall.sh.

Next, replace the word foobar with the name of the application. Change these three lines to reflect the application's
name:

echo -n ' Messagewall'

/usr/local/bin/messagewall

kill -9 `cat /var/run/messagewall.pid`

Remember to double-check the location of that executable, as some ports instead install to /usr/local/sbin or
/usr/X11R6/bin:

% which messagewall

/usr/local/bin/messagewall

Occasionally, a port will install its main binary with an odd executable name. For example, the executable for netcat is
not netcat. In that case, searching the packing list will reveal all:

% grep bin /usr/ports/net/netcat/pkg-plist

bin/nc

Just remember that there's a /usr/local in front of that bin/nc.

8.11.3 Testing the Script

Once you've saved your changes, make the script executable with chmod +x. Then, see if it works:

# /usr/local/etc/rc.d/messagewall.sh

 MessagewallUsage: messagewall.sh {start|stop}

# /usr/local/etc/rc.d/messagewall.sh start

<snip startup messages>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<snip startup messages>

Pay attention if you receive any error messages. Often they indicate a typo in the application's configuration file.
Address those and ensure you can successfully start the application.

Once the application successfully starts, make sure you can stop it:

# /usr/local/etc/rc.d/messagewall.sh stop

<snip error message regarding PID>

Some applications, like this one, don't record their PID in /var/run, so your script will produce an error instead of
stopping the application. Most of these applications take over your prompt when you start them, so you can simply
return to the terminal (or background process if you started it as such) and press Ctrl-c to end the process. This isn't
the cleanest of procedures, but it is effective nonetheless.

8.11.4 Hacking the Hack

If you're using FreeBSD 5.1 or higher, you might want to experiment with writing your own scripts using the new rc.d
structure inherited from NetBSD. As of this writing, /etc/rc.d, or the collection of system scripts, uses this structure. In
the future, /usr/local/etc/rc.d will likely migrate to this scripting style.

The new structure adds other commands, such as status and reload, so your scripts can do more than start and stop.

When writing your own scripts, add these lines to your template:

. /etc/rc.subr

name="foo"

command="/usr/local/bin/${name}"

pidfile="/var/run/${name}.pid"

your stuff here

load_rc_config $name

run_rc_command "$1"

The first line is mandatory, as it calls the needed subroutines. Your script will also require the last two lines. Next come
three variables that every script should include. There are dozens of other useful variables, so read through the scripts
in /etc/rc.d/ for ideas.

I also find NetBSD's packages list useful (see ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/README-all.html). If
you select a port and click on its history then files, you can look for existing scripts. These scripts are written in the
NetBSD rc.d style, so you'll have lots of examples to browse.

Don't include the rcvar= variable in your local scripts. This is for system daemons that can
be enabled and disabled using rc.conf variables.

8.11.5 See Also

man rc.subr

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man rc.subr

The startup scripts section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/configtuning-starting-services.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 87 Automate NetBSD Package Builds

 

Use a sandbox to build applications that play nicely within your network.

Many NetBSD users are responsible for multiple systems running on different architectures. Instead of rebuilding the
same package on machine after machine, it's often desirable to build packages for all of these machines from the most
powerful one, delivering the appropriate binary packages across the network. However, problems can arise when not all
machines run the same version of NetBSD or when you want different optimizations or build settings on each box.

The solution to this dilemma is simple: create a sandbox with the version of NetBSD used in the target machine and
build the necessary binary packages inside it. This sounds easy, but it can be a very tedious and error-prone task. It is
even more complex if you want to automate periodic package rebuilding. Fortunately, that's our final goal in this hack.

To simplify things, I assume that you have a relatively fast desktop machine running NetBSD-current, where you will
build binary packages, and a server machine running the stable version of NetBSD (1.6.2 at the time of this writing).

8.12.1 Installing pkg_comp

pkg_comp (also known as Package Compiler) can simplify the creation of these sandboxes: it handles any version of
NetBSD inside a chroot jail and automates the build process of binary packages inside it. Its only restriction is that both
the builder and the destination machine share the same architecture.

Let's begin by installing pkg_comp on the builder machine (make sure you have Version 1.15 or greater):

# cd /usr/pkgsrc/pkgtools/pkg_comp

# make install && make clean

After installation, spend some time reading man 8 pkg_comp and getting familiar with its structure because you will be
using it as a reference guide during the configuration. Also ensure that your kernel configuration file contains file-system
NULLFS. (See man 4 options for more information.)

8.12.2 Configuration Variables

Now you are ready to set up pkg_comp. The configuration file tells pkg_comp how to create the sandbox. Type the
following commands to create and edit a sample configuration file:

# pkg_comp maketemplate

# vi /root/pkg_comp/default.conf

You will notice lots of variable definitions. All you need to do is set some values; pkg_comp handles everything else. For
our purposes, you need to know only some of these variables (see Table 8-2) and change them to suit your system.

Table 8-2. pkg_comp variables
Variable Usage

DESTDIR Gives the location of the sandbox. This needs lots of disk space, as it will store a complete NetBSD
system. In this example, use /var/chroot/pkg_comp/default.

DISTRIBDIR
The location of NetBSD installation sets, whether downloaded from the FTP site or built using
build.sh. pkg_comp. The /binary/sets string will be appended to the value you provide. The resulting
directory should contain the files listed in the SETS and SETS_X11 variables. In this example, use
/home/NetBSD/NetBSD-1.6.2/i386.

NETBSD_RELEASE
Specifies the version of NetBSD to unpack in the sandbox. This version must be compatible with
pkgtools/libkver. If you leave it set to no, pkg_comp assumes the builder system and the sandboxed
system are the same version. In this example, its value is 1.6.2.

REAL_SRC Provides the location of pkgsrc distfiles. In this example, use /home/NetBSD/distfiles.

REAL_PACKAGES Identifies the destination of binary packages. In this example, use /home/NetBSD/packages/1.6.2.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


REAL_PACKAGES Identifies the destination of binary packages. In this example, use /home/NetBSD/packages/1.6.2.

REAL_PKGSRC Locates the pkgsrc tree in your system. In this example, use /usr/pkgsrc.

REAL_DISTFILES Gives the location of the NetBSD source tree in your system. In this example, use /usr/src-1.6.
Because we are building for 1.6.2 and the builder is running current, this will not be /usr/src.

SETS Lists the NetBSD sets to be extracted inside the sandbox. Do not change the default value.

SETS_X11
Lists the X11R6 sets to be extracted inside the sandbox. Set this to no if you do not want to build
packages for the X Window System, but avoid modifying the default list. In this example, set it to
no, since I assume you do not have the X Window System installed on the server.

REAL_PKGVULNDIR
The location of the pkg-vulnerabilities file in your system. In this example, use /usr/pkg/share. If
you are not using audit-packages, then set USE_AUDIT_PACKAGES to no. The use of audit-packages is
strongly encouraged because it won't install packages that have known security problems.

Now is the time to enable compile-time optimizations for the packages you are going to build. As you modify the CFLAGS
and CXXFLAGS variables, keep in mind that the configuration file is a shell script. Remember to quote your values
properly.

8.12.3 Initializing and Using the Sandbox

After setting your values and creating all of the referenced directories, it's time to initialize the sandbox. It is as easy as
typing:

# pkg_comp makeroot

When this command finishes, the sandbox is ready to build packages for your server. In this example, the packages will
linked against 1.6.2 libraries using any specified optimizations.

Suppose you want binary packages for Apache and screen. Compile them with the following call to pkg_comp:

# pkg_comp build www/apache misc/screen

This will place apache-1.3.29.tgz and screen-4.0.2.tgz—as well as their dependencies—under
/home/NetBSD/packages/1.6.2/All. They're now suitable for transferring to the destination machine. Install them with
pkg_add.

If you do not need to build more packages using pkg_comp, you can safely free the space used by the sandbox with the
command shown next. Note that this removes only the sandbox, not binary packages:

# pkg_comp removeroot

8.12.4 Automating the Process

We can go one step further and configure pkg_comp to create the sandbox, build a predefined set of packages for your
server, and remove the sandbox when finished, all automatically. This takes only a single command with pkg_comp's
automatic mode.

To enable automatic mode, re-edit the configuration file, /root/pkg_comp/default.conf, and define the AUTO_PACKAGES
variable. This variable takes the list of packages you want to build for your server. In this example:

AUTO_PACKAGES="misc/screen www/apache"

That's it for the configuration side. To check if this works, make sure the sandbox does not exist, and execute
pkg_comp's automatic mode:

# pkg_comp removeroot

# pkg_comp auto

After a while, you will find binary packages for screen and Apache in your package repository, just as in the earlier

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After a while, you will find binary packages for screen and Apache in your package repository, just as in the earlier
example.

If the list of packages is extensive, the build will take a long while, which may not be desirable in some environments
(for example, in cases when you need to shut down the builder during the night). This is not a problem: if you stop the
automatic process with Ctrl-c at any point, you can resume it later by issuing:

# pkg_comp auto resume

To finish the automation, configure a cron job to rebuild your package set automatically once a week. Edit root's crontab
to add the line:

# crontab -e

0       3       *       *       *       /usr/pkg/sbin/pkg_comp auto

8.12.5 Hacking the Hack

I've shown the most basic usage of pkg_comp in this hack. If you found it useful, there are many more things to learn,
and the manpage is a good starting point.

Here are some other ideas to try:

Configure a cron job to rebuild all the packages you need for your own machine, so that you can easily restore
them at any point with pkg_add.

Create two configuration files with different names.

Enable GCC 3 with extensive optimizations.

8.12.6 See Also

man pkg_comp

man pkg_add

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 88 Easily Install Unix Applications on Mac OS X

 

Many Mac users often seem a little surprised when I tell them I run XChat and other Unix applications on Mac OS X
alongside native Aqua applications (such as Safari, Finder, and iPhoto). What they don't realize is that it's simple to
install such applications thanks to the Fink and DarwinPorts projects. This hack is dedicated to installing and using
DarwinPorts.

This hack assumes you have a basic understanding of Terminal.app and the underlying Unix bits of Mac OS X. You also
need to have the Developer Tools installed.

8.13.1 Installing DarwinPorts

Before you can use DarwinPorts, you must install the build system and the actual ports tree. The easiest way to
accomplish this is by using CVS. Before checking the project out of CVS, you'll need to decide where you'd like it to
exist on your hard drive. I usually use ~/work.

Open Terminal.app (or an xterm if you have X11 installed), and change to the directory where you'll install DarwinPorts.
Then type the following commands at the prompt (when the server asks for a password, just press Return):

% alias dcvs cvs -d \

    :pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od

% dcvs login

% dcvs co -P darwinports

You should now see a bunch of output scrolling past in the terminal window. If you do, good; the project is checking out
of CVS and onto your hard disk. If you don't, double-check the three commands just shown to make sure you typed
everything correctly. Once you've fetched the project, it's time to install it.

Run ls in the terminal window; you should see a darwinports directory. cd to it and rerun ls:

% cd darwinports

% ls

CVS  Makefile  README  README.fr  base  doc  dports  www

At this point, it's a very good idea to read the README file.

The next step is to build and install the applications that will allow you to install various ports. From the darwinports
directory:

% sudo -s

<enter your password>

# make && make install && make clean

By default, DarwinPorts uses /opt/local as its prefix. To change that to something else, edit /etc/ports/ports.conf.

Next, open /etc/ports/sources.conf and change the file:// line to point to the proper location on your system. For
example:

file:///Users/jim/work/darwports/dports

Now that everything is configured, add the directory containing DarwinPorts binaries to your shell's path. If you're using
tcsh (the default shell on Mac OS X 10.2 and earlier), add the following to your ~/.cshrc file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


tcsh (the default shell on Mac OS X 10.2 and earlier), add the following to your ~/.cshrc file:

set path = ($path /opt/local/bin)

If you're using bash, as Mac OS X 10.3 does, add the following line to your ~/.bashrc file:

export PATH=$PATH:/opt/local/bin

In order for your shell to recognize the new path, either start a new shell or source your configuration file:

% source ~/.cshrc

$ source ~/.bashrc

8.13.2 Finding Ports to Install

Before you can install a port, you'll need to make sure it exists in the ports tree. This can be done in one of two ways.
The first is using port search, which is very simple to use. For example, to look for xchat:

% port search xchat

irc/xchat       1.8.11  IRC client with gtk and text interfaces

irc/xchat2      2.0.1   IRC client for gtk2

The alternative is to use the web-based interface found on the DarwinPorts web site. You can view by category and
search from this interface, but because the PortIndex file it uses isn't always up-to-date, you may have better luck with
the port command.

8.13.3 Installing Ports

Now that we've found something to install, it's time to learn how to install it. If you've ever worked with the FreeBSD
ports collection, this section should look very familiar to you.

Sticking with XChat as our example, we have two options. We can install the xchat port, which uses GTK+ version 1, or
the xchat2 port, which uses GTK+ Version 2. For the sake of example, we'll choose xchat2.

There are also two ways to install the port. The first way is to change to the port's directory and run port install:

% cd /path/to/darwinports/dports/irc/xchat2

% sudo -s

<enter your password>

# port install && port clean

The second method can be run from anywhere on the filesystem:

% sudo -s

<enter your password>

# port install xchat2 && port clean xchat2

As long as you have your path set properly and the port you're trying to install is in the PortIndex, installation should
proceed normally.

8.13.4 Updating the Ports Tree

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since the ports developers frequently add new ports and update existing ports, you'll want to keep your ports tree up-
to-date. Doing so is fairly simple:

% cd /path/to/darwinports

% cvs -q up -Pd

If you notice changes to the base directory, you'll want to rebuild the DarwinPorts base system as well. This is done
using the same commands used to install it initially:

% cd /path/to/darwinports

% sudo -s

<enter your password>

# make && make install && make clean

As you'd expect, the port command has other options, such as uninstall, fetch, extract, and build, to name a few. Check the
port manpage for a full explanation of each option and more information.

At the time of writing, there are over 750 ports in the DarwinPorts tree and that number is growing daily. If your
favorite application isn't already available in the ports tree, you can either create a port of it or join the DarwinPorts
mailing list and request that someone else create a port of it.

8.13.5 See Also

man port

http://www.bsdnews.org/01/darwinports.php (the original article on BSDnews)

The DarwinPorts web site (http://darwinports.opendarwin.org/)

The DarwinPorts web interface to the ports collection (http://darwinports.opendarwin.org/ports/)

The DarwinPorts mailing list (http://www.opendarwin.org/mailman/listinfo/darwinports/)

The Fink web site (http://fink.sourceforge.net/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 9. Grokking BSD
Introduction

Section 89.  How'd He Know That?

Section 90.  Create Your Own Manpages

Section 91.  Get the Most Out of Manpages

Section 92.  Apply, Understand, and Create Patches

Section 93.  Display Hardware Information

Section 94.  Determine Who Is on the System

Section 95.  Spelling Bee

Section 96.  Leave on Time

Section 97.  Run Native Java Applications

Section 98.  Rotate Your Signature

Section 99.  Useful One-Liners

Section 9.13.  Fun with X

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
Heinlein fans will recognize the word grok as the Martian word for "to be one with" or "thorough understanding."
Indeed, you will sometimes feel like a stranger in a strange land when learning Unix. As any Unix guru can attest,
however, the rewards far outweigh the initial learning curve.

This final chapter is a hodgepodge of useful and sometimes amusing tidbits. A sure sign you're on the right road to
grokking BSD is when you're able to see both the usefulness and the quirky humor that is inherent in all Unix systems.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 89 How'd He Know That?

 

Make the most of your available resources.

Unless you've achieved Unix guru status, you probably find yourself asking "how did he know that?" whenever you're
around other Unix users or read a really cool snippet in a book. Here's a little secret: he probably had to look it up. As I
tell my students, "No one knows everything. Make sure the one thing you do know is where to go to get the information
you need."

9.2.1 Online Resources

If you're using FreeBSD, there is no shortage of well-written documentation. If you haven't already, bookmark the
FreeBSD Documentation page at http://www.freebsd.org/docs.

There you'll find hyperlinks to the four handbooks, the FAQ, how-to articles, online manpages, as well as other sources
of information. There's a very good chance that someone else has already documented what you want to do.

9.2.2 Keeping Offline Resources Up-to-Date

Online resources are great, but what if you don't always have access to an Internet connection? If you installed the doc
distribution, you already have most of those resources on your hard drive. You'll find the handbooks, FAQ, and articles
in /usr/share/doc. That directory contains symlinks so you can quickly navigate to the desired resource.

If you haven't installed the doc directory structure, you can do so through /stand/sysinstall.
Enter Configuration, then Distributions, and use your spacebar to select doc.

The online resources receive daily updates, so be sure to update your docs when you use cvsup. Make sure your cvsup
file includes this line:

doc-all tag=.

If you're not using cvsup [Hack #80] yet, you have no idea what you're missing!

As cvsup retrieves the latest docs, it will write them to /usr/doc. This will not overwrite or update existing files in
/usr/share/doc. Also, if you've ever poked about /usr/doc, you probably noticed that the resources themselves are
written in SGML, making them a bit hard to read (unless you enjoy wading through tags).

How do you merge in those new changes? It's going to require a conversion of SGML to HTML. To achieve that, first
install the docproj-nojadetex port:

# cd /usr/ports/textproc/docproj-nojadetex 

# make install clean

Then:

# cd /usr/doc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cd /usr/doc

# make install clean

This will merge all of the changes into the HTML files in /usr/share/doc. If you add this step to your cvsup routine, your
offline resources will always be up-to-date.

9.2.3 What Did the Manpage Forget to Say?

Have you ever read a manpage and been unclear on how a certain switch worked? Perhaps you thought you understood
the syntax until you tried it out and only managed to produce syntax error messages? Even more maddeningly, you
might scour the Internet for concrete examples only to find endless links to the same manpage!

When this happens to me, I consider the program's source as a possible answer. If you're thinking, "I'm not a
programmer; I couldn't read source code if my life depended on it," don't just skip to the next hack. You can still read
comments, and most source in the FreeBSD core is very well commented.

Here's an example. I was reading through man mac_portacl, which indicates that the rule MIB takes this syntax:

idtype:id:protocol:port[,idtype:id:protocol:port,...]

but didn't give a specific example of a working rule. Since this particular MAC policy doesn't do anything until you
successfully create a rule, I was looking for a more concrete example of an effective rule. And, since this module is
fairly new, there weren't any tutorials or how-tos on the Internet. So, before hitting the mailing lists, I took a peek at
the source.

To locate any C source file, use the locate command. Pass it the name of what you're looking for, followed by a .c. For
example:

% locate mac_portacl.c

/usr/src/sys/security/mac_portacl/mac_portacl.c

You must have src installed in order for this to work, and, as indicated, it will only find source code written in C. Happily,
that's most of the FreeBSD core. You can use /sys/sysinstall to install all of the src distributions. If disk space is an issue
or it's not appropriate to install source on the system you're logged into, you can read the source online at
http://minnie.tuhs.org/FreeBSD-srctree/FreeBSD.html.

If you have src installed but don't see any results or do receive an error message that your database is too small,
update the database and try again:

% su

Password:

# /usr/libexec/locate.updatedb

>>> WARNING

>>> Executing updatedb as root. This WILL reveal all filenames

>>> on your machine to all login users, which is a security risk.

# exit

Once you've located the source file, skim through its comments:

% grep '*' /usr/src/sys/security/mac_portacl/mac_portacl.c | tail +30

Here, I told grep to search for an asterisk (*), since C comments always include one. If you forget to enclose the
asterisk within single quotes (''), you won't receive any results, as it is also a shell wildcard. You may want to adjust tail
+30 for your own purposes. Source code begins with anywhere from 25 to 40 lines of copyright and licensing
comments. Here I've told tail to ignore the first (+) 30 lines of comments.

In this particular case, the comments included the example I hoped for:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In this particular case, the comments included the example I hoped for:

* # sysctl security.mac.portacl.rules="uid:425:tcp:80,uid:425:tcp:79"

*

* This ruleset, for example, permits uid 425 to bind TCP ports 80 (http)

* and 79 (finger).  User names and group names can't be used directly

* because the kernel only knows about uids and gids.

Your mileage will vary, but source is definitely another resource at your disposal.

9.2.4 See Also

man hier (includes a description of the contents of /usr/share/doc/)

man tail

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 90 Create Your Own Manpages

 

As a Unix administrator, the one word of sage advice you can give to any user that is guaranteed to solve
any problem is RTFM.

What's an administrator to do when informed by a user that there is no manpage to read? Perhaps the application in
question is a custom application or script, or perhaps it's a third-party program that didn't come with a manpage. Why
not create the missing manual yourself?

9.3.1 Manpage Basics

Creating a manpage isn't all that difficult. After all, a manpage is simply a text file—more specifically, a gzipped text file
sprinkled with groff macros. (I'm quite sure groff gets its name from the choking sound you make as you try to decipher
its manpage.) For man to do its magic, which starts with being able to find the page, the manpage must live in a
directory manpath can see.

Not surprisingly, manpath's configuration file, /etc/manpath.config, contains those paths:

% grep MAP /etc/manpath.config

# MANPATH_MAP          path_element         manpath_element

MANPATH_MAP           /bin                 /usr/share/man

MANPATH_MAP           /usr/bin             /usr/share/man

MANPATH_MAP           /usr/local/bin       /usr/local/man

MANPATH_MAP           /usr/X11R6/bin       /usr/X11R6/man

Basically, manpages to programs that come with the system live in /usr/share/man, third-party applications use
/usr/local/man, and X applications use /usr/X11R6/man. If you ls any of these directories, you'll find directory names
that go from man1 to man9. If you're rusty on the function of each manpage section, run:

% whatis intro

intro(1)                 - introduction to general commands (tools and 

                           utilities)

intro(2)                 - introduction to system calls and error numbers

intro(3)                 - introduction to the C libraries

intro(4)                 - introduction to devices and device drivers

intro(5)                 - introduction to file formats

intro(6)                 - introduction to games

intro(7)                 - miscellaneous information pages

intro(8)                 - introduction to system maintenance and 

                           operation commands

intro(9)                 - introduction to system kernel interfaces

To read a specific section, specify the number between the command and the page, as in man 7 foo.

9.3.2 Creating a Manpage

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can whip up a nicely formatted manpage by knowing only three groff commands, as shown in Table 9-1.

Table 9-1. groff commands
Command Usage

.\" A comment

.TH The title

.SH NAME The only required section

The easiest way to convince yourself of this is to take a few minutes to type out the following custom manpage. When
you're finished, save it as /usr/local/man/man1/boss.1 (as the root user) and view it with man boss. That way, you'll be
able to compare those formatting sequences with how the results are displayed on your screen.

.\" Manpage for boss. 

.\" Contact admin@mycompany.com to correct errors or omissions. 

.TH man 1 "04 January 2004" "1.0" "boss man page"

.SH NAME

boss \- man page for boss

.SH SYNOPSIS

boss

.SH DESCRIPTION

The boss is an ornery creature that can be

appeased with doughnuts and the occasional afternoon

off for golf.

.SH OPTIONS

The boss does not take any options.

.SH SEE ALSO

doughnut(1), golf(8)

.SH BUGS

No known bugs at this time. 

.SH AUTHOR

Dru Lavigne (dlavigne6@sympatico.ca)

If you wish, compress your manpage with gzip /usr/local/man/man1/boss.1.

If you take the time to view this listing, you'll find it looks like any manpage. In fact, it's an excellent idea to take a look
at several manpages before you create your own. This will give you an idea of how you'd like your custom page to
appear.

Notice first that the lines that began with .\" don't appear anywhere in the formatted manpage, as they are comments.
The information in the title (.TH) line appears at the very top and bottom of the manpage. The .SH lines appear nicely
bolded, and the following lines are indented for you. Remember that SH. NAME is mandatory, but you can create as
many .SH sections as you wish.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


many .SH sections as you wish.

As you read other manpages, you'll see that SYNOPSIS, DESCRIPTION, OPTIONS, EXAMPLES, DIAGNOSTICS, ENVIRONMENT,
SEE ALSO, HISTORY, and BUGS are quite common. You'll also get an idea of what type of text belongs in each section.

9.3.3 Getting Fancier

If you want to include fancier formatting in your manpage, find an existing manpage that has the desired format. Then,
instead of opening the manpage with man, send it to zmore. (Remember, you won't be able to read gzipped manpages
directly with more.)

For example, if I want to include switches, I'd borrow from a manpage with switches. ls springs to mind. So I'll read
through:

% zmore /usr/share/man/man1/ls.1.gz

and compare it to man ls. In this manpage, the switches occur in the DESCRIPTION section and the first switch is -A. The
switch itself is in bold text and the switch description is indented with the characters . and .. covered over with white.
The formatting sequences to achieve this are:

.BL -tag -width indent

.It Fl A

List all entries except for

.Pa \&.

and

.Pa .. .

If you're curious as to the exact meaning of each formatting sequence, you'll find them scattered throughout man 7
groff. If you don't have the time to be curious, simply find the section that does what you want and add it to your own
manpage. Save your results, then see if it worked by sending your custom manpage to man.

9.3.4 Printing Manpages

It's often desirable to print certain manpages. If you've ever tried sending a manpage directly to a printer, you probably
found that the results weren't what you were expecting. However, you can use groff to convert the manpage to
something more printer-friendly. PostScript is usually your best bet, and you're in luck, as groff knows how to convert to
PostScript.

First, it's not a bad idea to get the exact location of the source of the manpage. Continuing with ls as an example:

% man -w ls

/usr/share/man/cat1/ls.1.gz (source: /usr/share/man/man1/ls.1.gz)

Note that you're interested in the source, not in the location that includes the word cat.

Once you know the location, use zcat to open the compressed file, pipe the results to groff, and redirect the groff output
to a PostScript file:

# zcat /usr/share/man/man1/ls.1.gz | groff > ls.ps

# file ls.ps

ls.ps: PostScript document text conforming at level 3.0

Note that the default invocation of groff assumes that you wish to convert a manpage to PostScript, so you need no
additional switches.

9.3.5 Hacking the Hack

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you'd like to publish your manpages on a local web site, groff can also convert to HTML—see man 1 groff for details.

If you prefer to convert to PDF, consider installing GNU GhostScript from your ports or packages collection. Once
installed, read man 1 gs for more details.

9.3.6 See Also

man manpath

man 7 groff (the groff formatting commands—look for the Request Short Reference section)

man 7 mdoc (a mini-tutorial that includes a template for creating manpages)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 91 Get the Most Out of Manpages

 

Now that you know how to create your own manpages, you'll want to know how to get the most out of
your manpage viewing.

Since most documentation on Unix systems lives within manpages, it pays to know how to get the most out of your
manpage-reading experience. How do you make sure you're aware of all of the manpages installed on a system? How
do you zero in on the information you need, without having to read an entire manpage? Yes, it's a great experience to
read all of man tcsh at least once in your life, but you don't want to do that when you're only interested in a certain shell
variable.

9.4.1 Finding Installed Manpages

You may have noticed that, by default, whatis [Hack #13] doesn't find custom manpages or those installed by third-
party applications. Not only is this inconvenient, but it can also prevent your users from getting the most out of the
applications installed on a system.

Remember /etc/manpath.config from [Hack #90] ?

% grep MAP /etc/manpath.config

# MANPATH_MAP    path_element        manpath_element

MANPATH_MAP      /bin                /usr/share/man

MANPATH_MAP      /usr/bin            /usr/share/man

MANPATH_MAP      /usr/local/bin      /usr/local/man

MANPATH_MAP      /usr/X11R6/bin      /usr/X11R6/man

The makewhatis command actually creates the whatis database and, by default, makewhatis reads only /usr/share/man.
It'll skip any manpages in /usr/local/man and /usr/X11R6/man, because it doesn't know they exist!

To gather in those missing manpages, pass these extra directories to makewhatis:

# makewhatis /usr/local/man /usr/X11R6/man

#

The superuser can run this command at any time, say, after installing new software. If
you're a forgetful or appropriately lazy superuser, consider adding this as a regular cron
job.

Now users will be aware of all of the manpages on the system.

9.4.2 Navigational Tricks

There's nothing worse than wading through dozens of pages of information that are irrelevant to your question. Why
wade when you can zero in on the information you want? When you read a manpage, man sends the text to your
default pager—a program designed for speedy navigation.

FreeBSD 4.1 replaced the more pager with less. less is chock-full of useful and configurable navigation tricks, so this is a
case where less really is more.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


case where less really is more.

Even though your .cshrc file and man man show more as your default pager, remember more
is now really less.

less even comes with its own help system containing an itemized list of all of its neat tricks. Whenever you're in a
manpage—or, for that matter, in any file you've sent to a pager—simply type h to see the help screen.

I won't repeat that help here, but Table 9-2 shows some navigational keys to get you moving around.

Table 9-2. less navigation keys
Key Behavior

Enter Scrolls down one line

y Scrolls up one line (think "yikes, I missed it!")

Spacebar Scrolls down one page

b Scrolls up (back) one page

g Goes to the beginning of the manpage

q Quits the pager (so you don't have to read the whole manpage)

9.4.3 Customizing less

It's well worth your time to experiment with how less formats its output. For example, when you open a manpage, the
prompt at the bottom of your screen indicates how many bytes of that manpage you've read. If you type -m, you'll
change to the short prompt, a single colon (:). -M changes to the long prompt, which displays the line range you're
currently viewing.

If you really want to know what line you're on, try -N. Read up on -P to create your own custom prompt string.

You can also configure how many lines you scroll, also known as the window size. Here I'll change the window size to
10 lines:

-z

Scroll window size: 10

Scroll window size is 10 lines  (press RETURN)

Now when I press my spacebar, I'll scroll down 10 lines instead of the entire screen.

If you experiment with the dozens of options listed in help, you'll find that they only last for the contents of the current
manpage. If you find options you like, make them permanent by adding them to your ~/.cshrc file. Here I'll
permanently configure the -M, or long, prompt and a window size of 10:

setenv LESS Mz10

Note that I've simply created a string of desired options, minus the switch indicator (-). I'll also have to change the line
setenv PAGER more to setenv PAGER less, so that applications that honor my pager choice will use less instead of more. To
test your changes, force the shell to reread its configuration file, then open up a manpage:

% source ~/.cshrc

% man man

That manpage should now have a customized prompt and window.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


9.4.4 Searching Text

Now that you can move around, you'll want to search for the information you need. After all, you're usually looking for
something specific when you read a manpage. Fortunately, less provides an easy-to-use search feature. Press /, the
forward slash. Your prompt will change to / while less waits for you to type in a search string of one or more words.

Consider adding I to the less configuration in your .cshrc file to enable case-insensitive
searching. Without it, searching for /long format in man ls will skip the desired section, as it
is entitled The Long Format.

Press Enter once you've typed in a search string, and less will take you to the first occurrence of that string. Repeatedly
pressing n will scroll you through the next occurrences. Press N to scroll back through your search results. If you change
your mind and want to search for something else, press /.

Suppose you're reading or searching along and find an interesting bit you'll want to refer to again. Mark your current
position with:

m

mark: a

Here I've marked my position with the letter a. I'll then carry on with reading the results of the rest of my search. To
return to that position, I simply type a single quote and the position marker ('a). You can mark as many as 26 positions
(one for each lowercase letter).

You can also use two single quotes ('') to toggle back and forth between two positions. For example, I may be in man
systat and can't believe the display includes a pigs option. So I do a search for /pigs and read up on that type of display.
'' will bring me back to the original line that piqued my curiosity. Another '' will put me back at my search result.

9.4.5 See Also

manpath

man man

man makewhatis

man less

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 92 Apply, Understand, and Create Patches

 

Sometimes only the little differences matter.

Despite all your best efforts, eventually you'll end up with multiple versions of a file. Perhaps you forgot to keep your
.vimrc in sync between two machines [Hack #10] . Alternatively, you may want to see the changes between an old
configuration file and the new version. You may even want to distribute a bugfix to a manpage or program.

Sending the entire changed file won't always work: it takes up too much space and it's hard to find exactly what
changed. It's often easier and usually faster to see only the changes (see [Hack #80] for a practical example). That's
where diff comes in: it shows the differences between two files.

As you'd expect, applying changes manually is tedious. Enter patch, which applies the changes from a diff file.

9.5.1 Finding Differences

Suppose you've shared a useful script with a friend and both of you have added new features. Instead of printing out
both copies and marking differences by hand or, worse, trying to reconcile things by copying and pasting from one
program to another, use diff to see only the differences between the two programs.

For example, I've customized an earlier version of the copydotfiles.pl script from [Hack #9] to run on Linux instead of
FreeBSD. When it came time to unify the programs, I wanted to see the changes as a whole. diff requires two
arguments, the source file and the destination. Here's the cryptic (at first) result:

$ diff -u copydotfiles.pl copydotfiles_linux.pl

--- copydotfiles.pl        2004-02-23 16:09:49.000000000 -0800

+++ copydotfiles_linux.pl        2004-02-23 16:09:32.000000000 -0800

@@ -5,8 +5,8 @@

 #    - change ownership of those files

 # You may wish to change these two constants for your system:

-use constant HOMEDIR => '/usr/home';

-use constant SKELDIR => '/usr/share/skel';

+use constant HOMEDIR => '/home';

+use constant SKELDIR => '/etc/skel';

 use strict;

@@ -19,8 +19,8 @@

 {

     for my $dotfile (@ARGV)

     {

-        my $source = catfile( SKELDIR( ),        'dot' . $dotfile );

-        my $dest   = catfile( $user->{homedir},         $dotfile );

+        my $source = catfile( SKELDIR( ),        $dotfile );

+        my $dest   = catfile( $user->{homedir}, $dotfile );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         if (-e $dest)

         {

This output reveals only three changes. Linux and FreeBSD keep user home directories and skeleton configuration files
in different directories. Fortunately, this only involved changing two constants at the top of the file.

The -u flag produces unified output, mingling the source and destination lines. It's not the
default, but it's the easiest to read and to explain. Count yourself lucky if you never run
across the alternatives.

As you may have guessed from the name, only the differences appear. Each of the two files has a separate marker at
the leftmost column. Let's look at that header again:

--- copydotfiles.pl            2004-02-23 16:09:49.000000000 -0800

+++ copydotfiles_linux.pl      2004-02-23 16:09:32.000000000 -0800

The first line marks the source file, the FreeBSD version. We're marking changes against that file. diff will mark lines
that have changed from that file with a leading minus (-) character. The second line marks the destination file, the
Linux version. Lines that have changed in this file appear with a leading plus (+) character.

diff produces output that you can apply to the first file to produce the second file. That is, you should remove (or
subtract) all of the lines with the leading minus character and add all of the lines with the leading plus character to
produce the destination file.

The rest of the output consists of hunks. Each hunk also has a header:

@@ -5,8 +5,8 @@

This indicates that the hunk starts on line 5 of the source file and affects eight lines. It also starts on the fifth line of the
destination file and affects eight lines—a simple substitution. In general, you can ignore this unless you're working on
something really detailed.

The actual lines of the file are more important. Pay close attention to the leading characters.

#    - change ownership of those files

# You may wish to change these two constants for your system:

-use constant HOMEDIR => '/usr/home';

-use constant SKELDIR => '/usr/share/skel';

+use constant HOMEDIR => '/home';

+use constant SKELDIR => '/etc/skel';

use strict;

Again, this is a simple substitution. Since diff only works on lines, it has no way of indicating that only the value of the
constants has changed.

9.5.2 Applying Patches

By redirecting this output to a file, I can produce a patch file. Though anyone who can read diff output could apply those
changes manually, it's much easier to use the patch program, especially if the file I'm patching has had other changes in

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


changes manually, it's much easier to use the patch program, especially if the file I'm patching has had other changes in
the meantime. As long as those changes do not overlap, patch will work magically well.

Suppose I'd written:

$ diff -u copydotfiles.pl copydotfiles_linux.pl > dotfiles.patch

Now anyone who wants to apply the changes from the latter file to the former file can apply the patch. Copy the
dotfiles.patch file into the same directory as copydotfiles.pl and use the command:

$ patch < dotfiles.patch

patching file copydotfiles.pl

If you're lucky, the patch will apply with little fanfare. If you're unlucky, things may have moved around in your file
since the creation of the patch. In that case, patch may warn about some fuzz. If I rearrange a couple of lines in the first
hunk that aren't actually changed in the patch, I might see a message such as:

$ patch < dot.patch

patching file copydotfiles.pl

Hunk #1 succeeded at 7 with fuzz 2 (offset 2 lines).

If I were really unlucky, I'd have had changes in the lines the patch also changed. patch tries as hard as it can to
massage patches, but sometimes it just can't resolve things. You'll see output like this in those cases:

$ patch < dot.patch

patching file copydotfiles.pl

Hunk #1 succeeded at 7 with fuzz 2 (offset 2 lines).

Hunk #2 FAILED at 21.

1 out of 2 hunks FAILED -- saving rejects to file copydotfiles.pl.rej

In this case, it's up to you, the user, to resolve any changes. patch has actually created two new files,
copydotfiles.pl.orig and copydotfiles.pl.rej. The first contains the file before any patching attempt; the second contains
the hunks patch could not apply.

Fortunately, the original file does contain the hunks that could apply without conflicts. In this case, it's easier to open
the copydotfiles.pl.rej file to apply the changes manually.

***************

*** 21,28 ****

  {

      for my $dotfile (@ARGV)

      {

-         my $source = catfile( SKELDIR( ),        'dot' . $dotfile );

-         my $dest   = catfile( $user->{homedir},           $dotfile );

          if (-e $dest)

          {

--- 21,28 ----

  {

      for my $dotfile (@ARGV)

      {

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      {

+         my $source = catfile( SKELDIR( ),        $dotfile );

+         my $dest   = catfile( $user->{homedir},   $dotfile );

          if (-e $dest)

          {

This format is a little harder to read than the unified format, but it's reasonably straightforward. The top half comes
from the source file in the patch and represents lines 21 through 28 of the original file. Again, the leading minus
character represents lines to remove. The bottom half comes from the destination file in the patch, also lines 21
through 28. This contains two lines to add.

Looking in copydotfiles.pl around those lines, it turns out that the first line containing SKELDIR( ) has changed subtly,
thus causing the conflict:

{

    for my $dotfile (@ARGV)

    {

        my $source = catfile( SKELDIR( ),        "dot$dotfile" );

        my $dest   = catfile( $user->{homedir},        $dotfile );

        if (-e $dest)

        {

I have two options: I could edit the file directly, making the modifications as seen in either the source file or the
destination file of the patch, or I could ignore this hunk if the local modifications are better than those of the patch.

In this case, the patch is clearly an improvement. Since it's only two lines, I'll just make the changes directly.
Otherwise, I could revert the changes in my local file and try to reapply the rejected hunks.

9.5.3 Creating Patches

It's often handy to create patches from normal files, as in the previous example, when sharing code or text with
another user. It's also useful to see the differences between configuration files when upgrading an application. Knowing
how to read a diff between your version of httpd.conf and httpd.conf.default can save you hours of debugging time.

What if you want to find differences between entire directories, though? Suppose you want to see the changes between
two versions of a program. If you can't upgrade to the new version right away but want to see if there's a patch
available that you can apply, use diff on the directories themselves. Be sure to pass the recursive flag (-r) if you want to
compare files in subdirectories:

$ diff -ur sdl/trunk SDL_Perl-2.1.0 > sdl_trunk.patch

If that's not appropriate and you want to patch only a couple of files at a time, run diff multiple times. Append the
output to a combined patch. patch is smart enough to recognize the start of file markers:

$ diff -u sdl/trunk/CHANGELOG SDL_Perl-2.1.0/CHANGELOG >> \

    sdl_textfiles.patch

$ diff -u sdl/trunk/README SDL_Perl-2.1.0/README >> \

    sdl_textfiles.patch

$ diff -u sdl/trunk/INSTALL SDL_Perl-2.1.0/INSTALL >> \

    sdl_textfiles.patch

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    sdl_textfiles.patch

Finally, if you need to create a patch for a file that doesn't exist, use the null file flag (-n) with /dev/null as the source:

$ diff -un /dev/null SDL_Perl-2.1.0/LICENSE >> \

    sdl_textfiles.patch

This will create the file when someone applies the patch. You could also touch the file in the source directory.

9.5.4 Revision Control

Life's much easier when you're working with revision control. Someday, you may find yourself patching source code or
text files in core BSD. Modify the code in your tree, make sure it works, and then use cvs diff -u to generate patches to
mail to the appropriate development list.

Subversion, the likely successor to CVS, generates the right kind of patches without the -u flag—simply use svn diff.
There is a FreeBSD port and a NetBSD package for Subversion. You can also download binary packages and source for
most operating systems from http://subversion.tigris.org/.

Once you're used to using patches to keep track of file differences, you may find yourself tempted to keep all important
files under version control. Hey, why not?

9.5.5 See Also

man diff

man patch

"CVS homedir," Joey Hess's Linux Journal article on keeping his home directory in CVS
(http://www.linuxjournal.com/article.php?sid=5976)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 93 Display Hardware Information

 

If you're new to FreeBSD, you may be wondering where to find information about your system's hardware
and the resources it uses.

You've probably noticed that your FreeBSD system didn't ship with a Microsoft-style Device Manager. However, it does
have plenty of useful utilities for gathering hardware information.

9.6.1 Viewing Boot Messages

When you boot your system, the kernel probes your hardware devices and displays the results to your screen. You can
view these messages, even before you log in, by pressing the scroll lock key and using your up arrow to scroll back
through the message buffer. When you're finished, press scroll lock again to return to the login or command prompt.

You can type dmesg any time you need to read the system message buffer. However, if it's been a while since bootup,
it's quite possible that system messages have overwritten the boot messages. If so, look in the file
/var/run/dmesg.boot, which contains the messages from the latest boot. This is an ASCII text file, so you can send it to
a pager such as more or less.

You may find it more convenient to search for something particular. For example, suppose you've added sound support
to your kernel by adding device pcm to your kernel configuration file. This command will show if the PCM device was
successfully loaded by the new kernel:

% grep pcm /var/run/dmesg.boot

pcm0: <Creative CT5880-C> port 0xa800-0xa83f irq 10 at device 7.0 on pci0

pcm0: <SigmaTel STAC9708/11 AC97 Codec>

In this example, the kernel did indeed probe my Creative sound card at bootup.

9.6.2 Viewing Resource Information

Sometimes you just want to know which devices are using which system resources. This command will display the
IRQs, DMAs, I/O ports, and I/O memory addresses in use:

% devinfo -u

Interrupt request lines:

    0 (root0)

    1 (atkbd0)

    2 (root0)

    3 (sio1)

    4 (sio0)

    5 (rl0)

    6 (fdc0)

    7 (ppc0)

    8 (root0)

    9 (acpi0)

    10 (pcm0)

    11 (rl1)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    12 (psm0)

    13 (root0)

    14 (ata0)

    15 (ata1)

DMA request lines:

    0-1 (root0)

    2 (fdc0)

    3 (ppc0)

    4-7 (root0)

I/O ports:

    0x0-0xf (root0)

    0x10-0x1f (acpi_sysresource0)

    0x20-0x21 (root0)

<snip>

I/O memory addresses:

    0x0-0x9ffff (root0)

    0xa0000-0xbffff (vga0)

    0xc0000-0xcbfff (orm0)

    0xcc000-0xfbffffff (root0)

    0xfc000000-0xfdffffff (agp0)

    0xfe000000-0xffffffff (root0)

Alternately, use devinfo -r if you prefer to see your listing by device.

If you're unsure what a device is, use the whatis command. For example, in my listing, ppc0 uses IRQ 7 and DMA 3. To
find out what ppc0 is:

% whatis ppc

ppc(4)         Parallel Port Chipset driver

Don't include the trailing number when using the whatis command.

9.6.3 Gathering Interface Statistics

There are several ways to gather network interface information. One of the handiest is the -i switch to netstat:

% netstat -i

Name    Mtu Network       Address            Ipkts Ierrs  Opkts Oerrs  Coll

rl0*   1500 <Link#1>      00:05:5d:d2:19:b7    0     0        0     0     0

rl1*   1500 <Link#2>      00:05:5d:d1:ff:9d    0     0        0     0     0

ed0    1500 <Link#3>      00:50:ba:de:36:33  15247   0     11301    0    78

ed0    1500 192.168.2     genisis.           15091   -     11222    -     -

lp0*   1500 <Link#4>                           0     0        0     0     0

lo0   16384 <Link#5>                         179     0      179     0     0

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


lo0   16384 your-net      localhost          179     -      179     -     -

This command shows all interfaces, both physical and virtual. This particular system has three network interface cards:
rl0, rl1, and ed0. The first two interfaces are shut down, as indicated by the * after the device name. These three are
Ethernet cards, as indicated by their MAC addresses. (This is also an excellent way to find all of the MAC addresses on
your system).

The ed0 interface and loopback interface (lo0) have each been configured with a hostname and an IP address, as
indicated by the Network column. If you're only interested in seeing interfaces configured with an IPv4 address, add the
-f (family) switch:

% netstat -i -f inet

ed0    1500 192.168.2     genisis.           15091   -     11222    -     -

lo0   16384 your-net      localhost          179     -      179     -     -

9.6.4 Viewing Kernel Environment

You can also find hardware information by using kenv to view your kernel environment. kenv will dump several screens
worth of information, so use grep when possible to zero in on the information you want. For example, to view IRQ
information:

% kenv | grep irq

hint.ata.0.irq="14"

hint.ata.1.irq="15"

hint.atkbd.0.irq="1"

hint.ed.0.irq="10"

hint.fdc.0.irq="6"

hint.ie.0.irq="10"

hint.le.0.irq="5"

hint.lnc.0.irq="10"

hint.pcic.1.irq="11"

hint.ppc.0.irq="7"

hint.psm.0.irq="12"

hint.sio.0.irq="4"

hint.sio.1.irq="3"

hint.sio.2.irq="5"

hint.sio.3.irq="9"

hint.sn.0.irq="10"

If you're unsure what is using a listed IRQ, use whatis to look up the second word (the one after hint). For example, this
will show what is using my IRQ 12:

% whatis psm

psm(4)      - PS/2 mouse style pointing device driver

I actually prefer the output of kenv to that of devinfo. Here, I'll search for the I/O addresses used by my COM ports:

% kenv | grep port | grep sio

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% kenv | grep port | grep sio

hint.sio.0.port="0x3F8"

hint.sio.1.port="0x2F8"

hint.sio.2.port="0x3E8"

hint.sio.3.port="0x2E8"

To see which devices are disabled:

% kenv | grep disabled

hint.sio.2.disabled="1"

hint.sio.3.disabled="1"

BSD gives the first com port the number zero, so it looks like I have COM3 and COM4 disabled on this system.

9.6.5 See Also

man dmesg

man devinfo

man netstat

 man kenv

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 94 Determine Who Is on the System

 

As a system administrator, it pays to know what's happening on your systems.

Sure, you spend time reading your logs, but do you take advantage of the other information-gathering utilities available
to you? Silently, in the background, your system tracks all kinds of neat information. If you know enough to peek under
the system hood, you can get a very good view of what is occurring on the system at any given point in time.

For the experienced hacker, the output from these commands may suggest interesting
scripting possibilities.

9.7.1 Who's on First?

Have you ever needed to know who logged into a system and for how long? Use the users command to see who's
logged in now:

% users

dru biko

Perhaps you prefer to know who is on which terminal. Try who. Here, the H includes column headers and the u shows
each user's idle time:

% who -Hu

NAME             LINE     TIME         IDLE  FROM            

dru              ttyv1    Jan 25 08:59 01:00 

biko             ttyv5    Jan 25 09:57   .   

dru              ttyp0    Jan 25 09:58 00:02 (hostname)

Feel free to experiment with who's switches to find an output that suits your needs. Here, dru and biko have logged in
physically at this system's keyboard using virtual terminals 1 and 5. dru has also logged in over the first psuedoterminal
(over the network) from the specified hostname.

To find out what everyone is doing, use w:

% w

10:07AM  up  1:20, 9 users, load averages: 0.02, 0.02, 0.09

USER             TTY      FROM              LOGIN@  IDLE WHAT

dru              v1       -                 8:59AM  1:08 pine

biko             v5       -                 9:57AM     - w

dru              p0       hostname          9:58AM     4 -csh (csh)

If you're just interested in that first line of output, use uptime.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you're just interested in that first line of output, use uptime.

Notice that as a regular user, I was easily able to find out who is logged in, where they are, and what they're currently
doing. If you don't want regular users knowing what commands other users are currently running, see [Hack #57] .

9.7.2 When Did That Happen?

You're not limited to finding out what's happening at this particular moment. Use lastlogin to see the most recent time at
which each of your users logged in:

% lastlogin

dru        ttyv1                   Sun Jan 25 08:59:36 2004 

biko       ttyv5                   Sun Jan 25 09:57:18 2004 

dlavigne   ttyv6                   Sat Jan 24 09:48:32 2004 

dru        ttyp0    hostname       Sun Jan 25 09:58:50 2004 

rembackup  ttyp0    hostname       Fri Jan 23 01:00:00 2004

For a slightly different output, last can show who is still logged in:

% last | grep still

dru        ttyp0    hostname       Sun Jan 25 09:58   still logged in

dru        ttyv1                   Sun Jan 25 08:59   still logged in

biko       ttyv5                   Sun Jan 25 09:57   still logged in

Do you need a record of system shutdowns or reboots? The /var/log/wtmp database holds this information. Use last to
view the desired statistics:

% last reboot

reboot           ~                         Tue Jan 20 15:37

reboot           ~                         Tue Nov 25 07:24

reboot           ~                         Sun Aug  3 09:05

wtmp begins Tue Jul  1 15:27:26 EDT 2003

% last shutdown

shutdown         ~                         Wed Dec 24 22:14

wtmp begins Tue Jul  1 15:27:26 EDT 2003

9.7.3 Details, Details

Another option to consider is enabling system accounting, which maintains a database of extremely detailed statistics of
every process and subprocess that has been executed on a system.

# touch /var/account/acct

# accton /var/account/acct

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# accton /var/account/acct

Note that the accton command will fail if you don't specify the name of the accounting log or if that log doesn't already
exist. Also, in a queer case of logic, typing accton with no arguments really turns accounting off.

Once accounting is enabled, use lastcomm to view the contents of /var/account/acct:

% lastcomm

lastcomm    -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

man         -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

sh          -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

sh          -F    dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

less        -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

col         -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

groff       -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

grotty      -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

troff       -     dlavigne     ttyv6      0.08 secs Sun Jan 25 11:33

tbl         -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

zcat        -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

cron        -F    root         __         0.00 secs Sun Jan 25 11:33

sh          -     operator     __         0.00 secs Sun Jan 25 11:33

sh          -     operator     __         0.00 secs Sun Jan 25 11:33

dd          -     operator     __         0.00 secs Sun Jan 25 11:33

mv          -     operator     __         0.00 secs Sun Jan 25 11:33

mv          -     operator     __         0.00 secs Sun Jan 25 11:33

mv          -     operator     __         0.00 secs Sun Jan 25 11:33

rm          -     operator     __         0.00 secs Sun Jan 25 11:33

jot         -     operator     __         0.00 secs Sun Jan 25 11:33

accton      -     root         ttyv0      0.00 secs Sun Jan 25 11:32

This comes from a quiet system one minute after enabling accounting. A cron job happened to be running at the time,
hence the operator lines. The user dlavigne6 also opened up a manpage during that period. Note all of the processes
involved before man actually started.

This command can also show you which processes ended abnormally. Search for the D
flag, which indicates that the process dumped core:

% lastcomm | grep -w "D"

Depending upon your security requirements, you may not want users to have access to such detailed information. After
all, lastcomm will show every process run by every user. Tightening permissions will fix that:

# chmod 600 /var/account/acct

# su dlavigne

% lastcomm

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% lastcomm

lastcomm: /var/account/acct: Permission denied

Also, if you're planning on using lastcomm as an extra audit trail, consider changing this file's flags [Hack #56] . You'll
also want to have plenty of disk space on the filesystem holding the database.

Finally, to enable system accounting when the system boots, add this line to /etc/rc.conf:

accounting_enable="YES"

9.7.4 See Also

man users

man who

man w

man lastlogin

man last

man lastcomm

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 95 Spelling Bee

 

For those who edit their text at the command line.

Like most computer users, you probably find yourself spending a fair bit of time typing, whether responding to email,
navigating the web, or working on that résumé or thesis. How often do you find yourself looking at a word, wondering if
you've spelled it correctly? How often do you rack your brain trying to find a more interesting or descriptive word?

You've probably discovered that Unix doesn't come with a built-in dictionary or thesaurus. Sure, you can install a
feature-rich GUI office suite, but what alternatives are there for users who prefer less bloat on their systems or are
accessing systems from the command line?

9.8.1 Quick Spellcheck

If you're in doubt about the spelling of a word, try using look. Simply include as much of the word as you're sure about.
For example, if you can't remember how to spell "bodacious" but you're pretty sure it starts with "boda":

% look boda

bodach

bodacious

bodaciously

If you don't have access to a GUI, see [Hack #12] .

I find look especially helpful with suffixes. It's very handy if you can't remember when to use "ly", "ally", or "ily". For
example:

% look mandator

mandator

mandatorily

mandatory

9.8.2 Creating a Dictionary or Thesaurus

look is a useful spellchecker, but it won't show you the meanings or synonyms of a word. Accordingly, I found myself
spending a fair bit of time at http://dictionary.reference.com/. While there, I noticed a pattern. Whatever word I
searched for was appended to the URL as search?q=<myword>. Whenever I used the dictionary, the URL started with
dictionary, which changed to the word thesaurus whenever I did a thesaurus lookup. That suggested to me that it would
be very easy to generate my own custom lookup utility, so I started out with these two scripts:

% more ~/bin/dict

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% more ~/bin/dict

#!/bin/sh

# script to look up the definition of word from dictionary.reference.com

# replaces $1 with user's search string

# or gives error message if user forgets to include search string

if test $1

then

   w3m "http://dictionary.reference.com/search?q="$1""

else

   echo "Don't forget to include the word you would like to search for"

   exit 1

fi

% more ~/bin/thes

#!/bin/sh

# script to find the synonym of word from thesaurus.reference.com

# replaces $1 with user's search string

# or gives error message if user forgets to include search string

if test $1

then

   w3m "http://thesaurus.reference.com/search?q="$1""

else

   echo "Don't forget to include the word you would like to search for"

   exit 1

fi

Recognize those positional parameters we saw before in [Hack #13] ? When I use either script, I include the word that
I would like to look up.

The utility I chose to grab the results is the command-line browser w3m, which can be built from /usr/ports/www/w3m.
If you have already installed another command-line browser, such as lynx or links, specify your browser in your own
script. Don't forget to make your script executable with chmod +x. Then, to look up the meaning of a word:

% dict palladium

Or, to find its synonyms and antonyms:

% thes brusque

If you're not stuck at the command line, Mozilla-based browsers allow you to create similar
shortcuts. See Asa Dotzler's article on custom keywords at
http://www.mozilla.org/docs/end-user/keywords.html.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


9.8.3 Improved Dictionary

Well, that's a fair start—my browser now automagically takes me to the correct section of an online dictionary or
thesaurus whenever I'm curious about a particular word. However, what if I want to forgo using a browser altogether?
FreeBSD comes with the fetch utility specifically to retrieve web information. Why not use it to retrieve the results?

Before editing my scripts, I tried various invocations of fetch at the command line until I had achieved my desired
results. I started out by replacing w3m with fetch (note that I had to supply a word, in this case test, as I was at the
command line, not within a script):

% fetch "http://dictionary.reference.com/search?q=test"

This worked, but it resulted in a file called search?q=<myword>, where <myword> was the word I had supplied as the
parameter. After a while, my home directory would be full of hundreds of files starting with search?q.

So, I specified the name of a file to which to write the results:

% fetch -o results "http://dictionary.reference.com/search?q=test"

Now, regardless of the number of times I use my script, I'll only have one file called results. There's a problem with that
file, though. It's an HTML file, so unless I enjoy wading through HTML tags in order to read my results, I have to open
up that file in a browser. That sorta defeats my goal of not using a browser.

So, I went out on the Web looking for an HTML-to-ASCII converter. I tried out several before settling on a Perl script
called html2txt .

I then tried piping the results file to the converter:

% fetch -o results "http://dictionary.reference.com/search?q=test" \ 

        | html2txt results

Cannot open HTML source file : results, Error No such file or directory

Receiving results: 21791 bytes

That's when I hit a timing issue. It takes a few seconds for fetch to retrieve the file, so html2txt complains when the shell
asks for it to work on that (as of yet) nonexistent file. To solve that, I asked the shell to wait until after fetch was
finished by using && instead of |:

% fetch -o results "http://dictionary.reference.com/search?q=test" \

        && html2txt results

To finish off my command, I ask for the ASCII-fied file to be opened up in a pager so I can view the results:

% fetch -o results "http://dictionary.reference.com/search?q=test" \

        && html2txt results && more results.txt

Note that this particular converter creates an ASCII file with the same name, but with a .txt extension.

9.8.4 Become a Crossword Champion

Did you know that your system has a built-in crossword-puzzle solver? You may never have to leave a square empty
again if you remember this little trick.

Consider a word that resembles:

t _ _ _ k _ _ _r

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


t _ _ _ k _ _ _r

This one-liner will show your possibilities, allowing you to choose the word that matches the clue definition:

% grep -wi 't...k...r' /usr/share/dict/words/  

thickener

trickster

trinketer

truckster

Here, grep searched through the dictionary words installed on your system. (This is the same file that look searches.)
Use single quotes for your search phrase, and replace each blank square in your crossword with a ..

9.8.5 See Also

man fetch

The Perl HTML-to-text converter at http://www.ftls.org/en/examples/perl-tools/html2txt.shtml

"Wanna Cheat at Crosswords?" (http://www.osxfaq.com/tips/unix-tricks/week23/friday.ws)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 96 Leave on Time

 

Use your terminal's built-in timers and schedulers.

You know how it is. You sit down in front of a keyboard and quickly become absorbed in your work. At some point you
remember to look up, only to notice that everyone else is gone for the day. If that doesn't describe you, I bet you can
think of at least one person it does describe.

9.9.1 Don't Forget to Leave

Fortunately the leave command can save you from the embarrassment of forgetting important appointments. Use it at
any time by typing:

% leave

When do you have to leave?

There are three ways to respond to that question:

Press Enter to abort.

Type hhmm, where hh represents the hour and mm represents the minute.

Type +number, where number represents how many hours or minutes from now you'd like to leave.

For example, to leave at 5 PM:

% leave 500

Alarm set for Tue Dec 30 17:00:00 EST 2003. (pid 50097)

leave 1700 will achieve the same results.

Or, to leave in 45 minutes:

% leave +45

Alarm set for Tue Dec 30 9:52:00 EST 2003. (pid 50108)

Be sure to include the + if you're not specifying an actual time.

You can then carry on with your day. Five minutes before it's time to leave, your terminal will beep and display this
message:

You have to leave in 5 minutes.

You'll receive another warning one minute before the set time, then every minute thereafter. leave definitely works for
the procrastinator and those who always need to do just one more thing before leaving. The only way to end the
incessant nagging is to log out or killall leave (but please don't take that last command literally!).

Consider placing /usr/bin/leave in /usr/share/skel/dot.cshrc [Hack #9].

9.9.2 Creating Terminal Sticky Notes

leave is nice for scheduling your own departure, but what if you want to schedule the execution of commands? I bet

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


leave is nice for scheduling your own departure, but what if you want to schedule the execution of commands? I bet
you're thinking "use at or cron." Have you ever tried the scheduler built into tcsh?

While sched can execute any command at a given time, you can also use it as a reminder system. I use it as a terminal
sticky-note system that won't clutter up my monitor. For example, it's 9:00, I've just logged in, and I'm mulling over
my to-do list for the day. As I mentally review my list, I type the following:

% sched 11:55 echo Lunch with Robyn today.

% sched 2:30 echo Reminder: project due by 4:30.

% sched 5:00 echo Go home!!!

Now at any point in the day I can review my to-do list:

% sched

1     11:55    echo Lunch with Robyn today.

2     2:30     echo Reminder: project due by 4:30.

3     5:00     echo Go home!!!

As each appointed time arrives, the desired reminder will appear on my terminal.

To remove an item from your to-do list, simply type sched -#, where # represents the number of that item in the
schedule. Logging out of your shell will also remove all items from your list since sched is a shell command.

9.9.3 Saving Your Schedule

What if you plan on logging out during the day? You certainly don't want to recreate your schedule every time you log
in. It's a simple matter to save the schedule. Place this line in your ~/.logout file:

sched > schedule

This will send the output of sched to a file in your home directory called schedule, saving any items in your to-do list to
the specified file when you log out.

Unfortunately, there's no simple way to pipe that list back into sched when you log back in. This has to do with how the
C shell handles its built-in commands. You would think that:

% sched < schedule

would reverse the process, but it doesn't. If you really miss your shell sending you reminders at their appointed times,
consider locking your terminal [Hack #7] instead of logging out during the day.

9.9.4 See Also

man leave

man tcsh

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 97 Run Native Java Applications

 

Until recently, running Java applications on FreeBSD meant using the Linux compatibility mode.

Linux programs can sometimes be problematic on FreeBSD. Java© uses threading very heavily, and that's probably the
poorest-emulated part of Linux binary compatibility. Some Java applications or class libraries just don't work correctly
under Linux emulation. Native versions of the Java distribution had restrictive licenses, and it required a great deal of
work to download and compile them. Fortunately, the FreeBSD Foundation has negotiated a FreeBSD Java license with
Sun Microsystems. This hack demonstrates how to configure the FreeBSD version of Java.

What about native Java on NetBSD or OpenBSD? At the time of writing, neither system
had a native Java port. You can run Java on a Linux emulator or via Tomcat.

9.10.1 Choosing Which Java Port to Install

The first requirement for running Java applications is a Java Virtual Machine (JVM) and the associated runtime support
libraries. There are several Java Runtime Environments (JREs) or Java Development Kits (JDKs) available in ports.

A JRE contains everything necessary for an end user to run Java applications. A JDK
contains all that, plus various extra bits required for developing, compiling, and debugging
Java code.

The main criteria for choosing a port are:

Which version of Java do you need?

Do you want to run FreeBSD native code or Linux code run under emulation?

Do you prefer to run a precompiled binary or compile it yourself from source code?

Unless you have a specific requirement for an earlier version, choose the latest stable release, which, as of this writing,
is Java 1.4.2. The native version, found in /usr/ports/java/jdk14, will give you the best performance, but you will have
to compile it yourself. That is more easily said than done: compiling the JDK requires a great deal of disk space and CPU
power, as well as a working copy of the 1.4.2 JDK. The first time you compile, you will have to install one of the Linux
JDKs, such as the recommended /usr/ports/java/linux-sun-jdk14, but once you have a working native JDK, you can use
it to compile any updates and uninstall the Linux version.

You can install several Java versions simultaneously without them interfering with each
other. Each will install into its own subdirectory of /usr/local.

If you need a precompiled native version, choose one of the Diablo Java 1.3.1 ports. These use the same code base as
the /usr/ports/java/jdk13 port, and they're certified, licensed, and released through the sponsorship provided by the
FreeBSD Foundation (http://www.freebsdfoundation.org/downloads/java.shtml).

Diablo JDK 1.4 and JRE 1.4 versions are under development, but not yet available.

The Diablo Java packages are standard FreeBSD packages, so you can install them via pkd_add. However, you're better

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Diablo Java packages are standard FreeBSD packages, so you can install them via pkd_add. However, you're better
off installing from the Diablo ports, as that will provide you with the correct dependencies.

For example, to install the Latte Diablo JRE 1.3.1 port, visit http://www.freebsdfoundation.org/cgi-bin/download.cgi?
package=diablo-jre-1.3.1-0.tar.bz2. Read and accept the license terms, and save the downloaded file as
/usr/ports/distfiles/diablo-jre-1.3.1-0.tar.bz2. Then:

# cd /usr/ports/java/diablo-jre13

# make install

9.10.2 Running Java Applications

Starting up any Java application means running a Java Virtual Machine, which in turn loads a named Java class. That
class is the entry point for the program. The JVM always requires the CLASSPATH environment variable to contain a list
of .jar archives that store all of the Java classes required by the application. You can provide extra arguments to the
JVM—to limit its use of memory or other system resources, for example—and the application itself may take further
command-line arguments.

9.10.3 Standalone Java Applications

Many Java applications provide a shell script to set up the environment and to execute the JVM with the appropriate
arguments. A typical example is ant (see /usr/ports/devel/apache-ant), the Java equivalent to make.

The installation process edits the script that will become /usr/local/bin/ant to use the Java version used when building
the port. However, you can override the default Java version within the script by setting the JAVA_HOME environment
variable:

% setenv JAVA_HOME=/usr/local/jdk14

9.10.4 Javavmwrapper

Given the wide variety of JVMs available under FreeBSD, adding code to all Java application wrapper scripts or
otherwise configuring standalone Java applications to use the correct JVM could become a maintenance nightmare.
Fortunately, the /usr/ports/java/javawmwrapper port provides the /usr/local/bin/javavm script, which all applications
can run to discover the site's default JVM. javavm's configuration file, /usr/local/etc/javavms, contains a list of installed
JVMs in the order of their preference. Installing or removing a JVM through ports will modify this file. You can also edit
it by hand.

9.10.5 Applets

In the case of a Java applet, the web browser starts the JVM and downloads and runs the applet from the Web. Applets
run in a special sandbox that denies them access to most of the local system, except for the browser window.

Java support in web browsers derived from Netscape (including Mozilla, Firebird, and Galeon) uses a plug-in that comes
standard with the JDK. For the native JDK 1.4.2, the plug-in is
/usr/local/jdk1.4.2/jre/plugin/i386/ns610/libjavaplugin_oji.so. To make this plug-in available to web browsers, create a
symlink to this file from /usr/X11R6/lib/browser_plugins:

# cd /usr/X11R6/lib/browser_plugins

# ln -s /usr/local/jdk1.4.2/jre/plugin/i386/ns610/libjavaplugin_oji.so .

Launch a web browser and type about:plugins into the location bar. You should see an entry for the "Java(TM) Plug-in,"
which claims to handle about 30 MIME types, all variants on application/x-java-something.

If you're using a Linux web browser under emulation, install the plug-in from one of the
Linux Java versions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


9.10.6 Servlets

A servlet is all or part of a web application written in Java. It runs through a servlet container application, which
abstracts out all of the common server-side functionality. Tomcat (/usr/ports/www/jakarta-tomcat41) and Jetty
(/usr/ports/www/jetty) are two examples of these applications.

The servlet container application runs in much the same way as standalone Java applications.

9.10.7 Java WebStart

WebStart is a web-based mechanism for downloading and updating Java applications. Use the Preferences menu item in
javaws to control the JVM that will run the WebStart-ed applications. Unlike applets, the downloaded applications run
independently of the web browser. You don't need to download them again each time they run. They also have full
access to the underlying system. The javaws application is a standard part of Java 1.4 or above. It lives in
${JAVA_HOME}/jre/javaws/javaws.

9.10.8 See Also

FreeBSD Foundation's Java downloads (http://www.freebsdfoundation.org/downloads/java.shtml)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 98 Rotate Your Signature

 

End your email communications with a short witticism.

We all seem to know at least one geek friend or mailing-list poster whose emails always end with a different and
humourous bit of random nonsense. You may be aware that this is the work of her ~/.signature file, but have you ever
wondered how she manages to rotate those signatures?

While there are several utilities in the ports collection that will randomize your signature, it is easy enough to roll your
own signature rotator using the fortune program and a few lines of shell scripting.

9.11.1 If Your Mail Program Supports a Pipe

Your approach will vary slightly, depending on whether your particular mail user agent (MUA) supports pipes. If it does,
it's capable of interpreting the contents of a file as command output, just like when you use a pipe (|) on the command
line.

I use pine, which supports both static signature files and signatures that come from the piped output of a signature
rotation program.

When configuring pine, choose Setup from the main menu, then C for the configuration editor. Find the signature-file
option and give it this value:

.signature |

The pipe character tells pine to process that filename as a program instead of inserting its contents literally.

Also enable the signature-at-bottom option found in the Reply Preferences to ensure your signature is placed at the bottom
of your emails, even when replying to an email.

Next, create a file called ~/.signature containing these lines:

echo "Your random fortune:"

/usr/games/fortune -s

This isn't quite a shell script: I don't have to include the #!/bin/sh line or use chmod +x to set the file as executable.
However, pine will execute those two lines whenever I compose or reply to an email, adding something like this to the
bottom of the email:

Your random fortune:

"Right now I'm having amnesia and deja vu at the same time."

                 -- Steven Wright

I also included the short switch (-s) to fortune, as it's bad Netiquette to end an email with a long signature.

If you try a few test messages, you'll see that every email receives a different, random signature.

Depending upon your audience, you may wish to filter further the fortunes to use as signatures. You'll find the available
fortunes in /usr/share/games/fortune. If your friends are Trekkies, modify the fortune line in your ~/.signature like so:

/usr/games/fortune -s startrek

If they tend to be cynical, try murphy instead.

9.11.2 Pipeless Signature Rotation

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Some MUAs, such as Mozilla's mailer, don't support pipes. You'll know yours doesn't if your test message produces no
fortune. Fortunately, there's another option.

Create a file as before, but this time make it a Bourne script. I'll save mine in ~/bin and make it executable using chmod
+x:

#!/bin/sh

echo "Your random fortune:" > $HOME/.signature

/usr/games/fortune -s >> $HOME/.signature

This script does two things. It echoes the first line to the ~/.signature file, then appends the results of the fortune
program to the same file.

To configure Mozilla to use this signature file, open the Mail & Newsgroups window, and choose Mail & Newsgroups
Account Settings from the Edit menu. Select the "Attach this signature" option from the main menu, and use the
Choose button to give the location of ~/.signature.

What do you think will happen when I compose an email? Since Mozilla only understands literal signature files, it will
faithfully reproduce the current contents of ~/.signature. If I haven't run my script yet, that file doesn't exist. If I have
run the script, the resulting file remains the same until the script runs again.

This is different from pine, which has the capability of executing the commands found in my signature file. Since Mozilla
can't, you'll have to remember to run the script manually before you compose an email or schedule its periodic
execution using cron. This may be a little disappointing if you want every recipient to receive a unique signature, or not
a big deal if you send only one or two emails a day and aren't a stickler for randomness.

9.11.3 Hacking the Hack

Hmm, what would happen if .signature were a named pipe connected to a program that provided a random signature
on every read? There are many possibilities here.

9.11.4 See Also

man fortune

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 99 Useful One-Liners

 

Unix is amazing. Only your imagination limits the usefulness of the built-in commands. You can create your own
commands and then pipe them together, allowing one utility to work on the results of another.

If you're like me, you've run across dozens of useful combinations over the years. Here are some of my favorite one-
liners, intended to demonstrate useful ideas as well as to prime your pump for writing your own one-liner hacks.

9.12.1 Simultaneously Download and Untar

Have you ever downloaded an extremely large archive over a slow connection? It seems to take forever to receive the
archive and forever to untar it. Being impatient, I hate not knowing how many of the archived files are already here. I
miss the ability to work on those files while the rest of the archive finishes its slow migration onto my system.

This one-liner will decompress and untar the files as the archive downloads, without interfering with the download.
Here's an example of downloading and untarring the ports collection:

# tail -f -b=1m ports.tar.gz | tar -zxvf ports.tar.gz

ports/

ports/Mk/

<snip>

Here I've asked tail to stream up to one megabyte of the specified file as it is received. It will pipe those bytes to the tar
utility, which I've directed to decompress (-z) and to extract (x) the specified file (f) while displaying the results
verbosely (v).

To use this command, download the archive to where you'd like to untar it—in this example, /usr. Simply replace the
filename ports.tar.gz with the name of your archive.

9.12.2 When Did I Change That File?

Do you ever need to know the last modification date of a file? Consider a long listing:

% ls -l filename

-rw-r--r--  1 dru  wheel  12962 Dec 16 18:01 filename

If you count the fields, the sixth (Dec), seventh (16), and eighth (18:01) fields all contain part of the modification date.
However, there's whitespace separating those fields, which makes it difficult to determine their exact character
positions. Fortunately, awk doesn't mind variable whitespace, so this one-liner will always work:

% echo filename was last modified on `/bin/ls -l filename \

    | awk '{print $6, $7, $8}'`

filename was last modified on Dec 16 18:01

Here I've asked echo to repeat a string as well as the results of a command contained within single quotes. The first half
of that command is simply ls -l filename. I've piped the output of that command to awk, which will print the sixth ($6),
seventh ($7), and eighth ($8) fields of the long listing. Note that the awk action is enclosed between '{ }'.

While this is a useful one-liner, it is fairly awkward to type as needed. However, if you replace filename with a positional
parameter [Hack #13], you have a very handy script. I'll call mine when:

% more ~/bin/when

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% more ~/bin/when

#!/bin/sh

# script to list date of a file's last modification

# replaces $1 with specified filename

# or gives error message if user forgets to include filename

if test $1

then

   echo $1 was last modified on `/bin/ls -l $1| awk '{print $6, $7, $8}'`

else

   echo "Don't forget the name of the file you're interested in"

   exit 1

fi

Once you've made your script executable, use when filename to find the date of a file's most recent modification.

9.12.3 Finding Symlinks

If you ever need to find symbolic links, you're in luck. find's -type l or link option serves just this purpose. Start with this
invocation:

% find /etc -type l -ls

25298    0 lrwxrwxrwx    1 root             wheel                  23 Apr  7 

2003 /etc/termcap -> /usr/share/misc/termcap

25299    0 lrwxrwxrwx    1 root             wheel                  13 

Apr  7  2003 /etc/rmt -> /usr/sbin/rmt

25301    0 lrwxrwxrwx    1 root             wheel                  12 

Apr  7  2003 /etc/aliases -> mail/aliases

25305    0 lrwxr-xr-x    1 root             wheel                  36 

Oct 26 09:08 /etc/localtime -> /usr/share/zoneinfo/America/Montreal

Well, that worked, but the output is downright ugly. Let's pipe the results to our good friend awk to display only the last
three fields. If you count them, those are fields 11 through 13:

% find /etc -type l -ls | awk '{print $11, $12, $13}'

/etc/termcap -> /usr/share/misc/termcap

/etc/rmt -> /usr/sbin/rmt

/etc/aliases -> mail/aliases

/etc/localtime -> /usr/share/zoneinfo/America/Montreal

Aah, much better. If you ever plan on needing to find symlinks, it's well worth saving this in a shell script similar to the
when script shown previously.

9.12.4 Making cron More User-Friendly

Are you always forgetting the meanings of the various fields in a crontab? It would probably be a lot easier if your crontab

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Are you always forgetting the meanings of the various fields in a crontab? It would probably be a lot easier if your crontab
began like this:

# minute (0-59),

# |      hour (0-23),

# |      |       day of the month (1-31),

# |      |       |       month of the year (1-12),

# |      |       |       |       day of the week (0-6 with 0=Sunday).

# |      |       |       |       |       commands

  3      2       *       *      0,6     /some/command/to/run

To achieve that, type those lines into a text file, say ~/cronheader. (Be patient, we're getting to the one-liner.) Then,
open up your crontab editor:

% crontab -e

Unless you've changed your default editor, this will open up your crontab using vi. Place your cursor at the beginning of
the file, and type the following:

!!more /usr/home/dru/cronheader

The !! tells vi to insert the output of the specified command. Be sure to give the full pathname to your file. vi will insert
its contents for you once you press Enter. When you're finished, type :wq as usual to exit the editor.

9.12.5 See Also

man tail

man tar

man cut

man awk

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

9.13 Fun with X

 

Use the utilities that come with the core X distribution.

There are so many GUI utilities, available either as part of your favorite Window Manager or as a separate installation,
that you can forget that the core X distribution also provides several useful and lightweight programs. Do you need to
monitor console messages, manage your clipboard, send pop-up messages, or create and view screenshots? Before you
hit the ports collection, give the built-in utilities a try.

9.13.1 Seeing Console Messages

In [Hack #42], we saw how to redirect console messages. If you're using an X session, the xconsole utility fulfills this
purpose. To start this utility, simply type its name into an xterm or use the Run command provided by your window
manager.

By default, only the superuser can start xconsole. A regular user will instead receive a Couldn't open console message. This
is a safety precaution on multiuser systems, preventing regular users from viewing system messages. If you're the only
user who uses your system, remove the comment (#) from this line in /etc/fbtab:

#/dev/ttyv0    0600    /dev/console

If you spend a lot of your time at an X session, consider adding xconsole to your ~/.xinitrc file so it will start
automatically (see [Hack #9]).

9.13.2 Managing Your Clipboard

If you do a lot of copying and pasting, xclipboard is another excellent candidate for automatic startup. This utility stores
each of your clipboard selections as a separate entity, allowing you to scroll through them one at a time in a simple GUI
window. In addition to the Next and Prev buttons, a Delete button lets you remove unwanted items and a Save button
allows you to save all of your items as a file.

9.13.3 Sending Pop-up Messages

Do you find yourself starting a command that takes a while to execute, continuing your work in an X session, then
returning periodically to the original terminal or xterm to see how that command is perking along? Wouldn't it be easier
to send yourself a pop-up message once the command completes?

For example, suppose I want to know when the script from [Hack #80] finishes. I could execute that script as follows:

#~/bin/mycustomupgrade.sh && xmessage -nearmouse cvsup is complete.

When the upgrade completes, a pop-up message with the text cvsup is complete. will appear in my X session near my
mouse. That message will disappear once I click on the Okay button.

If you're in the habit of using su -l to provide a new login when you become the superuser, you'll find that the preceding
command will fail to send you a pop-up menu. (I'm assuming you're logged in as a regular user when you start your X
session. You should be!) Instead, you'll receive this error message:

Xlib: connection to ":0.0" refused by server

Xlib: No protocol specified

Error: Can't open display: :0.0

This has to do with the X authorization process. If I start my X session as the user dru and use su to execute a
command, I'm still logged in as dru, so I'm allowed to send a message to my display. However, if I use su -l to execute
the command, I'm no longer logged in as dru but as root. The X server refuses to let another user interfere with my

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


the command, I'm no longer logged in as dru but as root. The X server refuses to let another user interfere with my
display, which is a good thing.

A quick workaround is to not use su -l when sending pop-up messages to your regular user account. An alternative is to
understand the X authorization process. You can then use this knowledge to enable the superuser to send a message to
any user on any display.

9.13.3.1 Understanding X authorization

Your X server uses a token known as an MIT magic cookie to provide authorization. When you start your X session, the
server creates and stores this unique cookie in ~/.Xauthority. You can view it at any time using this command:

% xauth list

genisis/unix:0  MIT-MAGIC-COOKIE-1  7e7bc20f9413469a7376e2e5c91aa6f1

Take note that you're the only user with access to this file:

% ls -l ~/.Xauthority

-rw-------  1  dru  wheel   101  Feb 18 13:28 .Xauthority

Always keep in the back of your mind, though, that file ownership does not matter to the superuser. For example, if I
need to send an important message to the user dru, I can ssh into the system she's working on and become the
superuser. Then:

# cp ~dru/.Xauthority .

I now have a copy of dru's magic cookie. However, before I can use it, I'll first have to change my display. Since I sshed
into a terminal, I currently don't have one:

# echo $DISPLAY

DISPLAY: Undefined variable.

I don't want just any display, I want the display dru is currently using. I can find the name of her display by reading her
magic cookie:

# xauth list

genisis/unix:0  MIT-MAGIC-COOKIE-1  7e7bc20f9413469a7376e2e5c91aa6f1

The name of her display is genisis/unix:0, where genisis represents the hostname of the system. I'll now attach to that
display and send my message:

# setenv DISPLAY genisis/unix:0

# xmessage -nearmouse Time to go home, Dru...

(prompt hangs until dru responds by pressing the "Okay" button)

This cheat works on any system to which you have superuser access. Technically, you can execute any command X
understands in a user's X session once you have his cookie and display. Do remember to use your superuser powers for
good, though.

9.13.4 Taking Screenshots

Have you ever needed to send a user a screenshot? There are ports available for this purpose, but the built-in X
command xwd will suffice. Creating a screenshot is a simple matter of:

% xwd -out screenshot.xwd

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% xwd -out screenshot.xwd

The command will appear to hang as it waits for you to click your mouse on the portion of the screen you'd like to
capture. Use the -root switch to capture the entire screen and save yourself a click.

You can view and manipulate the resulting file with most third-party image editors, including xv and gimp. For quick
viewing, though, nothing beats the built-in xwud:

% xwud -in screenshot.xwd

Your results won't seem that impressive if you use xwud immediately, as your screen still probably looks like your
screenshot. When you're finished viewing the screenshot, press Ctrl-c.

9.13.5 See Also

man xconsole

man xclipboard

man xauth

man xwd

man xwud

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

! (bang) character, retrieving previously issued commands  
# (hash mark) for comments in code  
(') (single quote) vs. backticks (`)  
(`) (backticks) vs. single quote (')  
.\" (comment) groff command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Access Control Lists (ACLs)  
    adding/subtracting  
    enabling  
    setting default ACLs  
    viewing  
access, limiting with IP Filter  
accounting (system), enabling  
accton command  
ACID (Analysis Console for Intrusion Databases)
    adding more security to  
    alerts  
    configuring  
    installing  
    running  
ack numbers in packets  
addresses, MAC, spoofing  
adduser command  
    Blowfish and  
adodb (database library for PHP), installing  
ADSL PPPoE configuration  
alerts, ACID  
anonymous CVS  
antivirus software  
Apache servers
    configuring  
    consolidating logs  
    installing  
    starting  
    tuning  
APG (Automated Password Generator)  
    improving  
    installing  
appending changes to files  
applets, Java  
arch flag  2nd  
archives
    compressed  
        without intermediate files  
    creating portable POSIX archives  
    downloading and untarring  
    multivolume, resources for  
    rooted  
ARP packets  
attaching/detaching screen sessions  
attributes of files, preserving when copying  
authorized/unauthorized hosts  
auto completion  
    working around  
autologout after inactivity  
automated re-upgrades, preventing  
automating
    backups  
    data dumps for PostgreSQL databases  
    floppy format process  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    ftp logins  
    generated firewall rules  
    installs  
    NetBSD package builds  
    password generation  
    remote backups  
    security patches  
    system updates  
    virus scanning  
awk command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

backticks (`) vs. single quote (')  
backups
    automating  
    Bacula program  
    controlling with arch/nodump flags  
    creating schedules  
    data dumps for PostgreSQL databases, automating  
    remote, automating  
    secure backups over networks  
Bacula program  
    client-only version, installing  
    configuration files, modifying  
    using consoles  2nd  
    database tables, creating  
    installing  
    starting daemons  
    testing tape drives  
bandwidth
    allocating with traffic shaping  
    limiting
        complex configurations  
        simple configuration  
batcher process  
Beastie boot menu  
BEEP_ONHALT option  
bell command  
Berlin, Marlon  
Bernier, Robert  
Big Brother System and Network Monitor  
binaries
    finding  
    protecting, using flags  
bitmap images, loading  
blank lines, removing using grep/sed  
Blowfish hashes  
    forcing new passwords to use Blowfish  
    protecting system passwords with  
/boot directory  
boot menu (default), customizing  
boot messages, viewing  
boot process
    interrupting  
    protecting  
bootblocks configuration, changing  
browsers, command-line  
brute-force password crackers, preventing with Blowfish  
bsdlabel command  
btape utility  
buffer overflows, analyzing with GNU debugger  
bus information in kernel configuration files  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

calendar command  
cap_mkdb command  
capturing packets  
Carosone, Daniel  
case of characters, translating  
cd command  
CD-ROMs, mounting  
Cerias FTP site (cracker dictionaries)  
cgd(4) devices  
cgdconfig program  
chflags command  
chmod command  
chromatic  
chroot support for scponly  
    testing  
ClamAV utility  
clamav.conf file  
clamd command  
clamdscan command  
clamscan command  
CLASSPATH environment variable  
Client Daemon (Bacula)  
    installing client-only version of Bacula  
clipboard, managing  
ClusterIt tool  
    installing/configuring  
    noninteractive commands, testing  
code examples, permission for using  
col command  2nd  
colors, adding to terminals  
command history  
    retrieving previously issued commands  
command line
    editing  
    navigating  
    w3m browser for  
command-line Console (Bacula)  2nd  
commands
    distributed  
    finding  
comments
    adding to code using # (hash mark)  
    adding to source code  
    in manpages  
    removing from source code  
    in source code, reading  
compiling software, optimizing  
compressed archives
    creating  
    without intermediate files  
configuration files
    for Apache  
    for Bacula  
    for cgd devices, modifying  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    customizing for kernels  
    default files for users  
    safely merging changes to  
    for sudo utility  
connectivity failure, surviving  
console messages
    from headless systems  
    viewing  
        over remote logins  
consolidating web server logs  
copier process  
COPTFLAGS option  
copying interactively  
copyright information, changing  
core files, limiting size of  
core X distribution, utilities that come with  
cp command  
    vs. mv/rm commands  
CPU information in kernel configuration files  
CPU_WT_ALLOC option  
crack (dictionary password cracker)  
crackers, password, preventing with Blowfish  
Crandall, Aaron  
cron utility
    access restriction rules  
    making more user friendly  
    using with quickpatch  
    rsnapshot, scheduling  
    scheduling backups  
cross-platform backups  
crossword-puzzle solver  
cryptographic disasters, preventing  
cryptographic disk devices  
.cshrc files
    adding color to terminals  
    adding key bindings to  
    autologout  
    dot.cshrc file and  
    locking terminals  
    making prompts more useful  2nd  
    phase of the moon, displaying  
    receiving daily fortunes  
    seeing trivia at login or logout  
    setting shell variables  
    using trash command  
CTM, keeping ports up-to-date with  
cu command  
current time, displaying  
custom packages, creating  
customizing
    default boot menu  
    kernels  
CVS, anonymous  
cvsup process
    automating updates  
    editing /usr/src/share/skel/Makefile file  
    etcmerge utility and  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

daemons, running without root permissions  
daily_clean_disks script  
daily_clean_preserve script  
daily_clean_tmps script  
DarwinPorts project, installing Unix applications on Mac OS X  
debugger, GNU, analyzing buffer overflows  
debugging regular expressions  
decompressing files  
default ACLs, setting  
default configuration files  
default shell for FreeBSD  
deleted files, sending to trash directory  
delimited files and double quotation marks  
demos for trade shows, creating  
dependencies
    checking before uninstalling applications  
    of ports, checking for  
deploying images  
DESTDIR variable (pkg_comp)  
/dev/console file  
DEVICE_POLLING option  
devices in kernel configuration files  
devinfo command  
/dev/null, using with find command  
df command  2nd  
dhclient command  2nd  
dhclient.conf file  
DHCP clients/servers
    configuring multiple wireless networks  
    spoofing MAC addresses  
DHCP server configuration  2nd  
Diablo Java packages  
dial filter rules  
dictionaries
    creating  
    improving your  
    password, customizing  
dictionary password cracker  
diff command  
dig (domain information groper) utility, locating DNS information  
Director Daemon (Bacula)  
directories
    maintaining synchronized copies of  
    protecting files with flags  
    recreating structures with mtree  
disk hogs, dealing with  
disk space used by ports, checking  
disklabel command  
display filters and tcpdump  
DISTRIBDIR variable (pkg_comp)  
distributed command execution using tentakel  
dmesg command  2nd  
DNS  
    deciphering tcpdump output  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    finding names of SMTP servers  
    finding server addresses  
    problems with sendmail and mail queues  
    providing security for  
    split DNS approach  
    testing servers  
    understanding DNS entries  
    zone transfers, controlling tightly  
documentation for FreeBSD  
documents, extracting text using grep  
DOS floppies  [See floppies]
dot.cshrc file  
dot.login file  
dot.login_conf file  
dot.logout file  
dot.mail_aliases file  
dot.mailrc file  
dot.profile file  
dot.rhosts file  
dot.shrc file  
dot.xinitrc file  
Dotzler, Asa  
double quotation marks and delimited files  
Dowdeswell, Roland C.  
downgrading ports  
downloading and untarring archives  
du command  
dummynet command  2nd  
dump command  
dumpfiles
    creating  
    deciphering tcpdump output  
duplicate line feeds, removing  
dvt (distributed virtual terminal) command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

e16keyedit utility  
echoing responses to OTP challenge  
editing the command line  
eesh utility (Enlightenment)  
egrep command  
Eichmann, Heiner  
email  [See also sendmail]
    holding for later delivery  
    reading with telnet  
    relaying considered harmful  
    security considerations  
    sending
        to external recipients  
        with telnet  
emergency repair kit
    creating  
    customizing boot process and  
    testing  
encrypted disk devices, creating  
encrypting hard disks  
Enlightenment window manager  
error messages for mount command  
errors
    analyzing buffer overflows with GNU debugger  
    reading comments in source code for help  
/etc files, safely merging changes to  
/etc/dhclient.conf file  
/etc/fstab file  2nd  
/etc/ipf.rules file  
/etc/login.access file  
/etc/login.conf file  
/etc/make.conf file  
/etc/netstart command  
/etc/periodic.conf file  
/etc/pf.conf file  
/etc/profile file  
/etc/ssh/sshd_config file  
/etc/ttys file, securing  
etcmerge utility  
Expect scripts, generating GPG keys with  
<Emphasis>Exploring Expect<Default Para Font>  
extattrctl command  
extended attributes, enabling for ACLs  
extended regular expressions  
extracting text from documents using grep  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

fastest-cvsup command  
FAT12 filesystem  
fdformat command  
fdisk command  
fetch utility  2nd  
File Daemon (Bacula)  
file integrity checking using mtree  
file servers, optimizing  
file utility  
files
    appending changes to  
    attributes of, preserving when copying  
    decompressing  
    deleted, sending to trash directory  
    delimited  
    hierarchies, copying  
    last modification dates of  
    limiting  
    portable, creating  
    protecting with flags  
    renaming interactively  
    with specific extensions, deleting  
filesystems
    disk hogs, dealing with  
    DOS floppies  [See floppies]
    ghosting systems  
    recreating directory structures with mtree  
    sharing files between Windows and FreeBSD  
    swap files and  
    temporary files, adding  
    using live filesystems  
filters, display and tcpdump  
find command  2nd  
finding
    commands  
    program paths  
    words  
Fink project  2nd  
firewalls
    automatically generating rules  
    IP Filter, limiting access with  
    ipfw command  2nd  
    securing wireless networks with PF  
    zone transfers, controlling  
Firewire support in kernel configuration files  
fixit floppies  
    repairing with  
flags field of TCP headers  
flags, protecting files with  
Flickenger, Rob  
floppies
    formatting  
    ghosting systems  
    mounting  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        by regular users  
    preparing for emergencies  
    unmounting  
flushing mail queues  
forcing users to change passwords  
formatting floppies  
    automating the process  
formatting sequences for prompts  
fortune program  2nd  
FreeBSD
    backing up with SMBFS  
    default shell for  
    online/offline resources for  
    running native Java applications on  
    sharing files between Windows and  
    spoofing with  
FreeBSD From Scratch hack  
freshclam command  
fsck_ffs command  
fstab command  
ftp command
    automating logins  
    automating transfers  
    keeping ports up-to-date with CTM  
    ncftp tool and  
    scripting entire sessions  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

g4u (Ghost For Unix) utility  
gdb command  
getfacl command  2nd  
ghost disks, creating  
Ghost For Unix (g4u) utility  
ghosting systems  
    images, creating/deploying  
GNOME GUI Console (Bacula)  2nd  
GNU debugger, analyzing buffer overflows  
GNU tar utility, incompatibility issues with  
Gould, Andrew  
GPG keys, generating with Expect scripts  
grdc command  
grep command  
    case-insensitive search, performing  
    combining with other commands  
    extracting text from documents  
    finding words  
    using regular expressions  
    relevance searches  
    removing blank lines  
    text, finding  
groff commands for creating manpages  
grokking BSD  
groups of hosts, executing commands on, using tentakel  
gzip utility  2nd  3rd  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

hacking BSD  
Haitzler, Carsten  
halt command and BEEP_ONHALT option  
hard disks
    encrypted disk device, creating  
    encrypting  
    ghosting systems and  
    preparing for encryption  
    restoring data  
    scrubbing  
hardware information, displaying  
Harris, Daniel  
Harrison, Geoff  
head command  
headers, packet  
headless systems  
    becoming inaccessible  
    logging servers remotely  
    preparing for  
    setting up  
    shutting down servers using wsmoused  
Hess, Joey  
hierarchies of files, copying  
history, command  
    retrieving previously issued commands  
host controller information in kernel configuration files  
host systems, establishing SMB connections with  
host utility  
hosts, authorized and unauthorized  
html2txt converter  
HZ option  2nd  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

ICMP type field/ICMP code field  
IDE devices in kernel configuration files  
idled utility  
IDSs (Intrusion Detection Systems)  
ifconfig command
    enabling/disabling interfaces  
    optimizing network performance  
    running headless systems  
    scripting wireless network configurations  
    spoofing MAC addresses  
    tcpdump output, humanizing  
images, creating/deploying, using ghosting utility  
inaccessibility of headless systems  
incorrect user input, handling  
installboot utility  
installing systems automatically  
integrity checking for files using mtree  
integrity databases
    creating  
    deciding which files to include  
    preparing for storage  
    working with  
interact command  
interactive
    copying  
    file renaming  
    remote administration  
    scripts, creating with Expect  
    shells  
interface statistics, gathering  
interface support in kernel configuration files  
interfaces, enabling/disabling  
intermittent Internet connection and sendmail  
Internet loss, catastrophic, surviving  
intervals of backups, specifying  
Intrusion Detection Systems (IDSs)  
IP Filter
    automatically generating firewall rules  
    limiting access with  
    switching rules on schedule  
IP NAT configuration  
IPFIREWALL_DEFAULT_TO_ACCEPT option  
ipfw command  2nd  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Jabber4r Ruby module  
Java applets  
Java applications, running on FreeBSD  
Java Development Kits (JDKs)  
Java Runtime Environments (JREs)  
Java Virtual Machines (JVMs)  
JAVA_HOME environment variable  
javavmwrapper port  
javaws application  
JDKs (Java Development Kits)  
Jetty (Java servlet)  
JPGraph, installing  
JREs (Java Runtime Environments)  
JVMs (Java Virtual Machines)  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

kenv command  
kernel environment, viewing  
kernels
    adding SMB support to  
    building new  
    configuring for traffic shaping  
    customizing  
    installing  
    optimizing  
    stripping  
    supporting MAC (Mandatory Access Control)  
keys, GPG, generating  
kldload command  
kldunload command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Langille, Dan  
laptops
    backing up  
    configuring wireless interfaces for  
    encrypting hard disks  
    power management support for  
last command  
last modification dates of files, finding  
lastcomm command  
lastlogin command  
leave command  
Lents, David  2nd  
less pager
    customizing  
    vs. more pager  
Libes, Don  
limiting files  
line feeds (duplicate), removing  
live filesystems, using  
live log data, viewing  
livelock and kernel optimizations  
loader.conf file  2nd  
    password protection  
loader.rc file  
locate command  
lock command  
log files for sudoscript  
log hosts
    configuring scripts on  
    consolidating web server logs  
    logproc and  
    preparing  
    variables/values for
        log host scripts  
        web server scripts  
logging out of login shell  
logging servers, setting up  
login banner, removing  
.login file  
login prompt, changing  
.login.conf file  
logins
    automating, using ftp  
    lastlogin command  
    remote  
        connecting to headless servers  
    restricting  
logout policy, enforcing  
logproc scripts  
logs for web servers, consolidating  
logs, protecting with flags  
@LongName tar format extension  
look command  
lowercasing characters  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


lowercasing characters  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

MAC (Mandatory Access Control) framework  
Mac OS X
    installing Unix applications using DarwinPorts  
MAC_IFOFF module  
MAC_SEEOTHERUIDS module  
macdef command  
macros, FTP  
magic cookies and X authorization  
mail  [See email]
mail exchange (MX) records  2nd  
mail servers
    checking connectivity of  
    optimizing  
Mail Submission Process (MSP)  
Mail Transport Agents (MTAs)  
mail user agents (MUAs) and pipes  
mailing lists for receiving CTM updates  
make.conf file  
Makefile, editing  
makewhatis command  
Mandatory Access Control (MAC) framework  
manpages  
    adding fancy formatting to  
    creating your own  
    finding  
    finding all  
    navigational tricks for reading  
    printing  
    searching for text in  2nd  
manpath.config file  
masks and pipes/queues  
Maxwell, David  
Mayo, Adrian  
mdconfig command  
Media Access Control (MAC) layer, spoofing addresses  
media devices in kernel configuration files  
mergemaster utility  2nd  
merging changes to configuration files  
Merino Vidal, Julio  
message of the day (motd), changing  
messages, console  [See console messages]
MIBs, changing from the command line  
miibus entry in kernel configuration files  
minicom utility  
MIT magic cookie  
mktemp command  
Mock, Jim  
modification dates of files, finding  
modules, Mandatory Access Control (MAC)  
MODULES_OVERRIDE option  
moon, phases of (pom) utility  
Moran, Bill  
more pager vs. less pager  
motd (message of the day), changing  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mount command  
    error messages for  
mount points  2nd  
mount_msdosfs command  
mount_smbfs utility  2nd  
mounting
    CD-ROMs  
    floppies  
        by regular users  
    remote shares  
Mozilla, configuring to use signature file  
MSP (Mail Submission Process)  
MTAs (Mail Transport Agents)  
mtree utility  
    command syntax for  
    using as built-in tripwire  
MUAs (mail user agents) and pipes  
multiple systems, maintaining your environment on  
multivol utility  
multivolume archives, resources for  
mv command vs. cp command  
MX (mail exchange) records  2nd  
MySQL
    adding more security to  
    configuring  
    installing client and server  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

nameservers
    finding DNS server addresses  
    locating primary nameservers  
    securing  
NAT
    automatically generated firewall rules  
    reconfiguring dynamically  
    wireless networks and  
native Java applications, running on FreeBSD  
navigating
    command line  
    manpages  
nbtstat command  
ncftp tool  
NetBIOS names of computers  2nd  
NetBSD
    automating package builds  
    cgd(4) devices  
    dealing with disk hogs  
    default shell for  
    logging headless servers remotely  
    skeleton home directory location  
    spoofing with  
NETBSD_RELEASE variable (pkg_comp)  
netstart command  
netstat command  2nd  
network interface information, gathering  
network terminals, logging into  
networking
    allocating bandwidth  
    catastrophic Internet loss, surviving  
    holding email for later delivery  
    interacting with remote administration tasks  
    optimizing performance  
    secure backups over networks  
    securing wireless networks with PF  
    tcpdump utility  
    traffic shaping  
newfs command  
newfs_msdos command  
newsyslog, disabling  
NFS share, creating  
NFS_NOSERVER option  
NIC configurations, wireless  
NoCatAuth authentication software  
nodump flag  2nd  
nonlogin shells  
nouchg flag  
NSWAPDEV option  
null modem cables for headless systems  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

od command  
one-liner commands, Unix  
one-time passwords  
OpenBSD
    dealing with disk hogs  
    default shell for  
    skeleton home directory location  
    spoofing with  
    swap files, adding  
openssl command  
OPIE (One-time Passwords In Everything)  
opieinfo command  
opiekey command  
opiepasswd command  2nd  
optimizing
    file servers  
    kernels  
    mail servers  
    network performance  
    software compiling  
    web servers  
OTP (One Time Password) system  
    choosing when to use  
    generating responses  
Owen, Howard  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Package Compiler (pkg_comp) command  
package repositories, creating  
packageAdd command  
packages
    automating NetBSD builds  
    checking dependencies  
Packet Filter (PF)
    configuring  
    securing wireless networks with  
packet sniffers, protecting from  
packets
    capturing  
    deciphering tcpdump output  
PAM (Pluggable Authentication Modules)  
pam_passwdqc module
    changing default settings  
    enabling  
    overview of  
parallel command execution using tentakel  
partition full detection script  
partitioning scheme for automated installs  
passphrases
    for cgd devices  
    changing periodically  
    one-time passwords and  
passwd command  2nd  
    changing default options using pam_passwdqc module  
password protecting
    loaders  
    single-user mode  
passwords
    converting existing passwords to Blowfish  
    crack (dictionary password cracker)  
    customizing dictionaries  
    forcing new passwords to use Blowfish  
    helping users choose memorable passwords  
    one-time passwords  
    protecting email  
    protecting system passwords with Blowfish  
    reusable, creating policy for  
    setting expiration dates for  
patches
    applying to files  
    creating  
    diff command and  
    revision control and  
    security, automating  
pathnames, finding  
pattern space vs. holding space (sed utility)  
pax utility  
performance of networks, optimizing  
periodic scripts  
    MTAs (Mail Transport Agents)  
peripheral information in kernel configuration files  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


permission for using code examples  
permissions
    FTP servers, accessing  
    protecting files with flags  
    specifying for ACLs  
    standard Unix vs. ACLs  
Peterson, Jan L.  
PF (Packet Filter)
    configuring  
    securing wireless networks with  
pg_dump/pg_dumpall tools  
phases of the moon (pom) utility  
PHP, configuring  
PHP4, installing  
PHPlot, installing  
pine mail program and pipes  
ping command  2nd  
pipes for traffic shaping  
pkg_add command  
pkg_comp command  
pkg_info command  
    checking dependencies before uninstalling  
    checking disk space used by ports  
pkg_version command  
Pluggable Authentication Modules (PAM)  
Pluggable Password Checking  
pom (phases of the moon) utility  
pop-up messages, sending  
POP3 protocol
    reading email with telnet  
    security considerations  
Popa, Alexandru  
port 25, closing  
portable files, creating  
portable POSIX archives, creating  
portdowngrade command  
ports
    building without ports trees  
    checking disk space used by  
    choosing Java ports to install  
    configuring  
    dependencies, checking for  
    downgrading  
    finding the right port  
    installing  
    installing Unix applications on Mac OS X using DarwinPorts  
    keeping up-to-date with CTM  
    pkg_info command and  
    screen window manager  
    skeletons, checking out  
ports collection, keeping up-to-date with  
ports trees
    building ports without  
    updating DarwinPorts trees  
    updating using ftp and ctm  
portupgrade command  
portversion command  
POSIX archives, creating  
PostgreSQL databases, automating data dumps for  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


power management information in kernel configuration files  
PPP variables  
printing manpages  
priority number of MX records  
ÒThe Problem of PORCMOLSULBÓ  
.profile file  
program paths, finding  
prompt
    login, changing  
    for tcsh shell, making more useful  
prompt command  
protecting the boot process  
pseudodevice information in kernel configuration files  
pseudoterminals, logging into  
pw command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

queue runners, MSP  
queueing sent messages for later delivery  
queues, creating  
quickpatch utility  
quotation marks (double) and delimited files  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

RAID controller information in kernel configuration files  
RAM, showing amount of  
randomizing signatures  
randomly generated passwords  
re_format command  
read/write access for mounting floppies  
REAL_DISTFILES variable (pkg_comp)  
REAL_PACKAGES variable (pkg_comp)  
REAL_PKGSRC variable (pkg_comp)  
REAL_PKGVULNDIR variable (pkg_comp)  
REAL_SRC variable (pkg_comp)  
reboot command  
reboots
    limiting unauthorized  
    viewing records of  
recording
    interactive shell sessions  
    shell input/output  
recovery media, testing  
recovery process and emergency repair kit  
Reddy, Dheeraj  
reformatting disks before upgrading  
regular expressions
    debugging  
    using grep with  
rehash command  
relaying mail considered harmful  
relevance searches using grep  
remote administration tasks, interacting with  
remote backups, automating  
remote logins
    headless servers, connecting to  
    preventing  
    seeing console messages over  
remote shares, mounting  
renaming
    files interactively  
    source files  
repair kit, emergency
    creating  
    customizing boot process and  
    testing  
Reporter script and crack utility  
resources, FreeBSD
    comments in source code  
    manpages
        creating your own  
        getting the most out of  
    offline resources, keeping up-to-date  
    online resources  
resources, system  
restoring data on hard disks  
restricting
    logins  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    SSH servers  
reusable password policy, creating  
revision control and patches  
rhosts file  
Richard, John  
Rightnour, Tim  
rm * command, preventing disaster from  
rm -R command, recovering from accidental  
rm command vs. cp command  
rmstar shell variable  
Robbins, Arnold  
rooted archives and substitution argument  
Rosenquist, Nathan  
rotating signatures  
route command  
rsnapshot utility  
    accessing snapshots  
    configuration file, testing  
    specifying backup intervals  
    storage scheme for  
rsync utility  
rulesets, IP Filter  
Russell, Kirk  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Samba  
    using Access Control Lists with  
sandboxes, automating NetBSD package builds with  
sappnd flag  2nd  
scanning Windows computers for viruses  
Schaefer, Marc  
sched command  
schedules
    creating for backups  
    rsnapshot utility  
    switching access rules on  
schg flag  2nd  3rd  
Schneier, Bruce  
Schweikhardt, Jens  
scponly (SSH shell)  
    installing  
    testing the chroot  
scponlyc shell  
screen window manager  
    multitasking with  
.screenrc resource file  
screens
    attaching/detaching sessions  
    locking/unlocking  
screensavers for terminals  
screenshots, taking  
script command  
script files, cleaning up  
scripts, interactive, creating with Expect  
scrubbing hard disks  
SCSI devices in kernel configuration files  2nd  
Seaman, Matthew  
search and replace using sed  
searching
    manpage text  2nd  
    by relevance using grep  
    with sed utility  
securelevels, settings of  
security
    analyzing buffer overflows with GNU debugger  
    for DNS servers  
    wireless network issues  
security patches, automating  
sed utility  
    adding comments to source code  
    using holding space to mark text  
    removing blank lines  
    removing comments from source code  
    scripts with multiple commands  
    search and replace, performing  
    searching with  
sendmail  2nd  [See also email]
    configuring with local MTA  
    configuring without local MTA  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    disable receiving of email  
    DNS issues with mail queues  
    holding mail for later delivery  
serial consoles, enabling  
service set identifiers (SSIDs)  
servlets, Java  
set command  
setenv command  
setfacl command  2nd  
SETS variable (pkg_comp)  
SETS_X11 variable (pkg_comp)  
.SH (section) groff command  
sharing files between Windows and FreeBSD  
Sharity-Light utility  
    scanning Windows computers for viruses  
shells
    authorizing access to, using sudo  
    input/output, recording  
    interactive  
    letting others watch live sessions  
    recording interactive sessions  
    setting shell variables  
shortcuts on the command line  
shutdowns
    of servers, using wsmoused  
    viewing records of  
signature-at-bottom option  
signatures, randomizing  
sigtool command  
single quote (') vs. backticks (`)  
single-user mode, password protecting  
skeletons, port  
SMBFS, backing up FreeBSD with  
smbutil utility  2nd  
SMTP servers
    finding names of  
    relaying mail considered harmful  
    sending email with telnet  
    testing availability  
snapshots, remote  
sniffing networks with tcpdump  
Snort
    adding more security to  
    configuring  
    installing  
    running  
sockstat command  2nd  3rd  
software compiling, optimizing  
source code
    adding comments to  
    reading comments in  
    removing comments from  
source files
    finding  
    renaming a batch of  
spaces, translating tabs to  
spell-checking on command line  
splash screen, configuring  
split DNS approach, used to prevent information leaks  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


splitting windows (screen utility)  
spoofing MAC addresses  
SSH servers
    /etc/ssh/sshd_config file  
    remote backups, automating  
    restricting  
    secure backups over networks  
SSIDs (service set identifiers)  
ssmtp MTA  
standalone Java applications  
Stark, Sebastian  
startup scripts, creating your own  
Storage Daemon (Bacula)  
    on backup server  
    running without root permission  
storage scheme for rsnapshot  
stripping kernels  
su command  
Subversion program  
sudo utility
    configuration file issues  
    limitations of  
    shell access with  
sudoers file  
sudoscript  
    log file for  
    security issues with  
    working with  
sudoscriptd script  
sudoshell script  
sunlnk flag  2nd  
superusers
    binaries, protecting with flags  
    controlling backups with arch/nodump flags  
    switching to, using su command  
    system logs, protecting with flags  
swap files, creating  
swapctl command  
swapinfo command  
switches, adding to manpages  
switching between windows  
symbolic links
    creating  
    finding  
synchronized copies of directories, maintaining  
syntax for mtree commands  
sysctl command  
sysinstall installation mechanism  
    setting up NFS mounts  
syslogd, redirecting console messages using  2nd  
systat command  
system accounting, enabling  
system logs, protecting with flags  
system passwords, protecting, using Blowfish  
system resources, viewing  
system-specific options in kernel configuration files  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

tabs, translating to spaces  
tail command  
tape drives, testing with Bacula  
tar utility  2nd  
    GNU tar vs. POSIX tar  
    replacing, with pax utility  
    secure backups over networks  
TCP flags field  
tcpdump utility  
    capturing packets  
    deciphering output  
    display filters  
    specific filters, creating  
tcsh shell  
    auto completion  
        working around  
    autologout  
    command history  
    .cshrc file vs. .login file  
    limiting files  
    making prompt more useful  
    rmstar shell variable  
    setting shell variables  
telnet
    checking connectivity of mail servers  
    reading email  
    sending email  
telnetd daemon  
temporary directories, cleaning out quickly  
temporary files, managing  
tentakel utility  
    configuring  
    installing  
    interactive mode  
terminals
    adding color to video  
    configuration file, securing  
    locking/unlocking  
    login banner, removing  
    screensavers for  
    using multiple screens  
    virtual
        dvt command (ClusterIt tool)  
        logging into  
testing
    automated software installations  
    DNS servers  
    recovery media  
text
    finding, using grep  
    marking, using holding space (sed utility)  
    search and replace using sed  
.TH (title) groff command  
thesaurus, creating  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


three-way handshake, TCP  
time of day, displaying  
timeout value of screensavers, changing  
times.allow option  
times.deny option  
timestamps in packets  
tip utility  
/tmp filesystem
    clearing out  
    moving to RAM  
Tomcat (Java servlet)  
touch command  
tr command  
trade show demos, creating  
traffic shaping on FreeBSD  
transfers, automating, using ftp  
translating
    case of characters  
    tabs to spaces  
trash directory, creating  
tripwire, using mtree as built-in  
trivia related to current date, displaying  
TrustedBSD project  2nd  
    MAC (Mandatory Access Control) framework  
tunefs command
    editing superblock with  
tuning FreeBSD systems  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

uappnd flag  2nd  
uchg flag  
UFS (Unix File System)  
UFS1 filesystem and ACLs  
umount command  2nd  
unauthorized reboots, limiting  
unauthorized/authorized hosts  
UNC (Universal Naming Convention)  
uncompress command  
uninstalling applications, checking dependencies first  
unison utility  
Unix File System (UFS)  
Unix one-liner commands  
<Emphasis>Unix Power Tools<Default Para Font>  
unlimit command  
unlocking and locking screens  
unmounting
    floppies  
    remote shares  
    /tmp filesystem  
untarring archives  
updating systems
    automatically  
uploaddisk command  
uppercasing characters  
USB support in kernel configuration files  
user interaction
    adding to scripts  
    handling incorrect input  
users
    choosing memorable passwords  
    expiration dates for passwords  
users command  
/usr/local/etc/sudoers file  
/usr/src/share/skel/Makefile file, editing  
uunlnk flag  2nd  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

/var/log file  
/var/log/console.log file  
variables
    for login prompt  
    shell  
vidcontrol command  2nd  
Vig, Avleen  
Vince, Michael  2nd  
virtual terminals
    dvt command (ClusterIt tool)  
    logging into  
viruses
    Intrusion Detection Systems and  
    scanning Windows computers for  
Vogel, Karl  
vol utility (Minix/QNX4)  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

w command  2nd  
w3m command-line browser  
Warden, Brett  
Warner, Joe  
web browsers and Java applets  
web information, fetching  
web servers
    allowing unauthorized hosts to access  
    consolidating logs for  
    optimizing  
WebStart mechanism  
WEP (Wireless Encryption Protocol)  
    multiple NIC configurations  2nd  
whatis command  2nd  
whatis database, creating  
whereis command  
which command  
who command  
window managers
    screen  
        multitasking with  
    showcasing, using eesh utility  
Windows
    using Access Control Lists with  
    scanning computers for viruses  
wiping disks clean before upgrading  
Wireless Encryption Protocol (WEP)  
    multiple NIC configurations  2nd  
wireless networks
    securing with PF  
    using multiple NIC configurations  
words, finding  
worms, fighting with Intrusion Detection Systems  
wsmoused, shutting down servers using  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

X authorization  
X server utilities  
xauth command  
xclipboard utility  
xconsole utility  
.xinitrc file  
xwd command  
xwud command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Yost, Brian  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

zone transfers in DNS, controlling tightly  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 0 Introduction
Users of open source (http://opensource.org) Unix operating systems are an interesting breed. They like to poke under
the surface of things, to find out how things work, and to figure out new and interesting ways of accomplishing common
computing tasks. In short, they like to "hack."

While this book concentrates on the BSDs, many of the hacks apply to any open source operating system. Each hack is
simply a demonstration of how to examine a common problem from a slightly different angle. Feel free to use any of
these hacks as a springboard to your own customized solution. If your particular operating system doesn't contain the
tool used in the solution, use a tool that does exist, or invent your own!

This chapter provides many tools for getting the most out of your working environment. You'll learn how to make
friends with your shell and how to perform your most common tasks with just a few keystrokes or mouse clicks. You'll
also uncover tricks that can help prevent command-line disasters. And, above all, you'll discover that hacking BSD is
fun. So, pull your chair up to your operating system of choice and let's start hacking.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 9 Customize User Configurations

 

Now that you know how to set up a useful environment for yourself, it's time to share the wealth.

It's very easy for a system administrator to ensure that each newly created user starts out with the same configuration
files. For example, every user can receive the same customized prompt, shell variables, or hotkeys.

Whenever you create a new user, several default (and hidden, or dot, files) are copied into the new user's home
directory. In FreeBSD, the source of these files is /usr/share/skel/. Any customizations you make to these files will be
seen by all subsequently created users. Do note that you'll have to manually copy over any modified files to existing
users.

It's useful to understand these files, as they apply to every user you create. Depending upon your needs, you'll
probably end up removing some of the defaults, customizing others, and even adding a few of your own.

1.10.1 Default Files

Let's take a quick tour of the default files:

% ls -l /usr/share/skel

total 24

drwxr-xr-x   2 root  wheel  512 Jul 28 16:09 ./

drwxr-xr-x  27 root  wheel  512 Jul 28 16:06 ../

-rw-r--r--   1 root  wheel  921 Jul 28 16:09 dot.cshrc

-rw-r--r--   1 root  wheel  248 Jul 28 16:09 dot.login

-rw-r--r--   1 root  wheel  158 Jul 28 16:09 dot.login_conf

-rw-------   1 root  wheel  371 Jul 28 16:09 dot.mail_aliases

-rw-r--r--   1 root  wheel  331 Jul 28 16:09 dot.mailrc

-rw-r--r--   1 root  wheel  797 Jul 28 16:09 dot.profile

-rw-------   1 root  wheel  276 Jul 28 16:09 dot.rhosts

-rw-r--r--   1 root  wheel  975 Jul 28 16:09 dot.shrc

Note that each starts with the word dot. However, when the files are copied into a user's home directory, the dots turn
into literal dots (.). Also, the files in this directory are owned by root, but when a new user is created, the copied over
files will change ownership as they are placed in that user's home directory.

1.10.1.1 dot.cshrc

Let's examine each default file, starting with dot.cshrc. ( [Hack #2] introduced several .cshrc hacks.) If you'd like new
users to receive your customizations, simply replace /usr/share/skel/dot.cshrc with your hacked version of .cshrc. Don't
forget to rename the file as you copy it:

# cp /root/.cshrc /usr/share/skel/dot.cshrc

Here, I overwrote the default dot.cshrc by copying over the superuser's customized version of .cshrc. Although you
could edit /usr/share/skel/dot.cshrc directly, you may find it more convenient to have a customized copy stored
elsewhere.

All isn't lost if you already have existing users whom you'd like to receive this file. First, find out what users already
exist and have home directories. This is a quick way to do so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


exist and have home directories. This is a quick way to do so:

# ls /usr/home

dru    test

Since this system has only two existing users, it's an easy matter to copy over my customized .cshrc. I'm also a lazy
typist, so I use ~ instead of typing out /usr/home. Also note that I have to remember to manually change ownership:

# cp /root/.cshrc ~dru/

# chown dru ~dru/.cshrc

# cp /root/.cshrc ~test/

# chown test ~test/.cshrc

If your system already contains many users, you'll probably prefer to write a script. Here is an example:

#!/usr/bin/perl -w

# copydotfiles.pl

#    - copy default files to user directories

#    - change ownership of those files

# You may wish to change these constants for your system:

use constant HOMEDIR => '/usr/home';

use constant SKELDIR => '/usr/share/skel';

use constant PREFIX  => 'dot';

use strict;

use File::Copy;

use File::Spec::Functions;

die "Usage: $0 <files> <to> <copy>\n" unless @ARGV;

for my $user ( get_users( ) )

{

    for my $dotfile (@ARGV)

    {

        my $source = catfile( SKELDIR( ),         PREFIX( ) . $dotfile );

        my $dest   = catfile( $user->{homedir},              $dotfile );

        if (-e $dest)

        {

            warn "Skipping existing dotfile $dest...\n";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            next;

        }

        copy(  $source,      $dest )

            or die "Cannot copy $source to $dest: $!\n";

        chown( $user->{uid}, $dest );

    }

}

sub get_users

{

    local *DIRHANDLE;

    opendir( DIRHANDLE, HOMEDIR( ) )

        or die "Cannot open home directory: $!\n";

    my @users;

    while (my $directory = readdir( DIRHANDLE ))

    {

        next if $directory =~ /^\./;

        my $path = File::Spec->catdir( HOMEDIR( ), $directory );

        my $uid  = getpwnam( $directory );

        next unless -d $path;

        next unless $uid;

        push @users, { homedir => $path, uid => $uid };

    }

    return @users;

}

This script first examines all of the users with home directories, returning a list of those directories and the user IDs. It
loops through that list, copying each dot file you provided on the command line to that user's home directory and
changing the ownership to the user.

If you run it as:

# copydotfiles.pl .cshrc

all users will receive a new .cshrc file, unless one already exists.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


all users will receive a new .cshrc file, unless one already exists.

1.10.1.2 dot.login

The next file, dot.login, is used only by the csh and tcsh shells. If your users don't plan on using these shells, you can
safely remove this file from /usr/share/skel. If your users do use those shells, consider whether there are any
commands you would like to run when users log in. Note that this file is read after .cshrc.

By default, the only uncommented line in this file is:

% grep -v '#' /usr/share/skel/dot.login

[ -x /usr/games/fortune ] && /usr/games/fortune freebsd-tips

Here, I used the reverse filter switch -v to the grep search utility to look for all the lines that do not begin with the #
comment symbol.

The resulting line tells the shell to run the fortune program. If you chose to install the games distribution when you
installed FreeBSD, your fortune appears just before the MOTD whenever you login. Have you ever noticed that you don't
receive a fortune when you use su? That's because .login is only read when you log in, and the default invocation of su
does not actually log you in.

Instead, it opens what is known as a nonlogin shell. You also get one of those every time you open an xterm. Basically,
the only time you get a real login shell is when you type in your username and password at a login prompt.

Herein lies the difference between .cshrc and .login. Place what you would like to happen only when you log in into
.login, and place what you would like to happen whenever you use the csh shell, even if it isn't a login shell, into .cshrc.
If you don't see the need for a difference, you don't need /usr/share/skel/dot.login.

1.10.1.3 dot.login_conf

Reading the default contents of dot.login_conf will give you an idea of its purpose and where to go for additional
information:

% more /usr/share/skel/dot.login_conf

# $FreeBSD: src/share/skel/dot.login_conf,v 1.3 2001/06/10 17:08:53 ache Exp $

#

# see login.conf(5)

#

#me:\

#        :charset=iso-8859-1:\

#        :lang=de_DE.ISO8859-1:

Note that this file is commented by default, but shows the syntax a user can use to create a customized .login.conf.
Usually such settings are set in the globally administrated /etc/login.conf file, and individual users can override only
some of those settings. If your users don't have a need or the know-how to configure those settings, you can safely
remove this file from /usr/share/skel.

1.10.1.4 dot.mail_aliases and dot.mailrc

The next two files work hand in hand and customize the behavior of man mail. Since it is quite rare to find users who still
rely on the original mail program, you can safely remove those files.

1.10.1.5 dot.profile

The dot.profile file is read by the Bourne, bash, and Korn shells. It is the only file read when a user logs into a Bourne
shell, the first file read when a user logs into the Korn shell, and is optional for bash users.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


shell, the first file read when a user logs into the Korn shell, and is optional for bash users.

If your users don't use the Bourne or Korn shells, there's not much sense populating their home directories with this
file. Depending upon your slant, you may wish to keep this file in order to place path statements and environment
variables for use with Bourne shell scripts. However, most users tend to place those directly into the script itself to
allow for portability.

If your users wish to use the bash shell, which isn't installed by default, keep in mind that .profile allows a user to
override the settings found in the global /etc/profile file. You may find it easier to make your edits to the global file and
then remove /usr/share/skel/dot.profile. More sophisticated users can always create their own ~/.profile. However,
most bash users tend to make their modifications to ~/.bash_profile.

1.10.1.6 dot.rhosts

Did you happen to notice in the earlier long listing that this file has different permissions from most of the other files? If
you read man rhosts, you'll see that this file is ignored if it is writable by any user other than the owner of the file.

So, when is this file used? It's used when a user types one of the r* commands: rsh, rcp, or rlogin. I won't show you how
to set up this file or use those commands, as they were designed for use back in the days when networks were
considered trusted. They've pretty well been replaced by ssh and scp, which provide a much safer way to log into
remote systems and to transfer files. For this reason, I always remove /usr/share/skel/dot.rhosts from my systems.

1.10.1.7 dot.shrc

The last default file is dot.shrc. As you may have guessed, it is the rc file for sh, the Bourne shell. Again, if your users
don't log into that shell, they won't miss this file.

1.10.2 Missing (but Useful) Dot Files

Now that we've had the opportunity to look at the default files, it's time to consider any useful missing files.

1.10.2.1 dot.logout

We've already seen that ~/.login is read when a user logs into the csh or tcsh shells. Not surprisingly, ~/.logout is read
when a user logs out of their login shell. This is an excellent place to put commands you would like to execute as a user
logs out. It could be something as simple as:

# more dot.logout

# this line clears your screen when you logout

clear

# add your own commands or scripts, one line at a time, 

# which you would like to execute

# whenever you logout and leave your terminal

This dot.logout will clear the user's terminal, making it much neater for the next person who logs in. Notice that I
commented this file, so the user is aware of its use. When creating your own dot files, use lots of comments. If you
intend for your users to customize their own dot files, use comments that explain the syntax they can use when they do
their modifications.

dot.logout can run any command or script that suits a user's needs. Here are some ideas to get your imagination
rolling:

A script that backs up the user's home directory

A script that shows how much time the user spent online

A script that displays other statistics, such as available disk space

1.10.2.2 dot.xinitrc

I also find it very useful to create a custom dot.xinitrc. By default, users receive the extremely lightweight twm window

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I also find it very useful to create a custom dot.xinitrc. By default, users receive the extremely lightweight twm window
manager. Since I usually install KDE, this line ensures that each user will receive that window manager instead:

# more dot.xinitrc

exec startkde

You can also specify which programs you would like to launch when a user types startx and their ~/.xinitrc file kicks in.
For example, this is a popular line to add:

# more dot.xinitrc 

exec xterm &

exec startkde

This starts an xterm in the background. Notice the & at the end of its line—this is to ensure that once xterm loads, it
doesn't interfere with any other programs that are still loading. When you're creating your own dot.xinitrc, you can start
any program you like. However, start your window manager last. Start your other programs, one line at a time, putting
an & at the end of each line. The only line that does not have an & will be the very last line, the one that loads your
window manager.

Since I prefer to start my browser instead of an xterm, here is my customized dot.xinitrc:

#to start another program when you "startx", type:

#exec path_to_program &

#before these lines

exec /usr/X11R6/bin/mozilla &

exec startkde

There are dozens of possibilities for customized dot files. Take stock of your own systems, and ask yourself: "What
programs do my users use?" For example, if your users use bash, vim, screen, procmail, or fetchmail, why not start them
off with a customized configuration file that contains comments on how to add their own customizations and URLs of
where to go for further ideas? A little homework and creativity on your part can help your users get the most out of the
utilities they use on a daily basis.

1.10.3 Editing /usr/src/share/skel/Makefile

Let's end this hack by examining where the default dot files in /usr/share/skel came from in the first place. You'll find
the answer here:

% ls /usr/src/share/skel

./            dot.login           dot.profile

../           dot.login_conf      dot.rhosts

Makefile      dot.mail_aliases    dot.shrc

dot.cshrc     dot.mailrc

That Makefile controls the installation of those files:

# more /usr/src/share/skel/Makefile

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# more /usr/src/share/skel/Makefile

#        @(#)Makefile        8.1 (Berkeley) 6/8/93

# $FreeBSD: src/share/skel/Makefile,v 1.8 2002/07/29 09:40:13 ru Exp $

FILES1= dot.cshrc dot.login dot.login_conf dot.mailrc dot.profile dot.shrc

FILES2=        dot.mail_aliases dot.rhosts 

MODE1=        0644

MODE2=        0600

NOOBJ=        noobj

all clean cleandir depend lint tags:

install:

        ${INSTALL} -o ${BINOWN} -g ${BINGRP} -m ${MODE1} ${FILES1} \

            ${DESTDIR}${BINDIR}/skel

        ${INSTALL} -o ${BINOWN} -g ${BINGRP} -m ${MODE2} ${FILES2} \

            ${DESTDIR}${BINDIR}/skel

.include <bsd.prog.mk>

Even if you've never read a Makefile before, you'll find it's not too hard to figure out what's going on if you already
know which results to expect. In this Makefile, FILES=1 is simply a list of files to install. Take a look at MODE1; it tells the
chmod command what permissions to set on those files.

Similarly, FILES=2 is another list of files. Those two files had different permissions, which were defined by MODE2.

Move down to the install section. Don't worry so much about the syntax; rather, notice the pattern. The first set of files
are installed and their mode is applied. Then the second set of files are installed with their mode.

It's an easy matter to customize this file to reflect the dot files you'd like to see installed. In this example, I only want
to install my custom versions of dot.cshrc, dot.login, and dot.xinitrc. Since they all require the first mode, I'll remove
any references to the second set of files:

# cd /usr/src/share/skel

# cp Makefile Makefile.orig

# vi Makefile

#        @(#)Makefile        8.1 (Berkeley) 6/8/93

# my customized dot files to be installed into /usr/share/skel

FILES1= dot.cshrc dot.login dot.xinitrc

MODE1=        0644

NOOBJ=        noobj

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


all clean cleandir depend lint tags:

install:

        ${INSTALL} -o ${BINOWN} -g ${BINGRP} -m ${MODE1} ${FILES1} \

            ${DESTDIR}${BINDIR}/skel

.include <bsd.prog.mk>

Now let's try a test run. I'll replace the default dot files found in /usr/src/share/skel with my customized versions. I'll
then remove the contents of /usr/share/skel and see what happens when I run my customized Makefile:

# cd /usr/src/share/skel

# rm dot.*

# cp ~/mystuff/dot.* .

# rm /usr/share/skel/*

# ls /usr/share/skel

# make install

install -o root -g wheel -m 0644 dot.cshrc dot.login dot.xinitrc 

    /usr/share/skel

# ls /usr/share/skel

dot.cshrc    dot.login    dot.xinitrc

I find it very handy to keep a copy of my customized Makefile and dot files in a separate directory, in this case
~/mystuff. This ensures they are backed up. It's easy for me to grab those files whenever I want to customize a
particular system.

It's especially important to use a separate location if you use cvsup to keep your system up-to-date. Otherwise, your
next update will notice your modified src and happily replace those missing original source files. But don't worry; it
won't touch your new /usr/share/skel.

Of course, sometimes this is a very useful trick in itself. If you ever mess up a file located somewhere within /usr/src, a
quick cvsup will put everything back the way it was. See [Hack #80] for details on automating cvsup.

1.10.4 The Other BSDs

The preceding discussion is based on FreeBSD, but it also applies to NetBSD and OpenBSD systems, save for a few tiny
differences outlined here.

1.10.4.1 NetBSD

NetBSD administrators will find the skeleton home directory in /etc/skel. Specify a different location by passing the -k
option to useradd.

1.10.4.2 OpenBSD

OpenBSD systems store the skeleton home directory in /etc/skel. Specify a different skeleton directory location by
passing the -dotdir option to adduser.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


passing the -dotdir option to adduser.

1.10.5 See Also

man adduser

The manpages returned by apropos user

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 10 Maintain Your Environment on Multiple Systems

 

The sign of a true Unix guru is the ability to perform a task quickly when confronted with an unfamiliar
shell, keyboard, terminal, window manager, or operating system.

A large part of using Unix systems effectively involves configuring a comfortable environment using familiar tools
available from the Unix shell prompt. It's much easier to perform a task quickly when all of the shortcuts your fingers
have learned work on the first try.

Even something as simple as setting up your prompt the way you like it can steal significant time from your productivity
if you need to do it on several hosts. If you're going to spend significant time in a Unix shell, it's worth getting
organized. A bit of onetime effort will reward you later, every time you sit down at the keyboard.

1.11.1 Enter unison

unison is a tool for maintaining synchronized copies of directories. I've used it to maintain a central repository of all of
my dot files, shell scripts, signatures file, SpamAssassin configuration—basically any file I'd like to have available,
regardless of which host I happen to be logged into.

You can install unison from the NetBSD pkgsrc collection:

# cd /usr/pkgsrc/net/unison

# make install clean

FreeBSD and OpenBSD ports also include net/unison.

Even better, this utility is available for most Unix and Windows platforms. See the main unison web site for details.

1.11.2 Using unison

Whenever I configure a new Unix host or get a shell on another system, I install unison. Then, I create a directory to
receive the files I've stored in the /usr/work/sync directory at host.example.com. I call the local directory ~/sync.

To synchronize those two directories:

% unison ~/sync ssh://username@host.example.com://usr/work/sync

p = /home/david/.unison; bn = .unison

Contacting server...

p = /home/david/sync; bn = sync

username@host.example.com's password:

After ssh prompts for a password or pass phrase, the unison exchange begins. On a first-time synchronization, unison will
ask only one question: whether you wish to copy the remote directory to the local host.

Looking for changes

Warning: No archive files were found for these roots.  This can happen 

either because this is the first time you have synchronized these roots, 

or because you have upgraded Unison to a new version with a different

archive format.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Update detection may take a while on this run if the replicas are large.

unison will assume that the last synchronized state of both replicas was completely empty. This means that any files that
are different will be reported as conflicts, and any files that exist only on one replica will be judged as new and
propagated to the other replica. If the two replicas are identical, then unison will report no changes:

Press return to continue.

Waiting for changes from server

Reconciling changes

local          host.example.com              

         <---- dir        /  [f] 

Proceed with propagating updates? [  ] y

Propagating updates

UNISON started propagating changes at 11:44:39 on 02 Feb 2004

[BGN] Copying 

from //host.example.com//usr/work/sync

to /home/david/sync

bin

dotfiles

spamassassin

bin/randomsig2.pl

bin/sy

bin/testaspam

dotfiles/.c

dotfiles/.cshrc

dotfiles/.login

dotfiles/.muttrc

dotfiles/.profile

dotfiles/.tcshrc

dotfiles/.xinitrc

spamassassin/user_prefs

[...]

[END] Copying 

UNISON finished propagating changes at 11:44:41 on 02 Feb 2004

Saving synchronizer state

Synchronization complete

I now have a populated ~/sync directory on the new system, organized into subdirectories. Each subdirectory contains
the files I find useful to carry around with my various accounts on multiple Unix machines.

Notice also that although my preferred shell is tcsh, I maintain a .cshrc and .profile for use on systems where tcsh is not

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notice also that although my preferred shell is tcsh, I maintain a .cshrc and .profile for use on systems where tcsh is not
available.

1.11.3 Automating the Process

I've automated the process with a simple shell script called sy in my bin directory. sy runs the unison command to
synchronize the ~/sync directory.

#!/bin/sh

unison ~/sync ssh://username@host.example.com://usr/work/sync

1.11.4 Creating Portable Files

Making good use of the sync directory requires some discipline. It's one thing to be able to copy files easily; it's another
thing to be able to use them without modification on several hosts.

To take advantage of this hack, when you copy the dot files to your home directory and notice that something doesn't
work exactly the way you like it to, make sure you don't simply change it for the local host.

Instead, update the dot files so that they use conditional if statements, shell backticks (e.g., `hostname`), or
environment variables, to make them behave correctly on the new hosts without breaking them on the systems where
you already use them. Then, copy the dot file back into your ~/sync directory and run the sy script. unison will prompt
for a password or passphrase for the ssh connection, then ask you to verify that you want to update your files back to
the main server.

The first few times you do this, you may introduce breakage when the new dot file is used on another host. With a bit of
practice you'll learn how to avoid that. The most important trick is to test. Open a shell to the host and update the dot
file, and then open a second shell to the host without closing the first one. If you broke anything that affects your ability
to log in, you can fix it with the first shell and test again.

There's no need to resynchronize every other host you use for each file you change. I generally wait until I'm logged
onto a given host and need a newer script, or need to make some additional changes to the local copy of the dot file.
Then I synchronize, make the changes in the sync directory, test them locally, and resync them back to the main host.

Using this approach means that I don't have to reinvent the wheel every time I want to perform a procedure I've done
before. Any process useful enough to be done a couple of times becomes a script in my toolkit, and is conveniently
available anywhere I have a shell. With unison, I don't have to keep track of which files were modified on which end of
the connection since my last update.

Keep in mind that using a tool like unison can provide a mechanism for someone to attempt to feed updates into your
central file repository. When you log into a host and run the update, be conscious of whether unison asks for approval to
send back changes. If you don't remember making those changes, you might be helping an attacker feed a Trojan
horse into your .login, which could end up giving the attacker access to every system you use that script on. unison will
ask for confirmation for every file change. Presumably, your central host is secure, but you need to be particularly
conscious when permitting file uploads.

1.11.5 See Also

The unison home page (http://www.cis.upenn.edu/~bcpierce/unison/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 11 Use an Interactive Shell

 

Save and share an entire login session.

How many times have you either struggled with or tried to troubleshoot another user through a thorny problem? Didn't
you wish you had another set of eyes behind you so you could simply type your command set, point at the troublesome
output, and say, "That's the problem." Well, if you can't bring another user to your output, you can still share that real-
time output using an interactive shell.

1.12.1 Recording All Shell Input and Output

There are actually several ways to share what is happening on your screen. Let's start by recording all of your input and
output to a file. Then we'll see how we can also allow another user to view that output from another terminal.

Your BSD system comes with the script command which, not surprisingly, allows you to script your session. This
command is extremely simple to use. Simply type script:

% script

Script started, output file is typescript

By default, script will create an output file named typescript in your current directory. If you prefer, you can specify a
more descriptive name for your script file:

% script configure.firewall.nov.11.2003

Script started, output file is configure.firewall.nov.11.2003

Regardless of how you invoke the command, a new shell will be created. This means that you will see the MOTD and
possibly a fortune, and your .cshrc will be reread.

You can now carry on as usual and all input and output will be written to your script file. When you are finished, simply
press Ctrl-d. You will see this message:

Script done, output file is configure.firewall.nov.11.2003

If you've ended a script and decide later to append some more work to a previous session, remember the -a (append)
switch:

% script -a configure.firewall.nov.11.2003

This will append your current scripting session to the named file.

I find script extremely useful, especially when I'm learning how to configure something for the first time. I can easily
create a written record of which commands I used, which commands were successful, and which commands caused
which error messages. It also comes in handy when I need to send an error message to a mailing list or a program's
maintainer. I can simply copy or attach my script file into an email.

1.12.2 Cleaning Up script Files

The script utility is a very quick and dirty way to record a session, and it does have its limitations. One of its biggest is
that it records everything, including escape characters. For example, here is the first line from one of my script files:

[1mdru@~ [m: cd /s  [K/ysr/  [K  [K  [K  [K  [Kusr/ports/security/sn o rt

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


It's a bit hard to tell, but this is what script was recording:

cd /usr/ports/security/snort

This isn't really script's fault; it's ugly for several reasons. One, my customized prompt contains control characters.
Those display as [1m and [m around my username. Second, I had problems typing that day. Instead of /usr, I typed /s
and had to backspace a character. Then I typed /ysr and had to backspace three characters. Finally, I used tab
completion. You can see that I tried to tab at sn but received a beep; I then tried to tab at sno and had my input
completed to snort.

Granted, if I had first used the file utility on my script file, I would have received a warning about this behavior:

% file configure.firewall.nov.11.2003

configure.firewall.nov.11.2003: ASCII English text, with CRLF, CR, LF line

terminators, with escape sequences

All is not lost, though. This command will get rid of most of the garbage characters:

% more configure.firewall.nov.11.2003 | \

  col -b > configure.firewall.nov.11.2003.clean

col is an interesting little utility. It silently filters out what it doesn't understand. Here's an example where this actually
works to our advantage. col doesn't understand control characters and escape sequences, which is exactly what we wish
to get rid of. Including -b also asks col to remove backspaces.

The result is much more readable:

1mdlavigne6@~m: cd /usr/ports/security/snort

% file configure.firewall.nov.11.2003.clean

configure.firewall.nov.11.2003.clean: ASCII English text

I've found that using an editor during a script session also produces very messy output into my script file. The
preceding col -b command will clean up most of the mess, but I still won't have a very good idea of exactly what I typed
while I was in that editor. For this reason, I use the echo command to send little comments to myself:

% echo # once you open up /etc/rc.conf

% echo # change this line: linux_enable="NO"

% echo # to this: linux_enable="YES"

% echo # and add this line: sshd_enable="YES"

If you really want to get fancy, map one key to "start echo" and another to "end echo" as
in [Hack #4].

1.12.3 Recording an Interactive Shell Session

Let's look at an alternate way of recording a session. This time I'll use the -i (or interactive) switch of my shell:

% csh -i | & tee test_session.nov.12.2003

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% csh -i | & tee test_session.nov.12.2003

tcsh is linked to csh in FreeBSD. It doesn't matter which one I type; I'll still end up with the
tcsh shell.

In that command, I used -i to start an interactive tcsh shell. I then piped (|) both stdout and stderr (&) to the tee
command. If you've ever looked at physical pipe plumbing, you'll recognize the job of a "tee" in a pipe: whatever is
flowing will start going in both directions when it hits the "tee." In my case, all stdout and stderr generated by my shell
will flow to both my monitor and to the test_session.nov.12.2003 file. When I'm finished recording my session, I can
type Ctrl-c, Ctrl-d, or exit to quit.

Like the previous script command, an interactive csh shell will present me with a new shell. However, this method does
not record escape characters, meaning I won't need to use the col -b command to clean up the resulting file.

But if I try to use vi during my session, the shell will refuse to open the editor and will instead present me with this
interesting error message:

ex/vi: Vi's standard input and output must be a terminal.

If I try to use ee, it will open, but none of the commands will work. pico works nicely but still throws garbage into the
session file. So, if I need to use an editor during my session, I'll still echo some comments to myself so I can remember
what I did while I was in there.

Appending works almost exactly like it does for script, again with the -a (append) switch:

% csh -i | & tee -a test_session.nov.12.2003

1.12.4 Letting Other People Watch Your Live Shell Sessions

Regardless of which method you choose to record a session, another user can watch your session as it occurs. In order
for this to work, that user must:

Be logged into the same system

Know the name and location of your script file

For example, I've created a test account on my system and configured sshd. I'll now see if I can ssh into my system as
the user test and watch the results of dru's test_session.nov.12.2003.

% ssh -l test 192.168.248.4

Password:

%

Once I successfully log in, my customized prompt indicates I'm the test user. I can now use the tail command to watch
what is happening in dru's session:

% tail -f ~dru/test_session.nov.12.2003

My prompt will appear to change to indicate I am the user dru. However, I'm not. I'm simply viewing dru's session. In
fact, I can see everything that the user dru is seeing on her terminal. This includes all of her input, output, and any
error messages she is receiving.

While tail is running, I won't be able to use my prompt. If I try typing anything, nothing will happen. I also can't interact
with the user or change what is happening on her terminal. However, I do have a bird's eye view of what that user is
experiencing on her terminal. When I'm ready to return to my own prompt, which will also end my view of the session,
I simply need to press Ctrl-c.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I simply need to press Ctrl-c.

1.12.5 See Also

man script

man file

man col

man tee

man tail

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 12 Use Multiple Screens on One Terminal

 

Running a graphical environment is great. You can have numerous applications and utilities running, and you can
interact with all of them at the same time. Many people who have grown up with a GUI environment look down upon
those poor souls who continue to work in a terminal console environment. "After all," they say, "you can only do one
thing at a time and don't get the same information and control that you have in a desktop environment."

It's true; they do say those things. (I am curious to know who they are, however.)

It's also true that the utility of a graphical environment diminishes when you need to administer machines remotely. Do
you really want to squander network bandwidth just to maintain a GUI session?

Here are some more questions to ask yourself regarding remote administration:

Are you worried about making your services vulnerable just so you can administer them across the Internet?

Do you want a secure connection?

Do you want to run multiple terminal sessions from a single login?

Do you want to be able to password protect your session to prevent unauthorized access?

Do you want multiple windows with labels and of different sizes?

Do you want to copy and paste between the windows?

Are you prepared to lose a connection to your remote machine in the middle of a critical operation?

Would you like to be able keep the session active even after you've lost it or you've logged off the remote
server?

Do you want to take over a session that you launched from another machine?

Would you like to keep a hardcopy log of your sessions?

You are indeed a poor soul if you've reconciled yourself to the standard ssh login without any hope of resolving these
questions. But all is not lost—the solution is screen.

1.13.1 What Is screen?

screen is a terminal screen window manager. That means you can use a console and run multiple terminals at the same
time. The fancy term for this ability is multiplexing.

Getting and installing screen is straightforward using the ports facility:

# cd /usr/ports/misc/screen

# make install clean

I'm working with Version 4.00.01 (FAU) 18-Sep-03.

1.13.2 Getting Started

screen has many options, settings, and commands. Although we'll attempt to address the major features, the definitive
reference is, of course, the manpage.

There are three methods of command-line invocation:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are three methods of command-line invocation:

screen [ - options ] [ cmd [ args ] ]

For invoking screen for the first time and running specific options and commands

screen -r [[ pid.]tty[ .host]]

For attaching to and detaching from running sessions

screen -r sessionowner/[[ pid.]tty[ .host]]

For attaching to and detaching from existing sessions being run by other users

1.13.3 Multitasking with screen

The best way to understand screen's power is to give you an example of how you can take advantage of it.

Suppose you are sitting at workstation alpha. You want to access your machine, bravo, to download and compile the
latest PostgreSQL source code. Log into host bravo as user charlie using SSH:

% ssh -l charlie bravo

Invoke screen. If you give it a session name, with the -s flag, you can address this session by name. This will pay off
shortly.

% screen -s A

Go ahead and download the source code now:

% ftp ftp://ftp3.ca.postgresql.org/pub/source/v7.4/postgresql-7.4.tar.gz

1.13.3.1 Using windows with screen

So far, this has no advantage over a normal SSH login. Yet suppose you need to send some email while you're
downloading. Instead of putting the download into the background, create another screen window with the key
sequence C-a c. This symbolizes that the Ctrl key is pressed with the lowercase letter a and then, after releasing them,
you press a second key, in this case c.

At this point the console will go blank. You'll be presented with a second window. Use your favorite email client to
compose your message.

1.13.3.2 Switching between windows

You'll probably want to switch between the download and mailer windows. Cycle forward in the window list with C-a n.
Cycle backward with C-a p, although you'll likely see no difference with two windows.

1.13.3.3 Splitting windows

Being the efficient person that you are, you'd like to compile the source code as soon as it has downloaded. Even
though you haven't completed your email, go back to the original window and extract the tarball:

% tar -xzpvf  postgresql-7.4.tar.gz

Wise administrators read the INSTALL file to make sure all the correct options are invoked. It'd be very handy to be
able to read the instructions as you compose the configure command in the same console. screen comes to the rescue
here, too: split the window horizontally, running configure in the top half and reading the documentation in the bottom
half.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


half.

Type C-a S to split the screen, where the S is uppercase. You should see a wide horizontal bar in the middle of the
screen. The top window will show whatever existed when you split the window. You'll also see the window's ID on the
left side of the middle bar, along with the name of the shell.

The bottom window doesn't yet have a shell running. Set the focus to the other window with C-a Tab. Create a new
window with C-a c, as usual. Notice that the window has the ID of 2 (shown in the bottom lefthand corner); that's
because the email window that you created after starting the download has the ID of 1.

1.13.3.4 Better window switching

To list all windows associated with this session, use the command C-a ".

If cycling through windows is onerous, you can also switch between windows by ID. For example, C-a ' 1 will go to
window 1.

Be prepared for a little confusion because the screen remains split and now shows the window of your choice in the
currently focused window. You can quite easily show the same window in both the top and bottom halves.

Enter window 0 with C-a ' 0, and extract the tarball into its own directory. Enter window 2 with C-a ' 2, and navigate to
the uppermost directory of the source code to read the INSTALL file.

1.13.3.5 Naming windows

ID numbers identify windows pretty well, but I prefer to use names of my own choosing. Change a window's name with
the command C-a A. For example, C-a A email, C-a A source, and C-a A doc seem like a big improvement for the currently
active windows.

Now, listing the active windows with C-a " will show the following:

NUM NAME

0   source

1   email

2   doc

At this point, you have one screen session with three windows. Your terminal is split such that it shows two windows at
the same time.

1.13.4 Attaching and Deattaching

Suppose you are called away from the workstation in the middle of a sensitive operation (that is, you haven't yet sent
your email). Type C-a x to protect your session. Depending on your configuration, you will either input a password for
the screen or use the default account password.

Now suppose you don't return to your workstation. What do you do? You can ssh into bravo from a new location and
attach to your existing screen session with screen -dr A. Remember, A was the name of the screen session.

After finishing and sending your email, kill off that screen. Type the command C-a k in the email window.

With that business finished, scroll back through the INSTALL text file to find interesting configuration switches. You
could retype them, but screen has a perfectly capable copy mode. Type C-a ESC.

Use the cursor keys to navigate to the portions of the document you want to copy. Hit the space bar to mark the
beginning of the text to copy. Scroll around to the end of the text with the cursor keys. The current selection will display
in reverse video. When you're satisfied, hit the space bar to copy the current selection into the buffer.

Switch to the source window and use C-a ] to paste the copied text.

You don't need the doc window anymore, so switch into it and either exit the shell or use the key sequence C-a k to kill it.
You could also merge the split screens together with the key sequence C-a X.

Once you've started compiling, you can close the terminal but leave the session active by detaching it; just type C-a d.
One of the nice features about detaching the screen is that it is done automatically if you lose connection with the
server, so you won't lose your session. You can reattach to the session later from the same location or from another
workstation altogether.

1.13.5 Additional Features

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


These are only the basics of what screen can do. Here's a quick listing of other features you might enjoy:

Since the key bindings are not cast in stone, you change them as you see fit in the .screenrc resource file.

It's possible to authorize other users access to your screen session via an access control list.

More than one user can access the same screen session.

You can create any number of windows in a given screen session.

It's possible to hardcopy all activity in a screen session to a buffer and even a file.

An extensive system of copy and paste features exist within the screen session.

You can control all of these features with the .screenrc resource file. See man screen for details.

1.13.6 See Also

man screen

The GNU Screen home page (http://www.gnu.org/software/screen)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 1 Get the Most Out of the Default Shell

 

Become a speed daemon at the command line.

For better or for worse, you spend a lot of time at the command line. If you're used to administering a Linux system,
you may be dismayed to learn that bash is not the default shell on a BSD system, for either the superuser or regular
user accounts.

Take heart; the FreeBSD superuser's default tcsh shell is also brimming with shortcuts and little tricks designed to let
you breeze through even the most tedious of tasks. Spend a few moments learning these tricks and you'll feel right at
home. If you're new to the command line or consider yourself a terrible typist, read on. Unix might be a whole lot
easier than you think.

NetBSD and OpenBSD also ship with the C shell as their default shell. However, it is not
always the same tcsh, but often its simpler variant, csh, which doesn't support all of the
tricks provided in this hack.

However, both NetBSD and OpenBSD provide a tcsh package in their respective package
collections.

1.2.1 History and Auto-Completion

I hate to live without three keys: up arrow, down arrow, and Tab. In fact, you can recognize me in a crowd, as I'm the
one muttering loudly to myself if I'm on a system that doesn't treat these keys the way I expect to use them.

tcsh uses the up and down arrow keys to scroll through your command history. If there is a golden rule to computing, it
should be: "You should never have to type a command more than once." When you need to repeat a command, simply
press your up arrow until you find the desired command. Then, press Enter and think of all the keystrokes you just
saved yourself. If your fingers fly faster than your eyes can read and you whiz past the right command, simply use the
down arrow to go in the other direction.

The Tab key was specifically designed for both the lazy typist and the terrible speller. It can be painful watching some
people type out a long command only to have it fail because of a typo. It's even worse if they haven't heard about
history, as they think their only choice is to try typing out the whole thing all over again. No wonder some people hate
the command line!

Tab activates auto-completion. This means that if you type enough letters of a recognizable command or file, tcsh will fill
in the rest of the word for you. However, if you instead hear a beep when you press the Tab key, it means that your
shell isn't sure what you want. For example, if I want to run sockstat and type:

% so

then press my Tab key, the system will beep because multiple commands start with so. However, if I add one more
letter:

% soc

and try again, the system will fill in the command for me:

% sockstat

1.2.2 Editing and Navigating the Command Line

There are many more shortcuts that can save you keystrokes. Suppose I've just finished editing a document. If I press
my up arrow, my last command will be displayed at the prompt:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


my up arrow, my last command will be displayed at the prompt:

% vi mydocs/today/verylongfilename

I'd now like to double-check how many words and lines are in that file by running this command:

% wc mydocs/today/verylongfilename

I could pound on the backspace key until I get to the vi portion of the command, but it would be much easier to hold
down the Ctrl key and press a. That would bring me to the very beginning of that command so I could replace the vi
with wc. For a mnemonic device, remember that just as a is the first letter of the alphabet, it also represents the first
letter of the command at a tcsh prompt.

I don't have to use my right arrow to go to the end of the command in order to press Enter and execute the command.
Once your command looks like it should, you can press Enter. It doesn't matter where your cursor happens to be.

Sometimes you would like your cursor to go to the end of the command. Let's say I want to run the word count
command on two files, and right now my cursor is at the first c in this command:

% wc mydocs/today/verylongfilename

If I hold down Ctrl and press e, the cursor will jump to the end of the command, so I can type in the rest of the desired
command. Remember that e is for end.

Finally, what if you're in the middle of a long command and decide you'd like to start from scratch, erase what you've
typed, and just get your prompt back? Simply hold down Ctrl and press u for undo.

If you work in the Cisco or PIX IOS systems, all of the previous tricks work at the IOS
command line.

Did you know that the cd command also includes some built-in shortcuts? You may have heard of this one: to return to
your home directory quickly, simply type:

% cd

That's very convenient, but what if you want to change to a different previous directory? Let's say that you start out in
the /usr/share/doc/en_US.ISO8859-1/books/handbook directory, then use cd to change to the /usr/X11R6/etc/X11
directory. Now you want to go back to that first directory. If you're anything like me, you really don't want to type out
that long directory path again. Sure, you could pick it out of your history, but chances are you originally navigated into
that deep directory structure one directory at a time. If that's the case, it would probably take you longer to pick each
piece out of the history than it would be to just type the command manually.

Fortunately, there is a very quick solution. Simply type:

% cd -

Repeat that command and watch as your prompt changes between the first and the second directory. What, your
prompt isn't changing to indicate your current working directory? Don't worry, [Hack #2] will take care of that.

1.2.3 Learning from Your Command History

Now that you can move around fairly quickly, let's fine-tune some of these hacks. How many times have you found
yourself repeating commands just to alter them slightly? The following scenario is one example.

Remember that document I created? Instead of using the history to bring up my previous command so I could edit it, I
might have found it quicker to type this:

% wc !$

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% wc !$

  wc mydocs/today/verylongfilename

        19        97        620 mydocs/today/verylongfilename

The !$ tells the shell to take the last parameter from the previous command. Since that command was:

% vi mydocs/today/verylongfilename

it replaced the !$ in my new command with the very long filename from my previous command.

The ! (or bang!) character has several other useful applications for dealing with previously issued commands. Suppose
you've been extremely busy and have issued several dozen commands in the last hour or so. You now want to repeat
something you did half an hour ago. You could keep tapping your up arrow until you come across the command. But
why search yourself when ! can search for you?

For example, if I'd like to repeat the command mailstats, I could give ! enough letters to figure out which command to
pick out from my history:

$ !ma

! will pick out the most recently issued command that begins with ma. If I had issued a man command sometime after
mailstats command, tcsh would find that instead. This would fix it though:

% !mai

If you're not into trial and error, you can view your history by simply typing:

% history

If you're really lazy, this command will do the same thing:

% h

Each command in this history will have a number. You can specify a command by giving ! the associated number. In
this example, I'll ask tcsh to reissue the mailstats command:

% h

  165  16:51  mailstats

  166  16:51  sockstat

  167  16:52  telnet localhost 25

  168  16:54  man sendmail

% !165

1.2.4 Silencing Auto-Complete

The last tip I'll mention is for those of you who find the system bell irritating. Or perhaps you just find it frustrating
typing one letter, tabbing, typing another letter, tabbing, and so on until auto-complete works. If I type:

% ls -l b

then hold down the Ctrl key while I press d:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


then hold down the Ctrl key while I press d:

backups/  bin/   book/  boring.jpg

ls -l b

I'll be shown all of the b possibilities in my current directory, and then my prompt will return my cursor to what I've
already typed. In this example, if I want to view the size and permissions of boring.jpg, I'll need to type up to here:

% ls -l bor

before I press the Tab key. I'll leave it up to your own imagination to decide what the d stands for.

1.2.5 See Also

man tcsh

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 2 Useful tcsh Shell Configuration File Options

 

Make the shell a friendly place to work in.

Now that you've had a chance to make friends with the shell, let's use its configuration file to create an environment
you'll enjoy working in. Your prompt is an excellent place to start.

1.3.1 Making Your Prompt More Useful

The default tcsh prompt displays % when you're logged in as a regular user and hostname# when you're logged in as the
superuser. That's a fairly useful way to figure out who you're logged in as, but we can do much better than that.

Each user on the system, including the superuser, has a .cshrc file in his home directory. Here are my current prompt
settings:

dru@~:grep prompt ~/.cshrc

if ($?prompt) then

        set prompt = "%B%n@%~%b: "

That isn't the default tcsh prompt, as I've been using my favorite customized prompt for the past few years. The
possible prompt formatting sequences are easy to understand if you have a list of possibilities in front of you. That list is
buried deeply within man cshrc, so here's a quick way to zero in on it:

dru@~:man cshrc

/prompt may include

Here I've used the / to invoke the manpage search utility. The search string prompt may include brings you to the right
section, and is intuitive enough that even my rusty old brain can remember it.

If you compare the formatting sequences shown in the manpage to my prompt string, it reads as follows:

set prompt = "%B%n@%~%b: "

That's a little dense. Table 1-1 dissects the options.

Table 1-1. Prompt characters
Character Explanation

" Starts the prompt string.

%B Turns on bold.

%n Shows the login name in the prompt.

@ I use this as a separator to make my prompt more visually appealing.

%~ Shows the current working directory. It results in a shorter prompt than %/, as my home directory is
shortened from /usr/home/myusername to ~

%b Turns off bold.

: Again, this is an extra character I use to separate my prompt from the cursor.

" Ends the prompt string.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


With this prompt, I always know who I am and where I am. If I also needed to know what machine I was logged into
(useful for remote administration), I could also include %M or %m somewhere within the prompt string.

Switching to the Superuser
The superuser's .cshrc file (in /root, the superuser's home directory) has an identical prompt string. This
is very fortunate, as it reveals something you might not know about the su command, which is used to
switch users. Right now I'm logged in as the user dru and my prompt looks like this:

dru@/usr/ports/net/ethereal:

Watch the shell output carefully after I use su to switch to the root user:

dru@/usr/ports/net/ethereal: su

Password:

dru@/usr/ports/net/ethereal:

Things seem even more confusing if I use the whoami command:

dru@/usr/ports/net/ethereal: whoami

dru

However, the id command doesn't lie:

dru@/usr/ports/net/ethereal: id

uid=0(root) gid=0(wheel) groups=0(wheel), 5(operator)

It turns out that the default invocation of su doesn't actually log you in as the superuser. It simply gives
you superuser privileges while retaining your original login shell.

If you really want to log in as the superuser, include the login (-l) switch:

dru@/usr/ports/net/ethereal: su -l

Password:

root@~: whoami

root

root@~: id

uid=0(root) gid=0(wheel) groups=0(wheel), 5(operator)

I highly recommend you take some time to experiment with the various formatting sequences and hack a prompt that
best meets your needs. You can add other features, including customized time and date strings and command history
numbers [Hack #1], as well as flashing or underlining the prompt.

1.3.2 Setting Shell Variables

Your prompt is an example of a shell variable. There are dozens of other shell variables you can set in .cshrc. My trick
for finding the shell variables section in the manpage is:

dru@~:man cshrc

/variables described

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/variables described

As the name implies, shell variables affect only the commands that are built into the shell itself. Don't confuse these
with environment variables, which affect your entire working environment and every command you invoke.

If you take a look at your ~/.cshrc file, environment variables are the ones written in uppercase and are preceded with
the setenv command. Shell variables are written in lowercase and are preceded with the set command.

You can also enable a shell variable by using the set command at your command prompt. (Use unset to disable it.) Since
the variable affects only your current login session and its children, you can experiment with setting and unsetting
variables to your heart's content. If you get into trouble, log out of that session and log in again.

If you find a variable you want to keep permanently, add it to your ~/.cshrc file in the section that contains the default
set commands. Let's take a look at some of the most useful ones.

If you enjoyed Ctrl-d from [Hack #1], you'll like this even better:

set autolist

Now whenever you use the Tab key and the shell isn't sure what you want, it won't beep at you. Instead, the shell will
show you the applicable possibilities. You don't even have to press Ctrl-d first!

The next variable might save you from possible future peril:

set rmstar

I'll test this variable by quickly making a test directory and some files:

dru@~:mkdir test

dru@~:cd test

dru@~/test:touch a b c d e

Then, I'll try to remove the files from that test directory:

dru@~/test:rm *

Do you really want to delete all files? [n/y]

Since my prompt tells me what directory I'm in, this trick gives me one last chance to double-check that I really am
deleting the files I want to delete.

If you're prone to typos, consider this one:

set correct=all

This is how the shell will respond to typos at the command line:

dru@~:cd /urs/ports

CORRECT>cd /usr/ports (y|n|e|a)?

Pressing y will correct the spelling and execute the command. Pressing n will execute the misspelled command, resulting
in an error message. If I press e, I can edit my command (although, in this case, it would be much quicker for the shell
to go with its correct spelling). And if I completely panic at the thought of all of these choices, I can always press a to
abort and just get my prompt back.

If you like to save keystrokes, try:

set implicitcd

You'll never have to type cd again. Instead, simply type the name of the directory and the shell will assume you want to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You'll never have to type cd again. Instead, simply type the name of the directory and the shell will assume you want to
go there.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 3 Create Shell Bindings

 

Train your shell to run a command for you whenever you press a mapped key.

Have you ever listened to a Windows power user expound on the joys of hotkeys? Perhaps you yourself have been
known to gaze wistfully at the extra buttons found on a Microsoft keyboard. Did you know that it's easy to configure
your keyboard to launch your most commonly used applications with a keystroke or two?

One way to do this is with the bindkey command, which is built into the tcsh shell. As the name suggests, this command
binds certain actions to certain keys. To see your current mappings, simply type bindkey. The output is several pages
long, so I've included only a short sample. However, you'll recognize some of these shortcuts from [Hack #1].

Standard key bindings

"^A"           ->  beginning-of-line

"^B"           ->  backward-char

"^E"           ->  end-of-line

"^F"           ->  forward-char

"^L"           ->  clear-screen

"^N"           ->  down-history

"^P"           ->  up-history

"^U"           ->  kill-whole-line

Arrow key bindings

down           -> history-search-forward

up             -> history-search-backward

left           -> backward-char

right          -> forward-char

home           -> beginning-of-line

end            -> end-of-line

The ^ means hold down your Ctrl key. For example, press Ctrl and then l, and you'll clear your screen more quickly
than by typing clear. Notice that it doesn't matter if you use the uppercase or lowercase letter.

1.4.1 Creating a Binding

One of my favorite shortcuts isn't bound to a key by default: complete-word-fwd. Before I do the actual binding, I'll first
check which keys are available:

dru@~:bindkey | grep undefined

"^G"           ->  is undefined

"\305"         ->  is undefined

"\307"         ->  is undefined

<snip>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<snip>

Although it is possible to bind keys to numerical escape sequences, I don't find that very convenient. However, I can
very easily use that available Ctrl-g. Let's see what happens when I bind it:

dru@~:bindkey "^G" complete-word-fwd

When I typed in that command, I knew something worked because my prompt returned silently. Here's what happens if
I now type ls -l /etc/, hold down the Ctrl key, and repeatedly press g:

ls -l /etc/COPYRIGHT

ls -l /etc/X11

ls -l /etc/aliases

ls -l /etc/amd.map

I now have a quick way of cycling through the files in a directory until I find the exact one I want. Even better, if I know
what letter the file starts with, I can specify it. Here I'll cycle through the files that start with a:

ls -l /etc/a

ls -l /etc/aliases

ls -l /etc/amd.map

ls -l /etc/apmd.conf

ls -l /etc/auth.conf

ls -l /etc/a

Once I've cycled through, the shell will bring me back to the letter a and beep.

If you prefer to cycle backward, starting with words that begin with z instead of a, bind your key to complete-word-back
instead.

When you use bindkey, you can bind any command the shell understands to any understood key binding. Here's my trick
to list the commands that tcsh understands:

dru@~ man csh

/command is bound

And, of course, use bindkey alone to see the understood key bindings. If you just want to see the binding for a particular
key, specify it. Here's how to see the current binding for Ctrl-g:

dru@~:bindkey "^G"

"^G"   ->    complete-word-fwd

1.4.2 Specifying Strings

What's really cool is that you're not limited to just the commands found in man csh. The s switch to bindkey allows you to
specify any string. I like to bind the lynx web browser to Ctrl-w:

dru@~:bindkey -s "^W" "lynx\n"

I chose w because it reminds me of the World Wide Web. But why did I put \n after the lynx? Because that tells the shell
to press Enter for me. That means by simply pressing Ctrl-w, I have instant access to the Web.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


to press Enter for me. That means by simply pressing Ctrl-w, I have instant access to the Web.

Note that I overwrite the default binding for Ctrl-w. This permits you to make bindings that are more intuitive and
useful for your own purposes. For example, if you never plan on doing whatever ^J does by default, simply bind your
desired command to it.

There are many potential key bindings, so scrolling through the output of bindkeys can be tedious. If you only stick with
"Ctrl letter" bindings, though, it's easy to view your customizations with the following command:

dru@~:bindkey | head -n 28

As with all shell modifications, experiment with your bindings first by using bindkey at the command prompt. If you get
into real trouble, you can always log out to go back to the defaults. However, if you find some bindings you want to
keep, make them permanent by adding your bindkey statements to your .cshrc file. Here is an example:

dru@~:cp ~/.cshrc ~/.cshrc.orig

dru@~:echo 'bindkey "^G" complete-word-fwd' >> ~/.cshrc

Notice that I backed up my original .cshrc file first, just in case my fingers slip on the next part. I then used >> to
append the echoed text to the end of .cshrc. If I'd used > instead, it would have replaced my entire .cshrc file with just
that one line. I don't recommend testing this on any file you want to keep.

Along those lines, setting:

set noclobber

will prevent the shell from clobbering an existing file if you forget that extra > in your redirector. You'll know you just
prevented a nasty accident if you get this error message after trying to redirect output to a file:

.cshrc: File exists.

1.4.3 See Also

man tcsh

[Hack #2]

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 4 Use Terminal and X Bindings

 

Take advantage of your terminal's capabilities.

It's not just the tcsh shell that is capable of understanding bindings. Your FreeBSD terminal provides the kbdcontrol
command to map commands to your keyboard. Unfortunately, neither NetBSD nor OpenBSD offer this feature. You can,
however, remap your keyboard under X, as described later.

1.5.1 Creating Temporary Mappings

Let's start by experimenting with some temporary mappings. The syntax for mapping a command with kbdcontrol is as
follows:

kbdcontrol -f number "command"

Table 1-2 lists the possible numbers, each with its associated key combination.

Table 1-2. Key numbers
Number Key combination

1, 2, . . . 12 F1, F2, . . . F12

13, 14, . . . 24 Shift+F1, Shift+F2, . . . Shift+F12

25, 26, . . . 36 Ctrl+F1, Ctrl+F2, . . . Ctrl+F12

37, 38, . . . 48 Shift+Ctrl+F1, Shift+Ctrl+F2, . . . Shift+Ctrl+F12

49 Home

50 Up arrow

51 Page Up

52 Numpad - (Num Lock off)

53 Left arrow (also works in editor)

54 Numpad 5 (without Num Lock)

55 Right arrow

56 Numpad + (without Num Lock)

57 End

58 Down arrow (affects c history)

59 Page Down

60 Ins

61 Del

62 Left GUI key (Windows icon next to left Ctrl)

63 Right GUI key (Windows icon next to right Alt)

64 Menu (menu icon next to right Ctrl)

Those last three key combinations may or may not be present, depending upon your keyboard. My Logitech keyboard
has a key with a Windows icon next to the left Ctrl key; that is the left GUI key. There's another key with a Windows
icon next to my right Alt key; this is the right GUI key. The next key to the right has an icon of a cursor pointing at a
square containing lines; that is the Menu key.

Now that we know the possible numbers, let's map lynx to the Menu key:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Now that we know the possible numbers, let's map lynx to the Menu key:

% kbdcontrol -f 64 "lynx"

Note that the command must be contained within quotes and be in your path. (You could give an absolute path, but
there's a nasty limitation coming up soon.)

If I now press the Menu key, lynx is typed to the terminal for me. I just need to press Enter to launch the browser. This
may seem a bit tedious at first, but it is actually quite handy. It can save you from inadvertently launching the wrong
application if you're anything like me and tend to forget which commands you've mapped to which keys.

Let's see what happens if I modify that original mapping somewhat:

% kbdcontrol -f 64 "lynx www.google.ca"

kbdcontrol: function key string too long (18 > 16)

When doing your own mappings, beware that the command and its arguments can't exceed 16 characters. Other than
that, you can pretty well map any command that strikes your fancy.

1.5.2 Shell Bindings Versus Terminal Bindings

Before going any further, I'd like to pause a bit and compare shell-specific bindings, which we saw in [Hack #3], and
the terminal-specific bindings we're running across here.

One advantage of using kbdcontrol is that your custom bindings work in any terminal, regardless of the shell you happen
to be using. A second advantage is that you can easily map to any key on your keyboard. Shell mappings can be
complicated if you want to map them to anything other than "Ctrl letter".

However, the terminal mappings have some restrictions that don't apply to the tcsh mappings. For example, shell
mappings don't have a 16 character restriction, allowing for full pathnames. Also, it was relatively easy to ask the shell
to press Enter to launch the desired command.

Terminal bindings affect only the current user's terminal. Any other users who are logged in on different terminals are
not affected. However, if the mappings are added to rc.conf (which only the superuser can do), they will affect all
terminals. Since bindings are terminal specific, even invoking su won't change the behavior, as the user is still stuck at
the same terminal.

1.5.3 More Mapping Caveats

There are some other caveats to consider when choosing which key to map. If you use the tcsh shell and enjoy viewing
your history [Hack #1], you'll be disappointed if you remap your up and down arrows. The right and left arrows can
also be problematic if you use them for navigation, say, in a text editor. Finally, if you're physically sitting at your
FreeBSD system, F1 through F8 are already mapped to virtual terminals and F9 is mapped to your GUI terminal. By
default, F10 to F12 are unmapped.

If you start experimenting with mappings and find you're stuck with one you don't like, you can quickly return all of
your keys to their default mappings with this command:

% kbdcontrol -F

On the other hand, if you find some new mappings you absolutely can't live without, make them permanent. If you
have superuser privileges on a FreeBSD system you physically sit at, you can carefully add the mappings to
/etc/rc.conf. Here, I've added two mappings. One maps lynx to the Menu key and the other maps startx to the left GUI
key:

keychange="64 lynx"

keychange="62 startx"

Since the superuser will be setting these mappings, the mapped keys will affect all users on that system. If you want to
save your own personal mappings, add your specific kbdcontrol commands to the end of your shell configuration file. For
example, I've added these to the very end of my ~/.cshrc file, just before the last line which says endif:

% kbdcontrol -f 64 "lynx"

% kbdcontrol -f 62 "startx"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


1.5.4 Making Mappings Work with X

This is all extremely handy, but what will happen if you try one of your newly mapped keys from an X Window session?
You can press that key all you want, but nothing will happen. You won't even hear the sound of the system bell beeping
at you in protest. This is because the X protocol handles all input and output during an X session.

You have a few options if you want to take advantage of keyboard bindings while in an X GUI. One is to read the
documentation for your particular window manager. Most of the newer window managers provide a point and click
interface to manage keyboard bindings. My favorite alternative is to try the xbindkeys_config application, which is
available in the ports collection [Hack #84] :

# cd /usr/ports/x11/xbindkeys_config

# make install clean

This port also requires xbindkeys:

# cd /usr/ports/x11/xbindkeys

# make install clean

Rather than building both ports, you could instead add this line to
/usr/ports/x11/xbindkeys_config/Makefile:

BUILD_DEPENDS=  xbindkeys:${PORTSDIR}/x11/xbindkeys

This will ask the xbindkeys_config build to install both ports.

Once your builds are complete, open an xterm and type:

% xbindkeys --defaults  ~/.xbindkeysrc

% xbindkeys_config

The GUI in Figure 1-1 will appear.

Figure 1-1. The xbindkeys_config program

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Creating a key binding is a simple matter of pressing the New button and typing a useful name into the Name: section.
Then, press Get Key and a little window will appear. Press the desired key combination, and voilà, the correct mapping
required by X will autofill for you. Associate your desired Action:, then press the Save & Apply & Exit button.

Any keyboard mappings you create using this utility will be saved to a file called ~/.xbindkeysrc.

1.5.5 See Also

man kbdcontrol

man atkbd

The xbindkeys web site (http://hocwp.free.fr/xbindkeys/xbindkeys.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 5 Use the Mouse at a Terminal

 

Use your mouse to copy and paste at a terminal.

If you're used to a GUI environment, you might feel a bit out of your element while working at the terminal. Sure, you
can learn to map hotkeys and to use navigational tricks, but darn it all, sometimes it's just nice to be able to copy and
paste!

Don't fret; your mouse doesn't have to go to waste. In fact, depending upon how you have configured your system, the
mouse daemon moused may already be enabled. The job of this daemon is to listen for mouse data in order to pass it to
your console driver.

Of course, if you're using screen [Hack #12], you can also take advantage of its copy and
paste mechanism.

1.6.1 If X Is Already Installed

If you installed and configured X when you installed your system, moused is most likely started for you when you boot
up. You can check with this:

% grep moused /etc/rc.conf

moused_port="/dev/psm0"

moused_type="auto"

moused_enable="YES"

Very good. moused needs to know three things:

The mouse port (in this example, /dev/psm0, the PS/2 port)

The type of protocol (in this example, auto)

Whether to start at boot time

If you receive similar output, you're ready to copy and paste.

To copy text, simply select it by clicking the left mouse button and dragging. Then, place the mouse where you'd like to
paste the text and click the middle button. That's it.

To select an entire word, double-click anywhere on that word. To select an entire line,
triple-click anywhere on that line.

1.6.1.1 Configuring a two-button mouse

What if you don't have three mouse buttons? As the superuser, add the following line to /etc/rc.conf (assuming it's not
already there):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


already there):

moused_flags="-m 2=3"

This flag tells moused to treat the second, or right, mouse button as if it were the third, or middle, mouse button. Now
you can use the right mouse button to paste your copied text.

To apply that change, restart moused:

# /etc/rc.d/moused restart

Stopping moused.

Starting moused:.

Test your change by copying some text with the left mouse button and pasting with the right mouse button.

1.6.2 If X Is Not Installed

You can achieve the same results on a system without X installed. You'll have to add the lines to /etc/rc.conf manually,
though.

The example I've given you is for a PS/2 mouse. If you're using another type of mouse, read the "Configuring Mouse
Daemon" section of man moused. It gives explicit details on figuring out what type of mouse you have and what type of
protocol it understands. It even includes a section on configuring a laptop system for multiple mice: one for when on
the road and one for when the laptop is attached to the docking station.

For example, if you're using a USB mouse, the only difference is that the port is /dev/usm0 instead of /dev/psm0.

A serial mouse physically plugged into COM1 would be /dev/cuaa0. You may have to experiment with the type, as auto
doesn't work with all serial mice. Again, the manpage is your best reference.

1.6.3 See Also

man moused

Documentation on enabling mouse support in NetBSD at http://www.netbsd.org/Documentation/wscons/

Documentation on enabling mouse support in OpenBSD at http://www.openbsd.org/faq/faq7.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 6 Get Your Daily Dose of Trivia

 

Brighten your day with some terminal eye candy.

As the saying goes, all work and no play makes Jack a dull boy. But what's a poor Jack or Jill to do if your days include
spending inordinate amounts of time in front of a computer screen? Well, you could head over to
http://www.thinkgeek.net/ to stock up on cube goodies and caffeine. Or, you could take advantage of some of the
entertainments built into your operating system.

1.7.1 A Fortune a Day

Let's start by configuring some terminal eye candy. Does your system quote you a cheery, witty, or downright strange
bit of wisdom every time you log into your terminal? If so, you're receiving a fortune:

login: dru

Password:

Last login: Thu Nov 27 10:10:16 on ttyv7

"You can't have everything. Where would you put it?"

                -- Steven Wright

If you're not receiving a fortune, as the superuser type /stand/sysinstall. Choose Configure, then Distributions, and select
games with your spacebar. Press Tab to select OK, then exit out of sysinstall when it is finished.

Then, look for the line that runs /usr/games/fortune in your ~/.cshrc file:

% grep fortune ~/.cshrc

/usr/games/fortune

If for some reason it isn't there, add it:

% echo '/usr/games/fortune' >> ~/.cshrc

Don't forget to use both greater-than signs; you don't want to erase the contents of your .cshrc file! To test your
change, use the source shell command, which re-executes the contents of the file. This can come in handy if you've
updated an alias and want to take advantage of it immediately:

% source ~/.cshrc

Indifference will be the downfall of mankind, but who cares?

If you'd also like to receive a fortune when you log out of your terminal, add this line to the end of your .logout file. If
you don't have one, and there isn't one by default, you can create it and add this line in one step:

% echo '/usr/games/fortune' > ~/.logout

Note that this time I used only one greater-than sign, as I was creating the file from scratch. If the file already exists,
use two greater-than signs to append your new line to the end of the existing file.

Believe it or not, fortune comes with switches, some of which are more amusing than others. I'll leave it to you to
peruse man fortune.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


peruse man fortune.

1.7.2 Pursuing Trivia

I'm a trivia buff, so I love using the calendar command. Contrary to logic, typing calendar won't show me this month's
calendar (that's the job of cal). However, I will get an instant dose of trivia, related to the current date:

% calendar

Nov 27         Alfred Nobel establishes Nobel Prize, 1895

Nov 27         Friction match invented, England, 1826

Nov 27         Hoosac Railroad Tunnel completed, 1873, in NW Massachusetts

Nov 28         Independence Day in Albania and Mauritania

Nov 28         Independence from Spain in Panama

Nov 28         Proclamation of the Republic in Chad

Nov 27         Jimi Hendrix (Johnny Allen Hendrix) is born in Seattle, 1942

Cool. I had forgotten it was the anniversary of the Hoosac tunnel, an event that put my hometown on the map.

It's an easy matter to automate the output provided by calendar. If you want to see your trivia when you log in or log
out, simply add a line to your .cshrc or .logout file. Because the line you add is really just a path to the program, use
the output of the which command to add that line for you:

% echo `which calendar` >> .cshrc

Again, don't forget to append with >>, or have noclobber set in your .cshrc file [Hack #2].

1.7.3 Sundry Amusements

Of course, there are several other date and time related mini-hacks at your disposal. Here are two you might enjoy.

1.7.3.1 The current time

Ever wonder what time it is while you're working on the terminal? Sure, you could use date, but the output is so small
and boring. Try this the next time you want to know what time it is:

% grdc

Whoa, you can see that one from across the room. That's not a bad idea if you want to send your cubicle buddy a hint.

I've been known to add /usr/games/grdc to my ~/.logout. When I log out, my terminal displays the time until I press
Ctrl-c and log in again. That's sort of a built-in password protected screen saver for the terminal.

1.7.3.2 The phase of the moon

Have you ever read man pom? It has one of the more useful descriptions I've seen:

The pom utility displays the current phase of the moon. Useful for selecting software completion target
dates and predicting managerial behavior.

Sounds like Dilbert had a hand in that one. If I add the line /usr/games/pom to my ~/.cshrc, I'll learn a bit about
astronomy when I log in:

% pom

The Moon is Waxing Gibbous (53% of Full)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Moon is Waxing Gibbous (53% of Full)

There's a one-liner to promote water cooler conversation.

1.7.4 Adding Some Color to Your Terminal

Have you ever tried this command?

% vidcontrol show         

0                  8 grey               

1 blue             9 lightblue

2 green           10 lightgreen

3 cyan            11 lightcyan

4 red             12 lightred

5 magenta         13 lightmagenta

6 brown           14 yellow

7 white           15 lightwhite

Gee, that reminds me of my old DOS days when I discovered ansi.sys. Yes, your terminal is capable of color and you're
looking at your possible color schemes! (It likely looks much more exciting on your terminal, since it's not in color in
this book.)

If you see some colors that appeal to you, add them to your terminal. For example, this command will set the
foreground color to yellow and the background color as blue:

% vidcontrol yellow blue

Note that you can use only colors 1 through 7 as background colors; you'll receive a syntax error if you try to use colors
8-15 in your background. Try out the various combinations until you find one that appeals to your sense of taste. You
can even add a border if you like:

% vidcontrol -b red

These settings affect only your own terminal. If you want, add the desired vidcontrol lines to your ~/.cshrc file so your
settings are available when you log into your terminal.

If you have problems finding your cursor, try:

% vidcontrol -c blink

or:

% vidcontrol -c destructive

Changing the cursor affects all virtual terminals on the system. If other users complain about your improvement, this
will bring things back to normal:

% vidcontrol -c normal

1.7.5 See Also

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man fortune

man calendar

man vidcontrol

The games packages, in NetBSD and OpenBSD

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 7 Lock the Screen

 

Secure your unattended terminal from prying eyes.

If you work in a networked environment, the importance of locking your screen before leaving your workstation has
probably been stressed to you. After all, your brilliant password becomes moot if anyone can walk up to your logged in
station and start poking about the contents of your home directory.

If you use a GUI on your workstation, your Window Manager probably includes a locking feature. However, if you use a
terminal, you may not be aware of the mechanisms available for locking your terminal.

As an administrator, you may want to automate these mechanisms as part of your security policy. Fortunately,
FreeBSD's screen locking mechanism is customizable.

1.8.1 Using lock

FreeBSD comes with lock (and it's available for NetBSD and OpenBSD). Its default invocation is simple:

% lock

Key: 1234

Again: 1234

lock /dev/ttyv6 on genisis. timeout in 15 minutes.

time now is Fri Jan 2 12:45:02 EST 2004

Key:

Without any switches, lock will request that the user input a key which will be used to unlock the terminal. This is a good
thing, as it gives the user an opportunity to use something other than her login password. If the user tries to be smart
and presses Enter (for an empty password), the lock program will abort.

Once a key is set, it is required to unlock the screen. If a user instead types Ctrl-c, she won't terminate the program.
Instead, she'll receive this message:

Key: lock: type in the unlock key. timeout in 10:59 minutes

Did you notice that timeout value of 15 minutes? At that time, the screen will unlock itself, which sorta diminishes the
usefulness of locking your screen. After all, if you run into your boss in the hall, your 5-minute coffee break might turn
into a 25-minute impromptu brainstorming session.

To lock the terminal forever, or at least until someone types the correct key, use the -n switch. If the system is a
personal workstation, -v is also handy; this locks all of the virtual terminals on the system, meaning a passerby can't
use Alt-Fn to switch to another terminal.

As an administrator, you can assist users in using the desired switches by adding an alias to /usr/share/skel/dot.cshrc
[Hack #9]. This alias removes the timeout and locks all terminals:

alias lock   /usr/bin/lock -nv

1.8.2 Using autologout

If you use the tcsh shell, you also have the ability either to lock your session or to be logged out of your session
automatically after a set period of inactivity. As an administrator, you can set your policy by adding a line to
/usr/share/skel/dot.cshrc.

Do be aware, though, that a user can edit her own ~/.cshrc file, which will negate your

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Do be aware, though, that a user can edit her own ~/.cshrc file, which will negate your
customized setting.

The autologout variable can accept two numbers. The first number represents the number of minutes of inactivity before
logging out the user. The second number represents the number of minutes of inactivity before locking the user's
screen. Once the screen is locked, the user must input the password to unlock it. If the screen is not unlocked in time,
the user will be logged out once the shell has been idle for the logout period of minutes.

The manpage is pretty vague on how to set those two numbers. For example, if you try:

set autologout = 30 15

users will receive this error message when they try to log in:

set: Variable name must begin with a letter.

That's a deceptive error message, as this variable does accept numerals. The correct invocation is to enclose the two
numbers between parentheses:

set autologout = (30 15)

This particular setting will log out a user after 15 minutes of inactivity. The user will know this happened as the terminal
will resemble:

% 

Password:

After 30 minutes of inactivity (or 15 minutes after the screen was locked), the user will be logged out and see this:

% 

Password:auto-logout

Consider whether or not your users tend to run background jobs before globally
implementing autologout. Also see [Hack #11], which allows users to reattach to their
terminals.

1.8.3 Enforcing Logout

What if you do want to enforce a logout policy that users can't change in their shell configuration files? Consider using
idled, which can be installed from /usr/ports/sysutils/idled or built from source. This utility was designed to log out users
either after a configured period of inactivity or after they've been logged in for a certain amount of time.

Once you've installed idled, copy the template configuration file:

# cd /usr/local/etc/

# cp idled.cf.template idled.cf

Open /usr/local/etc/idled.cf using your favorite editor. You'll find this file to be well commented and quite
straightforward. You'll be able to configure the time before logout as well as when the user will receive a warning
message. In addition, you can refuse logins, set session timeouts, and provide for exemptions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


message. In addition, you can refuse logins, set session timeouts, and provide for exemptions.

1.8.4 See Also

man lock

man tcsh man idled

man idled.cf

The idled web site (http://www.darkwing.com/idled/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 8 Create a Trash Directory

 

Save "deleted" files until you're really ready to send them to the bit bucket.

One of the first things Unix users learn is that deleted files are really, really gone. This is especially true at the
command line where there isn't any Windows-style recycling bin to rummage through should you have a change of
heart regarding the fate of a removed file. It's off to the backups! (You do have backups, don't you?)

Fortunately, it is very simple to hack a small script that will send removed files to a custom trash directory. If you've
never written a script before, this is an excellent exercise in how easy and useful scripting can be.

1.9.1 Shell Scripting for the Impatient

Since a script is an executable file, you should place your scripts in a directory that is in your path. Remember, your
path is just a list of directories where the shell will look for commands if you don't give them full pathnames. To see
your path:

% echo $PATH

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/

local/bin:/usr/X11R6/bin:/home/dru/bin

In this output, the shell will look for executables in the bin subdirectory of dru's home directory. However, it won't look
for executables placed directly in my home directory, or /home/dru. Since bin isn't created by default, I should do that
first:

% cd

% mkdir bin

As I create scripts, I'll store them in /home/dru/bin, since I don't have permission to store them anywhere else.
Fortunately, no one else has permission to store them in my bin directory, so it's a good match.

The scripts themselves contain at least three lines:

#!/bin/sh

# a comment explaining what the script does

the command to be executed

The first line indicates the type of script by specifying the program to use to execute the script. I've chosen to use a
Bourne script because that shell is available on all Unix systems.

Your script should also have comments, which start with the # character. It's surprising how forgetful you can be six
months down the road, especially if you create a lot of scripts. For this reason, you should also give the script a name
that reminds you of what it does.

The third and subsequent lines contain the meat of the script: the actual command(s) to execute. This can range from a
simple one-liner to a more complex set of commands, variables, and conditions. Fortunately, we can make a trash
script in a simple one-liner.

1.9.2 The Code

Let's start with this variant, which I found as the result of a Google search:

% more ~/bin/trash

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% more ~/bin/trash

#!/bin/sh

# script to send removed files to trash directory

mv $1 ~/.trash/

You should recognize the path to the Bourne shell, the comment, and the mv command. Let's take a look at that $1.
This is known as a positional parameter and specifically refers to the first parameter of the trash command. Since the mv
commands takes filenames as parameters, the command:

mv $1 ~/.trash/

is really saying, mv the first filename, whatever it happens to be, to a directory called .trash in the user's home
directory (represented by the shell shortcut of ~). This move operation is our custom "recycle."

Before this script can do anything, it must be set as executable:

% chmod +x ~/bin/trash

And I must create that trash directory for it to use:

% mkdir ~/.trash

Note that I've chosen to create a hidden trash directory; any file or directory that begins with the . character is hidden
from normal listings. This really only reduces clutter, though, as you can see these files by passing the -a switch to ls. If
you also include the F switch, directory names will end with a /:

% ls -aF ~

.cshrc    .history    .trash/

bin/      images/     myfile

1.9.3 Replacing rm with ~/bin/trash

Now comes the neat part of the hack. I want this script to kick in every time I use rm. Since it is the shell that executes
commands, I simply need to make my shell use the trash command instead. I do that by adding this line to ~/.cshrc:

alias rm        trash

That line basically says: when I type rm, execute trash instead. It doesn't matter which directory I am in. As long as I
stay in my shell, it will mv any files I try to rm to my hidden trash directory.

1.9.4 Running the Code Safely

Whenever you create a script, always test it first. I'll start by telling my shell to reread its configuration file:

% source ~/.cshrc

Then, I'll make some test files to remove:

% cd

% mkdir test

% cd test

% touch test1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% touch test1

% rm test1

% ls ~/.trash

test1

Looks like the script is working. However, it has a flaw. Have you spotted it yet? If not, try this:

% touch a aa aaa aaaa

% rm a*

% ls ~/.trash

test1         a

% ls test

aa         aaa         aaaa

What happened here? I passed the shell more than one parameter. The a* was expanded to a, aa, aaa, and aaaa before
trash could execute. Those four parameters were then passed on to the mv command in my script. However, trash
passes only the first parameter to the mv command, ignoring the remaining parameters. Fortunately, they weren't
removed, but the script still didn't achieve what I wanted.

You can actually have up to nine parameters, named $1 to $9. However, our goal is to catch all parameters, regardless
of the amount. To do that, we use $@:

mv $@ ~/.trash/

Make that change to your script, then test it by removing multiple files. You should now have a script that works every
time.

1.9.5 Taking Out the Trash

You should occasionally go through your trash directory and really remove the files you no longer want. If you're really
on your toes you may be thinking, "But how do I empty the trash directory?" If you do this:

% rm ~/.trash/*

your trash directory won't lose any files! This time you really do want to use rm, not trash. To tell your shell to use the
real rm command, simply put a \ in front of it like so:

% \rm /trash/*

Voila, empty recycling bin.

1.9.6 Hacking the Hack

One obvious extension is to keep versioned backups. Use the date command to find the time of deletion and append
that to the name of the file in the trash command. You could get infinitely more complicated by storing a limited number
of versions or deleting all versions older than a week or a month. Of course, you could also keep your important files
under version control and leave the complexity to someone else!

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 1. Customizing the User Environment
Section 0.  Introduction

Section 1.  Get the Most Out of the Default Shell

Section 2.  Useful tcsh Shell Configuration File Options

Section 3.  Create Shell Bindings

Section 4.  Use Terminal and X Bindings

Section 5.  Use the Mouse at a Terminal

Section 6.  Get Your Daily Dose of Trivia

Section 7.  Lock the Screen

Section 8.  Create a Trash Directory

Section 9.  Customize User Configurations

Section 10.  Maintain Your Environment on Multiple Systems

Section 11.  Use an Interactive Shell

Section 12.  Use Multiple Screens on One Terminal

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 12 Introduction
Now that you're a bit more comfortable with the Unix environment, it's time to tackle some commands. It's funny how
some of the most useful commands on a Unix system have gained themselves a reputation for being user-unfriendly.
Do find, grep, sed, tr, or mount make you shudder? If not, remember that you still have novice users who are intimidated
by—and therefore aren't gaining the full potential of—these commands.

This chapter also addresses some useful filesystem manipulations. Have you ever inadvertently blown away a portion of
your directory structure? Would you like to manipulate /tmp or your swap partition? Do your Unix systems need to play
nicely with Microsoft systems? Might you consider ghosting your BSD system? If so, this chapter is for you.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 21 Manage Temporary Files and Swap Space

 

Add more temporary or swap space without repartitioning.

When you install any operating system, it's important to allocate sufficient disk space to hold temporary and swap files.
Ideally, you already know the optimum sizes for your system so you can partition your disk accordingly during the
install. However, if your needs change or you wish to optimize your initial choices, your solution doesn't have to be as
drastic as a repartition—and reinstall—of the system.

man tuning has some practical advice for guesstimating the appropriate size of swap and
your other partitions.

2.10.1 Clearing /tmp

Unless you specifically chose otherwise when you partitioned your disk, the installer created a /tmp filesystem for you:

% grep tmp /etc/fstab

/dev/ad0s1e    /tmp    ufs    rw    2    2

% df -h /tmp

Filesystem    Size   Used  Avail Capacity  Mounted on

/dev/ad0s1e   252M   614K   231M     0%    /tmp

Here I searched /etc/fstab for the /tmp filesystem. This particular filesystem is 256 MB in size. Only a small portion
contains temporary files.

The df (disk free) command will always show you a number lower than the actual partition
size. This is because eight percent of the filesystem is reserved to prevent users from
inadvertently overflowing a filesystem. See man tunefs for details.

It's always a good idea to clean out /tmp periodically so it doesn't overflow with temporary files. Consider taking
advantage of the built-in periodic script /etc/periodic/daily/110.clean-tmps [Hack #20] .

You can also clean out /tmp when the system reboots by adding this line to /etc/rc.conf:

clear_tmp_enable="YES"

2.10.2 Moving /tmp to RAM

Another option is to move /tmp off of your hard disk and into RAM. This has the built-in advantage of automatically
clearing the filesystem when you reboot, since the contents of RAM are volatile. It also offers a performance boost,
since RAM access time is much faster than disk access time.

Before moving /tmp, ensure you have enough RAM to support your desired /tmp size. This command will show the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Before moving /tmp, ensure you have enough RAM to support your desired /tmp size. This command will show the
amount of installed RAM:

% dmesg | grep memory

real memory  = 335462400 (319 MB)

avail memory = 320864256 (306 MB)

Also check that your kernel configuration file contains device md (or memory disk). The GENERIC kernel does; if you've
customized your kernel, double-check that you still have md support:

% grep -w md /usr/src/sys/i386/conf/CUSTOM

device        md    # Memory "disks"

Changing the /tmp line in /etc/fstab as follows will mount a 64 MB /tmp in RAM:

md /tmp mfs rw,-s64m 2 0

Next, unmount /tmp (which is currently mounted on your hard drive) and remount it using the new entry in /etc/fstab:

# umount /tmp

# mount /tmp

# df -h /tmp

Filesystem    Size   Used  Avail Capacity  Mounted on

/dev/md0       63M   8.0K    58M     0%    /tmp

Notice that the filesystem is now md0, the first memory disk, instead of ad0s1e, a partition on the first IDE hard drive.

2.10.3 Creating a Swap File on Disk

Swap is different than /tmp. It's not a storage area for temporary files; instead, it is an area where the filesystem
swaps data between RAM and disk. A sufficient swap size can greatly increase the performance of your filesystem. Also,
if your system contains multiple drives, this swapping process will be much more efficient if each drive has its own swap
partition.

The initial install created a swap filesystem for you:

% grep swap /etc/fstab

/dev/ad0s1b    none     swap    sw    0    0

% swapinfo

Device          1K-blocks     Used    Avail Capacity  Type

/dev/ad0s1b        639688       68   639620     0%    Interleaved

Note that the swapinfo command displays the size of your swap files. If you prefer to see that output in MB, try the
swapctl command with the -lh flags (which make the listing more human):

% swapctl -lh

Device:       1048576-blocks      Used:

/dev/ad0s1b          624          0

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/dev/ad0s1b          624          0

To add a swap area, first determine which area of disk space to use. For example, you may want to place a 128 MB
swapfile on /usr. You'll first need to use dd to create this as a file full of null (or zero) bytes. Here I'll create a 128 MB
swapfile as /usr/swap0:

# dd if=/dev/zero of=/usr/swap0 bs=1024k count=128

128+0 records in

128+0 records out

134217728 bytes transferred in 4.405036 secs (30469156 bytes/sec)

Next, change the permissions on this file. Remember, you don't want users storing data here; this file is for the
filesystem:

# chmod 600 /usr/swap0

Since this is really a file on an existing filesystem, you can't mount your swapfile in /etc/fstab. However, you can tell the
system to find it at boot time by adding this line to /etc/rc.conf:

swapfile="/usr/swap0"

To start using the swapfile now without having to reboot the system, use mdconfig:

# mdconfig -a -t vnode -f /usr/swap0 -u 1 && swapon /dev/md1

The -a flag attaches the memory disk. -t vnode marks that the type of swap is a file, not a filesystem. The -f flag sets the
name of that file: /usr/swap0.

The unit number -u 1 must match the name of the memory disk /dev/md1. Since this system already has /tmp mounted
on /dev/md0, I chose to mount swap on /dev/md1. && swapon tells the system to enable that swap device, but only if
the mdconfig command succeeded.

swapctl should now show the new swap partition:

% swapctl -lh

Device:       1048576-blocks      Used:

/dev/ad0s1b          624          0

/dev/md1             128          0

2.10.4 Monitoring Swap Changes

Whenever you make changes to swap or are considering increasing swap, use systat to monitor how your swapfiles are
being used in real time:

% systat -swap

The output will show the names of your swap areas and how much of each is currently in use. It will also include a
visual indicating what percentage of swap contains data.

2.10.5 OpenBSD Differences

You can make this hack work on OpenBSD, as long as you remember that the RAM disk device is rd and its
configuration tool is rdconfig. Read the relevant manpages, and you'll be hacking away.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


configuration tool is rdconfig. Read the relevant manpages, and you'll be hacking away.

2.10.6 See Also

man tuning (practical advice on /tmp and swap)

man md

man mdconfig

man swapinfo

man swapctl

man systat

The BSD Handbook entry on adding swap (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/adding-swap-space.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 22 Recreate a Directory Structure Using mtree

 

Prevent or recover from rm disasters.

Someday the unthinkable may happen. You're doing some routine maintenance and are distracted by a phone call or
perhaps another employee's question. A moment later, you're faced with the awful realization that your fingers typed
either a rm * or a rm -R in the wrong place, and now a portion of your system has evaporated into nothingness.

Painful thought, isn't it? Let's pause for a moment to catch our breath and examine a few ways to prevent such a
scenario from happening in the first place.

Close your eyes and think back to when you were a fresh-faced newbie and were introduced to the omnipotent rm
command. Return to the time when you actually read man rm and first discovered the -i switch. "What a great idea," you
thought, "to be prompted for confirmation before irretrievably deleting a file from disk." However, you soon discovered
that this switch can be a royal PITA. Face it, it's irritating to deal with the constant question of whether you're sure you
want to remove a file when you just issued the command to remove that file.

2.11.1 Necessary Interaction

Fortunately, there is a way to request confirmation only when you're about to do something as rash as rm *. Simply
make a file called -i. Well, actually, it's not quite that simple. Your shell will complain if you try this:

% touch -i

touch: illegal option -- i

usage: touch [-acfhm] [-r file] [-t [[CC]Y]MMDDhhmm[.SS]] file ...

You see, to your shell, -i looks like the -i switch, which touch doesn't have. That's actually part of the magic. The reason
why we want to make a file called -i in the first place is to fool your shell: when you type rm *, the shell will expand *
into all of the files in the directory. One of those files will be named -i, and, voila, you've just given the interactive
switch to rm.

So, how do we get past the shell to make this file? Use this command instead:

% touch ./-i

The ./ acts as a sort of separator instruction to the shell. To the left of the ./ go any options to the command touch; in
this case, there are none. To the right of the ./ is the name of the file to touch in "this directory."

In order for this to be effective, you need to create a file called -i in every directory that you would like to protect from
an inadvertent rm *.

An alternative method is to take advantage of the rmstar shell variable found in the tcsh shell. This method will always
prompt for confirmation of a rm *, regardless of your current directory, as long as you always use tcsh. Since the default
shell for the superuser is tcsh, add this line to /root/.cshrc:

set rmstar

This is also a good line to add to /usr/share/skel/dot.cshrc [Hack #9].

If you want to take advantage of the protection immediately, force the shell to reread its configuration file:

# source /root/.cshrc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# source /root/.cshrc

2.11.2 Using mtree

Now you know how to protect yourself from rm *. Unfortunately, neither method will save you from a rm -R. If you do
manage to blow away a portion of your directory structure, how do you fix the mess with a minimum of fuss, fanfare,
and years of teasing from your coworkers? Sure, you can always restore from backup, but that means filling in a form
in triplicate, carrying it with you as you walk to the other side of the building where backups are stored, and sheepishly
handing it over to the clerk in charge of tape storage.

Fortunately for a hacker, there is always more than one way to skin a cat, or in this case, to save your skin. That
directory structure had to be created in the first place, which means it can be recreated.

When you installed FreeBSD, it created a directory structure for you. The utility responsible for this feat is called mtree.

To see which directory structures were created with mtree:

% ls /etc/mtree/

./                    BSD.root.dist           BSD.x11-4.dist

../                   BSD.sendmail.dist       BSD.x11.dist

BSD.include.dist      BSD.usr.dist

BSD.local.dist        BSD.var.dist

Each of these files is in ASCII text, meaning you can read, and more interestingly, edit their contents. If you're a
hacker, I know what you're thinking. Yes, you can edit a file to remove the directories you don't want and to add other
directories that you do.

Let's start with a simpler example. Say you've managed to blow away /var. To recreate it:

# mtree -deU -f /etc/mtree/BSD.var.dist -p /var

where:

-d

Ignores everything except directory files.

-e

Doesn't complain if there are extra files.

-U

Recreates the original ownerships and permissions.

-f /etc/mtree/BSD.var.dist

Specifies how to create the directory structure; this is an ASCII text file if you want to read up ahead of time on
what exactly is going to happen.

-p /var

Specifies where to create the directory structure; if you don't specify, it will be placed in the current directory.

When you run this command, the recreated files will be echoed to standard output so you can watch as they are
created for you. A few seconds later, you can:

% ls /var

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% ls /var

./            crash/          heimdal/        preserve/       yp/

../           cron/           lib/            run/

account/      db/             log/            rwho/

at/           empty/          mail/           spool/

backups/      games/          msgs/

That looks a lot better, but don't breathe that sigh of relief quite yet. You still have to recreate all of your log files. Yes,
/var/log is still glaringly empty. Remember, mtree creates a directory structure, not all of the files within that directory
structure. If you have a directory structure containing thousands of files, you're better off grabbing your backup tape.

There is hope for /var/log, though. Rather than racking your brain for the names of all of the missing log files, do this
instead:

% more /etc/newsyslog.conf

# configuration file for newsyslog

# $FreeBSD: src/etc/newsyslog.conf,v 1.42 2002/09/21 12:07:35 markm Exp $

#

# Note: some sites will want to select more restrictive protections than the

# defaults.  In particular, it may be desirable to switch many of the 644

# entries to 640 or 600.  For example, some sites will consider the

# contents of maillog, messages, and lpd-errs to be confidential.  In the

# future, these defaults may change to more conservative ones.

#

# logfilename           [owner:group]    mode count size when  [ZJB] 

[/pid_file] [sig_num]

/var/log/cron                            600  3     100  *      J

/var/log/amd.log                         644  7     100  *      J

/var/log/auth.log                        600  7     100  *      J

/var/log/kerberos.log                    600  7     100  *      J

/var/log/lpd-errs                        644  7     100  *      J

/var/log/xferlog                         600  7     100  *      J

/var/log/maillog                         640  7     *    @T00   J

/var/log/sendmail.st                     640  10    *    168    B

/var/log/messages                        644  5     100  *      J

/var/log/all.log                         600  7     *    @T00   J

/var/log/slip.log        root:network    640  3     100  *      J

/var/log/ppp.log         root:network    640  3     100  *      J

/var/log/security                        600  10    100  *      J

/var/log/wtmp                            644  3     *    @01T05 B

/var/log/daily.log                       640  7     *    @T00   J

/var/log/weekly.log                      640  5     1    $W6D0  J

/var/log/monthly.log                     640  12    *    $M1D0  J

/var/log/console.log                     600  5     100  *      J

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/var/log/console.log                     600  5     100  *      J

There you go, all of the default log names and their permissions. Simply touch the required files and adjust their
permissions accordingly with chmod.

2.11.3 Customizing mtree

Let's get a little fancier and hack the mtree hack. If you want to be able to create a homegrown directory structure, start
by perusing the instructions in /usr/src/etc/mtree/README.

The one rule to keep in mind is don't use tabs. Instead, use four spaces for indentation. Here is a simple example:

% more MY.test.dist

#home grown test directory structure

/set type=dir uname=test gname=test mode=0755

.

    test1

    ..

      test2

          subdir2a

          ..

          subdir2b

              ..

              subsubdir2c    mode=01777

              ..

              ..

    ..

Note that you can specify different permissions on different parts of the directory structure.

Next, I'll apply this file to my current directory:

# mtree -deU -f MY.test.dist

and check out the results:

# ls -F

test1/

test2/

# ls -F test1

#

# ls -F test2

subdir2a/

subdir2b/

# ls -F test2/subdir2b

subsubdir2c/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


subsubdir2c/

As you can see, mtree can be a real timesaver if you need to create custom directory structures when you do
installations. Simply take a few moments to create a file containing the directory structure and its permissions. You'll
gain the added bonus of having a record of the required directory structure.

2.11.4 See Also

man mtree

 The Linux mtree port (http://www.wie-auch-immer.de/mtree/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 23 Ghosting Systems

 

Do you find yourself installing multiple systems, all containing the same operating system and applications? As an IT
instructor, I'm constantly installing systems for my next class or trying to fix the ramifications of a misconfiguration
from a previous class.

As any system administrator can attest to, ghosting or hard drive-cloning software can be a real godsend. Backups are
one thing; they retain your data. However, an image is a true timesaver—it's a copy of the operating system itself,
along with any installed software and all of your configurations and customizations.

I haven't always had the luxury of a commercial ghosting utility at hand. As you can well imagine, I've tried every
homegrown and open source ghosting solution available. I started with various invocations of dd, gzip, ssh, and dump,
but kept running across the same fundamental problem: it was easy enough to create an image, but inconvenient to
deploy that image to a fresh hard drive. It was doable in the labs that used removable drives, but, otherwise, I had to
open up a system, cable in the drive to be deployed, copy the image, and recable the drive into its own system.

Forget the wear and tear on the equipment; that solution wasn't working out to be much of a timesaver! What I really
needed was a floppy that contained enough intelligence to go out on the network and retrieve and restore an image. I
tried several open source applications and found that Ghost For Unix, g4u, best fit the bill.

2.12.1 Creating the Ghost Disk

You're about two minutes away from creating a bootable g4u floppy. Simply download g4u-1.12fs from
http://theatomicmoose.ca/g4u/ and copy it to a floppy:

# cat g4u-1.12fs > /dev/fd0

Your only other requirement is a system with a drive capable of holding your images. It can be any operating system,
as long as it has an installed FTP server. If it's a FreeBSD system, you can configure an FTP server through
/stand/sysinstall. Choose Configure from the menu, then Networking. Use your spacebar to choose Anon FTP.

Choose Yes to the configuration message and accept the defaults by tabbing to OK. The welcome message is optional.
Exit sysinstall once you're finished.

You'll then need to remove the remark (#) in front of the FTP line in /etc/inetd.conf, so it looks like this:

ftp   stream   tcp   nowait   root   /usr/libexec/ftpd    ftpd -l

If inetd is already running, inform it of the configuration change using killall -1 inetd. Otherwise, start inetd by simply
typing inetd. To ensure the service is running:

# sockstat | grep 21

root   inetd   22433  4  tcp4   *:21     *:*

In this listing, the local system is listening for requests on port 21, and there aren't any current connections listed in the
remote address section (*:*).

g4u requires a username and a password before it will create or retrieve an image. The default account is install, but you
can specify another user account when you use g4u. To create the install account on a FreeBSD FTP server:

# pw useradd install -m -s /bin/csh

Make sure that the shell you give this user is listed in /etc/shells or FTP authentication will
fail.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Then, use passwd install to give this account a password you will remember.

2.12.2 Creating an Image

Before you create an image, fully configure a test system. For example, in my security lab, I usually install the latest
release of FreeBSD, add my customized /etc/motd and shell prompt, configure X, and install and configure the
applications students will use during their labs.

It's a good idea to know ahead of time how large the hard drive is on the test system and how it has been partitioned.
There are several ways to find out on a FreeBSD system, depending upon how good you are at math. One way is to go
back into /stand/sysinstall and choose Configure then Fdisk. The first long line will give the size of the entire hard drive:

Disk name:       ad0

DISK Geometry:   19885 cyls/16 heads/63 sectors = 20044080 sectors (9787MB)

Press q to exit this screen. If you then type fdisk at the command line, you'll see the size of your partitions:

# fdisk

<snip>

The data for partition 1 is:

sysid 165 (0xa5), (FreeBSD/NetBSD/386BSD)

    start 63, size 4095441 (1999 Meg), flag 80 (active)

<snip>

The data for partition 2 is:

<UNUSED>

The data for partition 3 is:

<UNUSED>

The data for partition 4 is:

<UNUSED>

This particular system has a 9787 MB hard drive that has one 1999 MB partition containing FreeBSD.

Whenever you're using any ghosting utility, create an image using the smallest hard drive
size that you have available, but which is also large enough to hold your desired data. This
will reduce the size of the image and prevent the problems associated with trying to
restore an image to a smaller hard drive.

Once you're satisfied with your system, insert the floppy and reboot.

g4u will probe for hardware and configure the NIC using DHCP. Once it's finished, you'll be presented with this screen:

Welcome to g4u Harddisk Image Cloning V1.12!

* To upload disk-image to FTP, type:    uploaddisk serverIP [image] [disk]

* To upload partition to FTP, type:     uploadpart serverIP [image] [disk+part]

* To install harddisk from FTP, type:   slurpdisk  serverIP [image] [disk]

* To install partition from FTP, type:  slurppart  serverIP [image] [disk+part]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


* To install partition from FTP, type:  slurppart  serverIP [image] [disk+part]

* To copy disks locally, type:          copydisk disk0 disk1

[disk] defaults to wd0 for first IDE disk, [disk+part] defaults to wd0d 

for the whole first IDE disk. Use wd1 for second IDE disk, sd0 for first 

SCSI disk, etc. Default image for slurpdisk is 'rwd0d.gz'. Run 'dmesg' to 

see boot messages, 'disks' for recognized disks, 'parts <disk>' for list 

of (BSD-type!) partitions on disk '<disk>" (wd0, ...), run any other 

commands without args to see usage message.

Creating the image is as simple as invoking uploaddisk with the IP address of the FTP server. If you wish, include a useful
name for the image; in this example, I'll call the image securitylab.gz:

# uploaddisk 192.168.2.95 securitylab.gz

( cat $tmpfile ; dd progress=1 if=/dev/rwd0d bs=1m | gzip -9 ) | ftp -n

tmpfile:

open 192.168.2.95

user install

bin

put - securitylab.gz

bye

5

4

3

2

1

working...

Connected to 192.168.2.95.

220 genisis FTP server (Version 6.00LS) ready.

331 Password required for install.

Password: 

type_password_here

230 User install logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

200 Type set to I.

remote: securitylab.gz

227 Entering Passive Mode (192,168,2,95,192,1)

150 Opening BINARY mode data connection for 'securitylab.gz'.

...................

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


...................

This will take a while. How long depends upon the size of the drive and the speed of your network. When it is finished,
you'll see a summary:

9787+1 records in

9787+1 records out

10262568960 bytes transferred in 6033.533 secs (1700921 bytes/sec)

226 Transfer complete.

3936397936 bytes sent in 1:40:29 (637.58 KB/s)

221 Goodbye.

#

You can also check out the size of the image on the FTP server:

% du -h ~install/securitylab.gz

3.7G /home/install/securitylab.gz

That's not too bad. It took just over an hour and a half to compress that 9 GB drive to a 3.7 GB image. The g4u web
site also has some hints for further reducing the size of the image or increasing the speed of the transfer.

If you use images on a regular basis, consider upgrading hubs or older switches to 100 MB
switches. This can speed up your transfer rates significantly.

It's also possible to create an image of each particular filesystem, but I find it easier just to image a fairly small drive.
This is because an image of the entire drive includes the master boot record (MBR) or the desired partitioning scheme.

2.12.3 Deploying the Image

When you wish to install the image, use the floppy to boot the system to receive the image. Once you receive the
prompt, specify the name of the image and the IP address of the FTP server:

# slurpdisk 192.168.2.95 securitylab.gz

It doesn't matter what was previously on that drive. Since the MBR is recreated, the new drive will just contain the
imaged data. Once the deployment is finished, simply reboot the system without the floppy.

If the new drive is bigger than the image, you'll have free space left over on the drive that
you can partition with a partitioning utility. Remember, don't try to deploy an image to a
smaller drive!

2.12.4 See Also

 The Ghost For Unix web site (http://www.feyrer.de/g4u/)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 13 Find Things

 

Finding fles in Unix can be an exercise in frustration for a novice user. Here's how to soften the learning
curve.

Remember the first time you installed a Unix system? Once you successfully booted to a command prompt, I bet your
first thought was, "Now what?" or possibly, "Okay, where is everything?" I'm also pretty sure your first foray into man
find wasn't all that enlightening.

How can you as an administrator make it easier for your users to find things? First, introduce them to the built-in
commands. Then, add a few tricks of your own to soften the learning curve.

2.2.1 Finding Program Paths

Every user should become aware of the three w's: which, whereis, and whatis. (Personally, I'd like to see some why and
when commands, but that's another story.)

Use which to find the path to a program. Suppose you've just installed xmms and wonder where it went:

% which xmms

/usr/X11R6/bin/xmms

Better yet, if you were finding out the pathname because you wanted to use it in a file, save yourself a step:

% echo `which xmms` >> somefile

Remember to use the backticks (`), often found on the far left of the keyboard on the same key as the tilde (~). If you
instead use the single quote (') character, usually located on the right side of the keyboard on the same key as the
double quote ("), your file will contain the echoed string which xmms instead of the desired path.

The user's current shell will affect how which's switches work. Here is an example from the C shell:

% which -a xmms

-a: Command not found.

/usr/X11R6/bin/xmms

% which which

which: shell built-in command.

This is a matter of which which the user is using. Here, the user used the which which is built into the C shell and doesn't
support the options used by the which utility. Where then is that which? Try the whereis command:

% whereis -b which

which: /usr/bin/which

Here, I used -b to search only for the binary. Without any switches, whereis will display the binary, the manpage path,
and the path to the original sources.

If your users prefer to use the real which command instead of the shell version and if they are only interested in seeing
binary paths, consider adding these lines to /usr/share/skel/dot.cshrc [Hack #9] :

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


binary paths, consider adding these lines to /usr/share/skel/dot.cshrc [Hack #9] :

alias which     /usr/bin/which -a

alias whereis   whereis -b

The -a switch will list all binaries with that name, not just the first binary found.

2.2.2 Finding Commands

How do you proceed when you know what it is that you want to do, but have no clue which commands are available to
do it? I know I clung to the whatis command like a life preserver when I was first introduced to Unix. For example, when
I needed to know how to set up PPP:

% whatis ppp

i4bisppp(4)              - isdn4bsd synchronous PPP over ISDN B-channel network driver

ng_ppp(4)                - PPP protocol netgraph node type

ppp(4)                   - point to point protocol network interface

ppp(8)                   - Point to Point Protocol (a.k.a. user-ppp)

pppctl(8)                - PPP control program

pppoed(8)                - handle incoming PPP over Ethernet connections

pppstats(8)              - print PPP statistics

On the days I had time to satisfy my curiosity, I tried this variation:

% whatis "(1)"

That will show all of the commands that have a manpage in section 1. If you're rusty on your manpage sections, whatis
intro should refresh your memory.

2.2.3 Finding Words

The previous commands are great for finding binaries and manpages, but what if you want to find a particular word in
one of your own text files? That requires the notoriously user-unfriendly find command. Let's be realistic. Even with all
of your Unix experience, you still have to dig into either the manpage or a good book whenever you need to find
something. Can you really expect novice users to figure it out?

To start with, the regular old invocation of find will find filenames, but not the words within those files. We need a
judicious use of grep to accomplish that. Fortunately, find's -exec switch allows it to use other utilities, such as grep,
without forking another process.

Start off with a find command that looks like this:

% find . -type f -exec grep "word" {  } \;

This invocation says to start in the current directory (.), look through files, not directories (-type f), while running the
grep command (-exec grep) in order to search for the word word. Note that the syntax of the -exec switch always
resembles:

-exec command with_its_parameters {  } \;

What happens if I search the files in my home directory for the word alias?

% find . -type f -exec grep "alias" {  } \;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% find . -type f -exec grep "alias" {  } \;

alias h                history 25

alias j                jobs -l

Antialiasing=true

Antialiasing arguments=-sDEVICE=x11 -dTextAlphaBits=4 -dGraphicsAlphaBits=2 

-dMaxBitmap=10000000

(proc-arg 0 "antialiasing" "Apply antialiasing (TRUE/FALSE)")

(proc-arg 0 "antialiasing" "Apply antialiasing (TRUE/FALSE)")

While it's nice to see that find successfully found the word alias in my home directory, there's one slight problem. I have
no idea which file or files contained my search expression! However, adding /dev/null to that command will fix that:

# find . -type f -exec grep "alias" /dev/null {  } \; 

./.cshrc:alias h                history 25

./.cshrc:alias j                jobs -l

./.kde/share/config/kghostviewrc:Antialiasing=true

./.kde/share/config/kghostviewrc:Antialiasing arguments=-sDEVICE=x11 

-dTextAlphaBits=4 -dGraphicsAlphaBits=2 -dMaxBitmap=10000000

./.gimp-1.3/pluginrc:        (proc-arg 0 "antialiasing" "Apply antialiasing (TRUE/FALSE)")

./.gimp-1.3/pluginrc:        (proc-arg 0 "antialiasing" "Apply antialiasing (TRUE/FALSE)")

Why did adding nothing, /dev/null, automagically cause the name of the file to appear next to the line that contains the
search expression? Is it because Unix is truly amazing? After all, it does allow even the state of nothingness to be
expressed as a filename.

Actually, it works because grep will list the filename whenever it searches multiple files. When you just use { }, find will
pass each filename it finds one at a time to grep. Since grep is searching only one filename, it assumes you already
know the name of that file. When you use /dev/null { }, find actually passes grep two files, /dev/null along with whichever
file find happens to be working on. Since grep is now comparing two files, it's nice enough to tell you which of the files
contained the search string. We already know /dev/null won't contain anything, so we just convinced grep to give us the
name of the other file.

That's pretty handy. Now let's make it friendly. Here's a very simple script called fstring:

% more ~/bin/fstring

#!/bin/sh

# script to find a string

# replaces $1 with user's search string

find . -type f -exec grep "$1" /dev/null {  } \;

That $1 is a positional parameter. This script expects the user to give one parameter: the word the user is searching
for. When the script executes, the shell will replace "$1" with the user's search string. So, the script is meant to be run
like this:

% fstring 

word_to_search

If you're planning on using this script yourself, you'll probably remember to include a search string. If you want other
users to benefit from the script, you may want to include an if statement to generate an error message if the user
forgets the search string:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


forgets the search string:

#!/bin/sh

# script to find a string

# replaces $1 with user's search string

# or gives error message if user forgets to include search string

if test $1

then

   find . -type f -exec grep "$1" /dev/null {  } \;

else

   echo "Don't forget to include the word you would like to search for"

   exit 1

fi

Don't forget to make your script executable with chmod +x and to place it in the user's path. /usr/local/bin is a good
location for other users to benefit.

2.2.4 See Also

man which

man whereis

man whatis

man find

man grep

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 14 Get the Most Out of grep

 

You may not know where its odd name originated, but you can't argue the usefulness of grep.

Have you ever needed to find a particular file and thought, "I don't recall the filename, but I remember some of its
contents"? The oddly named grep command does just that, searching inside files and reporting on those that contain a
given piece of text.

2.3.1 Finding Text

Suppose you wish to search your shell scripts for the text $USER. Try this:

% grep -s '$USER' *

add-user:if [ "$USER" != "root" ]; then

bu-user:  echo "  [-u user] - override $USER as the user to backup"

bu-user:if [ "$user" = "" ]; then user="$USER"; fi

del-user:if [ "$USER" != "root" ]; then

mount-host:mounted=$(df | grep "$ALM_AFP_MOUNT/$USER")

.....

mount-user:  echo "  [-u user] - override $USER as the user to backup"

mount-user:if [ "$user" = "" ]; then user="$USER"; fi

In this example, grep has searched through all files in the current directory, displaying each line that contained the text
$USER. Use single quotes around the text to prevent the shell from interpreting special characters. The -s option
suppresses error messages when grep encounters a directory.

Perhaps you only want to know the name of each file containing the text $USER. Use the -l option to create that list for
you:

% grep -ls '$USER' *

add-user

bu-user

del-user

mount-host

mount-user

2.3.2 Searching by Relevance

What if you're more concerned about how many times a particular string occurs within a file? That's known as a
relevance search . Use a command similar to:

% grep -sc '$USER' * | grep -v ':0' | sort  -k 2 -t : -r

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% grep -sc '$USER' * | grep -v ':0' | sort  -k 2 -t : -r

mount-host:6

mount-user:2

bu-user:2

del-user:1

add-user:1

How does this magic work? The -c flag lists each file with a count of matching lines, but it unfortunately includes files
with zero matches. To counter this, I piped the output from grep into a second grep, this time searching for ':0' and
using a second option, -v, to reverse the sense of the search by displaying lines that don't match. The second grep reads
from the pipe instead of a file, searching the output of the first grep.

For a little extra flair, I sorted the subsequent output by the second field of each line with sort -k 2, assuming a field
separator of colon (-t :) and using -r to reverse the sort into descending order.

2.3.3 Document Extracts

Suppose you wish to search a set of documents and extract a few lines of text centered on each occurrence of a
keyword. This time we are interested in the matching lines and their surrounding context, but not in the filenames. Use
a command something like this:

% grep -rhiw -A4 -B4 'preferences' *.txt > research.txt

% more research.txt

This grep command searches all files with the .txt extension for the word preferences. It performs a recursive search (-r)
to include all subdirectories, hides (-h) the filename in the output, matches in a case-insensitive (-i) manner, and
matches preferences as a complete word but not as part of another word (-w). The -A4 and -B4 options display the four
lines immediately after and before the matched line, to give the desired context. Finally, I've redirected the output to
the file research.txt.

You could also send the output straight to the vim text editor with:

% grep -rhiw -A4 -B4 'preferences' *.txt | vim -

Vim: Reading from stdin...

vim can be installed from /usr/ports/editors/vim.

Specifying vim - tells vim to read stdin (in this case the piped output from grep) instead of a file. Type :q! to exit vim.

To search files for several alternatives, use the -e option to introduce extra search patterns:

% grep -e 'text1' -e 'text2' *

Q. How did grep get its odd name?

A. grep was written as a standalone program to simulate a commonly performed command
available in the ancient Unix editor ex. The command in question searched an entire file for
lines containing a regular expression and displayed those lines. The command was g/re/p:
globally search for a regular expression and print the line.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.3.4 Using Regular Expressions

To search for text that is more vaguely specified, use a regular expression. grep understands both basic and extended
regular expressions, though it must be invoked as either egrep or grep -E when given an extended regular expression.
The text or regular expression to be matched is usually called the pattern.

Suppose you need to search for lines that end in a space or tab character. Try this command (to insert a tab, press Ctrl-
V and then Ctrl-I, shown as <tab> in the example):

% grep -n '[ <tab>]$' test-file

2:ends in space 

3:ends in tab

I used the [...] construct to form a regular expression listing the characters to match: space and tab. The expression
matches exactly one space or one tab character. $ anchors the match to the end of a line. The -n flag tells grep to
include the line number in its output.

Alternatively, use:

% grep -n '[[:blank:]]$' test-file

2:ends is space 

3:ends in tab

Regular expressions provide many preformed character groups of the form [[:description:]]. Example groups include all
control characters, all digits, or all alphanumeric characters. See man re_format for details.

We can modify a previous example to search for either "preferences" or "preference" as a complete word, using an
extended regular expression such as this:

% egrep -rhiw -A4 -B4 'preferences?' *.txt > research.txt

The ? symbol specifies zero or one of the preceding character, making the s of preferences optional. Note that I use egrep
because ? is available only in extended regular expressions. If you wish to search for the ? character itself, escape it
with a backslash, as in \?.

An alternative method uses an expression of the form (string1|string2), which matches either one string or the other:

% egrep -rhiw -A4 -B4 'preference(s|)' *.txt > research.txt

As a final example, use this to seek out all bash, tcsh, or sh shell scripts:

% egrep '^#\!/bin/(ba|tc|)sh[[:blank:]]*$' *

The caret (^) character at the start of a regular expression anchors it to the start of the line (much as $ at the end
anchors it to the end). (ba|tc|) matches ba, tc, or nothing. The * character specifies zero or more of [[:blank:]], allowing
trailing whitespace but nothing else. Note that the ! character must be escaped as \! to avoid shell interpretation in tcsh
(but not in bash).

Here's a handy tip for debugging regular expressions: if you don't pass a filename to grep,
it will read standard input, allowing you to enter lines of text to see which match. grep will
echo back only matching lines.

2.3.5 Combining grep with Other Commands

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


grep works well with other commands. For example, to display all tcsh processes:

% ps axww | grep -w 'tcsh'

saruman 10329  0.0  0.2    6416  1196  p1  Ss  Sat01PM  0:00.68 -tcsh (tcsh)

saruman 11351  0.0  0.2    6416  1300 std  Ss  Sat07PM  0:02.54 -tcsh (tcsh)

saruman 13360  0.0  0.0    1116     4 std  R+  10:57PM  0:00.00 grep -w tcsh

%

Notice that the grep command itself appears in the output. To prevent this, use:

% ps axww | grep -w '[t]csh'

saruman 10329  0.0  0.2    6416  1196  p1  Ss  Sat01PM  0:00.68 -tcsh (tcsh)

saruman 11351  0.0  0.2    6416  1300 std  Ss  Sat07PM  0:02.54 -tcsh (tcsh)

%

I'll let you figure out how this works.

2.3.6 See Also

man grep

man re_format (regular expressions)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 15 Manipulate Files with sed

 

If you've ever had to change the formatting of a file, you know that it can be a time-consuming process.

Why waste your time making manual changes to files when Unix systems come with many tools that can very quickly
make the changes for you?

2.4.1 Removing Blank Lines

Suppose you need to remove the blank lines from a file. This invocation of grep will do the job:

% grep -v '^$' letter1.txt > tmp ; mv tmp letter1.txt

The pattern ^$ anchors to both the start and the end of a line with no intervening characters—the regexp definition of a
blank line. The -v option reverses the search, printing all nonblank lines, which are then written to a temporary file, and
the temporary file is moved back to the original.

grep must never output to the same file it is reading, or the file will end up empty.

You can rewrite the preceding example in sed as:

% sed '/^$/d' letter1.txt > tmp ; mv tmp letter1.txt

'/^$/d' is actually a sed script. sed's normal mode of operation is to read each line of input, process it according to the
script, and then write the processed line to standard output. In this example, the expression '/^$/ is a regular
expression matching a blank line, and the trailing d' is a sed function that deletes the line. Blank lines are deleted and all
other lines are printed. Again, the results are redirected to a temporary file, which is then copied back to the original
file.

2.4.2 Searching with sed

sed can also do the work of grep:

% sed -n '/$USER/p' *

This command will yield the same results as:

% grep '$USER' *

The -n (no-print, perhaps) option prevents sed from outputting each line. The pattern /$USER/ matches lines containing
$USER, and the p function prints matched lines to standard output, overriding -n.

2.4.3 Replacing Existing Text

One of the most common uses for sed is to perform a search and replace on a given string. For example, to change all
occurrences of 2003 into 2004 in a file called date, include the two search strings in the format 's/oldstring/newstring/', like
so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


so:

% sed 's/2003/2004/' date

Copyright 2004

...

This was written in 2004, but it is no longer 2003.

...

Almost! Noticed that that last 2003 remains unchanged. This is because without the g (global) flag, sed will change only
the first occurrence on each line. This command will give the desired result:

% sed 's/2003/2004/g' date

Search and replace takes other flags too. To output only changed lines, use:

% sed -n 's/2003/2004/gp' date

Note the use of the -n flag to suppress normal output and the p flag to print changed lines.

2.4.4 Multiple Transformations

Perhaps you need to perform two or more transformations on a file. You can do this in a single run by specifying a
script with multiple commands:

% sed 's/2003/2004/g;/^$/d' date

This performs both substitution and blank line deletion. Use a semicolon to separate the two commands.

Here is a more complex example that translates HTML tags of the form <font> into PHP bulletin board tags of the form
[font]:

% cat index.html

<title>hello

</title>

% sed 's/<\(.*\)>/[\1]/g' index.html

[title]hello

[/title]

How did this work? The script searched for an HTML tag using the pattern '<.*>'. Angle brackets match literally. In a
regular expression, a dot (.) represents any character and an asterisk (*) means zero or more of the previous item.
Escaped parentheses, \( and \), capture the matched pattern laying between them and place it in a numbered buffer. In
the replace string, \1 refers to the contents of the first buffer. Thus the text between the angle brackets in the search
string is captured into the first buffer and written back inside square brackets in the replace string. sed takes full
advantage of the power of regular expressions to copy text from the pattern to its replacement.

% cat index1.html

<title>hello</title>

% sed 's/<\(.*\)>/[\1]/g' index1.html

[title>hello</title]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[title>hello</title]

This time the same command fails because the pattern .* is greedy and grabs as much as it can, matching up to the
second >. To prevent this behavior, we need to match zero or more of any character except <. Recall that [...] is a
regular expression that lists characters to match, but if the first character is the caret (^), the match is reversed. Thus
the regular expression [^<] matches any single character other than <. I can modify the previous example as follows:

% sed 's/<\([^<]*\)>/[\1]/g' index1.html

[title]hello[/title]

Remember, grep will perform a case-insensitive search if you provide the -i flag. sed, unfortunately, does not have such
an option. To search for title in a case-insensitive manner, form regular expressions using [...], each listing a character
of the word in both upper- and lowercase forms:

% sed 's/[Tt][Ii][Tt][Ll][Ee]/title/g' title.html

2.4.5 See Also

man grep

man sed

man re_format (regular expressions)

"sed & Regular Expressions" at http://main.rtfiber.com.tw/~changyj/sed/

Cool sed tricks at http://www.wagoneers.com/UNIX/SED/sed.html

The sed FAQ (http://doc.ddart.net/shell/sedfaq.htm)

The sed Script Archive (http://sed.sourceforge.net/grabbag/scripts/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 16 Format Text at the Command Line

 

Combine basic Unix tools to become a formatting expert.

Don't let the syntax of the sed command scare you off. sed is a powerful utility capable of handling most of your
formatting needs. For example, have you ever needed to add or remove comments from a source file? Perhaps you
need to shuffle some text from one section to another.

In this hack, I'll demonstrate how to do that. I'll also show some handy formatting tricks using two other built-in Unix
commands, tr and col.

2.5.1 Adding Comments to Source Code

sed allows you to specify an address range using a pattern, so let's put this to use. Suppose we want to comment out a
block of text in a source file by adding // to the start of each line we wish to comment out. We might use a text editor to
mark the block with bc-start and bc-end:

% cat source.c

  if (tTd(27, 1))

    sm_dprintf("%s (%s, %s) aliased to %s\n",

        a->q_paddr, a->q_host, a->q_user, p);

  bc-start

    if (bitset(EF_VRFYONLY, e->e_flags))

  {

    a->q_state = QS_VERIFIED;

    return;

  }

  bc-end

  message("aliased to %s", shortenstring(p, MAXSHORTSTR));

and then apply a sed script such as:

% sed '/bc-start/,/bc-end/s/^/\/\//' source.c

to get:

if (tTd(27, 1))

    sm_dprintf("%s (%s, %s) aliased to %s\n",

        a->q_paddr, a->q_host, a->q_user, p);

  //bc-start

  //  if (bitset(EF_VRFYONLY, e->e_flags))

  //  {

  //      a->q_state = QS_VERIFIED;

  //      return;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  //      return;

  //  }

  //bc-end

message("aliased to %s", shortenstring(p, MAXSHORTSTR));

The script used search and replace to add // to the start of all lines (s/^/\/\//) that lie between the two markers (/bc-
start/,/bc-end/). This will apply to every block in the file between the marker pairs. Note that in the sed script, the /
character has to be escaped as \/ so it is not mistaken for a delimiter.

2.5.2 Removing Comments

When we need to delete the comments and the two bc- lines (let's assume that the edited contents were copied back to
source.c), we can use a script such as:

% sed '/bc-start/d;/bc-end/d;/bc-start/,/bc-end/s/^\/\///' source.c

Oops! My first attempt won't work. The bc- lines must be deleted after they have been used as address ranges. Trying
again we get:

% sed '/bc-start/,/bc-end/s/^\/\///;/bc-start/d;/bc-end/d' source.c

If you want to leave the two bc- marker lines in but comment them out, use this piece of trickery:

% sed '/bc-start/,/bc-end/{/^\/\/bc-/\!s/\/\///;}' source.c

to get:

if (tTd(27, 1))

    sm_dprintf("%s (%s, %s) aliased to %s\n",

        a->q_paddr, a->q_host, a->q_user, p);

  //bc-start

if (bitset(EF_VRFYONLY, e->e_flags))

{

    a->q_state = QS_VERIFIED;

    return;

}

  //bc-end

message("aliased to %s", shortenstring(p, MAXSHORTSTR));

Note that in the bash shell you must use:

% sed '/bc-start/,/bc-end/{/^\/\/bc-/!s/\/\///;}' source.c

because the bang character (!) does not need to be escaped as it does in tcsh.

What's with the curly braces? They prevent a common mistake. You may imagine that this example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


What's with the curly braces? They prevent a common mistake. You may imagine that this example:

% sed -n '/$USER/p;p' *

prints each line containing $USER twice because of the p;p commands. It doesn't, though, because the second p is not
restrained by the /$USER/ line address and therefore applies to every line. To print twice just those lines containing
$USER, use:

% sed -n '/$USER/p;/$USER/p' *

or:

% sed -n '/$USER/{p;p;}' *

The construct {...} introduces a function list that applies to the preceding line address or range.

A line address followed by ! (or \! in the tcsh shell) reverses the address range, and so the function (list) that follows is
applied to all lines not matching. The net effect is to remove // from all lines that don't start with //bc- but that do lie
within the bc- markers.

2.5.3 Using the Holding Space to Mark Text

sed reads input into the pattern space, but it also provides a buffer (called the holding space) and functions to move
text from one space to the other. All other functions (such as s and d) operate on the pattern space, not the holding
space.

Check out this sed script:

% cat case.script 

# Sed script for case insensitive search

#

# copy pattern space to hold space to preserve it

h

y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/

# use a regular expression address to search for lines containing:

/test/ {

i\

vvvv

a\

^^^^

}

# restore the original pattern space from the hold space

x;p

First, I have written the script to a file instead of typing it in on the command line. Lines starting with # are comments
and are ignored. Other lines specify a sed command, and commands are separated by either a newline or ; character.
sed reads one line of input at a time and applies the whole script file to each line. The following functions are applied to
each line as it is read:

h

Copies the pattern space (the line just read) into the holding space.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Copies the pattern space (the line just read) into the holding space.

y/ABC/abc/

Operates on the pattern space, translating A to a, B to b, and C to c and so on, ensuring the line is all lowercase.

/test/ {...}

Matches the line just read if it includes the text test (whatever the original case, because the line is now all
lowercase) and then applies the list of functions that follow. This example appends text before (i\) and after (a\)
the matched line to highlight it.

x

Exchanges the pattern and hold space, thus restoring the original contents of the pattern space.

p

Prints the pattern space.

Here is the test file:

% cat case

This contains text         Hello

that we want to            TeSt

search for, but in         test

a case insensitive         XXXX 

manner using the sed       TEST

editor.                    Bye bye.

%

Here are the results of running our sed script on it:

% sed -n -f case.script case

This contains text         Hello

vvvv

that we want to            TeSt

^^^^

vvvv

search for, but in         test

^^^^

a case insensitive         XXXX 

vvvv

manner using the sed       TEST

^^^^

editor.                    Bye bye.

Notice the vvv ^^^ markers around lines that contain test.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.5.4 Translating Case

The tr command can translate one character to another. To change the contents of case into all lowercase and write the
results to file lower-case, we could use:

% tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' \

  < case > lower-case

tr works with standard input and output only, so to read and write files we must use redirection.

2.5.5 Translating Characters

To translate carriage return characters into newline characters, we could use:

% tr \\r \\n < 

cr

 > 

lf

where cr is the original file and lf is a new file containing line feeds in place of carriage returns. \n represents a line feed
character, but we must escape the backslash character in the shell, so we use \\n instead. Similarly, a carriage return is
specified as \\r.

2.5.6 Removing Duplicate Line Feeds

tr can also squeeze multiple consecutive occurrences of a particular character into a single occurrence. For example, to
remove duplicate line feeds from the lines file:

% tr -s \\n < lines > tmp ; mv tmp lines

Here we use the tmp file trick again because tr, like grep and sed, will trash the input file if it is also the output file.

2.5.7 Deleting Characters

tr can also delete selected characters. If for instance if you hate vowels, run your documents through this:

% tr -d aeiou < file

2.5.8 Translating Tabs to Spaces

To translate tabs into multiple spaces, use the -x flag:

% cat tabs

col     col     col

% od -x tabs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% od -x tabs

0000000     636f    6c09    636f    6c09    636f    6c0a    0a00        

0000015

% col -x < tabs > spaces

% cat spaces

col     col     col

% od -h spaces

0000000     636f    6c20    2020    2020    636f    6c20    2020    2020

0000020     636f    6c0a    0a00                                        

0000025

In this example I have used od -x to octal dump in hexadecimal the contents of the before and after files, which shows
more clearly that the translation has worked. (09 is the code for Tab and 20 is the code for Space.)

2.5.9 See Also

man sed

man tr

man col

man od

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 17 Delimiter Dilemma

 

Deal with double quotation marks in delimited files.

Importing data from a delimited text file into an application is usually painless. Even if you need to change the delimiter
from one character to another (from a comma to a colon, for example), you can choose from many tools that perform
simple character substitution with great ease.

However, one common situation is not solved as easily: many business applications export data into a space- or
comma-delimited file, enclosing individual fields in double quotation marks. These fields often contain the delimiter
character. Importing such a file into an application that processes only one delimiter (PostgreSQL for example) may
result in an incorrect interpretation of the data. This is one of those situations where the user should feel lucky if the
process fails.

One solution is to write a script that tracks the use of double quotes to determine whether it is working within a text
field. This is doable by creating a variable that acts as a text/nontext switch for the character substitution process. The
script should change the delimiter to a more appropriate character, leave the delimiters that were enclosed in double
quotes unchanged, and remove the double quotes. Rather than make the changes to the original datafile, it's safer to
write the edited data to a new file.

2.6.1 Attacking the Problem

The following algorithm meets our needs:

1. Create the switch variable and assign it the value of 1, meaning "nontext". We'll declare the variable tswitch and
define it as tswitch = 1.

2. Create a variable for the delimiter and define it. We'll use the variable delim with a space as the delimiter, so
delim = ' '.

3. Decide on a better delimiter. We'll use the tab character, so new_delim = '\t'.

4. Open the datafile for reading.

5. Open a new file for writing.

Now, for every character in the datafile:

1. Read a character from the datafile.

2. If the character is a double quotation mark, tswitch = tswitch * -1.

3. If the character equals the character in delim and tswitch equals 1, write new_delim to the new file.

4. If the character equals that in delim and tswitch equals -1, write the value of delim to the new file.

5. If the character is anything else, write the character to the new file.

2.6.2 The Code

The Python script redelim.py implements the preceding algorithm. It prompts the user for the original datafile and a
name for the new datafile. The delim and new_delim variables are hardcoded, but those are easily changed within the
script.

This script copies a space-delimited text file with text values in double quotes to a new, tab-delimited file without the
double quotes. The advantage of using this script is that it leaves spaces that were within double quotes unchanged.

There are no command-line arguments for this script. The script will prompt the user for source and destination file
information.

You can redefine the variables for the original and new delimiters, delim and new_delim, in the script as needed.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can redefine the variables for the original and new delimiters, delim and new_delim, in the script as needed.

#!/usr/local/bin/python

import os

print """ Change text file delimiters.

# Ask user for source and target files.

sourcefile = raw_input('Please enter the path and name of the source file:')

targetfile = raw_input('Please enter the path and name of the target file:')

# Open files for reading and writing.

source = open(sourcefile,'r')

dest   = open(targetfile,'w')

# The variable 'm' acts as a text/non-text switch that reminds python

# whether it is working within a text or non-text data field.

tswitch = 1

# If the source delimiter that you want to change is not a space,

# redefine the variable delim in the next line.

delim = ' '

# If the new delimiter that you want to change is not a tab,

# redefine the variable new_delim in the next line.

new_delim = '\t'

for charn in source.read( ):

        if tswitch =  = 1:

              if charn =  = delim:

                       dest.write(new_delim)

              elif charn =  = '\"':

                       tswitch = tswitch * -1

              else:

                       dest.write(charn)

     elif tswitch =  = -1:

              if charn =  = '\"':

                      tswitch = tswitch * -1

              else:

                      dest.write(charn)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                      dest.write(charn)

source.close( )

dest.close( )

Use of redelim.py assumes that you have installed Python, which is available through the ports collection or as a binary
package. The Python module used in this code is installed by default.

2.6.3 Hacking the Hack

If you prefer working with Perl, DBD::AnyData is another good solution to this problem.

2.6.4 See Also

The Python home page (http://www.python.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 18 DOS Floppy Manipulation

 

Bring simplicity back to using floppies.

If you're like many Unix users, you originally came from a Windows background. Remember your initial shock the first
time you tried to use a floppy on a Unix system? Didn't Windows seem so much simpler? Forever gone seemed the days
when you could simply insert a floppy, copy some files over, and remove the disk from the drive. Instead, you were
expected to plunge into the intricacies of the mount command, only to discover that you didn't even have the right to
use the floppy drive in the first place!

There are several ways to make using floppies much, much easier on your FreeBSD system. Let's start by taking stock
of the default mechanisms for managing floppies.

2.7.1 Mounting a Floppy

Suppose I have formatted a floppy on a Windows system, copied some files over, and now want to transfer those files
to my FreeBSD system. In reality, that floppy is a storage media. Since it is storing files, it needs a filesystem in order
to keep track of the locations of those files. Because that floppy was formatted on a Windows system, it uses a
filesystem called FAT12.

In Unix, a filesystem can't be accessed until it has been mounted. This means you have to use the mount command
before you can access the contents of that floppy. While this may seem strange at first, it actually gives Unix more
flexibility. An administrator can mount and unmount filesystems as they are needed. Note that I used the word
administrator. Regular users don't have this ability, by default. We'll change that shortly.

Unix also has the additional flexibility of being able to mount different filesystems. In Windows, a floppy will always
contain the FAT12 filesystem. BSD understands floppies formatted with either FAT12 or UFS, the Unix File System. As
you might expect from the name, the UFS filesystem is assumed unless you specify otherwise.

For now, become the superuser and let's pick apart the default invocation of the mount command:

% su

Password:

# mount -t msdos /dev/fd0 /mnt

#

I used the type (-t) switch to indicate that this floppy was formatted from an msdos-based system. I could have used the
mount_msdosfs command instead:

# mount_msdosfs /dev/fd0 /mnt

Both commands take two arguments. The first indicates the device to be mounted. /dev/fd0 represents the first (0)
floppy drive (fd) device (/dev).

The second argument represents the mount point. A mount point is simply an empty directory that acts as a pointer to
the mounted filesystem. Your FreeBSD system comes with a default mount point called /mnt. If you prefer, create a
different mount point with a more useful name. Just remember to keep that directory empty so it will be available as a
mount point, because any files in your mount point will become hidden and inaccessible when you mount a device over
it.

This can be a feature in itself if you have a filesystem that should always be mounted.
Place a README file in /mnt/important_directory containing: "If you can see this file,
contact the administrator at this number . . . ."

In this example, I'll create a mount point called /floppy, which I'll use in the rest of the examples in this hack:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In this example, I'll create a mount point called /floppy, which I'll use in the rest of the examples in this hack:

# mkdir /floppy

2.7.2 Common Error Messages

This is a good place to explain some common error messages. Trust me, I experienced them all before I became
proficient at this whole mount business. At the time, I wished for a listing of error messages so I could figure out what I
had done wrong and how to fix it.

Let's take a look at the output of this command:

# mount /dev/fd0 /mnt

mount: /dev/fd0 on /mnt: incorrect super block

Remember my first mount command? I know it worked, as I just received my prompt back. I know this command didn't
work, because mount instead wrote me a message explaining why it did not do what I asked.

That error message isn't actually as bad as it sounds. I forgot to include the type switch, meaning mount assumed I was
using UFS. Since this is a FAT12 floppy, it simply didn't understand the filesystem.

This error message also looks particularly nasty:

fd0: hard error cmd=read fsbn 0 of 0-3 (No status)

msdosfs: /dev/fd0: Input/output error

If you get that one, quickly reach down and push in the floppy before anyone else notices. You forgot to insert it into
the bay.

Here's another error message:

msdosfs: /dev/fd0: Operation not permitted

Oops. Looks like I didn't become the superuser before trying that mount command.

How about this one:

mount: /floppy: No such file or directory

Looks like I forgot to make that mount point first. A mkdir /floppy should fix that one.

The one error message you do not want to see is a system panic followed by a reboot. It took me a while to break
myself of the habit of just ejecting a floppy once I had copied over the files I wanted. That's something you just don't
do in Unix land.

You must first warn your operating system that you have finished using a filesystem before you physically remove it
from the computer. Otherwise, when it goes out looking for a file, it will panic when it realizes that it has just
disappeared off of the edge of the universe! (Well, the computer's universe anyway.) Put yourself in your operating
system's shoes for a minute. The user entrusted something important to your care. You blinked for just a split second
and it was gone, nowhere to be found. You'd panic too!

2.7.3 Managing the Floppy

How do you warn your operating system that the universe has shrunk? You unmount the floppy before you eject it from
the floppy bay. Note that the actual command used is missing the first n and is instead spelled umount:

# umount /floppy

Also, the only argument is the name of your mount point. In this example, it's /floppy.

How can you tell if a floppy is mounted? The disk free command will tell you:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


How can you tell if a floppy is mounted? The disk free command will tell you:

# df

Filesystem  1K-blocks    Used   Avail Capacity  Mounted on

/dev/ad0s1a    257838   69838  167374    29%    /

devfs               1       1       0   100%    /dev

/dev/ad0s1e    257838     616  236596     0%    /tmp

/dev/ad0s1f  13360662 2882504 9409306    23%    /usr

/dev/ad0s1d    257838   28368  208844    12%    /var

/dev/fd0         1424       1    1423     0%    /floppy

as will the mount command with no arguments:

# mount

/dev/ad0s1a on / (ufs, local)

devfs on /dev (devfs, local)

/dev/ad0s1e on /tmp (ufs, local, soft-updates)

/dev/ad0s1f on /usr (ufs, local, soft-updates)

/dev/ad0s1d on /var (ufs, local, soft-updates)

/dev/fd0 on /floppy  (msdosfs, local)

This system currently has a floppy /dev/fd0 mounted on /floppy, meaning you'll need to issue the umount command
before ejecting the floppy.

Several other filesystems are also mounted, yet I only used the mount command on my floppy drive. When did they get
mounted and how? The answer is in /etc/fstab , which controls which filesystems to mount at boot time. Here's my
/etc/fstab; it's pretty similar to the earlier output from df:

# more /etc/fstab

# Device     Mountpoint          FStype       Options    Dump  Pass#

/dev/ad0s1b  none                swap         sw         0     0

/dev/ad0s1a  /                   ufs          rw         1     1

/dev/ad0s1e  /tmp                ufs          rw         2     2

/dev/ad0s1f  /usr                ufs          rw         2     2

/dev/ad0s1d  /var                ufs          rw         2     2

/dev/acd0    /cdrom              cd9660       ro,noauto  0     0

proc         /proc               procfs       rw         0     0

linproc      /compat/linux/proc  linprocfs    rw         0     0

Each mountable filesystem has its own line in this file. Each has its own unique mount point and its filesystem type
listed. See how the /cdrom mount point has the options ro,noauto instead of rw? The noauto tells your system not to
mount your CD-ROM at bootup. That is a good thing—if there's no CD in the bay at boot time, the kernel will either give
an error message or pause for a few seconds, looking for that filesystem.

However, you can mount a data CD-ROM at any time by simply typing:

# mount /cdrom

That command was shorter than the usual mount command for one reason: there was an entry for /cdrom in /etc/fstab.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


That command was shorter than the usual mount command for one reason: there was an entry for /cdrom in /etc/fstab.
That means you can shorten the command to mount a floppy by creating a similar entry for /floppy. Simply add this line
to /etc/fstab:

/dev/fd0    /floppy    msdos    rw,noauto    0    0

Test your change by inserting a floppy and issuing this command:

# mount /floppy

If you receive an error, check /etc/fstab for a typo and try again.

2.7.4 Allowing Regular Users to Mount Floppies

Now that the superuser can quickly mount floppies, let's give regular users this ability. First, we have to change the
default setting of the vfs.usermount variable:

# sysctl vfs.usermount=1

vfs.usermount: 0 -> 1

By changing the default 0 to a 1, we've just enabled users to mount virtual filesystems. However, don't worry about
your users running amok with this new freedom—the devices themselves are still owned by root. Check out the
permissions on the floppy device:

# ls -l /dev/fd0

crw-r-----  1 root  operator   9,  0 Nov 28 08:31 /dev/fd0

If you'd like any user to have the right to mount a floppy, change the permissions so everyone has read and write
access:

# chmod 666 /dev/fd0

Now, if you don't want every user to have this right, you could create a group, add the
desired users to that group, and assign that group permissions to /dev/fd0.

You're almost there. The only kicker is that the user has to own the mount point. The best place to put a user's mount
point is in his home directory. So, logged in as your usual user account:

% mkdir ~/floppy

Now, do you think the mount command will recognize that new mount point?

% mount ~/floppy

mount: /home/dru/floppy: unknown special file or file system

Oh boy. Looks like we're back to square one, doesn't it? Remember, that entry in /etc/fstab only refers to root's mount
point, so I can't use that shortcut to refer to my own mount point. While it's great to have the ability to use the mount
command, I'm truly too lazy to have to type out mount -t msdos /dev/fd0 ~/floppy, let alone remember it.

Thank goodness for aliases. Try adding these lines to the alias section of your ~.cshrc file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Thank goodness for aliases. Try adding these lines to the alias section of your ~.cshrc file:

alias mf    mount -t msdos /dev/fd0 ~/floppy

alias uf    umount ~/floppy

Now you simply need to type mf whenever you want to mount a floppy and uf when it's time to unmount the floppy. Or
perhaps you'll prefer to create a keyboard shortcut [Hack #4].

2.7.5 Formatting Floppies

Now that you can mount and unmount floppies with the best of them, it's time to learn how to format them. Again, let's
start with the default invocations required to format a floppy, then move on to some ways to simplify the process.

When you format a floppy on a Windows or DOS system, several events occur:

1. The floppy is low-level formatted, marking the tracks and sectors onto the disk.

2. A filesystem is installed onto the floppy, along with two copies of its FAT table.

3. You are given the opportunity to give the floppy a volume label.

The same process also has to occur when you format a floppy on a FreeBSD system. On a 5.x system, the order goes
like this:

% fdformat -f 1440 /dev/fd0

Format 1440K floppy `/dev/fd0'? (y/n): y

Processing ----------------------------------------

% bsdlabel -w /dev/fd0 fd1440

% newfs_msdos /dev/fd0

/dev/fd0: 2840 sectors in 355 FAT12 clusters (4096 bytes/cluster)

bps=512 spc=8 res=1 nft=2 rde=512 sec=2880 mid=0xf0 spf=2 spt=18 hds=2 hid=0

First, notice that we don't use the mount command. You can't mount a filesystem before you have a filesystem! (You do
have to have the floppy in the drive, though.) Take a look at the three steps:

1. fdformat does the low-level format.

2. bsdlabel creates the volume label.

3. newfs_msdos installs the FAT12 filesystem.

If I see the following error message when I try to mount the floppy, I'll realize that I forgot that third step:

% mf 

msdosfs: /dev/fd0: Invalid argument

Because my mf mount floppy alias uses the msdos filesystem, it will complain if the floppy isn't formatted with FAT12.

2.7.6 Automating the Format Process

Any three-step process is just begging to be put into a shell script. I like to keep these scripts under ~/bin. If you don't
have this directory yet, create it. Then create a script called ff (for format floppy):

% cd

% mkdir bin

% cd bin

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% cd bin

% vi ff

#!/bin/sh

#this script formats a floppy with FAT12

#that floppy can also be used on a Windows system

# first, remind the user to insert the floppy

echo "Please insert the floppy and press enter"

read pathname

# then, proceed with the three format steps

fdformat -f 1440 /dev/fd0

bsdlabel -w /dev/fd0 fd1440

newfs_msdos /dev/fd0

echo "Format complete."

Note that this script is basically those three commands, with comments thrown in so I remember what the script does.
The only new part is the read pathname line. I added it to force the user to press Enter before the script proceeds.

Remember to make the script executable:

% chmod +x ff

I'll then return to my home directory and see how it works. Since I use the C shell, I'll use the rehash command to make
the shell aware that there is a new executable in my path:

% cd

% rehash

% ff

Please insert the floppy and press enter

Format 1440K floppy `/dev/fd0'? (y/n): y

Processing ----------------------------------------

/dev/fd0: 2840 sectors in 355 FAT12 clusters (4096 bytes/cluster)

bps=512 spc=8 res=1 nft=2 rde=512 sec=2880 mid=0xf0 spf=2 spt=18 hds=2 hid=0

Format complete.

Not too bad. I can now manipulate floppies with my own custom mf, uf, and ff commands.

2.7.7 See Also

man fstab

man fdformat

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man fdformat

man bsdlabel

man newfs

The Creating and Using Floppies section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/floppies.html)

The Mounting and Unmounting File Systems section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mount-unmount.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 19 Access Windows Shares Without a Server

 

Share files between Windows and FreeBSD with a minimum of fuss.

You've probably heard of some of the Unix utilities available for accessing files residing on Microsoft systems. For
example, FreeBSD provides the mount_smbfs and smbutil utilities to mount Windows shares and view or access resources
on a Microsoft network. However, both of those utilities have a caveat: they require an SMB server. The assumption is
that somewhere in your network there is at least one NT or 2000 Server.

Not all networks have the budget or the administrative expertise to allow for commercial server operating systems.
Sure, you can install and configure Samba, but isn't that overkill for, say, a home or very small office network?
Sometimes you just want to share some files between a Windows 9x system and a Unix system. It's a matter of using
the right-sized tool for the job. You don't bring in a backhoe to plant flowers in a window box.

2.8.1 Installing and Configuring Sharity-Light

If your small network contains a mix of Microsoft and Unix clients, consider installing Sharity-Light on the Unix systems.
This application allows you to mount a Windows share from a Unix system. FreeBSD provides a port for this purpose
(see the Sharity-Light web site for other supported platforms):

# cd /usr/ports/net/sharity-light

# make install clean

Since Sharity-Light is a command-line utility, you should be familiar with UNC or the Universal Naming Convention. UNC
is how you refer to Microsoft shared resources from the command line. A UNC looks like \\NetBIOSname\sharename. It
starts with double backslashes, then contains the NetBIOS name of the computer to access and the name of the share
on that computer.

Before using Sharity-Light, you need to know the NetBIOS names of the computers you wish to access. If you have
multiple machines running Microsoft operating systems, the quickest way to view each system's name is with nbtstat.
From one of the Windows systems, open a command prompt and type:

C:> nbtstat -A 192.168.2.10

       NETBIOS Remote Machine Name Table

   Name        Type        Status

-----------------------------------------

LITTLE_WOLF  <00> UNIQUE    Registered

<snip>

Repeat for each IP address in your network. Your output will be several lines long, but the entry (usually the first)
containing <00> is the one with the name you're interested in. In this example, LITTLE_WOLF is the NetBIOS name
associated with 192.168.2.10.

Even though nbtstat ? indicates that -A is used to view a remote system, it also works with
the IP address of the local system. This allows you to check all of the IP addresses in your
network from the same system.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once you know which IP addresses are associated with which NetBIOS names, you'll need to add that information to
/etc/hosts on your Unix systems:

# more /etc/hosts

127.0.0.1          localhost

192.168.2.95       genisis        #this system

192.168.2.10       little_wolf    #98 system sharing cygwin2

You'll also need to know the names of the shares you wish to access. Again, from a Microsoft command prompt, repeat
this command for each NetBIOS name and make note of your results:

C:> net view \\little_wolf

Shared resources at \\LITTLE_WOLF

Sharename     Type       Comment

---------------------------------------

CYGWIN2      Disk

The command was completed successfully.

Here the computer known as LITTLE_WOLF has only one share, the CYGWIN2 directory.

Finally, you'll need a mount point on your Unix system, so you might as well give it a useful name. Since the typical
floppy mount point is /floppy and the typical CD mount point is /cdrom, let's use /windows:

# mkdir /windows

2.8.2 Accessing Microsoft Shares

Once you know the names of your computers and shares, using Sharity-Light is very easy. As the superuser, mount the
desired share:

# shlight //little_wolf/cygwin2 /windows

Password: 

Using port 49923 for NFS.

Watch your slashes. Microsoft uses the backslash (\) at the command line, whereas Unix
and Sharity-Light use the forward slash (/).

Note that I was prompted for a password because Windows 9x and ME users have the option of password protecting
their shares. This particular share did not have a password, so I simply pressed Enter.

Adding -n to the previous command will forego the password prompt. Type shlight -h to see
all available options.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


However, if the share is on a Windows NT Workstation, 2000 Pro, or XP system, you must provide a username and
password valid on that system. The syntax is:

# shlight //2000pro/cdrom /windows -U 

username

 -P 

password

Once the share is mounted, it works like any other mount point. Depending on the permissions set on the share, you
should be able to browse that shared directory, copy over or add files, and modify files. When you're finished using the
share, unmount it:

$ unshlight /windows

2.8.3 See Also

The Sharity-Light README and FAQ (/usr/local/share/doc/Sharity-Light/)

The Sharity-Light web site (http://www.obdev.at/products/sharity-light/index.html)

The Samba web site (http://www.samba.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 20 Deal with Disk Hogs

 

Fortunately, you no longer have to be a script guru or a find wizard just to keep up with what is happening
on your disks.

Think for a moment. What types of files are you always chasing after so they don't waste resources? Your list probably
includes temp files, core files, and old logs that have already been archived. Did you know that your system already
contains scripts capable of cleaning out those files? Yes, I'm talking about your periodic scripts.

2.9.1 Periodic Scripts

You'll find these scripts in the following directory on a FreeBSD system:

% ls /etc/periodic/daily | grep clean

100.clean-disks

110.clean-tmps

120.clean-preserve

130.clean-msgs

140.clean-rwho

150.clean-hoststat

Are you using these scripts? To find out, look at your /etc/periodic.conf file. What, you don't have one? That means
you've never tweaked your default configurations. If that's the case, copy over the sample file and take a look at what's
available:

# cp /etc/defaults/periodic.conf /etc/periodic.conf

# more /etc/periodic.conf

2.9.1.1 daily_clean_disks

Let's start with daily_clean_disks. This script is ideal for finding and deleting files with certain file extensions. You'll find it
about two pages into periodic.conf, in the Daily options section, where you may note that it's not enabled by default.
Fortunately, configuring it is a heck of a lot easier than using cron to schedule a complex find statement.

Before you enable any script, test it first, especially if it'll delete files based on pattern-
matching rules. Back up your system first!

For example, suppose you want to delete old logs with the .bz2 extension. If you're not
careful when you craft your daily_clean_disks_files line, you may end up inadvertently
deleting all files with that extension. Any user who has just compressed some important
data will be very miffed when she finds that her data has mysteriously disappeared.

Let's test this scenario. I'd like to prune all .core files and any logs older than .0.bz2. I'll edit that section of
/etc/periodic.conf like so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/periodic.conf like so:

# 100.clean-disks

daily_clean_disks_enable="YES"                     # Delete files daily

daily_clean_disks_files="*.[1-9].bz2 *.core"       # delete old logs, cores

daily_clean_disks_days=1                           # on a daily basis

daily_clean_disks_verbose="YES"                    # Mention files deleted

Notice my pattern-matching expression for the .bz2 files. My expression matches any filename (*) followed by a dot and
a number from one to nine (.[1-9]), followed by another dot and the .bz2 extension.

Now I'll verify that my system has been backed up, and then manually run that script. As this script is fairly resource-
intensive, I'll do this test when the system is under a light load:

# /etc/periodic/daily/100.clean-disks

Cleaning disks:

/usr/ports/distfiles/MPlayer-0.92.tar.bz2

/usr/ports/distfiles/gnome2/libxml2-2.6.2.tar.bz2

/usr/ports/distfiles/gnome2/libxslt-1.1.0.tar.bz2

Darn. Looks like I inadvertently nuked some of my distfiles. I'd better be a bit more explicit in my matching pattern. I'll
try this instead:

# delete old logs, cores

daily_clean_disks_files="messages.[1-9].bz2 *.core"       

# /etc/periodic/daily/100.clean-disks

Cleaning disks:

/var/log/messages.1.bz2

/var/log/messages.2.bz2

/var/log/messages.3.bz2

/var/log/messages.4.bz2

That's a bit better. It didn't delete /var/log/messages or /var/log/messages.1.bz2, which I like to keep on disk.
Remember, always test your pattern matching before scheduling a deletion script. If you keep the verbose line at YES,
the script will report the names of files it deletes.

2.9.1.2 daily_clean_tmps

The other cleaning scripts are quite straightforward to configure. Take daily_clean_tmps, for example:

# 110.clean-tmps

daily_clean_tmps_enable="NO"                   # Delete stuff daily

daily_clean_tmps_dirs="/tmp"                   # Delete under here

daily_clean_tmps_days="3"                      # If not accessed for

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


daily_clean_tmps_days="3"                      # If not accessed for

daily_clean_tmps_ignore=".X*-lock quota.user quota.group" # Don't delete

                                                          # these

daily_clean_tmps_verbose="YES"                 # Mention files deleted

This is a quick way to clean out any temporary directories. Again, you get to choose the locations of those directories.
Here is a quick way to find out which directories named tmp are on your system:

# find / -type d -name tmp

/tmp

/usr/tmp

/var/spool/cups/tmp

/var/tmp

That command asks find to start at root (/) and look for any directories (-type d) named tmp (-name tmp). If I wanted to
clean those daily, I'd configure that section like so:

# 110.clean-tmps

# Delete stuff daily

daily_clean_tmps_enable="YES"                        

daily_clean_tmps_dirs="/tmp /usr/tmp /var/spool/cups/tmp /var/tmp"        

# If not accessed for

daily_clean_tmps_days="1"                            

# Don't delete these

daily_clean_tmps_ignore=".X*-lock quota.user quota.group" 

# Mention files deleted

daily_clean_tmps_verbose="YES"

Again, I immediately test that script after saving my changes:

# /etc/periodic/daily/110.clean-tmps

Removing old temporary files:

  /var/tmp/gconfd-root

This script will not delete any locked files or temporary files currently in use. This is an excellent feature and yet
another reason to run this script on a daily basis, preferably at a time when few users are on the system.

2.9.1.3 daily_clean_preserve

Moving on, the next script is daily_clean_preserve:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Moving on, the next script is daily_clean_preserve:

# 120.clean-preserve

daily_clean_preserve_enable="YES"              # Delete files daily

daily_clean_preserve_days=7                    # If not modified for

daily_clean_preserve_verbose="YES"             # Mention files deleted

What exactly is preserve? The answer is in man hier. Use the manpage search function (the / key) to search for the word
preserve:

# man hier

/preserve

       preserve/ temporary home of files preserved after an accidental 

                 death of an editor; see (ex)1

Now that you know what the script does, see if the default settings are suited for your environment. This script is run
daily, but keeps preserved files until they are seven days old.

The last three clean scripts deal with cleaning out old files from msgs, rwho and sendmail's hoststat cache. See man
periodic.conf for more details.

Incidentally, you don't have to wait until it is time for periodic to do its thing; you can manually run any periodic script at
any time. You'll find them all in subdirectories of /etc/periodic/.

2.9.2 Limiting Files

Instead of waiting for a daily process to clean up any spills, you can tweak several knobs to prevent these files from
being created in the first place. For example, the C shell itself provides limits, any of which are excellent candidates for
a customized dot.cshrc file [Hack #9].

To see the possible limits and their current values:

% limit

cputime         unlimited

filesize        unlimited

datasize        524288 kbytes

stacksize       65536 kbytes

coredumpsize    unlimited

memoryuse       unlimited

vmemoryuse      unlimited

descriptors     4557 

memorylocked    unlimited

maxproc         2278 

sbsize          unlimited

You can test a limit by typing it at the command line; it will remain for the duration of your current shell. If you like the
limit, make it permanent by adding it to .cshrc. For example:

% limit filesize 2k

% limit | grep filesize

filesize     2 kbytes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


filesize     2 kbytes

will set the maximum file size that can be created to 2 KB. The limit command supports both k for kilobytes and m for
megabytes. Do note that this limit does not affect the total size of the area available to store files, just the size of a
newly created file. See the Quotas section of the FreeBSD Handbook if you intend to limit disk space usage.

Having created a file limit, you'll occasionally want to exceed it. For example, consider decompressing a file:

% uncompress largefile.Z

Filesize limit exceeded

% unlimit filesize

% uncompress largefile.Z

%

The unlimit command will allow me to override the file-size limit temporarily (for the duration of this shell). If you really
do want to force your users to stick to limits, read man limits.

Now back to shell limits. If you don't know what a core file is, you probably don't need to collect them. Sure, periodic can
clean those files out for you, but why make them in the first place? Core files are large. You can limit their size with:

limit coredumpsize 1m

That command will limit a core file to 1 MB, or 1024 KB. To prevent core files completely, set the size to 0:

limit coredumpsize 0

If you're interested in the rest of the built-in limits, you'll find them in man tcsh . Searching for coredumpsize will take you
to the right spot.

2.9.3 The Other BSDs

The preceding discussion is based on FreeBSD. Other BSD systems ship with similar scripts that do identical tasks, but
they are kept in a single file instead of in a separate directory.

2.9.3.1 NetBSD

For daily, weekly, and monthly tasks, NetBSD uses the /etc/daily, /etc/weekly, and /etc/monthly scripts, whose
behavior is controlled with the /etc/daily.conf, /etc/weekly.conf, and /etc/monthly.conf configuration files. For more
information about them, read man daily.conf, man weekly.conf, and man monthly.conf.

2.9.3.2 OpenBSD

OpenBSD uses three scripts, /etc/daily, /etc/weekly, and /etc/monthly. You can learn more about them by reading man
daily.

2.9.4 See Also

man periodic.conf

man limits

man tcsh

The Quotas section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/quotas.html)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


1/books/handbook/quotas.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 2. Dealing with Files and Filesystems
Section 12.  Introduction

Section 13.  Find Things

Section 14.  Get the Most Out of grep

Section 15.  Manipulate Files with sed

Section 16.  Format Text at the Command Line

Section 17.  Delimiter Dilemma

Section 18.  DOS Floppy Manipulation

Section 19.  Access Windows Shares Without a Server

Section 20.  Deal with Disk Hogs

Section 21.  Manage Temporary Files and Swap Space

Section 22.  Recreate a Directory Structure Using mtree

Section 23.  Ghosting Systems

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
When it comes to configuring systems, many users are reluctant to change the default boot process. Visions of
unbootable systems, inaccessible data, and reinstalls dance in their heads. Yes, it is good to be mindful of such things
as they instill the necessary attention to detail you'll need to use when making changes. However, once you've taken
the necessary precautions, do take advantage of the hacks found in this chapter. Many of them will increase the
security of your system.

This chapter also includes several password hacks. You'll learn how to create an effective password policy and monitor
compliance to that policy. You'll find tools designed to assist you and your users in making good password choices.
You'll also learn how to configure OTP, an excellent choice for when you're on the road and wish to access your
network's resources securely.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 32 Automate Memorable Password Generation

 

Make it easier for your users to choose good passwords.

It doesn't matter whether you're an administrator responsible for enforcing a password policy or an end user trying to
comply with said policy. You're struggling against human nature when you ask users to choose—and remember—hard-
to-guess passwords. Passwords that aren't random are easy to guess, and passwords that are too random tend to
manifest themselves on sticky notes under users' keyboards or in their top drawers.

Wouldn't it be great if you could somehow offer users random but memorable password choices? There's a standard
designed for just this purpose: APG, the Automated Password Generator.

3.10.1 Installing and Using apg

If you're running FreeBSD, you can install apg from the ports collection:

# cd /usr/ports/security/apg

# make install clean

Once the port is installed, any user can run apg to generate a list of random, but pronounceable and memorable,
passwords:

% apg -q -m 10 -x 10 -M NC -n 10

plerOcGot5 (pler-Oc-Got-FIVE)

fobEbpigh6 (fob-Eb-pigh-SIX)

Ekjigyerj7 (Ek-jig-yerj-SEVEN)

CaujIvOwk8 (Cauj-Iv-Owk-EIGHT)

yenViapag0 (yen-Viap-ag-ZERO)

Fiwioshev3 (Fi-wi-osh-ev-THREE)

Twomitvac4 (Twom-it-vac-FOUR)

varbidCyd2 (varb-id-Cyd-TWO)

KlepezHap0 (Klep-ez-Hap-ZERO)

Naccudhav8 (Nac-cud-hav-EIGHT)

Notice that each password comes with a pronunciation guide, since it's easier to remember something you can
pronounce.

Also, note that syntax. We're definitely going to have to do something about all of those switches! But first, let's take a
look at Section 3.2 and make sure we understand them.

Table 3-2. apg switches
Option Explanation

-q Suppresses warnings (think quiet), which will be useful when we write a script

-m 10 Sets the minimum password length to 10 characters

-x 10 Sets the maximum password length to 10 characters

-M NC Requires numerals and capitals

-n 10 Generates 10 password choices

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


While this utility is very handy, we can definitely hack in our own improvements. For starters, users aren't going to use
a utility that requires a line's worth of switches. Second, we don't want to install this utility on every system in our
network. Instead, let's work out a CGI script. That way users can access the script from their web browsers.

3.10.2 Improving apg

First, let's sort out all of the switches we'll use in the script. We need something to add a punctuation character in the
middle, or we won't meet Air Force password regulations. The simplest fix is to run apg twice with smaller password
requirements, concatenating the results. The first run, without punctuation characters, looks like this:

% apg -q -m 4 -x 4 -M NC -E Ol -n 10

Dij6 (Dij-SIX)

Voj6 (Voj-SIX)

Pam0 (Pam-ZERO)

Dev9 (Dev-NINE)

Non6 (Non-SIX)

Eyd7 (Eyd-SEVEN)

Vig9 (Vig-NINE)

Not8 (Not-EIGHT)

Nog2 (Nog-TWO)

Von9 (Von-NINE)

Here I've reduced the minimum and maximum password length to four characters. I've also added the option -E Ol to
exclude capital "oh" and small "ell" from passwords, because they're easily confused with the digits zero and one.

The second run includes the -S option, which makes the password generator use special characters:

% apg -q -m 4 -x 4 -M S -E Ol -n 10

orc) (orc-RIGHT_PARENTHESIS)

tof| (tof-VERTICAL_BAR)

fed^ (fed-CIRCUMFLEX)

gos@ (gos-AT_SIGN)

sig& (sig-AMPERSAND)

eif) (eif-RIGHT_PARENTHESIS)

eds{ (eds-LEFT_BRACE)

lek> (lek-GREATER_THAN)

tij: (tij-COLON)

rot] (rot-RIGHT_BRACKET)

Now for a CGI script to paste the results together. I've numbered each line of the script for explanation purposes. Don't
include line numbers when you create your own script.

This script is written in the Korn shell, but can be modified for any shell. To run as is, install the Korn shell from
/usr/ports/shells/ksh93.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


1  #!/bin/ksh

2  # run apg twice, concatenate results.

3  # exclude most special characters requiring shift key,

4  # capital "oh" (looks like zero),

5  # lowercase "ell" (looks like digit "one")

6  PATH=/bin:/usr/bin:/usr/local/bin; export PATH

7  umask 077

8  a=/tmp/apg.$RANDOM

9  b=/tmp/apg.$RANDOM

10  cat << EOF

11  Content-type: text/html

12  <!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">

13  <html>

14    <head>

15      <title>Help generating a new password</title>

16    </head>

17    <body>

18      <h3>Help generating a new password</h3>

19      <blockquote>

20        These passwords should be reasonably safe.

21        Feel free to use one, or reload the page

22        for a new batch.</p>

23        <blockquote> <pre> <font size="+1">

24  EOF

25  apg -q -m 4 -x 4 -M NC -E '!@#$%^&*( )\\' -n 10 > $a

26  apg -q -m 4 -x 4 -M S  -E '!@#$%^&*( )\\' -n 10 > $b

27  # tr command is for bug workaround; apg is not supposed to

28  # include characters specified after -E option.

29  paste $a $b |

30      tr 'l' 'L' |

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


30      tr 'l' 'L' |

31      awk '

32        BEGIN {

33          printf "Password\tRough guess at pronunciation\n<hr />"

34        }

35        {

36          printf "%s%s\t%s %s\n", $1, $3, $2, $4

37        }'

38  cat << EOF

39        </font>

40        </pre>

41        </blockquote>

42      </blockquote>

43      <hr />

44    </body>

45  </html>

46  EOF

47  rm $a $b

48  exit 0

3.10.3 Script Walkthrough

Line 6 sets the PATH to a known safe value. This lessens the possibility that an attacker can cause this program to
execute a hazardous binary. Make sure apg is in this path.

Line 7 sets the umask so that only this user can read the temporary files to be generated later.

Lines 8 and 9 work because Korn shell scripts generate random numbers automatically. If /bin/ksh is not on your
system, use mktemp to generate temporary files safely.

Lines 10-24 print the page header. I usually make a sample page and then run it through /usr/ports/www/tidy to get a
decent DOCTYPE header and indentation.

Lines 25 and 26 issue apg commands to generate two separate files containing four-character passwords.

Lines 31-37 use an awk script to print the password plus its pronunciation. The BEGIN section prints only once, before
any lines are read. The printf section expects lines with four fields: two pairs of password and pronunciation strings from
the temporary files. The first and third fields are printed together to form the password, and the second and fourth
fields are printed together to form the pronunciation guess.

Lines 38-46 finish the page.

Lines 47 and 48 clean up the temporary files.

3.10.4 See Also

man apg

man mktemp

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man mktemp

The APG web site (http://www.adel.nursat.kz/apg/)

FIPS 181, the APG Standard (http://www.itl.nist.gov/fipspubs/fip181.htm)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 33 Use One Time Passwords

 

Sometimes even a complex password may not meet your security needs.

If you are on the road and need to access the corporate network from a non-secure computer in a public place, the risk
of password leakage increases. Could the person next to you be shoulder surfing, watching as you log into the network?
Does the computer you're using have some sort of installed spyware or keystroke logger? Is there a packet sniffer
running somewhere on the network? In such a situation, a One Time Password can be a real lifesaver.

3.11.1 Configuring OPIE

FreeBSD comes with OPIE, or One-time Passwords In Everything, a type of software OTP system. It is easy to configure
and doesn't require any additional hardware or proprietary software running on a server. Ideally, you should configure
OPIE before leaving your secure network. For example, if you plan on traveling with your laptop, configure OPIE while
connected to the office network. Make sure you are logged in as your regular user account to the particular system
you'll need to access while on the road.

Start by adding yourself to the OPIE database, or /etc/opiekeys, using opiepasswd. If you intend to access your
workstation while on the road, run this command while physically sitting at your workstation. Include the console switch
(-c) to indicate you are at that station's console, so it is safe to enter a passphrase:

% opiepasswd -c

Adding dru:

Only use this method from the console; NEVER from remote. If you are using

telnet, xterm, or a dial-in, type ^C now or exit with no password.

Then run opiepasswd without the -c parameter.

Using MD5 to compute responses.

Enter new secret pass phrase: 

Secret pass phrases must be between 10 and 127 characters long.

Enter new secret pass phrase: 

Again new secret pass phrase: 

ID dru OTP key is 499 dh0391

CHUG ROSA HIRE MALT DEBT EBEN

See that warning at the beginning? If you don't have physical access to the system's keyboard—say, you're logging into
a server—make sure you use ssh to log into that system before running the opiepasswd -c command. Your only
protection from another user using your one-time password is your passphrase, which is basically a long password that
can include spaces. If that passphrase is transmitted over the network in clear text, you've defeated the whole purpose
of this exercise.

Note that the passphrase isn't used as a password per se; instead, it is used to prove who added the account to the
database and is therefore the rightful owner of the resulting response or one-time password. You'll need to issue that
passphrase whenever you need to view your responses. Responses are always comprised of six uppercase nonsense
words.

Next, verify that you are indeed in the OPIE database:

% opieinfo

498 dh0391

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


498 dh0391

The opieinfo command displays the count (498) that will be used at the next login. It will also display the seed associated
with that count (dh0391). In this example, it is expecting the response associated with 498, but I only know the
response for 499. I'll need to use an OTP password calculator to figure out the correct response; that calculator is really
just the opiekey command.

You could use the calculator from a separate terminal every time you login, but it is usually more convenient to print a
list of responses and regenerate a new list whenever you run out of responses.

3.11.2 Generating Responses

In order to use the calculator, you need to know three things:

Your current counter

Your seed

Your secret passphrase

The challenge at the login prompt will display the current counter and seed. However, it is important that only you know
your secret passphrase. Otherwise, anyone could calculate the response and log into your account.

To generate a list of responses, use the number switch (-n), followed by the number of desired responses and your
current count and seed:

% opiekey -n 5 498 dh0391

Using the MD5 algorithm to compute response.

Reminder: Don't use opiekey from telnet or dial-in sessions.

Enter secret pass phrase: 

494: MEAN ADD NEON CAIN LION LAUD

495: LYLE HOLD HIGH HOME ITEM MEL

496: WICK BALI MAY EGO INK TOOK

497: RENT ARM WARN ARC LICE DOME

498: LEAD JAG MUCH MADE NONE WRIT

You can either direct that output to a printer or record those responses by hand. Either way, store those responses in a
safe place such as your wallet, as these are your next five one-time passwords. The next time you log in, use the
response that matches the count at your login prompt:

login: dru 

otp-md5 498 dh0391 ext

Password:  (here I pressed Enter)

otp-md5 498 dh0391 ext

Password [echo on]: LEAD JAG MUCH MADE NONE WRIT 

Once you configure OPIE on a 5.1 FreeBSD system, you will be required to respond to the OTP challenge whenever you
log into that system. If you press Enter, you'll turn on echo so you can see the response as you type it.

Echo is usually a bad thing when logging in because anyone can see your password. However, with a one-time
password, it doesn't matter if anyone sees that password, as it can't be reused. Also, unlike a reusable password, the
response is not case-sensitive, so it doesn't matter if you type it in upper- or lowercase. Do take care, though, that no
one sees your list of responses or your passphrase.

If your counter gets low—say, 10 or less—reset it before it hits 0. Use opiepasswd again, but this time specify a new
count and a new seed. Here I'll use a count of 499 and a new seed of dh1357:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


count and a new seed. Here I'll use a count of 499 and a new seed of dh1357:

% opiepasswd -n 499 -s dh1357

Updating dru:

You need the response from an OTP generator.

Old secret pass phrase:

        otp-md5 8 dh0391 ext

        Response: loot omit safe eric jolt dark

New secret pass phrase:

        otp-md5 499 dh1357

        Response: hewn as dot mel mali mann

How long it will take you to cycle through your OTP passwords will depend upon how often you need to log in. You may
find it convenient to generate a week's worth of responses at the beginning of each week.

It's also a good idea to consider how often to change your passphrase. You'll be prompted to when you reset your
counter. For example, if you plan on changing your passphrase every 100 responses, specify -n 100 when you run
opiepasswd. The passphrase itself needs to be memorable. Fortunately, it can contain spaces, so you can input, say, a
line from a song or a poem.

3.11.3 Choosing When to Use OTP

Starting with FreeBSD 5.1-RELEASE, users are forced to use OTP once they've added themselves to the OPIE database.
It doesn't matter if the user logs into that system using a local keyboard or over the network using ssh. This behavior is
controlled by PAM, or, to be more specific, the auth section of /etc/pam.d/login:

% more /etc/pam.d/login

#

# $FreeBSD: src/etc/pam.d/login,v 1.11 2002/05/08 00:33:02 des Exp $

#

# PAM configuration for the "login" service

#

# auth

auth    required      pam_nologin.so      no_warn

auth    sufficient    pam_self.so         no_warn

auth    sufficient    pam_opie.so         no_warn no_fake_prompts

auth    requisite     pam_opieaccess.so   no_warn

#auth   sufficient    pam_kerberosIV.so   no_warn try_first_pass

#auth   sufficient    pam_krb5.so         no_warn try_first_pass

#auth   sufficient    pam_ssh.so          no_warn try_first_pass

auth    required      pam_unix.so         no_warn try_first_pass nullok

snip

Perhaps you'd like users to have the option of using their regular password when logging in locally, but force them to
use OTP when logging in over the network. To achieve that, add the allow_local option to the opieaccess line so it looks
like this:

auth    requisite    pam_opieaccess.so    allow_local no_warn

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


auth    requisite    pam_opieaccess.so    allow_local no_warn

This option lets the user type either her regular password or her OTP response if she's logging in locally. However, if
she's logging in over the network, the login attempt will fail unless she gives the correct OTP response.

3.11.4 See Also

man opiepasswd

man opieinfo

man opiekey

man pam_opie

/usr/share/doc/en_US.ISO8859-1/articles/pam/article.html (FreeBSD PAM documentation)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 34 Restrict Logins

 

In this chapter, we've covered many methods of securing the boot and login environments. It's probably no surprise
that you can further control who can log into your system and when: Unix systems contain many built-in mechanisms,
allowing you to choose the most appropriate means and policy for your network.

Furthermore, the defaults may not always suit your needs. Do you really want users to be logged into multiple
terminals when they can effectively do their work from one? For that matter, do you want any user, including
nonemployees, to try his hand at logging into your systems at any hour of the night and day? Here's how to tighten up
some defaults.

3.12.1 /etc/ttys

Since users log into terminals, a logical file to secure is the terminal configuration file, /etc/ttys. We briefly saw this file
in [Hack #24] when we password protected single-user mode.

This file is divided into three sections, one for each of the three types of terminals. Let's concern ourselves with the
virtual terminals, ttyv, which are the terminals available for users physically seated at the system's keyboard.

# grep ttyv /etc/ttys

ttyv0      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv1      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv2      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv3      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv4      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv5      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv6      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv7      "/usr/libexec/getty Pc"             cons25        on  secure

ttyv8      "/usr/X11R6/bin/xdm -nodaemon"      xterm        off  secure

The word on indicates that that terminal is available for logins. By default, the first eight terminals, ttyv0 through ttyv7,
will accept logins. You've probably discovered this yourself by pressing Alt-Fx, where x is a number between 1 and 8.
On a server system, you may need only one virtual terminal. Disable the other terminals by changing the word on to off.

If the system is running headless [Hack #26], disable all of the virtual terminals only
after you've ensured that you have an alternate way to access the system.

The word secure means that the system is physically secure, implying that it's okay for a user to walk up to the
keyboard and log in as root. Since it's never okay for a user to log in as root, you should disable that default. For
whatever virtual terminals you've left on, either change the word secure to insecure or simply remove the word secure.

Be careful when editing /etc/ttys. A typo could prevent logins to your system. Always log
in from another terminal before making changes, and test your changes immediately
before logging out.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.12.2 /etc/login.access

Now let's see what can be done with /etc/login.access. At its most stringent, you can use this file to prevent all remote
logins, meaning you can log in only if you are physically sitting at that system:

-:ALL:ALL EXCEPT LOCAL

Note the syntax that is used for each line in this file. The - means access denied. Its alter ego is +, which means access
granted. The first ALL is a wildcard for all users. The second ALL is a wildcard for all locations. The EXCEPT LOCAL is the
exception that allows just the local location.

You could modify that rule slightly to disallow remote and local root logins:

-:root:ALL

Take some care when modifying this file. Its syntax supports both user and group names, allowing you to specify
exactly who is allowed to log into a system. This can be extremely useful in limiting access to a server system.

The syntax also supports IP addresses. This can also be useful in ensuring that only hosts in your network or a
particular subnet can access certain systems. But, as in any security mechanism that relies on IP addresses, do keep in
mind that IP addresses can be spoofed.

Finally, if you make changes to this file, test your changes immediately. If you restrict access to certain users, ensure
those users can still log in. Further, try to log in as other users to ensure that they are actually being denied access.

3.12.3 /etc/ssh/sshd_config

Think for a moment. Other than logins to virtual terminals, how else do your users log into systems? Most likely (and,
hopefully) through ssh. You can control exactly who can ssh into a system by adding a line to the /etc/ssh/sshd_config
file of the system running the SSH daemon.

There are two ways you can control this. One is through AllowGroups. By default, all groups—meaning all users—can ssh
into a system. The other way is through AllowUsers, where again, all users are allowed by default.

Suppose I want to allow only the users genisis, biko, and dru to ssh into a particular system. I could create a group called
remote that contains those users:

# grep 100 /etc/group

#

# pw groupadd remote -g 100 -M genisis biko dru

In this example, I first double-checked that the group ID of 100 was not currently in use. I then created, with pw
groupadd, the remote group with a GID of 100 (-g 100) and with those three members (-M genisis biko dru).

Now I can limit ssh access to just the members of that group:

# echo 'AllowGroups remote' >> /etc/ssh/sshd_config

Alternatively, I could have just added those three users directly:

# echo 'AllowUsers genisis biko dru' >> /etc/ssh/sshd_config

Any user who does not match either AllowGroups or AllowUsers will still receive a password prompt when attempting to
connect to the SSH daemon. However, the connection attempt will fail with a permission denied message, even if the user
provides a correct username and password. The SSH daemon will print a message regarding the failed attempt to its
console, sending a copy to /var/log/messages and emailing to root as part of the daily security run output.

To be even pickier, if your users always log in from the same system, you can do this:

AllowUsers genisis@10.0.0.2 biko@10.0.0.3 dru@10.0.0.4

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AllowUsers genisis@10.0.0.2 biko@10.0.0.3 dru@10.0.0.4

However, don't be that picky if your users don't have static IPs!

Remember, if you make any changes to the SSH daemon's configuration file, you'll need to send a "signal one" to sshd
to notify it of the changes:

# killall -1 sshd

After informing sshd of the changes, immediately use a ssh client to test your changes. For example, if I instead add the
line Allowusers genisis biko dru, I'll find that user nastygirl is still able to connect. Why? The parameters in
/etc/ssh/sshd_config are case-sensitive. You don't want to find out six months later that anyone was allowed to connect
when you thought you had restricted connections to certain users.

3.12.4 /etc/login.conf

We've restricted who can log in and from where for both local and remote ssh logins, but we still haven't restricted
when those users can log in. To do that, let's look at some other options that are available in our old friend
/etc/login.conf [Hack #30] .

This file supports the options times.allow and times.deny. For example, to allow all users to log in between 9:00 AM and
5:00 PM every Monday through Friday, add this line to the default:\ section:

:times.allow=Mo-Fr0900-1700:\

Once you introduce the times.allow option, access will automatically be denied for the time period not listed.

The converse also works. That is, you can specify the denied times in times.deny, and all other times will be allowed.

Remember, whenever you make a change to /etc/login.conf, rebuild the database with cap_mkdb /etc/login.conf and test
your changes.

3.12.5 See Also

man ttys

man login.access

man sshd_config

man login.conf

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 24 Customize the Default Boot Menu

 

Configure a splash screen.

You're not quite sure what you did to give the impression that you don't already have enough to do. Somehow, though,
you were elected at the latest staff meeting to create a jazzy logo that will appear on every user's computer when they
boot up in the morning.

While you may not be able to tell from first glance, the FreeBSD boot menu supports a surprising amount of
customization. Let's start by examining your current menu to see which tools you have to work with.

3.2.1 The Default Boot Menu

Your default boot menu will vary slightly depending upon your version of FreeBSD and whether you chose to install the
boot menu when you installed the system. Let's start with the most vanilla boot prompt and work our way up from
there. In this scenario, you'll see this message as your system boots:

Hit [Enter] to boot immediately, or any other key for command prompt.

Booting [/boot/kernel/kernel] in 10 seconds...

FreeBSD 5.1 introduced a quasi-graphical boot menu that includes a picture of Beastie and the following options:

Welcome to FreeBSD!

  1. Boot FreeBSD [default]

  2. Boot FreeBSD with ACPI disabled

  3. Boot FreeBSD in Safe Mode

  4. Boot FreeBSD in single user mode

  5. Boot FreeBSD with verbose logging

  6. Escape to loader prompt

  7. Reboot

          Select option, [Enter] for default

          or [Space] to pause timer  10

It is possible to get this menu without doing a full install of FreeBSD 5.1. If you're like me and use cvsup [Hack #80]
and buildworld to keep up-to-date, you already have the necessary files but need to do a bit of editing to enable this
boot menu. Even if you already have the boot menu, follow along because we're about to discover some of the logic
behind the FreeBSD boot process. This will be excellent preparation for learning how to hack in your own
customizations.

Let's start by taking a look at the directory that contains all of the boot information. Not surprisingly, it's called /boot:

# ls /boot -F

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls /boot -F

beastie.4th     cdboot*         kernel.old/     loader.rc      support.4th

boot            defaults/       loader*         mbr

boot0           device.hints    loader.4th      modules/

boot1           frames.4th      loader.conf     pxeboot

boot2           kernel/         loader.help     screen.4th

The actual file containing the new menu is beastie.4th. If your sources are out-of-date and you don't have this file, you
can download it from http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/boot/forth/. Be sure to download also the latest
versions of frames.4th and screen.4th.

The /boot directory also contains the loader executable. This application is responsible for finishing the boot process. To
do so, it depends on two configuration files, loader.rc and loader.conf. Let's take a peek at loader.rc:

# more loader.rc

\ Loader.rc

\ $FreeBSD: src/sys/boot/forth/loader.rc,v 1.2 1999/11/24 17:59:37 dcs Exp $

\

\ Includes additional commands

include /boot/loader.4th

\ Reads and processes loader.rc

start

\ Tests for password -- executes autoboot first if a password was defined

check-password

\ Unless set otherwise, autoboot is automatic at this point

We're aiming to be hackers here, not destroyers of systems. A system that refuses to boot
completely is not a very fun system to work on. So, before mucking about with any of the
files in /boot, make sure you have your Emergency Repair Kit ready (see [Hack #71] and
[Hack #72] for more information). Also, take extra care in your editing and be especially
alert for typos before saving your changes.

Lines that begin with a backslash (\) are comments. Additionally, you can add your own comments to lines containing a
command by preceding your comment with a # like this:

include /boot/loader.4th    # do NOT remove this line!

start                       # do NOT remove this line!

Those are good comments to add, as you want to make sure you never remove those two lines—they are necessary to
the workings of your boot loader.

Before editing this file, make a backup copy first:

# cp loader.rc loader.rc.orig

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cp loader.rc loader.rc.orig

Then, to tell your system to use beastie.4th, carefully add the following lines to the bottom of /boot/loader.rc.

\ Load in the boot menu

include /boot/beastie.4th

\ Do the normal initialization and startup

initialize drop

\ Start the boot menu

beastie-start

Triple-check for typos. When you're ready, make sure that you've saved all of your work and check that no one else is
connected to the system. In order to test out the change, you're going to have to reboot:

# reboot

If all went well, you now have a Beastie menu to assist you in your bootup selection. If your boss had something else in
mind other than the ultracool Beastie menu, let him know that have you not yet begun to customize!

3.2.2 Configuring the Splash Screen

Remember the other file I mentioned, loader.conf? Well, you should actually have two files with that name.
/boot/defaults/loader.conf is the system default, and you should never edit this file. Instead, copy it over to
/boot/loader.conf and make your changes there. That way, not only do you have a chance to see what is available for
customization, you also reduce your risk of typos. Each line in this file is commented and additional information can be
gleaned from man loader.conf.

Locate the Splash screen configuration section so you can configure that company logo your boss keeps insisting on. This is
what it looks like by default:

splash_bmp_load="NO"          # Set this to YES for bmp splash screen!

splash_pcx_load="NO"          # Set this to YES for pcx splash screen!

vesa_load="NO"                # Set this to YES to load the vesa module

bitmap_load="NO"              # Set this to YES if you want splash screen!

bitmap_name="splash.bmp"      # Set this to the name of the bmp or pcx file

bitmap_type="splash_image_data" # and place it on the module_path

Obviously, we'll have to change the NO in one of those splash lines to a YES. Which one depends upon your picture
format. The two types of images that can be loaded are bmp or pcx. Depending upon the image you have to work with,
change the appropriate NO to a YES.

If the image also happens to have eight or more bits of color, set vesa_load to YES. If you have no idea what type or size
of picture you're dealing with, use the file command:

# file logo.bmp

logo.bmp:  PC bitmap data, Windows 3.x format, 408 x 167 x 8

This particular logo is a bitmap that is 408 167 pixels at 8 bits of color.

Don't forget to set the path of your bitmap file, and make sure you remember to copy that bitmap to the specified
location:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


location:

bitmap_name="/boot/logo.bmp"

Leave this line as is:

bitmap_type="splash_image_data"     # and place it on the module_path

Finally, enable bitmap loading:

bitmap_load="YES"

When you're editing /boot/loader.conf, keep in mind that you are asking the loader program to load various portions of
the kernel. If you have changed your kernel configuration file [Hack #54], double-check that you haven't stripped
your kernel of a function you're now asking loader to load. For example, before rebooting I should double-check that
splash functionality is still in my kernel. Here, my new kernel configuration file is named NEW:

# grep splash /usr/src/sys/i386/conf/NEW

device        splash        # Splash screen and screen saver support

splash also requires device sc, so ensure that is your console type:

# grep -w sc /usr/src/sys/i386/conf/NEW

device    sc

The -w flag tells grep to treat sc as a word rather than attempt to match any word containing the letters sc.

Once you're happy with your changes, make sure no one is working on the system and then reboot. Your bitmap image
should appear right after you make your choice at the Beastie menu. It will remain on the screen until you press a key.
This behavior has the advantage of displaying your company logo instead of the usual startup messages. However, if
you ever need to see those messages, simply press a key and your bitmap will disappear.

3.2.3 The Terminal Screensaver

As it is set up now, the bitmap will also act as a terminal screensaver that will kick in after five minutes. To change the
screensaver's timeout value, add this line to /etc/rc.conf:

blanktime="60"

The number you choose represents the number of seconds. If you decide you don't like the screensaver functionality,
add this line to /etc/rc.conf:

saver="NO"

Those changes to /etc/rc.conf won't take effect until you reboot the system. To enforce those settings immediately, at
least until the next reboot, use the vidcontrol command:

# vidcontrol -t 60

# vidcontrol -t off

Regardless of your timeout setting, you can still launch the screensaver at will—say, when you leave your terminal—by
pressing the Shift and Pause keys simultaneously. You may just want to do that before you go grab your boss to show
him that jazzy company logo.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.2.4 See Also

man loader

man splash

/usr/share/examples/bootforth/ (bootloader examples for the experienced hacker who understands Forth)

The Boot section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/boot.html)

http://www.baldwin.cx/splash (splash images to get you started)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 25 Protect the Boot Process

 

Thwart unauthorized physical access to a system.

Creating a snazzy boot environment for users is one thing. However, when it comes to booting up servers, your mind
automatically shifts gears to security mode. Your goal is to ensure that only a very precious few on very rare occasions
ever see the boot process on a server. After all, the golden rule in security land is "physical access equals complete
access."

Here's a prime example—consider recovering from an unknown or forgotten root password. Go into the server closet,
reboot that system, and press a key to interrupt the boot process to change the password. A few moments later, the
system continues to boot as normal. This can be a real lifesaver if an admin leaves without divulging the root password.
However, consider the security implications of an unauthorized user gaining physical access to that server: instant root
access!

3.3.1 Limiting Unauthorized Reboots

Let's start by ensuring that regular users can't reboot the system either inadvertently or maliciously. By default, if a
user presses Ctrl-Alt-Delete, the system will clean up and reboot. Typically this isn't an issue for servers, as most
administration is done remotely and the server is safely locked away in a server closet. However, it can wreak havoc on
workstations, especially if the user is used to working in a Windows environment and has become accustomed to
pressing Ctrl-Alt-Delete. It's also worthwhile disabling on a server, as it ensures that a person has to first become the
superuser in order to issue the reboot command.

If you're logged into a remote machine over SSH and try Ctrl-Alt-Delete, it will affect your
own machine, not the remote machine. reboot works well over the network, though.

Disabling this feature requires a kernel rebuild. (See [Hack #54] for detailed instructions.) Add one of these lines to
your kernel configuration file, then rebuild and reinstall the kernel:

options SC_DISABLE_REBOOT  # if using syscons console driver

# or

options PCVT_CTRL_ALT_DEL  # if using pcvt console driver

You're probably thinking, "If I wanted to reboot a system and didn't know the superuser password, I'd simply hit the
power button." Yup! That kernel option certainly won't prevent that, but a carefully thought out CMOS[1] configuration
will decide if and how that system will reboot.

[1] CMOS is battery-powered memory that holds system settings such as the time, date, and system configuration.

At a minimum, the CMOS configuration should allow only one boot device. This is to prevent an intruder from trying to
boot an alternate kernel from a floppy, CD-ROM drive, or other supported boot device. Additionally, you should set a
password for CMOS and record it in a safe place. This will prevent an intruder from simply changing the CMOS
configuration. Keep in mind that this is not fail-proof; you are merely adding layers of inconvenience. A determined
intruder can simply pop open the case and drain the CMOS battery, but that takes time and additional effort.

3.3.2 Password Protecting Single-User Mode

All the magic happens when you interrupt the boot process. This is where you can change the superuser password

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


All the magic happens when you interrupt the boot process. This is where you can change the superuser password
without having to first know the superuser password. This is where you can unload the currently loaded kernel and
replace it with another. This is where you can change any configuration file or binary without worrying about
securelevels or system flags [Hack #56] . This is the reason why you lock up your servers, monitor access to the
server room, and run them headless [Hack #26] .

Fortunately, interrupting the boot process requires keyboard input, meaning the user needs physical access to the
system. What happens when a malicious user does bypass your physical security measures, gaining physical access to
the system? All she has to do is interrupt that boot process, and the system is hers to do as she wishes.

On a system without the graphical boot menu [Hack #24], pressing any key at the timer will pause the boot process.
If the system has the graphical boot menu, pressing 6 to Escape to loader prompt will show the same timer. The timer
option looks like this:

Hit [Enter] to boot immediately, or any other key for command prompt.

Booting [/boot/kernel/kernel] in 10 seconds...

If you press any key other than Enter, you'll receive this:

Type '?' for a list of commands, 'help' for more detailed help.

OK boot -s

Type boot -s to enter single-user mode. The kernel will appear to load normally, but, instead of processing the rc scripts,
this prompt will appear:

Enter full pathname of shell or RETURN for /bin/sh:

#

Once you've finished making your desired changes, simply type exit. The system will continue to boot into multiuser
mode.

Now, how do you prevent a user from doing that? Password protect single-user mode by editing /etc/ttys. Find this line:

# If console is marked "insecure", then init will ask for the root password

# when going to single-user mode.

console none              unknown off secure

Follow the comments and change the word secure to insecure. While that may seem nonintuitive, you're saying the
system is considered to be insecure, thus you want a password. The next time a user attempts single-user mode, the
kernel will load, but the user will receive this prompt instead:

Enter root password, or ^D to go multi-user

Password:

You must not forget the root password if you password protect single-user mode!

3.3.3 Password Protecting loader

Let's return to the timer section of the boot process. A user can type more than boot -s after interrupting the boot
process. In fact, if you press ? at that OK prompt, you'll see that you can unload the current kernel, load another kernel,
load and unload kernel modules, and view and change variables. You can muck about with just about every part of the
boot process that would normally be controlled by the loader command.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


boot process that would normally be controlled by the loader command.

Fortunately, you can also require a user to input a password before receiving that OK prompt. Set the password by
adding this line to /boot/loader.conf:

password=12345

Of course, your password should be harder to guess than 12345. Now the boot process will prompt the user for a
password. Without that password, you cannot enter single-user mode or load or unload kernel modules. You can still
boot; you just cannot interrupt the boot process.

Also, if your CMOS supports it, you can require a password to boot the machine. However, this is often considered to be
a bad thing, especially on a co-located web or mail server.

The password in /boot/loader.conf is in clear text. Although you can't encrypt this
password, you can tighten up its permissions so only the superuser can read it:

# chmod 600 /boot/loader.conf

3.3.4 See Also

man boot

man loader

The Boot Process section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/boot-blocks.html)

Resetting the Root Password in the FreeBSD FAQ (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/faq/admin.html#FORGOT-ROOT-PW)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 26 Run a Headless System

 

For those times when you want to run a system "headless."

Sometimes it is a simple matter of economy. Perhaps you've managed to scrounge up another system, but you don't
have enough monitors, keyboards, or mice to go around. You also don't have the budget to purchase either those or a
KVM switch. Sometimes it is a matter of security. Perhaps you're introducing a PC to a server closet and your physical
security policy prevents server closet devices from being attached to monitors, keyboards, and mice.

Before you can run a system "headless," you need to have an alternative for accessing that system. Once you've
removed input and output peripherals, your entry point into the system is now either through the network card or a
serial port.

Going in through the network card is the easiest and is quite secure if you're using SSH. However, you should also
consider a plan B. What if for some reason the system becomes inaccessible over the network? How do you get into the
system then? Do you really want to gather up a spare monitor, keyboard, and mouse and carry them into the server
closet?

A more attractive plan B may be to purchase a null modem cable as insurance. This is a crossed serial cable that is
designed to go from one computer's serial port to another computer's serial port. This type of cable allows you to
access a system without going through the network, which is a real lifesaver when the system isn't responding to the
network. You can purchase this type of cable at any store that sells networking cables.

Your last consideration is whether the system BIOS will cooperate with your plan. Most newer BIOSes will. Many have a
CMOS option that can be configured to disable "halt on errors." It's always a good idea to check out your available
CMOS options before you start unplugging your peripherals.

3.4.1 Preparing the System

I've just installed a new FreeBSD 5.1 system. Since I didn't have a null modem cable handy, I installed the old-
fashioned way with the monitor and keyboard attached. If you do have a null modem cable and want to experiment
with a headless install, follow the directions in the Handbook section referenced at the end of this hack.

Since I want to access the server over the network, I'll double-check that the NIC is properly configured and that sshd is
running:

% ifconfig ed0

ed0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.2.94 netmask 0xffffff00 broadcast 192.168.2.255

        ether 00:80:ad:79:4e:fd

% sockstat | grep sshd

root     sshd       389   4  tcp4   *:22                  *:*

The ifconfig command is used to verify an interface's configuration; in this example, the interface is ed0. The flags
indicate that this interface is UP and RUNNING. The interface also has an IP address of 192.168.2.94.

The sockstat command is similar to the netstat command, but I find it provides a more intuitive output. For each open
port it will display the owner of the service (root), the name of the service (sshd), the PID (389), the socket file
descriptor (4), the transport (tcp4), the local address (*:22), and the foreign address (*.*).

The PID is useful if you need to send a signal to the process. The local address indicates which interfaces on this system
(in this case, all, or *) are listening on which port number (22). There aren't any current sessions, as the foreign
address section is *.*. If there were a current session, it would show the address of the other system followed by the
socket number being used for the connection.

If for some reason sshd isn't running on your system, add the following line to /etc/rc.conf:

sshd_enable="YES"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sshd_enable="YES"

and double-check that it'll be available at bootup, like so:

# /etc/rc.d/sshd rcvar

#sshd

$sshd_enable=YES

Finally, typing sshd as the superuser should start the daemon. You can prove this by checking that it's listening with
sockstat | grep sshd.

One last test—I'll make sure I can log into the system over the network:

% ssh 192.168.2.94

Password:

%

Now that I knew the system was accessible over the network, it was time for the moment of truth. After halting the
system, I entered its CMOS configuration. I was a little bit worried because there weren't any options dealing with "halt
errors." Undaunted, I left CMOS and powered off and unplugged the monitor, keyboard, and mouse. I then opened the
case and physically removed the video card.

When I powered up, the system responded with a longer than ordinary beep. But after a few seconds, my hard drive
light flashed and I could hear the operating system probing my devices and loading the drivers. After a moment or so, I
tried to ssh into the system and was greeted with my password prompt! Assuming your BIOS is willing to cooperate,
FreeBSD has no problem loading headless.

3.4.2 If the Headless System Becomes Inaccessible

Should your system ever stop responding over the network, you'll be glad you purchased that null modem serial cable.
Connect one end to the COM port of the headless system, and the other end to the COM port of another system that
you can access either directly or over the network.

If that other system is running a Windows operating system, go to Start  Programs  Accessories 
Communications  HyperTerminal (or open hypertrm.exe). You'll need to create a new connection, so choose a
name and icon for it. Under Connect using:, choose the COM port to which the serial cable is attached.

You'll also have to configure the port properties for that COM port. Change the default 2400 bits per second to 9600.
Finally, change hardware flow control to none. Press Enter, and you should be connected to the headless system. If
you're not, double-check that you chose the correct COM port.

If you're attaching from a system running any variant of Unix, you can use either the cu or tip commands to connect via
the serial cable.

To use cu, simply specify your COM port using the line switch -l and a speed of 9600 baud using the speed switch -s. For
example, this syntax allows you to connect to COM2 or cuaa1:

# cu -l /dev/cuaa1 -s 9600

Connected.

You should now be able to see what is happening on your headless system. One of the advantages of connecting
through a serial cable is that you can watch the boot process of the system. You can't do this over a network
connection, because initializing the network occurs toward the end of a successful boot.

Before the network can be initialized, the kernel must successfully load into memory and the necessary hardware must
be probed. If you're having problems booting a system, it is usually due to a missing or corrupt kernel or a hardware
problem.

To disconnect from the cu session, type ~., then press the Enter key. You should receive a Disconnected. message and
receive the prompt of the system you started from.

The tip utility doesn't use line or speed switches. It instead expects you to use one of the finger friendly shortcuts found
at the end of the /etc/remote file. Let's take a look at that section:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


at the end of the /etc/remote file. Let's take a look at that section:

# tail /etc/remote

# Hardwired line

cuaa0b|cua0b:dv=/dev/cuaa0:br#2400:pa=none:

cuaa0c|cua0c:dv=/dev/cuaa0:br#9600:pa=none:

# Finger friendly shortcuts

com1:dv=/dev/cuaa0:br#9600:pa=none:

com2:dv=/dev/cuaa1:br#9600:pa=none:

com3:dv=/dev/cuaa2:br#9600:pa=none:

com4:dv=/dev/cuaa3:br#9600:pa=none:

Notice that there is an entry for each COM port. This means that to connect to COM2, you simply have to type:

# tip com2

connected

You need a little bit more coordination to disconnect, though. Hold down Shift while you press the ~ key. Keep your
finger on Shift as you press the Ctrl key, then the letter D:

# ~^D

[EOT]

3.4.3 See Also

man tip

man cu

The Advanced Installation Guide in the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/install-advanced.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 27 Log a Headless Server Remotely

 

More on headless systems, but this time from the NetBSD perspective.

We've already seen in [Hack #26] that it's important to have an alternative method for connecting to a headless
server. It's also important to be able to receive a headless system's console messages. This hack will show how to
configure both on a NetBSD system.

3.5.1 Enabling a Serial Console

If you have another machine close to your headless server, it may be convenient to enable the serial console so that
you can connect to it using a serial communication program. tip, included in the base system, and minicom , available
through the packages collection, allow you to handle the server as if you were working on a real physical console.

To enable the serial console under NetBSD, simply tell the bootblocks to use the serial port as the console; they will
configure the kernel on the fly to use it instead of the physical screen. You also need kernel support for the serial port
device, which is included in the default GENERIC kernel.

However, changing the bootblocks configuration is a bit tricky because you need write permissions to the raw root
device. As we are talking about a server, I assume the securelevel functionality is enabled; you must temporarily
disable it by adding the options INSECURE line to your kernel. While in the kernel configuration file, double-check that it
includes serial port support. Then, recompile your kernel.

Once you have access to the raw partition, update the bootblocks using the installboot utility. The process depends on
the NetBSD version you are using.

If you are running 2.0 or higher, use the command shown next. Replace the bootxx_ffsv1 file with the one that matches
your root filesystem type; failure to do so will render your system unbootable.

# /usr/sbin/installboot -o console=com0 /dev/rwd0a /usr/mdec/bootxx_ffsv1

If you are running 1.6, use the following command instead:

# /usr/mdec/installboot /usr/mdec/biosboot_com0.sym /dev/rwd0a

When done, rebuild your kernel without the options INSECURE line to reenable securelevel. You can also remove the
console drivers wscons and pccons to reduce the kernel size, though you must keep the serial port driver.

As an alternative to building an insecure kernel, you can boot from a floppy disk to get
direct access to the partition and update the bootblocks as described earlier. The floppies
you used to install the system are fine.

3.5.2 Setting Up the Logging Server

Even if you have configured a serial console, you won't always be connected to it. Therefore, it is very convenient to
redirect important console messages to another machine that has a physical screen connected to it. syslogd lets you do
this.

Start by allowing incoming syslogd connections on the machine that will be receiving log messages. (I call mine
logger.local.) To do this, add the following lines to /etc/rc.conf:

syslogd=YES

syslogd_flags=

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


syslogd_flags=

The first option is not really needed, as syslogd is enabled by default. The second option overrides the secure (s) flag
that otherwise would be passed to the daemon through /etc/defaults/rc.conf. This flag tells syslogd not to listen on a
UDP socket, and in this scenario we want to receive log messages over the network.

Then, restart the daemon:

# /etc/rc.d/syslogd restart

logger.local can now receive incoming syslogd connections from any host. If required, you can restrict this by using the
built-in firewall, ipf.

3.5.3 Setting Up the Headless System

You are ready to configure your headless server to send messages to the logger machine. As an example, we are going
to redirect all messages that are actually sent to the serial console to logger.local.

Open /etc/syslog.conf in your favorite editor. You will notice that the first uncommented line directs messages to
/dev/console. Append the @logger.local string to it, separated by a comma. After the changes, you should end up with
something like:

*.err;kern.*;auth.notice;authpriv.none;mail.crit  /dev/console,@logger.local

Repeat for any other categories you want to redirect. When done, restart syslogd as shown earlier.

3.5.4 Shutting Down the Server Using wsmoused

The next two sections of this hack require NetBSD 2.0 and above.

If you are running a headless system at home, you may want to shut it down at night. You could do this by sshing into
the server and executing shutdown manually, but this requires a second system. However, since you have physical
access to the headless system, you can simply use wsmoused, which will let you execute two or three commands from a
mouse—one for each mouse button.

wsmoused's "action mode" lets you assign commands to mouse buttons. Here's a sample configuration file to shut down
and reboot the machine, which you can copy to /etc/wsmoused.conf:

device = /dev/wsmoused;

modes = action;

mode action {

        button_0_down = "shutdown -p now";

        button_2_down = "shutdown -r now";

}

Here I've mapped the left mouse button, 0, to the command that will halt the system and the right mouse button, 2, to
the command that will reboot the system. (The middle mouse button is 1.) Since I don't plan on using this mouse for its
usual input functions, such as copy and paste, this is a really convenient way to power off the system quickly and
safely.

Enable the startup of wsmoused at boot time:

# echo "wsmoused=YES" >> /etc/rc.conf

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# echo "wsmoused=YES" >> /etc/rc.conf

If you have a dial-up connection, you could use a similar configuration to connect and
disconnect the link.

3.5.5 Beep on Halt

Some headless servers don't support APM or ACP, so the kernel can't power them down automatically. The i386
architecture has another option: beep on halt. It beeps the speaker multiple times when it is safe to power off the
machine after a successful halt.

To enable this feature, add the following line to your kernel configuration file and rebuild it:

options BEEP_ONHALT

In case you do not like the default tone, you have several other options. Here they're shown with their default values:

options BEEP_ONHALT_COUNT=3    # Times to beep

options BEEP_ONHALT_PITCH=1500 # Default frequency (in Hz)

options BEEP_ONHALT_PERIOD=250 # Default duration (in msecs)

3.5.6 See Also

man 8 installboot

man syslogd

man wsmoused

man shutdown

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 28 Remove the Terminal Login Banner

 

Give users the information you want them to receive when they log in.

The default login process on a FreeBSD system produces a fair bit of information. The terminal message before the login
prompt clearly indicates that the machine is a FreeBSD system. After logging in, a user will receive a copyright message
and a Message of the Day (or motd), both of which contain many references to FreeBSD.

This may or may not be a good thing, depending upon the security requirements of your network. Your organization
may also require you to provide legal information regarding network access or perhaps a banner touting the benefits of
your corporation. Fortunately, a few simple hacks are all that stand between the defaults and your network's particular
requirements.

3.6.1 Changing the Copyright Display

Let's start with the copyright information. That's this part of the default login process:

Copyright (c) 1992-2003 The FreeBSD Project.

Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.

To prevent users from seeing this information, simply:

# touch /etc/COPYRIGHT

3.6.2 Changing the Message of the Day

Technically, you could add your own information to /etc/COPYRIGHT instead of leaving it as an empty file. However, it
is common practice to put your information in /etc/motd instead. The default /etc/motd contains very useful information
to the new user, but it does get rather old after a few hundred logins.

You can edit /etc/motd to say whatever suits your purposes—anything from your favorite sci-fi excerpt to all the nasty
things that will happen to someone if they continue to try to log into your system. Here's a very simple example:

# more /etc/motd

*********************************************************

*****            Authorized users only!!            *****

*********************************************************

You'll note that after you customize your motd, users will still see this text prepended to it:

FreeBSD 5.1-RELEASE (GENERIC) #0: Thu Jun 5 02:55:42 GMT 2003

If you don't want to advertise your operating system version and kernel information, you'll need one more hack. Add
this line to /etc/rc.conf:

update_motd="NO"

If you're using FreeBSD 5.x, you no longer have to reboot or go into single-user mode to initialize a change to
/etc/rc.conf. Instead, you can use one of the many scripts available in /etc/rc.d. Let's see if there's a script that deals

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/rc.conf. Instead, you can use one of the many scripts available in /etc/rc.d. Let's see if there's a script that deals
with motd:

# ls -F /etc/rc.d | grep motd

motd*

Excellent. Let's see what syntax that command expects:

# /etc/rc.d/motd

Usage: /etc/rc.d/motd [fast|force](start|stop|restart|rcvar)

Parameters in square brackets are optional, whereas parameters in parentheses are mandatory. Notice each option is
separated by the or symbol (|), meaning you just pick one out of the list. In our case, we want to use the rcvar
parameter. This will tell the motd script to reread its setting in /etc/rc.conf:

# /etc/rc.d/motd rcvar

# motd

$update_motd=NO

OpenBSD users, read man motd and /etc/rc (search for motd) to understand how the
system constructs the banner. Otherwise, it'll update when you least expect it!

3.6.3 Changing the Login Prompt

Finally, let's change the text that first appears at the login prompt. This requires an edit to /etc/gettytab. This is a fairly
important file as it controls access to your terminals, which is how users access the system. Before editing this file,
always make a backup copy first:

# cp /etc/gettytab /etc/gettytab.orig

Next, open up /etc/gettytab in your favorite text editor and look for this line:

default:\

:cb:ce:ck:lc:fd#1000:im=\r\n %s/%m (%h) (%t) \r\n\r\n:sp#1200:\

See the part in bold? That's the part you can replace with what you'd like the world to see when they receive their login
prompt. Right now, they see this:

FreeBSD/i386 (host.domain.com) (ttyv1)

That's because that default string contains the variables in Table 3-1.

Table 3-1. Login prompt variables
Variable Meaning

%s Operating system

%m Architecture

%h Hostname

%t tty name

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can very carefully change those characters to something else. For example, mine looks like this:

:cb:ce:ck:lc:fd#1000:im=\r\n I'm a node in Cyberspace. Who are you? \

\r\n\r\n:sp#1200:\

Again, I've put my changes in bold for emphasis. Carefully double-check that you didn't lose any carriage return (\r) or
newline (\n) characters along the way, then save your change.

3.6.4 Testing Your Changes

It's important to test your change immediately at a different terminal to ensure you can still log into your system. This
way, if you did make a typo that prevents logins, you can return to your previous terminal and fix it.

I'll press Alt-F4 to go to a terminal with a login prompt. I'll probably still see the old terminal message, so I'll log in, log
out, then log in again:

login:

Password:

% exit

logout

I'm a node in cyberspace. Who are you?

login:

3.6.5 See Also

man motd

man gettytab

The /etc/rc.d section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/configtuning-rcng.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 29 Protecting Passwords With Blowfish Hashes

 

Take these simple steps to thwart password crackers.

All good administrators know that passwords can be a weak link in the security chain. A malicious and determined user
armed with a password cracker could conceivably guess enough of your network's passwords to access unauthorized
resources.

3.7.1 Protecting System Passwords in General

Fortunately, you can make a password cracker's life very difficult in several ways. First, educate your users to choose
complex, hard-to-guess passwords that are meaningful enough for them to remember. This will thwart dictionary
password crackers [Hack #30], which use lists of dictionary and easy-to-guess words.

Second, be aware of who has superuser privileges and who has the right to backup /etc. This directory contains the two
password databases that are required to run a brute-force password cracker. As the name implies, this type of cracker
will eventually guess every password in your password databases as it systematically tries every possible keyboard
combination. Your best protection from this type of cracker is to prevent access to those password databases. This
includes locking up your backup tapes and monitoring their access.

It is also a good idea to increase the amount of time it would take a brute-force cracker to crack a password database.
FreeBSD, like most Unix systems, adds a magic bit of randomness—known as a salt—to the password when it is stored
in the password database. The upshot is that a password cracker may have to try up to 4,096 different combinations for
each and every password it tries to guess.

Using a strong algorithm to protect your passwords can also slow down a brute-force cracker. FreeBSD supports a hard-
to-crack algorithm known as Blowfish. One of the first things I do after a FreeBSD install is to configure the password
database to use Blowfish. While it is easier to do this before you create your users, it is still worth your while to
implement it after you've created your user accounts.

3.7.2 Protecting System Passwords with Blowfish

To use Blowfish, start by opening up /etc/login.conf in your favorite editor. Look for this line:

:passwd_format=md5:\

Carefully edit it so it looks like this:

:passwd_format=blf:\

Check for typos before saving your change.

You may have noticed this comment when you modified /etc/login.conf:

# Remember to rebuild the database after each change to this file:

#

#        cap_mkdb /etc/login.conf

#

Let's take a closer look at what we're being asked to do. According to that comment, login.conf is more than a
configuration file, it is a database. Not only that, it is a capability database, a database that supports different
capabilities. That is the reason behind the weird syntax within login.conf. Whenever you edit a capability database, you
have to use the cap_mkdb command to integrate your changes within the database.

So, follow the directions:

# cap_mkdb /etc/login.conf

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cap_mkdb /etc/login.conf

3.7.2.1 Converting existing passwords

If you have any existing users, you need to convert their passwords from MD5 to Blowfish. This is why it's a good idea
to make the change before you create your users.

If you've already created users, it's back to the password database to find all of the active accounts. Inactive accounts
—accounts that don't allow logins—have the * character instead of an encrypted password. Since we want to find all of
the lines in the password database that do not contain an asterisk, we need an inverted grep:

# grep -v '*' /etc/master.passwd

root:$1$ywXbyPT/$GC8tXN91c.lsKRpLZori61:0:0::0:0:Charlie &:/root:/bin/csh

dru:$1$GFm1nh6I$jh3v4I.QNf450ARgltZU5.:1008:0::0:0:User &:/home/dru:/bin/csh

Well, that worked, but we could make the output look much prettier:

# grep -v '*' /etc/master.passwd | cut -d ':' -f 1

root

dru

Let's pick apart that command syntax. grep -v creates a reverse filter. In effect, it says, "Show me the lines in
/etc/master.passwd that do not contain an *." Since those lines are long and contain much more than just the
username, I piped the output to the cut utility to literally cut out the portions I don't need to see. Notice that the
usernames are the very first thing in each line, and they are always followed by the : field separator. -d tells cut to
consider the colon character, not the tab character, as the separator. -f 1 tells cut that I'm interested in the very first
field of that line.

It looks like my particular system has two active accounts: root and dru. Notice in the original output the long sequence
of characters that starts with $1 and ends with :. No, my users' passwords aren't quite that complex. Rather, you're
seeing the password after it's been encrypted by the MD5 algorithm. That $1 means MD5. It'll be $2 after we switch to
Blowfish encryption. (Be aware that you can't edit the file directly; the entire password must be changed.)

I'll now change those two passwords:

# passwd dru

Changing local password for dru

New Password:

Retype New Password:

# passwd

Changing local password for root

New Password:

Retype New Password:

Note that the superuser can change any user's password by specifying the appropriate username. If you don't specify a
name, you will instead change the root password.

When you're finished, repeat the original grep -v command and double-check that all of the encrypted passwords now
start with $2.

Don't forget to tell your users that you have changed their passwords! Also caution them
to use passwd to reset their password to a value known only to themselves.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.7.2.2 Forcing new passwords to use Blowfish

Finally, configure the adduser utility to use Blowfish whenever you create a new user by editing /etc/auth.conf. Look for
this line:

# crypt_default = md5 des

and carefully change it to:

crypt_default = blf

Once you've saved your change, test it by creating a new user. The easiest way to do this is to type adduser and follow
the prompts.

3.7.3 See Also

man passwd

man adduser

Blowfish information by Bruce Schneier, the creator of the algorithm, at http://www.schneier.com/blowfish.html

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 30 Monitor Password Policy Compliance

 

When to use a password cracker utility.

Now that you've tightened up your password policy to thwart password crackers, it's time to learn how to use a
password cracker to monitor the effectiveness of that password policy.

You're probably thinking, "Hey, wait a minute! Isn't that some sort of oxymoron? An administrator cracking
passwords?" Well, it depends upon the type of password cracker you plan on using.

A brute-force password cracker such as John the ripper or slurpie will systematically try every possible keyboard
combination until it has cracked every password in the password database. Does an administrator need to know every
password in his network? Definitely not.

However, an administrator does need to know if her users are choosing easy-to-guess passwords, especially if she's
responsible for enforcing compliance to the network's password policy. A properly tweaked dictionary password cracker
such as crack is an effective way to monitor that compliance.

It is important that a network's security policy indicates in writing who runs the dictionary cracker, when it is run, and
how the results are handled. For example, if the password policy forces users to change their passwords every 30 days,
the following day is an excellent time for the delegated administrator to run the cracker. Ideally, the cracker will return
no results. This means all users chose a strong password. Should the cracker find some weak passwords, the security
policy should clearly outline the procedure used to ensure that noncompliant users change their passwords to ones that
are harder to guess.

3.8.1 Installing and Using crack

Let's take a look at the most commonly used dictionary password cracker used on Unix systems, crack. You'll have to be
the superuser for this entire hack because, fortunately, only the superuser has permission to crack the passwd database.
crack should build on any Unix system; I'll demonstrate on FreeBSD:

# cd /usr/ports/security/crack

# make install clean

On my system, this creates the /usr/local/crack directory which only the superuser can access. I need to cd into that
directory in order to crack passwords. I'll start with a simple crack, then show you how to tweak this utility to serve
your particular network.

# cd /usr/local/crack

# ./Crack -fmt bsd /etc/master.passwd

Crack is a Bourne shell script contained within this directory, so you'll have to run it with the command ./Crack. Use the -
fmt switch to indicate the type of system; in my case, it is bsd. Finally, pass the path of the database containing the
actual password hashes. On my system, this is the BSD shadow password database at /etc/master.passwd. The
command and output on my test system is:

# ./Crack -fmt bsd /etc/master.passwd

Crack 5.0a: The Password Cracker.

(c) Alec Muffett, 1991, 1992, 1993, 1994, 1995, 1996

System: FreeBSD genisis 5.1-RELEASE FreeBSD 5.1-RELEASE #7: \

    Tue Jul 29 09:54:11 EDT 2003 dru@genisis:/usr/obj/usr/src/sys/NEW i386

Home: /usr/local/crack

Invoked: ./Crack -fmt bsd /etc/master.passwd

Stamp: freebsd-5-i386_

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Crack: making utilities in run/bin/freebsd-5-i386_

find . -name "*~" -print | xargs -n50 rm -f

( cd src; for dir in * ; do ( cd $dir ; make clean ) ; done )

rm -f dawglib.o debug.o rules.o stringlib.o *~

/bin/rm -f *.o tags core rpw destest des speed libdes.a .nfs* *.old \

    *.bak destest rpw des speed

rm -f *.o *~

`../../run/bin/freebsd-5-i386_/libc5.a' is up to date.

all made in util

Crack: The dictionaries seem up to date...

Crack: Sorting out and merging feedback, please be patient...

Crack: Merging password files...

Crack: Creating gecos-derived dictionaries

mkgecosd: making non-permuted words dictionary

mkgecosd: making permuted words dictionary

Crack: launching: cracker -kill run/Kgenisis.27478   

Done

Note that the word Done is a bit of a misnomer. The gecos test is finished, but the actual dictionary attack has just
begun and is quietly perking along in the background:

# ps -acux | grep cracker

root      14013 97.0  2.8  9448 8916  v5  R    10:32AM   4:17.68 cracker

3.8.1.1 Monitoring the results

Let's take a look at my current results, then analyze what is happening here:

# ./Reporter -quiet

---- passwords cracked as of Mon Nov 17 10:33:18 EST 2003 ----

1069099872:Guessed test [test]  User & [/etc/master.passwd /bin/csh]

---- done ----

The Reporter script, which is also found in the /usr/local/crack/ directory, sends the current results of the dictionary
crack to standard output. I ran Reporter shortly after Crack had returned my prompt. Notice that it found that the
password for the test account was test.

The reason why it found this password so quickly is because of the gecos field in /etc/master.passwd. If you're familiar
with man master.passwd, you know that the gecos field contains the user's full name, possibly followed by her extension,
office phone number, and home phone number. This means that if a user uses any of those values for a password, her
password can be cracked within a second or two.

The actual dictionary attack will take a while to run. How long will depend upon the speed of your CPU. However, you
should expect crack to run for a good portion of a business day.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


should expect crack to run for a good portion of a business day.

Why so long? If you've ever had the opportunity to run a dictionary cracker on a non-Unix system, you may have had
your results back in well under an hour. The answer is that BSD password hashes are protected by a salt. In simple
terms, the salt adds random characters to a user's password before the encryption algorithm creates the hash. Those
are encrypted hashes, not the actual passwords, stored in /etc/master.passwd. In order for the password cracker to
bypass the salt, it has to try many variations of the same word before it can determine if that word is indeed the user's
password.

You may want to write a script that will tell you when Crack is finished. Here is a simple example:

#!/bin/sh

#script to see if Crack is still running

#and to display current report

while ps -acux | grep -l "cracker" > /dev/null

do sleep 600

    echo "Still running. Here's the latest report:"

    cd /usr/local/crack && ./Reporter -quiet

done

echo "Execution is complete."

This script uses a simple while loop that runs every ten minutes (600 seconds). If cracker still shows up as a running
process in the ps output, the ./Reporter -quiet script will run. Otherwise, the script ends, printing Execution is complete.

If you'd like to receive a pop-up message showing the results of the script, see [Hack
#100] .

3.8.1.2 Cleanup

Your security policy should also provide guidelines on how to clean up after crack finishes. The program stores several
working files in the run subdirectory. They will all have a numeric extension:

# ls run

D.boot.69783      Egenisis.69783    bin/

Dgenisis.69783    Kgenisis.69783    dict/

When you remove those files, ensure you leave the subdirectories intact:

# cd run

# rm *.69783

# ls

bin/    dict/

3.8.2 Customizing Password Dictionaries

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once you implement regular dictionary cracks, you'll find that after a few months, your users will start to consistently
choose strong passwords. However, bear in mind that a dictionary cracker is only as good as its dictionaries. The
dictionaries that come with crack are a good start if your users speak English.

Let's start by seeing what dictionaries crack included:

# ls dict/1/

abbr.dwg                        list.dwg

assurnames.dwg                  male-names.dwg

asteroids.dwg                   movies.dwg

bad_pws.dat.dwg                 myths-legends.dwg

biology.dwg                     names.french.dwg

cartoon.dwg                     numbers.dwg

chars.dwg                       other-names.dwg

common-passwords.txt.dwg        paradise.lost.dwg

crl.words.dwg                   phrases.dwg

dosref.dwg                      places.dwg

family-names.dwg                python.dwg

famous.dwg                      roget.words.dwg

fast-names.dwg                  sf.dwg

female-names.dwg                sports.dwg

given-names.dwg                 trek.dwg

jargon.dwg                      unix.dict.dwg

junk.dwg                        yiddish.dwg

lcarrol.dwg

Notice that each built-in dictionary ends with a dwg extension. However, crack understands any dictionary or word list,
even if it is compressed (i.e., its filename ends in either .Z or .gz).

If you use the file command on the dwg files, you'll find that each file is ASCII text. Mind you, the contents don't look
like the average dictionary file:

# head abbr.dwg

#!xdawg

02bon2b

04sa7ya

0bbroyg

6bvgw

0egbdf

0fsasya

0gok

0oottfogvh

0roygbiv

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Don't worry, those aren't the actual words. Instead, the numbers sort the words by likelihood. That is, the words don't
appear in alphabetical order, but rather in the order they're likely to appear as a password. For example, the word
password is much more likely to be used as a password than pasul.

If your users speak other languages, consider downloading additional dictionaries. Start at the Cerias site mentioned at
the end of this hack. It's well worth your while to browse through the site's dictionaries, local, and wordlists
subdirectories looking for dictionaries that suit your particular needs.

Let's go there now and check out the possible word lists:

# ftp ftp.cerias.purdue.edu

Connected to ftp.cerias.purdue.edu.

<snip long banner>

Name (ftp.cerias.purdue.edu:dru): anonymous

331 Guest login ok, send your complete e-mail address as password.

230 Logged in anonymously.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd pub/dict/wordlists

250 "/pub/dict/wordlists" is new cwd.

ftp> ls

227 Entering Passive Mode (128,10,252,10,169,45)

150 Data connection accepted from 1.2.3.4:49460; transfer starting.

-rw-rw-r--   1 ftpuser  ftpusers      1971 Jun 14  2000 README.gz

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 aussie

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 chinese

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 computer

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 danish

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 dictionaries

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 dutch

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 french

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 german

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 italian

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 japanese

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 literature

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 movieTV

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 names

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 norwegian

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 places

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 random

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 religion

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 science

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 spanish

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 swedish

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 swedish

drwxrwxr-x   2 ftpuser  ftpusers      4096 Jun 14  2000 yiddish

226 Listing completed.

My network includes several French-speaking users, so I'll take a look at the French word list:

ftp> cd french 

250 "/pub/dict/wordlists/french" is new cwd.

ftp> ls 

227 Entering Passive Mode (128,10,252,10,175,158)

150 Data connection accepted from 1.2.3.4:49530; transfer starting.

-rw-rw-r--   1 ftpuser  ftpusers    332537 Jun 14  2000 dico.gz

226 Listing completed.

Before downloading the word list, I'll use the local change directory command to ensure I'm downloading the file to the
correct directory on my system:

ftp> lcd /usr/local/crack/dict/1

Local directory now /usr/local/crack/dict/1

ftp> get dico.gz 

local: dico.gz remote: dico.gz

227 Entering Passive Mode (128,10,252,10,175,160)

150 Data connection accepted from 1.2.3.4:49531; 

    transfer starting for dico.gz (332537 bytes).

226 Transfer completed.

332537 bytes received in 00:02 (142.24 KB/s)

ftp> bye 

221 Goodbye.

Now that I have a new word list in /usr/local/crack/dict/1/, I'll run the following command:

# cd /usr/local/crack

# make rmdict 

# rm -rf run/dict

That's it. The next time I run ./Crack, I'll see the following message appended to the usual Crack message:

Crack: making dictionary groups, please be patient...

doing group 1...

doing group 2...

doing group 3...

mkdictgrps: uniq'ing dictionary groups...

group 1 and 2...

group 1 and 3...

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


group 1 and 3...

group 2 and 3...

mkdictgrps: compressing dictionary groups...

Crack: Created new dictionaries...

Crack: Sorting out and merging feedback, please be patient...

Crack: Merging password files...

Crack: Creating gecos-derived dictionaries

mkgecosd: making non-permuted words dictionary

mkgecosd: making permuted words dictionary

Crack: launching: cracker -kill run/Kgenisis.55941   

Done

This indicates that crack has found the new dictionary and is merging it into its logic.

3.8.3 See Also

The crack web site (http://www.crypticide.org/users/alecm)

The Cerias FTP site containing cracker dictionaries (ftp://ftp.cerias.purdue.edu/pub/dict/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 31 Create an Effective, Reusable Password Policy

 

Traditionally, it has been difficult for a Unix administrator to create and enforce a reusable password
policy. Fortunately, PAM addresses this.

If you're using FreeBSD 5.0 or higher, your system has a PAM (Pluggable Authentication Modules) module specifically
designed to assist in the creation and enforcement of a reusable password policy. If you're running a different version of
BSD, see the end of this hack for other sources for this module.

3.9.1 Introducing pam_passwdqc

Before using this module, spend some time reading man pam_passwdqc, as it thoroughly covers each option and its
possible values. Any values contained within parentheses are defaults. As you read through this manpage, compare
those defaults with your own network's security policy and make note of any values that will require a change.

This PAM module is fairly comprehensive, allowing you to enable many of the features expected in a password policy.
Here's an overview of the configurable features:

Minimum and maximum password lengths

Force a mix of digits, lowercase, uppercase, symbols, and non-ASCII characters

Minimum number of words in a passphrase

Minimum number of characters to consider as a string (dictionary word)

Ability to search for strings that are words written backwards, or are words written in a mix of upper- and
lowercase

Check new password for similar string contained within old password

Suggest a randomly generated password

Setting to either warn about weak passwords or enforce strong passwords

How many times a user is allowed to retry setting a password if he fails to choose a strong password

3.9.2 Enabling pam_passwdqc

Once you've finished perusing the manpage, you should have a list of values that you'll want to modify to reflect your
network's security policy. Enabling pam_passwdqc is simply a matter of adding or editing a line so that it contains your
customized options.

On FreeBSD 4.x, add that line to the password section of /etc/pam.conf. On 5.x, edit instead the password section of
/etc/pam.d/passwd. Let's look at that file on a FreeBSD 5.1 system:

# more /etc/pam.d/passwd

# $FreeBSD: src/etc/pam.d/passwd,v 1.1 2002/04/15 03:01:31 des Exp $

# PAM configuration for the "passwd" service

# passwd(1) does not use the auth, account or session services.

# password

#password        requisite        pam_passwdqc.so        enforce=users

password        required        pam_unix.so        no_warn try_first_pass

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


password        required        pam_unix.so        no_warn try_first_pass

Obviously, you'll need to uncomment the pam_passwdqc.so line to enable the module. Note the one included option,
enforce=users, overrides the default setting of enforce=everyone.

Let's see what happens when I remove that remark and then try to use passwd as a regular user named test. Even
though passwords aren't echoed to the terminal, I've shown in this output the passwords that I typed in:

% passwd 

Changing local password for test

Old Password: test

You can now choose the new password or passphrase.

A valid password should be a mix of upper and lower case letters,

digits and other characters.  You can use an 8 character long

password with characters from at least 3 of these 4 classes, or

a 7 character long password containing characters from all the

classes.  Characters that form a common pattern are discarded by

the check.

A passphrase should be of at least 3 words, 12 to 40 characters

long and contain enough different characters.

Alternatively, if noone else can see your terminal now, you can

pick this as your password: "inward!smell:Milan".

As you can see, the password policy is provided, along with an example of a strong password that meets the policy
requirements. Except for that one option, this particular policy includes the default settings mentioned in man
pam_passwdqc.

Enter new password: test

Weak password: is the same as the old one.

Try again.

Here I tried to use the same password. Even worse, it doesn't meet any of the password policy's requirements.
However, pam_passwdqc rejected the password, gave me another try, and patiently repeated the password policy along
with another password suggestion:

You can now choose the new password or passphrase.

A valid password should be a mix of upper and lower case letters,

digits and other characters.  You can use an 8 character long

password with characters from at least 3 of these 4 classes, or

a 7 character long password containing characters from all the

classes.  Characters that form a common pattern are discarded by

the check.

A passphrase should be of at least 3 words, 12 to 40 characters

long and contain enough different characters.

Alternatively, if noone else can see your terminal now, you can

pick this as your password: "Sony,seed,cereal".

Enter new password: test1 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Enter new password: test1 

Weak password: too short.

Try again.

Well, I tried another variation of my old password, but it is still too short. Here we go again:

You can now choose the new password or passphrase.

A valid password should be a mix of upper and lower case letters,

digits and other characters.  You can use an 8 character long

password with characters from at least 3 of these 4 classes, or

a 7 character long password containing characters from all the

classes.  Characters that form a common pattern are discarded by

the check.

A passphrase should be of at least 3 words, 12 to 40 characters

long and contain enough different characters.

Alternatively, if noone else can see your terminal now, you can

pick this as your password: "torso&lotus_burly".

Enter new password: test1234

Weak password: not enough different characters or classes for this length.

passwd: pam_chauthtok( ): authentication token failure

%

Looks like the default retry count is three, as I was booted out after three tries. This time the password was long
enough at eight characters, but only contained numbers and lowercase characters. The instructions clearly state that an
eight-character password needs a mix of three different types of characters.

It's important to note that if the superuser changes a user's password, she will receive the same error messages if the
password does not comply with the policy. However, after the error message, the superuser will be asked to retype that
poor password and it will be accepted. Why? Because of that enforce=users option. If you remove that option, it will
default back to enforce=everyone, which requires even the superuser to choose good passwords. The method you choose
will depend upon the security requirements of your password policy.

3.9.3 Adding Your Own Options

It's easy to change the default settings. Simply add your option to the end of the pam_passwdqc.so line. Then, test
your change as a regular user to see what effect it has. You may want to create a test account for just this purpose.

For example, to force users to choose a password that is 10 characters long and a mix of uppercase letters, lowercase
letters, numbers, and symbols, set N4 to 10 and disable the other options. Don't know what N4 is? Better reread that
section of the manpage before changing this parameter.

password  requisite  pam_passwdqc.so \

min=disabled,disabled,disabled,disabled,10

Or, to force users to use the randomly picked password:

password        requisite        pam_passwdqc.so        random=42,only

Here I've used the default random value of 42. You can experiment by increasing that number until the randomly
generated passwords meet your strength requirements. Settings much higher than 70 may produce error messages;
this is what the end user will see:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


this is what the end user will see:

System configuration error. Please contact your administrator.

passwd: pam_chauthtok(1): authentication token failure

The superuser will see:

This system is configured to use randomly generated passwords

only, but the attempt to generate a password has failed. This

could happen for a number of reasons: you could have requested

an impossible password length, or the access to kernel random

number pool could have failed.

passwd: pam_chauthtok(1): authentication token failure

That's your hint to choose a lower random number.

Once you've settled on a reasonable number, this is what users will see when they change their passwords:

% passwd

Changing local password for test

Old Password:

You can now choose the new password.

This system is configured to permit randomly generated passwords

only.  If noone else can see your terminal now, you can pick this

as your password: "lounge-mummy:cellar-dozen".  Otherwise, come back later.

Enter new password:

A user who hates that password can retry a few times to see other possibilities. Pressing Enter will generate another
random password. Typing in anything other than the randomly generated password will cause the password change to
fail.

3.9.4 Additional Configuration

You may have noticed that pam_passwdqc does not control how often a user is forced to change his password. Set this
instead in /etc/login.conf. Besides the actual expiry period, you can also change the amount of advance warning users
will receive about an impending password change.

If you make any changes to /etc/login.conf, test your changes by immediately logging in at another terminal. A typo in
this file can prevent logins to a system!

For example, adding these lines to the default:\ section will set a password expiry of 30 days, giving 5 days warning:

:warnpassword=5d:\

:passwordtime=30d:\

If one of those entries happens to be the final entry in the default:\ section, don't include
the trailing \ in that last entry.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Don't forget to rebuild the database once you've saved your changes:

# cap_mkdb /etc/login.conf

3.9.5 See Also

man pam_passwdqc

man login.conf

The Pluggable Password Checking web site (http://www.openwall.com/passwdqc/README.shtml)

The PAM Essentials section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/pam/index.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 3. The Boot and Login Environments
Introduction

Section 24.  Customize the Default Boot Menu

Section 25.  Protect the Boot Process

Section 26.  Run a Headless System

Section 27.  Log a Headless Server Remotely

Section 28.  Remove the Terminal Login Banner

Section 29.  Protecting Passwords With Blowfish Hashes

Section 30.  Monitor Password Policy Compliance

Section 31.  Create an Effective, Reusable Password Policy

Section 32.  Automate Memorable Password Generation

Section 33.  Use One Time Passwords

Section 34.  Restrict Logins

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
I began gathering contributions for this book, it soon become obvious that there would be an entire chapter on
backups. Not only do BSD users follow the mantra "backup, backup, backup," but every admin seems to have hacked
his own solution to take advantage of the tools at hand and the environment that needs to be backed up.

If you're looking for tutorials on how to use dump and tar, you won't find them here. However, you will find nonobvious
uses for their less well-known counterparts pax and cpio. I've also included a hack on backing up over ssh, to introduce
the novice user to the art of combining tools over a secure network connection.

You'll also find scripts that fellow users have created to get the most out of their favorite backup utility. Finally, there
are hacks that introduce some very useful open source third-party utilities.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 35 Back Up FreeBSD with SMBFS

 

A good backup can save the day when things go wrong. A bad—or missing—backup can ruin the whole
week.

Regular backups are vital to good administration. You can perform backups with hardware as basic as a SCSI tape drive
using 8mm tape cartridges or as advanced as an AIT tape library system using cartridges that can store up to 50 GB of
compressed data. But what if you don't have the luxury of dedicated hardware for each server?

Since most networks are comprised of multiple systems, you can archive data from one server across the network to
another. We'll back up a FreeBSD system using the tar and gzip archiving utilities and the smbutil and mount_smbfs
commands to transport that data to network shares. These procedures were tested on FreeBSD 4.6-STABLE and 5.1-
RELEASE.

4.2.1 Adding NETSMB Kernel Support

Since SMB is a network-aware filesystem, we need to build SMB support into the kernel. This means adding the proper
options lines to the custom kernel configuration file. For information on building a custom kernel, see [Hack #54], the
Building and Installing a Custom Kernel section (9.3) of the FreeBSD Handbook, and relevant information contained in
/usr/src/sys/i386/conf.

Add the following options under the makeoptions section:

options    NETSMB            # SMB/CIFS requester

options    NETSMBCRYPTO      # encrypted password support for SMB

options    LIBMCHAIN         # mbuf management library

options    LIBICONV

options    SMBFS

Once you've saved your changes, use the make buildkernel and make installkernel commands to build and install the new
kernel.

4.2.2 Establishing an SMB Connection with a Host System

The next step is to decide which system on the network to connect to. Obviously, the destination server needs to have
an active share on the network, as well as enough disk space available to hold your archives. It will also need a valid
user account with which you can log in. You'll probably also want to choose a system that's backed up regularly to
removable media. I'll use a machine named smbserver1.

The smbutil and mount_smbfs commands both come standard with the base install of
FreeBSD. Their only requirements are the five kernel options listed in the preceding
section.

Once you have chosen the proper host, make an SMB connection manually with the smbutil login command. This
connection will remain active, allowing you to interact with the SMB server, until you issue the smbutil logout command.
So, to log in:

# smbutil login //jwarner@smbserver1

Password:

Connected to smbserver1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Connected to smbserver1

And to log out:

# smbutil logout //jwarner@smbserver1

Password:

Connection unmarked as permanent and will

be closed when possible

4.2.3 Mounting a Share

Once you're sure you can manually initiate a connection with the host system, create a mount point where you can
mount the remote share. I'll create a mount point directory called /backup:

# mkdir /backup

Next, reestablish a connection with the host system and mount its share:

# smbutil login //jwarner@smbserver1

Password:

Connected to smbserver1

# mount_smbfs -N //jwarner@smbserver1/sharename /backup

Note that I used the -N switch to mount_smbfs to avoid having to supply a password a second time. If you prefer to be
prompted for a password when mounting the share, simply omit the -N switch.

4.2.4 Archiving and Compressing Data with tar and gzip

After connecting to the host server and mounting its network share, the next step is to back up and copy the necessary
files. You can get as complicated as you like, but I'll create a simple shell script, bkup, inside the mounted share that
compresses important files and directories.

This script will make compressed archives of the /boot, /etc, /home, and /usr/local/etc directories. Add to or edit this
list as you see fit. At a minimum, I recommend including the /etc and /usr/local/etc directories, as they contain
important configuration files. See man hier for a complete description of the FreeBSD directory structure.

#!/bin/sh

# script that backs up the following four directories:

tar cvvpzf boot.tar.gz /boot

tar cvvpzf etc.tar.gz  /etc

tar cvvpzf home.tar.gz /home

tar cvvpzf usr_local_etc.tar.gz /usr/local/etc

This script is an example to get you started. There are many ways to use tar. Read man 1
tar carefully, and tailor the script to suit your needs.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Be sure to make this file executable:

# chmod 755 bkup

Run the script to create the archives:

# ./bkup

tar: Removing leading / from absolute path names in the archive.

drwxr-xr-x root/wheel        0 Jun 23 18:19 2002 boot/

drwxr-xr-x root/wheel        0 May 11 19:46 2002 boot/defaults/

-r--r--r-- root/wheel    10957 May 11 19:46 2002 boot/defaults/loader.conf

-r--r--r-- root/wheel      512 Jun 23 18:19 2002 boot/mbr

(snip)

After the script finishes running, you'll have *.tar.gz files of the directories you chose to archive:

# ls | more

bkup

boot.tar.gz

etc.tar.gz

home.tar.gz

usr_local_etc.tar.gz

Once you've tested your shell script manually and are happy with your results, add it to the cron scheduler to run on
scheduled days and times.

Remember, how you choose to implement your backups isn't important—backing up regularly is. Facing the problem of
deleted or corrupted data isn't a matter of "if" but rather a matter of "when." This is why good backups are essential.

4.2.5 Hacking the Hack

Things to consider when modifying the script to suit your own purposes:

Add entries to automatically mount and unmount the share (see [Hack #68] for an example).

Use your backup utility of choice. You're not limited to just tar!

4.2.6 See Also

man 1 smbutil

man 8 mount_smbfs

man 7 hier

man 1 tar

man 1 gzip

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man 1 gzip

The Building and Installing a Custom Kernel section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-building.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 36 Create Portable POSIX Archives

 

Create portable tar archives with pax.

Some POSIX operating systems ship with GNU tar as the default tar utility (NetBSD and QNX6, for example). This is
problematic because the GNU tar format is not compatible with other vendors' tar implementations. GNU is an acronym
for "GNU's not UNIX"—in this case, GNU's not POSIX either.

4.3.1 GNU Versus POSIX tar

For filenames or paths longer than 100 characters, GNU uses its own @LongName tar format extension. Some vendors'
tar utilities will choke on the GNU extensions. Here is what Solaris's archivers say about such an archive:

% pax -r < gnu-archive.tar

pax: ././@LongLink : Unknown filetype

% tar xf gnu-archive.tar

tar: directory checksum error

There definitely appears to be a disadvantage with the distribution of non-POSIX archives. A solution is to use pax to
create your tar archives in the POSIX format. I'll also provide some tips about using pax's features to compensate for
the loss of some parts of GNU tar's extended feature set.

4.3.2 Replacing tar with pax

The NetBSD and QNX6 pax utility supports a tar interface and can also read the @LongName GNU tar format extension.
You can use pax as your tar replacement, since it can read your existing GNU-format archives and can create POSIX
archives for future backups. Here's how to make the quick conversion.

First, replace /usr/bin/tar. That is, rename GNU tar and save it in another directory, in case you ever need to restore
GNU tar to its previous location:

# mv /usr/bin/tar /usr/local/bin/gtar

Next, create a symlink from pax to tar. This will allow the pax utility to emulate the tar interface if invoked with the tar
name:

# ln -s /bin/pax /usr/bin/tar

Now when you use the tar utility, your archives will really be created by pax.

4.3.3 Compress Archives Without Using Intermediate Files

Let's say you're on a system that doesn't have issues with tar. Why else would you consider using pax as your backup
solution?

For one, you can use pax and pipelines to create compressed archives, without using intermediate files. Here's an
example pipeline:

% find /home/kirk -name '*.[ch]' | pax -w | pgp -c

The pipeline's first stage uses find to generate the exact list of files to archive. When using tar, you will often create the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The pipeline's first stage uses find to generate the exact list of files to archive. When using tar, you will often create the
file list using a subshell. Unfortunately, the subshell approach can be unreliable. For example, this user has so much
source code that the complete file list does not fit on the command line:

% tar cf kirksrc.tar $(find /home/kirk -name '*.[ch]')

/bin/ksh: tar: Argument list too long

However, in more cases, the pipeline approach will work as expected.

During the second stage, pax reads the list of files from stdin and writes the archive to stdout. The pax found on all of
the BSDs has built-in gzip support, so you can also compress the archive during this stage by adding the -z argument.

When creating archives, invoke pax without the -v (verbose) argument. This way, if there are any pax error messages,
they won't get lost in the extra output.

The third stage compresses and/or encrypts the archive. An intermediate tar archive isn't required as the utility reads its
data from the pipeline. This example uses pgp, the Pretty Good Privacy encryption system, which can be found in the
ports collection.

4.3.4 Attribute-Preserving Copies

POSIX provides two utilities for copying file hierarchies: cp -R and pax -rw. For regular users, cp -R is the common
method. But for administrative use, pax -rw preserves more of the original file attributes, including hard-link counts and
file access times. pax -rw also gives you a better copy of the original file hierarchy.

For an example, let's back up three executables. Note that egrep, fgrep, and grep are all hard links to the same
executable.The link count is three, and all have the same inode number. ls -li displays the inode number in column 1
and the link count in column 3:

# ls -il /usr/bin/egrep /usr/bin/fgrep /usr/bin/grep

31888 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 /usr/bin/egrep

31888 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 /usr/bin/fgrep

31888 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 /usr/bin/grep

With pax -rw, we will create one executable with the same date as the original:

# pax -rw /usr/bin/egrep /usr/bin/fgrep /usr/bin/grep /tmp/

# ls -il /tmp/usr/bin/

47 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 egrep

47 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 fgrep

47 -r-xr-xr-x  3 root  wheel  73784 Sep  8  2002 grep

Can we do the same thing using cp -R? Nope. Instead, we create three new files, each with a unique inode number, a
link count of one, and a new date:

# rm /tmp/usr/bin/*

# cp -R /usr/bin/egrep /usr/bin/fgrep /usr/bin/grep /tmp/usr/bin/

# ls -il /tmp/usr/bin/

49 -r-xr-xr-x  1 root  wheel  73784 Dec 19 11:26 egrep

48 -r-xr-xr-x  1 root  wheel  73784 Dec 19 11:26 fgrep

47 -r-xr-xr-x  1 root  wheel  73784 Dec 19 11:26 grep

4.3.5 Rooted Archives and the Substitution Argument

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you have ever used GNU tar and received this message:

tar: Removing leading `/' from absolute path names in the archive

then you were using a tar archive that was rooted, where the files all had absolute paths starting with the forward slash
(/). It is not a good idea to clobber existing files unintentionally with foreign binaries, which is why the GNU tar utility
automatically strips the leading / for you.

To be safe, you want your unarchiver to create files relative to your current working directory. Rooted archives try to
violate this rule by creating files relative to the root of the filesystem, ignoring the current working directory. If that
archive contained /etc/passwd, unarchiving it could replace your current password file with a foreign copy. You may be
surprised when you cannot log into your system anymore!

You can use the pax substitution argument to remove the leading /. This will ensure that the unarchived files will be
created relative to your current working directory, instead of at the root of your filesystem:

# pax -A -r -s '-^/--' < rootedarchive.tar

Here, the -A argument requests that pax not strip the leading / automatically, as we want to do this ourselves. This
argument is required only to avoid a bug in the NetBSD pax implementation that interferes with the -s argument. We
also want pax to unarchive the file, so we pass the -r argument.

The -s argument specifies an ed-style substitution expression to be performed on the destination pathname. In this
example, the leading / will be stripped from the destination paths. See man ed for more information.

If we used the traditional / delimiter, the substitution expression would be /^\///. (The second / isn't a delimiter, so it
has to be escaped with a \.) You will find that / is the worst delimiter, because you have to escape all the slashes found
in the paths. Fortunately, you can choose another delimiter. Pick one that isn't present in the paths, to minimize the
number of escape characters you have to add. In the example, we used the - character as the delimiter, and therefore
no escapes were required.

The substitution argument can be used to rename files for a beta software release, for example. Say you develop
X11R6 software and have multiple development versions on your box:

/usr/X11R6.saturday

/usr/X11R6.working

/usr/X11R6.notworking

/usr/X11R6.released

and you want to install the /usr/X11R6.working directory as usr/X11R6 on the beta system:

# pax -A -w -s '-^/usr/X11R6.working-usr/X11R6-' /usr/X11R6.working \ 

  > /tmp/beta.tar

This time, the -s argument specifies a substitution expression that will replace the beginning of the path
/usr/X11R6.working with usr/X11R6 in the archive.

4.3.6 Useful Resources for Multiple Volume Archives

POSIX does not specify the format of multivolume archive headers, meaning that every archiver may use a different
intervolume header format. If you have a lot of multivolume tar archives and plan to switch to a different tar
implementation, you should test whether you can still recover your old multivolume archives.

This practice may have been more common when Minix/QNX4 users archived their 20 MB hard disks to a stack of floppy
disks. Minix/QNX4 users had the vol utility to handle multiple volumes; instead of adding the multivolume functionality
to the archiver itself, it was handled by a separate utility. You should be able to switch archiver implementations
transparently because vol did the splitting, not the archiver.

The vol utility performs the following operations:

At the end-of-media, prompts for the next volume

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


At the end-of-media, prompts for the next volume

Verifies the ordering of the volumes

Concatenates the multiple volumes

Unfortunately, the vol utility isn't part of the NetBSD package collection. If you create a lot of multivolume archives, you
may want to look into porting one of the following utilities:

vol

Creates volume headers for tar; developed by Brian Yost and available at http://groups.google.com/groups?
selm=80%40mirror.UUCP&output=gplain

multivol

Provides multiple volume support; created by Marc Schaefer and available at
http://www.ibiblio.org/pub/Linux/system/backup/multivol-2.1.tar.bz2

4.3.7 See Also

man pax

NetBSD's PGP package (ftp://ftp.NetBSD.org/pub/NetBSD/packages/pkgsrc/security/pgp2/README.html)

The GNU tar manpage on GNU tar and POSIX tar
(http://www.gnu.org/software/tar/manual/html_node/tar_117.html)

The pax -A bug report and fix (http://www.NetBSD.org/cgi-bin/query-pr-single.pl?number=23776)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 37 Interactive Copy

 

When cp alone doesn't quite meet your copy needs.

The cp command is easy to use, but it does have its limitations. For example, have you ever needed to copy a batch of
files with the same name? If you're not careful, they'll happily overwrite each other.

4.4.1 Finding Your Source Files

I recently had the urge to find all of the scripts on my system that created a menu. I knew that several ports used
scripts named configure and that some of those scripts used dialog to provide a menu selection.

It was easy enough to find those scripts using find:

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \;

/usr/ports/audio/mbrolavox/scripts/configure

/usr/ports/devel/kdesdk3/work/kdesdk-3.2.0/configure

/usr/ports/emulators/vmware2/scripts/configure

(snip)

This command asks find to start in /usr/ports, looking for files -named configure. For each found file, it should search for
the word dialog using -exec grep. The -l flag tells grep to list only the names of the matching files, without including the
lines that match the expression. You may recognize the /dev/null { } \; from [Hack #13] .

Normally, I could tell cp to use those found files as the source and to copy them to the specified destination. This is
done by enclosing the find command within a set of backticks (`), located at the far top left of your keyboard. Note what
happens, though:

% mkdir ~/scripts

% cd ~/scripts

% cp `find /usr/ports -name configure -exec grep -l "dialog" \ 

    /dev/null {  } \;` .

% ls ~/scripts

configure

Although each file that I copied had a different pathname, the filename itself was configure. Since each copied file
overwrote the previous one, I ended up with one remaining file.

4.4.2 Renaming a Batch of Source Files

What's needed is to rename those source files as they are copied to the destination. One approach is to replace the
slash (/) in the original file's pathname with a different character, resulting in a unique filename that still reflects the
source of that file.

As we saw in [Hack #15], sed is designed to do such replacements. Here's an approach:

% pwd

/usr/home/dru/scripts

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \; \ 

    -exec sh -c 'cp {  } `echo {  } | sed s:/:=:g`' \;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    -exec sh -c 'cp {  } `echo {  } | sed s:/:=:g`' \;

% ls

=usr=ports=audio=mbrolavox=scripts=configure

=usr=ports=devel=kdesdk3=work=kdesdk-3.2.0=configure

=usr=ports=emulators=vmware2=scripts=configure

(snip)

This invocation of find starts off the same as my original search. It then adds a second -exec, which passes an argument
-c as input to the sh shell. The shell will cp the source files (specified by { }), but only after sed has replaced each slash
in the pathname with an equals sign (=). Note that I changed the sed delimiter from the default slash to the colon (:) so
I didn't have to escape my / string. You don't have to use = as the new character; choose whatever suits your
purposes.

awk can also perform this renaming feat. The following command is more or less equivalent to the previous command:

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \; \

    | awk '{dst=$0;gsub("/","=",dst); print "cp",$0,dst}' | sh

4.4.3 Renaming Files Interactively

Depending upon how many files you plan on copying over and how picky you are about their destination names, you
may prefer to do an interactive copy.

Despite its name, cp's interactive switch (-i) will fail miserably in my scenario:

% cp -i `find /usr/ports -name configure -exec grep -l "dialog" \

    /dev/null {  } \;` .

overwrite ./configure? (y/n [n]) n

not overwritten

overwrite ./configure? (y/n [n])

(snip)

Since each file is still named configure, my only choices are either to overwrite the previous file or to not copy over the
new file. However, both cpio and pax are capable of interactive copies. Let's start with cpio:

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \; \ 

    | cpio -o > ~/scripts/test.cpio && cpio -ir < ~/scripts/test.cpio

Here I've piped my find command to cpio. Normally, I would invoke cpio once in copy-pass mode. Unfortunately, that
mode doesn't support -r, the interactive rename switch. So, I directed cpio to send its output (-o >) to an archive named
~/scripts/test.cpio. Instead of piping that archive, I used && to delay the next cpio operation until the previous one
finishes. I then used -ir to perform an interactive copy in that archive so I could type in the name of each destination
file.

Here are the results:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Here are the results:

cpio: /usr/ports/audio/mbrolavox/scripts/configure: truncating inode number

cpio: /usr/ports/devel/kdesdk3/work/kdesdk-3.2.0/configure: truncating 

inode number

cpio: /usr/ports/emulators/vmware2/scripts/configure: truncating inode number

(snip other archive messages)

5136 blocks

rename /usr/ports/audio/mbrolavox/scripts/configure -> mbrolavox.configure

rename /usr/ports/devel/kdesdk3/work/kdesdk-3.2.0/configure -> 

kdesdk3.configure

rename /usr/ports/emulators/vmware2/scripts/configure -> vmware2.configure

(snip remaining rename operations)

5136 blocks

After creating the archive, cpio showed me the source name so I could rename the destination file. While requiring
interaction on my part, it does let me fine-tune exactly what I'd like to call each script. I must admit that my names are
much nicer than those containing all of the equals signs.

pax is even more efficient. In the preceding command, the first cpio has to wait until find completes, and the second cpio
has to wait until the first cpio finishes. Compare that to this command:

% find /usr/ports -name configure -exec grep -l "dialog" /dev/null {  } \; \

    | pax -rwi .

Here, I can pipe the results of find directly to pax, and pax has very user-friendly switches. In this command, I asked to
read and write interactively to the current directory. There's no temporary archive required, and everything happens at
once. Even better, pax starts working on the interaction before find finishes. Here's what it looks like:

ATTENTION: pax interactive file rename operation.

-rwxr-xr-x Nov 11 07:53 /usr/ports/audio/mbrolavox/scripts/configure

Input new name, or a "." to keep the old name, or a "return" to skip 

this file.

Input > mbrovalox.configure

Processing continues, name changed to: mbrovalox.configure

This repeats for each and every file that matched the find results.

4.4.4 See Also

man cp

man cpio

man pax

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 38 Secure Backups Over a Network

 

When it comes to backups, Unix systems are extremely flexible. For starters, they come with built-in utilities that are
just waiting for an administrator's imagination to combine their talents into a customized backup solution. Add that to
one of Unix's greatest strengths: its ability to see everything as a file. This means you don't even need backup
hardware. You have the ability to send your backup to a file, to a media, to another server, or to whatever is available.

As with any customized solution, your success depends upon a little forethought. In this scenario, I don't have any
backup hardware, but I do have a network with a 100 Mbps switch and a system with a large hard drive capable of
holding backups.

4.5.1 Initial Preparation

On the system with that large hard drive, I have sshd running. (An alternative to consider is the scponly shell; see [Hack
#63] ). I've also created a user and a group called rembackup:

# pw groupadd rembackup

# pw useradd rembackup -g rembackup -m -s /bin/csh

# passwd rembackup

Changing local password for rembackup

New Password:

Retype New Password:

#

If you're new to the pw command, the -g switch puts the user in the specified group (which must already exist), the -m
switch creates the user's home directory, and the -s switch sets the default shell. (There's really no good mnemonic;
perhaps no one remembers what, if anything, pw stands for.)

Next, from the system I plan on backing up, I'll ensure that I can ssh in as the user rembackup. In this scenario, the
system with the large hard drive has an IP address of 10.0.0.1:

% sshd -l rembackup 10.0.0.1

The authenticity of host '10.0.0.1 (10.0.0.1)' can't be established.

DSA key fingerprint is e2:75:a7:85:46:04:71:51:db:a8:9e:83:b1:5c:7a:2c.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.2.93' (DSA) to the list of known hosts. 

Password:

%

% exit

logout

Connection to 10.0.0.1 closed.

Excellent. Since I can log in as rembackup, it looks like both systems are ready for a test backup.

4.5.2 The Backup

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I'll start by testing my command at a command line. Once I'm happy with the results, I'll create a backup script to
automate the process.

# tar czvf - /usr/home | ssh rembackup@10.0.0.1 "cat > genisis_usr_home.tgz" 

usr/home/

usr/home/dru/

usr/home/dru/.cshrc

usr/home/dru/mail/

usr/home/mail/sent-mail

Password:

This tar command creates (c) a compressed (z) backup to a file (f) while showing the results verbosely (v). The minus
character (-) represents the specified file, which in this case is stdout. This allows me to pipe stdout to the ssh
command. I've provided /usr/home, which contains all of my users' home directories, as the hierarchy to back up.

The results of that backup are then piped (|) to ssh, which will send that output (via cat) to a compressed file called
genisis_usr_home.tgz in the rembackup user's home directory. Since that directory holds the backups for my network, I
chose a filename that indicates the name of the host, genisis, and the contents of the backup itself.

4.5.2.1 Automating the backup

Now that I can securely back up my users' home directories, I can create a script. It can start out as simple as this:

# more /root/bin/backup

#!/bin/sh

# script to backup /usr/home to backup server

tar czvf - /usr/home | ssh rembackup@10.0.0.1 "cat > genisis_usr_home.tgz"

However, whenever I run that script, I'll overwrite the previous backup. If that's not my intention, I can include the
date as part of the backup name:

tar czvf - /usr/home | ssh rembackup@10.0.0.1 "cat > \

    genisis_usr_home.`date +%d.%m.%y`.tgz"

Notice I inserted the date command into the filename using backticks. Now the backup file will include the day, month,
and year separated by dots, resulting in a filename like genisis_usr_home.21.12.03.tgz.

Once you're happy with your results, your script is an excellent candidate for a cron job.

4.5.3 See Also

man tar

man ssh

man pw

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 39 Automate Remote Backups

 

Make remote backups automatic and effortless.

One day, the IDE controller on my web server died, leaving the files on my hard disk hopelessly corrupted. I faced what
I had known in the back of my mind all along: I had not been making regular remote backups of my server, and the
local backups were of no use to me now that the drive was corrupted.

The reason for this, of course, is that doing remote backups wasn't automatic and effortless. Admittedly, this was no
one's fault but my own, but my frustration was sufficient enough that I decided to write a tool that would make
automated remote snapshots so easy that I wouldn't ever have to worry about it again. Enter rsnapshot.

4.6.1 Installing and Configuring rsnapshot

Installation on FreeBSD is a simple matter of:

# cd /usr/ports/sysutils/rsnapshot

# make install

I didn't include the clean target here, as I'd like to keep the work subdirectory, which includes some useful scripts.

If you're not using FreeBSD, see the original HOWTO at the project web site for detailed
instructions on installing from source.

The install process neither creates nor installs the config file. This means that there is absolutely no possibility of
accidentally overwriting a previously existing config file during an upgrade. Instead, copy the example configuration file
and make changes to the copy:

# cp /usr/local/etc/rsnapshot.conf.default /usr/local/etc/rsnapshot.conf

The rsnapshot.conf config file is well commented, and much of it should be fairly self-explanatory. For a full reference of
all the various options, please consult man rsnapshot.

rsnapshot uses the /.snapshots/ directory to hold the filesystem snapshots. This is referred to as the snapshot root. This
must point to a filesystem where you have lots of free disk space.

Note that fields are separated by tabs, not spaces. This makes it easier to specify file paths
with spaces in them.

4.6.1.1 Specifying backup intervals

rsnapshot has no idea how often you want to take snapshots. In order to specify how much data to save, you need to tell
rsnapshot which intervals to keep, and how many of each.

By default, a snapshot will occur every four hours, or six times a day (these are the hourly intervals). It will also keep a
second set of snapshots, taken once a day and stored for a week (or seven days):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


second set of snapshots, taken once a day and stored for a week (or seven days):

interval    hourly  6

interval    daily   7

Note that the hourly interval is specified first. This is very important, as the first interval line is assumed to be the
smallest unit of time, with each additional line getting successively bigger. Thus, if you add a yearly interval, it should
go at the bottom, and if you add a minutes interval, it should go before the hourly interval. It's also worth noting that
the snapshots are pulled up from the smallest interval to the largest. In this example, the daily snapshots are pulled
from the oldest hourly snapshot, not directly from the main filesystem.

The backup section tells rsnapshot which files you actually want to back up:

backup      /etc/      localhost/etc/

In this example, backup is the backup point, /etc/ is the full path to the directory we want to take snapshots of, and
localhost/etc/ is a subdirectory inside the snapshot root where the snapshots are stored. If you are taking snapshots of
several machines on one dedicated backup server, it's a good idea to use hostnames as directories to keep track of
which files came from which server.

In addition to full paths on the local filesystem, you can also back up remote systems using rsync over ssh. If you have
ssh enabled (via the cmd_ssh parameter), specify a path similar to this:

backup      backup@example.com:/etc/     example.com/etc/

This behaves fundamentally the same way as specifying local pathnames, but you must take a few extra things into
account:

The ssh daemon must be running on example.com.

You must have access to the specified account on the remote machine (in this case, the backup user on
example.com). See [Hack #38] for instructions on setting this up.

You must have key-based logins enabled for the specified user at example.com, without passphrases.

This backup occurs over the network, so it may be slower. Since this uses rsync, this is most noticeable during
the first backup. Depending on how much your data changes, subsequent backups should go much faster.

One thing you can do to mitigate the potential damage from a backup server breach is to
create alternate users on the client machines with their UIDs and GIDs set to 0, but with a
more restrictive shell, such as scponly [Hack #63] .

4.6.1.2 Preparing for script automation

With the backup_script parameter, the second column is the full path to an executable backup script, and the third
column is the local path in which you want to store it. For example:

backup_script      /usr/local/bin/backup_pgsql.sh     localhost/postgres/

You can find the backup_pgsql.sh example script in the utils/ directory of the source
distribution. Alternatively, if you didn't include the clean target when you installed the
FreeBSD port, the file will be located in /usr/ports/sysutils/rsnapshot/work/rsnapshot-
1.0.9/utils.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Your backup script only needs to dump its output into its current working directory. It can create as many files and
directories as necessary, but it should not put its files in any predetermined path. This is because rsnapshot creates a
temp directory, changes to that directory, runs the backup script, and then syncs the contents of the temp directory to
the local path you specified in the third column. A typical backup script might look like this:

#!/bin/sh

/usr/bin/mysqldump -uroot mydatabase > mydatabase.sql

/bin/chown 644 mydatabase.sql

There are a couple of example scripts in the utils/ directory of the rsnapshot source distribution to give you more ideas.

Remember that backup scripts will be invoked as the user running rsnapshot. Make sure
your backup scripts are not writable by anyone else.

4.6.1.3 Testing your config file

After making your changes, verify that the config file is syntactically valid and that all the supporting programs are
where you think they are:

# rsnapshot configtest

If all is well, the output should say Syntax OK. If there's a problem, it should tell you exactly what it is.

The final step to test your configuration is to run rsnapshot with the -t flag, for test mode. This will print out a verbose
list of the things it will do, without actually doing them. For example, to simulate an hourly backup:

# rsnapshot -t hourly

4.6.1.4 Scheduling rsnapshot

Now that you have your config file set up, it's time to schedule rsnapshot to run from cron. Add the following lines to
root's crontab:

0 */4 * * *       /usr/local/bin/rsnapshot hourly

30 23 * * *       /usr/local/bin/rsnapshot daily

4.6.2 The Snapshot Storage Scheme

All backups are stored within a configurable snapshot root directory. In the beginning it will be empty. rsnapshot creates
subdirectories for the various defined intervals. After a week, the directory should look something like this:

# ls -l /.snapshots/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls -l /.snapshots/

drwxr-xr-x    7 root     root         4096 Dec 28 00:00 daily.0

drwxr-xr-x    7 root     root         4096 Dec 27 00:00 daily.1

drwxr-xr-x    7 root     root         4096 Dec 26 00:00 daily.2

drwxr-xr-x    7 root     root         4096 Dec 25 00:00 daily.3

drwxr-xr-x    7 root     root         4096 Dec 24 00:00 daily.4

drwxr-xr-x    7 root     root         4096 Dec 23 00:00 daily.5

drwxr-xr-x    7 root     root         4096 Dec 22 00:00 daily.6

drwxr-xr-x    7 root     root         4096 Dec 29 00:00 hourly.0

drwxr-xr-x    7 root     root         4096 Dec 28 20:00 hourly.1

drwxr-xr-x    7 root     root         4096 Dec 28 16:00 hourly.2

drwxr-xr-x    7 root     root         4096 Dec 28 12:00 hourly.3

drwxr-xr-x    7 root     root         4096 Dec 28 08:00 hourly.4

drwxr-xr-x    7 root     root         4096 Dec 28 04:00 hourly.5

Each of these directories contains a full backup of that point in time. The destination directory paths you specified as
the backup and backup_script parameters are placed directly under these directories. In the example:

backup          /etc/           localhost/etc/

the /etc/ directory will initially back up into /.snapshots/hourly.0/localhost/etc/.

Each subsequent time rsnapshot is run with the hourly command, it will rotate the hourly.X directories, "copying" the
contents of the hourly.0 directory (using hard links) into hourly.1.

When rsnapshot daily runs, it will rotate all the daily.X directories, then copy the contents of hourly.5 into daily.0.

hourly.0 will always contain the most recent snapshot, and daily.6 will always contain a snapshot from a week ago.
Unless the files change between snapshots, the full backups are really just multiple hard links to the same files. This is
how rsnapshot uses space so efficiently. If the file changes at any point, the next backup will unlink the hard link in
hourly.0, replacing it with a brand new file. This will now use twice the disk space it did before, but it is still considerably
less space than 13 full, unique copies would occupy.

Remember, if you are using different intervals than the ones in this example, the first interval listed is the one that gets
updates directly from the main filesystem. All subsequently listed intervals pull from the previous snapshots.

4.6.3 Accessing Snapshots

When rsnapshot first runs, it will create the configured snapshot_root directory. It assigns this directory the permissions
0700 since the snapshots will probably contain files owned by all sorts of users on your system.

The simplest but least flexible solution is to disallow access to the snapshot root altogether. The root user will still have
access, of course, and will be the only one who can pull backups. This may or may not be desirable, depending on your
situation. For a small setup, this may be sufficient.

If users need to be able to pull their own backups, you will need to do a little extra work up front. The best option
seems to be creating a container directory for the snapshot root with 0700 permissions, giving the snapshot root
directory 0755 permissions, and mounting the snapshot root for the users as read-only using NFS or Samba.

Let's explore how to do this using NFS on a single machine. First, set the snapshot_root variable in rsnapshot.conf:

snapshot_root       /usr/.private/.snapshots/

Then, create the container directory, the real snapshot root, and a read-only mount point:

# mkdir /usr/.private/

# mkdir /usr/.private/.snapshots/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# mkdir /usr/.private/.snapshots/

# mkdir /.snapshots/

Set the proper permissions on these new directories:

# chmod 0700 /usr/.private/

# chmod 0755 /usr/.private/.snapshots/

# chmod 0755 /.snapshots/

In /etc/exports, add /usr/.private/.snapshots/ as a read-only NFS export:

/usr/.private/.snapshots/  127.0.0.1(ro)

If your version of NFS supports it, include the no_root_squash option. (Place it within the
brackets after ro with a comma—not a space—as the separator.) This option allows the
root user to see all the files within the read-only export.

In /etc/fstab, mount /usr/.private/.snapshots/ read-only under /.snapshots/:

localhost:/usr/.private/.snapshots/   /.snapshots/   nfs    ro   0 0

Restart your NFS daemon and mount the read-only snapshot root:

# /etc/rc.d/nfsd restart

# mount /.snapshots/

To test this, try adding a file as the superuser:

# touch /.snapshots/testfile

This should fail with insufficient permissions. This is what you want. It means that your users won't be able to mess
with the snapshots either.

Users who wish to recover old files can go into the /.snapshots directory, select the interval they want, and browse
through the filesystem until they find the files they are looking for. NFS will prevent them from making modifications,
but they can copy anything that they had permission to read in the first place.

4.6.4 See Also

man rsnapshot

The original rsnapshot HOWTO (http://www.rsnapshot.org/rsnapshot-HOWTO.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 40 Automate Data Dumps for PostgreSQL Databases

 

Building your own backup utility doesn't have to be scary.

PostgreSQL is a robust, open source database server. Like most database servers, it provides utilities for creating
backups. PostgreSQL's primary tools for creating backup files are pg_dump and pg_dumpall. However, if you want to
automate your database backup processes, these tools have a few limitations:

pg_dump dumps only one database at a time.

pg_dumpall dumps all of the databases into a single file.

pg_dump and pg_dumpall know nothing about multiple backups.

These aren't criticisms of the backup tools—just an observation that customization will require a little scripting. Our
resulting script will backup multiple systems, each to their own backup file.

4.7.1 Creating the Script

This script uses Python and its ability to execute other programs to implement the following backup algorithm:

1. Change the working directory to a specified database backup directory.

2. Rename all backup files ending in .gz so that they end in .gz.old. Existing files ending in .gz.old will be
overwritten.

3. Clean up and analyze all PostgreSQL databases using its vacuumdb command.

4. Get a current list of databases from the PostgreSQL server.

5. Dump each database, piping the results through gzip, into its own compressed file.

Why Python? My choice is one of personal preference; this task is achievable in just about any scripting language.
However, Python is cross-platform and easy to learn, and its scripts are easy to read.

4.7.2 The Code

#!/usr/local/bin/python

# /usr/local/bin/pg2gz.py

# This script lists all PostgreSQL

# databases and pipes them separately

# through gzip into .gz files.

# INSTRUCTIONS

# 1.  Review and edit line 1 to reflect the location

#     of your python command file.

# 2.  Redefine the save_dir variable (on line 22) to

#     your backup directory.

# 3.  To automate the backup process fully, consider

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# 3.  To automate the backup process fully, consider

#     scheduling the regular execution of this script

#     using cron.

import os, string

# Redefine this variable to your backup directory.

# Be sure to include the slash at the end.

save_dir = '/mnt/backup/databases/'

# Rename all *.gz backup files to *.gz.old.

curr_files = os.listdir(save_dir)

for n in curr_files:

        if n[len(n)-2:] =  = 'gz':

                os.popen('mv ' + save_dir + n + " " + save_dir + n + '.old')

        else:

                pass

# Vacuum all databases

os.popen('vacuumdb -a -f -z')

# 'psql -l' produces a list of PostgreSQL databases.

get_list = os.popen('psql -l').readlines( )

# Exclude header and footer lines.

db_list = get_list[3:-2]

# Extract database names from first element of each row.

for n in db_list:

        n_row = string.split(n)

        n_db = n_row[0]

        # Pipe database dump through gzip

        # into .gz files for all databases

        # except template*.

        if n_db =  = 'template0':

                pass

        elif n_db =  = 'template1':

                pass

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                pass

        else:

                os.popen('pg_dump ' + n_db + ' | gzip -c > ' + save_dir + 

                          n_db + '.gz')

4.7.3 Running the Hack

The script assumes that you have a working installation of PostgreSQL. You'll also need to install Python, which is
available through the ports collection or as a binary package. The Python modules used are installed by default.

Double-check the location of your Python executable using:

% which python

/usr/local/bin/python

and ensure the first line of the script reflects your location. Don't forget to make the script executable using chmod +x.

On line 22 of the script, redefine the sav_dir variable to reflect the location of your backup directory. As is, the script
assumes a backup directory of /mnt/backup/databases/.

You'll probably want to add the script to the pgsql user's crontab for periodic execution. To schedule the script for
execution, log in as pgsql or, as the superuser, su to pgsql. Once you're acting as pgsql, execute:

% crontab -e

to open the crontab file in the default editor.

Given the following crontab file, /usr/local/bin/pg2gz.py will execute at 4 AM every Sunday.

# more /var/cron/tabs/pgsql

SHELL=/bin/sh

PATH=/var/cron/tabs:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin

#minute    hour    mday    month    wday     command

0          4       *       *        0        /usr/local/bin/pg2gz.py

4.7.4 See Also

The PostgreSQL web site (http://www.postgresql.org/)

The Python web site (http://www.python.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 41 Perform Client-Server Cross-Platform Backups with Bacula

 

Don't let the campy name fool you. Bacula is a powerful, flexible, open source backup program. .

Having problems finding a backup solution that fits all your needs? One that can back up both Unix and Windows
systems? That is flexible enough to back up systems with irregular backup needs, such as laptops? That allows you to
run scripts before or after the backup job? That provides browsing capabilities so you can decide upon a restore point?
Bacula may be what you're looking for.

4.8.1 Introducing Bacula

Bacula is a client-server solution composed of several distinct parts:

Director

The Director is the most complex part of the system. It keeps track of all clients and files to be backed up. This
daemon talks to the clients and to the storage devices.

Client/File Daemon

The Client (or File) Daemon runs on each computer which will be backed up by the Director. Some other backup
solutions refer to this as the Agent.

Storage Daemon

The Storage Daemon communicates with the backup device, which may be tape or disk.

Console

The Console is the primary interface between you and the Director. I use the command-line Console, but there
is also a GNOME GUI Console.

Each File Daemon will have an entry in the Director configuration file. Other important entries include FileSets and Jobs.
A FileSet identifies a set of files to back up. A Job specifies a single FileSet, the type of backup (incremental, full, etc.),
when to do the backup, and what Storage Device to use. Backup and restore jobs can be run automatically or manually.

4.8.2 Installation

Bacula stores details of each backup in a database. You can use either SQLite or MySQL, and starting with Bacula
Version 1.33, PostgreSQL. Before you install Bacula, decide which database you want to use.

FreeBSD 4.x (prior to 4.10-RELEASE) and FreeBSD 5.x (Version 5.2.1 and earlier) have a
pthreads bug that could cause you to lose data. Refer to platform/freebsd/pthreads-fix.txt
in your Bacula source directory for full details.

The existing Bacula documentation provides detailed installation instructions if you're installing from source. To install
instead the SQLite version of the FreeBSD port:

# cd /usr/ports/sysutils/bacula

# make install

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Or, if you prefer to install the MySQL version:

# cd /usr/ports/sysutils/bacula

# make -DWITH_MYSQL install

Don't use the clean target with your make command, because there are some scripts in the
work directory you'll need to use.

4.8.3 Configuration Files

Bacula installs several configuration files that should work for your environment with few modifications.

4.8.3.1 File Daemon on the backup client

The first configuration file, /usr/local/etc/bacula-fd.conf, is for the File Daemon. This file needs to reside on each
machine you want to back up. For security reasons, only the Directors specified in this file will be able to communicate
with this File Daemon. The name and password specified in the Director resource must be supplied by any connecting
Director.

You can specify more than one Director { } resource. Make sure the password matches the one in the Client resource in
the Director's configuration file.

The FileDaemon { } resource identifies this system and specifies the port on which it will listen for Directors. You may
have to create a directory manually to match the one specified by the Working Directory.

4.8.3.2 Storage Daemon on the backup server

The next configuration file, /usr/local/etc/bacula-sd.conf, is for the Storage Daemon. The default values should work
unless you need to specify additional storage devices.

As with the File Daemon, the Director { } resource specifies the Director(s) that may contact this Storage Daemon. The
password must match that found in the Storage resource in the Director's configuration file.

4.8.3.3 Director on the backup server

The Director's configuration is by necessity the largest of the daemons. Each Client, Job, FileSet, and Storage Device is
defined in this file.

In the following example configuration, I've defined the Job Client1 to back up the files defined by the FileSet Full Set on
a laptop. The backup will be performed to the File storage device, which is really a disk located at laptop.example.org.

This isn't an optimal solution for a real backup, as I'm just backing up files from the laptop
to somewhere else on the laptop. It is sufficient for demonstration and testing, though.

# more /usr/local/etc/bacula-dir.conf

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# more /usr/local/etc/bacula-dir.conf

  Director {

    Name                    = laptop-dir

    DIRport                 = 9101

    QueryFile               = "/usr/local/etc/query.sql"

    WorkingDirectory        = "/var/db/bacula"

    PidDirectory            = "/var/run"

    Maximum Concurrent Jobs = 1

    Password                = "lLftflC4QtgZnWEB6vAGcOuSL3T6n+P7jeH+HtQOCWwV"

    Messages                = Standard

  }

   Job {

    Name            = "Client1"

    Type            = Backup

    Client          = laptop-fd

    FileSet         = "Full Set"

    Schedule        = "WeeklyCycle"

    Storage         = File

    Messages        = Standard

    Pool            = Default

    Write Bootstrap = "/var/db/bacula/Client1.bsr"

    Priority        = 10

  }

  FileSet {

    Name = "Full Set"

    Include = signature=MD5 {

      /usr/ports/sysutils/bacula/work/bacula-1.32c

    }

  # If you backup the root directory, the following two excluded

  #   files can be useful

  #

    Exclude = { /proc /tmp /.journal /.fsck }

  }

  Client {

    Name           = laptop-fd

    Address        = laptop.example.org

    FDPort         = 9102

    Catalog        = MyCatalog

    Password       = "laptop-client-password"

    File Retention = 30 days

    Job Retention  = 6 months

    AutoPrune      = yes

  }

  # Definition of file storage device

  Storage {

    Name       = File

    Address    = laptop.example.org

    SDPort     = 9103

    Password   = "TlDGBjTWkjTS/0HNMPF8ROacI3KlgIUZllY6NS7+gyUp"

    Device     = FileStorage

    Media Type = File

  }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  }

Note that the password given by any connecting Console must match the one here.

4.8.4 Database Setup

Now that you've modified the configuration files to suit your needs, use Bacula's scripts to create and define the
database tables that it will use.

To set up for MySQL:

# cd /usr/ports/sysutils/bacula/work/bacula-1.32c/src/cats

# ./grant_mysql_privileges

# ./create_mysql_database

# ./make_mysql_tables

If you have a password set for the MySQL root account, add -p to these commands and you will be prompted for the
password. You now have a working database suitable for use by Bacula.

4.8.5 Testing Your Tape Drive

Some tape drives are not standard. They require their own proprietary software and can be temperamental when used
with other software. Regardless of what software it uses, each drive model can have its own little quirks that need to be
catered to. Fortunately, Bacula comes with btape, a handy little utility for testing your drive.

My tape drive is at /dev/sa1. Bacula prefers to use the non-rewind variant of the device, but it can handle the raw
variant as well. If you use the rewinding device, then only one backup job per tape is possible. This command will test
the non-rewind device /dev/nrsa1:

# /usr/local/sbin/btape -c /usr/local/etc/bacula-sd.conf /dev/nrsa1

4.8.6 Running Without Root

It is a good idea to run daemons with the lowest possible privileges. The Storage Daemon and the Director Daemon do
not need root permissions. However, the File Daemon does, because it needs to access all files on your system.

In order to run daemons with nonroot accounts, you need to create a user and a group. Here, I used vipw to create the
user. I selected a user ID and group ID of 1002, as they were unused on my system.

bacula:*:1002:1002::0:0:Bacula Daemon:/var/db/bacula:/sbin/nologin

I also added this line to /etc/group:

bacula:*:1002:

The bacula user (as opposed to the Bacula daemon) will have a home directory of /var/db/bacula, which is the default
location for the Bacula database.

Now that you have both a bacula user and a bacula group, you can secure the bacula home directory by issuing this
command:

# chown -R bacula:bacula /var/db/bacula/

4.8.7 Starting the Bacula Daemons

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To start the Bacula daemons on a FreeBSD system, issue the following command:

# /usr/local/etc/rc.d/bacula.sh start

To confirm they are all running:

# ps auwx | grep bacula

root 63416 0.0 0.3 2040 1172 ?? Ss 4:09PM 0:00.01

    /usr/local/sbin/bacula-sd -v -c /usr/local/etc/bacula-sd.conf

root 63418 0.0 0.3 1856 1036 ?? Ss 4:09PM 0:00.00

    /usr/local/sbin/bacula-fd -v -c /usr/local/etc/bacula-fd.conf

root 63422 0.0 0.4 2360 1440 ?? Ss 4:09PM 0:00.00

    /usr/local/sbin/bacula-dir -v -c /usr/local/etc/bacula-dir.conf

4.8.8 Using the Bacula Console

The console is the main interface through which you run jobs, query system status, and examine the Catalog contents,
as well as label, mount, and unmount tapes. There are two consoles available: one runs from the command line, and
the other is a GNOME GUI. I will concentrate on the command-line console.

To start the console, I use this command:

#  /usr/local/sbin/console -c /usr/local/etc/console.conf

Connecting to Director laptop:9101

1000 OK: laptop-dir Version: 1.32c (30 Oct 2003)

*

You can obtain a list of the available commands with the help command. The status all command is a quick and easy way
to verify that all components are up and running. To label a Volume, use the label command.

Bacula comes with a preset backup job to get you started. It will back up the directory from which Bacula was installed.
Once you get going and have created your own jobs, you can safely remove this job from the Director configuration file.

Not surprisingly, you use the run command to run a job. Once the job runs, the results will be sent to you via email,
according to the Messages resource settings within your Director configuration file.

To restore a job, use the restore command. You should choose the restore location carefully and ensure there is
sufficient disk space available.

It is easy to verify that the restored files match the original:

# diff -ruN \

  /tmp/bacula-restores/usr/ports/sysutils/bacula/work/bacula-1.32c \

  /usr/ports/sysutils/bacula/work/bacula-1.32c

#

4.8.9 Creating Backup Schedules

For my testing, I wanted to back up files on my Windows XP machine every hour. I created this schedule:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For my testing, I wanted to back up files on my Windows XP machine every hour. I created this schedule:

Schedule {

  Name = "HourlyCycle"

  Run  = Full 1st sun at 1:05

  Run  = Differential 2nd-5th sun at 1:05

  Run  = Incremental Hourly

}

Any Job that uses this schedule will be run at the following times:

A full backup will be done on the first Sunday of every month at 1:05 AM.

A differential backup will be run on the 2nd, 3rd, 4th, and 5th Sundays of every month at 1:05 AM.

Every hour, on the hour, an incremental backup will be done.

4.8.10 Creating a Client-only Install

So far we have been testing Bacula on the server. With the FreeBSD port, installing a client-only version of Bacula is
easy:

# cd /usr/ports/sysutils/bacula

# make -DWITH_CLIENT_ONLY install

You will also need to tell the Director about this client by adding a new Client resource to the Director configuration file.
You will also want to create a Job and FileSet resource.

When you change the Bacula configuration files, remember to restart the daemons:

# /usr/local/etc/rc.d/bacula.sh restart

Stopping the Storage daemon

Stopping the File daemon

Stopping the Director daemon

Starting the Storage daemon

Starting the File daemon

Starting the Director daemon

#

4.8.11 See Also

The Bacula web site (http://www.bacula.org/)

http://www.onlamp.com/pub/a/onlamp/2004/01/09/bacula.html (the original Bacula article from ONLamp)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 4. Backing Up
Introduction

Section 35.  Back Up FreeBSD with SMBFS

Section 36.  Create Portable POSIX Archives

Section 37.  Interactive Copy

Section 38.  Secure Backups Over a Network

Section 39.  Automate Remote Backups

Section 40.  Automate Data Dumps for PostgreSQL Databases

Section 41.  Perform Client-Server Cross-Platform Backups with Bacula

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
You probably spend most of your time accessing servers on the Internet or on your own network. In fact, networking
has become so prevalent, it's becoming increasingly difficult to tolerate even short periods of network outages.

This chapter contains many ideas for accessing networking services when the conventional avenues seem to be
unavailable. Have you ever wanted to train your system to notify you of its new network configuration when its primary
link becomes unavailable? Would you like to check your email from a system that doesn't contain a preconfigured email
client? How can you maintain network connectivity when your ISP's DHCP server no longer recognizes your DHCP
client?

You'll also gain insight into how some of the networking services and tools we often take for granted work. Become a
tcpdump guru—or at least lose the intimidation factor. Understand your DNS messages and how to troubleshoot your
DNS servers. Tame your sendmail daemon.

Finally, meet two excellent open source utilities that allow you to perform routine tasks simultaneously on all of your
servers.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 50 Hold Email for Later Delivery

 

Control when sendmail uses an intermittent Internet connection.

The default sendmail configuration assumes that you have a constant network connection. What if you're on a dial-up
system and want to be able to work on emails without causing your modem to dial up immediately? In this scenario,
you want to queue your sent messages to send later, the next time you go online.

5.10.1 Configuring sendmail Queueing

Fortunately, sendmail has a "hold expensive" function designed for this purpose. To activate it, add the following lines to
the /etc/mail/<hostname>.mc file:

define(`confCON_EXPENSIVE', `True')dnl

MODIFY_MAILER_FLAGS(`RELAY', `+e')dnl

MODIFY_MAILER_FLAGS(`SMTP', `+e')dnl

MODIFY_MAILER_FLAGS(`ESMTP', `+e')dnl

MODIFY_MAILER_FLAGS(`SMTP8', `+e')dnl

define(`confTO_QUEUEWARN', `12h')dnl

The first line enables the feature. The next four lines add the letter e to the flags for each named mailer, to indicate that
it is "expensive" and that email should first be queued rather than immediately delivered. The last line just extends the
length of time the system will wait before it warns you that your message hasn't been delivered yet (the default is four
hours).

Now just build the configuration file, install it, and restart sendmail as usual:

# cd /etc/mail

# make

# make install

# make restart-mta

The four mailers listed (RELAY, SMTP, ESMTP, and SMTP8) will handle the bulk of all transmissions over the network. The
configuration of both local and remote mail systems will determine which one to use. However, if you send out all of
your mail via your provider's smart host, the RELAY mailer is the best choice.

So far so good. However, you still need to make some more changes to the way sendmail runs. Queued messages will sit
in the mail queue (/var/spool/mqueue) until the next sendmail queue run. These occur every 30 minutes when using the
default sendmail command-line flags. The following settings in /etc/rc.conf will suppress that default:

sendmail_enable="NO"

sendmail_submit_flags="-L sm-mta -bd -ODaemonPortOptions=Addr=localhost"

Note the deletion of -q30m from the default value of sendmail_submit_flags. Those lines assume that you don't want a
sendmail process listening on port 25 on your network interface for incoming emails, which can be problematic on a
transient link, such as dial-up. (See [Hack #49] for an alternate approach.)

5.10.2 Configuring PPP

Having effectively prevented the system from ever flushing the mail queue, you'll now need to add a mechanism for

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Having effectively prevented the system from ever flushing the mail queue, you'll now need to add a mechanism for
sending all queued email when the PPP link activates. If you're running the user land ppp daemon, create
/etc/ppp/ppp.linkup with these contents:

papchap:

    !bg /usr/sbin/sendmail -q

/etc/ppp/ppp.linkup should be owned by the root user and the wheel group, and be writable only by root, although it can
be readable by all.

Alternatively, add the line /usr/sbin/sendmail -q to an existing auth-up file. (pppd uses the shell script /etc/ppp/auth-up to
run commands after the link has come up and the systems have authenticated successfully.)

If you don't have an existing /etc/ppp/auth-up, copy it from
/usr/share/examples/pppd/auth-up.sample.

5.10.3 Dealing with DNS

There is a huge gotcha in this whole discussion. sendmail makes extensive use of the DNS while it processes email. That
DNS traffic will usually trigger on-demand dialing, and bringing up the PPP link—triggering an immediate queue flush—
defeats the whole purpose of what you've done so far.

There are several things you can do to ameliorate this problem:

Add DNS traffic to the dial filter in /etc/ppp/ppp.conf if you use user-mode ppp. This is effective, but leads to
annoying delays waiting for DNS lookups to time out.

0 and 1 are just the rule numbers for the dial filter set: modify these as necessary if you
already have some dial filter rules.

Run your own DNS server either just as a local cache or as the authoritative host for your local networks.

Record the hostnames and IP numbers of your systems and your provider's mail systems in /etc/hosts, and
configure the system to use the flat files instead of DNS. (See man host.conf for FreeBSD 4.x and man
nsswitch.conf for 5.x.)

Alternatively, use other local databases to do host lookups, such as NIS or LDAP.

Specify hostnames in the sendmail configuration using square brackets around the [hostname].

This last option tells sendmail not to look up MX records, which are available only from DNS; instead, it will only look up
IP numbers. For example, specify your ISP's SMTP server's hostname in this line of /etc/mail/<hostname>.mc:

define(`SMART_HOST', `[smtp.example.com]')dnl

Then, rebuild the configuration file as before.

Note that these hacks will only mitigate the DNS problem. Unfortunately, it is all but impossible to eliminate
inconvenient DNS lookups.

5.10.4 See Also

man ppp

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man ppp

man pppd

man host.conf

man nsswitch.conf

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 51 Get the Most Out of FTP

 

Get the most out of stock ftp with macros and scripts.

In this age of GUIs and feature-rich browsers, it's easy to forget how quick and efficient command-line ftp can be. That
is, until you're logged into a system that doesn't have X installed, nor a browser, nor any fancy FTP programs. If it's
really your lucky day, it won't even have any manpages. And, of course, you'll need to download something.

Perhaps you find yourself using ftp all the time, always going to the same FTP servers and downloading from or
uploading to the same directories. Clearly, it's time for some FTP automation.

5.11.1 Automating Logins

Have you ever noticed how easy it is to use FTP from a modern browser? Simply click on a hyperlink to start a
download. At the command line, though, you can't even browse the FTP directory structure until you successfully log
into the FTP server. Well, guess what: you always have to log into an FTP server. It's just that your web browser hides
this little detail by doing it for you in the background.

You can achieve the same transparency for command-line ftp by creating a file called .netrc in your home directory and
placing the following line in that file:

% more ~/.netrc

default login anonymous password genisis@istar.ca

This line will work for any FTP server on the Internet that accepts anonymous logins. (Most do, unless it's a private
server.) When creating your own file, use your own email address as the password.

Test your change with this command:

% ftp ftp.freebsd.org

Compare your results to the FTP output in [Hack #71] . You should receive the same banner shown there without
having to first type in a username and password.

If you're a webmaster who uses FTP to upload your new files, you do have to log in first. After all, you don't want just
anyone uploading files, so you require a username and password. To automate that process, add a section to your
~.netrc that reflects the name of your server and your username and password:

machine ftp.myserver.com

login myusername

password mypassword

Since you've just inserted your password into a plain text file, it's important to change the permissions on this file so
that only you can read it:

% chmod 600 ~/.netrc

If you forget to change the permissions and try to access an FTP server that requires a username and password, your
login attempt should fail and result in this error message:

ftp: Error: .netrc file is readable by others.

ftp: Remove password or make file unreadable by others.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To be extra safe, exclude the password line completely. When you connect to the FTP server, your username will be
provided for you, but you will still be prompted for the password.

5.11.2 Automating Transfers

Now, let's say that you visit ftp.freebsd.org on a regular basis and always access its pub/FreeBSD/releases/i386
directory. Rather than cding every time, you can automate that process by creating an FTP macro. Add these lines to
~/.netrc:

macdef fbsd

bin

cd /pub/FreeBSD/releases/i386

Macros are defined by macdef, and the name of the macro follows. Keep the name short but useful, as a macro is
supposed to be a timesaver. Once you've declared the macro, add the FTP commands you want to execute, one line at
a time. This particular macro contains the bin (or binary) command. That command is useful when downloading because
it ensures all files, including non-ASCII files such as applications, will download correctly. I also included a cd command
to automatically take me to my usual working directory.

It's important that a macro always ends with a blank line.

There are two ways to use your macro. If you're already connected to the FTP server, type $ macroname at the ftp
prompt:

ftp> $ fbsd

bin

200 Type set to I.

cd /pub/FreeBSD/releases/i386

250 "/pub/FreeBSD/releases/i386" is new cwd.

Note that each command in the macro will be executed, followed by its results.

The second way to run the macro is when you first invoke the ftp command:

% echo "$ fbsd" | ftp ftp.freebsd.org

Now, if you try that one, you'll notice that all of your commands will succeed. Then, your FTP session will abruptly end,
and you'll receive your regular prompt back! Rather disappointing if you were planning on typing some more commands
at the ftp prompt, but absolutely perfect if your intention is to script an entire FTP session.

5.11.3 Scripting an Entire Session

If you already know what you want to do, and especially if you need to do it more than once, why type in everything at
the ftp prompt? Suppose you want to download the latest XFree86 distribution directly from ftp://ftp.xfree86.org/.
Consider placing this macro in ~/.netrc:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Consider placing this macro in ~/.netrc:

macdef X

bin

bell

prompt

cd /pub/XFree86/4.3.0/source

mget *

bye

This macro assumes that this ~/.netrc file already contains the line that allows anonymous logins.

The bell command, which is optional, should produce a sound after each successful file transfer. The prompt command is
very important, though. By default, the FTP server expects interaction from the user. That is, when you ask to
download multiple files with mget, the FTP server will wait for you to confirm every transfer by typing y. Obviously, we
want to disable that behavior when we're scripting a download.

To run this macro:

% echo "$ X" | ftp ftp.xfree86.org

By default, ftp will save the downloaded files in your current working directory. If you prefer, you can specify an
alternate location in your macro with the lcd (local change directory) command. For example:

lcd /usr/local/Xsource

will save the downloaded files to the /usr/local/Xsource directory. Make sure your directory exists and put the lcd line
before your mget line.

5.11.4 A Better FTP?

No matter how hard you try to make the default FTP client user-friendly, it is still a very basic command, and you may
find a little too primitive, especially if you use ftp often. If you would like to try a more convenient and user-friendly
command-line tool, try ncftp, which is available as a port or package for FreeBSD, NetBSD, and OpenBSD.

5.11.5 See Also

man ftp

The ncftp web site (http://www.ncftp.com/ncftp/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 52 Distributed Command Execution

 

Use tentakel for parallel, distributed command execution.

Often you want to execute a command not only on one computer, but on several at once. For example, you might want
to report the current statistics on a group of managed servers or update all of your web servers at once.

5.12.1 The Obvious Approach

You could simply do this on the command line with a shell script like the following:

# for host in hostA hostB hostC

> do ssh $host do_something

> done

However, this has several disadvantages:

It is slow because the connections to the remote hosts do not run in parallel. Every connection must wait for the
previous one to finish.

Managing many sets of hosts can become a complicated task because there is no easy way to define groups of
hosts (e.g., mailservers or workstations).

The output is provided by the program that is run remotely.

The output is hard to read because there are no marks indicating when the output for a specific host begins or
ends.

5.12.2 How tentakel Can Help

While you could write a shell script to address some of these disadvantages, you might want to consider tentakel, which
is available in the ports collection. Its execution starts multiple threads that run independently of each other. The
maximum waiting time depends on the longest running remote connection, not on the sum of all of them. After the last
remote command has returned, tentakel displays the results of all remote command executions. You can also configure
how the output should look, combining or differentiating the results from individual hosts.

tentakel operates on groups of hosts. A group can have two types of members: hosts or references to other groups. A
group can also have parameters to control various aspects of the connection, including username and access method
(rsh or ssh, for example).

5.12.3 Installing and Configuring tentakel

Install tentakel from the ports collection:

# cd /usr/ports/sysutils/tentakel

# make install clean

You can instead install tentakel by hand; consult the INSTALL file in the distribution. A make install should work in most
cases, provided that you have a working Python environment installed.

After the installation, create the configuration file tentakel.conf in the directory $HOME/.tentakel/. See the example file
in /usr/local/share/doc/tentakel/tentakel.conf.example for a quick overview of the format.

Alternatively, copy the file into /usr/local/etc/ or /etc/, depending on your system's policy, in order to have a site-wide

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Alternatively, copy the file into /usr/local/etc/ or /etc/, depending on your system's policy, in order to have a site-wide
tentakel.conf that will be used when there is no user-specific configuration. As an administrator, you may predefine
groups for your users this way.

Assuming that you have a farm of three servers, mosel, aare, and spree, of which the first two are web servers, your
configuration might resemble this:

set format="%d\n%o\n"

group webservers(user="webmaster")

  +mosel +aare

group servers(user="root")

  @webservers +spree

With this definition, you can use the group name servers to execute a command on all your servers as root and the group
name webservers to execute it only on your web servers as user webmaster.

The first line defines the output format, as explained in Figure 5-1.

Table 5-5. tentakel output format characters
Character Output

%d The hostname

%o The output of the remotely executed commands

\n A newline character

This commands tentakel to print the hostname, followed by the lines of the remote output for each server sequentially.
You can enrich the format string with additional directives, such as %s for the exit status from commands. See the
manpage for more information.

As you can see from the servers definition, there is no need to list all servers in each group; include servers from other
groups using the @groupname notation.

On the remote machines, the only required configuration is to ensure that you can log into them from the tentakel
machine without entering a password. Usually that will mean using ssh and public keys, which is also tentakel's default.
tentakel provides the parameter method for using different mechanisms, so refer to the manpage for details.

5.12.4 Using tentakel

To update the web pages on all web servers from a CVS repository:

% tentakel -g webservers "cd /var/www/htdocs && cvs update"

### mosel(0):

cvs update: Updating .

U index.html

U main.css

### aare(1):

C main.css

cvs update: Updating .

%

Note the use of quotes around the command to be executed. This prevents the local shell from interpreting special
characters such as & or ;.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


characters such as & or ;.

If no command is specified, tentakel invokes interactive mode:

% tentakel 

interactive mode

tentakel(default)> use webservers

tentakel(webservers)> exec du -sh /var/www/htdocs

### mosel(0):

364k    /var/www/htdocs

### aare(0):

364k    /var/www/htdocs

tentakel(webservers)> quit

%

While in interactive mode, the command help prints further information.

5.12.5 See Also

man tentakel

 The tentakel web site (http://tentakel.biskalar.de/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 53 Interactive Remote Administration

 

Managing a large network can be a daunting task. Even with the Unix utilities available for remote administration,
making changes on many systems can be taxing. Scripting tools make life easier to some extent, but some tasks
require hands- and eyes-on interaction.

Several system utilities allow you to execute the same command on multiple hosts. This form of loosely coupled
clustering is useful for information gathering and some monitoring purposes. However, on some occasions, you not only
need to run a process on multiple hosts, but you must also observe it and interact with the process to resolve host-
specific issues. An administration shell script will save typing and minimize mistakes, but it's hard to write a script that
will work correctly on every machine on a diverse network.

Wouldn't it be nice if there were a program that allowed you to interact with your remote hosts while running parallel
commands? Enter ClusterIt.

5.13.1 Why ClusterIt?

ClusterIt is a set of tools written by Tim Rightnour, designed to place all of your network hosts at your fingertips.
ClusterIt includes utilities for running a single command on all of the hosts in your cluster. It also allows automatic
distribution of the tasks to any available hosts in a defined group. It uses a remote login method, such as sshd on the
target hosts, so you only need to install it on the control host.

Scripts can also synchronize between task completions on different hosts. For example, you can set two hosts to
compile an application and install it on the other machine. Neither host should begin the installation until the other host
has finished compiling, but it is impossible to predict which host will finish first. ClusterIt defines barrier operations that
can be included in a script to prevent passing a synchronization point until all hosts have caught up.

In most clustering systems for Unix, once you issue a command, you cannot interact with the hosts in the cluster
individually; you only see the final output of each command run on each of the hosts. ClusterIt does not have this
limitation, making it ideal for dealing with processes that need continual monitoring.

5.13.2 Installation and Configuration

Install ClusterIt from the NetBSD pkgsrc collection:

# cd /usr/pkgsrc/parallel/clusterit

# make install clean

It is also available in FreeBSD's /usr/ports/parallel/clusterit.

Before using any ClusterIt utility, you must create a list of machines in your cluster. Create the file ~/.cluster,
containing a list of host names. Be sure not to put any whitespace after GROUP:, as in this example:

GROUP:setB

Bester

Brust

GROUP:setOther

Clarke

Dick

Niven

Pohl

Zelazny

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Set an environment variable to tell ClusterIt where to find the list of hosts, and set two more to specify ssh as the tool
to start remote shells and terminals. Run this from the command line or add the commands to your ~.cshrc or
equivalent file [Hack #1] :

% export CLUSTER=$HOME/.cluster

% export RCMD_CMD=ssh

% export RLOGIN_CMD=ssh

Use ssh-agent or an equivalent method to prevent ClusterIt from prompting for a password
every time you connect to a host. If you're unfamiliar with ssh-agent, see "What is SSH
agent, and how do I use it?" at http://security.sdsc.edu/help/ssh/agent.shtml.

5.13.3 Testing Noninteractive Commands

Now you're ready to issue commands to the cluster. You can run simple commands that require no interactivity from
the command line with the dsh (distributed shell) command. Let's start by checking the version of the operating system
on each of the hosts in a group:

% dsh -g setB uname -a

Bester: SunOS bester 5.7 Generic_106541-11 sun4u sparc 

SUNW,UltraSPARC-IIi-Engine

Brust: NetBSD brust 1.6ZC NetBSD 1.6ZC (GENERIC.MP) #1: Fri Sep 26 

23:33:56 EDT 2003  

david@pohl:/usr/obj/usr/src/sys/arch/i386/compile/GENERIC.MP i386

The -g groupname option specifies which hosts in the cluster should run this command. Every ClusterIt command allows
you to specify a list of hosts, a named group of hosts, the entire cluster, or any of those options minus a list of excluded
hosts.

As you can see, not much can go wrong with the uname command. Interestingly, the two hosts that I've chosen to use
for examples are running different operating systems.

5.13.4 Using dvt

Many maintenance operations require different steps on machines running different operating systems. ClusterIt also
includes a command called dvt (distributed virtual terminal), which allows you to interact with several hosts
simultaneously or individually. This is where dvt shines!

Suppose that I want to install a Perl module on both of these example machines. First, I'll open the distributed
terminals:

% dvt -g setB

Three terminal windows have opened up to my screen: one window for each of the two hosts and one control window.
Anything I type in the control window goes to all of the host windows, as if I typed the same thing in each one. (I can
also type within an individual host window, which will send my input only to that particular host.)

I have windows open to the hosts in the group now, but I'll need to be root to install the module.

In the control window, I'll type su. If the root password is the same on all the hosts, I can type it everywhere at once by
typing in the command window. If the passwords are different on different hosts, I'll have to activate each host window
in turn, typing the appropriate password in each one.

For simplicity, imagine I've already copied the module to my home directory on each host. I now need to un-tar it, run
Perl on the Makefile.PL, run make, and run make install:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Perl on the Makefile.PL, run make, and run make install:

# tar xzvf Perl-Package-1.0.tgz && cd Perl-Package-1.0 && perl \ 

  Makefile.PL && make && make install

If I knew that this command would work without any errors, I could have used dsh instead. However, any number of
differences between these two machines could cause one or both to fail to complete this process. This Perl package may
not have been tested on Solaris yet, or either machine could be missing some prerequisite package.

Since each host has its own window that I can view and type into, I can monitor the progress of the installation. If
either host encounters a problem, I can focus my mouse on that window and manually correct and continue the
process, without interfering with the other host.

5.13.5 Hacking the Hack

This technique is useful in several other situations. You can monitor a set of hosts by running ps, who, or top in several
windows. You can diagnose network issues by running tcpdump on the source host, destination host, and any machines
routing the packets in between the two.

An interesting way to troubleshoot networking is to have every host in your cluster ping or traceroute to the problem
host. The missing route or mistyped filter rule quickly becomes obvious.

A sysadmin must troubleshoot all sorts of issues, including diagnosing name service troubles, NFS mount permissions,
sysctl values, disk space, routing tables, backups, and logfiles. You can solve these problems more easily when you have
a consolidated view of your systems.

5.13.6 See Also

man dvt

man dsh

The ClusterIt web site (http://www.garbled.net/clusterit.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 42 See Console Messages Over a Remote Login

 

View a server's console messages remotely

As a Unix system administrator, you can do 99% of your work remotely. In fact, it is very rare indeed that you'll need
to sit down in front of a server (assuming the server even has an attached keyboard! [Hack #26]).

However, one of the key functionalities you lose in remote administration is the ability to see the remote server's
console. All is not lost, though. First, let's answer these questions: "What do you mean by the console, and why would
you want to see it?"

5.2.1 The Console

If you're physically sitting at a system, the console is the virtual terminal you see when you press Alt-F1. If you've ever
logged into this particular virtual terminal, you've probably noticed that error messages appear here. These messages
can be rather disconcerting when you're working at the console, especially if you're fighting your way through vi and
bright white error messages occasionally overwrite your text.

If you ever find yourself in that situation, Esc-Ctrl-r will refresh your screen. Better yet, don't log into Alt-F1 when
you're physically sitting at a system. Instead, log into a different terminal, say, the one at Alt-F2.

However, when you access a remote system, you can't log into a virtual terminal, and the console is considered to be a
virtual terminal. (You access it by pressing Alt-F1 at the local keyboard, after all). Instead, you log into a
pseudoterminal (also known as a network terminal).

Here's an example. I'm sitting at a system and have logged into the virtual terminals at Alt-F2 and Alt-F3. From Alt-F3,
I've used ssh to log into the localhost. If I run the w command, I'll see this:

% w

12:25  up 22 mins, 3 users, load averages: 0:00, 0:00, 0:00

USER           TTY      FROM              LOGIN@  IDLE WHAT

genisis         v1      -                12:25PM     - -csh (csh)

genisis         v2      -                12:25PM     - ssh localhost

genisis         p0      localhost        12:25PM     - w

Notice that the virtual (or physical access to keyboard) terminals begin with a v in the TTY section. Since terminals start
numbering at 0, I'm logged into the second (v1) and third (v2) virtual terminals. I'm also connected to the first
pseudoterminal, p0, so I'm currently the only user logged in over the network.

In my ssh session, if I press Alt-F1, I'll access the console on my local system (where I am sitting), not the console on
the remote system.

5.2.2 Seeing Remote Console Messages

If Alt-F1 won't do it, how can you see remote console messages? A quick hack for your current session is to run this
command:

% tail -f /var/log/messages &

tail shows the end of a file, much like head shows the start. In this case, the file is /var/log/messages. This particular log
contains a copy of the messages that appear on the system console. When run with the -f switch, tail will remain open,
allowing you to see when new entries are added to that logfile. The trailing ampersand (&) runs the command in the
background, so you'll get your prompt back if you press Enter or type in another command.

As the system writes console entries to this file, tail will also display to your current pseudoterminal. If you're in the
middle of typing something when a log message is displayed, Ctrl-r will refresh your command prompt line so you can
see where you left off typing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


see where you left off typing.

5.2.3 An Alternate Method

There's always more than one way to skin a cat. Since syslog is responsible for logfiles, you can also change its
configuration file. Let's start by seeing why messages are sent to the console:

% grep console /etc/syslog.conf

*.err;kern.debug;auth.notice;mail.crit       /dev/console

# uncomment this to log all writes to /dev/console to /var/log/console.log

#console.info                                /var/log/console.log

See how messages are sent to /dev/console by default? This file also gives a hint on how to send those messages
elsewhere—to a file called console.log. By uncommenting that console.info line, you can send those messages to
/var/log/console.log.

If you decide to remove that #, don't forget to create an empty logfile with the specified name and to inform syslogd of
your changes by sending it a signal one:

# touch /var/log/console.log

# killall -1 syslogd

Now you're probably thinking, big deal. So I've sent console messages to a different filename. I still have to run that tail
-f command to see them.

Well, how about changing that console.info line to this instead:

console.info                                root,genisis

Don't forget to killall -1 syslogd once you save your changes.

Now when I ssh into that system as the user genisis, I don't have to remember to run the tail command. As long as I'm
the user genisis, even if I become the superuser, all console messages will be sent to my terminal.

5.2.4 Hacking the Hack

You may have noticed that uncommenting the console.info line results in messages being sent twice: once to
/var/log/console.log and once to either the original console or the specified users. If you prefer to only have messages
sent to either the log or the console or user, recomment the console.info line and indicate in the line that originally
specified /dev/console where you want the information to go.

For example, to log only to a file:

*.err;kern.debug;auth.notice;mail.crit       /var/log/console

Or to log only to the specified users:

*.err;kern.debug;auth.notice;mail.crit       root,genisis

Again, don't forget to inform syslogd of any changes you make to /etc/syslog.conf.

5.2.5 See Also

man w

man syslog.conf

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 43 Spoof a MAC Address

 

Even good guys can use secret identities.

Okay, I know what you're thinking. There's never a legitimate reason to spoof any type of address, right? Even if there
were, why would you bother to spoof a MAC address, other than to prove that it can be done?

Consider the following scenario. I was administrating a small network where the ISP restricted the number of IP
addresses a DHCP client was allowed to receive. Their DHCP server kept track of the leased addresses by using a
combination of the client's MAC address and an OS identifier. One day I needed to replace that network's external NIC.
It took me a while to figure out why the new NIC refused to pick up a DHCP address from the ISP. Once the restriction
was explained to me, I contemplated my available courses of action. One was to spend the afternoon listening to Musak
in the hopes that I'd eventually get to speak to one of the ISP's customer service representatives. I decided my time
would be better spent if I instead took 30 seconds and spoofed the old MAC address. This provided a quick solution that
allowed the owner to get back online until he could make arrangements with the ISP regarding the new MAC address.

5.3.1 Spoofing on FreeBSD

Before I could accomplish the spoof, I needed two pieces of information. The first was the MAC address for the old NIC.
Fortunately, I record such things in a binder. However, I initially found out that information using ifconfig. In this
scenario, the interface in question was called rl0:

% ifconfig rl0

rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.2.12 netmask 0xffffff00 broadcast 192.168.2.255

        ether 00:05:5d:d2:19:b7

        media: Ethernet autoselect (10baseT/UTP)

The MAC address is the hex number immediately following ether.

Second, I needed to know the identifier used by the ISP's DHCP server. This was found in the DHCP lease:

% more /var/db/dhclient.leases | grep host

option host-name "00-05-5d-d2-19-b7-36-33"

Some ISPs use option host-name, while others use option dhcp-client-identifier. Choose the option in the lease that is
associated with the MAC address. In this example, my identifier was the MAC address, followed by -36-33.

Armed with the information I needed, I could spoof the old MAC address onto the new NIC card. In my case, the new
card was an ed0:

# ifconfig ed0 ether 00:05:5d:d2:19:b7

#

# ifconfig ed0 | grep ether

ether 00:05:5d:d2:19:b7

Note that you have to be the superuser to change these settings.

This particular change won't survive a reboot, as the NIC will give the kernel its burnt-in MAC address during the
hardware probe that occurs during bootup. If you intend to reboot before sorting out the situation with the ISP,
carefully add this line to /etc/rc.conf:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


carefully add this line to /etc/rc.conf:

ifconfig_ed0_alias0="ether 00:05:5d:d2:19:b7"

This will create an alias for ed0 that uses the desired MAC address, rather than the MAC address burnt into the physical
card. Think of an alias as an alternate set of instructions an interface can give to the kernel—a kind of networking
nickname.

Next, I'll edit /etc/dhclient.conf:

# vi /etc/dhclient.conf

# $FreeBSD: src/etc/dhclient.conf,v 1.3 2001/10/27 03:14:37 rwatson Exp $

#

#        This file is required by the ISC DHCP client.

#        See ``man 5 dhclient.conf'' for details.

#

#        In most cases an empty file is sufficient for most people as the

#        defaults are usually fine.

#

interface "ed0" {

    send host-name "00-05-5d-d2-19-b7-36-33";

    send dhcp-client-identifier "00-05-5d-d2-19-b7-36-33";

}

By default, this file contains only comments; I added a section for interface ed0. When editing your own file, remember
to include the opening and closing curly braces ({}). Each statement must also end in a semicolon (;). Here, I've set
both the host-name and the dhcp-client-identifier options to the values expected by the ISP.

Now it's time to test that these changes did indeed work. You don't need to reboot in order to test that alias in
/etc/rc.conf. This command will do the trick:

# /etc/netstart

Doing stage one network startup:

Doing initial network setup:.

ed0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.2.95 netmask 0xffffff00 broadcast 192.168.2.255

        ether 00:05:5d:d2:19:b7

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

        inet 127.0.0.1 netmask 0xff000000 

Additional routing options: ignore ICMP redirect=YES log ICMP redirect=YES drop SYN+FIN 

packets=YESsysctl: unknown oid 'net.inet.tcp.drop_synfin'

.

Routing daemons:.

Excellent. The new NIC kept the spoofed MAC address. Now let's see how the DHCP server responds when I release and
try to renew an address:

# dhclient -r ed0

#

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


#

Using -r with dhclient forces the DHCP client to give up its old address and request a new lease from the DHCP server. If
this succeeds, the prompt will return without any error messages. Running ifconfig ed0 will show that the ISP's DHCP
server did indeed give this interface a public IP address.

5.3.2 Spoofing on NetBSD

The current version of ifconfig that ships with NetBSD does not support this functionality. To allow MAC address changes,
try Dheeraj Reddy's ifconfig patch, available from
http://news.gw.com/netbsd.tech.net/%3C20030808072355.GA616%40bharati.sudheeraj.net%3E.

You will need to apply this patch to NetBSD sources and build a new version of ifconfig. To begin, download the system
sources, unpack them, and change the working directory to src/sbin/ifconfig. Download the patch and apply it with:

# patch > ifconfig.patch

Build a new binary with:

# make

Remember that this code is experimental and may not always work as advertised, so it is crucial that you back up the
original ifconfig binary in some safe place.

When you have the new binary, run it with:

# ifconfig interface-name lladdr MAC-addr

5.3.3 Spoofing with OpenBSD

The standard ifconfig that ships with OpenBSD does not contain an option to change the MAC addresses of interface
cards. If you need it, you will have to build your own tool for that purpose with sea.c. Download it from
http://www.devguide.net/books/openbsdfw-02-ed/

Build sea as follows:

# gcc -Wall -o sea sea.c -lkvm

Next, boot OpenBSD into single-user mode:

# reboot

boot> boot -s

Then, once in single-user mode, use sea to spoof the desired address on the specified NIC:

# sea  interface-name   MAC-addr

5.3.4 See Also

man ifconfig

man dhclient.conf

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 44 Use Multiple Wireless NIC Configurations

 

Take the pain out of configuring your laptop's wireless interface.

If you use a laptop and have remote sites that you visit regularly, configuring your wireless interface can be interesting.
For example, every wireless network has a unique service set identifier (SSID). Each site that uses WEP will also require
a unique encryption key. Some networks may use static IP addresses, while others may use a DHCP server.

You could keep a copy of each network's configuration in your wallet and reconfigure your NIC manually at each site,
but wouldn't you rather automate the various network configurations and choose the desired configuration after
bootup?

For the purpose of this exercise, we will assume that the wireless access points have been properly configured and
activated.

5.4.1 Initial Preparation

Before you can script the network configurations, you'll need to collect the information listed next. I've associated the
necessary information with ifconfig's keywords where possible. You will see these keywords in the configuration script.

ssid, the name of the wireless network

authmode, the network's authorization mode (none, open, or shared)

nwkey, the encryption key, in hexadecimal

Whether to use a static IP address or dhclient to obtain dynamic IP address information

inet, the static IP address, if necessary

netmask, the netmask, for static network configuration

The default gateway, for static IP configuration

Nameservers, for static IP configuration

The network device (wi0, an0, etc.)

You can obtain all but the final item from whoever set up the wireless access points for each site.

If you don't know the name of your network device, review the output of dmesg for networking protocol names
(Ethernet, 802.11) and MAC addresses. Here's the command I use and the relevant lines from my laptop:

# dmesg | grep address

rl0: Ethernet address: 00:08:02:9e:df:b8

wi0: 802.11 address: 00:06:25:17:74:be

rl0 is the device name for the cabled Ethernet port, and wi0 is the device name for the wireless PCMCIA card.

5.4.2 Preparing the Script

Here are a few notes regarding the network device configuration script:

The script is named for the network device it controls.

The script will live in /usr/local/etc/rc.d. Since we do not want the script activated at bootup, the script name

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The script will live in /usr/local/etc/rc.d. Since we do not want the script activated at bootup, the script name
must not end in .sh.

Each network device should have its own script so that the connection can be easily dropped using the
argument stop.

Each configuration will have its own section in a case construct.

Each section's name will consist of a d (to use DHCP) or an s (to use a static IP address) followed by a location
name.

The script will accept a section name as a command line argument for configuration selection.

In order to use WEP with DHCP, the device must be configured with the encrypted code prior to calling dhclient.

A status section will give us current network information for the device.

A wildcard section will print a list of the section names when given an invalid argument.

Since my network device is wi0, I'll save the script as /usr/local/etc/rc.d/wi0. I tend to use my laptop in three locations:
at home with DHCP and WEP, at home with a static IP address and WEP, and at my sister's home with DHCP and WEP.
Tables Table 5-1 through Table 5-3 list the appropriate configurations.

Table 5-1. Using DHCP and WEP in my home network
Option name Value

section name dhome

ssid myhome

authmode shared

nwkey 0x123456789a

ip address Use dhclient to obtain the IP address, netmask, gateway, and nameservers

Table 5-2. Using a static IP address and WEP in my home network
Option name Value

section name shome

ssid myhome

authmode shared

nwkey 0x123456789a

ip address 192.168.1.21

netmask 255.255.255.0

gateway 192.168.1.1

name servers 24.204.0.4, 24.204.0.5

Table 5-3. Using DHCP and WEP at my sister's home
Option name Value

section name dsister

ssid sisterhome

authmode shared

nwkey 0x987654321a

ip address Use dhclient to obtain the IP address, netmask, gateway, and nameservers

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.4.3 The Code

Here is the resulting script:

#!/bin/sh

# /usr/local/etc/rc.d/wi0

# Configure wireless interface

# See the ifconfig(8), dhclient(8) and route(8) man pages for further 

# assistance.

NIC=wi0

case $1 in 

dhome)

       ifconfig ${NIC} ssid "myhome" authmode "shared" nwkey 0x123456789a

       dhclient ${NIC}

       echo ${NIC}

       ;;

shome)

       ifconfig ${NIC} inet 192.168.1.21 ssid "myhome" authmode "shared" 

       nwkey 0x123456789a netmask 255.255.255.0

       route add default 192.168.1.1

       echo nameserver 24.204.0.4 > /etc/resolv.conf

       echo nameserver 24.204.0.5 >> /etc/resolv.conf

       echo ${NIC}

       ;;

dsister)

       ifconfig ${NIC} ssid "sisterhome" authmode "shared" nwkey \

           0x987654321a

       dhclient ${NIC}

       echo ${NIC}

       ;;

stop)

       [ -s /var/run/dhclient.pid ] && kill `cat /var/run/dhclient.pid` \ 

           && rm /var/run/dhclient.pid

       ifconfig ${NIC} remove

       echo " ${NIC} removed"

       ;;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       ;;

status)

       ifconfig ${NIC}

       ;;

*)

       echo "usage: /usr/local/etc/${NIC} [dhome|shome|dsister|stop|status]"

       ;;

esac

Note that the stop option kills dhclient. If you will be using multiple network interfaces, you may wish to delete the line
that reads:

[ -s /var/run/dhclient.pid ] && kill `cat /var/run/dhclient.pid` && rm \

      /var/run/dhclient.pid

The script should be owned by root and be readable by root only. If you create your script as a normal user, you need to
change its owner. Become the superuser, and:

# chown root:wheel /usr/local/etc/rc.d/wi0

# chmod 700 /usr/local/etc/wi0

5.4.4 Running the Hack

Using the script is fairly straightforward. To activate the dhome configuration (DHCP at home):

# /usr/local/etc/rc.d/wi0 dhome

wi0

To remove the wi0 interface and kill the connection:

# /usr/local/etc/rc.d/wi0 stop

wi0 removed

If I enter an erroneous argument, I'll get a list of valid arguments:

# /usr/local/etc/rc.d/wi0 badargument

usage: /usr/local/etc/wi0 [dhome|shome|dsister|stop|status]

Now you can choose an existing network configuration without having to remember any network details.

A similar script will work for cabled network devices. Simply change the device name and remove the wireless keywords
(ssid, authmode, and nwkey) and values.

5.4.5 Hacking the Hack

For all the geek points, you could put your wireless card in promiscuous mode (if it supports it), sniff for the available
ESSIDs and their signal strengths, and choose the appropriate configuration based on that information. If you go this
route, install the net/bsd-airtools port and remember to ask for permission before using someone else's resources.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.4.6 See Also

man dhclient

man ifconfig

man route

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 45 Survive Catastrophic Internet Loss

 

Set up your network to recover from a full Internet loss.

Someday this all too common event may happen: while you're away from your network, your connection dies. Whether
the ISP drops it, the cable gets unplugged or the server behind your NAT box dies, it is gone. You are now lost at sea,
not knowing what is actually going on back at home. You ping, telnet, and pray to the network gods, but nothing seems
to work.

Wouldn't it be better if your network could recognize that it has lost that connection and find a way for you to get back
in touch? The system that I set up did just that. All it took was a well-configured OpenBSD firewall with NAT and a short
Ruby program that uses the Jabber protocol to get my attention.

5.5.1 Hardware Configuration

I use OpenBSD on a 486 to make my network resistant to total connectivity failure. The computer has two network
cards, one for the DSL bridge and the other for the rest of the network. In addition, I managed to find a 56k ISA
modem.

Since this computer provides little more than firewall and NAT services, it's more than capable of serving a small home
or business network. The DSL bridge provides the primary Internet connection with a static IP. The service through my
provider is usually quite good, but there have been troubled times. The house has only one phone line, which is plugged
into the 56k modem in the same computer as the DSL line. You could easily make the modem computer a different
machine entirely, but I found that this 486 is quite compact and sufficient for my purposes.

5.5.2 Connectivity Software

The current OpenBSD operating system (Version 3.4 as of this writing) comes with a wonderful firewall and NAT
package, named Packet Filter (PF). PF works well on a day-to-day basis moving my packets from the network to the
Internet. Unfortunately, it does not handle the loss of the connection to the ISP. A full discussion for configuring PF is
beyond the scope of this hack, but you can find what you need from the OpenBSD PF FAQ at
http://www.openbsd.org/faq/pf/index.html.

When the unthinkable happens and your network falls off the Internet, you may fall back to your trusty 56k modem.
The idea is that the modem will dial out automatically once your main connection goes away. First, though, you need
some way to detect that your connection is lost. I use a slow ping to the router on the other end of my DSL connection.

I run this heartbeat from cron instead of using a daemon process. It sends three pings at two-second intervals every 10
minutes—a very conservative test, especially if you are only sending to your local gateway. Here is the cron entry:

*/10 * * * * /usr/local/testconnect/testconnect.sh

The testconnect.sh script resembles this:

#!/bin/sh

# First gather data about your connection

PINGS=`ping -c 1 -i 2 [your gateway] | wc -l`

# Apply test and execute on result

if [ -f /tmp/lostconnection.lock ]

then

  echo "Lockfile in place"

else

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  echo "No lockfile"

  if [ $PINGS -lt 8 ]

  then

    echo "Connection lost, commencing dialup"

    touch /tmp/lostconnection.lock

    pfctl -d

    ppp -nat internet

    ruby /usr/local/testconnect/send_new_ip.rb

  else

    echo "All is well"

  fi

fi

If the gateway is unavailable, then the pings will time out and generate a short ping result. By counting the number of
letters (with wc -l) and applying a length test (if [ $PINGS -lt 8]), the script can tell if the pings failed. In the case of
failure, the script goes through the steps to give you connectivity through alternative means and to stop it from doing it
every 10 minutes if things go really wrong.

First, it creates a lockfile to ensure future runs of this script do not dial out over and over again. Second, it shuts down
the current NAT interface to make way for the next step. Third, it fires up the modem and connects to my emergency
ISP using a preconfigured ppp.conf profile called internet. Here, I enabled NAT (-nat) over PPP so that computers at my
house will only notice that the service is slow. The Internet connection will still function in the same way. Finally, I run a
script to alert me to the failure.

You may have noticed one flaw in this setup. Most cheap ISP services usually do not give you the same IP address
when you dial into them. How do you know how to contact your reconnected gateway from the outside? Easy: have the
computer tell you.

5.5.3 Jabber and Ruby to the Rescue!

There are many ways a computer can contact you with its current status. I decided to use Jabber because I spend a fair
amount of time with a Jabber session running. This script will notify me quickly if something untoward happens to my
connection at home, such as an incident involving the vacuum cleaner.

I figured that a message from my computer with the current network configuration would provide enough information
to allow me to log in remotely. The most important information is the current IP address of the backup PPP connection.
I decided to create a Ruby script using the Jabber4r module to accomplish this:

require 'jabber4r/jabber4r'

now    = `date`.chomp!

ipdata = `/sbin/ifconfig tun0`

session = Jabber::Session.bind_digest("user@jabberserver/modem", "secret")

session.new_chat_message("user@jabberserver").

   set_body("I had to dial up for internet access at #{now}.\n#{ipdata}\n")

      .send

sleep 5

session.close

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


session.close

The Ruby script grabs the current time and state of the tun0 interface, which contains the current IP address assigned
by the dial-up ISP. Armed with that IP address, you can then ssh into your computer and begin to diagnose the
situation.

The Jabber4r module lives at http://jabber4r.rubyforge.org/. You will also need the REXML module from
http://www.germane-software.com/software/rexml/. Both of these installed without issue on top of the Ruby package
that shipped with OpenBSD 3.4.

5.5.4 The Last Piece

After your connection has been restored, you need to clean up. You will need to stop ppp, start PF again—hopefully with
pfctl—and remove the lockfile that prevents the /tmp/testconnect.sh script from dialing out over and over. After that,
you should be back to normal, at least until the next mishap.

5.5.5 See Also

The Jabber web site (http://www.jabber.org/)

The Ruby web site (http://www.ruby-lang.org/en/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 46 Humanize tcpdump Output

 

Make friends with tcpdump.

One of the most useful utilities in a network administrator's tool belt is tcpdump. While you probably agree, I bet the
very thought of wading through a tcpdump sniff makes you groan. Take heart: I'll walk you through some concrete
examples that show how to zero in on the information you need to solve the particular network problem that prompted
you to consider doing a packet sniff in the first place.

You might be thinking, "Why bother? There are much nicer utilities out there." That's true. My personal favorite
happens to be ethereal. However, you don't always have the luxury of working on a system that allows you to install
third-party utilities or, for that matter, even has X installed. tcpdump is guaranteed to be on your BSD system. It's
there, it's quick, it's dirty, and it's darn effective if you know how to harness its power.

5.6.1 The Basics

Let's start with the basics: starting a capture. Before you can capture any packets, you need to be the superuser. You
also need to have the bpf device in your kernel. If you're using the GENERIC kernel, you're set. If you've created your
own custom kernel [Hack #54], double-check you still have that device. In this example, my kernel configuration file
is called CUSTOM:

# grep bpf /usr/src/sys/i386/conf/CUSTOM

# The 'bpf' device enables the Berkeley Packet Filter.

device    bpf    #Berkeley packet filter

You also need to know the names of your interfaces and which interface is cabled to the network you wish to sniff. You
can find this with ifconfig:

# ifconfig

rl0: flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.3.20 netmask 0xffffff00 broadcast 192.168.3.255

        ether 00:05:5d:d2:19:b7

        media: Ethernet autoselect (10baseT/UTP)

rl1: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.12.43 netmask 0xffffff00 broadcast 192.168.12.255

        ether 00:05:5d:d1:ff:9d

        media: Ethernet autoselect (10baseT/UTP)

ed0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet 192.168.2.95 netmask 0xffffff00 broadcast 192.168.2.255

        ether 00:50:ba:de:36:33

lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

        inet 127.0.0.1 netmask 0xff000000

This particular system has three Ethernet (ether) cards attached to three different networks. Since I'm interested in the
traffic on the 192.168.2.0 network, I'll use the ed0 interface.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


traffic on the 192.168.2.0 network, I'll use the ed0 interface.

To start a capture, simply specify the interface you're interested in, with the interface (-i) switch:

# tcpdump -i ed0

tcpdump: listening on ed0

Ctrl t

tcpdump: 24 packets received by filter, 0 packets dropped by kernel

Ctrl c

33 packets received by filter

0 packets dropped by kernel

You will lose your prompt for the duration of the dump, and captured packets will be displayed to your terminal (these
weren't shown in this example's output). If you press Ctrl-t, you can see how many packets have been captured so far
and how many have been dropped, if any. If you're dropping packets, that means packets are arriving faster than
tcpdump can process them. To end your sniff, press Ctrl-c and you'll return to your prompt.

Unless you're a speed reader or have a very boring network, you'll probably prefer to send the captured packets to a
file. Use the -w (write) switch to specify the name of the file you'd like to create:

# tcpdump -i ed0 -w dumpfile

tcpdump: listening on ed0

Ctrl t

load: 0:00  cmd: tcpdump 1458 [bpf] 0.01u 0.00s 0% 1576k

Ctrl c

56 packets received by filter

0 packets dropped by kernel

Note that you won't be able to read that file with a pager or editor, as it is written in a format that only tcpdump or
another packet-sniffer utility can understand. Instead, use the -r (read) switch and specify the name of the file:

# tcpdump -r dumpfile | more

5.6.2 Display Filters

If you try the previous examples on a moderately busy network, you'll probably remind yourself why you don't like
using tcpdump. In a minute you can capture hundreds of seemingly unintelligible lines of numbers. You're wasting time
and brain cells if you're wading through hundreds of lines and you're interested in only two or three of them. You can
save on both of those precious resources if you spend a few minutes creating a display filter.

There's always a reason behind a packet sniff. tcpdump is a very intelligent utility, but it's not a mind reader. However, if
you can convert your reason into syntax that tcpdump understands, you can create a filter that will display only
interesting packets.

Let's say that you suspect broadcast packets are slowing down a network segment. This incantation will capture only
broadcast packets:

# tcpdump -i ed0 broadcast

When you end your capture, you'll find that the number of packets received by the filter will be greater than the
number of packets displayed to your screen. This means that tcpdump will still capture all packets, but will display only
the packets matching your filter. This can give you a good idea of ratio. For example, if you captured 100 packets in a
minute and only 4 of those packets were broadcasts, then broadcasts probably aren't an issue on that network.

Next example: a particular workstation is having problems connecting to a server. Create a filter that zeros in on the
packets between those two systems, in this case, genisis and server1:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


packets between those two systems, in this case, genisis and server1:

# tcpdump -i ed0 host genisis and server1

In this example, I only have to use the host keyword once, as it is assumed until I specify a different keyword. If I really
like to type (which I don't), it would have been just as correct to type host genisis and host server1.

You can also fine-tune that syntax to unidirectional traffic like so:

# tcpdump -i ed0 src host genisis and dst host server1

That will show only the traffic that was created at genesis and is destined for server1. This time I had to repeat the word
host, as one incantation was src host while the other was dst host.

Suppose you're interested in only ICMP traffic:

# tcpdump -i ed0 icmp

or perhaps only ARP traffic:

# tcpdump -i ed0 arp

Perhaps you're having a problem with IKE, which uses UDP port 500:

# tcpdump -i ed0 udp port 500

As you can see, tcpdump comes with many keywords that assist you in creating a display filter suited to your needs.
These keywords are building blocks for more complex expressions. When you do your own combinations, you might find
it easier to use the words and, or, and not. For example, this will capture all traffic on network 192.168.2.0 that is not
ARP-based:

# tcpdump -i ed0 net 192.168.2 and not arp

Of course, you can find all of the keywords, along with examples, in man tcpdump. I've highlighted only the most
commonly used keywords.

5.6.3 More Complicated Filters

tcpdump is capable of zeroing in on any particular field in a packet. In order to harness this power, it's useful to have a
picture of the various types of headers in front of you. Once you have a picture of the fields contained within the
particular header you're interested in, the examples in man tcpdump will make a lot more sense.

You'll know you're creating a very specific filter if your tcpdump expression contains the name of a protocol followed by
square brackets ([ ]). Let's take a look at this example from the manpage, which is designed to capture only SYN-1s,
the first packet in the TCP three-way handshake. Remember that square brackets may have special meaning to the
shell, so quote complex expressions to prevent weird syntax errors:

# tcpdump -i ed0 'tcp[13] =  = 2'

If you're familiar with the three-way handshake, you know that it involves the flags field of a TCP header. Let's find that
particular field within the TCP header. Figure 5-1 shows the header fields of a TCP packet.

Figure 5-1. TCP packet headers

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 5-1. TCP packet headers

The number enclosed within the [ ] represents how many octets into the header a particular field occurs. Each line, or
word, of a header is 4 octets long. The Flags field is after the first three words (i.e., 12 octets) and occurs one more
octet in, just after the Data Offset and Reserved fields. So, this particular TCP field occurs in octet 13 and is represented
by tcp[13].

Still with me? Okay, where'd the = = 2 come from? For that one, you need to know the names of the flags as well as
the decimal equivalents for each binary bit that represents a flag. These are listed in Table 5-4.

Table 5-4. TCP flags and their decimal equivalents
Flag name Decimal equivalent

URG 32

ACK 16

PSH 8

RST 4

SYN 2

FIN 1

Finally, you need to know that the first packet in the three-way handshake is distinguished by just the SYN flag being
turned on. Since all of the other flags will be turned off and will therefore contain a value of 0, a value of 2 in this field
indicates that only the SYN bit is enabled.

If math isn't your strong point, there is an alternate way to write this particular expression:

# tcpdump -i ed0 'tcp[tcpflags] =  =tcp-syn'

If the particular field you're interested in happens to be the TCP flags field, the ICMP type field, or the ICMP code field,
you're in luck. Those three fields are predefined, so you don't have to count how many octets in that field occurs in the
header. So:

tcp[13] is the same expression as tcp[tcpflags].

icmp[1] is the same expression as icmp[icmpcode].

icmp[2] is the same expression as icmp[icmptype].

Again, the manpage lists which ICMP types have predefined keywords. To specify the other types or the codes, look up
the desired number from the official list at http://www.iana.org/assignments/icmp-parameters.

5.6.4 Deciphering tcpdump Output

Okay, you've managed to capture just the packets you're interested in. Now, can you understand your results?

Let's look at some sample lines from a dumpfile. This particular dump is the first few packets from a POP3 session:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Let's look at some sample lines from a dumpfile. This particular dump is the first few packets from a POP3 session:

# tcpdump -r dumpfile

17:22:36.611386 arp who-has 192.168.2.100 tell genisis.

17:22:36.611642 arp reply 192.168.2.100 is-at 0:48:54:1e:2c:76

ARP packets are fairly comprehensible. In this example, my ARP table didn't contain an entry for my default gateway,
192.168.2.100. My system, genisis, sent out a request looking for that gateway. The gateway responded with its MAC
address, 0:48:54:1e:2c:76.

17:22:36.620320 genisis..49570 > nscott11.bellnexxia.net.domain:  40816+ 

\A? pop1.sympatico.ca. (35)

17:22:36.628557 nscott11.bellnexxia.net.domain > genisis..49570:  40816 

\1/4/4 A 209.226.175.83 (203) (DF)

Once ARP had sorted out the MAC address, a DNS lookup had to occur. The word domain in these lines indicate a DNS
lookup request followed by a DNS reply. Let's see if we can decipher both the request and the reply.

Each starts with a timestamp, which is composed of the time and a random number, separated by a dot. Since many
packets can be sent within the same second, the random number is used to differentiate between packets.

The two hosts are separated by a greater-than sign. If you can visualize it as an arrow, like -->, you can see that genisis
sent that first packet to nscott11.bellnexxia.net.domain. Each hostname has an extra dot, followed by either a port number
or a resolved port name. In this case, genisis used port 49570, and nscott11.bellnexxia.net used the domain port. If you
come across a port name you're not familiar with, look it up in /etc/services:

% grep -w domain /etc/services

domain    53/tcp    #Domain Name Server

domain    53/udp    #Domain Name Server

The next number, 40816, is an ID number that is shared by both the DNS client (genisis) and the DNS server. The client
then asked a question (?) regarding the A record for pop1.sympatico.ca. The entire packet itself was 35 bytes long.

The second packet, from the DNS server, shared the same ID number. It was also a longer packet, 203 bytes, as it
contained the answer. See the 1/4/4? This means that there is one entry in the answer section, four entries in the
authority section, and four entries in the additional section. (See [Hack #47] for an explanation of these sections.) The
DNS server also sent the requested A record, which contains the requested IP address, 209.226.175.83.

Now that name resolution has succeeded, a packet can be sent to the POP3 server:

17:22:36.629268 genisis..49499 > 209.226.175.83.pop3: S 

\2697729992:2697729992(0) win 65535 <mss 1460,nop,wscale 1,nop,nop,timestamp 

2474141 0> (DF)

17:22:36.642617 209.226.175.83.pop3 > genisis..49499: S 

\2225396806:2225396806(0) ack 2697729993 win 25920 <nop,nop,timestamp 

\3293621409 2474141,nop,wscale 0,mss 1452> (DF)

This output is much easier to read if you have a picture of a TCP header handy, as the output details the information
found in that header. Each line starts out as before: the timestamp, source port, >, and destination port. We then see
an S, which refers to that SYN flag.

This is followed by the sequence number and, almost always, by the ack number. The only packet that doesn't have an
ack number is the SYN-1, the first packet in this example. This is because a SYN-1 is the first TCP packet, so there is
nothing to acknowledge yet. All other TCP packets after the SYN-1 will have an ack.

Next comes the window size. If the packet has any options, they will be enclosed within angle brackets. Finally, the IP
header had the "don't fragment" flag, DF, set. This is important enough to be printed at the end of any line representing
a TCP or UDP header.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.6.5 See Also

man tcpdump

http://www.tcpdump.org/

http://www.ethereal.com/

"TCP Protocol Layers Explained," a FreeBSD Basics column
(http://www.onlamp.com/pub/a/bsd/2001/03/14/FreeBSD_Basics.html)

"Examining ICMP Packets," a FreeBSD Basics column
(http://www.onlamp.com/pub/a/bsd/2001/04/04/FreeBSD_Basics.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 47 Understand DNS Records and Tools

 

Demystify DNS records.

DNS is one of those network services that has to be configured carefully and tested regularly. A misconfigured DNS
server can prevent the world from finding your web and mail servers. Worse, a misconfigured DNS server can allow the
world to find more than just your web and mail servers.

Even if you're not a DNS administrator, you should still know some handy DNS commands. The simple truth is, if DNS
isn't working, you're not going anywhere. That means no surfing, no downloading, and no email for you.

5.7.1 Exploring Your ISP's DNS

On your home system, you most likely receive your DNS information from your ISP's DHCP server. Do you know where
to find your primary and secondary DNS server addresses? If not, try this:

% more /etc/resolv.conf

search domain.org

nameserver 204.101.251.1

nameserver 204.101.251.2

Another method is to use the dig (domain information groper) utility. Here, I'll ask for the nameservers (ns) for the
sympatico.ca network:

% dig ns sympatico.ca

; <<>> DiG 8.3 <<>> ns sympatico.ca 

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 4

;; QUERY SECTION:

;;        sympatico.ca, type = NS, class = IN

;; ANSWER SECTION:

sympatico.ca.                8h29m IN NS        ns5.bellnexxia.net.

sympatico.ca.                8h29m IN NS        ns6.bellnexxia.net.

sympatico.ca.                8h29m IN NS        dns1.sympatico.ca.

sympatico.ca.                8h29m IN NS        dns2.sympatico.ca.

;; ADDITIONAL SECTION:

ns5.bellnexxia.net.        23m45s IN A        209.226.175.236

ns6.bellnexxia.net.        32m47s IN A        209.226.175.237

dns1.sympatico.ca.         27m28s IN A        204.101.251.1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


dns1.sympatico.ca.         27m28s IN A        204.101.251.1

dns2.sympatico.ca.         22m26s IN A        204.101.251.2

;; Total query time: 2038 msec

;; FROM: genisis to SERVER: default -- 198.235.216.111

;; WHEN: Sun Nov 23 17:22:31 2003

;; MSG SIZE  sent: 30  rcvd: 182

5.7.1.1 Understanding DNS entries

dig results are divided into sections. Not surprisingly, the ANSWER SECTION answers the question asked; in this case,
"What are the nameservers for sympatico.ca?" In DNS, each entry in the DNS database is called a record. The answer
indicates that sympatico.ca has four nameservers. Their hostnames are:

ns5.bellnexxia.net

ns6.bellnexxia.net

dns1.sympatico.ca

dns2.sympatico.ca

The next section, ADDITIONAL SECTION, maps each hostname in the ANSWER SECTION to its corresponding IP address. As
an end user, you're really interested in the IP addresses of your nameservers, not their names. You need the address of
least one DNS server before you can resolve any name to an address.

The other thing I'd like to point out is the type of records that were returned in the output. Notice that each nameserver
record had an NS. If you ever see NS in a DNS database, you know you're looking at a DNS server record. Also, all
hosts, regardless of whether they also happen to be a DNS server, web server, or mail server, have an A record. An A
record maps a hostname to an IP address. In other words, a DNS server has two records: the NS record indicates that it
is a DNS server, and the A record lists its IP address.

Can you tell which of the four nameservers in this output is the primary nameserver? You could look at the names and
try to figure it out from there. However, it is possible to find out for sure, and it's easy once you know that SOA, the
start of authority record, indicates the primary nameserver. Let's ask dig to show us the SOA record:

% dig soa sympatico.ca

<snip banner>

;; ANSWER SECTION:

sympatico.ca.                16m18s IN SOA        dns1.sympatico.ca. 

dns-admin.sympatico.ca. (

<snip>

;; AUTHORITY SECTION:

sympatico.ca.                3h22m20s IN NS        dns2.sympatico.ca.

sympatico.ca.                3h22m20s IN NS        ns5.bellnexxia.net.

sympatico.ca.                3h22m20s IN NS        ns6.bellnexxia.net.

sympatico.ca.                3h22m20s IN NS        dns1.sympatico.ca.

;; ADDITIONAL SECTION:

dns2.sympatico.ca.          8m36s IN A        204.101.251.2

ns5.bellnexxia.net.         9m55s IN A        209.226.175.236

ns6.bellnexxia.net.        18m57s IN A        209.226.175.237

dns1.sympatico.ca.         13m38s IN A        204.101.251.1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


dns1.sympatico.ca.         13m38s IN A        204.101.251.1

;; Total query time: 239 msec

;; FROM: genisis to SERVER: default -- 198.235.216.111

;; WHEN: Sun Nov 23 17:36:22 2003

;; MSG SIZE  sent: 30  rcvd: 228

Notice the answer? Looks like dns1.sympatico.ca or 204.101.251.1 is the primary nameserver. We also received an extra
section, the AUTHORITY SECTION. Every query except ns will show which nameservers have the "authority" to answer
your question.

You may prefer to try an any query instead of ns. This will show both the NS records and the SOA record, all in one shot.

While you're digging through your ISP's DNS information, you might want to find the name of your SMTP server. Since
these servers have mail exchange (MX) records, use an mx query:

% dig mx sympatico.ca

<snip banner>

;; ANSWER SECTION:

sympatico.ca.                27m48s IN MX        5 smtpip.sympatico.ca.

sympatico.ca.                27m48s IN MX        5 mta1.sympatico.ca.

sympatico.ca.                27m48s IN MX        5 mta2.sympatico.ca.

sympatico.ca.                27m48s IN MX        5 mta3.sympatico.ca.

;; AUTHORITY SECTION:

sympatico.ca.                2h34m29s IN NS        dns2.sympatico.ca.

sympatico.ca.                2h34m29s IN NS        ns5.bellnexxia.net.

sympatico.ca.                2h34m29s IN NS        ns6.bellnexxia.net.

sympatico.ca.                2h34m29s IN NS        dns1.sympatico.ca.

;; ADDITIONAL SECTION:

smtpip.sympatico.ca.        28m30s IN A        209.226.175.84

mta1.sympatico.ca.          13m56s IN A        209.226.175.80

mta2.sympatico.ca.          28m30s IN A        209.226.175.81

mta3.sympatico.ca.          13m56s IN A        209.226.175.82

<snip>

Looks like my ISP has four SMTP servers; I'd better remember which one I'm supposed to use!

MX records always include a priority number. In this example, each mail server has a priority of 5, so they all have the
same priority. Sometimes you'll see records where one mail server has a higher number than another. Always try
sending your email to the server with a lower number—that server has a higher priority. If the priority is 0, you should
always use that mail server. This bit of information is good to know if you plan to send someone an email without using
a mail client [Hack #48] .

5.7.2 Securing DNS

Put on your administrator's hat for a moment and re-examine these dig outputs. Did you happen to notice that the
nameservers live on different networks? Let's take another look at those A records for the DNS servers:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


nameservers live on different networks? Let's take another look at those A records for the DNS servers:

dns2.sympatico.ca.         8m36s IN A        204.101.251.2

ns5.bellnexxia.net.        9m55s IN A        209.226.175.236

ns6.bellnexxia.net.       18m57s IN A        209.226.175.237

dns1.sympatico.ca.        13m38s IN A        204.101.251.1

Two of the four nameservers live on network 204.101.252, and the other two live on network 209.226.175. This is
actually a good network design. Several attacks against high-profile companies have succeeded because their DNS
servers were all on the same subnet of the same network. (See this article about DNS troubles at Microsoft for an
example: http://www.findarticles.com/cf_dls/m0FOX/3_6/75645162/p1/article.jhtml.)

Realistically, to provide such protection, your company has to enter into an agreement with another company willing to
host a copy of your DNS database. That other company may be your ISP, or perhaps a sister company. While adding
redundancy, this also adds complexity and another element of trust. It's one thing to keep your own DNS servers up-
to-date, fully patched, and securely configured. It's quite another to work with another administrator and assume that
she has the resources to devote the same time and effort to your DNS servers.

Regardless of how the network is organized, someone has to address the issue of zone transfers. In DNS, your
database is called a zone, as it really is just a portion of the globally distributed DNS database. When you need to make
a change to your zone, you edit the database on the primary DNS server. However, you have to implement at least one
secondary DNS server to provide redundancy. How are those changes propagated to the secondary DNS server(s)? If
you guessed "via a zone transfer," you're right!

It's important to make a distinction here. Resolving a hostname is one thing. As an end user, you need that
functionality in order to access Internet resources. As an administrator, you want your DNS servers to provide name
resolution. Otherwise, you have to listen to a lot of unhappy end users.

However, your end users do not need to know the entire contents of your DNS database. The world at large certainly
doesn't need to know the name and IP address of every host in your network. Think about that one for a moment. You
probably have machines right now called finance, hr, patents, store, or admin. What tasty names those are to fire the
imaginations of a malicious user!

5.7.2.1 The two-pronged approach

You can use a two-pronged approach to prevent your DNS servers from leaking information you'd rather not have the
world see. The first approach is called split DNS. Run your full DNS zone within your internal network, and run a very
small subset of that zone in your DMZ. That small subset is all the world sees. If you think about it for a moment, which
records does the world need to know about? Probably just the record for your DNS server (the one in the DMZ, with its
secondary preferably hosted at your ISP or somewhere else), the record for your web server, and the record for your
SMTP server. Those are the only records that this mini-zone should contain.

The second approach is to control zone transfers tightly. The last thing you want to happen is for the DNS server in the
DMZ to ask for a copy of your full internal zone. For that matter, you also don't want a user on the Internet to ask your
internal DNS server for all of the records in your network.

There are multiple ways to control zone transfers, and you should implement all of them. First, read the documentation
for your DNS server to see how to restrict the IP addresses that are allowed to ask for zone transfers. (The "Securing
an Internet Name Server" link in this hack's Section 5.7.3 section explains how to do this for BIND.)

Second, configure your firewalls to control zone transfers. DNS is an interesting protocol, as it uses port 53 with both
TCP and UDP. Your firewalls must allow UDP 53; if you deny this, all name resolution will stop. That is a bad thing.
However, TCP 53 is used for zone transfers. You must carefully construct a firewall rule that allows TCP 53 only for the
specific IP addresses of the DNS servers that need to participate in a zone transfer. Remember, you do want to transfer
changes to your secondary servers.

Third, create guidelines to test your DNS servers periodically. Notice how complex it was to secure those nameservers.
How many things could go wrong? Perhaps an OS patch or a DNS server application patch will introduce a new hole.
Perhaps a change in a firewall rulebase will unwittingly reallow zone transfers. You're dealing with multiple DNS servers
—probably in multiple locations—and multiple firewalls, which only increases the possibility of error. A routine testing
schedule increases the chance of catching those errors before they remain for very long.

5.7.2.2 Testing DNS

You can use the axfr switch with dig to test your DNS servers, but I prefer the output provided by host -al. When you run
this utility against your own domain name, you should see a result similar to this one:

% host -al sympatico.ca

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% host -al sympatico.ca

rcode = 0 (Success), ancount=4

Found 1 addresses for ns5.bellnexxia.net

Found 1 addresses for ns6.bellnexxia.net

Found 1 addresses for dns1.sympatico.ca

Found 1 addresses for dns2.sympatico.ca

Trying 209.226.175.236

Server failed, trying next server: Query refused

Trying 209.226.175.237

Server failed, trying next server: Query refused

Trying 204.101.251.1

Server failed, trying next server: Query refused

Trying 204.101.251.2

Server failed: Query refused

Remember, host -al asks for a zone transfer. You want your DNS servers to refuse this request. In this example, all four
DNS servers received the request, so I know they are up and working. The host utility then requested a zone transfer
from each server. Note the order: the first IP address is for the first listed nameserver, and so on. This is important,
especially if one of those nameservers responds with a zone transfer. I can't count the number of times I've tested DNS
servers and two out of three will refuse the query, but one will allow the zone transfer. You'll know which DNS server
was the culprit if you make note of the server response order.

This test is especially important if one or more of your DNS servers is hosted elsewhere. Make sure your agreement
indicates that you will be regularly testing your DNS servers for misconfigurations.

5.7.3 See Also

man dig

man host

Implementing Split DNS (http://www.relevanttechnologies.com/splitdns_081000.asp)

"Securing an Internet Name Server" (http://www.acmebw.com/resources/papers/securing.pdf)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 48 Send and Receive Email Without a Mail Client

 

Learn to speak SMTP and POP3.

Contrary to popular belief, you don't have to go to the trouble of configuring an email client just because you want to
check your email or send off a quick email message.

Normally when you use the telnet application, you use a Telnet client to attach to a Telnet server listening on port 23.
Once you're connected, you can log in and do anything on that device as if you were physically there, typing at its
keyboard.

The Telnet client has even more powerful capabilities than this. If you specify a port number with the telnet command,
you will attach directly to the TCP server listening on that port. If you know which commands that server can respond
to, and if the service understands plain text commands, you can talk directly to that server. This essentially means that
you no longer require a client application specific to that server.

5.8.1 Sending Email with telnet

Whenever you send an email, you connect to an SMTP server listening on port 25. Let's use telnet to see what really
happens in the background and which commands the client and the SMTP server exchange. Note that in the following
examples, the names and addresses have been changed to protect the innocent.

% telnet smtp.mycompany.com 25

Trying 1.2.3.4...

Connected to smtp.mycompany.com.

Escape character is '^]'.

220 smtp.mycompany.com ESMTP server (InterMail version x) ready Sun, 2 

Nov 2003 09:54:18 -0500

mail from:<moi@mycompany.com>

250 Sender <moi@mycompany.com> Ok

rcpt to:<you@mycompany.com>

250 Recipient <you@mycompany.com> Ok

data

354 Ok Send data ending with <CRLF>.<CRLF>

This is a test message.

Not very interesting, really.

.

250 Message received: 20031102145448.QON15340.smtp.mycompany.com@[1.2.3.4]

quit

Let's pick apart that output. Note the 25 at the end of the telnet command. If you forget the port number, your prompt
will probably hang. This is because instead of trying to connect to the SMTP service, you're trying to receive a login
prompt from your ISP's mail server. If you actually do receive a login prompt, it is time to switch ISPs, as security is
obviously not one of their concerns!

Next, the output indicates when you successfully connect to the SMTP service. Notice that there are very few secrets in
TCP/IP-land. The SMTP server readily shows its banner, which indicates the type of SMTP application running on that
server, its version and patch level, as well as the time and date you connected. We'll talk more about banners later.

After connecting to the server, I issued two SMTP commands: MAIL FROM and RCPT TO. Some SMTP servers are pickier

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After connecting to the server, I issued two SMTP commands: MAIL FROM and RCPT TO. Some SMTP servers are pickier
than others and won't recognize these commands unless you say hello first. If your SMTP server complains about your
lack of politeness, try typing HELO or EHLO. I know that this SMTP server accepted my commands because the
responses start with 2xx and end with Ok. Responses that begin with 5xx indicate errors—you either made a typo or
used the wrong command. Most SMTP servers try to be helpful by giving the syntax of the command they expect to
receive.

After providing the sender and recipient email addresses, I issued the DATA command and pressed Enter. The SMTP
server then asked me to type my message. To indicate I was finished, I put a dot (.) on a line by itself. The server
responded with a message number, and I ended the session by typing QUIT.

Some interesting things happen if I play a bit with the SMTP commands. For example, the MAIL FROM command does
not verify that the given email address is valid. This has some interesting ramifications, as I could pretend to be
santa@northpole.com, satan@hell.org, or any other address my imagination could dream up. Remember this quirk
when you read your email. There is no guarantee that any given email was actually sent from the email address it
purports to be from.

Additionally, I'll have mixed results if I start playing with the RCPT TO address. I might start receiving error messages
like this:

550 relaying mail to nowhere.com is not allowed

This is actually a good error message to receive, as SMTP relaying is considered to be a bad thing. In this particular
instance, I've asked the SMTP server of mycompany.com to send my message to a recipient at nowhere.com. The
server rightfully complained, as it should only be responsible for the recipients at mycompany.com. If I want to send a
message to a recipient at nowhere.com, I should instead attach to nowhere.com's SMTP server.

Since you're supposed to connect to the correct SMTP server in order to send email, how
can you find out the name of a recipient's SMTP server? This is a very easy matter, since a
company's DNS server has to maintain an MX record for just this purpose. See [Hack
#47] for details.

5.8.2 Testing for Relaying

As mentioned before, relaying is considered harmful because it allows spammers to use another company's SMTP
server to relay spam. If you're responsible for an SMTP server, be sure to read your SMTP documentation to see
whether relaying is off by default and how to turn it off if it isn't. You can then initiate a quick telnet session to port 25 to
ensure your SMTP server does indeed refuse to relay email. For example, I don't want the mycompany.com SMTP
server to respond like this:

rcpt to:<beastie@unix.ca>

250 Recipient <beastie@unix.ca> Ok

If it does, it is willing to relay to the unix.ca SMTP server.

What else should you look for when you telnet to your own SMTP server? Take a careful look at your banner. Does it
freely advertise that you're one or two patch levels behind? Do you really want to tell anyone who knows enough to ask
which particular SMTP product you're using? If they know enough to use telnet, they probably know how to use Google
to look for known vulnerabilities in that product. It's always good to know exactly what the world sees. You can then
determine if you prefer to change the banner to something a little less chatty. Read the documentation for your
particular product to see how to do so.

5.8.3 Testing SMTP Server Availability

Finally, telnet is an invaluable troubleshooting tool. For example, if users complain that they can no longer access the
mail server, your first step is to check connectivity by pinging the mail server. If the mail server responds, you can telnet
to its SMTP port to verify that the SMTP service is still running.

5.8.4 Reading Email with telnet

Let's move on to POP3, so we can pick up our email messages. Here I'll pick up that message I sent previously:

% telnet pop.mycompany.com 110

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% telnet pop.mycompany.com 110

Trying 1.2.3.4...

Connected to pop.mycompany.com.

Escape character is '^]'.

+OK InterMail POP3 server ready.

user you

+OK please send PASS command

pass thecleartextpassword

+OK you is welcome here

list

+OK 1 messages

1 544

.

retr 1

+OK 544 octets

Return-Path: <moi@mycompany.com>

Received: from [1.2.3.4] by smtp.mycompany.com

        (InterMail version x) with SMTP

        id: <20031102145448.QON15340.smtp.mycompany.com@[1.2.3.4]>

        for <you@mycompany.com>; Sun, 2 Nov 2003 09:54:18 -0500

Message-Id: <20031102145448.QON15340.smtp.mycompany.com@[1.2.3.4]>

Date: Sun, 2 Nov 2003 09:57:34 -0500

From: <moi@mycompany.com>

This is a test message.

Not very interesting, really.

.

quit

+OK you InterMail POP3 server signing off.

Connection closed by foreign host.

Notice that you use port 110 to connect to a POP3 server. Also, the commands used by POP3 are very different than
those understood by SMTP. In this session, I used the USER command to indicate my username and the PASS command
for my password. Unlike SMTP, you do have to authenticate to use POP3.

Once I successfully authenticated, I used the LIST command to see how many email messages were waiting for me. I
had one message, which was 544 bytes long. I then used the RETR command to display that message, including the
headers as well as its contents, and typed the QUIT command to end the POP3 session.

There are several things you should be aware of regarding the POP3 protocol. The first is that every single packet—
including those containing your username, password, and the contents of each email message—are sent in clear text.
That means that a packet sniffer running on your network would have full access to that information.

Second, anyone who knows your email password could conceivably connect to your POP3 server and read your email.
Worse, they could use the DELE command to delete your email before you had a chance to receive it.

5.8.5 Security Considerations

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


That doesn't sound very good, does it? There are several things you can do as an end-user to protect your email. One is
to use a third-party email encryption product, which will protect the contents of your email (but not your username and
password) from packet sniffers. The other is to use different passwords for different functions. For example, don't use
the same password to pick up email, do online banking, log into your office network, etc. And always pick a password
that your friends and family won't be able to guess.

As an email administrator, you can also create a safer environment for your users. Create a different username for each
user, something other than the names contained within their email addresses. For example: moi@mycompany.com
usually indicates a username of moi. That means I could connect to the POP3 server at mycompany.com and try to
guess the password for the user moi. However, if the administrator had given that user a username such as l2tn4g and
instructed that user never to give out his username, it would be much more difficult for someone else to access his
email.

5.8.6 See Also

RFC 2821, the latest SMTP RFC (including valid SMTP commands), at http://www.ietf.org/rfc/rfc2821.txt

RFC 1939, the latest POP3 RFC (including valid POP3 commands), at http://www.ietf.org/rfc/rfc1939.txt

The Relaying FAQ (http://ordb.org/faq/)

How to Read Email Headers (http://www.stopspam.org/email/headers.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 49 Why Do I Need sendmail?

 

As an end user, you've probably asked yourself: "If all I'm doing is running a FreeBSD machine for personal use, why
should I need to run a heavyweight MTA daemon like sendmail?"

sendmail is the standard Mail Transport Agent (MTA) on FreeBSD, as it is on most Unix systems. In fact, the majority of
email passing over the Internet will probably travel through a sendmail server at some point. However, sendmail isn't the
easiest software package to manage, and the configuration file syntax gives most people a headache. There are several
alternative MTA packages available, but these are also industrial-strength programs suitable for demanding use.

Many modern graphical email clients, such as Netscape Mail or Evolution, can send email directly to a mail server
machine across the network. So, no, you won't need an MTA on your local machine to send email. (However, you will
need an MTA if you use one of the more traditional Unix mail clients, such as mail, mutt, or pine.)

Regardless of your email client, if you want to see any automatic emails the system sends—usually from the periodic
scripts—then you do require an MTA. More precisely, Unix programs expect to be able to send email by piping its text
into the standard input of /usr/sbin/sendmail, and have the system take care of the rest of the work for them.

The venerable sendmail is only one of many MTAs available. Choosing another MTA does
not always mean that you need to change the habits you picked up while working with
sendmail. All three major BSD systems have a translator file, /etc/mailer.conf, that
identifies which commands to execute when the user or another process executes sendmail,
mailq, or newaliases.

For example, if you install postfix, you still use the sendmail command, even though the real
job is done by the commands from the postfix package. The existence of /etc/mailer.conf
makes it easy to replace one MTA with another without turning the whole mail subsystem
upside down.

5.9.1 Closing Port 25

Since most systems aren't mail servers, you can disable the receiving of email. In other words, there's no reason to
have sendmail listening on port 25 on any exposed interface.

Port 25 must be open on SMTP mail servers, but it does not have to be open in order to
send an email as a client. Remember, any unnecessary open port is a potential security
risk.

It is possible to close port 25 (except on the loopback interface) and still allow sendmail to run occasionally in order to
process outgoing messages. Add the following line to /etc/rc.conf:

sendmail_enable="NO"

With the release of sendmail-8.12.2 in 2002, sendmail has been split into two parts, each with a separate configuration
file. These are the MTA process, which uses SMTP to copy the mail from machine to machine, and the Mail Submission
Process (MSP), whose job is to read in the complete text of any new email and reliably inject it into the MTA. When
programs run /usr/sbin/sendmail, they interact with the MSP.

You can either run an MTA process locally or not run it at all, configuring the MSP to deliver straight to the MTA on your
provider's smart host. In order to deliver any email, it has to pass from the MSP to an MTA. The MSP talks SMTP to the
MTA to do that, which requires the MTA to be listening on port 25.

5.9.2 Simple sendmail Configuration with a Local MTA

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Setting sendmail_enable="NO" in /etc/rc.conf does not turn off sendmail—use sendmail_enable="NONE" for that—but it does
stop sendmail from receiving incoming email. In fact, sendmail_enable="NO" will result in starting up two sendmail
processes: an MSP queue manager and an MTA process that listens on the loopback address only. Having the MTA
listen only on the loopback interface means that it can be accessed only from the local machine. This is an acceptably
secure compromise between having port 25 open generally and not having access to the local MTA at all.

If you want to send emails to external recipients, edit the sendmail configuration file slightly to tell it the name of your
provider's email smart host:

# cd /etc/mail

# cp freebsd.mc `hostname`.mc

where `hostname` turns into the system's hostname.

Open <hostname>.mc in your favorite editor. Change the line that says:

dnl define(`SMART_HOST', `your.isp.mail.server')

to read:

define(`SMART_HOST', `smtp.yourprovider.net')

Replace smtp.yourprovider.net with the correct name of your provider's SMTP server. dnl stands for "Delete until New
Line"—it's used to comment out text in .mc files, so this change simply uncomments an example line in the default .mc
file. Note that in .mc files, the left tick (`) is different from the right tick (').

By default, the submission port (587) is also open. This port is part of the SMTP standard,
but there is very little application support at the moment, so you won't miss it if you close
it. Add this line to your hostname.mc:

FEATURE(no_default_msa)dnl

Now process the .mc file into a .cf file, and install and activate it:

# make

# make install

# make restart-mta

You don't need to make any changes to the default sendmail MSP configuration. This setup will send all messages for
nonlocal users to the provider's smart host for processing. It doesn't provide any means of receiving incoming emails
over the network.

5.9.3 Simple sendmail Configuration Without a Local MTA

Instead of running both a sendmail MSP queue runner and a sendmail MTA process, an alternative is to use just an MSP
queue runner. Don't worry about the sendmail MTA, as you're not using it. In addition to sendmail_enable="NO", add
these lines to /etc/rc.conf:

sendmail_submit_enable="NO"

sendmail_outbound_enable="NO"

You'll also need to customize the sendmail configuration slightly, this time for the MSP rather than the MTA.

# cd /etc/mail

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cd /etc/mail

# cp freebsd.submit.mc submit.mc

Change the last line in submit.mc from:

FEATURE(`msp', `[127.0.0.1]')dnl

to:

FEATURE(`msp', `smtp.yourprovider.net')dnl

where, as before, smtp.yourprovider.net is your ISP's mail smart host.

Then, install and activate the new configuration:

# make

# make install

# make restart-msp

Again, this will permit you to send email anywhere in the world, but not to receive incoming messages. This differs from
the preceding "with MTA" configuration, in that this has to send all outgoing messages—without exception—through the
provider's smart host. In return, there is no longer a sendmail process listening on port 25.

A third alternative to send-only SMTP i s ssmtp, which is available in the FreeBSD ports
collection or from source at the main web site. You can find detailed instructions in Bill
Moran's "Setting up to send only" article at
http://www.potentialtech.com/wmoran/outgoing-only.html.

5.9.4 See Also

man sendmail

man mailer.conf

man rc.conf

The ssmtp web site (http://packages.debian.org/testing/mail/ssmtp.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 5. Networking Hacks
Introduction

Section 42.  See Console Messages Over a Remote Login

Section 43.  Spoof a MAC Address

Section 44.  Use Multiple Wireless NIC Configurations

Section 45.  Survive Catastrophic Internet Loss

Section 46.  Humanize tcpdump Output

Section 47.  Understand DNS Records and Tools

Section 48.  Send and Receive Email Without a Mail Client

Section 49.  Why Do I Need sendmail?

Section 50.  Hold Email for Later Delivery

Section 51.  Get the Most Out of FTP

Section 52.  Distributed Command Execution

Section 53.  Interactive Remote Administration

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
This chapter includes several hacks that demonstrate some security mechanisms that aren't well-documented
elsewhere. I've also provided some new twists on old security favorites. Everyone has heard of sudo, but are you also
aware of the security pitfalls it can introduce? You're probably also well-versed in ssh and scp, but you may have yet to
harness the usefulness of scponly.

You'll also find several scripts to automate some common security practices. Each provides an excellent view into
another administrator's thought processes. Use their examples to fuel your imagination and see what security solutions
you can hack for your own network.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 62 sudoscript

 

sudo can help enforce strict security policies, but what about situations in which you don't want to restrict
what commands your users run?

Maybe you're looking for a way to keep track of what your sysadmin team does as root, so you can quickly find out what
happened when something goes wrong. Even if you're the only administrator, it's possible to make a bad error as root
without realizing it. An audit trail allows you to go back and see exactly what you did type during that 3:00 AM hacking
session.

As mentioned in [Hack #61], giving access to a shell with sudo means that you lose your audit trail the moment the
root shell executes. One answer to this problem is sudoscript.

Another scenario where sudoscript is useful is one similar to the situation that caused me to write sudoscript in the first
place. I was a sysadmin in a small startup whose engineers all had the root password. The IT crew all used sudo, but
they had tried without success to convince the engineers to use it. Upon investigation, I discovered that the principal
reason for this was the prohibition on running shells with sudo.

In fact, the sysadmins used the "everything-but-shells" method the sudoers manpage
warns against [Hack #61] .

It quickly became clear that I wasn't going to be able to argue that sudo, as implemented, was equivalent to having a
root shell; positions had hardened long before I showed up. So, I wrote sudoscript to bring these engineers back into the
IT department's supported circle. It worked, and having the audit trail saved my bacon several times.

6.10.1 sudoscript Overview

sudoscript is a pair of Perl scripts. One is called sudoshell , or just ss. Contrary to its name, sudoshell is not a shell like tcsh
or bash. Instead, it is a frontend script that uses authorization from sudo to run as root and runs script(1) on a FIFO
(named pipe) managed by the second script. That script is a daemon, called sudoscriptd . It takes data from the FIFO
opened by sudoscript and tags it with the user's name, PID, and a timestamp before writing it to a log file. This log file,
/var/log/sudoscript, is managed by the daemon and rotated if its size exceeds 2 MB. The effect of all this is a root shell
that saves its terminal input and output in a log file.

FreeBSD provides sudoscript in the ports collection in /usr/ports/security/sudoscript.
Download OpenBSD and NetBSD ports from http://egbok.com/sudoscript/.

6.10.2 Is sudoscript Secure?

The answer is yes and no. The answer is "yes" because sudoscript doesn't confer any privilege of its own; it relies on
sudo for that. For that reason, programming or architecture errors in sudoscript (which I have worked hard to avoid)
shouldn't increase the security risk to a system. The user of sudoscript already has the privilege to do anything at all on
the system.

The answer is "no" if you expect the audit trail provided by sudoscript to be bulletproof. It isn't. For one thing, an xterm
will produce a shell that is not audited. Additionally, the FIFO that the scripts use must be writable by the effective user
running it. If that effective user is root, then of course there are many, many ways to avoid the audit trail. Simply killing
the daemon (but not sudoshell) would do the trick nicely, for example.

The moral is: don't give sudoscript to users you don't trust with root. If you have to give it to such users, though, it is
probably better than nothing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


6.10.3 Using sudoscript

Build sudoscript from source in the ports tree or install it from a binary package. (Note that both are misnomers with
respect to sudoscript, since it is pure Perl. These mechanisms install the scripts and supporting files.) If you want to
enable only root shells, sudoscript configuration is easy. Add an entry like the following to /usr/local/etc/sudoers:

Cmnd_Alias      SS    = /usr/local/bin/sudoshell, /usr/local/bin/ss

You can then grant sudoscript access to chosen users through the usual mechanisms. For example:

%wheel          ALL=SS

joe             joesbox=SS

Now when a user runs ss:

% ss

The sudoscriptd doesn't appear to be running!

Would you like me to start it for you? (requires root sudo privilege)? yes

This will be a one-off startup of the daemon. You may have

to arrange for it to be started when the system starts, if that's

what you want. See the INSTALL file in the distribution for details.

sudoscriptdwaiting for the daemon ..done

Script started, output file is

        /var/run/sudoscript/ssd.test_root_1667/test1667.fifo

#

The INSTALL file mentioned lives in /usr/local/share/doc/sudoscript-version/, along with lots of other documentation.

As shown in the example, sudoshell will start sudoscriptd if it isn't running already. You probably want to add sudoscriptd to
the system startup, which you can do by renaming /usr/local/rc.d/sudoscriptd.sh.sample to
/usr/local/rc.d/sudoscriptd.sh. Unfortunately, this script isn't a true rc-style startup script in the manner of SysV init, in
that it doesn't have start and stop targets; however, this will change in the next release. (As of this writing, sudoscript is
at Version 2.1.1.)

The impatient can modify the startup script using [Hack #86] .

sudoscript can enable shells as users other than root. This could be handy for auditing activity of the dba user, for
instance. If you want to use this feature, you must also add a Unix group called ssers. If this group exists when
sudoscriptd starts, it will make some changes to the files in /var/run/sudoscript (where the FIFOs live) to accomodate
group access to those files. This has security implications in that anyone in the ssers group will have access to the FIFOs
being used by any other concurrent user of sudoscript. Both the user that will run ss and the user ss will enable must be
in the ssers group.

To get nonroot shells to work, you also have to change your sudoers entries like so:

Host_Alias      DBBOXES    = db1,db2,db3

Cmnd_Alias      SS         = /usr/local/bin/sudoshell, \

                             /usr/local/bin/ss

Cmnd_Alias      SSASDBA    = /usr/local/bin/sudoshell -u dba, \

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Cmnd_Alias      SSASDBA    = /usr/local/bin/sudoshell -u dba, \

                             /usr/local/bin/ss -u dba

%wheel          ALL=SS

joe             joesbox=SS

datamonkey      DBBOXES=(dba) SSASDBA

Once the ssers group and the preceding entries in are place:

% id

uid=1004(datamonkey) gid=1004(datamonkey) groups=1004(datamonkey), 92(ssers)

% ss -u dba

Password:

Script started, output file is

        /var/run/sudoscript/ssd.datamonkey_dba_2223/datamonkey2223.fifo

bash-2.05b$ id

uid=1005(dba) gid=1005(dba) groups=1005(dba), 92(ssers)

6.10.4 The sudoscript Log File

The sudoscript log file lives in /var/log/sudoscript. It contains entries like the following:

Mon Dec 22 00:32:19 New logger for datamonkey with pid 2223

Mon Dec 22 00:32:19 datamonkey:2223 Script started on Mon Dec 22 00:32:19

    2003

Mon Dec 22 00:32:25 datamonkey:2223 bash-2.05b$ id

Mon Dec 22 00:32:25 datamonkey:2223 uid=1005(dba) gid=1005(dba)

        groups=1005(dba), 92(ssers)

Mon Dec 22 00:49:09 datamonkey:8603 bash-2.05b$ vi .bashrc

(Tons and tons of garbage)

Mon Dec 22 00:49:54 datamonkey:8603 bash-2.05b$ exit

Mon Dec 22 00:49:54 datamonkey:8603 

Mon Dec 22 00:49:54 datamonkey:8603 Script done on Mon Dec  22 00:49:54 2003

Mon Dec 22 00:49:54 logger (datamonkey,8603) caught signal. Exiting

This looks pretty bad! The problem is that the script command faithfully stores all the input and output in the shell,
including all the escape codes that the terminal emulator turns into things like cursor movement and screen refreshes.
The problem is particularly acute when the user enters a full screen editor, such as vi. There are two approaches to this
problem that help turn the gibberish into useful data. First, this sed script from Unix Power Tools, Third Edition (O'Reilly)
will remove simple escape codes from script output.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


will remove simple escape codes from script output.

#!/bin/sh

# Public domain.

# Put CTRL-M in $m and CTRL-H in $b.

# Change \010 to \177 if you use DEL for erasing.

eval `echo m=M b=H | tr 'MH' '\015\010'`

exec sed "s/$m\$//

:x

s/[^$b]$b//

t x" $*

Run the previous output through this script. You'll see something like:

Mon Dec 22 00:32:19 New logger for datamonkey with pid 2223

Mon Dec 22 00:32:19 datamonkey:2223 Script started on Mon Dec 22 00:32:19

    2003

Mon Dec 22 00:32:25 datamonkey:2223 bash-2.05b$ id

Mon Dec 22 00:32:25 datamonkey:2223 uid=1005(dba) gid=1005(dba)

        groups=1005(dba), 92(ssers)

Mon Dec 22 00:49:09 datamonkey:8603 bash-2.05b$ vi .bashrc

(Still tons of garbage)

Mon Dec 22 00:49:54 datamonkey:8603 ESC[Mon Dec 22 00:49:54 datamonkey:8603 bash-2.05b$ 

exit

Mon Dec 22 00:49:54 datamonkey:8603

Mon Dec 22 00:49:54 datamonkey:8603 Script done on Mon Dec  22 00:49:54 2003

Mon Dec 22 00:49:54 logger (datamonkey,8603) caught signal. Exiting

That's a more intelligible version of the output, but the vi session is still scrambled. We can take advantage of the fact
that we probably are running the same terminal emulator as the user. If we snip out just the vi session from the log and
then cat it to the screen, we get:

This is a normal line in a file

Why does this look so bad??

~

~

.. many more ~ lines..

~

~

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


~

:q

That's recognizable as a vi screen. In fact, our screen has been updated several times, once for every time the screen
was refreshed in the original session. The final display shows the final state of the vi session.

Why not clean this up in the logging daemon? Because information is invariably lost when
you do that kind of thing. It's better to clean up after the log file is written. In case you
filter out something important, you still have the original log to fall back on.

6.10.5 See Also

man sudoscript

man sudoscriptd

man sudoshell

The sudoscript web site (http://egbok.com/sudoscript/)

The Sudoscript-user mailing list subscription link (http://lists.sourceforge.net/mailman/listinfo/sudoscript-user)

The Problem of PORCMOLSULB (http://egbok.com/sudoscript/PORCMOLSULB.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 63 Restrict an SSH server

 

Control your ssh scripts by placing them in a jail.

Using SSH increases the security of file transfers and network logins. Many network tasks, however, don't really need
the shell associated with a user account—remote backups, for example. After all, a shell brings with it commands and
an entry point into a system's directory structure. That's somewhat scary when you consider that many of your SSH
tasks are scripted.

Configuring a restricted SSH shell such as scponly can mitigate this risk. Not only does it provide noninteractive (read
scripted) logins into the SSH server, it limits the set of available commands. Additionally, it provides a chroot option,
allowing you to restrict the scponly user account to its own directory structure.

6.11.1 Installing scponly

Before installing this port, read through the available options in its Makefile:

# cd /usr/ports/shells/scponly

# more Makefile

Depending on the scripts you plan on using, consider disabling wildcard processing (which can help prevent accidents
like rm -R *). You can also enable rsync support, which is ideal if you're using rsnapshot for backups [Hack #35] . If you
want to restrict the account to its own directory, preventing your scripts from accessing anything else on the SSH
server, include the chroot option.

Once you've chosen your desired options, pass them to the make command. Here I'll enable chroot support:

# make -DWITH_SCPONLY_CHROOT install

If you include the chroot option, do not use the clean target at the end of your make
command. make clean will remove the work/ directory, which contains a script that will set
up the chroot for you.

Toward the end of the installation, you'll see this message:

Run following script to setup chroot cage:

/usr/ports/shells/scponly/work/scponly-3.8/setup_chroot.sh

Before running this script, choose a new name for the user account you wish to restrict. The script will abort if you use
an existing user account.

Here I'll create a chroot for an account named backup:

# cd work/scponly-3.8/

# chown +x setup_chroot.sh

# ./setup_chroot.sh

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ./setup_chroot.sh

Next we need to set the home directory for this scponly user.

please note that the user's home directory MUST NOT be writable

by the scponly user. this is important so that the scponly user

cannot subvert the .ssh configuration parameters.

for this reason, an "incoming" subdirectory will be created that

the scponly user can write into. if you want the scponly user to

automatically change to this incoming subdirectory upon login, you

can specify this when you specify the user's home directory as

follows:

set the home dir to /chroot_path//incoming

when scponly chroots, it will only chroot to chroot_path and

afterwards, it will chdir to incoming.

enter the home directory you wish to set for this user: 

/usr/home/rembackup/

Install for what username? backup

ls: /lib/libnss_compat*: No such file or directory

creating  /usr/home/rembackup/incoming directory for uploading files

6.11.2 Testing the chroot

The script will have created the following directory structure for you:

# ls -l /usr/home/rembackup

total 10

drwxr-xr-x  2 root   wheel  512 Jan 22 12:37 bin/

drwxr-xr-x  2 root   wheel  512 Jan 22 12:38 etc/

drwxr-xr-x  2 backup wheel  512 Jan 22 12:38 incoming/

drwxr-xr-x  2 root   wheel  512 Jan 22 12:37 lib/

drwxr-xr-x  7 root   wheel  512 Jan 22 12:37 usr/

# ls -l /usr/home/rembackup/bin/

total 1868

-rwxr-xr-x  1 root  wheel   88808 Jan 22 12:37 chmod*

-rwxr-xr-x  1 root  wheel   14496 Jan 22 12:37 echo*

-rwxr-xr-x  1 root  wheel   72240 Jan 22 12:37 ln*

-rwxr-xr-x  1 root  wheel  567772 Jan 22 12:37 ls*

-rwxr-xr-x  1 root  wheel   73044 Jan 22 12:37 mkdir*

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


-rwxr-xr-x  1 root  wheel   73044 Jan 22 12:37 mkdir*

-rwxr-xr-x  1 root  wheel  437684 Jan 22 12:37 mv*

-rwxr-xr-x  1 root  wheel   80156 Jan 22 12:37 pwd*

-rwxr-xr-x  1 root  wheel  439812 Jan 22 12:37 rm*

-rwxr-xr-x  1 root  wheel   69060 Jan 22 12:37 rmdir*

# ls -l /usr/home/rembackup/usr/bin/

total 48

-rwxr-xr-x  1 root  wheel   7016 Jan 22 12:37 chgrp*

-rwxr-xr-x  1 root  wheel   7688 Jan 22 12:37 groups*

-rwxr-xr-x  1 root  wheel   7688 Jan 22 12:37 id*

-rwxr-xr-x  1 root  wheel  22616 Jan 22 12:37 scp*

# ls -l /usr/home/rembackup/usr/sbin/

total 8

-rwxr-xr-x  1 root  wheel  7016 Jan 22 12:37 chown*

There you have it; these are the only commands that account can use during an SSH session.

You can also verify that the specified user account was created for you. I'll check for that backup account:

# grep backup /etc/master.passwd

backup:*:1015:1015::0:0:User \ 

&:/usr/home/rembackup//incoming:/usr/local/sbin/scponlyc

Notice that the account is restricted to the scponlyc shell. The trailing c indicates that this is a chroot.

6.11.3 Now What?

Now that you have a restricted account, test it with one of your SSH scripts. Don't forget to set up your authentication
method. Either set a password on the account or configure key-based authentication.

You can use this hack in conjunction with [Hack #38] and [Hack #39] .

6.11.4 See Also

man scponly

The scponly home page (http://www.sublimation.org/scponly/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 64 Script IP Filter Rulesets

 

One firewall ruleset isn't always enough.

As a firewall administrator, you know that it takes a bit of creative genius to create a ruleset that best reflects your
network's security needs. Things can get more interesting if those needs vary by time of day. For example, you may
need to allow Internet access between business hours but ban it during the evening hours. This is easy to do with two
rulebases, a couple of scripts, and trusty old cron.

6.12.1 Limiting Access with IP Filter

I have a FreeBSD firewall/router guarding my home network. I also happen to have a daughter who would spend her
life online if she were allowed. There's a simple solution to restricting her access to the Internet to certain times of the
day without having to use a proxy.

I use FreeBSD's IP Filter as my firewall software. My normal set of firewall rules, /etc/ipf.rules, allows unrestricted access
to the Internet. Here's the section of that rulebase that controls my daughter's access:

# --------------------------comment area begin------------------------------

# Internal Interface: ed0

# Allow internal traffic to flow freely.

# -------------------------- comment area end ------------------------------

pass in  on ed0 all

pass out on ed0 all

Note that this is not my entire rulebase, just the section controlling the interface, ed0, connected to the portion of the
network containing my daughter's computer.

Also note that I did not use the normal pass in quick on ed0 all or pass out quick on ed0 all. This is because the use of the
word quick in IP Filter tells the program not to look any further for rules applying to the flow of traffic on an interface. If
that were the case, this hack would not work.

I saved a copy of my unrestricted rulebase as /etc/ipf.rules.allow for safekeeping. This will be my first rulebase.

# cp /etc/ipf.rules /etc/ipf.rules.allow

I next edited a copy of the original rulebase file, /etc/ipf.rules, to block Natasha's computer (IP 10.0.0.3) from
accessing the outside world while still allowing her to do homework:

# --------------------------comment area begin------------------------------

# Internal Interface: ed0

# Allow internal traffic to flow freely.

# -------------------------- comment area end ------------------------------

pass in  on ed0 all

pass out on ed0 all

# --------------------------block Natasha's computer------------------------

block in  on ed0 from any to 10.0.0.3

block out on ed0 from any to 10.0.0.3

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


block out on ed0 from any to 10.0.0.3

I saved this rule file as /etc/ipf.rules.block, my second rulebase. This second ruleset will effectively block her from
surfing and using the usual plethora of messaging programs.

6.12.2 Switching Rules on a Schedule

To implement these restrictions at a specific time, I wrote a small script:

#!/bin/sh

# copy the restrictive rules to the default ipfilter rulebase 

cp /etc/ipf.rules.block /etc/ipf.rules 

# cause ipfilter to re-read and apply the new rulebase

/sbin/ipf -Fa -f /etc/ipf.rules

Notice that this is a very simple Bourne shell script. As the comments state, it copies the second, restrictive rulebase to
the rulebase used by IP Filter. It then tells IP Filter to reread and apply the newly copied rulebase.

I saved this script as /usr/local/bin/block.sh and made it executable:

# chmod 751 /usr/local/bin/block.sh

From there, I used cron to schedule the restriction. First, I open up the crontab editor:

# crontab -e

and then add the line:

# minute, hour, all days, all weeks, on these days, script to run

  0       21    *         *          0-4            /usr/local/bin/block.sh

which will effectively shut down access to the outside world starting at 9:00 PM, Sunday through Thursday (i.e., school
nights).

To allow access to the Internet in the morning, I need another script:

#!/bin/sh

# copy the non-restrictive rules to the default ipfilter rulebase 

cp /etc/ipf.rules.allow /etc/ipf.rules 

# cause ipfilter to re-read and apply the new rulebase

/sbin/ipf -Fa -f /etc/ipf.rules

This script is very similar to the first one, except that it copies over the non-restrictive rulebase. I saved this file as
/usr/local/bin/allow.sh and made it executable:

# chmod 751 /usr/local/bin/allow.sh

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# chmod 751 /usr/local/bin/allow.sh

Once again, I launched crontab -e to add the following line:

# minute, hour, all days, all weeks, on these days, script to run

  0       7     *         *          1-5            /usr/local/bin/allow.sh

This will allow access to resume at 7:00 AM, Monday to Friday. Obviously there are no restrictions on the weekends.

6.12.3 Hacking the Hack

While I've successfully used this hack at home for several years, it is easy to see how the same logic could apply to
schedule multiple rulebases to suit any network's needs. This gives an administrator much more flexible control over
traffic, without the overhead of additional firewall software.

6.12.4 See Also

man crontab

The IP Filter HOWTO (http://www.obfuscation.org/ipf/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 65 Secure a Wireless Network Using PF

 

Protect your private wireless network from unauthorized use.

The abundance of 802.11 wireless networks has raised an important question. How can you secure a wireless network
so that only recognized systems can use it?

Wireless Encryption Protocol (WEP) and MAC access lists offer some protection against unauthorized users; however,
they can be difficult to maintain. With OpenBSD's PF, we can maintain tables of recognized clients and update those
tables with a single shell command. Known clients can access the Internet; unknown clients will only ever see a web
page informing them that this is a private network.

For this hack, we will use dhcpd, PF, and Apache.

6.13.1 DHCP Configuration

We'll use a simple DHCP configuration in /etc/dhcpd.conf like this:

shared-network GUEST-NET {

        max-lease-time 300;

        default-lease-time 120;

        option     domain-name-servers 192.168.0.1;

        option     routers 192.168.0.1;

   subnet 192.168.0.0 netmask 255.255.255.0 {

          range 192.168.0.101 192.168.0.254;

     }

}

In this case, we're using the subnet 192.168.0.0/24. Our firewall and NAT gateway is 192.168.0.1, and it's also
configured as the DNS server for our network.

We've allocated a range of IP addresses (192.168.0.101 to 192.168.0.254) for distribution on a first-come, first-served
basis to any host that requests an address via DHCP. Anybody that connects to our network will be able to request a
valid IP address in that range. The security will come from our PF configuration.

6.13.2 PF Configuration

OpenBSD has an excellent FAQ on PF, along with an example of how to write a ruleset for a home or small office
network. We'll use this example as a template.

We'll start with the sample PF configuration that allows any host on the internal interface (represented by the macro
$int_if) full access to the Internet. Then, we will modify the rules in /etc/pf.conf so that only authorized hosts have
access and set up a web server to respond to requests from unauthorized hosts. We will also allow unauthorized hosts
direct access to our DNS server, to simplify our rules and to avoid more complex split-horizon DNS configuration.

First, let's create the table for authorized hosts and macros for the web server and the DNS server:

auth_server = "127.0.0.1 port 8080"

dns_server  = "192.168.0.1"

table <authorized_hosts> { 192.168.0.1, 192.168.0.11 };

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


table <authorized_hosts> { 192.168.0.1, 192.168.0.11 };

These lines go near the top of /etc/pf.conf, before any queue, NAT, or filter rules.

We've initialized the table to contain the addresses of our NAT gateway and one other host, 192.168.0.11, a statically
configured box we'd like to have access to as well. While PF has a ruleset loaded, we can add a host to the table on the
fly:

# pfctl -t authorized_hosts -Tadd 192.168.0.101

We can also delete a host:

# pfctl -t authorized_hosts -Tdelete 192.168.0.102

and list all the authorized hosts:

# pfctl -t authorized_hosts -Tshow

Now we need to modify the filter rules so only our authorized hosts have access. These rules allow any host on our
network to have access:

pass in  on $int_if from $int_if:network to any             keep state

pass out on $int_if from any             to $int_if:network keep state

We'll change them like this to use our table:

pass in  on $int_if from <authorized_hosts> to any keep state

pass out on $int_if from any to <authorized_hosts> keep state

Right after those rules, we'll add the following rules to allow unauthorized hosts to access our web server and DNS
server:

pass in  on $int_if proto tcp from !<authorized_hosts> to $auth_server

pass in  on $int_if proto {tcp, udp} from any to $dns_server port domain \

    keep state

Now any host in the authorized_hosts table will have full access to the Internet. Any other hosts will only be able to
lookup names and reach the web server. We'll add some simple rules so unauthorized users will see a rejection page if
they try to go to any web site.

In the NAT section, we'll add this rule:

rdr on $int_if proto tcp from !<authorized_hosts> to any port www -> \

    $auth_server

This rule redirects any unknown host attempting to access a remote machine on the www port to the web server that
will return the rejection page. We could install a web server on the firewall box or on some separate machine. In my
case, I'll run Apache on the firewall, listening at 127.0.0.1 and port 8080, so it won't be confused with any other web
servers I'm running.

6.13.3 Apache Configuration

Apache is installed by default with OpenBSD, so we'll reconfigure it to listen on port 8080 of the gateway (with IP
address 127.0.0.1) and return the same page for every URL requested. (Apache is also available in the FreeBSD ports
collection and NetBSD packages collection.)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


collection and NetBSD packages collection.)

First, we'll enable Apache with the httpd_flags parameter in /etc/rc.conf. Next, we need to edit Apache's configuration
file, /var/www/conf/httpd.conf. Find the Listen directive and add 127.0.0.1:8080. Next, create a VirtualHost entry like this:

<VirtualHost 127.0.0.1:8080>

  ServerAdmin none

  DocumentRoot /var/www/auth

  ErrorDocument 404 /index.html

</VirtualHost>

This tells Apache to listen to the appropriate port and IP address. For every incoming request, Apache will try to serve a
page beneath the given directory. Any time it can't find a page, it will serve the index.html page instead.

We don't have either yet, so create the directory /var/www/auth and place an index.html like this in it:

<html>

  <head>

    <title>Unauthorized -- This is a private network</title>

  </head>

  <body>

    <h1>Unauthorized</h1>

    <p>This is a private network and you are not authorized to use 

        it.</p>

  </body>

</html>

6.13.4 Putting it All Together

Start or restart dhcpd, pf, and Apache like this, where [interfaces] is the list of interfaces on which you provide DHCP:

# kill `cat /var/run/dhcpd.pid`; dhcpd -q 

[interfaces]

# pfctl -f /etc/pf.conf

# apachectl stop && apachectl start

Congratulations! When a new host connects to your network, it should request an address with DHCP. If so, it will
receive an address in the range of 192.168.0.101 to 192.168.0.254. If the assigned address is not already in the
authorized_hosts table, any time that host attempts to load a web page it will receive your Unauthorized page. The firewall
will silently discard any packets destined for any other ports outside of your network.

If you want to allow a new host to use your network, just use pfctl to add it to the table. To make the change
permanent, add the address or a range of addresses to the table definition in /etc/pf.conf, or even create an external
file listing allowed addresses. See the PF FAQ section on tables for more.

6.13.5 Security Concerns

This technique only controls the ability of hosts on your network to route packets through your firewall. It will not

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This technique only controls the ability of hosts on your network to route packets through your firewall. It will not
protect other hosts on the same subnet from unauthorized access, so they should have reasonable local firewall rules. A
wise approach might be to build a firewall with three interfaces: one external and two internal. One internal subnet
would host your regular machines, and the other subnet would allow guest access with this technique, separating the
subnets with additional PF rules.

6.13.6 Hacking the Hack

Running the web server on the firewall is a simple approach. However, you can redirect to another host, such as a
dedicated authentication server. For simplicity, this server should not be on the $int_if:network subnet; if it is, the
redirection becomes more complicated. The PF FAQ has a section devoted to port forwarding in this manner.

I used Apache because it is installed by default with OpenBSD and because its configuration is trivial in this case.
Almost any HTTP server will do the job, though.

6.13.7 See Also

OpenBSD's PF FAQ (http://www.openbsd.org/faq/pf/)

NoCat.net's NoCatAuth, authentication software for open wireless nodes (http://nocat.net/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 66 Automatically Generate Firewall Rules

 

Easily protect any FreeBSD workstation with a fully configured firewall.

You know the importance of being protected by a firewall. You know where to look in the manpages for details. Given
enough time and trouble, you could write a firewall configuration for any situation. They're all reasonably similar,
though, so why not generate the configuration by answering a few questions?

That's the purpose of the IPFilter setup script: to generate configuration rules for typical SOHO firewalls using FreeBSD
and IPFilter. Even novice users can retain the full benefits of a firewall without first having to learn syntax. In fact, with
this script, you should be able to set up a typical firewall with no FreeBSD configuration knowledge at all.

Even if you're not a novice user, this is a great script to refer friends to as they discover FreeBSD. Now you can rest
easy in the thought that your friends are protected—and you didn't even have to find the time to show them how to set
up their systems.

6.14.1 What the Script Does

The script uses a simple question and answer text interface. It has four main parts:

Network settings and IPFilter firewall and IPNAT configuration

This configures internal and external network card interface IP address settings either manually or via DHCP. It
creates stateful firewall rules on the external network interface and configures NAT to provide Internet
connection sharing on the internal network interface.

ADSL PPPOE configuration

This prompts for a login name, password, and Ethernet NIC to generate the /etc/ppp/ppp.conf file. It then
inserts the required PPP variables in /etc/rc.conf. This starts userland PPP at bootup.

DHCP server configuration

This checks for the installation of the ISC DHCP server. If it's not installed, the script offers to install the latest
version from the ports system or via a precompiled package.

Once installed, the script will configure the DHCP server by prompting for the addresses of the ISP's DNS
servers, the address of the internal NIC to use as the default gateway, and the IP address range and subnet
mask to use for the internal LAN.

Serial console setup

Answer "yes" to this section of the script if you plan on running the firewall headless [Hack #26] .

6.14.2 Installation

The easiest way to install the script is to download it to the system that will become the firewall. I prefer the fetch
command:

% fetch http://www.roq.com/bsd/ipfilterscript.tar.gz

If networking isn't configured on that system yet, you can copy the file from another device, such as a USB flash key:

# mount -t msdos /dev/da0s1 /mnt 

# cp /mnt/ipfilterscript.tar.gz /tmp/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cp /mnt/ipfilterscript.tar.gz /tmp/

Once you have the script, extract it and run it:

# tar -zxf ipfilterscript.tar.gz

# ./ipfilter.pl

######################################################################

1: Would you like to setup PPPoE DSL connection (Choose 1)

2: Setup IP configuration, Firewalling and NAT (Choose 2) or

3: Setup a DHCP server (Choose 3 and hit enter)

4: Setup serial console support

5: Exit

######################################################################

If you use ADSL with PPPoE, choose 1 and press Enter. If you have ADSL but use it with a static IP, instead choose 2,
which combines IP configuration, Firewalling, and NAT setup. Choosing 3 will install and configure a DHCP server. First,
however, configure your network, as the script will attempt to download and install the DHCP server.

6.14.3 Example Usage

For this example, I will choose 2 for IP configuration. The script lists my three Ethernet cards, rl0, xl0, and rl0, two of
which I haven't configured.

rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

        inet6 fe80::202:44ff:fe36:8259%rl0 prefixlen 64 scopeid 0x1

        inet 10.0.0.5 netmask 0xff000000 broadcast 10.255.255.255

        ether 00:02:44:36:82:59

        media: Ethernet autoselect (10baseT/UTP)

        status: active

xl0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

        options=3<RXCSUM,TXCSUM>

        ether 00:50:da:89:bc:9f

        media: Ethernet 10baseT/UTP (10baseT/UTP <half-duplex>)

rl1: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

        ether 00:02:44:04:14:2c

        media: Ethernet autoselect (10baseT/UTP)

        status: no carrier

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

        inet6 ::1 prefixlen 128

        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4

        inet 127.0.0.1 netmask 0xff000000

#####################################################################

 Choose your external Nic, eg "fxp0" . If you are firewalling for a PPPoE

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 Choose your external Nic, eg "fxp0" . If you are firewalling for a PPPoE

 / ADSL setup use "tun0"

#####################################################################

At the moment, I have only one Ethernet card plugged into something. Only rl0 has active status, so it is plugged into
my ADSL modem. I'll configure it with a static IP address by typing in rl0 and pressing Enter. The script now asks for my
internal network card, which is rl1.

#######################################################################

 choose your internal Nic, eg "rl0"

#######################################################################

rl1

#######################################################################

 Internal nic IP, Recommended "192.168.1.1" . Hit "ENTER" for recommended

 defaults

#######################################################################

Now the script needs to know the IP address of the gateway device, behind which all of my internal machines live. The
defaults are fine, so I can simply press Enter for the next few questions.

Setting Internal nic IP to 192.168.1.1

#######################################################################

 Internal nic Netmask, Just hit enter for 255.255.255.0

#######################################################################

Setting Internal nic Netmask to 255.255.255.0

When asked for my external IP, I type it in manually since I am setting up a static IP connection:

#######################################################################

 External nic IP, or type "DHCP" for DHCP, for connections like ADSL type

"NONE" for no dhclient on external nic

#######################################################################

10.6.1.2

Setting External nic IP to 10.6.1.2

#######################################################################

 External nic netmask, eg 255.255.255.0

#######################################################################

255.255.255.254

Setting External Netmask to 255.255.255.254

#######################################################################

Do you want to enter a gateway default IP address? if you ISP provided 

you with a default gateway choose Yes Y/N, default = no

y

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


y

What is your gateway IP for your firewall machine to route to, (eg: 

111.1.1.1)

10.6.1.1

#######################################################################

 Do you want statefull firewall or just allow everything and rely on

 IPNAT to protect you, I recommend firewalling :)

 Choose: "y" for statefull firewall or "n" for allow everything

#######################################################################

 y

#######################################################################

Do you want to forward any ports from the firewall to a internal host ip?

 n

#######################################################################

Do you want IP Filter to log denied packets? Y/N, default = yes

 y

#### Denied packets will be logged to /var/log/firewall.log ####

#######################################################################

Do you want to install a /etc/ipfrestart script so you can easily reset

your rules? Handy if you are trying out new rulesets. Y/N, default = yes

 y

#######################################################################

Do you want ftp active mode supprt? when ftping out behind a basic NAT

firewall, active mode ftp wont work.

This is because normal active mode ftp actually initiates a FTP

connection from the server back to YOU! and requires more then basic nat

to work.

The day FTP is gone and fully replaced by something more secure like 

SSH's sftp will be a day when the internet is large degree more secure.

Choose: "y" to switch on active ftp support (recommended) or "n"

 y

Going to write the data to these files

/etc/rc.conf

/etc/ipf.rules

/etc//etc/ipnat.rules

/etc/newsyslog.conf

hit ctrl+c to abort

All done, type "reboot" for changes to take effect

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


########################################################################

Settings for internal machines behind the firewall:

Gateway: 192.168.1.1

Netmask: 255.255.255.0

DNS: (Your ISPS DNS)

Clients IP: 192.168.1.2 or higher

########################################################################

Finally, the script writes the necessary information to the required configuration files. When I reboot, the system is fully
configured to access the ISP and provide NAT and DHCP services to the internal LAN, and it will protect all packets
through its firewall.

6.14.4 See Also

The IPFilterscript web site (http://www.roq.com/bsd/)

The IPFilter web site (http://coombs.anu.edu.au/~avalon/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 67 Automate Security Patches

 

Keep up-to-date with security patches.

We all know that keeping up-to-date with security patches is important. The trick is coming up with a workable plan
that ensures you're aware of new patches as they're released, as well as the steps required to apply those patches
correctly.

Michael Vince created quickpatch to assist in this process. It allows you to automate the portions of the patching process
you'd like to automate and manually perform the steps you prefer to do yourself.

6.15.1 Preparing the Script

quickpatch requires a few dependencies: perl, cvsup, and wget. Use which to determine if you already have these installed
on your system:

% which perl cvsup wget

/usr/bin/perl

/usr/local/bin/cvsup

wget: Command not found.

Install any missing dependencies via the appropriate port (/usr/ports/lang/perl5, /usr/ports/net/cvsup-without-gui, and
/usr/ports/ftp/wget, respectively).

Once you have the dependencies, download the script from http://roq.com/projects/quickpatch and untar it:

% tar xzvf quickpatch.tar.gz

This will produce an executable Perl script named quickpatch.pl. Open this script in your favorite editor and review the
first two screens of comments, up to the #Stuff you probably don't want to change line.

Make sure that the $release line matches the tag you're using in your cvs-supfile [Hack #80] :

# The release plus security patches branch for FreeBSD that you are

# following in cvsup. 

# It should always be a long the lines of RELENG_X_X , example RELENG_4_9

$release='RELENG_4_9';

The next few paths are fine as they are, unless you have a particular reason to change them:

# Ftp server mirror from where to fetch FreeBSD security advisories

$ftpserver="ftp.freebsd.org";

# Path to store patcher program files

$patchdir="/usr/src/";

# Path to store FreeBSD security advisories

$advdir="/var/db/advisories/";

$advdirtmp="$advdir"."tmp/";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$advdirtmp="$advdir"."tmp/";

If you're planning on applying the patches manually and, when required, rebuilding your kernel yourself, leave the next
section as is. If you're brave enough to automate the works, make sure that the following paths accurately reflect your
kernel configuration file and build directories:

# Path to your kernel rebuild script for source patches that require kernel  

#rebuild

$kernelbuild="/usr/src/buildkernel";

#$kernelbuild="cd /usr/src ; make buildkernel KERNCONF=GENERIC && make 

#installkernel KERNCONF=GENERIC ; reboot";

# Path to your system recompile scipt for patches that require full

# operating system recompile

$buildworld="/usr/src/buildworld";

#$buildworld="cd /usr/src/ ; make buildworld && make installworld ; reboot";

#Run patch command after creation, default no

$runpatchfile="0";

# Minimum advisory age in hours. This is to make sure you don't patch 

# before your local cvsup server has had a

# chance to recieve the source change update to your branch, in hours

$advisory_age="24";

Review the email accounts so the appropriate account receives notifications:

# Notify email accounts, eg: qw(billg@microsoft.com root@localhost);

@emails = qw(root);

6.15.2 Running the Hack

Run the script without any arguments to see the available options:

# /.quickpatch.pl

# Directory /var/db/advisories/ does not exist, creating

# Directory /var/db/advisories/tmp/ does not exist, creating

Quickpatch - Easy source based security update system

"./quickpatch.pl updateadv" to download / update advisories db

"./quickpatch.pl patch" or "./quickpatch.pl patch > big_patch_file" to 

create patch files

"./quickpatch.pl notify" does not do anything but email you commands of what 

it would do

"./quickpatch.pl pgpcheck" to PGP check advisories

Before applying any patches, it needs to know which patches exist. Start by downloading the advisories:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Before applying any patches, it needs to know which patches exist. Start by downloading the advisories:

# ./quickpatch.pl updateadv

This will connect to ftp://ftp.freebsd.org/pub/FreeBSD/CERT/advisories and download all of the advisories to
/var/db/advisories. The first time you use this command, it will take a while. However, once you have a copy of the
advisories, it takes only a second or so to compare your copies with the FTP site and, if necessary, download any new
advisories.

After downloading the advisories, see if your system needs patching:

# ./quickpatch.pl notify

#

If the system is fully patched, you'll receive your prompt back. However, if the system is behind in patches, you'll see
output similar to this:

# ./quickpatch.pl notify

######################################################################

####### FreeBSD-SA-04%3A02.shmat.asc

####### Stored in file /var/db/advisories/tmp/FreeBSD-SA-04%3A02.shmat

####### Topic: shmat reference counting bug

####### Hostname: genisis - 20/2/2004 11:57:30

####### Date Corrected: 2004-02-04 18:01:10

####### Hours past since corrected: 382

####### Patch Commands

cd /usr/src

# patch < /path/to/patch

### c) Recompile your kernel as described in 

<URL:http://www.freebsd.org/handbook/kernelconfig.html> and reboot the 

system.

/usr/src/buildkernel

## Emailed root

It looks like this system needs to be patched against the "schmat reference counting bug." While running in notify mode,
quickpatch emails this information to the configured address but neither creates nor installs the patch.

To create the patch, use:

# ./quickpatch.pl patch

#########################################################

####### FreeBSD-SA-04%3A02.shmat.asc

####### Stored in file /usr/src/FreeBSD-SA-04%3A02.shmat

####### Topic: shmat reference counting bug

####### Hostname: genisis - 21/2/2004 10:41:54

####### Date Corrected: 2004-02-04 18:01:10

####### Hours past since corrected: 405

####### Patch Commands

cd /usr/src

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


cd /usr/src

# patch < /path/to/patch

### c) Recompile your kernel as described in 

#<URL:http://www.freebsd.org/handbook/kernelconfig.html> and reboot the 

#system.

/usr/src/buildkernel

# file /usr/src/FreeBSD-SA-04%3A02.shmat

/usr/src/FreeBSD-SA-04%3A02.shmat: Bourne shell script text executable

This mode creates the patch as a Bourne script and stores it in /usr/src. However, it is up to you to apply the patch
manually. This may suit your purposes if you intend to review the patch and read any notes or caveats associated with
the actual advisory.

6.15.3 Automating the Process

One of the advantages of having a script is that you can schedule its execution with cron. Here is an example of a
typical cron configuration for quickpatch.pl; modify to suit your own purposes. Remember to create your logging
directories and touch your log files before the first run.

# Every Mon, Wed, and Fri at 3:05 do an advisory check and download any 

# newly released security advisories

5  3  *  *  1,3,5   root  /etc/scripts/quickpatch.pl updateadv > \

    /var/log/quickpatch/update.log 2>1

# 20 minutes later, check to see if any new advisories are ready for use 

# and email the patch commands to the configured email address 

25  3   *   *  1,3,5  root   /etc/scripts/quickpatch.pl notify >> \

    /var/log/quickpatch/notify.log 2>&1

# 24 hours later patch mode is run which will run the patch commands if 

# no one has decided to interfere.

25  3  *   *  2,4,6   root  /etc/scripts/quickpatch.pl patch >> \

    /var/log/quickpatch/patch.log 2>&1

6.15.4 See Also

The quickpatch.pl web site (http://roq.com/projects/quickpatch)

The FreeBSD Security Advisories page (http://www.freebsd.org/security/index.html#adv)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 68 Scan a Network of Windows Computers for Viruses

 

Regardless of the size of your network, the cost of annual subscriptions for antivirus software can quickly become a
pain in the . . . checkbook. Using FreeBSD's strength as a network server, how hard could it be to hack an easier and
cheaper way to administer the antivirus battle?

The solution I found uses a combination of FreeBSD and ClamAV and Sharity-Light, both of which are found in the ports
collection. As seen in [Hack #19], Sharity-Light can mount Windows shares. Once the shares are mounted, ClamAV
will scan them for viruses.

6.16.1 Preparing the Windows Systems

For the systems you wish to virus scan, share their drives as follows:

1. Open My Computer and right-click on the drive you wish to share.

Select Sharing from the list of options that appear.

If Sharing is not available, you will need to activate file sharing in the Network
setting in Control Panel. Use Help if you're unsure of where to find this setting.

2. In the Sharing tab of the Properties window, assign a name to the new share. I'll use cdrive in this example.
Choose a name that is both useful to you and not already in use. (If a share already exists, click on New
Share.)

3. Unless your network is completely closed to the outside world, click on Permissions and limit the access to your
user. You should only need read access for scanning purposes.

4. If you need further assistance, search for "sharing" in Windows Help. (Click on the Start button and select
Help.)

Once you've configured the Windows systems for sharing, it's time to prepare the FreeBSD system.

6.16.2 Preparing the FreeBSD System

Install and configure Sharity-Light [Hack #19] . Remember to edit /etc/hosts to reflect the NetBIOS names of the
Microsoft systems.

Then, create a mount point. Since I'll be automating the process later on with a script, I need only one mount point. For
now, I'll test the required steps using one system:

# mkdir /mnt/winshare

# shlight //winbox1/cdrive /mnt/winshare -U algould -P pwd

Using port 1653 for NFS.

Here, I've mounted the cdrive share located on winbox1 to the /mnt/winshare mount point. This particular share has a
username and password.

6.16.3 Installing and Running the Virus Scanner

ClamAV is a GPL antivirus application that can be used alone or as a daemon in conjunction with mail server tools such
as milter or pop3vscan (both are available in the ports collection). Although ClamAV can detect and remove files that have
been contaminated with viruses, it does not disinfect these files.

First, install ClamAV from the ports system:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


First, install ClamAV from the ports system:

# cd /usr/ports/security/clamav

# make install clean

The ClamAV port installs several executables, including clamd, clamdscan, clamscan, freshclam, and sigtool. Each of these
commands has a manpage, as does clamav.conf, the configuration file.

For the purposes of this project, we will be using only clamscan and freshclam. Since we will not be activating clamd, we
do not need to change the configuration file.

To update ClamAV's virus database, execute freshclam:

# freshclam

Current working dir is /usr/local/share/clamav

Checking for a new database - started at Tue Dec 30 14:55:43 2003

Connected to clamav.elektrapro.com.

Reading md5 sum (viruses.md5): OK

viruses.db is up to date.

Reading md5 sum (viruses2.md5): OK

Downloading viruses.db2 ........... done

Database updated (containing in total 11983 signatures).

Database updated from clamav.elektrapro.com.

Once you've updated the virus definitions, use clamscan to scan for viruses. You don't need to be the superuser, but you
must be able to read the files and directories that you're scanning. Here's what happens when I scan an arbitrary file in
my home directory:

% clamscan todo.txt

todo.txt: OK

----------- SCAN SUMMARY -----------

Known viruses: 11982

Scanned directories: 0

Scanned files: 1

Infected files: 0

Data scanned: 0.00 Mb

I/O buffer size: 131072 bytes

Time: 0.241 sec (0 m 0 s)

One file scanned and no viruses found—good. When we scan the Windows share, however, we will want to scan
directories recursively (using the -r option) and log the resulting report to a file (using the -l filename option).

To scan the Windows share mounted at /mnt/winshare and save the scan report to /var/log/clamscan.log, execute:

# clamscan -l /var/log/clamscan.log -r /mnt/winshare

At this point, thousands of filenames fly by the console, ending in a report similar to the one shown earlier, which is
saved to /var/log/clamscan.log. clamscan will create the report file if it does not exist. If the report file exists, it will
append the new report to the existing file. You can review the report with any text editor.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


append the new report to the existing file. You can review the report with any text editor.

By default, clamscan only reports that a file has been infected—it is up to you to remove the virus.

6.16.4 Automating the Process

Scanning a single share is nice, but it would be even better to scan all of the computers in the network at night. Since I
can mount and scan a share without being prompted for additional information, I can automate these commands in a
script.

I want each Windows system to be mounted, scanned, and unmounted in turn, and I want each system to have its own
scan report log. Since I also want to put the report logs in a clamscan directory in /var/log, I need to create the
directory. While I'm at it, I'll create the script file and make it readable and executable only by root:

# mkdir /var/log/clamscan

# touch /root/scanscript

# chmod u+x,go-rwx /root/scanscript

Next, I'll use my favorite editor to add the commands to /root/scanscript:

# more /root/scanscript

#! /bin/sh

# /root/scanscript

# Sequentially mount Windows shares, scan them for viruses and unmount them.

# update virus databases

freshclam

# winbox1

shlight //winbox1/cdrive /mnt/winshare -U algould -P pwd

clamscan -l /var/log/clamscan/winbox1 -r /mnt/winshare

unshlight /mnt/winshare

# winbox2

shlight //winbox2/cdrive /mnt/winshare -U algould -P pwd

clamscan -l /var/log/clamscan/winbox2 -r /mnt/winshare

unshlight /mnt/winshare

# winbox3

shlight //winbox3/cdrive /mnt/winshare -U algould -P pwd

clamscan -l /var/log/clamscan/winbox3 -r /mnt/winshare

unshlight /mnt/winshare

Now I can execute the script at will or schedule its execution using cron.

As with any antivirus scanning policy, execute the script when users will be least affected
and the scanned computers are up and running.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


6.16.5 See Also

man clamscan

man freshclam

man clamd

man clamdscan

man clamav.conf

man sigtool

The Sharity-Light README and FAQ (/usr/local/share/doc/Sharity-Light/)

The Sharity-Light web site (http://www.obdev.at/products/sharity-light/)

The ClamAV web site (http://clamav.elektrapro.com/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 54 Strip the Kernel

 

Don't be shy. A kernel stripped down to the bare essentials is a happy kernel.

Picture the typical day in the life of a system administrator. Your mission, if you choose to accept it, is to achieve the
impossible. Today, you're expected to:

Increase the security of a particular server

Attain a noticeable improvement in speed and performance

Although there are many ways to go about this, the most efficient way is to strip down the kernel to its bare-bones
essentials. Having this ability gives an administrator of an open source system a distinct advantage over his closed
source counterparts.

The first advantage to stripping the kernel is an obvious security boost. A vulnerability can't affect an option the kernel
doesn't support. The second is a noticeable improvement in speed and performance. Kernels are loaded into memory
and must stay in memory. You may be wasting precious memory resources if you're loading options you have no
intention of ever using.

If you've never compiled a kernel or changed more than one or two kernel options, I can hear you groaning now. You're
probably thinking, "Anything but that. Kernels are too complicated to understand." Well, there is a lot of truth in the
idea that you haven't really used an operating system until you've gone through that baptism of fire known as kernel
compiling. However, you may not have heard that compiling a kernel isn't all that difficult. So, grab a spare afternoon
and a test system; it's high time to learn how to hack a BSD kernel.

I'll demonstrate on a FreeBSD system, but you'll find resources for other systems at the end of this hack.

Before you start, double-check that you have the kernel source installed. On an Intel FreeBSD system, it lives in
/usr/src/sys/i386/conf. If that directory doesn't exist, become the superuser and install it:

# /stand/sysinstall

Configure

Distributions

spacebar [  ] src to select it

spacebar [  ] sys to select it

tab to OK

Next, navigate into that directory structure and check out its contents:

# cd /usr/src/sys/i386/conf

# ls

 ./        GENERIC.hints    OLDCARD        gethints.awk

../        Makefile         PAE            GENERIC

NOTES      SMP

Two files are important: the original kernel configuration file, GENERIC, and NOTES. Note that NOTES is instead called
LINT on 4.x FreeBSD systems.

6.2.1 Customizing Your Kernel

Customizing a kernel is a very systematic process. Basically, you examine each line in the current configuration file,
asking yourself, "Is this applicable to my situation?" If so, keep it. Otherwise, remove it. If you don't know, read NOTES

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


asking yourself, "Is this applicable to my situation?" If so, keep it. Otherwise, remove it. If you don't know, read NOTES
for that option.

I always customize my kernel in several steps. First, I strip out what I don't need. Then, I use buildkernel to test my new
configuration file. If it doesn't build successfully, I know I've inadvertently removed something essential. Using the error
message, I go back and research that missing line.

If the build succeeds, I read through NOTES to see if there are any options I wish to add to the kernel. If I add
anything, I'll do another buildkernel, followed by an installkernel if the build is successful. I find it much easier to
troubleshoot if I separate my deletions from my additions.

Let's copy over GENERIC and see about stripping it down:

# cp GENERIC STRIPPED

# vi STRIPPED

#

# GENERIC -- Generic kernel configuration file for FreeBSD/i386

#

# For more information on this file, please read the handbook section on

# Kernel Configuration Files:

#

#    http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-config.html

#

# The handbook is also available locally in /usr/share/doc/handbook

# if you've installed the doc distribution, otherwise always see the

# FreeBSD World Wide Web server (http://www.FreeBSD.org/) for the

# latest information.

#

# An exhaustive list of options and more detailed explanations of the

# device lines is also present in the ../../conf/NOTES and NOTES files. 

# If you are in doubt as to the purpose or necessity of a line, check first 

# in NOTES.

6.2.1.1 CPU options

The first thing you'll notice is that this file is very well commented. It's also divided into sections, making it easier to
remove things such as ISA NIC, SCSI, and USB support. The first section deals with CPU type:

machine    i386

cpu        I486_CPU

cpu        I586_CPU

cpu        I686_CPU

ident      GENERIC

Whenever you come across a section you're not sure about, look for that section in NOTES. Here, I'll search for CPU:

# grep CPU NOTES

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Your output will include a few pages worth of CPU information. The first few lines describe which CPUs belong with the
I486, I586, and I686 entries. Once you find your CPU, remove the two entries that don't apply. If you're not sure what
type of CPU is installed on the system you're configuring, try:

# grep CPU /var/run/dmesg.boot

CPU: Intel(R) Pentium(R) III CPU         1133MHz (1138.45-MHz 686-class CPU)

acpi_cpu0: <CPU> port 0x530-0x537 on acpi0

Since a Pentium III is considered to be an I686_CPU, I'll remove the I486_CPU and I586_CPU lines from this system's
configuration file.

The rest of the output from grep CPU NOTES contains extra lines that can be added to the kernel. Read through these to
see if any apply to your specific CPU and the needs of the machine you are configuring. If so, make a note to try adding
these later.

6.2.1.2 System-specific options

The next section contains a heck of a lot of options. If this is your first kernel, most of your research will be deciding
which options you need for your particular system. I find the handbook most helpful here, as it lists the pros and cons
of nearly every option. I always keep these options on all of my systems:

options     SCHED_4BSD       # 4BSD scheduler

options     INET             # InterNETworking

options     FFS              # Berkeley Fast Filesystem

options     COMPAT_FREEBSD4  # Compatible with FreeBSD4

options     COMPAT_43        # Compatible with BSD 4.3 [KEEP THIS!]

Note that that last listed option tells you to keep it. Do keep anything that contains such a comment.

The rest of the options are specific to that system's needs. For example, does it need to support IPv6? Do you wish to
use softupdates or the new MAC framework? Does this system need to be an NFS server or NFS client? Does this
system have a CD-ROM attached or any SCSI devices?

Does the system have multiple processors? If so, uncomment the next two lines; otherwise, you can safely remove
them:

# To make an SMP kernel, the next two are needed

#options     SMP            # Symmetric MultiProcessor Kernel

#options     APIC_IO        # Symmetric (APIC) I/O

6.2.1.3 Supported buses and media devices

The next section deals with devices. First, we start with the buses:

device        isa

device        eisa

device        pci

If you grep device NOTES, you'll see that you can also add the agp and mca buses if your system requires them. If your
system doesn't use the isa or eisa buses, you can remove those lines.

If you wish to disable floppy support on your server, removing these lines will do it:

# Floppy drives

device        fdc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


device        fdc

Next, does your server use IDE or SCSI devices? If it uses IDE, the next section applies:

# ATA and ATAPI devices

device      ata

device      atadisk            # ATA disk drives

device      atapicd            # ATAPI CDROM drives

device      atapifd            # ATAPI floppy drives

device      atapist            # ATAPI tape drives

options     ATA_STATIC_ID      # Static device numbering

Remember, you can remove the CD-ROM, floppy, and tape lines to suit your requirements. However, keep the other
lines if you use an IDE hard drive. Conversely, if your system is all SCSI, delete the ATA lines and concentrate on this
section:

# SCSI Controllers

device        ahb        # EISA AHA1742 family

device        ahc        # AHA2940 and onboard AIC7xxx devices

<snip>

Keep the entries for the SCSI hardware your system is using, and remove the entries for the other devices. If your
system doesn't have SCSI hardware, you can safely delete the entire SCSI section.

The same logic applies to the following RAID section:

# RAID controllers interfaced to the SCSI subsystem

device        asr        # DPT SmartRAID V, VI and Adaptec SCSI RAID

device        ciss       # Compaq Smart RAID 5*

device        dpt        # DPT Smartcache III, IV - See NOTES for options!

device        iir        # Intel Integrated RAID

device        mly        # Mylex AcceleRAID/eXtremeRAID

and for the SCSI peripherals and RAID controllers sections:

# SCSI peripherals

device        scbus     # SCSI bus (required)

device        ch        # SCSI media changers

<snip>

# RAID controllers

device        aac        # Adaptec FSA RAID

device        aacp       # SCSI passthrough for aac (requires CAM)

<snip>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


6.2.1.4 Peripheral support and power management

The next few entries are usually keepers as it's always nice to have a working keyboard, unless you're using a headless
system [Hack #26] .

# atkbdc0 controls both the keyboard and the PS/2 mouse

device        atkbdc       # AT keyboard controller

device        atkbd        # AT keyboard

The next line depends on whether you're using a serial or a PS/2 mouse:

device        psm        # PS/2 mouse

You'll probably want to keep your video driver:

device        vga        # VGA video card driver

However, you'll probably remove the splash device, unless you plan on configuring a splash screen [Hack #24] .

device        splash        # Splash screen and screen saver support

You'll have to choose a console driver. It can be either the default SCO driver or the pcvt driver (see the handbook for
details):

# syscons is the default console driver, resembling an SCO console

device       sc

# Enable this for the pcvt (VT220 compatible) console driver

#device      vt

#options     XSERVER           # support for X server on a vt console

#options     FAT_CURSOR        # start with block cursor

The next options refer to power management on laptops, as well as laptop PCMCIA cards. Unless your server is a
laptop, you can remove these:

# Power management support (see NOTES for more options)

#device       apm

# Add suspend/resume support for the i8254.

device        pmtimer

# PCCARD (PCMCIA) support

# Pcmcia and cardbus bridge support

device        cbb            # cardbus (yenta) bridge

#device       pcic           # ExCA ISA and PCI bridges

device        pccard         # PC Card (16-bit) bus

device        cardbus        # CardBus (32-bit) bus

Do you plan on using your serial and parallel ports? If not, the next section allows you to disable them:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Do you plan on using your serial and parallel ports? If not, the next section allows you to disable them:

# Serial (COM) ports

device        sio        # 8250, 16[45]50 based serial ports

# Parallel port

device        ppc

device        ppbus      # Parallel port bus (required)

device        lpt        # Printer

device        plip       # TCP/IP over parallel

device        ppi        # Parallel port interface device

#device       vpo        # Requires scbus and da

6.2.1.5 Interface support

Now it's time to support your system's NICs. Here's one way to find out the device names of your interfaces:

# grep Ethernet /var/run/dmesg.boot

rl0: Ethernet address: 00:05:5d:d2:19:b7

rl1: Ethernet address: 00:05:5d:d1:ff:9d

ed0: <NE2000 PCI Ethernet (RealTek 8029)> port 0x9800-0x981f irq 10 at device 11.0 on pci0

Once you know which interfaces are in your system, remove the NICs that aren't. If your system doesn't contain any
ISA or wireless NICs, you can safely remove those entire sections.

Do make note of this comment, though:

# PCI Ethernet NICs that use the common MII bus controller code.

# NOTE: Be sure to keep the 'device miibus' line in order to use these NICs!

device        miibus    # MII bus support

device        dc        # DEC/Intel 21143 and various workalikes

<snip>

Any NICs underneath that comment require that miibus entry. If you forget it, your kernel won't build. Fortunately, the
error message will have the word miibus in it.

Next come the pseudodevices. If you plan on using encryption, keep the random device. You'll probably also need to
keep the loop and ether devices.

If you use an analog modem to connect to your service provider, keep the ppp and tun devices. Otherwise, remove
them, along with the slip device.

Several applications—including emacs, xterm, script, and the notorious telnet—require the pty device. Depending upon the
use of your server, you may be able to remove that device. If it breaks needed functionality, you can always recompile
it back into your kernel.

Are you planning on using memory disks? If not, you can remove md. If you're not sure, try reading man mdmfs.

If you previously removed IPv6 support with options INET6, you might as well remove these two devices as well:

device        gif        # IPv6 and IPv4 tunneling

device        faith      # IPv6-to-IPv4 relaying (translation)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


device        faith      # IPv6-to-IPv4 relaying (translation)

The next device has some security implications, as it is required in order to run a packet sniffer such as tcpdump.
However, it's also required if your system is a DHCP client. If neither applies, remove the bpf device:

# The `bpf' device enables the Berkeley Packet Filter.

# Be aware of the administrative consequences of enabling this!

device        bpf        # Berkeley packet filter

6.2.1.6 USB support

Does your system have any USB devices? If so, you need a host controller as well as USB bus support. First, determine
which type of USB host controller you have. man uhci and man ohci describe which hardware goes with which controller.
Once you've found your hardware, keep the appropriate interface entry:

# USB support

device        uhci        # UHCI PCI->USB interface

device        ohci        # OHCI PCI->USB interface

Also, don't forget to keep that USB bus line:

device        usb        # USB Bus (required)

Are you confused about the next three USB options? Fortunately, each has a manpage. Try man udbp, man ugen, and
man uhid to see if any apply to your particular situation.

#device       udbp        # USB Double Bulk Pipe devices

device        ugen        # Generic

device        uhid        # "Human Interface Devices"

Next, keep the devices you have installed and remove the rest. Again, note that USB NICs need that miibus entry we
saw earlier. Also, some entries require device scbus and device da. Double-check your SCSI sections. If you removed
these devices earlier and need them, add them to this section.

device        ukbd        # Keyboard

device        ulpt        # Printer

device        umass       # Disks/Mass storage - Requires scbus and da

device        ums         # Mouse

device        urio        # Diamond Rio 500 MP3 player

device        uscanner    # Scanners

# USB Ethernet, requires mii

device        aue        # ADMtek USB ethernet

device        axe        # ASIX Electronics USB ethernet

device        cue        # CATC USB ethernet

device        kue        # Kawasaki LSI USB ethernet

Finally, the only option group left is Firewire support. If you need it, keep the entire section, and double-check that you
have a device scbus and device da entry somewhere in your configuration file. If you don't need Firewire support, remove

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


have a device scbus and device da entry somewhere in your configuration file. If you don't need Firewire support, remove
the entire section:

# FireWire support

device        firewire   # FireWire bus code

device        sbp        # SCSI over FireWire (Requires scbus and da)

device        fwe        # Ethernet over FireWire (non-standard!)

Whew. We finally made it through the configuration file. Congratulations! You now have a much better idea of the
hardware on your system and can rest easily in the knowledge that soon no extra drivers will be wasting memory
resources. Not only that, your next kernel configuration will go much more quickly as you've already researched the
possibilities.

6.2.2 Building the New Kernel

Now comes the moment of truth. Will the configuration file actually build? To find out:

# cd /usr/src

# make buildkernel KERNCONF=

STRIPPED

Replace STRIPPED with whatever name you called your kernel configuration file. If all goes well, you should just get your
prompt back after a period of time, which varies depending upon the speed of your CPU. If you instead get an error
message, you probably forgot miibus, scbus, or da, and the message will reflect that. Add the missing line and try again.

Occasionally you'll get a kernel that just refuses to build, even when you're sure the configuration file is fine. If that's
the case, try building GENERIC. If that fails, you have a hardware issue.

I once inherited a system with a flaky motherboard. I tried a few kernel compiles, which took forever before finally
resulting in an error code 1. Fortunately, I use removable drives, so I simply inserted the drive into another system,
successfully compiled the kernel, and then returned the drive to the flaky system for the actual kernel install.

6.2.3 Keeping Track of Your Options

Once I have a successful build, I like to document what I removed from the original kernel. This is easily done:

# echo "These are the lines I deleted" > changes.txt \

    & diff GENERIC STRIPPED >> changes.txt

The diff utility will list the differences between the original and my version of the kernel configuration file. Note that I
used >> to append those differences without removing my previously echoed comment. See [Hack #92] for more
examples that use diff.

Before installing the kernel, read through NOTES to see if there are any lines you wish to add. Additionally, if you wish
to take advantage of memory addresses over 4 GB, carefully read through PAE and its section in the handbook to see if
it is appropriate for your situation.

If you add any lines, repeat the make buildkernel command when you are finished. I also like to append my additions to
my changes.txt file:

# echo "And these are the lines I added" >> changes.txt \

    & diff GENERIC STRIPPED >> changes.txt

Note that this time it is very important I remember to append both my comment and the output of diff by using two >
characters.

6.2.4 Installing the New Kernel

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Now, let's install the kernel:

# cd /usr/src

# make installkernel KERNCONF=STRIPPED

This process is much quicker than building the kernel. However, the kernel won't actually be loaded into memory until
you reboot. Before you do that, it's always a good idea to print out the "If Something Goes Wrong" page of the FreeBSD
Handbook, just in case something goes wrong. See http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/kernelconfig-trouble.html#KERNELCONFIG-NOBOOT.

It's rare that a kernel will install but not boot, but it never hurts to be prepared ahead of time.

6.2.5 See Also

The Kernel Configuration section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/kernelconfig.html)

The "Why would I want to create my own custom kernel?" section of the OpenBSD FAQ
(http://www.openbsd.org/faq/faq5.html#Why)

The NetBSD Kernel FAQ (http://www.netbsd.org/Documentation/kernel)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 55 FreeBSD Access Control Lists

 

Unix permissions are flexible and can solve almost any access control problem, but what about the ones
they can't?

Do you really want to make a group every time you want to share a file with another user? What if you don't have root
access and can't create a group at will? What if you want to be able to make a directory available to a web server or
other user without making the files world-readable or -writable? Root-owned configuration files often need to be edited
by those without root privileges; instead of using a program like sudo (see [Hack #61] and [Hack #62] ), it would be
better just to allow certain nonowners to edit these files.

Access Control Lists (ACLs) solve these problems. They allow more flexibility than the standard Unix user/group/other
set of permissions. ACLs have been available in commercial Unixes such as IRIX and Solaris, as well as Windows NT, for
years. Now, thanks to the TrustedBSD project's work, ACLs are available in FreeBSD 5.0-RELEASE and beyond.

ACLs take care of access control problems that are overly complicated or impossible to solve with the normal Unix
permissions system. By avoiding the creation of groups and overuse of root privileges, ACLs can keep administrators
saner and servers more secure.

6.3.1 Enabling ACLs

ACLs are enabled by an option in the file system superblock, which contains internal housekeeping information for the
file system.

Edit the superblock with the tunefs command, which can be used only on a read-only or unmounted file system. This
means that you must first bring the system into single-user mode. Make sure there aren't any active connections to the
system, then shut it down:

# shutdown now

*** FINAL System shutdown message from root@mycompany.com ***

System going down IMMEDIATELY

Dec 11 10:28:07 genisis shutdown: shutdown by root:

System shutdown time has arrived

Writing entropy file:.

Shutting down daemon processes:.

Saving firewall state tables:.

Dec 11 10:28:10 genisis syslogd: exiting on signal 15

Enter full pathname of shell or RETURN for /bin/sh:

#

At the prompt, type:

# /sbin/tunefs -a enable /

# /sbin/tunefs -a enable /usr

# exit

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To see if ACLs are already set on your system, type mount.

If you use the UFS2 file system, you are done. The UFS_ACL option is enabled in the default GENERIC kernel, so reboot
and enjoy. If you use UFS1, though, don't reboot yet.

To check your version of UFS, try dumpfs [mountpoint] | grep UFS, where [mountpoint] is
something like ad0s1a. mount will list the names of your particular mount points.

6.3.2 Additional UFS1 Configuration

Things are more difficult if you, like most FreeBSD 5.0 users, use UFS1. (FreeBSD 5.1 and later come with UFS2 as the
default file system.) ACLs are built on top of extended attributes, which are not native to UFS1. To enable extended
attributes, you must add options UFS_EXTATTR and options UFS_EXTATTR_AUTOSTART to your kernel configuration and
compile and install the new kernel [Hack #54] . Don't reboot yet; you still need to initialize the extended attributes on
each file system.

For example, to initialize extended attributes on the /var filesystem, use extattrctl, the extended attributes control
command:

# mkdir -p /var/.attribute/system

# cd /var/.attribute/system

# extattrctl initattr -p /var 388 posix1e.acl_access

# extattrctl initattr -p /var 388 posix1e.acl_default

Repeat for each filesystem on which you wish to enable ACL support. Just replace /var with the mount point of the
desired file system. After initializing the attributes with reboot, the extended attributes should be enabled.

6.3.3 Viewing ACLs

Okay, you've successfully enabled ACLs. Now what? Let's start by viewing ACLs. Looking at ACLs is simple. Files with
ACLs will be designated with a + in the long listing provided by ls -l:

% ls -l acl-test

-rw-rw-r--+ 1 rob  rob  0 Apr 19 17:27 acl-test

Use the getfacl command to see information about the ACL:

% getfacl acl-test

#file:acl-test

#owner:1000

#group:1000

user::rw-

user:nobody:rw-

group::r--

group:wheel:rw-

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mask::rw-

other::r--

The user::, group::, and other:: fields should all be familiar. They are simply the ACL representations of the standard Unix
permissions system. The nobody and wheel lines, however, are new. These specify permissions for specific users and
groups (in this case, the nobody user and the wheel group) in addition to the normal set of permissions.

The mask field sets maximum permissions, so an r-- mask (set with m::r) in combination with an rw- permission for a
user will give the user only r-- permissions on the file.

6.3.4 Adding and Subtracting ACLs

The setfacl command adds, changes, and deletes ACLs. Like chmod, only the file's owner or the superuser can use this
command. You only need to use a few of its options to start manipulating ACLs.

First, a word on syntax. ACLs are specified just as they're printed by getfacl. Let's remove and reconstruct the ACL for
acl-test:

% setfacl -b acl-test

% setfacl -m user:nobody:rw-,group:wheel:rw- acl-test

The -b option removes all ACLs, except for the standard user, group, and other lines. The -m option modifies the ACL
with the specified entry (or comma-separated entries). Entries may also be abbreviated: the code here could have been
shortened to u:nobody:rw-,g:wheel:rw-.

You can even use setfacl to modify traditional permissions; setting a user::rw- ACL entry is equivalent to running chmod
u=rw on a file.

Removing ACLs is almost identical: setfacl -x u:nobody:rw-,g:wheel:rw- removes that ACL. You can also specify ACLs in
files. The -M and -X options perform the functions of their lowercase relatives, but read their entries from a file. Consider
the acl-test file again:

% cat test-acl-list

u:nobody:rw-

# this is a comment

g:wheel:rw-

% setfacl -X test-acl-list acl-test

% getfacl acl-test

#file:acl-test

#owner:1000

#group:1000

user::rw-

group::r--

mask::r--

other::r--

6.3.5 Using ACLs with Samba and Windows

If you compile Samba with ACL support, you can edit ACLs on files shared by Samba with the native Windows ACL
tools. Simply compile (or recompile) Samba with ACL support:

# cd /usr/ports/net/samba

# make -DWITH_ACL_SUPPORT install clean

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# make -DWITH_ACL_SUPPORT install clean

You will see the Samba port configuration dialog with ACL support enabled, as shown in Figure 6-1.

Figure 6-1. Configuring Samba with ACLs

Once you have Samba up and running, browse to a share on an ACL-enabled file system. Right-click any file and select
Properties, and you'll see something like Figure 6-2. Go to the Security tab, and you can see and change the ACL as
though it were on a Windows server.

Figure 6-2. Manipulating ACLs on FreeBSD from a Samba client

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you've been reluctant to move from a Windows server to Samba because of its lack of ACLs, you can start thinking
seriously about deploying Samba and FreeBSD on your file servers.

6.3.6 Setting Default ACLs

Let's consider a more advanced example. You want to make your cool_widgets directory accessible to Bob, your partner
in coolness, but not to the world. If you just add an ACL entry, added files won't automatically pick up the directory's
ACL. You should instead set a default ACL on the directory. Any files created in the directory will inherit the default ACL.

Passing the -d option to either getfacl or setfacl will operate on the default ACL of a directory, instead of on the directory
itself:

% mkdir cool_widgets

% chmod o-rwx cool_widgets

% ls -l

drwxr-x---  2 rob  rob   512 Apr 19 21:21 cool_widgets

% getfacl -d cool_widgets

#file:cool_widgets

#owner:1000

#group:1000

Pretty boring, isn't it? Let's try to add a default ACL:

% setfacl -d -m u:bob:rw- cool_widgets

setfacl: acl_calc_mask( ) failed: Invalid argument

setfacl: failed to set ACL mask on cool_widgets

Oops. Default ACLs don't work quite like regular ACLs do. You cannot set specific entries on a default ACL until you add
the generic user::, group::, and other:: entries:

% setfacl -d -m u::rw-,g::r--,o::---,u:bob:rw- cool_widgets

% setfacl -m u:bob:r-x cool_widgets

Note the nondefault r-x entry for bob on the directory. The default ACL affects files that will be created inside the
directory but not the directory itself. An ACL entry u:bob:rw- will now be added to any file created in cool_widgets.

Now you have a cool_widgets directory whose files can be read and written by both yourself and Bob, without the use
of a group. If you later decide to get rid of the default ACL, the -k option to setfacl works for directory ACLs just as the -b
option does for file ACLs.

Use getfacl -d to view the new directory's default ACL.

6.3.7 See Also

man tunefs

man extattrctl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man extattrctl

man getfacl

man setfacl

"FreeBSD Access Control Lists," as originally published on ONLamp's BSD DevCenter
(http://www.onlamp.com/pub/a/bsd/2003/08/14/freebsd_acls.html)

The TrustedBSD project (http://www.trustedbsd.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 56 Protect Files with Flags

 

Ever feel limited when tightening up Unix permissions? Really, there's only so much you can do with r, w, x,
s, and t.

When you consider the abilities of the superuser account, traditional Unix permissions become moot. That's not very
comforting if you're a regular user wishing to protect your own files or an administrator trying to protect the files on a
network server from a rootkit.

Fortunately, the BSDs support a set of extended permissions known as flags. Depending upon your securelevel, these
flags may prevent even the superuser from changing the affected file and its flags.

6.4.1 Preventing File Changes

Let's start by seeing what flags are available. Figure 6-1 summarizes the flags, their meanings, and their usual usage.

Table 6-1. Extended permissions flags
Flag name Meaning Usage

arch archive Forces or prevents a backup

nodump nodump Excludes files from a dump

sappnd system append Applies to logs

schg system immutable Applies to binaries and /etc

sunlnk system undeletable Applies to binaries and /etc

uappnd user append-only Prevents changes to existing data

uchg user immutable Prevents any type of changes

uunlnk user undeletable Prevents deletion or rename

Any user can use any flag that starts with u to protect her own files. Let's say you have an important file that you don't
want to change inadvertently. That's a candidate for the uchg flag. To turn that flag on, use the chflags (change flags)
command:

% chflags uchg important_file

% ls -lo important_file

-rw-r--r-- 1 dru wheel uchg 14 Dec  1 11:13 important_file

Use ls -lo to view a file's flags. (I tend to think o was the only letter left. Perhaps a mnemonic would be "Hello, this is
why I can't modify that file!" Perhaps not.) Let's see exactly how immutable this file is now. I'll start by opening the file
in vi, adding a line, and trying to save my changes:

Read-only file, not written; use ! to override.

Okay, I'll use wq! instead:

Error: important_file: Operation not permitted.

Looks like I can no longer make changes to my own file. I'll receive the same results even if I try as the superuser.

Next, I'll try to use echo to add some lines to that file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Next, I'll try to use echo to add some lines to that file:

% echo "test string" >> important_file

important_file: Operation not permitted.

Finally, I'll try moving, deleting, and copying that file:

% mv important_file test

mv: rename important_file to test: Operation not permitted

% rm important_file

override rw-r--r--  dru/wheel uchg for important_file? y

rm: important_file: Operation not permitted

% cp important_file test

%

Notice an important difference between the mv and rm commands and the cp command. Since mv and rm require a
change to the original file itself, they are prevented by that unchangeable flag. However, the cp command doesn't try to
change the original file; it simply creates a new file with the same contents. However, if you try ls -lo on that new file,
the uchg flag will not be set. This is because new files inherit permissions and flags from the parent directory. (Okay,
that's not the whole story. See man umask for more gory details.)

6.4.2 Watch Your Directories

What do you think will happen if you place all of your important files in a directory and recursively set uchg on that
directory?

% mkdir important_stuff

% cp resume important_stuff/

% chflags -R important_stuff/

% ls -lo important_stuff/

drwxr-xr-x   2 dru  wheel  uchg     512 Dec  1 11:23 ./

drwxr-xr-x  34 dru  wheel  -       3072 Dec  1 11:36 ../

-rw-r--r--   1 dru  wheel  uchg      14 Dec  1 11:13 resume

So far so good. That file inherited the uchg flag from the directory, so it is now protected from changes. What if I try to
add a new file to that directory?

% cp coverletter important_stuff

cp: important_stuff/coverletter: Operation not permitted

Because the directory itself is not allowed to change, I can't add or remove any files from the directory. If that's what
you want, great. If not, keep that in mind when playing with directory flags.

What if you change your mind and really do want to change a file? If you own the file, you can unset the flag by
repeating the chflags command with the no word. For example:

% chflags nouchg resume

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


will allow me to make edits to my résumé. However, I won't be able to delete it from that protected directory unless I
also use the nouchg flag on the important_stuff directory.

6.4.3 Preventing Some Changes and Allowing Others

Sometimes, the uchg flag is a bit too drastic. For example, if you want to be able to edit a file but not inadvertently
delete that file, use this flag instead:

% chflags uunlnk thesis

%

I can now edit that file to my heart's content. However, if I try to move or delete that file, I'll receive those Operation not
permitted error messages again.

The uappnd flag is more interesting. It allows you to append changes to a file but prevents you from modifying the
existing contents. This might be useful for a blog:

% chflags uappnd myblog

%

Then again, it might not. echoing comments to the end of the file works nicely. However, opening it in an editor does
not. Note that this flag also prevents you from moving or deleting the file.

6.4.4 Log Protection

Let's move on to the rest of the flags, which can be managed only by the superuser. sappnd, schg, and sunlnk work
exactly the same as their u equivalents. So, think s for superuser and u for user.

The append flag was a bit weird for a regular user, but it is ideal for protecting the system logs. One of the first things
an intruder will do after breaking into a system is to cover up his tracks by changing or deleting logs. This command will
thwart those attempts:

# chflags -R sappnd /var/log

Now is a good time to mention a security truth: security is a myth. In reality, security is a process of making things
more inconvenient in the hopes that a miscreant will go elsewhere. Remember, though, that inconvenience doesn't just
affect the bad guys; it also affects you.

That command seems ideal because it allows logs to be appended to but not modified or deleted. That's great if you live
in the world of unlimited disk space. Of course, it also just broke newsyslog, and you've just delegated yourself the joys
of manual log rotation.

There's one other thing you need to consider when you start playing with the superuser flags. If your securelevel is set
to 0 or -1, the superuser can unset any flag by adding no to it. If your attacker has heard of flags before and has
managed to gain access to the superuser account, all of your flag setting was for naught.

Having said that, suppose you're hardening a server and want to protect the logs. Your securelevel is set at 1 or higher,
and you plan on using that previous chflags command. Since you're now responsible for log rotation, you might as well
start by taking stock of the contents of /var/log before turning on that sappnd flag. Remove any unnecessary logs now,
before setting the flag.

Next, edit /etc/crontab and comment the newsyslog line so it looks like this:

# Rotate log files every hour, if necessary.

#0        *        *        *        *        root        newsyslog

Comment out any lines in /etc/syslog.conf that refer to logs you removed.

You should also consider using something like the following script to warn you if a partition is filling up:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You should also consider using something like the following script to warn you if a partition is filling up:

#!usr/local/bin/bash

# checkfreespace.sh

# check that a device has sufficient free space

# thanks to David Lents and Arnold Robbins for awk/gawk/nawk suggestions

# set the following variables as necessary 

PARTITION="/var/log"

THRESHOLD="80"

USED=$(

    eval "df | awk -- '\$6 =  = ENVIRON[\"PARTITION\"]

        { printf( \"%0.d\", \$5 ) }'"

);

if [ "$USED" -ge $THRESHOLD ]

then

  echo "Used space of $USED above $THRESHOLD on $PARTITION"

else

  # disable this if running through cron

  echo "Enough free space"

fi

If you schedule this program through cron, it will mail any output to the user owning the cron job. Edit the two variables
at the top of the script to change the partition to scan and the threshold above which the script will warn. With the
variables set as shown, the script will warn if /var/log is more than 80% full.

Remember, once you disable newsyslog, it becomes your responsibility to monitor disk space in /var/log. You won't be
able to compress or delete log files unless the superuser temporarily unsets the sappnd flag. This can be a real pain if
your securelevel is 1 or higher, as the system first has to be dropped down to single-user mode. This usually isn't an
option on busy systems as it will disconnect all current connections. Carefully consider the size of /var/log and how
often the system realistically can be put into single-user mode before setting this flag.

6.4.5 Protecting Binaries

When a system is compromised, the attacker may install a rootkit that will try to change your system's binaries. For
example, it might replace ps with a version that doesn't display the rootkit's processes. Or, it might replace a commonly
used utility with another program that executes something nastier than expected.

[Hack #58] shows how to create your own file integrity checking program that will alert you if any of your binaries or
other important files are changed. An additional layer of protection is to use chflags to prevent those files from being
changed in the first place. Usually, the schg flag is used to prevent any modifications. Useful candidates for this flag are:

/usr/bin, which contains user programs

/usr/sbin, which contains system programs

/etc, which contains system configurations

Again, evaluate your particular scenario before implementing this flag. The protection provided by this flag usually far
outweighs the inconvenience. The only time the contents of /usr/bin or /usr/sbin should change is when you upgrade

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


outweighs the inconvenience. The only time the contents of /usr/bin or /usr/sbin should change is when you upgrade
the operating system or rebuild your world. Doing that requires a reboot anyway, so dropping to single-user mode to
unset schg shouldn't be a problem.

How often do you change your configuration files in /etc? If you typically configure a system only when it is installed
and rarely make changes afterward, protect your configurations with schg. However, keep in mind that a rare
configuration change may require you to drop all connections in order to implement it. Also, if you need to add more
users to your system, remember to remove that flag from /etc/passwd, /etc/master.passwd, and /etc/group first.

Things are a bit more problematic for a system running installed applications. Most ports install their binaries into
/usr/local/bin or /usr/X11R6/bin. If you set the schg flag on those directories, you won't be able to patch or upgrade
those binaries unless you temporarily unset the flag. You'll have to balance your need to keep your server up and
running with the protection you gain from the schg flag and how often you have to patch a particular binary.

6.4.6 Controlling Backups

The last two flags, arch and nodump, affect backups. The superuser can ensure a particular file or directory will always
be backed up, regardless of whether the contents have been altered, by setting the arch flag.

Similarly, when using dump to back up an entire filesystem, the superuser can specify which portions of that filesystem
will not be included by setting the nodump flag.

6.4.7 See Also

man securelevel

man -a chflags (to view all manpages that match chflags, not just the first one)

man newsyslog

[Hack #58]

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 57 Tighten Security with Mandatory Access Control

 

Increase the security of your systems with MAC paranoia.

Ever feel like your Unix systems are leaking out extra unsolicited information? For example, even a regular user can
find out who is logged into a system and what they're currently doing. It's also an easy matter to find out what
processes are running on a system.

For the security-minded, this may be too much information in the hands of an attacker. Fortunately, thanks to the
TrustedBSD project, there are more tools available in the admin's arsenal. One of them is the Mandatory Access Control
(MAC) framework.

As of this writing, FreeBSD's MAC is still considered experimental for production systems.
Thoroughly test your changes before implementing them on production servers.

6.5.1 Preparing the System

Before you can implement Mandatory Access Control, your kernel must support it. Add the following line to your kernel
configuration file:

options MAC

You can find full instructions for compiling a kernel in [Hack #54] .

While your kernel is recompiling, take the time to read man 4 mac, which lists the available MAC modules. Some of the
current modules support simple policies that can control an aspect of a system's behavior, whereas others provide more
complex policies that can affect every aspect of system operation. This hack demonstrates simple policies designed to
address a single problem.

6.5.2 Seeing Other Users

One problem with open source Unix systems is that there are very few secrets. For example, any user can run ps -aux to
see every running process or run sockstat -4 or netstat -an to view all connections or open sockets on a system.

The MAC_SEEOTHERUIDS module addresses this. You can load this kernel module manually to experiment with its
features:

# kldload mac_seeotheruids

Security policy loaded: TrustedBSD MAC/seeotheruids (mac_seeotheruids)

If you'd like this module to load at boot time, add this to /boot/loader.conf:

mac_seeotheruids_load="YES"

If you need to unload the module, simply type:

# kldunload mac_seeotheruids

Security policy unload: TrustedBSD MAC/seeotheruids (mac_seeotheruids)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


When testing this module on your systems, compare the before and after results of these commands, run as both a
regular user and the superuser:

ps -aux

netstat -an

sockstat -4

w

Your before results should show processes and sockets owned by other users, whereas the after results should show
only those owned by the user. While the output from w will still show which users are on which terminals, it will not
display what other users are currently doing.

By default, this module affects even the superuser. In order to change that, it's useful to know which sysctl MIBs control
this module's behavior:

# sysctl -a | grep seeotheruids

security.mac.seeotheruids.enabled: 1

security.mac.seeotheruids.primarygroup_enabled: 0

security.mac.seeotheruids.specificgid_enabled: 0

security.mac.seeotheruids.specificgid: 0

sysctl is used to modify kernel behavior without having to recompile the kernel or reboot
the system. The behaviors that can be modified are known as MIBs.

See how there are two MIBs dealing with specificgid? The enabled one is off, and the other one specifies the numeric
group ID that would be exempt if it were on. So, if you do this:

# sysctl -w security.mac.seeotheruids.specificgid_enabled=1

security.mac.seeotheruids.specificgid_enabled: 0 -> 1

you will exempt group 0 from this policy. In FreeBSD, the wheel group has a GID of 0, so users in the wheel group will
see all processes and sockets.

You can also set that primarygroup_enabled MIB to 1 to allow users who share the same group ID to see each other's
processes and sockets.

Note that while you can change these MIBs from the command line, you will be able to see them only with the
appropriate kernel module loaded.

6.5.3 Quickly Disable All Interfaces

ifconfig allows you to enable and disable individual interfaces as required. For example, to stop traffic on ed0:

# ifconfig ed0 down

To bring the interface back up, simply repeat that command, replacing the word down with up.

However, ifconfig does not provide a convenient method for stopping or restarting traffic flow on all of a system's
interfaces. That ability can be quite convenient for testing purposes or to quickly remove a system from a network that
is under attack. The MAC_IFOFF module is a better tool for this purpose. Let's load this module and see how it affects the
system:

# kldload mac_ifoff

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# kldload mac_ifoff

Security policy loaded: TrustedBSD MAC/ifoff (mac_ifoff)

# sysctl -a | grep ifoff

security.mac.ifoff.enabled: 1

security.mac.ifoff.lo_enabled: 1

security.mac.ifoff.other_enabled: 0

security.mac.ifoff.bpfrecv_enabled: 0

By default, this module disables all interfaces, except the loopback lo device. When it's safe to reenable those
interfaces, you can either unload the module:

# kldunload mac_ifoff

Security policy unload: TrustedBSD MAC/ifoff (mac_ifoff)

or leave the module loaded and enable the interfaces:

# sysctl -w security.mac.ifoff.other_enabled=1

security.mac.ifoff.other_enabled: 0 -> 1

Perhaps you have a system whose interfaces you'd like to disable at bootup until you explicitly enable them. If that's
the case, add this line to /boot/loader.conf:

mac_ifoff_load="YES"

6.5.4 See Also

man 4 mac

man mac_seeotheruids

man mac_ifoff

man sysctl

The TrustedBSD project (http://www.trustedbsd.org/)

The sysctl section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/configtuning-sysctl.html)

The MAC section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/mac.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 58 Use mtree as a Built-in Tripwire

 

Why configure a third-party file integrity checker when you already have mtree?

If you care about the security of your server, you need file integrity checking. Without it, you may never know if the
system has been compromised by a rootkit or an active intruder. You may never know if your logs have been modified
and your ls and ps utilities replaced by Trojaned equivalents.

Sure, you can download or purchase a utility such as tripwire, but you already have the mtree utility [Hack #54] ; why
not use it to hack your own customized file integrity utility?

mtree lists all of the files and their properties within a specified directory structure. That resulting list is known as a
specification. Once you have a specification, you can ask mtree to compare it to an existing directory structure, and
mtree will report any differences. Doesn't that sound like a file integrity checking utility to you?

6.6.1 Creating the Integrity Database

Let's see what happens if we run mtree against /usr/bin:

# cd /usr/bin

# mtree -c -K cksum,md5digest,sha1digest,ripemd160digest -s 123456789 \

          > /tmp/mtree_bin

mtree: /usr/bin checksum: 2126659563

Let's pick apart that syntax in Figure 6-2.

Table 6-2. mtree command syntax
Command Explanation

-c This creates a specification of the current working directory.

-K This specifies a keyword. In our case, it's cksum.

md5digest,
sha1digest,ripemd160digest

Here, I've specified the three cryptographic checksums understood by mtree. This is how it
detects file modifications: any change to a file will result in a different hash. While it may be
mathematically feasible for an attacker to bypass one cryptographic hash, it's darn near
impossible for her to bypass all three cryptographic hashes.

-s This gives the numeric seed that is used to create the specification's checksum. Remember
that seed to verify the specification.

> This redirects the results to the file /tmp/mtree_bin instead of stdout.

If you run that command, it will perk along for a second or two, then write the value of the checksum to your screen
just before giving your prompt back. That's it; you've just created a file integrity database.

Before we take a look at that database, take a moment to record the seed you used and the checksum you received.
Note that the more complex the seed, the harder it is to crack the checksum. Those two numbers are important, so you
may consider writing them on a small piece of paper and storing them in your wallet. (Don't forget to include a hint to
remind you why you have that piece of paper in your wallet!)

Now let's see what type of file we've just created:

# file /tmp/mtree_bin

/tmp/mtree_bin: ASCII text

# ls -l /tmp/mtree_bin

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ls -l /tmp/mtree_bin

-rw-r--r--  1 root  wheel  111503 Nov 23 11:46 /tmp/mtree_bin

It's an ASCII text file, meaning you can edit it with an editor or print it directly. It's also fairly large, so let's use head to
examine the first bit of this file. Here I'll ask for the first 15 lines:

# head -n 15 /tmp/mtree_bin

#           user: dru

#        machine: genisis

#           tree: /usr/bin

#           date: Sun Nov 23 11:46:21 2003

# .

/set type=file uid=0 gid=0 mode=0555 nlink=1 flags=none

.               type=dir mode=0755 nlink=2 size=6656 time=1065005676.0

    CC          nlink=3 size=78972 time=1059422866.0 cksum=1068582540 \

                md5digest=b9a5c9a92baf9ce975eee954994fca6c \

                sha1digest=a2e4fa958491a4c2d22b7f597f05885bbe8f6a6a \

                ripemd160digest=33c74b4200c9507b4826e5fc8621cddb9e9aefe2

    Mail        nlink=3 size=72964 time=1059422992.0 cksum=2235502998 \

                md5digest=44739ae79f3cc89826f6e34a15f13ed7 \

                sha1digest=a7b89996ffae4980ad87c6e7c56cb207af41c1bd \

The specification starts with a nice summary section. In my example, the user that created the specification was dru.
Note that I used the su utility to become the superuser before creating the specification, but my login shell knew that I
was still logged in as the user dru. The summary also shows the system name, genisis, the directory structure in
question, /usr/bin, and the time the specification was created.

The /set type=file line shows the information mtree records by default. Notice that it keeps track of each file's uid, gid,
mode, number of hard links, and flags.

Then, each file and subdirectory in /usr/bin is listed one at a time. Since I used -K to specify three different
cryptographic hashes, each file has three separate hashes or digests.

6.6.2 Preparing the Database for Storage

Once you've created a specification, the last place you want to leave it is on the hard drive. Instead, sign that file,
encrypt it, transfer it to a different medium (such as a floppy), and place it in a secure storage area.

To sign the file:

# md5 /tmp/mtree_bin

MD5 (/tmp/mtree_bin) = e05bab7545f7bdbce13e1bb04a043e47

You may wish to redirect that resulting fingerprint to a file or a printer. Keep it in a safe place, as you'll need it to check
the integrity of the database.

Next, encrypt the file. Remember, right now it is in ASCII text and susceptible to tampering. Here I'll encrypt the file
and send the newly encrypted file to the floppy mounted at /floppy:

# openssl enc -e -bf -in /tmp/mtree_bin -out /floppy/mtree_bin_enc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# openssl enc -e -bf -in /tmp/mtree_bin -out /floppy/mtree_bin_enc

enter bf-cbc encryption password:

Verifying - enter bf-cbc encryption password:

The syntax of the openssl command is fairly straightforward. I decided to encrypt enc -e with the Blowfish -bf algorithm. I
then specified the input file, or the file to be encrypted. I also specified the output file, or the resulting encrypted file. I
was then prompted for a password; this same password will be required whenever I need to decrypt the database.

Once I verify that the encrypted file is indeed on the floppy, I must remember to remove the ASCII text version from
the hard drive:

# rm /tmp/mtree_bin

The ultra-paranoid, experienced hacker would zero out that file before removing it using dd
if=/dev/zero of=/tmp/mtree_bin bs=1024k count=12.

I'll then store the floppy in a secure place, such as the safe that contains my backup tapes.

6.6.3 Using the Integrity Database

Once you have an integrity database, you'll want to compare it periodically to the files on your hard drive. Mount the
media containing your encrypted database, and then decrypt it:

# openssl enc -d -bf -in /floppy/mtree_bin_enc -out /tmp/mtree_bin

enter bf-cbc encryption password:

Notice that I used basically the same command I used to encrypt it. I simply replaced the encrypt switch (-e) with the
decrypt switch (-d). The encrypted file is now the input, and the plain text file is now the output. Note that I was
prompted for the same password; if I forget it, the decryption will fail.

Before using that database, I first want to verify that its fingerprint hasn't been tampered with. Again, I simply repeat
the md5 command. If the resulting fingerprint is the same, the database is unmodified:

# md5 /tmp/mtree_bin

MD5 (/tmp/mtree_bin) = e05bab7545f7bdbce13e1bb04a043e47

Next, I'll see if any of my files have been tampered with on my hard drive:

# cd /usr/bin

# mtree -s 123456789 < /tmp/mtree_bin

mtree: /usr/bin checksum: 2126659563

If none of the files have changed in /usr/bin, the checksum will be the same. In this case it was. See why it was
important to record that seed and checksum?

What happens if a file does change? I haven't built world on this system in a while, so I suspect I have source files that
haven't made their way into /usr/bin yet. After some poking about, I notice that /usr/src/usr.bin has a bluetooth
directory containing the source for a file called btsockstat. I'll install that binary:

# cd /usr/src/usr.bin/bluetooth/btsockstat

# make

# make install

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# make install

# ls -F /usr/bin | grep btsockstat

btsockstat*

Now let's see if mtree notices that extra file:

# cd /usr/bin

# mtree -s 123456789 < /tmp/mtree_bin

. changed

        modification time expected Wed Oct  1 06:54:36 2003 

              found Sun Nov 23 16:10:32 2003

btsockstat extra

mtree: /usr/bin checksum: 417306521

Well, it didn't fool mtree. That output is actually quite useful. I know that btsockstat was added as an extra file, and I
know the date and time it was added. Since I added that file myself, it is an easy matter to resolve. If I hadn't and
needed to investigate, I have a time to assist me in my research. I could talk to the administrator who was responsible
at that date and time, or I could see if there were any network connections logged during that time period.

Also note that this addition resulted in a new checksum. Once the changes have been resolved, I should create a new
database that represents the current state of /usr/bin. To recap the necessary steps:

1. Use mtree -c to create the database.

2. Use md5 to create a fingerprint for the database.

3. Use openssl to encrypt the database.

4. Move the database to a removable media, and ensure no copies remain on disk.

6.6.4 Deciding on Which Files to Include

When you create your own integrity database, ask yourself, "Which files do I want to be aware of if they change?" The
answer is usually your binaries or applications. Here is a list of common binary locations on a FreeBSD system:

/bin

/sbin

/usr/bin

/usr/sbin

/usr/local/bin

/usr/X11R6/bin

/usr/compat/linux/bin

/usr/compat/linux/sbin

The sbin directories are especially important because they contain system binaries. Most ports will install to
/usr/local/bin or /usr/X11R6/bin.

The second question to ask yourself is "How often should I check the database?" The answer will depend upon your
circumstances. If the machine is a publicly accessible server, you might consider this as part of your daily maintenance
plan. If the system's software tends to change often, you'll also want to check often, while you can still remember when
you installed what software.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


you installed what software.

6.6.5 See Also

man mtree

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 59 Intrusion Detection with Snort, ACID, MySQL, and FreeBSD

 

How the alert administrator catches the worm.

With the current climate of corporate force reductions and the onslaught of new, fast-spreading viruses and worms,
today's administrators are faced with a daunting challenge. Not only is the administrator required to fix problems and
keep things running smoothly, but in some cases he is also responsible for keeping the network from becoming worm
food. This often entails monitoring the traffic going to and from the network, identifying infected nodes, and loading
numerous vendor patches to fix associated vulnerabilities.

To get a better handle on things, you can deploy an Intrusion Detection System (IDS) on the LAN to alert you to the
existence of all the nastiness associated with the dark side of the computing world.

This hack will show you how to implement a very effective and stable IDS using FreeBSD, MySQL, Snort, and the
Analysis Console for Intrusion Databases (ACID). While that means installing and configuring a few applications, you'll
end up with a feature-rich, searchable IDS capable of generating custom alerts and displaying information in many
customizable formats.

6.7.1 Installing the Software

We'll assume that you already have FreeBSD 4.8-RELEASE or newer installed with plenty of disk space. The system is
also fully patched and the ports collection is up-to-date. It also helps to be familiar with FreeBSD and MySQL
commands.

6.7.1.1 Install PHP4, Apache, and MySQL

We'll start by installing PHP4, Apache, and the MySQL client. As the superuser:

# cd /usr/ports/www/mod_php4

# make install clean

When the PHP configuration options screen appears, choose the GD Library Support option. Leave the other default
selections, and choose OK.

The build itself will take a while because it must install Apache and the MySQL client in addition to PHP.

6.7.1.2 Install MySQL-server

You'll also need the MySQL server, which is a separate port. To ensure this port installs correctly, temporarily set the
system hostname to localhost:

# hostname localhost

# cd /usr/ports/databases/mysql40-server

# make install clean

This one will also take a while.

6.7.1.3 More installations

There are a few other ports to install. The next three applications are used by ACID to create graphs of the output.
ACID supports bar graphs (as shown in Figure 6-3), line graphs (Figure 6-4), and pie charts (Figure 6-5).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 6-3. An ACID bar graph

Figure 6-4. An ACID line graph

Figure 6-5. An ACID pie chart

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 6-5. An ACID pie chart

We'll need adodb , a database library for PHP:

# cd /usr/ports/databases/adodb

# make install clean

PHPlot adds a graph library to PHP so it will support charts:

# cd /usr/ports/graphics/phplot

# make install clean

JPGraph adds more support to PHP for graphs:

# cd /usr/ports/graphics/jpgraph

# make install clean

Finally, we must install ACID and Snort. Start by modifying snort's Makefile to include MySQL support:

# cd /usr/local/ports/security/snort

# vi Makefile

Change:

CONFIGURE_ARGS= --with-mysql=no

to:

CONFIGURE_ARGS= --with-mysql=yes

Save your changes and exit.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Save your changes and exit.

Finally, install acid, which will also install snort using your modified Makefile:

# cd /usr/ports/security/acid

# make install clean

6.7.2 Configuring

Now that we've installed all the necessary pieces for our IDS, it's time to configure them to work together.

6.7.2.1 Configure Apache and PHP

You'll need to make two changes to Apache's configuration file, /usr/local/etc/apache/httpd-conf. First, search for
#ServerName, remove the hash mark (#), and change www.example.com to your actual server name. Then, for security
reasons, change ServerSignature On to ServerSignature Off. This prevents the server from providing information such as
HTTP server type and version. Most admins who run IDSs on their networks like to keep their presence somewhat
hidden, since there are exploits/tools written to defeat IDS detection.

6.7.2.2 Configure PHP

After installing PHP, you will notice two sample configuration files in /usr/local/etc, php.ini-dist and php.ini-
recommended. As the name suggests, the latter is the recommended PHP 4-style configuration file. It contains settings
that make PHP "more efficient, more secure, and [encourage] cleaner coding." Since our focus is security, I recommend
using this file.

Configuring PHP is as simple as copying the sample configuration file to /usr/local/etc/php.ini:

# cd /usr/local/etc

# cp php.ini-recommended php.ini

6.7.2.3 Configure MySQL

MySQL supports several configurations. Use my-small.cnf or my-medium.cnf if you have less than 64 M of memory,
my-large.cnf if you have 512 M, and my-huge.cnf if you have 1-2 G of memory. Later, if you find your system running
out of swap space, you can stop mysql and copy one of the smaller *.cnf files to fix the problem. In my example, I'll
copy over my-large.cnf:

# cp /usr/local/share/mysql/my-large.cnf /etc/my.cnf

Next, set up the initial databases and install the server:

# /usr/local/bin/mysql_install_db

# /usr/local/etc/rc.d/mysql-server.sh start

You can use the sockstat command to confirm that the MySQL server is running. You should see MySQL listening on port
3306:

# sockstat | grep mysql

USER     COMMAND    PID   FD PROTO  LOCAL ADDRESS         FOREIGN ADDRESS

mysql    mysqld     16262 5  tcp4   *:3306                *:*

mysql    mysqld     16262 6  stream /tmp/mysql.sock

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mysql    mysqld     16262 6  stream /tmp/mysql.sock

Then, set the password for the root MySQL user. You'll have to use the FLUSH PRIVILEGES command to tell MySQL to
reload all of the user privileges, or the server will continue using the old (blank) password until it restarts:

# /usr/local/bin/mysql -u root

Welcome to the MySQL monitor.  Commands end with ; or \g.

Your MySQL connection id is 1 to server version: 4.0.16-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>SET PASSWORD FOR root@localhost=PASSWORD('

your_password_here

');

mysql>FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

Then, you can create the snort database:

mysql>CREATE DATABASE snort;

Query OK, 1 row affected (0.00 sec)

Now we can create a MySQL user with sufficient permissions to access the new snort database. Do not use the MySQL
root user! By creating a new user who has access to only one database, we've limited the damage an attacker could do
if he ever gained access to this account.

MySQL uses the GRANT command to give users access to databases. You can control which types of statements the user
can issue, as well as the network hosts from which the user can access MySQL. localhost is a nice, safe setting, as we
only need to access the database from the local machine. Again, this restricts the damage that an attacker could do
from another compromised host.

mysql> GRANT INSERT,SELECT ON snort.* to 

snort_user_here

@localhost \

        IDENTIFIED BY '

snort_users_password

';

Query OK, 0 rows affected (0.00 sec)

mysql> GRANT INSERT,SELECT,CREATE,DELETE on snort.* \

        to 

snort_user_here

@localhost IDENTIFIED BY '

snort_users_password

';

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


';

Query OK, 0 rows affected (0.01 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.01 sec)

mysql> quit

Bye

6.7.2.4 Configure Snort

First you'll need to download the latest sources from http://www.snort.org (currently v2.0.5). After unpacking, use the
create_mysql file to create the necessary tables in the snort database. That's all the configuration you need; you can now
simply delete the unpacked directory.

# tar xvfz snort-2.0.5.tar.gz 

# cd snort-2.0.5/contrib 

# cp create_mysql /tmp 

# /usr/local/bin/mysql -p < /tmp/create_mysql snort 

Enter password:            Enter the MySQL root password here

# cd /usr/local/etc 

# cp snort.conf-sample snort.conf 

# vi snort.conf 

Scroll down until you reach the # output database: log, mssql, dbname=snort user=snort password=test line. Insert the
following lines beneath it:

output database: log, mysql, user=mysql_user_name password=mysql_users_

    password dbname=snort host=localhost

output database: alert, mysql, user=mysql_user_name password=mysql_users_

    password dbname=snort host=localhost

Now page down toward the bottom of the file and select the types of rules you want to monitor for. Keep in mind that
the more rules you use, the more work snort will have to do, using up CPU cycles and memory that might be better
used elsewhere. For example, if you don't want to monitor X11 or Oracle on any computer on your network, comment
out those rules. When you're done, save your changes and exit.

Finish by creating the snort log directory:

# cd /var/log

# mkdir snort

6.7.2.5 Configure ACID

Start by tightening the permissions of the configuration file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Start by tightening the permissions of the configuration file:

# chmod 644 /usr/local/www/acid/acid_conf.php

Have a good read through the Security section of /usr/local/www/acid/README when
you're configuring ACID. It contains many good pointers to ensure your configuration is
secure.

Then, change the section that contains alert_dbname = "snort_log"; to include the appropriate entries:

$alert_dbname   = "snort";

$alert_host     = "localhost";

$alert_port     = "";

$alert_user     = "mysql_snort_user";

$alert_password = "mysql_snort_users_password";

Leave the Archive parameters alone, unless you want to create a separate database for snort to store archived alert
messages in. To do this, you'll need to log into MySQL, create an archive database, set the appropriate permissions, and
run the mysql_create script again as described earlier. The Snort and ACID documentation describe this in more detail.

You do need to tell ACID where to find some of the libraries installed earlier. In particular, change:

$ChartLib_path = "";

to:

$ChartLib_path = "/usr/local/share/jpgraph";

6.7.3 Running ACID

It's time to start Apache:

# /usr/local/sbin/apachectl start

/usr/local/sbin/apachectl start: httpd started

Then, link the ACID web directory. Of course, for security reasons, I recommend giving the link name something other
than acid.

# cd /usr/local/www/

# ln -s /usr/local/www/acid /usr/local/www/snort

Point your web browser to http://localhost/snort/acid_main.php and click the Setup link. Click the Create ACID AG
button to create the extended tables that ACID will use. When it finishes, you should see something similar to the
following:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


following:

Successfully created 'acid_ag'

Successfully created 'acid_ag_alert'

Successfully created 'acid_ip_cache'

Successfully created 'acid_event'

Now click the Main page link to be taken to ACID's main display page. At this point you might ask, "Where are the
alerts?" There aren't any—we didn't start snort!

6.7.4 Running Snort

First, try starting snort manually to make sure it works. Use the -i switch to specify the network interface that will be
monitoring traffic. In my case, it is xl0.

# cd /usr/local/etc

# /usr/local/bin/snort -c snort.conf -i xl0               

database: using the "alert" facility

1458 Snort rules read...

1458 Option Chains linked into 146 Chain Headers

0 Dynamic rules

+++++++++++++++++++++++++++++++++++++++++++++++++++

Rule application order: ->activation->dynamic->alert->pass->log

        --=  = Initialization Complete =  =--

-*> Snort! <*-

Version 2.0.5 (Build 98)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

If snort doesn't show any errors, as depicted here, pat yourself on the back: snort is running!

Quit snort by pressing Ctrl-C, and restart it in daemon mode:

# /usr/local/bin/snort -c snort.conf -i xl0 -D

Now flip on over to the ACID display page in your web browser. You should start to see alerts coming in. Figure 6-6
shows a sample alert listing.

Figure 6-6. ACID alerts

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 6-6. ACID alerts

Note that each detected signature includes a hyperlink to information about that particular type of attack. Snort also
keeps track of how many packets matched that signature, the number of unique source and destination addresses, and
the time frame between the first and last packet.

You can also configure your own alert groups to better organize your results, as shown in Figure 6-7.

Figure 6-7. ACID alert groups

ACID can also display each rogue packet in intimate detail, as seen in Figure 6-8.

Figure 6-8. An ACID packet in detail

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 6-8. An ACID packet in detail

Keep in mind that you'll probably start getting false positives, depending on the types of traffic on your network.
However, these can easily be weeded out by making the appropriate changes to your /usr/local/etc/snort.conf file and
the rule files in /usr/local/share/snort.

If you start noticing a bunch of alerts that look like Figure 6-9, it's a good indication that some nodes on your network
are infected with a virus or worm.

Figure 6-9. Suspicious Snort alerts

6.7.5 Hacking the Hack

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Snort and ACID have many additional features. For example, you can use your favorite mail transfer agent, such as
Sendmail or Postfix, to send out email alerts, and you can create an archive database to store alerts generated by snort.
There's even a snort plug-in for the Big Brother System and Network Monitor that can alert you when 30 or more alerts
are generated.

You can also add additional security to MySQL, Snort, and ACID by creating a nonprivileged snort user and locking down
the /usr/local/www/acid directory with the use of a properly configured .htaccess file. Configuration of these features
goes beyond the scope of this hack, but I encourage you to read all the documentation included with these applications,
as well as the documentation at each application's home page, to find out how you can tailor them to suit your needs.

6.7.6 See Also

The MySQL Reference Manual (http://www.mysql.com/documentation/index.html)

The Snort web site (http://www.snort.org/)

The Analysis Console for Intrusion Databases (ACID) web site (http://www.cert.org/kb/acid/)

The Big Brother Network and System Monitor web site (http://bb4.com/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 60 Encrypt Your Hard Disk

 

Keep your secrets secret by keeping everything secret.

People often store sensitive information on their hard disks and have concerns about this information falling into the
wrong hands. This is particularly relevant to users of laptops and other portable devices, which might be stolen or
accidentally misplaced.

File-oriented encryption tools like GnuPG are great for encrypting particular files that will be sent across untrusted
networks or stored on disk. But sometimes these tools are inconvenient, because the file must be decrypted each time
it is to be used; this is especially cumbersome when you have a large collection of files to protect. Any time a security
tool is cumbersome to use, there's a chance you'll forget to use it properly, leaving the files unprotected for the sake of
convenience.

Worse, readable copies of the encrypted contents might still exist on the hard disk. Even if you overwrite these files
(using rm -P) before unlinking them, your application software might make temporary copies that you don't know about
or that have been paged to swapspace. Even your hard disk might have silently remapped failing sectors with data still
in them.

The solution is simply never to write the information unencrypted to the hard disk. Rather than taking a file-oriented
approach to encryption, consider a block-oriented approach—a virtual hard disk that looks just like a normal hard disk
with normal filesystems, but which encrypts and decrypts each block on the way to and from the real disk.

NetBSD includes the encrypting block device driver cgd(4) to help you accomplish this task; the other BSDs have similar
virtual devices that, with somewhat different commands, can achieve the same thing. This hack concentrates on
NetBSD's cgd.

6.8.1 The Cryptographic Disk Device

To the rest of the operating system, the cgd(4) device looks and behaves like any other disk driver. Rather than driving
real hardware directly, it provides a logical function layered on top of another block device. It has a special
configuration program, cgdconfig , to create and configure a cgd device and point it at the underlying disk device that will
hold the encrypted data. You can stack several logical block devices together; cgd(4) on top of vnd(4) is handy for
making an encrypted volume in a regular file without repartitioning, or you can make an encrypted raid(4).

Once you have a cgd configured, you can put a disklabel on it to divide it up into partitions, make filesystems or enable
swapping to those partitions, or mount and use those filesystems, just like any other new disk.

Roland C. Dowdeswell wrote the cgd driver. It first appeared in NetBSD-current after the 1.6 release branch. As a
result, it is not in the 1.6 release series; it will be in the 2.0 release and, in the meantime, many people are using it
with -current.

In order to use cgd, ensure that you have the line:

pseudo-device            cgd    4    # cryptographic disk devices

in your kernel configuration file; otherwise, build and install a new kernel. You'll also need a running system, as the
NetBSD installer currently doesn't support installing new systems directly into a cgd.

6.8.2 Preparing the Disk

First, decide which filesystems you want to move to an encrypted device. You need to leave at least the small root
filesystem (at /) unencrypted in order to load the kernel and run init, cgdconfig, and the rc.d scripts that configure your
cgd. In this example, we'll encrypt everything except /.

We are going to delete and remake partitions and filesystems, and will require a backup to restore the data. So, make
sure you have a current, reliable backup stored on a different disk or machine. Do your backup in single-user mode,
with the filesystems unmounted, to ensure you get a clean dump. Make sure you back up the disklabel of your hard disk
as well, so you have a record of the original partition layout.

With the system in single-user mode, / mounted as read-write, and everything else unmounted, delete all the data
partitions you want to move into cgd.

Then, make a single new partition in all the space you just freed up, say, wd0e. Set the type for this partition to ccd.
(There's no code specifically for cgd, but ccd is very similar. Though it doesn't really matter what it is, it will help remind

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


(There's no code specifically for cgd, but ccd is very similar. Though it doesn't really matter what it is, it will help remind
you that it's not a normal filesystem.) When finished, label the disk to save the new partition table.

6.8.3 Scrubbing the Disk

We've removed the partition table information, but the existing filesystems and data are still on disk. Even after we
make a cgd device, create filesystems, and restore our data, some of these disk blocks might not yet be overwritten and
might still contain our data in plain text. This is especially likely if the filesystems are mostly empty. We want to scrub
the disk before we go further.

We could use dd to write /dev/zero over the new wd0e partition, but this will leave our disk full of zeros, except where
we later write encrypted data. We might not want to give an attacker any clues about which blocks contain real data
and which are free space, so we want to write noise into all the disk blocks. We'll create a temporary cgd, configured
with a random, unknown key.

First, we make a parameters file to tell cgd to use a random key:

# cgdconfig -g -k randomkey -o /tmp/wd0e-rnd aes-cbc

Then, we use that file to configure a temporary cgd:

# cgdconfig cgd0 /dev/wd0e /tmp/wd0e-rnd

If this seems to get stuck, it may be that /dev/random doesn't have enough entropy for
cgdconfig. Hit some keys on the console to generate entropy until it returns.

Now we can write zeros into the raw partition of our cgd (this device will be cgdxd on NetBSD/i386 and cgdxc on most
other platforms):

# dd if=/dev/zero of=/dev/rcgd0d bs=32k

The encrypted zeros will look like random data on disk. This might take a while if you have a large disk. Once finished,
unconfigure the random-key cgd:

# cgdconfig -u cgd0

6.8.4 Creating the Encrypted Disk Device

The cgdconfig program, which manipulates cgd devices, uses parameters files to store such information as the encryption
type, key length, and a random password salt for each cgd. These files are very important and must be kept safe—
without them, you will not be able to decrypt the data!

We'll generate a parameters file and write it into the default location (make sure the directory /etc/cgd exists and is
mode 600):

# cgdconfig -g -V disklabel -o /etc/cgd/wd0e aes-cbc 256

This creates a parameters file describing a cgd using aes-cbc encryption, a key verification (-V) method of disklabel, and a
key length of 256 bits. Remember, you'll want to save this file somewhere safe later.

Now it's time to create our cgd, for which we'll need a passphrase. This passphrase must be entered every time the cgd
is opened, usually at each reboot, and it is from this passphrase that the encryption key used is derived. Make sure you
choose something you won't forget and others won't guess.

The first time we create the cgd, there is no valid disklabel, so the validation mechanism we want to use later won't
work. We override it this one time:

# cgdconfig -V re-enter cgd0 /dev/wd0e

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cgdconfig -V re-enter cgd0 /dev/wd0e

This will prompt twice for a matching passphrase.

Now that we have a new cgd, we need to partition it and create filesystems. Recreate your previous partitions with all
the same sizes, although the offsets will be different because they're starting at the beginning of this virtual disk.
Remember to include the -I argument to disklabel, because you're creating an initial label for a new disk.

Then, use newfs to create filesystems on all the relevant partitions. This time your partitions will reflect the cgd disk
names:

# newfs /dev/rcgd0h

6.8.5 Modifying Configuration Files

We've moved several filesystems to another disk, and we need to update /etc/fstab accordingly. Each partition will have
the same letter but will be on cgd0 rather than wd0. So, you'll have /etc/fstab entries that are similar to these:

/dev/wd0a   /     ffs     rw,softdep    1 1

/dev/cgd0b  none  swap    sw            0 0

/dev/cgd0b  /tmp  mfs     rw,-s=132m    0 0 

/dev/cgd0e  /var  ffs     rw,softdep    1 2

/dev/cgd0f  /usr  ffs     rw,softdep    1 2

/dev/cgd0h  /home ffs     rw,softdep    1 2

Note that /tmp should be a separate filesystem, either mfs or ffs, inside the cgd, so that your temporary files are not
stored in plain text in the / filesystem.

Each time you reboot, you're going to need your cgd configured early, before fsck runs and filesystems are mounted.

Put the following line in /etc/cgd/cgd.conf:

cgd0    /dev/wd0e

and the following line into /etc/rc.conf:

cgd=YES

You should now be prompted for cgd0's passphrase whenever rc starts.

6.8.6 Restoring Data

Next, mount your new filesystems, and restore your data into them. It often helps to have /tmp mounted properly first,
as restore can use a fair amount of space when restoring a large dump.

To test your changes to the boot configuration, unmount the filesystems and unconfigure the cgd, so when you exit the
single-user shell, rc will run as it does on a clean boot. Now you can bring the system up to multiuser and make sure
everything works as before.

6.8.7 Hacking the Hack

Here are some other things you might consider doing, for extra hack value:

Use two separate cgds: one with a random key just for swap and one like the cdg in this hack.

Use multiple cgds for different kinds of data, e.g., one mounted all the time and others mounted only when

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Use multiple cgds for different kinds of data, e.g., one mounted all the time and others mounted only when
needed.

Use a cgd configured on top of a vnd made from a file on a remote network file server (NFS, SMBFS, CODA, etc.)
to safely store private data on a shared system.

Build a kernel with a special minimized, embedded ramdisk root image containing init, cgdconfig, your
parameters file, and any other required tools. Boot that image from removable media (such as a USB flash
device) that you carry securely on your person, and remount / from the cgd on the hard disk. This can help
defend against someone tampering with the kernel or cgdconfig binary in the unencrypted portion of the hard
disk and using it to steal your passphrase.

6.8.8 Final Thoughts and Warnings

Prevent cryptographic disasters by making sure you can always recover your passphrase and parameters file. Protect
the parameters file from disclosure, perhaps by storing it on removable media as just mentioned, because the salt it
contains helps protect against dictionary attacks on the passphrase.

Keeping the data encrypted on your disk is all very well, but what about other copies? You already have at least one
other such copy (the backup we used during this setup), and it's not encrypted. Piping dump through a file-based
encryption tool such as gpg can be one way of addressing this issue, but make sure you can decrypt it to restore after a
disaster.

Like any form of software encryption, the cgd key stays in kernel memory while the device is configured and may be
accessible to privileged programs and users, such as kmem grovelers. Running your system with an elevated securelevel
is highly recommended.

Once the cgd volumes are mounted as normal filesystems, their accessibility is just like any other file. Take care of file
permissions, and ensure that your running system is protected against application and network security attacks.

Avoid using suspend and resume, especially for laptops with a BIOS suspend-to-disk function. If an attacker can
resume your laptop with the key still in memory or read it from the memory image on disk later, the whole point of
using cgd is lost.

6.8.9 See Also

man cgd

man cgdconfig

man disklabel

The Encrypting Disk Partitions (using gdbe) section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/disks-encrypting.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 61 Sudo Gotchas

 

Be aware of these limitations when configuring sudo.

sudo is a handy utility for giving out some, but not all root privileges to users of Unix and Unix-like systems. sudo has
some limitations and gotchas, however.

On FreeBSD, build sudo from the ports collection in /usr/ports/security/sudo.

6.9.1 Limitations of sudo

Tools like sudo exist because the standard Unix privilege model is monolithic. That is, you are either root, with all the
privileges and dangers attendant, or you aren't, in which case you lack the ability to affect the system in significant
ways. sudo is a workaround of this model. As such, there are limits to what it can achieve, and many of these limitations
show up in interactions with the shell. For example:

% sudo cd /some/protected/dir

Password:

sudo: cd: command not found

Because a process cannot affect the environment of its parent, cd can't be implemented as a program external to the
shell. The command is therefore built into the shell itself. sudo can confer privilege only on programs, not pieces of
programs. So, the only way to cd to a protected directory using sudo is to execute the shell itself with sudo:

% sudo bash

# cd /some/protected/dir

# pwd

/some/protected/dir

A workaround is to write a script like the following:

#!/usr/local/bin/bash

cd /some/protected/dir;/bin/ls

If you enable access to this command in /usr/local/etc/sudoers, authorized users will be able to ls the contents of a
protected directory. This won't allow you to cd to a protected directory, but it will allow you to do work in one.

Another possibility is to allow the user to run a restricted shell, for example, bash -r. This is not a good general solution,
though, since most such shells are very restrictive. For example, bash -r disallows use of cd!

Another interaction between the shell and sudo involves I/O redirection.

% sudo echo "secret stuff"  > /some/protected/dir/secret

bash: /some/protected/dir/secret: Permission denied

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


bash: /some/protected/dir/secret: Permission denied

The problem here is that the bash shell does the I/O direction, not the echo command. This time there is a workaround,
however:

% echo "secret stuff" | sudo tee -a  /some/protected/dir/secret \

    > /dev/null

% sudo cat /some/protected/dir/secret

secret stuff

Here we use sudo to run tee with the -a (append) switch, which dumps the I/O stream coming from stdin to a file. We
throw away the stdout stream since we just want the file. Now sudo can confer privilege on the program tee, and we get
the desired result, although it's a bit awkward.

The same problem exists when trying to redirect stdin. In this case, we can use the similar, but less unusual, expedient
of sudo cat to get at the data.

The following interaction is not really a limitation, but more of a wart:

% sudo cat /some/protected/dir/secret | wc | sudo tee \

    /some/protected/dir/count > /dev/null

Password:Password:

Here we have no cached credentials, so sudo prompts us for our password. But since there are two sudo commands in
the pipeline, we get two password prompts, one right after the other. When we enter our password and press Return,
nothing happens—our cursor stays put on the next line. We are actually at the second password prompt, but there is no
indication of this. Entering our password again will get us out of the mysteriously hung pipeline.

6.9.2 sudo Configuration Gotchas

sudo is very flexible. The /usr/local/etc/sudoers file has rich semantics to implement a nearly infinite set of policies that
can range from very open to very restrictive. Of course, open policies are easier to understand and implement than the
restrictive ones, because there are so many ways to subvert many seemingly restrictive policies.

The earlier examples of sudo limitations assumed that all the commands used were authorized for our use in the
sudoers file. However, both cat and tee are dangerous commands that could allow a user to easily take control of a
system. (Consider sudo tee /etc/spwd.db < myevilspwd.db.) This underlines the generic risk of enabling commands with
sudo. It is difficult to analyze all the possible ways a particular command could be misused to subvert a closed security
policy. The more commands you enable with sudo, the harder this task becomes. In general, beware of commands that
are capable of modifying files, such as editors, dd, cat, and tee, or those that allow shells to be run from within them,
such as emacs and vi.

vim provides an rvim variant that disallows shell escapes. This variant is installed to
/usr/local/bin/rvim when you build the port /usr/ports/editors/vim.

You can try restricting what arguments can be given to dangerous commands, but beware of alternate methods for
supplying those arguments. For example, the following configuration entry recently came up on the sudo-users mailing
list:

Cmnd_Alias      PASSWD   = /usr/bin/passwd, !/usr/bin/passwd root

This works great if the user types passwd root:

% sudo passwd root

Sorry, user test is not allowed to execute '/usr/bin/passwd root' as root on ****.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sorry, user test is not allowed to execute '/usr/bin/passwd root' as root on ****.

Consider, though:

% sudo passwd -l root

Changing local password for root

New Password:

Oops! The addition of the -l flag causes the pattern in the sudoers file not to match the equivalent command.

The moral is: to restrict parameters in sudoers, you must disallow all permutations of arguments and switches that you
deem undesirable.

man sudoers warns about another danger:

It is generally not effective to "subtract" commands from ALL using the

'!' operator.  A user can trivially circumvent this by copying the

desired command to a different name and then executing that.  For exam-

ple:

    bill        ALL = ALL, !SU, !SHELLS

Doesn't really prevent bill from running the commands listed in SU or

SHELLS since he can simply copy those commands to a different name, or

use a shell escape from an editor or other program.  Therefore, these

kind of restrictions should be considered advisory at best (and rein-

forced by policy).

6.9.3 Shell Access with sudo

Authorizing shell access with sudo obviously opens your security policy to the largest possible extent, since any available
command can then be run in the root-enabled shell. This may be exactly what you want, but you also lose sudo's audit
trail, since subsequent commands issued from the shell are not logged.

One way to allow shell access to trusted users without losing the audit trail is to use sudoscript [Hack #62] .

6.9.4 See Also

man sudo

man sudoers

man passwd

The sudo web site (http://www.courtesan.com/sudo/)

The Sudo-users mailing list archive (http://www.sudo.ws/pipermail/sudo-users/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 6. Securing the System
Introduction

Section 54.  Strip the Kernel

Section 55.  FreeBSD Access Control Lists

Section 56.  Protect Files with Flags

Section 57.  Tighten Security with Mandatory Access Control

Section 58.  Use mtree as a Built-in Tripwire

Section 59.  Intrusion Detection with Snort, ACID, MySQL, and FreeBSD

Section 60.  Encrypt Your Hard Disk

Section 61.  Sudo Gotchas

Section 62.  sudoscript

Section 63.  Restrict an SSH server

Section 64.  Script IP Filter Rulesets

Section 65.  Secure a Wireless Network Using PF

Section 66.  Automatically Generate Firewall Rules

Section 67.  Automate Security Patches

Section 68.  Scan a Network of Windows Computers for Viruses

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
Have you ever wondered what modifications a web or mail administrator makes to her servers? Maybe you're curious
about what policies other administrators use to implement bandwidth control? How do busy administrators manage the
log data from a server farm?

Perhaps you've contemplated using the Expect scripting language. However, there's a good chance you've never
thought of using eesh, a totally undocumented but useful scripting utility.

This chapter also includes two hacks on the emergency repair process, as many users prefer to hope that they'll never
need an emergency repair kit. Instead, learn to overcome your fear of the inevitable and master the art of repairing
before the emergency.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 69 Tune FreeBSD for Different Applications

 

Know how to tune and what to tune on your FreeBSD system

As an administrator, you want to tune your server systems so they work at peak efficiency. How do you know what to
tune? The answer depends heavily upon the system's function. Will the system perform a lot of small network
transactions? Will it perform a small number of large transactions? How will disk operations factor in?

How you answer these and other questions determines what you need to do to improve the performance of your
systems. This hack starts with general optimizations and then looks at function-specific tunables.

7.2.1 Optimizing Software Compiling

A good place to start is with software compiling, as you want to compile software and updates as efficiently as possible.
Whenever you compile, your compiler makes assumptions about your hardware in order to create binaries. If you have
an x86-compliant CPU, for example, your compiler will create binaries that can run on any CPU from a 386 onward.
While this allows portability, it won't take advantage of any new abilities of your CPU, such as the extended MMX, SSE,
SSE2, or 3DNow! instruction sets. This is also why using precompiled binaries on your system is a surefire way to
reduce your overall performance.

To ensure that software will be compiled efficiently, update your compiler flags in /etc/make.conf . This file does not
exist on new systems, but you can copy it from /usr/share/examples/etc/defaults/make.conf.

Start by editing the CPUTYPE= line to reflect your CPU type; you'll find supported types listed as comments just before
this line. While this will take advantage of your CPU's features, the disadvantage is that your compiled binaries may not
run on different CPU types. However, if all of your systems run the same CPU platform, any optimizations you make to
shared binaries will affect all of your systems equally well.

Next, change the CFLAGS line to CFLAGS= -O2 -pipe -funroll-loops. The -pipe option can significantly decrease the amount of
time it takes to compile software, by using pipes to communicate between compiler processes instead of temporary
files, but at the expense of using slightly more memory. The -funroll-loops saves one CPU register that would otherwise
be tied up in tracking the iteration of the loop, but at the expense of making a slightly larger binary.

The make.conf file also contains a line for CXXFLAGS. These options are similar to the
CFLAGS options but apply to C++ code.

7.2.2 Kernel Optimizations

In your kernel configuration, add the following line after the machine i386 line:

makeoptions    COPTFLAGS="-O2 -pipe -funroll-loops -ffast-math"

This is similar to the CLAGS option in /etc/make.conf, except that it optimizes kernel compilation.

See [Hack #54] for instructions on how to strip and compile a kernel.

You can also add this line:

TOP_TABLE_SIZE=number

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TOP_TABLE_SIZE=number

where number is a prime number that is at least twice the number of lines in /etc/passwd. This statement sets the size
of the hash that top uses.

Set the following option if you have an AMD K5/K6/K6-2 or Cyrix 6x86 chip. It enables cache write allocation for the L1
cache, which is disabled by default for these chips.

options         CPU_WT_ALLOC

This option will disable NFS server code, so include it when you know that you will not be acting as an NFS server:

options        NFS_NOSERVER

Another way of saving kernel memory is to define the maximum number of swap devices, as shown in the next
example. Your kernel needs to allocate a fixed amount of bitmapped memory so that it can interleave swap devices. I
set the number to 1 on my workstation and 2 on my servers. If I need to add more to a server, I can easily create
another partition.

options         NSWAPDEV=number

If you plan on compiling all your requisites into the kernel (NIC driver, IPF/IPFW, etc.) and won't be loading any of
these options as modules, you can include this line to skip module compiling. This saves significantly on the time taken
to compile a kernel (sometimes reducing it by two-thirds).

makeoptions     MODULES_OVERRIDE=""

By default, all kernel options are compiled as modules. This allows you to use kldload to load a module even though it
isn't specified in your kernel configuration file.

The advantage of MODULES_OVERRIDE is the decrease in kernel compilation time. The disadvantage is that you'll need to
recompile your kernel if you ever need to add additional functionality, since you will have lost the ability to load the
kernel module separately.

7.2.3 Optimizing Network Performance

Most modern network cards and switches support the ability to auto-negotiate the communication speed. While this
reduces administration, it comes at the cost of network throughput. If your switch, server, or workstation is set to use
auto-negotiation, it will stop transferring network traffic every few moments to renegotiate its speed.

If your network driver supports it, you can set network speed with ifconfig at runtime or in /etc/rc.conf at boot time.
Here is an example:

% grep fxp0 /etc/rc.conf

ifconfig_fxp0="inet x.x.x.x netmask x.x.x.x media 100BaseTX mediaopt 

    full-duplex"

Read the manpage for your NIC driver to see whether it supports mediaopt. For example, if
your NIC is rl0, read man 4 rl.

Next, you can enable DEVICE_POLLING in your kernel, which changes the method by which data travels from your
network card to the kernel. Without this setting, frequent interrupt calls may never free the kernel. This is known as
livelock and can leave your machine unresponsive. Those of us unfortunate enough to be on the wrong side of certain
denial-of-service attacks know about this.

The DEVICE_POLLING option causes the kernel to poll the network card at certain predefined times, during idle loops, or

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The DEVICE_POLLING option causes the kernel to poll the network card at certain predefined times, during idle loops, or
on clock interrupts. This allows the kernel to decide when it is most efficient to poll a device for updates and for how
long, and ultimately results in a significant increase in performance.

To take advantage of DEVICE_POLLING, you need to compile two options into your kernel: options DEVICE_POLLING and
options HZ=1000. The latter option slows the clock interrupts to 1,000 times per second, which prevents the kernel from
polling too often.

Once you've recompiled your kernel, you'll still need to enable the feature. Add this line to /etc/sysctl.conf:

kern.polling.enable=1

The DEVICE_POLLING option does not work with SMP-enabled kernels by default. If you are compiling an SMP kernel with
DEVICE_POLLING, first remove the following lines from /usr/src/sys/kern/kern_poll.c:

#ifdef SMP

#include "opt_lint.h"

#ifndef COMPILING_LINT

#error DEVICE_POLLING is not compatible with SMP

#endif

#endif

7.2.4 Optimizing Mail Servers

Mail servers typically have a very large number of network connections, during which they transfer a small amount of
data for a short period of time before closing the connection. In this case, it is useful to have a large number of small
network buffers.

Network connections have two buffers, one for sending and one for receiving. The size of the buffer dictates how
quickly data will funnel through the network and, in the event of a network delay, how much data can back up the
server for that connection before there is a problem. Having a network buffer that is too small will cause a data backlog
as the CPU waits for the network to clear, which causes greater CPU overhead. Having a network buffer that is too large
wastes memory by using the buffer inefficiently. Finding a balance is the key to tuning.

I find that multiplying the number of established connections by 32 leaves me with room to breathe in the event that I
see an abnormally high surge of traffic. I've come to this number over time through trial and error. So, if you expect to
have a peak of 128 servers sending you mail, having 8,192 network buffer clusters would be good (128 2 per
connection 32). Also, remember that connections can take up to two full minutes or more to close completely. If you
expect more than 128 emails in any given two-minute period, increase the number accordingly.

Another important value to control is the maximum number of sockets. Start with the same number of sockets as there
are network buffers, and then tune as appropriate.

You can find out how many network buffer clusters are in use with the command netstat -m. You can specify the values
you want in /boot/loader.conf. For example:

kern.ipc.nmbclusters=8192

kern.ipc.maxsockets=8192

As with any performance tuning, monitor your system after making changes. Did you go overboard or underestimate
what you would need? Always check and adjust accordingly.

7.2.5 Optimizing File Servers

File servers generally have longer-lived and less frequent network connections than those on mail servers. They usually
transfer larger files.

To determine the optimal number of network buffer clusters, consider how many clients you have. Multiplying the
number of network buffers by two is good practice, though some admins prefer to multiply by four to accommodate
multiple file transfers. If you have 128 clients connecting to the file server, set the number of network buffer clusters to
1,024 (128 2 per connection 4).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


7.2.6 Optimizing Web Servers

If you have more than one element on your web page (for example, multiple images or frames), expect web browsers
to make multiple connections to your web server. It's common to see four connections per page served. Also count any
database or network connections made in server-side scripting.

Web servers go through periods of highs and lows. While you might serve 100 pages per minute on average, at your
low you might serve 10 pages per minute and at peak over 1,000 pages per minute. At a peak of 1,000 pages per
minute, your clusters and sockets should be around 16,384 (1,000 pages 2 per connection 4 connections 2 for growth).

7.2.7 See Also

man tuning

man gcc (the GCC manpage, which explains CPU compiling optimizations)

man ifconfig

"Tuning FreeBSD for different applications" (http://silverwraith.com/papers/freebsd-tuning.php)

"Optimizing FreeBSD and its kernel" (http://silverwraith.com/papers/freebsd-kernel.php)

Notes on tuning Apache servers at http://www.bolthole.com/uuala/webtuning.txt

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 70 Traffic Shaping on FreeBSD

 

Allocate bandwidth for crucial services.

If you're familiar with your network traffic, you know that it's possible for some systems or services to use more than
their fair share of bandwidth, which can lead to network congestion. After all, you have only so much bandwidth to work
with.

FreeBSD's dummynet may provide a viable method of getting the most out of your network, by sharing bandwidth
between departments or users or by preventing some services from using up all your bandwidth. It does so by limiting
the speed of certain transfers on your network—also called traffic shaping.

7.3.1 Configuring Your Kernel for Traffic Shaping

To take advantage of the traffic shaping functionality of your FreeBSD system, you need a kernel with the following
options:

options IPFIREWALL

options DUMMYNET

options HZ=1000

dummynet does not require the HZ option, but its manpage strongly recommends it. See [Hack #69] for more about HZ
and [Hack #54] for detailed instructions about compiling a custom kernel.

The traffic-shaping mechanism delays packets so as not to exceed the transfer speed limit. The delayed packets are
stored and sent later. The kernel timer triggers sending, so setting the frequency to a higher value will smooth out the
traffic by providing smaller delays. The default value of 100 Hz will trigger sends every 10 milliseconds, producing
bursty traffic. Setting HZ=1000 will cause the trigger to happen every millisecond, resulting in less packet delay.

7.3.2 Creating Pipes and Queues

Traffic shaping occurs in three stages:

1. Configuring the pipes

2. Configuring the queues

3. Diverting traffic through the queues and/or pipes

Pipes are the basic elements of the traffic shaper. A pipe emulates a network link with a certain bandwidth, delay, and
packet loss rate.

Queues implement weighted fair queuing and cannot be used without a pipe. All queues connected to a pipe share the
bandwidth of that pipe in a certain configurable proportion.

The most important parameter of a pipe configuration is its bandwidth. Set the bandwidth with this command:

# ipfw pipe 1 config bw 120kbit/s

This is a sample command run at the command prompt. However, as the hack progresses,
we'll write the actual dummynet policy as rules within an ipfw rulebase.

This command creates pipe 1 if it does not already exist, assigning it 120 kilobits per second of bandwidth. If the pipe
already exists, its bandwidth will be changed to 120 Kbps.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


already exists, its bandwidth will be changed to 120 Kbps.

When configuring a queue, the two most important parameters are the pipe number it will connect to and the weight of
the queue. The weight must be in the range 1 to 100, and it defaults to 1. A single pipe can connect to multiple queues.

# ipfw queue 5 config pipe 1 weight 20

This command instructs dummynet to configure queue 5 to use pipe 1, with a weight of 20. The weight parameter allows
you to specify the ratios of bandwidth the queues will use. Queues with higher weights will use more bandwidth.

To calculate the bandwidth for each queue, divide the total bandwidth of the pipe by the total weights, and then
multiply each weight by the result. For example, if a 120 Kbps pipe sees active traffic (called flows) from three queues
with weights 3, 2, and 1, the flows will receive 60 Kbps, 40 Kbps, and 20 Kbps, respectively.

If the flow from the queue with weight 2 disappears, leaving only the flows with weights 3 and 1, those will receive 90
Kbps and 30 Kbps, respectively. (120 / (3+1) = 30, so multiply each weight by 30.)

The weight concept may seem strange, but it is rather simple. Queues with equal weights will receive the same amount
of bandwidth. If queue 2 has double the weight of queue 1, it has twice as much bandwidth. Queues that have no traffic
are not taken into account when dividing traffic. This means that in a configuration with two queues, one with weight 1
(for unimportant traffic) and the other with weight 99 (for important business traffic), having both queues active will
result in 1%/99% sharing, but if there is no traffic on the 99 queue, the unimportant traffic will use all of the
bandwidth.

7.3.3 Using Masks

Another very useful option is to create a mask by adding mask mask-specifier at the end your config line. Masks allow you
to turn one flow into several flows; the mask will distinguish the different flows.

The default mask is empty, meaning all packets fall into the same flow. Using mask all would make all connections
significant, meaning that every TCP or UDP connection would appear as a separate flow.

When you apply a mask to a pipe, each of that pipe's flows acts as a separate pipe. Yet, each of those flows is an exact
clone of the original pipe, in that they all share the same parameters. This means that the three active flows from our
example pipe will use 360 Kbps, or 120 Kbps each.

For a queue, the flows will act as several queues, each with the same weight as the original one. This means you can
use the mask to share a certain bandwidth equally. For our example with three flows and the 120 Kbps pipe, each flow
will get a third of that bandwidth, or 40 Kbps.

This hack assumes that you will integrate these rules in your firewall configuration or that you are using ipfw only for
traffic shaping. In the latter case, having the IPFIREWALL_DEFAULT_TO_ACCEPT option in the kernel will greatly simplify
your task.

In this hack, we sometimes limit only incoming or outgoing bandwidth. Without this option, we would have to allow
traffic in both directions, traffic through the loopback interface, and through the interface we will not limit.

However, you should consider disabling the IPFIREWALL_DEFAULT_TO_ACCEPT option, as it will drop packets that your
policy does not specifically allow. Additionally, enabling the option may cause you to accept potentially malicious traffic
you hadn't considered. The example configurations in this hack were tested with an ipf-based firewall that had an
explicit deny rule at the end.

When integrating traffic shaping into an existing ipfw firewall, keep in mind that an ipfw pipe or ipfw queue rule is
equivalent to "ipfw accept after slow down . . . " if the sysctl net.inet.ip.fw.one_pass is set to 1 (the default). If the sysctl is
set to 0, that rule is just a delay in a packet's path to the next rule, which may well be a deny or another round of
shaping. This hack assumes that the default behavior of the pipe and queue commands is to accept or an equivalent
action.

7.3.4 Simple Configurations

There are several ways of limiting bandwidth. Here are some examples that assume an external interface of ed0:

# only outgoing gets limited

ipfw pipe 1 config bw 100kbits/s

ipfw add 1 pipe 1 ip from any to any out xmit ed0

To limit both incoming and outgoing to 100 and 50 Kbps, respectively:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To limit both incoming and outgoing to 100 and 50 Kbps, respectively:

ipfw pipe 1 config bw 100kbits/s

ipfw pipe 2 config bw 50kbits/s

ipfw add 100 pipe 1 ip from any to any in  recv ed0

ipfw add 100 pipe 2 ip from any to any out xmit ed0

To set a limitation on total bandwidth (incoming plus outgoing):

ipfw pipe 1 config bw 100kbits/s

ipfw add 100 pipe 1 ip from any to any in  recv ed0

ipfw add 100 pipe 1 ip from any to any out xmit ed0

In this example, each host gets 16 Kbps of incoming bandwidth (outgoing is not limited):

ipfw pipe 1 config bw 16kbits/s mask dst-ip 0xffffffff

ipfw add 100 pipe 1 ip from any to any in recv ed0

7.3.5 Complex Configurations

Here are a couple of real-life examples. Let's start by limiting a web server's outgoing traffic speed, which is a
configuration I have used on one of my servers. The server had some FreeBSD ISO files, and I did not want it to hog all
the outgoing bandwidth. I also wanted to prevent people from gaining an unfair advantage by using download
accelerators, so I chose to share the total outgoing bandwidth equally among 24-bit networks.

# pipe configuration, 2000 kilobits maximum

ipfw pipe 1 config bw 2000kbits/s

# the queue will be used to enforce the /24 limit mentioned above

ipfw queue 1 config pipe 1 mask dst-ip 0xffffff00

# with this mask, only the first 24 bits of the destination IP

# address are taken into consideration when generating the flow ID

# divert outgoing traffic from the web server (at 1.1.1.1)

ipfw add queue 1 tcp from 1.1.1.1 80 to any out

Another real-life example involves limiting incoming traffic by department. This configuration limits the incoming
bandwidth for a small company behind a 1 Mbps connection. Before this was applied, some users were using peer-to-
peer clients and download accelerators, and they were hogging almost all the bandwidth. The solution was to
implement some weighted sharing between departments and let the departments take care of their own hogs.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


implement some weighted sharing between departments and let the departments take care of their own hogs.

# Variables we will use

# External interface

EXTIF=fxp0

# My IP address

ME=192.168.1.1

# configure the pipe, 95% of total incoming capacity

ipfw pipe 1 config bw 950kbits/s

# configure the queues for the departments

# departments 1 and 2 heavy net users

ipfw queue 1 config pipe 1 weight 40

ipfw queue 2 config pipe 1 weight 40

# accounting, they shouldn't use the network a lot

ipfw queue 3 config pipe 1 weight 5

# medium usage for others

ipfw queue 4 config pipe 1 weight 20

# incoming mail (SMTP) to this server, HIGH priority

ipfw queue 10 config pipe 1 weight 100

# not caught by the previous categories - VERY LOW bandwidth

ipfw queue 11 config pipe 1 weight 1

# classify the traffic

# only incoming traffic is limited, outgoing is not affected.

ipfw add 10 allow ip from any to any out xmit via $EXTIF

# department 1

ipfw add 100 queue 1 ip from any to 192.168.0.16/28 in via $EXTIF

# department 2

ipfw add 200 queue 2 ip from any to 192.168.0.32/28 in via $EXTIF

# accounting

ipfw add 300 queue 3 ip from any to 192.168.0.48/28 in via $EXTIF

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ipfw add 300 queue 3 ip from any to 192.168.0.48/28 in via $EXTIF

# mail

ipfw add 1000 queue 10 ip from any to $ME 25 in via $EXTIF

# others

ipfw add 1100 queue 11 ip from any to any in via $EXTIF

The incoming limit is set to 95% of the true available bandwidth. This will allow the shaper to delay some packets. If
this were not the case and the pipe had the same bandwidth as the physical link, all of the delay queues for the pipe
would have been empty. The extra 5% of bandwidth on the physical link fills the queues. The shaper chooses packets
from the queues based on weight, passing through packets from queues with a higher weight before packets from
queues with lower weight.

dummynet can limit incoming or outgoing bandwidth in multiple ways. Pairing it with well
thought out ipfw rules can produce good results when your requirements are not extremely
complex. However, keep in mind that dummynet cannot guarantee bandwidth or quality of
service.

7.3.6 See Also

man dummynet

man ipfw

man ipf

"Using Dummynet for Traffic Shaping on FreeBSD" (http://www.bsdnews.org/02/dummynet.php)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 71 Create an Emergency Repair Kit

 

The Boy Scout and system administrator motto: "Be prepared!"

As a good administrator, you back up on a regular basis and periodically perform a test restore. You create images
[Hack #23] of important servers so you can quickly recreate a system that is taken out of commission.

Are you prepared if a system simply refuses to boot?

Some parts of your drives are as important as your data, yet few backup programs back them up. I'm talking about
your partition table and your boot blocks. Pretend for a moment that these somehow become corrupted. The good news
is that your operating system and all of your data still exist. The bad news is that you can no longer access them.

Fortunately, this is recoverable, but only if you've done some preparatory work before the disaster. Let's see what's
required to create an emergency repair kit.

7.4.1 Inventory of the Kit

When you install a system, particularly a server, invest some time preparing for an emergency. On a FreeBSD system,
your kit should include:

The original install CD (or two floppies containing kern.flp and mfsroot.flp or one floppy containing boot.flp)

A floppy containing additional drivers, drivers.flp

A fixit floppy, fixit.flp (or a CD containing the live filesystem; this will be the second, third, or fourth CD in a set,
but not the first CD)

A printout of your partition table, /etc/fstab, and /var/run/dmesg.boot

Place these items in an envelope and store it in a secure location with your backup tapes. Make a note on the envelope
of the system to which this kit should apply, along with the version of the operating system. Ideally, you should have
two copies of both your emergency kit and backup media. Store the second copy off-site.

7.4.2 Preparing the Floppies

Regardless of how you install a system, take a few minutes to download the *.flp files found in the floppies directory.
This is especially important if you use cvsup to upgrade a system, as you can go months or years without the installation
CD-ROM or floppy media. Your aim is to test these floppies on your system before a disaster strikes. The last thing you
want to be doing in an emergency is scurrying around creating floppies only to find that an essential driver is missing.

Here, I'll connect to the main FreeBSD FTP server and download the files for an i386, 5.1-RELEASE system:

# ftp ftp.freebsd.org

Trying 62.243.72.50...

Connected to ftp.freebsd.org.

<snip banner>

220 

Name (ftp.freebsd.org:dlavigne6): anonymous

331 Guest login ok, send your complete e-mail address as password.

Password:

ftp> cd pub/FreeBSD/releases/i386/5.1-RELEASE/floppies 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ftp> cd pub/FreeBSD/releases/i386/5.1-RELEASE/floppies 

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> mget *.flp 

mget boot.flp [anpqy?]? a

Prompting off for duration of mget.

<snip transfer of five files>

ftp> bye 

221 Goodbye.

I find it convenient to create a floppies directory with subdirectories for each version of FreeBSD I have running in my
network. I then download the appropriate *.flp files to the appropriate subdirectory so they are available when I wish to
create an emergency repair kit for a new system.

Once you have all five files, you can decide which ones you'll need for your particular system. To perform an emergency
repair, you'll need some way to load your version of the operating system into memory so you can access the utilities
on the fixit floppy and restore whatever damage has happened to your own operating system. There are several ways
to load an operating system.

The first approach is to boot directly from the install CD-ROM, assuming it is bootable and your BIOS supports this. If
this is your scenario, you don't need boot.flp, kern.flp, or mfsroot.flp.

If booting from the CD-ROM isn't an option, you can use either boot.flp or both kern.flp and mfsroot.flp. boot.flp is
basically the contents of the other two floppies placed onto one floppy. The kicker is that you need a floppy capable of
holding 2.88 MB of data.

Depending upon your hardware, you may or may not need drivers.flp. If the installer detected all of your hardware, you
won't need this floppy. Otherwise, you will. Finally, if you don't have a CD containing the live filesystem, you'll need
fixit.flp, as this floppy contains the actual repair utilities.

Use dd to transfer these files to floppies. Repeat this for each *.flp file you require, using a different floppy for each file:

# dd if=fixit.flp of=/dev/fd0

Label each floppy with its name and version of FreeBSD and write protect the floppies.

7.4.3 The Rest of the Kit

Before testing your floppies, print some important system information—you won't remember all of these details in an
emergency. First, you'll want a copy of your filesystem layout:

# more /etc/fstab

# Device       Mountpoint          FStype     Options      Dump  Pass#

/dev/ad0s1b    none                swap       sw           0     0

/dev/ad0s1a    /                   ufs        rw           1     1

/dev/ad0s1e    /tmp                ufs        rw           2     2

/dev/ad0s1f    /usr                ufs        rw           2     2

/dev/ad0s1d    /var                ufs        rw           2     2

/dev/acd0      /cdrom              cd9660     ro,noauto    0     0

proc           /proc               procfs     rw           0     0

linproc        /compat/linux/proc  linprocfs  rw           0     0

/dev/fd0       /floppy             msdos      rw,noauto    0     0

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/dev/fd0       /floppy             msdos      rw,noauto    0     0

Here, I've just sent the output to a pager for viewing. Depending upon how printing is set up on your system, redirect
that output either directly to lpr or to a file that you can send to a printer.

Notice that all of my hard drive partitions start with /dev/ad0s1. The name of your hard drive is needed in order to view
the partition table, or what FreeBSD calls the disklabel:

# bsdlabel ad0s1

# /dev/ad0s1:

8 partitions:

#        size   offset  fstype  [fsize bsize bps/cpg]

  a:   524288        0  4.2BSD    2048 16384 32776 

  b:  1279376   524288    swap                   

  c: 30008097        0  unused       0     0 # "raw" part, don't edit

  d:   524288  1803664  4.2BSD    2048 16384 32776 

  e:   524288  2327952  4.2BSD    2048 16384 32776 

  f: 27155857  2852240  4.2BSD    2048 16384 28512

Once you have a printout of your disklabel, complete your kit by printing the contents of /var/run/dmesg.boot. This file
contains your startup messages, including the results of the kernel probing your hardware.

7.4.4 Testing the Recovery Media

Now you're ready to test that your kit works before sealing the envelope and sending it off for secure storage. First,
boot the system using either your CD-ROM or the emergency floppies. Once the kernel has loaded and probed your
hardware, the screen will ask: Would you like to load kernel modules from the driver floppy? If you choose yes, you will be
asked to insert the drivers.flp floppy and will be presented with a list of modules to choose from:

cd9660.ko   

if_awi.ko

if_fwe.ko

if_sk.ko

if_sl.ko

if_sn.ko

<snip>

Taking a look at those modules, aren't you glad you're testing your kit before an emergency? While the modules don't
have the most descriptive names, it's easy to find out what each module represents if you have access to a working
system. For example, the modules that begin with if are interfaces. To see what type of interface if_awi.ko is:

% whatis awi

awi(4)      - AMD PCnetMobile IEEE 802.11 PCMCIA wireless network driver

You can whatis each name; just don't include the beginning if or the trailing .ko. If you do need any of these drivers,
save yourself some grief and write yourself a note explaining which drivers to choose off of the drivers.flp. The lucky
bloke who has to repair the system will thank you for this bit of homework.

Once you exit from this menu, you'll be prompted to remove the floppy. You'll then be presented with the sysinstall Main
Menu screen. Choose Fixit from the menu and insert fixit.flp. You should be prompted to press Alt F4, and you should
then see a Good Luck! screen with a Fixit# prompt. Excellent, your floppy is good and your repair kit is complete. Type
exit to return to the menu and exit your way out of the install utility.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


exit to return to the menu and exit your way out of the install utility.

If this had been an actual emergency, you'd definitely want to read the next hack [Hack #72] .

7.4.5 See Also

man bsdlabel

The Emergency Restore Procedure section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/backup-basics.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 72 Use the FreeBSD Recovery Process

 

Learn how to use your emergency repair kit before the emergency.

Now that you have an emergency repair kit, it's worth your while to do a dry run so you know ahead of time what
options will be available to you. You may even decide to modify your kit as a result of this test.

Let's go back to that sysinstall Main Menu screen [Hack #71] and see what happens when you choose Fixit. You'll be
presented with the following options:

Please choose a fixit option

  There are three ways of going into "fixit" mode:

  - you can use the live filesystem CDROM/DVD, in which case there will be

    full access to the complete set of FreeBSD commands and utilities,

  - you can use the more limited (but perhaps customized) fixit floppy,

  - or you can start an Emergency Holographic Shell now, which is

    limited to the subset of commands that is already available right now.

  X Exit       Exit this menu (returning to previous)

  2 CDROM/DVD  Use the "live" filesystem CDROM/DVD

  3 Floppy     Use a floppy generated from the fixit image

  4 Shell      Start an Emergency Holographic Shell

If you choose the Shell option, you'll find that they weren't kidding when they warned you'd be limited to a subset of
commands. Nearly all of the commands you know and love will result in a not found error message. This is why you
went to the trouble of either creating that fixit floppy or purchasing/burning a CD-ROM/DVD that contains the live
filesystem.

7.5.1 Using the fixit Floppy

Let's see what you can repair with the fixit floppy. When you choose that option, follow the prompts: insert the floppy,
then press Alt F4. Do make note of the message you receive:

+-----------------------------------------------------------------------+

| You are now running from FreeBSD "fixit" media.                       |

| --------------------------------------------------------------------- |

| When you're finished with this shell, please type exit.               |

| The fixit media is mounted as /mnt2.                                  |

|                                                                       |

| You might want to symlink /mnt/etc/*pwd.db and /mnt/etc/group         |

| to /etc/ after mounting a root filesystem from your disk.             |

| tar(1) will not restore all permissions correctly otherwise!          |

|                                                                       |

| Note: you might use the arrow keys to browse through the              |

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


| Note: you might use the arrow keys to browse through the              |

| command history of this shell.                                        |

+-----------------------------------------------------------------------+

Good Luck!

Fixit#

It's not a bad idea to create those symlinks now, before you forget. You'll have to mount your root slice first, so refer to
your /etc/fstab printout for the proper name of that slice. In this example, / is on /dev/ad0s1a. I'll mount it with the
read-write option:

Fixit# mount -o rw /dev/ad0s1a /mnt

Fixit#

If your command is successful, you'll receive the prompt back. A quick ls through /mnt should convince you that you
now have access to the hard disk's root filesystem.

If your command is not successful, run fsck_ffs until the filesystem is clean, then mount the filesystem:

Fixit# fsck_ffs /dev/ad0s1

** /dev/ad0s1

** Last Mounted on /mnt

** Phase 1 - Check blocks and Sizes

** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts

** Phase 5 - Check Cyl groups

821 files, 27150 used, 99689 free (985 frags, 12338 blocks, 0.8% fragmentation)

Fixit# mount -u -o rw /dev/ad0s1 /mnt

Now for those symlinks:

Fixit# ln -f -s /mnt/etc/*pwd.db /etc

Fixit# ln -f -s /mnt/etc/group /etc

Note that you need to include the force (-f) switch when you make your symbolic (-s) links. You need to overwrite the
existing link that links mnt2, or the fixit floppy, to /etc. You instead want to link the files on your hard drive (/mnt) to
/etc.

You'll also notice that while in the Fixit# prompt, the up arrow will recall history, but tab completion does not work.

At that Fixit# prompt, you have two command sets available to you. The first is that limited command set that comes
with the sysinstall utility. Note that these are the only commands available at that holographic shell prompt:

Fixit# ls stand

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Fixit# ls stand

-sh*               gunzip*       route*

[*                 gzip*         rtsol*

arp*               help/         sed*

boot_crunch*       hostname*     sh*

camcontrol*        ifconfig*     slattach*

cpio*              minigzip*     sysinstall*

dhclient*          mount_nfs*    test*

dhclient-script*   newfs*        tunefs*

etc/               ppp*          usbd*

find*              pwd*          usbdevs*

fsck_ffs*          rm*           zcat*

The second command set is on the floppy itself, mounted as mnt2:

Fixit# ls mnt2/stand

bsdlabel*    dd*         fixit_crunch*    mount_cd9660*    sleep*

cat*         df*         ftp*             mount_msdosfs*   swapon*

chgrp*       disklabel*  kill*            mv*              sync*

chmod*       dmesg*      ln*              reboot*          tar*

chown*       echo*       ls*              restore*         telnet*

chroot*      ex*         mkdir*           rm*              umount*

clri*        expr*       mknod*           rmdir*           vi*

cp*          fdisk*      mount*           rrestore*        view*

You'll also find a minimal set of notes in:

Fixit# ls stand/help

One of the first things you'll notice, especially if you try to read one of those help documents, is the lack of a pager. You
won't have any luck with more or less. However, cat and view are available for viewing files. If you've never used view
before, remember to type :q to quit the viewer.

Also note that all of the restore utilities are on hand, unless you've used pax as your backup utility.

7.5.2 Using the Live Filesystem

Let's pause here for a moment and compare the fixit floppy to the live filesystem. There's one CD marked as live in a
purchased set. If you burn your own ISO images, the second image for your release will contain the live filesystem. For
example, here is the listing for ftp://ftp.freebsd.org/pub/FreeBSD/ISO-IMAGES/5.1-RELEASE/:

5.1-RELEASE-i386-disc1.iso      630048 KB    06/05/03    00:00:00

5.1-RELEASE-i386-disc2.iso      292448 KB    06/05/03    00:00:00

5.1-RELEASE-i386-miniinst.iso   243488 KB    06/05/03    00:00:00

CHECKSUM.MD5                         1 KB    06/05/03    00:00:00

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


disc1.iso is the install CD, and disc2.iso is the live filesystem CD.

There are several advantages to using the live filesystem. First, you don't have to make any floppies. In fact, your
entire kit can be as simple as this one CD and your printouts specific to that system. Second, the CD is bootable, so you
can reach that Fixit# prompt in under a minute.

Third, you have the entire built-in command set available to you. When you enter the Fixit screen, you'll see the same
welcome message as before. This time, it is the CD that is mounted as /mnt2, which is really a link to /dist:

Fixit# ls -l /mnt2

lrwxr-xr-x  1 root  wheel  5 Dec  8 08:22 /mnt2@ -> /dist

Fixit# ls /dist

.cshrc        boot/          etc/        root/        tmp/

.profile      boot.catalog   floppies/   rr_moved/    usr/

COPYRIGHT     cdrom.inf      mnt/        sbin/        var/

bin/          dev/           proc/       sys@

A quick ls /dist/bin and ls /dist/sbin will display all of the commands that come with a FreeBSD system. There isn't a
limited command set with the live filesystem.

7.5.3 Emergency Repair

Now that I've shown you the various ways to enter the Fixit facility, you're probably wondering what you should be
doing at that prompt. FreeBSD is quite robust and is usually capable of booting your hard drive to some sort of prompt.
However, if the disk fails completely or is somehow incapable of booting to a prompt, the fixit facility is one of your
options.

From here, you can run fsck on your various filesystems, which may fix the problem. You can see which filesystems are
still mountable, allowing you to assess the extent of the damage. If some files were damaged, you can restore those
files from backup.

If it turns out that the drive is damaged beyond repair, you can rest easy in the fact that you have a printout of your
hardware and partitioning scheme, a floppy containing any necessary drivers, and a backup of all of your data. Above
all, you were prepared.

7.5.4 See Also

The Backup Basics section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/backup-basics.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 73 Use the GNU Debugger to Analyze a Buffer Overflow

 

You don't have to be a programmer to use a debugger.

As an end user, you may not realize that you have the ability to analyze security exploits. After all, the organization
that distributes your operating system of choice or the provider of a given application will deal with security issues and
make updates available.

However, keep in mind that Security Officers apply the same tools and techniques that end users use for debugging
programs. Knowing how to analyze a problem will help you to troubleshoot any misbehaving process in a Unix
environment.

7.6.1 An Example Exploit

Analyzing a malfunctioning process starts with basic information, such as error messages and return values. Sometimes
those aren't enough, though. Some error messages are unclear. In the case of security vulnerabilities, there may not be
an error code or return value, because the program may crash or misbehave silently.

The BSDs provide several tools to analyze a program's execution. You can monitor system calls with ktrace and
resources with fstat. You can run a debugger such as GDB, the GNU Debugger, and watch your operating system's
internal operation.

In some cases, a program must run in a particular environment, which may make it difficult to analyze due to the
limitations of some tools. For example, a telnetd advisory from 2001 (http://www.cert.org/advisories/CA-2001-21.html)
affected most Unix operating systems. This particular vulnerability came to light when a group called TESO released an
example exploit for it.

On Unix systems, telnetd runs as root, so that once the system authenticates the user, the process has the privileges
required to set the user ID of the login shell to that of the user who logged in. This means that a remote entity who can
cause telnetd to misbehave by sending it carefully designed input could execute processes as root on your system.

On most Unix systems, telnetd does not run as a standalone daemon. Since logins are relatively infrequent (on the
system timescale compared to thousands of interrupts per second), the inetd service starts telnetd as needed.

This is a simple example of the data stream sufficient to crash vulnerable telnetds using perl and nc (netcat):

% perl -e 'print "\377\366"x512' |  nc testhost telnet

This was the example I used to diagnose the problem and test the fix. If you run this command against an impervious
Telnet daemon, you'll see the following output:

% perl -e 'print "\377\366"x512' | nc testhost telnet

[Yes]

[Yes]

[Yes]

The [Yes] message will repeat 512 times because the characters you sent, \377\366, represent the Telnet protocol's "ARE
YOU THERE" control message, and you asked the question 512 times.

If you run this command against a vulnerable telnetd, the output can vary. In some cases, your connection may close
before you get 512 [Yes] responses because telnetd crashed. In other cases, you may receive seemingly random output
from portions of the telnetd memory space. These both indicate that the program did something it was not supposed to,
due to the specific input you gave it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


7.6.2 Using the GNU Debugger

In order to fix the problem, we need to find out where the executable did something incorrectly. We would like to run
the program under the control of GDB, but we cannot start telnetd from the command line the way we usually would
when debugging most executables. Normally, GDB is invoked in one of three ways.

First, to run a program and debug it, type:

% gdb 

programname

GNU gdb 5.3nb1

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you 

are welcome to change it and/or distribute copies of it under certain 

conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB.  Type "show warranty" for details.

This GDB was configured as "i386--netbsdelf"...(no debugging symbols found)...

(gdb) run

If this is your first time using gdb, type help at the (gdb) prompt. Type quit when you are
finished using the debugger.

Second, to examine the core file of a program that has already crashed, use:

% gdb 

programname

 

programname

.core

Third, to examine a program that is already running, type:

% gdb 

programname

 

processid

In the case of telnetd, we cannot use the first method, because inetd must start telnetd in order to attach it to a network
socket and operate properly. We cannot use the second method, because processes that run with root privileges do not
leave core files, since the program's memory image could contain sensitive data.

That leaves the third method. Attaching to a running process is problematic because telnetd isn't running until someone
connects. We'll need to modify our attack script:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


connects. We'll need to modify our attack script:

% perl -e 'sleep 30; print "\377\366"x512' |  nc testhost telnet

Now nc opens a socket to the testhost, inetd spawns a telnetd in response, and perl waits for 30 seconds before sending
the attack string.

In another terminal, on the testhost, we say:

% ps -ax | grep telnetd

27857 ??  S      0:00.05 telnetd

27859 pd  S+     0:00.02 grep telnetd

% gdb /usr/libexec/telnetd 27857

GNU gdb[...]

Attaching to program `/usr/libexec/telnetd', process 27857

From here we can allow telnetd to crash and observe the exact type of error that caused the crash. If we've built telnetd
with debugging information, GDB will even display the line of source code the program was executing when it crashed.
Now we can use our favorite debugging techniques and either insert debugging messages or use GDB and set
breakpoints and watchpoints to discover at what point the program went off course. We can then determine what
changes to make to correct the error and prevent the exploit.

If you're not a programmer, you can save the information and send it to the developers.

7.6.3 Hacking the Hack

We were fortunate in this example because we had details of the exploit. That made it easy to experiment and try
different approaches. In many cases, however, you won't know the details of an exploit, and you may only know that
there is a problem because of error messages in your logs.

You can use tcpdump to capture the traffic on the relevant port. Once you can correlate the timestamp of the log's error
message with some of your tcpdump traffic, you can take the data sent in an attack and create a Perl script to resend it.
You can then apply the techniques already described to analyze and correct the problem.

7.6.4 See Also

man ktrace

man fstat

man gdb

The Netcat web site; see the Read Me file (http://www.atstake.com/research/tools/network_utilities)

The "Debugging with GDB" tutorial (http://www.delorie.com/gnu/docs/gdb/gdb_toc.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 74 Consolidate Web Server Logs

 

Automate log processing on a web farm.

As the administrator of multiple web servers, I ran across a few logging problems. The first was the need to collect logs
from multiple web servers and move them to one place for processing. The second was the need to do a real-time tail
on multiple logs so I could watch for specific patterns, clients, and URLs.

As a result, I wrote a series of Perl scripts collectively known as logproc. These scripts send the log line information to a
single log host where some other log analysis tool can work on them, solving the first problem. They also multicast the
log data, letting you watch live log information from multiple web servers without having to watch individual log files on
each host. A primary goal is never to lose log information, so these scripts are very careful about checking exit codes
and such.

The basic model is to feed logs to a program via a pipe. Apache supports this with its standard logging mechanism, and
it is the only web server considered in this hack. It should be possible to make the system work with other web servers
—even servers that can only write logs to a file—by using a named pipe.

I've used these scripts on production sites at a few different companies, and I've found that they handle high loads
quite well.

7.7.1 logproc Described

Download logproc from http://www.peterson.ath.cx/~jlp/software/logproc.tar.gz. Then, extract it:

% gunzip logproc.tar.gz

% tar xvf logproc.tar

% ls -F logproc

./    ../    logserver.bin/    webserver.bin/

% ls -F logserver.bin

./    apache_rrd*    cleantmp*    logwatch*    mining/

../   arclogs*       collect*     meter*

% ls -F webserver.bin

./    ../    batcher*    cleantmp*    copier*

As you can see, there are two parts. One runs on each web server and the other runs on the log server.

The logs are fed to a process called batcher that runs on the web server and writes the log lines to a batch file as they
are received. The batch file stays small, containing only five minutes' worth of logs. Each completed batch file moves off
to a holding area. A second script on each web server, the copier , takes the completed batch files and copies them to
the centralized log host. It typically runs from cron. On the log host, the collect process, also run from cron, collects the
batches and sorts the log lines into the appropriate daily log files.

The system can also monitor log information in real time. Each batcher process dumps the log lines as it receives them
out to a multicast group. Listener processes can retrieve those log lines and provide real-time analysis or monitoring.
See the sample logwatch script included with logproc for details.

7.7.2 Preparing the Web Servers

First, create a home directory for the web server user. In this case, we'll call the user www. Make sure that www's home
directory in /etc/master.passwd points to that same location, not to /nonexistent. If necessary, use vipw to modify the
location in the password file.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


location in the password file.

# mkdir ~www

# chown www:www ~www

Next, log in as the web server user and create a public/private SSH keypair:

# su www

% ssh-keygen -t dsa

Create the directories used by the log processing tools, and copy the scripts over:

% cd ~www

% mkdir -p bin logs/{work,save}/0 logs/tmp logs/work/1

% cp $srcdir/logproc/webserver.bin/* bin/

Examine those scripts, and edit the variables listed in Table 7-1 to reflect your situation.

Table 7-1. Variables and values for logproc's web server scripts
Script Variable Value

batcher $loguser The name of the web server user

 $mcast_if The name of the interface that can reach the log host

 $logroot The home directory of the web server user

cleantmp $logroot The home directory of the web server user

copier $loghost The name of the host where the logs will collect

 $logroot The home directory of the web server user

 $loghost_logroot The directory on the collector host where the logs will be collected

 $loghost_loguser The user on the log host who owns the logs

 $scp_prog The full path to the scp program, plus any additional options

 $ssh_prog The full path to ssh, plus any options

Then, make sure you have satisfied all of the dependencies for these programs:

# perl -wc batcher; perl -wc cleantmp; perl -wc copier

The only dependency you likely won't have is IO::Socket::Multicast. Install it via the /usr/ports/net/p5-IO-Socket-Multicast
port on FreeBSD systems or from the CPAN site (http://www.cpan.org/).

Next, configure httpd.conf to log to the batcher in parallel with normal logging. Note that the batcher command line must
include the instance (site, virtual, secure) and type (access, error, ssl) of logging:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" "%{User-Agent}i\" \

    \"%{Cookie}i\" %v" full

CustomLog "|/home/www/bin/batcher site access" full

ErrorLog  "|/home/www/bin/batcher site error"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can adjust the LogFormat directive as necessary to log the information you or your log summarization software
needs.

Finally, restart Apache and verify that the batchers are creating batches:

# apachectl configtest  

# apachectl graceful 

# cd $wwwhome/logs/ 

# ls tmp         Should list error log files for each batcher instance

# ls work/0      Should list the working batches for each batcher instance

# ls save/0      Verify that batches have moved into the save directory after a 

                                   five-minute batch interval

# ls work/0      and that new batches are currently being created

7.7.3 Preparing the Log Host

Start by creating a log user to receive the logs, complete with a home directory. Become the log user and copy the
public key from the web server into ~log/.ssh/authorized_keys2. Then, as the log user, create the directories the log
collection tools use:

# su log

% cd ~log

% mkdir -p bin web/{work,save}/{0,1} web/tmp web/{current,archive}

7.7.4 Testing the Configuration

From a web server (as the web server's user), ssh to the log host manually to verify the configuration of the
authorized_keys2:

# su www

% ssh loghost -l loguser date

If your command fails, check that the permissions on that file are set to 600.

Then, run copier manually to verify that the log files actually make it to the log server. Watch your run output on the
web server, then check that save/0 on the log server contains the newly copied logs.

Once you're satisfied with these manual tests, schedule a cron job that copies and cleans up log files. These jobs should
run as the web server user:

# crontab -e -u www

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# crontab -e -u www

----------------------------- cut here -----------------------------

# copy the log files down to the collector host every 15 minutes

0,15,30,45 * * * * /home/www/bin/copier

# clean the tmp directory once an hour

0 * * * * /home/www/bin/cleantmp

----------------------------- cut here -----------------------------

Finally, wait until the next copier run and verify that the batches appear on the log host.

7.7.5 Configuring Scripts on the Log Host

You should now have several batches sitting in save/0 in the log tree. Each batch contains the log lines collected over
the batch interval (by default, five minutes) and has a filename indicating the instance (site, virtual, secure), type (access,
error, ssl), web server host, timestamp indicating when the batch was originally created, and PID of the batcher process
that created each batch.

Now, install the log processing scripts into bin/:

# cp $srcdir/collector/{arclogs,cleantmp,collect} bin/

Edit them to have valid paths for their new location and any OS dependencies, as shown in Table 7-2.

Table 7-2. Variables and values for logproc's log host scripts
Script Variable Value

arclogs $logroot The location of the logs

 $gzip_prog The full path to the gzip binary

cleantmp $logroot The location of the logs

collect $logroot The location of the logs

 $gzip_prog The full path to the gzip binary

Again, make sure all dependencies are satisfied:

# perl -wc arclogs; perl -wc cleantmp; perl -wc collect

If you don't have Time::ParseDate, then install it from the /usr/ports/devel/p5-Time-modules port on FreeBSD or from
CPAN.

Run collect manually as the log user to verify that the log batches get collected and that log data ends up in the
appropriately dated log file. Once you're satisfied, automate these tasks in a cron job for the log user:

# crontab -e -u log

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# crontab -e -u log

----------------------------- cut here -----------------------------

# run the collector once an hour

0 * * * * /home/log/bin/collect

# clean the tmp directory once an hour

0 * * * * /home/log/bin/cleantmp

----------------------------- cut here -----------------------------

Wait until the next collect run and verify that the batches are properly collected.

Compare the collected log files with the contents of your old logging mechanism's log file on the web servers. Make sure
every hit makes it into the collected log files for the day. You might want to run both logging mechanisms for several
days to get a good feel that the system is working as expected.

7.7.6 Viewing Live Log Data

The log server programs provide additional tools for monitoring and summarizing live log data. On a traditional single
web server environment, you can always tail the log file to see what's going on. This is no longer easy to do, because
the logs are now written in small batches. (Of course, if you have multiple web servers, multiple tail processes would
have to run on each web server.)

The batcher process helps with this by multicasting the logs out to a multicast group. Use the logwatch tool on the log
server to view the live log data:

% cd ~log/bin

% ./logwatch

<lines of log data spew out here>

On a high-volume web site, there is likely to be too much data to scan manually. logwatch accepts arguments to specify
which type of log data you want to see. You can also specify a Perl regular expression to limit the output.

The meter script watches the log data on the multicast stream, in real time, and summarizes some information about
the log data. It also stores information in an RRDTool (http://www.rrdtool.org/) database.

The mining directory contains a checklog script that produces a "top ten clients" and "top ten vhosts" report.
Alternatively, you can feed the collected log files to your existing web server log processing tools.

7.7.7 See Also

 The logproc web site (http://www.peterson.ath.cx/~jlp/software/logproc.tar.gz)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 75 Script User Interaction

 

Use an expect script to help users generate GPG keys.

There are occasions when you can take advantage of Unix's flexibility to control some other tool or system that is less
flexible. I've used Unix scripts to update databases on user-unfriendly mainframe systems when the alternative was an
expensive mainframe-programming service contract. You can use the same approach in reverse to let the user interact
with a tool, but with a constrained set of choices.

The Expect scripting language is ideal for creating such interactive scripts. It is available from NetBSD pkgsrc as
pkgsrc/lang/tcl-expect or pkgsrc/lang/tk-expect, as well as from the FreeBSD ports and OpenBSD packages collections.
We'll use the command-line version for this example, but keep in mind that expect-tk allows you to provide a GUI
frontend to a command-line process if you're willing to write a more complex script.

In this case, we'll script the generation of a GPG key. Install GPG from either pkgsrc/security/gnupg or the appropriate
port or package.

7.8.1 The Key Generation Process

During the process of generating a GPG key, the program asks the user several questions. We may wish to impose
constraints so that a set of users ends up with keys with similar parameters. We could train the users, but that would
not guarantee correct results. Scripting the generation makes the process easier and eliminates errors.

First, let's look at a typical key generation session:

% gpg --gen-key

gpg (GnuPG) 1.2.4; Copyright (C) 2003 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the file COPYING for details.

Please select what kind of key you want:

   (1) DSA and ElGamal (default)

   (2) DSA (sign only)

   (4) RSA (sign only)

Your selection? 4

What keysize do you want? (1024) 2048

Requested keysize is 2048 bits

Please specify how long the key should be valid.

         0 = key does not expire

      <n>  = key expires in n days

      <n>w = key expires in n weeks

      <n>m = key expires in n months

      <n>y = key expires in n years

Key is valid for? (0) 0

Key does not expire at all

Is this correct (y/n)? y

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Is this correct (y/n)? y

You need a User-ID to identify your key; the software constructs the user id

from Real Name, Comment and Email Address in this form:

    "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name:

Let's pause there to consider the elements we can constrain.

You probably want to specify the cryptographic algorithm and key length for all users consistently, based on your
security and interoperability requirements. I'll choose RSA signing and encryption keys, but GPG doesn't provide a
menu option for that. I'll have to create the signing key first and then add the encryption subkey.

7.8.2 A Simple Script

Here's an expect script that would duplicate the session shown so far:

#!/usr/pkg/bin/expect -f

set timeout -1

spawn gpg --gen-key

match_max 100000

expect "(4) RSA (sign only)"

expect "Your selection? "

send "4\r"

expect "What keysize do you want? (1024) "

send "2048\r"

expect "Key is valid for? (0) "

send -- "0\r"

expect "Key does not expire at all"

expect "Is this correct (y/n)? "

send -- "y\r"

expect "Real name: "

The script begins by setting timeout to infinite, or -1, so expect will wait forever to match the provided input. Then we
spawn the process that we're going to control, gpg --gen-key. match_max sets some buffer size constraints in bytes, and
the given value is far more than we will need.

After the initial settings, the script simply consists of strings that we expect from the program and strings that we send in
reply. This means that the script will answer all of the questions GPG asks until Real name: , without waiting for the
user's input.

Note that in several places we expect things besides the prompt. For example, before responding to the Your selection?
prompt, we verify that the version of GPG we have executed still has the same meaning for the fourth option, by
expecting that the text of that menu choice is still RSA (sign only). If this were a real, production-ready script, we should
print a warning message and terminate the script if the value does not match our expectations, and perhaps include a
check of the GPG version number. In this simple example, the script will hang, and you must break out of it with Ctrl-c.

7.8.3 Adding User Interaction

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


There are several ways of handling the fields we do want the user to provide. For the greatest degree of control over
the user experience, we could use individual expect commands, but here we will take a simpler approach. Here's some
more of the script:

interact "\r" return

send "\r"

expect "Email address: "

interact "\r" return

send "\r"

expect "Comment: "

interact "\r" return

send "\r"

expect "Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? "

interact "\r" return

send "\r" 

expect "Enter passphrase: "

interact "\r" return

send "\r"

expect "Repeat passphrase: "

interact "\r" return

send "\r"

The interact command allows the user to interact directly with the spawned program. We place a constraint that the
user's interaction ends as soon as the user presses the Enter key, which sends the carriage return character, \r. At that
point, the interact command returns and the script resumes. Note that we have to send the \r from the script; expect
intercepted the carriage return and GPG did not see it.

7.8.4 Handling Incorrect Input

Again, a correct script would have a more complex flow of execution and allow for cases where the spawned program
rejects the user's input with an error message. For example, the Real Name field must be more than five characters long.
If a user types less than five characters, GPG will prompt him to retype his username. However, the expect script just
shown will not accept the new user input, because it is now waiting for the Email address: prompt.

Alternatively, we could replace these three lines:

interact "\r" return

send "\r"

expect "Email address: "

with:

interact -o "Email address: " return

send_user "Email address: "

Instead of stopping interaction when the user presses return, we stop interaction when the program outputs the Email
address: prompt. That's the difference between interact and interact -o; the former stops interaction based on input from
the user, and the latter on output from the program. This time, we don't need to send the carriage return, because the
user's keypress is passed through to GPG. However, we do need to echo the prompt, because expect has consumed it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


user's keypress is passed through to GPG. However, we do need to echo the prompt, because expect has consumed it.
This method lets GPG handle the error conditions for us:

Real name: abc

Name must be at least 5 characters long

Real name: abcde

Email address:

7.8.5 Hacking the Hack

After GPG receives the information it needs to generate the key, it might not be able to find enough high-quality
random data from the system. The script ought to handle that by spawning a process to generate more system activity,
such as performing a lot of disk activity by running a find across the entire disk.

After generating the signing key, the script could spawn a new instance of GPG with the --edit-key option, to generate
the desired RSA encryption key.

Although the final script may end up executing three processes, the whole process is seamless to the user. You can hide
even more of the guts by using expect's log_user setting to hide the output of the programs at points where the user
does not need to see them.

You can use a script like this in conjunction with any Unix command-line program. By combining expect with telnet or ssh,
you can control non-Unix systems, thereby leveraging the flexibility of Unix into a non-Unix domain. This even works
with programs for which you do not have source code, such as control utilities for commercial databases or application
software.

In the case of GPG, we do have source code, so we could modify the program, but writing an expect script is easier. A
carefully designed expect script may not require changes when a new version of GPG is released. Source code changes
to GPG would require integration with any new version of GPG.

7.8.6 See Also

man expect

The expect web site, which includes sample scripts (http://expect.nist.gov/)

Exploring Expect , by Don Libes, the author of expect (http://www.oreilly.com/catalog/expect/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 76 Create a Trade Show Demo

 

I frequently represent NetBSD at trade shows. It's challenging to attract attention because there are many booths at a
show—people will walk by quickly unless something catches their eye. You also need to balance eye-candy with
functionality so that you can attract and keep a visitor's attention. I needed an enticing demo to run on one of the
computers in the booth.

I wanted to show off several applications, such as office productivity tools, video, and games, and have music playing,
but there's only so much screen real estate. Cramming all of those things on the screen at once would clutter the
screen, and the point would be lost.

Most X window managers have some concept of virtual desktops, separate work spaces that you can flip between. For
example, Enlightenment (pkgsrc/wm/enlightenment) not only has the concept of virtual desktops, but as an added
bonus for the trade show environment offers a nice sliding effect as you transition from one desktop to the next.

7.9.1 Introducing eesh

Normally in Enlightenment, to switch from one virtual desktop to the next, you move the mouse pointer to the edge of
the screen and then push past it, or you use a key sequence to move to an adjacent desktop. For an unattended demo,
we need to automate this process. Enlightenment provides an undocumented utility called eesh that can control most
aspects of the Enlightenment window manager. You can write scripts to move windows, resize them, or flip between
desktops.

Note that eesh isn't a friendly utility; it doesn't even produce a prompt when you run it. Type help for the menu or exit to
quit:

% eesh

help

Enlightenment IPC Commands Help

commands currently available:

use "help all" for descriptions of each command

use "help <command>" for an individual description

actionclass             active_network          advanced_focus   sfa  

autosave                background              border                

button                  button_show             colormod              

configpanel             copyright               current_theme    tc   

cursor                  default_theme           dialog_ok        dok  

dock                    dump_mem_debug          exit             q    

focus_mode       sf     fx                      general_info          

geominfo_mode    sgm    goto_area        sa     goto_desktop     sd   

group            gc     group_info       gl     group_op         gop  

help             ?      imageclass              internal_list    il   

list_class       cl     list_remember           list_themes      tl   

module                  move_mode        smm    nop

Unfortunately, the eesh utility seems to be untested. It sometimes behaves inconsistently by not accepting commands

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Unfortunately, the eesh utility seems to be untested. It sometimes behaves inconsistently by not accepting commands
until you enter them a second time or by withholding output until you press Enter again. As an example, there are
actually more commands than those indicated in the help listing. Look in the Enlightenment source's ipc.c file for a
complete list.

7.9.2 Discovering Commands

We'll start our script by making sure that Enlightenment is configured the way we want for our demo. We want six work
spaces (3 by 2) to display our programs. Within eesh, try the following commands:

num_areas ?

Number of Areas: 2 2

help num_areas

Enlightenment IPC Commands Help : num_areas (sna)

--------------------------------

Change the size of the virtual desktop

Use "num_areas <width> <height>" to change the size of the virtual desktop.

Example: "num_areas 2 2" makes 2x2 virtual destkops

Use "num_areas ?" to retrieve the current setting

num_areas 3 2

Now we have the number of areas we want. areas is the Enlightenment name for virtual desktops, since Enlightenment
also supports multiple desktops, but that's different. Now we'd like our screen to display the first area, so that the
programs our script runs will open there:

goto_area 0 0

If your terminal wasn't on the first area, it just moved off the screen. Use the mouse to return to that area.

eesh also lets us write commands on the command line with the -e (execute command) flag:

% eesh -e "goto_area 0 0"

7.9.3 Sample Scripts

Now we know enough to write a simple demo script:

#!/bin/sh

eesh -e "num_desks 1"

eesh -e "num_areas 3 2"

sleep 1

eesh -e "goto_area 0 0"

# Configure the default gqmpeg playlist to play your desired music

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# Configure the default gqmpeg playlist to play your desired music

gqmpeg

# Show an interesting avi file.

xanim -geometry +50x+10 netbsd3.avi &

# Give the programs time to start, to make sure they 

# open on the correct area.

# Also, lets people watching see what started up.

sleep 3

eesh -e "goto_area 1 0"

# Word Processing

abiword sampledoc.abw &

sleep 2

eesh -e "goto_area 2 0"

# Spreadsheet

gnumeric samplesheet.gnumeric &

sleep 2

eesh -e "goto_area 0 1"

# A lively game

battleball &

sleep 2

eesh -e "goto_area 1 1"

# Web Browsing (of a local hierarchy, in case you don't have net 

# connectivity at a trade show)

firebird file://index.html &

sleep 3

eesh -e "goto_area 2 1"

sleep 1

# Insert your favorite application here

# Leave screen back at page 1.

eesh -e "goto_area 0 0"

When you run the script, the screen will slide around to the various areas and pause a few seconds between program
launches. We have most of the things we wanted: music, video, and applications. The next step is to keep it moving.
Try the following script:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Try the following script:

#!/bin/sh

while [ 1 ]

do

        eesh -e "goto_area 0 0"

        sleep 2

        eesh -e "goto_area 1 0"

        sleep 2

        eesh -e "goto_area 2 0"

        sleep 2

        eesh -e "goto_area 0 1"

        sleep 2

        eesh -e "goto_area 1 1"

        sleep 2

        eesh -e "goto_area 2 1"

        sleep 2

done

To stop the moving display, you have to get your keyboard focus into the xterm where the script is running so that you
can press Ctrl-c. That can be difficult, but we'll address it shortly.

7.9.4 More Complex Scripts

For a complex demonstration, you can have different sets of these scripts that visit different sets of areas. You can also
change the delay so that complex areas display for a longer period. I also made a script that clears all of the viewing
areas. That way, when visitors to the booth play around with the machine, I can easily reset to a clean state and then
start the demo again.

Since many of the utilities you'll demonstrate don't create .pid files, I find it easiest to use pkill, the "kill process by
name" utility. (FreeBSD provides killall.)

I'll also leave you with two example scripts that show how to extract information about Enlightenment's current settings
for use in a more complex script.

The first script is retitle:

#!/bin/sh

WIN=`eesh -ewait "set_focus ?" | sed 's/^focused: //' `

xterm -geometry 47x7+227+419 -fn -*-courier-*-o-*-*-34-*-*-*-*-*-*-* -e \

/home/david/bin/retitle2 $WIN

The second is retitle2:

#!/bin/sh

WIN=$1

echo "enter new title:"

read TITLE

eesh -e "win_op $WIN title $TITLE"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


eesh -e "win_op $WIN title $TITLE"

With these scripts and e16keyedit , you can bind a key combination to change the title of any window. This makes it
much easier to keep track of xterms, if you prefer task-oriented titles.

Now back to the control issue. When I first wrote this demo, I used a switch wired to a serial port to start and stop the
demo so that keyboard focus did not matter. However, wiring switches is more work than configuring software, so I
found a better way.

The e16keyedit utility, written by Geoff "Mandrake" Harrison and Carsten "Raster" Haitzler (the primary developers of
Enlightenment), allows you to bind function keys and Meta keys to run programs or perform the same functions that
you can with eesh. Using e16keyedit, you can define function keys to set up the demo, clean up the demo, and start and
stop the area rotations. Since the function keys can be bound to work anywhere within Enlightenment, keyboard focus
no longer matters. You're ready to give a fantastic demo!

e16keyedit is not part of the main Enlightenment distribution. Download it from SourceForge
(http://sourceforge.net/project/showfiles.php?group_id=2).

7.9.5 See Also

The Enlightenment web site (http://www.enlightenment.org/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 7. Going Beyond the Basics
Introduction

Section 69.  Tune FreeBSD for Different Applications

Section 70.  Traffic Shaping on FreeBSD

Section 71.  Create an Emergency Repair Kit

Section 72.  Use the FreeBSD Recovery Process

Section 73.  Use the GNU Debugger to Analyze a Buffer Overflow

Section 74.  Consolidate Web Server Logs

Section 75.  Script User Interaction

Section 76.  Create a Trade Show Demo

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
One of the distinguishing characteristics of the BSDs is the ease with which you can keep your operating system source
and installed software up-to-date. In fact, each of the BSDs provides multiple alternatives, allowing users to choose the
approaches that best match their time and bandwidth requirements.

This chapter provides a plethora of ways to maintain an updated system. While many are written from the FreeBSD
perspective, don't let that stop you from hacking your own customized NetBSD or OpenBSD solutions. In fact, this
chapter concludes with one user demonstrating how to enjoy the benefits of the BSD ports and packages collections on
Mac OS X!

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 85 Downgrade a Port

 

It doesn't happen often, but occasionally portupgrade will upgrade a port to a newer version that doesn't
sit well with your system.

It can be very frustrating when an application that was working just fine an hour ago suddenly stops working after an
upgrade. Now what?

At first glance, the solution isn't obvious. Because ports don't contain revision labels, you can't just cvsup back to an
earlier version. However, the commits or changes to each port are tracked in the CVS repository. You could learn the
syntax of the cvs command and use it to connect to the CVS repository, manually review the port's commit history, find
an earlier version that worked on your system, check out that version, and rebuild the port. Whew! There must be an
easier way.

That's what Heiner Eichmann thought when he created portdowngrade . His script does all of the work for you; you only
need to choose which version of the port to use.

8.10.1 Using portdowngrade

Installing portdowngrade is easy enough:

# cd /usr/ports/sysutils/portdowngrade

# make install clean

A few moments later, you'll have the script and an informative manpage. To run the script, simply specify which port
you'd like to downgrade. Here, I'll demonstrate an arbitrary port:

# portdowngrade apinger

portdowngrade 0.1 by Heiner Eichmann

Please note, that nothing is changed in the ports tree

unless it is explicitly permitted in step 6!

Seeking port apinger ... found: net/apinger

Step 1: Checking out port from CVS repository

CVS root directory: :pserver:anoncvs:anoncvs@anoncvs.FreeBSD.org/home/ncvs

Step 2: Reading the port history from the CVS repository

Step 3: Analyzing the port history from the CVS repository

Step 4: Load port version numbers and present results

Keys: <space> : next page                      d : details

            p : previous page

      <enter> : leave presentation and downgrade if wanted

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


number     date         portversion  comment

  1  2003/11/05 15:39:39             Fix whitespace.

  2  2003/06/07 11:43:13             Fix breakage.

  3  2003/06/04 09:49:31             Add startup script for apinger.

  4  2003/05/07 11:37:52             Change maintainer email to my @FreeBSD.

  5  2003/03/28 03:41:45             Update to 0.6.1

  6  2003/02/21 13:14:34             De-pkg-comment.

  7  2003/01/02 17:54:17             Update to 0.6

  8  2002/10/14 14:02:52             upgrade to 0.5

  9  2002/10/05 19:06:00             Upgrade to 0.4.1.

 10  2002/07/19 23:02:53             Update to 0.3

 11  2002/07/18 12:55:14             Alarm Pinger (apinger) is a little tool

Here are the first four of six steps run by portdowngrade. It has logged into the CVS server, found the desired port, and
presented you with its commit history. This particular port has had 11 revisions and number 1 is the latest.

At this point, the script pauses for user input. I'm going to go back a few revisions to Version 4:

Total lines: 11. Command: press enter

Enter version number to change port to (0: exit): 4

Step 5: Checking out chosen date of the port from the CVS repository

Step 6: Modifying the port

Port: net/apinger

at : 2003/05/07 11:37:52

Type 'yes' to bring the port to the state of the date above

or 'no' to exit without changing anything. Note, that this only changes

the port, not the installed software! yes or no: yes

The port has been set to the selected version. Install it if you wish.

If you have portupgrade installed, you should run portsdb -Uu now, 

to see the changes in the ports database. In any case

portupgrade -f apinger will install the changed port. 

Note: if you run cvsup, the port

is changed back to the chosen label!

#

When I typed yes, I chose to change the port version in the ports tree. The downgrade won't actually take place until I
run portupgrade -f apinger. Note the use of the -f flag to force the reinstallation of an installed port. Since this port has
changed in my tree, the reinstallation will overwrite my previously installed version.

# portupgrade -f apinger

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# portupgrade -f apinger

[Updating the pkgdb <format:bdb1_btree> in /var/db/pkg ... - 288 

packages found (-0 +2) .. done]

--->  Downgrading 'apinger-0.6.1_1' to 'apinger-0.6.1' (net/apinger)

<snip build output>

=  ==>   Registering installation for apinger-0.6.1

=  ==>  Cleaning for apinger-0.6.1

--->  Cleaning out obsolete shared libraries

[Updating the pkgdb <format:bdb1_btree> in /var/db/pkg ... - 288 

packages found (-0 +1) . done]

8.10.2 Preventing Automated Re-Upgrades

You'll notice that the next time you run your cvsup process [Hack #80], your downgraded port will appear as needing
upgrading. If you've totally automated the process, it may re-upgrade to that new, buggy version.

It's easy to prevent that from happening. In fact, you can prevent automated upgrading of any port by using the
HOLD_PKGS array in pkgtools.conf. Start by copying the sample configuration file to the real configuration file:

# cp /usr/local/etc/pkgtools.conf.sample /usr/local/etc/pkgtools.conf

Then, open /usr/local/etc/pkgtools.conf in your favorite editor and search for this section:

# HOLD_PKGS: array

# This is a list of ports you don't want portupgrade(1) to upgrade,

# portversion(1) to suggest upgrading, or pkgdb(1) to fix.

# You can use wildcards ("ports glob" and "pkgname glob").

# -f/--force with each command will override the held status.

# e.g.:

#   HOLD_PKGS = [

#     'bsdpan-*',

#     'x11*/XFree86*',

#   ]

HOLD_PKGS = [

  'bsdpan-*',

]

Simply follow the syntax to add the packages you want to keep as is:

HOLD_PKGS = [

  'bsdpan-*',

  'apinger-*',

]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8.10.3 See Also

man cvs

man portdowngrade

The portdowngrade home page (http://portdowngrade.sourceforge.net)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 86 Create Your Own Startup Scripts

 

Ensure your favorite installed applications start at boot time.

Some ports are nice enough to create their own startup scripts in /usr/local/etc/rc.d when you install them.
Unfortunately, not all ports do. You may wonder why you're not receiving any email, only to discover a week later that
your mail server didn't start at your last bootup!

In those cases, you'll have to write your own startup script. Fortunately, that's easy.

8.11.1 Was a Script Installed?

Every port comes with a packing list of installed executables, files, and manpages. To see if a particular port will install
a startup script, search its pkg-plist for the word rc. Here, I'll check the packing lists for the stunnel and messagewall
ports:

% grep -w rc /usr/ports/security/stunnel/pkg-plist

etc/rc.d/stunnel.sh.sample

% grep -w rc /usr/ports/mail/messagewall/pkg-plist

%

Use the -w switch so grep searches for the full word rc, not just words containing those two characters. If there isn't a
startup script, as is the case for messagewall, you'll just get your prompt back.

If the startup script ends with .sample, you'll need to copy it to a new file without that extension. This is often the case
with applications that expect you to change the sample configuration file to suit your system's requirements.

Also, note the relative path. The packing list knows that, by default, the files installed by a port will start with the prefix
/usr/local. That is, in the previous example, you'll find stunnel's startup script in /usr/local/etc/rc.d, not in /etc/rc.d.

The converse is also true. If you don't want an installed application starting itself at boot
time, either remove the .sh extension from its startup script or use chmod -x to make it
nonexecutable.

8.11.2 Creating Your Own Startup Script

Suppose you'd like to have messagewall start automatically at boot time. That means you'll need to write a script.
Fortunately, you don't have to reinvent the wheel, as all startup scripts follow the same pattern. If you've installed
some applications, you most likely already have startup scripts populating /usr/local/etc/rc.d. If you don't, use the
template startup script from the Handbook:

#!/bin/sh

echo -n ' FooBar'

case "$1" in

start)

        /usr/local/bin/foobar

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        /usr/local/bin/foobar

        ;;

stop)

        kill -9 `cat /var/run/foobar.pid`

        ;;

*)

        echo "Usage: `basename $0` {start|stop}" >&2

        exit 64

        ;;

esac

exit 0

This script starts a generic application named foobar. When you copy the template, copy it to /usr/local/etc/rc.d with the
name of the application followed by a .sh extension. In my case, I'll call the file /usr/local/etc/rc.d/messagewall.sh.

Next, replace the word foobar with the name of the application. Change these three lines to reflect the application's
name:

echo -n ' Messagewall'

/usr/local/bin/messagewall

kill -9 `cat /var/run/messagewall.pid`

Remember to double-check the location of that executable, as some ports instead install to /usr/local/sbin or
/usr/X11R6/bin:

% which messagewall

/usr/local/bin/messagewall

Occasionally, a port will install its main binary with an odd executable name. For example, the executable for netcat is
not netcat. In that case, searching the packing list will reveal all:

% grep bin /usr/ports/net/netcat/pkg-plist

bin/nc

Just remember that there's a /usr/local in front of that bin/nc.

8.11.3 Testing the Script

Once you've saved your changes, make the script executable with chmod +x. Then, see if it works:

# /usr/local/etc/rc.d/messagewall.sh

 MessagewallUsage: messagewall.sh {start|stop}

# /usr/local/etc/rc.d/messagewall.sh start

<snip startup messages>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<snip startup messages>

Pay attention if you receive any error messages. Often they indicate a typo in the application's configuration file.
Address those and ensure you can successfully start the application.

Once the application successfully starts, make sure you can stop it:

# /usr/local/etc/rc.d/messagewall.sh stop

<snip error message regarding PID>

Some applications, like this one, don't record their PID in /var/run, so your script will produce an error instead of
stopping the application. Most of these applications take over your prompt when you start them, so you can simply
return to the terminal (or background process if you started it as such) and press Ctrl-c to end the process. This isn't
the cleanest of procedures, but it is effective nonetheless.

8.11.4 Hacking the Hack

If you're using FreeBSD 5.1 or higher, you might want to experiment with writing your own scripts using the new rc.d
structure inherited from NetBSD. As of this writing, /etc/rc.d, or the collection of system scripts, uses this structure. In
the future, /usr/local/etc/rc.d will likely migrate to this scripting style.

The new structure adds other commands, such as status and reload, so your scripts can do more than start and stop.

When writing your own scripts, add these lines to your template:

. /etc/rc.subr

name="foo"

command="/usr/local/bin/${name}"

pidfile="/var/run/${name}.pid"

your stuff here

load_rc_config $name

run_rc_command "$1"

The first line is mandatory, as it calls the needed subroutines. Your script will also require the last two lines. Next come
three variables that every script should include. There are dozens of other useful variables, so read through the scripts
in /etc/rc.d/ for ideas.

I also find NetBSD's packages list useful (see ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/README-all.html). If
you select a port and click on its history then files, you can look for existing scripts. These scripts are written in the
NetBSD rc.d style, so you'll have lots of examples to browse.

Don't include the rcvar= variable in your local scripts. This is for system daemons that can
be enabled and disabled using rc.conf variables.

8.11.5 See Also

man rc.subr

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


man rc.subr

The startup scripts section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/configtuning-starting-services.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 87 Automate NetBSD Package Builds

 

Use a sandbox to build applications that play nicely within your network.

Many NetBSD users are responsible for multiple systems running on different architectures. Instead of rebuilding the
same package on machine after machine, it's often desirable to build packages for all of these machines from the most
powerful one, delivering the appropriate binary packages across the network. However, problems can arise when not all
machines run the same version of NetBSD or when you want different optimizations or build settings on each box.

The solution to this dilemma is simple: create a sandbox with the version of NetBSD used in the target machine and
build the necessary binary packages inside it. This sounds easy, but it can be a very tedious and error-prone task. It is
even more complex if you want to automate periodic package rebuilding. Fortunately, that's our final goal in this hack.

To simplify things, I assume that you have a relatively fast desktop machine running NetBSD-current, where you will
build binary packages, and a server machine running the stable version of NetBSD (1.6.2 at the time of this writing).

8.12.1 Installing pkg_comp

pkg_comp (also known as Package Compiler) can simplify the creation of these sandboxes: it handles any version of
NetBSD inside a chroot jail and automates the build process of binary packages inside it. Its only restriction is that both
the builder and the destination machine share the same architecture.

Let's begin by installing pkg_comp on the builder machine (make sure you have Version 1.15 or greater):

# cd /usr/pkgsrc/pkgtools/pkg_comp

# make install && make clean

After installation, spend some time reading man 8 pkg_comp and getting familiar with its structure because you will be
using it as a reference guide during the configuration. Also ensure that your kernel configuration file contains file-system
NULLFS. (See man 4 options for more information.)

8.12.2 Configuration Variables

Now you are ready to set up pkg_comp. The configuration file tells pkg_comp how to create the sandbox. Type the
following commands to create and edit a sample configuration file:

# pkg_comp maketemplate

# vi /root/pkg_comp/default.conf

You will notice lots of variable definitions. All you need to do is set some values; pkg_comp handles everything else. For
our purposes, you need to know only some of these variables (see Table 8-2) and change them to suit your system.

Table 8-2. pkg_comp variables
Variable Usage

DESTDIR Gives the location of the sandbox. This needs lots of disk space, as it will store a complete NetBSD
system. In this example, use /var/chroot/pkg_comp/default.

DISTRIBDIR
The location of NetBSD installation sets, whether downloaded from the FTP site or built using
build.sh. pkg_comp. The /binary/sets string will be appended to the value you provide. The resulting
directory should contain the files listed in the SETS and SETS_X11 variables. In this example, use
/home/NetBSD/NetBSD-1.6.2/i386.

NETBSD_RELEASE
Specifies the version of NetBSD to unpack in the sandbox. This version must be compatible with
pkgtools/libkver. If you leave it set to no, pkg_comp assumes the builder system and the sandboxed
system are the same version. In this example, its value is 1.6.2.

REAL_SRC Provides the location of pkgsrc distfiles. In this example, use /home/NetBSD/distfiles.

REAL_PACKAGES Identifies the destination of binary packages. In this example, use /home/NetBSD/packages/1.6.2.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


REAL_PACKAGES Identifies the destination of binary packages. In this example, use /home/NetBSD/packages/1.6.2.

REAL_PKGSRC Locates the pkgsrc tree in your system. In this example, use /usr/pkgsrc.

REAL_DISTFILES Gives the location of the NetBSD source tree in your system. In this example, use /usr/src-1.6.
Because we are building for 1.6.2 and the builder is running current, this will not be /usr/src.

SETS Lists the NetBSD sets to be extracted inside the sandbox. Do not change the default value.

SETS_X11
Lists the X11R6 sets to be extracted inside the sandbox. Set this to no if you do not want to build
packages for the X Window System, but avoid modifying the default list. In this example, set it to
no, since I assume you do not have the X Window System installed on the server.

REAL_PKGVULNDIR
The location of the pkg-vulnerabilities file in your system. In this example, use /usr/pkg/share. If
you are not using audit-packages, then set USE_AUDIT_PACKAGES to no. The use of audit-packages is
strongly encouraged because it won't install packages that have known security problems.

Now is the time to enable compile-time optimizations for the packages you are going to build. As you modify the CFLAGS
and CXXFLAGS variables, keep in mind that the configuration file is a shell script. Remember to quote your values
properly.

8.12.3 Initializing and Using the Sandbox

After setting your values and creating all of the referenced directories, it's time to initialize the sandbox. It is as easy as
typing:

# pkg_comp makeroot

When this command finishes, the sandbox is ready to build packages for your server. In this example, the packages will
linked against 1.6.2 libraries using any specified optimizations.

Suppose you want binary packages for Apache and screen. Compile them with the following call to pkg_comp:

# pkg_comp build www/apache misc/screen

This will place apache-1.3.29.tgz and screen-4.0.2.tgz—as well as their dependencies—under
/home/NetBSD/packages/1.6.2/All. They're now suitable for transferring to the destination machine. Install them with
pkg_add.

If you do not need to build more packages using pkg_comp, you can safely free the space used by the sandbox with the
command shown next. Note that this removes only the sandbox, not binary packages:

# pkg_comp removeroot

8.12.4 Automating the Process

We can go one step further and configure pkg_comp to create the sandbox, build a predefined set of packages for your
server, and remove the sandbox when finished, all automatically. This takes only a single command with pkg_comp's
automatic mode.

To enable automatic mode, re-edit the configuration file, /root/pkg_comp/default.conf, and define the AUTO_PACKAGES
variable. This variable takes the list of packages you want to build for your server. In this example:

AUTO_PACKAGES="misc/screen www/apache"

That's it for the configuration side. To check if this works, make sure the sandbox does not exist, and execute
pkg_comp's automatic mode:

# pkg_comp removeroot

# pkg_comp auto

After a while, you will find binary packages for screen and Apache in your package repository, just as in the earlier

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After a while, you will find binary packages for screen and Apache in your package repository, just as in the earlier
example.

If the list of packages is extensive, the build will take a long while, which may not be desirable in some environments
(for example, in cases when you need to shut down the builder during the night). This is not a problem: if you stop the
automatic process with Ctrl-c at any point, you can resume it later by issuing:

# pkg_comp auto resume

To finish the automation, configure a cron job to rebuild your package set automatically once a week. Edit root's crontab
to add the line:

# crontab -e

0       3       *       *       *       /usr/pkg/sbin/pkg_comp auto

8.12.5 Hacking the Hack

I've shown the most basic usage of pkg_comp in this hack. If you found it useful, there are many more things to learn,
and the manpage is a good starting point.

Here are some other ideas to try:

Configure a cron job to rebuild all the packages you need for your own machine, so that you can easily restore
them at any point with pkg_add.

Create two configuration files with different names.

Enable GCC 3 with extensive optimizations.

8.12.6 See Also

man pkg_comp

man pkg_add

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 88 Easily Install Unix Applications on Mac OS X

 

Many Mac users often seem a little surprised when I tell them I run XChat and other Unix applications on Mac OS X
alongside native Aqua applications (such as Safari, Finder, and iPhoto). What they don't realize is that it's simple to
install such applications thanks to the Fink and DarwinPorts projects. This hack is dedicated to installing and using
DarwinPorts.

This hack assumes you have a basic understanding of Terminal.app and the underlying Unix bits of Mac OS X. You also
need to have the Developer Tools installed.

8.13.1 Installing DarwinPorts

Before you can use DarwinPorts, you must install the build system and the actual ports tree. The easiest way to
accomplish this is by using CVS. Before checking the project out of CVS, you'll need to decide where you'd like it to
exist on your hard drive. I usually use ~/work.

Open Terminal.app (or an xterm if you have X11 installed), and change to the directory where you'll install DarwinPorts.
Then type the following commands at the prompt (when the server asks for a password, just press Return):

% alias dcvs cvs -d \

    :pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od

% dcvs login

% dcvs co -P darwinports

You should now see a bunch of output scrolling past in the terminal window. If you do, good; the project is checking out
of CVS and onto your hard disk. If you don't, double-check the three commands just shown to make sure you typed
everything correctly. Once you've fetched the project, it's time to install it.

Run ls in the terminal window; you should see a darwinports directory. cd to it and rerun ls:

% cd darwinports

% ls

CVS  Makefile  README  README.fr  base  doc  dports  www

At this point, it's a very good idea to read the README file.

The next step is to build and install the applications that will allow you to install various ports. From the darwinports
directory:

% sudo -s

<enter your password>

# make && make install && make clean

By default, DarwinPorts uses /opt/local as its prefix. To change that to something else, edit /etc/ports/ports.conf.

Next, open /etc/ports/sources.conf and change the file:// line to point to the proper location on your system. For
example:

file:///Users/jim/work/darwports/dports

Now that everything is configured, add the directory containing DarwinPorts binaries to your shell's path. If you're using
tcsh (the default shell on Mac OS X 10.2 and earlier), add the following to your ~/.cshrc file:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


tcsh (the default shell on Mac OS X 10.2 and earlier), add the following to your ~/.cshrc file:

set path = ($path /opt/local/bin)

If you're using bash, as Mac OS X 10.3 does, add the following line to your ~/.bashrc file:

export PATH=$PATH:/opt/local/bin

In order for your shell to recognize the new path, either start a new shell or source your configuration file:

% source ~/.cshrc

$ source ~/.bashrc

8.13.2 Finding Ports to Install

Before you can install a port, you'll need to make sure it exists in the ports tree. This can be done in one of two ways.
The first is using port search, which is very simple to use. For example, to look for xchat:

% port search xchat

irc/xchat       1.8.11  IRC client with gtk and text interfaces

irc/xchat2      2.0.1   IRC client for gtk2

The alternative is to use the web-based interface found on the DarwinPorts web site. You can view by category and
search from this interface, but because the PortIndex file it uses isn't always up-to-date, you may have better luck with
the port command.

8.13.3 Installing Ports

Now that we've found something to install, it's time to learn how to install it. If you've ever worked with the FreeBSD
ports collection, this section should look very familiar to you.

Sticking with XChat as our example, we have two options. We can install the xchat port, which uses GTK+ version 1, or
the xchat2 port, which uses GTK+ Version 2. For the sake of example, we'll choose xchat2.

There are also two ways to install the port. The first way is to change to the port's directory and run port install:

% cd /path/to/darwinports/dports/irc/xchat2

% sudo -s

<enter your password>

# port install && port clean

The second method can be run from anywhere on the filesystem:

% sudo -s

<enter your password>

# port install xchat2 && port clean xchat2

As long as you have your path set properly and the port you're trying to install is in the PortIndex, installation should
proceed normally.

8.13.4 Updating the Ports Tree

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since the ports developers frequently add new ports and update existing ports, you'll want to keep your ports tree up-
to-date. Doing so is fairly simple:

% cd /path/to/darwinports

% cvs -q up -Pd

If you notice changes to the base directory, you'll want to rebuild the DarwinPorts base system as well. This is done
using the same commands used to install it initially:

% cd /path/to/darwinports

% sudo -s

<enter your password>

# make && make install && make clean

As you'd expect, the port command has other options, such as uninstall, fetch, extract, and build, to name a few. Check the
port manpage for a full explanation of each option and more information.

At the time of writing, there are over 750 ports in the DarwinPorts tree and that number is growing daily. If your
favorite application isn't already available in the ports tree, you can either create a port of it or join the DarwinPorts
mailing list and request that someone else create a port of it.

8.13.5 See Also

man port

http://www.bsdnews.org/01/darwinports.php (the original article on BSDnews)

The DarwinPorts web site (http://darwinports.opendarwin.org/)

The DarwinPorts web interface to the ports collection (http://darwinports.opendarwin.org/ports/)

The DarwinPorts mailing list (http://www.opendarwin.org/mailman/listinfo/darwinports/)

The Fink web site (http://fink.sourceforge.net/)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 77 Automated Install

 

If you're responsible for installing multiple systems, hopefully you've discovered the art of automating
installs.

Most operating systems have some sort of scripting mechanism that allows you to predefine the answers to the
questions asked by the install program. Once you've started the actual install, you can leave and return to a fully
installed system. The alternative is to sit there, answering every prompt when it appears. No, thank you!

Even as a home user, it's well worth your while to spend a few minutes customizing the install script that comes with
FreeBSD. Try this hack once and you'll never want to sit and watch an install again.

8.2.1 Preparing the Install Script

Before installing any system, you need to know the following:

The IP settings and hostname of the host you're installing

The FreeBSD name of that host's NIC

Which distributions, or parts of the OS, to install

Your desired partitioning scheme

Which packages (applications) to install

Of course, it's always a good idea to record this information and include it with the documentation for the system.

FreeBSD's install mechanism lives in /stand/sysinstall. Not surprisingly, man sysinstall describes all of the scriptable bits
of this program. I'll go over some useful parameters, but you'll definitely want to skim through the manpage to see if
there are additional parameters suited to your particular environment.

FreeBSD also comes with a commented, ready-to-customize install script, located in
/usr/src/usr.sbin/sysinstall/install.cfg. Copy this file, then edit the copy in your favorite editor. Start by inserting your
own network settings:

# This is the installation configuration file for my test machine,

# crate.cdrom.com.

# It is included here merely as a sort-of-documented example.

#

# $FreeBSD: src/usr.sbin/sysinstall/install.cfg,v 1.11 2001/09/06 10:04:27 murray Exp $

# Turn on extra debugging.

debug=yes

################################

# My host specific data

hostname=crate.cdrom.com

domainname=cdrom.com

nameserver=204.216.27.3

defaultrouter=204.216.27.228

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ipaddr=204.216.27.230

netmask=255.255.255.240

################################

Replace the example network information with the name and IP settings associated with the specific host you'd like to
install. If you're using DHCP to obtain this information, fill in the hostname line and replace the other lines with:

tryDHCP=YES

Next, replace the name of the NIC and the path to the FTP site. In this example, the NIC is rl0 and I'm using the default
FTP site:

################################

# Which installation device to use 

_ftpPath=ftp://ftp.freebsd.org/pub/FreeBSD/

netDev=rl0

mediaSetFTP

################################

Next come the desired distributions. (See man sysinstall for more details.) Include them all on the one dists= line,
separated by a space:

################################

# Select which distributions we want.

dists=bin doc games manpages dict compat4x ports src sbase ssys Xbin Xcfg \

      Xdoc Xlib Xman Xset Xfnt Servers/XS3V Xfsrv

distSetCustom

################################

Note that distSetCustom allows you to customize which distributions to install. If you'd like
to install the works, use distSetEverything and don't specify any dists=.

The partitioning scheme section is very important. If you don't want to use the default scheme which uses the entire
disk, read this section of the manpage carefully.

Also, the default file gives examples for three disks. Make sure you remove the examples and replace them with your
own partitioning scheme.

The following example is the equivalent of choosing a for "all," followed by a for "auto defaults":

#############################################################

# Set the parameters for the partition editor

# ad = IDE, da = SCSI

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# ad = IDE, da = SCSI

disk=ad0

partition=exclusive

diskPartitionEditor

#############################################################

# - All sizes are expressed in 512 byte blocks!

# - "Size in MB" = sectors * 512 / 1024 / 1024 

# - "Number of blocks" = xsize in mb * 1024 * 1024 / 512

# The non-zero value after the mountpoint means enable soft updates

# 256MB UFS ad0s1a

ad0s1-1=ufs 524288 /

# 240MB SWAP ad0s1b

ad0s1-2=swap 491520 none

# 256MB UFS ad0s1d

ad0s1-3=ufs 524288 /var

# 256MB UFS ad0s1e

ad0s1-4=ufs 524288 /tmp

# Rest of FreeBSD partition ad0s1f

ad0s1-5=ufs 0 /usr

diskLabelEditor

# runs diskLabelCommit diskPartitionWrite

installCommit

Finally, list which applications you would like to install. List each package on its own line, followed by the packageAdd
command:

# Install some packages at the end.

package=fetchmail-6.2.0

packageAdd

package=pine-4.55

packageAdd

package=lynx-2.8.5d14

packageAdd

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


packageAdd

The FreeBSD package list (ftp://ftp.freebsd.org/pub/FreeBSD/releases/i386/5.1-RELEASE/packages/All) has the exact
names of each available package. Replace i386/5.1-RELEASE with your platform and desired operating system version.

8.2.2 Test-Drive

Now that you've created a customized version of install.cfg, prepare a freshly formatted UFS floppy:

# fdformat -f 1440 /dev/fd0

# bsdlabel -w /dev/fd0 fd1440

# newfs /dev/fd0

Once the floppy is ready, copy install.cfg onto it.

On a test system, start the install process either by booting from a FreeBSD CD-ROM/DVD or with the two install
floppies. When you receive the sysinstall Main Menu screen, choose Load Config. Insert the floppy containing your
customized install.cfg and press OK. Once the configuration file has been loaded, you'll receive the message You may
remove the floppy from floppy drive unit A.

While this is meant to be an unattended install, you should be present during your first test install. This will give you the
opportunity to ensure that your script runs smoothly, without hanging at any portion of the install. If it does hang,
check your install.cfg for a typo in that section.

Once the install is complete, you'll return to the sysinstall Main Menu. At this point, you can either configure the system
interactively by choosing Configure or use a prepared post-configuration script, as found in /usr/doc/en_US.ISO8859-
1/articles/pxe/post.

install.cfg is not responsible for post-install configuration.

Once you're happy with your floppy, label it with your operating system version. Store it where you can find it the next
time you're ready to install a version of that operating system.

8.2.3 See Also

man sysinstall

/usr/src/usr.sbin/sysinstall/install.cfg (the sample installation configuration file)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 78 FreeBSD from Scratch

 

For those who prefer to wipe their disks clean before they upgrade their systems.

Have you ever upgraded your system with make world? If you have only one system on your disks, you may run into a
problem: if the installworld fails partway through, you may end up with a broken system that might not even boot. It's
also possible that the installworld will run smoothly, but the new kernel will not boot.

What if you're like me and believe in the "wipe your disks when upgrading systems" paradigm? Reformatting ensures
there is no old cruft left lying around. It also means you have to recompile or reinstall all your ports and packages and
then redo all your carefully crafted configuration tweaks.

FreeBSD From Scratch solves all these problems. The strategy is simple: use a running system to install a new system
under an empty directory tree, mounting new partitions in that tree as appropriate. Many config files can copy straight
across, and mergemaster can take care of those that cannot. You can perform arbitrary post-configuration of the new
system from within the old system, up to the point where you can chroot to the new system.

This upgrade has three stages, where each stage either runs a shell script or invokes make:

stage_1.sh

Creates a new bootable system under an empty directory, merges or copies as many files as are necessary, and
then boots the new system

stage_2.sh

Installs your desired ports

stage_3.mk

Does post-configuration for software installed in the previous stage

From now on, whenever you feel like an update is in order, simply toggle the partitions you want to wipe and reinstall.

While compiling the ports during stage two, the system will not be available for its usual
duties. If you run a production server, consider the downtime caused by stage two. If time
is an issue, consider using precompiled packages instead of ports.

8.3.1 Stage One: System Installation

This hack uses several scripts and configuration files that you can download from the original document's site (listed in
this hack's Section 8.3.4 section). Also, if you keep your docs up-to-date with cvsup, the scripts and original document
can be found in /usr/doc/en_US.ISO8859-1/articles/fbsd-from-scratch.

The script for stage one is stage_1.sh. When run with exactly one argument:

# ./stage_1.sh default

it will read its configuration from stage_1.conf.default and write a log to stage_1.log.default.

You'll need to customize stage_1.conf.default to match your idea of the perfect system. I have tried to comment all of
the sections you should adapt. In addition to the customized sections, the configuration script must provide four shell
functions:

create_file_systems

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


create_file_systems

create_etc_fstab

copy_files

all_remaining_customization

Before you run stage_1.sh, make sure you have completed the usual tasks in preparation for make
installworld/installkernel:

Configure your kernel config file.

Complete make buildworld.

Complete make buildkernel KERNCONF=whatever.

The stage_1.sh script will stop at the first command that fails, so you cannot overlook errors. It will also stop if you use
an unset environment variable, which is probably due to a typo.

Answer no or press Enter when mergemaster asks if whether should delete /var/tmp/temproot.stage1. This directory
contains some files that must be copied to the new system later.

*** Comparison complete

Do you wish to delete what is left of /var/tmp/temproot.stage1? [no] no

After that, it will list the files it installed:

*** You chose the automatic install option for files that did not

    exist on your system.  The following were installed for you:

      /newroot/etc/defaults/rc.conf

      ...

      /newroot/COPYRIGHT

(END)

Type q to quit the pager. Then, you'll have to deal with login.conf:

*** You installed a login.conf file, so make sure that you run

    '/usr/bin/cap_mkdb /newroot/etc/login.conf'

    to rebuild your login.conf database

    Would you like to run it now? y or n [n]

The answer does not matter, since we will run cap_mkdb in either case.

You can download the author's stage_1.conf.default, which you'll need to modify substantially. The comments should
give you enough information regarding what to change.

Pay attention to the newfs commands. While you cannot create new filesystems on mounted partitions, the script will
happily erase any unmounted partitions. This can be enough to ruin your day, so be sure to modify the device names to
match your scenario.

Running this script installs a system that, when booted, provides inherited users and groups, firewalled Internet
connectivity over Ethernet and PPP, correct time zone settings and NTP, and more minor configurations, such as
/etc/ttys and /etc/inetd.conf.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


/etc/ttys and /etc/inetd.conf.

Other areas of configuration will not work until stage two completes. For example, we have copied files to configure
printing and X11. Printing, however, needs applications not found in the base system. Similarly, X11 will not run before
we have compiled the server, libraries, and programs.

8.3.2 Stage Two: Ports Installation

It is possible to install precompiled packages at this stage instead of compiling ports. In this case, stage_2.sh will be
nothing more than a scripted list of pkg_add commands.

I install my favorite ports via the downloadable stage_2.sh script. You can run it multiple times safely, as it will skip all
ports that are already installed. It also supports the dry run option (-n), which will show what would be done. Run it like
stage_1.sh, with exactly one argument to denote a config file:

# ./stage_2.sh default

This example will read the list of ports from stage_2.conf.default.

The actual list of ports consists of lines with two or more space-separated words: the category and the port, optionally
followed by an installation command that will compile and install the port. By default, this is make install. Most of the
time, it suffices to name only the category and port. You can fine-tune some ports by specifying make variables, as
found in the port's Makefile:

www mozilla make WITHOUT_MAILNEWS=yes WITHOUT_CHATZILLA=yes install

mail procmail make BATCH=yes install

In fact, you can specify arbitrary shell commands, so you are not restricted to simple make invocations:

java linux-sun-jdk14 yes | make install

news inn-stable CONFIGURE_ARGS="--enable-uucp-rnews --enable-setgid-inews" \

    make install

Note that the line for news/inn-stable includes an example of a one-shot shell variable assignment to CONFIGURE_ARGS.
The port's Makefile will use this as an initial value and augment some other essential args.

The difference between specifying a make variable on the command line (as in the last example) and the following:

news inn-stable make CONFIGURE_ARGS="--enable-uucp-rnews \

    --enable-setgid-inews" install

is that the latter will override instead of augment.

Be careful that your ports do not use an interactive install; they should not try to read
from stdin. If they do, they will read the next line or lines from your list of ports and get
confused. If stage_2.sh mysteriously skips a port or stops processing, this is likely the
reason.

Finally, this script will create a log file named LOGDIR/category+port for each port it installs.

When you download the stage_2.sh script, you may want to modify these variables at the
beginning of the script to reflect your environment:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DBDIR="/var/db/pkg"

PORTS="/usr/ports"

LOGDIR="/home/root/setup/ports.log"; mkdir -p \

    ${LOGDIR}

8.3.3 Stage Three: Post-Configuration

You installed your beloved ports during stage two, but some ports require a little bit of configuration. This is the job of
stage three, the post-configuration stage. I have chosen to implement stage three as a Makefile because this allows
easy selection of what you want to configure simply by running:

# make -f stage_3.mk target

As with stage_2.sh, make sure you have stage_3.mk available after booting the new system, either by putting it on a
shared partition or by copying it somewhere on the new system.

Automating the installation of a port may prove difficult if it is interactive and does not support make BATCH=YES install.
For a few ports, the interaction is nothing more than typing yes when asked to accept some license. If such input is read
from the standard input, we simply pipe the appropriate answers to the installation command, usually make install. This
is how I dealt with java/linux-sun-jdk14 in the previous example.

This strategy, however, does not work for editors/staroffice52, which requires that X11 is running. The installation
procedure involves a fair amount of clicking and typing, so it cannot be automated like other ports can. However, the
following workaround does the trick for me. First, I created a staroffice package on the old system with:

# cd /usr/ports/editors/staroffice52

# make package

=  ==>  Building package for staroffice-5.2_1

Creating package /usr/ports/editors/staroffice52/staroffice-5.2_1.tbz

Registering depends:.

Creating bzip'd tar ball in

'/usr/ports/editors/staroffice52/staroffice-5.2_1.tbz'

During stage two, I used pkg_add to add this package:

# pkg_add /usr/ports/editors/staroffice52/staroffice-5.2_1.tbz

Upgrading Configuration Files
Be aware of upgrade issues for config files. In general, you do not know when and if the format or
contents of a config file changes. A new group may be added to /etc/group, or /etc/passwd may gain
another field. Simply copying a config file from the old to the new system may be enough most of the
time, but in these cases it is not. Unfortunately, mergemaster is available only for base system files, not
for anything installed by ports. All you can do is be alert, especially when the major version number
bumps. All actively maintained software programs are prime candidates for config file scrutiny. To detect
such silent changes, I keep a copy of the modified config files in the same place where I keep
stage_3.mk and compare the result with a make rule. For example, I examine Apache's httpd.conf in
target config_apache with:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


target config_apache with:

# ... automated httpd.conf modifications here ...

@if ! cmp -s /usr/local/etc/apache2/httpd.conf httpd.conf; then \

    echo "ATTENTION: the httpd.conf has changed. Please examine if"; \

    echo "the modifications are still correct. Here is the diff:"; \

    diff -u /usr/local/etc/apache2/httpd.conf httpd.conf; \

fi

If the diff is innocuous, I can make the message go away with cp /usr/local/etc/apache2/httpd.conf httpd.conf.
See [Hack #92] for more on this strategy.

The downloadable stage_3.mk will give you an idea of how to automate all reconfiguration.

8.3.4 See Also

"FreeBSD From Scratch" (includes links to the scripts) at http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/fbsd-from-scratch/article.html

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 79 Safely Merge Changes to /etc

 

Use a three-way merge to deal with upgraded configuration files.

Even though you probably run cvsup on a daily basis, you likely run make world only a few times a year, whenever a new
version of the OS is released. The steps required to upgrade your system are well documented and fairly
straightforward. That is, it's easy until it's time to run mergemaster.

mergemaster is an important step, as it integrates changes to /etc. For example, occasionally a core utility such as
Sendmail will require a new user or group in /etc/passwd. Problems can occur if those changes aren't integrated.

If you've used mergemaster before, you know it's not the most user-friendly utility out there. Misinterpret a diff, and you
might lose your configuration file changes or, worse, miss a necessary change. You might even end up blowing away
your own users in /etc/passwd—not the most convenient way to start off a new upgrade.

8.4.1 Initial Preparations

An alternative is to use etcmerge (/usr/ports/sysutils/etcmerge). This utility does most of the work for you. Unlike the
two-way diff used by mergemaster, this utility can compare the changes between three sets of edits:

The /etc from your original version of FreeBSD

Any changes you've made to /etc since then

The /etc for your new version of FreeBSD

Before any upgrade, you definitely want a fresh, tested backup of all of your data,
including /etc.

Once you've installed etcmerge, ensure you have a backup copy of /etc:

# tar czvf etc.tgz /etc

Here, I've saved a copy only to the local hard drive. Be sure to copy it to another location as well, just to be safe: to
another system, a removable media, or even your email account.

The next step is to locate a copy of /etc that is original to your current operating system and save it to /var/db/etc.
(This is a good step to add to your regime when you install a new system.) Assuming this isn't a fresh install and you've
made changes to /etc, you can get the original, unmodified /etc for your operating system version at
http://people.freebsd.org/~eivind/etc/.

Here, I've downloaded the 5.1-RELEASE version and untarred it to the correct place:

# tar -C /var/db -zxvpf etc-5.1-RELEASE.tar.gz

# ls /var/db/etc/

So, now you have a copy of the original /etc, as well as your own customized /etc. You'll receive the /etc for a newer
version of FreeBSD once you've changed your cvs-supfile to reflect the newer tag [Hack #80] .

For example, I'm currently running 5.1-RELEASE, so my custom supfile contains this line:

*default tag=RELENG_5_1_0_RELEASE

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


*default tag=RELENG_5_1_0_RELEASE

When I'm ready to upgrade to 5.2, I'll change that line to reflect the new tag:

*default tag=RELENG_5_2_0_RELEASE

My next cvsup will grab the sources for the new operating system version.

None of the changes to /usr/src will be integrated until you make buildworld and make
installworld as per the instructions in the handbook. Simply downloading the changes does
not upgrade your operating system.

Once cvsup has finished downloading all of the changes, take the time to read /usr/src/UPDATING, which lists all of the
known gotchas for this release. For example, there may be mandatory options for the kernel process of the upgrade,
certain stages may require a reboot before the next stage works, or perhaps directory structures such as /etc have
seen major changes.

Once you've made your necessary preparations, ensure these steps have succeeded before using etcmerge:

make buildworld

make buildkernel

make installkernel

make installworld

8.4.2 Using etcmerge

Now that you have a new world, use etcmerge to integrate any changes to /etc. As per its manpage, start with the
initialization step:

# etcmerge init

The script will perk along for a moment or two before producing a screen full of lines that start with ETCMERGE. Here's
the beginning of that output:

ETCMERGE: >>>     Finding classes of files

ETCMERGE: >>>     Working from

ETCMERGE: >>>     Active:    /etc

ETCMERGE: >>>     Reference: /var/db/etc

ETCMERGE: >>>     New:       /root/etc-work/200401191624/etc-new

Note the name of the directory in the last line. It contains the working files that are ready for your review.

You'll then receive lines for different classes—see man etcmerge for a description of each conflict class. Here's a sample
output from a system I recently upgraded:

ETCMERGE: >>>> Class 7:       3 conflict(s)

A class 7 conflict means a file existed for all three versions of /etc. Any differences will appear with diff-style markers.
This particular system has three files containing conflicts. Their names are in the file called 7.conflicts:

# more /root/etc-work/200401191624/7.conflicts

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# more /root/etc-work/200401191624/7.conflicts

./manpath.config

./pwd.db

./spwd.db

The etc-merged subdirectory contains copies of those files with the differences marked. Look there and examine each
file listed as containing conflicts:

# cd /root/etc-work/200401191624/etc-merged

# vi manpath.config

Don't send pwd.db or spwd.db to an editor—these are the database versions of your
password files. Instead, use diff to see if the conflict is because you've added users or
because FreeBSD has added a new user:

# diff etc-new/master.passwd /etc/master.passwd

Remove the two .db lines from 7.conflicts manually so etcmerge is aware that you've
resolved the conflicts to your password databases.

As you review your own files, the angle bracket markers indicate which lines have changed. Next to each angle bracket
marker is the name of the file containing the conflicting lines. For example, if the name of the file includes the /etc-new
directory, the lines in question belong to the new version of the file. Once you've decided which version of the lines you
wish to keep, remove the angle bracket lines as well as the unwanted version of the lines.

Once you're finished your edits, this command will integrate them:

# etcmerge install

/etc/mail/aliases: 24 aliases, longest 10 bytes, 246 bytes total

Install done - removing copies of old /etc/ and old reference.

Done.

#

Congratulations! You've successfully upgraded your operating system while maintaining your customizations to /etc.

8.4.3 See Also

[Hack #92]

man mergemaster

man etcmerge

man build

The makeworld section of the FreeBSD Handbook, which includes directions for using mergemaster
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 80 Automate Updates

 

FreeBSD provides many tools to make software upgrades as painless as possible. In fact, the entire process
is fully scriptable. Simply choose the pieces you want and how up-to-date you want to be.

End users and administrators alike share a desire to keep their operating systems and applications as up-to-date as
possible. However, if you're an operating systems veteran, you're well aware that this desire doesn't always translate
into foolproof, easy execution. For example, do you have to scour the far corners of the Internet to find the latest
updates? Once you find them, is it possible to upgrade safely without overwriting the dependencies required by other
applications?

8.5.1 Assembling the Pieces

The cvsup process provides the latest updates to the FreeBSD operating system, ports collection, and documents
collection. You no longer have to scour the Internet looking for the latest sources. Simply run cvsup!

Since our intention is to script the whole process, install the cvsup-without-gui port:

# cd /usr/ports/net/cvsup-without-gui

# make install clean

If you've never used cvsup before, take the time to read its section in the FreeBSD Handbook so you have an overview
of how the process works.

When the install finishes, copy /usr/share/examples/cvsup/cvs-supfile to a location that makes sense to you (e.g., /root
or /usr/local/etc). Use the comments in that file and the instructions in the handbook to customize the file so it reflects
your closest mirror, operating system (tag), and what you would like to update.

Here's my cvs-supfile. It uses a Canadian mirror and updates all sources, ports, and documents on a FreeBSD 5.1-
RELEASE system:

# more /root/cvs-supfile

#use the Canadian mirror

*default host=cvsup.ca.freebsd.org

#keep these lines as-is!

*default base=/usr/local/etc/cvsup

*default prefix=/usr

#this is a 5.1-RELEASE system

*default tag=RELENG_5_1_0_RELEASE

#keep this line as-is!

*default release=cvs delete use-rel-suffix compress

#update all src, ports, and docs

src-all

ports-all tag=.

doc-all tag=.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


doc-all tag=.

If you want to specify which source, ports, and docs to install, see the handbook for
directions on creating a refuse file.

If your cvs-supfile includes the ports-all tag=. line, install portupgrade. This port will not only keep track of which ports
need upgrading, it will also track dependencies and automate the entire application upgrade process:

# cd /usr/ports/sysutils/portupgrade

# make install clean

We can also take advantage of the fastest-cvsup port. As the name implies, it looks for the fastest cvsup mirror:

# cd /usr/ports/sysutils/fastest-cvsup

# make install clean

8.5.2 An Example Dry Run

With the necessary pieces in place, let's run them from the command line to see how they work. First, use cvsup to
download any changes to the operating system, software, or documents tree:

# cvsup -L2 /root/cvs-supfile

Parsing supfile "/root/cvs-supfile"

Connecting to cvsup.ca.freebsd.org

Connected to cvsup.ca.freebsd.org

Server software version: SNAP_16_1f

Negotiating file attribute support

Establishing collection information

Establishing multiplexed-mode data connection

Running

Updating collection src-all/cvs

Updating collection ports-all/cvs

<snip downloaded sources>

Updating collection doc-all/cvs

<snip downloaded sources>

Shutting down connection to server

Finished successfully

The -L2 switch turns on verbosity. Substitute /root/cvs-supfile with the location of your customized cvs-supfile.

It's rare for src to change. When it does, it is usually due to a security patch. If you notice
changes to src, go to http://www.freebsd.org/security/#adv to see if the security incident
affects you and how to apply the patch if it does.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


affects you and how to apply the patch if it does.

Once cvsup is complete, integrate the changes to the ports and the documents trees. This will take care of the document
changes:

# cd /usr/doc

# make install

You need the docproj-nojadetex port [Hack #89] for this command to succeed.

For the ports, first update your ports index:

# cd /usr/ports

# make index

Generating INDEX-5 - please wait.. Done.

An alternative is to instead run portsdb -Uu. Note that if you've created a refuse file, either command will produce a
screen or two of error messages. You can safely ignore these.

Once your ports tree is up-to-date, see if any of your installed applications need upgrading:

# portversion -l "<"

[Updating the pkgdb <format:bdb1_btree> in /var/db/pkg ...

256 packages found (-0 +1) . done]

ghostscript-gnu             <

gimp-print                  <

linux-sun-jdk               <

p5-MIME-Base64              <

subversion                  <

xmlcatmgr                   <

The -l "<" flag tells portversion to list only the ports matching that pattern (which represents ports that need upgrading).
This particular system has 256 installed ports. I've added one (+1) new port since my last cvsup, and six packages need
upgrading.

To perform the actual upgrade:

# portupgrade -arR

-a means to upgrade all ports requiring an upgrade. -rR is very important—it will ensure that the upgrade takes care of
all dependencies properly.

I've only scratched the surface of all of these utilities. Spend some time reviewing the resources at the end of this hack
to ensure you're getting the most out of your upgrade process.

8.5.3 Automating the Process

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once you have a few dry runs under your belt and are happy with your results, create a shell script to automate the
process. You can start out with something as simple as a Bourne script that strings together the desired commands and
switches. Here, the only new command I've introduced is fastest-cvsup. I've also added an else statement to terminate
the script if there is a problem with cvsup—for example, if the network connection fails.

# more /root/bin/mycustomupgrade.sh

#!/bin/sh

# script to automate cvsup of latest src, ports, and doc

# then rebuilds doc and ports trees

# then checks for and upgrades out-of-date software

# when finished, prints date and time

# use fastest_cvsup to find fastest Canadian or US mirror

# store the results in $SERVER to be passed to cvsup command

# substitute /root/cvs-supfile with path to custom cvs-supfile

# terminate the script if a connection is not available to 

# the cvsup server

if SERVER=`fastest_cvsup -q -c ca,us`

then

  echo "Running cvsup"

  cvsup -L2 -h $SERVER /root/cvs-supfile

else

  echo "There's a problem!" 1>&2

  exit 1

fi

echo "Updating docs"

cd /usr/ports

make install  

echo "Updating ports index"

cd /usr/ports

make index

echo "The following ports need upgrading"

portversion -l "<"

echo "Upgrading ports"

portupgrade -arR

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


echo "Finished at `/bin/date`."

exit

Don't forget to make your script executable with chmod +x and to test it to ensure all of the steps execute as desired.
On some of my systems, I'm really picky about which software updates to apply, so I don't include the portupgrade -arR
command in my script. This allows me to review which ports need upgrading so I can manually upgrade the ones I
deem necessary.

8.5.4 See Also

man portversion

man portupgrade

man fastest-cvsup

The cvsup section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/cvsup.html)

The CVS tags section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/cvs-tags.html)

"portupgrade," from the FreeBSD Basics column
(http://www.onlamp.com/pub/a/bsd/2003/08/28/FreeBSD_Basics.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 81 Create a Package Repository

 

Combine the advantages of compiling from source and installing packages.

We saw in [Hack #69] that compiling applications from source, i.e., by making their ports, has several advantages.
You can tune /etc/make.conf to take advantage of your architecture. You can also customize the installation by passing
various arguments to make.

However, if you're responsible for maintaining software on multiple machines, do you always want to install from
source? If your systems run similar hardware, why not create your own customized packages on one machine and
make them available to your other systems via a package repository?

Creating your own custom packages allows you to retain all the benefits of make. Even better, the resulting package
installs the desired software very quickly. This can be a real time-saver when you maintain multiple systems.

The experienced hacker may prefer to use /usr/ports/devel/distcc to provide multiple
builds.

8.6.1 Creating Custom Packages

Pick a machine in your network to contain the package repository, and install the ports collection on that system. The
rest of your systems won't need the ports collection, which saves their disk space for other purposes.

On the system containing the ports collection, create a directory to store the packages:

# mkdir /usr/ports/packages

Then, decide which packages you'd like to create. I'll start with Exim. Before creating the package, I'll search through
the port's Makefile to see if there are any make options:

# grep WITH /usr/ports/mail/exim/Makefile

#WITH_TCP_WRAPPERS=   yes

#WITH_MYSQL=          yes

#WITH_SASLAUTHD=      yes

#WITHOUT_TLS=         yes

#WITHOUT_PERL=        yes

#WITHOUT_PAM=         yes

<snip>

This particular port has dozens of tweakables. After a more careful read-through of the Makefile, I've chosen to use
WITHOUT_IPV6 and WITH_SASLAUTHD.

Next, I need to determine if there are any dependencies:

# grep DEP /usr/ports/mail/exim/Makefile

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# grep DEP /usr/ports/mail/exim/Makefile

LIB_DEPENDS=    iconv.3:${PORTSDIR}/converters/libiconv

RUN_DEPENDS=    ${LOCALBASE}/sbin/eximon:${PORTSDIR}/mail/exim-monitor

LIB_DEPENDS+=    db4.0:${PORTSDIR}/databases/db4

LIB_DEPENDS+=    db41.1:${PORTSDIR}/databases/db41

LIB_DEPENDS+=    db-4.2.2:${PORTSDIR}/databases/db42

RUN_DEPENDS+=    ${LOCALBASE}/sbin/saslauthd:${PORTSDIR}/security/

                  cyrus-sasl2-saslauthd

RUN_DEPENDS+=    ${LOCALBASE}/sbin/pwcheck:${PORTSDIR}/security/cyrus-sasl

LIB_DEPENDS+=    pq.3:${PORTSDIR}/${POSTGRESQL_PORT}

Yup. Lots of those as well. This means I'll pass an extra argument to make to ensure the package also creates packages
for each dependency. Once I know the desired make arguments, I create the package:

# cd /usr/ports/mail/exim

# make package -DWITHOUT_IPV6 -DWITH_SASLAUTHD DEPENDS_TARGET=package

Notice that I used make package rather than the usual make install. I then included my two make options. I ended the
command with the DEPENDS_TARGET=package option. (I found this argument on a mailing list as the result of a Google
search.) If you're building any package that has dependencies, remember to include that option.

make package does two things. First, it creates and stores the package in a subdirectory of /usr/ports/packages. In this
example, that subdirectory will be mail. Second, it installs the port on the local machine, if necessary. If you don't want
to keep the application installed on the machine acting as the package repository, simply type make deinstall after
creating the package.

8.6.2 Creating the NFS Share

Once you've populated /usr/ports/packages with the packages required by your network, set up an NFS mount to share
the package repository. The easiest way to do this is with stand/sysinstall. On the machine holding the packages:

# /stand/sysinstall

Choose Configure, then Networking, and then NFS server. You should see the following message:

Operating as an NFS server means that you must first configure an 

/etc/exports file to indicate which hosts are allowed certain kinds of 

access to your local file systems. Press [ENTER] now to invoke an editor 

on /etc/exports

Unless you've changed your default editor, /etc/exports will open in vi. The default file contains some example syntax;
see man exports for additional tips.

I added this line to reflect my network settings:

/usr/ports/packages -network 192.168.2.0 -mask 255.255.255.0

Once you've saved your changes, initialize and start the NFS server:

# /etc/rc.d/nfsd rcvar

# /etc/rc.d/nfsd start

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# /etc/rc.d/nfsd start

Then, ensure the NFS server is listening for requests:

# sockstat | grep nfs

root   nfsd   3973   tcp4*:2049   *:*

Next, you'll need to create an NFS client on each machine that will use the package repository. This time, in
/stand/sysinstall, choose NFS client instead of NFS server. There are no prompts, so just select the box. Once you've
exited the utility, type:

# nfsiod -n 4

This will optimize the performance of the NFS client.

Then, check to see if you can access your package repository. In my example, the machine containing the packages has
an IP address of 192.168.2.12 and the local machine has a mount point called /packages:

# mkdir /packages

# mount 192.168.2.12:/usr/ports/packages /packages

# ls /packages

All    Latest    ipv6            mail    security    sysutils

These various subdirectories contain the Exim package and its dependencies. To get an idea of which packages are
available, use ls /packages/All.

It's also a good idea to try a test installation of a package:

# pkg_add /packages/mail/exim-4.30.tbz

Don't forget to unmount the NFS share when you're finished:

# umount /packages

8.6.3 See Also

man exports

man nfsiod

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 82 Build a Port Without the Ports Tree

 

While the ports tree is one of the most useful FreeBSD directory structures, you may have systems where
it's not appropriate to maintain the entire ports structure.

On some of your systems, disk space may be an issue. The ports tree tarball itself is a 21 MB download. Once untarred,
it will occupy around 500 MB of disk space. That space will continue to grow as you install ports since, by default,
source files download into /usr/ports/distfiles.

Does this mean that installing packages is your only alternative? Packages are convenient, but since they are
precompiled, you don't have the option of providing your own make arguments to optimize the install for your
environment.

One alternative is the anonymous CVS system. Even a minimal install of FreeBSD includes the cvs command. This allows
you to check out only the particular port skeleton you need. You'll still have the convenience of the ports collection
without actually having to install it.

8.7.1 Connecting to Anonymous CVS

The first time you use cvs, create an empty CVS password file, as CVS will complain if this file is missing:

# touch ~root/.cvspass

Then, ensure your present working directory is /usr:

# cd /usr

When using cvs to maintain your ports, be sure you are in /usr. cvs downloads the
requested files to your current working directory and will overwrite any files of the same
name.

Then, use the cvs login command to connect to a CVS server. There are five FreeBSD anonymous CVS servers; see the
Handbook reference at the end of this hack for their names and passwords. Use the setenv command to specify the
server to log into:

# setenv CVSROOT :pserver:anoncvs@anoncvs.at.FreeBSD.org/home/ncvs

# cvs login

Logging in to :pserver:anoncvs@anoncvs.at.freebsd.org:2401/home/ncvs

CVS password: anoncvs

#

Once you've successfully logged in, you'll receive your normal prompt back. You'll remain connected to the CVS server
until you explicitly log off. In the meantime, you now have the ability to issue commands either on the CVS server or on
your own system.

8.7.2 Checking Out Port Skeletons

Let's assume you have a minimum install and don't have an existing /usr/ports directory structure. To install a port, you
need the Mk and Templates directories as well as the port's Makefile.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


need the Mk and Templates directories as well as the port's Makefile.

Use the cvs checkout command to retrieve the necessary files from the CVS server:

# cvs checkout -A -P -l ports/Mk

cvs server: Updating ports/Mk

U ports/Mk/bsd.emacs.mk

U ports/Mk/bsd.gnome.mk

U ports/Mk/bsd.gnustep.mk

U ports/Mk/bsd.java.mk

U ports/Mk/bsd.kde.mk

U ports/Mk/bsd.openssl.mk

U ports/Mk/bsd.port.mk

U ports/Mk/bsd.port.post.mk

U ports/Mk/bsd.port.pre.mk

U ports/Mk/bsd.port.subdir.mk

U ports/Mk/bsd.python.mk

U ports/Mk/bsd.ruby.mk

U ports/Mk/bsd.sites.mk

# cvs checkout -A -P -l ports/Templates

cvs server: Updating ports/Templates

U ports/Templates/README.category

U ports/Templates/README.port

U ports/Templates/README.top

U ports/Templates/config.guess

U ports/Templates/config.sub

#

Since you're in the /usr directory, cvs will create /usr/ports for you and will populate the Mk and Templates
subdirectories with their sets of files. It's interesting to note how little disk space this bare-minimum ports tree
requires:

# du -h /usr/ports | tail -n1

418K    ports

That's a pretty big difference from 500 MB!

8.7.3 Finding a Port and Its Dependencies

Next, decide which port you'd like to install. The only disadvantage to not having the entire ports structure is that you
need an alternate method of discovering the name of the port you'd like to install. For example, in order to install lynx, I
need to know that it is in the www subdirectory and that there are three different versions of lynx to choose from. The
easiest way to discover this information is to use the search utility at http://www.freshports.org.

Once you find the port you're looking for, it will indicate the name of its directory. In my example, lynx-2.8.5d17 lives
in www/lynx-current.

Now it's a simple matter of checking out that port's skeleton:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Now it's a simple matter of checking out that port's skeleton:

# cvs checkout -A -P -l ports/www/lynx-current

cvs server: Updating ports/www/lynx-current

U ports/www/lynx-current/Makefile

U ports/www/lynx-current/distinfo

U ports/www/lynx-current/pkg-descr

U ports/www/lynx-current/pkg-plist

Next, check the port's Makefile to see if there are any dependencies:

# grep DEPENDS /usr/ports/www/lynx-current/Makefile

LIB_DEPENDS=    intl.5:${PORTSDIR}/devel/gettext

As it stands right now, this port will not install, as I don't have the ports skeleton for the dependency devel/gettext. So,
I'll download that port skeleton and double-check that that port doesn't have any dependencies:

# cvs checkout -A -P -l ports/devel/gettext

<snip output>

# grep DEPENDS /usr/ports/devel/gettext/Makefile

#

Okay, it looks like all dependencies are there. I'm ready to build the port:

# cd /usr/ports/www/lynx-current

# make install clean

If disk space is an issue, instead use make install distclean, which will delete the source from
/usr/ports/distfiles once the build successfully completes.

That's it. As long as you remember to look for dependencies before you issue your make install command, your minimal
ports structure should work as flawlessly as the full ports collection.

Don't forget to use cvs logout when you're finished retrieving the files you need from the CVS server.

8.7.4 See Also

man cvs

The AnonCVS section of the FreeBSD Handbook, which includes the names of the BSD CVS servers
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/anoncvs.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 83 Keep Ports Up-to-Date with CTM

 

Keep your ports up-to-date without using cvsup.

If you have a slow Internet connection, it can take a while to download the ports tree; the current tarball is over 21 MB
in size. Once you have the ports collection, keeping up-to-date with cvsup might not be such an attractive option if it
involves tying up your phone line.

Perhaps bandwidth isn't the problem. Perhaps you're just looking for an alternative way to stay current, without having
to install and configure cvsup. After all, why install additional software if you can achieve the same results using
commands that come with the base system?

Regardless of which category you fall into, CTM may be what you're looking for.

CTM was originally CVS Through Email, meaning you could receive the changes you usually receive through cvsup via
email. (In the case of numerous changes, you'd receive several, smaller mails instead of one monolithic message.) This
can be a cheaper alternative to cvsup if you're charged for the amount of time you are connected to the Internet.

However, it's even easier to retrieve these changes with ftp. FreeBSD maintains several CTM servers that contain the
changes, or deltas, to the FreeBSD source and the ports collection. This hack will concentrate on keeping your ports up-
to-date using ftp and the CTM servers.

8.8.1 Using ftp and ctm to Stay Current

Let's start with a system that doesn't have the ports collection installed. First, I'll create an empty ports directory for
ctm to work with:

# mkdir /usr/ports/

# cd /usr/ports

Then, instead of downloading and untarring the ports tree tarball, I'll ftp into a CTM server and download the latest ports
tree delta. The Handbook's section on CTM includes the addresses of the CTM mirrors.

# ftp ftp.freebsd.org

<snip banner and login>

ftp> cd pub/FreeBSD/development/CTM/ports-cur

ftp> ls

<snip most of long listing>

-rw-r--r--  1 110    root    22332066 Jan 23 08:46 ports-cur.5100xEmpty.gz

-rw-r--r--  1 110    root       67953 Jan 24 00:43 ports-cur.5101.gz

-rw-r--r--  1 110    root       14256 Jan 24 16:51 ports-cur.5102.gz

Look toward the end of the listing for the large file closest to the present date. It will have the word xEmpty in its name.
That file is your starting delta. Download that and any subsequent deltas.

ftp> get ports-cur.5100xEmpty.gz

ftp> get ports-cur.5101.gz

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ftp> get ports-cur.5101.gz

ftp> get ports-cur.5102.gz

ftp> quit

Your first ftp transfer will be the largest and longest, as you are downloading the elements
necessary to build the ports tree structure. Subsequent sessions will be very quick.

Note the .gz extension; leave the files compressed. CTM will still work, and you'll save disk space.

Save your deltas to /usr/ports, and remain in this directory when you use the ctm command.

Now that you have your starting deltas, apply them with ctm:

# ctm ports-cur.5100xEmpty.gz

ctm: warning: .ctm_status not found

<snip long output>

The first time you use ctm, it will complain about a missing .ctm_status file. Don't worry; it will create it for you. After a
few seconds, it will send a lot of output to stdout. Once the command has finished, you'll have a fully installed version
of the ports tree.

That .ctm-status file will tell you the delta number of that ports tree:

# more .ctm-status

ports-cur 5100

Then, simply apply any subsequent deltas in ascending order. This will correctly incorporate all of the changes to the
ports tree.

# ctm ports-cur.5101.gz

# ctm ports-cur.5102.gz

# more .ctm-status

ports-cur 5102

That's it. Whenever you want to update your ports tree, ftp into your CTM mirror, download the deltas containing a
higher number than your current version, and apply them in order.

It's up to you whether to keep the compressed versions of the files you download. Once you've successfully applied a
delta—as indicated by .ctm-status—you no longer need to store that delta file. However, if download speed or time is an
issue, consider keeping a copy of that large starting delta, just in case you ever want to recreate your ports tree from
scratch.

8.8.2 Hacking the Hack

If you're too lazy or forgetful to ftp for changes periodically, consider receiving them automatically via email. Changes
occur once or twice a day. Subscribe to the ctm-ports-cur mailing list to receive them
(http://lists.freebsd.org/mailman/listinfo/ctm-ports-cur/).

Complete the online subscription form, and reply to the email that asks you to confirm your subscription.

However, do not subscribe to that mailing list until you've configured your system to handle those emails. Basically, you
want the system to intercept those CTM updates instead of sending them directly to your mailbox. There are two ways
to do this: either create a sendmail alias or create a procmail recipe. See man ctm_rmail for detailed instructions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


to do this: either create a sendmail alias or create a procmail recipe. See man ctm_rmail for detailed instructions.

It's also a good idea to verify the PGP signatures before applying those updates. You can find detailed instructions for
this, as well as for using ctm_rmail to handle incoming deltas, in this message from the ctm-users mailing list:
http://lists.freebsd.org/pipermail/ctm-users/2003-October/000039.html.

8.8.3 See Also

man ctm_rmail

The CTM section of the FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/ctm.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 84 Navigate the Ports System

 

Use built-in commands to keep abreast of the FreeBSD ports collection.

What first attracted me to FreeBSD—and what has definitely kept my attention since—is the ports collection. Over
10,000 applications are a mere make install clean away. For a software junkie like myself, it is indeed Nerdvana to no
longer scour the Internet for software or fight my way through dependency hell just to convince an application to
install.

Admittedly, it's easy to get lost in a sea of ports. How do you choose which application best suits your needs? How do
you keep track of which ports have been installed on your system? How do you make sure you don't inadvertently
delete a dependency? Read on to see how to get the most out of the built-in utilities for managing ports.

8.9.1 Finding the Right Port

You know you want to install some software to add functionality to your system. Wouldn't it be great if you could
generate a list of all the ports that are available for your specific need? Well, you can, and it's almost too easy with the
built-in port search facility. In this example, I'll look for ports dealing with VPN software:

% cd /usr/ports

% make search key=vpn | more

Port:        poptop-1.1.4.b4_2

Path:        /usr/ports/net/poptop

Info:        Windows 9x compatible PPTP (VPN) server

Maint:        ports@FreeBSD.org

Index:        net

B-deps:        expat-1.95.6_1 gettext-0.12.1 gmake-3.80_1 libiconv-1.9.1_3

R-deps:

<snip>

I snipped the results for brevity as this command gives the details of each port associated with VPNs. The format of the
output is quite useful, as it gives the name of the port itself, its location in the ports tree, a brief description, the
address of the maintainer, as well as the build and run dependencies.

If you're only interested in seeing how many ports are available, pipe the results to grep instead of more:

% make search key=vpn | grep Port

Port:        poptop-1.1.4.b4_2

Port:        pptpclient-1.3.1

Port:        ike-scan-1.2

Port:        openvpn-1.5.0

Port:        tinc-1.0.2

Port:        vpnd-1.1.0

Perhaps you'd prefer to know their locations:

% make search key=vpn | grep Path

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% make search key=vpn | grep Path

Path:        /usr/ports/net/poptop

Path:        /usr/ports/net/pptpclient

Path:        /usr/ports/security/ike-scan

Path:        /usr/ports/security/openvpn

Path:        /usr/ports/security/tinc

Path:        /usr/ports/security/vpnd

What if you already know the name of the port you want to install but aren't sure what versions are available? Use
search name= instead. For example, this command will search for all ports with netscape in their names:

% make search name=netscape | grep Port

Port:        pt_BR-netscape7-7.02

Port:        netscape-remote-1.0_1

Port:        netscape-wrapper-2000.07.07

Port:        netscape-communicator-4.78

Port:        netscape-navigator-4.78

Port:        linux-netscape-communicator-4.8

Port:        linux-netscape-navigator-4.8

Port:        netscape7-7.1

If you find the search facility useful, it is a good idea to update your ports index periodically. Become the superuser and
issue the following command (it may take a while, so don't execute it if you're in a hurry):

# cd /usr/ports

# make index

Finally, if you really want to fine-tune your search results, spend a few moments reading the examples in
/usr/ports/Tools/scripts/README.portsearch.

8.9.2 Dealing with Installed Ports

You've spent a few months installing software and trying out new applications. How do you keep track of all of that
software and all of those dependencies? pkg_info is your friend.

My favorite pkg_info switch is definitely -x. (There's not really a mnemonic for this switch; I tend to think of it as "give
me version x.") If I stack it with any other switch, I don't need to know the full name (including the complete version
number) of a port. For example:

% pkg_info -xc lynx

will show the one-line comment (-c) of every application that starts with lynx, regardless of the version number. Besides
saving memory cells for other purposes, it's an excellent way to find out if you have more than one version of lynx
installed.

After installing a port, it's useful to see if there were any messages, as these often contain configuration instructions:

% pkg_info -xD xmms

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% pkg_info -xD xmms

Information for xmms-esound-1.2.8_2:

Install notice:

Xmms supports Gzipped and uncompressed skins.  If you would like to use

Zip format skins you will need to ensure archivers/unzip is installed.

How many times have you installed a port and had no clue regarding the name of the executable, much less the names
and locations of any configuration files or documentation? Thank goodness for -L, the file-listing flag:

% pkg_info -xL lynx | more

Information for lynx-2.8.4.1d:

Files:

/usr/local/man/man1/lynx.1.gz

/usr/local/bin/lynx

/usr/local/etc/lynx.cfg.default

/usr/local/share/doc/lynx/CHANGES

<snip>

Depending upon the application, the listing may be quite long. A judicious pipe to grep bin, grep man, or grep doc may
better suit your purposes.

8.9.3 Checking Dependencies Before Uninstalling

Before uninstalling an application, it is always a good idea to see if any other packages require that application as a
dependency. For example, you've typed pkg_info | more and see the application ORBit-0.5.17. You think to yourself, "I
don't remember installing, or even ever using, this application. Where did it come from? Maybe I should just get rid of
it." This command will clear up your mini-mystery:

% pkg_info -xR ORBit

Information for ORBit-0.5.17_1:

Required by:

bonobo-1.0.22

flashplugin-mozilla-0.4.10_4

<snip>

Since the snipped output took up most of a page, it looks like this application is useful after all. Don't worry; if you did
try to uninstall that application, pkg_delete would refuse since it is required by those other applications. However, it is
always nice to be aware of these things ahead of time.

If you really do want to force the uninstall of an application, use -F (force) with pkg_delete.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


8.9.4 Checking the Disk Space Your Ports Use

What happens if you go a little install-crazy and end up with more applications than disk space? Use the -s (size) switch
to determine how much space an application uses. Send the output either to a pager:

% pkg_info -as | more

or to a file that you can read at your leisure:

% pkg_info -as > sizes

You'll then have an idea of which applications are using the most space so that you can decide which ones are worth
uninstalling. Remember, you also have the comment and dependencies switches to help you decide.

Yet another way to find out what software you have installed is to use pkg_version:

% pkg_version | more

This will list each installed application, in alphabetical order. You'll note that each application is followed by one of the
three symbols in Table 8-1.

Table 8-1. pkg_version symbols
Symbol Meaning

= The application is up-to-date.

< There is a newer version of the application available.

> Your index may be out-of-date.

So, to determine which applications require upgrading:

% pkg_version -l "<"

Note that you need to place quotes around the less-than sign or your shell will complain about a missing name for your
redirect. If you don't receive any output, congratulations! All of your applications are up-to-date. If you do receive some
output, you know which applications require an upgrade.

Alternately, this command will show all applications that are out-of-date:

% pkg_version -L "="

See man pkg_version if you didn't catch the difference between -l and -L.

If you prefer a more verbose output than =, >, or <, try this command:

% pkg_version -v | more

If for some reason you're not using cvsup to keep your ports tree up-to-date, you can still check your installed ports
against the latest ports tree:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


against the latest ports tree:

% pkg_version -v ftp://ftp.freebsd.org/pub/FreeBSD/branches/-current \

    /ports/INDEX | more

8.9.5 See Also

/usr/ports/README

man pkg_info

man pkg_delete

man pkg_version

man ports

The Installing Packages and Ports section of the FreeBSD Handbook
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/ports.html)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 8. Keeping Up-to-Date
Introduction

Section 77.  Automated Install

Section 78.  FreeBSD from Scratch

Section 79.  Safely Merge Changes to /etc

Section 80.  Automate Updates

Section 81.  Create a Package Repository

Section 82.  Build a Port Without the Ports Tree

Section 83.  Keep Ports Up-to-Date with CTM

Section 84.  Navigate the Ports System

Section 85.  Downgrade a Port

Section 86.  Create Your Own Startup Scripts

Section 87.  Automate NetBSD Package Builds

Section 88.  Easily Install Unix Applications on Mac OS X

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Introduction
Heinlein fans will recognize the word grok as the Martian word for "to be one with" or "thorough understanding."
Indeed, you will sometimes feel like a stranger in a strange land when learning Unix. As any Unix guru can attest,
however, the rewards far outweigh the initial learning curve.

This final chapter is a hodgepodge of useful and sometimes amusing tidbits. A sure sign you're on the right road to
grokking BSD is when you're able to see both the usefulness and the quirky humor that is inherent in all Unix systems.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 97 Run Native Java Applications

 

Until recently, running Java applications on FreeBSD meant using the Linux compatibility mode.

Linux programs can sometimes be problematic on FreeBSD. Java© uses threading very heavily, and that's probably the
poorest-emulated part of Linux binary compatibility. Some Java applications or class libraries just don't work correctly
under Linux emulation. Native versions of the Java distribution had restrictive licenses, and it required a great deal of
work to download and compile them. Fortunately, the FreeBSD Foundation has negotiated a FreeBSD Java license with
Sun Microsystems. This hack demonstrates how to configure the FreeBSD version of Java.

What about native Java on NetBSD or OpenBSD? At the time of writing, neither system
had a native Java port. You can run Java on a Linux emulator or via Tomcat.

9.10.1 Choosing Which Java Port to Install

The first requirement for running Java applications is a Java Virtual Machine (JVM) and the associated runtime support
libraries. There are several Java Runtime Environments (JREs) or Java Development Kits (JDKs) available in ports.

A JRE contains everything necessary for an end user to run Java applications. A JDK
contains all that, plus various extra bits required for developing, compiling, and debugging
Java code.

The main criteria for choosing a port are:

Which version of Java do you need?

Do you want to run FreeBSD native code or Linux code run under emulation?

Do you prefer to run a precompiled binary or compile it yourself from source code?

Unless you have a specific requirement for an earlier version, choose the latest stable release, which, as of this writing,
is Java 1.4.2. The native version, found in /usr/ports/java/jdk14, will give you the best performance, but you will have
to compile it yourself. That is more easily said than done: compiling the JDK requires a great deal of disk space and CPU
power, as well as a working copy of the 1.4.2 JDK. The first time you compile, you will have to install one of the Linux
JDKs, such as the recommended /usr/ports/java/linux-sun-jdk14, but once you have a working native JDK, you can use
it to compile any updates and uninstall the Linux version.

You can install several Java versions simultaneously without them interfering with each
other. Each will install into its own subdirectory of /usr/local.

If you need a precompiled native version, choose one of the Diablo Java 1.3.1 ports. These use the same code base as
the /usr/ports/java/jdk13 port, and they're certified, licensed, and released through the sponsorship provided by the
FreeBSD Foundation (http://www.freebsdfoundation.org/downloads/java.shtml).

Diablo JDK 1.4 and JRE 1.4 versions are under development, but not yet available.

The Diablo Java packages are standard FreeBSD packages, so you can install them via pkd_add. However, you're better

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Diablo Java packages are standard FreeBSD packages, so you can install them via pkd_add. However, you're better
off installing from the Diablo ports, as that will provide you with the correct dependencies.

For example, to install the Latte Diablo JRE 1.3.1 port, visit http://www.freebsdfoundation.org/cgi-bin/download.cgi?
package=diablo-jre-1.3.1-0.tar.bz2. Read and accept the license terms, and save the downloaded file as
/usr/ports/distfiles/diablo-jre-1.3.1-0.tar.bz2. Then:

# cd /usr/ports/java/diablo-jre13

# make install

9.10.2 Running Java Applications

Starting up any Java application means running a Java Virtual Machine, which in turn loads a named Java class. That
class is the entry point for the program. The JVM always requires the CLASSPATH environment variable to contain a list
of .jar archives that store all of the Java classes required by the application. You can provide extra arguments to the
JVM—to limit its use of memory or other system resources, for example—and the application itself may take further
command-line arguments.

9.10.3 Standalone Java Applications

Many Java applications provide a shell script to set up the environment and to execute the JVM with the appropriate
arguments. A typical example is ant (see /usr/ports/devel/apache-ant), the Java equivalent to make.

The installation process edits the script that will become /usr/local/bin/ant to use the Java version used when building
the port. However, you can override the default Java version within the script by setting the JAVA_HOME environment
variable:

% setenv JAVA_HOME=/usr/local/jdk14

9.10.4 Javavmwrapper

Given the wide variety of JVMs available under FreeBSD, adding code to all Java application wrapper scripts or
otherwise configuring standalone Java applications to use the correct JVM could become a maintenance nightmare.
Fortunately, the /usr/ports/java/javawmwrapper port provides the /usr/local/bin/javavm script, which all applications
can run to discover the site's default JVM. javavm's configuration file, /usr/local/etc/javavms, contains a list of installed
JVMs in the order of their preference. Installing or removing a JVM through ports will modify this file. You can also edit
it by hand.

9.10.5 Applets

In the case of a Java applet, the web browser starts the JVM and downloads and runs the applet from the Web. Applets
run in a special sandbox that denies them access to most of the local system, except for the browser window.

Java support in web browsers derived from Netscape (including Mozilla, Firebird, and Galeon) uses a plug-in that comes
standard with the JDK. For the native JDK 1.4.2, the plug-in is
/usr/local/jdk1.4.2/jre/plugin/i386/ns610/libjavaplugin_oji.so. To make this plug-in available to web browsers, create a
symlink to this file from /usr/X11R6/lib/browser_plugins:

# cd /usr/X11R6/lib/browser_plugins

# ln -s /usr/local/jdk1.4.2/jre/plugin/i386/ns610/libjavaplugin_oji.so .

Launch a web browser and type about:plugins into the location bar. You should see an entry for the "Java(TM) Plug-in,"
which claims to handle about 30 MIME types, all variants on application/x-java-something.

If you're using a Linux web browser under emulation, install the plug-in from one of the
Linux Java versions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


9.10.6 Servlets

A servlet is all or part of a web application written in Java. It runs through a servlet container application, which
abstracts out all of the common server-side functionality. Tomcat (/usr/ports/www/jakarta-tomcat41) and Jetty
(/usr/ports/www/jetty) are two examples of these applications.

The servlet container application runs in much the same way as standalone Java applications.

9.10.7 Java WebStart

WebStart is a web-based mechanism for downloading and updating Java applications. Use the Preferences menu item in
javaws to control the JVM that will run the WebStart-ed applications. Unlike applets, the downloaded applications run
independently of the web browser. You don't need to download them again each time they run. They also have full
access to the underlying system. The javaws application is a standard part of Java 1.4 or above. It lives in
${JAVA_HOME}/jre/javaws/javaws.

9.10.8 See Also

FreeBSD Foundation's Java downloads (http://www.freebsdfoundation.org/downloads/java.shtml)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 98 Rotate Your Signature

 

End your email communications with a short witticism.

We all seem to know at least one geek friend or mailing-list poster whose emails always end with a different and
humourous bit of random nonsense. You may be aware that this is the work of her ~/.signature file, but have you ever
wondered how she manages to rotate those signatures?

While there are several utilities in the ports collection that will randomize your signature, it is easy enough to roll your
own signature rotator using the fortune program and a few lines of shell scripting.

9.11.1 If Your Mail Program Supports a Pipe

Your approach will vary slightly, depending on whether your particular mail user agent (MUA) supports pipes. If it does,
it's capable of interpreting the contents of a file as command output, just like when you use a pipe (|) on the command
line.

I use pine, which supports both static signature files and signatures that come from the piped output of a signature
rotation program.

When configuring pine, choose Setup from the main menu, then C for the configuration editor. Find the signature-file
option and give it this value:

.signature |

The pipe character tells pine to process that filename as a program instead of inserting its contents literally.

Also enable the signature-at-bottom option found in the Reply Preferences to ensure your signature is placed at the bottom
of your emails, even when replying to an email.

Next, create a file called ~/.signature containing these lines:

echo "Your random fortune:"

/usr/games/fortune -s

This isn't quite a shell script: I don't have to include the #!/bin/sh line or use chmod +x to set the file as executable.
However, pine will execute those two lines whenever I compose or reply to an email, adding something like this to the
bottom of the email:

Your random fortune:

"Right now I'm having amnesia and deja vu at the same time."

                 -- Steven Wright

I also included the short switch (-s) to fortune, as it's bad Netiquette to end an email with a long signature.

If you try a few test messages, you'll see that every email receives a different, random signature.

Depending upon your audience, you may wish to filter further the fortunes to use as signatures. You'll find the available
fortunes in /usr/share/games/fortune. If your friends are Trekkies, modify the fortune line in your ~/.signature like so:

/usr/games/fortune -s startrek

If they tend to be cynical, try murphy instead.

9.11.2 Pipeless Signature Rotation

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Some MUAs, such as Mozilla's mailer, don't support pipes. You'll know yours doesn't if your test message produces no
fortune. Fortunately, there's another option.

Create a file as before, but this time make it a Bourne script. I'll save mine in ~/bin and make it executable using chmod
+x:

#!/bin/sh

echo "Your random fortune:" > $HOME/.signature

/usr/games/fortune -s >> $HOME/.signature

This script does two things. It echoes the first line to the ~/.signature file, then appends the results of the fortune
program to the same file.

To configure Mozilla to use this signature file, open the Mail & Newsgroups window, and choose Mail & Newsgroups
Account Settings from the Edit menu. Select the "Attach this signature" option from the main menu, and use the
Choose button to give the location of ~/.signature.

What do you think will happen when I compose an email? Since Mozilla only understands literal signature files, it will
faithfully reproduce the current contents of ~/.signature. If I haven't run my script yet, that file doesn't exist. If I have
run the script, the resulting file remains the same until the script runs again.

This is different from pine, which has the capability of executing the commands found in my signature file. Since Mozilla
can't, you'll have to remember to run the script manually before you compose an email or schedule its periodic
execution using cron. This may be a little disappointing if you want every recipient to receive a unique signature, or not
a big deal if you send only one or two emails a day and aren't a stickler for randomness.

9.11.3 Hacking the Hack

Hmm, what would happen if .signature were a named pipe connected to a program that provided a random signature
on every read? There are many possibilities here.

9.11.4 See Also

man fortune

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 99 Useful One-Liners

 

Unix is amazing. Only your imagination limits the usefulness of the built-in commands. You can create your own
commands and then pipe them together, allowing one utility to work on the results of another.

If you're like me, you've run across dozens of useful combinations over the years. Here are some of my favorite one-
liners, intended to demonstrate useful ideas as well as to prime your pump for writing your own one-liner hacks.

9.12.1 Simultaneously Download and Untar

Have you ever downloaded an extremely large archive over a slow connection? It seems to take forever to receive the
archive and forever to untar it. Being impatient, I hate not knowing how many of the archived files are already here. I
miss the ability to work on those files while the rest of the archive finishes its slow migration onto my system.

This one-liner will decompress and untar the files as the archive downloads, without interfering with the download.
Here's an example of downloading and untarring the ports collection:

# tail -f -b=1m ports.tar.gz | tar -zxvf ports.tar.gz

ports/

ports/Mk/

<snip>

Here I've asked tail to stream up to one megabyte of the specified file as it is received. It will pipe those bytes to the tar
utility, which I've directed to decompress (-z) and to extract (x) the specified file (f) while displaying the results
verbosely (v).

To use this command, download the archive to where you'd like to untar it—in this example, /usr. Simply replace the
filename ports.tar.gz with the name of your archive.

9.12.2 When Did I Change That File?

Do you ever need to know the last modification date of a file? Consider a long listing:

% ls -l filename

-rw-r--r--  1 dru  wheel  12962 Dec 16 18:01 filename

If you count the fields, the sixth (Dec), seventh (16), and eighth (18:01) fields all contain part of the modification date.
However, there's whitespace separating those fields, which makes it difficult to determine their exact character
positions. Fortunately, awk doesn't mind variable whitespace, so this one-liner will always work:

% echo filename was last modified on `/bin/ls -l filename \

    | awk '{print $6, $7, $8}'`

filename was last modified on Dec 16 18:01

Here I've asked echo to repeat a string as well as the results of a command contained within single quotes. The first half
of that command is simply ls -l filename. I've piped the output of that command to awk, which will print the sixth ($6),
seventh ($7), and eighth ($8) fields of the long listing. Note that the awk action is enclosed between '{ }'.

While this is a useful one-liner, it is fairly awkward to type as needed. However, if you replace filename with a positional
parameter [Hack #13], you have a very handy script. I'll call mine when:

% more ~/bin/when

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% more ~/bin/when

#!/bin/sh

# script to list date of a file's last modification

# replaces $1 with specified filename

# or gives error message if user forgets to include filename

if test $1

then

   echo $1 was last modified on `/bin/ls -l $1| awk '{print $6, $7, $8}'`

else

   echo "Don't forget the name of the file you're interested in"

   exit 1

fi

Once you've made your script executable, use when filename to find the date of a file's most recent modification.

9.12.3 Finding Symlinks

If you ever need to find symbolic links, you're in luck. find's -type l or link option serves just this purpose. Start with this
invocation:

% find /etc -type l -ls

25298    0 lrwxrwxrwx    1 root             wheel                  23 Apr  7 

2003 /etc/termcap -> /usr/share/misc/termcap

25299    0 lrwxrwxrwx    1 root             wheel                  13 

Apr  7  2003 /etc/rmt -> /usr/sbin/rmt

25301    0 lrwxrwxrwx    1 root             wheel                  12 

Apr  7  2003 /etc/aliases -> mail/aliases

25305    0 lrwxr-xr-x    1 root             wheel                  36 

Oct 26 09:08 /etc/localtime -> /usr/share/zoneinfo/America/Montreal

Well, that worked, but the output is downright ugly. Let's pipe the results to our good friend awk to display only the last
three fields. If you count them, those are fields 11 through 13:

% find /etc -type l -ls | awk '{print $11, $12, $13}'

/etc/termcap -> /usr/share/misc/termcap

/etc/rmt -> /usr/sbin/rmt

/etc/aliases -> mail/aliases

/etc/localtime -> /usr/share/zoneinfo/America/Montreal

Aah, much better. If you ever plan on needing to find symlinks, it's well worth saving this in a shell script similar to the
when script shown previously.

9.12.4 Making cron More User-Friendly

Are you always forgetting the meanings of the various fields in a crontab? It would probably be a lot easier if your crontab

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Are you always forgetting the meanings of the various fields in a crontab? It would probably be a lot easier if your crontab
began like this:

# minute (0-59),

# |      hour (0-23),

# |      |       day of the month (1-31),

# |      |       |       month of the year (1-12),

# |      |       |       |       day of the week (0-6 with 0=Sunday).

# |      |       |       |       |       commands

  3      2       *       *      0,6     /some/command/to/run

To achieve that, type those lines into a text file, say ~/cronheader. (Be patient, we're getting to the one-liner.) Then,
open up your crontab editor:

% crontab -e

Unless you've changed your default editor, this will open up your crontab using vi. Place your cursor at the beginning of
the file, and type the following:

!!more /usr/home/dru/cronheader

The !! tells vi to insert the output of the specified command. Be sure to give the full pathname to your file. vi will insert
its contents for you once you press Enter. When you're finished, type :wq as usual to exit the editor.

9.12.5 See Also

man tail

man tar

man cut

man awk

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

9.13 Fun with X

 

Use the utilities that come with the core X distribution.

There are so many GUI utilities, available either as part of your favorite Window Manager or as a separate installation,
that you can forget that the core X distribution also provides several useful and lightweight programs. Do you need to
monitor console messages, manage your clipboard, send pop-up messages, or create and view screenshots? Before you
hit the ports collection, give the built-in utilities a try.

9.13.1 Seeing Console Messages

In [Hack #42], we saw how to redirect console messages. If you're using an X session, the xconsole utility fulfills this
purpose. To start this utility, simply type its name into an xterm or use the Run command provided by your window
manager.

By default, only the superuser can start xconsole. A regular user will instead receive a Couldn't open console message. This
is a safety precaution on multiuser systems, preventing regular users from viewing system messages. If you're the only
user who uses your system, remove the comment (#) from this line in /etc/fbtab:

#/dev/ttyv0    0600    /dev/console

If you spend a lot of your time at an X session, consider adding xconsole to your ~/.xinitrc file so it will start
automatically (see [Hack #9]).

9.13.2 Managing Your Clipboard

If you do a lot of copying and pasting, xclipboard is another excellent candidate for automatic startup. This utility stores
each of your clipboard selections as a separate entity, allowing you to scroll through them one at a time in a simple GUI
window. In addition to the Next and Prev buttons, a Delete button lets you remove unwanted items and a Save button
allows you to save all of your items as a file.

9.13.3 Sending Pop-up Messages

Do you find yourself starting a command that takes a while to execute, continuing your work in an X session, then
returning periodically to the original terminal or xterm to see how that command is perking along? Wouldn't it be easier
to send yourself a pop-up message once the command completes?

For example, suppose I want to know when the script from [Hack #80] finishes. I could execute that script as follows:

#~/bin/mycustomupgrade.sh && xmessage -nearmouse cvsup is complete.

When the upgrade completes, a pop-up message with the text cvsup is complete. will appear in my X session near my
mouse. That message will disappear once I click on the Okay button.

If you're in the habit of using su -l to provide a new login when you become the superuser, you'll find that the preceding
command will fail to send you a pop-up menu. (I'm assuming you're logged in as a regular user when you start your X
session. You should be!) Instead, you'll receive this error message:

Xlib: connection to ":0.0" refused by server

Xlib: No protocol specified

Error: Can't open display: :0.0

This has to do with the X authorization process. If I start my X session as the user dru and use su to execute a
command, I'm still logged in as dru, so I'm allowed to send a message to my display. However, if I use su -l to execute
the command, I'm no longer logged in as dru but as root. The X server refuses to let another user interfere with my

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


the command, I'm no longer logged in as dru but as root. The X server refuses to let another user interfere with my
display, which is a good thing.

A quick workaround is to not use su -l when sending pop-up messages to your regular user account. An alternative is to
understand the X authorization process. You can then use this knowledge to enable the superuser to send a message to
any user on any display.

9.13.3.1 Understanding X authorization

Your X server uses a token known as an MIT magic cookie to provide authorization. When you start your X session, the
server creates and stores this unique cookie in ~/.Xauthority. You can view it at any time using this command:

% xauth list

genisis/unix:0  MIT-MAGIC-COOKIE-1  7e7bc20f9413469a7376e2e5c91aa6f1

Take note that you're the only user with access to this file:

% ls -l ~/.Xauthority

-rw-------  1  dru  wheel   101  Feb 18 13:28 .Xauthority

Always keep in the back of your mind, though, that file ownership does not matter to the superuser. For example, if I
need to send an important message to the user dru, I can ssh into the system she's working on and become the
superuser. Then:

# cp ~dru/.Xauthority .

I now have a copy of dru's magic cookie. However, before I can use it, I'll first have to change my display. Since I sshed
into a terminal, I currently don't have one:

# echo $DISPLAY

DISPLAY: Undefined variable.

I don't want just any display, I want the display dru is currently using. I can find the name of her display by reading her
magic cookie:

# xauth list

genisis/unix:0  MIT-MAGIC-COOKIE-1  7e7bc20f9413469a7376e2e5c91aa6f1

The name of her display is genisis/unix:0, where genisis represents the hostname of the system. I'll now attach to that
display and send my message:

# setenv DISPLAY genisis/unix:0

# xmessage -nearmouse Time to go home, Dru...

(prompt hangs until dru responds by pressing the "Okay" button)

This cheat works on any system to which you have superuser access. Technically, you can execute any command X
understands in a user's X session once you have his cookie and display. Do remember to use your superuser powers for
good, though.

9.13.4 Taking Screenshots

Have you ever needed to send a user a screenshot? There are ports available for this purpose, but the built-in X
command xwd will suffice. Creating a screenshot is a simple matter of:

% xwd -out screenshot.xwd

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% xwd -out screenshot.xwd

The command will appear to hang as it waits for you to click your mouse on the portion of the screen you'd like to
capture. Use the -root switch to capture the entire screen and save yourself a click.

You can view and manipulate the resulting file with most third-party image editors, including xv and gimp. For quick
viewing, though, nothing beats the built-in xwud:

% xwud -in screenshot.xwd

Your results won't seem that impressive if you use xwud immediately, as your screen still probably looks like your
screenshot. When you're finished viewing the screenshot, press Ctrl-c.

9.13.5 See Also

man xconsole

man xclipboard

man xauth

man xwd

man xwud

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 89 How'd He Know That?

 

Make the most of your available resources.

Unless you've achieved Unix guru status, you probably find yourself asking "how did he know that?" whenever you're
around other Unix users or read a really cool snippet in a book. Here's a little secret: he probably had to look it up. As I
tell my students, "No one knows everything. Make sure the one thing you do know is where to go to get the information
you need."

9.2.1 Online Resources

If you're using FreeBSD, there is no shortage of well-written documentation. If you haven't already, bookmark the
FreeBSD Documentation page at http://www.freebsd.org/docs.

There you'll find hyperlinks to the four handbooks, the FAQ, how-to articles, online manpages, as well as other sources
of information. There's a very good chance that someone else has already documented what you want to do.

9.2.2 Keeping Offline Resources Up-to-Date

Online resources are great, but what if you don't always have access to an Internet connection? If you installed the doc
distribution, you already have most of those resources on your hard drive. You'll find the handbooks, FAQ, and articles
in /usr/share/doc. That directory contains symlinks so you can quickly navigate to the desired resource.

If you haven't installed the doc directory structure, you can do so through /stand/sysinstall.
Enter Configuration, then Distributions, and use your spacebar to select doc.

The online resources receive daily updates, so be sure to update your docs when you use cvsup. Make sure your cvsup
file includes this line:

doc-all tag=.

If you're not using cvsup [Hack #80] yet, you have no idea what you're missing!

As cvsup retrieves the latest docs, it will write them to /usr/doc. This will not overwrite or update existing files in
/usr/share/doc. Also, if you've ever poked about /usr/doc, you probably noticed that the resources themselves are
written in SGML, making them a bit hard to read (unless you enjoy wading through tags).

How do you merge in those new changes? It's going to require a conversion of SGML to HTML. To achieve that, first
install the docproj-nojadetex port:

# cd /usr/ports/textproc/docproj-nojadetex 

# make install clean

Then:

# cd /usr/doc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# cd /usr/doc

# make install clean

This will merge all of the changes into the HTML files in /usr/share/doc. If you add this step to your cvsup routine, your
offline resources will always be up-to-date.

9.2.3 What Did the Manpage Forget to Say?

Have you ever read a manpage and been unclear on how a certain switch worked? Perhaps you thought you understood
the syntax until you tried it out and only managed to produce syntax error messages? Even more maddeningly, you
might scour the Internet for concrete examples only to find endless links to the same manpage!

When this happens to me, I consider the program's source as a possible answer. If you're thinking, "I'm not a
programmer; I couldn't read source code if my life depended on it," don't just skip to the next hack. You can still read
comments, and most source in the FreeBSD core is very well commented.

Here's an example. I was reading through man mac_portacl, which indicates that the rule MIB takes this syntax:

idtype:id:protocol:port[,idtype:id:protocol:port,...]

but didn't give a specific example of a working rule. Since this particular MAC policy doesn't do anything until you
successfully create a rule, I was looking for a more concrete example of an effective rule. And, since this module is
fairly new, there weren't any tutorials or how-tos on the Internet. So, before hitting the mailing lists, I took a peek at
the source.

To locate any C source file, use the locate command. Pass it the name of what you're looking for, followed by a .c. For
example:

% locate mac_portacl.c

/usr/src/sys/security/mac_portacl/mac_portacl.c

You must have src installed in order for this to work, and, as indicated, it will only find source code written in C. Happily,
that's most of the FreeBSD core. You can use /sys/sysinstall to install all of the src distributions. If disk space is an issue
or it's not appropriate to install source on the system you're logged into, you can read the source online at
http://minnie.tuhs.org/FreeBSD-srctree/FreeBSD.html.

If you have src installed but don't see any results or do receive an error message that your database is too small,
update the database and try again:

% su

Password:

# /usr/libexec/locate.updatedb

>>> WARNING

>>> Executing updatedb as root. This WILL reveal all filenames

>>> on your machine to all login users, which is a security risk.

# exit

Once you've located the source file, skim through its comments:

% grep '*' /usr/src/sys/security/mac_portacl/mac_portacl.c | tail +30

Here, I told grep to search for an asterisk (*), since C comments always include one. If you forget to enclose the
asterisk within single quotes (''), you won't receive any results, as it is also a shell wildcard. You may want to adjust tail
+30 for your own purposes. Source code begins with anywhere from 25 to 40 lines of copyright and licensing
comments. Here I've told tail to ignore the first (+) 30 lines of comments.

In this particular case, the comments included the example I hoped for:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In this particular case, the comments included the example I hoped for:

* # sysctl security.mac.portacl.rules="uid:425:tcp:80,uid:425:tcp:79"

*

* This ruleset, for example, permits uid 425 to bind TCP ports 80 (http)

* and 79 (finger).  User names and group names can't be used directly

* because the kernel only knows about uids and gids.

Your mileage will vary, but source is definitely another resource at your disposal.

9.2.4 See Also

man hier (includes a description of the contents of /usr/share/doc/)

man tail

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 90 Create Your Own Manpages

 

As a Unix administrator, the one word of sage advice you can give to any user that is guaranteed to solve
any problem is RTFM.

What's an administrator to do when informed by a user that there is no manpage to read? Perhaps the application in
question is a custom application or script, or perhaps it's a third-party program that didn't come with a manpage. Why
not create the missing manual yourself?

9.3.1 Manpage Basics

Creating a manpage isn't all that difficult. After all, a manpage is simply a text file—more specifically, a gzipped text file
sprinkled with groff macros. (I'm quite sure groff gets its name from the choking sound you make as you try to decipher
its manpage.) For man to do its magic, which starts with being able to find the page, the manpage must live in a
directory manpath can see.

Not surprisingly, manpath's configuration file, /etc/manpath.config, contains those paths:

% grep MAP /etc/manpath.config

# MANPATH_MAP          path_element         manpath_element

MANPATH_MAP           /bin                 /usr/share/man

MANPATH_MAP           /usr/bin             /usr/share/man

MANPATH_MAP           /usr/local/bin       /usr/local/man

MANPATH_MAP           /usr/X11R6/bin       /usr/X11R6/man

Basically, manpages to programs that come with the system live in /usr/share/man, third-party applications use
/usr/local/man, and X applications use /usr/X11R6/man. If you ls any of these directories, you'll find directory names
that go from man1 to man9. If you're rusty on the function of each manpage section, run:

% whatis intro

intro(1)                 - introduction to general commands (tools and 

                           utilities)

intro(2)                 - introduction to system calls and error numbers

intro(3)                 - introduction to the C libraries

intro(4)                 - introduction to devices and device drivers

intro(5)                 - introduction to file formats

intro(6)                 - introduction to games

intro(7)                 - miscellaneous information pages

intro(8)                 - introduction to system maintenance and 

                           operation commands

intro(9)                 - introduction to system kernel interfaces

To read a specific section, specify the number between the command and the page, as in man 7 foo.

9.3.2 Creating a Manpage

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can whip up a nicely formatted manpage by knowing only three groff commands, as shown in Table 9-1.

Table 9-1. groff commands
Command Usage

.\" A comment

.TH The title

.SH NAME The only required section

The easiest way to convince yourself of this is to take a few minutes to type out the following custom manpage. When
you're finished, save it as /usr/local/man/man1/boss.1 (as the root user) and view it with man boss. That way, you'll be
able to compare those formatting sequences with how the results are displayed on your screen.

.\" Manpage for boss. 

.\" Contact admin@mycompany.com to correct errors or omissions. 

.TH man 1 "04 January 2004" "1.0" "boss man page"

.SH NAME

boss \- man page for boss

.SH SYNOPSIS

boss

.SH DESCRIPTION

The boss is an ornery creature that can be

appeased with doughnuts and the occasional afternoon

off for golf.

.SH OPTIONS

The boss does not take any options.

.SH SEE ALSO

doughnut(1), golf(8)

.SH BUGS

No known bugs at this time. 

.SH AUTHOR

Dru Lavigne (dlavigne6@sympatico.ca)

If you wish, compress your manpage with gzip /usr/local/man/man1/boss.1.

If you take the time to view this listing, you'll find it looks like any manpage. In fact, it's an excellent idea to take a look
at several manpages before you create your own. This will give you an idea of how you'd like your custom page to
appear.

Notice first that the lines that began with .\" don't appear anywhere in the formatted manpage, as they are comments.
The information in the title (.TH) line appears at the very top and bottom of the manpage. The .SH lines appear nicely
bolded, and the following lines are indented for you. Remember that SH. NAME is mandatory, but you can create as
many .SH sections as you wish.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


many .SH sections as you wish.

As you read other manpages, you'll see that SYNOPSIS, DESCRIPTION, OPTIONS, EXAMPLES, DIAGNOSTICS, ENVIRONMENT,
SEE ALSO, HISTORY, and BUGS are quite common. You'll also get an idea of what type of text belongs in each section.

9.3.3 Getting Fancier

If you want to include fancier formatting in your manpage, find an existing manpage that has the desired format. Then,
instead of opening the manpage with man, send it to zmore. (Remember, you won't be able to read gzipped manpages
directly with more.)

For example, if I want to include switches, I'd borrow from a manpage with switches. ls springs to mind. So I'll read
through:

% zmore /usr/share/man/man1/ls.1.gz

and compare it to man ls. In this manpage, the switches occur in the DESCRIPTION section and the first switch is -A. The
switch itself is in bold text and the switch description is indented with the characters . and .. covered over with white.
The formatting sequences to achieve this are:

.BL -tag -width indent

.It Fl A

List all entries except for

.Pa \&.

and

.Pa .. .

If you're curious as to the exact meaning of each formatting sequence, you'll find them scattered throughout man 7
groff. If you don't have the time to be curious, simply find the section that does what you want and add it to your own
manpage. Save your results, then see if it worked by sending your custom manpage to man.

9.3.4 Printing Manpages

It's often desirable to print certain manpages. If you've ever tried sending a manpage directly to a printer, you probably
found that the results weren't what you were expecting. However, you can use groff to convert the manpage to
something more printer-friendly. PostScript is usually your best bet, and you're in luck, as groff knows how to convert to
PostScript.

First, it's not a bad idea to get the exact location of the source of the manpage. Continuing with ls as an example:

% man -w ls

/usr/share/man/cat1/ls.1.gz (source: /usr/share/man/man1/ls.1.gz)

Note that you're interested in the source, not in the location that includes the word cat.

Once you know the location, use zcat to open the compressed file, pipe the results to groff, and redirect the groff output
to a PostScript file:

# zcat /usr/share/man/man1/ls.1.gz | groff > ls.ps

# file ls.ps

ls.ps: PostScript document text conforming at level 3.0

Note that the default invocation of groff assumes that you wish to convert a manpage to PostScript, so you need no
additional switches.

9.3.5 Hacking the Hack

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you'd like to publish your manpages on a local web site, groff can also convert to HTML—see man 1 groff for details.

If you prefer to convert to PDF, consider installing GNU GhostScript from your ports or packages collection. Once
installed, read man 1 gs for more details.

9.3.6 See Also

man manpath

man 7 groff (the groff formatting commands—look for the Request Short Reference section)

man 7 mdoc (a mini-tutorial that includes a template for creating manpages)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 91 Get the Most Out of Manpages

 

Now that you know how to create your own manpages, you'll want to know how to get the most out of
your manpage viewing.

Since most documentation on Unix systems lives within manpages, it pays to know how to get the most out of your
manpage-reading experience. How do you make sure you're aware of all of the manpages installed on a system? How
do you zero in on the information you need, without having to read an entire manpage? Yes, it's a great experience to
read all of man tcsh at least once in your life, but you don't want to do that when you're only interested in a certain shell
variable.

9.4.1 Finding Installed Manpages

You may have noticed that, by default, whatis [Hack #13] doesn't find custom manpages or those installed by third-
party applications. Not only is this inconvenient, but it can also prevent your users from getting the most out of the
applications installed on a system.

Remember /etc/manpath.config from [Hack #90] ?

% grep MAP /etc/manpath.config

# MANPATH_MAP    path_element        manpath_element

MANPATH_MAP      /bin                /usr/share/man

MANPATH_MAP      /usr/bin            /usr/share/man

MANPATH_MAP      /usr/local/bin      /usr/local/man

MANPATH_MAP      /usr/X11R6/bin      /usr/X11R6/man

The makewhatis command actually creates the whatis database and, by default, makewhatis reads only /usr/share/man.
It'll skip any manpages in /usr/local/man and /usr/X11R6/man, because it doesn't know they exist!

To gather in those missing manpages, pass these extra directories to makewhatis:

# makewhatis /usr/local/man /usr/X11R6/man

#

The superuser can run this command at any time, say, after installing new software. If
you're a forgetful or appropriately lazy superuser, consider adding this as a regular cron
job.

Now users will be aware of all of the manpages on the system.

9.4.2 Navigational Tricks

There's nothing worse than wading through dozens of pages of information that are irrelevant to your question. Why
wade when you can zero in on the information you want? When you read a manpage, man sends the text to your
default pager—a program designed for speedy navigation.

FreeBSD 4.1 replaced the more pager with less. less is chock-full of useful and configurable navigation tricks, so this is a
case where less really is more.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


case where less really is more.

Even though your .cshrc file and man man show more as your default pager, remember more
is now really less.

less even comes with its own help system containing an itemized list of all of its neat tricks. Whenever you're in a
manpage—or, for that matter, in any file you've sent to a pager—simply type h to see the help screen.

I won't repeat that help here, but Table 9-2 shows some navigational keys to get you moving around.

Table 9-2. less navigation keys
Key Behavior

Enter Scrolls down one line

y Scrolls up one line (think "yikes, I missed it!")

Spacebar Scrolls down one page

b Scrolls up (back) one page

g Goes to the beginning of the manpage

q Quits the pager (so you don't have to read the whole manpage)

9.4.3 Customizing less

It's well worth your time to experiment with how less formats its output. For example, when you open a manpage, the
prompt at the bottom of your screen indicates how many bytes of that manpage you've read. If you type -m, you'll
change to the short prompt, a single colon (:). -M changes to the long prompt, which displays the line range you're
currently viewing.

If you really want to know what line you're on, try -N. Read up on -P to create your own custom prompt string.

You can also configure how many lines you scroll, also known as the window size. Here I'll change the window size to
10 lines:

-z

Scroll window size: 10

Scroll window size is 10 lines  (press RETURN)

Now when I press my spacebar, I'll scroll down 10 lines instead of the entire screen.

If you experiment with the dozens of options listed in help, you'll find that they only last for the contents of the current
manpage. If you find options you like, make them permanent by adding them to your ~/.cshrc file. Here I'll
permanently configure the -M, or long, prompt and a window size of 10:

setenv LESS Mz10

Note that I've simply created a string of desired options, minus the switch indicator (-). I'll also have to change the line
setenv PAGER more to setenv PAGER less, so that applications that honor my pager choice will use less instead of more. To
test your changes, force the shell to reread its configuration file, then open up a manpage:

% source ~/.cshrc

% man man

That manpage should now have a customized prompt and window.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


9.4.4 Searching Text

Now that you can move around, you'll want to search for the information you need. After all, you're usually looking for
something specific when you read a manpage. Fortunately, less provides an easy-to-use search feature. Press /, the
forward slash. Your prompt will change to / while less waits for you to type in a search string of one or more words.

Consider adding I to the less configuration in your .cshrc file to enable case-insensitive
searching. Without it, searching for /long format in man ls will skip the desired section, as it
is entitled The Long Format.

Press Enter once you've typed in a search string, and less will take you to the first occurrence of that string. Repeatedly
pressing n will scroll you through the next occurrences. Press N to scroll back through your search results. If you change
your mind and want to search for something else, press /.

Suppose you're reading or searching along and find an interesting bit you'll want to refer to again. Mark your current
position with:

m

mark: a

Here I've marked my position with the letter a. I'll then carry on with reading the results of the rest of my search. To
return to that position, I simply type a single quote and the position marker ('a). You can mark as many as 26 positions
(one for each lowercase letter).

You can also use two single quotes ('') to toggle back and forth between two positions. For example, I may be in man
systat and can't believe the display includes a pigs option. So I do a search for /pigs and read up on that type of display.
'' will bring me back to the original line that piqued my curiosity. Another '' will put me back at my search result.

9.4.5 See Also

manpath

man man

man makewhatis

man less

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 92 Apply, Understand, and Create Patches

 

Sometimes only the little differences matter.

Despite all your best efforts, eventually you'll end up with multiple versions of a file. Perhaps you forgot to keep your
.vimrc in sync between two machines [Hack #10] . Alternatively, you may want to see the changes between an old
configuration file and the new version. You may even want to distribute a bugfix to a manpage or program.

Sending the entire changed file won't always work: it takes up too much space and it's hard to find exactly what
changed. It's often easier and usually faster to see only the changes (see [Hack #80] for a practical example). That's
where diff comes in: it shows the differences between two files.

As you'd expect, applying changes manually is tedious. Enter patch, which applies the changes from a diff file.

9.5.1 Finding Differences

Suppose you've shared a useful script with a friend and both of you have added new features. Instead of printing out
both copies and marking differences by hand or, worse, trying to reconcile things by copying and pasting from one
program to another, use diff to see only the differences between the two programs.

For example, I've customized an earlier version of the copydotfiles.pl script from [Hack #9] to run on Linux instead of
FreeBSD. When it came time to unify the programs, I wanted to see the changes as a whole. diff requires two
arguments, the source file and the destination. Here's the cryptic (at first) result:

$ diff -u copydotfiles.pl copydotfiles_linux.pl

--- copydotfiles.pl        2004-02-23 16:09:49.000000000 -0800

+++ copydotfiles_linux.pl        2004-02-23 16:09:32.000000000 -0800

@@ -5,8 +5,8 @@

 #    - change ownership of those files

 # You may wish to change these two constants for your system:

-use constant HOMEDIR => '/usr/home';

-use constant SKELDIR => '/usr/share/skel';

+use constant HOMEDIR => '/home';

+use constant SKELDIR => '/etc/skel';

 use strict;

@@ -19,8 +19,8 @@

 {

     for my $dotfile (@ARGV)

     {

-        my $source = catfile( SKELDIR( ),        'dot' . $dotfile );

-        my $dest   = catfile( $user->{homedir},         $dotfile );

+        my $source = catfile( SKELDIR( ),        $dotfile );

+        my $dest   = catfile( $user->{homedir}, $dotfile );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         if (-e $dest)

         {

This output reveals only three changes. Linux and FreeBSD keep user home directories and skeleton configuration files
in different directories. Fortunately, this only involved changing two constants at the top of the file.

The -u flag produces unified output, mingling the source and destination lines. It's not the
default, but it's the easiest to read and to explain. Count yourself lucky if you never run
across the alternatives.

As you may have guessed from the name, only the differences appear. Each of the two files has a separate marker at
the leftmost column. Let's look at that header again:

--- copydotfiles.pl            2004-02-23 16:09:49.000000000 -0800

+++ copydotfiles_linux.pl      2004-02-23 16:09:32.000000000 -0800

The first line marks the source file, the FreeBSD version. We're marking changes against that file. diff will mark lines
that have changed from that file with a leading minus (-) character. The second line marks the destination file, the
Linux version. Lines that have changed in this file appear with a leading plus (+) character.

diff produces output that you can apply to the first file to produce the second file. That is, you should remove (or
subtract) all of the lines with the leading minus character and add all of the lines with the leading plus character to
produce the destination file.

The rest of the output consists of hunks. Each hunk also has a header:

@@ -5,8 +5,8 @@

This indicates that the hunk starts on line 5 of the source file and affects eight lines. It also starts on the fifth line of the
destination file and affects eight lines—a simple substitution. In general, you can ignore this unless you're working on
something really detailed.

The actual lines of the file are more important. Pay close attention to the leading characters.

#    - change ownership of those files

# You may wish to change these two constants for your system:

-use constant HOMEDIR => '/usr/home';

-use constant SKELDIR => '/usr/share/skel';

+use constant HOMEDIR => '/home';

+use constant SKELDIR => '/etc/skel';

use strict;

Again, this is a simple substitution. Since diff only works on lines, it has no way of indicating that only the value of the
constants has changed.

9.5.2 Applying Patches

By redirecting this output to a file, I can produce a patch file. Though anyone who can read diff output could apply those
changes manually, it's much easier to use the patch program, especially if the file I'm patching has had other changes in

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


changes manually, it's much easier to use the patch program, especially if the file I'm patching has had other changes in
the meantime. As long as those changes do not overlap, patch will work magically well.

Suppose I'd written:

$ diff -u copydotfiles.pl copydotfiles_linux.pl > dotfiles.patch

Now anyone who wants to apply the changes from the latter file to the former file can apply the patch. Copy the
dotfiles.patch file into the same directory as copydotfiles.pl and use the command:

$ patch < dotfiles.patch

patching file copydotfiles.pl

If you're lucky, the patch will apply with little fanfare. If you're unlucky, things may have moved around in your file
since the creation of the patch. In that case, patch may warn about some fuzz. If I rearrange a couple of lines in the first
hunk that aren't actually changed in the patch, I might see a message such as:

$ patch < dot.patch

patching file copydotfiles.pl

Hunk #1 succeeded at 7 with fuzz 2 (offset 2 lines).

If I were really unlucky, I'd have had changes in the lines the patch also changed. patch tries as hard as it can to
massage patches, but sometimes it just can't resolve things. You'll see output like this in those cases:

$ patch < dot.patch

patching file copydotfiles.pl

Hunk #1 succeeded at 7 with fuzz 2 (offset 2 lines).

Hunk #2 FAILED at 21.

1 out of 2 hunks FAILED -- saving rejects to file copydotfiles.pl.rej

In this case, it's up to you, the user, to resolve any changes. patch has actually created two new files,
copydotfiles.pl.orig and copydotfiles.pl.rej. The first contains the file before any patching attempt; the second contains
the hunks patch could not apply.

Fortunately, the original file does contain the hunks that could apply without conflicts. In this case, it's easier to open
the copydotfiles.pl.rej file to apply the changes manually.

***************

*** 21,28 ****

  {

      for my $dotfile (@ARGV)

      {

-         my $source = catfile( SKELDIR( ),        'dot' . $dotfile );

-         my $dest   = catfile( $user->{homedir},           $dotfile );

          if (-e $dest)

          {

--- 21,28 ----

  {

      for my $dotfile (@ARGV)

      {

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      {

+         my $source = catfile( SKELDIR( ),        $dotfile );

+         my $dest   = catfile( $user->{homedir},   $dotfile );

          if (-e $dest)

          {

This format is a little harder to read than the unified format, but it's reasonably straightforward. The top half comes
from the source file in the patch and represents lines 21 through 28 of the original file. Again, the leading minus
character represents lines to remove. The bottom half comes from the destination file in the patch, also lines 21
through 28. This contains two lines to add.

Looking in copydotfiles.pl around those lines, it turns out that the first line containing SKELDIR( ) has changed subtly,
thus causing the conflict:

{

    for my $dotfile (@ARGV)

    {

        my $source = catfile( SKELDIR( ),        "dot$dotfile" );

        my $dest   = catfile( $user->{homedir},        $dotfile );

        if (-e $dest)

        {

I have two options: I could edit the file directly, making the modifications as seen in either the source file or the
destination file of the patch, or I could ignore this hunk if the local modifications are better than those of the patch.

In this case, the patch is clearly an improvement. Since it's only two lines, I'll just make the changes directly.
Otherwise, I could revert the changes in my local file and try to reapply the rejected hunks.

9.5.3 Creating Patches

It's often handy to create patches from normal files, as in the previous example, when sharing code or text with
another user. It's also useful to see the differences between configuration files when upgrading an application. Knowing
how to read a diff between your version of httpd.conf and httpd.conf.default can save you hours of debugging time.

What if you want to find differences between entire directories, though? Suppose you want to see the changes between
two versions of a program. If you can't upgrade to the new version right away but want to see if there's a patch
available that you can apply, use diff on the directories themselves. Be sure to pass the recursive flag (-r) if you want to
compare files in subdirectories:

$ diff -ur sdl/trunk SDL_Perl-2.1.0 > sdl_trunk.patch

If that's not appropriate and you want to patch only a couple of files at a time, run diff multiple times. Append the
output to a combined patch. patch is smart enough to recognize the start of file markers:

$ diff -u sdl/trunk/CHANGELOG SDL_Perl-2.1.0/CHANGELOG >> \

    sdl_textfiles.patch

$ diff -u sdl/trunk/README SDL_Perl-2.1.0/README >> \

    sdl_textfiles.patch

$ diff -u sdl/trunk/INSTALL SDL_Perl-2.1.0/INSTALL >> \

    sdl_textfiles.patch

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    sdl_textfiles.patch

Finally, if you need to create a patch for a file that doesn't exist, use the null file flag (-n) with /dev/null as the source:

$ diff -un /dev/null SDL_Perl-2.1.0/LICENSE >> \

    sdl_textfiles.patch

This will create the file when someone applies the patch. You could also touch the file in the source directory.

9.5.4 Revision Control

Life's much easier when you're working with revision control. Someday, you may find yourself patching source code or
text files in core BSD. Modify the code in your tree, make sure it works, and then use cvs diff -u to generate patches to
mail to the appropriate development list.

Subversion, the likely successor to CVS, generates the right kind of patches without the -u flag—simply use svn diff.
There is a FreeBSD port and a NetBSD package for Subversion. You can also download binary packages and source for
most operating systems from http://subversion.tigris.org/.

Once you're used to using patches to keep track of file differences, you may find yourself tempted to keep all important
files under version control. Hey, why not?

9.5.5 See Also

man diff

man patch

"CVS homedir," Joey Hess's Linux Journal article on keeping his home directory in CVS
(http://www.linuxjournal.com/article.php?sid=5976)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 93 Display Hardware Information

 

If you're new to FreeBSD, you may be wondering where to find information about your system's hardware
and the resources it uses.

You've probably noticed that your FreeBSD system didn't ship with a Microsoft-style Device Manager. However, it does
have plenty of useful utilities for gathering hardware information.

9.6.1 Viewing Boot Messages

When you boot your system, the kernel probes your hardware devices and displays the results to your screen. You can
view these messages, even before you log in, by pressing the scroll lock key and using your up arrow to scroll back
through the message buffer. When you're finished, press scroll lock again to return to the login or command prompt.

You can type dmesg any time you need to read the system message buffer. However, if it's been a while since bootup,
it's quite possible that system messages have overwritten the boot messages. If so, look in the file
/var/run/dmesg.boot, which contains the messages from the latest boot. This is an ASCII text file, so you can send it to
a pager such as more or less.

You may find it more convenient to search for something particular. For example, suppose you've added sound support
to your kernel by adding device pcm to your kernel configuration file. This command will show if the PCM device was
successfully loaded by the new kernel:

% grep pcm /var/run/dmesg.boot

pcm0: <Creative CT5880-C> port 0xa800-0xa83f irq 10 at device 7.0 on pci0

pcm0: <SigmaTel STAC9708/11 AC97 Codec>

In this example, the kernel did indeed probe my Creative sound card at bootup.

9.6.2 Viewing Resource Information

Sometimes you just want to know which devices are using which system resources. This command will display the
IRQs, DMAs, I/O ports, and I/O memory addresses in use:

% devinfo -u

Interrupt request lines:

    0 (root0)

    1 (atkbd0)

    2 (root0)

    3 (sio1)

    4 (sio0)

    5 (rl0)

    6 (fdc0)

    7 (ppc0)

    8 (root0)

    9 (acpi0)

    10 (pcm0)

    11 (rl1)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    12 (psm0)

    13 (root0)

    14 (ata0)

    15 (ata1)

DMA request lines:

    0-1 (root0)

    2 (fdc0)

    3 (ppc0)

    4-7 (root0)

I/O ports:

    0x0-0xf (root0)

    0x10-0x1f (acpi_sysresource0)

    0x20-0x21 (root0)

<snip>

I/O memory addresses:

    0x0-0x9ffff (root0)

    0xa0000-0xbffff (vga0)

    0xc0000-0xcbfff (orm0)

    0xcc000-0xfbffffff (root0)

    0xfc000000-0xfdffffff (agp0)

    0xfe000000-0xffffffff (root0)

Alternately, use devinfo -r if you prefer to see your listing by device.

If you're unsure what a device is, use the whatis command. For example, in my listing, ppc0 uses IRQ 7 and DMA 3. To
find out what ppc0 is:

% whatis ppc

ppc(4)         Parallel Port Chipset driver

Don't include the trailing number when using the whatis command.

9.6.3 Gathering Interface Statistics

There are several ways to gather network interface information. One of the handiest is the -i switch to netstat:

% netstat -i

Name    Mtu Network       Address            Ipkts Ierrs  Opkts Oerrs  Coll

rl0*   1500 <Link#1>      00:05:5d:d2:19:b7    0     0        0     0     0

rl1*   1500 <Link#2>      00:05:5d:d1:ff:9d    0     0        0     0     0

ed0    1500 <Link#3>      00:50:ba:de:36:33  15247   0     11301    0    78

ed0    1500 192.168.2     genisis.           15091   -     11222    -     -

lp0*   1500 <Link#4>                           0     0        0     0     0

lo0   16384 <Link#5>                         179     0      179     0     0

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


lo0   16384 your-net      localhost          179     -      179     -     -

This command shows all interfaces, both physical and virtual. This particular system has three network interface cards:
rl0, rl1, and ed0. The first two interfaces are shut down, as indicated by the * after the device name. These three are
Ethernet cards, as indicated by their MAC addresses. (This is also an excellent way to find all of the MAC addresses on
your system).

The ed0 interface and loopback interface (lo0) have each been configured with a hostname and an IP address, as
indicated by the Network column. If you're only interested in seeing interfaces configured with an IPv4 address, add the
-f (family) switch:

% netstat -i -f inet

ed0    1500 192.168.2     genisis.           15091   -     11222    -     -

lo0   16384 your-net      localhost          179     -      179     -     -

9.6.4 Viewing Kernel Environment

You can also find hardware information by using kenv to view your kernel environment. kenv will dump several screens
worth of information, so use grep when possible to zero in on the information you want. For example, to view IRQ
information:

% kenv | grep irq

hint.ata.0.irq="14"

hint.ata.1.irq="15"

hint.atkbd.0.irq="1"

hint.ed.0.irq="10"

hint.fdc.0.irq="6"

hint.ie.0.irq="10"

hint.le.0.irq="5"

hint.lnc.0.irq="10"

hint.pcic.1.irq="11"

hint.ppc.0.irq="7"

hint.psm.0.irq="12"

hint.sio.0.irq="4"

hint.sio.1.irq="3"

hint.sio.2.irq="5"

hint.sio.3.irq="9"

hint.sn.0.irq="10"

If you're unsure what is using a listed IRQ, use whatis to look up the second word (the one after hint). For example, this
will show what is using my IRQ 12:

% whatis psm

psm(4)      - PS/2 mouse style pointing device driver

I actually prefer the output of kenv to that of devinfo. Here, I'll search for the I/O addresses used by my COM ports:

% kenv | grep port | grep sio

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% kenv | grep port | grep sio

hint.sio.0.port="0x3F8"

hint.sio.1.port="0x2F8"

hint.sio.2.port="0x3E8"

hint.sio.3.port="0x2E8"

To see which devices are disabled:

% kenv | grep disabled

hint.sio.2.disabled="1"

hint.sio.3.disabled="1"

BSD gives the first com port the number zero, so it looks like I have COM3 and COM4 disabled on this system.

9.6.5 See Also

man dmesg

man devinfo

man netstat

 man kenv

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 94 Determine Who Is on the System

 

As a system administrator, it pays to know what's happening on your systems.

Sure, you spend time reading your logs, but do you take advantage of the other information-gathering utilities available
to you? Silently, in the background, your system tracks all kinds of neat information. If you know enough to peek under
the system hood, you can get a very good view of what is occurring on the system at any given point in time.

For the experienced hacker, the output from these commands may suggest interesting
scripting possibilities.

9.7.1 Who's on First?

Have you ever needed to know who logged into a system and for how long? Use the users command to see who's
logged in now:

% users

dru biko

Perhaps you prefer to know who is on which terminal. Try who. Here, the H includes column headers and the u shows
each user's idle time:

% who -Hu

NAME             LINE     TIME         IDLE  FROM            

dru              ttyv1    Jan 25 08:59 01:00 

biko             ttyv5    Jan 25 09:57   .   

dru              ttyp0    Jan 25 09:58 00:02 (hostname)

Feel free to experiment with who's switches to find an output that suits your needs. Here, dru and biko have logged in
physically at this system's keyboard using virtual terminals 1 and 5. dru has also logged in over the first psuedoterminal
(over the network) from the specified hostname.

To find out what everyone is doing, use w:

% w

10:07AM  up  1:20, 9 users, load averages: 0.02, 0.02, 0.09

USER             TTY      FROM              LOGIN@  IDLE WHAT

dru              v1       -                 8:59AM  1:08 pine

biko             v5       -                 9:57AM     - w

dru              p0       hostname          9:58AM     4 -csh (csh)

If you're just interested in that first line of output, use uptime.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you're just interested in that first line of output, use uptime.

Notice that as a regular user, I was easily able to find out who is logged in, where they are, and what they're currently
doing. If you don't want regular users knowing what commands other users are currently running, see [Hack #57] .

9.7.2 When Did That Happen?

You're not limited to finding out what's happening at this particular moment. Use lastlogin to see the most recent time at
which each of your users logged in:

% lastlogin

dru        ttyv1                   Sun Jan 25 08:59:36 2004 

biko       ttyv5                   Sun Jan 25 09:57:18 2004 

dlavigne   ttyv6                   Sat Jan 24 09:48:32 2004 

dru        ttyp0    hostname       Sun Jan 25 09:58:50 2004 

rembackup  ttyp0    hostname       Fri Jan 23 01:00:00 2004

For a slightly different output, last can show who is still logged in:

% last | grep still

dru        ttyp0    hostname       Sun Jan 25 09:58   still logged in

dru        ttyv1                   Sun Jan 25 08:59   still logged in

biko       ttyv5                   Sun Jan 25 09:57   still logged in

Do you need a record of system shutdowns or reboots? The /var/log/wtmp database holds this information. Use last to
view the desired statistics:

% last reboot

reboot           ~                         Tue Jan 20 15:37

reboot           ~                         Tue Nov 25 07:24

reboot           ~                         Sun Aug  3 09:05

wtmp begins Tue Jul  1 15:27:26 EDT 2003

% last shutdown

shutdown         ~                         Wed Dec 24 22:14

wtmp begins Tue Jul  1 15:27:26 EDT 2003

9.7.3 Details, Details

Another option to consider is enabling system accounting, which maintains a database of extremely detailed statistics of
every process and subprocess that has been executed on a system.

# touch /var/account/acct

# accton /var/account/acct

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# accton /var/account/acct

Note that the accton command will fail if you don't specify the name of the accounting log or if that log doesn't already
exist. Also, in a queer case of logic, typing accton with no arguments really turns accounting off.

Once accounting is enabled, use lastcomm to view the contents of /var/account/acct:

% lastcomm

lastcomm    -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

man         -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

sh          -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

sh          -F    dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

less        -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

col         -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

groff       -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

grotty      -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

troff       -     dlavigne     ttyv6      0.08 secs Sun Jan 25 11:33

tbl         -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

zcat        -     dlavigne     ttyv6      0.00 secs Sun Jan 25 11:33

cron        -F    root         __         0.00 secs Sun Jan 25 11:33

sh          -     operator     __         0.00 secs Sun Jan 25 11:33

sh          -     operator     __         0.00 secs Sun Jan 25 11:33

dd          -     operator     __         0.00 secs Sun Jan 25 11:33

mv          -     operator     __         0.00 secs Sun Jan 25 11:33

mv          -     operator     __         0.00 secs Sun Jan 25 11:33

mv          -     operator     __         0.00 secs Sun Jan 25 11:33

rm          -     operator     __         0.00 secs Sun Jan 25 11:33

jot         -     operator     __         0.00 secs Sun Jan 25 11:33

accton      -     root         ttyv0      0.00 secs Sun Jan 25 11:32

This comes from a quiet system one minute after enabling accounting. A cron job happened to be running at the time,
hence the operator lines. The user dlavigne6 also opened up a manpage during that period. Note all of the processes
involved before man actually started.

This command can also show you which processes ended abnormally. Search for the D
flag, which indicates that the process dumped core:

% lastcomm | grep -w "D"

Depending upon your security requirements, you may not want users to have access to such detailed information. After
all, lastcomm will show every process run by every user. Tightening permissions will fix that:

# chmod 600 /var/account/acct

# su dlavigne

% lastcomm

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% lastcomm

lastcomm: /var/account/acct: Permission denied

Also, if you're planning on using lastcomm as an extra audit trail, consider changing this file's flags [Hack #56] . You'll
also want to have plenty of disk space on the filesystem holding the database.

Finally, to enable system accounting when the system boots, add this line to /etc/rc.conf:

accounting_enable="YES"

9.7.4 See Also

man users

man who

man w

man lastlogin

man last

man lastcomm

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 95 Spelling Bee

 

For those who edit their text at the command line.

Like most computer users, you probably find yourself spending a fair bit of time typing, whether responding to email,
navigating the web, or working on that résumé or thesis. How often do you find yourself looking at a word, wondering if
you've spelled it correctly? How often do you rack your brain trying to find a more interesting or descriptive word?

You've probably discovered that Unix doesn't come with a built-in dictionary or thesaurus. Sure, you can install a
feature-rich GUI office suite, but what alternatives are there for users who prefer less bloat on their systems or are
accessing systems from the command line?

9.8.1 Quick Spellcheck

If you're in doubt about the spelling of a word, try using look. Simply include as much of the word as you're sure about.
For example, if you can't remember how to spell "bodacious" but you're pretty sure it starts with "boda":

% look boda

bodach

bodacious

bodaciously

If you don't have access to a GUI, see [Hack #12] .

I find look especially helpful with suffixes. It's very handy if you can't remember when to use "ly", "ally", or "ily". For
example:

% look mandator

mandator

mandatorily

mandatory

9.8.2 Creating a Dictionary or Thesaurus

look is a useful spellchecker, but it won't show you the meanings or synonyms of a word. Accordingly, I found myself
spending a fair bit of time at http://dictionary.reference.com/. While there, I noticed a pattern. Whatever word I
searched for was appended to the URL as search?q=<myword>. Whenever I used the dictionary, the URL started with
dictionary, which changed to the word thesaurus whenever I did a thesaurus lookup. That suggested to me that it would
be very easy to generate my own custom lookup utility, so I started out with these two scripts:

% more ~/bin/dict

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


% more ~/bin/dict

#!/bin/sh

# script to look up the definition of word from dictionary.reference.com

# replaces $1 with user's search string

# or gives error message if user forgets to include search string

if test $1

then

   w3m "http://dictionary.reference.com/search?q="$1""

else

   echo "Don't forget to include the word you would like to search for"

   exit 1

fi

% more ~/bin/thes

#!/bin/sh

# script to find the synonym of word from thesaurus.reference.com

# replaces $1 with user's search string

# or gives error message if user forgets to include search string

if test $1

then

   w3m "http://thesaurus.reference.com/search?q="$1""

else

   echo "Don't forget to include the word you would like to search for"

   exit 1

fi

Recognize those positional parameters we saw before in [Hack #13] ? When I use either script, I include the word that
I would like to look up.

The utility I chose to grab the results is the command-line browser w3m, which can be built from /usr/ports/www/w3m.
If you have already installed another command-line browser, such as lynx or links, specify your browser in your own
script. Don't forget to make your script executable with chmod +x. Then, to look up the meaning of a word:

% dict palladium

Or, to find its synonyms and antonyms:

% thes brusque

If you're not stuck at the command line, Mozilla-based browsers allow you to create similar
shortcuts. See Asa Dotzler's article on custom keywords at
http://www.mozilla.org/docs/end-user/keywords.html.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


9.8.3 Improved Dictionary

Well, that's a fair start—my browser now automagically takes me to the correct section of an online dictionary or
thesaurus whenever I'm curious about a particular word. However, what if I want to forgo using a browser altogether?
FreeBSD comes with the fetch utility specifically to retrieve web information. Why not use it to retrieve the results?

Before editing my scripts, I tried various invocations of fetch at the command line until I had achieved my desired
results. I started out by replacing w3m with fetch (note that I had to supply a word, in this case test, as I was at the
command line, not within a script):

% fetch "http://dictionary.reference.com/search?q=test"

This worked, but it resulted in a file called search?q=<myword>, where <myword> was the word I had supplied as the
parameter. After a while, my home directory would be full of hundreds of files starting with search?q.

So, I specified the name of a file to which to write the results:

% fetch -o results "http://dictionary.reference.com/search?q=test"

Now, regardless of the number of times I use my script, I'll only have one file called results. There's a problem with that
file, though. It's an HTML file, so unless I enjoy wading through HTML tags in order to read my results, I have to open
up that file in a browser. That sorta defeats my goal of not using a browser.

So, I went out on the Web looking for an HTML-to-ASCII converter. I tried out several before settling on a Perl script
called html2txt .

I then tried piping the results file to the converter:

% fetch -o results "http://dictionary.reference.com/search?q=test" \ 

        | html2txt results

Cannot open HTML source file : results, Error No such file or directory

Receiving results: 21791 bytes

That's when I hit a timing issue. It takes a few seconds for fetch to retrieve the file, so html2txt complains when the shell
asks for it to work on that (as of yet) nonexistent file. To solve that, I asked the shell to wait until after fetch was
finished by using && instead of |:

% fetch -o results "http://dictionary.reference.com/search?q=test" \

        && html2txt results

To finish off my command, I ask for the ASCII-fied file to be opened up in a pager so I can view the results:

% fetch -o results "http://dictionary.reference.com/search?q=test" \

        && html2txt results && more results.txt

Note that this particular converter creates an ASCII file with the same name, but with a .txt extension.

9.8.4 Become a Crossword Champion

Did you know that your system has a built-in crossword-puzzle solver? You may never have to leave a square empty
again if you remember this little trick.

Consider a word that resembles:

t _ _ _ k _ _ _r

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


t _ _ _ k _ _ _r

This one-liner will show your possibilities, allowing you to choose the word that matches the clue definition:

% grep -wi 't...k...r' /usr/share/dict/words/  

thickener

trickster

trinketer

truckster

Here, grep searched through the dictionary words installed on your system. (This is the same file that look searches.)
Use single quotes for your search phrase, and replace each blank square in your crossword with a ..

9.8.5 See Also

man fetch

The Perl HTML-to-text converter at http://www.ftls.org/en/examples/perl-tools/html2txt.shtml

"Wanna Cheat at Crosswords?" (http://www.osxfaq.com/tips/unix-tricks/week23/friday.ws)

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Hack 96 Leave on Time

 

Use your terminal's built-in timers and schedulers.

You know how it is. You sit down in front of a keyboard and quickly become absorbed in your work. At some point you
remember to look up, only to notice that everyone else is gone for the day. If that doesn't describe you, I bet you can
think of at least one person it does describe.

9.9.1 Don't Forget to Leave

Fortunately the leave command can save you from the embarrassment of forgetting important appointments. Use it at
any time by typing:

% leave

When do you have to leave?

There are three ways to respond to that question:

Press Enter to abort.

Type hhmm, where hh represents the hour and mm represents the minute.

Type +number, where number represents how many hours or minutes from now you'd like to leave.

For example, to leave at 5 PM:

% leave 500

Alarm set for Tue Dec 30 17:00:00 EST 2003. (pid 50097)

leave 1700 will achieve the same results.

Or, to leave in 45 minutes:

% leave +45

Alarm set for Tue Dec 30 9:52:00 EST 2003. (pid 50108)

Be sure to include the + if you're not specifying an actual time.

You can then carry on with your day. Five minutes before it's time to leave, your terminal will beep and display this
message:

You have to leave in 5 minutes.

You'll receive another warning one minute before the set time, then every minute thereafter. leave definitely works for
the procrastinator and those who always need to do just one more thing before leaving. The only way to end the
incessant nagging is to log out or killall leave (but please don't take that last command literally!).

Consider placing /usr/bin/leave in /usr/share/skel/dot.cshrc [Hack #9].

9.9.2 Creating Terminal Sticky Notes

leave is nice for scheduling your own departure, but what if you want to schedule the execution of commands? I bet

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


leave is nice for scheduling your own departure, but what if you want to schedule the execution of commands? I bet
you're thinking "use at or cron." Have you ever tried the scheduler built into tcsh?

While sched can execute any command at a given time, you can also use it as a reminder system. I use it as a terminal
sticky-note system that won't clutter up my monitor. For example, it's 9:00, I've just logged in, and I'm mulling over
my to-do list for the day. As I mentally review my list, I type the following:

% sched 11:55 echo Lunch with Robyn today.

% sched 2:30 echo Reminder: project due by 4:30.

% sched 5:00 echo Go home!!!

Now at any point in the day I can review my to-do list:

% sched

1     11:55    echo Lunch with Robyn today.

2     2:30     echo Reminder: project due by 4:30.

3     5:00     echo Go home!!!

As each appointed time arrives, the desired reminder will appear on my terminal.

To remove an item from your to-do list, simply type sched -#, where # represents the number of that item in the
schedule. Logging out of your shell will also remove all items from your list since sched is a shell command.

9.9.3 Saving Your Schedule

What if you plan on logging out during the day? You certainly don't want to recreate your schedule every time you log
in. It's a simple matter to save the schedule. Place this line in your ~/.logout file:

sched > schedule

This will send the output of sched to a file in your home directory called schedule, saving any items in your to-do list to
the specified file when you log out.

Unfortunately, there's no simple way to pipe that list back into sched when you log back in. This has to do with how the
C shell handles its built-in commands. You would think that:

% sched < schedule

would reverse the process, but it doesn't. If you really miss your shell sending you reminders at their appointed times,
consider locking your terminal [Hack #7] instead of logging out during the day.

9.9.4 See Also

man leave

man tcsh

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Chapter 9. Grokking BSD
Introduction

Section 89.  How'd He Know That?

Section 90.  Create Your Own Manpages

Section 91.  Get the Most Out of Manpages

Section 92.  Apply, Understand, and Create Patches

Section 93.  Display Hardware Information

Section 94.  Determine Who Is on the System

Section 95.  Spelling Bee

Section 96.  Leave on Time

Section 97.  Run Native Java Applications

Section 98.  Rotate Your Signature

Section 99.  Useful One-Liners

Section 9.13.  Fun with X

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

About the Author
Dru Lavigne is the author of ONLamp.com's FreeBSD Basics column and has been an avid BSD user since FreeBSD
2.2.1. As an IT instructor, she specializes in networking, routing, and security. She is also responsible for ISECOM's
Protocol Database, which can be found at http://www.isecom.org.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Contributors
The following people contributed their hacks, writing, and inspiration to this book:

John Richard, known locally as JR, is a system administrator in Kingston, Ontario, Canada. His trademark in the
field is his insistence on a FreeBSD box as the primary firewall on a network. He has enjoyed working with the
author in the past at a private college in Kingston. In his spare time, he experiments with FreeBSD and rides his
Harley-Davidson.

[Hack #64]

Joe Warner is a Technical Analyst for Siemens Medical Solutions Health Services Corporation and has been
using FreeBSD as a server and desktop since October of 2000. Joe has lived in Salt Lake City, Utah for most of
his life and enjoys *BSD, computing, history, and The Matrix.

[Hacks #35 and #59]

Dan Langille (http://www.langille.org/) runs a consulting group in Ottawa, Canada. He has fond memories of his
years in New Zealand, where the climate is much more conducive to year-round mountain biking. He lives in a
house ruled by felines.

[Hack #41]

Robert Bernier's professional career has included engineering, accident investigation, and Olympic trials. In the
1980s, his interest returned to IT when he realized he wouldn't have to use a punch card anymore. Eventually
he discovered Linux and by the mid-1990s had developed a passion for all things open source. Today, Robert
teaches at the local community college and writes for a number of IT publications based in North America and
Europe.

[Hack #12]

Kirk Russell (kirk@qnx.com) is a kernel tester at QNX Software Systems (http://www.qnx.com/).

[Hack #36]

Karl Vogel is a system administrator for the C-17 Program Office. He's worked at Wright-Patterson Air Force
Base for 22 years and has a BS in Mechanical & Aerospace Engineering from Cornell University.

[Hack #32]

Howard Owen discovered computers by reading about Conway's "Life" in Life magazine. It took many years
from that discovery to the time he could actually make a living with the godforsaken things. Once that
happened, however, Howard turned into a "major geek." He has worked as a sysadmin, systems engineer, and
systems architect. He is currently employed by IBM in Silicon Valley supporting Linux, but he still runs FreeBSD
and OpenBSD at home.

[Hacks #61 and #62]

Daniel Harris is a student and occasional consultant in West Virginia. He is interested in computer networking,
documentation, and security; he also enjoys writing, armchair politics, and amateur radio.

[Hack #55]

Andrew Gould, CPA, performs financial and clinical data analysis for a hospital in Texas. His primary tool for
data integration is a PostgreSQL database server running on FreeBSD. Andrew has been using FreeBSD at both
work and home for four years. Andrew has a BS in Education and a BBA in Accounting from the University of
Texas at Austin.

[Hacks #17 2.6, #40, #44, and #68]

Jim Mock is a FreeBSD admin and developer turned Mac OS X user and developer. He's a FreeBSD committer,
as well as an OpenDarwin committer, and he currently maintains 50+ DarwinPorts. Jim is also a member of the
DarwinPorts Port Manager team. He can be reached at jim@bsdnews.org or through his personal site at
http://soupnazi.org/.

[Hack #88]

Avleen Vig is a systems administrator at EarthLink (http://www.earthlink.net/), where he maintains the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Avleen Vig is a systems administrator at EarthLink (http://www.earthlink.net/), where he maintains the
company's web, mail, news, and other Internet services for over 8 million users. He spends his spare time with
his newborn son, contributing to the various Internet and Unix communities, and enjoying life. After seizing the
day in 2001 and moving to LA from London, he's waiting to see where life will take him next.

[Hack #69]

Alexandru Popa is a CCNA studying for a CCNP, and is actively involved in the FreeBSD community in his spare
time. At the time of this writing, he was studying Computer Science at the Politechnica University of Bucharest.
He also maintains cvsup.ro.freebsd.org out of a basement in a deserted building, using a large hamster array
for power. He can be contacted at alex@bsdnews.org.

[Hack #70]

Jens Schweikhardt is a German software engineer and Internet wizard who is constantly looking for interesting
things to do. As a seven-time IOCCC winner, he is well-known for taking C compilers to their limits. He
contributes to Unix standardization and, of course, to God's Own Operating System. When not hacking, Jens
has been caught writing romantic poetry and riding his Italian Moto Guzzi around the Swabian hills and valleys.
If he were given one modest wish, it would be clear skies when he goes stargazing with his telescope.

[Hack #78]

Matthew Seaman is 38 years old and a former scientist and academic (Oxford University postgraduate). He is
now a specialist in computer system administration, network architecture, and infrastructure design.

[Hacks #49, #50, and #97]

Nathan Rosenquist first tried FreeBSD in 1996, and has been using Unix ever since. During the day, he can be
found developing Perl-based web applications and business automation software. He lives in Shadow Hills,
California with his girlfriend Carrie and their dog Nutmeg.

[Hack #39]

Adrian Mayo (http://unix.1dot1.com/) has worked with computers for 20 years, specializing in the design of
safety and mission-critical software for the aerospace and medical industries. He has gained exposure to BSD
Unix through Apple's Mac OS X operating system. He is Editor for the news and support site
http://www.osxfaq.com, writing most of the technical content, including the Unix tutorials and Daily Unix tips.

[Hacks #14, #15, and #16]

Sebastian Stark (seb@biskalar.de) works as a system administrator at the Max Planck Institute for Biological
Cybernetics in Germany. He manages a bunch of workstations, as well as a computer cluster that is used for
machine-learning research.

[Hack #52]

Marlon Berlin (marlon@biskalar.de) studies linguistics, comparative literature, and mathematics in Berlin. He
works for DNS:NET, a German ISP, as a systems developer.

[Hack #52]

David Maxwell (david@netbsd.org) is a NetBSD Developer and member of the NetBSD Security-Officer team.
He attended Unix Unanimous in Toronto since the first meeting in the early `80s, and still visits when he can.
He was an avid Amiga user, and relishes a good (or bad) pun when he can muster one. David currently works
at Integrated Device Technology, Inc. (IDT).

[Hacks #10, #53, #73, #75, and #76]

Julio Merino Vidal is studying Informatics Engineering at the UPC University of Barcelona, Spain. He has been a
NetBSD developer since November 2002, working on the NetBSD Packages Collection (http://www.pkgsrc.org/)
and translating the web site to Spanish. He also maintains his own free software projects, including Buildtool
(http://buildtool.sourceforge.net/). You can contact him at jmmv@NetBSD.org.

[Hacks #27 and #87]

Jan L. Peterson (jlp@peterson.ath.cx) is a professional system administrator with 16 years of experience
working with multiple Unix versions (and the occasional Windows machine). Laid off from his last job when the
company was acquired by a direct competitor, he has spent the last couple of years as a consultant. More about
Jan can be found at http://www.peterson.ath.cx/~jlp/.

[Hack #74]

Michael Vince was born in 1977. His initial interest in computers was video games, but he soon ventured into

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Michael Vince was born in 1977. His initial interest in computers was video games, but he soon ventured into
many other areas, such as programming, Unix, the Web, and networks. Having completed a Diploma in
Computer Systems and a CCNA, he is an IT administrator for software companies and has been involved in
large software projects that put his development skills to good use. A tech news junkie, he is always interested
in the future of computing. He also enjoys staying up late solving difficult problems that require complex regular
expressions in Perl, going to the gym, and hanging out in cafes. He is currently working on a software product
called Ezmin.

[Hack #64]

Daniel Carosone has been involved with NetBSD as a user, advocate, and developer for over 10 years. He is a
member of the NetBSD Security Officer team, which provides leadership for security matters within the project
and coordinates responses to public incidents and vulnerabilities. He is Chief Technologist for e-Secure,
specializing in security consulting and management services to financial, government, and telecommunications
organizations. He promotes security awareness through conference presentations and university lectures. He
lives in Melbourne, Australia, and—when not working too hard—enjoys hiking, driving, and astronomy.

[Hack #60]

Aaron Crandall, BSEE, has used OpenBSD since 2.7. He currently works for the Oregon Graduate Institute
running computers as a part-time Master's student. He's built and given away more OpenBSD firewalls than he
can count. Contact him at aaron.crandal@cse.ogi.edu.

[Hack #45]

 chromatic is the Technical Editor of the O'Reilly Network. In practice, that means he edits ONLamp.com (open
source administration and development) and, occasionally, books like this one. Outside of work, he enjoys
cooking and somehow produces a whole slew of weird software hacks like SDL Parrot, tiny mail tools, and that
Perl 6 thing. Wade through the disarray of his web site at http://wgz.org/chromatic/.

[Hack #92]

Brett Warden, BSEE, specializes in Perl programming and embedded systems. He lives in the Northwest with his
wife, son, and two antisocial cats. He's currently keeping an eye out for contracting and permanent positions.
You can find a collection of odd projects at http://www.wgz.org/bwarden/.

[Hack #65]

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Acknowledgments
I would like to thank the many BSD and open source users who so willingly shared their experiences, ideas, and
support. You serve as a constant reminder that BSD is more than an operating system—it is a community.

I would also like to thank all of my students and the readers of the FreeBSD Basics column. Your questions and
feedback fuel my curiosity; may this book return that favor.

Thanks to David Lents and Rob Flickenger for reviews and advice. Special thanks to Jacek Artymiak for his invaluable
input from the OpenBSD and NetBSD perspectives. And finally, special thanks to chromatic. A writer couldn't have
asked for a better editor.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Credits
About the Author

Contributors

Acknowledgments

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Why BSD Hacks?
The term hacking has an unfortunate reputation in the popular press, where it often refers to someone who breaks into
systems or wreaks havoc with computers. Among enthusiasts, on the other hand, the term hack refers to a "quick-n-
dirty" solution to a problem or a clever way to do something. The term hacker is very much a compliment, praising
someone for being creative and having the technical chops to get things done. O'Reilly's Hacks series is an attempt to
reclaim the word, document the ways people are hacking (in a good way), and pass the hacker ethic of creative
participation on to a new generation of hackers. Seeing how others approach systems and problems is often the
quickest way to learn about a new technology.

BSD Hacks is all about making the most of your BSD system. The BSDs of today have a proud lineage, tracing back to
some of the original hackers—people who built Unix and the Internet as we know it today. As you'd expect, they faced
many problems and solved problems both quickly and elegantly. We've collected some of that wisdom, both classic and
modern, about using the command line, securing systems, keeping track of your files, making backups, and, most
importantly, how to become your own BSD guru along the way.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

How to Use this Book
One of the beauties of Unix is that you can be very productive with surprisingly little knowledge. Even better, each new
trick you learn can shave minutes off of your day. We've arranged the chapters in this book by subject area, not by any
suggested order of learning. Skip around to what interests you most or solves your current problem. If the current hack
depends on information in another hack, we'll include a link for you to follow.

Furthermore, the "See Also" sections at the end of individual hacks often include references such as man fortune. These
refer to the manual pages installed on your machine. If you're not familiar with these manpages, start with [Hack
#89] .

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

How This Book Is Organized
To master BSD, you'll have to understand several topics. We've arranged the hacks loosely into chapters. They are:

Chapter 1Customizing the User Environment

Though modern BSDs have myriad graphical applications and utilities, the combined wisdom of 35 years of
command-line programs is just a shell away. This chapter demonstrates how to make the most of the command
line, customizing it to your needs and preferences.

Chapter 2Dealing with Files and Filesystems

What good is knowing Unix commands if you have no files? You have to slice, dice, and store data somewhere.
This chapter explains techniques for finding and processing information, whether it's on your machine or on a
server elsewhere.

Chapter 3The Boot and Login Environments

The best-laid security plans of administrators often go out the window when users enter the picture. Keeping
the bad guys off of sensitive machines requires a two-pronged approach: protecting normal user accounts
through good password policies and protecting the boxes physically. This chapter explores several options for
customizing and securing the boot and login processes.

Chapter 4Backing Up

After you start creating files, you're bound to run across data you can't afford to lose. That's where backups
come in. This chapter offers several ideas for various methods of ensuring that your precious data will persist in
the face of tragedy.

Chapter 5Networking Hacks

Unless you're a die-hard individualist, you're likely connected to a network. That fact presents several new
opportunities for clever hacks as well as mystifying failures. This chapter illuminates ways to take advantage of
your network connection.

Chapter 6Securing the System

Security is as much a mindset as it is a process. Knowing the tools at your disposal will help. This chapter
delves into multiple tools and ideas for increasing the security of your systems, whether keeping out the bad
guys or staying on top of updates.

Chapter 7Going Beyond the Basics

With years and years of refinement, the BSDs provide powerful and maintainable environments. Are you taking
full advantage of everything your system has to offer? This chapter pushes the envelope of what you can
accomplish.

Chapter 8Keeping Up-to-Date

No bragging about BSD is complete without mentioning the ports or packages system that keeps thousands of
applications right at your fingertips. Keeping up-to-date could never be easier, could it? This chapter tackles the
subject of installing and updating software, including the core system.

Chapter 9Grokking BSD

You cannot be a true BSD master until you grok the Unix mindset. How did the gurus become gurus? Is the true
path still open? This chapter reveals some secrets of the masters and has a little fun along the way.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Conventions Used in This Book
This book uses the following typographical conventions:

Italic

Indicates new terms, URLs, email addresses, filenames, pathnames, and directories.

Constant width

Indicates commands, options, switches, variables, attributes, functions, user and group names, the contents of
files, and the output from commands.

Constant width bold

In code examples, shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

Color

The second color is used to indicate a cross-reference within the text.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

The thermometer icons, found next to each hack, indicate the relative complexity of the hack:

beginner moderate expert

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN, for
example: "BSD Hacks by Dru Lavigne. Copyright 2004 O'Reilly Media, Inc., 0-596-00679-9."

If you feel your use of code examples falls outside fair use or the permission given here, feel free to contact us at
permissions@oreilly.com.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

We'd Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this
page at:

http://www.oreilly.com/catalog/bsdhks

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com/

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

Preface
"What was it about UNIX that won my heart? . . . UNIX is mysterious when you first approach. A little
intimidating, too. But despite an unadorned and often plain presentation, the discerning suitor can tell
there's lot going on under the surface."

—Thomas Scoville, http://unix.oreilly.com/news/unix_love_0299.html

When the above-mentioned article was first published, I was still very much a BSD newbie. My spare hours were spent
struggling with kernel recompiles, PPP connectivity (or lack thereof), rm and chmod disasters, and reading and rereading
every bit of the then available documentation. Yet, that article gave voice to my experience, for, like the quoted author,
I had stumbled upon operating system love. In other words, I was discovering how to hack on BSD.

Since then, I've learned that there is an unspoken commonality between the novice Unix user and the seasoned guru. It
doesn't matter whether you've just survived your first successful installation or you've just executed a complex script
that will save your company time and money, the feeling is the same. It's the excitement of venturing into unknown
territory and discovering something new and wonderful. It's that sense of accomplishment that comes with figuring
something out for yourself, with finding your own solution to the problem at hand.

This book contains 100 hacks written by users who love hacking with BSD. You'll find hacks suited to both the novice
user and the seasoned veteran, as well as everyone in between. Read them in any order that suits your purpose, but
keep the "onion principle" in mind. While each hack does present at least one practical solution to a problem, that's just
the outer layer. Use your imagination to peel away deeper layers, exposing new solutions as you do so.

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Access Control Lists (ACLs)  
    adding/subtracting  
    enabling  
    setting default ACLs  
    viewing  
access, limiting with IP Filter  
accounting (system), enabling  
accton command  
ACID (Analysis Console for Intrusion Databases)
    adding more security to  
    alerts  
    configuring  
    installing  
    running  
ack numbers in packets  
addresses, MAC, spoofing  
adduser command  
    Blowfish and  
adodb (database library for PHP), installing  
ADSL PPPoE configuration  
alerts, ACID  
anonymous CVS  
antivirus software  
Apache servers
    configuring  
    consolidating logs  
    installing  
    starting  
    tuning  
APG (Automated Password Generator)  
    improving  
    installing  
appending changes to files  
applets, Java  
arch flag  2nd  
archives
    compressed  
        without intermediate files  
    creating portable POSIX archives  
    downloading and untarring  
    multivolume, resources for  
    rooted  
ARP packets  
attaching/detaching screen sessions  
attributes of files, preserving when copying  
authorized/unauthorized hosts  
auto completion  
    working around  
autologout after inactivity  
automated re-upgrades, preventing  
automating
    backups  
    data dumps for PostgreSQL databases  
    floppy format process  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    ftp logins  
    generated firewall rules  
    installs  
    NetBSD package builds  
    password generation  
    remote backups  
    security patches  
    system updates  
    virus scanning  
awk command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

backticks (`) vs. single quote (')  
backups
    automating  
    Bacula program  
    controlling with arch/nodump flags  
    creating schedules  
    data dumps for PostgreSQL databases, automating  
    remote, automating  
    secure backups over networks  
Bacula program  
    client-only version, installing  
    configuration files, modifying  
    using consoles  2nd  
    database tables, creating  
    installing  
    starting daemons  
    testing tape drives  
bandwidth
    allocating with traffic shaping  
    limiting
        complex configurations  
        simple configuration  
batcher process  
Beastie boot menu  
BEEP_ONHALT option  
bell command  
Berlin, Marlon  
Bernier, Robert  
Big Brother System and Network Monitor  
binaries
    finding  
    protecting, using flags  
bitmap images, loading  
blank lines, removing using grep/sed  
Blowfish hashes  
    forcing new passwords to use Blowfish  
    protecting system passwords with  
/boot directory  
boot menu (default), customizing  
boot messages, viewing  
boot process
    interrupting  
    protecting  
bootblocks configuration, changing  
browsers, command-line  
brute-force password crackers, preventing with Blowfish  
bsdlabel command  
btape utility  
buffer overflows, analyzing with GNU debugger  
bus information in kernel configuration files  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

calendar command  
cap_mkdb command  
capturing packets  
Carosone, Daniel  
case of characters, translating  
cd command  
CD-ROMs, mounting  
Cerias FTP site (cracker dictionaries)  
cgd(4) devices  
cgdconfig program  
chflags command  
chmod command  
chromatic  
chroot support for scponly  
    testing  
ClamAV utility  
clamav.conf file  
clamd command  
clamdscan command  
clamscan command  
CLASSPATH environment variable  
Client Daemon (Bacula)  
    installing client-only version of Bacula  
clipboard, managing  
ClusterIt tool  
    installing/configuring  
    noninteractive commands, testing  
code examples, permission for using  
col command  2nd  
colors, adding to terminals  
command history  
    retrieving previously issued commands  
command line
    editing  
    navigating  
    w3m browser for  
command-line Console (Bacula)  2nd  
commands
    distributed  
    finding  
comments
    adding to code using # (hash mark)  
    adding to source code  
    in manpages  
    removing from source code  
    in source code, reading  
compiling software, optimizing  
compressed archives
    creating  
    without intermediate files  
configuration files
    for Apache  
    for Bacula  
    for cgd devices, modifying  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    customizing for kernels  
    default files for users  
    safely merging changes to  
    for sudo utility  
connectivity failure, surviving  
console messages
    from headless systems  
    viewing  
        over remote logins  
consolidating web server logs  
copier process  
COPTFLAGS option  
copying interactively  
copyright information, changing  
core files, limiting size of  
core X distribution, utilities that come with  
cp command  
    vs. mv/rm commands  
CPU information in kernel configuration files  
CPU_WT_ALLOC option  
crack (dictionary password cracker)  
crackers, password, preventing with Blowfish  
Crandall, Aaron  
cron utility
    access restriction rules  
    making more user friendly  
    using with quickpatch  
    rsnapshot, scheduling  
    scheduling backups  
cross-platform backups  
crossword-puzzle solver  
cryptographic disasters, preventing  
cryptographic disk devices  
.cshrc files
    adding color to terminals  
    adding key bindings to  
    autologout  
    dot.cshrc file and  
    locking terminals  
    making prompts more useful  2nd  
    phase of the moon, displaying  
    receiving daily fortunes  
    seeing trivia at login or logout  
    setting shell variables  
    using trash command  
CTM, keeping ports up-to-date with  
cu command  
current time, displaying  
custom packages, creating  
customizing
    default boot menu  
    kernels  
CVS, anonymous  
cvsup process
    automating updates  
    editing /usr/src/share/skel/Makefile file  
    etcmerge utility and  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

daemons, running without root permissions  
daily_clean_disks script  
daily_clean_preserve script  
daily_clean_tmps script  
DarwinPorts project, installing Unix applications on Mac OS X  
debugger, GNU, analyzing buffer overflows  
debugging regular expressions  
decompressing files  
default ACLs, setting  
default configuration files  
default shell for FreeBSD  
deleted files, sending to trash directory  
delimited files and double quotation marks  
demos for trade shows, creating  
dependencies
    checking before uninstalling applications  
    of ports, checking for  
deploying images  
DESTDIR variable (pkg_comp)  
/dev/console file  
DEVICE_POLLING option  
devices in kernel configuration files  
devinfo command  
/dev/null, using with find command  
df command  2nd  
dhclient command  2nd  
dhclient.conf file  
DHCP clients/servers
    configuring multiple wireless networks  
    spoofing MAC addresses  
DHCP server configuration  2nd  
Diablo Java packages  
dial filter rules  
dictionaries
    creating  
    improving your  
    password, customizing  
dictionary password cracker  
diff command  
dig (domain information groper) utility, locating DNS information  
Director Daemon (Bacula)  
directories
    maintaining synchronized copies of  
    protecting files with flags  
    recreating structures with mtree  
disk hogs, dealing with  
disk space used by ports, checking  
disklabel command  
display filters and tcpdump  
DISTRIBDIR variable (pkg_comp)  
distributed command execution using tentakel  
dmesg command  2nd  
DNS  
    deciphering tcpdump output  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    finding names of SMTP servers  
    finding server addresses  
    problems with sendmail and mail queues  
    providing security for  
    split DNS approach  
    testing servers  
    understanding DNS entries  
    zone transfers, controlling tightly  
documentation for FreeBSD  
documents, extracting text using grep  
DOS floppies  [See floppies]
dot.cshrc file  
dot.login file  
dot.login_conf file  
dot.logout file  
dot.mail_aliases file  
dot.mailrc file  
dot.profile file  
dot.rhosts file  
dot.shrc file  
dot.xinitrc file  
Dotzler, Asa  
double quotation marks and delimited files  
Dowdeswell, Roland C.  
downgrading ports  
downloading and untarring archives  
du command  
dummynet command  2nd  
dump command  
dumpfiles
    creating  
    deciphering tcpdump output  
duplicate line feeds, removing  
dvt (distributed virtual terminal) command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

e16keyedit utility  
echoing responses to OTP challenge  
editing the command line  
eesh utility (Enlightenment)  
egrep command  
Eichmann, Heiner  
email  [See also sendmail]
    holding for later delivery  
    reading with telnet  
    relaying considered harmful  
    security considerations  
    sending
        to external recipients  
        with telnet  
emergency repair kit
    creating  
    customizing boot process and  
    testing  
encrypted disk devices, creating  
encrypting hard disks  
Enlightenment window manager  
error messages for mount command  
errors
    analyzing buffer overflows with GNU debugger  
    reading comments in source code for help  
/etc files, safely merging changes to  
/etc/dhclient.conf file  
/etc/fstab file  2nd  
/etc/ipf.rules file  
/etc/login.access file  
/etc/login.conf file  
/etc/make.conf file  
/etc/netstart command  
/etc/periodic.conf file  
/etc/pf.conf file  
/etc/profile file  
/etc/ssh/sshd_config file  
/etc/ttys file, securing  
etcmerge utility  
Expect scripts, generating GPG keys with  
<Emphasis>Exploring Expect<Default Para Font>  
extattrctl command  
extended attributes, enabling for ACLs  
extended regular expressions  
extracting text from documents using grep  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

fastest-cvsup command  
FAT12 filesystem  
fdformat command  
fdisk command  
fetch utility  2nd  
File Daemon (Bacula)  
file integrity checking using mtree  
file servers, optimizing  
file utility  
files
    appending changes to  
    attributes of, preserving when copying  
    decompressing  
    deleted, sending to trash directory  
    delimited  
    hierarchies, copying  
    last modification dates of  
    limiting  
    portable, creating  
    protecting with flags  
    renaming interactively  
    with specific extensions, deleting  
filesystems
    disk hogs, dealing with  
    DOS floppies  [See floppies]
    ghosting systems  
    recreating directory structures with mtree  
    sharing files between Windows and FreeBSD  
    swap files and  
    temporary files, adding  
    using live filesystems  
filters, display and tcpdump  
find command  2nd  
finding
    commands  
    program paths  
    words  
Fink project  2nd  
firewalls
    automatically generating rules  
    IP Filter, limiting access with  
    ipfw command  2nd  
    securing wireless networks with PF  
    zone transfers, controlling  
Firewire support in kernel configuration files  
fixit floppies  
    repairing with  
flags field of TCP headers  
flags, protecting files with  
Flickenger, Rob  
floppies
    formatting  
    ghosting systems  
    mounting  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        by regular users  
    preparing for emergencies  
    unmounting  
flushing mail queues  
forcing users to change passwords  
formatting floppies  
    automating the process  
formatting sequences for prompts  
fortune program  2nd  
FreeBSD
    backing up with SMBFS  
    default shell for  
    online/offline resources for  
    running native Java applications on  
    sharing files between Windows and  
    spoofing with  
FreeBSD From Scratch hack  
freshclam command  
fsck_ffs command  
fstab command  
ftp command
    automating logins  
    automating transfers  
    keeping ports up-to-date with CTM  
    ncftp tool and  
    scripting entire sessions  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

g4u (Ghost For Unix) utility  
gdb command  
getfacl command  2nd  
ghost disks, creating  
Ghost For Unix (g4u) utility  
ghosting systems  
    images, creating/deploying  
GNOME GUI Console (Bacula)  2nd  
GNU debugger, analyzing buffer overflows  
GNU tar utility, incompatibility issues with  
Gould, Andrew  
GPG keys, generating with Expect scripts  
grdc command  
grep command  
    case-insensitive search, performing  
    combining with other commands  
    extracting text from documents  
    finding words  
    using regular expressions  
    relevance searches  
    removing blank lines  
    text, finding  
groff commands for creating manpages  
grokking BSD  
groups of hosts, executing commands on, using tentakel  
gzip utility  2nd  3rd  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

hacking BSD  
Haitzler, Carsten  
halt command and BEEP_ONHALT option  
hard disks
    encrypted disk device, creating  
    encrypting  
    ghosting systems and  
    preparing for encryption  
    restoring data  
    scrubbing  
hardware information, displaying  
Harris, Daniel  
Harrison, Geoff  
head command  
headers, packet  
headless systems  
    becoming inaccessible  
    logging servers remotely  
    preparing for  
    setting up  
    shutting down servers using wsmoused  
Hess, Joey  
hierarchies of files, copying  
history, command  
    retrieving previously issued commands  
host controller information in kernel configuration files  
host systems, establishing SMB connections with  
host utility  
hosts, authorized and unauthorized  
html2txt converter  
HZ option  2nd  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

ICMP type field/ICMP code field  
IDE devices in kernel configuration files  
idled utility  
IDSs (Intrusion Detection Systems)  
ifconfig command
    enabling/disabling interfaces  
    optimizing network performance  
    running headless systems  
    scripting wireless network configurations  
    spoofing MAC addresses  
    tcpdump output, humanizing  
images, creating/deploying, using ghosting utility  
inaccessibility of headless systems  
incorrect user input, handling  
installboot utility  
installing systems automatically  
integrity checking for files using mtree  
integrity databases
    creating  
    deciding which files to include  
    preparing for storage  
    working with  
interact command  
interactive
    copying  
    file renaming  
    remote administration  
    scripts, creating with Expect  
    shells  
interface statistics, gathering  
interface support in kernel configuration files  
interfaces, enabling/disabling  
intermittent Internet connection and sendmail  
Internet loss, catastrophic, surviving  
intervals of backups, specifying  
Intrusion Detection Systems (IDSs)  
IP Filter
    automatically generating firewall rules  
    limiting access with  
    switching rules on schedule  
IP NAT configuration  
IPFIREWALL_DEFAULT_TO_ACCEPT option  
ipfw command  2nd  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Jabber4r Ruby module  
Java applets  
Java applications, running on FreeBSD  
Java Development Kits (JDKs)  
Java Runtime Environments (JREs)  
Java Virtual Machines (JVMs)  
JAVA_HOME environment variable  
javavmwrapper port  
javaws application  
JDKs (Java Development Kits)  
Jetty (Java servlet)  
JPGraph, installing  
JREs (Java Runtime Environments)  
JVMs (Java Virtual Machines)  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

kenv command  
kernel environment, viewing  
kernels
    adding SMB support to  
    building new  
    configuring for traffic shaping  
    customizing  
    installing  
    optimizing  
    stripping  
    supporting MAC (Mandatory Access Control)  
keys, GPG, generating  
kldload command  
kldunload command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Langille, Dan  
laptops
    backing up  
    configuring wireless interfaces for  
    encrypting hard disks  
    power management support for  
last command  
last modification dates of files, finding  
lastcomm command  
lastlogin command  
leave command  
Lents, David  2nd  
less pager
    customizing  
    vs. more pager  
Libes, Don  
limiting files  
line feeds (duplicate), removing  
live filesystems, using  
live log data, viewing  
livelock and kernel optimizations  
loader.conf file  2nd  
    password protection  
loader.rc file  
locate command  
lock command  
log files for sudoscript  
log hosts
    configuring scripts on  
    consolidating web server logs  
    logproc and  
    preparing  
    variables/values for
        log host scripts  
        web server scripts  
logging out of login shell  
logging servers, setting up  
login banner, removing  
.login file  
login prompt, changing  
.login.conf file  
logins
    automating, using ftp  
    lastlogin command  
    remote  
        connecting to headless servers  
    restricting  
logout policy, enforcing  
logproc scripts  
logs for web servers, consolidating  
logs, protecting with flags  
@LongName tar format extension  
look command  
lowercasing characters  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


lowercasing characters  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

MAC (Mandatory Access Control) framework  
Mac OS X
    installing Unix applications using DarwinPorts  
MAC_IFOFF module  
MAC_SEEOTHERUIDS module  
macdef command  
macros, FTP  
magic cookies and X authorization  
mail  [See email]
mail exchange (MX) records  2nd  
mail servers
    checking connectivity of  
    optimizing  
Mail Submission Process (MSP)  
Mail Transport Agents (MTAs)  
mail user agents (MUAs) and pipes  
mailing lists for receiving CTM updates  
make.conf file  
Makefile, editing  
makewhatis command  
Mandatory Access Control (MAC) framework  
manpages  
    adding fancy formatting to  
    creating your own  
    finding  
    finding all  
    navigational tricks for reading  
    printing  
    searching for text in  2nd  
manpath.config file  
masks and pipes/queues  
Maxwell, David  
Mayo, Adrian  
mdconfig command  
Media Access Control (MAC) layer, spoofing addresses  
media devices in kernel configuration files  
mergemaster utility  2nd  
merging changes to configuration files  
Merino Vidal, Julio  
message of the day (motd), changing  
messages, console  [See console messages]
MIBs, changing from the command line  
miibus entry in kernel configuration files  
minicom utility  
MIT magic cookie  
mktemp command  
Mock, Jim  
modification dates of files, finding  
modules, Mandatory Access Control (MAC)  
MODULES_OVERRIDE option  
moon, phases of (pom) utility  
Moran, Bill  
more pager vs. less pager  
motd (message of the day), changing  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mount command  
    error messages for  
mount points  2nd  
mount_msdosfs command  
mount_smbfs utility  2nd  
mounting
    CD-ROMs  
    floppies  
        by regular users  
    remote shares  
Mozilla, configuring to use signature file  
MSP (Mail Submission Process)  
MTAs (Mail Transport Agents)  
mtree utility  
    command syntax for  
    using as built-in tripwire  
MUAs (mail user agents) and pipes  
multiple systems, maintaining your environment on  
multivol utility  
multivolume archives, resources for  
mv command vs. cp command  
MX (mail exchange) records  2nd  
MySQL
    adding more security to  
    configuring  
    installing client and server  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

nameservers
    finding DNS server addresses  
    locating primary nameservers  
    securing  
NAT
    automatically generated firewall rules  
    reconfiguring dynamically  
    wireless networks and  
native Java applications, running on FreeBSD  
navigating
    command line  
    manpages  
nbtstat command  
ncftp tool  
NetBIOS names of computers  2nd  
NetBSD
    automating package builds  
    cgd(4) devices  
    dealing with disk hogs  
    default shell for  
    logging headless servers remotely  
    skeleton home directory location  
    spoofing with  
NETBSD_RELEASE variable (pkg_comp)  
netstart command  
netstat command  2nd  
network interface information, gathering  
network terminals, logging into  
networking
    allocating bandwidth  
    catastrophic Internet loss, surviving  
    holding email for later delivery  
    interacting with remote administration tasks  
    optimizing performance  
    secure backups over networks  
    securing wireless networks with PF  
    tcpdump utility  
    traffic shaping  
newfs command  
newfs_msdos command  
newsyslog, disabling  
NFS share, creating  
NFS_NOSERVER option  
NIC configurations, wireless  
NoCatAuth authentication software  
nodump flag  2nd  
nonlogin shells  
nouchg flag  
NSWAPDEV option  
null modem cables for headless systems  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

od command  
one-liner commands, Unix  
one-time passwords  
OpenBSD
    dealing with disk hogs  
    default shell for  
    skeleton home directory location  
    spoofing with  
    swap files, adding  
openssl command  
OPIE (One-time Passwords In Everything)  
opieinfo command  
opiekey command  
opiepasswd command  2nd  
optimizing
    file servers  
    kernels  
    mail servers  
    network performance  
    software compiling  
    web servers  
OTP (One Time Password) system  
    choosing when to use  
    generating responses  
Owen, Howard  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Package Compiler (pkg_comp) command  
package repositories, creating  
packageAdd command  
packages
    automating NetBSD builds  
    checking dependencies  
Packet Filter (PF)
    configuring  
    securing wireless networks with  
packet sniffers, protecting from  
packets
    capturing  
    deciphering tcpdump output  
PAM (Pluggable Authentication Modules)  
pam_passwdqc module
    changing default settings  
    enabling  
    overview of  
parallel command execution using tentakel  
partition full detection script  
partitioning scheme for automated installs  
passphrases
    for cgd devices  
    changing periodically  
    one-time passwords and  
passwd command  2nd  
    changing default options using pam_passwdqc module  
password protecting
    loaders  
    single-user mode  
passwords
    converting existing passwords to Blowfish  
    crack (dictionary password cracker)  
    customizing dictionaries  
    forcing new passwords to use Blowfish  
    helping users choose memorable passwords  
    one-time passwords  
    protecting email  
    protecting system passwords with Blowfish  
    reusable, creating policy for  
    setting expiration dates for  
patches
    applying to files  
    creating  
    diff command and  
    revision control and  
    security, automating  
pathnames, finding  
pattern space vs. holding space (sed utility)  
pax utility  
performance of networks, optimizing  
periodic scripts  
    MTAs (Mail Transport Agents)  
peripheral information in kernel configuration files  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


permission for using code examples  
permissions
    FTP servers, accessing  
    protecting files with flags  
    specifying for ACLs  
    standard Unix vs. ACLs  
Peterson, Jan L.  
PF (Packet Filter)
    configuring  
    securing wireless networks with  
pg_dump/pg_dumpall tools  
phases of the moon (pom) utility  
PHP, configuring  
PHP4, installing  
PHPlot, installing  
pine mail program and pipes  
ping command  2nd  
pipes for traffic shaping  
pkg_add command  
pkg_comp command  
pkg_info command  
    checking dependencies before uninstalling  
    checking disk space used by ports  
pkg_version command  
Pluggable Authentication Modules (PAM)  
Pluggable Password Checking  
pom (phases of the moon) utility  
pop-up messages, sending  
POP3 protocol
    reading email with telnet  
    security considerations  
Popa, Alexandru  
port 25, closing  
portable files, creating  
portable POSIX archives, creating  
portdowngrade command  
ports
    building without ports trees  
    checking disk space used by  
    choosing Java ports to install  
    configuring  
    dependencies, checking for  
    downgrading  
    finding the right port  
    installing  
    installing Unix applications on Mac OS X using DarwinPorts  
    keeping up-to-date with CTM  
    pkg_info command and  
    screen window manager  
    skeletons, checking out  
ports collection, keeping up-to-date with  
ports trees
    building ports without  
    updating DarwinPorts trees  
    updating using ftp and ctm  
portupgrade command  
portversion command  
POSIX archives, creating  
PostgreSQL databases, automating data dumps for  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


power management information in kernel configuration files  
PPP variables  
printing manpages  
priority number of MX records  
ÒThe Problem of PORCMOLSULBÓ  
.profile file  
program paths, finding  
prompt
    login, changing  
    for tcsh shell, making more useful  
prompt command  
protecting the boot process  
pseudodevice information in kernel configuration files  
pseudoterminals, logging into  
pw command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

queue runners, MSP  
queueing sent messages for later delivery  
queues, creating  
quickpatch utility  
quotation marks (double) and delimited files  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

RAID controller information in kernel configuration files  
RAM, showing amount of  
randomizing signatures  
randomly generated passwords  
re_format command  
read/write access for mounting floppies  
REAL_DISTFILES variable (pkg_comp)  
REAL_PACKAGES variable (pkg_comp)  
REAL_PKGSRC variable (pkg_comp)  
REAL_PKGVULNDIR variable (pkg_comp)  
REAL_SRC variable (pkg_comp)  
reboot command  
reboots
    limiting unauthorized  
    viewing records of  
recording
    interactive shell sessions  
    shell input/output  
recovery media, testing  
recovery process and emergency repair kit  
Reddy, Dheeraj  
reformatting disks before upgrading  
regular expressions
    debugging  
    using grep with  
rehash command  
relaying mail considered harmful  
relevance searches using grep  
remote administration tasks, interacting with  
remote backups, automating  
remote logins
    headless servers, connecting to  
    preventing  
    seeing console messages over  
remote shares, mounting  
renaming
    files interactively  
    source files  
repair kit, emergency
    creating  
    customizing boot process and  
    testing  
Reporter script and crack utility  
resources, FreeBSD
    comments in source code  
    manpages
        creating your own  
        getting the most out of  
    offline resources, keeping up-to-date  
    online resources  
resources, system  
restoring data on hard disks  
restricting
    logins  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    SSH servers  
reusable password policy, creating  
revision control and patches  
rhosts file  
Richard, John  
Rightnour, Tim  
rm * command, preventing disaster from  
rm -R command, recovering from accidental  
rm command vs. cp command  
rmstar shell variable  
Robbins, Arnold  
rooted archives and substitution argument  
Rosenquist, Nathan  
rotating signatures  
route command  
rsnapshot utility  
    accessing snapshots  
    configuration file, testing  
    specifying backup intervals  
    storage scheme for  
rsync utility  
rulesets, IP Filter  
Russell, Kirk  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Samba  
    using Access Control Lists with  
sandboxes, automating NetBSD package builds with  
sappnd flag  2nd  
scanning Windows computers for viruses  
Schaefer, Marc  
sched command  
schedules
    creating for backups  
    rsnapshot utility  
    switching access rules on  
schg flag  2nd  3rd  
Schneier, Bruce  
Schweikhardt, Jens  
scponly (SSH shell)  
    installing  
    testing the chroot  
scponlyc shell  
screen window manager  
    multitasking with  
.screenrc resource file  
screens
    attaching/detaching sessions  
    locking/unlocking  
screensavers for terminals  
screenshots, taking  
script command  
script files, cleaning up  
scripts, interactive, creating with Expect  
scrubbing hard disks  
SCSI devices in kernel configuration files  2nd  
Seaman, Matthew  
search and replace using sed  
searching
    manpage text  2nd  
    by relevance using grep  
    with sed utility  
securelevels, settings of  
security
    analyzing buffer overflows with GNU debugger  
    for DNS servers  
    wireless network issues  
security patches, automating  
sed utility  
    adding comments to source code  
    using holding space to mark text  
    removing blank lines  
    removing comments from source code  
    scripts with multiple commands  
    search and replace, performing  
    searching with  
sendmail  2nd  [See also email]
    configuring with local MTA  
    configuring without local MTA  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    disable receiving of email  
    DNS issues with mail queues  
    holding mail for later delivery  
serial consoles, enabling  
service set identifiers (SSIDs)  
servlets, Java  
set command  
setenv command  
setfacl command  2nd  
SETS variable (pkg_comp)  
SETS_X11 variable (pkg_comp)  
.SH (section) groff command  
sharing files between Windows and FreeBSD  
Sharity-Light utility  
    scanning Windows computers for viruses  
shells
    authorizing access to, using sudo  
    input/output, recording  
    interactive  
    letting others watch live sessions  
    recording interactive sessions  
    setting shell variables  
shortcuts on the command line  
shutdowns
    of servers, using wsmoused  
    viewing records of  
signature-at-bottom option  
signatures, randomizing  
sigtool command  
single quote (') vs. backticks (`)  
single-user mode, password protecting  
skeletons, port  
SMBFS, backing up FreeBSD with  
smbutil utility  2nd  
SMTP servers
    finding names of  
    relaying mail considered harmful  
    sending email with telnet  
    testing availability  
snapshots, remote  
sniffing networks with tcpdump  
Snort
    adding more security to  
    configuring  
    installing  
    running  
sockstat command  2nd  3rd  
software compiling, optimizing  
source code
    adding comments to  
    reading comments in  
    removing comments from  
source files
    finding  
    renaming a batch of  
spaces, translating tabs to  
spell-checking on command line  
splash screen, configuring  
split DNS approach, used to prevent information leaks  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


splitting windows (screen utility)  
spoofing MAC addresses  
SSH servers
    /etc/ssh/sshd_config file  
    remote backups, automating  
    restricting  
    secure backups over networks  
SSIDs (service set identifiers)  
ssmtp MTA  
standalone Java applications  
Stark, Sebastian  
startup scripts, creating your own  
Storage Daemon (Bacula)  
    on backup server  
    running without root permission  
storage scheme for rsnapshot  
stripping kernels  
su command  
Subversion program  
sudo utility
    configuration file issues  
    limitations of  
    shell access with  
sudoers file  
sudoscript  
    log file for  
    security issues with  
    working with  
sudoscriptd script  
sudoshell script  
sunlnk flag  2nd  
superusers
    binaries, protecting with flags  
    controlling backups with arch/nodump flags  
    switching to, using su command  
    system logs, protecting with flags  
swap files, creating  
swapctl command  
swapinfo command  
switches, adding to manpages  
switching between windows  
symbolic links
    creating  
    finding  
synchronized copies of directories, maintaining  
syntax for mtree commands  
sysctl command  
sysinstall installation mechanism  
    setting up NFS mounts  
syslogd, redirecting console messages using  2nd  
systat command  
system accounting, enabling  
system logs, protecting with flags  
system passwords, protecting, using Blowfish  
system resources, viewing  
system-specific options in kernel configuration files  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

! (bang) character, retrieving previously issued commands  
# (hash mark) for comments in code  
(') (single quote) vs. backticks (`)  
(`) (backticks) vs. single quote (')  
.\" (comment) groff command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

tabs, translating to spaces  
tail command  
tape drives, testing with Bacula  
tar utility  2nd  
    GNU tar vs. POSIX tar  
    replacing, with pax utility  
    secure backups over networks  
TCP flags field  
tcpdump utility  
    capturing packets  
    deciphering output  
    display filters  
    specific filters, creating  
tcsh shell  
    auto completion  
        working around  
    autologout  
    command history  
    .cshrc file vs. .login file  
    limiting files  
    making prompt more useful  
    rmstar shell variable  
    setting shell variables  
telnet
    checking connectivity of mail servers  
    reading email  
    sending email  
telnetd daemon  
temporary directories, cleaning out quickly  
temporary files, managing  
tentakel utility  
    configuring  
    installing  
    interactive mode  
terminals
    adding color to video  
    configuration file, securing  
    locking/unlocking  
    login banner, removing  
    screensavers for  
    using multiple screens  
    virtual
        dvt command (ClusterIt tool)  
        logging into  
testing
    automated software installations  
    DNS servers  
    recovery media  
text
    finding, using grep  
    marking, using holding space (sed utility)  
    search and replace using sed  
.TH (title) groff command  
thesaurus, creating  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


three-way handshake, TCP  
time of day, displaying  
timeout value of screensavers, changing  
times.allow option  
times.deny option  
timestamps in packets  
tip utility  
/tmp filesystem
    clearing out  
    moving to RAM  
Tomcat (Java servlet)  
touch command  
tr command  
trade show demos, creating  
traffic shaping on FreeBSD  
transfers, automating, using ftp  
translating
    case of characters  
    tabs to spaces  
trash directory, creating  
tripwire, using mtree as built-in  
trivia related to current date, displaying  
TrustedBSD project  2nd  
    MAC (Mandatory Access Control) framework  
tunefs command
    editing superblock with  
tuning FreeBSD systems  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

uappnd flag  2nd  
uchg flag  
UFS (Unix File System)  
UFS1 filesystem and ACLs  
umount command  2nd  
unauthorized reboots, limiting  
unauthorized/authorized hosts  
UNC (Universal Naming Convention)  
uncompress command  
uninstalling applications, checking dependencies first  
unison utility  
Unix File System (UFS)  
Unix one-liner commands  
<Emphasis>Unix Power Tools<Default Para Font>  
unlimit command  
unlocking and locking screens  
unmounting
    floppies  
    remote shares  
    /tmp filesystem  
untarring archives  
updating systems
    automatically  
uploaddisk command  
uppercasing characters  
USB support in kernel configuration files  
user interaction
    adding to scripts  
    handling incorrect input  
users
    choosing memorable passwords  
    expiration dates for passwords  
users command  
/usr/local/etc/sudoers file  
/usr/src/share/skel/Makefile file, editing  
uunlnk flag  2nd  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

/var/log file  
/var/log/console.log file  
variables
    for login prompt  
    shell  
vidcontrol command  2nd  
Vig, Avleen  
Vince, Michael  2nd  
virtual terminals
    dvt command (ClusterIt tool)  
    logging into  
viruses
    Intrusion Detection Systems and  
    scanning Windows computers for  
Vogel, Karl  
vol utility (Minix/QNX4)  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

w command  2nd  
w3m command-line browser  
Warden, Brett  
Warner, Joe  
web browsers and Java applets  
web information, fetching  
web servers
    allowing unauthorized hosts to access  
    consolidating logs for  
    optimizing  
WebStart mechanism  
WEP (Wireless Encryption Protocol)  
    multiple NIC configurations  2nd  
whatis command  2nd  
whatis database, creating  
whereis command  
which command  
who command  
window managers
    screen  
        multitasking with  
    showcasing, using eesh utility  
Windows
    using Access Control Lists with  
    scanning computers for viruses  
wiping disks clean before upgrading  
Wireless Encryption Protocol (WEP)  
    multiple NIC configurations  2nd  
wireless networks
    securing with PF  
    using multiple NIC configurations  
words, finding  
worms, fighting with Intrusion Detection Systems  
wsmoused, shutting down servers using  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

X authorization  
X server utilities  
xauth command  
xclipboard utility  
xconsole utility  
.xinitrc file  
xwd command  
xwud command  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Yost, Brian  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up >  

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

zone transfers in DNS, controlling tightly  

 < Day Day Up >  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  < Day Day Up > 

  
• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
BSD Hacks

By Dru Lavigne
 

Publisher: O'Reilly

Pub Date: May 2004

ISBN: 0-596-00679-9

Pages: 300

   

Looking for a unique set of practical tips, tricks, and tools for administrators and power users of BSD systems? From
hacks to customize the user environment to networking, securing the system, and optimization, BSD Hacks takes a
creative approach to saving time and accomplishing more with fewer resources. If you want more than the average
BSD user--to explore and experiment, unearth shortcuts, create useful tools--this book is a must-have.

  < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 < Day Day Up > 

  
• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
BSD Hacks

By Dru Lavigne
 

Publisher: O'Reilly

Pub Date: May 2004

ISBN: 0-596-00679-9

Pages: 300

   

   Credits

    About the Author

    Contributors

    Acknowledgments

   Preface

    Why BSD Hacks?

    How to Use this Book

    How This Book Is Organized

    Conventions Used in This Book

    Using Code Examples

    We'd Like to Hear from You

     Chapter 1.  Customizing the User Environment

    Section 0.  Introduction

    Section 1.  Get the Most Out of the Default Shell

    Section 2.  Useful tcsh Shell Configuration File Options

    Section 3.  Create Shell Bindings

    Section 4.  Use Terminal and X Bindings

    Section 5.  Use the Mouse at a Terminal

    Section 6.  Get Your Daily Dose of Trivia

    Section 7.  Lock the Screen

    Section 8.  Create a Trash Directory

    Section 9.  Customize User Configurations

    Section 10.  Maintain Your Environment on Multiple Systems

    Section 11.  Use an Interactive Shell

    Section 12.  Use Multiple Screens on One Terminal

     Chapter 2.  Dealing with Files and Filesystems

    Section 12.  Introduction

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 13.  Find Things

    Section 14.  Get the Most Out of grep

    Section 15.  Manipulate Files with sed

    Section 16.  Format Text at the Command Line

    Section 17.  Delimiter Dilemma

    Section 18.  DOS Floppy Manipulation

    Section 19.  Access Windows Shares Without a Server

    Section 20.  Deal with Disk Hogs

    Section 21.  Manage Temporary Files and Swap Space

    Section 22.  Recreate a Directory Structure Using mtree

    Section 23.  Ghosting Systems

     Chapter 3.  The Boot and Login Environments

    Introduction

    Section 24.  Customize the Default Boot Menu

    Section 25.  Protect the Boot Process

    Section 26.  Run a Headless System

    Section 27.  Log a Headless Server Remotely

    Section 28.  Remove the Terminal Login Banner

    Section 29.  Protecting Passwords With Blowfish Hashes

    Section 30.  Monitor Password Policy Compliance

    Section 31.  Create an Effective, Reusable Password Policy

    Section 32.  Automate Memorable Password Generation

    Section 33.  Use One Time Passwords

    Section 34.  Restrict Logins

     Chapter 4.  Backing Up

    Introduction

    Section 35.  Back Up FreeBSD with SMBFS

    Section 36.  Create Portable POSIX Archives

    Section 37.  Interactive Copy

    Section 38.  Secure Backups Over a Network

    Section 39.  Automate Remote Backups

    Section 40.  Automate Data Dumps for PostgreSQL Databases

    Section 41.  Perform Client-Server Cross-Platform Backups with Bacula

     Chapter 5.  Networking Hacks

    Introduction

    Section 42.  See Console Messages Over a Remote Login

    Section 43.  Spoof a MAC Address

    Section 44.  Use Multiple Wireless NIC Configurations

    Section 45.  Survive Catastrophic Internet Loss

    Section 46.  Humanize tcpdump Output

    Section 47.  Understand DNS Records and Tools

    Section 48.  Send and Receive Email Without a Mail Client

    Section 49.  Why Do I Need sendmail?

    Section 50.  Hold Email for Later Delivery

    Section 51.  Get the Most Out of FTP

    Section 52.  Distributed Command Execution

    Section 53.  Interactive Remote Administration

     Chapter 6.  Securing the System

    Introduction

    Section 54.  Strip the Kernel

    Section 55.  FreeBSD Access Control Lists

    Section 56.  Protect Files with Flags

    Section 57.  Tighten Security with Mandatory Access Control

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 57.  Tighten Security with Mandatory Access Control

    Section 58.  Use mtree as a Built-in Tripwire

    Section 59.  Intrusion Detection with Snort, ACID, MySQL, and FreeBSD

    Section 60.  Encrypt Your Hard Disk

    Section 61.  Sudo Gotchas

    Section 62.  sudoscript

    Section 63.  Restrict an SSH server

    Section 64.  Script IP Filter Rulesets

    Section 65.  Secure a Wireless Network Using PF

    Section 66.  Automatically Generate Firewall Rules

    Section 67.  Automate Security Patches

    Section 68.  Scan a Network of Windows Computers for Viruses

     Chapter 7.  Going Beyond the Basics

    Introduction

    Section 69.  Tune FreeBSD for Different Applications

    Section 70.  Traffic Shaping on FreeBSD

    Section 71.  Create an Emergency Repair Kit

    Section 72.  Use the FreeBSD Recovery Process

    Section 73.  Use the GNU Debugger to Analyze a Buffer Overflow

    Section 74.  Consolidate Web Server Logs

    Section 75.  Script User Interaction

    Section 76.  Create a Trade Show Demo

     Chapter 8.  Keeping Up-to-Date

    Introduction

    Section 77.  Automated Install

    Section 78.  FreeBSD from Scratch

    Section 79.  Safely Merge Changes to /etc

    Section 80.  Automate Updates

    Section 81.  Create a Package Repository

    Section 82.  Build a Port Without the Ports Tree

    Section 83.  Keep Ports Up-to-Date with CTM

    Section 84.  Navigate the Ports System

    Section 85.  Downgrade a Port

    Section 86.  Create Your Own Startup Scripts

    Section 87.  Automate NetBSD Package Builds

    Section 88.  Easily Install Unix Applications on Mac OS X

     Chapter 9.  Grokking BSD

    Introduction

    Section 89.  How'd He Know That?

    Section 90.  Create Your Own Manpages

    Section 91.  Get the Most Out of Manpages

    Section 92.  Apply, Understand, and Create Patches

    Section 93.  Display Hardware Information

    Section 94.  Determine Who Is on the System

    Section 95.  Spelling Bee

    Section 96.  Leave on Time

    Section 97.  Run Native Java Applications

    Section 98.  Rotate Your Signature

    Section 99.  Useful One-Liners

    Section 9.13.  Fun with X

   Index

 < Day Day Up > 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

