

Beginning

CSS
Cascading Style Sheets for Web Design

Second Edition

Richard York

01_096970 ffirs.qxp 4/25/07 1:16 PM Page iii

01_096970 ffirs.qxp 4/20/07 11:59 PM Page ii

Beginning

CSS
Second Edition

01_096970 ffirs.qxp 4/20/07 11:59 PM Page i

01_096970 ffirs.qxp 4/20/07 11:59 PM Page ii

Beginning

CSS
Cascading Style Sheets for Web Design

Second Edition

Richard York

01_096970 ffirs.qxp 4/25/07 1:16 PM Page iii

Beginning CSS: Cascading Style Sheets
for Web Design, Second Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-09697-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data
York, Richard, 1978–

Beginning CSS : cascading style sheets for Web design / Richard York. — 2nd ed.
p. cm.

Includes index.
ISBN 978-0-470-09697-0 (paper/website)

1. Web sites—Design. 2. Cascading style sheets. I. Title.
TK5105.888.Y67 2007
006.7—dc22

2007008853

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respec-
tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

01_096970 ffirs.qxp 4/20/07 11:59 PM Page iv

www.wiley.com

To my own cousin Ryan Wood

In the words of Ryan’s favorite comedian, Dave Chappelle,
“I’m rich, bitch!”

Rest in peace, brother. We love you and we miss you.

01_096970 ffirs.qxp 4/20/07 11:59 PM Page v

01_096970 ffirs.qxp 4/20/07 11:59 PM Page vi

About the Author
Richard York is a web application developer for Trilithic, Inc., a company specializing in test equipment
for the telecommunications industry. He wrote his first book, Beginning CSS: Cascading Style Sheets for
Web Design (Wrox Press), in 2004.

Richard began his web development career taking courses at Indiana University–Purdue University
Indianapolis. Since college, he has continued a self-imposed curriculum, mastering various technologies
used in web development including HTML/XHTML, CSS, JavaScript, PHP, and MySQL. An avid sup-
porter of open source software, he has written an open source webmail application for PHP PEAR and is
currently working on an open source PHP library and framework called Hierophant, which he hopes to
release in 2007.

Richard maintains a personal website at http://www.richard-york.com where you can learn more
about his professional and personal interests.

01_096970 ffirs.qxp 4/20/07 11:59 PM Page vii

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian MacDonald

Technical Editor
Alexei Gorkov

Technical Reviewers
Robert Searing
Marybeth Fullmer

Copy Editor
Mildred Sanchez

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Heather Kolter

Graphics and Production Specialists
Carrie A. Foster
Denny Hager
Joyce Haughey
Alicia B. South
Ronald Terry

Quality Control Technician
John Greenough

Proofreader
Sossity R. Smith

Indexer
Aptara

Anniversary Logo Design
Richard Pacifico

01_096970 ffirs.qxp 4/20/07 11:59 PM Page viii

Contents

Acknowledgments xv
Introduction xvii

Part I: The Basics

Chapter 1: Introducing Cascading Style Sheets 3

Who Creates and Maintains CSS? 4
How the Internet Works 5
How CSS Came to Be 6
Browsers 8

Internet Explorer 8
The Gecko Browsers: Mozilla Firefox, Netscape, Camino 12
Safari 13
Opera 13

Writing CSS 14
Your First CSS-Enabled Document 15
Advantages of Using CSS 21
Summary 22

Chapter 2: The Essentials 25

CSS Rules 25
Selectors 26
Declarations 27
Grouping Selectors 28
CSS Comments 29
Values 31

Keywords 31
Strings 34
Length and Measurement 36
Numbers 45
The URI 51

Including CSS in a Document 52
Including an Embedded Style Sheet 53
Linking to External Style Sheets 54

02_096970 ftoc.qxp 4/26/07 4:17 PM Page ix

x

Contents

Importing Style Sheets 56
Inline Styles 56

Summary 57
Exercises 58

Chapter 3: Selectors 59

Class and ID Selectors 60
Class Selectors 60
ID Selectors 63

The Universal Selector 68
Descendant Selectors 71
Direct Child Selectors 75
Next Sibling Selector 79
Attribute Selectors 82

Selection Based on the Value of an Attribute 83
Attribute Substring Selectors 87

Pseudo-Elements :first-letter and :first-line 93
Pseudo-Classes 97

Dynamic Pseudo-Classes 97
The first-child Structural Pseudo-Class 102

Summary 106
Exercises 106

Chapter 4: The Cascade and Inheritance 109

The Cascade 109
Calculating the Specificity of a Selector 112
!important Rules 118

Inheritance 121
Summary 125
Exercises 126

Part II: Properties

Chapter 5: Text Manipulation 131

The letter-spacing Property 132
The word-spacing Property 137
Indenting Paragraph Text Using text-indent 141
Aligning Text with the text-align Property 147
The text-decoration Property 150

02_096970 ftoc.qxp 4/20/07 11:25 PM Page x

xi

Contents

The text-transform Property 155
The white-space Property 158
Summary 164
Exercises 164

Chapter 6: Fonts 167

Specifying Fonts with the font-family Property 167
Font Families 169
Generic Font Families 171

The font-style Property 175
The font-variant Property 181
The font-weight Property 183
The font-size Property 185

Absolute Font Sizes 185
Relative Font Sizes 187
Percentage Font Sizes 189

The font Shorthand Property 194
The font Properties 194
System Fonts 200

Summary 203
Exercises 203

Chapter 7: The Box Model 205

Overview 205
Margin 208

Margin Property with Four Values 209
Margin Property with Three Values 211
Margin Property with Two Values 213
Margin Property with One Value 214
Margin Collapsing 216
Horizontally Aligning Elements with the Margin Property 220

Borders 230
border-width 230
border-style 233
border-color 236
Border Shorthand Properties 236

Padding 242
Setting Dimensions 244

width 245
height 247

02_096970 ftoc.qxp 4/20/07 11:25 PM Page xi

xii

Contents

Auto Values for width and height 249
Percentage Measurements 255
Quirks Mode width and height in Internet Explorer 256
Minimum and Maximum Dimensions 259

Overflowing Content 271
CSS 3 overflow-x and overflow-y 273

Summary 273
Exercises 274

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment 277

The float Property 277
Floating Box Model 282

The clear Property 293
Float Bugs in IE 6 298

The Peek-A-Boo Bug 298
The Guillotine Bug 300
The Three-Pixel Jog 303
The Double-Margin Bug 305

The vertical-align Property 306
Subscript and Superscript Text 307
The top, middle, and bottom Keywords 308
The text-top and text-bottom Keywords 310
Percentage and Length Value 311
Vertically Aligning the Contents of Table Cells 312

Summary 318
Exercises 319

Chapter 9: List Properties 321

The list-style-type Property 321
Styling Unordered Lists 322
Styling Ordered Lists 324

The list-style-image Property 330
The list-style-position Property 331
The list-style shorthand Property 333
Summary 337
Exercises 337

Chapter 10: Backgrounds 339

The background-color Property 339
The background-image Property 343

02_096970 ftoc.qxp 4/20/07 11:25 PM Page xii

xiii

Contents

The background-repeat Property 346
The background-position Property 350

Mixing Different Kinds of Position Values 352
Tiling and Position 354

The background-attachment Property 360
The background shorthand Property 365
Summary 369
Exercises 370

Chapter 11: Positioning 371

Introduction to Positioning 372
Absolute Positioning 372
Relative Positioning 381
Fixed Positioning 389

The z-axis and the z-index Property 428
The z-index Property with an Integer Value 430
Layering Nested Elements 433
The IE 6/IE 7 z-index Bug 434

Other Ways to Apply Positioning 441
Horizontally and Vertically Aligning Positioned Content 441
Multicolumn Layout 444

Summary 452
Exercises 452

Chapter 12: Tables 455

Optional Table Elements 455
Table Captions and the caption-side Property 457
Table Columns 459
Controlling Table Width with the table-layout Property 469
Removing Cell Spacing with the border-collapse Property 478
The border-spacing Property 479
Summary 484
Exercises 484

Part III: Advanced CSS and Alternative Media

Chapter 13: Styling for Print 487

Applying Styles Based on Media 487
The @media Rule 491

02_096970 ftoc.qxp 4/20/07 11:25 PM Page xiii

xiv

Contents

Controlling Page Breaks 497
Summary 500
Exercises 500

Chapter 14: XML 501

Crash Course in XML 502
Creating an XML Schema 505

The XML Declaration 510
The display Property 514

Styling Inline Elements with display: inline 515
Styling Block Elements with display: block 516
Styling List Items with display: list-item 517
Table Display Values 523

Other Display Values 534
Summary 535
Exercises 536

Chapter 15: The Cursor Property 537

Cursor Compatibility 538
Custom Cursors 540
Additional CSS Resources 542
Beginning CSS, Second Edition Online 542
Summary 542
Exercises 543

Appendix A: Answers to Exercises 545

Appendix B: CSS Reference 563

Appendix C: CSS Colors 593

Appendix D: Browser Rendering Modes 607

Index 611

02_096970 ftoc.qxp 4/20/07 11:25 PM Page xiv

Acknowledgments

As I wrote this book, so much has happened. Through the course of about 10 months, many people have
been instrumental in making this happen, either directly or indirectly. I owe my success to all of you.

I’d like to thank my boss at Trilithic, Karalee Slayton. I appreciate all the encouragement, understanding,
and help you’ve given me along the way. And I have just one more thing to say, shhhhhhhhht!

I’d like to thank Marybeth Fulmer, my colleague and friend. Thanks for always being willing to listen
and help.

I want to thank again, Jim Minatel from Wiley, for giving me the opportunity to write for Wrox again.
Thanks for listening to all my wild ideas, and for being willing to take the risks on all the new things
we’ve done with this book.

A great big thanks to Brian MacDonald, my development editor. I appreciate your patience and under-
standing, and you’ve been truly great to work with. This book owes much to your meticulous attention
to every detail.

I’d also like to thank my tech editor, Alexei Gorkov. Your incredible attention to detail has been a
tremendous asset on this project.

I want to thank my friends and family, who have been very supportive through some very difficult
times: my aunt, Brenda; my uncle, Johnny; my cousins, Amanda, Kimberly, and Amy. Be strong, but
don’t be afraid to talk about your son, your brother, and my cousin, Ryan. Let’s always keep in mind the
good times, and the good things that happened, and not dwell on the bad. We can’t change what hap-
pened, but we can keep his memory alive. Here’s to you. Here’s to me...

I want to thank Richelle Brown. You are a truly awesomely good friend. As we enter the year of our
Paul, 5AP, I’m very proud of all of your accomplishments as of late. Egg-cellent! Keep your nose up.
Let’s find another Paul McCartney show so we can reset the Paul clock.

Thanks to my parents, John and Tammy. Thanks for your help and support. I love you.

And finally, I want to thank my best friend, Lisa Ratliff. I’m very sorry that I haven’t been there for you.
I should have been. There are so many things that I should have said and done, but didn’t. I regret that
we grew apart. Thanks for listening and thanks for understanding. Despite our ups and downs, you
should know that I will always be here for you, and I will always love you. Snotface.

03_096970 flast.qxp 4/20/07 11:26 PM Page xv

03_096970 flast.qxp 4/20/07 11:26 PM Page xvi

Introduction

Cascading style sheets (CSS) are the modern standard for website presentation. When combined with a
structural markup language such as HTML, XHTML, or XML (though not limited to these), cascading
style sheets provide Internet browsers with the information that enables them to present all the visual
aspects of a web document. Cascading style sheets apply things such as borders, spacing between para-
graphs, headings or images, control of font faces or font colors, background colors and images, textual
effects such as underlined or strike-through text, layering, positioning, and a number of other presenta-
tional effects. CSS controls the presentational aspects of a web page’s design, whereas HTML, XHTML,
or XML controls the structure of a web page, which means little more than determining that certain text
is a heading, other text is a paragraph, still other text is a list of hyperlinks, and so on. CSS provides
enhanced and precise visual rendering; markup languages such as HTML provide meaning and structure.

Beginning CSS: Cascading Style Sheets for Web Design, Second Edition covers all the details required to com-
bine CSS with HTML, XHTML, or XML to create rich, aesthetically powerful designs. Throughout the
book, I focus on combining CSS with XHTML specifically because XHTML is the standard hailed by
Internet standards bodies as the successor to HTML and the present and future of website design. CSS
and XHTML allow a web document to be presented with less code, resulting in a significantly smaller
file size and greatly increased ease of maintenance. CSS also enables the presentation of a web document
to be centralized, which allows for the look and feel of an entire website to be written and centralized in
one or a few simple documents, which makes updating a website a breeze. With only a few simple edits
to a single document, the look and feel of an entire website can be completely changed.

By using modern standards like CSS and XHTML, you can drastically reduce the cost of building and
maintaining a website when compared to legacy HTML-only pages. You can also greatly reduce the
amount of physical bandwidth and hard disk space required, resulting in immediate long-term benefits
for any website.

In this book, I also discuss how to style XML documents with CSS — XML being a more advanced
markup language with multipurpose applications. XML will play an increasingly larger role in the pro-
duction of XHTML documents in the future.

What’s New in the Second Edition
This second edition of Beginning CSS features a near-complete overhaul of the content from the first edi-
tion. I listened to what my readers had to say about the first edition and took that feedback to create the
most comprehensive introduction on CSS available on the market. Throughout this book, you see CSS
broken down into simple examples that focus on a single concept at a time. This allows you to better
understand how and why something works, since you aren’t presented with a lot of irrelevant code, and
you can better see the bits and pieces that come together that make something work. While these exam-
ples may not be particularly pretty, they are extremely valuable learning tools that will help you master
cascading style sheets.

03_096970 flast.qxp 4/20/07 11:26 PM Page xvii

xviii

Introduction

To enhance the learning experience, I’ve presented most of the source code examples in syntax-colored
code, a special feature in this book. Syntax coloring is a feature that you commonly see in fancy develop-
ment software, such as Zend Studio (used to develop PHP), or Microsoft’s Visual Studio (used to
develop ASP, C#, and so on), and other software used by professional programmers every day. Syntax
coloring is used in these software suites to make programming easier and more intuitive, and I think
that it offers tremendous benefits in teaching as well. It allows you to see what the different bits and
pieces are in source code, since each of the different bits and pieces has a different coloring to identify
its purpose. It helps you to distinguish the building blocks of code more easily, and if you use similar
development software to write your CSS and HTML documents, you’ll also find that you make fewer
mistakes and typos, since syntax coloring also helps you to write code that is more bug free.

I’ve also added annotations to many of the source code examples to highlight important, not-to-be-
forgotten bits of information, and to visually point out concepts that are discussed in the surrounding text.

This edition also features every screenshot from a browser in color, a first for Wrox. Presenting the
browser screenshots in color makes it easier for you to compare your results with what you see in the
book.

This book also approaches CSS development from a browser-neutral point of view, and provides all the
information that you need to get a good healthy start on professional cross-browser, cross-platform web-
site design with IE 6, IE 7, Firefox 2, Opera 9, and Safari 2, which will allow you to reach over 99 percent
of the web browsing public.

You also see comprehensive coverage of bugs, and workarounds for the IE 6 and IE 7 web browsers.
Long a thorn in the side of CSS developers, making CSS work in IE 6 can be quite a chore without
detailed knowledge of its quirks and shortcomings. I have covered throughout this book many of the
hacks and nonstandard workarounds that you may need to develop compatible CSS content in IE 6. IE 7
features many great improvements to CSS support, and though they are much fewer than its predeces-
sor, you still need a few tricks to make your web page shine in Microsoft’s latest browser. I have covered
the workarounds that you’ll need to make your pages work just as well in IE 7 as they do in all the other
popular browsers. In addition, you’ll find the quick reference in Appendix B updated to reflect all of
IE 7’s new CSS support.

Along with better coverage of Internet Explorer, I’ve also greatly improved coverage of Mac OS X
browsers, Safari, Firefox, and Opera. You’ll see that Mac browsers are equally represented among their
Windows brethren.

I had so much new content that I’ve even written an additional chapter that will appear online, on the
Wrox website, which you’ll be able to download for free. In this chapter I discuss additional workarounds
for IE 6, and walk you through putting all of the knowledge that you’ve learned throughout the book
together in a real-life web page.

You can visit the book’s web page at:

http://www.wrox.com/go/beginning_css2e

The following sections tell you what Beginning CSS: Cascading Style Sheets for Web Design, Second Edition
covers, whom this book is intended for, how it is structured, what equipment you need to use it, where
you can go if you have a problem or question, and the conventions used in writing it.

03_096970 flast.qxp 4/20/07 11:26 PM Page xviii

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

xix

Introduction

Whom Is This Book For?
This book’s primary audience is anyone seeking to learn how to use cascading style sheets to present
web documents. Because cascading style sheets are used to control the presentational layout of a web
document, people from backgrounds in art, graphic design, or those who prepare print layouts for pub-
lishing will feel at home using CSS. Regardless of your background, CSS is a simple and powerful lan-
guage designed so that anyone can understand and use it.

To get the most out of this book, you need some experience with markup languages like HTML or
XHTML. If you are completely new to website design and development, I recommend you begin learn-
ing web programming with Jon Duckett’s Beginning Web Programming with HTML, XHTML, and CSS.
Jon Duckett’s book provides a complete overview of website development and design for the complete
beginner, whereas Beginning CSS: Cascading Style Sheets for Web Design, Second Edition focuses specifically
on the role of CSS in website design.

Throughout this book, I present all of the material you need to become comfortable with writing CSS
from scratch.

What Does This Book Cover?
This book covers portions of the CSS Level 1, 2, 2.1, and 3 specifications. These specifications are
created by an independent, not-for-profit Internet standards organization called the World Wide Web
Consortium (W3C) that plans and defines how Internet documents work. The majority of the book is
written using what is defined in the CSS Level 2.1 specification.

This book leads you through how to write CSS so that it is compatible with all of the most popular web
browsers. I have focused on all of the following popular browsers:

❑ Microsoft Internet Explorer 6 for Windows

❑ Windows Internet Explorer 7 for Windows XP Service Pack 2, Windows Server 2003, Windows
XP Professional 64 bit, and Windows Vista

❑ Safari 2 for Mac OS X 10.4 (Tiger)

❑ Mozilla Firefox 2 for Mac OS X, Windows, and Linux

❑ Opera 9 for Mac OS X, Windows, and Linux

The preceding browsers make up over 99 percent of the web browser market share at the time of this
writing. For your convenience, this book also includes an integrated CSS feature reference throughout
the book, as well as notes on browser compatibility. A CSS reference is also included in Appendix B.

How This Book Is Structured
This book is divided into three parts. The following explains each of these three parts in detail, and what
each chapter covers.

03_096970 flast.qxp 4/20/07 11:26 PM Page xix

xx

Introduction

Part I: The Basics
Throughout Chapters 1 through 4 you learn the founding principles of CSS-based web design.

❑ Chapter 1, “Introducing Cascading Style Sheets”: In this first chapter, I talk about what CSS is,
why it exists, who created it, where it is maintained, and how it has evolved. I also discuss some
of the basic differences among the various CSS specifications—CSS Level 1, CSS Level 2, CSS
Level 2.1, and CSS Level 3—and how these specifications define what CSS is. You also learn
more about each of the most popular browsers in use today, how to obtain them, and write your
first CSS-enabled document. I also show you how to install Internet Explorer 6 and Internet
Explorer 7 side-by-side on the same computer for testing.

❑ Chapter 2, “The Essentials”: This chapter introduces the basics of CSS. Now that you have seen
an example CSS document, this chapter introduces CSS rules and how selectors and declarations
are combined to create rules. I demonstrate the various methods used to include CSS in a docu-
ment. I explain how keywords are used in CSS to create predefined behavior, and how strings
are used in CSS to refer to font names in a style sheet. I present the various units of measure-
ment that CSS supports. Finally, I talk about the different ways of specifying color.

❑ Chapter 3, “Selectors”: Chapter 2 introduced the concept of selectors. In Chapter 3 I talk about
complex selectors, and how you apply style to a portion of a document based on its context
within the document or user-initiated events.

❑ Chapter 4, “The Cascade and Inheritance”: In Chapter 4, you learn about how to override
styles, how precedence works in a style sheet, and how some styles can be considered more
important than others, concepts that come together to define the cascade in cascading style sheets.
You also learn how once you set some styles in a document, those styles can be inherited to
other parts of a document depending on the context in which they are applied.

Part II: Properties
Throughout Chapters 5 through 12, you learn about properties that are used to manipulate the presenta-
tion of a document.

❑ Chapter 5, “Text Manipulation”: In Chapter 5, I present the various properties that CSS pro-
vides for text manipulation. These properties provide effects such as controlling the amount of
space between the letters of words, controlling the amount of space between the words of a
paragraph, controlling text alignment, underlining, overlining, or strike-through text. I also
show how to control the case of text by making text all lowercase, uppercase, or capitalized.

❑ Chapter 6, “Fonts”: After you have seen the properties that CSS provides for text manipulation
in Chapter 5, Chapter 6 presents the CSS properties you can use to manipulate the presentation
of fonts. These effects include applying bold text, setting a font face, setting the font size, setting
an italic font, as well as learning to use a property that enables you to specify all CSS’s font
effects in one single property.

❑ Chapter 7, “The Box Model”: Chapter 7 elaborates on a design concept fundamental to CSS
design: The Box Model. You learn how the box model plays an important role in determining
layout dimensions. Using the margin, border, padding, width, and height properties, you can
control how much space elements within a document occupy, how much space separates them,
whether there are borders around them, whether scroll bars should be included. I also discuss a

03_096970 flast.qxp 4/20/07 11:26 PM Page xx

xxi

Introduction

CSS phenomenon known as margin collapsing, which is what happens when top or bottom
margins come into direct contact with other top or bottom margins in a web document.

❑ Chapter 8, “CSS Buoyancy: Floating and Vertical Alignment”: In Chapter 8, I discuss float
and clear, two properties used to control the flow of layout in a web document and often used
to flow text beside images. I also discuss the vertical-align property, which is used to create
effects like subscript or superscript text, as well as to control vertical alignment in table cells.

❑ Chapter 9, “List Properties”: In this chapter, I look at the properties CSS provides to control pre-
sentation of ordered and unordered lists. This discussion includes the options CSS provides for
predefined list markers, custom list markers, and the position of list markers.

❑ Chapter 10, “Backgrounds”: In Chapter 10, I present the properties CSS provides to control
backgrounds in a web page. This includes properties that set a background color or background
image, as well as those that control the position of a background, the tiling of a background, and
whether a background remains fixed in place as a web page is scrolled or remains static. Finally,
the chapter shows you how to use a property that combines all these individual effects into a
single property.

❑ Chapter 11, “Positioning”: I discuss four different types of positioning: static, relative, absolute,
and fixed. You use positioning primarily to layer portions of a document. I also describe some of
the practical uses for positioning, such as creating a multicolumn layout.

❑ Chapter 12, “Tables”: In Chapter 12, I present the different properties that CSS provides for
styling (X)HTML tables. The properties presented in this chapter let you control the spacing
between the cells of a table, the placement of the table caption, and whether empty cells are ren-
dered. I also look in detail at the available tags and options that (X)HTML provides for structur-
ing tabular data.

Part III: Advanced CSS and Alternative Media
Throughout Chapters 13, 14, and 15 you learn about how to use CSS to make documents for printing,
and another kind of document altogether, XML.

❑ Chapter 13, “Styling for Print”: In this chapter, I discuss what steps to take to use CSS to pro-
vide alternative style sheets to create a printer-friendly version of a web document.

❑ Chapter 14, “XML”: In this chapter, I show how you can use CSS to style XML content. This
chapter focuses specifically on the CSS display property and how you use this property to
change the behavior of tags in an XML or HTML/XHTML document.

❑ Chapter 15, “The Cursor Property”: In this chapter, I show you how you can change the user’s
mouse cursor using CSS, how you can customize the mouse cursor, and what browsers support
which cursor features.

❑ Chapter 16, “Dean Edwards’s ‘IE7’”: In this chapter I talk about one alternative to many of the
hacks and workarounds that you need for IE6. I talk about how to install an HTTP server for your
website, and how to install and use Dean Edwards’s “IE7” JavaScript, which is a collection of IE6
hacks and workarounds designed to make “IE6” feature compatible with its successor. This chap-
ter is available online only, on the Wrox website at www.wrox.com/go/beginning_css2e.

❑ Appendixes: Appendix A contains the answers to chapter exercises. Appendix B, “CSS
Reference,” provides a place for you to look up CSS features and browser compatibility on

03_096970 flast.qxp 4/20/07 11:26 PM Page xxi

xxii

Introduction

the fly. Appendix C, “CSS Colors,” provides a reference of CSS named colors. Appendix D,
“Browser Rendering Modes,” provides a reference for the browser rendering modes invoked
by the presence or absence of a Document Type Declaration (discussed in Chapter 7).

What Do You Need to Use This Book?
To make use of the examples in this book, you need the following:

❑ Several Internet browsers to test your web pages

❑ Text-editing software

Designing content for websites requires being able to reach more than one type of audience. Some of
your audience may be using different operating systems or different browsers other than those you have
installed on your computer. This book focuses on the most popular browsers available at the time of this
writing.

I discuss how to obtain and install each of these browsers in greater detail in Chapter 1. The examples in
this book also require that web page source code be composed using text-editing software. Chapter 1
also discusses a few different options for the text-editing software available on Windows or Macintosh
operating systems.

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used a number of con-
ventions throughout the book:

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ I highlight important words when I introduce them.

❑ I show keyboard strokes like this: Ctrl+A.

❑ I show URLs and code within the text in a special monofont typeface, like this: persistence
.properties.

❑ I present code in the following two ways:

In code examples, I highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

03_096970 flast.qxp 4/20/07 11:26 PM Page xxii

xxiii

Introduction

Source Code
As you work through the examples in this book, you may choose either to type the code yourself or use
the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox.com/go/beginning_css2e. When you arrive at the site, simply click the
Download Code link on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-09697-0.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty piece
of code, we would be very grateful for your feedback. By sending in errata you may save another reader
hours of frustration; at the same time, you will be helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

03_096970 flast.qxp 4/20/07 11:26 PM Page xxiii

xxiv

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P; but, in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works, as well as answers to many common questions specific to
P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

03_096970 flast.qxp 4/20/07 11:26 PM Page xxiv

Part I

The Basics

Chapter 1: Introducing Cascading Style Sheets

Chapter 2: The Essentials

Chapter 3: Selectors

Chapter 4: The Cascade and Inheritance

04_096970 pt01.qxp 4/20/07 11:27 PM Page 1

04_096970 pt01.qxp 4/20/07 11:27 PM Page 2

1
Introducing

Cascading Style Sheets

Cascading style sheets is a language intended to simplify website design and development. Put
simply, CSS handles the look and feel of a web page. With CSS, you can control the color of text, the
style of fonts, the spacing between paragraphs, how columns are sized and laid out, what back-
ground images or colors are used, as well as a variety of other visual effects.

CSS was created in language that is easy to learn and understand, but it provides powerful
control over the presentation of a document. Most commonly, CSS is combined with the markup
languages HTML or XHTML. These markup languages contain the actual text you see in a web
page — the hyperlinks, paragraphs, headings, lists, and tables — and are the glue of a web docu-
ment. They contain the web page’s data, as well as the CSS document that contains information
about what the web page should look like, and JavaScript, which is another language that pro-
vides dynamic and interactive functionality.

HTML and XHTML are very similar languages. In fact, for the majority of documents today, they
are pretty much identical, although XHTML has some strict requirements about the type of syntax
used. I discuss the differences between these two languages in detail in Chapter 2, and I also pro-
vide a few simple examples of what each language looks like and how CSS comes together with
the language to create a web page. In this chapter, however, I discuss the following:

❑ The W3C, an organization that plans and makes recommendations for how the web
should function and evolve

❑ How Internet documents work, where they come from, and how the browser displays
them

❑ An abridged history of the Internet

❑ Why CSS was a desperately needed solution

❑ The advantages of using CSS

05_096970 ch01.qxp 4/20/07 11:27 PM Page 3

The next section takes a look at the independent organization that makes recommendations about how
CSS, as well as a variety of other web-specific languages, should be used and implemented.

Who Creates and Maintains CSS?
Creating the underlying theory and planning how cascading style sheets should function and work in a
browser are tasks of an independent organization called the World Wide Web Consortium, or W3C. The
W3C is a group that makes recommendations about how the Internet works and how it should evolve. I
emphasize should, because the World Wide Web Consortium has no control over the implementation of
the standards that it defines. The W3C is comprised of member companies and organizations that come
together to create agreed-upon standards for how the web should function. Many prominent companies
and organizations are W3C members, including Microsoft, Adobe, The Mozilla Foundation, Apple,
Opera Software, and IBM. The W3C oversees the planning of several web languages including CSS,
HTML, XHTML, and XML, all of which are mentioned in this book.

CSS is maintained through a group of people within the W3C called the CSS Working Group. The CSS
Working Group creates documents called specifications. When a specification has been discussed and
officially ratified by W3C members, it becomes a recommendation. These ratified specifications are
called recommendations because the W3C has no control over the actual implementation of the language.
Independent companies and organizations create that software.

The specifications created by the W3C are not limited only to web browsers; in fact, the specifications
can be used in a variety of software, including word processor and spreadsheet applications, as well as
by different types of hardware devices, such as PDAs and cell phones. For that reason, the software
implementing a specification is referred to by the W3C as the user agent, which is a generic term that
encompasses all the different types of software that implement W3C specifications.

The W3C merely recommends that a language be implemented in a certain way to ensure that the lan-
guage does what is intended no matter which operating system, browser, or other type of software is
being used. The goal of this standardization is to enable someone using the Netscape browser, for
example, to have the same Internet experience as someone using Internet Explorer, and likewise, for
developers to have a common set of tools to accomplish the task of data presentation. Were it not for
web standards, developing documents for the web might require an entirely different document for a
given user agent. For example, Internet Explorer would require its own proprietary document format,
while Mozilla Firefox would require another. Common community standards provide website develop-
ers with the tools they need to reach an audience, regardless of the platform the audience is using.

As I write this, CSS comes in four different versions, each newer version building on the work of the last.
The first version is called CSS level 1, and became a W3C recommendation in 1996. The second version,
CSS level 2, became a W3C recommendation in 1998. The third version, CSS level 2.1, is currently a
working draft, downgraded from a candidate recommendation since I wrote the first edition of this
book in 2004. A candidate recommendation is the status the W3C applies to a specification when it feels
the specification is complete and ready to be implemented and tested. After the specification has been
implemented and tested by at least a few of the member companies, the candidate recommendation is
then more likely to become a full recommendation. A working draft is the status the W3C applies to an
ongoing work, which is subject to change. The fourth version of CSS is called CSS level 3, and many por-
tions of it are still in development. Although portions of CSS are officially subject to change by the W3C

4

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 4

standards body, I may discuss these features anyway if at least one browser maker has implemented the
feature in question. I preface any such discussion with the warning that these features are still under
development and could be subject to change.

This book discusses the portions of CSS available in browsers at the time of this writing — that includes
most of CSS 2 and CSS 2.1, and a little of CSS 3. Some portions of CSS 2.1 contradict CSS 2 and are not
yet implemented in any browser. Where appropriate throughout the book and before introducing a new
CSS feature, I reference the W3C specification in which that CSS feature is documented by including the
phrase Documented in CSS followed by the version number. Later in this chapter, I discuss the browsers
that you need to test and build CSS-enabled web documents.

You can find the W3C website at www.w3.org. Go there to find documents that browser makers refer to
when they are looking to implement languages such as CSS into a browser or other software. Be advised,
these specifications lean heavily toward the technical side. They aren’t intended as documentation for
people who use CSS; rather, they are aimed at those who write programs that interpret CSS. Despite the
heavily technical nature of the W3C specification documents, many web developers refer to the W3C
documents as end-user documentation anyway, since it is the most complete resource.

Now that you know a little about who is responsible for planning and outlining the development of CSS,
the next section describes how a web document makes its way into your browser.

How the Internet Works
As you probably already know, the Internet is a complex network of computers. Most of what goes on
behind the scenes is of little interest to the person developing content for a website, but it is important to
understand some of the fundamentals of what happens when you type an Internet address into your
browser. Figure 1-1 shows a simple diagram of this process.

At the top of the diagram in Figure 1-1, you see a computer labeled server-side and a computer labeled
client-side. The diagram is by no means an exhaustive or complete picture of what happens when you
type in an Internet address, but it serves the purpose of illustrating the portions of the process that the
aspiring web designer needs to understand. The server-side computer houses the documents and data
of the website and is generally always running so that the website’s visitors can access the website at any
time of day. The client-side computer is, of course, your own computer.

The server-side computer contains HTTP server software that handles all the incoming requests for web
pages. When you type an Internet address into a browser, the browser sends out a request that travels
through a long network of computers that act as relays for that request until the address of the remote
(server-side) computer is found. After the request reaches the HTTP server, the HTTP server sees what it
is you are trying to find, searches for the page on the server’s hard drive, and responds to the request
you’ve made, sending the web page that you expect. That response travels back through another long
chain of computers until your computer is found. Your browser then opens the response and reads what
the HTTP server has sent back to it. If that server has sent an HTML document or another type of docu-
ment that your browser can interpret, it reads the source code of that document and processes it into a
displayable web page.

5

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 5

Figure 1-1

This is where CSS enters the picture. If CSS is present in the document, the CSS describes what the
HTML page should look like to the browser. If the browser understands the CSS, it processes the web
page into something you can see and interact with. If the browser understands only some of the CSS, it
generally ignores what it doesn’t understand. If the browser doesn’t understand CSS at all, it usually
displays a plain-looking version of the HTML document.

How CSS Came to Be
During the mid-1990s, use of the Internet exploded. At that time, HTML was the only option for present-
ing a web page. As the Internet began to be used by more regular folks (as opposed to government, edu-
cational institutions, and researchers, as in the early days), users began demanding more control over
the presentation of HTML documents. A great quandary arose — clearly HTML alone was not good
enough to make a document presentable. In fact, not only was it not good enough, HTML alone simply
wasn’t suited for the job. HTML did not have the functionality that professional publishing required and
had no way of making magazine- or newspaper-like presentations of an electronic document.

5. HTTP server sends the web document.Server-side

Client-side

6. Your browser receives the document.

7. Your browser processes the source code.

8. The browser displays the web page.

4. HTTP server looks up the web document.

3. HTTP server receives the request from the browser.

2. Browser contacts the HTTP server at that address.

1. You type a www address into the browser.

6

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 6

At the time, style sheets were not a new invention. In fact, style sheets were part of the plan from the
beginning of HTML in 1990. Unfortunately, however, no standardized method of implementing style
sheets was ever outlined, leaving this function up to the various browsers. In 1994, Tim Berners-Lee
founded the World Wide Web Consortium, and a few days later, Håkon Wium Lie published his first
draft of Cascading HTML Style Sheets. This draft was a proposal for how HTML documents could be
styled using simple declarations.

Of those that responded to Håkon’s draft of Cascading HTML Style Sheets was Bert Bos, who was work-
ing on a style sheet proposal of his own. The two joined forces and came up with cascading style sheets.
They dropped HTML from the title, realizing that CSS would be better as a general style sheet language,
applicable to more than one type of document. CSS caused some controversy at its inception because
part of the underlying fundamentals of the new style sheet language was that it created a balance between
the browser’s style sheet, the user’s style sheet, and the author’s style sheet. Some simply didn’t like the
idea that the user could have control over the presentation of a web document. Ultimately, however, the
Internet community accepted CSS.

Among CSS supporters was Microsoft, who pledged support for the new style sheet language in its
Internet Explorer web browser. Netscape, on the other hand, another popular web browser at the time,
remained skeptical about CSS and went forward with a style sheet language of its own called JavaScript
Style Sheets, or JSSS. Ultimately, Netscape’s style sheets were not successful. Eventually, because of a
series of bad decisions and setbacks on the part of Netscape as a whole and Netscape’s management,
Netscape ultimately began losing market share, and Microsoft’s Internet Explorer (IE) browser grew
more and more popular. At IE’s peak, it held 95 to 98 percent of the browser market share. Although IE
has since lost market share to the likes of Mozilla Firefox and Safari, at the time of this writing, IE is still
the dominant browser, most firms putting IE’s market share at 50 to 85 percent, depending on the web-
site’s audience. Mainstream sites will see upward of 85 percent, but technical websites may see around
50 percent. Your own website’s browser statistics will depend largely on the content of your site. One
such site to reference for statistics is http://www.upsdell.com/BrowserNews/stat.htm. However,
keep in mind the quote, “There are lies, damn lies — and statistics” — Disraeli (later made famous by
Mark Twain).

During the time that CSS was being planned, browsers began allowing HTML features that control pre-
sentation of a document into the browser. This change is the primary reason for much of the bloated and
chaotic source code in the majority of websites operating today on the Internet. Even though HTML was
never supposed to be a presentational language, it grew to become one. Unfortunately, by the time CSS
level 1 was made a full W3C recommendation in 1996, the seed had already been planted. Presentational
HTML had already taken root in mainstream website design and continues today.

However, all is not lost. Today, the most popular browsers have fantastic support for cascading style
sheets. Ironically, the browser exhibiting the least support is Microsoft’s Internet Explorer for Windows,
which still has plenty of CSS support to do away with most presentational HTML design. More ironic
still, among the browsers with the best CSS support is Netscape’s browser, and its open source offspring,
Mozilla Firefox. This may beg the question: If Microsoft was such an avid supporter of cascading style
sheets in the beginning, why is Microsoft’s browser the least standards-compliant today? The answer is
that Microsoft did indeed follow through with its promise for CSS support, and it was the most compre-
hensive and impressive implementation of CSS even up to the release of Internet Explorer 6 in 2001.
Even so, CSS implementation in Internet Explorer has declined since the release of Internet Explorer 5.
We can only speculate as to why Microsoft’s browser declined in its support for CSS.

7

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 7

In the next section, I talk about the different types of browsers that you’ll need to work through the
examples for this book.

Browsers
Because CSS is a standard web language, many browsers support it. Therefore, it stands to reason that
the aspiring web designer would want to harness that standardization to reach the largest audience pos-
sible, regardless of operating system or platform. In this section I provide an overview of each of these
browsers, and where you can look to obtain a new version of that browser. Together, the following
browsers combined comprise over 99 percent of the browser market share for the majority of websites
in operation today:

❑ Internet Explorer 6 and 7 for Windows

❑ Mozilla Firefox for Windows, Mac, and Linux

❑ Opera for Windows, Mac, and Linux

❑ Safari for Mac OS X

In the next section, I discuss Internet Explorer 6 and 7 for Windows.

Internet Explorer
Internet Explorer is Microsoft’s flagship browser that comes preloaded with the Windows operating sys-
tem. The current stable version, as of this writing, is version 7.

Internet Explorer 7
Late in 2004, after the first edition of this book was published, Microsoft finally began work on a new
version of Internet Explorer. IE 7 includes stronger security, tabbed browsing, and other goodies for
users, and for developers — improvements to IE’s support for CSS!

IE 7 comes just over five years after the release of IE 6, which was released in 2001. IE 7 is a fantastic
improvement over IE 6, but it still doesn’t quite meet the level of CSS present in competing browsers
like Apple’s Safari browser, or Mozilla Firefox. Although it doesn’t exhibit the best CSS support, there is
hope that future versions of IE will make significant progress in this area. Internet Explorer developers,
and even Bill Gates, have publicly stated that Microsoft has returned to a more frequent release cycle for
Internet Explorer, and we can expect new versions of Internet Explorer every year for the foreseeable
future. Microsoft has even gone so far as to admit that it made a mistake by waiting too long to release a
new version of IE.

Even though IE 7 is finally here, it will be years still before it achieves sufficient market penetration that
web developers can officially dump support for IE 6. Because of IE 6’s deficiencies, many are chomping
at the bit for that time to come. In the meantime, we’ll have to continue to support it and work around
its shortcomings.

8

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 8

IE 7 is available for the following operating systems:

❑ Windows XP Service Pack 2

❑ Windows XP Pro 64-bit Edition

❑ Windows Server 2003

❑ Windows Vista

You can obtain IE 7 from Microsoft’s website at http://www.microsoft.com/ie.

Internet Explorer 6
At the time of this writing Internet Explorer 6 is still the top dog with its browser market share between
50 and 85 percent, depending on the website’s audience (see my discussion of Internet Explorer’s market
share in the section titled “How CSS Came to Be” earlier in this chapter). If you don’t already have IE 6,
you can obtain it from http://www.microsoft.com/windows/ie/ie6/default.mspx.

Installing Multiple Versions of Internet Explorer for Testing
At the time of this writing, you cannot install IE 7 alongside IE 6 on the same copy of Windows. For
development, you need a way to test IE 6 and IE 7 both, since you’ll have visitors to your website on
both browsers. The following are a few ways to do this.

❑ Use PC virtualization/emulation software such as Virtual PC (a product made by Microsoft),
which allows you to install and run different versions of Windows (or other operating systems,
such as Linux) from within Windows or Mac OS X. Essentially, you can load up a new instance
of Windows from your Windows desktop, and have that instance of Windows run in a window,
independently. For example, Figure 1-2 shows a screenshot of me running Windows XP and IE 6
from my Mac OS X desktop, using the open source software Q, which lets me install and run
Windows from within Mac OS X.

❑ Another option is setting up two different physical computers, one with IE 6 installed, and the
other with IE 7.

❑ If you’re feeling particularly adventurous, you can set up two installations of Windows on the
same computer, although for this discussion, this method is a bit too advanced for me to ade-
quately cover here. If you’d like to learn more about installing Windows more than once on the
same computer, more information about that can be found at http://www.microsoft.com/
windowsxp/using/setup/learnmore/multiboot.mspx.

Figure 1-2 shows two instances of Windows XP running in Parallels Desktop for Mac; one is running
IE 6, and the other is running IE 7.

Most people prefer to keep it simple, and have all of their development tools at their fingertips. That
makes the virtualization/emulation method the most attractive, in lieu of actually being able to install
IE 6 alongside IE 7. I discuss this method in further detail in the next section.

9

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 9

Figure 1-2

Installing Windows Using PC Virtualization/Emulation Software
Today many companies make PC virtualization or emulation software, which allows you to run an
entire operating system from a window on your desktop in the manner illustrated in Figure 1-2. More or
less, it’s like having multiple computers all consolidated into one. You can boot up a virtual computer,
with all default settings so you can test your web pages. Here are some of the titles available.

10

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 10

❑ VMWare, Player: Available for free from http://www.vmware.com/products/player/ for
Windows and Linux.

❑ Virtual PC: Made by Microsoft, available for $129 from http://www.microsoft.com/windows/
virtualpc (the price does not include a license for running Windows in the Virtual PC).
Requires Windows or a PowerPC-based Mac.

❑ Q (pictured in Figure 1-2): Available for free from http://www.kberg.ch/q. If you’re using
Mac OS X, Q is available as a universal application (it runs on both PowerPC-based and Intel-
based Macs).

❑ Parallels: Available for $49.99 from http://www.parallels.com for Windows, Mac (PowerPC
and Intel-based), and Linux.

The best software for installing Windows from another operating system is software that uses virtualiza-
tion. Without going into the technical details, software using virtualization runs much faster. The other,
slower, much slower, in fact, method is emulation. Parallels and VMWare use virtualization, whereas, at
the time of this writing, Microsoft’s Virtual PC and “Q” both use emulation. Your computer will also
need serious horsepower to run two operating systems at the same time; see each respective website for
the system requirements of each of the aforementioned solutions. In my experience, software like this
works best with at least 1GB of RAM and about a 2 GHz processor.

Without the ability to install and work with Windows virtually using software such as VMWare, your
last resort is to uninstall IE 7 every time you need to test in IE 6, which can throw a pretty big wrench in
the testing process. Currently, the virtual machine solution is the one officially sanctioned and recom-
mended by Microsoft for testing in multiple versions of Internet Explorer. The IE team has responded
to requests from web developers for the ability to install and run multiple versions of Internet Explorer
side-by-side, and have said they are looking at the problem, but have not yet publicly announced a solu-
tion or released software to remedy the problem.

Internet Explorer for PowerPC Mac OS X
For PowerPC Macintosh users, I recommend not using or testing in IE for Mac. The capabilities and
bugs of IE for Windows and IE for Mac are very different. IE for the Macintosh has better support for
CSS (compared to IE 6), but it is an entirely different browser. The name may be the same, but the
browsers are very different. In fact, Microsoft has completely dropped support for IE for Mac, having
stopped development with a public announcement made in 2003, and having completely stopped sup-
port in 2005. It has less than a tenth of a percent of market share, if that much, and it does not run on
Apple’s Intel-based Macs.

For Mac users, I recommend Apple’s own Safari or a Gecko browser, such as Camino or Mozilla Firefox,
which I discuss further in the coming sections. If you don’t have Internet Explorer for Windows, you still
can work through most exercises and examples presented in this book, but if you are serious about web-
site design, you will need to find a way to test your websites in Internet Explorer on Windows, since it
has the majority of market share, and will enjoy that status far into the foreseeable future.

For news on what is transpiring in the world of Internet Explorer development, you might like to check
out the Internet Explorer Team’s blog at http://blogs.msdn.com/ie. New IE features and news of
anything relating to Internet Explorer are announced on the IE Team blog.

11

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 11

The Gecko Browsers: Mozilla Firefox, Netscape, Camino
Gecko was created in January 1998. At that time, Netscape announced that it was making its browser
free to its users and that its browser would be open source, meaning that its source code would be freely
available for modification and distribution. This led to the creation of Mozilla; at the time Mozilla was
the organization charged with developing and managing the Netscape code base. America Online later
purchased Netscape, and until July 2003 Mozilla remained a part of Netscape. In July 2003, the Mozilla
Foundation was created, making Mozilla an independent, not-for-profit corporation. When the Netscape
browser became open source, its rendering engine, the part of the browser software responsible for mak-
ing the source code of a web page into something you can see and interact with, was given the name
Gecko.

Gecko is the foundation that a whole suite of browsers relies on to do the behind-the-scenes work of ren-
dering web pages. Gecko is included in AOL for Mac OS X, Camino, Netscape 6, Netscape 7, Netscape 8,
Mozilla Suite, Mozilla Sea Monkey, and Mozilla Firefox.

Netscape’s browser market share has greatly diminished, whereas Mozilla Firefox continues to gain in
popularity, occupying the number-two spot at between 5 and 30% market share (again, depending on
the website’s audience). Netscape’s (and other Gecko browsers, for that matter) market share is charted
by most statistics at less than one percent.

The following table shows the relationship between other Gecko browsers and Mozilla Firefox. This
table illustrates the version of the underlying Gecko engine that each browser has in common with
Firefox. Each of these browsers can be expected to render a web page identically and have the same
capabilities in the area of CSS and document layout as the version of Firefox cited.

Other Gecko Browser Firefox

Netscape 8.1 Firefox 1.5

Netscape 8.0 Firefox 1.0

Netscape 7.2 Firefox 0.9

Camino 1.0 Firefox 1.5

SeaMonkey 1.0 (formerly Mozilla Suite) Firefox 1.5

Mozilla Suite 1.8 Firefox 1.0

Mozilla Suite 1.7 Firefox 0.9

Mozilla Suite 1.6 Firefox 0.8

Netscape 8.0 and 8.1 both feature the ability to switch between IE and Gecko for rendering a web page
from within the Netscape browser, so essentially it is both Internet Explorer and Gecko in the same
browser. The version of Internet Explorer in Netscape 8.0 and 8.1 is the same as the version of IE
installed on the system. Netscape uses Gecko by default, but may try to “automatically” select the best
rendering engine to use for a given website.

12

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 12

You can see that Firefox 0.9 and Mozilla Suite 1.7 can be expected to behave identically where CSS and
design layout is concerned.

Because gecko browsers share the same brain (and because of Firefox’s popularity), for the remainder of
this book, I cite only Firefox when referring to a Gecko browser.

Depending on which Gecko browser you happen to like, you can obtain Gecko browsers from the fol-
lowing places:

❑ Mozilla Firefox for Windows, Mac, and Linux: Available from http://www.mozilla.com/
firefox

❑ Netscape for Windows: Available from http://www.netscape.com/download

❑ Camino for Mac: Available from http://www.caminobrowser.org/

❑ SeaMonkey for Windows, Mac, and Linux: Available from http://www.mozilla.org/
projects/seamonkey/

Safari
The next browser that I discuss is Safari, which is based on Konqueror, an open source browser available
for Linux operating systems. The rendering engine used in the Safari and Konqueror web browsers is
called KHTML. While Konqueror and Safari both have KHTML in common, Safari is a fork of KHTML
(a fork means they shared the exact same source code at one point, but now each is developed indepen-
dently), and features found in Safari may not necessarily appear in Konqueror and vice versa. Despite
this, the two browsers render documents very similar to one another. Apple develops Safari, indepen-
dently of Konqueror, and is the browser included with Macintosh OS X operating systems. Before Safari,
Internet Explorer for Mac and Gecko had been dominant on the Mac.

For the purpose of this book, I note Safari compatibility when appropriate. Safari is available only for
Mac OS X and can be obtained from www.apple.com/safari. Konqueror is only available for Linux
(and any operating system in which KDE, the K Desktop Environment, runs) at the time of this writing;
it can be found at www.konqueror.org.

Opera
Opera is a lesser-known, Norwegian-based company. Opera users are fewer, accounting for only a few per-
cent market share by most statistical estimates. Again, that figure can be much higher or lower depending
on a website’s audience. Also be aware that Opera and Mozilla Firefox browsers can be configured to iden-
tify themselves to a website as Microsoft Internet Explorer browsers. This, of course, can distort statistical
analysis. This spoofing is done because websites often create content targeting Microsoft Internet Explorer
and Netscape specifically, leaving everyone else out in the cold — even though third-party browsers like
Mozilla Firefox and Opera probably support the required functionality.

At the time of this writing, the current version of the Opera browser is 9.0. You can download this
browser for free from www.opera.com. The Opera browser is available for Windows, Macintosh, Linux,
and a variety of other platforms.

13

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 13

Writing CSS
To write CSS, just as is the case when writing HTML source, you will need a text editor. WYSIWYG
(What You See Is What You Get) editors such as Microsoft Word aren’t ideally suited for CSS because the
environment is not ideal for the composition of source code. WYSIWYG programs often have features
like AutoCorrection and line wrapping; a plain text editor is more appealing precisely because it does
not have these automatic features. Furthermore, the more automated WYSIWYG editors are designed to
write the source code for you behind the scenes, so you don’t have complete control over the structure
and formatting of the source code. In contrast, a plain text editor doesn’t insert anything into the source
code beyond what you type into the text editor.

The Windows Notepad program is one example of a text editor that is ideal for composing source code.
To launch Notepad, choose Start ➪ Run and then type Notepad in the Open text box. You can also use
Microsoft FrontPage, but FrontPage is best used in view source mode where you can edit the source code
directly instead of via the WYSIWYG interface. The same holds true for Macromedia Dreamweaver.

On Mac OS X, the Notepad equivalent is TextEdit, which can be found in the Mac OS X Applications
folder.

If Notepad or TextEdit is just too basic for your taste, a text editor that highlights markup and CSS syn-
tax might suit your needs better. The following are full-featured alternative text editors for Windows:

❑ Crimson Editor: www.crimsoneditor.com (free)

❑ HTML-kit: www.chami.com/html-kit (free)

Here are some alternative text editors that work with Mac OS X:

❑ CreaText: http://creatext.sourceforge.net (free)

❑ BBEdit: www.barebones.com (shareware)

If you’re using Linux, you’re probably already familiar with the different text editors that come bundled
with the various distributions.

You must create HTML files with the .html extension. If you use Notepad or TextEdit, beware of your
files being saved with a .txt extension, which will not result in the HTML file you were going for.

To ensure that your files are saved properly on Windows, choose Start ➪ Run and type Explorer (or
right-click Start and choose Explore from the pop-up menu) to open Windows Explorer. After Windows
Explorer is open, choose Tools ➪ Folder Options to open the Folder Options window, click the View tab,
and uncheck the Hide Extensions for Known File Types box (see Figure 1-3). Then click OK.

HTML files are not the only file type in which the document extension is important; other file types
require specific extensions as well. Those file types are covered later in this chapter.

14

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 14

Figure 1-3

On Mac OS X, open Finder, and go to Finder ➪ Preferences. Select the Advanced tab, and check the box
for Show All File Extensions, which is depicted in Figure 1-4.

Figure 1-4

Armed with a browser and a text editor, in the next section I present an example of what CSS can do.

Your First CSS-Enabled Document
The following example is designed to introduce you to what CSS is capable of. It is designed to help you
get your feet wet and get straight down to the business of writing style sheets.

15

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 15

You can find the images and source code for the following example at www.wrox.com. While you can
obtain the source code from www.wrox.com, I recommend that you type out the example so that you
can get used to writing the syntax, and take in the different bits that come together in the example.

Try It Out Creating a CSS-Enabled Document
Example 1-1. To write your first CSS-enabled document, follow these steps.

1. In your text editor of choice, enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<title>The Gas Giants</title>
<link rel=’stylesheet’ type=’text/css’ href=’solar_system.css’ />
<script type=’text/javascript’>
var fixpng = function($img) {};

</script>
<!--[if lt IE 7]>
<link rel=’stylesheet’ type=’text/css’ href=’solar_system.ie.css’ />
<script type=’text/javascript’>
// This fixes PNG transparency in IE
var fixpng = function($img)
{
var $html =
‘<span ‘ +
(($img.id)? “id=’” + $img.id + “‘ “ : ‘’) +
(($img.className)? “class=’” + $img.className + “‘ “ : ‘’) +
(($img.title)? “title=’” + $img.title + “‘ “ : ‘’) +
‘style=”’ +
‘display: inline-block;’ +
‘width: ‘ + $img.width + ‘px;’ +
‘height: ‘ + $img.height + ‘px;’ +
“filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(“ +
“src=’” + $img.src + “‘, sizingMethod=’scale’); “ +

$img.style.cssText + ‘“ ‘;

if ($img.getAttribute(‘mouseoversrc’))
{
$html += “mouseoversrc=’” + $img.getAttribute(‘mouseoversrc’) + “‘ “;

}

if ($img.getAttribute(‘mouseoutsrc’))
{
$html += “mouseoutsrc=’” + $img.getAttribute(‘mouseoutsrc’) + “‘ “;

}

$html += ‘>’;

$img.outerHTML = $html;

16

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 16

}
</script>

<![endif]-->
</head>
<body>
<!--

Image reuse guidelines:
http://www.nasa.gov/multimedia/guidelines/index.html

-->
<div id=’solar-system’>
<div class=’planet jupiter’>
<img src=’images/jupiter.png’

alt=’Jupiter’
class=’planet’
onload=’fixpng(this);’ />

<div class=’planet-copy’>
<h1>Jupiter</h1>

Distance from the Sun: 78,412,020 km
Equatorial Radius: 71,492 km
Volume: 1,425,500,000,000,000 km³
Mass: 1,898,700,000,000,000,000,000,000,000 kg

More Facts

<img src=’images/symbols/jupiter.png’

alt=’Mythological Symbol for Jupiter’
onload=’fixpng(this);’ />

</div>
</div>
<div class=’planet saturn’>
<img src=’images/saturn.png’

alt=’Saturn’
class=’planet’
onload=’fixpng(this);’/>

<div class=’planet-copy’>
<h1>Saturn</h1>

Distance from the Sun: 1,426,725,400 km
Equatorial Radius: 60,268 km
Volume: 827,130,000,000,000 km³
Mass: 568,510,000,000,000,000,000,000,000 kg

More Facts

<img src=’images/symbols/saturn.png’

17

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 17

alt=’Mythological Symbol for Saturn’
onload=’fixpng(this);’ />

</div>
</div>
<div class=’planet uranus’>
<img src=’images/uranus.png’

alt=’Uranus’
class=’planet’
onload=’fixpng(this);’ />

<div class=’planet-copy’>
<h1>Uranus</h1>

Distance from the Sun: 2,870,972,200 km
Equatorial Radius: 25,559 km
Volume: 69,142,000,000,000 km³
Mass: 86,849,000,000,000,000,000,000,000 kg

More Facts

<img src=’images/symbols/uranus.png’

alt=’Mythological Symbol for Uranus’
onload=’fixpng(this);’ />

</div>
</div>
<div class=’planet neptune’>
<img src=’images/neptune.png’

alt=’Neptune’
class=’planet’
onload=’fixpng(this);’ />

<div class=’planet-copy’>
<h1>Neptune</h1>

Distance from the Sun: 4,498,252,900 km
Equatorial Radius: 24,764 km
Volume: 62,526,000,000,000 km³
Mass: 102,440,000,000,000,000,000,000,000 kg

More Facts

<img src=’images/symbols/neptune.png’

alt=’Mythological Symbol for Neptune’
onload=’fixpng(this);’/>

</div>
</div>

</div>
</body>

</html>

18

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 18

2. Save the preceding file in a new folder of its own as index.html.

3. Create a new, blank document in your text editor, and enter the following CSS:

body {
margin: 0;
padding: 0;
background: #000 url(‘images/backgrounds/star.png’) no-repeat fixed;
font: 12px sans-serif;

}
a {
text-decoration: none;
color: lightblue;

}
a:hover {
color: yellow;

}
div#solar-system {
position: relative;
height: 575px;
margin: 50px 0 0 0;
border-top: 1px solid #000;
border-bottom: 1px solid #000;
background: #000 url(‘images/backgrounds/star_darker.png’) no-repeat fixed;
overflow: auto;
white-space: nowrap;

}
div.planet {
position: absolute;
top: 0;
left: 0;
bottom: 25px;

}
div.jupiter img.planet {
margin: 75px 0 0 40px;

}
div.saturn {
left: 900px;

}
div.uranus {
left: 1900px;

}
div.uranus img.planet {
margin: 175px 0 0 100px;

}
div.neptune {
left: 2750px;

}
div.neptune img.planet {
margin: 175px 0 0 200px;

}
div.planet img {
float: left;
margin-top: 20px;

19

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 19

}
div.planet-copy {
color: white;
padding: 10px;
margin-left: 520px;
background: #000 url(‘images/backgrounds/star_darker_still.png’) no-repeat

fixed;
position: absolute;
top: 0;
bottom: 0;
left: 0;
border-left: 1px solid #000;
border-right: 1px solid #000;

}
div.planet-copy h1 {
border-bottom: 1px solid #000;
margin: 0 -10px;
padding: 0 10px;

}
div.planet-copy ul {
list-style: none;

}

4. Save the preceding CSS in the same folder where you saved index.html, as solar_system.css.

5. Enter the following CSS in a new document in your text editor:

div.planet {
height: expression(document.getElementById(‘solar-system’).offsetHeight - 25);

}
div.planet-copy {
height: expression(document.getElementById(‘solar-system’).offsetHeight - 45);

}

6. Save the preceding document in the same folder as index.html and solar_system.css, as
solar_system.ie.css. The preceding source code results in the image in Figure 1-5, when
loaded into Safari on Mac OS X.

To see how index.html looks in other browsers, you can load it up by going to the File menu
of the browser you’d like to view it in, and then select Open or Open File, and then locate
index.html on your hard disk.

How It Works
Example 1-1 is an introduction to a little of what CSS is capable of. This example is designed to get your
hands dirty up front with CSS, as a preview of what you can expect throughout the rest of the book.
With each new chapter, I introduce and explain each of the nuts and bolts that come together to make
examples like the preceding one. In Figure 1-5, you can see that CSS can be used to specify background
images, and other aesthetic aspects of an XHTML document. I continue to revisit and explain the CSS
that resulted in Figure 1-5 throughout the book.

20

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 20

Figure 1-5

You might also note that Example 1-1 took some additional handy work to make it come out the same in
Internet Explorer, as it did in Safari, Firefox, and Opera. Throughout this book, you also learn the hacks
and workarounds that you need to make CSS-enabled web pages compatible with IE 6.

Advantages of Using CSS
By using cascading style sheets for the presentation of a web document, you can substantially reduce the
amount of time and work spent on composing not only a single document, but an entire website.
Because more can be done with less, cascading style sheets can reduce the amount of hard disk space
that a website occupies, as well as the amount of bandwidth required to transmit that website from the
server to the browser. Cascading style sheets have the following advantages:

21

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 21

❑ The presentation of an entire website can be centralized to one or a handful of documents,
enabling the look and feel of a website to be updated at a moment’s notice. In legacy HTML
documents, the presentation is contained entirely in the body of each document. CSS brings a
much needed feature to HTML: the separation of a document’s structure from its presentation.
CSS can be written independently of HTML.

❑ Users of a website can compose style sheets of their own, a feature that makes websites more
accessible. For example, a user can compose a high-contrast style sheet that makes content
easier to read. Many browsers provide controls for this feature for novice users, but it is CSS
nonetheless.

❑ Browsers are beginning to support multiple style sheets, a feature that allows more than one
design of a website to be presented at the same time. The user can simply select the look and
feel that he or she likes most. This could only be done previously with the aid of more complex
programming languages.

❑ Style sheets allow content to be optimized for more than one type of device. By using the same
HTML document, different versions of a website can be presented for handheld devices such as
PDAs and cell phones or for printing.

❑ Style sheets download much more quickly because web documents using CSS take up less hard
disk space and consume less bandwidth. Browsers also use a feature called caching, a process
by which your browser will download a CSS file or other web document only once, and not
request that file from the web server again unless it’s been updated, further providing your
website with the potential for lightning-fast performance.

Cascading style sheets allow the planning, production, and maintenance of a website to be simpler than
HTML alone ever could be. By using CSS to present your web documents, you curtail literally days of
development time and planning.

Summary
Cascading style sheets are the very necessary solution to a cry for more control over the presentation of a
document. In this chapter, you learned the following:

❑ The World Wide Web Consortium plans and discusses how the Internet should work and
evolve. CSS is managed by a group of people within the W3C called the CSS Working Group.
This group of people makes recommendations about how browsers should implement CSS
itself.

❑ The Internet is a complex network of computers all linked together. When you request a web
document, that request travels through that network to a computer called an HTTP server that
runs software. It sends a response containing the page you requested back through the network.
Your browser receives the response and turns it into something you can see and interact with.

❑ CSS answers a need for a style sheet language capable of controlling the presentation of not only
HTML documents, but also several types of documents.

❑ Internet Explorer 6, Gecko, Opera, and KHTML browsers make up the majority of browsers in
use today, with Internet Explorer 6 being the world’s most popular browser.

22

Part I: The Basics

05_096970 ch01.qxp 4/20/07 11:27 PM Page 22

❑ CSS has many advantages. These include being accessible, applicable to more than one lan-
guage; applicable to more than one type of device, and allowing a website to be planned, pro-
duced, and maintained in much less time. CSS also enables a website to take up significantly
less hard disk space and bandwidth than formerly possible.

Now that you have the tools to write CSS, and have seen a little of what CSS can do, in Chapter 2,
I begin talking about the bits and pieces that come together in a CSS document to define the CSS
language.

23

Chapter 1: Introducing Cascading Style Sheets

05_096970 ch01.qxp 4/20/07 11:27 PM Page 23

05_096970 ch01.qxp 4/20/07 11:27 PM Page 24

2
The Essentials

In Chapter 1 you received a taste of what CSS is capable of in Example 1-1, a web page that con-
tains the four gas giant planets of our solar system and some facts about them. In this chapter, I
begin the process of drilling down into CSS syntax. Throughout Chapter 2, I take an exacto knife
to the solar_system.css style sheet that you wrote for Example 1-1, and explore what makes
CSS work. I begin this discussion with CSS rules.

CSS Rules
As you dissect a style sheet, it can be broken down into progressively smaller bits. From large to
small, it goes like this:

❑ Style sheet

❑ Rule

❑ Selector

❑ Declaration

❑ Property

❑ Value

In between, some special characters are used to mark the beginning and ending of one bit from
another. Figure 2-1 shows a CSS rule.

06_096970 ch02.qxp 4/20/07 11:27 PM Page 25

Figure 2-1

You can set the layout of the rule according to your preferences; you can add line breaks and spacing to
make CSS readable, sensible, and organized:

body {
margin: 0;
padding: 0;
background: #000 url(‘images/backgrounds/star.png’) no-repeat fixed;
font: 12px sans-serif;

}

Or you can scrunch it all together:

body {margin: 0; padding: 0; background: #000 url(‘images/backgrounds/star.png’)
no-repeat fixed; font: 12px sans-serif;}

Like HTML, CSS can use white space and line breaks for purposes of readability. The interpreter reading
the CSS doesn’t care how much white space appears in the style sheet or how many line breaks are used.
Humans, however, must often add some sort of structure to prevent eyestrain, and to increase maintain-
ability and productivity.

Within a rule, the bit that chooses what in the HTML document to format is called a selector.

Selectors
In CSS, a selector is the HTML element or elements to which a CSS rule is applied. Put simply, the selec-
tor tells the browser what to format. The simple selector that you saw in the last section is called a type
selector; it merely references an HTML element. The selector portion of a CSS rule is highlighted in
Figure 2-2.

Figure 2-2
26

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 26

body is written in the style sheet without the left and right angle brackets, < >. This rule applies the CSS
properties: margin, padding, background, and font to the <body> element. I talk more about what
these properties do in Chapters 6, 7, and 10.

Declarations
Declarations are enclosed within curly braces to separate them from selectors. A declaration is the combina-
tion of a CSS property and value. Figure 2-3 highlights the property and value portions of a declaration.

Figure 2-3

The property appears before the colon, and the colon is used to separate the property from the value.
Declarations are used to describe. What would the CSS be like if I used CSS to describe myself? It might
look like the following

richard {
mood: content;
height: 6.1ft;
weight: auto;
hair: brown;
eyes: hazel;
belly: full;

}

A declaration is a complete instruction for styling a property of an HTML element. The whole declara-
tion appears highlighted in Figure 2-4.

Figure 2-4

A declaration always ends with a semi-colon.

When more than one declaration or selector appears in the same rule, they are said to be grouped.

27

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 27

Grouping Selectors
You can group multiple selectors together in a single rule by providing a comma after each selector; this
is illustrated in Figure 2-5. The result is that a rule applies to more than one selector at a time.

Figure 2-5

The rule in Figure 2-5 applies to the HTML elements, <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>. Try it for
yourself.

Try It Out Grouping Selectors
Example 2-1. To see how a selector is used to select HTML elements in the body, follow these steps.

1. Fire up your favorite text editor and type the following XHTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

<head>
<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Selectors and Grouping</title>
<style type=’text/css’>

h1, h2, h3, h4, h5, h6 {
font-family: sans-serif;
color: maroon;
border-bottom: 1px solid rgb(200, 200, 200);

}
</style>

</head>
<body>

<h1>Style Sheet</h1>
<h2>Rule</h2>
<h3>Selector</h3>
<h4>Declaration</h4>
<h5>Property</h5>
<h6>Value</h6>

</body>
</html>

2. Save this as Example_2-1.html.

3. Fire up your favorite browser and load the file. Figure 2-6 shows how CSS selects the different
headings in the body of the HTML document to apply style.

28

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 28

Figure 2-6

How It Works
In Figure 2-6 you see the hierarchy of a style sheet, drilling down from the whole style sheet to the value
of a property. In Example 2-1, you included a single CSS rule with a selector that provides properties for
all six HTML heading elements, <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>. The selector contains three
declarations that provide the browser with information about how to style the aforementioned heading
elements. The browser is told to give each heading text colored maroon in the sans-serif font face, and a
bottom border that’s gray, solid, and one pixel thick.

CSS Comments
As is the case with HTML, comment text can be added to style sheets as well. In a multipage template,
this helps you remember which CSS rule applies to what or why it was added in the first place. CSS sup-
ports multiline comments that begin with a forward slash and an asterisk (/*) and terminate with an
asterisk and a forward slash (*/). This is illustrated in Figure 2-7.

Figure 2-7

29

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 29

CSS comments provide a mechanism that allows you to insert notes about what the styles in the style
sheet do and why they were added. The design of a website can get complicated, and often it’s helpful to
make notes that help you remember why you added one thing or another. The following are some exam-
ples of what you can do with comments.

❑ Comments can appear inside of a rule, as illustrated in Figure 2-8.

Figure 2-8

❑ Comments can appear inside of a declaration, as demonstrated in Figure 2-9.

Figure 2-9

❑ Comments can span multiple lines, as shown in Figure 2-10.

Figure 2-10

❑ Comments can be used to disable portions of a style sheet, as shown in Figure 2-11.

30

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 30

Figure 2-11

Disabling portions of a style sheet can be useful if you are trying to track down problematic styles, or if
you are simply experimenting with different effects.

Values
CSS can become quite complex in terms of what it allows a property’s value to be. Figure 2-5 illustrates
some, but not all, of the potential types of values that you see in CSS. In the coming sections I discuss
each of the different types of values that CSS allows in greater detail, beginning with keyword values.

Keywords
A keyword value is used to invoke a predefined function. For example, red, green, and blue are CSS
keywords, red, green and blue; all have a predefined purpose. Color keywords can be used on any
property that accepts a color value. Figure 2-12 shows some examples of keywords in a style sheet.

Figure 2-12

The keywords in Figure 2-12 are no-repeat, fixed, and lightblue. no-repeat and fixed provide
the browser with instructions for how to render the background image. lightblue is a keyword that
tells the browser what color the text of hyperlinks should be.

31

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 31

Many types of keywords are used in CSS, and sometimes a single keyword can have different meanings
depending on the element to which it is applied. The auto keyword, for example, is used by CSS to
apply some default style or behavior, and its meaning depends on the way it’s used, and what property
it is used with. Try the auto keyword in this example.

Try It Out Adding auto width to a Table
Example 2-2. To see the effects of the auto keyword as applied to a <table> element, follow these steps.

1. Enter the following XHTML-compliant markup.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Auto width on tables</title>
<style type=’text/css’>

table {
width: auto;
background: black;
color: white;

}
</style>

</head>
<body>

<table>
<tbody>

<tr>
<td>How will this table react to auto width?</td>

</tr>
</tbody>

</table>
</body>

</html>

2. Save the preceding markup as Example_2-2.html, and then load it into a browser. Figure 2-13
shows width: auto; applied to the <table> element.

Figure 2-13

32

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 32

How It Works
In Figure 2-13, you can see that the table expands only enough to accommodate the text within it.

When width: auto; is applied to a <table> element, it invokes a different mechanism for width mea-
surement than when it is applied to a <div> element. Next, see what happens when auto width is
applied to a <div> element.

Try It Out Applying auto width to a div
Example 2-3. To see the effects of the auto keyword as applied to a <div> element, follow these steps.

1. Enter the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Auto width on divs</title>
<style type=’text/css’>

div {
width: auto;
background: black;
color: white;

}
</style>

</head>
<body>

<div>How will this div react to auto width?</div>
</body>

</html>

2. Save the preceding markup as Example_2-3.html. Figure 2-14 shows width: auto; applied
to the <div> element.

Figure 2-14

33

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 33

How It Works
All elements with a width property have an auto value by default, but not all elements behave the same
way when auto width is applied. The <table> element, for instance, only expands horizontally to
accommodate its data, which is a method called shrink-to-fit. A <div> element, on the other hand,
expands horizontally as far as there is space, which is called expand-to-fit.

I’ve added a background for each element in Examples 2-2 and 2-3 so that you can see its width. The
border outlines the edges of each element, showing exactly how much space each element occupies. You
learn more about how width works in Chapter 7, “The Box Model.”

Keywords always invoke some special, predefined behavior. Another example I can present is with the
CSS border property: A border may take three separate keywords that define how it appears when the
browser renders it:

border: thin solid black;

This example defines a property with three keyword values: thin, solid, and black. Each value refers
to a different characteristic of the border’s appearance: thin refers to its measurement, solid to its
style, and black to its color.

Sometimes you have need of including content from a style sheet or referencing a file path or including a
font name that has spaces in its name or referencing an HTML element’s attribute value. To accomplish
these tasks, CSS supports a type of value called strings.

Strings
A string is any sequence of characters. For example, “Hello, World” is a string. In most programming
languages and in CSS, strings are enclosed within either single or double quotation marks. A string is
what is known as a data type. Data types are used to classify information. Integers, real numbers, and
strings are examples of data types. Strings may contain text, numbers, symbols — any type of character.
An integer can be a number that has a positive or negative value, and can only be a whole number, no
decimals. A real number can have decimal places. These data types are made to conform to their defined
rules by the language. Whereas a string can contain any character, real numbers are expected to be
whole numbers or decimals; a string cannot appear where a real number is expected, and a real number
cannot appear where an integer is expected, and so on.

One use of strings in CSS is to specify a font that contains spaces in its name.

font-family: “Times New Roman”, Times, serif;

Font faces with spaces in the name are enclosed with quotations to keep the program that interprets CSS
from getting confused. The quotes act as marking posts for where the font face’s name begins and ends.
You see more about how fonts work in Chapter 6, “Fonts.”

Strings may also be used to include content in an HTML document from a style sheet. Try including con-
tent from a style sheet for yourself.

34

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 34

Try It Out Including Content from a Style Sheet
Example 2-4. To include content from a style sheet, follow these steps.

1. Type in the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Generated content</title>
<style type=’text/css’>

div {
font-family: sans-serif;

}
div::before {

content: “I said, \”Hello, world!\””;
background: black;
color: white;
margin-right: 25px;

}
</style>

</head>
<body>

<div>The world said, “Hello, yourself!”</div>
</body>

</html>

2. Save the document as Example_2-4.html.

3. Open the example with Safari, Firefox, or Opera — IE 6 and IE 7 don’t support this feature.
Figure 2-15 shows that the string “I said, “Hello, world!”” is inserted into the <div> element
using the content property.

Figure 2-15

35

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 35

How It Works
You included the string “I said, “Hello, world!”” in the HTML document by using the CSS content
property.

Strings may contain any sequence of characters of any length (at least up to whatever arbitrary limit a
browser may have defined) — even quotation marks are allowed. However, strings may contain quota-
tion marks only if they’re escaped using another special character, the backslash character. When you
escape quotation marks, you tell the browser: “Ignore the quotation mark; it is part of the string.” The
backslash is used to quote Foghorn Leghorn in the following code:

div {
content: “Foghorn said: \”Get away from me son, you bother me.\””;

}

As an escape character, a backslash is included to tell the browser to ignore only the quotation mark that
appears directly after it. The same backslash character is used to escape single quotes as well, if the
string is enclosed by single quotes:

div {
content: ‘Foghorn said: \’Get away from me son, you bother me.\’’;

}

The browser also ignores the single quotes in the middle with the use of the backslash character before
the quote mark. Quotation marks do not have to be escaped if single quotes are used within a string
enclosed by double quotes or vice versa. In this example

div {
content: “Foghorn said: ‘Get away from me son, you bother me.’”;

}

the single quotes do not have to be escaped because double quotes enclose the string.

Length and Measurement
There are two kinds of lengths used in CSS: relative and absolute. Absolute lengths are not dependent on
any other measurement. An absolute measurement retains its length regardless of the environment
(operating system, browser, or screen resolution of a computer monitor) in which it is applied. Relative
lengths, on the other hand, depend on the environment in which they’re used, such as the computer
monitor’s screen resolution or the size of a font.

Absolute measurements are defined based on real-world units such as inches, centimeters, points, and
so on. These measurements have been used for centuries in the print industry, and one would be accus-
tomed to finding them on a ruler.

Absolute Measurement
CSS supports a variety of real-world measurements. Each absolute length unit supported by CSS is
defined in the following table.

36

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 36

Unit Abbreviation Description

in Inches

cm Centimeters

mm Millimeters

pt Points, 1 point is equal to 1/72nd of an inch

pc Picas, 1 pica is equal to 12 points

Absolute lengths are not intended for the computer screen; they are intended for where a physical mea-
surement is necessary. For example, printing a document requires real-word measurements. When you
are composing a web document, you want the printable version of that document to be made using
lengths that are reliable for the print environment.

On the other hand, when absolute measurements are applied to the computer screen, some inconsisten-
cies surface.

The Pitfalls of Onscreen Absolute Measurement
Coding real-world physical lengths into a computer isn’t as easy as it may seem. When applied to a com-
puter screen, physical measurements are based on pixels. Pixels are tiny dots that a computer monitor
uses to create the image you see, and the number of pixels displayed depends on the monitor’s screen
resolution. For example, a computer monitor set to an 800 × 600 screen resolution displays 800 pixels
horizontally and 600 pixels vertically for a possibility of 480,000 total pixels.

Windows defines one inch as 96 pixels, by default. The definition of an inch as 96 pixels depends on an
operating system display setting called DPI, or dots per inch. The DPI setting of an operating system is a
user-configurable setting for defining the number of dots (or pixels) that make up an inch.

In the earlier days of the web, Macintosh and Windows had different DPI settings; a Mac’s default DPI
was 72 and Windows’ was 96. Today all modern browsers, including those on the Macintosh, have stan-
dardized on Windows’ 96 DPI measurement as the de facto default standard for DPI. While this de facto
standardization makes for a greater likelihood of consistency, because the DPI setting can be customized,
absolute measurement cannot be relied upon for onscreen layout. For example, Firefox still includes a
setting in its font options menu for the DPI to either 72 or 96 DPI, and it’s possible to change the DPI set-
ting through other means, such as within Windows display settings control panel.

Figure 2-16 shows Firefox 1.5’s DPI setting, a setting that has since been eliminated from Firefox 2.0,
since Macs just use the same DPI setting as Windows these days.

37

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 37

Figure 2-16

In the next two examples, you set up an experiment to see how the DPI can affect absolute measure-
ments in CSS, and ultimately discover the reason why absolute measurements are not suited for
onscreen layout purposes.

Try It Out Testing 96 DPI Equals an Inch
Example 2-5. To see a side-by-side comparison of pixels to inches, follow these steps.

1. Enter the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

<head>
<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Pixels to Inches</title>
<style type=’text/css’>

div {
background: #000;
border: 1px solid rgb(128, 128, 128);
color: white;
font: 9px monospace;
margin: 15px;
text-align: center;

}
div#inches {

width: 1in;
height: 1in;

}
div#pixels {

38

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 38

width: 96px;
height: 96px;

}
</style>

</head>
<body>

<div id=’inches’><-- 1 Inch --></div>
<div id=’pixels’><-- 96 Pixels --></div>

</body>
</html>

2. Save the document you just created as Example_2-5.html.

3. Open the document in your browser of choice. Figure 2-17 shows two <div> elements: The top
<div> element has a height and width of 1 inch, and the bottom <div> has a height and width
of 96 pixels. Both have a black background with white text for clarity. Switching the screen reso-
lution from 800 × 600 pixels to 1280 × 1024 shows that the measurement of 1 inch remains the
same as the 96-pixel measurement.

Figure 2-17

How It Works
By default, browsers conform to the Windows default of 96 dots per inch for the onscreen definition of
what an inch is.

Obviously, since absolute measurement is not well suited for onscreen layout, there must surely be
another, right? Yes! The other method of measurement in CSS is relative measurement.

Relative Measurement
Relative measurement is better suited for the purpose of onscreen layout. The following table defines the
four types of relative measurement that CSS allows.

39

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 39

Unit Abbreviation Description

em Length relevant to the nearest font size.

ex The x-height of the relevant font (height of the letter x).

px Pixels, relative to the viewing device, for example, a computer
monitor.

% Percentage measurement; how percentage length is calculated
depends on what property it is being applied to.

The em and ex units are measured relative to the font size of a document, pixels use the real pixels of the
monitor’s screen resolution, and percentage measurement depends on what property it is being applied
to. In the coming sections you explore each type of relative measurement in greater detail.

Measurement Based on the Font Size
Measurement in em is currently the most favored of relative measurement for onscreen layout, for most
measurements. A measurement that is relative to the font size allows for designs that scale up and down
gracefully with the user’s font size preferences.

Try It Out Comparing em to Pixels
Example 2-6. To see how the em measurement compares to pixel measurement, follow these steps.

1. Enter the following XHTML document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Em Measurement Comparison to Pixels</title>
<style type=’text/css’>

body {
font: 1em sans-serif;

}
p {

background: rgb(234, 234, 234);
border: 1px solid rgb(200, 200, 200);

}
p#em-measurement {

width: 12em;
padding: 1em;

}
p#px-measurement {

width: 192px;
padding: 16px;

}

40

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 40

</style>
</head>
<body>

<p id=’em-measurement’>
This paragraph is 12em wide, with a 1em padding.

</p>
<p id=’px-measurement’>

This paragraph is 192 pixels wide, with 16 pixels of
padding.

</p>
</body>

</html>

2. Save the preceding document as Example_2-6.html, and load it up in your favorite browser.
When Example 2-6 is loaded up, you should see something like that in Figure 2-18.

Figure 2-18

How It Works
In Figure 2-18 you see that 12em is the same measurement as 192 pixels. When the font size is set to 16
pixels (the default in all modern browsers). So with the em unit, you can layout a whole web page that
scales with the user’s font size preference.

All modern browsers provide a mechanism for scaling the font size up or down to the user’s preference.
On the Mac, Ô-+ increases the size of the text, and on Windows, it’s Ctrl-+. Figure 2-19 shows what hap-
pens when the text is scaled up in Safari or Firefox with Example 2-6 loaded.

In Figure 2-19, you see that the 12em measurement no longer matches the 192-pixel measurement when
the text is scaled up. IE 7 and Opera do not display the effect the same as seen in Figure 2-19, however,
since they scale everything, even the size of a pixel.

Figure 2-20 shows what happens when text is scaled down.

41

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 41

Figure 2-19

Figure 2-20

In Figure 2-20, the opposite of what you observed in Figure 2-19 has happened; the top paragraph is
now smaller than the paragraph with a 192-pixel width. Em measurement lets you layout a web page
with the font size preferences of the end user in mind, which in turn makes your website more accessible
to people with visual disabilities. Again, IE 7 and Opera do not display the effect the same as shown in
Figure 2-20, since they scale all content, which many would argue is much better than having designers
trying to design scalable websites with features like the em unit. The IE 7 and Opera approach takes
designers out of the equation and puts users in charge, which is much better for accessibility.

Like the em unit, the ex unit is based on font size, but unlike the em unit, the ex unit is based on the
height of the lowercase letter “x.”

42

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 42

Measurements Based on the Height of the Lowercase Letter x
The ex measurement, also known as x-height, is (like the em) based on the font size. However, the ex
measurement is relative to the height of the lowercase letter x. The ex measurement is another unit of
measurement derived from typography.

Like measurement in inches, the ex measurement is unreliable, but for different reasons. Because it is dif-
ficult to determine the actual height of the lowercase letter x for a given font, most browser creators take
a shortcut in implementing the ex measurement. Instead of relying on the height of the lowercase letter
x, ex measurement is defined by taking the measurement of half of 1em, or 0.5em. Because of its incon-
sistencies, ex measurement is yet another unit of measure to be avoided when designing for display on a
computer monitor.

Pixel Measurements
As you may have guessed from the discussion in this chapter about absolute measurements, pixels, the
px measurement, are measured relative to the computer monitor’s settings. This measurement depends
on the resolution of the user’s monitor. For instance, a 1px measurement viewed at a resolution of 800 ×
600 is larger than a 1px measurement viewed at a resolution of 1024 × 768.

Pixels are easiest to understand when they specify the width and height of an image because most
images are created based on the number of pixels they contain. This type of image is known as a bitmap
image. Examples of bitmap images are the J-PEG, GIF, and PNG image formats. These image formats
store information about an image by the pixel, and those are mapped together to create the image that
you see. To illustrate my point, Figure 2-21 is a screenshot of Safari’s window controls from the upper
left-hand corner of Figure 2-20 while zoomed to the maximum of 1600% in Photoshop. At this level of
detail the pixels are clearly visible as individual squares, and it becomes easier to imagine what a pixel
is, since you’re actually seeing them.

Figure 2-21

43

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 43

Keeping the image portrayed in Figure 2-21 in mind, when you measure in pixels with CSS, the individ-
ual pixels are as wide as the squares you see in Figure 2-21, which can be larger or smaller depending on
the screen resolution setting of your monitor.

Pixel measurements have some advantages and disadvantages. Pixel measurements use the actual pixels
on your computer monitor. Although that is often fine for screen display, it is not as precise when it
comes to printing documents. The size of a pixel can change depending on many factors, among which
are monitor size and resolution and the fine-tuning settings that stretch and shrink the display output.
Therefore, defining a pixel measurement for print leaves lots of room for browser inconsistencies. How
big is a pixel in the real world? It simply isn’t a constant measurement for physical length the same way
that centimeters are. This is an area best suited for the absolute units that I discussed earlier in the chap-
ter. I discuss this issue further in Chapter 13, “Styling for Print.”

The last type of relative measurement that CSS has to offer is percentage measurement.

Percentage Measurements
Percentage measurements are always dependent on something else; therefore, percentage measurements
are also a form of relative measurement. The behavior of a percentage measurement changes depending
on the element to which the measurement is being applied. Try applying a percentage width yourself.

Try It Out Experimenting with Percentage Measurement
Example 2-7. To see how percentage measurement works, follow these steps.

1. Enter the following markup into your text editor.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

<head>
<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Experimenting with Percentage Measurement</title>
<style type=’text/css’>

div {
width: 100%;
background: black;
color: white;

}
</style>

</head>
<body>

<div>What happens when I apply a 100% width?</div>
</body>

</html>

Use the right tool for the job! Pixels should be used for measurements where a user’s
font size preference won’t be a factor, and where a real-world, absolute length
wouldn’t be superior, such as for print. An example of a good place to use pixels
would be for the width of a border around a box.

44

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 44

2. Save the document as Example_2-7.html, and load it up into your favorite browser. When you
load Example 2-7 into a browser, you should see something like Figure 2-22.

Figure 2-22

How It Works
Percentage measurement works differently depending on what property it is applied to; you’ll continue
to see examples of this throughout this book. In Example 2-7, you applied the declaration width: 100%;
to the <div> element, and when loaded into a browser you see that the <div> element expands for the
whole width of the window. If you’ve been paying attention, you might have noted that this result is
identical to the one you observed for Example 2-3, earlier in this chapter. Yes, when applied this way, the
width: auto; declaration and the width: 100%; declaration produce identical results; however, there
are fundamental differences between these two completely different methods of specifying width. The
percentage method used here calculates the width of the <div> element based on its parent element. In
this case, the parent element is the <body> element, and the width of the <div> is set to 100% of the
width of the <body> element, no ifs, ands, or buts. Although you may not see why auto width is differ-
ent at this point, it is, and that is a topic that is much too big to get into right now. You learn more about
the differences between auto width and percentage width in Chapter 7, “The Box Model.”

Because it’s a presentational language, most of CSS is affected in some way by length and units of mea-
surement. The fundamental unit for all measurements when you design for display on a computer mon-
itor is the pixel, because computers display images in pixels. You can define lengths relative to font sizes,
using em units as the most practical and consistent solution. Absolute lengths, on the other hand, are
better suited for print because of the multitude of inconsistencies that occur when absolutes are used for
presentations on a computer monitor. In the next section, I continue the discussion of CSS property val-
ues with a look at how CSS interprets numbers.

Numbers
CSS allows numbers as values for several properties. Two types of numbers are accepted by CSS: integers
and real numbers. Like strings, integers and real numbers are data types and are often used in CSS for the
measurement of length. The first type, integer, is expected to be exclusively a whole number, meaning no
decimals are allowed.

45

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 45

Integers
In CSS, an integer may be preceded by a plus (+) or minus (-) to indicate the sign. Although some prop-
erties do not accept negative values, many do. As you can see in the following example, one property
that allows negative values is the margin property.

Try It Out Setting a Negative Margin
Example 2-8. To see what happens when the margin property has a negative value, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

<head>
<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Setting a Negative Margin</title>
<style type=’text/css’>

div {
background: black;
color: white;
margin: -10px 0 0 -15px;
font: 12px sans-serif;

}
</style>

</head>
<body>

<div>What happens when I apply a negative margin?</div>
</body>

</html>

2. Save the markup that you entered as Example_2-8.html, and load it into your favorite
browser. You should see something like what you see in Figure 2-23.

Figure 2-23

46

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 46

How It Works
From Figure 2-23, you can see that the position of the <div> element has been altered by the addition of
the negative margin. It has been moved a little off-screen on the left and just a tad off-screen on the top.
This is one example of how you can use an integer in CSS. You learn more about how the margin prop-
erty works in Chapter 7, “The Box Model.”

Real Numbers
Real numbers can have a decimal value, and decimal values increase the precision of measurements in CSS.
As was the case for integers, real numbers in CSS can also be preceded by plus (+) or minus (–) to indicate
the number’s sign. The value 1.2em, for example, means 1.2 times the font size. As in mathematics, a posi-
tive sign is assumed if no sign is present. If I have a declaration that says margin-left: -1.2em;, this
causes an element to shift to the left 1.2 times the font size.

CSS provides some basic and reasonable rules for the specification of integers and real numbers in property
values. CSS is also very flexible with how colors are specified, a topic I discuss in the following section.

Colors
CSS has a number of options for specifying colors, ranging from a 216-color, web-safe palette to the full
range of colors available in the RGB format, a total of 16,777,216 colors! More specifically, those options
are as follows:

❑ Color keywords: These enable you to specify a color by its name.

❑ RGB values: These enable you to specify a color via a Red, Green, Blue representation, which
provides access to millions of colors.

❑ RGB Percentage: This option is the same as RGB but uses percentages.

❑ RGBA (RGB with Alpha channel [available in CSS 3]): The RGB palette is used with the addi-
tion of an alpha channel to specify transparency.

❑ Hexadecimal: This enables you to specify a color by a special hexadecimal number.

❑ Shorthand Hexadecimal: This is a shortened representation of hexadecimal numbers; it is lim-
ited to a special 216-color, web-safe palette.

Each method is a means of accomplishing the same thing: specifying a color. You can use these methods
to specify text color, border color, or background color. Next, you see what each of these methods looks
like when used in the context of a style sheet rule.

Color Keywords
The first method for specifying color, mentioned previously, is to use a color keyword. This is the most intu-
itive method because all you need to do is reference the name of the color itself. Here are some examples:

div {
color: black;
background-color: red;
border: thin solid orange;

}

47

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 47

This rule applies to any <div> element contained in the document. I have specified that each <div> ele-
ment should have black text, a red background, and a thin, solid orange border around the element. In this
example, black, red, and orange are color keywords, so a color keyword is simply the name of the color.

In CSS 3, 147 colors are named. Browser support for these colors is very good. I have found only a single
color not supported by IE 6. That color is lightgray, spelled with an a; however, the browser does sup-
port lightgrey, spelled with an e. This is an obscure bug that arises because Internet Explorer allows
only the British spelling of grey and not the American English gray. The CSS specification supports both
spellings of gray. Firefox, Opera, and Safari support all 147 named colors.

A complete table of CSS-supported color keywords is available in Appendix C.

RGB Colors
RGB stands for Red, Green, and Blue. These are the primary colors used to display the color of pixels on
a computer monitor. When you use these three colors in various combinations, it is possible to create
every color of the rainbow. This is done through different colored lights either overlapping each other or
appearing side by side in different intensities to display color. RGB is also known as luminous or additive
color. Luminous means that RGB uses light in varying intensities to create color, and additive means
colors are added to one another to produce the colors of the spectrum. Many computer monitors are
capable of displaying millions of colors: 16,777,216 colors, in fact. CSS RGB color is specified using a
special three-number syntax, with each one representing a color channel. This first number is red, the
second green, and the third blue:

body {
background-color: rgb(128, 128, 128);

}

This produces the same color as the CSS color keyword gray. Equal amounts of all three channels form
a variation of gray, where 0, 0, 0 is black and 255, 255, 255 is white.

Here’s another example:

body {
background-color: rgb(135, 206, 235);

}

This produces the same color as the CSS color keyword skyblue. The number 135 refers to the red chan-
nel, 206 to the green channel, and 235 to the blue channel. RGB values may also be represented using
percentages:

body {
background-color: rgb(50%, 50%, 50%);

}

This also produces the same color as the CSS color keyword gray.

CSS 3 is to introduce one more variation on the RGB scheme, with RGBA. This specification includes
an alpha channel, which is used to make an element transparent. The alpha channel of RGBA is speci-
fied in the same manner as regular RGB with the A indicating how transparent the color is, with 0
being fully opaque, and 255 being fully transparent. No browser supports the RGBA specification yet.

48

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 48

RGB color is also often specified in hexadecimal format.

Hexadecimal Colors
Hexadecimal colors have been around nearly as long as the World Wide Web has been. Hexadecimal
refers to a numbering scheme that uses 16 characters as its base, expressed in a combination of letters
and numbers. The decimal numbering system, on the other hand, uses 10 numbers as its base. A hex-
adecimal system uses 0-9 for the first 10 digits and A-F to represent the remaining 6 digits. Letter A cor-
responds to the number 10, B to 11, C to 12, and so on up to 15, which is represented by F. Hexadecimal
values are another way of expressing an RGB value. For instance, #FFFFFF refers to white, which is
expressed in RGB as 255, 255, 255. To switch from RGB values to hexadecimal, each channel is converted
to its hexadecimal equivalent, so each 255 becomes FF in hexadecimal. To calculate the hexadecimal
value, divide the RGB number by 16. The result is the first hexadecimal digit. The remainder from the
division becomes the second hexadecimal digit. The RGB value 255 divided by 16 equals 15 with a
remainder of 15. In hexadecimal, the number “15” is represented by “F”, so applying this formula results
in FF. The process is repeated for each RGB color channel, so the hexadecimal notation of 255, 255, 255 is
FF, FF, FF or #FFFFFF. In CSS, hexadecimal colors are included just as RGB or color keywords are, as
shown in the following example.

div {
color: #000000;
background-color: #FF0000;
border: thin solid #FFA500;

}

#000000 is the hexadecimal representation of black; the same as RGB 0, 0, 0 or simply the black color
keyword. #FF0000 is a hexadecimal representation of red, or RGB 255, 0, 0, or the red color keyword.
Finally, #FFA500 is a hexadecimal representation of orange, or RGB 255, 165, 0, or the orange color
keyword.

Short Hexadecimal and Web-Safe Colors
There are 216 web-safe colors. A web-safe color is a hexadecimal color comprised of any combination of
the following: FF, CC, 99, 66, 33, 00, for a potential of 216 colors. These colors were originally identified
and given their web-safe name by Lynda Weinman, a graphic and web design guru and author of
numerous graphic and web design books. These 216 colors were identified as colors safe for cross-
platform, cross-browser use on computer systems capable of displaying only 256 colors; in other words,
8-bit systems. There are 216 colors, minus 40 colors reserved for use by operating systems. Different
operating systems, such as Macintosh OS and Windows OS, do not reserve the same 40 colors, so these
40 colors cannot be relied upon. If you attempt to use a color outside of the 216-color palette on a system
capable of displaying only 256 colors, the operating system may attempt to display the color through a
process called dithering. Dithering is a process in which the operating system attempts to mix two colors
that it is capable of displaying to get the requested color. While today the majority of computers are
comfortably able to display millions of colors, there is still one audience that is using devices that aren’t
capable of displaying that many colors, and that is people using cell phones and other small screen
devices to access the web.

Figure 2-24 shows a normal image.

Figure 2-25 shows the dithered image.

49

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 49

Figure 2-24

Figure 2-25
50

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:27 PM Page 50

If you look at these two figures together, you should be able to see the effects of dithering. The image in
Figure 2-26 is pixelated and grainy; the image in Figure 2-25 is smooth and fluid.

Dithering causes all sorts of nasty things to happen to an image or solid color. In some cases a grid appears
on a solid background where the operating system attempts to display the color using two colors.

Hexadecimal notation is capable of expressing all 16,777,216 colors allowed by RGB. If a color outside
the web-safe palette is used, this leads to dithering. Short hexadecimal notation, on the other hand,
allows only the 216-color, web-safe palette:

div {
color: #000;
background-color: #F00;
border: thin solid #FFA500;

}

Only FF, CC, 99, 66, 33, and 00 are allowable in the web-safe palette, so the notation for these can be
simplified. FF becomes simply F, CC becomes C, 99 becomes 9, and so on. A single digit rather than two
represents the pair. So in this example, #000 refers to black and #F00 refers to red. #FFA500 is not repre-
sentable in short hexadecimal notation because A5 cannot be simplified to a single digit. Only pairs in
which both numbers have the same value can be converted to short hexadecimal notation.

Although in the past the web-safe pallet was frequently necessary for designers, today advanced graphic
cards capable of displaying millions of colors have become so common that the number of 8-bit systems
capable of displaying only 256 colors has fallen dramatically. Today, it is safer to design creatively with
color. The browser-safe pallet is not yet completely dead — it still has a place in designing web content
for display on PDAs and cell phones, most of which are limited to 256 colors.

The URI
CSS uses a special term — URI (Universal Resource Indicator) — when the location of a resource or data file
must be specified. The acronym URI is related to two other acronyms, URL (Universal Resource Locator),
and URN (Universal Resource Name). The ideas behind both of these specifications are combined to get
the URI, the term used in the W3C CSS specifications. URIs are most used in CSS for two purposes:

❑ The inclusion of style sheets

❑ The inclusion of background images

The URI is referenced using a special method, as shown in the following example:

background: url(mypicture.jpg);

The url() syntax is used to enclose the URI of the file being referenced. In this example, mypicture.jpg
must exist in the same directory as the style sheet. If the style sheet is named mystyle.css and it’s located
at http://www.example.com/styles/mystyle.css, the mypicture.jpg file must also exist in the styles
directory, where its path is http://www.example.com/styles/mypicture.jpg. The complete, abso-
lute path or the shortened relative paths are both acceptable references to the file. I address this topic
again in Chapter 10, “Backgrounds,” where I discuss the background property and the syntax it allows.

51

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:27 PM Page 51

Including CSS in a Document
CSS is very flexible regarding how you call it in a document. You can include CSS in a document in
four ways:

❑ CSS can be included in a document by using embedded style sheets, which are included
between <style> and </style> tags directly in an HTML document, as demonstrated in
Figure 2-26. These tags must appear between the <head> and </head> tags.

Figure 2-26

❑ CSS can be included in its own document and linked to an HTML document by using the
<link> element, shown in Figure 2-27.

Figure 2-27
52

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:28 PM Page 52

❑ CSS can be imported from within another style sheet by using an @import rule, as shown in
Figure 2-28.

Figure 2-28

❑ CSS can be included directly in an element in an HTML document by using inline styles with
the style attribute, as shown in Figure 2-29.

Figure 2-29

Each method has its own particular usefulness. The upcoming sections describe how you can use each of
these methods to include CSS in an HTML document.

Including an Embedded Style Sheet
You use the <style></style> tag set to include embedded style sheets directly in the document. You
can include HTML comment tags if you want to hide style sheet rules from non-equipped browsers.
Since HTML’s early days, HTML has supported the capability of adding comment text to a document.
Comment text gives the web author the ability to add notes to a project so he can recall why he did
something in a certain way or to mark the sections of a document. In HTML, you add a comment by typ-
ing a left angle bracket, an exclamation mark, two dashes, at least one space, and then the comment text
itself. You close the comment by typing at least one space, two more dashes, and the right angle bracket.
Here’s what a comment looks like:

<!-- Hi. I’m comment text. -->

In the context of an embedded style sheet, comments have a special meaning. Because they appear
inside the <style></style> tags, they tell browsers that don’t support CSS to ignore the text that
appears between them. Modern CSS-equipped browsers, on the other hand, read the sequence of
<style>, followed by <!--, and know that style sheet rules appear there. This allows CSS to be hidden
from browsers that are incapable of interpreting it. The following snippet shows how you can use com-
ment tags to hide CSS from older browsers:

<style type=’text/css’>
<!--

53

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:28 PM Page 53

body, td {
color: blue;

}
-->

</style>

Older browsers simply ignore any CSS rules defined inside the HTML comments.

For the <style> tag to be strictly formed XHTML syntax, a type attribute is required for the <style>
tag. This is intended to tell the browser what type of syntax follows. For the purposes of CSS, the type
attribute appears in the <style> tag with a value of text/css, as shown in the preceding block of code.

The next section describes how CSS can be written in its own document and included in an HTML or
XHTML document.

Linking to External Style Sheets
The authors of CSS recognized that HTML-template creation is a common need. As such, the W3C body
made recommendations that allow external style sheets to be included in a document from within
HTML or XHTML by use of the <link> element or from within a style sheet itself using the @import
rule. External style sheets are the preferred method of CSS inclusion in a web document. External style
sheets can be cached by the user’s browser. This frees the user, who no longer needs to download the
web page or website’s style sheet on every page request. This also ensures that documents load very
quickly, which is another feature of CSS that conserves expensive bandwidth.

Here’s a demonstration of the <link> element method:

<link rel=’stylesheet’ href=’/path/to/stylesheet.css’ type=’text/css’ />

The following attributes are required to use the <link> element for linking to a CSS document:

❑ rel: Defines the relation between the external document and the calling document. In this case,
the relation is that the external document is the style sheet for the calling document.

❑ href: Like the anchor tag, <a>, href stands for hyperlink reference. It accepts an absolute or
relative path to the style sheet document.

❑ type: Refers to the MIME type of the external file.

An absolute path means the complete path to the file. For instance, http://www.example.com is an abso-
lute path. A relative path triggers the application to find the document relative to the requesting document.
So if the example file’s URL is http://www.example.com/example.html and the CSS document is
stored in the stylesheets directory as stylesheet.css, the relative path included in <link> is stylesheets/
stylesheet.css and the absolute path to the document is http://www.example.com/stylesheets/
stylesheet.css or /stylesheets/stylesheet.css.

A style sheet is really easy to set up, and I discuss this in the next section.

54

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:28 PM Page 54

How to Structure an External CSS Document
External style sheets are essentially the same thing as embedded style sheets; the key difference is that
no markup exists in a CSS file. When you create an external, independent CSS document, it must be cre-
ated using the .css file extension.

An external CSS document may contain nothing but CSS rules or comments. A CSS document cannot
contain any markup; see how this is done in the following Try It Out.

Try It Out Linking to an External Style Sheet
Example 2-9. To link to an external style sheet, follow these steps.

1. Enter the following XHTML document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Selectors and Grouping</title>
<link rel=’stylesheet’ type=’text/css’ href=’stylesheet.css’ />

</head>
<body>

<h1>Style Sheet</h1>
<h2>Rule</h2>
<h3>Selector</h3>
<h4>Declaration</h4>
<h5>Property</h5>
<h6>Value</h6>

</body>
</html>

2. Save the XHTML document as Example_2-9.html.

3. In a new document, enter the following CSS:

h1, h2, h3, h4, h5, h6 {
font-family: sans-serif;
color: maroon;
border-bottom: 1px solid rgb(200, 200, 200);

}

4. Save the CSS as stylesheet.css in the same folder that Example_2-9.html was saved in.

5. Load up the document in a browser. You should see output that looks like Figure 2-6.

How It Works
The embedded style sheet between the <style>... </style> tags has been replaced with an external
style sheet by placing the rules inside the embedded style sheet into their own document, saving that
document with a .css file extension, and then linking to the new file by including the <link> element
in the XHTML document. One of the benefits of an external style sheet is that it allows the same style

55

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:28 PM Page 55

rules to be applied to as many documents as the author wishes. This is one of the key benefits of CSS-
based design. An external style sheet offers flexibility to the author that saves both time and resources.

Importing Style Sheets
You can also link to an external style sheet by using the @import rule. Here’s a demonstration:

<style type=’text/css’>
@import url(path/to/cssdoc.css);

</style>

This example uses the <style></style> method but includes the @import notation. It’s very straight-
forward: Plug in the @import rule followed by the url(), which may contain an absolute or relative path.

The @import method is not supported by older browsers, and it is sometimes used as a hack to hide
styles from browsers that would crash horribly if these styles were present. One such browser is
Netscape Navigator 4, which has horrible CSS support and has been known to lock up when certain
styles are present.

The next section describes how styles can be included inline, directly on elements, by using the style
attribute.

Inline Styles
The last method for including CSS in a document is from within the XHTML elements themselves.
Sometimes it doesn’t make sense to clutter your external or embedded style sheets with a rule that will
be used on only one element in one document. This is where the style=”” attribute comes into play; it’s
demonstrated by the following markup:

<table style=”border: 1px solid black; margin: auto;”>
<tr>

<td style=”text-align: right; font-size: 18pt;”>
Some text aligned left.

</td>
</tr>

</table>

This method allows for the text to be formatted from within the document and may be applied to any
rendered element.

The following Try It Out demonstrates how the style attribute is used to add styles directly to the ele-
ments of a web document.

Try It Out Including CSS Using the style Attribute
Example 2-10. To use the style attribute to apply styles directly to the elements of a document, follow
these steps.

56

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:28 PM Page 56

1. Return to your text editor and enter the following XHTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<meta http-equiv=’Content-Type’ content=’text/html; charset=UTF-8’ />
<title>Selectors and Grouping</title>
<link rel=’stylesheet’ type=’text/css’ href=’stylesheet.css’ />

</head>
<body style=’font-family: sans-serif; color: maroon;’>

<h1 style=’border-bottom: 1px solid rgb(200, 200, 200);’>
Style Sheet

</h1>
<h2 style=’border-bottom: 1px solid rgb(200, 200, 200);’>

Rule
</h2>
<h3 style=’border-bottom: 1px solid rgb(200, 200, 200);’>

Selector
</h3>
<h4 style=’border-bottom: 1px solid rgb(200, 200, 200);’>

Declaration
</h4>
<h5 style=’border-bottom: 1px solid rgb(200, 200, 200);’>

Property
</h5>
<h6 style=’border-bottom: 1px solid rgb(200, 200, 200);’>

Value
</h6>

</body>
</html>

2. Save the preceding document as Example_2-10.html

3. Load up Example 2-10 in your favorite browser. You should see output like that in Figure 2-6.

How It Works
Note that the output is identical to output of the earlier example shown in Figure 2-6. The style
attribute allows CSS declarations to be included directly in the XHTML element. The style attribute,
however, is not as dynamic as a style sheet. It gives you no way to group repetitive rules or declarations.
The style attribute should only be used when a more efficient method is not available (if, for example,
the element to be styled does not appear on multiple pages).

Summary
Throughout this chapter you learned about the bits and pieces that make CSS work. You learned the
following:

❑ Style sheets are made up of rules.

❑ Rules are made up of selectors and declarations.

57

Chapter 2: The Essentials

06_096970 ch02.qxp 4/20/07 11:28 PM Page 57

❑ Declarations are made up of properties and values.

❑ Values can be keywords, lengths, colors, strings, integers, real numbers, or URIs.

❑ The em measurement is better for onscreen layout. Absolute units such as inches and centi-
meters are better for print layout. The pixel unit should be used where the user’s font size
preference won’t be a factor.

❑ Dithering is a method of mixing known colors to simulate an unknown one.

❑ RGB is additive color. The colors red, green, and blue are added to each other in varying intensi-
ties to produce every color on the rainbow.

❑ Hexadecimal color is just another way of expressing RGB color.

❑ Short hexadecimal is a way of expressing web-safe colors.

❑ The URI is used to include style sheets and background images (external documents) in CSS.

❑ Style sheets can be embedded directly in an HTML document with the <style> element.

❑ A style sheet can appear in its own document, and linked to from an HTML document using the
<link> element, or linked from a style sheet using the @import rule.

❑ Styles can be included inline, directly in an HTML element using the style attribute.

Chapter 3 continues the discussion with selectors.

Exercises
1. Style sheets are made of what?

2. What’s the difference between when width: auto; is applied to a <table> as opposed to a
<div> element?

3. Complete the sequence: Declaration, Property, ___________

4. Convert the color RGB(234, 123, 45) to hexadecimal.

5. What is the shortened hexadecimal notation of #FFFFFF?

6. When does dithering occur?

7. If I have a style sheet located at http://www.example.com/stylesheet.css, and a web page
located at http://www.example.com/index.html, what markup would I include in
index.html to include stylesheet.css via a relative path?

58

Part I: The Basics

06_096970 ch02.qxp 4/20/07 11:28 PM Page 58

3
Selectors

In this chapter, you learn about the different types of selectors that CSS supports. In Chapter 2,
you learned about the type selector, which is a selector that applies style sheet declarations by
using the HTML element’s name. “Selectors” is an area of CSS that I discuss that has spotty sup-
port with regards to IE 6. To those ends, as I introduce each section, if a selector is not supported
by IE 6, I note that. IE 7 features much better selector support, and in fact supports nearly all of the
selectors discussed in this chapter, but there are a few selectors that IE 7 doesn’t support. This is
also noted where appropriate. Other browsers such as Mozilla Firefox, Safari, and Opera all have
excellent support for the selectors discussed in this chapter. With each example, I note what
browser you should use to view the example, and which browsers the example won’t work with.

You may wonder why I bother discussing selectors that don’t work in IE 6. I chose to include the
selectors with at least some browser support, because each reader’s needs and development
requirements are different. If you are, for instance, developing a corporate intranet-based applica-
tion in which you have full control over the browser the end user is using, your needs are different
from someone who is developing a publicly-accessible Internet website. Someone developing a
corporate intranet site can, for instance, choose Mozilla Firefox as their development platform,
rather than IE 6, or that corporation may choose to upgrade to IE 7. In short, not everyone has the
same end-user requirements for browser usage, and this book is written with that in mind.

You can also use JavaScript applications that enable a greater spectrum of CSS support in IE 6.
JavaScript is a programming language that you can use to create scripts that are included in an
HTML document in much the same way as CSS. JavaScript opens up possibilities that HTML and
CSS alone aren’t capable of. Using JavaScript technology, you can give IE 6 CSS capabilities that
are impossible without it. When you use JavaScript, most of the very same examples that you
encounter in this chapter that don’t work in IE 6, can work in IE 6 flawlessly and reliably, and
without the end user having to upgrade IE 6 or take any other action. I discuss how you, too, can
harness this incredibly useful, and seemingly magical, technology in Chapter 16, available at
www.wrox.com/go/beginning_css2e. The best part is, you need no experience programming
JavaScript to use the technology that I present in Chapter 15. So, if you feel discouraged by IE 6’s
lack of support for many of these useful selectors, continue on; there are hackadelic methods yet to
be discussed.

07_096970 ch03.qxp 4/20/07 11:28 PM Page 59

You may also wish to see more practical applications of the features presented in this chapter. If that is the
case, I provide some real-world projects at the end of this book that help you to put CSS into a real-world
context. As is the case throughout this book, I present all the bits and pieces of the language with proof-of-
concept examples, and then later in the book you see how to put it all together with some real, skill-
building projects. Alternatively, you may also be interested in my book CSS Instant Results (Wrox, 2006),
an intermediate-level CSS book that focuses on real-world projects exclusively.

I begin the discussion of selectors with the most common and widely supported selectors, class and id
selectors.

Class and ID Selectors
Class and id selectors are the most widely supported selectors. In fact, they are as widely supported as
the type selector introduced in Chapter 2. There are two types of selectors. The class attribute is more
generic, meaning it may encompass many elements in a given document, even elements of different
types or purposes. On the other hand, you can use the id attribute only once per document. The name
id tells you that the id must be unique. Besides using it in CSS, you can also use an element’s id to
access it via a scripting language like JavaScript. You can also link to the location of the element with an
id name using anchors. Anchors are appended to URLs to force a browser to go to a specific place in a
document. So the id attribute serves more than one purpose. Think of it as an element’s address inside a
document — no two addresses can be the same. The discussion continues with class selectors.

Class Selectors
Figure 3-1 is an example of a class name selector.

Figure 3-1

The class name selector begins with a dot, followed by the class name itself, which you choose. Typically,
the class name is comprised of letters, numbers, and hyphens only, since this provides the best compati-
bility with older browsers. Class names also cannot include spaces. In Figure 3-2, you see the element
that the class name planet applies style to in the HTML document.

60

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 60

Figure 3-2

The dot appearing before the class name in the CSS rule tells CSS that you are referencing a class selec-
tor. The dot does not need to appear in the class attribute value itself; in fact it cannot, because the
value of the class attribute is just the class name itself.

When used in this context, the type of element doesn’t matter. In other words, you can also apply the
class to other elements, as is illustrated in Figure 3-3.

Figure 3-3

The same rule applies to the element as applies to the <div> element. Both now have an absolute
position, offset from the top zero pixels, offset from the left of zero pixels, and offset from the bottom of
15 pixels. What if you wanted to give both the <div> and element the same class name, but have
a style sheet rule that applies to <div> elements, but not elements? You can do that, too. Limiting
a class selector to a type of element is demonstrated in Figure 3-4.

Figure 3-4

In Figure 3-4, you see the combination of two types of selectors that you are already familiar with, the
type selector from Chapter 2, and the class selector. When you append a type selector to a class selector,
you limit the scope of the style sheet rule to only that type of element. In Figure 3-4, the rule is limited so
that it only applies to <div> elements, causing it to no longer apply to elements, or any other
type of element for that matter. You can still create additional rules that reference other elements, such as
a new rule that only applies to elements with a class name of planet, such as img.planet, but
the rule that you see in Figure 3-4 applies exclusively to <div> elements with a class name of planet.

61

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 61

Elements can also be assigned more than one class name. Figure 3-5 shows an example of this.

Figure 3-5

The value of this class attribute actually contains two class names: planet and jupiter. Each class
name in the attribute is separated by a space. In the corresponding style sheet, the two classes may be
referenced by two separate rules, as illustrated in Figure 3-6.

Figure 3-6

The two style sheet rules in Figure 3-6 result in the <div> element with both planet and jupiter class
names receiving the declarations of both rules.

The class names may also be chained together in the style sheet, as shown in Figure 3-7.

Figure 3-7

The preceding rule applies only to elements that reference both class names in their class attribute.

IE 6 interprets chained class names per the CSS 1 specification, which did not allow chained class names
in the style sheet. In IE 6, only the last class name in the chain is recognized. In the preceding example,
IE 6 would interpret the .planet.jupiter selector as .jupiter only. This has been fixed in IE 7.

Whereas classes are meant to reference more than one element, ids are meant to reference only one ele-
ment in a document.

62

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 62

ID Selectors
id selectors are unique identifiers; an id is meant to be unique, defined once per document. Like class
selectors discussed in the previous section, a special character precedes id selectors in a style sheet. To
reference an id, you precede the id name with a hash mark (or pound sign, #). Like class names, this
name cannot contain spaces. You should use names that only include letters, numbers, and spaces for
compatibility with the older browsers. You see how this is done in Figure 3-8.

Figure 3-8

Since there’s only one Jupiter in the solar system, Jupiter lends itself as a good example of the concept of
an id selector. Just as there is only one Jupiter in the solar system, the id name jupiter can be used only
once in a document, on one element.

Browsers are forgiving of multiple id names per document as far as style sheets are concerned. However,
using an id name more than once in a document can cause conflicts with other applications of unique id
names. For example, id names can be used to link to a location within a document (as HTML anchors),
or when referencing an element by id name from JavaScript. When you have an id name appearing more
than once in the HTML document, on more than one element, the browser won’t know which one you’re
linking to, or which one you want to refer to from JavaScript, and will have to guess. It’s best to just use
the id name for its intended purpose, just once per document.

An id name must be unique in so far as other id names are concerned. An id name may be repeated as a
class name, should you want to do so.

The element can then be defined in the document using the id attribute. This is demonstrated in Figure 3-9.

Figure 3-9

You can make both class and id selectors more specific by appending the name of the element to the
beginning of the selector. For instance, if in the last examples you only want <div> elements for each
rule, the selector will look like what you see in Figure 3-10.

Figure 3-10

63

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 63

Now each rule is applied only to <div> elements that contain the corresponding class and id names. You
may wonder why this is useful for an id selector, since an id element has to be unique in a document.
Appending the selector with the type of element is useful in situations where one style sheet applies to
more than one HTML document, where it’s possible that you have a unique id in one of those docu-
ments that applies to for instance, an element, but in another, separate document, that unique
id name applies to a <div> element. Of course, it’s best practice to avoid situations like that by making
each element’s id name unique, even in different documents, to avoid confusion. Sometimes, it can’t be
avoided. The other reason this is useful is that it makes the style sheet more intuitive and easier to fol-
low. When you are reading a style sheet and see the id name jupiter but no type selector, that id can
apply to any element in the document and would require you to scan the whole document from top to
bottom without any other search criteria. With the type selector appended, you can narrow the search;
if the element is a <div> element, then you know that the id selector doesn’t apply to images, links,
paragraphs, and so on.

Although the id must be unique, in these examples you can name only one element jupiter. The CSS
style sheet, however, may contain as many references to that id as are necessary. The uniqueness rule
only applies to naming the elements, not the references to them. You can apply classes, on the other
hand, to as many elements in the body as necessary.

Now that you’ve had a proper introduction to the different types of things that id and class name selectors
are capable of, try the following proof-of-concept exercise that lets you see how id and class selectors work.

Try It Out Class and ID Selectors
Example 3-1. To see how class and id selectors work, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Class and ID Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-1.css’ />

</head>
<body>

<p class=’container’>
A class represents something that you can have more than one of.
You aptly name your class to reflect the type of item that you
may or may not have more than one of. The class name for this
paragraph is <i>container</i>. It could very well be that you
have many containers, or just one.

</p>
<p class=’container box’>

You can chain together class names within the class attribute.
From a purely semantic standpoint, the class names may or may
not have a relationship with each other. Here, the class names
are <i>container</i> and <i>box</i>. It could be said that boxes
and containers are related, since <i>box</i> is a type of
<i>container</i>.

64

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 64

</p>
<p class=’container tank’>

It is wise to put thought behind the naming conventions you use
within a document. Here, <i>tank</i> is another type of
<i>container</i>. All containers have some properties in common.
Dimensions, color, volume, etc. But some containers may have
properties that are unique to that container. Perhaps it has a
different color, or capacity, or is intended to hold a different
kind of material.

</p>
<p class=’container’ id=’container-1234’>

An id is used but once per document. Semantically speaking, the
id should be able to identify uniquely, and be descriptive.
You may have several containers, but only one container has the id
<i>1234</i>. Since only one container is named <i>1234</i>, it
becomes easier to find that container among the others.

</p>
</body>

</html>

2. Save the preceding document as Example_3-1.html.

3. Enter the following style sheet into your text editor:

body {
font-family: sans-serif;

}
p.container {

border: 1px solid rgb(29, 179, 82);
background: rgb(202, 222, 245);
padding: 10px;
width: 245px;
height: 245px;
float: left;
margin: 10px;

}
p.box {

border: 1px solid rgb(69, 199, 115);
background: rgb(164, 201, 245);

}
p.tank {

border: 1px solid rgb(107, 214, 145);
background: rgb(124, 180, 245);
clear: left;

}
p#container-1234 {

border: 1px solid rgb(154, 232, 181);
background: rgb(82, 157, 245);

}

4. Save the preceding style sheet as Example_3-1.css. Figure 3-11 shows what Example 3-1
looks like when rendered in Safari. You should see something similar in Firefox, IE 6, IE 7, and
Opera.

65

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 65

Figure 3-11

How It Works
In Example 3-1, you put your newly acquired class and id selector skills to use. The following is a rule-
by-rule review of the relevant class and id styles you applied in Example_3-1.css.

First, you created a rule that is applied to all four <p> elements, since all four <p> elements have a class
name of container. You were able to select all four elements because each <p> element in the document
has a container class name in the value of the class attribute that appears on all four <p> elements.

p.container {
border: 1px solid rgb(29, 179, 82);
background: rgb(202, 222, 245);
padding: 10px;
width: 245px;

66

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 66

height: 245px;
float: left;
margin: 10px;

}

Since the preceding rule applied to all four <p> elements, it set common properties such as dimensions
using the width, height, padding, border, and margin properties. You learn more about these proper-
ties in Chapter 7, “The Box Model.” For now, just examine how the p.container selector is working to
select the elements, rather than the actual styling being applied.

In the next rule, you selected the next <p> element that also has two class names, box and container.

p.box {
border: 1px solid rgb(69, 199, 115);
background: rgb(164, 201, 245);

}

Although you could have chained the class names in the style sheet by using the selector p.container
.box, you avoid doing this since there are known problems with this approach in IE 6. IE 6, on the other
hand, supports just fine multiple class names in the class attribute. Referencing just the box class name
allows you to select the element, too. You give the element a slightly richer shade of light blue, and a
slightly lighter green border than was specified in the previous rule, which referenced all four <p> ele-
ments by the class name, container. You see that the background and border declarations set here
overrode the previously set background and border declarations in the first container rule; you’ll learn
more about this in Chapter 4, “The Cascade and Inheritance.”

In the next rule, you set properties on the <p> element with both the class names container and tank.
Again, you gave the element an even richer light blue background (compared to the last rule, which was
applied to the <p> element with container and box class names).

p.tank {
border: 1px solid rgb(107, 214, 145);
background: rgb(124, 180, 245);
clear: left;

}

In the last rule, you used an id selector to select the fourth <p> element, which has an id attribute set
with a value of container-1234. For the fourth <p> element, there is an even richer still light blue
background, and an even lighter green border around it.

p#container-1234 {
border: 1px solid rgb(154, 232, 181);
background: rgb(82, 157, 245);

}

Now that you have worked through this simple, proof-of-concept demonstration of class and id selec-
tors for yourself, continue to the next section, which discusses the universal, or wildcard selector.

67

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 67

The Universal Selector
The universal selector is an asterisk. When used alone, the universal selector tells the CSS interpreter to
apply the CSS rule to all elements in the document. Figure 3-12 shows what a universal selector looks like.

Figure 3-12

This rule is applied to all elements contained in the document. The universal selector applies to every-
thing, including form input fields and tables of data. It applies style to any and every element present in
a document.

Try It Out The Universal Selector
Example 3-2. To see how the universal selector works, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Class and ID Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-2.css’ />

</head>
<body>

<h1>Universal Selectors</h1>
<p>

Universal selectors are wildcard selectors.
</p>
<p>

When a universal selector is used alone, all elements
within a document are selected.

</p>
<p>

Even form elements are selected.
</p>
<form method=’post’ action=’Example_3-2.html’>

<fieldset>
<legend>Feedback Form</legend>
<table>

<tbody>

68

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 68

<tr>
<td><label for=’topic’>Topic:</label></td>
<td><input type=’text’

name=’topic’
id=’topic’

value=’Universal Selectors’
size=’25’ />

</td>
</tr>
<tr>

<td><label for=’feedback’>Feedback:</label></td>
<td>

<textarea cols=’55’ rows=’10’ name=’feedback’ id=’feedback’>
Universal selectors have some practical applications.
For instance, when debugging styles you can select
all elements and apply a border to see dimensions.
This could help you identify rogue elements causing
undue disorder in a document.
</textarea>

</td>
</tr>

</tbody>
</table>

</fieldset>
</form>

</body>
</html>

2. Save the preceding document as Example_3-2.html and load it into your favorite browser.

3. Enter the following CSS into a new document in your text editor.

body {
font-family: sans-serif;

}
* {

border: 1px solid yellowgreen;
color: green;
padding: 5px;
font-weight: normal;
font-size: 12px;

}

4. Save the preceding styles as Example_3-2.css. After loading Example 3-2 into your browser,
you should see output similar to that of Figure 3-13.

69

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 69

Figure 3-13

Figure 3-13 shows the results from Mac Firefox. Safari 2.0 produces similar results; the difference being
only the font color is applied to the form elements. Safari 2.0 does not support custom styling of form
elements very well. However, later versions have made progress in this area. IE 6 and IE 7 also differ
slightly from the output here, in that the <label> elements are missing the top border, which is
because of a bug in IE. While the results are not perfect from browser to browser, you get the idea of
what the universal selector does.

How It Works
The concepts at play in Example 3-2 are very simple; the universal selector is included in the style sheet
as an asterisk. The declarations in the rule that follow the asterisk are applied to all of the elements that
appear in the document, provided that element is allowed to have the property in question applied.
For instance, the <tbody> and <tr> elements do not accept most visual styles (borders, padding, and
dimensions, for example). The universal selector, alone, doesn’t have much practical application,
although as previously mentioned, it can be helpful for debugging styles and highlighting element
dimensions in complex documents. By applying a border to all elements, you are able to immediately
see the space an element occupies.

70

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 70

The universal selector can also be used with other kinds of selectors, such as contextual selectors, also
known as descendant selectors.

Descendant Selectors
Descendant selectors apply style based on whether one element is a descendant of another. In CSS,
descendant means an element that is a child, grandchild, great grandchild, and so on, of another element.
This type of relationship is referred to as an ancestral relationship. Take for example the document in
Figure 3-14. If you were looking to map the ancestral relationship between the elements in Figure 3-14,
you would see a tree like that in Figure 3-15.

Figure 3-14

As a web designer, you get used to visualizing markup documents as a tree. Perhaps not as a real tree, as
you see in Figure 3-15, but visualizing the lineage of an element. The concept of ancestral relationships
between elements is a fundamental cornerstone to web development, and as you read on throughout
this chapter and Chapter 4, you’ll see that ancestral relationships play a large role in CSS development.

71

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 71

Figure 3-15

Descendant selectors apply style based on the lineage of an element. Keeping in mind the markup pre-
sented in Figure 3-14, one example of a descendant selector appears in Figure 3-16.

Figure 3-16

Descendant selectors are used to select an element based on the context it appears in the document. In
the example code in Figure 3-16, you select a element with an inline-code class name, and
apply the monospace font to it, but only if the inline-code element is a descendant of the
<div> element with a body id name.

Descendant selectors aren’t limited to just two elements; you can include more elements in the ancestral
lineage, if it suits your needs. Each selector in a descendant selector chain must be separated by a space.
This is demonstrated in code in Figure 3-17.

72

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 72

Figure 3-17

In fact, the entire lineage from the eldest ancestor, the <html> element, down through the generations to
the element you want to select, can be included in a descendant selector chain.

Descendant selectors can also be combined with the universal selector. You can see an example of this in
Figure 3-18.

Figure 3-18

The universal selector can appear in any part of a descendant selector. When it is included, it is a wild-
card. In Figure 3-18, you select all descendants of the body <div> element.

Because descendant selectors are part of the oldest CSS 1 specification, they are the widest supported
contextual selector. The upcoming sections (through to the section titled “Attribute Selectors”) are CSS 2
selectors, which are not supported by IE 6.

In the CSS level 1 specification, descendant selectors are referred to as contextual selectors. The name
change was made in the CSS level 2 specification. The name change likely resulted from new selectors in
CSS 2, several of which can also be considered contextual because their selection is based on the context
in which the target element appears in the document.

Try It Out Descendant Selectors
Example 3-3. To see how descendant selectors work, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Descendant Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-3.css’ />

</head>
<body>

<h1>Descendant Selectors</h1>
<p>

Descendant selectors apply styles based on ancestral relationships.

73

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 73

The first descendant example I present applies style to the
 element named code,
which is a descendant of <p> elements.
To do this, the selector p span.code is used.

</p>
<p>

Using CSS, styles can be applied to any number of documents. Since
this is the case, there may be
elements with a class name of code in several documents, but
have different styles applied depending on the context it appears,
which is the exact situation the inventors of the descendant
selector had in mind when it was conceived.

</p>
<p class=’note’>

The note text is given different styles. To do this another descendant
selector is used. This time the selector is p.note
span.code

</p>
</body>

</html>

2. Save the preceding document as Example_3-3.html.

3. Enter the following CSS in a new document in your text editor:

body {
font-face: sans-serif;

}
h1 {

margin: 5px;
}
p {

border: 1px solid rgb(200, 200, 200);
background: rgb(234, 234, 234);
padding: 5px;
margin: 5px;

}
p.note {

background: yellow;
border: 1px solid gold;

}
span.code {

font-family: monospace;
padding: 0 10px;

}
p span.code {

background: yellow;
}
p.note span.code {

background: lightyellow;
}

4. Save the preceding CSS as Example_3-3.css. This example results in the output you see in
Figure 3-19.

74

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 74

Figure 3-19

How It Works
Descendant selectors apply style based on an ancestral relationship. The first example of descendant
selectors that you see in Example 3-3 is p span.code. This selector selects elements with class
names of code, but only when they appear as descendants of <p> elements. That is to say, when a
element exists in the document and it has a class name of code, and it is the child, grandchild, great
grandchild, and so on, of a <p> element, those elements receive a yellow background.

The second example of descendant selectors in Example 3-3 is p.note span.code, where two type and
class selectors are included in a descendant selector. In this selector any <p> elements appearing in the
document with a class name of note that have descendant elements, which have a class name of
code, receive lightyellow backgrounds.

Descendant selectors allow you to apply style based on ancestral relationships. In the next section, you
see a similar selector, the direct child selector, which also applies style based on an ancestral relationship,
but a narrower, more specific ancestral relationship, parent and child.

Direct Child Selectors
Direct child selectors operate much like descendant selectors in that they also rely on an ancestral rela-
tionship to decide where to apply style. Descendant selectors, however, are more ambiguous because
they apply to any descendant of an element; the descendant can be a grandchild or a great-grandchild,
or a great-great-grandchild, and so on. Direct child selectors apply only to immediate children of the ele-
ment. This is achieved by introducing a new syntax for the selector. Figure 3-20 is an example of a direct
child selector.

75

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 75

IE 6 does not support direct child selectors natively; see this book’s website at www.wrox.com/go/
beginning_css2e for compatibility help.

Figure 3-20

In Figure 3-20 you see that the greater than sign (or right angle bracket), >, is used in the style sheet
to select an element in the HTML document. In Figure 3-20, you see a parent/child relationship in
the direct child selector, p > span.inline-code. In order to apply the declaration font-family:
monospace;, the element with the class name inline-code, must be the child of a <p>
element.

Direct child selectors are selectors that depend on the context that an element appears in a document.
The context in this case is a parent/child relationship. Like descendant selectors, a direct child selector
chain can have as many elements as you like; an example of this is shown in Figure 3-21.

Figure 3-21

In Figure 3-21, you see two parent/child relationships represented in one selector. The <p> element is a
direct child of the <div> with an id name of body and the with a class name of inline-code is
a direct child of the <p> element.

You can also mix selectors, if you have need of it. Figure 3-22 shows mixing descendant selectors with
direct child selectors.

Figure 3-22

In fact, you can mix and match selectors in pretty much any way imaginable — direct child selectors
with descendant selectors, with universal selectors. CSS is very flexible in this regard, provided browser
support for the selector exists.

76

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 76

Try It Out Direct Child Selector
Example 3-4. To see how the direct child selectors work, follow these steps.

1. Using the markup in Example_3-3.html, make the following highlighted changes:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Direct Child Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-4.css’ />

</head>
<body>

<h1><ins>Direct Child</ins> Descendant Selectors</h1>
<p>

<ins>Direct Child</ins> Descendant selectors apply styles
based on <ins>parent/child</ins> ancestral relationships.
The first <ins>direct child</ins> descendant example I
present applies style to the
 element named code,
which is a descendant <ins>child</ins> of
<p> elements.
To do this, the selector p <ins>></ins>
span.code is used.

</p>
<p>

Using CSS, styles can be applied to any number of documents. Since
this is the case, there may be
elements with a class name of code in several documents, but
have different styles applied depending on the context it appears,
which is the exact situation the inventors of the descendant
<ins>child</ins> selector had in mind when it was conceived.

</p>
<p class=’note’>

The note text is given different styles. To do this another
descendant <ins>direct child</ins>
selector is used, this time the selector is
p.note <ins>></ins> span.code

</p>
</body>

</html>

2. Save the preceding markup document as Example_3-4.html.

3. Using the style sheet that you made for Example 3-3, Example_3-3.css, make the following
highlighted changes.

body {
font-face: sans-serif;

}
h1 {

margin: 5px;
}

77

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 77

del {
color: crimson;

}
ins {

color: forestgreen;
}
p {

border: 1px solid rgb(200, 200, 200);
background: rgb(234, 234, 234);
padding: 5px;
margin: 5px;

}
p.note {

background: yellow;
border: 1px solid gold;

}
span.code {

font-family: monospace;
padding: 0 10px;

}
p > span.code {

background: yellow;
}
p.note > span.code {

background: lightyellow;
}

4. Save the preceding style sheet as Example_3-4.css. The preceding example results in the ren-
dered document pictured in Figure 3-23.

Figure 3-23

78

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 78

How It Works
As is illustrated in Example 3-4, the direct child selector is pretty similar to the descendant selector. In
most situations you can get away with using a descendant selector where a child selector could be used
and vice versa, the only difference being the direct child must be a parent/child relationship, and the
descendant selector can be a more ambiguous ancestral relationship. Using a descendant selector, you
have greater compatibility since IE 6 does not support the direct child selector (at least, not without a
workaround, which you can find in Chapter 16, available at www.wrox.com/go/beginning_css2e).

There are some situations where a descendant selector would not be desired, and a direct child selector
would come in handy, or it wouldn’t exist. Those situations are a bit too complex to explain properly
here, in addition to being rare.

In Example 3-4, you see that the direct child selector uses a greater than sign (>) within the selector to
indicate the parent/child relationship, whereas the descendant selector you saw in Example 3-3 uses
space between selectors to indicate an ancestral relationship, which is not limited to parent/child, but
could indicate grandparent/grandchild, great-grandparent/great-grandchild, and so on.

Selecting a child element based on the element’s parent can be helpful. These contextual selectors allow
developers to define fewer class and id names in a markup document, and instead select elements based
on the context they appear in a document. In the next section I present another contextual selector, the
direct adjacent sibling combinator (its official name), or next sibling for short (because that’s just too long!).

Next Sibling Selector
The official name of the selector I discuss in this section, according to the W3C is the adjacent sibling com-
binator. I think that’s too long and complicated, so I’ve shortened it to just next sibling. The next sibling
selector selects, surprise, an element’s next sibling. Looking back on the markup in Figure 3-14, the
markup in Figure 3-24 is a demonstration of what a next sibling selector looks like in a style sheet.

IE 6 does not support next sibling selectors natively; see this book’s website at www.wrox.com/go/
beginning_css2e for compatibility help.

Figure 3-24

In Figure 3-24, you see that a plus sign is used to denote the sibling relationship between two elements.
You may be thinking to yourself at this point, well that’s just fine and dandy, but what’s the practical applica-
tion? Can’t you just reference the div#body alone and get the same result? Why do you need a next sibling selec-
tor? I’m glad you asked. This selector can be useful in certain situations, such as when you have several
HTML documents that reference the same style sheet. In some of these documents, the <div> with an id

79

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 79

name of heading and the <div> with an id name of body are siblings, and they appear in the source one
right after the other. In other documents these two elements may not be siblings. Naturally, if you have
different template requirements in these theoretical two different kinds of documents, you may like to
have a way to reference the ones where these elements are siblings explicitly, and that is one example of
a practical application of the next sibling selector. Also, as I mentioned in the previous section, “Direct
Child Selectors,” sometimes you want to avoid creating new id and class names. In some situations
when you use the next sibling selector, you can potentially avoid creating new class and id names.

In the following proof-of-concept example, you try out the next sibling selector for yourself.

Try It Out Next Sibling Selector
Example 3-5. To see how the next sibling selector works, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Next Sibling Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-5.css’ />

</head>
<body>

<h1>Next Sibling Selectors</h1>
<p>

The next sibling selector (or adjacent sibling combinator as
it’s officially called) allows you to select an element based on
its sibling. This paragraph has a lightyellow background and
darkkhaki text.

</p>
<p>

This paragraph has a yellowgreen background and green text.
</p>
<p>

This paragraph has no colored background, border, or text.
</p>

</body>
</html>

2. Save the preceding markup as Example_3-5.html.

3. Enter the following CSS into your text editor:

body {
font: 12px sans-serif;

}
p {

padding: 5px;
}
h1 + p {

background: lightyellow;
color: darkkhaki;
border: 1px solid darkkhaki;

80

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 80

}
h1 + p + p {

background: yellowgreen;
color: green;
border: 1px solid green;

}

4. Save the style sheet as Example_3-5.css. Once loaded into your next sibling selector support-
ing browser, you should see something like that in Figure 3-25.

Figure 3-25

How It Works
The next sibling selector applies a style based on a sibling relationship. The following is a review of the
relevant styles that you applied in Example_3-5.css.

The first style you applied in Example_3-5.css is applied to the first paragraph in Example_3-5.html.
The selector h1 + p means that if a <p> element is the next, directly adjacent sibling to an <h1> element,
apply the declarations in this rule.

h1 + p {
background: lightyellow;
color: darkkhaki;
border: 1px solid darkkhaki;

}

The rule only applies when a <p> element is the directly adjacent sibling of an <h1> element.

In the second rule, you have a more complex next sibling selector. It says that if a <p> element is the
directly adjacent sibling of another <p> element, which in turn is the directly adjacent sibling to an <h1>
element, apply the declarations in the rule.

h1 + p + p {
background: yellowgreen;

81

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 81

color: green;
border: 1px solid green;

}

Just as the direct child selector allows you to apply a style based on a parent/child relationship, next sib-
ling selectors allow you to apply style based on a sibling relationship.

Sometimes, it’s useful to have a selector that can apply styles based on the existence or value of an ele-
ment’s attributes.

Attribute Selectors
Attribute selectors are used to apply style sheet declarations based on the presence of attributes or
attribute values of an HTML element.

IE 6 does not support attribute selectors natively; see this book’s website at www.wrox.com/go/
beginning_css2e for compatibility help.

Figure 3-26 is an example of an attribute selector that applies a style sheet rule based on the presence of
an attribute.

Figure 3-26

In Figure 3-26, if the alt attribute is set on elements, those elements receive a blue border.
Detecting the presence of an alt attribute is good practice, since the alt attribute is required on all
 elements per the HTML 4.01 specification. When the rule in Figure 3-26 is used, elements
that don’t have a blue border need an alt attribute applied.

You are not limited to detecting the presence of an attribute; there are several types of attribute selectors,
and CSS is capable of detecting attributes based on the following criteria:

❑ The presence of an attribute

❑ The value of an attribute

❑ Whether one of several possible values is present in an attribute

❑ Whether the attribute value begins with a specific string

❑ Whether the attribute value ends with a specific string

❑ Whether the attribute value contains a specific string anywhere in the value, be it at the begin-
ning, end, or middle

82

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 82

The following sections examine each type of attribute selector in greater depth and provide examples of
the syntax for each.

Selection Based on the Value of an Attribute
Attribute value selectors delegate style declarations based on an attribute’s presence and value. In
Figure 3-27, you see an example of what the syntax looks like to select an element based on an attribute’s
presence and value.

Figure 3-27

In Figure 3-27, you see how to select a text <input> element based on the presence of the attribute type
and a value of text.

You are not limited to the presence of only one attribute. An element may also be selected based on the
presence and value of multiple attributes, which you see an example of in Figure 3-28.

Figure 3-28

83

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 83

In Figure 3-28, you see a rule that selects an element based on the presence and value of two attributes:
the type and name attributes. In Figure 3-28, when the type attribute is text and the name attribute is
first_name, the declarations in the rule are applied to that element. Attribute selectors let you avoid
the need of setting class or id selectors when they are otherwise unnecessary.

In the following example, you try out attribute value selectors for yourself.

Try It Out Attribute Value Selectors
Example 3-6. To see how attribute value selectors work, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Attribute Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Figure_3-28.css’ />

</head>
<body>

<form method=’post’ action=’Example_3-3.html’>
<fieldset>

<legend>Feedback Form</legend>
<table>

<tbody>
<tr>

<td>
<label for=’first-name’>First Name:</label>

</td>
<td>

<input type=’text’
name=’first_name’
id=’first-name’
value=’Richard’
size=’25’ />

</td>
</tr>
<tr>

<td>
<label for=’last-name’>Last Name:</label>

</td>
<td>

<input type=’text’
name=’last_name’
id=’last-name’
value=’York’
size=’25’ />

</td>
</tr>
<tr>

<td>
<label for=’account-password’>Password:</label>

</td>
<td>

84

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 84

<input type=’password’
name=’password’
id=’account-password’
size=’25’
value=’mypass’ />

</td>
</tr>

</tbody>
</table>

</fieldset>
</form>

</body>
</html>

2. Save the markup as Example_3-6.html.

3. Enter the following CSS into a new document in your text editor:

* {
font: 12px sans-serif;
padding: 5px;
color: royalblue;

}
fieldset {

border: 3px solid rgb(234, 234, 234);
background: rgb(244, 244, 244);

}
label {

display: block;
text-align: right;
width: 100px;

}
label, legend {

background: gold;
border: 1px solid rgb(75, 75, 75);
color: rgb(75, 75, 75);

}
input[type=’text’] {

background: blue;
color: lightblue;
border: 3px solid lightblue;

}
input[type=’text’][name=’last_name’] {

background: forestgreen;
color: yellowgreen;
border: 3px solid yellowgreen;

}
input[type=’password’][name=’password’] {

background: crimson;
color: pink;
border: 3px solid pink;

}

4. Save the CSS as Example_3-6.css. Figure 3-29 shows what Example 3-6 looks like rendered in
a browser that supports attribute selection based on value.

85

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:28 PM Page 85

Figure 3-29

How It Works
In Example 3-6, you saw an example of the attribute selector. This type of attribute selector makes a
selection based on the value of an attribute in the HTML document. Following is a review of the relevant
rules in Example 3-6.

The first selector applies to all <input> elements that have a type=”text” attribute. (Keep in mind that
the quoting style can be either single or double quotes in either place; it doesn’t matter which. Use what
makes sense to you.)

input[type=’text’] {
background: blue;
color: lightblue;
border: 3px solid lightblue;

}

Two elements in the document match the criteria: the First Name and the Last Name <input> fields of the
form. The preceding rule is applied only to the First Name field though, since the last name field has a
rule of its own that overrides the preceding rule. The concept of overriding one rule with another is
called the cascade, and you learn more about the cascade in Chapter 4. So, the preceding rule applies to
this markup:

<input type=’text’ name=’first_name’ id=’first-name’ value=’Richard’ value=’25’ />

The preceding markup appears all on one line, whereas in the original Example_3-6.html, it was
spread out over several lines to accommodate the width constraints of this printed text.

The preceding <input> field receives a blue background, the text within is colored lightblue via the
color property, and a border, three pixels wide, solid and also lightblue goes around it.

The next rule applies to the Last Name field; it receives a forestgreen background, yellowgreen text,
and a border three pixels wide, solid, and also yellowgreen.

86

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:28 PM Page 86

input[type=’text’][name=’last_name’] {
background: forestgreen;
color: yellowgreen;
border: 3px solid yellowgreen;

}

In the preceding rule you select the <input> element based on the value of two attributes: the type
attribute and the name attribute.

Finally, in the last rule you select the <input> element with a type=”password” attribute, and like the
last rule, you select the element based on the value of two attributes, the type and name attributes.

input[type=’password’][name=’password’] {
background: crimson;
color: pink;
border: 3px solid pink;

}

While selecting an attribute based on a value is useful, you can also select an attribute based on just part
of the value. These are called attribute substring selectors.

Attribute Substring Selectors
Taking the flexibility of attribute selectors even further, the selectors in the following sections choose ele-
ments based on whether a particular string appears at the beginning of an attribute’s value, at the end of
an attribute’s value, or anywhere inside an attribute’s value. A string that appears inside another string
is referred to as a substring. You can select an element based on what appears at the beginning of an
attribute’s value.

Selection Based on Attribute Values That Begin with a String
The first type of substring attribute selector chooses elements with an attribute value that begins with a
particular string. You see an example of this in Figure 3-30.

In Figure 3-30, the rule selects <a> elements that have an href attribute. When the value of the href
attribute begins with ftp://, the rule selects all of the FTP links in a web page and gives them a floppy
disk icon in the background, 20 pixels of left padding so that the text of the link doesn’t overlap the
floppy disk icon image, and colors them crimson.

Figure 3-30a

87

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 87

Figure 3-30b

This attribute substring selector introduces the caret (^) character in the selector syntax, which indicates
that the attribute value begins with ftp://. Each href attribute prefixed with ftp:// is then styled according
to the declarations defined in the rule.

Another example of this syntax in action is to match all e-mail links in a page, and you can see an exam-
ple of this in Figure 3-31.

Figure 3-31a

Figure 3-31b

88

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 88

When the selector is a[href^=”mailto:”] you match all e-mail links within a document.

Just as you can match values that appear at the beginning of a string, you can also match values that
appear at the end of a string.

Selection Based on Attribute Values That End with a String
The next substring attribute selector chooses elements with attributes whose value ends with a string.
An example of this appears in Figure 3-32.

Figure 3-32a

Figure 3-32b

The selector of the preceding rule uses the dollar sign to signify that the selector matches the end of the
attribute value. This changes all links that end in an .html suffix to blue, with a Firefox document icon,
25 pixels of left padding, and no underline.

The href attribute’s value ends with the string .html, so it receives a text color of blue. Conversely, this
principle does not apply to the href attribute of the following <a> element:

A PHP Page

89

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 89

The attribute’s value in this example ends with a .php suffix, so it does not receive a text color of blue,
and a Firefox document icon, 25 pixels of left padding, and the underline are removed.

You’ve seen how to select an attribute’s value based on what appears at the beginning and at the end of
the attribute’s value. The next section describes how to select an attribute’s value based on the value
being anywhere: at the beginning, the end, or anywhere in between.

Selection Based on Attribute Values That Contain a String
The final type of attribute substring selector is a wildcard attribute substring selector. It selects an ele-
ment that contains an attribute whose value contains a string anywhere in the value: at the beginning,
the end, or anywhere in the middle. This attribute substring selector uses an asterisk in the syntax to
indicate that the selector is looking anywhere inside the value, as shown in Figure 3-33.

Figure 3-33a

Figure 3-33b

This matches any URL that contains a .php extension regardless of whether the URL contains anchors or
query strings.

90

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 90

All that after the question mark is called the query string, which holds special meaning for programming
languages such as PHP, ASP, Perl, and others. What that does isn’t important. What is important is that
using this style sheet rule, the selector finds the .php extension even though it is in the middle of the
value. The selector also finds the .php value if it appears at the beginning or the end of the URL:

A .php page

The markup presented in Figure 3-33 and in the preceding example both receive a Thunderbird icon, 25
pixels of left padding, steelblue text, and the underline removed.

In the following example, you experiment with attribute substring selectors.

Try It Out Attribute Substring Selectors
Example 3-7. To see how attribute substring selectors work, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Attribute Substring Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-7.css’ />

</head>
<body>

<h1>Proof-of-Concept: Attribute Substring Selectors</h1>

HTML Page Link
PDF Link
FTP Link
Anchor Link

</body>

</html>

2. Save the preceding markup as Example_3-7.html.

3. Enter the following style sheet:

body {
font: 14px sans-serif;

}
h1 {

font-size: 16px;
}
ul {

list-style: none;
}
li {

margin: 5px 0;
}
a {

padding-left: 20px;

91

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 91

}
a[href^=”ftp://”] {

color: goldenrod;
background: url(‘save.png’) no-repeat left center;

}
a[href*=”#”] {

color: cadetblue;
background: url(‘anchor.png’) no-repeat left center;

}
a[href$=”.html”] {

color: dodgerblue;
background: url(‘firefox.png’) no-repeat left center;

}
a[href$=”.pdf”] {

color: red;
background: url(‘pdf.png’) no-repeat left center;

}

4. Save the preceding style sheet as Example_3-7.css. The preceding markup and style sheet
result in the rendered output that you see in Figure 3-34.

Figure 3-34

How It Works
In Example 3-7, you see how to select an attribute based on just a small portion of its value. The follow-
ing is a review of the relevant attribute substring selectors.

The first attribute substring rule that you applied styles the FTP link. The selector a[href^=”ftp://”]
applies the style because the href attribute value in the HTML begins with the characters ftp://. To
select only the beginning of the string, you used a caret character followed by the equals sign.

a[href^=”ftp://”] {
color: goldenrod;
background: url(‘save.png’) no-repeat left center;

}

92

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 92

The second attribute substring selector that you applied styles the anchor link. The selector a[href*=”#”]
finds the special hash mark (or pound sign) within the value of the href attribute in the HTML,
http://www.example.com/#note. The hash character can appear anywhere in that value, and the
rule still would apply cadetblue colored text and the anchor.png image to the background.

a[href*=”#”] {
color: cadetblue;
background: url(‘anchor.png’) no-repeat left center;

}

The third attribute substring selector that you applied styles the plain old HTML document link. Because
the value of the href attribute ends in .html, the color dodgerblue is applied as the text color, and the
firefox.png image is applied to the background.

a[href$=”.html”] {
color: dodgerblue;
background: url(‘firefox.png’) no-repeat left center;

}

The last attribute substring rule that you applied was just like the last, only now you are styling links to
PDF documents. When the value of the href attribute ends in .pdf, the link is colored red, and given a
PDF icon as the background image.

a[href$=”.pdf”] {
color: red;
background: url(‘pdf.png’) no-repeat left center;

}

In the next section you begin to explore a different type of selector, pseudo-element selectors.

Pseudo-Elements :first-letter and :first-line
Pseudo-elements represent certain aspects of a document not easily modifiable with plain markup.
Pseudo-elements may be used to modify the formatting of the first letter of a paragraph, or the first line
of a paragraph, for example.

The pseudo-elements :first-letter and :first-line refer to the first letter and first line of an ele-
ment containing text. When you design a website, it is helpful to have control over how you present con-
tent. With the :first-letter and :first-line pseudo-elements, you can control the formatting of
the first letter and first line of a paragraph completely from CSS. You may add an increased font size or
other font effects, apply a background color or image, or use just about any text effect supported by CSS
and the browser.

You can apply pseudo-elements to a specific element, via a selector, or to all elements. Figure 3-35 shows
an example of styling the first letter of a paragraph using the :first-letter pseudo-element.

93

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 93

Figure 3-35a

Figure 3-35b

In Figure 3-35, you see that to select the first letter in the paragraph, “Y”, you use a :first-letter
pseudo-element.

IE 6 appears to support the double-colon syntax without any problems, but IE 7 does not support this
syntax, which is why I present the single colon syntax here. CSS includes more pseudo-elements than
those mentioned here; I’ve selected only those that have the most browser compatibility and support.
See Appendix B for additional pseudo-elements.

The following Try It Out shows you what the :first-letter and :first-line pseudo-elements look
like in a style sheet and demonstrates some of the textual effects you can apply.

CSS 3 changes pseudo-element syntax to use a double colon (::) preceding each
pseudo-element. For example, p::first-letter refers to the first letter of a para-
graph instead of p:first-letter. This syntax distinguishes pseudo-elements from
pseudo-classes, which use single colon syntax, as in a:hover, which is a reference to
a pseudo-class.

94

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 94

Try It Out :first-letter and :first-line Pseudo-Elements
Example 3-8. To see how the :first-letter and :first-line pseudo-elements work, follow these
steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Pseudo-Element Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-8.css’ />

</head>
<body>

<p class=’quote’>
You see, wire telegraph is a kind of a very, very long cat.
You pull his tail in New York and his head is meowing in Los
Angeles. Do you understand this? And radio operates exactly
the same way: you send signals here, they receive them there.
The only difference is that there is no cat.

</p>
<p class=’byline’>

- Albert Einstein
</p>

</body>
</html>

2. Save the preceding markup as Example_3-8.html.

3. Enter the following style sheet:

p {
color: darkblue;
border: 1px solid lightblue;
padding: 2px;
font: 14px sans-serif;

}
p.quote:first-letter {

background: darkblue;
color: white;
font: 55px “Monotype Corsiva”;
float: left;

margin-right: 5px;
}
p.quote:first-line {

font-weight: bold;
letter-spacing: 3px;

}
p.byline {

text-align: right;
font-style: italic;
font-size: 10px;
border: none;

}

95

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 95

4. Save the preceding style sheet as Example_3-8.css. The markup and CSS that you entered
should look something like Figure 3-36 when rendered in a browser.

Figure 3-36

How It Works
In Example 3-8 you see an example of both the :first-letter and :first-line pseudo-elements.
The following is a review of the relevant style sheet rules in Example_3-8.css. In the following rule,
you styled the first letter of the <p> element with a class name of quote. To select the first letter of the
<p> element, “Y”, you used the selector p.quote:first-letter.

p.quote:first-letter {
background: darkblue;
color: white;
font: 55px “Monotype Corsiva”;
float: left;

margin-right: 5px;
}

As shown in Figure 3-36, the first letter of the Einstein quote received a darkblue background, white
text, a large 55-pixel font size, and the font face Monotype Corsiva. It’s floated to the left so that subse-
quent lines wrap around it. It’s given five pixels of right margin.

Then, the first line of the quote receives additional styling. It’s selected with the selector p.quote::
first-line, and given bold text, in addition to each letter in the line being spaced three pixels apart.

p.quote::first-line {
font-weight: bold;
letter-spacing: 3px;

}

In the next section, I present another type of selector, pseudo-class selectors.

96

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 96

Pseudo-Classes
Pseudo-classes are used to represent dynamic events, a change in state, or a more general condition
present in the document that is not easily accomplished through other means. This may be the user’s
mouse rolling over or clicking on an element. In more general terms, pseudo-classes style a specific state
present in the target element. This state may be hovering your mouse cursor over an element, or visiting
a hyperlink. Pseudo-classes allow the author the freedom to dictate how the element should appear
under either condition. Unlike pseudo-elements, pseudo-classes have a single colon before the pseudo-
class property.

Dynamic Pseudo-Classes
The following are considered dynamic pseudo-classes. They are a classification of elements that are only
present after certain user actions have or have not occurred:

❑ :link: signifies unvisited hyperlinks

❑ :visited: indicates visited hyperlinks

❑ :hover: signifies an element that currently has the user’s mouse pointer hovering over it

❑ :active: signifies an element on which the user is currently clicking

The first two dynamic pseudo-classes that I discuss are :link and :visited.

:link and :visited
The :link pseudo-class refers to an unvisited hyperlink, whereas :visited, of course, refers to visited
hyperlinks. These two pseudo-classes are used to separate styles based on user actions. An unvisited
hyperlink may be blue, whereas a visited hyperlink may be purple. Those are the default styles your
browser applies. Using dynamic pseudo-classes it is possible to customize those styles.

Figure 3-37 demonstrates how these pseudo-classes are applied.

In Figure 3-37, unvisited links are styled with the :link dynamic pseudo-class. They receive
meduimblue colored text. Visited links, on the other hand have magenta colored text.

For obvious reasons, the :link and :visited pseudo-classes apply only to <a> elements.]

Figure 3-37a

97

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 97

Figure 3-37b

The order in which the :link and :visited dynamic pseudo-classes appear in the style sheet is impor-
tant and has to do with the cascade, which I discuss in Chapter 4. If the :link pseudo-class is defined
after the :visited pseudo-class in the style sheet, the :link pseudo-class takes precedence. The decla-
rations with the :link pseudo-class override those defined for the :visited pseudo-class. As you see
in Chapter 4, this has to do with how specific the selector is; in this example, the specificity is the same.

:hover
The :hover pseudo-class refers to an element over which the user’s mouse pointer is currently hover-
ing. While the user’s mouse pointer is over the element, the specified style is applied; when the user’s
mouse pointer leaves the element, it returns to the previously specified style. The :hover pseudo-class
is applied in the same way that the :link and :visited pseudo-classes are applied. An example of this
appears in Figure 3-38.

In Figure 3-38, when the user’s mouse hovers over an <a> element, the text within the <a> element is
underlined.

Figure 3-38a

A mnemonic device used to remember the order in which dynamic pseudo-classes
(as applied to links) must appear in style sheets is LoVe HAte, or :link, :visited,
:hover and :active.

98

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 98

Figure 3-38b

In IE 6, the :hover pseudo-class applies only to hyperlinks (which is incorrect under the CSS 2 specifi-
cation), whereas other browsers recognize the :hover pseudo-class on any rendered element, per the
CSS 2 specification. This problem is fixed in IE 7.

:active
The :active pseudo-class refers to an element that the user is currently clicking and holding down the
mouse button on. The specified style remains in place while the user holds down the mouse button, and
the element does not return to its original state until the user releases the mouse button. You can see an
example of this in Figure 3-39.

In Figure 3-39 you see the :active pseudo-class in action. When the user clicks on an <a> element,
while the mouse button is held down, and before it is released, the element is said to be active, in which
case the styles in the :active pseudo-class rule are applied.

In IE 6 and IE 7, :active applies only to hyperlinks; whereas, other browsers allow it to be applied to
any element.

Figure 3-39a

99

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 99

Figure 3-39b

Now that you have been introduced to dynamic pseudo-class selectors, you can try them out for your-
self in the following example.

Try It Out Dynamic Pseudo-Class Selectors
Example 3-9. To try out dynamic pseudo-class selectors, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Dynamic Pseudo-Class Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-9.css’ />

</head>
<body>

<h1>Proof-of-Concept: Dynamic Pseudo-Class Selectors</h1>

Wrox
Wrox P2P
Google
Amazon

</body>

</html>

2. Save the preceding markup as Example_3-9.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}
h1 {

font-size: 16px;
}

100

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 100

ul {
list-style: none;

}
li {

margin: 5px 0;
}
a:link {

color: steelblue;
}
a:visited {

color: darkorchid;
}
a:hover {

color: orange;
}
a:active {

color: crimson;
}

4. Save the preceding style sheet as Example_3-9.css. Upon completion of the HTML and CSS
files, you should see output in your browser like that in Figure 3-40.

Figure 3-40

How It Works
In Example 3-9, you tried out the dynamic pseudo-classes for yourself. In Example 3-9 there were four
dynamic pseudo-classes in use.

The first dynamic pseudo-class that you used styles unvisited links. Unvisited links receive the color
steelblue.

a:link {
color: steelblue;

}

The second dynamic pseudo-class that you used styles visited links. Visited links receive the color
darkorchid.

101

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 101

a:visited {
color: darkorchid;

}

The third selector that you used, the :hover dynamic pseudo-class, applies styles when the user’s mouse
cursor hovers over a link. When a user’s mouse cursor comes over a link, the link is colored orange.

a:hover {
color: orange;

}

Last, you used the :active dynamic pseudo-class, which applies style when the user clicks and holds
down the mouse button on a link. When the user clicks and holds down the mouse button, the link is
colored crimson.

a:active {
color: crimson;

}

The last pseudo-class that I discuss in this chapter is the :first-child structural pseudo-class.

The first-child Structural Pseudo-Class
Much like the direct child and next sibling selectors earlier in this chapter, structural pseudo-classes are
used to refer to an element’s position in a document. The :first-child structural pseudo-class applies
only when an element is the first child of another element.

IE 6 does not support the :first-child structural pseudo-class. See this book’s website at
www.wrox.com/go/beginning_css2e for compatibility help.

In Figure 3-41, you see an example of the :first-child structural pseudo-class. Try it out for yourself
in the following example.

Figure 3-41a

102

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 102

Figure 3-41b

Try It Out The first-child Structural Pseudo-Class
Example 3-10. To see how the :first-child structural pseudo-class works, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>:first-child</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-10.css’ />

</head>
<body>

<h1>Abridged Beatles Discography</h1>
<table>

<thead>
<tr>

<th>Album</th>
<th>Year</th>

</tr>
</thead>
<tbody>

<tr>
<td>Please Please Me</td>
<td>March 1963</td>

</tr>
<tr>

<td>With The Beatles</td>
<td>November 1963</td>

</tr>
<tr>

<td>A Hard Day’s Night</td>
<td>July 1964</td>

</tr>
<tr>

103

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 103

<td>Beatles For Sale</td>
<td>December 1964</td>

</tr>
<tr>

<td>Help!</td>
<td>August 1965</td>

</tr>
<tr>

<td>Rubber Soul</td>
<td>December 1965</td>

</tr>
<tr>

<td>Revolver</td>
<td>August 1966</td>

</tr>
<tr>

<td>Sgt. Pepper’s Lonely Hearts Club Band</td>
<td>June 1967</td>

</tr>
<tr>

<td>Magical Mystery Tour</td>
<td>November 1967</td>

</tr>
<tr>

<td>The Beatles (a.k.a. ‘The White Album’)</td>
<td>November 1968</td>

</tr>
<tr>

<td>Yellow Submarine</td>
<td>January 1969</td>

</tr>
<tr>

<td>Abbey Road</td>
<td>September 1969</td>

</tr>
<tr>

<td>Let It Be</td>
<td>May 1970</td>

</tr>
</tbody>

</table>
</body>

</html>

2. Save the preceding as Example_3-10.html.

3. Enter the following CSS into your text editor:

body {
font-size: 12px sans-serif;

}
table {

background: slateblue;
color: #fff;
width: 100%;

104

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 104

border-collapse: collapse;
border: 1px solid mediumslateblue;

}
td {

border: 1px solid darkslateblue;
padding: 2px;

}
th {

background: lightsteelblue;
color: darkslateblue;
font-size: 18px;
text-align: left;

}
table tbody tr:first-child td {

background: mediumslateblue;
}

4. Save the CSS you entered as Example_3-10.css. The markup and CSS you entered should
look something like what you see in Figure 3-42.

Figure 3-42

How It Works
In Example 3-10, you entered in a table containing some information about albums made by The Beatles.
In the style sheet you applied a variety of styles, and among them was an example of the :first-child
structural pseudo-class.

table tbody tr:first-child td {
background: mediumslateblue;

}

105

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 105

The preceding rule applies a mediumslateblue background to the cells of the first row of the table. It
does this because of the tr:first-child selector, when <tr> is the first child of the <tbody> element,
which is in turn a descendant of a <table> element. The descendant <td> elements of the <tr> element
receive each a mediumslateblue background.

Summary
CSS selectors provide a flexible and diverse array of options for applying style to a document. CSS 2
greatly expanded the options made available in CSS 1, with the direct child, attribute value, and next
sibling selectors, and CSS 3 has again expanded selector options with selectors like the attribute sub-
string selectors.

In this chapter you learned the following:

❑ Selectors may also be user-defined using the class and/or id attributes.

❑ The universal selector applies style to all conceivable page elements.

❑ Descendant selectors apply style based on document hierarchy and ancestral relationships.

❑ Using child selectors makes the methodology created for descendant selectors more specific.

❑ Direct adjacent sibling combinators (that’s a mouthful), or as I have termed them, next sibling
selectors, apply style if two elements, appearing back to back in a document as siblings, have
the same parent.

❑ Attribute selectors delegate style depending on the presence of attributes or attribute values.

❑ Pseudo-elements are used for situations where it would be difficult to use real markup, such as
in the styling of the first letter or first line of a paragraph.

❑ Dynamic pseudo-classes are used to style a change in state; examples include visited hyper-
links, rolling the mouse cursor over an element, or actively clicking on an element.

In Chapter 4, I begin discussing concepts also fundamental to CSS, the cascade and inheritance.

Exercises
1. Does the selector body * apply to <input> elements (assuming an <input> element appears

between the <body> and </body> tags)?

2. In the following HTML document, do the selectors li a and li > a refer to the same element(s)?
Can those selectors be used interchangeably? What type of selector is each? Which one is better
to use and why?

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

106

Part I: The Basics

07_096970 ch03.qxp 4/20/07 11:29 PM Page 106

<title>Dynamic Pseudo-Class Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-9.css’ />

</head>
<body>

<h1>Proof-of-Concept: Dynamic Pseudo-Class Selectors</h1>

Wrox
Wrox P2P
Google
Amazon

</body>

</html>

3. Given the HTML document in question 2, does the selector ul + h1 apply? What is the official
name of that selector?

4. If you wanted to apply a style based on an HTML attribute’s value, what would the selector
look like?

5. If you were to style an element based on the presence of an HTML attribute, what would the
selector look like?

6. What special character must you include in an attribute value selector to style an element based
on what appears at the beginning of an attribute’s value? What does a sample selector using
that character look like?

7. How many class names can one element have?

8. What special character must you include in an attribute value selector to style an element based
on what appears at the end of an attribute’s value? What does a sample selector using that char-
acter look like?

9. If you wanted to style a link a different color when the user’s mouse hovers over it, what might
the selector look like?

107

Chapter 3: Selectors

07_096970 ch03.qxp 4/20/07 11:29 PM Page 107

07_096970 ch03.qxp 4/20/07 11:29 PM Page 108

4
The Cascade and Inheritance

In Chapter 3, I discussed the various types of selectors that CSS supports. In this chapter, now that
you have some understanding of the basic nuts and bolts that make up CSS, you continue along
that path with the cascade and inheritance. In CSS, inheritance and the cascade are as fundamental
as selectors, lengths, and properties. In fact, the importance of precedence is implied by the name
of the language itself: cascading style sheets. Cascading is a term used to describe precedence.
Because CSS declarations can appear more than once for a single element, the CSS specification
includes a set of guidelines defining which declarations can take precedence over others and how
this is decided. In this chapter, I discuss the following:

❑ The cascade and how style sheets and some selectors take precedence over others

❑ Inheritance and why the values of some properties are inherited and some are not

❑ The !important rule and how to force precedence

❑ Custom style sheets and how to override website styles with them

The Cascade
Style sheets can come from more than one place. A style sheet can originate from any of the follow-
ing sources:

❑ From the browser (default look and feel)

❑ From the user visiting the website (a user-defined style sheet)

❑ From the web page itself (the website’s author)

Because a style sheet can originate from more than one source, it is necessary to establish an order
of precedence to determine which style sheet applies style for the page the user is seeing. The first
style sheet comes from the browser, and this style sheet applies some default styles for a web page,
such as the default font and text color, how much space is applied between each line of text, and
how much space is applied between each letter of text. In a nutshell, it controls the look and feel of
the web page by controlling the behavior of each element when no styles are specified.

08_096970 ch04.qxp 4/20/07 11:29 PM Page 109

A style sheet can also be applied by a user visiting the website via a user-defined style sheet, which is
discussed later in this chapter. This allows the user to specify his or her own look and feel. This aspect of
CSS makes the web more accessible: A user with visual disabilities can write a style sheet to accommo-
date his or her needs, or the browser can provide options that generate the user’s style sheet behind the
scenes. No knowledge of CSS is required.

Finally, the author of the web page can specify a style sheet (of course). The precedence of each style
sheet is as follows:

❑ The browser’s style sheet is the weakest.

❑ The user’s style sheet takes precedence over the browser’s style sheet.

❑ The author’s style sheet is the strongest and takes precedence over the user’s and the browser’s
style sheets.

The (X)HTML style attribute is more important than styles defined in any style sheet.

You might be wondering what kind of styles does the browser apply? Figure 4-1a demonstrates this.

Figure 4-1a

This results in the output in Figure 4-1b.

110

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 110

Figure 4-1b

In Figure 4-1b, you can see an example of some of the default styles that a browser applies. One example
is the spacing between the heading “Default Styles” and the text in the paragraph that follows. The
unordered list (element) has a bullet before each list item (the element).

Figure 4-2a demonstrates a style sheet that removes the default styles shown in Figure 4-1b.

Figure 4-2a

The style sheet in Figure 4-2a is applied to the markup in Figure 4-1a, which results in the output in
Figure 4-2b.

111

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 111

Figure 4-2b

When you compare Figure 4-2b with Figure 4-1b, you get an idea of what kinds of styles a browser
applies by default. The browser applies spacing between elements and depending on the element, that
spacing can be controlled by either the margin or the padding property. You learn more about those two
properties in Chapter 7, “The Box Model.” Figure 4-2 demonstrates, however, that it is possible to over-
ride the browser’s default styles. Overriding the default styles is made possible by the cascade.

The cascade sets the order of precedence, and in Figure 4-2, it says that my style sheet rules (the
author’s) have stronger precedence (are more important) than the browser’s built-in style sheet rules.

By and large, there are only two situations that a web designer will ever encounter in composing a style
sheet: overriding the browser’s default styles, and overriding styles set in other style sheets within the
same website, that is, overriding the web designer’s own styles set elsewhere in the same document.

In CSS, the precedence is determined by how specific a selector is. That is to say a vague selector has less
precedence than a more specific selector. In the next section, I discuss how to find out how specific a
selector is using a simple, easy-to-remember formula.

Calculating the Specificity of a Selector
In addition to style sheet precedence, an order of precedence exists for the selectors contained in each
style sheet. This precedence is determined by how specific the selector is. For instance, an id selector is
the most specific, and the universal selector is the most general. Between these, the specificity of a selec-
tor is calculated using the following formula:

❑ Count 1 if the styles are applied from the (X)HTML style attribute, and 0 otherwise; this
becomes variable a.

❑ Count the number of ID attributes in the selector; the sum is variable b.

112

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 112

❑ Count the number of attributes, pseudo-classes, and class names in a selector; the sum is
variable c.

❑ Count the number of element names in the selector; this is variable d.

❑ Ignore pseudo-elements.

Concatenate each number together to get the specificity of the selector. Concatenate is a programming
term that means glue together. In this case if I concatenate a, b, c, and d I get abcd, instead of the sum of a,
b, c, and d, which I might refer to as e. Following are some examples.

Selector Selector Type Specificity

* Universal Selector 0000
(a = 0, b = 0, c = 0, d = 0)

li Element Name 0001
(a = 0, b = 0, c = 0, d = 1)

ul li Element Name 0002
(a = 0, b = 0, c = 0, d = 2)

div h1 + p Element Name 0003
(a = 0, b = 0, c = 0, d = 3)

input[type=’text’] Element Name + Attribute 0011
(a = 0, b = 0, c = 1, d = 1)

.someclass Class Name 0010
(a = 0, b = 0, c = 1, d = 0)

div.someclass Element Name + 0011
Class Name (a = 0, b = 0, c = 1, d = 1)

div.someclass.someother Element Name + 0021
Class Name + Class Name (a = 0, b = 0, c = 2, d = 1)

#someid ID Name 0100
(a = 0, b = 1, c = 0, d = 0)

div#someid Element Name + ID Name 0101
(a = 0, b = 1, c = 0, d = 1)

style (attribute) style (attribute) 1000
(a = 1, b = 0, c = 0, d = 0)

I have included the leading zeros in the specificity chart to clarify how concatenation works, but these
are actually dropped. To determine the order of precedence, simply determine the highest number. The
selector with the highest number wins. Consider the example in Figure 4-3a.

113

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 113

Figure 4-3a

Apply the CSS in Figure 4-3a to the markup in Figure 4-3b.

Figure 4-3b

The result looks like the output shown in Figure 4-3c.

Figure 4-3c

114

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 114

In Figure 4-3, you see an example of precedence via the selector’s specificity. In Figure 4-3a, a rule is set
for all <p> elements to have a yellow background. Because the selector is vague, it has a low specificity.
Using the table at the beginning of this section, you find that the selector

p {
background: yellow;

}

has a specificity of 1, which is very low. The <p> element with id name none is set to have no back-
ground, and because it has a higher specificity than the other selector, which again using the table at the
beginning of this section you find the specificity to be 101, results in the <p> element with id name none
having no background.

In Figure 4-3, you can see that the order that the rules appeared in the style sheet does not matter; the
rules can swap places in the style sheet and the outcome would be the same. So you might be asking
yourself, does the order matter? Sometimes, it does matter, but only when there are two rules of the
same specificity. Consider the example in Figure 4-4a.

Figure 4-4a

Apply the style sheet in Figure 4-4a to the markup in Figure 4-4b.

Figure 4-4b

The result is shown in Figure 4-4c.

115

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 115

Figure 4-4c

In Figure 4-4c, you see that when two or more selectors have the same specificity, the last one wins.

When an (X)HTML style attribute is applied, it is considered the most specific of any selector on the
page. That’s because according to the CSS specification, it is defined as having a specificity all of its own,
that is higher than any other. The style attribute has a specificity of 1000. Because the style attribute
appears after any styles appearing in style sheets, it also takes precedence over the all other selectors.
Therefore, the style attribute takes precedence over all other rules.

Try It Out Experimenting with Specificity
Example 4-1. Follow these steps to experiment with specificity.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Specificity</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_4-1.css’ />

</head>
<body>

<p>
Specificity is determined by how specific the selector is.
A specific selector wins
over a more general one.

</p>
<p>

Order isn’t important until there are one or more elements
of the same specificity referring to the same element. In
which case, the last one wins.

</p>
</body>

</html>

2. Save the preceding document as Example_4-1.html.

116

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 116

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}
span#specific {

background: pink;
}
span {

background: red;
}
span {

background: yellow;
}

4. Save the preceding style sheet as Example_4-1.css. Example 4-1 results in the output you see
in Figure 4-5.

Figure 4-5

How It Works
In Example 4-1, you saw an example of the cascade in action. In the markup there are three
elements, and one has an id name of specific. It gets a pink background because the selector
span#specific has a specificity of 101, which is more specific than the subsequent selectors, which
each have a specificity of 1.

span#specific {
background: pink;

}

Then there are two additional rules in the style sheet, each with the same specificity of 1. The last selec-
tor wins, since both selectors have the same specificity of 1, which in turn results in the last two
elements in the markup getting yellow backgrounds.

span {
background: red;

}

117

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 117

span {
background: yellow;

}

In the next section, I describe how you can override specificity by including special syntax within a CSS
declaration.

!important Rules
Along with the need for the cascade in CSS came the need to override it. This is where !important rules
come in. The !important syntax appears within a declaration, after the property value and before the semi-
colon that terminates the declaration. Two components make up this syntax: an exclamation mark, used here
as a delimiter, and the important keyword. A delimiter marks the ending of one thing and the beginning of
another. Here the exclamation mark signals the end of the declaration. The important keyword must
appear next, followed by a semicolon to terminate the declaration; this is demonstrated in Figure 4-6a.

Figure 4-6a

A declaration containing the !important rule, like the preceding one, takes precedence over any other
declaration. The CSS in Figure 4-6a is combined with the markup in Figure 4-6b.

Figure 4-6b

The result of Figure 4-6a and Figure 4-6b result in the output in Figure 4-6c.

118

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 118

Figure 4-6c

In Figure 4-6, you see the same example as you saw in Figure 4-4 — two selectors for <p> elements with dif-
ferent background declarations. In Figure 4-4, the last selector won because both selectors have the same
specificity. In Figure 4-6, the first selector includes the !important syntax, which causes the cascade to be
overridden, and thus makes the background of both <p> elements in the XHTML document lightblue.

The !important rule also takes precedence over the style attribute. Figure 4-7 is an example of this.

Figure 4-7a

The CSS in Figure 4-7a is combined with the markup in Figure 4-7b.

Figure 4-7b
119

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 119

The CSS in Figure 4-7a and the markup in Figure 4-7b result in the output in Figure 4-7c.

Figure 4-7c

In Figure 4-7c, you see that the background for both paragraphs is pink, despite one of the two para-
graphs having a declaration setting the background of that <p> element to lightblue, which demon-
strates to you that the !important rule takes precedence over even the style attribute.

If more than one !important rule appears in a style sheet, and the style sheet has the same origin —
that is, both rules come from the author’s style sheet or both come from the user’s style sheet — the latter
rule wins out over any specified previously.

Try It Out Working with !important Rules
Example 4-2. Follow these steps to experiment with specificity.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Specificity, !important</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_4-2.css’ />

</head>
<body>

<p>
!important rules are used to override specificity. The
!important syntax causes a selector to have

greater precedence than those without it.

It also

has greater precedence than the (x)HTML style attribute.

</p>
</body>

</html>

120

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 120

2. Save the preceding document as Example_4-2.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}
span#precedence {

background: lightyellow;
}
span {

background: orange !important;
}

4. Save the preceding style sheet as Example_4-2.css. Example 4-2 results in the output shown
in Figure 4-8.

Figure 4-8

How It Works
In Example 4-2, you see how the !important rule overrides precedence. Because the following declara-
tion contains the !important syntax, it causes the background of all the elements to be orange.

span {
background: orange !important;

}

So far you’ve seen precedence, a concept that decides how the browser applies styles based on the
importance of the selector. In the next section, I talk about inheritance, which is how the browser applies
certain styles to an element and all that element’s children.

Inheritance
CSS is designed to simplify web document creation, enabling a property to be applied to all elements in
a document. To put it another way, after a property has been applied to a particular element, its children
retain those property values as well. This behavior is called inheritance.

121

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 121

Many properties in CSS are inheritable; some are not. Where it is supported and appropriate, inheritance
makes writing style sheets a snap. For the most part, two types of properties can be inherited: text and
font properties. Figure 4-9 shows an example of inheritance.

Figure 4-9a

The CSS in Figure 4-9a is combined with the markup in Figure 4-9b.

Figure 4-9b

The CSS in Figure 4-9a and the markup in Figure 4-9b result in the output in Figure 4-9c.

In the preceding code, the rule is applied to the <div> element, and the color and text-align proper-
ties are inherited by the <h1> and <p> elements contained within the <div> element. The advantage of
inherited properties is that you don’t have to specify a property again for each nested element. On the
other hand, the border and the padding properties are not inherited, since it is not likely a web
designer would desire those properties to be inherited. Figure 4-10 shows what Figure 4-9 would look
like if the border and padding properties were inherited.

122

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 122

Figure 4-9c

Figure 4-10

123

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 123

In Figure 4-10, you see that some properties, such as border and padding, are not inherited because
inheriting would not be appropriate. Most of the time, you want these to be set only on a selected ele-
ment and not on that selected element’s children elements. I discuss the border and padding properties
in more detail in Chapter 7, “The Box Model.”

Inheritance for each property is outlined in Appendix B.

Try It Out Working with Inheritance
Example 4-3. Follow these steps to experiment with inheritance.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Inheritance</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_4-3.css’ />

</head>
<body>

<p>
In CSS, some properties are inherited, such as the color, font,
and text properties. Other properties, such as border, margin,
and padding, are not inherited, since it wouldn’t be
practical.

</p>
</body>

</html>

2. Save the preceding document as Example_4-3.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;
color: darkslateblue;
border: 5px dashed darkslateblue;
margin: 10px;
padding: 10px;
text-align: center;

}

4. Save the preceding style sheet as Example_4-3.css. Example 4-3 results in the output shown
in Figure 4-11.

124

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 124

Figure 4-11

How It Works
In Example 4-3, you see an example of inheritance. In the style sheet, the properties font, color, and
text-align are inherited by the <p> element, while the border, margin, and padding properties are
not inherited.

body {
font: 14px sans-serif;
color: darkslateblue;
border: 5px dashed darkslateblue;
margin: 10px;
padding: 10px;
text-align: center;

}

Summary
Inheritance and the cascade are fundamental to CSS. Inheritance makes controlling the effects of prop-
erty values a breeze, because each property is defined either to inherit or not, as is appropriate to its pur-
pose. The cascade provides some rules for precedence to determine which styles win when multiple
style sheets and rules containing the same declarations come into play. Precedence is determined by a
simple formula that calculates which selector wins. In this chapter you learned the following:

❑ Some properties are inherited, which reduces redundancy in the document by eliminating the
need for declarations to be written multiple times.

❑ Some properties are not inherited, which also reduces redundancy by preventing the effects of
declarations from being applied to the element’s descendants.

❑ The cascade provides both some ground rules and a simple formula to determine the prece-
dence of style sheets and selectors.

125

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 125

Now that you know the background of CSS, Chapter 5 introduces you to CSS’s text manipulation
properties.

Exercises
1. In the following style sheet, determine the specificity of each selector.

ul#hmenu ul.menu {
margin: 0;
padding: 0;
list-style: none;
position: absolute;
top: 35px;
left: 0;
width: 100%;
visibility: hidden;
text-align: left;
background: rgb(242, 242, 242);
border: 1px solid rgb(178, 178, 178);
border-right: 1px solid rgb(128, 128, 128);
border-bottom: 1px solid rgb(128, 128, 128);

}
ul#hmenu li li:hover {

background: rgb(200, 200, 200);
}
ul#hmenu ul.menu ul.menu {

top: -1px;
left: 100%;

}
ul#hmenu li#menu-204 ul.menu ul.menu,
ul#hmenu li#menu-848 ul.menu ul.menu ul.menu ul.menu,
ul#hmenu li#menu-990 ul.menu ul.menu {

left: auto;
right: 100%;

}
ul#hmenu > li.menu.eas + li.menu.eas ul.menu ul.menu ul.menu ul.menu {

right: auto;
left: 100%;

}
li.menu,
li.menu-highlight {

position: relative;
}
ul.menu li a {

text-decoration: none;
color: black;
font-size: 12px;
display: block;
width: 100%;
height: 100%;

}
ul.menu li a span {

display: block;

126

Part I: The Basics

08_096970 ch04.qxp 4/20/07 11:29 PM Page 126

padding: 3px 10px;
}
ul.menu span.arrow {

position: absolute;
top: 2px;
right: 10px;
width: 11px;
height: 11px;
background: url(‘/images/arrow.gif’) no-repeat;

}

2. According to the following style sheet, what color is the link?

a.context:link {
color: blue;

}
a.context:visited {

color: purple;
}
a.context:hover {

color: green;
}
a.context:active {

color: red;
}

3. According to the following style sheet, what color is the link?

a.context:visited {
color: purple;

}
a.context:hover {

color: green;
}
a.context:active {

color: red;
}
a.context:link {

color: blue;
}

4. According to the following style sheet, what color is the link?

a.context:link {
color: blue;

}
a.context:visited {

color: purple !important;
}
a.context:hover {

color: green;
}
a.context:active {

color: red;
}

127

Chapter 4: The Cascade and Inheritance

08_096970 ch04.qxp 4/20/07 11:29 PM Page 127

08_096970 ch04.qxp 4/20/07 11:29 PM Page 128

Part II

Properties

Chapter 5: Text Manipulation

Chapter 6: Fonts

Chapter 7: The Box Model

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

Chapter 9: List Properties

Chapter 10: Backgrounds

Chapter 11: Positioning

Chapter 12: Tables

09_096970 pt02.qxp 4/20/07 11:30 PM Page 129

09_096970 pt02.qxp 4/20/07 11:30 PM Page 130

5
Text Manipulation

In Chapter 4, you learned how certain properties in CSS are inherited and how the cascade deter-
mines which style rules are the most important. In this and subsequent chapters, I begin an in-
depth look at the individual properties of CSS and how these come together to style a document.

In this chapter, I look specifically at properties that manipulate the presentation of text. You can
manipulate text in a variety of ways, from the length of space between letters in words of text, to
the length of space between the words of a sentence, to the spacing between sentences in a para-
graph, to how much space is used to indent the text contained in a paragraph.

I cover the various CSS text-manipulation properties:

❑ The letter-spacing property and how it is used to add or subtract space between the
letters that make up a word

❑ The word-spacing property and how it is used to add or subtract space between the
words of a sentence

❑ The text-indent property and how it is used to indent the text of a paragraph

❑ The text-align property and how it is used to align the text of a document

❑ The text-decoration property and how it is used to underline, overline, and
strikethrough text

❑ The text-transform property and how it is used to capitalize text or convert text to
uppercase or lowercase letters

❑ The white-space property and how it is used to control the flow and formatting of text

The text manipulation properties of CSS allow you to design the layout of a document in much the
same way as you use a word processing application.

10_096970 ch05.qxp 4/20/07 11:30 PM Page 131

The letter-spacing Property
The letter-spacing property, as I have demonstrated briefly in previous chapters, controls the
amount of space between the letters. The following table shows its allowable values.

Property Value

letter-spacing normal | <length>

Initial value: normal

The letter-spacing property is a simple property that accepts a length as its value. A <length> value
is any length value supported by CSS, as I discussed in Chapter 2. A normal value is the default value,
and is determined by the font that’s being used. This value is equal to a zero length value.

Figure 5-1a shows an example of the letter-spacing property.

Figure 5-1a

In Figure 5-1a, you see how the letter-spacing property would be specified; Figure 5-1b shows the
corresponding markup.

Figure 5-1c shows the rendered output of the CSS in Figure 5-1a and the markup in Figure 5-1b in the
Safari browser.

The letter-spacing property may have either a positive or negative value. When given a negative
value, letters are rendered closer together. Figure 5-2a shows an example of this.

132

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 132

Figure 5-1b

Figure 5-1c

Figure 5-2a

133

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 133

The CSS in Figure 5-2a is combined with the markup in Figure 5-2b.

Figure 5-2b

Figure 5-2c shows the rendered output of Figures 5-2a and 5-2b.

Figure 5-2c

As you can see in Figure 5-2c, the letters of the paragraph are condensed together because the value of
the letter-spacing property is a negative value.

You can use the letter-spacing property to add or subtract space between letters. In the following
example, you try the letter-spacing property out for yourself.

134

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 134

Try It Out The letter-spacing Property
Example 5-1. To see the letter-spacing property in action, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>letter-spacing</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_5-1.css’ />

</head>
<body>

<h4>Letter Spacing</h4>
<p>

The letter-spacing property can take either a
positive or negative length value. The higher the value, the
farther apart the letters; the lower the
value, the closer together the letters.

</p>
</body>

</html>

2. Save the preceding markup as Example_5-1.html.

3. Enter the following CSS:

body {
font: 14px sans-serif;

}
h4 {

border-bottom: 1px solid green;
margin-bottom: 3px;

}
p {

margin: 0;
}
.code {

font-family: monospace;
}
.higher,
.lower {

letter-spacing: 5px;
background: lavender;
color: midnightblue;

}
.lower {

letter-spacing: -1px;
}

135

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 135

4. Save the preceding CSS as Example_5-1.css. The preceding example results in the rendered
output in Figure 5-3.

Figure 5-3

How It Works
In Example 5-1, you typed in an example of the letter-spacing property, so that you could see it
work in a browser for yourself. You applied two relevant style sheet rules. The first rule refers to ele-
ments with class names higher and lower. Both elements initially receive a letter-spacing value of
five pixels, a lavender background, and midnightblue text. The letter-spacing value of five pixels
causes the letters to be spaced farther apart.

.higher,

.lower {
letter-spacing: 5px;
background: lavender;
color: midnightblue;

}

In a subsequent rule, you apply another letter-spacing value for the element with class name lower;
it receives a value of negative one pixel. This causes the letters in that element to be spaced close
together. This new rule overrides the letter-spacing style set in the previous rule for elements with
class name lower.

.lower {
letter-spacing: -1px;

}f

In the next section, I present a property similar to the letter-spacing property, the word-spacing
property.

136

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 136

The word-spacing Property
The word-spacing property, in essence, functions identically to the letter-spacing property.
However, (of course) instead of controlling the space between letters, the word-spacing property con-
trols the space between words. The following table shows its allowable values.

Property Value

word-spacing normal | <length>

Initial value: normal

To demonstrate the effect of the word-spacing property, consider the style sheet rule in Figure 5-4a.

Figure 5-4a

The style sheet in Figure 5-4a is coupled with the markup in Figure 5-4b.

Figure 5-4b

Figure 5-4a and Figure 5-4b together result in the output shown in Figure 5-4c; 25 pixels of space now
separate each word of the <h4> element.

137

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 137

Figure 5-4c

Additionally, like the letter-spacing property, the word-spacing property can contain a negative
value. If given a negative value, the effects are less space between each word. This is demonstrated in
CSS in Figure 5-5a.

Figure 5-5a

Again, the CSS in Figure 5-5a is combined with the markup in Figure 5-5b.

Figure 5-5b
138

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 138

The CSS in Figure 5-5a and the markup in Figure 5-5b result in the output depicted in Figure 5-5c.

Figure 5-5c

As you did with the letter-spacing property in Example 5-1, in the following Try It Out you experi-
ment with the word-spacing property for yourself.

Try It Out The word-spacing Property
Example 5-2. To see the word-spacing property in action for yourself, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>word-spacing</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_5-2.css’ />

</head>
<body>

<h4>Word Spacing</h4>
<p>

The word-spacing property can take either a
positive or negative length value. The higher the value, the
farther apart the words; the lower the
value, the closer together the words.

</p>
</body>

</html>

2. Save the preceding markup as Example_5-2.html.

139

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 139

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}
h4 {

border-bottom: 1px solid pink;
margin-bottom: 3px;

}
p {

margin: 0;
}
.code {

font-family: monospace;
}
.higher,
.lower {

word-spacing: 15px;
background: mistyrose;
color: crimson;

}
.lower {

word-spacing: -5px;
}

4. Save the preceding CSS as Example_5-2.css. The preceding markup and CSS results in the
output shown in Figure 5-6.

Figure 5-6

How It Works
In Example 5-2, you experimented with the word-spacing property. Example 5-2 is nearly identical to
Example 5-1, the only difference being that you are modifying the space between words, rather than the
space between letters. Following is a recap of the relevant rules.

140

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 140

The first rule you applied to elements with class names higher and lower, just as you did in Example 5-1.
This time you applied the word-spacing property with a value of 15 pixels, meaning that 15 pixels of
space separate the words contained within the element. This is coupled with a mistyrose background,
and crimson text.

.higher,

.lower {
word-spacing: 15px;
background: mistyrose;
color: crimson;

}

Then, in a subsequent rule you applied a different word-spacing value to elements with a lower class
name. This time space is subtracted from between words, five pixels in fact.

.lower {
word-spacing: -5px;

}

Now that you have seen how to control the space between letters and words, the next section describes
how to indent text within a paragraph.

Indenting Paragraph Text Using text-indent
Indenting text in CSS is done using the text-indent property. The text-indent property identifies
the first line of text of a paragraph and inserts the specified length before the first line of text, thus
indenting the text. The following table shows this property’s allowed values.

Property Value

text-indent <length> | <percentage>

Initial value: 0

The text-indent property accepts either a normal length value or a percentage value. Figure 5-7a
demonstrates the text-indent property with a normal length value in pixels applied.

Figure 5-7a

141

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 141

Figure 5-7a is combined with the markup in Figure 5-7b.

Figure 5-7b

Figure 5-7c shows the result of the preceding rule and markup.

Figure 5-7c

Figure 5-7 demonstrates the most common use of the text-indent property, with a normal length
value, used to indent the text of the target element. The text-indent property can also accept a per-
centage width. This is demonstrated in the rule in Figure 5-8a.

Figure 5-8a is combined with the markup from Figure 5-7b, to get the output you see in Figure 5-8b.

The percentage width assigned by the text-indent property depends on the width of the <p> ele-
ment’s parent element. In this example, the parent element is the <body> element. By default, the
<body> element’s width expands horizontally, filling the entire browser window.

142

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 142

Figure 5-8a

Figure 5-8b

For instance, if the <p> element were to be assigned a fixed width of 200 pixels, since the indentation for
the <p> element is based on the width of the <body> element, which is more than 200 pixels, let’s say for
this example it’s 800 pixels wide. Given a 10% indention, the indention of the first line of the <p> ele-
ment would be 80 pixels, rather than 20 pixels, since 10% of 800 is 80.

Like the letter-spacing and word-spacing properties, the text-indent property can also accept a
negative value. Figure 5-9a shows an example of the text-indent property with a negative value.

Figure 5-9a

The CSS rule in Figure 5-9a is combined with the markup from Figure 5-7b. Safari (or your browser of
choice) gives you the output in Figure 5-9b.

Figure 5-9b shows that the text is shifted the other way.

143

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 143

Figure 5-9b

Now that you’ve seen some examples of the text-indent property, in Example 5-3, you experiment
with it for yourself.

Try It Out Applying the text-indent Property
Example 5-3. To experiment with the text-indent property, follow these steps.

1. Enter the following markup into your editor. (Don’t want to type out the “lipsum” dummy text?
Visit http://www.lipsum.com/.)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>text-indent</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_5-3.css’ />

</head>
<body>

<h4>Indenting Text With CSS</h4>
<p>

Text can be indented by a positive length value, as is demonstrated
by the following paragraph.

</p>
<p class=’indent-example’ id=’indent’>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>
<p>

Text can be indented via a percentage value, as is demonstrated

144

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 144

by the following paragraph.
</p>
<p class=’indent-example’ id=’indent-percentage’>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>
<p>

Finally, text can be reverse indented by providing a negative
length value, which is demonstrated by the following paragraph.

</p>
<p class=’indent-example’ id=’indent-reverse’>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>
</body>

</html>

2. Save the preceding markup as Example_5-3.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}
p {

padding: 5px 25px;
}
p#indent {

text-indent: 25px;
}
p#indent-percentage {

text-indent: 10%;
}
p#indent-reverse {

text-indent: -25px;
}
p.indent-example {

background: lightyellow;
border: 1px solid darkkhaki;

}

4. Save the preceding CSS as Example_5-3.css. The CSS and markup of Example 5-3 result in
the output you see in Figure 5-10.

145

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 145

Figure 5-10

How It Works
In Example 5-3 you tried three different methods of indenting text via CSS’s text-indent property.
Following is a review of the relevant styles you applied.

In the first rule in which you applied the text-indent property, you applied a length value of 25 pixels.

p#indent {
text-indent: 25px;

}

In the second rule you indented the text 10% of the parent element of the <p> element with id name indent-
percentage, which would be the <body> element. So the 10% value is 10% of the width of the <body> element.

p#indent-percentage {
text-indent: 10%;

}

146

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 146

In the third rule, you reverse indented the <p> element with id name indent-reverse, which resulted in the
first line being indented 25 pixels to the left.

p#indent-reverse {
text-indent: -25px;

}

In the next section, I discuss the text-align property.

Aligning Text with the text-align Property
The purpose of the text-align property is simple: It aligns text! The following table outlines each of
the possible values for the text-align property.

Property Value

text-align left | right | center | justify

Initial value: left

The text-align property should be fairly straightforward and obvious in its purpose. Figures 5-11a, 5-11b,
and 5-11c demonstrate what the different keyword values of the text-align property do.

Figure 5-11a

147

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 147

The CSS in Figure 5-11a is combined with the markup in Figure 5-11b.

Figure 5-11b

The CSS and markup from Figures 5-11a and 5-11b result in the output observed in Figure 5-11c.

In Figure 5-11c, there are no surprises; left aligns text left, right, to the right, and center to the mid-
dle. You may not, however, be familiar with the justify keyword. In Figure 5-11c, you can see that the
text is lined up on the left and on the right; spacing between words on the line is adjusted automatically
so that both the beginning and the end of each line are lined up. To put this in perspective, Figure 5-12
shows the same code, but with the text-align: justify; declaration removed.

148

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 148

Figure 5-11c

Figure 5-12

In Figure 5-12 you can see that the ends of each line are no longer lined up.

149

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 149

The text-decoration Property
The text-decoration property applies underlining, overlining, and strikethrough to text. The follow-
ing table outlines the text-decoration property and the values it allows.

Property Value

text-decoration none | [underline || overline || line-through || blink

Initial value: none

Safari and IE do not support the blink keyword.

Because this property is a little more complicated than those covered previously, a simple explanation of
its use is warranted.

To demonstrate the various styles available using this property, consider the example in Figure 5-13a.

The CSS in Figure 5-13a is combined with the markup in Figure 5-13b.

Figure 5-13c shows the various effects provided by the text-decoration property as specified by the
preceding code.

However, this is not all that is possible with the text-decoration property. This notation

[underline || overline || line-through || blink]

means that the text-decoration property can accept one or more of these values. To specify more than
one value, each value is separated by a single space. Take for example the code in Figure 5-14a.

Figure 5-13a

150

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 150

Figure 5-13b

Figure 5-13c

Figure 5-14a

151

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 151

The CSS in Figure 5-14a is combined with the markup in Figure 5-14b.

Figure 5-14b

The code in Figures 5-14a and 5-14b result in the output shown in Figure 5-14c.

Figure 5-14c

The notation for the text-decoration property indicates that it can accept up to four values. Those
values can be any combination of underline, overline, line-through, and blink. The values none
or inherit can be used instead of any of those four values; so if either the value none or inherit is
used, only that lone value may appear.

152

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 152

Try It Out Applying the text-decoration Property
Example 5-4. To experiment with the text-decoration property, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>text-decoration</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_5-4.css’ />

</head>
<body>

<h4>CSS’s text-decoration Property</h4>
<p>

CSS supports four text-decoration styles, officially. Those are
underline,
overline,
line-through,
and blink. IE and Safari do not
support the extremely useless blink
keyword.

</p>
<p>

It is also possible to combine text-decoration styles. You can
for instance underline and overline
text, underline and
line-through text, or overline
and line-through text, though it is unlikely you’d ever want to.

</p>
</body>

</html>

2. Save the preceding markup as Example_5-4.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}
p {

padding: 5px 25px;
background: lightblue;
border: 1px solid black;

}
span.underline {

text-decoration: underline;
}
span.overline {

text-decoration: overline;
}
span.line-through {

text-decoration: line-through;
}
span.blink {

153

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 153

text-decoration: blink;
}
span.underover {

text-decoration: underline overline;
}
span.underthrough {

text-decoration: underline line-through;
}
span.overthrough {

text-decoration: overline line-through;
}
span.example {

background: mistyrose;
}

4. Save the preceding CSS as Example_5-4.css. The aforementioned CSS and markup result in
the output in Figure 5-15.

Figure 5-15

How It Works
In Example 5-4 you applied various styles of the text-decoration property. The first four rules
are pretty straightforward; you created a separate rule for each of the four individual styles of the
text-decoration property, underline, overline, line-through, and blink.

span.underline {
text-decoration: underline;

}
span.overline {

text-decoration: overline;
}
span.line-through {

text-decoration: line-through;
}
span.blink {

text-decoration: blink;
}

154

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 154

In the next three style sheet rules, you applied some combinations of styles. The text-decoration
property allows you to specify more than one style at the same time, if you have need of doing that.
Each keyword value must be separated by a single space.

span.underover {
text-decoration: underline overline;

}
span.underthrough {

text-decoration: underline line-through;
}
span.overthrough {

text-decoration: overline line-through;
}

In the next section, I discuss the text-transform property, which allows you to control the case of text
via CSS.

The text-transform Property
The text-transform property exists purely to manipulate the case of text, for instance, to capitalize
or make all characters uppercase or all characters lowercase. The following table shows the text-
transform property and its possible values.

Property Value

text-transform capitalize | uppercase | lowercase | none

Initial value: none

Consider the CSS in Figure 5-16a.

Figure 5-16a

This CSS is combined with the markup in Figure 5-16b.

155

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 155

Figure 5-16b

Figure 5-16c shows that the text-transform property overrides the case of the text, no matter how it
appears in the source code.

Figure 5-16c

In the first paragraph, even though in the source the sentence appears in all lowercase, if you apply the
text-transform: capitalize; declaration, each word of the sentence is capitalized. Likewise, in the
next paragraph, even though the source code contains all lowercase letters, with the addition of the
text-transform: uppercase; declaration, each word of the sentence appears in all uppercase letters
in the rendered output. In the last paragraph, each word appears in uppercase in the markup source
code, but with the addition of the text-transform: lowercase; declaration, each word of the sen-
tence appears in all lowercase in the actual output rendered by the browser.

Now that you’ve seen an example of what the text-transform property does, in the following exam-
ple you try out the text-transform property for yourself.

156

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 156

Try It Out Apply the text-transform Property
Example 5-5. To get a feel for the text-transform property, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>text-transform</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_5-5.css’ />

</head>
<body>

<h4>Manipulating Case With the text-transform Property</h4>
<p>

You can control the case of text using CSS. For instance,
you can make UPPERCASE TEXT
LOWERCASE or lowercase
text uppercase, or you can just
capitalize every word
in a sentence.

</p>
</body>

</html>

2. Save the preceding markup as Example_5-5.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}
p {

padding: 5px 25px;
background: mistyrose;
border: 1px solid orange;

}
span.lower {

text-transform: lowercase;
}
span.upper {

text-transform: uppercase;
}
span.capitalize {

text-transform: capitalize;
}
span.example {

background: pink;
}

4. Save the preceding CSS as Example_5-5.css. The aforementioned CSS and markup result in
the output in Figure 5-17.

157

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 157

Figure 5-17

How It Works
In Example 5-5, you tried out the different methods that CSS provides for manipulating the case of text
in a document. Following are the relevant three rules. In the first rule, you made the uppercase text in
the element with class name lower, lowercase.

span.lower {
text-transform: lowercase;

}

In the second rule, you made the lowercase text in the element with class name upper all
uppercase.

span.upper {
text-transform: uppercase;

}

In the third rule, you capitalized each word of the all-lowercase text in the element with class
name capitalize.

span.capitalize {
text-transform: capitalize;

}

In the next section, I present CSS’s white-space property, which controls whether or not spaces and
line breaks in the source code are recognized, and whether or not text wraps automatically.

The white-space Property
The white-space property allows you to control text formatting in the source code of the web document.
The following table outlines the possible keyword values of the white-space property as of CSS 2.

158

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 158

Property Value

white-space normal | pre | nowrap

Initial value: normal

IE 6 and IE 7 support white-space: pre; only in standards rendering mode. For more information
on rendering modes, see Chapter 7, “The Box Model.”

Figure 5-18a is an example of the white-space: pre; declaration.

I’ve specified a monospace font for clarity. The CSS in Figure 5-18a is combined with the markup in
Figure 5-18b.

Figure 5-18a

Figure 5-18b

159

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 159

The result looks like Figure 5-18c.

Figure 5-18c

In the source code for the output shown in Figure 5-18c, I’ve added spaces before each line and line
breaks. With the white-space: pre; declaration, those spaces and line breaks are preserved in the
browser’s rendered output.

By default, the browser will collapse the extra spaces between words and ignore the line breaks, which is
the behavior of the white-space: normal; declaration. The white-space: pre; declaration preserves
that extra space and keeps the line breaks where they appear in the source code. Under normal circum-
stances, if there is too much text to appear on a single line, the extra text overflows onto the following
line or lines. The white-space: nowrap; declaration prevents that overflow from happening and
forces the text to stay on one line, unless an HTML line break
 element is encountered. That forces
a line break. Figure 5-19a is an example of this.

Figure 5-19a

The CSS in Figure 5-19a is combined with the markup in Figure 5-19b.

Figure 5-19c shows that the text has flowed off the screen to the right because there is more text than can
fit on the screen.

Compare the output in Figures 5-18c and 5-19c to that in Figure 5-20 where no white-space property
is applied. That is, applying the white-space: normal; declaration is the same as applying no white-
space property, because normal is the initial value of the white-space property.

160

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 160

Figure 5-19b

Figure 5-19c

Figure 5-20

161

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 161

Now that you’ve had an overview of what the white-space property is, the following Try It Out gives
you an opportunity to test the white-space property for yourself.

Try It Out Applying the white-space Property
Example 5-6. Follow these steps to see the white-space property in action for yourself.

1. Enter the following markup into your text editor. Again, the dummy text in the example can be
copied from http://www.lipsum.com/.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>white-space</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_5-6.css’ />

</head>
<body>

<h4>Controlling white-space With CSS</h4>
<p>

CSS provides a property for controlling how the white-space
in the source code is handled. When you use the pre keyword
with the white-space property, for example, all the spaces
and line breaks in the source code are preserved, as is
demonstrated by the following paragraph.

</p>
<p id=’pre’ class=’example’>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum nisl tortor, vehicula eu, eleifend a, tincidunt ac,
erat. Ut ut turpis. Nullam urna odio, tempor eget, egestas at,
luctus tristique, felis. Donec eget velit. Vestibulum
scelerisque felis in dolor.

</p>
<p>

You can also prevent text from wrapping automatically. This is
done using the nowrap keyword in conjunction with the white-space
property, as is demonstrated by the following paragraph.

</p>
<p id=’nowrap’ class=’example’>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vestibulum
nisl tortor, vehicula eu, eleifend a, tincidunt ac, erat. Ut ut turpis.
Nullam urna odio, tempor eget, egestas at, luctus tristique, felis.
Donec eget velit. Vestibulum scelerisque felis in dolor.

</p>
</body>

</html>

2. Save the preceding markup as Example_5-6.html.

162

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 162

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}
p {

padding: 5px;
}
p#pre {

white-space: pre;
}
p#nowrap {

white-space: nowrap;
}
p.example {

background: lightyellow;
border: 1px solid darkkhaki;

}

4. Save the preceding CSS as Example_5-6.css. The aforementioned CSS and markup result in
the output in Figure 5-21.

Figure 5-21

163

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 163

How It Works
In Example 5-6 you tried out two keywords of the white-space property. Following is a review of the
two relevant rules. In the first rule, you applied the pre keyword of the white-space property. The pre
keyword causes all spacing and line breaks in the source code to be preserved in the rendered output.

p#pre {
white-space: pre;

}

In the second rule, you applied the nowrap keyword of the white-space property, which prevents the
text of the <p> element with id name nowrap from wrapping.

p#nowrap {
white-space: nowrap;

}

Summary
In this chapter, I discussed a variety of CSS text-manipulation properties, which include the following:

❑ The letter-spacing property, which is used to specify the length of space between letters

❑ The word-spacing property, which is used to specify the length of space between words

❑ The text-indent property, which is used to indent text

❑ The text-align property, which is used to align the text of a document

❑ The text-decoration property, which is used to apply decorative styling to text, such as
underlining, overlining, strikethrough, or blinking text

❑ The text-transform property, which is used to control the case of text regardless of what case
is used in the document’s source code

❑ The white-space property, which is used to control text formatting as it relates to how the text
appears in the document’s source code

Chapter 6 continues along the same vein of text manipulation, with a discussion of the font properties
in CSS.

Exercises
1. If you wanted to reduce the spacing between letters, how would it be done? Provide an example

declaration.

2. How would you produce the output you see in Figure 5-22? Provide the declaration.

164

Part II: Properties

10_096970 ch05.qxp 4/20/07 11:30 PM Page 164

Figure 5-22

3. When indenting text in a paragraph, how is a percentage value calculated?

4. What are the keywords that CSS offers for changing the case of text within an element?

5. If you wanted to preserve line breaks and spacing as formatted in the source code, what would
the CSS declaration be?

6. What browsers do not support the annoying blink keyword?

7. If you wanted to put a line over a section of text, rather than underlining it, what property and
keyword would you use?

165

Chapter 5: Text Manipulation

10_096970 ch05.qxp 4/20/07 11:30 PM Page 165

10_096970 ch05.qxp 4/20/07 11:30 PM Page 166

6
Fonts

Chapter 5 presented a variety of text manipulation properties. This chapter continues the discus-
sion of text manipulation with CSS’s font manipulation properties. CSS includes a variety of prop-
erties that change the face, size, and style of a font. This chapter covers:

❑ The font-family property and how it is used to change the face of a font

❑ The font-style property and how it is used to make a font italic or oblique

❑ The font-variant property, a property similar to the text-transform property pre-
sented in Chapter 5, and how this property is used to create a small-caps effect

❑ The font-weight property and how it is used to increase or decrease how bold or light a
font appears

❑ The font-size property and how it is used to increase or decrease the size of a font

❑ The font property and how it is used as shorthand to specify a number of other font
properties

I begin the discussion of CSS’s font properties with the font-family property.

Specifying Fonts with
the font-family Property

The font-family property is used to specify fonts. The following table outlines the font-family
property and the values that it allows.

Property Value

font-family [[<family-name> | <generic-family>] [, <family-name>| <generic-
family>]*]

Initial value: Varies depending on the browser or user agent.

11_096970 ch06.qxp 4/20/07 11:32 PM Page 167

Figure 6-1a is an example of the basic use of the font-family property.

Figure 6-1a

The rules in Figure 6-1a are combined with the markup in Figure 6-1b.

Figure 6-1b

The CSS and markup in Figures 6-1a and 6-1b result in the output in Figure 6-1c.

Figure 6-1c

168

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 168

The example is pretty straightforward. Times New Roman is applied to the first paragraph with the id
name times-new-roman, and Arial is applied to the second paragraph, with id name arial. There is
one fundamental difference between the two: Times New Roman appears enclosed in double quotes.
The name of the font itself contains white space, and so enclosing the name of the font in quotes pre-
vents the browser from getting confused. The second example, which specifies an Arial font, does not
appear enclosed in quotes because no white space appears in the name of the font.

The notation for the font-family property can accept one or more fonts for its value, which is what is
meant by the repetition of the syntax in the notation and the presence of the asterisk. The asterisk indi-
cates that the syntax may be repeated one or more times, and a comma is used to separate each font
name provided. You can specify two types of fonts. The first is documented as <family-name> in the
preceding table. The <family-name> notation refers to fonts installed on the user’s computer, which
means that the available fonts depend on the user’s operating system and the fonts available to that
operating system. The <generic-family> notation refers to a small subset of predefined fonts that can
be expected to always be available; this is discussed shortly.

Font Families
The available font families that can be specified vary depending on the operating system. Using a
default installation, Windows does not provide the same fonts as Mac OS X, for instance. Furthermore,
the available fonts also vary depending on the programs installed on the user’s computer. For instance,
Microsoft Office installs a number of extra fonts in addition to those that ship with Mac OS X or Windows.
In fact, with the exception of a few fonts, Mac OS X with Microsoft Office installed provides pretty much
the same fonts as installed on Windows. Without Microsoft Office installed, however, many Windows
fonts are not available on the Mac platform.

It is for this reason, the possibility of font inconsistencies, that the font-family property is dynamic.
It can accept more than one font as its value. The browser will use the first font provided that is installed
and available on the end user’s computer. The browser will fall back to the next font in the list in
the event that previous fonts are not available. So subsequent fonts in the list are called fallback fonts.
This capability is provided because it is difficult to foresee which fonts will be available on the user’s
computer.

It is best to test your web page on several different platforms using different browsers on different oper-
ating systems to ensure that your fonts are working as you intend them to. Providing fallback fonts
ensures consistency of fonts. Take for example the rule in Figure 6-2a.

Figure 6-2a

169

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 169

The CSS in Figure 6-2a is combined with the markup in Figure 6-2b.

Figure 6-2b

The CSS and markup in Figure 6-2a and Figure 6-2b produce the results shown in Figure 6-2c.

Figure 6-2c

170

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 170

In the example in Figure 6-2, two fonts are specified as the value of the font-family property. This
allows you to specify a fallback font. In this case, if Californian FB (common to Windows computers) is
not installed on the user’s computer, the browser attempts to display the AppleMyungjo font (common
to Macintosh computers). If neither font is available, the browser uses its default font, which is the same
as the font used when no font is specified and varies depending on the browser. The font-family
allows a potentially unlimited list of fonts to be specified, meaning that you can specify as many fonts as
you’d like to fall back on. It may also be possible that you do not have any of these fonts, since certain
software packages such as Microsoft Office, and Adobe Creative Suite install various fonts along with
the software; fonts available will vary from computer to computer.

The effect of the following code is that the browser goes through the list of comma-separated fonts until
it finds one that it is capable of displaying:

p {
font-family: Arial, Shruti, “Microsoft Sans Serif”, Tahoma, Mangal, Helvetica;

}

CSS provides a couple of generic fonts, serif, sans-serif, monospace, fantasy, and cursive, that you can
always rely on being installed.

Generic Font Families
As I mentioned in the previous section, the available fonts vary from operating system to operating sys-
tem. They can vary even more with individual user’s computer systems because even more fonts can be
installed along with certain programs. The only way to maintain consistency displaying from platform
to platform is to provide either a list of font families (so a fallback font can be called upon if the desired
font is not installed) or to specify a generic font. Generic fonts are a set of basic fonts that are available
regardless of the user’s operating system.

The following table outlines the generic font family names defined in CSS.

Generic Font Resembles

serif Times, Times New Roman

sans-serif Helvetica, Arial

cursive Zapf-Chancery

fantasy Western

monospace Courier, Courier New

Generic fonts are often mapped, by the browser, to other fonts that already exist on the system. For
example, on Windows, IE maps the sans-serif font to Arial and the serif font to Times New Roman. In
fact some browsers provide user-configurable generic fonts. In Firefox, for example, you can set the font
used for the serif, sans-serif, cursive, fantasy, and monospace generic fonts.

The generic font names display fonts similarly in different browsers and operating systems. Figure 6-3
shows generic font output in various browsers, as they appear by default.

171

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 171

Figure 6-3

172

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 172

Figure 6-3 shows how various browsers render generic fonts. From the output shown in those figures,
you can see that generic font rendering is not exactly identical between browsers and platforms. Fonts
that display consistently are serif, sans-serif, and monospace. Because of the wildly varying differences
in rendering of the fantasy and cursive fonts, designers seldom use these two fonts.

In the notation for the font-family property documentation, <generic-family> refers to the possible
specification of a generic font name. Often a generic font is included as a last fallback option, as shown
in the following rule:

p {
font-family: Arial, Shruti, Tahoma, Mangal, Helvetica, sans-serif;

}

The addition of sans-serif to the end of the font list for the font-family property means that as a last
resort, if none of the other fonts specified are installed on the user’s computer, the generic sans-serif font
should be used.

Use the following Try It Out to experiment with the font-family property for yourself.

Try It Out Applying the font-family Property
Example 6-1. Follow these steps to experiment with the font-family property.

1. Write the following markup in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>font-family</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_6-1.css’ />

</head>
<body>

<p>
The font-family property allows you to specify a
font face.
It has the built-in ability of allowing you to
specify fallback fonts,

fonts that are used when your first choice
(or choices) aren’t installed on the end user’s OS

.
Even though, these days, because of the dominance of the
Windows platform,
cross-platform fonting is less of an issue.

</p>
</body>

</html>

2. Save Example_6-1.html.

173

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 173

3. Write the following CSS in your text editor:

body {
font: 14px sans-serif;
line-height: 30px;

}
span {

background: mistyrose;
border: 1px solid pink;

}
span.font1 {

font-family: “Perpetua Titling MT”, serif;
}
span.font2 {

font-family: “Baskerville Old Face”, serif;
}
span.font3 {

font-family: “Lucida Bright”, monospace;
}
span.font4 {

font-family: Herculanum, “Eras Demi ITC”, sans-serif;
}

4. Save the CSS as Example_6-1.css. The results of these modifications are shown in Figure 6-4.

Figure 6-4

174

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 174

How It Works
In Example 6-1, you made use of four examples of the font-family property. Following is a review of
each of the four relevant rules.

The first example of the font-family property you used was applied to the element with class
name font1. It is given the Perpetua Titling MT font face, which is enclosed in quotations because the
font name contains spaces. As you can see in the screenshot of Safari and IE 6 in Figure 6-4, this font
works on both Mac and Windows platforms.

span.font1 {
font-family: “Perpetua Titling MT”, serif;

}

In the second example, you specify the Baskerville Old Face font, which is again present on both Mac OS X
and Windows.

span.font2 {
font-family: “Baskerville Old Face”, serif;

}

In the third example, you specify the Lucida Bright font, and like the previous two, this font is present on
both Mac OS X and Windows. The generic font, monospace, is specified as a fallback font, just in case
Lucida Bright is not installed on the end user’s OS.

span.font3 {
font-family: “Lucida Bright”, monospace;

}

Finally, in the last example you encounter a font that is not shared between Mac and Windows,
Herculanum, which is installed on Mac OS X. On Windows, the browser falls back to Eras Demi ITC, and
if neither of those fonts are present, the browser falls back to the generic sans-serif font.

span.font4 {
font-family: Herculanum, “Eras Demi ITC”, sans-serif;

}

In the next section, I discuss how to make text italic or oblique with the font-style property.

The font-style Property
The font-style property is used to switch between styles provided by a particular font. Those styles
are italic or oblique, and they are a part of the font itself. The following table outlines the possible values
for the font-style property.

175

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 175

Property Value

font-style normal | italic | oblique

Initial value: normal

The italic and oblique values are, with most fonts, indistinguishable in how they render. Consider the
example in Figure 6-5a.

Figure 6-5a

Combine the rules in Figure 6-5a with the markup in Figure 6-5b.

Figure 6-5b

176

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 176

Figure 6-5c shows that the oblique and italic values are identical.

Figure 6-5c

This test of the oblique and italic values shows that if the font has an italic style, that italic style is used
when either the italic or oblique values are specified, there is no difference between the two values. This
behavior is identical when viewed in IE, Opera, or Firefox. In my experience, because it is identical to the
italic style, and the browser will automatically select the italic style if a font has no oblique style and vice
versa, I have never seen the oblique style actually used in real-world sites.

However, not all fonts have an italic style or an oblique style. Consider the example in Figure 6-6, which
demonstrates what happens when a font has neither an italic nor an oblique style.

Figure 6-6a

Combine the style sheet in Figure 6-6a with the markup in Figure 6-6b.

177

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 177

Figure 6-6b

Figure 6-6c shows Monotype Corsiva, a font that has neither an italic style nor an oblique style — it has
only one style.

Figure 6-6c

178

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 178

In Figure 6-6c, you can see that Safari and IE treat fonts that do not have an italic or an oblique style dif-
ferently. Safari falls back on the default font, rather than rendering the font. IE just ignores the italic and
oblique styles and goes ahead and renders the font.

In the following Try It Out you experiment with the font-style property.

Try It Out Applying the font-style Property
Example 6-2. Follow these steps to try out the font-style property.

1. Write the following markup in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>font-style</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_6-2.css’ />

</head>
<body>

<p>
When it comes to the font-style property,
oblique and
italic are interchangeable.

</p>
<p class=’naught’>

Some fonts have neither an oblique nor an italic style.
Safari differs from IE, Firefox, and Opera on what to do
when one of these is encountered.

</p>
</body>

</html>

2. Save the preceding markup as Example_6-2.html.

3. Write the following CSS in your text editor:

body {
font: 14px sans-serif;
line-height: 30px;

}
span {

background: yellow;
border: 1px solid gold;

}
span.oblique {

font-style: oblique;
}
span.italic {

font-style: italic;
}
p.naught {

179

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 179

font-family: “Monotype Corsiva”;
font-style: italic;

}

4. Save the preceding CSS as Example_6-2.css. The example results in the output in Figure 6-7.

Figure 6-7

180

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 180

How It Works
In Example 6-2 you experimented a bit with the font-style property. You found that browsers use the
italic and oblique style interchangeably, as evidenced by the following two rules.

First you applied the oblique font style to the element with class name oblique.

span.oblique {
font-style: oblique;

}

Then you applied the italic font-style to the element with class name italic. In Figure 6-7
you can see that the rendered output of the italic and the oblique style are indistinguishable.

span.italic {
font-style: italic;

}

Finally, in the last example you specified a font with neither an oblique nor an italic style, Monotype
Corsiva. In Figure 6-7, you can see that Safari differs from IE, Firefox, and Opera in what it does when a
font with neither an italic nor an oblique style is set to either italic or oblique. Safari ignores the
font altogether, while IE, Firefox, and Opera just ignore the italic or oblique style.

p.naught {
font-family: “Monotype Corsiva”;
font-style: italic;

}

In the next section, I introduce the font-variant property.

The font-variant Property
The font-variant property provides an effect that is only slightly different from that of the
text-transform: uppercase; declaration presented in Chapter 5. The following table outlines the
font-variant property and its possible values.

Property Value

font-variant normal | small-caps

Initial value: normal

The font-variant: small-caps; declaration causes letters to appear in uppercase but scaled slightly
smaller than capitalized letters. Consider the example in Figure 6-8a.

181

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 181

Figure 6-8a

Combine the style sheet in Figure 6-8a with the markup in Figure 6-8b.

Figure 6-8b

182

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 182

The result is shown in Figure 6-8c.

Figure 6-8c

Figure 6-8c shows that when compared side by side with the text-transform: uppercase; declara-
tion, the effect of the font-variant: small-caps; declaration is obvious. The capitalized letter main-
tains its case and size, but all lowercase letters are displayed as capital letters scaled slightly smaller than
any real capital letters appearing in the markup’s source code.

The next section continues the discussion of font manipulation properties with the font-weight property.

The font-weight Property
The font-weight property provides the functionality to specify how bold a font is. The following table
outlines the font-weight property and the values that it allows.

Property Value

font-weight normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 |
700 | 800 | 900

Initial value: normal

As you can see in the preceding table, the font-weight property has several values. Despite all of these
different values being available for the font-weight property, in real-world web design, a font is either
bold or it isn’t. That is to say, in real-world web design, the only two values that matter in the preceding
table are the normal and bold values.

In the preceding table, you can see that CSS allows for up to nine different variations of bold, from 100,
being very light, to 900, being very bold. The reasoning behind there being several possible values for
the font-weight property is in professional typography, designers are likely to have access to fonts
with nine different variations of bold. However, these high-end professional fonts aren’t available by
default on any operating system, and in order to make use of the 100 through 900 values, you’d need to

183

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 183

purchase a professional font package. Purchase of a font package that contains nine different variations
of bold can be quite expensive. The average price tag for a font package (one single font) with this many
variations is on average about $300.

Setting aside the values of the font-weight property that you’re extremely unlikely to ever have need
of, there are two uses for the font-weight property: to make text bold, or to make bold text normal.
This is demonstrated in Figure 6-9a.

Figure 6-9a

The CSS in Figure 6-9a is combined with the markup in Figure 6-9b.

Figure 6-9b

The CSS and markup in Figure 6-9a and Figure 6-9b result in the output in Figure 6-9c.

Figure 6-9c

184

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 184

185

Chapter 6: Fonts

In Figure 6-9a, you see two elements in the body of the document, an <h4> element and a <p> element.
The <h4> element is formatted bold by default. To take away the bold formatting, you simply include
the font-weight: normal; declaration. The text within <p> elements is not bold by default. To make
that text bold, you use the font-weight: bold; declaration.

Now that you have seen how to make font bold, or not, depending on the element, the next section
describes how to use the font-size property.

The font-size Property
The font-size property is, of course, used to control the size of fonts. The following table outlines the
font-size property and its possible values.

Property Value

font-size <absolute-size> | <relative-size> | <length> | <percentage>

Initial value: medium

The bad news, as I mentioned in Chapter 2 in the discussion of CSS length units, is the number of
caveats and fallbacks attached to each measurement. Some are better suited for screen and some are bet-
ter suited for print, and not all length units are interpreted consistently on different browsers. The same
is true of the keyword values for the font-size property that I discuss in the following sections.

Absolute Font Sizes
The <absolute-size> value notation of the font-size property refers to one of seven keyword val-
ues. Absolute values for the font-size property are defined using keywords that range from xx-large
to xx-small. The following table outlines the absolute values and their relation to HTML heading sizes
as of CSS 2.0.

Absolute
Keyword xx-small x-small small medium large x-large xx-large

HTML n/a <h6> <h5> <h4> <h3> <h2> <h1>
Heading

These keywords specify the font size based on a scaling factor of 1.2. Scaling factor is the ratio between
two shapes. The scaling factor is determined by multiplying the font size by 1.2 to determine the next
font size relative to the previous one. For instance, if a font size of 16 pixels is assumed for the medium
keyword value, the large keyword would be approximately 20 pixels, rounding up from 19.2 because
16 multiplied by 1.2 equals 19.2.

11_096970 ch06.qxp 4/20/07 11:32 PM Page 185

These keywords exist for sizing fonts relative to the browser user’s font-size preferences. The browser
precalculates the value of each keyword depending on those preferences. The name absolute is somewhat
misleading because each keyword is relative to the user’s font-size preferences. The actual length unit
size of each keyword varies depending on a number of factors, such as:

❑ The browser’s default font size

❑ The user’s font size preferences

❑ The font family being used

Despite all of these variables, this is one place where the three browsers, IE, Firefox, Safari, and Opera,
seem to be consistent.

Figure 6-10 shows each absolute font size in relation to the default HTML heading size and a size speci-
fied in points.

Figure 6-10

Although this association between font size keywords and length units works for the Rockwell font I
used in Figure 6-10, the point sizes depicted are approximations and might not be the same point unit
values when another font is used. If you increase or decrease the size of the text using the zoom feature
of the browser, you’d notice that the point sizes change in response to the absolute keyword values if
you are using IE 7, Safari, Opera, or Firefox. However, IE 6 ignores the user’s adjustments to font size
preferences on font sizes specified in points (or any other absolute length unit, like inches or centime-
ters). Therefore, the point sizes do not change with the size of the absolute keywords when adjustments
to the user’s font size preferences are made. You can make adjustments in the size of the font in Internet
Explorer from the View ➪ Text Size menu. In IE 7, Windows Opera, and Windows Firefox, changes to
font size can be made by pressing Ctrl-+ (The control key and the plus sign key) or Ctrl-– (The control
key and the minus sign key), or from the View ➪ Text Zoom menu. Safari, Mac Opera, and Mac Firefox
use the shortcut, Ô-+ (Command, plus sign key), or Ô-– (Command, minus key).

Relative font-size keywords, covered in the following section, are closely associated with the absolute
font size keywords.

186

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 186

Relative Font Sizes
The <relative-size> notation of the font-size property refers to two values: larger and smaller.
When either of these two values is used, the font size is determined by the values appearing in the
table for absolute size keywords discussed in the previous section. Take, for instance, the example in
Figure 6-11a.

Figure 6-11a

Combine the CSS in Figure 6-11a with the markup in Figure 6-11b.

Figure 6-11b

187

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 187

The results are shown in Figure 6-11c.

Figure 6-11c

Figure 6-11 demonstrates how the next value in the absolute font-size keyword table is chosen. Because
the font for the <body> element is made medium in size with the font-size: medium; declaration,
when font-size: larger; is applied to the <p> element, the browser chooses the next larger value in
the absolute keyword table and applies a font size that is the same as would be generated by the font-
size: large; declaration. If the value is specified with a length unit — say, for instance, as pixels — the
browser simply applies a 1.2 scaling factor to that size to get the larger size.

Figure 6-12 shows how a font size specified as 16 pixels gets increasingly larger when font-size:
larger; is applied to descendant elements.

Figure 6-12

In contrast to the font-size: larger; declaration, Figure 6-13 shows what happens when the font-
size: smaller; declaration is used instead.

188

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 188

Figure 6-13

The font-size: smaller; declaration performs the same scaling factor changes that the font-size:
larger; declaration does, but does them in reverse.

Percentage Font Sizes
Percentage font sizes work much like the em units discussed in Chapter 2. Consider the example in
Figure 6-14a.

Figure 6-14a

Combine the CSS in Figure 6-14a with the markup in Figure 6-14b.

The result is shown in Figure 6-14c.

Figure 6-14c shows that percentage values are based on the element’s ancestry. The font size for the <p>
element is the default font size, which is medium or typically 16 pixels. The font size of the first
element is made 50% larger than the font size of its parent element, the <p> element. Assuming the
default font size is 16 pixels, that makes the font size of the first element 24 pixels. Then, the
nested, child element is made 25% bigger than the font size of its parent element, which
comes to 30 pixels.

189

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 189

Figure 6-14b

Figure 6-14c

A percentage font size measurement might also be used to decrease the size of a font. Take, for instance,
the CSS in Figure 6-15a.

Figure 6-15a

190

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 190

The CSS in Figure 6-15a is combined with the markup in Figure 6-15b.

Figure 6-15b

The result is shown in Figure 6-15c.

Figure 6-15c

As you saw in Figure 6-14c, Figure 6-15c shows how percentage fonts can be used to make a font
smaller. Again assuming the default font size is 16 pixels, the child element is made 25% smaller
than the font of the <p> element, which comes to 12 pixels. Then the nested element is made
25% smaller than its parent element, which comes to 9 pixels.

Now that you’ve had an overview of how the font-size property works, you can try out the font-
size property firsthand.

191

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 191

Try It Out Applying a Font Size
Example 6-3. Follow these steps to try out the font-size property.

1. In your text editor, type the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>font-size</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_6-3.css’ />

</head>
<body>

<p>
The font-size property supports a variety of methods for
specifying a font size. For example, there
are seven different absolute size keywords, which set the
font size relative to the user’s font size preference.

</p>

<li style=’font-size: xx-small;’>xx-small
<li style=’font-size: x-small;’>x-small
<li style=’font-size: small;’>small
<li style=’font-size: medium;’>medium
<li style=’font-size: large;’>large
<li style=’font-size: x-large;’>x-large
<li style=’font-size: xx-large;’>xx-large

<p>

You can also make fonts
larger or
smaller by way
of the larger or
smaller keywords.

</p>
<p>

You can make fonts
50% larger
or 25% smaller by way
of percentages.

</p>
<p>

You can even make a font
50% larger
or 25% smaller by way
of em units.

</p>
</body>

</html>

2. Save the markup as Example_6-3.html.

3. In a new document in your text editor, write the following CSS:

192

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 192

body {
font: 16px sans-serif;

}
span {

background: mistyrose;
}

4. Save the preceding CSS as Example_6-3.css. The results of these modifications can be seen in
Figure 6-16.

Figure 6-16

How It Works
In Example 6-3, you tried a variety of different methods of setting a font size. You began by typing out
all seven absolute font sizes, from xx-small to xx-large.

Next you experimented with three different ways of adjusting a font size relative to the parent element
or browser default font size. You began with the larger and smaller keywords. The larger keyword
makes the font size 1.2 times larger, and the smaller keyword makes the font size 1.2 times smaller.

<p>
You can also make fonts
larger or
smaller by way
of the larger or
smaller keywords.

</p>

193

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 193

Next, you experimented with percentage font size. A percentage value larger than 100 results in a larger
font size, while a percentage value under 100 results in a smaller font size.

<p>
You can make fonts
50% larger
or 25% smaller by way
of percentages.

</p>

The em unit is pretty much identical to the percentage font size, except you can use the em unit on any
element, not just font sizes (such as defining the width of a <div>; more on this in Chapter 7). You get
identical results when using em units as you did with the percentage size.

<p>
You can even make a font
50% larger
or 25% smaller by way
of em units.

</p>

The next section examines a special shorthand property used to specify several font properties in one.

The font Shorthand Property
The font property is a shorthand property that allows you to write several font-related properties in a
single property. The following table outlines the font property and the values that it allows.

Property Value

font [<’font-style’> || <’font-variant’> || <’font-weight’>]? <’font-size’>
[/ <’line-height’>]? <’font-family’>] caption | icon | menu | message-box |
small-caption | status-bar

The notation for the font property is somewhat more complicated than those presented in previous
examples. For now, just ignore the caption, icon, menu, message-box, small-caption, and
status-bar values — these are called system fonts, and I discuss them in the next section.

The font Properties
As for the first part of the notation, here’s a breakdown of each portion:

[<’font-style’> || <’font-variant’> || <’font-weight’>]?

194

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 194

This indicates that either a font-style, font-variant, or font-weight value can be provided. The
question mark indicates that this part is optional; you don’t have to include a font-style, font-
variant, or a font-weight. The double vertical bars in the notation indicates that each value is
optional, and they also indicate that any combination of the three can appear. You can include just a
font-style, just a font-variant, just a font-weight, all three, or any combination of the three.

The next part indicates that a font size must be specified:

<’font-size’>

The font size is not optional, so a font-size value must always be provided.

The next part indicates that a line-height (discussed in Chapter 7) may be specified, but because a
question mark follows it, the line height is optional:

[/ <’line-height’>]?

The forward slash in the notation indicates that if a line height is specified, a forward slash must sepa-
rate the font-size and line-height properties. The question mark after the closing square bracket
indicates that this portion of the syntax is optional.

The last portion indicates that a font-family must be specified:

<’font-family’>

So at the very least, a font-size value and a font-family value must be specified. Now that you
understand the notation, Figure 6-17a is an example of this property including all its optional values.

Figure 6-17a

195

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 195

The CSS in Figure 6-17a is combined with the markup in Figure 6-17b.

Figure 6-17b

The result is shown in Figure 6-17c.

Figure 6-17c

This rule includes all the values possible with the font property shorthand. Figure 6-17 shows that this
rule makes the font italic, small-caps, bold, 1em in size with a 1.5em line-height and a sans-serif font. I
haven’t discussed the line-height property yet because this property is discussed in Chapter 7, but
essentially the line-height property accepts a normal length value, which sets the height for each line
of text.

In contrast to the example in Figure 6-17, the example in Figure 6-18a shows the font property with a
minimal set of values.

196

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 196

Figure 6-18a

The CSS in Figure 6-18a is combined with the markup in Figure 6-18b.

Figure 6-18b

The result is shown in Figure 6-18c.

Figure 6-18c

The notation indicates that at least a font size and a font family must be provided, as is reflected in the
preceding example. Figure 6-18c shows output with a Monotype Corsiva font 32px in size.

197

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 197

Here are a few more possible variations of the font property:

font: bold 1.2em Arial, sans-serif;

This makes the font bold and 1.2em in size. Then, like the font-family property, the font property
accepts a list of fonts. I’ve specified an Arial font, which is common. If that font isn’t found on the user’s
computer, the generic sans-serif font is used. The following is another variation of the font property:

font: italic 1.2/2em “Times New Roman”, Times, serif;

The preceding rule makes the font italic and 1.2em in size with a 2em line height. Those specifications
are followed by a list of font families.

Now that you’ve had an overview of the font shorthand property, you can try out the font property for
yourself in the following Try It Out.

Try It Out Applying the font Property
Example 6-4. Follow these steps to try out the font property.

1. In your text editor, type the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>font</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_6-4.css’ />

</head>
<body>

<p>
The font shorthand property lets you combine up to six
different properties in one single property.

</p>
<p class=’font1’>

You can make text that’s bold, 24 pixels in size,
and sans-serif.

</p>
<p class=’font2’>

You can make text that’s italic, bold, small-caps,
24 pixel sans-serif, which looks like a comic
book font.

</p>
<p class=’font3’>

Or you can just keep it simple, 16 pixels and
monospace.

</p>
</body>

</html>

198

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 198

2. Save the markup as Example_6-4.html.

3. In a new document in your text editor, write the following CSS:

body {
font: 16px sans-serif;

}
p.font1 {

font: bold 24px sans-serif;
}
p.font2 {

font: italic bold small-caps 24px sans-serif;
}
p.font3 {

font: 16px monospace;
}

4. Save the preceding CSS as Example_6-4.css. The results of these modifications are shown in
Figure 6-19.

Figure 6-19

How It Works
In Example 6-4, you saw four examples of the font shorthand property. The first example sets the font
for the whole document, 16px, sans-serif. Because the font property is inherited, the font will stay 16px
and sans-serif unless specified otherwise for a child element.

body {
font: 16px sans-serif;

}

199

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 199

You then set the font to be bold, 24px, sans-serif for the <p> element with class name font1.

p.font1 {
font: bold 24px sans-serif;

}

Next you made the font italic, bold, small-caps, 24px, and sans-serif for the <p> element with class name
font2.

p.font2 {
font: italic bold small-caps 24px sans-serif;

}

Finally, you set the font to 16px, monospace for the <p> element with class name font3.

p.font3 {
font: 16px monospace;

}

In the next section I talk about system fonts, which are fonts that you can use to style a web page based
on an end user’s operating system fonts.

System Fonts
System fonts are keywords that refer to a font predefined by the user’s operating system. The following
table outlines each available system font.

Font Name Font Description

Caption Refers to the font used for captioned controls.

Icon Refers to the font used to label icons like those found on the desktop.

Menu Refers to the font used in menus, drop-down menus, and menu lists.

message-box The font used in dialog boxes.

small-caption The font used for labeling small controls.

status-bar The font used in window status bars.

System fonts may only be set as a whole when a system font is specified using the font shorthand prop-
erty, the font-family, font-size, font-weight properties, and all other aspects of font display are
set at once.

The CSS in Figure 6-20a is combined with the markup in Figure 6-20b.

Figure 6-20c shows what system fonts look like in various browsers on various operating systems.

200

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:32 PM Page 200

Figure 6-20a

Figure 6-20b

Figure 6-20c demonstrates each of the system fonts. From left to right and top to bottom the screenshots
in Figure 6-20c are Safari, Windows XP IE 6, Windows Vista IE 7, Mac Opera 9, Ubuntu Linux Firefox 1.5,
Windows XP Opera 9, Mac Firefox 1.5, Windows XP Firefox 1.5.

201

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:32 PM Page 201

Figure 6-20c

System fonts are intended to allow a web designer to set fonts based on a user’s font preferences as
defined for his or her operating system. While system fonts sound great in theory, Figure 6-20c shows
that system fonts are a bit of a hit and miss proposition. They don’t work in IE 7 on Windows Vista, in
Firefox on Ubuntu Linux, or in Safari on Mac OS X. Because system fonts can’t be relied upon absolutely,
it may be better to just define font styles for yourself.

Additionally, different aspects of system fonts can be overridden via the cascade by specifying the differ-
ent font properties after a font declaration with a system font value. This is demonstrated by the follow-
ing rule:

p {
font: caption;
font-size: 2em;
font-style: italic;

}

In the preceding example, the font size and font style replace those specified for the system font.

202

Part II: Properties

11_096970 ch06.qxp 4/20/07 11:33 PM Page 202

Summary
This chapter demonstrated several properties CSS provides for manipulating font display. These proper-
ties allow both simple and complex control over how fonts are presented to the end user. In this chapter
you learned:

❑ How to specify the font face using the font-family property.

❑ How to make the font style oblique or italic with the font-style property.

❑ How to style the small-caps effect using the font-variant property.

❑ How to control the lightness and boldness of a font using the font-weight property.

❑ How to take advantage of specifying a font size that adjusts based on the user’s font size prefer-
ences with the font-size property and absolute keywords.

❑ How to increase the size of a font based on the font size of an element’s parent using relative
keywords, percentage font sizes, or em units with the font-size property.

❑ How to combine the various font properties into one using the font shorthand property.

After learning some of CSS’s simpler properties for text manipulation in Chapter 5 and going over font
manipulation in this chapter, you now learn about the CSS box model in Chapter 7.

Exercises
1. Why aren’t the values of the font-weight property 100 through 900, bolder, and lighter

used in real-world web design?

2. If “Font A” is supported on Mac OS X, and “Font B” is supported on Windows XP, and “Font C”
is supported on Linux, what style would you write so that one of the three would always be
used in the absence of one of the others?

3. If you want to make text italic, what are two possible declarations for doing that?

4. What’s the difference between the font-variant: small-caps; and text-transform:
uppercase; declarations?

5. How could the following rules be better written?

p {
font-family: Arial, sans-serif;
font-weight: bold;
font-size: 24px;
color: crimson;

}
p.copy {

font-style: italic;
font-weight: bold;
line-height: 2em;

}
p#footer {

203

Chapter 6: Fonts

11_096970 ch06.qxp 4/20/07 11:33 PM Page 203

204

Part II: Properties

font-size: 12px;
line-height: 2em;
font-family: Helvetica, Arial, sans-serif;

}

6. What’s wrong with the following rule?

p {
font-size: 24;

}

7. If you include the declaration font-size: larger; in a style sheet rule, how much larger
would the text be?

8. Would the declaration font-size: 75%; make the font size larger or smaller?

11_096970 ch06.qxp 4/20/07 11:33 PM Page 204

7
The Box Model

In this chapter, I discuss one of the most important concepts in CSS-based web design, the box
model. The box model is a set of rules that dictate how width, height, padding, borders, and mar-
gin are measured on HTML elements.

In this chapter, I discuss:

❑ The CSS box model

❑ CSS box model properties, padding, margins, borders, width, and height

❑ Controlling line height

❑ Establishing minimum and maximum dimensions

❑ Overflowing content

The next section begins with an overview of what the box model is.

Overview
The CSS box model is a collection of properties that define the amount of space around an ele-
ment, its dimensions, its margins, its borders, and padding between text content and the borders.
In Figure 7-1, you see a diagram of the box model.

In Figure 7-1 you see what the different components that come together to make the box model
look like. Around the outside of an element is space called the margin, inside of the margin is
the border, inside of the border is the padding, and inside of the padding is the content of the ele-
ment. Figure 7-2 takes the box model in Figure 7-1 and reproduces it in an (X)HTML document
with CSS.

12_096970 ch07.qxp 4/20/07 11:55 PM Page 205

Figure 7-1

Figure 7-2a

206

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 206

The CSS in Figure 7-2a is combined with the markup in Figure 7-2b.

Figure 7-2b

The result of the CSS in Figure 7-2a and the markup in Figure 7-2b is shown in Figure 7-2c.

In Figure 7-2a, you can see how space around an element is controlled with the three properties, margin,
border, and padding. All three of these properties are specified on the <div> element with id name
box. Then to highlight the presence of these properties, you included two additional elements, one
wrapping the <div> element named box, where the element is given id name box-wrapper, and one
wrapping the content within the element, where the element is given the id name box-inner.

The element box-wrapper is given a yellow background of #ff0. This is because margins don’t have
backgrounds themselves; therefore, in order to highlight the margin area, an element needs to wrap
around the element with margin applied to it, and be given a different background color. The area that
is the darkest yellow (#ff0) is the margin area of the box element. The box-wrapper also has a one-
pixel, solid, white border applied to it. This is to prevent box model behavior that arises in some cir-
cumstances called margin collapsing. You’ll learn more about margin collapsing later in this chapter; for
now, just disregard that border.

207

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 207

Figure 7-2c

The border can have its own color separate from the background, so you specified the border as
border: 20px solid #ff6;. This yellow is slightly lighter than that used for the margin area. The
padding is the area between the inside border edge and the outside edge of the content of the element.
Since the padding and content area actually have the same background color, you included another
<div> element with id name box-inner. The box-inner element is given a white background (#fff)
to highlight only the content area.

In the coming sections, I pick apart the various properties that comprise the box model in CSS, begin-
ning with margin.

Margin
The margin property applies space outside the box, between the box and the browser window, or
between the box and the other elements in the document. The following table shows the various margin
properties.

Property Value

Margin [<length> | <percentage> | auto] {1,4}

margin-top <length> | <percentage> | auto
margin-right
margin-bottom
margin-left

208

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 208

The margin property is a shorthand property for the four individual margin properties, margin-top,
margin-right, margin-bottom, and margin-left.

Margin Property with Four Values
Figure 7-3 shows a comparison between the individual margin properties and the margin shorthand
property with four values.

Figure 7-3a

The CSS in Figure 7-3a is combined with the markup in Figure 7-3b.

Figure 7-3b

The CSS in Figure 7-3a and the markup in Figure 7-3b result in the output you see in Figure 7-3c.

209

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 209

Figure 7-3c

In Figure 7-3, you see how the four individual margin properties can be used to specify the margin of an
element, and how those four individual properties can be consolidated into a single margin shorthand
property.

In Figure 7-3, you specified 10 pixels of margin around both <div> elements, but used two different
ways of doing it. Figure 7-4 shows the output of Figure 7-3 with the margin area highlighted yellow.

Figure 7-4

Box model shorthand properties are always specified in order clockwise from the
top: top, right, bottom, and left — for example: margin: 10px 10px 10px 10px;.

210

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 210

In Figure 7-4, the 10 pixels of margin on each side of each <div> element appears in yellow. Also take
note of the orange area, which is 10 pixels of margin, rather than 20, as you might have expected. This is
caused by margin collapsing, which I discuss later in this section.

Margin Property with Three Values
In Figure 7-3, you saw an example of specifying margin using four values, but you can also specify only
three values for the margin shorthand property. This is demonstrated in Figure 7-5.

Figure 7-5a

The CSS in Figure 7-5a is combined with the markup in Figure 7-5b.

Figure 7-5b

211

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 211

The source code in Figure 7-5a and Figure 7-5b results in the output you see in Figure 7-5c.

Figure 7-5c

In Figure 7-5, you see how when you have the same margin value for the left and right margins, and dif-
ferent values for the top and bottom margins, the solution is to use the margin shorthand property with
three values.

Figure 7-6 shows the different margin areas of Figure 7-5 highlighted.

Figure 7-6

Box model shorthand properties with three values always follow the convention top,
right and left, bottom — for example: margin: 15px 5px 10px;.

212

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 212

In Figure 7-6, you see the margin area highlighted for each <div> element appearing in Figure 7-5. Take
note of the collapsed margin, which I talk about later in this chapter.

Margin Property with Two Values
Naturally, the margin shorthand property also supports two values. When two values are specified, the
first value refers to the top and bottom sides, and the second value refers to the right and left sides. This
is demonstrated in Figure 7-7.

Figure 7-7a

The CSS in Figure 7-7a is combined with the markup in Figure 7-7b.

Figure 7-7b

The CSS in Figure 7-7a and the markup in Figure 7-7b result in the output you see in Figure 7-7c.

In Figure 7-7, you see what happens when just two values are supplied to the margin shorthand property.

213

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 213

Figure 7-7c

Margin Property with One Value
You can specify just one value for the margin property, which simultaneously sets all four sides of an ele-
ment’s margin. An example of the margin shorthand property with just one value appears in Figure 7-8.

Figure 7-8a

Box model shorthand properties with two values always follow the convention top
and bottom, right and left — for example: margin: 15px 10px;.

214

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 214

The CSS in Figure 7-8a is combined with the markup in Figure 7-8b.

Figure 7-8b

The resulting screenshot appears in Figure 7-8c.

Figure 7-8c

In Figure 7-8 you see how all four sides can be set with just one margin property and keyword value, as
opposed to four.

Box model shorthand properties with one value always set the property for all sides
of the box.

215

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 215

Margin Collapsing
In CSS, margin collapsing occurs when the top or bottom margin of one element comes into contact with
the top or bottom margin of another element. The concept is simple: The smaller of the two margins is
reduced to zero; if both element margins are the same length, then one of the margins is reduced to zero.
Margin collapsing is demonstrated in Figure 7-9.

Figure 7-9a

You combine the CSS in Figure 7-9a with the markup in Figure 7-9b.

Figure 7-9b

The source code in the preceding two figures results in what you see in Figure 7-9c.

In Figure 7-9, you see the most common form of margin collapsing; the top margin of one element comes
into contact with the bottom margin of another element. When this happens, the element with the bigger
margin wins.

216

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 216

Figure 7-9c

Margin collapsing also happens when an element is contained inside of another element. It doesn’t mat-
ter where the two margins come into contact, even an element inside of another element will margin col-
lapse with its parent if the two margins come into contact. An example of this appears in Figure 7-10.

Figure 7-10a

The CSS in Figure 7-10a is included in the markup in Figure 7-10b, and that results in the output you see
in Figure 7-10c.

217

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 217

Figure 7-10b

Figure 7-10c

In Figure 7-10, you see how margin collapsing works between a parent and child element. If a child’s
margin comes into direct contact with the margin of a parent, the margins collapse. Like the example in
Figure 7-9 that contained adjacent sibling margins collapsing, the larger margin is the winning margin.
The winning margin is always applied to the parent element, and the child element’s margin always col-
lapses. In this scenario, margin collapsing can be stopped if you prevent the two margins from coming into
contact with one another. You can prevent the two margins from coming into contact with one another by
applying padding or a border to the parent element. An example of this appears in Figure 7-11.

The CSS in Figure 7-11a is included in the markup in Figure 7-11b to get the output that you see in
Figure 7-11c.

In Figure 7-11, you see how to stop margin collapsing from happening. You must give the parent ele-
ment a border or padding to prevent the top and bottom margin of the child element from coming into
contact with the top and bottom margin of the parent element.

218

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 218

Figure 7-11a

Figure 7-11b

Figure 7-11c

219

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 219

Horizontally Aligning Elements with the Margin Property
The margin property has one other useful function: It can be used to center or align elements. An exam-
ple of this concept appears in Figure 7-12.

Figure 7-12a

The CSS you see in Figure 7-12a is included in the markup in Figure 7-12b; this results in what you see in
Figure 7-12c.

Figure 7-12b

In Figure 7-12, you see a technique that is used to align elements in a document via the combination of
the auto keyword with the left or right margin of an element. The margin that is specified must be either
the left or the right margin, because the auto keyword is ignored when applied to the top or bottom
margin. The element is not aligned vertically, as you might expect.

220

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 220

Figure 7-12c

Aligning Elements in IE 6 and IE 7 in Quirks Rendering Mode
Every modern browser today supports what’s called the DOCTYPE switch, a method of selecting the
rendering mode of your browser based on the Document Type Declaration that appears at the top of
an (X)HTML document. If you structure your documents like the example you see here in this book,
you’ll never encounter quirks rendering mode, but if you are working with legacy websites that must
maintain backward compatibility with the web of yesterday, chances are you’ll encounter a quirks
mode site sooner or later. Appendix D, “Browser Rendering Modes,” shows a listing of Document Type
Declarations that trigger quirks rendering mode, and as such, I won’t reiterate that here.

If you encounter quirks mode, you’ll also discover that some CSS features don’t work in quirks mode,
but do work in standards mode. Aligning an element using the auto keyword in conjunction with the
margin property is one such quirks mode incompatibility. In IE, this feature is only implemented in
standards mode. Whereas the example that you see in Figure 7-12 will work fine in IE, it won’t work
if you change the Document Type Declaration to a quirks mode invoking DOCTYPE. The CSS from
Figure 7-12a is combined with the markup that you see in Figure 7-13a to get the result you see in
Figure 7-13b.

Figure 7-13a

221

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 221

Figure 7-13b

In Figure 7-13, you see what happens when quirks rendering mode is invoked and the auto keyword of
the margin property used. IE 6 (and IE 7) ignore the auto keyword in quirks mode (they work fine in
standards mode). To work around this problem, you can use an IE bug to your advantage. A demonstra-
tion of this appears in Figure 7-14.

Figure 7-14a

The CSS in Figure 7-14a is included in the markup in Figure 7-14b to get the output that you see in
Figure 7-14c.

222

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 222

Figure 7-14b

Figure 7-14c

In Figure 7-14, you see how the text-align property can help you align elements in IE in quirks
mode. Wherever possible, I recommend setting the Document Type Declaration to a standards mode
DOCTYPE, which will allow you to use the standard method of aligning elements. The technique that
you see here can also be easily combined with the margin method, which is common for aligning ele-
ments in IE 5.5, which has no standards rendering mode and does not support the margin method of
alignment.

Vertical alignment of an element requires layering (also called positioning) an element, and because of
this I discuss vertical alignment of elements in Chapter 11, “Positioning.”

223

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 223

Try It Out Applying Margin
Example 7-1. To recap the margin property, follow these steps.

1. Enter the following markup in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>margin</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_7-1.css’ />

</head>
<body>

<p>
The margin shorthand property can accept from one to four values.
When all four values are provided, each is provided in order clockwise,
beginning with the top property. Box model properties are
always specified in order clockwise.

</p>
<div class=’margin-wrapper’>

<div id=’margin’></div>
</div>
<p>

You can also specify margin via one of the four separate margin
properties: margin-top, margin-right, margin-bottom, and margin-left.

</p>
<div class=’margin-wrapper’>

<div id=’margin-properties’></div>
</div>
<p>

When three values are supplied to the margin shorthand property,
the top is the first value, the right and left sides are the second
value, and the bottom is the third value.

</p>
<div class=’margin-wrapper’>

<div id=’margin-three’></div>
</div>
<p>

When two values are supplied to the margin shorthand property,
the top and bottom are the first value, right and left sides are the
second value.

</p>
<div class=’margin-wrapper’>

<div id=’margin-two’></div>
</div>
<p>

When one value is supplied to the margin shorthand property, all four
sides are specified with that one value.

</p>
<div class=’margin-wrapper’>

<div id=’margin-one’></div>

224

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 224

</div>
<p>

If the auto keyword is supplied for the left or right margins, the
element that margin is applied to is aligned horizontally.

</p>
<div class=’margin-wrapper alignment’>

<div id=’margin-left’></div>
<div id=’margin-center’></div>
<div id=’margin-right’></div>

</div>
<p>

Margin collapsing happens when the top or bottom margin of one element
comes into contact with the top or bottom margin of another element.
The smaller of the two margins is eliminated; if they are equal size,
then one margin is still eliminated. This happens with adjacent
siblings.

</p>
<div class=’margin-wrapper’>

<div id=’top’></div>
<div id=’bottom’></div>

</div>
<p>

Margin collapsing also happens between parent and child elements.
</p>
<div class=’margin-wrapper’>

<div id=’parent’>
<div id=’child’></div>

</div>
</div>

</body>
</html>

2. Save the preceding document as Example_7-1.html.

3. Enter the following CSS in a new document in your text editor:

body {
font: 12px sans-serif;

}
div.margin-wrapper {

background: lightyellow;
border: 1px solid gold;
float: left;
margin: 5px;

}
p {

clear: left;
margin: 5px;

}
div.margin-wrapper div {

background: khaki;
border: 1px solid black;

225

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 225

width: 25px;
height: 25px;

}
div#margin {

margin: 4px 6px 8px 10px;
}
div#margin-properties {

margin-top: 2px;
margin-right: 4px;
margin-bottom: 6px;
margin-left: 8px;

}
div#margin-three {

margin: 2px 10px 4px;
}
div#margin-two {

margin: 2px 10px;
}
div#margin-one {

margin: 2px;
}
div.alignment {

float: none;
}
div#margin-left {

margin-right: auto;
}
div#margin-center {

margin: 0 auto;
}
div#margin-right {

margin-left: auto;
}
div#top {

margin: 5px;
}
div#bottom {

margin: 5px;
}
div#parent {

margin: 5px;
border: none;
background: crimson;

}
div#child {

margin: 5px;
}

4. Save the CSS document as Example_7-1.css. The preceding example results in the output that
you see in Figure 7-15.

226

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 226

Figure 7-15

How It Works
In Example 7-1, you recapped the margin property. You begin with an example of the margin shorthand
property with values for all four sides of a box. Because each example has a wrapping <div> element
around it, you can see the amount of space that the margin occupies. In the first example you set all four
margin values; you can see what happened in Figure 7-16.

227

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 227

Figure 7-16

In the second example, you set each margin value via the separate margin properties, which are illus-
trated in Figure 7-17.

Figure 7-17

In the next example, you set the margin shorthand property with three values. The first value sets the
value for the top margin, the second value sets the left and right margins, and the third value sets the
bottom margin. The result is illustrated in Figure 7-18.

Figure 7-18

Figure 7-19 is an example of the margin shorthand property with two values. When only two values are
specified, the first value sets both the top and bottom margins, and the second value sets the left and
right margins.

Figure 7-19

Figure 7-20 is an example of the margin property with just one value. When only one value is set, all
four margin values are set at once.

228

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 228

Figure 7-20

Next, you did an example of horizontally aligning elements with the margin property. You did this by
setting either the left or right margin, or both, to auto. An example of horizontal alignment using the
margin property appears in Figure 7-21.

Figure 7-21

In the next example you see margin collapsing in action. When the bottom margin of the element with id
name top came into contact with the top margin of the element with id name bottom, margin collapsing
occurred. Instead of 10 pixels separating the top and bottom elements, one margin is collapsed, and
only 5 pixels separate each element. An example of this appears in Figure 7-22.

Figure 7-22

In the final example, you see how to create margin collapsing between parent and child elements. Just as
was the case in the previous example of adjacent sibling elements where the bottom margin of the top
sibling collapsed with the top margin of the bottom sibling, when a child’s top or bottom margin comes
into contact with the top or bottom margin of its parent element, margin collapsing also takes place. An
example of this appears in Figure 7-23.

Figure 7-23

In the next section I discuss the next box model property, borders.

229

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 229

Borders
Borders appear between the margin and padding in the box model depicted in Figure 7-1. It’s obvious
that borders put lines around boxes. Applying borders usually makes the other box model properties
easier to see. The following sections examine each individual border property.

border-width
The border-width properties all control the width of a box border in some fashion. The following table
outlines each border-width property.

Property Value

border-top-width <border-width>
border-right-width
border-bottom-width

Initial value: medium

border-left-width

border-width <border-width> {1,4}

A <border-width> value refers to one of the following: Initial value: medium

thin | medium | thick | <length>

The individual border-top-width, border-right-width, border-bottom-width, and border-
left-width properties exist for setting the width of the individual sides of a box. Each of these proper-
ties can be combined into the single border-width shorthand property.

Borders aren’t allowed to have percentage values; however, they are capable of accepting any length
measurement supported by CSS (em, pixel, centimeter, and so on). In addition to length units, the border
width may also be specified using one of three keywords: thin, medium, and thick. Figure 7-24 shows
the rendered output of these three keywords.

The CSS in Figure 7-24a is combined with the markup in Figure 7-24b.

Figure 7-24a

230

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 230

Figure 7-24b

When loaded into a browser, you should see output like that in Figure 7-24c resulting from the CSS and
markup in Figures 7-24a and 7-24b.

Figure 7-24c

In Figure 7-24, you see what the three keyword values (thin, medium, and thick) of the border-width
property look like. The border-width property can also take an arbitrary length value; an example of
this appears in Figure 7-25.

The CSS in Figure 7-25a is combined with the markup in Figure 7-25b.

Figure 7-25c shows the rendered output of Figure 7-25a and Figure 7-25b.

In Figure 7-25, you see that the border-width property with a length value can be specified in a variety
of ways. You can use the individual border-width properties, border-top-width, border-right-
width, border-bottom-width, and border-left-width, or you can use the border-width short-
hand property. Like the margin property that you examined in the last section, it can take from one to
four values for specifying the border width of each side of the box.

231

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 231

Figure 7-25a

Figure 7-25b

232

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 232

Figure 7-25c

In the next section I discuss the border-style property, and how it is used to change the style of border.

border-style
You use the border-style property to specify the style of border to be used. The border-style prop-
erty is very similar to the border-width property presented in the previous section in that it uses an
identical syntax to specify the style of border to be used for each side of the box. The following table out-
lines the border-style family of properties.

Property Value

border-style <border-style> {1,4}

A <border-style> value refers to one of the following: Initial value: none

none | hidden | dotted | dashed | solid |
double | groove | ridge | inset | outset

border-top-style <border-style>
border-right-style
border-bottom-style

Initial value: none

border-left-style

Like the border-width property, the border-style property is also a shorthand property, which
combines the individual border-top-style, border-right-style, border-bottom-style, and
border-left-style properties into the single border-style property. Figure 7-26 shows the ren-
dered representation of each of the border-style keywords.

The CSS in Figure 7-26a is included in the markup in Figure 7-26b.

233

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 233

Figure 7-26a

Figure 7-26b

You should get something like the output in Figure 7-26c from the code in Figures 7-26a and 7-26b.

In Figure 7-26, you can see what each border style looks like in each of the major browsers, Safari, IE 6,
IE 7, Firefox 2, and Opera.

234

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 234

Figure 7-26c

Like the border-width property, the border-style property can accept up to four values to specify
the style for each side of the box. The rules for specifying styles for different sides of the box are the
same as the border-width property of the previous section, but instead of the length, like this:

border-width: 2px 4px 6px 8px;

235

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 235

There would be a border style, for example:

border-style: hidden dotted dashed solid;

As is the case for the margin and border-width properties, the shorthand is specified as top, right, bot-
tom, and left, and border-style also supports the three-value, two-value, and one-value shorthand
syntax as the border-width and margin properties.

border-color
The border-color property is another shorthand property. Like the border-style and border-
width properties, you can use border-color to control how a border is styled. The border-color
property, as you may have guessed, specifies the border color for each side of the box. The following
table outlines the border-color family of properties.

Property Value

border-color [<color> | transparent] {1,4}

Initial value: the value of the ‘color’ property

border-top-color <color> | transparent
border-right-color
border-bottom-color

Initial value: the value of the ‘color’ property

border-left-color

IE 6 and IE 7 do not support the transparent keyword as applied to border color; in IE the
transparent keyword is rendered as black.

Like border-style, margin, and border-width, the border-color property can accept up to four
values. This property accepts a <color> value, meaning that it can accept a color keyword, a hexadeci-
mal value, short hexadecimal value, or an RGB value; any color value accepted by the color property is
also acceptable to the border-color properties.

Now that you’ve seen an overview of what is possible with borders, the upcoming sections discuss the
border shorthand properties.

Border Shorthand Properties
The border-top, border-right, border-bottom, border-left, and border properties combine the
border-width, border-style, and border-color properties into single properties for each side of
the box, or all sides of the box. The following table outlines the possible values for these five properties.

When the border-color property is not specified, the border-color is the same
color as specified for the color property.

236

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 236

Property Value

border-top <border-width> || <border-style> || <color>
border-right
border-bottom
border-left

border <border-width> || <border-style> || <color>

The notation for the border-top, border-right, border-bottom, border-left, and border properties
indicates that one to three values are possible; each value refers to a border-width value, a border-
style value, and a border-color value. Figure 7-27 demonstrates the border shorthand properties.

Figure 7-27a

The CSS in Figure 7-27a is included in the markup in Figure 7-27b.

Figure 7-27b

237

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 237

The CSS in Figure 7-27a and the markup in Figure 7-27b result in the output that you see in Figure 7-27c.

Figure 7-27c

In Figure 7-27, you see two methods for specifying an element’s borders using border shorthand proper-
ties. The first method that you see uses four individual border shorthand properties, one for each side of
the box, border-top, border-right, border-bottom, and border-left, and the second method uses
the border shorthand property, which specifies the border for all four sides of the box at once.

Unlike the margin shorthand property, the border property may only be used to specify all four sides
of the box at once. If you want a different style, or width, or color for the different sides, you’ll need to
use the individual shorthand properties.

In the following Try It Out you recap what is possible with CSS border properties.

Try It Out Applying Borders
Example 7-2. To review what is possible with the border properties, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>border</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_7-2.css’ />

</head>
<body>

<p>
CSS provides a variety of ways for specifying borders. At a minimum,
you must specify a border-style.

238

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 238

</p>
<div id=’border-style-properties’>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
</div>
<p>

Like the margin properties, the individual border-style properties
can be combined into a single property.

</p>
<div id=’border-style’>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
</div>
<p>

When no border-color is specified, the border color is the value of
the color property.

</p>
<div id=’color-default’>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
</div>
<p>

The border-width property can take either one of three keywords or a
length

value.
</p>
<div id=’border-width’>

<div id=’thin’>thin</div>
<div id=’medium’>medium</div>
<div id=’thick’>thick</div>

</div>
<p>

Four shorthand properties can be used to specify border-width,
border-style, and border-color in just one property for each
side of the box.

</p>
<div id=’shorthand-sides’>

border-top, border-right, border-bottom, border-left
</div>
<p>

One shorthand property, the border property, can be used to specify
border-width, border-style, and border-color for all four sides at
once.

</p>
<div id=’shorthand’>

border
</div>

</body>
</html>

2. Save the preceding markup as Example_7-2.html

239

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 239

3. Enter the following style sheet in your text editor:

body {
font: 12px sans-serif;

}
div#border-style-properties {

border-top-style: solid;
border-right-style: dashed;
border-bottom-style: double;
border-left-style: inset;

}
div#border-style {

border-style: solid dashed double inset;
}
div#color-default {

color: crimson;
border-style: solid dotted;

}
div#border-width {

overflow: hidden;
}
div#border-width div {

float: left;
border-style: solid;
border-color: red;
margin: 0 5px;

}
div#thin {

border-width: thin;
}
div#medium {

border-width: medium;
}
div#thick {

border-width: thick;
}
div#shorthand-sides {

border-top: 1px solid pink;
border-right: 1px solid crimson;
border-bottom: 1px solid pink;
border-left: 1px solid crimson;
padding: 5px;

}
div#shorthand {

border: 1px solid crimson;
padding: 5px;

}

4. Save the preceding style sheet as Example_7-2.css. After loading Example 7-2 into a browser,
you should come up with something that looks like Figure 7-28.

240

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 240

Figure 7-28

How It Works
In Example 7-2, you recapped what was possible with the border properties. You can set an element’s
border style by four different properties, one for each side, border-top-style, border-right-style,
border-bottom-style, and border-left-style, or via a shorthand property that lets you set all four
sides in the same way as the margin shorthand property, the border-style property. The process is the
same for border-width; you can use the four separate border width properties, border-top-width,
border-right-width, border-bottom-width, and border-left-width, or the shorthand border-
width property. Then there are also the similar border-color properties that allow you to set the border
color of each side via individual border color properties, border-top-color, border-right-color,
border-bottom-color, and border-left-color, or the border-color shorthand property.

You learned that when there is no border style specified, the default style is none; when there is no
width specified; the default width is medium, and when there is no border color specified, the default
border color is the value of the color property (in other words, the same as the text color).

You also learned that there are four shorthand properties that allow you to combine border-width,
border-style, and border-color into single shorthand properties. These exist for all four sides,
border-top, border-right, border-bottom, and border-left. The last border shorthand property
lets you set all four sides of the box at once, and that’s the border shorthand property.

In the next section you examine box padding.

241

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 241

Padding
Padding is the space between the content of an element and its borders, as has been mentioned briefly in
previous examples. Refer to the diagram in Figure 7-1 to see where padding appears in the box model.
The following table shows the various padding properties.

Property Value

padding [<length> | <percentage>] {1,4}

padding-top <length> | <percentage>
padding-right
padding-bottom
padding-left

Like margin, border-width, border-style, and border-color, the padding property is a shorthand
property, meaning that it is a simplified representation of the other padding properties, padding-top,
padding-right, padding-bottom, and padding-left. In the preceding table, the square brackets
are used to group the values. In this context, the padding property can accept either a length or a per-
centage value, and can have one to four space-separated values. Figure 7-29 examines the padding
property.

Figure 7-29a

242

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 242

The CSS in Figure 7-29a is combined with the markup in Figure 7-29b.

Figure 7-29b

The markup in Figure 7-29b and the CSS in Figure 7-29a result in the output that you see in
Figure 7-29c.

243

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 243

Figure 7-29c

In Figure 7-29, you see that the padding property is similar to the margin property. The main differ-
ences with the padding property are as follows:

❑ The padding area is the area between the inside edge of the border and the outer edge of the
content.

❑ The auto keyword has no effect with the padding property.

❑ The padding property cannot accept a negative value (the margin property can).

❑ There is no collapsing padding; only margins can collapse.

In the next section, I examine the different length properties supported by CSS.

Setting Dimensions
CSS 1 introduced the width and height properties as part of the CSS box model. CSS 2 expands on
those properties, providing minimum and maximum dimensions when variable lengths are involved, as
is the case with percentage width and height values.

The following sections examine each of CSS’s dimension properties individually.

244

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 244

width
The width property is a pretty simple property; it sets the width of an element. According to the CSS
box model diagram presented in Figure 7-1, width is the space measured from inside padding edge to
inside padding edge. The following table outlines the width property and its possible values.

Property Value

Width <length> | <percentage> | auto

initial value: auto

The width property accepts a length unit, which is indicated in the preceding table with the <length>
notation. In Figure 7-30, you see a simple example of the width property using a length unit.

The CSS in Figure 7-30a is combined with the markup in Figure 7-30b.

Figure 7-30a

Figure 7-30c shows the result of the CSS in Figure 7-30a and the markup in Figure 7-30b.

In Figure 7-30, the <div> with the white background, which contains the Peter Piper copy, has a
width of 250 pixels. Width is added in addition to the other box model properties, margin, border,
and padding. Figure 7-31 demonstrates how this breaks down using the output that you see in
Figure 7-30.

245

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 245

Figure 7-30b

Figure 7-30c

Figure 7-31
246

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 246

When you apply a width to an element, you must also take into account the margin, borders, and
padding as part of the overall horizontal area that the element will occupy. In Figure 7-31, you see that
the margin, border, padding, and width add up to 20 pixels, which is the width of the wrapper box. In
the next section, you see what happens when your margin, border, padding, and width add up to more
than the containing element.

In the next section, I talk about the height property.

height
Like the width property, the height property sets the amount of space between the top-inside padding
edge and the bottom-inside padding edge. The following table outlines the height property and its pos-
sible values.

Property Value

height <length> | <percentage> | auto

initial value: auto

The height property causes an element to behave somewhat differently than its HTML height attribute
counterpart in standards-compliant browsers. When you explicitly specify a height, the height remains
the same regardless of how much text you place inside the element. Figure 7-32 is an example of what
happens when there is more content than the height allows.

Figure 7-32a is combined with the tongue twister in Figure 7-32b.

Figure 7-32a

247

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 247

Figure 7-32c shows the output of the markup and CSS in Figure 7-32a and Figure 7-32b in various
browsers.

Figure 7-32b

Figure 7-32c

248

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 248

In Figure 7-32, you can see that IE 6 does not correctly interpret CSS dimensions. You can also see that
this bug has been fixed in IE 7, because it correctly overflows the excess content as Safari, Firefox, and
Opera do. In IE 6, width and height are closer to the definition of the CSS min-width and min-height
properties that I talk about later in this chapter.

The next section continues the discussion of dimensions with auto values for width and height.

Auto Values for width and height
By default, width and height properties have an auto value. So, when you do not specify a width or
height, the value is the auto keyword. The meaning of the auto keyword changes depending on the
type of element that it is applied to. When used on a <div> element, the element spans all the horizontal
space available to it and expands vertically to accommodate any content inside of it, including text,
images, or other boxes. Elements with this behavior are called block elements. Some examples of block
elements are <div>, <p>, <h1> through <h6>, <form> and elements. The example in Figure 7-33
demonstrates auto width for block elements.

Figure 7-33a

The CSS in Figure 7-33a is combined with the markup in Figure 7-33b.

Figure 7-33b

The output that you see in Figure 7-33c is a result of the CSS in Figure 7-33a and the markup in
Figure 7-33b. All three windows pictured display the same document, but at different sizes.

249

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 249

Figure 7-33c

In the screenshot in Figure 7-33c, you can see that the width of the <div> element adjusts to any changes
in the window size. This makes auto width on block elements synonymous with fluid width. The same
behavior occurs with other block elements like <p> or <div>, or headings <h1> through <h6>. By defini-
tion, block elements are to occupy the entire line. When an element takes up all the space available to it
horizontally, this method of sizing is called expand-to-fit. Auto height on a block element, on the other
hand, works a little differently; the element only expands vertically enough to accommodate the content
within the element. This method of sizing is known as shrink-to-fit. In Figure 7-33, you can see from the
yellow background of the <div> element that as you add more text, images, or other (X)HTML content,
the height of the <div> will expand to accommodate that content.

The auto value can also have different meanings depending on the type of element you use it with. The
<table> element is an example of an element where the auto value has different meaning than as say
applied to a block element. Similar to height on block elements, <table> elements, by default, expand
and contract only enough to accommodate the content they contain, but unlike block elements, this siz-
ing is applied both horizontally and vertically. This is demonstrated in Figure 7-34.

The CSS in Figure 7-34a is included in the markup in Figure 7-34b.

250

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 250

Figure 7-34a

Figure 7-34b

251

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 251

In Figure 7-34c, you can see the rendered output of the source code presented in Figure 7-34a and
Figure 7-34b. All three windows pictured display the same document, but at different sizes.

Figure 7-34c

In Figure 7-34, you can see that the <table> element’s size, by default, depends on the content inside of
it. Once a <table> element has a lot of content, it behaves more like a block element, in that if there is
enough content, it will expand to fill up the whole line, then expand vertically as much as necessary to
accommodate content.

The element is another example of an element where the auto keyword has another meaning.
When the auto keyword is used on images, the auto value allows the image to be displayed as is. If the
image is 500 pixels by 600 pixels, the auto value displays the image as 500 by 600 pixels. In that light,
the graphics program that generated the image determines the image’s dimensions. When you use
height: auto; on an image, and you explicitly specify the image’s width, the image’s height scales in
aspect ratio to the image’s width, as is demonstrated in Figure 7-35.

252

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:55 PM Page 252

The CSS in Figure 7-35a is included in the (X)HTML document in Figure 7-35b.

Figure 7-35a

Figure 7-35c shows the output of the CSS in Figure 7-35a and the markup in Figure 7-35b.

In Figure 7-35, you see how the auto keyword works with elements. By default, whatever
dimensions the image was saved with using a graphic editor are the dimensions the is dis-
played with. If you include an explicit value for either width or height, and the opposite value is the
auto keyword, the image is resized preserving the aspect ratio. In the next section, I talk about percent-
age measurement.

253

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:55 PM Page 253

Figure 7-35b

Figure 7-35c254

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 254

Percentage Measurements
When a percentage measurement is used, the size that the percentage is based on is the parent element
of the element the percentage width is applied to. Consider the example in Figure 7-36.

Figure 7-36a

The CSS in Figure 7-36a is applied to the markup in Figure 7-36b.

Figure 7-36b

Figure 7-36c shows the rendered output of Figure 7-36a and Figure 7-36b.

The output that you see in Figure 7-36 is probably pretty puzzling to you, in that you more than likely
expected the <div> element to fill up all the space horizontally and vertically without scroll bars appear-
ing. There is a horizontal scroll bar because of how percentage measurement works; the width of the <div>
element is made to be the same width as the width of its parent element, the <body> element. Now before
you take into consideration padding or borders, the <div> element already takes up the whole width of
the <body> element. Once 5 pixels of padding, and 1 pixel of border are added for each side, the <div> ele-
ment becomes 12 pixels bigger than the width of the <body> element, causing it to overflow horizontally,
and also a horizontal scroll bar to appear. In Figure 7-36, the <div> element doesn’t stretch at all vertically.
That’s because the <body> and <html> elements are block elements, which means that the height of those

255

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 255

elements is determined by the amount of content contained within them, and since a percentage height is
based on the height of the element’s parent, the height of the <div> element becomes the same height as
the height of the <body> element. How then can you get fluid height in the same way that you can get
fluid width with the auto keyword applied to a block element? The answer involves positioning the ele-
ment, and since that is off-topic for this chapter, see Chapter 11, “Positioning,” for the answer.

Figure 7-36c

In the next section, I describe what happens to the box model when IE is in quirks mode.

Quirks Mode width and height in Internet Explorer
As I mentioned earlier in this chapter in the section titled “Aligning Elements in IE 6 and IE 7 in Quirks
Rendering Mode,” IE is a very different browser in quirks rendering mode.

IE in quirks mode is meant to be backward-compatible with the Internet of the past. Having both a stan-
dards and a quirks rendering mode lets Microsoft maintain backward compatibility with legacy content
created using past methods, while at the same time implementing and supporting W3C standards and
moving forward. Microsoft in the past has not always rigidly followed the W3C standards, and one area
where Microsoft was at odds with the W3C was in how the box model should be defined. IE up to IE 5.5
used Microsoft’s own proprietary box model, which differs from the W3C box model in one very big way:
It defined the “width” property as from outside border edge to outside border edge, rather than inside
padding edge to inside padding edge as is defined in the W3C box model. In IE 6, Microsoft reconciled the
difference by introducing the DOCTYPE switch, thus making two rendering modes, quirks mode and
standards mode. When in standards mode, IE uses the W3C box model, but in quirks mode IE uses the
Microsoft box model. Introducing two rendering modes has let Microsoft continue to build on IE and make
it compliant with the various W3C standards while maintaining backward compatibility with legacy con-
tent that relied on that particular “quirk” being present in the IE browsers that came out prior to IE 6.

Figure 7-37 diagrams the differences between the standards box model and the IE box model in quirks
rendering mode.

256

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 256

Figure 7-37

The box-sizing Property
If you are faced with a website that requires IE to be in quirks rendering mode, you have two options for
keeping your design consistent between browsers.

The first option is the box-sizing property. The box-sizing property allows you to switch between
the standard CSS box model and the IE quirks mode box model. The box-sizing property is outlined
in the following table.

Property Value

box-sizing content-box | border-box

initial value: content-box

257

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 257

In Firefox and other Gecko-based browsers, you must add the -moz- prefix. So it would be
-moz-box-sizing instead of box-sizing. -moz-box-sizing also supports one additional
keyword, padding-box.

The declaration box-sizing: border-box; is provided for Safari and Opera, and the declaration
-moz-box-sizing: border-box; is provided for all Gecko-based browsers, Firefox, Netscape, Mozilla
SeaMonkey, and so on; thus those browsers use Microsoft’s box model instead of the standard W3C
box model.

Conditional Comments
The other method that you can use is to alter output for IE instead of altering for other browsers, by
using conditional comments to specifically target IE, which is the method that I personally prefer. By
targeting the quirk in IE specifically, you can use the standard W3C box model, and not use a property
that may or may not be implemented in other lesser-known third party browsers. Conditional comments
are a Microsoft-proprietary HTML feature, and they allow you to target various or specific versions of
Internet Explorer. Conditional comments were introduced in IE 5.0; Figure 7-38 is an example of condi-
tional comments in action.

The markup in Figure 7-38a results in the output that you see in Figure 7-38b.

Figure 7-38a

258

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 258

Figure 7-38b

In Figure 7-38, you see how conditional comments can target different versions of IE, and how condi-
tional comments are just ignored by other browsers (you see no output at all in Safari). Conditional com-
ments allow you to provide custom style sheets for Internet Explorer while writing standard CSS for all
other browsers. Using conditional comments, you are able to reconcile differences in the box model by
providing different width lengths to IE than you would to other browsers.

In the next section, I discuss minimum and maximum dimensions.

Minimum and Maximum Dimensions
The min-width, max-width, min-height, and max-height properties define minimum and maximum
boundaries when it is necessary to constrain a width or height from expanding or contracting past a cer-
tain point. In a variable width design, where you design content to adapt to multiple screen resolutions,
it is sometimes helpful to define where you want the document to stop stretching or stop contracting.
For instance, if you have designed primarily with an 800 × 600 or 1024 × 768 screen resolution in mind, a
user viewing your website at 1600 × 1200 pixels may see the content stretched pretty thin if an auto key-
word or percentage values are used to define the width. This is where the CSS properties min-width,
max-width, min-height, and max-height come into play.

min-width
The min-width property defines a lower-size constraint on an element. The available values for the
min-width property are outlined in the following table.

259

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 259

Property Value

min-width <length> | <percentage>

initial value: 0

IE 6.0 and less do not support the min-width property.

The min-width property defines when an element using an auto keyword or percentage width should
stop shrinking to fit the user’s window. Consider the example in Figure 7-39.

Figure 7-39a

The CSS in Figure 7-39a is combined with the markup in Figure 7-39b.

Figure 7-39b

Figure 7-39c demonstrates that, if you run this snippet in a browser, when the browser window or con-
taining element becomes smaller than 500 pixels, the <p> stops shrinking and a scroll bar appears across
the bottom of the browser window.

260

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 260

Figure 7-39c

If the <p> is inside another element, and that element becomes smaller than the <p> element’s min-
width, the <p> element overflows the edges of that element. But this useful property does not work in
IE. In the next section, I describe how to work around the lack of support in IE.

min-width in IE 6 and IE 5.5
IE 6 and IE 5.5 don’t support any of the min/max width/height properties, but support for these proper-
ties was introduced in IE 7.0. Despite this functionality not being present in older versions of IE, you can
work around the problem fairly effortlessly and achieve the same results as having these properties
available. This is done in older versions of IE via the combination of two proprietary features, and taking
advantage of IE’s quirky handling of width and height. In IE 6.0 and earlier, the width and height
properties behave more like the standard CSS properties, min-width and min-height. Although they
aren’t exactly the same, this can be used to get results similar to what you see in other browsers with the
standard properties.

The recipe calls for conditional comments, so you can hide the workaround from other browsers, and
another Microsoft-proprietary feature called CSS expressions. CSS expressions allow you to place
JavaScript within style sheets. Of course, if the client has disabled JavaScript, CSS expressions won’t
work either, but for most designers this is an acceptable trade-off.

The example that you saw in Figure 7-39 is recreated with IE 6.0 compatibility in Figure 7-40.

261

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 261

The markup from Figure 7-39a is modified to look like the markup that you see in Figure 7-40b.

Figure 7-40a

Figure 7-40b

Figure 7-40c is the result of the hack required to emulate the min-width property in IE 6.0.

The scenario outlined in Figure 7-40 only works for IE 6.0, and only if you are working with IE in stan-
dards mode. If you also require compatibility with IE 6.0 in quirks mode, IE 5.5, and IE 5.0, the hack is
changed to the following:

body {
width: expression(document.body.clientWidth <= 500? 500 : ‘auto’);

}

IE 6.0 in standards mode must have the documentElement.clientWidth as the hack; otherwise it will
crash and burn miserably. The hack doesn’t have to be applied to the <body> element; it can also be
applied to a containing <div>. The hack itself will remain the same; only fill in the numbers that your
particular project requires.

The opposite scenario, defining a maximum width, is covered in the next section.

262

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 262

Figure 7-40c

max-width
In contrast to the min-width property, the max-width property is used to set an upper constraint for
width with elements using either an auto keyword or percentage measurement for width. The max-
width property is defined in the following table.

Property Value

max-width <length> | <percentage> | none

initial value: none

As is the case for min-width, IE 6.0 does not support the max-width property.

The max-width property allows you to define a maximum length if the area available to the element
becomes larger. An example of the max-width property appears in Figure 7-41.

The CSS in Figure 7-41a is combined with the markup that you see in Figure 7-41b.

Figure 7-41a

263

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 263

Figure 7-41b

Figure 7-41c shows that the <p> element stops expanding horizontally when it reaches an 800-pixel
width.

Figure 7-41c

264

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 264

See the section on min-width, which discusses how to handle hacks for IE 6 in quirks mode, IE 5.5
and IE 5.

As a block-level element, the <p> element expands horizontally, filling all the available space. In this
light, it is fluid. On a high-resolution monitor set to 1280 × 1024 pixels, for instance, the content inside of
the <p> element could potentially get stretched very thin. The minimum and maximum width proper-
ties allow an upper and lower limit to be set for the size of an element and allow an author to take
advantage of fluid design that adjusts to accommodate the user’s environment.

Sometimes, however, you will need both minimum and maximum constraints in IE, and I cover this in
the next section.

Hacking Both Minimum and Maximum Widths in IE 6
Hacking both minimum and maximum widths in IE is done using the same technique that I covered for
minimum and maximum widths, but combined together. You just do the following:

body {
width: expression(

documentElement.clientWidth >= 800?
800

:
(documentElement.clientWidth <= 500? 500 : ‘auto’)

);
}

In this example, 800 is the upper constraint, or max-width, and 500 is the lower constraint or min-
width. All you have to do is replace those numbers with your own values. The same rules apply
here as were the case for IE 6 in quirks mode, IE 5.5, and IE 5; in those versions, documentElement
.clientWidth is replaced with document.body.clientWidth. Again, the width declaration can be
applied to a container <div> as well. If you require the content to be centered, it does not have to be
applied to the <body> element. In that scenario, only the selector and your minimum and maximum
values will change; the rest will remain the same.

CSS also offers identical properties to set upper and lower limits for height.

min-height
If you are using a variable or percentage height, the min-height property lets you specify when you
want the element to stop shrinking vertically. The following table outlines the possible values for the
min-height property.

Property Value

min-height <length> | <percentage>

initial value: 0

IE 6 supports the min-height property only when used on <td>, <th>, and <tr> elements.

265

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 265

In some layouts it’s handy to have a property that can set the minimum height of an element, especially
with dynamic templates that can have content of varying lengths. Sometimes there will be very little
content, and to keep your template from being broken, you need to define a lower height constraint.
This is where the min-height property is useful. Figure 7-42 is a demonstration of the min-height
property.

Figure 7-42a

In Figure 7-42b, you see the markup that goes with the CSS in Figure 7-42a. You also see the hack for
min-height for IE 6 and earlier.

Figure 7-42b

266

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 266

In Figure 7-42c, you see the desired effect has been achieved; each <p> element has at least a height of 50
pixels.

Figure 7-42c

Continuing the discussion on minimum and maximum dimensions, I cover the max-height property
next.

max-height
The opposite of the min-height property is the max-height property, which allows the author to tell
the browser when an element should stop expanding. It allows an upper height constraint to be speci-
fied for the element. The max-height property is outlined in the following table.

267

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 267

Property Value

max-height <length> | <percentage> | none

initial value: none

IE 6 does not support the max-height property.

The max-height property does for height what the max-width property does for width. Unfortunately
there is no workaround for the max-height property in IE 6, but this property is implemented in IE 7.
Figure 7-43 is a demonstration of the max-height property.

Figure 7-43a

The CSS in Figure 7-43a is included in the markup in Figure 7-43b.

Figure 7-43b

268

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 268

The output in Figure 7-43c shows that the third paragraph stops growing vertically when the height
reaches 50 pixels. If only there were a property that could handle that overflowing text. Wait, there is!
Stay tuned to the section on the overflow property for information on how to control overflowing
text.

Figure 7-43c

The next section wraps up discussion of dimensions with the line-height property.

The line-height property
As I mentioned in Chapter 6, the line-height property refers to the height of the line on which each
line of text appears. The line-height property and its possible values are outlined in the following
table.

Property Value

line-height normal | <number> | <length> | <percentage>

initial value: normal

This property allows an explicit length to be defined for each line of text. Consider the CSS in
Figure 7-44a and the markup in Figure 7-44b.

Figure 7-44a

269

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 269

Figure 7-44b

Figure 7-44c shows that each line of text is contained in a line-height 3em high. This produces the
effect of quadruple-spaced text because a 1em font-size is specified.

Figure 7-44c

In the next section I discuss the overflow property.

270

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 270

Overflowing Content
The CSS overflow property exists to manage content that is susceptible to dimensional constraints,
where the content could possibly overflow the boundaries of those dimensional constraints. The follow-
ing table outlines the overflow property and its possible values.

Property Value

overflow visible | hidden | scroll | auto

initial value: visible

The two most common uses of the overflow property are to hide content when more content than space
is available, or to apply scroll bars so that the extra content can be accessed. By default, the value of the
overflow property is the visible keyword, the effects of which you saw in Figure 7-32c, and will again
in Figure 7-45c. These figures show that when the width and height specified are smaller than the con-
tent allows, the content overflows the edges of the box containing it. It is possible to control that over-
flow by causing scroll bars to appear, or the overflowing content to be invisible.

Figure 7-45 demonstrates each of the possible values for the overflow property.

Figure 7-45a

The CSS in Figure 7-45a is then combined with the markup you see in Figure 7-45b.

271

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 271

Figure 7-45b

Figure 7-45c

272

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 272

In Figure 7-45, you see what the possible keyword values of the overflow property translate to when
applied. The overflowing content can be visible, or the browser can decide if there is overflow to apply
scroll bars where necessary, as is the case with the auto keyword. You can force scroll bars to always be
visible with the scroll keyword, or you can hide overflow content with the hidden keyword.

CSS 3 overflow-x and overflow-y
The overflow-x and overflow-y properties were originally proprietary to IE, but are now included in a
W3C CSS 3 working draft. IE 6, IE 7, and Mozilla Firefox now support the overflow-x and overflow-y
properties. Support for these properties is in the next version of Safari, and Opera support is planned.

Property Value

overflow-x visible | hidden | scroll | auto

initial value: visible

overflow-y visible | hidden | scroll | auto

initial value: visible

IE 6 and IE 7 only support the overflow-x and overflow-y properties when in standards compli-
ant mode.

Like the overflow property, overflow-x and overflow-y control overflow content, but they also
allow users to control the overflowing content with a scroll bar: only a vertical scroll bar for the
overflow-y property, and only a horizontal scroll bar for the overflow-x property. Each property
accepts the same values as the overflow property.

Summary
The CSS box model is a set of rules that tells the browser how to handle the width of a box, padding,
borders, and margins. The box model offers the designer consistency across multiple platforms and
browsers. Margin and padding are essential to a document and prevent the document from rendering in
complete chaos. Borders offer more aesthetic possibilities. CSS dimensions offer controls over how wide
and high an element can be. Finally, overflow allows the simulation of inline frames and gives you con-
trol over content when it is larger than the element containing it.

To recap the material presented in this chapter, you learned the following:

❑ How to apply border widths, border styles, and border colors with the border family of
properties

❑ How to apply dimensions to the elements of a document using the width and height family of
properties

❑ How to control the line height of text using the line-height property

273

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 273

❑ How to apply padding to a document with the padding property

❑ How to apply margins to a document with the margin property

❑ How you can use the overflow property to manage content in cases where the content of an
element is bigger than the element itself

Now that you’ve had a fairly in-depth exposure to the properties fundamental to CSS design, Chapter 8
discusses CSS buoyancy, a topic involving the float and vertical-align properties of CSS.

Exercises
1. From left to right, what are the seven box model properties that make up the left, center, and

right sides of a box?

2. How do you left-, center-, and right-align a block-level box (using the standard method)?

3. When the margin shorthand property has four values, what side of the target element does
each value apply margin to, in order?

4. What are the three keyword values of the border-width property?

5. If the border-color shorthand property has three values, what side of the target element does
each value apply to, in order?

6. Name the shorthand properties that encompass the border-width, border-style, and
border-color properties.

7. If you target IE 6 in quirks mode and earlier versions of IE, which property would you use to
align a box?

8. If the padding shorthand property only has two values, what side of the target element does
each value apply to, in order?

9. Describe briefly the two situations in which margin collapsing occurs?

10. In the following document, which element’s width is the <p> element’s width based on if it
were to be given a percentage width value?

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title></title>
</head>
<body>

<p>
Peter Piper picked a peck of pickled peppers.
Did Peter Piper pick a peck of pickled peppers?
If Peter Piper picked a peck of pickled peppers,
where’s the peck of pickled peppers Peter Piper picked?

</p>
</body>

</html>

274

Part II: Properties

12_096970 ch07.qxp 4/20/07 11:56 PM Page 274

11. How do you resize an image while maintaining the aspect ratio?

12. In IE 6 quirks mode and previous versions of IE, what properties of the box model are included
in the measurement specified by the width property?

13. What is one method of emulating the min-width property in IE 6?

14. How is the min-height property emulated in IE 6?

15. What browsers do conditional comments apply to?

16. If you wanted both min-width and max-width, what declaration would you use to bring IE 6
on board?

17. If you wanted to increase the amount of spacing between lines of text, which property would
you use?

18. What are the four keywords of the overflow property?

275

Chapter 7: The Box Model

12_096970 ch07.qxp 4/20/07 11:56 PM Page 275

12_096970 ch07.qxp 4/20/07 11:56 PM Page 276

8
CSS Buoyancy: Floating
and Vertical Alignment

In Chapter 7, I presented a subset of properties that combine to define a concept known as the CSS
box model. In this chapter, I continue introducing new properties, this time focusing on two prop-
erties most often misunderstood by users new to CSS design: the float and clear properties.
These properties are often misunderstood because of their unique effect on the elements in a docu-
ment. In this chapter I discuss:

❑ The float property and how it is used to change the flow of elements in a document —
for instance, to place text beside an image

❑ The clear property and how this property is used to cancel the effects of the float property

❑ The vertical-align property and how this property is used to control the vertical
alignment of text to create subscript or superscript text or control vertical alignment in
table cells

The next section begins the discussion of the float property.

The float Property
A simple explanation of the float property is that it is used to put content side by side. In the
coming sections, you look in depth at the float property, its idiosyncrasies, and how you can use
it to lay out a web page. The following table outlines the float property and its possible values.

Property Value

float left | right | none

Initial value: none

At this point, the float property appears fairly simple. It accepts keyword values of left, right,
and none. The effects of the float property are intrinsically tied to the CSS box model. After the
float property is applied to an element, regardless of the type of element, that element takes on the

13_096970 ch08.qxp 4/20/07 11:56 PM Page 277

behavior of a block element, where its dimensions are defined by width, height, padding, borders, and
margins. Before you see some examples of this, Figure 8-1 shows you how the float property affects a
document’s layout.

Figure 8-1a

The CSS in Figure 8-1a is applied to the markup you see in Figure 8-1b.

Figure 8-1b
278

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 278

In Figure 8-1c, you can see that the image is floated to the left, meaning that the content in the para-
graphs that follow the image floats up to the right of the image.

Figure 8-1c

If you were to take away the float property from the example in Figure 8-1, you would get the output
that you see in Figure 8-2.

In Figure 8-2, the effects of the float property become more obvious — primarily, the float property is
used to place one element beside one or more other elements. In Figure 8-1, the element being floated
was the element, and the elements it floated beside were two <p> elements.

279

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 279

Figure 8-2

You can also include both left and right floats in a document; this is demonstrated in Figure 8-3.

Figure 8-3a

280

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 280

The CSS in Figure 8-3a is included in the markup in Figure 8-3b.

Figure 8-3b

In Figure 8-3c, you can see what happens when there is both a left and right float; the right image floats
to the right and allows the content that comes after it to wrap around it. Figure 8-3c shows three images
so you can see what happens when the window is made smaller; the browser just reflows the content,
and the second float is moved up or down as necessary to make room for the copy.

281

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 281

Figure 8-3c

On the surface the concept of floating is pretty simple, and for most things that you set out to accom-
plish, this is about as complicated as it will get, but there is quite a complex set of rules under the surface
of the float property. To understand what happens when an element is floated, you need to know
about how the box model is affected, and what happens when certain types of elements are floated.
These concepts are explored in the coming sections.

Floating Box Model
Because floated elements are repositioned to allow other content to flow around them, they exhibit
unique behavior. This behavior is outlined here:

282

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 282

❑ The margins of floated elements do not collapse, no matter what they are next to.

❑ Only the contents of elements following a floated element are affected by the floated element.
That is, the backgrounds, margins, borders, padding, and width (the box model and dimen-
sions) of elements following a floated element are not affected.

❑ A floated element is always treated like a block element.

Each rule is important in determining how floated elements are positioned and rendered. This section
examines each rule in depth.

The margins of floated elements never collapse. Consider the diagram in Figure 8-4, which shows how
the box model is incorporated when an element has been floated.

Figure 8-4

box padding

box border

box margin

float border

float margin

float border

float margin

flo
at

 b
or

de
r

flo
at

 m
ar

gi
n float border

float m
argin

box padding

box border

box margin

bo
x

pa
dd

in
g

bo
x

bo
rd

er

bo
x

m
ar

gi
n

box padding

box border

box m
argin

float padding
float padding

flo
at

 p
ad

di
ng

float padding

floated
element

283

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 283

When an element is floated, it takes on the behavior of a block element, with one major difference: Its
sizing becomes shrink-to-fit horizontally and vertically. That means that if you float a <div> element,
its dimensions change such that it only expands enough to accommodate the content within it. In
Chapter 7, you learned that the default dimensions of a <div> element are expand-to-fit horizontally,
meaning the <div> takes up the whole line, but not so when a <div> element is floated. Figure 8-5 is an
example of how a <div> element changes once floated.

Figure 8-5a

The CSS in Figure 8-5a is included in the markup in Figure 8-5b.

284

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 284

Figure 8-5b

285

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 285

In Figure 8-5c, you see what happens before the <div> with id name fifty-states receives the
float: left; declaration. You can see that the <div> is normal at this point; it expands to fill the
whole line.

Figure 8-5c

In Figure 8-5d, you see what happens after the <div> with id name fifty-states receives the float:
left; declaration; its width has changed. Now the <div> element only expands enough horizontally to
accommodate the content inside of it.

286

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 286

Figure 8-5d

In Figure 8-5 you see what happens when a block element is floated, but what about an inline element,
such as the element, or the <a> element? This is demonstrated in Figure 8-6.

Figure 8-6a

287

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 287

The CSS in Figure 8-6a is included in the XHTML markup that you see in Figure 8-6b.

Figure 8-6b

288

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 288

In Figure 8-6c, you see what happens prior to applying the float: right; declaration to the
element with the id name sailboat.

Figure 8-6c

In Figure 8-6d, you see that after applying the float: right; declaration to the element with
id name sailboat. The element becomes a block element with shrink-to-fit width and height.
The width and height properties are not applicable to inline elements typically; in this situation, if you
were to apply width or height to the as a floated element, it would work, since it is now a block
element.

289

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 289

Figure 8-6d

Now that you’ve had an overview of the float property, the following Try It Out is a recap of what is
possible with the float property.

Try It Out Applying the float Property
Example 8-1. To review what’s possible with the float property, follow these steps.

1. Enter the following markup in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>float</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_8-1.css’ />

</head>
<body>

<p>

290

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 290

The float property is used to force content to wrap around
another element. Elements can be floated to the right
or the left.

</p>
<p class=’block’>

When a block level element is floated, its sizing changes
from expand-to-fit, to shrink-to-fit, and is no longer
subject to margin collapsing.

</p>
<p>

When an inline element is floated, it becomes a

block-level element with shrink-to-fit sizing.

</p>
</body>

</html>

2. Save the preceding as Example_8-1.html.

3. Key in the following CSS in a new document in your text editor:

p.block {
float: left;
margin: 5px;
background: lightyellow;
border: 1px solid khaki;
width: 150px;
height: 150px;
padding: 5px;

}
span#inline {

float: left;
background: khaki;
border: 1px solid gold;
padding: 5px;
margin: 5px;

}
img {

border: 1px solid rgb(244, 244, 244);
margin: 5px;

}
img#left {

float: left;
}
img#right {

float: right;
}

4. Save the preceding style sheet as Example_8-1.css. The preceding markup and style sheet
result in the output that you see in Figure 8-7.

291

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 291

Figure 8-7

How It Works
In Example 8-1, you reviewed three major points about the float property: floated elements cause the
copy, text, and other elements that follow them to float up beside the floated element. By applying either
the float: right; or float: left; declarations, you can have content that wraps around the left or
right of an element, as was the case with the sun.png images.

When you float an element, the rules that determine the floated element’s size are changed from the
default. Floated elements always use the shrink-to-fit sizing, even if the element was originally an inline
or a block-level element.

In the next section I present a property that allows you to control floated elements, the clear
property.

292

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 292

The clear Property
In this section, I discuss a property intrinsically related to the float property: the clear property. The
clear property is used to control floating content. The following table outlines the clear property and
its possible values.

Property Value

clear none | left | right | both

Initial value: none

The simplest explanation for the clear property is that it is used to cancel the effects of one or more
floated elements. An example of its use can be observed in Figure 8-8.

Figure 8-8a

The CSS in Figure 8-8a is combined with the markup in Figure 8-8b.

293

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 293

Figure 8-8b

294

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 294

In Figure 8-8c, you see what happens before the clear: left; declaration is applied to the ele-
ment with the id name mercedes-benz. The mercedes-benz drawing has floated up beside the draw-
ing of John Lennon. This is where the clear property can help; it can cancel the effects of a float on the
element that it is applied to.

Figure 8-8c

In Figure 8-8d, you see the results of the application of the clear: left; declaration on the
element with the id name mercedes-benz. The effects of the float applied to the drawing of John
Lennon has been canceled, and the image is dropped down below the drawing of John Lennon.
However, because the float: left; declaration is also applied to the mercedes-benz image (since
it is applied to all images via the img selector), the text still wraps around it.

So the clear property is used to control what happens when elements are floated. When you use the
clear property, you can cancel a float on a particular element.

295

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 295

Figure 8-8d

In the following Try It Out, you recap the clear property.

Try It Out Applying the clear Property
Example 8-2. To review the clear property, follow these steps.

1. Enter the following markup in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>clear</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_8-2.css’ />

</head>
<body>

<p>

The clear property cancels the effects of the

296

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 296

float property, and can prevent wrapping from
taking place.

</p>
</body>

</html>

2. Save the preceding document as Example_8-2.html.

3. Enter the following style sheet in a new document in your text editor:

img#left {
float: left;

}
img#right {

float: right;
}
p {

clear: both;
margin: 20px 0 0 0;
font: 12px sans-serif;
border: 1px solid rgb(200, 200, 200);
background: rgb(244, 244, 244);
padding: 5px;

}

4. Save the CSS that you just keyed in as Example_8-2.css. The markup and CSS of Example 8-2
result in the rendered output that you see in Figure 8-9.

Figure 8-9

How It Works
In Example 8-2, you tried the clear property for yourself and observed how the clear property is used
to cancel the effects of the float property on the element that it is applied to.

In the next section I look at some float bugs in IE 6.

297

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 297

Float Bugs in IE 6
The following section takes a look at float bugs that arise in IE 6 and a few of the techniques you can use
to work around these bugs. The bugs that I discuss here are as follows:

❑ Peek-a-boo bug: As the name implies, this bug involves the use of floats where certain content
on a page disappears and occasionally reappears.

❑ Guillotine bug: This is another bug that comes up in IE when using floats, where content is cut
in half.

❑ Three-pixel jog: This bug causes 3 pixels of space to mysteriously appear when using floats in IE.

❑ Double-margin bug: This bug causes the left or right margins of a floated box to double when
using floats in IE.

Even though the following bugs are a problem in IE 6, all of them have been fixed in IE 7.

The Peek-A-Boo Bug
The peek-a-boo bug can come up in several different contexts — in fact, in far too many to list here. It
involves content that disappears and reappears seemingly at random (hence its aptly applied name). The
example in Figure 8-10 demonstrates the peek-a-boo bug.

Figure 8-10a

298

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:56 PM Page 298

The CSS in Figure 8-10a is combined with the markup in Figure 8-10b.

Figure 8-10b

Figure 8-10c shows that when this document is loaded into IE 6, none of the content beside the floated
element is visible until you hover your mouse over a link. Hovering causes the lost content to reappear.
If you hover your mouse cursor over the links that have reappeared, you find some of the content disap-
pears again.

299

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:56 PM Page 299

Figure 8-10c

Three properties present in the style sheet trigger this bug:

❑ Floating an element by applying a float: left; declaration (float: right; also triggers
the bug).

❑ Including a background on the containing element. In this example, this is the background:
rgb(234, 234, 234); declaration.

❑ Including a clear on an element following the float, where the margins of the clearing element
come into contact with the floating element.

So, with an overview of what causes the peek-a-boo bug and what it is, what do you do to work around
the bug? You have more than one option:

❑ Apply a position: relative; declaration to the containing element and floating element.

❑ Prevent the margins of the clearing element from coming into contact with the floating element.

❑ Avoid applying a background to the containing element.

❑ Apply the declaration zoom: 1; to the containing element.

❑ Apply the declaration display: inline-block; to the containing element.

❑ Apply a fixed width to the containing element.

The next section continues the discussion of Internet Explorer bugs with the guillotine bug.

The Guillotine Bug
The guillotine bug is another aptly named bug where only part of the content disappears. The guillotine
bug is demonstrated in the documents in Figure 8-11.

300

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 300

The CSS in Figure 8-11a is combined with the markup in Figure 8-11b.

Figure 8-11a

Figure 8-11b

301

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 301

After you load the preceding in Internet Explorer, when you hover your mouse cursor over the Content
Off links, part of the content inside the floating element is chopped off! You can see this in the output in
Figure 8-11c.

Figure 8-11c

The guillotine bug occurs when the following conditions are present:

❑ IE is in standards-compliant rendering mode.

❑ An element is floated inside of a container element.

❑ Links exist inside the container element in non-floated content that appears after the float.

❑ A :hover pseudo-class is applied to <a> elements that change certain properties.

The guillotine bug is yet another bizarre IE rendering bug. The fix is not nearly as elegant as that for the
peek-a-boo bug. To fix the guillotine bug, a clearing element must appear after the containing element.
The best method to apply this clearing element without affecting the original design is to apply the fol-
lowing rule to the clearing element:

div#clearing {
clear: both;
visibility: hidden;

}

Then in the markup, add the clearing element:

Content off.

</div>
<div id=’clearing’></div>

</body>
</html>

302

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 302

After you apply this rule and markup, the guillotine bug is corrected without any effects on the intended
design. The visibility: hidden; declaration is similar to the display: none; declaration (see
Chapter 13 and Chapter 14). The key difference is that an element with display: none; is not rendered
and does not appear in a document, whereas an element with visibility: hidden; is rendered, does
appear in the document, but is invisible. The easiest way to distinguish between the two is that the
display property with a none keyword makes it seem an element doesn’t exist at all. If you use the
display: none; declaration, properties are not applied and the element takes up no space. If you use
visibility: hidden; instead with this declaration, the element still exists; properties are applied, and
the dimensions of the element are still honored, even though the element is invisible.

The nest section continues the discussion of IE 6 float bugs with the three-pixel jog.

The Three-Pixel Jog
The next Internet Explorer rendering bug, which also involves floated elements, is called the three-pixel
jog. As the name implies, this bug causes 3 pixels of space to appear between text inside an element that
follows a floated element and the inner border of that element. This bug is demonstrated by the docu-
ments in Figure 8-12.

Figure 8-12a

The CSS in Figure 8-12a is combined with the markup in Figure 8-12b.

Figure 8-12c shows the subtle effects of the three-pixel jog. If you look closely in the screenshot, you can
see that the first three lines of the paragraph are 3 pixels farther to the right than the two lines that fol-
low, which corresponds directly to the height of the floated element.

303

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 303

Figure 8-12b

Figure 8-12c

The three-pixel jog doesn’t look like much of a big deal, but it can be — especially if a design must be the
same, pixel for pixel, in all browsers. The three-pixel jog can be corrected by applying either a width or
height (other than auto) to the element that follows the float. Because an explicit width or height is not
always desirable, a few methods target IE 6 and less specifically. The first method uses conditional com-
ments like those you saw in Chapter 7.

<!--[if lt IE 7]>
<style type=’text/css’>

p {
height: 1px;

}
</style>
<![endif]-->

304

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 304

This is a very clean, acceptable method to target IE 6 for Windows explicitly, and because IE 6 and earlier
versions have incorrect support for the height property, the content isn’t adversely affected by includ-
ing this declaration. Other browsers won’t be so forgiving, however, so this solution must be applied
only to Internet Explorer to avoid complications. The next section continues discussion of Internet
Explorer rendering bugs with the double-margin bug.

The Double-Margin Bug
Here’s yet another Internet Explorer rendering bug involving floated elements. The double-margin bug
is demonstrated in the documents in Figure 8-13.

Figure 8-13a

The CSS in Figure 8-13a is combined with the markup in Figure 8-13b.

Figure 8-13b

Figure 8-13c shows the double-margin bug in action.

305

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 305

Figure 8-13c

Three ingredients are required to reproduce this bug:

❑ A containing element

❑ A floated element inside the containing element

❑ A left margin specified on the floated element

When these ingredients are present, the left margin of the floated element doubles, so Figure 8-13c
shows the floated element with 100 pixels of left margin instead of only 50, as is specified in the style
sheet. The fix for this bug is very simple. All you need to do is apply a display: inline; declaration to
the floated element. If you recall from earlier in this chapter, all floated elements are always block ele-
ments. Using the display: inline; declaration somehow tricks IE 6 into correct behavior. Be sure to
test this fix with different browsers to ensure that unexpected side effects are not encountered. As is the
case with the three-pixel jog, you can target IE 6 specifically by including this declaration within a rule
inside of a style sheet that resides in conditional comments.

The ver tical-align Property
The vertical-align property is used primarily in two contexts. In one context, it is used to vertically
align text appearing within the lines of a paragraph. One example of this creates subscript or superscript
text. The vertical-align property may also be used to align the content appearing inside a table cell.
The following table outlines the vertical-align property and its possible values.

Property Value

vertical-align baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length>

Initial value: baseline

306

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 306

The vertical-align property applies exclusively to inline elements, such as and . It
has different meaning when applied to table cells. I discuss its use in cells in an upcoming section. In the
next section, however, I look at how to format subscript text with the vertical-align property.

Subscript and Superscript Text
Within a paragraph, you may need several different types of styles that are only applied to snippets of
the text, such as bold or italic fonts. Subscript text is an example of styles that often apply only to a selec-
tion of text, rather than to a whole paragraph. Subscript text is text that appears slightly smaller than the
text surrounding it and slightly lower than the baseline of the surrounding text. The baseline is the invis-
ible line created for each line of text against which the bottom of each letter is aligned. In other words,
the baseline is the line that letters “sit” on. Superscript text, on the other hand, is text raised above the
baseline and that appears slightly smaller than the surrounding text. Figure 8-14 is a demonstration of
subscript and superscript text.

Figure 8-14a

The CSS in Figure 8-14a is included in the markup document that you see in Figure 8-14b.

Figure 8-14b

307

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 307

The rendered output of the source code appears in Figure 8-14c.

Figure 8-14c

Figure 8-14 shows that the content of the element of the first paragraph appears lower than that
of the rest of the line, which is a result of applying the vertical-align: sub; declaration. The figure
also shows that the element of the second paragraph appears slightly higher, which is a result of
the vertical-align: super; declaration.

The next section continues the discussion of the vertical-align property with top, middle, and bot-
tom vertical alignment text.

The top, middle, and bottom Keywords
The top, middle, and bottom keywords are used to control vertical alignment of selections of text that
are slightly smaller than the surrounding text. The top keyword is demonstrated in Figure 8-15.

Figure 8-15a

308

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 308

Combine the style sheet in Figure 8-15a with the markup in Figure 8-15b.

Figure 8-15b

This source code results in the output depicted in Figure 8-15c.

Figure 8-15c

In Figure 8-15c, you see that the element with the contents Top is aligned to the top of the line
box. Figure 8-16 demonstrates the middle keyword.

309

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 309

In Figure 8-16, you can see that the middle keyword lines the inline box up relative to the center point of
the lowercase letters on the line.

Figure 8-16

Figure 8-17 demonstrates the bottom keyword.

Figure 8-17

In Figure 8-17, you can see that the inline box is aligned with the bottom of the line box. In the next sec-
tion, I discuss the text-top and text-bottom keywords.

The text-top and text-bottom Keywords
Like the top, middle, and bottom values, the text-top and text-bottom keywords raise or lower
a subset of text. The difference in the text-top keyword as opposed to the top keyword is that the
text-top keyword causes alignment to happen with respect to the tallest character of the font of

310

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 310

the surrounding text, for instance the lowercase letters t, l, f, or the uppercase letters. Likewise the
text-bottom keyword aligns with respect to the lowest character, for instance the letters p, y, or g,
which drop below the baseline. The text-top and text-bottom keyword values produce output simi-
lar to that produced by the top and bottom keywords. The most important difference between top and
text-top is that top causes the border of the inline box to align with the top border of the line contain-
ing that inline box, whereas text-top aligns with respect to the tallest character in the font.

The next section discusses percentage and length values as applied to the vertical-align property.

Percentage and Length Value
If the selection of keywords I presented in the previous sections weren’t enough for you, the vertical-
align property also allows percentage and length values to be applied. Figure 8-18 demonstrates the
vertical-align property with a value of 300%.

Figure 8-18

Percentage values with the vertical-align property are based on the line-height of the element the
percentage value is applied to. If you remember back to Figure 8-15b, which shows the markup structure
of this document, the element that contains the text 300% has a line-height of 23 pixels. If you
recall, I didn’t give the element an explicit line-height; I determined the line-height by
including the line-height property and increasing or decreasing the value until I achieved the same
results that you see in Figure 8-18. To calculate the pixel value of 300%, I take the line-height, 23, and
multiply it by 3, to get 69, so the pixel value of 300% in Figure 8-18 is 69px. The default line height differs
from browser to browser and between different font sizes, so your own results may vary.

Figure 8-19 demonstrates the vertical-align property with a length of 69 pixels, which should be
identical to what you see in Figure 8-18, concerning the placement of the box.

311

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 311

Figure 8-19

Vertically Aligning the Contents of Table Cells
The vertical-align property has completely different meaning when it is applied to table cells.
When applied to table cells, only the baseline, top, middle, and bottom keywords are applicable, and
the vertical-align property is used to align the entire contents of the cell. This is demonstrated in
Figure 8-20.

Figure 8-20a

312

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 312

Apply the style sheet in Figure 8-20a to the markup in Figure 8-20b.

Figure 8-20b

Figure 8-20c shows the output from this example.

Figure 8-20c

313

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 313

The preceding example is a demonstration of the four vertical-align properties that are applicable to
table cells: baseline, top, middle, and bottom. The first two cells are aligned to the baseline. The
baseline of a table cell is determined by the baseline of the table row. The baseline of the table row
is determined by taking the baseline of the first line of each baseline-aligned table cell in that row.
The one with the largest font, or other inline content, such as an image, determines the baseline of the
row, which each table cell is aligned against.

In short, this complicated summary of baselining results in the line Lorem ipsum in the first table cell in
Figure 8-16c having the same baseline as the word Baseline that appears in the second cell. In this case,
the font size of Baseline determines where the baseline of the table row is.

The third cell is top-aligned, which means the content begins at the top of the cell and flows on down-
ward from there. The fourth cell is middle-aligned, which means that the height of the content is mea-
sured to determine the middle point of the content, and then that midpoint is aligned with the midpoint
of the cell. Finally, the fifth cell is bottom-aligned, which means that the bottom-most point of the con-
tent in the cell is aligned with the bottom of the cell.

Although you might expect the vertical-align property to apply to all elements — to block elements,
for example, in the same way it is applied to table cells — this isn’t the case. The vertical-align prop-
erty is applicable only to inline elements and table cell elements, <td> and <th>.

The following Try It Out is a recap of the vertical-align property.

Try It Out Applying the vertical-align Property
Example 8-3. To review the vertical-align property, follow these steps.

1. Enter the following XHTML in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>vertical-align</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_8-3.css’ />

</head>
<body>

<p>
The vertical-align property is used in two scenarios: to
vertically align inline elements with respect to the line
box, and to vertically align the contents of table cells.

</p>
<p>

When vertically aligning inline elements within a line box,
the vertical-align property can be used with the keywords
top, middle, bottom, text-top, text-bottom.

</p>
<p>

314

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 314

Gg
Top
Middle
Bottom
Text Top
Text Bottom

</p>
<p>

The top and bottom keywords align to the top and bottom of
the line-box respectively. The middle keyword aligns to the
center point of the highest lowercase letter. The text-top
and text-bottom keyword align to the tallest and lowest character,
respectively.

</p>
<p>

The vertical-align property can also accept either a
percentage or length value. The percentage value is a
percentage of the line-height value; the length is offset
from the bottom of the line-height.

</p>
<p>

Gg
200%
46px

</p>
<p>

Finally, when applied to table cells, the baseline, top, middle,
and bottom keywords have different meanings.

</p>
<table>

<tbody>
<tr>

<td id=’baseline-copy’>
This copy aligns with the bottom of the tallest content
in the first row of the table.

</td>
<td id=’baseline’>Baseline</td>
<td id=’td-top’>Top</td>
<td id=’td-middle’>Middle</td>
<td id=’td-bottom’>Bottom</td>

</tr>
</tbody>

</table>
</body>

</html>

2. Save the preceding XHTML document as Example_8-3.html.

315

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 315

316

Part II: Properties

3. Type the following style sheet in your text editor:

p {
font: 12px sans-serif;

}
span.line {

border: 1px solid rgb(200, 200, 200);
background: rgb(244, 244, 244);
font-size: 100px;

}
span.line span {

vertical-align: 300%;
font-size: 20px;
background: white;
border: 1px solid black;

}
span#top {

vertical-align: top;
}
span#middle {

vertical-align: middle;
}
span#bottom {

vertical-align: bottom;
}
span#text-top {

vertical-align: text-top;
}
span#text-bottom {

vertical-align: text-bottom;
}
span#percentage {

vertical-align: 200%;
}
span#length {

vertical-align: 46px;
}
td {

padding: 5px;
width: 100px;
border: 1px solid black;

}
td#baseline-copy {

vertical-align: baseline;
}
td#baseline {

font-size: 50px;
vertical-align: baseline;

}
td#td-top {

vertical-align: top;
}

13_096970 ch08.qxp 4/20/07 11:57 PM Page 316

td#td-middle {
vertical-align: middle;

}
td#td-bottom {

vertical-align: bottom;
}

4. Save the preceding style sheet as Example_8-3.css. The preceding source code results in the
output that you see in Figure 8-21.

Figure 8-21

317

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 317

How It Works
In Example 8-3, you reviewed the more complicated portions of the vertical-align property. You set
up text cases for each of the keywords, save the sub and super keywords, which are used to apply sub-
script and superscript text styling, respectively.

First were the top, middle, bottom, text-top, and text-bottom keywords. You see that with this
example that there really is no discernable difference between the text-top and text-bottom key-
words; most browsers simply map these to the top and bottom keywords. You set up a line to test each
keyword where the font is 100 pixels, and each line has a border and background so that you can easily
see the dimensions of the line box. The top and text-top, and the bottom and text-bottom keywords
align to the top and bottom of the line box, respectively. The middle keyword aligns to the center point
of the lowercase letter.

In the next test case you set up a line for testing the vertical-align property with a percentage and a
length value. The percentage value is based on the height of the line; in this case the line height is 23 pix-
els, you verify this by the next example, which gives the vertical-align property a length value of 46
pixels, which is offset from the bottom of the line box, just like the percentage.

In the last test, you set up a table for the four values of the vertical-align property that have
special value when applied to a table. The first line of the first cell is aligned to the bottom of the word
“Baseline” that appears in the second cell. When table cells are aligned to the baseline, each cell is
aligned to the bottom of the largest content that appears in the first row of the table. In the last three
cells, the contents of each cell are aligned to the top, middle, and bottom.

Summary
This chapter focused on three key areas of CSS design. In this chapter you learned the following:

❑ The float property is a seemingly complex property that has a unique place in CSS design. The
float property is used for layout — for instance, to include content in the flow of paragraph
text in such a way that text wraps around the floated element.

❑ The clear property is used to control the effects of the float property in situations where you
don’t want all the content following a floated element to float beside it.

❑ The vertical-align property is used to vertically align inline elements such as the
element or the element relative to the line containing those inline elements; this prop-
erty can be used, for instance, to create subscript or superscript text.

❑ The vertical-align property may also be applied to table cells to control vertical alignment
of the content within table cells. If the vertical-align property is applied to table cells, only
a subset of properties are applicable. These include the baseline, top, middle, and bottom
properties. The behavior of these properties is completely different when applied to table cells
as opposed to normal inline content.

Chapter 9 discusses how to control the styling of list elements with CSS.

318

Part II: Properties

13_096970 ch08.qxp 4/20/07 11:57 PM Page 318

Exercises
1. When an element is floated, what rule governs its dimensions?

2. What happens when an inline element, such as a element, is floated?

3. What are the three keywords of the float property?

4. If an element is floated to the right, and you don’t want the following element to wrap around
it, what declaration would you apply to that element?

5. What declarations would you use to create subscript and superscript text?

6. When vertically aligning an inline element to the middle, how is the element positioned on
the line?

7. What is the difference between the text-top and top keywords of the vertical-align
property?

8. If you are aligning table cells to the baseline, what determines the baseline?

319

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

13_096970 ch08.qxp 4/20/07 11:57 PM Page 319

13_096970 ch08.qxp 4/20/07 11:57 PM Page 320

9
List Properties

In Chapter 8, you saw how the float and clear properties are used to control the flow of content
in a web document. In this chapter, I look at properties used to control the styling of list elements.
I cover the following:

❑ The list-style-type property and how it’s used to present different types of lists
through a variety of marker styles for bulleted lists and numbered lists

❑ The list-style-image property and how it’s used to provide a custom marker for each
list item

❑ The list-style-position property and how it’s used to control the positioning of list
item markers

Like the CSS properties I covered in previous chapters, the CSS list properties give you complete
control over the way you present and style list items.

The list-style-type Property
You use the list-style-type property to change the presentation of bulleted and numbered
lists. For example, you can change an ordered list to a list using Roman numerals for markers, or
you can change a bulleted list to one using squares instead of circles for markers. The following
table outlines the list-style-type property and its possible values (as of CSS 2.1).

Property Value

list-style-type disc | circle | square | decimal | decimal-
leading-zero | lower-roman | upper-roman |
lower-greek | lower-latin | upper-latin |
armenian | georgian | none

Initial value: disc

14_096970 ch09.qxp 4/20/07 11:42 PM Page 321

IE 6 and IE 7 support only CSS 1 keyword values: disc | circle | square | decimal | lower-
roman | upper-roman | lower-alpha | upper-alpha | none.

Naturally, the default list type used also depends on whether or list elements are used to
structure the list. A variety of keywords allows for a variety of presentational styles.

Styling Unordered Lists
Figure 9-1a demonstrates what’s possible with unordered lists (lists made with the element).
There’s a possibility of four different styles: disc, circle, square, and none.

Figure 9-1a

The style sheet in Figure 9-1a is combined with the markup in Figure 9-1b.

Figure 9-1c shows the results of the code in Figure 9-1a and Figure 9-1b.

As you can see from the code in Figure 9-1a and Figure 9-1b, and the output in Figure 9-1c, unordered
lists can have four different styles, disc, circle, square, and none.

322

Part II: Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 322

Figure 9-1b

Figure 9-1c

In the next section you see how to style ordered lists.

323

Chapter 9: List Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 323

Styling Ordered Lists
Ordered lists can be styled using a variety of different lettering and numbering conventions. The follow-
ing series of figures demonstrates what each style looks like in the most popular browsers of the Mac
and Windows platforms.

Figure 9-2a shows what each keyword looks like in Safari, Firefox, and Opera on Mac OS X Tiger.

Figure 9-2a

324

Part II: Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 324

In Figure 9-2a, you can see that three of the keyword values have no effect in Safari: decimal-leading-
zero, armenian, and georgian are not supported by Safari. Also in Figure 9-2a, you see that the
armenian and georgian keyword values are not supported by Firefox or Opera for Mac OS X.
Figure 9-2b shows the various keywords in browsers on Windows XP.

Figure 9-2b

325

Chapter 9: List Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 325

In Figure 9-2b, you see that IE 6 does not support the keywords decimal-leading-zero, lower-
greek, lower-latin, upper-latin, armenian, or georgian. Firefox and Opera on Windows support
all of the demonstrated keywords. Figure 9-2c demonstrates each keyword in IE 7 on Windows Vista.

Figure 9-2c

In Figure 9-2c, you can see that nothing has changed with respect to list-style-type keyword sup-
port in IE 7.

Try It Out Applying the list-style-type Property
Example 9-1. To apply the list-style-type property, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>list-style-type</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_9-1.css’ />

</head>
<body>

<p>
The list-style-type allows you to make use of a variety of
different markers for list items. For unordered lists,
there are three: disc, square, and circle.

</p>

<li id=’disc’ class=’safe’>disc

326

Part II: Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 326

<li id=’square’ class=’safe’>square
<li id=’circle’ class=’safe’>circle

<p>

For ordered lists, there are eleven different styles of marker:
</p>

<li id=’decimal’ class=’safe’>decimal
<li id=’decimal-leading-zero’>decimal-leading-zero
<li id=’lower-roman’ class=’safe’>lower-roman
<li id=’upper-roman’ class=’safe’>upper-roman
<li id=’lower-greek’>lower-greek
<li id=’lower-latin’>lower-latin
<li id=’upper-latin’>upper-latin
<li id=’armenian’>armenian
<li id=’georgian’>georgian
<li id=’upper-alpha’ class=’safe’>upper-alpha
<li id=’lower-alpha’ class=’safe’>lower-alpha

<p>

Markers that are known to have the most compatibility in all
browsers are marked with a background of mistyrose.

</p>
<p>

The marker can be removed from either ordered or unordered lists with
the none keyword.

</p>
<ul class=’none’>

<li class=’safe’>No marker

<ol class=’none’>

<li class=’safe’>No marker

</body>
</html>

2. Save the preceding markup as Example_9-1.html.

3. Enter the following style sheet into your text editor:

li#decimal {
list-style-type: decimal;

}
li#square {

list-style-type: square;
}
li#circle {

list-style-type: circle;
}

327

Chapter 9: List Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 327

.none {
list-style-type: none;

}
li#decimal {

list-style-type: decimal;
}
li#decimal-leading-zero {

list-style-type: decimal-leading-zero;
}
li#lower-roman {

list-style-type: lower-roman;
}
li#upper-roman {

list-style-type: upper-roman;
}
li#lower-greek {

list-style-type: lower-greek;
}
li#lower-latin {

list-style-type: lower-latin;
}
li#upper-latin {

list-style-type: upper-latin;
}
li#armenian {

list-style-type: armenian;
}
li#georgian {

list-style-type: georgian;
}
li#lower-alpha {

list-style-type: lower-alpha;
}
li#upper-alpha {

list-style-type: upper-alpha;
}
li.safe {

background: mistyrose;
}

4. Save the preceding style sheet as Example_9-1.css. Since Firefox for Windows has better sup-
port for the list-style-type keywords than other browsers, load up the example in Firefox
for Windows to get the output in Figure 9-3.

328

Part II: Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 328

Figure 9-3

How It Works
In Example 9-1 you recapped each of the keyword properties that are allowed by the list-style-type
keyword. Since some keywords pose compatibility problems, you’re better off sticking with the ones
that have the best browser support. Those keywords are disc, square, circle, decimal, lower-
roman, upper-roman, upper-alpha, lower-alpha, and none.

In the next section, I discuss the list-style-image property.

329

Chapter 9: List Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 329

The list-style-image Property
Like the list-style-type property, you can use the list-style-image property to change the
marker used for list items. The list-style-image property is most suited for custom bulleted lists.
The following table outlines the list-style-image property and its possible values.

Property Value

list-style-image <uri> | none
Initial value: none

The list-style-image property is quite straightforward; it accepts a file path to the image, which is
denoted in the preceding table by the <uri> notation. In Figure 9-4, you see a simple example of the
list-style-image property in action. In Figure 9-4a, you see the CSS required to make a custom list
marker.

Figure 9-4a

The CSS in Figure 9-4a is combined with the markup in Figure 9-4b.

Figure 9-4b

330

Part II: Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 330

The CSS in Figure 9-4a and the markup in Figure 9-4b result in the output in Figure 9-4c.

Figure 9-4c

As you can see in Figure 9-4c, the arrow.png and arrow2.png icons have replaced the list bullets.

In the next section, I discuss the list-style-position property, which enables you to control the
placement of list markers.

The list-style-position Property
You can use the list-style-position property to control the placement of list item markers and
whether the list item marker appears on the inside of the list item element or outside of it. Where the list
marker is placed is only obvious when the element has a border. The following table outlines the
list-style-position property and its possible values.

Property Value

list-style-position inside | outside

Initial value: outside

You can highlight the effects of the list-style-position property. Figure 9-5 demonstrates what the
list-style-position property does, beginning with the CSS in Figure 9-5a.

The CSS in Figure 9-5 is combined with the markup in Figure 9-5b.

This results in the output shown in Figure 9-5c.

331

Chapter 9: List Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 331

Figure 9-5a

Figure 9-5b

Figure 9-5c

332

Part II: Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 332

In Figure 9-5, you can see that the list-style-position property is used to control whether the list
marker appears on the inside of the element’s borders or on the outside.

The next section wraps up the discussion of CSS list properties with the list-style shorthand prop-
erty. Using this property, you can combine several properties into one.

The list-style shorthand Property
Like the shorthand properties I presented in previous chapters, the list-style shorthand property
allows multiple properties to be combined into one property. The following table outlines the list-
style shorthand property and the possible values it allows.

Property Value

list-style <’list-style-type’> || <’list-style-position’> ||
<’list-style-image’>

Initial value: n/a

The list-style property enables you to specify from one to three values, with each value correspond-
ing to the list style properties I have discussed throughout this chapter: list-style-type, list-
style-image, and list-style-position. Figure 9-6 is a demonstration of what is possible with the
list-style property.

The CSS in Figure 9-6a is combined with the markup in Figure 9-6b.

Figure 9-6a

333

Chapter 9: List Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 333

Figure 9-6b

The CSS in Figure 9-6a and the markup in Figure 9-6b results in the output in Figure 9-6c.

Figure 9-6c

334

Part II: Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 334

In Figure 9-6, you can see that all three list style properties, list-style-type, list-style-image,
and list-style-position can be all consolidated into a single list-style property, which allows
any combination of the three styles to be present.

Try It Out Applying the list-style Property
Example 9-2. To try out the list-style property, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>list-style</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_9-2.css’ />

</head>
<body>

<p>
The list-style property allows you to combine three separate
properties, list-style-type, list-style-image, and
list-style-position, into one single property; any combination of
those three separate properties can be present.

</p>

<li id=’marker’>You can specify only a marker.
<li id=’position’>You can specify only the position.
<li id=’image’>You can specify only a marker image.
<li id=’marker-position’>

The marker and the position can be specified.

<li id=’marker-image’>

The marker and the image can be specified.

<li id=’image-position’>

The image and the position can be specified.

<li id=’all-three’>

Or you can specify all three styles.

</body>

</html>

2. Save the preceding markup as Example_9-2.html.

3. Enter the following CSS into your text editor:

li {
background: lightyellow;
border: 1px solid gold;
padding: 5px;
margin: 2px;

}

335

Chapter 9: List Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 335

li#marker {
list-style: square;

}
li#position {

list-style: inside;
}
li#image {

list-style: url(‘arrow.png’);
}
li#marker-position {

list-style: square inside;
}
li#marker-image {

list-style: square url(‘arrow.png’);
}
li#image-position {

list-style: url(‘arrow.png’) inside;
}
li#all-three {

list-style: square url(‘arrow.png’) inside;
}

4. Save the preceding CSS as Example_9-2.css. The preceding CSS and markup result in the out-
put in Figure 9-7.

Figure 9-7

336

Part II: Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 336

How It Works
The list-style property exists as a shortcut for specifying list styles. In fact, its existence pretty much
negates the need to ever use the individual list-style-type, list-style-image, and list-style-
position properties, since it facilitates all of the functionality of the three individual properties in just
one, shorter property.

In Example 9-2, you recapped what’s possible with the list-style property by writing out an example
that implements every possible combination of the list-style-type, list-style-image, and list-
style-position properties.

Summary
The CSS list properties provide complete control over how list elements are presented. To recap, in this
chapter you learned the following:

❑ A variety of predefined options are available for the display of list item markers using the
list-style-type property.

❑ The list-style-image property may be used to provide a custom image as the list item marker.

❑ The list-style-position property dictates whether the markers appear inside the list item
element or outside of it.

❑ The list-style property provides a shortcut syntax where all three list style properties may
be referenced at once.

In Chapter 10, I explore the properties that CSS provides for control over the presentation of backgrounds.

Exercises
1. Name which keywords of the list-style-type property are not supported by IE 6?

2. What list-style-type keywords are supported by IE 7?

3. What properties does the list-style property render utterly and completely useless?

4. Can size and position be controlled with the list-style-image property? If so, how?

337

Chapter 9: List Properties

14_096970 ch09.qxp 4/20/07 11:42 PM Page 337

14_096970 ch09.qxp 4/20/07 11:42 PM Page 338

10
Backgrounds

In Chapter 9, you learned how CSS lists are styled. In this chapter, I explore the CSS background
properties and see how these provide control over the presentation of the background. In this
chapter, I discuss the following:

❑ How to use the background-color property to set a background color

❑ How to use the background-image property to specify a background image

❑ How to use the background-repeat property to control background tiling

❑ How to use the background-position property to control how the background is
positioned

❑ How to use the background-attachment property to control whether the background
scrolls with the page or remains fixed in place with respect to the view port

❑ How to use the background shorthand property to combine all the separate background
properties into a single property

Backgrounds play a large role in CSS design and are often the bread and butter of the overall aes-
thetic presentation of a web page. This chapter begins the discussion of background properties by
exploring the background-color property.

The background-color Property
The background-color property is used to specify a solid background color. The following table
shows the possible values for the background-color property.

Property Value

background-color <color> | transparent

Initial value: transparent

15_096970 ch10.qxp 4/20/07 11:44 PM Page 339

The background-color property allows any of the color values supported by CSS, such as a color
keyword, an RGB value, or a hexadecimal, or short hexadecimal value. It may also be given the
transparent keyword, which indicates that no color should be used. Consider the example in
Figure 10-1.

Figure 10-1a

The CSS in Figure 10-1a is combined with the markup in Figure 10-1b.

Figure 10-1b

The CSS in Figure 10-1a and the markup in Figure 10-1b result in the output you see in Figure 10-1c.

340

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 340

Figure 10-1c

In Figure 10-1, you see a few different methods of specifying a background color via CSS. The
background-color property takes a color value, which as you saw in Chapter 2, can be a color
keyword, like pink, an RGB value like rgb(200, 0, 0), a hexadecimal color value such as #ffffff,
or a short hexadecimal color like #000. The background-color property also supports one additional
color keyword not supported by most other color properties, transparent. The transparent
keyword is also supported by the border-color property, but not by IE, as you saw in Chapter 7.

The following exercise applies the background-color property to a style sheet.

Try It Out Applying a Background Color
Example 10-1. To apply the background-color property, follow these steps.

1. Enter the following HTML document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>background-color</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_10-1.css’ />

</head>
<body>

<p>
The background-color property accepts a color value. The
color value can be a color keyword,
an RGB value, a
hexadecimal value or a
short hexadecimal value or,
additionally, the value can be the
transparent keyword, which
is also the default value.

</p>
</body>

</html>

341

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 341

2. Save the preceding as Example_10-1.html.

3. Enter the following style sheet:

body {
background-color: pink;
line-height: 32px;

}
span {

border: 1px solid rgb(0, 0, 0);
}
span#keyword {

background-color: yellow;
}
span#rgb {

background-color: rgb(200, 0, 0);
color: #fff;

}
span#hexadecimal {

background-color: #000000;
color: #ffffff;

}
span#short-hex {

background-color: #fff;
color: #000;

}
span#transparent {

background-color: transparent;
}

4. Save the preceding document as Example_10-1.css. The rendered output of Example 10-1
should look like the screenshot you see in Figure 10-2.

Figure 10-2

342

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 342

How It Works
In Example 10-1, you created an example for the background-color property that makes use of all the
various color values supported by it. In Example 10-1, you can also see that the background-color
property is applicable to either inline elements or block-level elements. In fact, the background-color
property can be applied to just about every HTML element there is, save for the <col /> element, which
is used in the layout of HTML tables.

In the next section I discuss the background-image property.

The background-image Property
As you probably guessed, the background-image property enables you to provide an image for the back-
ground. The following table outlines the possible values available for the background-image property.

Property Value

background-image <uri> | none

Initial value: none

Like the list-style-image property that I discussed in Chapter 9, the background-image property
allows you to reference a URL, which is indicated by the <uri> notation in the preceding table, or a key-
word of none. When you specify a background image, by default the image tiles across the entire area
available to it. You can see an example of this in Figure 10-3.

Figure 10-3a

343

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 343

The CSS in Figure 10-3a is combined with the markup in Figure 10-3b.

Figure 10-3b

The CSS in Figure 10-3a and the markup in Figure 10-3b result in the output you see in Figure 10-3c.

Figure 10-3c

In Figure 10-3, you see the background-image property applied to the <body> element; by default it
tiles both horizontally (along the x-axis) and vertically (along the y-axis). You’ll see how to control tiling
in the next section with the background-repeat property.

In the following Try It Out, you try the background-image property for yourself. The images and
source code for this and all the other examples in this book can be found online at www.wrox.com.

344

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 344

Try It Out Applying a Background Image
Example 10-2. In the following steps, you apply background images to a web page.

1. Enter the following (X)HTML document into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>background-image</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_10-2.css’ />

</head>
<body>

<p>
The background-image property uses the url() syntax to specify
a background-image. The image is tiled along the x-axis and
the y-axis.

</p>
</body>

</html>

2. Save the preceding document as Example_10-2.html.

3. Enter the following CSS in your text editor:

body {
background-image: url(‘pattern.png’);

}
p {

background-color: #fff;
padding: 3px;
margin: 3px;
border: 1px solid rgb(244, 244, 244);
width: 200px;
margin: auto;

}

4. Save the preceding document as Example_10-2.css. The output of Example 10-2 can be seen
in Figure 10-4.

Figure 10-4
345

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 345

How It Works
In Example 10-2, you applied an image to the <body> element, pattern.png, which was then tiled hori-
zontally along the x-axis, and vertically along the y-axis for the whole of the document as you can see in
Figure 10-4, where you have the lovely beginnings of a toilet paper homepage. Don’t squeeze the Safari!

As you saw with the background-image property, the image is tiled by default. In the next section, I
describe how to control tiling with the background-repeat property.

The background-repeat Property
The background-repeat property is used to control how an image is tiled, or if it is tiled at all. The fol-
lowing table shows the possible values for the background-repeat property.

Property Value

background-repeat repeat | repeat-x | repeat-y | no-repeat

Initial value: repeat

As you saw in the last section, by default, a background is tiled vertically and horizontally. The
background-repeat property offers control over this. For instance, you can limit the tiling of a back-
ground image to the x-axis by supplying the repeat-x keyword value to the background-repeat
property. Figure 10-5 demonstrates the various keywords of the background-repeat property.

Figure 10-5a

346

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 346

The CSS in Figure 10-5a is combined with the markup in Figure 10-5b.

Figure 10-5b

The CSS in Figure 10-5a and the markup in Figure 10-5b result in the output you see in Figure 10-5c.

Figure 10-5c

347

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 347

In Figure 10-5, you see a demonstration of each of the keywords of the background-repeat property;
repeat is the default value, and images are repeated along both the x-axis and y-axis. The repeat-x key-
word limits tiling to the x-axis, and the repeat-y keyword limits tiling to the y-axis. The no-repeat
keyword turns off tiling altogether.

Try It Out Controlling Background Repetition
Example 10-3. In the following steps you can see the effects of the background-repeat property.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>background-repeat</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_10-3.css’ />

</head>
<body>

<p>
The background-repeat property controls repetition. The default
value is repeat, which causes the background image to be tiled
along both the x-axis and y-axis.

</p>
<div id=’repeat’>
</div>
<p>

The repeat-x keyword forces repetition along only the x-axis.
</p>
<div id=’repeat-x’>
</div>
<p>

The repeat-y keyword forces repetition along only the y-axis.
</p>
<div id=’repeat-y’>
</div>
<p>

Finally, no-repeat, causes there to be no repetition along
either axis, and the background image to be included but once.

</p>
<div id=’no-repeat’>
</div>

</body>
</html>

2. Save the preceding markup as Example_10-3.html.

3. Enter the following CSS into your text editor:

p {
background: lightyellow;
padding: 3px;

}
div {

height: 81px;
margin: 10px 0;

348

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 348

background-image: url(‘note.png’);
}
div#repeat {

background-repeat: repeat;
}
div#repeat-x {

background-repeat: repeat-x;
}
div#repeat-y {

background-repeat: repeat-y;
}
div#no-repeat {

background-repeat: no-repeat;
}

4. Save the preceding CSS as Example_10-3.css. The output from the code in Example 10-3 is
shown in Figure 10-6.

Figure 10-6

349

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 349

How It Works
In Example 10-3, you deploy all possible keyword values of the background-repeat property. You
begin with an example of repeat, the default value, which tiles the background image along both the
x-axis and y-axis. Then you include the repeat-x keyword, which limits the background image to
repetition along the x-axis. The repeat-y keyword, naturally, limits the background image to repetition
along the y-axis. Finally, the no-repeat keyword stops repetition all together.

In the next section, I discuss the background-position property.

The background-position Property
The background-position property, as its name implies, allows you to control the placement of the
background. The following table shows the possible values for the background-position property.

Property Value

background-position [<percentage> | <length>]{1,2} | [[top | center |
bottom] || [left | center | right]]

Initial value: 0% 0%

At first glance, this property looks a little complicated; in truth, it isn’t all that complex. The notation
boils down to this: The property allows one or two values that express the position of the background.
Square brackets are used to group the possible values. The following is the first subgrouping of values
within the first grouping:

[<percentage> | <length>]{1,2}

The first grouping indicates that the value may be a percentage or length value. Either one or two values
may be provided. The second subgrouping is preceded by a vertical bar, which indicates another possi-
bility for the value:

| [[top | center | bottom] || [left | center | right]]

The second grouping indicates that either one or two keyword values may be provided. If two values
are provided, it may be any keyword from the first grouping combined with any of the keywords from
the second grouping. In addition, any of the keyword values can be mixed with either a <length> or
<percentage> value.

Figure 10-7 demonstrates some possible values for the background-position property.

350

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 350

Figure 10-7a

The CSS in Figure 10-7a is combined with the markup in Figure 10-7b.

Figure 10-7b

The CSS in Figure 10-7a and the markup in Figure 10-7b result in the output you see in Figure 10-7c.

351

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 351

Figure 10-7c

In Figure 10-7, you see what the background-position property with two values looks like. This fig-
ure shows what happens when both values are of the same ilk, that is to say: both length values, or both
percentage values, or both keyword values.

Mixing Different Kinds of Position Values
What happens when you mix length with percentage, or percentage with a keyword? This question
is answered by the example in Figure 10-8.

Figure 10-8a

352

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 352

The CSS in Figure 10-8a is combined with the markup in Figure 10-8b.

Figure 10-8b

The CSS and markup in Figure 10-8a and Figure 10-8b are combined to get the rendered output you see
in Figure 10-8c.

Figure 10-8c

Per the CSS 2.1 specification, when keywords are mixed with nonkeyword values,
the first value must be left or right, if left or right is used, and the second value must
be top or bottom, if top or bottom is used. Some technically invalid declarations
appear in Figure 10-8a for proof-of-concept.

353

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 353

In Figure 10-8, you see the combination of each different type of value for the background-position
property. You’ll note the difference in the rendering of the first box between Safari and Firefox. Firefox
rejects the background position of the first box entirely because the top keyword appears first, rather
than second as required by the CSS 2.1 specification. Safari tolerates the ordering being different.

Tiling and Position
What happens when the background is tiled and a position is set? You see an example of positioning a
tiled background with a length measurement in Figure 10-9.

Figure 10-9a

The CSS in Figure 10-9a is combined with the markup in Figure 10-9b.

354

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 354

Figure 10-9b

The CSS in Figure 10-9a and the markup in Figure 10-9b produce the output you see in Figure 10-9c.

Figure 10-9c

In Figure 10-9, you see how specifying a background position affects the tiling of a background image.
When both axes are tiled, the position that you specify determines where the image tiling begins.

355

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 355

Specifying background-position: 10px 10px; causes the tiling to begin with the first ten pixels of the
image clipped. When the same declaration is applied to an element with background-repeat:
repeat-x;, you can see that the tiling of the image also begins with the first ten pixels of the image
clipped for the value of the left position. The value of the top position causes the axis of tiled images to
be offset ten pixels from the top border.

Just for the sake of completeness, what happens when keywords are used instead of lengths to position a
tiled image? The answer is found in Figure 10-10.

Figure 10-10a

The CSS in Figure 10-10a is combined with the markup in Figure 10-10b.

356

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 356

Figure 10-10b

The result of the CSS in Figure 10-10a and the markup in Figure 10-10b is seen in Figure 10-10c.

Figure 10-10c

In Figure 10-10 you used the center keyword instead of a length measurement. When the tiling is along
the x-axis, one center keyword centers the tiled images along the y-axis, and the other center key-
word causes the tiling of each image to begin with the center of the image, rather than the left border of
the image. This result is the same in every browser.

357

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 357

Try It Out Controlling the Background’s Position
Example 10-4. The following steps recap how you can use the background-position property in a web
page.

1. Enter the following HTML document into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>background-position</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_10-4.css’ />

</head>
<body>

<p>
The background-position property allows you to specify a
position using one of three primary methods, by length,
by percentage, or by keyword.

</p>
<div id=’length’>
</div>
<div id=’percentage’>
</div>
<div id=’keyword’>
</div>
<p>

You can mix and match different types of positions.
</p>
<div id=’length-percentage’>
</div>
<div id=’percentage-keyword’>
</div>
<div id=’length-keyword’>
</div>
<p>

When positioning a tiled image, the position can adjust where
tiling of the image begins with respect to the image itself, or
the position of the axis of tiled images.

</p>
<div id=’tiled’>
</div>
<div id=’x-tiled’>
</div>
<div id=’y-tiled’>
</div>

</body>
</html>

2. Save the HTML document as Example_10-4.html.

358

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 358

3. Enter the following CSS in your text editor:

body {
font: 12px sans-serif;

}-
p {

background: yellow;
padding: 3px;
clear: left;

}
div {

height: 81px;
width: 81px;
margin: 20px;
background-image: url(‘fish.png’);
background-repeat: no-repeat;
float: left;
border: 1px solid rgb(128, 128, 128);

}
div#length {

background-position: 10px 10px;
}
div#percentage {

background-position: 60% 60%;
}
div#keyword {

background-position: center center;
}
div#length-percentage {

background-position: 80% 10px;
}
div#percentage-keyword {

background-position: center 100%;
}
div#length-keyword {

background-position: center 10px;
}
div#tiled {

background-repeat: repeat;
background-position: center center;

}
div#x-tiled {

background-repeat: repeat-x;
background-position: center center;

}
div#y-tiled {

background-repeat: repeat-y;
background-position: center center;

}

4. Save the CSS document as Example_10-4.css. The source code in Example 10-4 renders some-
thing like what you see in Figure 10-11.

359

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:44 PM Page 359

Figure 10-11

How It Works
In Example 10-4, you recapped the different ways that a background image can be positioned with the
background-position property. You can choose one of three different methods of positioning, key-
word, length, or percentage, and any one of those will get the job done. You can also mix different meth-
ods, such as percentage with a keyword, or length with a keyword, and the browser can handle that.
You can also use the background-position property to adjust the position of a tiled background
image, be it the axis of tiled images, or where tiling of the image begins.

In the next section, I describe how to control the background-position when the page is scrolled with
the background-attachment property.

The background-attachment Property
You can use the background-attachment property to control whether a background image scrolls with
the content of a web page (when scroll bars are activated because that content is larger than the browser
window). The following table outlines the possible values for the background-attachment property.

360

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:44 PM Page 360

Property Value

background-attachment scroll | fixed

Initial value: scroll

IE 6 supports the fixed keyword only if applied to the <body> element; IE 7, Firefox, Opera, and
Safari support the fixed keyword as applied to any element.

The background-attachment property provides one very cool effect. By default, the background
image scrolls with the content of the web page; this is the behavior of the background-attachment:
scroll; declaration. If the fixed keyword is provided and the browser in question supports it, the
background image remains fixed in place while the page scrolls. Figure 10-12 shows an example of this
scenario.

Figure 10-12a

The CSS in Figure 10-12a is combined with the markup in Figure 10-12b.

The CSS in Figure 10-12a and the markup in Figure 10-12b result in the output you see in Figure 10-12c.
Keep in mind that two separate images come together to create the illusion of transparency.

361

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:45 PM Page 361

Figure 10-12b

Figure 10-12c

362

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:45 PM Page 362

In Figure 10-12, you see one of the primary effects of the background-attachment property. When the
fixed keyword is provided, the background image’s position is set offset relative to the <body> ele-
ment, no matter what element the background image is applied to. The other effect the fixed keyword
creates is the background image stays fixed in place as the document content is scrolled. If you make the
window smaller and adjust the position of the scroll bar, you can see the effect shown in Figure 10-13.

Figure 10-13

In Figure 10-13, you can see that as the page is scrolled both background images remain fixed in place,
providing the illusion of transparency — scrolling the page makes it as though I’ve just applied some
kind of filter or transparency to the <p> element. I’ve done neither. Because the images are positioned in
exactly the same spot, you can make small adjustments to one of the images to provide the illusion of
transparency. In IE 6, only the image applied to the <body> element remains fixed in place. The back-
ground image applied to the <p> element does not, since IE 6 does not support fixed background images
on any element other than the <body> element.

363

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:45 PM Page 363

The following Try It Out recaps the background-attachment property.

Try It Out Fixing the Background in Place
Example 10-5. To recap the background-attachment property, follow these steps.

1. Enter the following HTML document in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>background-attachment</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_10-5.css’ />

</head>
<body>

<p>
The background-attachment property provides two effects.
First it positions the background image relative to the
<body> element. Second it forces the background
image to remain fixed in place when the document is
scrolled.

</p>
</body>

</html>

2. Save the preceding HTML document as Example_10-5.html.

3. Enter the following CSS document in your text editor:

body, p {
background-color: #fff;
background-attachment: fixed;
background-image: url(‘palms.jpg’);
background-position: right bottom;
background-repeat: no-repeat;

}
p {

width: 400px;
margin: 20px auto;
padding: 20px;
border: 1px solid rgb(200, 200, 200);
background-image: url(‘palms2.jpg’);
height: 400px;

}

4. Save the preceding CSS document as Example_10-5.css. The code from Example 10-5 should
look something like the screenshot you see in Figure 10-14.

364

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:45 PM Page 364

Figure 10-14

How It Works
In Example 10-5, you recapped the background-attachment property with another brief demonstra-
tion of what it does. Using the background-attachment property, you can position images relative to
the <body> element, even if they are applied to <p> elements or <div> elements or <td> elements.
When the background-attachment: fixed; declaration is provided, the background image is always
positioned relative to the <body> element, regardless of what element the background image is applied
to. The background image also remains fixed in place as the content within the document is scrolled.
One use for this effect is to provide effects that mimic and give the illusion of transparency.

In the next section, I describe how to simplify the plethora of separate background properties into just
one property using the background shorthand property.

The background shorthand Property
Like the shorthand properties I introduced in previous chapters, the background property combines
each of the individual background properties into a single property. The following table outlines the val-
ues allowed by the background property.

365

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:45 PM Page 365

Property Value

background <’background-color’> || <’background-image’> ||
<’background-repeat’> || <’background-attachment’>
|| <’background-position’>

Initial value: n/a

With the background property, you can specify anywhere from one to five separate background proper-
ties. An example of how the background property combines different background properties appears in
Figure 10-15.

Figure 10-15a

The CSS in Figure 10-15a is combined with the markup in Figure 10-15b.

Figure 10-15b

The source code in Figures 10-15a and 10-15b result in the output you see in Figure 10-15c

In Figure 10-15, you see how to use the background shorthand property to combine the five separate
background properties, background-color, background-image, background-repeat, background-
attachment, and background-position into just one single background property. Using the
background property, you can include all five properties, or any combination of the other properties,
in any order.

366

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:45 PM Page 366

Figure 10-15c

The following Try It Out recaps the background shorthand property.

Try It Out Applying the Background Shorthand Property
Example 10-6. To see how individual background properties can be rewritten using the background
property, follow these steps.

1. Enter the following HTML document into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>background</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_10-6.css’ />

</head>
<body>

<p>
The background shorthand property provides for specifying all
five separate background properties in one single property.

</p>

367

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:45 PM Page 367

<p>
You can specify all five background properties.

</p>
<div id=’background’>
</div>
<p>

You can also specify just one property or any combination of
each of the five separate background properties.

</p>
<div id=’background-color’>
</div>
<div id=’background-image-position’>
</div>
<div id=’background-image-repeat’>
</div>
<div id=’background-image-repeat-attachment’>
</div>

</body>
</html>

2. Save the preceding document as Example_10-6.html.

3. Enter the following CSS document in your text editor:

p {
clear: left;

}
div {

border: 1px solid yellow;
width: 100px;
height: 100px;
margin: 10px;
float: left;

}
div#background {

background: white url(‘pattern.png’) no-repeat scroll center center;
}
div#background-color {

background: yellow;
}
div#background-image-position {

background: white url(‘pattern.png’) center center;
}
div#background-image-repeat {

background: url(‘pattern.png’) repeat-x;
}
div#background-image-repeat-attachment {

background: url(‘pattern.png’) repeat-y scroll;
}

4. Save the preceding document as Example_10-6.css. The result of the source code in
Example 10-6 should look something like the screenshot that you see in Figure 10-16.

368

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:45 PM Page 368

Figure 10-16

How It Works
In Example 10-6, you recapped how the background property is used to simplify setting element back-
grounds via its ability to specify one to five of the separate background properties: background-color,
background-image, background-repeat, background-attachment, and background-position.
All five properties can be specified, or just one property can be specified, or any combination of the five.
Typically, when only one property is specified, it’s the background-color or the background-image,
and when more than one property is specified, typically a background-image is specified, since you
can’t modify the position, the tiling or whether or not the image scrolls without, you guessed it, a back-
ground image.

Summary
The CSS background properties provide a fine-grained control over the presentation of backgrounds in a
web document, which allows interesting aesthetic possibilities. To recap, in this chapter you learned the
following:

❑ You can specify a solid background color by using the background-color property.

❑ You can use the background-image property to provide a background image that tiles all the
space available to it by default.

369

Chapter 10: Backgrounds

15_096970 ch10.qxp 4/20/07 11:45 PM Page 369

❑ You can use the background-repeat property to control the tiling of background images. This
can be limited to the x-axis or the y-axis, or you can use the no-repeat keyword to prevent the
background image from tiling.

❑ You can use the background-position property to position the background image.

❑ You can use the background-attachment property to control whether a background image
scrolls with a page or remains fixed in place. If the image is fixed in place, it becomes positioned
relative to the browser window itself instead of the element it is applied to.

❑ You can use the background shorthand property to put the control of all five properties into
one property.

Chapter 11 discusses the properties that CSS provides to position elements. In this, the most important
chapter of the book, you’ll learn how to layer content, and how to apply layering in practical ways, for
example, how to do the much-coveted multicolumn layout.

Exercises
1. What are two properties that you can use to specify a background color in a web page?

2. What are different color values that you can use for a background color?

3. What declaration causes a background image to be tiled only along the x-axis?

4. What keyword value can you use to turn off tiling of a background image?

5. What are the three methods of positioning a background image?

6. If you wanted to offset an image ten pixels from the left and ten pixels from the top, what decla-
ration would you use?

7. Can the different methods of positioning a background image be mixed with one another?

8. If you wanted a background image to scroll with the document, what declaration would you use?

9. When a background image is said to be “fixed,” what (X)HTML element does the background
image position relative to?

10. What is the only element that IE 6 supports “fixed” backgrounds on?

11. Write a declaration that contains all five background properties in one.

370

Part II: Properties

15_096970 ch10.qxp 4/20/07 11:45 PM Page 370

11
Positioning

This chapter examines the various properties that CSS provides to position elements in a docu-
ment. Positioning can be thought of as layering, in that the various elements of a page can be lay-
ered on top of others and given specific places to appear in the browser’s window. In this chapter
I discuss:

❑ The position property and the four types of positioning that CSS has to offer: static,
relative, absolute, and fixed

❑ The offset properties top, right, bottom, and left, and how these are used to deliver an
element to a specific position in a web document

❑ The z-index property and how this property is used to layer the elements of a document

❑ Some practical applications of positioning, such as multicolumn layouts and vertically
centering a positioned element

Positioning makes CSS a very powerful presentational language, and further enhances its flexibil-
ity. Like floating elements, positioning offers some unique characteristics that allow behavior you
might not always expect. This chapter begins the discussion of positioning with none other than
the position property.

16_096970 ch11.qxp 4/20/07 11:45 PM Page 371

Introduction to Positioning
The position property is used to give elements different types of positioning. Positioning, gives you
the ability to, with precision, dictate where in a document you want an element to appear. You can
choose whether an element appears relative to another element, or relative to the browser window. You
can layer elements one on top of another.

The following table outlines the position property and its possible values, and the four offset proper-
ties, top, right, bottom, and left, and their possible values.

Property Value

position static | relative | absolute | fixed

Initial value: static

top <length> | <percentage> | auto

Initial value: auto

right <length> | <percentage> | auto

Initial value: auto

bottom <length> | <percentage> | auto

Initial value: auto

left <length> | <percentage> | auto

Initial value: auto

Positioning gives you a fantastic amount of control and increases the possibilities for the layout of a doc-
ument, since you can specifically say where you want an element to appear, in addition to layering ele-
ments one on top of another.

In the next section, I begin the discussion of positioning with absolute positioning.

Absolute Positioning
Absolute positioning allows you to render an element to a particular place in a document. The only way
to grasp this concept is to see a demonstration of it in action. Figure 11-1 shows a document that we’ll
apply absolute positioning to.

The CSS in Figure 11-1a is combined with the markup in Figure 11-1b.

372

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 372

Figure 11-1a

Figure 11-1b

373

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 373

The CSS in Figure 11-1a and the markup in Figure 11-1b results in the output that you see in Figure 11-1c.

Figure 11-1c

In Figure 11-1, you see what the document looks like before any kind of positioning is applied. Each
<div> element in the example appears one after another from top to bottom. This is static positioning.
In Figure 11-2, you can see how absolute positioning works.

374

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 374

Figure 11-2a

The CSS in Figure 11-2a is combined with the markup in Figure 11-2b to get the output that you see in
Figure 11-2c.

375

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 375

Figure 11-2b

Figure 11-2c

376

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 376

In Figure 11-2c, you can see that the four <div> elements are positioned in specific places in the docu-
ment. The declaration position: absolute; causes the element to leave the normal flow of the docu-
ment and become layered along an invisible z-axis. The position of each element is controlled by the four
offset keywords, top, right, bottom, and left.

You also see in Figure 11-2a that I’ve used a few properties that you haven’t seen before. These are the
opacity, -moz-opacity, and filter properties. These are all used for the same thing: to make the posi-
tioned <div> elements semitransparent so that you can see what’s underneath each <div>. I use three
properties for the best cross-browser compatibility. Firefox prior to Firefox 1.5, Netscape, and the Mozilla
SeaMonkey browser suite all used the –moz-opacity property for transparency. Firefox 1.5 and later,
Safari, and Opera 9 all support the official CSS 3 opacity property. Both –moz-opacity and the CSS 3
opacity property take a floating-point value between 0 and 1, with 0 being fully transparent and 1
being fully opaque. For example, the value 0.5 would be half transparent and half opaque. The filter
property, if you hadn’t already guessed by its value, is proprietary to Microsoft and works in IE 5.5 and
later. Although its syntax is quite a bit more verbose, it provides an identical effect to the CSS 3 opacity
property supported by other browsers. Instead of a floating-point value between 0 and 1, it takes a per-
centage value between 0 and 100, where 100 is fully opaque, and 0 is fully transparent.

You’ll notice in the simple example that I provide that the boxes are positioned relative to the viewport.
This is made clearer by adding more copy to the document to make it scroll. In Figure 11-3a, you can see
that each <div> element is positioned relative to the browser’s viewport, that is, the initial visible area of
the document.

Figure 11-3a

377

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 377

In Figure 11-3b, you can see that when you scroll down, the boxes stay where they were initially posi-
tioned when the page was loaded up.

Figure 11-3b

You can modify what element is used as the point of reference for absolutely positioned elements. The
rules are pretty simple: If an absolutely positioned element is contained within another element that has
a position other than static, then that element is used as the point of reference for positioned elements.
One common way to change the point of reference for positioned elements is to give the containing ele-
ment a “relative” position, and that is the topic of the next section.

Try It Out A Recap of Absolute Positioning
Example 11-1. To review the concepts of absolute positioning that you learned in this section, follow these
steps.

1. Enter the following XHTML document in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Absolute Positioning</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_11-1.css’ />

</head>
<body>

378

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 378

<p>
Elements that are absolutely positioned are positioned, by default,
relative to the browser’s viewport. This is done using the
position property. The position property is used in conjunction
with four offset properties, which are used to control where on
the screen an absolutely positioned element is placed.

</p>
<div id=’top-left’>

Top, Left
</div>
<div id=’top-right’>

Top, Right
</div>
<div id=’bottom-left’>

Bottom, Left
</div>
<div id=’bottom-right’>

Bottom, Right
</div>

</body>
</html>

2. Save the preceding document as Example_11-1.html.

3. Enter the following CSS in your text editor:

body {
background: yellowgreen;

}
p {

margin: 10px 110px;
}
div {

position: absolute;
background: yellow;
padding: 5px;
width: 100px;
height: 100px;

}
div#top-left {

top: 0;
left: 0;
border-right: 1px solid black;
border-bottom: 1px solid black;

}
div#top-right {

top: 0;
right: 0;
border-left: 1px solid black;
border-bottom: 1px solid black;

}
div#bottom-left {

bottom: 0;
left: 0;

379

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 379

border-right: 1px solid black;
border-top: 1px solid black;

}
div#bottom-right {

bottom: 0;
right: 0;
border-left: 1px solid black;
border-top: 1px solid black;

}

4. Save the preceding document as Example_11-1.css. The preceding source results in the out-
put in Figure 11-4.

Figure 11-4

How It Works
In Example 11-1, you saw a brief recap of the concepts presented so far. Elements that are absolutely
positioned are delivered to a specific place onscreen, more specifically, to a specific place in the
browser’s viewport, which is the visible area of the rendered document. In Example 11-1, you placed
four <div> elements at the four corners of the browser’s viewport by absolutely positioning each <div>
element with the position: absolute; declaration, and then specifically positioning each one with
various combinations of the four offset properties. For example, the declarations top: 0; and left: 0;
places the <div> element with the id name top-left to the top left corner of the viewport. Then you
repeated the process for each of the other three <div> elements, positioning them in each of the three
other corresponding corners of the browser’s viewport. Later in this chapter you will observe some
more practical uses for absolute positioning with various multicolumn layouts.

In the next section, I introduce a concept that goes hand-in-hand with absolute positioning because it
enables you to control the context used when an element is positioned, and that is relative positioning.

380

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 380

Relative Positioning
Relative positioning is very similar to static positioning; elements to which relative positioning is
applied do not leave the document flow. There are three differences between relative positioning and
static positioning:

1. Elements with a relative position can be used as a point of reference for elements nested within
them that are absolutely positioned.

2. The position of a relatively positioned element can be adjusted using the offset properties.

3. A relatively positioned element can have a position on the (invisible) z-axis (more on this later
in this chapter).

To observe how a relatively positioned element can be used as a point of reference for absolutely posi-
tioned descendant elements, take a look at Figure 11-5.

As always, the CSS in Figure 11-5a is combined with the markup in Figure 11-5b to produce the output
that you see in Figure 11-5c.

Figure 11-5a
381

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 381

Figure 11-5b

Figure 11-5c

382

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 382

In Figure 11-5c, you can see that the position of each <div> element has changed. By nesting them inside
a descendant of a <div> element that has a relative position, each <div> is positioned relative to the
<div> element with an id name of container.

What happens if the <div> element with id name container has a static position? The output is shown in
Figure 11-6.

Figure 11-6

In Figure 11-6, you see that the point of reference for positioning is determined by which element in
the positioned element’s ancestry has a position other than static (absolute, relative, or fixed). If there
aren’t any elements with a position other than static, the element is positioned relative to the browser’s
viewport.

When no position is defined for any of an element’s ancestral lineage (parent, grand-
parent, and so on), all elements are positioned relative to the browser’s viewport by
default. If an element does have a relative, absolute, or fixed position and is the
ancestor of an element with absolute positioning, that element is used as the point
of reference for the absolutely positioned element.

383

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 383

Applying Offset Positioning to Relatively Positioned Elements
The position of elements with relative positioning can be adjusted using combinations of the four offset
properties, top, right, bottom, and left. For example, the top and left properties can be used to
adjust the position of a relatively positioned element. This works similarly to the margin property that
you saw in Chapter 7. An example appears in Figure 11-7.

Figure 11-7a

The CSS in Figure 11-7a is included in the markup in Figure 11-7b.

384

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 384

Figure 11-7b

In Figure 11-7c, you see what happens when the offset properties top and left are applied to a rela-
tively positioned <p> element, as opposed to margin with the same values applied to another <p>
element.

In Figure 11-7c, you see that relatively positioned elements can be layered. In the example, the top and
left properties each have a value of 25px, which results in the <p> element with an id name of relative
being layered over the border of the <body> element. You also see how this differs from margin— the
top <p> element with an id name of margin — is given a top and left margin of 25px. The top element’s
width is adjusted to accommodate the 25px of margin, but the bottom element width is not adjusted to
accommodate the 25px that it is offset from the top and left.

385

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 385

Figure 11-7c

A recap of relative positioning:

❑ Relative positioning is just like static positioning, in that the elements remain in the normal doc-
ument flow, but that’s where the similarities end.

❑ Relatively positioned elements can be used as a point of reference for absolutely positioned
elements.

❑ Relatively positioned elements can accept combinations of the four offset properties, top and
left, top and right, bottom and left, and bottom and right. The browser will ignore com-
binations of the offset properties beyond those mentioned here. For example, you can’t combine
the top and bottom offset properties on the same relatively positioned element.

❑ Relatively positioned content can be stacked and layered along the z-axis (more on this later in
this chapter).

In the next section I cover fixed positioning.

Try It Out Applying Relative Positioning
Example 11-2. To review the concept of relative positioning, follow these steps.

1. Enter the following XHTML document in your text editor:

386

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 386

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Relative Positioning</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_11-2.css’ />

</head>
<body>

<p>
Relative positioning has two primary purposes in web design.
The first purpose is to create a point of reference for an
absolutely positioned element. When an element with absolute
positioning is nested within an element with relative positioning,
the absolutely positioned element is positioned in context to
the dimensions of the relatively positioned element.

</p>
<div id=’relative’>

<p>
Relative positioning is a lot like static positioning; elements
don’t appear to leave the flow of the document.

</p>
<p id=’bottom-right’>

This element is positioned to the bottom right of the
relatively positioned element.

</p>
</div>
<p>

The four offset properties can also be applied to relatively
positioned elements, which can be used to modify the position
of an element.

</p>
<div>

<p id=’offset’>
This element is offset from its original position.

</p>
</div>

</body>
</html>

2. Save the preceding document as Example_11-2.html.

3. Enter the following CSS in your text editor:

body {
font: 12px sans-serif;

}
div {

background: yellow;
border: 1px solid black;
margin: 0 20px;

}
div#relative {

position: relative;
height: 200px;

387

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 387

}
p {

padding: 5px;
}
p#bottom-right {

margin: 0;
background: gold;
border: 1px solid crimson;
height: 50px;
width: 200px;
position: absolute;
bottom: 5px;
right: 5px;

}
p#offset {

margin: 0;
background: pink;
border: 1px solid crimson;
position: relative;
top: 10px;
left: 10px;

}

4. Save the preceding document as Example_11-2.css. The preceding source code results in the
rendered output that you see in Figure 11-8.

Figure 11-8

388

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 388

How It Works
In Example 11-2, you reviewed two concepts used for positioning an element relatively: the first using
an element as a point of reference for positioning absolutely positioned elements, and the second, using
the four offset properties to adjust the position of a relatively positioned element.

To create a point-of-reference, you made a <div> element, with an id name of relative, which had one
absolutely positioned child <p> element with an id name of bottom-right. The <p> element with the id
name bottom-right is given an absolute position, and the declarations bottom: 5px; and right: 5px;.
As you see in the rendered output in Figure 11-8, this causes the element to be positioned to the bottom
and right of the <div> element with id name relative. If the position: relative; declaration were to
be removed from the <div> element with id name relative, the bottom-right <p> element would be posi-
tioned relative to the viewport, as you saw in Figure 11-6.

The second concept at play in Example 11-2 is using offset properties to adjust the position of a relatively
positioned element. The <p> element with id name offset is given the position: relative; declara-
tion, and the declarations top: 10px; and left: 10px;, which caused its position to be modified from
the top by 10 pixels, from its original position, which is where it would have been if it were a statically
positioned element, and to the left 10 pixels. This causes it to overlap its parent <div> element. If these
properties were not present, you would not see any of the parent <div> element’s yellow background,
since the <p> element would have completely blocked it out.

In the next section, I continue the concept of positioning with fixed positioning, which is similar to abso-
lute positioning, in that the element leaves the normal flow of the document, but unlike absolute posi-
tioning, the context of a fixed positioned element cannot be altered by nesting the element in a relatively
positioned element or another absolutely positioned element. Fixed position elements are always posi-
tioned relative to the browser’s viewport, and remain in that position, even if the document is scrolled.

Fixed Positioning
Fixed positioning is used to make an element remain in the same fixed position, even if the document is
being scrolled. Alas, IE 6 does not support fixed positioning, so the example that follows will not work
in IE 6. All is not lost however; there is a well-known workaround for IE 6’s lack of support for fixed
positioning, which is covered in the next section.

Elements with a fixed position are always positioned relative to the viewport, regardless of whether it is
contained in an element with relative or absolute positioning applied. An example of fixed positioning
appears in Figure 11-9.

389

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 389

Figure 11-9a

The CSS in Figure 11-9a is included in the markup that appears in Figure 11-9b.

390

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 390

Figure 11-9b

In Figure 11-9c, you see how fixed positioning is different from the example of absolute positioning that
you saw in Figure 11-2c and Figure 11-3c. The same document is shown three times with the scroll bar in
different positions to illustrate how the <div> elements with id names one, two, three, and four remain
fixed in place as the document is scrolled.

391

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 391

Figure 11-9c

392

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 392

Fixed positioning keeps the elements snapped into their positions, which is always determined relative
to the viewport, as the document is scrolled. This type of positioning can be used for things such as side
columns, headings, footers, or watermarks that remain in place as the document is scrolled. In the next
section, you see some workarounds for IE 6 for its lack of support for fixed positioning.

In the following sections, I discuss two different methods of achieving fixed positioning without actually
using CSS fixed positioning. The first method applies to IE exclusively, and it entails emulating fixed
positioning in IE 6 with JavaScript and proprietary CSS features. The second method I present is appli-
cable to all browsers, even those with proper support for fixed positioning, and is useful beyond fixing
up IE’s lack of support, and can be used for web page layouts in general, in all browsers.

Emulating Fixed Positioning
A well-known and annoying limitation of IE 6 is that it does not support fixed positioning. Not to be left
without this useful feature, some developers have gone to great lengths to find alternative methods that
produce the same results.

I first read about the following IE 6 fixed positioning hacks on Anne van Kesteren’s blog at http://
annevankesteren.nl/test/examples/ie/position-fixed.html. Therefore, the following
workarounds are derivative of the ones collected by Anne and others as documented in his blog.

This first technique involves reproducing the same effects you would get if the declaration position:
fixed; were supported in IE 6. For this technique, you’ll need Microsoft’s proprietary expression()
feature, which allows you to use JavaScript within a style sheet, which you first saw in Chapter 7, where
it helped you to overcome IE 6’s lack of support for the min/max width/height properties. The first
example demonstrates position: fixed; with top: 0; and left: 0; as the offset properties, and
works when IE 6 is in standards-compliant rendering mode (see Chapter 7).

Emulation of fixed positioning is demonstrated in Figure 11-10.

The style sheets in Figures 11-10a and 11-10b are included in the markup that you see in Figure 11-10c.

Figure 11-10a

393

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 393

Figure 11-10b

Figure 11-10c

You get the output that you see in Figure 11-10d, an element that acts as though the position: fixed;
declaration is applied in IE 6.

This source code in Figure 11-11 results in the output that you see in Figure 11-11d.

394

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 394

Figure 11-10d

395

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 395

There are a few things to keep in mind about this effect:

❑ You must specify a “fixed” background image. The image doesn’t have to exist; you can just
include http:// as the background image, as I have. If you are using this effect in an SSL
encrypted web page, be sure to make that https://, or you’ll see SSL errors in IE. Without this
essential hack, the element that you want to give a fixed position to will flicker as the page scrolls.

❑ This effect does not work in IE 6 or IE 7 in quirks mode, or IE 5.5. To get a compatible hack for
IE 6 and IE 7 in quirks mode and IE 5.5, just change the declaration for the top property to:

top: expression(eval(document.body.scrollTop));

❑ This effect does not work if JavaScript is disabled.

❑ The effect emulates top: 0;. To get a pixel value other than zero, use something like the follow-
ing declaration:

top: expression(eval(documentElement.scrollTop) + 5);

Just replace 5 with the pixel value you want.

❑ You specify the left or right properties as you normally would.

What if you’re looking for bottom: 0;, instead of top: 0; with a fixed position element? An example of
this appears in Figure 11-11. Figure 11-11a begins with the style sheet that you give to all browsers.

Figure 11-11a

The main style sheet in Figure 11-11a is followed by the IE 6 style sheet that appears in Figure 11-11b. As
you see in Figure 11-11b, slightly more complicated trickery is required to emulate bottom: 0;. You
have to subtract two pixels from the value; otherwise when the user scrolls to the bottom in IE 6, it will
continue scrolling infinitely.

The style sheets in Figure 11-11a and Figure 11-11b are included in the markup document that you see in
Figure 11-11c.

396

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 396

Figure 11-11b

Figure 11-11c

397

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 397

Figure 11-11d

398

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 398

Emulating position: fixed; with bottom: 0; is similar to the process required for top: 0;, and it is
therefore subject to the same limitations. Again, to create this effect in IE 6 and IE 7 in quirks mode, and
IE 5.5, just replace documentElement with document.body. For emulating the bottom property with a
value other than 0, take the value, add 2 to it, and replace where 2 is being subtracted with your new
value. For example, to emulate bottom: 5px;, you’d do the following:

top: expression(
(documentElement.scrollTop + documentElement.clientHeight - this.clientHeight) - 7
);

I use the value 7 in the preceding example, because at least 2 pixels must always be subtracted, so, 2 +
5 = 7. In the next section, I explore how you create the illusion of fixed positioning to workaround the
lack of support for fixed positioning in IE 6.

Try It Out A Review of Fixed Positioning
Example 11-3. To recap the concept of fixed positioning, follow these steps.

1. Enter the following XHTML document in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Fixed Positioning</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_11-3.css’ />
<!--[if lt IE 7]>
<link rel=’stylesheet’ type=’text/css’ href=’Example_11-3.ie.css’ />
<![endif]-->

</head>
<body>

<div id=’fixed-top’>
</div>
<div id=’fixed-bottom’>
</div>
<p>

The concept of fixed positioning is pretty straightforward.
Elements with a fixed position stay in place, even when a document
is scrolled. Elements with a fixed position are always positioned
relative to the browser’s viewport, no matter where they appear
in a document’s structure.

</p>
<p>

IE 6 and IE 7 in quirks mode do not support fixed positioning, even
though IE 7 in standards mode does support fixed positioning. Some
tricks are employed to make the document work in IE 6, in standards
mode.

</p>
<p>

Even though fixed positioning technically allows an element to be
placed anywhere in the document’s structure, the IE hacks that I
present here require that fixed position elements always be immediate
children of the <body> element.

</p>

399

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 399

<p id=’long’>
This element is used to make the document longer, so that scroll bars
are invoked.

</p>
</body>

</html>

2. Save the preceding document as Example_11-3.html.

3. Enter the following CSS in your text editor:

body {
font: 12px sans-serif;
background: lightyellow;

}
p {

padding: 5px;
margin-left: 110px;

}
p#long {

height: 400px;
}
div {

position: fixed;
background: gold;
border: 1px solid black;
width: 100px;
height: 100px;

}
div#fixed-top {

top: 5px;
left: 5px;

}
div#fixed-bottom {

bottom: 5px;
left: 5px;

}

4. Save the preceding CSS document as Example_11-3.css.

5. Enter the following style sheet for IE 6 in your text editor:

body {
background: lightyellow url(‘http://’) fixed;

}
div#fixed-top {

position: absolute;
top: expression(eval(documentElement.scrollTop) + 5);

}
div#fixed-bottom {

position: absolute;
bottom: auto;
top: expression((documentElement.scrollTop +

documentElement.clientHeight - this.clientHeight) - 7);
}

400

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 400

6. Save the preceding document as Example_11-3.ie.css. The preceding source code results in
the rendered output that you see in Figure 11-12.

Figure 11-12

How It Works
In Example 11-3 you see the tools required for making cross-browser, fixed-position elements. These ele-
ments stay fixed in place even when the content is scrolled. For most browsers, Safari, Firefox, IE 7 in
standards mode, and Opera, this is done using standard CSS 2. You apply the declaration position:
fixed; to an element in tandem with offset properties, which provide the position of the element. In
Example 11-3, you made two examples: one fixed-position element that’s positioned to the top and left
of the browser’s viewport, and one fixed-position element that’s positioned to the left and bottom of the
browser’s viewport.

To make this work in IE 6, you supplied a Microsoft-proprietary conditional comment style sheet, which
uses dynamic expressions and a tiny snippet of JavaScript. The JavaScript that you keyed in dynamically
updates the position of the pseudo-fixed position elements. For the fixed position element that’s posi-
tioned to the top and left, you supply the declaration position: absolute;, since IE 6 doesn’t recog-
nize position: fixed;, and in the dynamic expression, you evaluate the position of the viewport’s
scroll bar with the JavaScript eval(documentElement.scrollTop). This causes the element to remain
fixed in place as the document is scrolled. But you need one more hack to make it function as fluid as

401

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 401

position: fixed; does on other browsers; you must give the <body> element a fixed background
image. As you saw in Example 11-3, the background image doesn’t even have to exist. The application
of this hack causes IE 6 to render the fixed position element smoothly as the document is scrolled, rather
than jerky. To get the same result as top: 5px; you also have to add 5 to the result of the evaluation,
which gives you the following CSS:

top: expression(eval(documentElement.scrollTop) + 5);

To fix position an element to the bottom and left of the viewport in IE 6, you see a little more involved
script. The element is again absolutely positioned, but instead of positioning from the bottom, as you
might expect, the element is positioned from the top. To do this, you reset the bottom property to its
default value, bottom: auto;. To get the element on the bottom, you get the position of the scroll bar,
the height of the viewport, then subtract the height of the element that’s being fixed positioned, which
results in the same output as position: fixed;, with the declaration bottom: 5px; and left: 5px;.

top: expression((documentElement.scrollTop +
documentElement.clientHeight - this.clientHeight) - 7);

In the next section, I discuss how to create the illusion of fixed positioning using only absolute positioning.

Creating the Illusion of Fixed Positioning
The other way to get around IE 6, IE 5.5, and IE 7 quirks mode lack of support for fixed positioning is to
just not use it at all, and use the principles of absolute positioning to your advantage. The following sec-
tions describe how to do the following:

❑ Make a fixed header

❑ Make a fixed footer

❑ Make fixed side columns

All are with support for IE 6, and all are the usual suspects, Safari, Firefox, Opera, and so on. I begin
with a discussion of how to stretch content by using offset properties in pairs.

Stretching Content by Using Offset Properties in Pairs
One fundamental concept that is essential to making the fixed header, footer, and side columns tech-
niques work has to do with how absolutely positioned elements handle sizing. In Chapter 7, you learned
that block elements have a width that is expand-to-fit by default. Block elements such as <h1>, <div>,
<p>, and so on, expand to fill the space available to them horizontally, and expand vertically in the
shrink-to-fit fashion, that is, only enough to accommodate the content contained within them. When ele-
ments are positioned absolutely, they all take on the shrink-to-fit sizing behavior, for both width and
height. An example of this appears in Figure 11-13.

402

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 402

Figure 11-13a

The main style sheet in Figure 11-13a contains two demonstrations of sizing: a statically positioned <p>
element, and an absolutely positioned <p> element. As you’ll see in Figure 11-13c, positioning an element
absolutely causes it to use a different method of sizing, shrink-to-fit. The main style sheet in Figure 11-13a is
included in the markup that you see in Figure 11-13b to create the rendered output in Figure 11-13c.

Figure 11-13b

In Figure 11-13c, you see that the two <p> elements have different dimensions. The statically positioned
one takes up all the horizontal area that’s available to it, and the absolutely positioned <p> element only
expands enough to accommodate the content that it contains.

403

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 403

Figure 11-13c

To use absolute positioning to emulate fixed positioning for a header, you need a way to make an abso-
lutely positioned element use the other method of sizing, expand-to-fit. The CSS specification just so
happens to support just such a feature, and specifying opposing offset properties on the same absolutely
positioned element does it. For example, to stretch content horizontally for the entire width available to
it, you specify both the left and right offset properties to imply width. Or if you want to stretch an
element vertically for all the space available to it, you specify both the top and bottom offset properties
to imply height. The term imply is used here because you don’t actually specify width or height.
Dimensions are implied because you expect specifying both the left and right offset properties on
the same absolutely or fixed positioned element to stretch the element.

If you want both horizontal and vertical fluidity on an absolutely positioned element, you specify all four
offset properties on the same element. Unfortunately IE 7 in quirks rendering mode, IE 6, and earlier do not
support this useful feature (IE 7 in standards mode does support this feature), but as is the case with most
problems with IE, there is a relatively painless workaround, which you observe later in this chapter.

An example of horizontally stretching an absolutely positioned element appears in Figure 11-14.

Figure 11-14a

404

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 404

In Figure 11-14a, you see the main style sheet, and within it you see an example strikingly similar to the
one you saw in the source code and screenshot that make up Figure 11-13. That is to say, you have a stat-
ically positioned <p> element, and an absolutely positioned <p> element. This time the absolutely posi-
tioned <p> element will wind up having the same dimensions as the statically positioned <p> element,
and this is done by specifying left: 0; and right: 0; on that element to make it stretch horizontally,
for all the space available to it, the same way that the statically positioned <p> element is sized as a nor-
mal block-level element. The main style sheet in Figure 11-14a is included in the markup that you see in
Figure 11-14b.

Figure 11-14b

In Figure 11-14c, the screenshot shows that the statically positioned <p> element and the absolutely posi-
tioned <p> element now have the same width. You’ll see the same results in IE 7, but as I mentioned ear-
lier, IE 6 has other plans, which you see a workaround for later in this chapter.

Figure 11-14c

405

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:45 PM Page 405

In Figure 11-14c, the concept of horizontally stretching an absolutely positioned element via specifying
both the left and right properties is made clear, but this example begs the question, why can’t you
just specify the width as 100 percent? That’s a good question, and a common misconception made by
beginners. The answer to this question is, when you have any block element, absolutely positioned or
not, and you apply padding, borders, or margin to it, and then give it a width of 100 percent on top of
those properties, you won’t end up with the results that you expect. This has to do with how percentage
measurement works. If you recall from Chapter 7, a percentage width is determined by the width of an
element’s parent. So if the parent element has a width of 700 pixels, for example, your element with
100 percent width will also have a width of 700 pixels, and then the lengths for margin, borders, and
padding are applied on top of that width, and your element overflows the boundaries of its parent. If the
parent element is the <body> element, and the 700 pixels measurement happens to be the width of the
browser’s viewport, you’ll wind up with your element with 100 percent width causing horizontal scroll
bars, because it is too big to fit in that 700-pixel width. By stretching elements with opposing offset prop-
erties, the resulting width is whatever is left over after margin, borders, and padding are already
applied, thus avoiding scroll bars.

Still not clear on how percentage width works? Try a small experiment for testing percentage width.
Take the source code from Figure 11-14a and Figure 11-14b (you can get the source code for all of this
book’s examples with the book’s source code download from www.wrox.com), and try applying a width
of 100 percent to the absolutely positioned <div>. Compare the resulting output with what you see in
Figure 11-14c. Notice any differences?

Conversely, Figure 11-15 demonstrates how to stretch an element vertically by specifying both the top
and bottom offset properties.

Figure 11-15a

In the main style sheet that you see in Figure 11-15a, the absolutely positioned <p> element now has
both the top and bottom properties set as top: 0; and bottom: 0;, which will cause the <p> element
to be stretched vertically for the height of the browser’s viewport.

In Figure 11-15c, you observe that the absolutely positioned <p> element is stretched vertically for the
height of the browser’s viewport.

406

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:45 PM Page 406

Figure 11-15b

Figure 11-15c

Figure 11-16 demonstrates both horizontal and vertical fluidity on the same element via specification of
all four offset properties.

In the main style sheet that appears in Figure 11-16a, the absolutely positioned <p> element now has all
four offset properties set, which causes the <p> element to be stretched both horizontally and vertically.

The CSS from Figure 11-16a is included in the markup that you see in Figure 11-16b.

In Figure 11-16c, you see that the <p> element is stretched both vertically and horizontally, taking up the
whole browser window.

407

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 407

Figure 11-16a

Figure 11-16b

Figure 11-16c

408

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 408

The screenshot shows how both horizontal and vertical fluidity is achieved through specifying top,
right, bottom, and left on the same element. At this point you may be asking yourself, does the value
of the offset property have to be zero? No, it does not. You can use any value you like, a value larger
than zero will simply modify where the element is positioned and decrease its dimensions.

Try It Out Implying Dimensions by Opposing Offset Properties
Example 11-4. To recap the concepts at play with implying dimensions via opposing offset properties, fol-
low these steps.

1. Enter the following XHTML document in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Opposing Offset Properties</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_11-4.css’ />

</head>
<body>

<div id=’offset-four’>
<p id=’offset-x’>

When the left and right offset properties are applied to the same
element, width is implied.

</p>
<p id=’offset-y’>

When the top and bottom offset properties are applied to the same
element, height is implied.

</p>
<p id=’offset-four-copy’>

When all four offset properties are specified on the same element
both width and height are implied.

</p>
</div>

</body>
</html>

2. Save the preceding document as Example_11-4.html.

3. Enter the following CSS in your text editor:

body {
font: 12px sans-serif;
background: lightyellow;

}
div#offset-four {

background: yellow;
border: 1px solid rgb(128, 128, 128);
position: absolute;
top: 20px;
right: 20px;
bottom: 20px;
left: 20px;

}
p {

margin: 0;

409

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 409

padding: 5px;
border: 1px solid black;

}
p#offset-x {

position: absolute;
bottom: 5px;
left: 5px;
right: 123px;
background: gold;

}
p#offset-y {

position: absolute;
top: 5px;
right: 5px;
bottom: 5px;
width: 100px;
background: khaki;

}
p#offset-four-copy {

border: none;
margin-right: 123px;

}

4. Save the preceding document as Example_11-14.css. When viewed in IE 7, Safari, Opera, or
Firefox, you should see output like that in Figure 11-17. Bear in mind that this example does not
work in IE 6, but you see a workaround for this lack of support in the coming sections.

Figure 11-17

How It Works
In Example 11-4, you see three different examples of using opposing offset properties to imply width or
height, or both. The first example is a <p> element with id name offset-x. It is positioned relative to the
<div> element with id name offset-four, and it is positioned relative to this element rather than the view-
port, since the offset-four <div> element is positioned absolutely. To get the offset-x <p> element to span

410

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 410

the bottom of the offset-four <div> element, you supplied to it both the left and right offset properties.
In this example, you also see that the value can be any measurement you like. In this case, you offset
from the left, 5 pixels, and from the right 123 pixels, which causes the element to be stretched along the
bottom of the offset-four <div> element.

The second example that you see in Example 11-4 of using opposing offset properties is with the <p> ele-
ment with id name offset-y. It is offset from the right 5 pixels, from the top 5 pixels, and from the bottom
5 pixels. Since it is offset from both the top and bottom by five pixels, height is implied, and the <p> ele-
ment spans the whole height of the offset-four <div> element.

The third and last example that you see in Example 11-4 of using offset properties to imply dimensions is
in the <div> element with id name offset-four. It is offset from all four sides by 20 pixels, which causes it
to be stretched both horizontally and vertically relative to the browser’s viewport.

This concept of stretching elements via absolute positioning is also an essential ingredient in the multi-
column layouts that I present later in this chapter. In the next section, I discuss how to make a fixed
header without fixed positioning.

A Fixed Heading
A fixed heading is pretty easy to pull off, without support for fixed positioning. You simply use absolute
positioning to make a fixed heading, and a second container element that is also absolutely positioned,
that invokes scroll bars using the overflow property that you saw in Chapter 7. Making a fixed heading
is demonstrated in Figure 11-18.

In Figure 11-18a, you see the main style sheet that all browsers will see. The <h1> element is acting as
your fixed heading for this example, and the document’s content is going to be kept inside the <div>
element with id name container. Both the <h1> element and the container <div> element are given an
absolute position, so that their place on the screen can be dictated with fine precision. For the heading,
you take the <h1> element and stretch it horizontally by specifying both the left and right offset
properties with a value of zero. This will cause the absolutely positioned <h1> element to act like a stati-
cally positioned <h1> element, and take up all the space available to it horizontally. Could you just use a
statically positioned <h1> element and get the same result? You can. It is not essential that the <h1> ele-
ment be absolutely positioned; it’s just another means to the same end, and a fine example of how web
designers sometimes forget fundamental design concepts when designing a page, and actually end up
over-engineering a design. The rule for the <h1> element could be rewritten as follows:

h1 {
height: 20px;
font-weight: normal;
font-size: 18px;
border-bottom: 1px solid rgb(200, 200, 200);
background: white;
margin: 0;
padding: 5px;

}

The preceding rule produces the same result. I’ve included the over-engineered version to demonstrate
how unnecessary properties can creep in unexpectedly. While it doesn’t have to be positioned, I’m going
to leave it that way merely for consistency with the other elements on the page, but bear in mind, it
doesn’t have to be that way.

411

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 411

Figure 11-18a

For IE 6 to properly stretch the absolutely positioned elements, it needs a bit of help. The workarounds
appear in Figure 11-18b.

Figure 11-18b

The CSS in Figure 11-18b is included because IE 6 does not support stretching an element via specifying
opposing offset properties on the same element. As you’ve seen in earlier examples in this Chapter,
and in Chapter 7, a dynamic expression is used to emulate the effect of opposing offset properties in
IE 6. You simply include the dynamic expression feature, which references a small snippet of JavaScript.
documentElement refers to the <html> element, and offsetHeight is a property that is used to get the
<html> element’s, well, offset height, which for you and me means the height of the browser’s viewport.
Remember, if you use a Document Type Declaration that causes IE 6 or IE 7 to render in quirks mode, this

412

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 412

trick won’t work. If you face this situation, you’ll want to use document.body.offsetHeight instead of
documentElement.offsetHeight. See Chapter 7 for more information on quirks rendering mode ver-
sus standard rendering mode (nearly all of the examples in this book invoke standards rendering mode).

The CSS in Figure 11-18a and Figure 11-18b are included in the markup that you see in Figure 11-18c.

Figure 11-18c

413

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 413

IE 6 and IE 7 continue to show a scroll bar for the whole window, even though it isn’t needed. You apply
the overflow: hidden; declaration to the <html> element to get rid of the scroll bar via Microsoft’s
conditional comments that target IE 7 and earlier versions. Now the redundant scroll bar is no more.

The source code in Figure 11-18 a, b, and c gives you a layout that works well between the different
browsers, as you see in the screenshot that appears in Figure 11-18d.

Figure 11-18d

In Figure 11-18d, you can see that the heading stays in place whenever the content is scrolled. You could
just as easily replace the <h1> with a <div> there and include additional content that stays fixed in place
at the top of the page. But how do you do a fixed footer? This is covered in the next section.

414

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 414

A Fixed Footer
For a fixed footer, the idea is pretty much the same as you saw for making a fixed heading, but every-
thing’s reversed to the bottom. A demonstration of how to do a fixed footer appears in Figure 11-19.

Figure 11-19a

Then as was the case with the fixed heading example in the last section, another style sheet targeting IE 6
is made with adjustments to facilitate a fixed footer rather than a heading. The technique can have sev-
eral approaches, but the principle is that either the top or the bottom offset property can be set, and the
height of the container element must be adjusted in relation to the height of the viewport, and the height
of the footer. The IE 6 style sheet appears in Figure 11-19b.

Figure 11-19b
415

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 415

Again, the scroll bar for the viewport that is present by default must be turned off in IE 6 and IE 7,
just as it was for the fixed heading example in the previous section. The CSS from Figure 11-19a and
Figure 11-19b are included in the markup that appears in Figure 11-19c.

Figure 11-19c

416

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 416

The result of the source code appears in Figure 11-19d, where you see a fixed footer that works on a vari-
ety of browsers and platforms.

Figure 11-19d

In Figure 11-19d, top has become bottom, and the heading becomes the footer. The same concepts are at
play here as you saw for the fixed heading. So naturally, it ought to be easy to combine the two now in
one example. The next section describes how to do both.

A Fixed Heading and a Fixed Footer
The concepts of the previous two sections are now married into one example, which is demonstrated in
the source code and screenshots shown in Figure 11-20. In Figure 11-20a, you see the styles from the
fixed heading and the fixed footer examples have been merged into one style sheet.

Again, in Figure 11-20b, you see the IE 6 style sheet, which now contains styles that facilitate both a fixed
heading and a fixed footer.

417

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 417

Figure 11-20a

Figure 11-20b

418

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 418

Then the styles from Figure 11-20a and Figure 11-20b are included in Figure 11-20c.

Figure 11-20c

419

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 419

You see the result of the merged fixed heading and fixed footer examples in Figure 11-20d.

Figure 11-20d

In Figure 11-20d, you can see that with just a few tweaks, you can have both a fixed heading and a fixed
footer in your document. In the next section, I continue this style of layout with fixed side columns
instead of a fixed heading or a fixed footer.

420

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 420

Fixed Side Columns
The ideas at play for making fixed side columns are along the same lines that you’ve observed in the
previous three sections. With just a few modifications, you can have fixed side columns instead of fixed
heading or a fixed footer. The source code and screenshots are in the collection of figures that together
make up Figure 11-21. You begin with the main style sheet that’s presented in Figure 11-21a.

Figure 11-21a

421

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 421

In Figure 11-21a, you see that instead of an <h1> element for the heading, and a <div> with an id name
of footer for the footer, you have two <div> elements with id names left and right. Common style sheet
declarations that both the left and right <div> elements share are grouped together, and additional rules
appear for declarations that are unique to each. Again, the concept of absolute positioning is to create
elements that remain fixed in place when the <div> element with id name container is scrolled. Like the
examples that you saw for the fixed heading and the fixed footer, you use opposing offset properties to
stretch each of the absolutely positioned elements vertically, which is done by specifying both the top
and bottom offset properties on all three absolutely positioned elements to imply height. You must also
alter the container <div> element so that there is enough room for the side columns; otherwise the side
columns would simply overlap that container <div> element. You do this by setting the left and right
offset properties to 211 pixels. This figure is arrived at by taking the width of the left <div>, for example,
plus its left padding, plus its right padding, plus one pixel of border, which together add up to 211 pix-
els. The remaining styles present in the style sheet aren’t really important, since they’re really just cos-
metic and don’t effect the overall concept of making fixed side columns.

Of course, as you saw in previous examples, specifying opposing offset properties to stretch an element
doesn’t work in IE 6. You correct this deformity by supplying IE 6 a style sheet all its own, as you did in
previous examples. This style sheet appears in Figure 11-21b.

Figure 11-21b

The IE 6 style sheet makes similar adjustments as you’ve seen in previous examples. The two <div>
elements with id names left and right are stretched for the whole height of the browser’s viewport
via a dynamic expression that calls a small snippet of JavaScript, which provides the height of the
documentElement, or the <html> element, via its offsetHeight property. Remember, this technique
does not work in IE 6 or IE 7 when those browsers are in quirks rendering mode, nor older versions
of IE prior to version 6, and must be replaced with document.body.offsetHeight, instead of
documentElement.offsetHeight. The style sheets that you saw in Figure 11-21a and Figure 11-21b
are included in the markup that you see in Figure 11-21c.

422

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 422

Figure 11-21c

423

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 423

Again in Figure 11-21c, the redundant scroll bar that IE 6 and IE 7 include is nullified with the
overflow: hidden; declaration. Now IE 6, IE 7, Safari, Firefox, and Opera all produce the same
results. The output from IE 6 as well as Safari appears in Figure 11-21d.

Figure 11-21d

And to wind down the examples of fixed headings and footers and side columns, the next section
demonstrates all of them together in the same document.

A Fixed Heading, Footer, and Side Columns
In this example, you put together the examples of the previous two sections to get a document with a
fixed heading, footer, and side columns. You begin with the style sheet shown in Figure 11-22a.

424

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 424

Figure 11-22a
425

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 425

No surprises here. The main style sheet in Figure 11-22a makes adjustments to the container <div> ele-
ment to accommodate both a heading and a footer and side columns. You’ll note that the container <div>
element is offset from the top and bottom respective to the collective height of the heading and the
footer, that is to say, the height property, plus top and bottom margin, border, and padding, and from
the left and right relative to the collective width of the left and right side columns, which is the
width property plus left and right margin, border, and padding. The side columns are also adjusted
from the top and bottom with respect to the collective height of the footer and the heading. With the
exception of these minor tweaks, the concept is basically the same as you’ve seen in previous sections. In
Figure 11-22b, you see the IE 6 style sheet that’s required to bring IE 6 on par with the output seen in
other browsers.

Figure 11-22b

In the IE 6 style sheet that you see in Figure 11-22b, you again see a marriage of the concepts that you’ve
observed in previous sections, only now you see measurements that accommodate both side columns, a
heading, and a footer. The style sheets in Figure 11-22a and Figure 11-22b are included in the markup
that you see in Figure 11-22c.

426

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 426

Figure 11-22c 427

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 427

The output that you see in Figure 11-22d is what results from the source code in Figure 11-22a,
Figure 11-22b, and Figure 11-22c.

Figure 11-22d

In the next section, I discuss how you can control layering of positioned elements with the z-index
property.

The z-axis and the z-index Property
The z-index property is used to control layering of positioned elements along an invisible z-axis, which
you might imagine as an invisible line coming out of the computer screen. The following table outlines
the z-index property and its possible values.

Property Value

z-index auto | <integer>

Initial value: auto

428

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 428

The z-index property controls elements’ position on along the invisible z-axis, if those elements are
positioned relative, absolute, or fixed. The concept of the z-axis is used to create dynamic applications
like pop-up menus. The z-index property is demonstrated in Figure 11-23.

Figure 11-23a

In the main style sheet in Figure 11-23a, four <div> elements are absolutely positioned to the top and
left; each is increasingly positioned 10 pixels more from the top and left from the last so that they are
overlapping, but each of the overlapped elements are still visible. For all of the <div> elements, the dec-
laration z-index: auto; is supplied, although since this is the default value of the z-index property,
it does not have to be provided at all. The style sheet in Figure 11-23a is included in the markup in
Figure 11-23b.

429

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 429

Figure 11-23b

In Figure 11-23c, you see how the z-index property with an auto value works. Each additional element
in the document that is positioned absolutely has a higher z-index value than the last, so the <div> ele-
ment with an id name of one is positioned at z-index: 1; on up to four.

Figure 11-23c

In the next section, you see how to control the behavior of the z-index property with an integer value.

The z-index Property with an Integer Value
To control the layering of elements in a document, all you need to do is supply an integer value to the
z-index property. In Figure 11-24, you see the layering of each of the positioned elements is reversed
from what you saw in Figure 11-23c.

430

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 430

Figure 11-24a

In the main style sheet that you see in Figure 11-24a, you explicitly set the z-index of each of the four
<div> elements present in the document, giving the <div> element with id name one the highest
z-index and the <div> element with id name four the lowest z-index. The style sheet in Figure 11-24a
is included in the markup that you see in Figure 11-24b.

431

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 431

Figure 11-24b

In Figure 11-24c, you can see that the layering of the <div> elements is reversed from what you saw in
Figure 11-23c. The <div> element with id name one is now on top, and the <div> element with id name
four is now on the bottom.

Figure 11-24c

Although I presented the z-index in Figure 11-24a with z-index values that ascend from one to four,
you don’t have to keep the values sequential. You can have any z-index value you like, 1,000, even
10,000, if you deem it appropriate. The browser will sort the highest z-index value as being on top, and
the lowest on the bottom where elements are layered one on top of another.

432

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 432

Layering Nested Elements
Nested elements take on a different behavior where the z-index property is concerned. Nested ele-
ments behave like z-index is set to auto, and the integer value is ignored. Take for example the code
presented in Figure 11-25.

In the main style sheet, you see something similar to what you saw in Figure 11-24a, with the exception
that all four <div> elements are offset from the top and left ten pixels. This is done since the elements
are now nested one inside of each other, as you can see in the markup in Figure 11-25b.

Figure 11-25a

433

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 433

Figure 11-25b

In Figure 11-25c, you find that the z-index is being ignored; the <div> element with id name one is still
on the bottom. This fulfills the rule that an element’s descendents cannot have a higher z-index than
it does.

Figure 11-25c

The IE 6/IE 7 z-index Bug
IE 6 and IE 7 support the z-index property just fine, but both browsers have trouble with the z-index
property in certain situations. It doesn’t take a vary complex design to invoke these bugs either, so any-
one looking to utilize positioning in a layout should be aware of how to spot and crush these bugs. In
the following source, you actually see two IE 6/IE 7 bugs. The first bug has to do with z-index stack-
ing, and the other has to do with spacing between elements. The example in Figure 11-26 demon-
strates these bugs.

434

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 434

Figure 11-26a

In the main style sheet you see that I’ve set up a list, where the elements are relatively positioned, and
the <div> element is absolutely positioned. The style sheet in Figure 11-26a is included in Figure 11-26b.

Figure 11-26b

435

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 435

In Figure 11-26c, the problem becomes clear. In IE the absolutely positioned <div> element is positioned
correctly where its parent element is concerned, but incorrectly where the additional elements
are concerned. IE also has a list bug, where if an absolutely positioned element appears in an ele-
ment, additional space is included above or below the element. Luckily, both of these problems
have a fix, but they aren’t pretty.

Figure 11-26c

To correct the z-index bug that you see in Figure 11-26, you have to manually z-index all of the ele-
ments involved. That is to say, beginning with the first element, assign each a z-index in decreas-
ing order. So the first element would be four, the second element would be three, and so on
to the last element. This is demonstrated in Figure 11-27. There are no changes in the main style
sheet from the CSS that you saw in Figure 11-26a, so you begin with the markup in Figure 11-27a.

In Figure 11-27a, you see that I’ve applied this fix inline, since I didn’t believe that it would be any better
to create a unique id for each element, and then apply each z-index in the external style sheet.
You’ll see that the <div> element doesn’t need a z-index at all. Since it is a nested element, it has a
higher z-index than its parent, and the z-index problem that you see here is with the z-index of each
 element, rather than the <div> element.

436

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 436

Figure 11-27a

Figure 11-27b

As for the spacing bug, there is only one known fix: to make the element an inline element
with the declaration display: inline;. Since this would have adverse effects for other browsers, you
need to apply the fix to IE only (via conditional comments), and to avoid the content collapsing, you
need to nest a block-level element inside each element, like this: <div></div>. The
nested <div> element prevents the content from collapsing, as would be the case if the elements
were inline elements.

437

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 437

Try It Out The z-index Property
Example 11-5. To review the z-index property, follow these steps.

1. Enter the following XHTML in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>The z-index</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_11-5.css’ />

</head>
<body>

<div class=’slide’>
<p>

The z-index property controls how elements are layered along an
invisible z-axis. By default, elements are layered automatically.
The first instance of an absolutely positioned element results in
a z-index value of one, and with each subsequent element, the
z-index is increased.

</p>
<div class=’container’>

<div class=’zauto zone’></div>
<div class=’zauto ztwo’></div>
<div class=’zauto zthree’></div>
<div class=’zauto zfour’></div>

</div>
</div>
<div class=’slide’>

<p>
You can control the z-index explicitly, however, by providing an
integer value to the z-index property.

</p>
<div class=’container’>

<div class=’zauto zone’ id=’five’></div>
<div class=’zauto ztwo’ id=’six’></div>
<div class=’zauto zthree’ id=’seven’></div>
<div class=’zauto zfour’ id=’eight’></div>

</div>
</div>
<div class=’slide’>

<p>
Nested elements handle the z-index property differently. Descendant
elements must always have a z-index higher than that of their
parent.

</p>
<div class=’container’ id=’nested’>

<div class=’zauto zone’ id=’nine’>
<div class=’zauto ztwo’ id=’ten’>

<div class=’zauto zthree’ id=’eleven’>
<div class=’zauto zfour’ id=’twelve’></div>

</div>
</div>

</div>

438

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 438

</div>
</div>

</body>
</html>

2. Save the preceding XHTML source code as Example_11-5.html.

3. Enter the following style sheet in your text editor:

body {
font: 12px sans-serif;
background: lightyellow;

}
div.container {

height: 132px;
position: relative;

}
div.zauto {

position: absolute;
border: 1px solid black;
width: 100px;
height: 100px;

}
div.zone {

background: purple;
top: 0;
left: 0;

}
div.ztwo {

background: orange;
top: 10px;
left: 10px;

}
div.zthree {

background: magenta;
top: 20px;
left: 20px;

}
div.zfour {

background: yellow;
top: 30px;
left: 30px;

}
div#five,
div#nine {

z-index: 4;
}
div#six,
div#ten {

z-index: 3;
}
div#seven,
div#eleven {

z-index: 2;

439

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 439

}
div#eight,
div#twelve {

z-index: 1;
}
div#nested div {

top: 10px;
left: 10px;

}
div.slide {

float: left;
padding: 5px;
width: 200px;
border: 1px solid rgb(200, 200, 200);
background: white;
margin: 5px;
height: 400px;

}

4. Save the preceding style sheet as Example_11-5.css. When you run the preceding source code
in your browser, you should see output like that in Figure 11-28.

Figure 11-28

440

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 440

How It Works
In Example 11-5, you saw three fundamental concepts to the z-index property. In the first example, you
saw how when there is no explicit z-index defined, it is defined automatically, and each subsequent
element is positioned higher than the last one.

Then, in the second example, you gave each of the elements an explicit z-index; starting with the <div>
element with the id name five through the <div> element with id name eight. The <div> element with id
name five is positioned highest in this stack, since it has a z-index of 4, then each subsequent <div> ele-
ment is stacked lower, all the way to the <div> element with id name eight, which has a z-index of 1.

In the third example, you see how the z-index is ignored when it is placed on descendant elements, since
descendant elements must always have a higher z-index than that of their parents and ancestors.

In the next section I demonstrate how to apply positioning to some real-world examples, such as verti-
cally aligning content and multicolumn layouts.

Other Ways to Apply Positioning
Positioning is a powerful tool that enables you to create applications in web-based layouts from the sim-
ple to the very complex. In the following sections I examine a couple of practical applications of posi-
tioning in website design, starting with vertically and horizontally aligning content.

Horizontally and Vertically Aligning Positioned Content
The following technique is used to horizontally and vertically center content in a web browser, although,
it could be easily adapted for other alignment scenarios. The technique is demonstrated in Figure 11-29.

In the main style sheet in Figure 11-29a, you see two fundamental concepts coming together. The <div>
element with id name dialogue is positioned absolutely, and then offset from the top and the left by 50
percent. This is one of the few places where percentage measurement is actually useful. Then the top
and left margins of the <div> with id name dialogue are adjusted in the negative by exactly half of the
element’s collective width and collective height. So the top margin is set to a negative number that is
exactly half of the sum of the top and bottom border-width, padding, and height values. In this case
that number is 112, so half of 112 is 56. Then the left margin is adjusted in the negative by exactly half of
the element’s collective width, or the left and right border-width, padding, and width values, which
comes to the sum of 212, half of which is 106.

The style sheet in Figure 11-29a is included in the markup in Figure 11-29b.

Once the source code in Figure 11-29a and Figure 11-29b is rendered in a browser, you get output like
that in Figure 11-29c.

441

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 441

Figure 11-29a

Figure 11-29b

In Figure 11-29c, you see that the <div> element with id name dialogue is centered both vertically
and horizontally in the browser window. Having seen this technique, you might wonder if this can be
achieved with variable width or variable height content, that is to say, have a <div> with id name dia-
logue that doesn’t have a fixed width or height. And the answer is no, the element this technique is
applied to must have a fixed width and height for this technique to succeed. For the overwhelming
majority of cases, however, this isn’t a problem. You can always overflow content, and provide scroll
bars if necessary with the overflow property.

442

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 442

Figure 11-29c

With this technique, you can create dialogues for your users that pop up layered over other content, for
example, as shown in Figure 11-30.

You can make the <div> with id name dialogue a fixed position element, and you’ll have a dialogue that
stays in place as the user scrolls. This technique is typically coupled with JavaScript to create pop-up
dialogues, and those despised pop-up advertisements that come floating onto the screen from nowhere.
Unfortunately, pop-ups like this have many, many legitimate uses, too, so browsers are unable to block
them.

Figure 11-30

In the next section I discuss multicolumn layouts.

443

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 443

Multicolumn Layout
Multicolumn layouts are the crown jewel of web design. Multicolumn web design is pretty ubiquitous
and, thankfully, they’re easy to crank out too. Earlier in this chapter I demonstrated how to make fixed
side columns, and fixed headers and footers. The techniques I discuss in this section are very similar.
In fact, you’ll see some familiar techniques from those earlier examples at play in the ones that follow,
with the difference being that these designs feature no “fixed” position elements, and are designed to
be scalable.

A challenge of web page design in making pages that work on a variety of platforms, operating systems,
and viewing environments is that different environments hold different challenges. One challenge in
particular is creating fluid designs that function on a variety of screen resolutions. A typical goal today
is to design for a minimum, 800 × 600 screen resolution, and scale up if the resolution is higher. Thank-
fully, the number of people still using an 800 × 600 screen resolution is diminishing all the time; you can
expect to see about 10 percent of your audience using this screen resolution, and less than a fraction of a
percent are using a lower screen resolution, with the majority of people at 1024 × 768 or greater. The
designs that I present here scale down to 800 × 600 as the lowest screen resolution threshold, and up to
1024 × 768 as an upper viewing threshold. In Chapter 7, you saw that the min-width and max-width
properties are used to define thresholds like this.

So without further ado, the first example of a multicolumn layout that I demonstrate is a simple two-
column design. This is demonstrated in Figure 11-31.

In the main style sheet in Figure 11-31a, you see that the <div> element with id name container contains
some groundwork for the multicolumn design. As the id name implies, the container <div> element con-
tains the elements that will come together to create the two-column layout. It is given a relative position,
so that the absolutely positioned left column <div> positions relative to it. It has a lower width threshold
of 600 pixels, and an upper threshold of 1,000 pixels, so that the design can scale up and down, as neces-
sary, to accommodate changes to the window size, or the user’s screen resolution. The element that
holds the document’s content is the <div> element with id name content. It is given a left margin equal
to the left column <div> element’s collective width, which includes the sum of that element’s left and
right margin, border, padding, and width. Thus, the framework for a two-column layout is made. In
Figure 11-31b, you see a style sheet that targets IE 6 and less.

In Figure 11-31b, you’ll recognize the dynamic expressions from both Chapter 7 and earlier in this chap-
ter. To emulate the min-width and max-width properties, you apply a dynamic expression to the con-
tainer <div> element. When the width of the browser’s viewport is greater than 1,000, the width of the
container <div> element is set to 1000; when it’s less than 1,000, but greater than 600, the width of the
container element is set to auto; and when the browser’s viewport is smaller than 600 pixels, the width
is set to 600 pixels. The second hack present emulates setting opposing offset properties to imply height
for the left column. The style sheets in Figure 11-31a and Figure 11-31b are included in the markup in
Figure 11-31c.

444

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 444

Figure 11-31a

Figure 11-31b

445

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 445

Figure 11-31c

Figure 11-31d shows a simple two-column layout that works in a variety of browsers.

446

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 446

Figure 11-31d

The technique presented in Figure 11-31 puts together concepts from Chapter 7, and concepts that
you’ve see throughout this chapter, but why stop with just a two-column layout? In the next section, I
present how to add a heading and a footer to the two-column layout.

Multicolumn Layout with a Heading and Footer
Adding a heading and footer to the multicolumn layout is pretty straightforward; you simply have to
make room with the left column, and everything else falls into place. Figure 11-32 demonstrates how to
alter the multicolumn layout to accommodate a heading and footer.

447

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 447

Figure 11-32a

448

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 448

The main style sheet in Figure 11-32a is followed by the IE 6 style sheet that you see in Figure 11-32b.

Figure 11-32b

The style sheets in Figure 11-32a and the style sheet in Figure 11-32b are included in the markup in
Figure 11-32c.

Figure 11-32d shows a flexible, two-column design that includes a heading and footer.

There are a few important concepts at play that you need to be aware of in this example. First, have a
look at the styles for the heading and the footer; each contains an element that has margin applied. The
heading has an <h1> element nested with 5 pixels of margin applied, and the footer has a <p> element
nested within it with 5 pixels of margin applied. The heading and the footer both have a one-pixel,
solid, black border around each. This is done for more than mere aesthetic reasons; without the border
you have the margin of the nested element collapsing with the margin of its parent element. If you recall
from Chapter 7, margin collapsing happens whenever the top or bottom margin of one element comes
into contact with the top or bottom margin of a parent, or adjacent element. In this example, to prevent
margin collapsing from taking place, you need to apply a border to the parent elements, which are the
<div> elements with id names heading and footer. If you remove the border, do so remembering to take
margin collapsing into account.

The heading and the footer are also included outside of the container <div> element; you do this to
accommodate content in each of these that is of variable height. If the heading and footer were to be
placed inside of the container <div> element, you would have to give each a fixed height, and adjust the
top and bottom properties of the left column <div> with respect to the collective height of the heading
and the footer.

449

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 449

Figure 11-32c

450

Part II: Properties

16_096970 ch11.qxp 4/20/07 11:46 PM Page 450

Figure 11-32d

In the IE style sheet, you’ll see one odd declaration, height: 1px;. You’ll also note that the height of the
heading, footer, and container <div> elements is not one pixel in IE 6. This is a hack! In the web design
community, this hack is a variation of a famous hack known as the “Holly Hack.” Big John and Holly
Gergevin of positioniseverything.net originally devised the Holly Hack. The Holly Hack is used to
correct certain layout calculation errors that can come up in IE 6 and IE 7. In this case, the left column
<div> element was not positioning correctly; the values of top and left were inconsistent with other
browsers. When you encounter this, it is usually a case where the Holly Hack is appropriate. To fix a lay-
out bug in IE, you need to apply the Holly Hack to each parent of the element with wacky positioning
until its layout corrects. Since explaining the Holly Hack requires a complicated discussion about the

451

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 451

452

Part II: Properties

internals of IE 6, I avoid going deeper into the topic than what I’ve explained here. If you’d like to learn
more about the Holly Hack, and the concepts at play there, have a look at http://www.satzansatz.de/
cssd/onhavinglayout.html.

Summary
In this chapter, you saw the power of positioning in web design. Positioning offers web designers solu-
tions to challenges both simple and complex. In this chapter, you learned the following:

❑ Absolute positioned elements are positioned relative to the viewport, by default.

❑ Relative positioning allows you to change the point of reference used for absolute positioning.

❑ The four offset properties can be used on relatively positioned content to adjust its position with
respect to its static origin.

❑ Fixed position elements remain in the same place when a document is scrolled, and fixed posi-
tion elements are always positioned relative to the viewport.

❑ IE 6 doesn’t support fixed positioning, but you can use dynamic expressions and JavaScript to
work around the lack of support.

❑ Specifying opposing offset properties on the same element is used to imply dimensions, which
is used to get positioned elements that are stretched with fluidity.

❑ You can create the illusion of fixed positioning with absolute positioning, a technique that’s
often used to create frame-like designs without the frames.

❑ The way in which positioned elements are layered can be controlled with the z-index property,
which accepts an integer value.

❑ By default, elements are stacked in ascending order.

❑ Nested elements can’t have a higher z-index than their parent.

❑ You can center content vertically and horizontally using positioning, and some tricks with the
margin property.

❑ Absolute positioning is key in making multicolumn designs.

Exercises
1. What is the default value of the top, right, bottom, and left properties?

2. What are offset properties used for?

3. If the <body> element has a sole child that is positioned absolutely, what point of reference is
used for its positioning?

16_096970 ch11.qxp 4/20/07 11:46 PM Page 452

4. If the <body> element has a sole child that is positioned relatively, with an id name of relative-
element, and that relatively positioned element has a child that is absolutely positioned, what
point of reference is used for the absolutely positioned element?

5. If the element from Exercise 4, relative-element, has a fixed position child, what point of reference
is used for its positioning?

6. Write a rule that you would use to make an element with the following standard CSS work in IE
6 in standards rendering mode.

div#element {
position: fixed;
top: 0;
left: 0;

}

7. To make fixed position elements compatible with IE 6, what element must you always place
fixed position elements inside of?

8. Write a rule that you would use to make an element with the following standard CSS work in IE
6 and IE 7 in quirks rendering mode.

div#element {
position: fixed;
bottom: 0;
left: 0;

}

9. The following rule refers to an element that you want to take up all of the space available to it
vertically, and positioned to the left. Fill in the blanks.

div#column {
position: absolute;
_____: 0;
_____: 0;
_____: 0;
padding: 10px;
border: 1px solid black;

}

10. You have five elements that are all absolutely positioned siblings, but no z-index is specified
for any of them. Name the stacking order that the browser will use for those elements’ z-index
property. Provide the z-index declaration for each element, in order.

11. How do you fix the z-index bug in IE 6 and IE 7?

453

Chapter 11: Positioning

16_096970 ch11.qxp 4/20/07 11:46 PM Page 453

16_096970 ch11.qxp 4/20/07 11:46 PM Page 454

12
Tables

In Chapter 11, I introduced positioning. In this chapter, I discuss some odds and ends related to
styling (X)HTML <table> elements and the controls that CSS provides for flexibility.

Tables are primarily a method to show the relationship between data, much as a spreadsheet
application does. As I explore some acceptable uses of tables in this chapter, I discuss:

❑ The optional table elements that can make it easier to style a table and that make the
structure more intuitive

❑ Controlling placement of the table caption

❑ Controlling the layout of the table

❑ Controlling the spacing between table cells

Tables can be complex creatures in (X)HTML. If used properly, they allow information to be pre-
sented in a neat, organized, and consistent manner. Put simply, data that needs to show relation and
logic should be placed into tables. The discussion presented in this chapter also plays heavily into the
discussion about styling XML in Chapter 14. The examples presented in Chapter 14 are identical to
those presented in this chapter with one very important difference: They’re written in XML.

Tables have several optional elements that may be used to further enhance the structure and pre-
sentation of a table. This is where I start the discussion.

Optional Table Elements
The <table> element has several optional elements that can be used to enhance the presentation
of a table, including captions, columns, headings, and footers. Take a look at a <table> element
that makes use of all these optional elements. When I get into the discussion of styling tables,
beginning with the section “Table Captions and the caption-side Property,” you’ll need to under-
stand what is possible in a table. I also present CSS 2 properties that are table-specific, allowing
more control over table presentation. The markup in Figure 12-1 shows a table complete with all
the optional bells and whistles.

17_096970 ch12.qxp 4/20/07 11:46 PM Page 455

Figure 12-1

In Figure 12-1, you can see that (X)HTML tables support many additional, optional elements.

❑ The <caption> element is used to provide the table with a caption or the name of the table.

❑ The <colgroup> element is used to enclose each of the table <col /> elements.

456

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:46 PM Page 456

❑ <col /> elements are used to control certain properties about each table column, the most com-
mon being the column width.

❑ The <thead> element encloses information about column headers. If you print a table that spans
more than one page, the information in the <thead> element is repeated at the top of each page.

❑ The <tbody> element contains the main table data.

❑ The <tfoot> element is similar to the <thead> element. When you print a table that spans
more than one page, the information in the <tfoot> element is repeated at the bottom of
each page.

In the coming sections, you learn more about what properties CSS offers for tweaking the visual presen-
tation of (X)HTML tables.

Table Captions and the
caption-side Property

Captions are presented in the <caption> element. By default, these are rendered above the table in the
document. You use the caption-side property to control the placement of the table caption.

The following table shows the caption-side property and its possible values.

Property Value

caption-side top | bottom

Initial value: top

Although IE 6 and IE 7 support the <caption> element for tables, neither IE 6 nor IE 7 supports the
CSS caption-side property.

Using the caption-side property, you can control whether the caption appears above or below the
table. Figure 12-2 is a demonstration of the caption-side property.

Figure 12-2a
457

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:46 PM Page 457

The CSS in Figure 12-2a is included in the markup in Figure 12-2b.

Figure 12-2b

In Figure 12-2c, you see how the caption-side property works in the browsers that support it. In Safari
and Firefox, the table caption appears beneath the table, but in IE 6 and IE 7, neither of which support
the caption-side property, the table caption appears above the table (which is the default position of
the caption).

In the next section, I continue the discussion of tables with what styles are allowed on table columns.

458

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:46 PM Page 458

Figure 12-2c

Table Columns
In HTML/XHTML, the <colgroup> and <col> elements allow the vertical columns of a table to be con-
trolled. This is useful for controlling the width of a column of data or other aspects of presentation, such
as background color or text color.

459

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:46 PM Page 459

By using these elements, you can span more than one column or have one column defined for each
actual column, as in the following example:

<table>
<colgroup>

<col span=’2’ />
<col />

</colgroup>
<tbody>

<tr>
<td> column 1 </td>
<td> column 2 </td>
<td> column 3 </td>

</tr>
</tbody>

</table>

<col span=’2’ /> controls the presentation of the <td> elements containing the text of column 1 and
column 2, the first two columns of the table. The last <col /> element (without the span attribute)
controls the presentation of column 3, contained in the last <td> element.

Using CSS, I can continue the example containing my favorite records. This example shows a column
defined for each actual column of data, or in other words, each <td> element appearing in a row. In the
example in Figure 12-3, a column is defined for each cell, and each row has three cells; consequently,
there are three columns. In Figure 12-3, you see what styles are allowed on the <col /> element.

The CSS in Figure 12-3a is included in the markup in Figure 12-3b.

Figure 12-3a

460

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:46 PM Page 460

Figure 12-3c shows what you get when the markup is loaded into a browser. You can see in Figure 12-3c
that Safari supports no CSS on the (X)HTML <col /> element. IE 6 (and IE 7) support the width,
background, and color properties on the <col /> element. Mozilla Firefox supports the width and
background properties.

Figure 12-3b

461

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:46 PM Page 461

Figure 12-3c

In the following Try It Out, I show how all the extra bells and whistles available for <table> elements
work in a real-world project and how these elements help you take advantage of CSS. This Try It Out
demonstrates placing a recipe in a table. I’m also adding a little eye candy here with CSS background
images to enhance the look and feel of the document. This example is also important in Chapter 14,
where I show you how it can be ported to XML and styled with CSS as an XML document.

462

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:46 PM Page 462

Try It Out Applying Tables to a Real Project
Example 12-1. In the following steps, you apply tables to a real-world project.

1. Type the following XHTML markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Spicy Thai Peanut Sauce</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_12-1.css’ />

</head>
<body>

<table class=’recipe’>
<caption>

Spicy Thai Peanut Sauce
</caption>
<colgroup>

<col/>
<col/>
<col/>
<col/>

</colgroup>
<thead>

<tr>
<th> quantity </th>
<th> measurement </th>
<th> product </th>
<th> instructions </th>

</tr>
</thead>
<tbody>

<tr>
<td> ½ </td>
<td> CUPS </td>
<td> Peanut Oil </td>
<td></td>

</tr>
<tr>

<td> 12 </td>
<td> Each </td>
<td> Serrano Peppers </td>
<td> Sliced </td>

</tr>
<tr>

<td> 16 </td>
<td> Each </td>
<td> Garlic Cloves </td>
<td> Minced </td>

</tr>
<tr>

<td> 2 </td>

463

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:46 PM Page 463

<td> CUPS </td>
<td> Peanut Butter </td>
<td></td>

</tr>
<tr>

<td> 1 </td>
<td> CUPS </td>
<td> Soy Sauce </td>
<td></td>

</tr>
<tr>

<td> ½ </td>
<td> CUPS </td>
<td> Lime Juice </td>
<td></td>

</tr>
<tr>

<td> 4 </td>
<td> TABLESPOONS </td>
<td> Sesame Oil </td>
<td></td>

</tr>
<tr>

<td> 4 </td>
<td> CUPS </td>
<td> Coconut Milk </td>
<td></td>

</tr>
<tr>

<td> ½ </td>
<td> CUPS </td>
<td> Honey </td>
<td></td>

</tr>
<tr>

<td> ½ </td>
<td> CUPS </td>
<td> Brown Sugar </td>
<td></td>

</tr>
</tbody>
<tfoot>

<tr>
<td colspan=’4’>

Sauté sliced serranos and garlic in peanut
oil till lightly browned.

Add all other ingredients and stir till dissolved.

Simmer for 5 minutes.

464

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:46 PM Page 464

Purée all in blender.

<p>

Sauté your favorite vegetables; onions,
mushrooms, green peppers, and squash work best.

Sprinkle
with allspice, salt, and pepper. Optionally add walnuts
or pine nuts. Add browned chicken or tofu and glaze
with sauce. Serve with jasmine rice.

</p>
</td>

</tr>
</tfoot>

</table>
</body>

</html>

2. Save the file as Example_12-1.html.

3. Write the following CSS into your text editor in a separate document:

html {
background: #fff url(‘fruit_veg_web.jpg’) no-repeat fixed center center;

}
body {

font-family: monospace;
padding: 10px;
margin: 10px;
/* Moz proprietary opacity property */
-moz-opacity: 0.7;
/* Microsoft proprietary filter property */
filter: progid:DXImageTransform.Microsoft.Alpha(opacity=70);
/* CSS 3 opacity property */
opacity: 0.7;
background: url(‘cross_hatch.jpg’) repeat;

}
table.recipe {

width: 100%;
margin-bottom: 5px;

}
caption {

text-align: left;
margin-bottom: 5px;
text-transform: lowercase;
font-size: 160%;
padding: 5px;
letter-spacing: 10px;
font-weight: bold;

}
table.recipe thead th {

font-weight: bold;
font-size: 150%;
color: black;

}
table.recipe thead th, table.recipe tbody td {

465

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:46 PM Page 465

padding: 5px;
text-transform: lowercase;

}
table.recipe tbody td, table.recipe tfoot td {

font-size: 130%;
}
table.recipe tfoot td {

padding: 5px;
}
table.recipe tfoot td p {

padding: 5px;
}
li {

margin-left: 30px;
padding-left: 30px;

}

4. Save the file as Example_12-1.css. This results in the output shown in Figure 12-4.

Figure 12-4

466

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:46 PM Page 466

How It Works
This example is a lot to digest. Take a look at each part of it in detail to see how it comes together. First,
explore the markup of the document. I have included a <caption> element inside the table to house the
name of the recipe:

<table class=’recipe’>
<caption>

Spicy Thai Peanut Sauce
</caption>
<colgroup>

<col/>
<col/>

I could just as easily have put the name of the recipe in a heading element like <h1> and placed it out-
side the table. I chose the caption so the name of the recipe is bound to the table of ingredients. Later,
if I choose to, I can include the name of the website or a logo above the table of ingredients. Next, I’ve
added <colgroup> and <col/> elements. These can be used to control the layout of each column,
although I haven’t chosen to take advantage of this capability yet. Although you can use these elements,
they are not absolutely necessary. I can leave them out, causing no impact on the table’s final rendered
layout. Next, I added the table headings, placed inside <thead> elements, and I used <th> instead of
<td> to house the contents of each cell:

<col/>
<col/>

</colgroup>
<thead>

<tr>
<th> quantity </th>
<th> measurement </th>
<th> product </th>
<th> instructions </th>

</tr>
</thead>
<tbody>

I added the <tbody> element to house the contents of the recipe itself, and near the bottom of the recipe
I listed the instructions in an unordered list () element. I placed final suggestions in a paragraph at
the bottom of the document.

Look more closely at how the CSS comes together with the markup to produce the final rendered output
in Figure 12-4. The first rule styles the <body> element, and there’s quite a bit going on here:

body {
font-family: monospace;
padding: 10px;
margin: 10px;
/* Moz proprietary opacity property */
-moz-opacity: 0.7;
/* Microsoft proprietary filter property */
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=70);
/* CSS 3 opacity property */
opacity: 0.7;
background: url(‘cross_hatch.jpg’) repeat;

}

467

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:46 PM Page 467

First things first: The <body> element is given a monospace font face, and 10 pixels of margin and 10
pixels of padding. I do both here because some browsers have a default margin, and others have default
padding; by setting both values, you get cross-browser consistency.

The next three declarations all deal with opacity. At the time of this writing, the opacity property is an
official part of CSS 3. Before the CSS 3 implementation, each browser had its own way of handling opac-
ity, with the exception of Opera, which prior to version 9, did not support opacity, and as of version 9
supports the CSS 3 opacity property. The Mozilla proprietary CSS opacity property is -moz-opacity.
Microsoft has a completely different method for specifying opacity: It’s handled through a proprietary
filter property, but despite its verbose syntax, it produces the same results as the standard CSS 3
opacity property that other browsers support. The use of these opacity properties produces an aestheti-
cally pleasing transparency effect that allows the background specified for the <html> element in this
rule to bleed through:

html {
background: #fff url(‘fruit_veg_web.jpg’) no-repeat fixed center center;

}

For the <body> element, I’ve applied a background that uses a cross-hatching effect. The backgrounds
I’ve chosen for this document are purely aesthetic. The image ‘fruit_veg_web.jpg’ is quite large in
size, over 100KB. On first download, this image takes a while to load on a low-bandwidth connection.
However, with browser caching, the technique that saves a local copy of all the documents and compo-
nents of the web page, the bite caused by this large file is limited to the first visit. As visitors view subse-
quent pages with the same background, the browser remembers that this file is the same one requested
from the page before and simply displays that local copy instead of requesting it again from the server.

The next rule on the style sheet is the <table> containing the Spicy Thai Peanut Sauce recipe:

table.recipe {
width: 100%;
margin-bottom: 5px;

}

Here the table is told to take up 100% of the available space horizontally. Because it resides inside of the
<body> element, the amount of free space is what’s available inside of that element. A margin is applied
to the bottom of the table to provide more spacing from the end of the <table> and the start of the
. The caption, containing the name of the recipe, renders above the table by default. Therefore, the
table appears in Figure 12-4 just as if you had written the following:

table.recipe {
caption-side: top;
width: 100%;
margin-bottom: 5px;

}

If I wanted the caption to appear below the table, after the data contained in the <table> element, I
would have included caption-side: bottom; instead. For this example, it made more sense for the
caption to appear above the table because it contains the name of the recipe.

468

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:46 PM Page 468

The next group of style sheet rules style the cells of the table:

table.recipe thead th {
font-weight: bold;
font-size: 150%;
color: black;

}
table.recipe thead th, table.recipe tbody td {

padding: 5px;
text-transform: lowercase;

}
table.recipe tbody td, table.recipe tfoot td {

font-size: 130%;
}
table.recipe tfoot td {

padding: 5px;
}

For the cells of the table, I have chosen to take advantage of grouping elements to differentiate the styles
for table headings (<thead> element), the body of the table (<tbody> element), and the footer of the
table (<tfoot> element). This approach allows me to apply style to the table without adding additional
id or class attributes. I use the descendant selector here to ensure that styles are applied only to tables
containing the recipe class name. This allows me to include more than one recipe per page or possibly
introduce other tables of data without affecting the styles for those tables. Again, the descendant selector
works by looking at the element’s ancestry. For instance, table.recipe thead th says to look first for a
<table> that contains a recipe class name; then look for a <thead> element inside that table; look for a
<th> element inside the <thead> element; and finally, apply the declarations contained inside the rule.

Now that you have seen the various elements available for use in a <table> element, the following sec-
tion explores how you control table width with the table-layout property.

Controlling Table Width with the
table-layout Property

The following table outlines the table-layout property and its possible values.

Property Value

table-layout auto | fixed

Initial value: auto

As you learned in Chapter 7, by default, a table expands and contracts to accommodate the data con-
tained inside. As data fills the table, it continues to expand as long as there is space. When you look at
them this way, tables are inherently fluid.

469

Chapter 12: Tables

17_096970 ch12.qxp 4/25/07 1:19 PM Page 469

table {
border: thin solid black;

}

This rule is the same as saying:

table {
border: thin solid black;
table-layout: auto;

}

The table-layout: auto; declaration is the default behavior of a table.

By default, the table expands only enough for the content that it contains, and this is the same as
table-layout: auto;. Sometimes, however, it is necessary to force a table into a fixed width for both
the table and the cells. Figure 12-5 is a demonstration of what happens when you specify a fixed width
for the table.

Figure 12-5a

To see what a 200-pixel width looks like, Figure 12-5b adds a snippet of markup to the body of the
XHTML document showing my favorite records.

This code results in the output depicted in Figure 12-5c.

The table is larger than 200 pixels because the text contained in the cells results in a width larger than
200 pixels. You can use the table-layout: fixed; declaration to force the table into a 200-pixel width.
You simply add the declaration, like so:

470

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:46 PM Page 470

table {
border: 1px solid rgb(200, 200, 200);
caption-side: bottom;
width: 200px;
table-layout: fixed;

}

Figure 12-5b

471

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:47 PM Page 471

Figure 12-5c

Once you’ve added the table-layout: fixed; declaration, you get the output that you see in
Figure 12-6.

Figure 12-6

472

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:47 PM Page 472

The table is forced to maintain its width of 200 pixels, regardless of how much data is contained in its
table cells. If the content inside the cells results in a width larger than 200 pixels, the content overflows.
The clipped content is not visible when the document is viewed using IE 6 and IE 7, which is what is
supposed to happen. As you see in Figure 12-6, however, the clipped content is visible in Safari, and the
same is seen when the document is viewed in Firefox or Opera. You can correct this by adding the fol-
lowing rule:

th, td {
overflow: hidden;

}

The result is shown in Figure 12-7.

Figure 12-7

This is what the output is supposed to look like according to the table-layout property as it appears
in the CSS 2 standard, and as supported by IE and Opera. In contrast, as you saw in Chapter 7, the
overflow property may also be used to add scroll bars so that the clipped content can be viewed.

The table-layout: fixed; declaration goes by the width defined for the <table> element. In this
example, the width is 200 pixels, so the table is forced into having a 200-pixel width. If a width isn’t
defined for the <table> element, it goes by the width for each <col> element. If no width is defined
there, it goes by the width for the <td> elements in the first row of the table.

By default, tables are rendered with table-layout: auto;, which in essence means that the table can
expand and contract to accommodate the data contained in its cells. What happens if a percentage width
is specified for the table? When the table has a percentage width, each cell is given an equal width that

473

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:47 PM Page 473

expands and contracts, depending on the space available to it. If the content of the cell is larger than the
width, however, the content is clipped, just as it was with a fixed width. The rule for the table is changed
to width: 100%; from width: 200px;, as seen in the following example:

table {
border: 1px solid rgb(200, 200, 200);
caption-side: bottom;
width: 100%;
table-layout: fixed;

}

The result is shown in Figure 12-8.

Figure 12-8

Each cell is spaced evenly. When the browser window is resized, the table gets smaller. As it gets smaller
and the content of the cells become larger than the cell, the content gets clipped as it did in Figure 12-7.

Now that I’ve presented what the table-layout property does, I want to demonstrate the results
of this property when it’s applied to the Spicy Thai Peanut Sauce recipe table. Before I apply the
table-layout property, however, I first need to apply a temporary rule that adds a border to each
cell so that you can see the effect of the table-layout property. In the following Try It Out, you add
this rule to the style sheet.

Try It Out Highlighting Cell Widths
Example 12-2. The following steps show you how to add a rule that applies a border to each cell.

1. Open Example_12-1.css and add the following rule to the style sheet:

th, td {
border: 1px solid crimson;

}

2. Save the file as Example_12-2.css.

474

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:47 PM Page 474

3. Make the following changes to Example_16-1.html to reference the new style sheet:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Spicy Thai Peanut Sauce</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_12-2.css’ />

</head>
<body>

<table class=’recipe’>
<caption>

Spicy Thai Peanut Sauce
</caption>

4. Save the file as Example_12-2.html. The result is depicted in Figure 12-9.

Figure 12-9

475

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:47 PM Page 475

How It Works
The borders highlight the fact that the cells of the table are uneven. Each column has a different width
depending on the contents of the cells of that column; by default, a table expands just enough to accom-
modate its content. This table has a 100% width, which only alters that behavior slightly. The columns
still expand and contract depending only on how much content is in each cell. The more content a cell is
given, the more its column width expands.

Temporary style rules like this are often helpful in highlighting the effects of rendering that are difficult
to see. Keeping the highlighted borders, examine the following Try It Out to see what this example looks
like when the table-layout: fixed; declaration is applied.

Try It Out Applying the table-layout Property
Example 12-3. In the following steps, you apply the table-layout: fixed; property.

1. Open Example_12-2.css and add the highlighted declaration to the style sheet:

table.recipe {
width: 100%;
margin-bottom: 5px;
table-layout: fixed;

}

2. Save the file as Example_12-3.css.

3. Make the following changes to modify Example_12-2.html so that it references the new style
sheet:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Spicy Thai Peanut Sauce</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_12-3.css’ />

</head>
<body>

<table class=’recipe’>
<caption>

Spicy Thai Peanut Sauce
</caption>

4. Save the file as Example_12-3.html. The result is shown in Figure 12-10.

476

Part II: Properties

17_096970 ch12.qxp 4/25/07 1:19 PM Page 476

Figure 12-10

How It Works
The addition of the table-layout: fixed; declaration gives the table a very clean, organized look. All
the columns have equal, consistent widths. With this particular design, the table fills the area available
inside the <body> element because it has a width of 100%.

The table-layout: fixed; declaration allows a table’s layout to be more consistent by forcing a table
to honor the value contained in the width property. The width property may be applied to the <table>
element, to the <col/> elements inside the table, or to the cells.

Now that I’ve thoroughly explored the table-layout property, in the following sections I examine the
other CSS properties that exist for controlling table layout.

477

Chapter 12: Tables

17_096970 ch12.qxp 4/25/07 1:19 PM Page 477

Removing Cell Spacing with the
border-collapse Property

The following table outlines the border-collapse property and its possible values.

Property Value

border-collapse collapse | separate

Initial value: separate

Tables, by default, include some spacing between each of the cells appearing in the table. In this chapter,
you’ve observed this in each of the “My Favorite Records” examples. In HTML, this was controlled with
the cellspacing attribute. CSS 2 replaces this attribute with the border-collapse property and the
border-spacing property. By default, the border-collapse property has a value of separate. If you
set the value to collapse, you remove the spacing between each cell. When you use the “My Favorite
Records” table example again, this is what the rule looks like with the border-collapse: collapse;
declaration applied.

table {
border: 1px solid rgb(200, 200, 200);
caption-side: bottom;
width: 100%;
table-layout: fixed;
border-collapse: collapse;

}

If you apply the collapse value, all the cells are squeezed tightly together. Figure 12-11 shows what
happens.

Figure 12-11

The border-collapse: collapse; property is currently the best way to remove all spacing from
between cells, because this property is supported by IE 6, IE 7, Firefox, Opera, and Safari.

478

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:47 PM Page 478

The next section talks about how you can control spacing between table cells with greater precision with
the border-spacing property.

The border-spacing Property
The following table outlines the border-spacing property and its possible values.

Property Value

border-spacing <length> <length>?

Initial value: 0

IE 6 and IE 7 do not support the border-spacing property.

To control the spacing between cells, the border-spacing property was added in CSS 2. The border-
spacing property allows more control over cell spacing than border-collapse because it allows the
length to be specified.

If, as in the following example, you provide a single length value of 15px, 15 pixels of space are added
between each cell, both vertically and horizontally:

table {
border: 1px solid rgb(200, 200, 200);
caption-side: bottom;
width: 100%;
table-layout: fixed;
border-spacing: 15px;

}

The result is shown in Figure 12-12. You can see that IE 6 does not support the border-spacing prop-
erty (nor does IE 7, for that matter). Firefox, Opera, and Safari do support this property.

The border-spacing property has the following syntax:

border-spacing: <vertical spacing length> <horizontal spacing length>;

If the optional second value is present, this property allows the vertical and horizontal spacing to be
specified. The following snippet results in 15 pixels of space between the top and bottom of each cell:

table {
border: 1px solid rgb(200, 200, 200);
caption-side: bottom;
width: 100%;
table-layout: fixed;
border-spacing: 0 15px;

}

479

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:47 PM Page 479

Figure 12-12

The result is shown in Figure 12-13.

Figure 12-13480

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:47 PM Page 480

Whereas, if I flip the values around, as in the following:

table {
border: 1px solid rgb(200, 200, 200);
caption-side: bottom;
width: 100%;
table-layout: fixed;
border-spacing: 15px 0;

}

I get 15 pixels of space between the left and right edges of each cell. The result is shown in Figure 12-14.

Figure 12-14

Now that I’ve shown you how to control the spacing between cells, you can apply this knowledge to
the Spicy Thai Peanut Sauce recipe table. The following Try It Out demonstrates a practical use of the
border-collapse property in action.

Try It Out Applying Cell Spacing
Example 12-4. The following steps show how to work with cell spacing.

1. Open Example_12-3.css and make the following modifications to the file:

table.recipe {
width: 100%;
margin-bottom: 5px;
table-layout: fixed;
border-collapse: collapse;

}

2. Save the file as Example_12-4.css.

3. Update the markup in Example_12-3.html to reflect the new style sheet:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>

481

Chapter 12: Tables

17_096970 ch12.qxp 4/20/07 11:47 PM Page 481

<head>
<title>Spicy Thai Peanut Sauce</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_12-4.css’ />

</head>
<body>

<table class=’recipe’>
<caption>

Spicy Thai Peanut Sauce
</caption>

4. Save the file as Example_12-4.html. The result of these changes is shown in Figure 12-15.

Figure 12-15

482

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:47 PM Page 482

How It Works
As you can see in the output, the addition of border-collapse: collapse; fine-tunes the design for the
Spicy Thai Peanut Sauce recipe table. Removing the extra space between the cells tightens up the design.

At this point, I can remove the temporary borders that I included to make the cell edges obvious:

th, td {
border: 1px solid crimson;

}

With this rule removed, the page looks like what’s shown in Figure 12-16.

Figure 12-16

The final product shown in Figure 12-16, with the temporary border removed, is saved in the source
code files for download at www.wrox.com. After downloading the entire folder structure, you can find
the files, Example_12-5.html and Example_12-5.css, under Chapter 12/Try It Out.

483

Chapter 12: Tables

17_096970 ch12.qxp 4/25/07 1:19 PM Page 483

Summary
In this chapter, I showed you what is possible with HTML/XHTML tables. Here is what I covered:

❑ Tables have a lot of optional elements that make the structure easier to style. These include
columns, heading groupings, body groupings, and footer groupings.

❑ You control the placement of a table’s caption by using the caption-side property.

❑ You control a table’s layout by using the table-layout property. With this property, it is pos-
sible to force a table into a certain width.

❑ You can remove the spacing between table cells by using the border-collapse property.

❑ You can adjust the spacing between table cells by using the border-spacing property.

In the next chapter, I discuss what CSS offers for styling content printing.

Later on, in Chapter 14, I begin discussing how to style an XML document. As I mentioned earlier in this
chapter, Chapter 14 relies heavily on the content presented in this chapter because it shows you how to
create the examples presented in this chapter with XML and CSS.

Exercises
1. Which of the properties discussed in this chapter do not work in IE 6 and IE 7?

2. Describe what the table-layout: fixed; declaration does.

3. When sizing using the table-layout: fixed; declaration, how does the browser determine
the width of table columns?

4. What purpose does the optional <thead> element serve?

5. What element would you use if you wanted table column headers that are styled bold and
centered?

6. In what containing element does the main table data appear?

7. What browser does not support applying width to table columns? (At the time of this writing,
of course.)

484

Part II: Properties

17_096970 ch12.qxp 4/20/07 11:47 PM Page 484

Part III

Advanced CSS and
Alternative Media

Chapter 13: Styling for Print

Chapter 14: XML

Chapter 15: The Cursor Property

18_096970 pt03.qxp 4/20/07 11:47 PM Page 485

18_096970 pt03.qxp 4/20/07 11:47 PM Page 486

13
Styling for Print

You can use a specific style sheet to style content for print. In Chapter 2, you saw the differences
between length units used for a computer screen and length units used for print. This is one of the
key reasons that separate style sheets for print exist. Specifying measurements designated for com-
puter screens, such as pixel units, can potentially be inconsistent in printed documents, whereas
real-world, absolute length units, such as inches, centimeters, points, and so on are ideally suited
for print.

A style sheet written explicitly for print enables developers to exclude irrelevant portions of a web
document from the printed version. For example, no document navigation is required in a printed
version. Additionally, because color documents have some expense associated with them, depend-
ing on the type of printer and what type of ink or toner the printer uses, it is also often better to
exclude background images or other aspects of the design that result in greater consumption of
expensive ink or toner. For these reasons, print versions of web documents are often simplified to
simple black and white productions of the original document. Only foreground images relevant to
the document are retained. In fact browsers, by default, strip out all background images and color;
to print these, the user must specifically enable them before printing.

CSS 2 provides several properties for controlling the presentation of paged media, although at
the time of this writing a sparse selection of those properties is actually implemented in current
browsers. CSS 2 properties control such things as where page breaks occur, the size of the page
margins, and the size of the page itself. In this area, Opera boasts the best support for the CSS 2
paged media properties; I focus on only the features that have the best support.

Applying Styles Based on Media
In order to print in CSS, you need a way of differentiating styles intended for print from styles
intended for the computer screen. CSS can apply to a variety of documents, not just (X)HTML,
and CSS can be used on a variety of different devices and media.

19_096970 ch13.qxp 4/20/07 11:47 PM Page 487

To target different media, you use the media attribute, which is applied to the <link /> element, or the
<style> element. Or, from within a style sheet, you can target different media using @media rules. You
see examples of these later in this section. First, let’s examine the different types of media that CSS can
theoretically be applied to. The different types of media are outlined in the following table.

Media Purpose

all Suitable for all devices.

braille Intended for Braille tactical feedback devices.

embossed Intended for paged Braille printers.

handheld Intended for handheld devices.

print Intended for presentation to a printer (in a browser, use print preview to
view the print style sheet).

projection Intended for projected presentations.

screen Intended for presentation on a color computer screen.

speech | aural Intended for presentation to a speech synthesizer (called aural in CSS 2
and speech in CSS 2.1).

tty Intended for media using a fixed-pitch character grid (such as teletypes,
terminals, or portable devices with limited display capabilities).

tv Intended for television (low resolution, low color, limited scrollability).

PC and Mac browsers recognize only screen, print, and all values.

As you can see in the preceding table, CSS can target a wide variety of media types. For the purposes of
the discussion presented in this chapter, you need only be concerned with the screen, print, and all
media. Each medium can be supplied as a value to the media attribute. For example, if you wanted a
style sheet to apply only to styles presented in a PC or Mac browser, you would add the attribute
media=”screen” to either the <link /> or <style> elements. A demonstration appears in Figure 13-1.

Figure 13-1a

In Figure 13-1a, you see that some basic styles have been applied to the <p> element, nothing fancy, or
really of particular interest. The style sheet in Figure 13-1a is included in the markup that you see in
Figure 13-1b.

488

Part III: Advanced CSS and Alternative Media

19_096970 ch13.qxp 4/20/07 11:47 PM Page 488

In Figure 13-1b, you see one new addition, the media=’screen’ attribute, is applied to the <link />
element, which tells the browser that the styles are intended for onscreen display only.

Figure 13-1b

In Figure 13-1c, you don’t notice anything extraordinary; you see a <p> element with the styles applied
as you would expect. The effects of the addition of the media=’screen’ attribute become noticeable
when you go to print the document. Figure 13-1d shows what the print preview looks like.

Figure 13-1c

489

Chapter 13: Styling for Print

19_096970 ch13.qxp 4/20/07 11:47 PM Page 489

Figure 13-1d

490

Part III: Advanced CSS and Alternative Media

19_096970 ch13.qxp 4/20/07 11:47 PM Page 490

In Figure 13-1d, you see what’s happened here — since the styles only apply to onscreen display, they
aren’t applied to the print version of the document. If you would have included media=’all’, the styles
would be present in the printed version. Or, you could create a style sheet that applies to print exclu-
sively, by using the media=’print’ attribute. In the next section I discuss the @media rule, which
allows you to make medium-based distinctions from within the style sheet.

The @media Rule
The @media rule is used within a style sheet to enclose rules where you can make style sheet adjust-
ments based on medium. A demonstration of the @media rule appears in Figure 13-2.

Figure 13-2a

In Figure 13-2a, in the external style sheet, you see that new syntax is enclosing the two rules that refer
to the <p> element; these are the @media rules. The top @media rule applies to onscreen display of <p>
elements, and the bottom @media rule applies to print display of <p> elements. You’ll also note that the
measurements for each <p> element also differ based on medium. If you recall from Chapter 2, real-
world lengths such as centimeters, inches, and so forth, work better in print, whereas onscreen layout
works better with screen-based measurements such as pixels. The style sheet in Figure 13-2a is included
in the markup in Figure 13-2b.

491

Chapter 13: Styling for Print

19_096970 ch13.qxp 4/20/07 11:47 PM Page 491

Figure 13-2b

The code in Figure 13-2a and Figure 13-2b result in the output that you see in Figure 13-2c.

Figure 13-2c

In Figure 13-2c, you see the result of the onscreen styles presented in the first rule. Figure 13-2d shows
the result of the print styles.

492

Part III: Advanced CSS and Alternative Media

19_096970 ch13.qxp 4/20/07 11:47 PM Page 492

Figure 13-2d

In the following Try It Out, you review the media attribute and @media rules.

493

Chapter 13: Styling for Print

19_096970 ch13.qxp 4/20/07 11:47 PM Page 493

Try It Out Making Style Sheets for Specific Media
Example 13-1. To review the media attribute and @media rules, follow these steps.

1. Enter the following XHTML document in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>
<title>media</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_13-1.css’ media=’all’ />

</head>
<body>

<p id=’screen’>
The media attribute lets you control what styles are applied to which
media. PC and Mac browsers use the values print, all, and screen,
but there are many more media types than these.

</p>
<p id=’print’>

The @media rule can also be used to control styles based on medium,
but it can do so directly from the style sheet, with no need for HTML.

</p>
<p>

The @media rule simply wraps the rules that are to be applied to a
particular medium.

</p>
</body>

</html>

2. Save the preceding document as Example_13-1.html.

3. Enter the following style sheet in your text editor:

p {
font: 12px sans-serif;
background: yellow;
padding: 10px;

}
@media screen {

p#print {
display: none;

}
p#screen {

border: 10px solid gold;
}

}
@media print {

p {
padding: 0.05in;

}
p#print {

border: 10pt solid gold;
}
p#screen {

494

Part III: Advanced CSS and Alternative Media

19_096970 ch13.qxp 4/20/07 11:47 PM Page 494

display: none;
}

}

4. Save the preceding document as Example_13-1.css. Figure 13-3 shows the rendered output in
Safari, and the print preview.

Figure 13-3

How It Works
In Example 13-1, you made use of the media attribute and the @media rule. In the XHTML document, you
included an external style sheet via the <link /> element, and on the <link /> element you included the
attribute media=’all’, which tells the browser that the style sheet applies to all media. Insofar as your PC
or Mac browser is concerned, that means the styles apply to both print and screen media.

Within the style sheet, you see the style sheet divided into three parts: portions that apply to all media, rules
that apply only to screen, and rules that apply only to print. Let’s look at the first rule in the style sheet.

p {
font: 12px sans-serif;
background: yellow;
padding: 10px;

}

495

Chapter 13: Styling for Print

19_096970 ch13.qxp 4/20/07 11:48 PM Page 495

In this rule you see a font specified in pixels, and a background color, and padding applied to all <p>
elements. You’ll note that in the print preview in Figure 13-3, you don’t see any background colors,
and that the text is still readable, even though it is specified in pixels. Browsers don’t print background
colors or images, by default. There are no workarounds for this limitation of printing from a browser,
except for what controls the browser provides to the end user. Safari doesn’t offer the option of printing
background colors or images, nor does Firefox or Opera on the Mac. In IE 6 and IE 7, you can enable the
printing of background colors and images from Internet Options ➪ Tools ➪ Advanced, scroll down to the
“Printing” heading under “Settings,” and then check the box “Print background colors and images.” In
Firefox on Windows, you can print background colors and images by going to File ➪ Page Setup and
checking the box labeled “Print Background (colors & images) .” In Opera on Windows, go to File ➪

Print Options and check the box labeled “Print page background.”

Next in the style sheet is a collection of rules that apply to the screen exclusively. The <p> element
with id name print is hidden from the screen by setting the value of the display property to none, and
the <p> element with id name screen is given a 10-pixel, solid, gold border. You learn more about the
display property in Chapter 14.

@media screen {
p#print {

display: none;
}
p#screen {

border: 10px solid gold;
}

}

Then, following the collection of rules that apply to the screen is a collection of rules that apply to print.

@media print {
p {

padding: 0.05in;
}
p#print {

border: 10pt solid gold;
}
p#screen {

display: none;
}

}

In the second collection of rules, the padding around each <p> element is set to 0.05in, the border is
set to 10pt, and the <p> element with id name screen is set to not display, with the display: none;
declaration.

In the next section, I describe how to control page breaks in printed content.

496

Part III: Advanced CSS and Alternative Media

19_096970 ch13.qxp 4/20/07 11:48 PM Page 496

Controlling Page Breaks
Two print properties, or paged media properties as it is referred to by the W3C, that all popular
browsers have in common are page-break-before and page-break-after. These properties are out-
lined in the following table.

Property Value

page-break-before auto | always | avoid | left | right

Initial value: auto

page-break-after auto | always | avoid | left | right

Initial value: auto

The page-break-before and page-break-after properties control where page breaks are made.
Unfortunately, even though different browsers offer support for these two properties, they do not sup-
port all the values that CSS 2 allows. Firefox, Safari, IE 6, and IE 7 support only the keywords always
and auto. Opera supports all of the keywords.

The page-break-before and page-break-after properties dictate where a page break should be
made depending on where an element appears in a document. A demonstration of page-break-before
is shown in Figure 13-4.

Figure 13-4a

497

Chapter 13: Styling for Print

19_096970 ch13.qxp 4/20/07 11:48 PM Page 497

In the style sheet that you see in Figure 13-4a, you see some styles that apply to all media (the first rule),
and styles that apply to print, exclusively. You are setting basically the same styles for onscreen and
print, but you are applying screen-specific measurements for the screen, and print-specific measure-
ments for print. Then, you apply the declaration page-break-before: always; to the <p> element
with id name before. The styles in Figure 13-4a are applied to the markup in Figure 13-4b.

The code in Figure 13-4a and Figure 13-4b result in the output that you see in Figure 13-4c.

Figure 13-4b

When you preview the printed version of the document, you get output similar to what you see in
Figure 13-4d. A page break appears before the <p> element with id name before.

498

Part III: Advanced CSS and Alternative Media

19_096970 ch13.qxp 4/20/07 11:48 PM Page 498

Figure 13-4c

Figure 13-4d

499

Chapter 13: Styling for Print

19_096970 ch13.qxp 4/20/07 11:48 PM Page 499

500

Part III: Advanced CSS and Alternative Media

As you can surmise from the example in Figure 13-4c, the page-break-after property works the same
way as page-break-before, but it forces a page break after an element.

Summary
Style sheets can be made specifically for onscreen display, or for print, or for both.

❑ For print, you should consider the cost of ink. Because ink and toner are expensive, avoiding
high color designs is considered best practice in the formulation of print style sheets.

❑ The print properties that CSS provides should not be used unless you have control over the
actual printing of the document.

In Chapter 14, I take a look at the properties that CSS provides for styling XML data.

Exercises
1. Which media values apply to PC and Mac browsers?

2. Write the opening tag for the <style> element, targeting the styles to print.

3. What does the page-break-before property do?

4. Write a sample style sheet that includes three rules; the first rule applies to all media types, the
second rule applies to onscreen layout, and the third applies to print.

The print properties that CSS provides should be used in situations where you have
control over the actual printing of a document (size of the paper and the printer set-
tings), such as in a corporate intranet application. For a public website, you should
provide a print version of the document that exhibits as much flexibility as possible.

19_096970 ch13.qxp 4/20/07 11:48 PM Page 500

14
XML

In Chapter 12, I demonstrated the various options available to structure and style tables. In this
chapter, I discuss how CSS can be combined with XML to style XML documents. This chapter cov-
ers the following:

❑ What XML is

❑ How to create an XML document structure suitable for presentation

❑ The XML declaration

❑ The CSS display property

❑ Displaying block-level boxes with XML and CSS

❑ Displaying inline-level boxes with XML and CSS

❑ Recreating the structure, layout, and behavior of HTML tables using XML and CSS

XML is a robust and flexible markup language. Its uses extend to desktop applications such as
spreadsheets and music jukebox software. It is also used heavily on the Internet for a plethora of
applications. Many people see XML as the web language of tomorrow, one that will eventually
replace HTML as the mainstream markup language of choice for building websites. In the follow-
ing sections, you look further into XML.

In this chapter I assume that you have a basic familiarity with XHTML. If you’d like
to learn more about XHTML, try Beginning Web Programming with HTML, XHTML,
and CSS by Jon Duckett (Wrox Press, 2004). For more information about XML, try
Beginning XML, Third Edition, by David Hunter et al. (Wrox Press, 2004).

20_096970 ch14.qxp 4/20/07 11:48 PM Page 501

Crash Course in XML
XML documents have many uses. For example, an XML document can be used to store data (like a
database) because in an XML document you invent the tags and attributes. You have the advantage of cre-
ating tags in an XML document that describe the data they contain. Because you have the freedom to cre-
ate elements and attributes as you wish, the data contained in the document can be organized much more
efficiently and semantically than by using HTML alone. Your ability to invent elements and attributes
makes using XML advantageous in another way: It creates a document structure that makes sense to both
humans and computers. Placing a recipe between <recipe> tags makes much more sense than using the
various elements of HTML and XHTML. Placing a recipe between <recipe> tags also makes it easier for
a web developer to design a search that looks for pages that contain only recipes. He or she can also share
or transport those recipes to a variety of applications, such as spreadsheet programs and word processors,
or by syndication to thousands or even millions of websites worldwide. XML’s most impressive benefit is
that it can be used for a variety of applications, not just for display on a web page.

The use of XML to syndicate data is typically called Really Simple Syndication (RSS), a specification
that uses the XML language to describe syndicated data. RSS is in use today by thousands (perhaps
even millions) of websites, and this is just one of the many uses of XML.

XML can also be used to present data on the web as an HTML or XHTML document does. This isn’t,
however, the most common use of XML; in fact, the world’s most popular browser, Internet Explorer 6,
offers only mediocre support for XML display using CSS. Mozilla, Opera, and Safari, in contrast, have
excellent support for the CSS required to display an XML document, and the examples in this chapter
display very well if viewed in one of these browsers. Note that CSS is not the only solution in the works
for displaying XML in a browser. Another solution is the Extensible Stylesheet Language (XSL), a style-
sheet language designed specifically for XML.

XSL isn’t a replacement for CSS in XML documents; XSL is a more complicated style-sheet language
that uses XML syntax. XSL is capable of much more than CSS. For instance, XSL is capable of com-
pletely transforming documents. Both languages have advantages for particular tasks and may both be
utilized to present XML documents.

For the sake of staying on topic and simplicity, I cover styling XML using only CSS with what’s available
in today’s browsers.

XML most closely resembles HTML; however, the angle bracket is about the only thing the two lan-
guages have in common. Let’s take a look at XML document structure.

❑ XML must be well formed; all elements must have both an opening and a closing tag, and all
attribute values must be enclosed with quotations. All elements must be properly nested, that
is, you can’t have <recipe><ingredient></recipe></ingredient>, it must be <recipe>
<ingredient></ingredient></recipe>.

❑ XML documents can contain only one root element.

❑ XML is case-sensitive.

502

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 502

Figure 14-1a is a brief example of an XML document.

Figure 14-1a

When you view this in a browser, IE 6 and Firefox display a tree of the XML source code as shown in
Figure 14-1b. Safari doesn’t show the source elements; it just shows the data.

Figure 14-1b

503

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 503

XML is said to be well formed when the document contains an XML declaration — the <?xml
version=”1.0”?> in this example — and all tags have both an opening and closing tag, any attributes
in the document are all enclosed in quotes, and only one root element exists. In this example, the root
element is <page>. I cover the XML declaration in more detail later in this chapter. As with XHTML,
you can use the shortcut syntax to close a tag, as shown in the <cover/> element in this example.

Next, an XML document can only contain one root element. The root element in this example is the
<page> element; in HTML and XHTML the root element is the <html> element. Therefore, the following
is not a valid XML document because it contains two root elements.

Figure 14-2a

If an XML document is not well formed, the browser refuses to display it and instead displays some
error text indicating what went awry. This error text is depicted in Figure 14-2b.

You can use this error text to correct the document, after which the browser displays the XML document
tree like that shown in Figure 14-1.

Finally, XML is case-sensitive. So <PAGE> and <page> are two different tags in XML.

As you’ve just seen here, XML’s markup structure can describe the data it contains. This is a benefit of
XML, but not a requirement. In the following section, I discuss creating an XML schema that you can use
to structure the data contained in an XML document.

The XML declaration is technically optional, but experts agree that it is considered
best practice to include it. The reasoning behind this is outside of the scope of this
book; just keep in mind that it’s better to have it.

504

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 504

Figure 14-2b

Creating an XML Schema
The term schema refers to the structure and naming of XML elements that work together to produce a
well-formed XML document. In this context, you are going to define your own XML elements, so having
a schema means that you are going to decide on what element names and attributes that you will use in
your XML document. Typically your XML schema reflects the data that you want in your XML docu-
ment. If your XML document is a recipe, you want to define the different elements that will be included
to describe recipe data, and that naming convention will be your schema. For example, you might opt to
create an element named <measurement> that includes all measurement data, and you might define an
element named <ingredient> that includes ingredient data. These and all the other elements that you
create come together to make up your schema.

505

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 505

Some requirements that you have to consider are the following:

❑ Defining a page structure that resembles tabular data or list data, such as HTML/XHTML
<table>, <tr>, and <td> elements and list elements such as and .

❑ Determining which elements are block-level elements (like the <div> element in
HTML/XHTML) and which are inline-level elements (like).

This schema business really isn’t difficult. Take a look at how the “My Favorite Records” example from
Chapter 12 is written as an XML document.

<favorites>
<title>

Table: My favorite records.
</title>
<cols>

<album/>
<artist/>
<released/>

</cols>
<headings>

<record>
<album> album </album>
<artist> artist </artist>
<released> released </released>

</record>
</headings>
<records>

<record>
<album> Rubber Soul </album>
<artist> The Beatles </artist>
<released> 1965 </released>

</record>
<record>

<album> Brown Eyed Girl </album>
<artist> Van Morrison </artist>
<released> 1967 </released>

</record>
<record>

<album> Mellon Collie and the Infinite Sadness </album>
<artist> The Smashing Pumpkins </artist>
<released> 1995 </released>

</record>
</records>
<footers>

<record>
<album> album </album>
<artist> artist </artist>
<released> released </released>

</record>
</footers>

</favorites>

506

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 506

This is the entire XML document. In this version of the document, the XML tags that structure the
data also describe the data contained in the document. Instead of the <table> element, there is the
<favorites> element; instead of the <caption> element, the <title> element is used. Instead of the
<colgroup> element, the <cols> element is used to group the columns, and the columns themselves
are named for what type of columns they are: <album/>, <artist/>, and <released/> instead of
<col />. <headings> replaces the <thead> element, and <record> replaces the <tr> element.
<album>, <artist>, and <released> are used here as cells, replacing the <th> and <td> elements.
You can use the same names for the cells as for columns here because CSS offers options to distinguish
between the two. Likewise, the rest of the table elements in Chapter 12 in the “My Favorite Records”
example are also represented here with an XML counterpart. Finally, unlike the example in Chapter 12,
the XML document here is complete — you don’t add <html> or <body> elements. However, before the
XML version of the “My Favorite Records” example is complete, it needs two more things: an XML dec-
laration and an XML stylesheet declaration, both of which I add later in this chapter.

Now that you’ve seen an example of converting an HTML document to an XML document, the follow-
ing Try It Out presents the Spicy Thai Peanut Sauce recipe that you saw in Chapter 12. Here the recipe is
reformatted as an XML document.

Try It Out Creating an XML Schema
Example 14-1. In the following steps, you create an XML version of Spicy Thai Peanut Sauce recipe in
Chapter 12.

1. Enter the following XML into your text editor:

<page>
<recipe>

<ingredients>
<title>

Spicy Thai Peanut Sauce
</title>
<columns>

<quantity/>
<measurement/>
<product/>
<instructions/>

</columns>
<headings>

<heading>
<quantity> quantity </quantity>
<measurement> measurement </measurement>
<product> product </product>
<instructions> instructions </instructions>

</heading>
</headings>
<ingredientsbody>

<ingredient>
<quantity> ƒ1⁄2 </quantity>
<measurement> CUPS </measurement>
<product> Peanut Oil </product>
<instructions></instructions>

507

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 507

</ingredient>
<ingredient>

<quantity> 12 </quantity>
<measurement> Each </measurement>
<product> Serrano Peppers </product>
<instructions> Sliced </instructions>

</ingredient>
<ingredient>

<quantity> 16 </quantity>
<measurement> Each </measurement>
<product> Garlic Cloves </product>
<instructions> Minced </instructions>

</ingredient>
<ingredient>

<quantity> 2 </quantity>
<measurement> CUPS </measurement>
<product> Peanut Butter </product>
<instructions></instructions>

</ingredient>
<ingredient>

<quantity> 1 </quantity>
<measurement> CUPS </measurement>
<product> Soy Sauce </product>
<instructions></instructions>

</ingredient>
<ingredient>

<quantity> ƒ1⁄2 </quantity>
<measurement> CUPS </measurement>
<product> Lime Juice </product>
<instructions></instructions>

</ingredient>
<ingredient>

<quantity> 4 </quantity>
<measurement> TABLESPOONS </measurement>
<product> Sesame Oil </product>
<instructions></instructions>

</ingredient>
<ingredient>

<quantity> 4 </quantity>
<measurement> CUPS </measurement>
<product> Coconut Milk </product>
<instructions></instructions>

</ingredient>
<ingredient>

<quantity> 1⁄2 </quantity>
<measurement> CUPS </measurement>
<product> Honey </product>
<instructions></instructions>

</ingredient>
<ingredient>

<quantity> 1⁄2 </quantity>
<measurement> CUPS </measurement>
<product> Brown Sugar </product>

508

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 508

<instructions></instructions>
</ingredient>

</ingredientsbody>
</ingredients>
<directions>

<direction>
Sauté sliced serranos and garlic in peanut oil
till lightly browned.

</direction>
<direction>

Add <really>all</really> other ingredients and stir till
dissolved.

</direction>
<direction>

Simmer for 5 minutes.
</direction>
<direction>

Purée all in blender.
</direction>

</directions>
<suggestions>

Sauté your favorite vegetables; onions, mushrooms,
green peppers, and squash work best. Sprinkle with allspice,
salt, and pepper. Optionally add walnuts or pine nuts. Add
browned chicken or tofu and glaze with sauce. Serve with
jasmine rice.

</suggestions>
</recipe>

</page>

2. Save the file as Example_14-1.xml.

3. Open it in the browser and see what you’ve created.

You may experience problems with the special characters that appear in this file, such as the fractions
“f 1⁄2” or the “e” with acute accent, or “é.” You learn more about this later in this chapter.

How It Works
Nothing fancy here just yet. When viewed in a browser, the code in Example 14-1 simply shows a tree of
the XML source file similar to that depicted in Figure 14-1b. The differences here are important because
each has an effect on how the document is presented with CSS, and each offers further flexibility in the
presentation of the document.

First, the <page> tag is added so that the <recipe> element can be styled independently. The <page>
element is to this XML document as the <html> element is to an HTML/XHTML document, with one
major difference: You can give the <page> tag any name you like. If you recall from Chapter 12, I
applied a background to the <html> element using CSS, which is why I have created a <page> element
for this example. The <recipe> element emulates the behavior of the <body> element presented in
Chapter 12, and it has the semitransparent crosshatch background that was used there.

509

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 509

Next is the <ingredients> element, which contains the recipe’s ingredients. All the table elements pre-
sented in Chapter 12 are represented here using an XML counterpart with one minor difference: In
Chapter 12, I included the directions and suggestions as part of the table footers. When you are using
only XML and CSS, this presents a problem. At the time of this writing, you have no way to span multi-
ple columns with the CSS implemented in today’s browsers. However, here I can simply move portions
of the recipe that span multiple columns outside of the table.

Now that the Spicy Thai Peanut Sauce recipe has a viable XML document structure, let’s continue the
discussion. In the next section I discuss the XML declaration.

The XML Declaration
Most XML documents contain an XML declaration. If one is included, it’s the very first tag in the docu-
ment, and it looks like this:

<?xml version=”1.0”?>

This declaration announces which version of XML is contained in the document. This is not very compli-
cated, and it isn’t required. In an XML document, it simply says, “Hey, I’m an XML document!” When
an XML document encounters a browser or any other type of application that is able to read XML docu-
ments, the browser or application doesn’t have to guess what kind of document is being presented. I say
encounter in this context because, as I discussed earlier, an XML document is not restricted to web
browsers.

XML Declaration Attributes
An XML declaration can contain three attributes, two of which are optional. These are called pseudo-
attributes because they resemble markup attributes. The first attribute is the version attribute (see the
previous example). This denotes which version of the XML specification is being referenced. Currently,
two versions, 1.0 and 1.1 exist. Version 1.1 was only recently made a candidate recommendation by the
W3C. As a candidate recommendation (and not a standard), Version 1.1 is still shiny and new, meaning
it isn’t yet widely available. For the purpose of this discussion I’ll stick with 1.0. Which version I use is
moot, because the differences between the two versions do not affect the basic syntactical presentation
of XML documents in the examples of this chapter. The features in the XML 1.1 specification affect more
complicated uses of XML that are beyond this immediate discussion.

The next attribute is an optional encoding attribute:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

The encoding attribute tells the parser (the program interpreting the XML) about the characters con-
tained in the document, that is to say, the data contained in the document. The value “ISO-8859-1”
refers to characters common to the Americas and Western Europe. Actually, it’s part of an International
Standard. The letters ISO stand for International Standards Organization; the numbers refer to the ISO docu-
ment. This can also go by the much simpler name of “LATIN-1”, as in the following:

<?xml version=”1.0” encoding=”LATIN-1”?>

510

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 510

The inclusion of the encoding attribute is very important because the default encoding value is not
“LATIN-1” but an even smaller set of characters. You must include the proper encoding type in order
to have all characters correctly translated to their proper display equivalents.

The third attribute is the standalone attribute, which looks like this:

<?xml version=”1.0” encoding=”LATIN-1” standalone=”yes”?>

The standalone attribute has to do with the inclusion of a Document Type Definition (discussed briefly
in Chapter 7). Document Type Definition (DTDs) may also be included in XML documents, but they
require the DTD to be custom written because the elements of an XML document can be invented.
Creating a Document Type Declaration is beyond the scope of this book, so for the purpose of this
discussion the standalone attribute with a value of “yes” tells the browser that no Document Type
Declaration is accompanying the XML document.

The pseudo-attributes of an XML declaration must also appear in a particular order: The first attribute
must always be the version attribute, followed by the optional encoding attribute, followed by the
optional standalone attribute.

The XML stylesheet Declaration
The syntax for including a style sheet in an XML document closely resembles a cross between the XML
declaration itself and the <link> tag in HTML/XHTML:

<?xml-stylesheet type=”text/css” href=”test.css”?>

Like the <link> element in an HTML or XHTML document, this references the external style sheet,
which styles the XML document. The XML stylesheet declaration must appear after the XML declara-
tion. The declaration must appear first in the document and before the document markup itself. By
including a style sheet, you gain access to the full range of CSS properties and values in an XML docu-
ment, just as you gain access in an HTML or XHTML document.

Now that you are familiar with the XML declaration and the stylesheet declaration, you can append
the syntax to the My Favorite Records example shown in Figure 14-3a.

This results in the output depicted in Figure 14-3b.

I’ll be using the My Favorite Records example again later in the chapter, but for now just put it aside.

An XML declaration should always be included in XML documents because it helps
both humans and the computer program that is interpreting the XML to determine
what kind of XML appears in the document.

511

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 511

Figure 14-3a

Because the stylesheet declaration has been added, even though no actual style sheet is created, the
text is run together. You can now include style sheet rules in the external CSS file to format the text of the
XML document.

512

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 512

Figure 14-3b

You’ve just seen what including both the XML declaration and the XML stylesheet declaration does
to an XML document. In the following Try It Out, you’ll update the Spicy Thai Peanut Sauce recipe pre-
sented in Example 14-1 so that it has an XML declaration and a reference to an XML style sheet.

Try It Out Adding an XML Declaration and Style Declaration
Example 14-2. The steps below add an XML declaration and style sheet reference to the Spicy Thai Peanut
Sauce recipe document.

1. Open Example_14-1.xml and add the following modifications:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”Example_14-2.css”?>
<page>

<recipe>

2. Save this file as Example_14-2.xml

3. Create a blank style sheet and save it as Example_14-2.css. This results in the output depicted
in Figure 14-4.

513

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 513

514

Part III: Advanced CSS and Alternative Media

Figure 14-4

How It Works
By referencing a style sheet, you have taken the first step for applying style to an XML document. Now
when you view the XML document in a browser, it no longer appears with the tree structure of the XML
source code, as it would if you had not specified a style sheet. At this point the document isn’t very
pretty — it is displayed as one long string of text. This is why the CSS display property is essential. It
explains to the browser how to display each tag contained in the XML document.

In the XML declaration, you’ve also included an encoding; here you’ve used the encoding type, UTF-8,
which covers the fraction and the “e” with acute accent characters used in the source file. Without the
UTF-8 encoding, your browser may not display these characters properly, since typically, browsers
default to UTF-7, which is a small subset of characters. UTF-8 is similar to the LATIN-1 encoding that
you saw earlier in this section, but it includes thousands of characters more.

The display Property
Displaying XML documents with CSS requires heavy use of the CSS display property, a property that
has the capability of defining an element’s behavior when it is rendered in a browser. The following
table shows the display property and its possible values.

Property Value

display inline | block | list-item | run-in | inline-block |
table | inline-table | table-row-group | table-
header-group | table-footer-group | table-row |
table-column-group | table-column | table-cell |
table-caption | none

20_096970 ch14.qxp 4/20/07 11:48 PM Page 514

The display property can have one of 17 different values (as of CSS 2.1). IE 6 and IE 7 are behind the
times in terms of supporting the full list of display value possibilities. Firefox, Opera, and Safari have
fantastic support of the CSS 2 display values. Opera, in this case, supports the full set of possible
display property values, and Firefox supports most of the possible values, but not all. In the coming
sections, I look at each possible value individually, what display mode each triggers when applied
to an XML element, and what elements with the same rendering behavior are found in HTML and
XHTML.

Styling Inline Elements with display: inline
The display: inline; declaration emulates elements like ; that means it causes the target ele-
ment to behave like an inline-level element, enabling it to appear in the flow of text. In an XML docu-
ment, it might be necessary to emphasize a word or phrase in the context of the text. This is done by
assigning the element a display: inline; declaration in the CSS style sheet. The XML document in
Figure 14-5a and the style sheet demonstrate how inline elements are displayed in XML.

Figure 14-5a

In the CSS style sheet (Figure 14-5b) the <wood> element can be defined to have whatever emphasis you
deem appropriate.

Figure 14-5b

Now the browser has explicit instructions for displaying any <wood> elements appearing in XML docu-
ments. The effects of this are depicted in Figure 14-5c.

515

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 515

Figure 14-5c

Styling Block Elements with display: block
After looking over the first bit of code in the previous section, naturally I’ll bet your next question
is, “What about the <tonguetwister> element?” The answer is that you can give the browser a
variety of explicit instructions for how to display this element. For this example, you can make the
<tonguetwister> element a block-level element with the display: block; declaration. The XML is
shown again in Figure 14-6a.

Figure 14-6a

The CSS in Figure 14-6b is included in the XML document.

Figure 14-6b

516

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 516

This results in the output depicted in Figure 14-6c.

Figure 14-6c

Just as in HTML/XHTML, block-level element default behaviors still apply: The output will automati-
cally span the entire window unless told to do differently, because its default width value is auto. With
this declaration, the <tonguetwister> element emulates the behavior of the <html> element found in
HTML and XHTML because it is the root element of the document. This is why you see the lightyellow
background taking up the whole screen. In fact it’s the same thing as writing:

<html>
How much wood would a woodchuck chuck
if a woodchuck could chuck wood?
A woodchuck would chuck all the wood a
woodchuck could chuck if a woodchuck
could chuck wood.

</html>

Styling List Items with display: list-item
The display: list-item; declaration causes an element to appear with a default bullet character next
to it, as is the case with the element in HTML and XHTML. When combined with the list-
style-type property or list-style-image properties (see Chapter 9), the list can be numbered, bul-
leted, or have a custom image applied. Consider the snip of XML in Figure 14-7a.

517

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 517

Figure 14-7a

When combined with the right CSS (Figure 14-7b), this is transformed into a list.

Figure 14-7b

This results in the output shown in Figure 14-7c.

Figure 14-7c

518

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 518

This is the same as writing the following in HTML/XHTML:

Rubber Soul
Sgt. Pepper’s Lonely Heart’s Club Band
Revolver

The <list> element is made into a block-level element to emulate the behavior of a HTML ele-
ment. It’s also given some margin on the left side to indent the list. Next, the list-style: disc; decla-
ration makes the list into a bulleted list. The <item> element is told to be a list-item with the display:
list-item; declaration. Without the list-style: disc; declaration, the list still appears with bullets
because a bulleted list is the default behavior of the display: list-item; declaration.

Generating Numbered Lists
Creating numbered lists is a more difficult undertaking in XML documents than it is in HTML given cur-
rent browser limitations. Applying a simple list-style-type: decimal; declaration should produce
a numbered list, and it does so if you’re viewing the output in Safari, Opera, or IE 6. However, a bug in
Firefox prevents it from producing a numbered list. When viewed in Firefox, the list appears with all
zeros, as seen in Figure 14-8b.

Figure 14-8a shows the required CSS to generate numbered lists.

Figure 14-8a

When applied to the same XML as seen in Figure 14-7a, you get the results depicted in Figure 14-8b.

This is the same as writing the following in HTML/XHTML:

Rubber Soul
Sgt. Pepper’s Lonely Heart’s Club Band
Revolver

519

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 519

Figure 14-8b

Using the display and list-style properties allows for emulation of the HTML element.

Now that you have some idea of what is involved with using the display property to dictate the behav-
ior of XML elements, the following Try It Out example continues the Spicy Thai Peanut Sauce recipe
with the addition of some style sheet rules.

Try It Out Applying inline, block, and list Styles
Example 14-3. Follow these steps to apply display property values to the Spicy Thai Peanut Sauce
recipe.

1. Enter the following CSS into your text editor:

page {
display: block;
width: 100%;
height: 100%;
background: #fff url(‘fruit_veg_web.jpg’) no-repeat fixed center center;

}
recipe {

display: block;
font-family: monospace;
padding: 10px;
margin: 10px;
/* Moz proprietary opacity property */
-moz-opacity: 0.7;

520

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 520

/* Microsoft proprietary filter property */
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=70);
/* CSS 3 opacity property */
opacity: 0.7;
background: url(‘cross_hatch.jpg’) repeat;

}
directions, suggestions {

display: block;
font-size: 130%;

}
directions {

list-style-type: disc;
}
direction {

display: list-item;
}
really {

display: inline;
font-weight: bold;

}

2. Save the file as Example_14-3.css.

3. Modify Example_14-2.xml to reference the new CSS file:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”Example_14-3.css”?>
<page>

<recipe>

4. Save the result as Example_14-3.xml. This results in the output depicted in Figure 14-9.

Figure 14-9

521

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 521

How It Works
As you can see after viewing the output in a browser, after you add just a few XML declarations to the
XML document, the recipe is beginning to take shape. At this point, the example looks similar when
viewed in IE 6, Safari, or Firefox. IE 6 has a bug that prevents the display of the background image; you
can overcome this by adding the width: 100%; and height: 100%; declarations to the <page> ele-
ment. The recipe renders best in Safari, Opera, and Firefox, which display the document as intended.

Let’s go through the example line by line:

page {
display: block;
width: 100%;
height: 100%;
background: #fff url(‘fruit_veg_web.jpg’) no-repeat fixed center center;

}

The <page> element is intended to emulate the <html> element in HTML/XHTML. This is defined as a
block-level element, and it is given a background image, as it was in Example 12-1 from Chapter 12.

Next is the <recipe> element, which contains all the ingredients and other information for the Spicy
Thai Peanut Sauce recipe:

recipe {
display: block;
font-family: monospace;
padding: 10px;
margin: 10px;
/* Moz proprietary opacity property */
-moz-opacity: 0.7;
/* Microsoft proprietary filter property */
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=70);
/* CSS 3 opacity property */
opacity: 0.7;
background: url(‘cross_hatch.jpg’) repeat;

}

Once more, the element is made into a block-level element with the display: block; declaration. Here,
the same properties are applied to the <recipe> element as were applied to the <body> element in
Chapter 12 in Example 12-1. They include the semitransparent effect. In IE 6, you can see that Microsoft’s
proprietary filter property does not work with XML documents.

Next are the <directions> and <suggestions> elements:

directions, suggestions {
display: block;
font-size: 130%;

}

Each of these is made into a block-level element. The <directions> element emulates the HTML/
XHTML element, and the <suggestions> element emulates a plain <div> or <p> element.
Because the <directions> element emulates a element, it is given a list-style–type
declaration:

522

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 522

directions {
list-style-type: disc;

}

Next, the list items are styled:

direction {
display: list-item;

}

The display: list-item; declaration lets the <direction> element emulate a element. Finally,
each <really> element is told to be an inline-level element with the display: inline; declaration:

really {
display: inline;
font-weight: bold;

}

Here the <really> element is bold for emphasis.

The display property gives an element its behavior, and block-level elements such as <html>, <body>,
<div>, and can be emulated using the display: block; declaration. Inline-level elements such as
<a>, , , can be emulated using the display: inline; declaration. List elements
() can be emulated using the display: list-item; declaration. You now need to style only the
table containing the recipe’s ingredients. This part of the styling is also taken care of using the display
property and the table display values.

Table Display Values
The table set of display values enables you to emulate HTML tables. With these tools, it’s possible to
fully recreate the behavior of an HTML table using XML elements. The following table shows the display
value and the table element that it emulates.

Display Declaration Emulated Element

display: table; <table>

display: table-caption; <caption>

display: table-column-group; <colgroup>

display: table-column; <col/>

display: table-header-group; <thead>

display: table-row-group; <tbody>

display: table-row; <tr>

display: table-cell; <td>, <th>

display: table-footer-group; <tfoot>

523

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 523

Unfortunately neither IE 6 nor IE 7 supports the table display keywords presented in the preceding
table, and currently there is no workaround for the lack of this support, other than to use the values that
these browsers do support, such as inline, block, list-item, and inline-block.

Each table keyword for the display property has an XHTML/HTML element counterpart. Look at each
value individually and how each is applied to an XML document.

Applying display: table
The following example uses My Favorite Records XML that you see in Figure 14-10a.

Figure 14-10a

524

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 524

The <favorites> element emulates an HTML/XHTML <table> element when the CSS in Figure 14-10b
is applied.

Figure 14-10b

This is done with the display: table; declaration. The <favorites> element now behaves just like
the <table> element found in HTML/XHTML. As I did in Chapter 12, I’ve also added some other dec-
larations so that the My Favorite Records example here renders identically to the example that you saw
in Chapter 12. Additionally, as in HTML/XHTML, other display properties can be applied, such as the
border: 1px solid black; declaration and width: 100%; that I’ve added to the rule. So far, you get
the results seen in Figure 14-10c.

Figure 14-10c

Adding a Caption with display: table-caption
Just as was the case with display: table;, the caption can be displayed with the display: table-
caption; declaration. In the XML source for My Favorite Records, the caption is the <title> element. I
could have just as easily called it <caption>, as it is in XHTML/HTML. However, I have chosen to take
advantage of XML’s capability that allows me to invent any tag name I like. The CSS in Figure 14-11a is
applied to the XML in Figure 14-10a.

The <title> element is made to behave like a table caption and now has behavior that is identical to the
<caption> element found in HTML/XHTML. Figure 14-11b shows the results so far.

525

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 525

Figure 14-11a

Figure 14-11b

Applying display: table-column-group and display: table-column
Table columns are styled next. In XML, styling is accomplished in the same way as with the table
columns example presented earlier in this chapter, except that the elements have to be told they are
columns. The CSS in Figure 14-12 is applied to the My Favorite Records XML in Figure 14-10a.

Figure 14-12

526

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 526

The display: table-column-group; declaration causes the <cols> element to emulate the
<colgroup> element found in XHTML/HTML; it is used to group the columns. The individual
columns are displayed in the same way as the <col /> element in XHTML/HTML with the display:
table-column; declaration, which results in no change in the output.

Styling Groupings, Table Rows, and Table Cells
Figure 14-13a shows the remaining declarations required to create the My Favorite Records table.

Figure 14-13a

527

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 527

The CSS in Figure 14-13a is applied to the XML that you saw in Figure 14-10a to get the output in
Figure 14-13b.

Figure 14-13b

The <tbody> element found in HTML and XHTML is emulated with the CSS declaration display:
table-row-group;, and again this element doesn’t offer any changes in presentation other than further
distinction in the structure of the document. This rule makes the <records> element emulate the
<tbody> element.

records {
display: table-row-group;

}

Now that you’ve distinguished the different groupings of table data, the next step is to make table rows.
This is done with the display: table-row; declaration. Here, the purpose is mimicking the behavior
of the <tr> element:

record {
display: table-row;

}

Table cells are styled with the display: table-cell; declaration to obtain the behavior of the <td>
element:

artist,
album,
released {

display: table-cell;
padding: 5px;
border: 1px solid rgb(200, 200, 200);

}

The next element in the My Favorite Records example is the <footers> element. Here, my intention is
to emulate the <tfoot> element. As was the case with the <tbody> element, this offers no change in
presentation, but places further distinctions in the structure of the document:

528

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 528

headings {
display: table-header-group;

}
footers {

display: table-footer-group;
}
headings artist,
headings album,
headings released,
footers artist,
footers album,
footers released {

background: lightyellow;
text-align: center;
font-weight: bold;

}

The remaining styles contribute further to giving the XML version of My Favorite Records the same
look and feel as the XHTML version.

Now that you have some idea of how tables are styled in XML, you can apply the information to an
example with more real-world merit and pizzazz. The following Try It Out continues building on the
Spicy Thai Peanut Sauce recipe presented in earlier examples and applies the table set of display values.

Try It Out Styling XML Tables
Example 14-4. With these steps, you apply table style formatting to the Spicy Thai Peanut Sauce recipe.

1. Open Example_14-3.css and modify the CSS document to reflect the following highlighted
changes:

page {
display: block;
background: #fff url(‘fruit_veg_web.jpg’) no-repeat fixed center center;
width: 100%;
height: 100%;

}
recipe {

display: block;
font-family: monospace;
padding: 10px;
margin: 10px;
/* Moz proprietary opacity property */
-moz-opacity: 0.7;
/* Microsoft proprietary filter property */
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=70);
/* CSS 3 opacity property */
opacity: 0.7;
background: url(‘cross_hatch.jpg’) repeat;

}
ingredients {

display: table;
width: 100%;
margin-bottom: 5px;
table-layout: fixed;

529

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 529

border-collapse: collapse;
}
title {

display: table-caption;
text-align: left;
margin-bottom: 5px;
text-transform: lowercase;
font-size: 160%;
padding: 5px;
letter-spacing: 10px;
font-weight: bold;

}
columns {

display: table-column-group;
}
columns * {

display: table-column;
}
headings {

display: table-header-group;
}
ingredientsbody {

display: table-row-group;
}
heading, ingredient {

display: table-row;
}
heading * {

font-weight: bold;
font-size: 150%;
color: black;
text-align: center;

}
heading *, ingredient * {

display: table-cell;
padding: 5px;
text-transform: lowercase;

}
ingredient * {

font-size: 130%;
}
directions, suggestions {

display: block;
font-size: 130%;

}
directions {

margin: 17px 0 15px 0;
padding: 0 0 0 45px;
list-style-type: disc;

}
suggestions {

margin: 22px 0 32px 0;
padding: 0 5px 0 10px;

}
direction {

530

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 530

display: list-item;
margin-left: 30px;
padding-left: 30px;

}
really {

display: inline;
font-weight: bold;

}

2. Save the file as Example_14-4.css.

3. Modify Example_14-3.xml to point to the new CSS document and save as Example_14-4.xml.
This results in the output depicted in Figure 14-14.

Figure 14-14

531

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 531

How It Works
Here, you applied several rules to style the table portion of the Spicy Thai Peanut Sauce recipe:

ingredients {
display: table;
width: 100%;
margin-bottom: 5px;
table-layout: fixed;
border-collapse: collapse;

}

The <ingredients> element is made into a table here with the display: table; declaration. This
essentially makes the <ingredients> element behave the same as the <table> element found in
HTML/XHTML. The table display properties that I discussed in Chapter 12 are now available to apply
additional formatting. I removed spacing between the cells contained in the table with the border-
collapse: collapse; declaration. Next, the <title> element is made into the table caption with the
display: table-caption; declaration. This makes the <title> element in this document the same as
the <caption> element I discussed in Chapter 12:

title {
display: table-caption;
text-align: left;
margin-bottom: 5px;
text-transform: lowercase;
font-size: 160%;
padding: 5px;
letter-spacing: 10px;
font-weight: bold;

}

The <title> element contains the recipe’s title and several styles that are applied to format the text. Next,
the column-grouping element <columns> is given its behavior via the display: table-column-group;
declaration. The columns are given their behavior via the display: table-column; declaration:

columns {
display: table-column-group;

}
columns * {

display: table-column;
}

At this point in the design, I have chosen to not take advantage of column styling, but I hold these ele-
ments in reserve for possible future enhancements to the document. In a real-world application it’s per-
fectly fine to omit elements that have no effect on the document’s final presentation; I have included this
here simply to demonstrate its possibility.

As for the table headings, the <thead> element is emulated in this document with the <headings>
element, and this element is given its style via the display: table-header-group; declaration:

headings {
display: table-header-group;

}

532

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 532

The <tbody> element is also represented with the <instructionsbody> element, and this is given its
style using the display: table-row-group; declaration:

ingredientsbody {
display: table-row-group;

}

So far, nothing other than the <ingredients> and <title> elements contributes to the actual presenta-
tion of the document.

Next, table rows are given their behavior:

heading, ingredient {
display: table-row;

}

Unlike the columns, heading groupings, and row groupings, table rows are very important for the struc-
ture of the document. These keep the cells in their places.

Next the cells in the heading are styled with a bold font, centering, black text, and 150% font size, which,
in this case, is 50% larger than the browser’s default font size:

heading * {
font-weight: bold;
font-size: 150%;
color: black;
text-align: center;

}

The cells inside the <heading> element are selected using two selectors, the descendant selector and the
universal selector. The descendant selector is the space between the type selector, heading, and the universal
selector, which selects all descendants of the <heading> element. In this example, that is the <quantity>
element, the <measurement> element, the <product> element, and the <instructions> element: All
these are descendants of the <heading> element. The universal selector is the asterisk. As you learned in
Chapter 3, using the universal selector by itself selects all elements. Here the principal is the same. I want to
select all children of the <heading> element without calling them by name, so I use heading * as the selec-
tor. This selects all the children without having to type each element’s name. The cells contained in the
<heading> element haven’t been made into cells yet. That is handled by the next rule:

heading *, ingredient * {
display: table-cell;
padding: 5px;
text-transform: lowercase;

}

Here again I’ve chosen the universal and descendant combination of selectors, which provides me with
flexibility should I chose to add additional elements to the recipe in the future. Here I am selecting the
children of the <heading> element, as I did for the last rule, and the children of the <ingredient>
element, which selects all remaining cells in the table. The cells of the table’s body that actually contain
the ingredients are styled with the next rule:

ingredient * {
font-size: 130%;

}
533

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 533

The last additions to the style sheet are put in place so that the XML version of the Spicy Thai Peanut
Sauce recipe is a pixel-for-pixel perfect emulation of its HTML cousin:

directions {
margin: 17px 0 15px 0;
padding: 0 0 0 45px;
list-style-type: disc;

}
suggestions {

margin: 22px 0 32px 0;
padding: 0 5px 0 10px;

}
direction {

display: list-item;
margin-left: 30px;
padding-left: 30px;

}

The padding and margin values here were determined using trial and error, switching back and forth
between the document presented in Example 12-5 and this example, Example 14-4.

Other Display Values
I have chosen not to cover other display values at this time because browser support for these is incred-
ibly marginal. Opera and Safari 1.2 do support the remaining display values: run-in, inline-block,
and inline-table. IE also supports the value inline-block.

I also want to mention that, although I chose to use XML as the vehicle for demonstrating the various
display values covered in this chapter, their use is not limited to XML. For clarity in presenting the
material, I felt XML was the cleanest and most intuitive approach. It is perfectly acceptable to use the
display property and its various values in (X)HTML documents. These values can be applied, conceiv-
ably, to any element. For instance:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>table display in XHTML</title>
<style type=”text/css”>

html {
display: table;
border-spacing: 5px;

}
body {

display: table-row;
}
div {

display: table-cell;
padding: 5px;
border: thin solid black;

534

Part III: Advanced CSS and Alternative Media

20_096970 ch14.qxp 4/20/07 11:48 PM Page 534

}
</style>

</head>
<body>

<div> table cell </div>
<div> table cell </div>

</body>
</html>

This results in the output shown in Figure 14-15.

Figure 14-15

Using an HTML document, I have essentially recreated the behavior of tables using as little extra HTML
code as is possible. This is a perfectly acceptable use of the display property. And I might also add an
acceptable use of table-based layouts.

Summary
XML is a flexible, robust markup language with multiple applications. CSS provides powerful control
over how an XML document is presented. CSS can emulate any type of HTML/XHTML element. XML
declarations provide the browser with important information about the XML document, including the
XML version and the encoding. This, in turn, provides information about the characters contained in the
document. The display property can be used to create block-level and inline-level boxes as well as the
various elements used in tables. In this chapter you learned the following:

❑ What XML is and some of its uses

❑ How to create an XML schema, and the document structure necessary to emulate HTML tables,
block-level, inline-level, and list elements

❑ What the XML declaration and the pseudo-attributes inside of it mean

❑ How to style an XML document

535

Chapter 14: XML

20_096970 ch14.qxp 4/20/07 11:48 PM Page 535

536

Part III: Advanced CSS and Alternative Media

❑ How to create block-level boxes like the <div> element in HTML/ XHTML

❑ How to create inline-level boxes like the element in HTML/XHTML

❑ How to style lists in XML

❑ How to style tables in XML

Exercises
1. What happens when you load an XML document into a browser that doesn’t strictly conform to

XML structural requirements?

2. What are the three pseudo-attributes used in the XML declaration? (Hint: The declaration is the
<?xml version=”1.0”?> bit.)

3. What is the syntax that you would use to include CSS in an XML document?

4. Name the keywords of the display property that have the best browser support.

5. Name all of the keywords of the display property used to emulate (X)HTML table elements
(including all optional elements) and their (X)HTML element equivalent. (Hint: display:
table; = <table>)

6. Can the display property be used on (X)HTML elements?

7. Which browsers do not support the table keyword values of the display property?

8. Which browser displays zeros instead of numbers when making a numbered list in XML?

20_096970 ch14.qxp 4/20/07 11:48 PM Page 536

15
The Cursor Property

CSS provides the cursor property to control the type of cursor displayed for a particular element.
The following table outlines the cursor property and its possible values.

Property Value

Cursor [<uri> ,]* [auto | crosshair | default | pointer
| move | e-resize | ne-resize | nw-resize |
n-resize | se-resize | sw-resize | s-resize |
w-resize | text | wait | help | progress]

Initial value: auto

Non-standard extensions to cursor hand | all-scroll | col-resize | row-resize |
no-drop | not-allowed | vertical-text

Safari does not support custom cursors, or non-standard cursor keywords. Opera for the Mac does
not support *-resize keywords, or non-standard cursor keywords. Opera for Windows supports
*-resize keywords, but not non-standard keywords. Firefox for the Mac does not support the
all-scroll keyword, but Firefox for Windows does. IE 6 and IE 7 support all possible options.

The notation in the preceding table shows that the cursor property can accept a reference to a cus-
tom cursor with the <uri> notation. The table also shows that you can provide more than one URL
by giving a comma-separated list of URLs. Alternatively, you can provide a keyword to change the
cursor displayed while the user’s mouse pointer is hovering over an element. To demonstrate how
the cursor can be changed using a keyword, consider the example in Figure 15-1.

Figure 15-1a

21_096970 ch15.qxp 4/20/07 11:49 PM Page 537

The CSS in Figure 15-1a is combined with the markup in Figure 15-1b.

Figure 15-1b

The CSS in Figure 15-1a and the markup in Figure 15-1b result in the output in Figure 15-1c.

Figure 15-1c

In Figure 15-1, you can see that the cursor for the <div> element becomes a clock with the property and
keyword value combination of cursor: wait;. Naturally, the results will differ depending on the
browser and operating system.

Cursor Compatibility
To assist you in anticipating the differences in cursors between browsers and operating systems, I’ve
prepared the following table. The cursors in the following table indicate what cursor is used for that
browser when the keyword is supported.

538

Part III: Advanced CSS and Alternative Media

21_096970 ch15.qxp 4/20/07 11:49 PM Page 538

Cursor IE 6 IE 7 Firefox Firefox Safari Opera Opera
Win XP Vista Mac Win Mac Win

default

crosshair

pointer

move

e-resize

w-resize

ne-resize

sw-resize

n-resize

s-resize

nw-resize

se-resize

text

wait

help

progress

hand

all-scroll

Table continued on following page

539

Chapter 15: The Cursor Property

21_096970 ch15.qxp 4/20/07 11:49 PM Page 539

540

Part III: Advanced CSS and Alternative Media

Cursor IE 6 IE 7 Firefox Firefox Safari Opera Opera
Win XP Vista Mac Win Mac Win

col-resize

row-resize

no-drop

not-allowed

vertical-text

In the preceding table where a box is empty, the cursor keyword is unsupported by that browser on
that platform.

Custom Cursors
Some browsers also support specifying your own custom cursor. You can also provide a custom cursor
by referencing the file path to the cursor file, as you can see demonstrated in Figure 15-2a.

Figure 15-2a

The CSS in Figure 15-2a is combined with the markup in Figure 15-2b.

21_096970 ch15.qxp 4/20/07 11:49 PM Page 540

Figure 15-2b

The result is shown in IE 6, IE 7, and Firefox for Windows in Figure 15-2c.

Figure 15-2c

In Figure 15-2c, you can see that IE 6, IE 7, and Mozilla Firefox support custom cursors. I used a PNG
image for the custom cursor in Firefox and a Windows-proprietary .cur file for the custom cursor in IE
6 and IE 7. To make custom cursors, you’ll need software such as Aha-Soft’s ArtCursors software avail-
able from http://www.aha-soft.com/. This shareware application for Windows is available for $40 at
the time of this writing, and it allows you to make cursor images in the Windows-proprietary .cur for-
mat, or animated cursors in the Windows-proprietary .ani format.

In order to provide Firefox with a PNG image, and IE with a .cur image, I employed Microsoft’s propri-
etary conditional comments. As you saw in Chapter 7, by using conditional comments you are able to
show IE code that isn’t shown to Firefox or any other browser, and thus IE has a .cur image for the cur-
sor, while Firefox retains a PNG image.

Custom cursors are not supported by Safari, Firefox for the Mac, or Opera.

541

Chapter 15: The Cursor Property

21_096970 ch15.qxp 4/20/07 11:49 PM Page 541

Additional CSS Resources
A multitude of websites exists for CSS how-to, articles, experiments, and other general discussion. A few
of the websites that I frequent most and personally recommend are:

❑ A List Apart: http://www.alistapart.com

❑ Position Is Everything: http://www.positioniseverything.net

❑ Quirks Mode: http://www.quirksmode.org

❑ CSS Zen Garden: http://www.csszengarden.com

❑ Eric Meyer’s website: http://www.meyerweb.com

There are also a few venues that exist to help newcomers and veterans alike through forums and mailing
lists. Two that I recommend are:

❑ Wrox Programmer to Programmer (P2P): http://p2p.wrox.com. Wrox’s P2P forums have
venues for asking questions about specific Wrox books, like this one, as well as general pro-
gramming and web development topics, such as (X)HTML, CSS, and JavaScript.

❑ CSS Discussion (mailing list): http://www.css-discuss.org. The css-discuss mailing list was
founded and is maintained today by CSS guru, Eric Meyer.

Beginning CSS, Second Edition Online
Because I ran out of space and couldn’t include them in the print edition of this book, an additional
chapter appears online at the Wrox website.

❑ Chapter 16: Dean Edwards’s “IE 7” JavaScript. Dean Edwards’s “IE 7” JavaScript enables CSS
features that IE 6 doesn’t support natively, such as the direct child and next sibling selectors that
you saw in Chapter 3. The “IE7” JavaScript is a package that you embed in your web pages to
obtain a greater spectrum of CSS support in IE 6.

This chapter, in addition to the book’s source code download, is available at the Wrox website via the
following URL:

http://www.wrox.com/go/beginning_css2e

Summary
The CSS cursor property provides control over which mouse cursor is used when the user moves their
mouse cursor over an element. To recap, in this chapter you learned that the cursor property may be
used to change the cursor displayed to the user, which may be via a predefined list of keywords or by
referencing a custom image via a URL, although the latter is only supported (at the time of this writing)
by IE 6, IE 7 and Firefox.

542

Part III: Advanced CSS and Alternative Media

21_096970 ch15.qxp 4/20/07 11:49 PM Page 542

Exercises
1. What cursor keywords are supported by Mac Opera?

2. Write the syntax for including a custom cursor in Firefox.

3. Write the syntax for including a custom cursor in IE.

4. What browser(s) supports all cursor keywords?

5. What browser(s) supports all but one of the cursor keywords?

543

Chapter 15: The Cursor Property

21_096970 ch15.qxp 4/20/07 11:49 PM Page 543

21_096970 ch15.qxp 4/20/07 11:49 PM Page 544

A
Answers to Exercises

Chapter 2
1. Style sheets are made of what?

A. Rules.

2. What’s the difference between when width: auto; is applied to a <table> as opposed to
a <div> element?

A. A <table> shrinks-to-fit, a <div> expands-to-fit.

3. Complete the sequence: Declaration, Property,

A. Value.

4. Convert the color RGB(234, 123, 45) to hexadecimal.

A. #EA7B2D.

5. What is the shortened hexadecimal notation of #FFFFFF?

A. #FFF.

6. When does dithering occur?

A. When one or more colors are not supported by the operating system or display device, the
operating system will attempt to make the nonsupported color by using one or more col-
ors it does support.

7. If I have a style sheet located at http://www.example.com/stylesheet.css, and a
web page located at http://www.example.com/index.html, what markup would I
include in index.html to include stylesheet.css via a relative path?

A. <link rel=”stylesheet” type=”text/css” href=”stylesheet.css” />

22_096970 appa.qxp 4/20/07 11:50 PM Page 545

Chapter 3
1. Does the selector body * apply to <input> elements (assuming an <input> element appears

between the <body> and </body> tags)?

A. Yes, the selector applies to all descendants of the <body> element.

2. In the following HTML document, do the selectors li a and li > a refer to the same element(s)?
Can those selectors be used interchangeably? What type of selector is each? Which one is better
to use and why?

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Dynamic Pseudo-Class Selectors</title>
<link rel=’stylesheet’ type=’text/css’ href=’Example_3-9.css’ />

</head>
<body>

<h1>Proof-of-Concept: Dynamic Pseudo-Class Selectors</h1>

Wrox
Wrox P2P
Google
Amazon

</body>

</html>

A. a) Yes, both apply to the same <a> elements in that document.

b) Yes.

c) The former is a descendant selector, the latter a direct child selector.

d) The descendant selector is better to use because it is more compatible. IE 6 does not support
the direct child selector.

3. Given the HTML document in question 2, does the selector ul + h1 apply? What is the official
name of that selector?

A. No, the selector ul + h1 does not apply to the HTML document in question 2. The next sibling
selector requires that the target element be the next sibling of the first element in the chain.
It does not apply to the previous sibling. The official name of the selector is the Direct
Adjacent Sibling Combinator.

4. If you wanted to apply a style based on an HTML attribute’s value, what would the selector
look like?

A. An attribute value selector looks like element[attribute=”value”].

5. If you were to style an element based on the presence of an HTML attribute, what would the
selector look like?

A. A basic attribute selector looks like element[attribute]. This selector applies when an
attribute is merely present.

546

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 546

6. What special character must you include in an attribute value selector to style an element based
on what appears at the beginning of an attribute’s value? What does a sample selector using
that character look like?

A. The caret character, element[attribute^=”value”].

7. How many class names can one element have?

A. As many as you like.

8. What special character must you include in an attribute value selector to style an element based
on what appears at the end of an attribute’s value? What does a sample selector using that char-
acter look like?

A. The dollar sign, element[attribute$=”value”].

9. If you wanted to style a link a different color when the user’s mouse hovers over it, what might
the selector look like?

A. The selector would at minimum look like a:hover, though a.classname:hover,
a#idname:hover, and so on, are acceptable answers as well.

Chapter 4
1. In the following style sheet, determine the specificity of each selector.

ul#hmenu ul.menu {
margin: 0;
padding: 0;
list-style: none;
position: absolute;
top: 35px;
left: 0;
width: 100%;
visibility: hidden;
text-align: left;
background: rgb(242, 242, 242);
border: 1px solid rgb(178, 178, 178);
border-right: 1px solid rgb(128, 128, 128);
border-bottom: 1px solid rgb(128, 128, 128);

}
ul#hmenu li li:hover {

background: rgb(200, 200, 200);
}
ul#hmenu ul.menu ul.menu {

top: -1px;
left: 100%;

}
ul#hmenu li#menu-204 ul.menu ul.menu,
ul#hmenu li#menu-848 ul.menu ul.menu ul.menu ul.menu,
ul#hmenu li#menu-990 ul.menu ul.menu {

left: auto;
right: 100%;

}
ul#hmenu > li.menu.eas + li.menu.eas ul.menu ul.menu ul.menu ul.menu {

547

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 547

right: auto;
left: 100%;

}
li.menu,
li.menu-highlight {

position: relative;
}
ul.menu li a {

text-decoration: none;
color: black;
font-size: 12px;
display: block;
width: 100%;
height: 100%;

}
ul.menu li a span {

display: block;
padding: 3px 10px;

}
ul.menu span.arrow {

position: absolute;
top: 2px;
right: 10px;
width: 11px;
height: 11px;
background: url(‘/images/arrow.gif’) no-repeat;

}

A. In the following style sheet, determine the specificity of each selector.

ul#hmenu ul.menu

112

ul#hmenu li li:hover

113

ul#hmenu ul.menu ul.menu

123

ul#hmenu li#menu-204 ul.menu ul.menu

224

ul#hmenu li#menu-848 ul.menu ul.menu ul.menu ul.menu

246

ul#hmenu li#menu-990 ul.menu ul.menu

224

ul#hmenu > li.menu.eas + li.menu.eas ul.menu ul.menu ul.menu ul.menu

548

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 548

187

li.menu

11

li.menu-highlight

11

ul.menu li a

13

ul.menu li a span

14

ul.menu span.arrow

22

2. According to the following style sheet, what color is the link?

a.context:link {
color: blue;

}
a.context:visited {

color: purple;
}
a.context:hover {

color: green;
}
a.context:active {

color: red;
}

A. It depends on what state the link is in. If the link is unvisited, the link is blue. If the link is vis-
ited, it’s purple. If the user is hovering their mouse over the link, it’s green, and if the user is
clicking on the link, it’s red.

3. According to the following style sheet, what color is the link?

a.context:visited {
color: purple;

}
a.context:hover {

color: green;
}
a.context:active {

color: red;
}
a.context:link {

color: blue;
}

549

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 549

A. The link is blue, regardless of its state, since the :link selector appears last and it has the same
specificity as the other selectors.

4. According to the following style sheet, what color is the link?

a.context:link {
color: blue;

}
a.context:visited {

color: purple !important;
}
a.context:hover {

color: green;
}
a.context:active {

color: red;
}

A. It depends on the state; if the link is unvisited, it’s blue. If the link is unvisited and the user is
hovering their mouse over the link, it’s green. If the link is unvisited and the user is clicking on
the link, it’s red. If the link is visited, it’s purple, regardless of whether the user is hovering over
the link or clicking on it.

Chapter 5
1. If you wanted to reduce the spacing between letters, how would it be done? Provide an example

declaration.

A. Provide a negative length value to the letter-spacing property, such as letter-spacing:
-1px;

2. How would you produce the output you see in the following figure? Provide the declaration.

A. text-align: justify;

550

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 550

3. When indenting text in a paragraph, how is a percentage value calculated?

A. Providing a percentage value to the text-indent property causes the indentation to be calcu-
lated based on the width of the parent element of the target element.

4. What are the keywords that CSS offers for changing the case of text within an element?

A. Lowercase, uppercase, and capitalize.

5. If you wanted to preserve line breaks and spacing as formatted in the source code, what would
the CSS declaration be?

A. white-space: pre;

6. What browsers do not support the annoying blink keyword?

A. IE and Safari.

7. If you wanted to put a line over a section of text, rather than underlining it, what property and
keyword would you use?

A. text-decoration: overline;

Chapter 6
1. Why aren’t the values of the font-weight property 100 through 900, bolder, and lighter

used in real-world web design?

A. Because commonly available fonts are either bold or they aren’t, and since there is only one
variation, bold and normal, the other values aren’t used.

2. If “Font A” is supported on Mac OS X, and “Font B” is supported on Windows XP, and “Font C”
is supported on Linux, what style would you write so that one of the three would always be
used in the absence of one of the others?

A. font-family: “Font A”, “Font B”, “Font C”;

3. If you want to make text italic, what are two possible declarations for doing that?

A. font-style: italic; and font-style: oblique;

4. What’s the difference between the font-variant: small-caps; and text-transform:
uppercase; declarations?

A. font-variant: small-caps; results in lowercase letters becoming uppercase letters that are
scaled slightly smaller than real uppercase letters. text-transform: uppercase; makes all
letters uppercase of the same size.

5. How could the following rules be better written?

p {
font-family: Arial, sans-serif;
font-weight: bold;
font-size: 24px;
color: crimson;

}
p.copy {

font-style: italic;

551

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 551

font-weight: bold;
line-height: 2em;

}
p#footer {

font-size: 12px;
line-height: 2em;
font-family: Helvetica, Arial, sans-serif;

}

A.
p {

font: bold 24px Arial, sans-serif;
color: crimson;

}
p.copy {

font-style: italic;
font-weight: bold;
line-height: 2em;

}
p#footer {

font-size: 12px/2em Helvetica, Arial, sans-serif;
}

The second rule, which begins with the selector p.copy had no change, because there is no font-size
and no font-family specified in the rule, which are both required for the font shorthand property.
Another acceptable approach would be to repeat the font-size and font-family as defined in the
first rule, since it applies to all <p> elements. If you repeated the font-size and font-family from the
first rule, another acceptable answer would be:

p.copy {
font: italic bold 24px/2em Arial, sans-serif;

}

6. What’s wrong with the following rule?

p {
font-size: 24;

}

A. It is missing a length unit. Measurements that don’t include a length unit are illegal, unless the
specification specifically says it is allowed.

7. If you include the declaration font-size: larger; in a style sheet rule, how much larger
would the text be?

A. 1.2 times larger.

8. Would the declaration font-size: 75%; make the font size larger or smaller?

A. Smaller. Values under 100% result in a smaller font size, and values larger than 100% result in a
larger font size.

552

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 552

Chapter 7
1. From left to right, what are the seven box model properties that make up the left, center, and

right sides of a box?

A. margin-left, border-left, padding-left, width, padding-right, border-right,
margin-right

2. How do you left-, center-, and right-align a block-level box (using the standard method)?

A. To left-align: margin-right: auto; or margin: 0 auto 0 0;

To center-align: margin: 0 auto; or margin: 0 auto 0 auto; or margin-left: auto;
margin-right: auto;

To right-align: margin-left: auto; or margin: 0 0 0 auto;

3. When the margin shorthand property has four values, what side of the target element does
each value apply margin to, in order?

A. Top, right, bottom, left.

4. What are the three keyword values of the border-width property?

A. thin, medium, and thick

5. If the border-color shorthand property has three values, what side of the target element does
each value apply to, in order?

A. Top, right and left, bottom.

6. Name the shorthand properties that encompass the border-width, border-style, and
border-color properties.

A. border-top, border-right, border-bottom, border-left, and border.

7. If you target IE 6 in quirks mode and earlier versions of IE, which property would you use to
align a box?

A. text-align

8. If the padding shorthand property only has two values, what side of the target element does
each value apply to, in order?

A. Top and bottom, right and left.

9. Describe briefly the two situations in which margin collapsing occurs?

A. Between adjacent sibling elements where the bottom margin of the top element comes into con-
tact with the top margin of the bottom element, or between nested elements where the top mar-
gin of any nested element comes into contact with the top margin of its container element, and
likewise when the bottom margin of a nested element comes into contact with the bottom mar-
gin of its container element.

10. In the following document, which element’s width is the <p> element’s width based on if it
were to be given a percentage width value?

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

553

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 553

<title></title>
</head>
<body>

<p>
Peter Piper picked a peck of pickled peppers.
Did Peter Piper pick a peck of pickled peppers?
If Peter Piper picked a peck of pickled peppers,
where’s the peck of pickled peppers Peter Piper picked?

</p>
</body>

</html>

A. The <body> element.

11. How do you resize an image while maintaining the aspect ratio?

A. Set either the width or height to auto and explicitly set the opposite dimension with a fixed
length. If width is auto, height has an explicit length, or if height is auto, width has an
explicit length.

12. In IE 6 quirks mode and previous versions of IE, what properties of the box model are included
in the measurement specified by the width property?

A. border and padding.

13. What is one method of emulating the min-width property in IE 6?

A. Use something like the following declaration in a conditional comment style sheet that only IE 6
can see.

width: expression(
documentElement.clientWidth <= 500? 500 : ‘auto’

);

14. How is the min-height property emulated in IE 6?

A. Set the height property in a conditional comment style sheet that only IE can see.

15. What browsers do conditional comments apply to?

A. Internet Explorer, and all browsers that embed IE.

16. If you wanted both min-width and max-width, what declaration would you use to bring IE 6
on board?

A. Something like the following:

width: expression(
documentElement.clientWidth >= 800?

800
:

(documentElement.clientWidth <= 500? 500 : ‘auto’)
);

17. If you wanted to increase the amount of spacing between lines of text, which property would
you use?

A. line-height.

554

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 554

18. What are the four keywords of the overflow property?

A. visible, auto, scroll, and hidden.

Chapter 8
1. When an element is floated, what rule governs its dimensions?

A. The shrink-to-fit rules; the element only expands enough to accommodate the content inside.

2. What happens when an inline element, such as a element, is floated?

A. It becomes a block element with shrink-to-fit sizing.

3. What are the three keywords of the float property?

A. left, right, and none

4. If an element is floated to the right, and you don’t want the following element to wrap around
it, what declaration would you apply to that element?

A. clear: right; or clear: both;

5. What declarations would you use to create subscript and superscript text?

A. vertical-align: sub; and vertical-align: super;

6. When vertically aligning an inline element to the middle, how is the element positioned on
the line?

A. It is centered at the center point of the lowercase letter x.

7. What is the difference between the text-top and top keywords of the vertical-align
property?

A. In some browsers, nothing. The text-top keyword aligns to the top of the tallest lowercase
letter, and the top keyword aligns to the top of the line box.

8. If you are aligning table cells to the baseline, what determines the baseline?

A. The tallest content in the first row of the table.

Chapter 9
1. Name which keywords of the list-style-type property are not supported by IE 6?

A. decimal-leading-zero, lower-greek, lower-latin, upper-latin, armenian, and
georgian.

2. What list-style-type keywords are supported by IE 7?

A. disc, circle, square, decimal, lower-roman, upper-roman, and none.

3. What properties does the list-style property render utterly and completely useless?

A. list-style-type, list-style-image, list-style-position.

555

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 555

4. Can size and position be controlled with the list-style-image property? If so, how?

A. No.

Chapter 10
1. What are two properties that you can use to specify a background color in a web page?

A. The background-color and background properties.

2. What are different color values that you can use for a background color?

A. RGB, RGB percentage, hexadecimal, short hexadecimal, color keywords, and the transparent
keyword.

3. What declaration causes a background image to be tiled only along the x-axis?

A. background-repeat: repeat-x;.

4. What keyword value can you use to turn off tiling of a background image?

A. no-repeat.

5. What are the three methods of positioning a background image?

A. Length, percentage, and keyword.

6. If you wanted to offset an image ten pixels from the left and ten pixels from the top, what decla-
ration would you use?

A. background-position: 10px 10px;

7. Can the different methods of positioning a background image be mixed with one another?

A. Yes.

8. If you wanted a background image to scroll with the document, what declaration would you use?

A. background-attachment: scroll;

9. When a background image is said to be “fixed,” what (X)HTML element does the background
image position relative to?

A. <body>.

10. What is the only element that IE 6 supports “fixed” backgrounds on?

A. <body>.

11. Write a declaration that contains all five background properties in one.

A. background: white url(‘image.png’) repeat scroll center center;

Chapter 11
1. What is the default value of the top, right, bottom, and left properties?

A. The auto keyword.

556

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 556

2. What are offset properties used for?

A. To control the position of elements with a position value of absolute, relative, or fixed.

3. If the <body> element has a sole child that is positioned absolutely, what point of reference is
used for its positioning?

A. The browser’s viewport.

4. If the <body> element has a sole child that is positioned relatively, with an id name of relative-
element, and that relatively positioned element has a child that is absolutely positioned, what
point of reference is used for the absolutely positioned element?

A. The element with id name relative-element.

5. If the element from Exercise 4, relative-element, has a fixed position child, what point of reference
is used for its positioning?

A. The browser’s viewport.

6. Write a rule that you would use to make an element with the following standard CSS work in IE
6 in standards rendering mode.

div#element {
position: fixed;
top: 0;
left: 0;

}

A. Use the following:

div#element {
position: absolute;
top: expression(eval(documentElement.scrollTop));

}

7. To make fixed position elements compatible with IE 6, what element must you always place
fixed position elements inside of

A. The <body> element.

8. Write a rule that you would use to make an element with the following standard CSS work in IE
6 and IE 7 in quirks rendering mode.

div#element {
position: fixed;
bottom: 0;
left: 0;

}

A. Use the following:

div#element {
position: absolute;
top: expression((document.body.scrollTop +

document.body.clientHeight - this.clientHeight) - 2);
}

557

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 557

9. The following rule refers to an element that you want to take up all of the space available to it
vertically, and positioned to the left. Fill in the blanks.

div#column {
position: absolute;
_____: 0;
_____: 0;
_____: 0;
padding: 10px;
border: 1px solid black;

}

A. Fill in the blanks as follows:

div#column {
position: absolute;
top: 0;
left: 0;
bottom: 0;
padding: 10px;
border: 1px solid black;

}

10. You have five elements that are all absolutely positioned siblings, but no z-index is specified
for any of them. Name the stacking order that the browser will use for those elements’ z-index
property. Provide the z-index declaration for each element, in order.

A. z-index: 1;, z-index: 2;, z-index: 3;, z-index: 4;, z-index: 5;.

11. How do you fix the z-index bug in IE 6 and IE 7?

A. You have to specify a descending z-index manually on all of the relatively positioned elements.

Chapter 12
1. Which of the properties discussed in this chapter do not work in IE 6 and IE 7?

A. The caption-side and border-spacing properties do not work in IE 6 or IE 7.

2. Describe what the table-layout: fixed; declaration does.

A. It forces an (X)HTML table to honor explicitly defined widths, instead of auto sizing to accom-
modate content.

3. When sizing using the table-layout: fixed; declaration, how does the browser determine
the width of table columns?

A. First the browser takes into account the width property as applied to the <table> element,
then the browser takes into account the width property as applied to <col /> elements. If none
is found, it goes to the width property as applied to the <td> elements that appear in the first
row of the table. If no width is defined, each column is given equal width.

4. What purpose does the optional <thead> element serve?

A. It contains table headers, when you print a table that spans multiple pages. Its contents are
repeated at the top of each printed page.

558

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 558

5. What element would you use if you wanted table column headers that are styled bold and
centered?

A. The <th> element.

6. In what containing element does the main table data appear?

A. The <tbody> element.

7. What browser does not support applying width to table columns? (At the time of this writing,
of course.)

A. Safari.

Chapter 13
1. Which media values apply to PC and Mac browsers?

A. Screen, print, and all.

2. Write the opening tag for the <style> element, targeting the styles to print.

A. <style type=’text/css’ media=’print’>

3. What does the page-break-before property do?

A. It forces a page break to happen before the beginning of an element.

4. Write a sample style sheet that includes three rules; the first rule applies to all media types, the
second rule applies to onscreen layout, and the third applies to print.

A. Your style sheet may differ, but it should look something like the following.

@media all {
p {

/* Your declarations appear here */
}

}
@media screen {

p {
/* Your declarations appear here */

}
}
@media print {

p {
/* Your declarations appear here */

}
}

The following is also a valid answer:

p {
/* Your declarations appear here */

}
@media screen {

p {
/* Your declarations appear here */

559

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 559

}
}
@media print {

p {
/* Your declarations appear here */

}
}

Chapter 14
1. What happens when you load an XML document into a browser that doesn’t strictly conform to

XML structural requirements?

A. The browser will not display the XML document, and instead shows an error message.

2. What are the three pseudo-attributes used in the XML declaration? (Hint: The declaration is the
<?xml version=”1.0”?> bit.)

A. version, encoding, and standalone

3. What is the syntax that you would use to include CSS in an XML document?

A. <?xml-stylesheet type=”text/css” href=”stylesheet.css”?>

4. Name the keywords of the display property that have the best browser support.

A. none, block, inline, and list-item

5. Name all of the keywords of the display property used to emulate (X)HTML table elements
(including all optional elements) and their (X)HTML element equivalent. (Hint: display:
table; = <table>)

A.
display: table; = <table>
display: table-row-group; = <tbody>
display: table-header-group; = <thead>
display: table-footer-group; = <tfoot>
display: table-row; = <tr>
display: table-column-group; = <colgroup>
display: table-column; = <col/>
display: table-cell; = <td>, <th>
display: table-caption; = <caption>

6. Can the display property be used on (X)HTML elements?

A. Yes!

7. Which browsers do not support the table keyword values of the display property?

A. IE 6 and IE 7.

8. Which browser displays zeros instead of numbers when making a numbered list in XML?

A. Firefox.

560

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 560

Chapter 15
1. What cursor keywords are supported by Mac Opera?

A. default, crosshair, pointer, move, text, wait, and hand

2. Write the syntax for including a custom cursor in Firefox.

A. cursor: url(‘custom_cursor.png’), default;

The key is you must specify a fallback keyword after the URL.

3. Write the syntax for including a custom cursor in IE.

A. cursor: url(‘custom_cursor.cur’), default;

or

cursor: url(‘custom_cursor.ani’), default;

The key is you must use either a Windows-proprietary .cur or .ani file in IE.

4. What browser(s) supports all cursor keywords?

A. IE 6 and IE 7.

5. What browser(s) supports all but one of the cursor keywords?

A. Firefox for Windows and Firefox for the Mac.

561

Appendix A: Answers to Exercises

22_096970 appa.qxp 4/20/07 11:50 PM Page 561

22_096970 appa.qxp 4/20/07 11:50 PM Page 562

B
CSS Reference

Reference Conventions
The following conventions are used to outline browser compatibility for each CSS feature:

❑ Y = Yes. The feature is implemented completely per the W3C specification of what that
feature is.

❑ N = No. The feature is not implemented.

❑ B = Buggy. The feature is implemented but has unexpected side effects.

❑ P = Partial. The feature is partially implemented.

❑ A = Alternative. The feature is not implemented but an alternative proprietary feature is
available that provides the same functionality.

❑ I = Incorrect. The feature is implemented but does not conform to the W3C definition of
what that feature provides.

The CSS level that reference material refers to is provided in the CSS column. At the time of this
writing, there are four CSS specifications:

❑ CSS Level 1: The reference material provided is outlined in the CSS Level 1
Recommendation made 17 December 1996.

❑ CSS Level 2: The reference material provided is outlined in the W3C CSS Level 2
Recommendation made 12 May 1998.

❑ CSS Level 2.1: The reference material provided is outlined in the W3C CSS Level 2.1
Working Draft made 11 April 2006.

❑ CSS Level 3: The reference material provided refers to a W3C CSS Level 3 Candidate
Recommendation (at the time of this writing portions of CSS 3 are still in development;
references refer to those parts of CSS 3 in Candidate Recommendation status).

23_096970 appb.qxp 4/20/07 11:50 PM Page 563

Selectors
Selector CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

Universal 3 Y Y Y Y Y
* {color: blue;}

Type 3 Y Y Y Y Y
div {color: blue;}

Descendant 3 Y Y Y Y Y
div p {color: blue;}

Direct Child 3 N Y Y Y Y
div > p {color: blue;}

Direct Adjacent Sibling 3 N Y Y Y Y
p + p {color: blue}

Indirect Adjacent Sibling 3 N Y Y Y Y
p ~ p {color: blue;}

Attribute Existence 3 N Y Y Y Y
input[type] {color: blue;}

Attribute’s value matches value exactly 3 N Y Y Y Y
input[type=text] {color: blue;}

Attribute’s value is a space-separated 3 N Y Y Y Y
list of words, e.g.
rel=”copyright copyleft copyeditor”
a[rel~=”copyright”] {
color: blue;
}

Attribute’s value begins with a value or is 3 N Y Y Y Y
the value exactly; value provided may be a
hyphen-separated
list of words, e.g.
hreflang=”en-us”
link[hreflang|=”en”] {
color: blue;
}

Attribute’s value begins with... 3 N Y Y N Y
a[href^=http://www.somesite.com] {
color: blue;

}

Attribute’s value contains... 3 N Y Y N Y
a[href*=somesite] {
color: blue;
}

564

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 564

Selector CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

Attribute’s value ends with... 3 N Y Y N Y
a[href$=html] {
color: blue;
}

Class 3 Y Y Y Y Y
div.class {color: blue;}

Multiple Classes, e.g. 3 B Y Y Y Y
class=”class1 class2”
div.class1.class2 {color: blue;}

IE 6 supports multiple class syntax on the element, but not chaining class selectors in the style sheet.

ID 3 Y Y Y Y Y
div#id {color: blue;}

Pseudo-Classes
Pseudo-Class CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

:link 3 Y Y Y Y Y

:visited 3 Y Y Y Y Y

:hover 3 P Y Y Y Y

:active 3 P P Y Y Y

:focus 3 N N Y Y Y

:target 3 N N Y N Y

:lang 3 N N Y N N

:root 3 N N Y N Y

:first-child 3 N Y Y Y Y

:last-child 3 N N Y N Y

:empty 3 N N I N Y

Mozilla incorrectly applies :empty to elements that contain white space characters.

:not 3 N N Y N Y

565

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 565

Pseudo-Elements
Pseudo-Element CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

CSS 3 :: (double- 3 Y N Y Y Y
colon) syntax.

::first-line 3 Y Y Y Y Y

::first-letter 3 Y Y Y Y Y

::before 3 N N Y Y Y

::after 3 N N Y Y Y

::selection 3 N N A N Y

Mozilla provides a proprietary ::-moz-selection pseudo-element.

Color Properties
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

color 2.1 Y Y Y Y Y

Value: <color>

Initial value: Depends on browser

Applies to: All elements

Inherited: Yes

<color> refers to one of the following.

A color keyword: body {color: black;}

A hexadecimal value: body {color: #000000;}

Short hexadecimal body {color: #000;}
value:

RGB value: body {color: rgb(0, 0, 0);}

RGB percentage: body {color: rgb(0% ,0%, 0%);}

opacity 3 A A I N Y

Value: <alphavalue>

Initial value: 1

566

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 566

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

Applies to: All elements

Inherited: No

Introduced in CSS 3, the opacity property accepts a floating integer between 0.0 (fully transpar-
ent) and 1.0 (fully opaque)

Firefox 2.0 incorrectly allows this property to inherit to children elements.

IE 6 and IE 7 provide an alternative, proprietary filter property to achieve a similar effect (see
entry for the Microsoft filter property). Mozilla prior to 1.7 provides an alternative proprietary -
moz-opacity property (see entry for Mozilla -moz-opacity property).

Font Properties
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

font-family 2.1 Y Y Y Y Y

Value: [[<family-name> | <generic-family>] [, <family-name>|
<generic-family>]*]

Initial value: Varies from browser to browser

Applies to: All elements

Inherited: Yes

<family-name> Refers to the name of a font installed on the user’s operating system and sup-
ported by the browser, for instance: Arial and Times New Roman. A comma-separated list of fonts
may be provided, font names containing spaces must be enclosed with quotations.

<generic-family> Refers to fonts not native to a particular operating system and provided by
the browser. The following are all of the generic font families:

❑ serif (Times New Roman, or Times)

❑ sans-serif (Arial or Helvetica)

❑ cursive (Zapf-Chancery)

❑ fantasy (Western)

❑ monospace (Courier)

font-style 2.1 Y Y Y Y Y

Value: normal | italic | oblique

Initial value: normal

Table continued on following page

567

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 567

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

Applies to: All elements

Inherited: Yes

font-variant 2.1 Y Y Y Y P

Value: normal | small-caps

Initial value: normal

Applies to: All elements

Inherited: Yes

Safari 1.2 does not support the small-caps keyword.

font-weight 2.1 Y Y Y Y Y

Value: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 |
700 | 800 | 900

Initial value: normal

Applies to: All elements

Inherited: Yes

font-size 2.1 Y Y Y Y Y

Value: <absolute-size> | <relative-size> | <length> | <percentage>

Initial value: medium

Applies to: All elements

Inherited: Yes

Percentage value: Refers to parent element’s font size

<absolute-size> refers to one of the keywords:

xx-small | x-small | small | medium | large | xx-large

<relative-size> refers to one of the keywords:

larger | smaller

font 2.1 Y Y Y Y Y

Value: [[<font-style> || <font-variant> || <font-weight>]? <font-size>
[/ <line-height>]? <font-family>] | caption | icon | menu |
message-box | small-caption | status-bar

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: Yes

568

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 568

Background Properties
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

background-color 2.1 Y Y Y Y Y

Value: <color> | transparent

Initial value: transparent

Applies to: All elements

Inherited: No

background-image 2.1 Y Y Y Y Y

Value: <uri> | none

Initial value: none

Applies to: All elements

Inherited: No

background-repeat 2.1 Y Y Y Y Y

Value: repeat | repeat-x | repeat-y | no-repeat

Initial value: repeat

Applies to: All elements

Inherited: No

background- 2.1 P Y Y Y Y
attachment

Value: scroll | fixed

Initial value: repeat

Applies to: All elements

Inherited: No

IE 6 only supports the fixed keyword when applied to the <body> element. The fixed keyword
may be applied to any element in IE 7.

background- 3 Y Y Y Y Y
position

Value: [<percentage> | <length>]{1,2} | [[top | center | bottom] || [left |
center | right]]

Initial value: 0% 0%

Applies to: All elements

Inherited: No

Percentage values: Are determined based on the size of the element itself

Table continued on following page

569

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 569

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

background 2.1 Y Y Y Y Y

Value: <background-color> || <background-image> || <background-
repeat> || <background-attachment> || <background-position>

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

Percentage values: Are determined based on the size of the element itself

Text Properties
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

word-spacing 2.1 Y Y Y Y Y

Value: normal | <length>

Initial value: normal

Applies to: All elements

Inherited: Yes

letter-spacing 2.1 Y Y Y Y Y

Value: normal | <length>

Initial value: normal

Applies to: All elements

Inherited: Yes

text-decoration 2.1 Y Y Y Y Y

Value: none | [underline || overline || line-through || blink]

Initial value: none

Applies to: All elements

Inherited: No

text-transform 2.1 Y Y Y Y Y

Value: capitalize | uppercase | lowercase | none

Initial value: none

Applies to: All elements

Inherited: Yes

570

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 570

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

text-align 2.1 Y Y Y Y Y

Value: left | right | center | justify

Initial value: left

Applies to: Block-level elements, table cells and inline blocks

Inherited: Yes

text-indent 2.1 Y Y Y Y Y

Value: <length> | <percentage>

Initial value: 0

Applies to: Block-level elements, table cells and inline blocks

Inherited: Yes

Percentage value: Refers to the width of the containing block

line-height 2.1 Y Y Y Y Y

Value: normal | <number> | <length> | <percentage>

Initial value: normal

Applies to: All elements

Inherited: Yes

Percentage value: Refers to the font size of the element the line-height is applied to

vertical-align 2.1 Y Y Y Y Y

Value: baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length>

Initial value: baseline

Applies to: Inline-level and ‘table-cell’ elements

Inherited: No

Percentage value: Is determined by the line-height of the element

white-space 2 Y Y Y Y Y

Value: normal | pre | nowrap

Initial value: normal

Applies to: All elements

Inherited: Yes.

Internet Explorer 5.5 does not support the pre keyword. IE 6 and IE 7 must be in standards render-
ing mode for the pre keyword to work.

571

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 571

Box Model Properties
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

margin-top 2.1 Y Y Y Y Y
margin-right
margin-bottom
margin-left

Value: <length> | <percentage> | auto

Initial value: 0

Applies to: All elements

Inherited: No

Percentage value: Refers to the width of the containing block

margin 2.1 Y Y Y Y Y

Value: [<length> | <percentage> | auto] {1, 4}

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

Percentage value: Refers to the width of the containing block

padding-top 2.1 Y Y Y Y Y
padding-right
padding-bottom
padding-left

Value: <length> | <percentage>

Initial value: 0

Applies to: All elements

Inherited: No

Percentage value: Refers to the width of the containing block

padding 2.1 Y Y Y Y Y

Value: [<length> | <percentage>] {1,4}

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

Percentage value: Refers to the width of the containing block

572

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 572

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

border-top-width 2.1 Y Y Y Y Y
border-right-width
border-bottom-width
border-left-width

Value: thin | medium | thick | <length>

Initial value: medium

Applies to: All elements

Inherited: No

border-width 2.1 Y Y Y Y Y

Value: [thin | medium | thick | <length>] {1,4}

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

border-top-color 2.1 P Y Y Y Y
border-right-color
border-bottom-color
border-left-color

Value: <color> | transparent

Initial value: The value of the color property

Applies to: All elements

Inherited: No

IE 6 does not support the transparent keyword.

border-color 2.1 P Y Y Y Y

Value: [<color> | transparent] {1,4}

Initial value: See individual properties

Applies to: All elements

Inherited: No

IE 6 does not support the transparent keyword.

border-top-style 2.1 P P Y Y Y
border-right-style
border-bottom-style
border-left-style

Value: none | dotted | dashed | solid | double | groove | ridge | inset |
outset

Table continued on following page

573

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 573

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

Initial value: none

Applies to: All elements

Inherited: No

IE 5.5 and IE 6 render the dotted keyword as dashed.

border-style 2.1 P P Y Y Y

Value: [none | dotted | dashed | solid | double | groove | ridge | inset |
outset] {1,4}

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

IE 5.5 and 6 render the dotted keyword as dashed.

border-top 2.1 Y Y Y Y Y
border-right
border-bottom
border-left

Value: <border-width> || <border-style> || <border-color>

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

border 2.1 Y Y Y Y Y

Value: <border-width> || <border-style> || <border-color>

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

width 2.1 I Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: All elements, but non-replaced inline elements, table rows, and row
groups

Inherited: No

IE 6 incorrectly resizes elements if the content inside of the element is larger than its width; this is
fixed in IE 7.

574

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 574

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

min-width 2.1 N Y Y Y Y

Value: <length> | <percentage>

Initial value: 0

Applies to: All elements, but non-replaced inline elements and table elements

Inherited: No

Versions of Safari previous to 2.0 do not support min-width when applied to positioned elements.

max-width 2.1 N Y Y Y Y

Value: <length> | <percentage> | none

Initial value: none

Applies to: All elements, but non-replaced inline elements and table elements

Inherited: No

Versions of Safari previous to 2.0 do not support max-width when applied to positioned elements.

height 2.1 I Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: All elements, but non-replaced inline elements, table rows, and row
groups

Inherited: No

IE 6 incorrectly resizes elements if the content inside of the element is larger than its height.

min-height 2.1 P Y Y Y Y

Value: <length> | <percentage>

Initial value: 0

Applies to: All elements, but non-replaced inline elements, table rows, and row
groups

Inherited: No

IE 6 only supports the min-height property when applied to <td>, <th>, or <tr> elements.

max-height 2.1 N Y Y Y Y

Value: <length> | <percentage> | none

Initial value: none

Applies to: All elements, but non-replaced inline elements, table rows, and row
groups

Inherited: No

575

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 575

Visual Effects
CSS Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

overflow 2.1 I Y Y Y Y

Value: visible | hidden | scroll | auto

Initial value: visible

Applies to: Block-level and replaced elements

Inherited: No

IE 6 incorrectly resizes element width / height when overflow: visible; is applied in addition
to explicit width or height, and the contents overflow. This is fixed in IE 7.

overflow-x 3 Y Y Y N N

Value: visible | hidden | scroll | auto

Initial Value: visible

Applies to: Block-level and replaced elements

Inherited: No

overflow-y 3 Y Y Y N N

Value: visible | hidden | scroll | auto

Initial Value: visible

Applies to: Block-level and replaced elements

Inherited: No

clip 2.1 Y Y Y Y Y

Value: <shape> | auto

Initial value: auto

Applies to: Absolutely positioned elements

Inherited: No

Under CSS 2 the only valid <shape> value is rect(<top>, <right>, <bottom>, <left>),
where rect() provides the dimensions of a rectangle and <top>, <right>, <bottom>, <left> are
<length> values.

visibility 2.1 P P P P P

Value: visible | hidden | collapse

Initial value: visible

Applies to: All elements

Inherited: Yes

No browser supports the collapse keyword, presumably because it essentially provides the same
effect as display: none;

576

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 576

Positioning
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

display 2.1 P P P Y Y

Values: inline | block | list-item | run-in | inline-block | table | inline-table |
table-row-group | table-header-group | table-footer-group | table-row |
table-column-group | table-column | table-cell | table-caption | none

Initial value: inline

Applies to: All elements

Inherited: No

IE 5.5 and 6 only support the keywords block, none, inline, inline-block, table-header-
group and table-footer-group. IE 6 additionally supports the list-item keyword. Firefox
does not support the keywords inline-block, run-in, or compact.

position 2.1 P Y Y Y Y

Value: static | relative | absolute | fixed

Initial value: static

Applies to: All elements

Inherited: No

IE 6 does not support the fixed keyword.

top 2.1 Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: Positioned elements

Inherited: No

Percentage value: Refers to height of containing block

right 2.1 Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: Positioned elements

Inherited: No

Percentage value: Refers to width of containing block

bottom 2.1 Y Y Y Y Y

Value: <length> | <percentage> | auto

Table continued on following page

577

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 577

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

Initial value: auto

Applies to: Positioned elements

Inherited: No

Percentage value: Refers to height of containing block

left 2.1 Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: Positioned elements

Inherited: No

Percentage value: Refers to width of containing block

top + bottom = 2.1 N Y Y Y Y
height

When both the top and bottom offset properties are applied to an element positioned absolutely
or fixed, height is implied.

left + right = width 2.1 N Y Y Y Y

When both the left and right offset properties are applied to an element positioned absolutely
or fixed, width is implied.

float 2.1 Y Y Y Y Y

Value: left | right | none

Initial value: none

Applies to: All elements

Inherited: No

clear 2.1 Y Y Y Y Y

Value: none | left | right | both

Initial value: none

Applies to: Block-level elements

Inherited: No

z-index 2.1 Y Y Y Y Y

Value: auto | <integer>

Initial value: auto

Applies to: Positioned elements

Inherited: No

578

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 578

Table Properties
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

caption-side 2.1 N N Y N Y

Value: top | bottom

Initial value: top

Applies to: ‘table-caption’ elements

Inherited: Yes

table-layout 2.1 Y Y Y Y Y

Value: auto | fixed

Initial value: auto

Applies to: ‘table’ and ‘inline-table’ elements

Inherited: No

border-collapse 2.1 Y Y Y Y Y

Value: collapse | separate

Initial value: separate

Applies to: ‘table’ and ‘inline-table’ elements

Inherited: Yes

border-spacing 2.1 N N Y Y Y

Value: <length> <length> ?

Initial value: 0

Applies to: ‘table’ and ‘inline-table’ elements

Inherited: Yes

empty-cells 2.1 N N Y Y Y

Value: show | hide

Initial value: show

Applies to: ‘table-cell’ elements

Inherited: Yes

579

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 579

User Interface
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

cursor 2.1 Y Y Y Y P

Value: [<uri> ,]* [auto | crosshair | default | pointer | move | e-resize |
ne-resize | nw-resize | n-resize | se-resize | sw-resize | s-resize |
w-resize | text | wait | help | progress]

Initial value: auto

Applies to: All elements

Inherited: Yes

Safari does not support custom cursors supplied via a <uri>.

outline-width 2.1 N N Y Y Y

Value: <border-width>

Initial value: Medium

Applies to: All elements

Inherited: No

outline-style 2.1 N N Y Y Y

Value: <border-style>

Initial value: none

Applies to: All elements

Inherited: No

outline-color 2.1 N N Y Y Y

Value: <color> | invert

Initial value: invert

Applies to: All elements

Inherited: No

outline 2.1 N N Y Y Y

Value: <’outline-color’> || <’outline-style’> || <’outline-width’>

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

580

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 580

Generated Content, Automatic
Numbering, and Lists

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

content 2.1 N N Y Y Y

Value: normal | none | [<string> | <uri> | <counter> | attr(<identifier>) |
open-quote | close-quote | no-open-quote | no-close-quote]+

Initial value: normal

Applies to: ::before and ::after pseudo-elements

Inherited: No

quotes 2.1 N N Y Y N

Value: [<string> <string>]+ | none

Initial value: Varies from browser to browser

Applies to: All elements

Inherited: Yes

counter-reset 2.1 N N N Y N

Value: [<identifier> <integer>?]+ | none

Initial value: none

Applies to: All elements

Inherited: No

counter-increment 2.1 N N N Y N

Value: [<identifier> <integer>?]+ | none

Initial value: none

Applies to: All elements

Inherited: No

list-style-type 2.1 P P P P Y

Value: disc | circle | square | decimal | decimal-leading-zero | lower-roman |
upper-roman | lower-greek | lower-latin | upper-latin | armenian |
georgian | none

Initial value: disc

Applies to: Elements with ‘display: list-item’

Inherited: Yes

Table continued on following page

581

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 581

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

Firefox does not support the georgian keyword. IE 5.5 and IE 6 only support CSS 1 keyword
values: disc | circle | square | decimal | lower-roman | upper-roman | lower-alpha |
upper-alpha | none

list-style-image 2.1 Y Y Y Y Y

Value: <uri> | none

Initial value: none

Applies to: Elements with ‘display: list-item’

Inherited: Yes

list-style-position 2.1 Y Y Y Y Y

Value: inside | outside

Initial value: outside

Applies to: Elements with ‘display: list-item’

Inherited: Yes

list-style 2.1 P P P P Y

Value: <’list-style-type’> || <’list-style-position’> || <’list-style-image’>

Initial value: Not defined for shorthand properties.

Applies to: Elements with ‘display: list-item’

Inherited: Yes

Paged Media
Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

size 2.1 N N N Y N

Value: <length>{1,2} | auto | portrait | landscape

Initial value: auto

Applies to: Page (via @page rule)

marks 2.1 N N N N N

Value: [crop || cross] | none

Initial value: none

Applies to: Page (via @page rule)

582

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 582

Property CSS IE 6.0 IE 7.0 FF 2.0 O 9.0 S 2.0

page-break-before 2.1 P P P Y P

Value: auto | always | avoid | left | right

Initial value: auto

Applies to: Block-level elements

IE, Mozilla, and Safari only support the auto and always keywords.

page-break-after 2.1 P P P Y P

Value: auto | always | avoid | left | right

Initial value: auto

Applies to: Block-level elements

IE, Mozilla, and Safari only support the auto and always keywords.

page-break-inside 2.1 N N N Y N

Value: avoid | auto

Initial value: auto

Applies to: Block-level elements

page 2.1 N N N N N

Value: <identifier> | auto

Initial value: auto

Applies to: Block-level elements.

orphans 2.1 N N N Y N

Value: <integer>

Initial value: 2

Applies to: Block-level elements

widows 2.1 N N N Y N

Value: <integer>

Initial value: 2

Applies to: Block-level elements

Microsoft Proprietary Extensions
The following selections of properties are Microsoft proprietary extensions to CSS and are not part of
any W3C standard.

583

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 583

Visual Effects

Property Supported Since

Filter IE 5.5

Value: See below

Applies to: All elements

Inherited: No

The filter property is a complicated property that provides effects like transparency, gradients, or
an array of other effects that are only available for Windows versions of Internet Explorer. For a
complete reference, visit the following URLs.

Introduction to filters:
http://msdn.microsoft.com/workshop/author/filter/filters.asp

Filter reference:
http://msdn.microsoft.com/workshop/author/filter/reference/reference.asp

User-Interface

Property Supported Since

scrollbar-3dlight-color IE 5.5, Opera 7
scrollbar-arrow-color
scrollbar-base-color
scrollbar-darkshadow-color
scrollbar-face-color
scrollbar-highlight-color
scrollbar-shadow-color

Value: <color>

Applies to: Any object where a scroll bar is applied

Inherited: Yes

In Opera, custom scroll bar colors are turned off by default. Custom scroll bar colors are only
applied if the user has them turned on in the Opera preferences panel.

zoom IE 5.5

Value: normal | <number> | <percentage>

Applies to: Any object where a scroll bar is applied

Inherited: Yes

584

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 584

Backgrounds

Property Supported Since

background-position-x IE 4

Value: <length> | <percentage> | left | center | right

Applies to: All elements

Inherited: Yes

background-position-y IE 4

Value: <length> | <percentage> | top | center | bottom

Applies to: All elements

Inherited: Yes

Gecko Proprietary Extensions
The following selections of CSS features are Gecko proprietary extensions to CSS, which apply to the
Mozilla, Netscape, and Firefox family of browsers and are not part of any W3C standard.

When new CSS features are added in Gecko, they usually undergo a testing period where they are pre-
fixed with the Mozilla vendor specific prefix “-moz-”, which is the W3C recommended method of
deploying proprietary extensions to CSS, or CSS features not yet finalized in an official W3C CSS recom-
mendation. This prefix remains in place until the functionality is finalized in a W3C CSS recommenda-
tion, or until bugs can be worked out with the implementation in such a way that Gecko’s (or any other
browser’s) implementation can be expected to follow the W3C definition of what that feature provides.

Features such as these should be used with the understanding that they can be completely changed or
removed without notice in future Gecko releases.

The following tables show the version of Gecko in which a particular feature was added. If previous to
Mozilla 1.0, Netscape 6 is provided as the version; if the feature was added in Mozilla 1.0 or later (before
the arrival of Firefox 1.0), the version of Mozilla is indicated. Be sure to keep in mind the relationships
between the Netscape, Mozilla, and Firefox browsers as shown in the tables in Chapter 1.

Pseudo-Elements

Pseudo-Element Supported Since

::-moz-selection Mozilla 1.5

Identical to the CSS 3 ::selection pseudo-element.

585

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 585

Visual Effects

Property Supported Since

-moz-opacity NS 6

Value <alphavalue> | <percentage>\

Initial value: Visible

Applies to: Block-level and replaced elements

Inherited: Yes

Similar to the CSS 3 opacity property, except the CSS 3 opacity property is not inherited.
<alphavalue> refers to a floating integer between 0.0 (fully transparent) and 1.0 (fully opaque).

table {opacity: 0.9;}

Box Model

Property Supported Since

-moz-border-radius-topleft NS 6
-moz-border-radius-topright
-moz-border-radius-bottom-left
-moz-border-radius-bottom-right

Value <length> | <percentage>

Initial value: 0

Applies to: All elements

Inherited: No

Applies rounded corners to box borders. Similar to the border-top-left-radius, border-top-
right-radius, border-bottom-left-radius, and border-bottom-right-radius properties
proposed for inclusion in CSS 3.

-moz-border-radius NS6

Value [<length> | <percentage>] {1,4}

Initial value: 0

Applies to: All elements

Inherited: No

Applies rounded corners to box borders. A similar border-radius property is proposed for
inclusion in CSS 3.

586

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 586

Property Supported Since

-moz-border-top-colors NS6
-moz-border-right-colors
-moz-border-bottom-colors
-moz-border-left-colors

Value <color>+ | none

Initial value: None

Applies to: All elements

Inherited: No

Provides a color striping effect for borders, where one or more <color> values are provided. Each
color is applied in 1 pixel-width increments from the outside border to the inside border. If there
are not enough colors specified for each pixel width, the value of the border-color property colors
the remaining border.

User-Interface
Firefox version 1.5 and later support the CSS 2 outline property, and it’s derivatives. Use the follow-
ing proprietary syntax for versions of Firefox previous to 1.5. There is a slight difference between
-moz-outline and outline, in that the former paints the outline on the inside of the element’s border,
whereas the latter paints the outline on the outside of the element’s border (per the CSS 2 specification).

Property Supported Since

-moz-outline-color NS 6

Value: <color> | invert

Applies to: All elements

Inherited: No

-moz-outline-style NS 6

Value: <border-style>

Applies to: All elements

Inherited: No

-moz-outline-width NS 6

Value: <border-width>

Applies to: All elements

Inherited: No

Table continued on following page

587

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 587

Property Supported Since

-moz-outline NS 6

Value: <-moz-outline-color> || <-moz-outline-style> ||
<-moz-outline-width>

Applies to: All elements

Inherited: No

-moz-user-select NS 6

Value: none | text | element | elements | all | toggle | tri-state |
-moz-all

Initial value: all

Applies to: All elements

Inherited: Yes

This property is used in Gecko browsers to control whether a user can select text or elements on the
page by holding down the mouse button and dragging the cursor.

CSS 3 Multicolumn Layout
As of Firefox 1.5, the Gecko engine includes experimental support for CSS 3 multicolumn properties.

Property Supported Since

-moz-column-width FF 1.5

Value: <length> | auto

Initial value: auto

Applies to: Block-level elements

Inherited: No

-moz-column-count FF 1.5

Value: <integer> | auto

Initial value: auto

Applies to: Block-level elements

Inherited: No

-moz-columns FF 1.5

Value: [[<integer> | auto] || [<length> | auto]]

Initial value: See -moz-column-width and -moz-column-count
properties.

588

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 588

Property Supported Since

Applies to: Block-level elements

Inherited: No

-moz-column-gap FF 1.5

Value: <length> | normal

Initial value: normal

Applies to: Block-level elements

Inherited: No

Webkit (Safari) Proprietary Extensions
Some of the following Apple Webkit (Safari) extensions have not landed in an official release of Safari, at
the time of this writing. Currently, the released version of Safari is 2.0.4. Some of the following features
are expected to be released with the next version of Safari, which will be included in Mac OS X Leopard,
and will most likely be Safari 3.0.

If you would like to try the following Safari extensions not yet in an official, stable version of Safari, you
can do so by downloading a nightly build of Safari from http://www.webkit.org.

All of the following properties appear in the CSS 3 standard currently under development by the W3C.

Property Supported Since

-khtml-border-radius ?

Value: <length> <length>?

Initial value: 0

Applies to: All elements except table elements when border-
collapse property is set to collapse

Inherited: No

-khtml-background-origin ?

Value: [border | padding | content] [, [border | padding |
content]]*

Initial value: border

Applies to: All elements

Inherited: No

Table continued on following page

589

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 589

Property Supported Since

-khtml-background-clip ?

Value: [border | padding] [, [border | padding]]*

Initial value: border

Applies to: All elements

Inherited: No

-khtml-border-image ?

Value: none | <uri> [<number> | <percentage>]{4}
[/ <border-width>{1,4}]? [stretch | repeat | round] {0,2}

Initial value: none

Applies to: All elements

Inherited: No

CSS 3 Multiple Background Syntax

Webkit supports the ability to apply multiple background images to a single element, as per the
CSS 3 Backgrounds and Borders Module Working Draft.

background-image Safari 2.0

Value: <uri> [, <uri>]* | none

Initial value: none

Applies to: All elements

Inherited: No

background-repeat Safari 2.0

Value: <repeat> [, <repeat>]*

Initial value: repeat

Applies to: All elements

Inherited: No

The value <repeat> stands for: repeat-x | repeat-y | [repeat | space | no-repeat]{1,2}.

background-attachment Safari 2.0

Value: scroll | fixed | local [, scroll | fixed | local]*

Initial value: scroll

Applies to: All elements

Inherited: No

590

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 590

CSS 3 Multiple Background Syntax

background-position Safari 2.0

Value: <bg-position> [, <bg-position>]*

Initial value: 0% 0%

Applies to: All elements

Inherited: No

<bg-position> stands for: [[<percentage> | <length> | left | center | right] [<percentage> |
<length> | top | center | bottom]?] | [[left | center | right] || [top | center | bottom]]

background Safari 2.0

Value: [<bg-layer> ,]* <final-bg-layer>

Initial value: See individual properties

Applies to: All elements

Inherited: No

<bg-layer> stands for: <’background-image’> && [(<’background-size’>)]? &&
<’background-repeat’>? && <’background-position’>? && <’background-attachment’>? &&
[<’background-clip’> <’background-origin’>?]?

<final-bg-layer> stands for: <’background-image’> || (<’background-size’>) || <’background-
repeat’> || <’background-position’> || <’background-attachment’> || [<’background-clip’>
<’background-origin’>?] || <’background-color’>

591

Appendix B: CSS Reference

23_096970 appb.qxp 4/20/07 11:50 PM Page 591

23_096970 appb.qxp 4/20/07 11:50 PM Page 592

C
CSS Colors

This appendix references the available CSS color keywords as documented in the W3C CSS 3 can-
didate recommendation. With the exception of IE 6 not supporting spelling of lightgray with an a,
as in its American spelling, and IE 6 not supporting other gray color keywords spelled with an
“e”, as in the British spelling, all the following keywords are supported by IE 6, IE 7, Firefox 2,
Opera 9, and Safari 2.

Colors Sorted Alphabetically
Color Keyword Hexadecimal Value RGB

aliceblue #F0F8FF 240, 248, 255

antiquewhite #FAEBD7 250, 235, 215

aqua #00FFFF 0, 255, 255

aquamarine #7FFFD4 127, 255, 212

azure #F0FFFF 240, 255, 255

beige #F5F5DC 245, 245, 220

bisque #FFE4C4 255, 228, 196

black #000000 0, 0, 0

blanchedalmond #FFEBCD 255, 235, 205

blue #0000FF 0, 0, 255

blueviolet #8A2BE2 138, 43, 226

brown #A52A2A 165, 42, 42

burlywood #DEB887 222, 184, 135

Table continued on following page

24_096970 appc.qxp 4/20/07 11:50 PM Page 593

Color Keyword Hexadecimal Value RGB

cadetblue #5F9EA0 95, 158, 160

chartreuse #7FFF00 127, 255, 0

chocolate #D2691E 210, 105, 30

coral #FF7F50 255, 127, 80

cornflowerblue #6495ED 100, 149, 237

cornsilk #FFF8DC 255, 248, 220

crimson #DC143C 220, 20, 60

cyan #00FFFF 0, 255, 255

darkblue #00008B 0, 0, 139

darkcyan #008B8B 0, 139, 139

darkgoldenrod #B8860B 184, 134, 11

darkgray #A9A9A9 169, 169, 169

darkgreen #006400 0, 100, 0

darkgrey #A9A9A9 169, 169, 169

darkkhaki #BDB76B 189, 183, 107

darkmagenta #8B008B 139, 0, 139

darkolivegreen #556B2F 85, 107, 47

darkorange #FF8C00 255, 140, 0

darkorchid #9932CC 153, 50, 204

darkred #8B0000 139, 0, 0

darksalmon #E9967A 233, 150, 122

darkseagreen #8FBC8F 143, 188, 143

darkslateblue #483D8B 72, 61, 139

darkslategray #2F4F4F 47, 79, 79

darkslategrey #2F4F4F 47, 79, 79

darkturquoise #00CED1 0, 206, 209

darkviolet #9400D3 148, 0, 211

deeppink #FF1493 255, 20, 147

deepskyblue #00BFFF 0, 191, 255

dimgray #696969 105, 105, 105

dimgrey #696969 105, 105, 105

594

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 594

Color Keyword Hexadecimal Value RGB

dodgerblue #1E90FF 30, 144, 255

firebrick #B22222 178, 34, 34

floralwhite #FFFAF0 255, 250, 240

forestgreen #228B22 34, 139, 34

fuchsia #FF00FF 255, 0, 255

gainsboro #DCDCDC 220, 220, 220

ghostwhite #F8F8FF 248, 248, 255

gold #FFD700 255, 215, 0

goldenrod #DAA520 218, 165, 32

gray #808080 128, 128, 128

green #008000 0, 128, 0

greenyellow #ADFF2F 173, 255, 47

grey #808080 128, 128, 128

honeydew #F0FFF0 240, 255, 240

hotpink #FF69B4 255, 105, 180

indianred #CD5C5C 205, 92, 92

indigo #4B0082 75, 0, 130

ivory #FFFFF0 255, 255, 240

khaki #F0E68C 240, 230, 140

lavender #E6E6FA 230, 230, 250

lavenderblush #FFF0F5 255, 240, 245

lawngreen #7CFC00 124, 252, 0

lemonchiffon #FFFACD 255, 250, 205

lightblue #ADD8E6 173, 216, 230

lightcoral #F08080 240, 128, 128

lightcyan #E0FFFF 224, 255, 255

lightgoldenrodyellow #FAFAD2 250, 250, 210

lightgray #D3D3D3 211, 211, 211

lightgreen #90EE90 144, 238, 144

lightgrey #D3D3D3 211, 211, 211

Table continued on following page

595

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 595

Color Keyword Hexadecimal Value RGB

lightpink #FFB6C1 255, 182, 193

lightsalmon #FFA07A 255, 160, 122

lightseagreen #20B2AA 32, 178, 170

lightskyblue #87CEFA 135, 206, 250

lightslategray #778899 119, 136, 153

lightslategrey #778899 119, 136, 153

lightsteelblue #B0C4DE 176, 196, 222

lightyellow #FFFFE0 255, 255, 224

lime #00FF00 0, 255, 0

limegreen #32CD32 50, 205, 50

linen #FAF0E6 250, 240, 230

magenta #FF00FF 255, 0, 255

maroon #800000 128, 0, 0

mediumaquamarine #66CDAA 102, 205, 170

mediumblue #0000CD 0, 0, 205

mediumorchid #BA55D3 186, 85, 211

mediumpurple #9370DB 147, 112, 219

mediumseagreen #3CB371 60, 179, 113

mediumslateblue #7B68EE 123, 104, 238

mediumspringgreen #00FA9A 0, 250, 154

mediumturquoise #48D1CC 72, 209, 204

mediumvioletred #C71585 199, 21, 133

midnightblue #191970 25, 25, 112

mintcream #F5FFFA 245, 255, 250

mistyrose #FFE4E1 255,228, 225

moccasin #FFE4B5 255, 228, 181

navajowhite #FFDEAD 255, 222, 173

navy #000080 0, 0, 128

oldlace #FDF5E6 253, 245, 230

olive #808000 128, 128, 0

olivedrab #6B8E23 107, 142, 35

596

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 596

Color Keyword Hexadecimal Value RGB

orange #FFA500 255, 165, 0

orangered #FF4500 255, 69, 0

orchid #DA70D6 218, 112, 214

palegoldenrod #EEE8AA 238, 232, 170

palegreen #98FB98 152, 251, 152

paleturquoise #AFEEEE 175, 238, 238

palevioletred #DB7093 219, 112, 147

papayawhip #FFEFD5 255, 239, 213

peachpuff #FFDAB9 255, 218, 185

peru #CD853F 205, 133, 63

pink #FFC0CB 255, 192, 203

plum #DDA0DD 221, 160, 221

powderblue #B0E0E6 176, 224, 230

purple #800080 128, 0, 128

red #FF0000 255, 0, 0

rosybrown #BC8F8F 188, 143, 143

royalblue #4169E1 65, 105, 225

saddlebrown #8B4513 139, 69, 19

salmon #FA8072 250, 128, 114

sandybrown #F4A460 244, 164, 96

seagreen #2E8B57 46, 139, 87

seashell #FFF5EE 255, 245, 238

sienna #A0522D 160, 82, 45

silver #C0C0C0 192, 192, 192

skyblue #87CEEB 135, 206, 235

slateblue #6A5ACD 106, 90, 205

slategray #708090 112, 128, 144

slategrey #708090 112, 128, 144

snow #FFFAFA 255, 250, 250

springgreen #00FF7F 0, 255, 127

Table continued on following page

597

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 597

Color Keyword Hexadecimal Value RGB

steelblue #4682B4 70, 130, 180

tan #D2B48C 210, 180, 140

teal #008080 0, 128, 128

thistle #D8BFD8 216, 191, 216

tomato #FF6347 255, 99, 71

turquoise #40E0D0 64, 224, 208

violet #EE82EE 238, 130, 238

wheat #F5DEB3 245, 222, 179

white #FFFFFF 255, 255, 255

whitesmoke #F5F5F5 245, 245, 245

yellow #FFFF00 255, 255, 0

yellowgreen #9ACD32 154, 205, 50

Colors Sorted by Color
The following sections show colors as sorted from light hue to dark hue.

Reds

Color Keyword Hexadecimal RGB

lavenderblush #FFF0F5 255, 240, 245

mistyrose #FFE4E1 255, 228, 225

pink #FFC0CB 255, 192, 203

lightpink #FFB6C1 255, 182, 193

orange #FFA500 255, 165, 0

lightsalmon #FFA07A 255, 160, 122

darkorange #FF8C00 255, 140, 0

coral #FF7F50 255, 127, 80

hotpink #FF69B4 255, 105, 180

tomato #FF6347 255, 99, 71

orangered #FF4500 255, 69, 0

598

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 598

Color Keyword Hexadecimal RGB

deeppink #FF1493 255, 20, 147

fuchsia #FF00FF 255, 0, 255

magenta #FF00FF 255, 0, 255

red #FF0000 255, 0, 0

salmon #FA8072 250, 128, 114

lightcoral #F08080 240, 128, 128

violet #EE82EE 238, 130, 238

darksalmon #E9967A 233, 150, 122

plum #DDA0DD 221, 160, 221

crimson #DC143C 220, 20, 60

palevioletred #DB7093 219, 112, 147

orchid #DA70D6 218, 112, 214

thistle #D8BFD8 216, 191, 216

indianred #CD5C5C 205, 92, 92

mediumvioletred #C71585 199, 21, 133

mediumorchid #BA55D3 186, 85, 211

firebrick #B22222 178, 34, 34

darkorchid #9932CC 153, 50, 204

darkviolet #9400D3 148, 0, 211

mediumpurple #9370DB 147, 112, 219

darkmagenta #8B008B 139, 0, 139

darkred #8B0000 139, 0, 0

purple #800080 128, 0, 128

maroon #800000 128, 0, 0

Blues

Color Keyword Hexadecimal RGB

azure #F0FFFF 240, 255, 255

aliceblue #F0F8FF 240, 248, 255

lavender #E6E6FA 230, 230, 250

Table continued on following page

599

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 599

Color Keyword Hexadecimal RGB

lightcyan #E0FFFF 224, 255, 255

powderblue #B0E0E6 176, 224, 230

lightsteelblue #B0C4DE 176, 196, 222

paleturquoise #AFEEEE 175, 238, 238

lightblue #ADD8E6 173, 216, 230

blueviolet #8A2BE2 138, 43, 226

lightskyblue #87CEFA 135, 206, 250

skyblue #87CEEB 135, 206, 235

mediumslateblue #7B68EE 123, 104, 238

slateblue #6A5ACD 106, 90, 205

cornflowerblue #6495ED 100, 149, 237

cadetblue #5F9EA0 95, 158, 160

indigo #4B0082 75, 0, 130

mediumturquoise #48D1CC 72, 209, 204

darkslateblue #483D8B 72, 61, 139

steelblue #4682B4 70, 130, 180

royalblue #4169E1 65, 105, 225

turquoise #40E0D0 64, 224, 208

dodgerblue #1E90FF 30, 144, 255

midnightblue #191970 25, 25, 112

aqua #00FFFF 0, 255, 255

cyan #00FFFF 0, 255, 255

darkturquoise #00CED1 0, 206, 209

deepskyblue #00BFFF 0, 191, 255

darkcyan #008B8B 0, 139, 139

blue #0000FF 0, 0, 255

mediumblue #0000CD 0, 0, 205

darkblue #00008B 0, 0, 139

navy #000080 0, 0, 128

600

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 600

Greens

Color Keyword Hexadecimal RGB

mintcream #F5FFFA 245, 255, 250

honeydew #F0FFF0 240, 255, 240

greenyellow #ADFF2F 173, 255, 47

yellowgreen #9ACD32 154, 205, 50

palegreen #98FB98 152, 251, 152

lightgreen #90EE90 144, 238, 144

darkseagreen #8FBC8F 143, 188, 143

olive #808000 128, 128, 0

aquamarine #7FFFD4 127, 255, 212

chartreuse #7FFF00 127, 255, 0

lawngreen #7CFC00 124, 252, 0

olivedrab #6B8E23 107, 142, 35

mediumaquamarine #66CDAA 102, 205, 170

darkolivegreen #556B2F 85, 107, 47

mediumseagreen #3CB371 60, 179, 113

limegreen #32CD32 50, 205, 50

seagreen #2E8B57 46, 139, 87

forestgreen #228B22 34, 139, 34

lightseagreen #20B2AA 32, 178, 170

springgreen #00FF7F 0, 255, 127

lime #00FF00 0, 255, 0

mediumspringgreen #00FA9A 0, 250, 154

teal #008080 0, 128, 128

green #008000 0, 128, 0

darkgreen #006400 0, 100, 0

601

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 601

Yellows

Color Keyword Hexadecimal RGB

lightgoldenrodyellow #FAFAD2 250, 250, 210

ivory #FFFFF0 255, 255, 240

lightyellow #FFFFE0 255, 255, 224

floralwhite #FFFAF0 255, 250, 240

lemonchiffon #FFFACD 255, 250, 205

cornsilk #FFF8DC 255, 248, 220

khaki #F0E68C 240, 230, 140

yellow #FFFF00 255, 255, 0

gold #FFD700 255, 215, 0

darkkhaki #BDB76B 189, 183, 107

Browns

Color Keyword Hexadecimal RGB

snow #FFFAFA 255, 250, 250

seashell #FFF5EE 255, 245, 238

oldlace #FDF5E6 253, 245, 230

linen #FAF0E6 250, 240, 230

antiquewhite #FAEBD7 250, 235, 215

beige #F5F5DC 245, 245, 220

papayawhip #FFEFD5 255, 239, 213

blanchedalmond #FFEBCD 255, 235, 205

bisque #FFE4C4 255, 228, 196

moccasin #FFE4B5 255, 228, 181

navajowhite #FFDEAD 255, 222, 173

peachpuff #FFDAB9 255, 218, 185

wheat #F5DEB3 245, 222, 179

sandybrown #F4A460 244, 164, 96

palegoldenrod #EEE8AA 238, 232, 170

burlywood #DEB887 222, 184, 135

602

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 602

Color Keyword Hexadecimal RGB

goldenrod #DAA520 218, 165, 32

tan #D2B48C 210, 180, 140

chocolate #D2691E 210, 105, 30

peru #CD853F 205, 133, 63

rosybrown #BC8F8F 188, 143, 143

darkgoldenrod #B8860B 184, 134, 11

brown #A52A2A 165, 42, 42

sienna #A0522D 160, 82, 45

saddlebrown #8B4513 139, 69, 19

Grays

Color Keyword Hexadecimal RGB

white #FFFFFF 255, 255, 255

ghostwhite #F8F8FF 248, 248, 255

whitesmoke #F5F5F5 245, 245, 245

gainsboro #DCDCDC 220, 220, 220

lightgray #D3D3D3 211, 211, 211

lightgrey #D3D3D3 211, 211, 211

silver #C0C0C0 192, 192, 192

darkgray #A9A9A9 169, 169, 169

darkgrey #A9A9A9 169, 169, 169

gray #808080 128, 128, 128

grey #808080 128, 128, 128

lightslategray #778899 119, 136, 153

lightslategrey #778899 119, 136, 153

slategray #708090 112, 128, 144

slategrey #708090 112, 128, 144

dimgray #696969 105, 105, 105

dimgrey #696969 105, 105, 105

Table continued on following page

603

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 603

Color Keyword Hexadecimal RGB

darkslategray #2F4F4F 47, 79, 79

darkslategrey #2F4F4F 47, 79, 79

black #000000 0, 0, 0

User-Interface Color Keywords
User-interface color keywords (CSS 2) enable an author to reference colors present in the user-interface.
They are referenced like any other color keyword. These color keywords allow an author to design a
website with the same look and feel as the operating system.

Color Keyword Description

ActiveBorder Border of the active window.

ActiveCaption Caption of the active window.

AppWorkspace Background color of multiple document interface.

Background Desktop background.

ButtonFace Face color of three-dimensional display elements.

ButtonHighlight Dark shadow for three-dimensional display elements (for edges
facing away from the light source).

ButtonShadow Shadow color for three-dimensional display elements.

ButtonText Text on push buttons.

CaptionText Text in caption, size box, and scroll bar arrow box.

GrayText Grayed (disabled) text. This color is set to #000 if the current dis-
play driver does not support a solid gray color.

Highlight Item(s) selected in a control.

HighlightText Text of item(s) selected in a control.

InactiveBorder Inactive window border.

InactiveCaption Inactive window caption.

InactiveCaptionText Color of text in an inactive caption.

InfoBackground Background color for tooltip controls.

InfoText Text color for tooltip controls.

Menu Menu background.

MenuText Text in menus.

604

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 604

Color Keyword Description

Scrollbar Scroll bar gray area.

ThreeDDarkShadow Dark shadow for three-dimensional display elements.

ThreeDFace Face color for three-dimensional display elements.

ThreeDHighlight Highlight color for three-dimensional display elements.

ThreeDLightShadow Light color for three-dimensional display elements (for edges
facing the light source).

ThreeDShadow Dark shadow for three-dimensional display elements.

Window Window background.

WindowFrame Window frame.

WindowText Text in windows.

605

Appendix C: CSS Colors

24_096970 appc.qxp 4/20/07 11:50 PM Page 605

24_096970 appc.qxp 4/20/07 11:50 PM Page 606

D
Browser Rendering Modes

As you saw in Chapter 7, the Document Type Declaration of the HTML or XHTML document can
be used to trigger different rendering modes in the browser, which in turn affect the CSS features
available to you to use in browsers like IE 6 and IE 7. The following table outlines the different
document type declarations, and the rendering mode they invoke in the various browsers.

❑ S = Standards mode

❑ A = Almost standards mode

❑ Q = Quirks mode

Doctype / Document IE6 IE7 FF O S

Pre HTML 4.0 DTD Q Q Q Q Q

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>

HTML 4.0

HTML 4.0 Transitional DTD without Q Q Q Q Q
DTD URL

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

HTML 4.0 Transitional DTD with DTD URL S S Q S S

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

HTML 4.0 Frameset DTD without DTD URL Q Q Q Q Q

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Frameset//EN”>

HTML 4.0 Frameset DTD with DTD URL S S Q S Q

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Frameset//EN”
“http://www.w3.org/TR/REC-html40/frameset.dtd”>

Table continued on following page

25_096970 appd.qxp 4/20/07 11:50 PM Page 607

Doctype / Document IE6 IE7 FF O S

HTML 4.0 Strict DTD without DTD URL S S S S S

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN”>

HTML 4.0 Strict DTD with DTD URL S S S S S

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

HTML 4.01

HTML 4.01 Transitional DTD without DTD URL Q Q Q Q Q

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>

HTML 4.01 Transitional DTD with DTD URL S S A S S

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

HTML 4.01 Frameset DTD without DTD URL Q Q Q Q Q

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”>

HTML 4.01 Frameset DTD with DTD URL S S A S A

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”
“http://www.w3.org/TR/html4/frameset.dtd”>

HTML 4.01 Strict DTD without DTD URL S S S S S

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>

HTML 4.01 Strict DTD with DTD URL S S S S S

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

XHTML 1.0

XHTML 1.0 Transitional DTD without an XML Prolog S S A S S

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

XHTML 1.0 Transitional DTD with an XML Prolog Q S A S S

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

XHTML 1.0 Frameset DTD with a DTD URL S S A S A

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

608

Appendix D: Browser Rendering Modes

25_096970 appd.qxp 4/20/07 11:50 PM Page 608

Doctype / Document IE6 IE7 FF O S

XHTML 1.0 Strict DTD without an XML Prolog S S S S S

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

XHTML 1.0 Strict DTD with an XML Prolog Q S S S S

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

Other

XML Documents S S S S S

No DOCTYPE Q Q Q Q Q

Unrecognized DOCTYPE S S S S S

609

Appendix D: Browser Rendering Modes

25_096970 appd.qxp 4/20/07 11:50 PM Page 609

25_096970 appd.qxp 4/20/07 11:50 PM Page 610

In
de

x

Index

SYMBOLS
* (asterisk)

applying, 68–71
browser compatibility, 564
specificity, 113

*/ (asterisk, forward slash), 29–30
\ (backslash), 36
: (colon), 27
, (comma), 28
{ } (curly braces), 27
. (dot), 60–61
:: (double colon), 94
/* (forward slash, asterisk), 29–30
> (greater than sign), 76
(hash mark), 63
- (minus sign), 46
% (percentage measurement), 40
+ (plus sign), 46
“ (quotation marks), 36
; (semi-colon), 27
[] (square brackets), 350

A
<a> element, floating, 287
absolute measurement, 36–39
absolute path, 54
absolute positioning, 372–380, 577
<absolute-size>

font
applying, 185
browser compatibility, 568

value notation, 185–186

:active pseudo-class
browser compatibility table, 565
described, 99–100, 102

additive color. See RGB colors
address, Internet handling, 5–6
adjacent sibling combinator (next sibling), 79–82
after, page-break-after property, 583
::after pseudo-element, 566
aligning

with margin property, 220–221
text with baseline, 571
text-align property, 147–149
vertical-align property

described, 306–307
percentage and length value, 311–312
subscript and superscript text, 307–308
table cells, 312–317
text-top and text-bottom keywords, 310–311
top, middle, and bottom keywords, 308–310

all-scroll cursor, 539
America Online, 12
ancestral relationship, 71
anchors, 60
arranging (positioning)

absolute, 372–380
backgrounds (background-position)

controlling, 358–360
described, 350–352
mixing values, 352–354
tiling, 354–357

browser compatibility table, 577–578
described, 371

26_096970 bindex.qxp 4/20/07 11:50 PM Page 611

arranging (positioning) (continued)
fixed

described, 389–393
emulating, 393–399
footer, 415–417
heading, 411–414
heading with footer, 417–420
heading with footer and side columns, 424–428
side columns, 421–424
steps, 399–402
stretching content by using offset properties in pairs,

402–411
horizontal and vertical center content in web browser,

441–443
multicolumn layout

described, 444–447
with heading and footer, 447–452

relative
applying, 386–389
described, 381–383
offset, 384–386

values, listed, 372
z-axis and z-index property, 428–430
z-index property with integer value

applying, 430–432
IE 6 and IE 7 z-index bug, 434–437
layering nested elements, 433–434
sample, 438–441

answers to exercise questions, 545–562
asterisk (*)

applying, 68–71
browser compatibility, 564
specificity, 113

asterisk, forward slash (*/), 29–30
attribute

all substrings, 92–93
beginning with string, 87–89
containing string, 90–92
described, 82–83
ending with string, 89–90
value, 83–87

attribute existence selector, 564
aural media, 488
auto keyword

aligning with left or right margin, 220–221
<div> element, 33–34
~img/~ element, 252–254
in quirks mode, 222–223
tables, 32–33

auto width and height, 249–254
automatic numbering, 581–582

B
backgrounds

browser compatibility table, 569–570
color (background-color), 339–343
fixed, 396
image (background-image), 343–346
Microsoft proprietary extensions, 585
placement (background-position)

controlling, 358–360
described, 350–352
mixing values, 352–354
tiling, 354–357

repeat (background-repeat), 346–350
scrolling (background-attachment)

described, 360–363
fixing, 364–365

shorthand property, 365–369
Webkit (Safari) proprietary extensions, 590–591

backslash (\), 36
baseline

cell contents, aligning, 314–317
text alignment, 571

BBEdit, 14
before, page break property, 583
::before pseudo-element, 566
Beginning Web Programming with HTML, XHTML, and

CSS (Duckett), 501
Beginning XML, Third Edition (Hunter, et al.), 501
Berners-Lee, Tim (World Wide Web Consortium

founder), 7
bitmap images, 43–44
blink text, 570
blink text decoration, 150
block elements (display: block declaration),

516–517
block-level elements, 506
blues, 599–600
bold font

browser compatibility table, 568
weight, 183–185

border
applying, 238–241
border-collapse property, 478–479
border-color property, 236
border-spacing property, 479–481
border-style property, 233–236
border-width property, 230–233
bottom properties, 573–574
browser compatibility table, 573
coloring, 208

612

arranging (positioning) (continued)

26_096970 bindex.qxp 4/20/07 11:50 PM Page 612

described, 205–206
length, 230
shorthand properties, 236–238
tables, 579

bottom keyword, 308–310
bottom position

border properties, 573–574
described, 372, 578
offset, 384

box model
borders

applying, 238–241
border-color property, 236
border-style property, 233–236
border-width property, 230–233
shorthand properties, 236–238

browser compatibility table, 572–575
content, managing overflow, 271–273
described, 205–208
dimensions
auto width and height, 249–254
described, 244
height, 247–249
percentage measurements, 255–256
width, 245–247

Gecko proprietary extensions, 586–587
margin property

applying, 224–229
collapsing, 216–219
described, 208–209
with four values, 209–211
horizontally aligning elements, 220–223
with one value, 214–215
with three values, 211–213
with two values, 213–214

minimum and maximum dimensions
line-height, 269–270
max-height, 267–269
max-width, 263–265
min-height, 265–267
min-width, 259–263

padding, 242–244
Quirks Mode in Internet Explorer
box-sizing property, 257–258
conditional comments, 258–259
described, 256–257

box-sizing property, Quirks Mode, 257–258
braille media, 488
browns, 602–603

browser
Mozilla
:empty pseudo-class, 565
origins of, 12–13
::selection pseudo-element, 566
table column opacity, 468

Opera, 13
Opera 9.0

automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursors, 537, 539
font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table layout, 473
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576

rendering modes
HTML 4.0 document, 607–608
HTML 4.01 document, 608
XHTML 1.0 document, 608–609

Safari, 13
Safari 2.0

automatic numbering, 581–582
background properties, 569–570
blink, 150
box model properties, 572–575
color properties, 566–567
cursors, 537, 539
font properties, 567–568
generated content, 581–582
IE versus, 8
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table caption, 458
table properties, 579
text properties, 570–571

613

browser

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 613

browser (continued)
user interface, 580
visual effects, 576

Safari Webkit proprietary extensions
multiple background syntax, 590–591
properties, 589–590

style sheet origin, 109
browser, IE (Internet Explorer)
blink, 150
conditional comments, 258–259
fixed positioning

emulating, 393–398
illusion of, 402–409

multiple versions, installing for testing, 9–11
prevalence of, 7
Safari 2.0 versus, 8
tables

caption, 458
display elements, 524
layout, 473
unsupported elements, 479

browser, IE 6 (Internet Explorer 6.0)
automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursor properties, 539–540
described, 9
float bugs

double-margin, 298, 305–306
guillotine, 298, 300–303
peek-a-boo (random content), 298–300
three-pixel jog, 298, 303–305

font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576
z-index bug, 434–437

browser, IE 7 (Internet Explorer 7.0)
automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567

cursor properties, 539–540
described, 8–9
font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576
z-index bug, 434–437

bullet character, 517–519
bulleted lists, appearance of (list-style-type

property)
described, 321–322
ordered lists, 324–329
unordered lists, 322–323

button click (:active pseudo-class), 99–100, 102

C
Camino, 12–13
candidate recommendation, W3C, 4
capitalize all letters (text-transform property),

155–158
capitalize text, 570
Caption font name, 200
caption, table

browser compatibility, 579
caption-side property, 457–459
described, 456
Firefox, 458
HTML tables, emulating, 525–526

cascade
!important rules, 118–121
origins of style sheets, 109–112
specificity of selector, calculating, 112–118

Cascading Style Sheets. See CSS
cell phones, color viewed on, 49
cells

empty, browser compatibility table, 579
highlighting, 474–476
spacing

applying, 481–483
removing with border-collapse property,

478–479
vertical-align property, 312–317

614

browser (continued)

26_096970 bindex.qxp 4/20/07 11:50 PM Page 614

centering
content in web browser, 441–443
with margin property, 220–221

child element
direct child selector, 75–79, 564
first-child structural pseudo-classes

browser compatibility table, 565
described, 102–106

last child pseudo-class, 565
margin collapsing, 217–219, 229

class
browser compatibility table, 565
multiple, browser compatibility, 565
name, 60–62
selector, 64–67

clear property, 293–297
client-side computer, 5–6
cm (centimeters), 37
collapsing

cell spacing, 478–479
margin

child element, 217–219, 229
property, 216–219

overflow property, 576
colon (:), 27
colon, double (::), 94
color

backgrounds (background-color), 339–343
blues, 599–600
borders, 208, 573
browns, 602–603
browser compatibility table, 566–567
grays, 603–604
greens, 601
handheld devices, 49
keywords

in alphabetical order, 593–598
applying, 47–48

options, 47
reds, 598–599
RGB, 48–49
scrollbar property, 584
short hexadecimal and web-safe, 49–51
user-interface color keywords, 604–605
visited and unvisited hyperlinks, 101–102
yellows, 602

col-resize cursor, 540
columns

HTML tables, emulating (table-column-group and
display: table-column), 526–527

opacity, 468

side, fixed positioning, 421–428
tables, 456, 459–462

comma (,), 28
comments

CSS, 29–31
Quirks Mode in Internet Explorer, 258–259

container
header, footer, and side columns, 426
id name, 411

content, overflow, 271–273
counter-increment property, 581
counter-reset property, 581
CreaText, 14
Crimson Editor, 14
crosshair cursor, 539
CSS (Cascading Style Sheets)

advantages of using, 21–22
browsers

Gecko, 12–13
Internet Explorer 6, 9
Internet Explorer 7, 8–9
Internet Explorer for PowerPC Mac OS X, 11
multiple versions of IE, installing for testing, 9–11
Opera, 13
Safari, 13

colors
hexadecimal, 49
keywords, 47–48
options, 47
RGB, 48–49
short hexadecimal and web-safe, 49–51

comments, 29–31
declarations, 27
document

creating, 15–20
outcome, 20–21

grouping multiple selectors, 28–29
HTML and XHTML, 3
including

with embedded style sheets, 52, 53–54
imported from within another style sheet (@import

rule), 53, 56
inline styles (style attribute), 53, 56–57
with <link> element, 52, 54–56

length and measurement
absolute measurement, 36–39
described, 36
percentage measurements, 44–45
pixel measurements (px), 43–44
relative measurement based on font size, 40–42

615

CSS (Cascading Style Sheets)

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 615

CSS (Cascading Style Sheets) (continued)
relative measurement based on height of lowercase

letter x (x-height), 43
relative measurement table, 39–40

numbers
integers, 45–47
real, 47

origins of, 6–8
rules, 25–26
selectors, 26–27
URI, 51
values

keywords, 31–34
strings, 34–36

W3C, 4–5
writing, 14–15

CSS Instant Results (York), 60
curly braces ({ }), 27
cursive generic font

applying, 171–172
browser compatibility, 567

cursor property
browser compatibility, 538–540, 580
custom, 540–541
described, 537–538

D
data types, 34
declaration

comments, 30
XML

adding, 513–514
attributes, 510–511
described, 510
style sheet, 511–513

delimiter, 118
descendent selector

browser compatibility table, 564
described, 71–75

dialogue, 443
dimensions
auto width and height, 249–254
described, 244
height, 247–249
overflowing content constraints, 271–273
percentage measurements, 255–256
width, 245–247

direct adjacent sibling selector, 564
direct child selector

browser compatibility table, 564
described, 75–79

disabling portions of style sheet, comments, 30–31
display property, XML

block elements (display: block declaration),
516–517

described, 514–515
inline elements (display: inline declaration),

515–516
list items (display: list-item declaration),

517–519
numbered lists, generating, 519–520
sample applying, 520–523
table column (display: table-column), 526–527

<div> element
assigning, 62
auto width, 33–34
box model

auto value for width and height, 249–250
described, 207–208
margin, 210–211, 227
margin with two values, 213
minimum height, 265–266
minimum width, 262
percentage measurements, 255–256
width, 245

class selector, 60–61
color keywords, 47–48
cursor, 538
descendent selectors, 72–73
direct child selectors, 76
floating, 284, 286
ID selectors, 63–64
negative margin, 46–47
next sibling selectors, 79–80
percentage measurement, 44–45
positioning
absolute, 377, 380
header, footer, and side columns, 422, 426
height, 451
horizontal and vertical alignment, 441–443
multicolumn layout, 444
nested elements, layering, 433–434
offset in pairs, 402, 410–411
relative, 383, 387, 389
static, 374, 391
z-index bug, 434–437, 441
z-index property, 429–432

style sheet content, including, 35, 39
divh1+p, 113
div.someclass, 113
div.someclass.someother, 113
div#someid, 113

616

CSS (Cascading Style Sheets) (continued)

26_096970 bindex.qxp 4/20/07 11:50 PM Page 616

DOCTYPE switch
described, 221
quirks mode invoking, 221–223

Document Type Definition (DTD)
(X)HTML document, 221
XML documents, 511

dot (.), 60–61
double colon (::), 94
double-margin float bug, 298, 305–306
DPI setting

Macintosh, 37
Windows (Microsoft) operating system, 37

DTD (Document Type Definition)
(X)HTML document, 221
XML documents, 511

Duckett, Jon (Beginning Web Programming with HTML,
XHTML, and CSS), 501

E
em unit, 40–41
embedded style sheets, 52, 53–54
embossed media, 488
empty cells, 579
:empty pseudo-class, 565
emulation, 11
encoding attribute, 510–511
e-resize cursor, 539
escaped quotation marks, 36
ex unit, 40, 43. See also x-height, relative measurement
exercise questions, answers to, 545–562
eXtensible HyperText Markup Language (XHTML)

background image, applying, 345–346
browser rendering modes, 608–609
Document Type Declaration, 221
history, 3

eXtensible Markup Language (XML)
browser view, 503
declaration

adding, 513–514
attributes, 510–511
described, 510
style sheet, 511–513

described, 501–502
display property

block elements (display: block declaration),
516–517

described, 514–515
inline elements (display: inline declaration),

515–516
list items (display: list-item declaration),

517–519

numbered lists, generating, 519–520
sample applying, 520–523

documents browser rendering modes, 609
HTML tables, emulating

captions, 525–526
columns (table-column-group and display:

table-column), 526–527
described, 523–524
sample applying, 524–525
styling groupings, table rows, and table cells,

527–534
less-supported display values, 534–535
schema, 505–510
well-formed, 504–505

F
fallback fonts, 169
<family-name> font property, 567
fantasy generic font

applying, 171–172
browser compatibility, 567

file extensions, 14–15
Firefox (Mozilla)

cursor properties, 539–540
described, 12–13
table caption, 458

Firefox 1.5 (Mozilla) DPI setting, 37–38
Firefox 2.0 (Mozilla)

automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
font properties, 567–568
generated content, 581–582
IE versus, 8
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576

first-child structural pseudo-classes
browser compatibility table, 565
described, 102–106

:first-letter pseudo-element
applying, 93–96
browser compatibility, 566

617

:first-letter pseudo-element

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 617

:first-line pseudo-element
applying, 93–96
browser compatibility, 566

fixed backgrounds, 396
fixed keyword, 569
fixed positioning

browser compatibility table, 577
described, 389–393
footer by absolute positioning, 415–420, 424–428
header by absolute positioning, 411–414, 417–420,

424–428
IE

emulating, 393–398
illusion of, 402–409

JavaScript, 401–402
side columns by absolute position, 421–428

float bugs, IE 6
double-margin, 298, 305–306
guillotine, 298, 300–303
peek-a-boo (random content), 298–300
three-pixel jog, 298, 303–305

float property
box model, 282–292
described, 277–282

:focus pseudo-class, 565
font-family property, 167–169
fonts

browser compatibility table, 567–568
families, operating systems and, 169–171
font shorthand property

described, 194
style, variant, and weight, 194–200

font-size property
<absolute-size> value notation, 185–186
described, 185
percentage sizes, 189–194
relative measurement, 40–42
<relative-size> value notation, 187–189

font-style property, 175–181
font-variant property, 181–183
font-weight property, 183–185
generic font families, 171–175
specifying with font-family property, 167–169
system fonts, 200–202

footer
fixed positioning, 415–420, 424–428
JavaScript, 422–424
multicolumn layout, 447–452

forward slash, asterisk (/*), 29–30

G
Gates, Bill (Microsoft CEO), 8
Gecko. See also See also Mozilla; Mozilla Firefox;

Mozilla Firefox 1.5 Dpi setting; Mozilla Firefox 2.0
described, 12–13
proprietary extensions

box model, 586–587
CSS 3 multicolumn layout, 588–589
described, 585
pseudo-elements, 585
user-interface, 587–588
visual effects, 586

generated content, 581–582
<generic-family> font property, 567
generic font families, 171–175
graphics

backgrounds (background-image), 343–346
tiling background, 346, 348–350

grays, 603–604
greater than sign (>), 76
greens, 601
grouped declaration or selector, 27
groupings, emulating HTML tables, 527–534
guillotine float bug, 298, 300–303

H
hand cursor, 539
handheld devices

color viewed on, 49
output for, 488

hard disk space, 21
hash mark (#), 63
header

fixed positioning, 411–414, 417–420, 424–428
JavaScript, 422–424
multicolumn layout, 447–452

height
dimensions, 247–249
properties, 575

help cursor, 539
hexadecimal colors

browser compatibility table, 566
short, 49–51

hidden overflow, 576
highlighting

cells, 474–476
margin, 207

horizontal content in web browser, 441–443
horizontally aligning elements, 220–223

618

:first-line pseudo-element

26_096970 bindex.qxp 4/20/07 11:50 PM Page 618

:hover pseudo-class
browser compatibility table, 565
described, 98–99, 102

href (hyperlink reference), 54
HTML 4.0 browser rendering modes, 607–608
HTML 4.01 browser rendering modes, 608
HTML (HyperText Markup Language)

background image, applying, 345–346
Document Type Declaration, 221
history, 3
limitations of, 6
selectors, 26–27
tables, emulating

captions, 525–526
columns (table-column-group and display:

table-column), 526–527
described, 523–524
sample applying, 524–525
styling groupings, table rows, and table cells,

527–534
HTML style attribute, 110
HTML-kit, 14
HTTP server software, 5
Hunter, David (Beginning XML, Third Edition), 501
hyperlink reference (href), 54
hyperlinks

colors for visited and unvisited, 101–102
unvisited, 97–98, 101
visited, 98, 101

HyperText Markup Language. See HTML
hyphen-separated list of words, 564

I
Icon font name, 200
id name container, 411
ID selector

browser compatibility table, 565
described, 63–67

IE (Internet Explorer)
blink, 150
conditional comments, 258–259
fixed positioning

emulating, 393–398
illusion of, 402–409

multiple versions, installing for testing, 9–11
prevalence of, 7
Safari 2.0 versus, 8
tables

caption, 458
display elements, 524

layout, 473
unsupported elements, 479

IE 6 (Internet Explorer 6.0)
automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursor properties, 539–540
described, 9
float bugs

double-margin, 298, 305–306
guillotine, 298, 300–303
peek-a-boo (random content), 298–300
three-pixel jog, 298, 303–305

font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576
z-index bug, 434–437

IE 7 (Internet Explorer 7.0)
automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursor properties, 539–540
described, 8–9
font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576
z-index bug, 434–437

image
backgrounds (background-image), 343–346
tiling background, 346, 348–350

~img/~ element, 252–254

619

~img/~ element

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 619

@import rule, 53, 56
!important rules, 118–121
imported from within another style sheet (@import

rule), 53
inches, 37–39
including CSS

with embedded style sheets, 52, 53–54
imported from within another style sheet (@import

rule), 53, 56
inline styles (style attribute), 53, 56–57
with <link> element, 52, 54–56

indirect adjacent sibling selector, 564
inheritance, 121–125
inline elements (display: inline declaration),

515–516
inline positioning, 577
inline styles (style attribute), 53, 56–57
input[type=’text’], 113
inside, page break property, 583
integer value, z-index property with

described, 430–432
IE 6 and IE 7 z-index bug, 434–437
layering nested elements, 433–434
sample, 438–441

integers, 34, 45–47
Internet Explorer. See IE, IE 6, IE 7
Internet, workings of, 5–6
italic font value, 176–178
item marker style (list-style-image property),

330–331

J
JavaScript

described, 59
fixed positioning, 401–402
header and footer, 422–424

JavaScript Style Sheets (JSSS), 7
justify property, 571

K
keyword values, 31–34
KHTML, 13
Konqueror browser, 13

L
:lang pseudo-class, 565
:last-child pseudo-class, 565
layering, vertical alignment, 223

left align property, 571
left border properties, 573–574
left margin

aligning, 220–221
property, 572

left padding property, 572
left position

browser compatibility table, 578
described, 372
offset, 384

legacy content. See Quirks Mode in Internet Explorer
length

absolute measurement, 36–39
borders, 230
described, 36
percentage measurements, 44–45
pixel measurements, 43–44
relative measurement

based on font size, 40–42
based on height of lowercase letter x (x-height), 43
table, 39–40

value, 311–312
<length> font, 185, 568
letter-spacing property, 132–136, 570
li, 113
Lie, Håkon Wium (Cascading HTML Style Sheets

author), 7
line breaks, 26
line-height font size

applying, 269–270
browser compatibility table, 571

line-level elements, 506
lines, multiple comment, 30
line-through text

applying, 150
browser compatibility, 570

lining up elements
with margin property, 220–221
text with baseline, 571
text-align property, 147–149
vertical-align property

described, 306–307
percentage and length value, 311–312
subscript and superscript text, 307–308
table cells, 312–317
text-top and text-bottom keywords, 310–311
top, middle, and bottom keywords, 308–310

<link> element
creating document, 16
including CSS, 52, 54–56

620

@import rule

26_096970 bindex.qxp 4/20/07 11:50 PM Page 620

:link pseudo-class
applying, 97–98
browser compatibility table, 565

<link> tag, XML, 511
Linux text editors, 14
list data page structure, 506
list items (display: list-item declaration),

517–519
list properties

browser compatibility table, 581–582
bulleted and numbered lists, appearance of (list-

style-type property)
described, 321–322
ordered lists, 324–329
unordered lists, 322–323

combining multiple properties (list-style shorthand
property), 333–337

item marker style (list-style-image property),
330–331

placing list item markers (list-style-position
property), 331–333, 582

list-style-type property
browser compatibility, 581
described, 321–322
ordered lists, 324–329
unordered lists, 322–323

lowercase all letters (text-transform property),
155–158

lowercase letter x (x-height), relative measurement
based on height of, 43

lowercase text, 570
luminous RGB color

applying, 48–49
browser compatibility table, 566

M
Mac

cursors listed by browser, 539–540
DPI setting, 37
Parallels Desktop for, 9–10

Mac OS X
fonts, 169
PC virtualization/emulation software, 9

margin
browser compatibility table, 572
described, 205–206
highlighting, 207
setting negative, 46–47

margin property
applying, 224–229
collapsing, 216–219, 229

described, 208–209
with four values, 209–211
horizontally aligning elements, 220–223
with one value, 214–215
with three values, 211–213
with two values, 213–214

markers
placing (list-style-position property), 331–333
style (list-style-image property), 330–331

marks paged media property, 582
max-height, 267–269
max-width, 263–265
measurement

absolute measurement, 36–39
described, 36
percentage measurements, 44–45
pixel measurements, 43–44
relative

based on font size, 40–42
based on height of lowercase letter x (x-height), 43
table, 39–40

media
paged, browser compatibility, 582–583
style content for print, 487–491

@media rule, 491–496
Menu font name, 200
message-box font name, 200
Microsoft

CSS, support for, 7
proprietary extensions

backgrounds, 585
user-interface, 584
visual effects, 584

Microsoft IE (Internet Explorer)
blink, 150
conditional comments, 258–259
fixed positioning

emulating, 393–398
illusion of, 402–409

multiple versions, installing for testing, 9–11
prevalence of, 7
Safari 2.0 versus, 8
tables

caption, 458
display elements, 524
layout, 473
unsupported elements, 479

Microsoft IE 6 (Internet Explorer 6.0)
automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575

621

Microsoft IE 6 (Internet Explorer 6.0)

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 621

Microsoft IE 6 (Internet Explorer 6.0) (continued)
color properties, 566–567
cursor properties, 539–540
described, 9
float bugs

double-margin, 298, 305–306
guillotine, 298, 300–303
peek-a-boo (random content), 298–300
three-pixel jog, 298, 303–305

font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576
z-index bug, 434–437

Microsoft IE 7 (Internet Explorer 7.0)
automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursor properties, 539–540
described, 8–9
font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576
z-index bug, 434–437

Microsoft Internet Explorer for PowerPC Mac OS X, 11
Microsoft Office fonts, 169
Microsoft Vista cursors, 539–540
Microsoft Windows

cursors listed by browser, 539–540
DPI setting, 37
fonts, 169
PC virtualization/emulation software, 10–11

middle keyword, 308–310
millimeters (mm), 37
minimum and maximum box model dimensions
line-height, 269–270
max-height, 267–269
max-width, 263–265
min-height, 265–267
min-width, 259–263

minus sign (-), 46
mm (millimeters), 37
model, box

borders
applying, 238–241
border-color property, 236
border-style property, 233–236
border-width property, 230–233
shorthand properties, 236–238

browser compatibility table, 572–575
content, managing overflow, 271–273
described, 205–208
dimensions
auto width and height, 249–254
described, 244
height, 247–249
percentage measurements, 255–256
width, 245–247

Gecko proprietary extensions, 586–587
margin property

applying, 224–229
collapsing, 216–219
described, 208–209
with four values, 209–211
horizontally aligning elements, 220–223
with one value, 214–215
with three values, 211–213
with two values, 213–214

minimum and maximum dimensions
line-height, 269–270
max-height, 267–269
max-width, 263–265
min-height, 265–267
min-width, 259–263

padding, 242–244
Quirks Mode in Internet Explorer
box-sizing property, 257–258
conditional comments, 258–259
described, 256–257

monospace generic font
applying, 171–172
browser compatibility, 567

622

Microsoft IE 6 (Internet Explorer 6.0) (continued)

26_096970 bindex.qxp 4/20/07 11:50 PM Page 622

mouse
button click (:active pseudo-class), 99–100, 102
pointer (:hover pseudo-class), 98–99, 102

move cursor, 539
Mozilla
:empty pseudo-class, 565
origins of, 12–13
::selection pseudo-element, 566
table column opacity, 468

Mozilla Firefox
cursor properties, 539–540
described, 12–13
table caption, 458

Mozilla Firefox 1.5 DPI setting, 37–38
Mozilla Firefox 2.0

automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
font properties, 567–568
generated content, 581–582
IE versus, 8
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576

multicolumn layout
described, 444–447
with heading and footer, 447–452

multiple background syntax, 590–591
multiple classes, 565

N
names

id name container, 411
ID selector

browser compatibility table, 565
described, 63–67

negative margin, 46–47
ne-resize cursor, 539
Netscape, 7, 12–13. See also Gecko
no-drop cursor, 540
:not pseudo-class, 565
not-allowed cursor, 540

Notepad program, 14
n-resize cursor, 539
numbered lists, appearance of (list-style-type

property)
described, 321–322
ordered lists, 324–329
unordered lists, 322–323

numbered lists, generating, 519–520
numbers

automatic, 581–582
integers, 45–47
real, 47
strings, 34

nw-resize cursor, 539

O
oblique font value, 176–178
offset positioning, 384–386
opacity

browser compatibility, 586
table columns, 468

open source, 12
Opera, 13
Opera 9.0

automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursors, 537, 539
font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table layout, 473
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576

operating system fonts, 202
ordered lists, 324–329
origins of style sheets, cascade, 109–112
orphans paged media property, 583
OS X (Mac)

fonts, 169
PC virtualization/emulation software, 9

outline user interface, 580

623

outline user interface

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 623

outside border
applying, 238–241
border-collapse property, 478–479
border-color property, 236
border-spacing property, 479–481
border-style property, 233–236
border-width property, 230–233
bottom properties, 573–574
browser compatibility table, 573
coloring, 208
described, 205–206
length, 230
shorthand properties, 236–238
tables, 579

overflow
content, managing, 271–273
visual effects, 576

overline text
applying, 150
browser compatibility, 570

P
padding

applying, 242–244
browser compatibility table, 572
described, 205–206

page breaks
browser compatibility, 583
placing, 497–500

paged media, browser compatibility, 582–583
Parallels Desktop for Mac, 9–10
Parallels software, 11
parent element, collapsing margins, 217–219, 229
pc (picas), 37
PC virtualization/emulation software

described, 9
installing Windows, 10–11

peek-a-boo (random content) float bug, 298–300
<percentage> font, 185, 568
percentage measurement (%), 40
percentage measurements, 44–45
percentage value, 311–312
picas (pc), 37
pictures

backgrounds (background-image), 343–346
tiling background, 346, 348–350

pixels (px)
compared to inches, 38–39
described, 37
measurements (px), 43–44

plus sign (+), 46
PNG image, creating custom cursor, 541
pointer cursor, 539
points (pts), 37
pop-up dialogues, 443
positioning

absolute, 372–380
backgrounds (background-position)

controlling, 358–360
described, 350–352
mixing values, 352–354
tiling, 354–357

browser compatibility table, 577–578
described, 371
fixed

described, 389–393
emulating, 393–399
footer, 415–417
heading, 411–414
heading with footer, 417–420
heading with footer and side columns, 424–428
side columns, 421–424
steps, 399–402
stretching content by using offset properties in pairs,

402–411
horizontal and vertical center content in web browser,

441–443
multicolumn layout

described, 444–447
with heading and footer, 447–452

relative
applying, 386–389
described, 381–383
offset, 384–386

values, listed, 372
z-axis and z-index property, 428–430
z-index property with integer value

applying, 430–432
IE 6 and IE 7 z-index bug, 434–437
layering nested elements, 433–434
sample, 438–441

PowerPC Mac OS X, Internet Explorer for, 11
print media, output for, 488
progress cursor, 539
projection presentations, 488
pseudoattributes, XML, 510
pseudo-classes
:active, 99–100, 102
all dynamic, 100–102
browser compatibility table, 565
first-child structural, 102–106

624

outside border

26_096970 bindex.qxp 4/20/07 11:50 PM Page 624

:hover, 98–99, 102
:link and :visited, 97–98

pseudo-elements
browser compatibility table, 566
:first-letter and :first-line, 93–96
Gecko proprietary extensions, 585

pts (points), 37
px (pixels)

compared to inches, 38–39
described, 37
measurements, 43–44

Q
Q software, 11
Quirks Mode in Internet Explorer
box-sizing property, 257–258
conditional comments, 258–259
described, 256–257
DOCTYPE switch, 221–223

quotation marks (“), 36
quotes property, 581

R
real numbers, 45, 47
recommendations, W3C, 4
reds, 598–599
rel (relation between external document and calling

document), 54
relative measurement

font size, 40–42
height of lowercase letter x (x-height), 43
table, 39–40

relative path, 54
relative positioning

applying, 386–389
browser compatibility, 577
described, 381–383
offset, 384–386

<relative-size>

font
applying, 185
browser compatibility, 568

value notation, 187–189
rendering modes, browser, 607–608
repeating backgrounds (background-repeat),

346–350
resources, additional, 540–541
RGB colors

applying, 48–49
browser compatibility table, 566

right align property, 571
right angle bracket (>), 76
right border properties, 573–574
right margin, aligning, 220–221
right position

browser compatibility, 578
described, 372
offset positioning, 384–386

root element, XML document, 504
:root pseudo-class, browser compatibility, 565
rows

HTML tables, emulating, 527–534
resize cursor, 540

rule
comments, 30
layout of, 26

S
Safari, 13
Safari 2.0

automatic numbering, 581–582
background properties, 569–570
blink, 150
box model properties, 572–575
color properties, 566–567
cursors, 537, 539
font properties, 567–568
generated content, 581–582
IE versus, 8
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table caption, 458
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576

Safari Webkit proprietary extensions
multiple background syntax, 590–591
properties, 589–590

sans-serif generic font
applying, 171–172
browser compatibility, 567

schema, XML, 505–510
screen presentations, 488
scroll keyword, 569
scrollbar property, 584

625

scrollbar property

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 625

scrolling
backgrounds (background-attachment)

applying, 360–363
fixing, 364–365

overflow, 576
SeaMonkey for Windows, Mac, and Linux, 13
::selection pseudo-element, 566
selectors

adjacent sibling combinator (next sibling), 79–82
attribute

all substrings, 92–93
beginning with string, 87–89
containing string, 90–92
described, 82–83
ending with string, 89–90
value, 83–87

browser compatibility table, 564–565
class name, 60–62, 64–67
CSS, 26–27
descendent, 71–75
described, 26, 59–60
direct child, 75–79
HTML element, 26–27
id, 63–67
pseudo-classes
:active, 99–100
all dynamic, 100–102
first-child structural, 102–106
:hover, 98–99, 102
:link and :visited, 97–98

pseudo-elements (:first-letter and :first-
line), 93–96

specificity, calculating, 112–118
universal (asterisk *), 68–71

semi-colon (;), 27
se-resize cursor, 539
serif generic font, 171–172
serif generic font family, 567
server-side computer, 5–6
short hexadecimal colors, 49–51
shorthand properties

backgrounds, 365–369
borders, 236–238
font

described, 194
style, variant, and weight, 194–200

list properties, combining, 333–337
side by side content. See float property
side columns, fixed positioning, 421–428
small caps, 568
small-caps font variant, 181–183

small-caption font name, 200
.someclass, 113
#someid, 113
space-separated list of words, 564
spacing table cells, removing with border-collapse

property, 478–479
 element, floating, 287
specifications, W3C, 4
specificity of selector, calculating, 112–118
speech synthesizer, 488
square brackets ([]), 350
s-resize cursor, 539
standalone attribute, 511
static positioning, 577
static positioning, 374
status-bar font name, 200
string

attributes
beginning with, 87–89
containing, 90–92
ending with, 89–90

numbers, 34
values, 34–36

style attribute, 53, 56–57, 113
style content for print

described, 487
media, 487–491
@media rule, 491–496
page breaks, controlling, 497–500

style, font, 175–181
style sheet

declaration, XML, 511–513
origins, cascade, 109–112

<style></style> tag set, 53–56
subscript text, 307–308
substrings, 92–93
superscript text, 307–308
sw-resize cursor, 539
system fonts, 200–202

T
table

applying to sample project, 463–469
auto keyword, 32–33
border-spacing property, 479–481
browser compatibility table, 579
captions and caption-side property, 457–459
cells

empty, browser compatibility table, 579
highlighting, 474–476

626

scrolling

26_096970 bindex.qxp 4/20/07 11:50 PM Page 626

spacing, applying, 481–483
spacing, removing with border-collapse property,

478–479
vertical-align property, 312–317

columns
creating, 459–462
described, 456
group, 526–527
opacity, 468

described, 455
optional elements, 455–457
width

controlling with table-layout property, 469–474
highlighting cells, 474–476

tabular data page structure, 506
:target pseudo-class, 565
television (tv) media, 488
testing in multiple IE versions, 9–11
text

browser compatibility table, 570–571
first letter or first letter pseudo-elements, 93–96
manipulation
letter-spacing property, 132–136
properties listed, 131
text-align property, 147–149, 571
text-bottom keyword, 310–311
text-decoration property, 150–155, 570
text-indent property, 141–147, 571
text-top keyword, 310–311
text-transform property, 155–158, 570
white-space property, 158–164
word-spacing property, 137–141

text cursor, 539
text editor

CSS-enabled document, creating, 16–20
using, 14

TextEdit program, 14
three-pixel jog float bug, 298, 303–305
tiling

background image, 346, 348–350
backgrounds (background-position), 354–357

top border properties, 573–574
top keyword, 308–310
top margin property, 572
top padding property, 572
top position

browser compatibility, 578
described, 372
offset, 384–386

transparency
color borders, 573
image backgrounds, 363–365

tty media, 488
tv (television) media, 488
.txt file extension, 14–15
type (MIME external file), 54
type selector, 564
typefaces

browser compatibility table, 567–568
families, operating systems and, 169–171
font shorthand property

described, 194
style, variant, and weight, 194–200

font-size property
<absolute-size> value notation, 185–186
described, 185
percentage sizes, 189–194
relative measurement, 40–42
<relative-size> value notation, 187–189

font-style property, 175–181
font-variant property, 181–183
font-weight property, 183–185
generic font families, 171–175
specifying with font-family property, 167–169
system fonts, 200–202

U
ul li, 113
underline text

applying, 150
browser compatibility, 570

Uniform Resource Locators (URLs)
anchors, 60
multiple, in cursor property, 537

Universal Resource Indicator (URI), 51
universal selector (*)

applying, 68–71
browser compatibility, 564

unvisited hyperlinks
colors, 101–102
pseudo-classes, 97–98

uppercase text, 570
URI (Universal Resource Indicator), 51
URLs (Uniform Resource Locators)

anchors, 60
multiple, in cursor property, 537

user interface
browser compatibility table, 580
color keywords, 604–605
Gecko proprietary extensions, 587–588
Microsoft proprietary extensions, 584

user, style sheet origin, 109

627

user, style sheet origin

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 627

V
value

attribute, 83–87
exact match, 564

variant, font, 181–183
vertical alignment (vertical-align property)

cursor, 540
described, 306–307
layering, 223
percentage and length value, 311–312
subscript and superscript text, 307–308
table cells, 312–317
text, browser compatibility, 571
text-top and text-bottom keywords, 310–311
top, middle, and bottom keywords, 308–310

vertical center content in web browser, 441–443
vertical-text cursor, 540
Virtual PC, 9, 11
virtualization, 11
visible overflow, 576
visited hyperlink colors, 101–102
:visited pseudo-class

applying, 97–98
browser compatibility table, 565

Vista (Microsoft) cursors, 539–540
visual effects

browser compatibility table, 576
Gecko proprietary extensions, 586
Microsoft proprietary extensions, 584

VMWare, Player, 11

W
wait cursor, 539
web browser

Mozilla
:empty pseudo-class, 565
origins of, 12–13
::selection pseudo-element, 566
table column opacity, 468

Opera, 13
Opera 9.0

automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursors, 537, 539
font properties, 567–568
generated content, 581–582

lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table layout, 473
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576

rendering modes
HTML 4.0 document, 607–608
HTML 4.01 document, 608
XHTML 1.0 document, 608–609

Safari, 13
Safari 2.0

automatic numbering, 581–582
background properties, 569–570
blink, 150
box model properties, 572–575
color properties, 566–567
cursors, 537, 539
font properties, 567–568
generated content, 581–582
IE versus, 8
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table caption, 458
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576

Safari Webkit proprietary extensions
multiple background syntax, 590–591
properties, 589–590

style sheet origin, 109
web browser, IE (Internet Explorer)
blink, 150
conditional comments, 258–259
fixed positioning

emulating, 393–398
illusion of, 402–409

multiple versions, installing for testing, 9–11
prevalence of, 7

628

value

26_096970 bindex.qxp 4/20/07 11:50 PM Page 628

Safari 2.0 versus, 8
tables

caption, 458
display elements, 524
layout, 473
unsupported elements, 479

web browser, IE 6 (Internet Explorer 6.0)
automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursor properties, 539–540
described, 9
float bugs

double-margin, 298, 305–306
guillotine, 298, 300–303
peek-a-boo (random content), 298–300
three-pixel jog, 298, 303–305

font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576
z-index bug, 434–437

web browser, IE 7 (Internet Explorer 7.0)
automatic numbering, 581–582
background properties, 569–570
box model properties, 572–575
color properties, 566–567
cursor properties, 539–540
described, 8–9
font properties, 567–568
generated content, 581–582
lists, 581–582
paged media, 582–583
positioning, 577–578
pseudo-classes, 565
pseudo-elements, 566
selectors, 564–565
table properties, 579
text properties, 570–571
user interface, 580
visual effects, 576

z-index bug, 434–437
web browsers. See also individual browsers listed by name

rendering modes
HTML 4.0 document, 607–608
HTML 4.01 document, 608
XHTML 1.0 document, 608–609

style sheet origin, 109
web page

content, scrolling background image with, 360–365
style sheet origin, 109

Webkit (Safari) proprietary extensions
multiple background syntax, 590–591
properties, 589–590

web-safe colors, 49–51
websites, recommended, 542
weight, font, 183–185
well-formed XML, 504–505
white space, 26
white-space property

applying, 158–164
browser compatibility, 571

widows paged media property, 583
width properties

box model dimensions, 245–247
browser compatibility, 575
tables

controlling with table-layout property, 469–474
highlighting cells, 474–476

Windows (Microsoft)
cursors listed by browser, 539–540
DPI setting, 37
fonts, 169
PC virtualization/emulation software, 10–11

Windows Notepad program, 14
Windows XP cursors listed by browser, 539–540
words

browser compatibility table, 570–571
first letter or first letter pseudo-elements, 93–96
manipulation
letter-spacing property, 132–136
properties listed, 131
text-align property, 147–149, 571
text-bottom keyword, 310–311
text-decoration property, 150–155, 570
text-indent property, 141–147, 571
text-top keyword, 310–311
text-transform property, 155–158, 570
white-space property, 158–164
word-spacing property, 137–141

629

words

In
de

x

26_096970 bindex.qxp 4/20/07 11:50 PM Page 629

word-spacing property
applying, 137–141
browser compatibility, 570

working draft, W3C, 4
World Wide Web Consortium (W3C), 4–5
w-resize cursor, 539

X
x-axis, tiling background image, 346, 348–350
x-height, relative measurement, 43
XHTML (eXtensible HyperText Markup Language). See

also table
background image, applying, 345–346
browser rendering modes, 608–609
Document Type Declaration, 221
history, 3

XML (eXtensible Markup Language)
browser view, 503
declaration

adding, 513–514
attributes, 510–511
described, 510
style sheet, 511–513

described, 501–502
display property

block elements (display: block declaration),
516–517

described, 514–515
inline elements (display: inline declaration),

515–516
list items (display: list-item declaration),

517–519

numbered lists, generating, 519–520
sample applying, 520–523

documents browser rendering modes, 609
HTML tables, emulating

captions, 525–526
columns (table-column-group and display:

table-column), 526–527
described, 523–524
sample applying, 524–525
styling groupings, table rows, and table cells,

527–534
less-supported display values, 534–535
schema, 505–510
well-formed, 504–505

Y
y-axis, tiling background image, 348–350
yellows, 602
York, Richard (CSS Instant Results), 60

Z
z-axis

relative positioning, 381–383
z-index property and, 428–430

z-index property with integer value
described, 430–432
IE 6 and IE 7 z-index bug, 434–437
layering nested elements, 433–434
sample, 438–441

630

word-spacing property

26_096970 bindex.qxp 4/20/07 11:50 PM Page 630

Get more Wrox

Programmer to ProgrammerTM

at Wrox.com!
Special Deals
Take advantage of special offers
every month

Free Chapter Excerpts
Be the first to preview chapters from
the latest Wrox publications

Unlimited Access. . .
. . . to over 70 of our books in the
Wrox Reference Library. (see more
details on-line)

Forums, Forums, Forums
Take an active role in online
discussions with fellow programmers

Meet Wrox Authors!
Read running commentaries from authors on their programming experiences
and whatever else they want to talk about

Join the community!
Sign-up for our free monthly newsletter at

newsletter.wrox.com

BROWSE BOOKS P2P FORUM FREE NEWSLETTER ABOUT WROX

Browse Books

.NET
SQL Server
Java

XML
Visual Basic
C#/C++

27_096970 bob.qxp 4/20/07 11:51 PM Page 631

Take your library
wherever you go.
Now you can access more than 70 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

27_096970 bob.qxp 4/20/07 11:51 PM Page 632

16
Using Dean Edwards’s “IE7”

In this chapter, I explore some very useful solutions for getting CSS to work in most browsers in
use today. In this chapter I discuss the following:

❑ Dean Edwards’s “IE7” JavaScript (not the browser from Microsoft), an open source pack-
age used to implement CSS standards in IE 6 and less without upgrading the browser itself

❑ Installation of an HTTP server, the software used to transmit web pages from server to
browser, which is required to use the “IE7” package

At the time of this writing, IE 6 exhibits more problems than any other browser in terms of sup-
port for CSS standards. This chapter focuses on techniques that web designers use to bring IE 6
up to speed with its competitors, and its successor, IE 7. This discussion is necessary because the
majority of Internet users are using Internet Explorer for Windows in one form or another.

Bugs are an unfortunate fact of designing web pages. In a perfect world, no hacks or workarounds
would be necessary. Unfortunately, this isn’t a perfect world. A couple of years ago, designers
were grumbling about having to support Netscape Navigator 4. Today, use of Netscape Navigator
4 is virtually nonexistent, and the browser designers are complaining about IE 6.

In the upcoming sections, you learn about a few of the most important bugs you may encounter
when rendering a web page for IE 6, and I show you how to smash them. Although other
browsers, such as Mozilla, Opera, and Safari, have their share of bugs, the biggest problem today
is IE 6 for Windows. The majority of the bug fixes presented in this chapter involve floating ele-
ments in IE 6. I also present a unique package that corrects some of IE 6’s rendering bugs and
implements CSS functionality in Internet Explorer 5.5, and 6. This solution is called Dean
Edwards’s “IE7,” and it is the focus of the next section.

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 1

Approaching CSS Bugs in IE
There are two approaches to fixing CSS problems with IE 6. The first approach you’ve already
seen in previous chapters, including Chapters 7, 8, and 11. The approach that you saw involved direct
workarounds and fixes for specific problems on a case-by-case basis. Problems such as IE 6’s nonsupport
of min-width and max-width, or min-height and max-height properties, for example, can be solved
by using a conditional comment style sheet and a tiny bit of JavaScript that’s included via Microsoft’s
proprietary, dynamic CSS expressions feature.

One other approach exists, and is presented here as Dean Edwards’s “IE7” JavaScript. This solution is
subtle and true to CSS standards. By using JavaScript, it’s possible for a developer to write a small pro-
gram that executes within a web document, which can look at your style sheets and dynamically apply
fixes for the CSS properties and features the browser doesn’t understand. The advantages of this
approach are:

❑ No nonstandard CSS workarounds are required in the style sheets; you simply use all standard
CSS in the style sheet.

❑ End users don’t have to upgrade their browsers or install anything.

❑ Developers don’t require any knowledge of JavaScript.

However, this solution isn’t without problems. The following are the cons of this approach:

❑ Pages take longer to load; the load time increases with the size and complexity of the style sheet.

❑ Depending on the features you’re using, sometimes you can see portions of the page snap into
place.

❑ The script contains fixes for every CSS feature targeted by the developer, thus every fix is
applied every time the page is loaded.

❑ You’re at the mercy of the developer to fix bugs in the JavaScript.

❑ You’ll want to check Dean’s website at http://dean.edwards.name/IE7/caveats for addi-
tional things to consider with this script.

Some feel that promoting and using standard CSS is more important than performance, and accept those
trade-offs. Others set aside the idealism of promoting the CSS standards over performance, and insist on
the fastest, best performing documents. If you fall in this second crowd, then you’re going to want to
stick with the direct workarounds that I’ve presented throughout this book. If you fall in the first crowd,
or are simply curious as to how this works, read on.

2

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 2

How Dean Edwards’s “IE7” Came to Be
Dean Edwards’s “IE7” JavaScript isn’t version 7 of Microsoft’s Internet Explorer browser. In 2003,
Microsoft discontinued the stand-alone IE browser and announced the next version of IE would be
included exclusively in Windows Vista, then codenamed Longhorn, and not anticipated for release until
2007 or possibly as late as 2008. (As I write this, Windows Vista has, in fact, been released.) In 2004, after
the first edition of this book was published, Microsoft recanted its plan and announced the next version
of IE, IE 7, would be made for Windows XP (all variants, SP2 and later), Windows Server 2003, and
Windows Vista. Before Microsoft’s IE 7 actually came about, developers were chomping at the bit for
an improved IE, and since it didn’t look like there was going to be a new IE for a while, one developer
decided to take on the challenge of reconciling broken and nonexistent CSS functionality in IE 6. Who
was this brave, enterprising soul? None other than London, UK native, Dean Edwards. His answer to
this quandary, which he called “IE7” because it contains functionality and features he hoped would be in
the real IE 7, is an open source project focused on fixing and implementing portions of CSS 2, CSS 3, and
even some HTML 4. Commenting on the lack of CSS 2 support in IE 6 (see his website at http://dean
.edwards.name/ie7), Dean contends, “We need a level playing field.” The coming sections explain
what “IE7” is and how to deploy this solution in a website.

What Dean Edwards’s “IE7” Is
Dead Edwards’s “IE7” is a client-side solution written completely in JavaScript, a programming lan-
guage used to create scripts (or programs) that can be included directly in a web document. Because
“IE7” is developed using JavaScript, the end user accessing a website need not download, update, or
install anything. This makes “IE7” an attractive solution. Consequently, because of its ambitious goals
and impressive functionality, many have hailed “IE7” as the Holy Grail of website design.

If you’d like to learn more about JavaScript, you may be interested in Beginning JavaScript, Second
Edition, by Paul Wilton, also available from Wrox (ISBN: 0-7645-5587-1).

Getting the Source Code for
Dean Edwards’s “IE7”

You can find the “IE7” homepage at http://dean.edwards.name/ie7, and you can download “IE7”
from Source Forge at https://sourceforge.net/projects/ie7/. “IE7” is available under a Creative
Commons license, meaning that the source may be modified or redistributed, provided that the original
author is always credited. For more information on the Creative Commons license, visit http://
creativecommons.org/licenses/by/2.0/.

3

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 3

CSS Features Provided by
Dean Edwards’s “IE7”

The goal of Dean Edwards’s “IE7” is to provide working CSS 2 and some CSS 3 selector syntax, as well
as support for a small subset of properties. It focuses on providing the same features offered by Firefox,
Opera, and Safari, all of which have far more advanced CSS support than IE 6. At the time of this writ-
ing, the majority of web surfers use IE 6, but it has slowly become a thorn in the sides of developers who
want to take advantage of the features offered in CSS 2 and the emerging CSS 3 standards.

Here is a brief summary of some of the features provided by Dean Edwards’s “IE7”:

❑ Attribute, direct child, and adjacent sibling selectors

❑ Support for pseudo-classes: :active, :hover, :focus, :first-child, :last-child, :root,
and :empty

❑ Support for pseudo-elements: :before and :after as well as the content property

❑ Consistent box model rendering between IE 5, 5.5, and 6, per the W3C specifications

❑ Support for the min-width, max-width, and min-height properties

❑ Support for the background-attachment: fixed; declaration

❑ Support for the position: fixed; declaration

❑ PNG transparency

Dean Edwards doesn’t have immediate plans to integrate additional functionality, having stated that
“It’s important that “IE7” not be better than standard browsers.” However, he has expressed a willing-
ness to accept “bribes” for the implementation of additional features and a willingness to accept techni-
cal assistance to develop this solution. By “bribes” (his choice of words) he, of course, means, a modest
donation to his efforts. Because “IE7” is a continuously evolving solution, it will probably support many
more features by the time you read this. Dean’s plan for the future of his “IE7” include updating it to
match the features of the real IE 7 browser from Microsoft, which may include removing some features
and adding others. So as you utilize this project, you should keep this in mind.

In an upcoming Try It Out, I explain how to find out exactly what functionality is provided by “IE7.”

At the time of this writing, “IE7” is considered alpha software. Alpha software is in an early stage of
development. Generally, software deemed to be in an alpha state has been tested only by its developer
and may be subject to bugs and changes in its design. Beta software is a step above alpha; it has been
tested by a larger group, but may still contain bugs in its functionality. Its design, however, is typically
rooted and stable. Stable software is what you find most in use. It has been tested extensively; it may
have a few bugs, but it does what is expected by its developer in the majority of scenarios.

The beauty of “IE7” is that no special software is required for the user to take advantage of its features.
All the necessary code is included directly in the web page. The end user needs no plug-ins or compli-
cated downloads. Furthermore, after it is downloaded, the “IE7” files reside in the browser’s cache, so

4

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 4

other than the initial download of the required files, “IE7” does not affect download times. In order to
use IE 7, however, you’ll need to install an HTTP server, or access your pages from an existing HTTP
server. Installing an HTTP server is discussed in the next section.

Installing an HTTP Server
In Chapter 1, you saw an overview of how web pages are accessed and stored. This is accomplished
using something called an HTTP server. An HTTP server is software used to deliver a web page from the
server computer, for example, www.example.com, to the browser of the client computer. In order to use
“IE7,” you must have a web server installed on your computer to serve the files. This has to do with how
the files of the “IE7” package are structured, and makes implementation of this solution much more
painless. A myriad of different HTTP servers are available; I’ll talk you through setting up the following
HTTP server software:

❑ Apache for Windows (any version)

❑ Apache for Mac OS X

❑ Microsoft IIS on Windows XP Pro, Windows Vista, or Windows Server 2003 (IIS is only available
on non-home or basic versions of Windows, that is, the pricier Windows products)

Installing Apache for Windows
The first HTTP server I walk you through is Apache for Windows, which can be installed on any version
of Windows. Apache is a popular, open source HTTP server used to serve up millions of websites for
both individuals and businesses large and small. This example provides instructions for how to down-
load and install the Apache HTTP server for a Windows operating system.

Try It Out Installing the Apache HTTP Server in Windows
Example 16-1. To install the Apache web server, follow these steps:

1. Download Apache 2 from http://httpd.apache.org. More than one download package is
available; select the Win32 MSI Installer for Apache 2.

2. After the package is downloaded, double-click the file to initiate the installation wizard.

3. Read and accept the terms of the Apache license agreement, and then click Next.

4. If you desire, read the next pane on installing Apache for Windows, and then click Next.

5. The next screen (see Figure 16-1) is very important because it determines what you will type to
access your web pages through a browser. Under Network Domain, type localhost, and
under Server Name, type localhost again. Under Administrator’s Email Address, you may
include either your real e-mail address or simply type admin@localhost. After you have typed
this information, click Next.

5

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 5

Figure 16-1

6. In the next screen, select the Typical installation option (see Figure 16-2), and then click Next.

Figure 16-2

7. On the next screen, select the directory where Apache should be installed, or use the default
path (see Figure 16-3). After selecting the directory, click Next.

6

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 6

Figure 16-3

8. Finally, click the Install button to begin installing the Apache server.

9. After finishing the installation, Apache should be good to go. To see if the installation of Apache
was successful, open your browser and type http://localhost in the Address bar of your
favorite browser. If you see output like that shown in Figure 16-4, the installation of Apache was
successful!

Figure 16-4

How It Works
Apache is an HTTP server used to serve web pages. Installing an HTTP server, such as Apache, is the
first step toward hosting your own website, although for the purposes of this discussion you’re going to
use it to test web pages on your own computer and observe the functionality offered by the IE 7 pack-
age. After you’ve installed Apache, you’ll find your web documents at the location shown in Figure 16-5.
The path C:\Program Files\Apache Software Foundation\Apache2.2\htdocs, of course, will
depend on where you installed Apache. The file index.html is the document displayed in Figure 16-4.

7

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 7

Figure 16-5

The directory where your publicly accessible web files are stored is known as the root www directory, or
document root.

Caution: If your computer does not have a firewall (software that prevents outside
access to your computer), the documents appearing in the root www directory may
be available to the world at large. Do not place documents in the root www directory
that you do not want the whole world to have access to. This applies to all of the
HTTP server software discussed in this chapter. Conversely, if you want the docu-
ments to be accessible to the world at large, additional configuration may be
required, but is outside the scope of this book.

8

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 8

You can learn more about Apache in Beginning PHP5, Apache, MySQL Web Development, by Elizabeth
Naramore, et al. (Wrox, 2005).

Apache for Mac OS X
Apache comes bundled with every copy of Mac OS X; all you need to do is turn it on. To turn on Apache
for Mac OS X, go to System Preferences, click Sharing, and then check the Personal Web Sharing box,
which is shown in Figure 16-6.

Figure 16-6

Once Apache is activated, you just follow the instructions at the bottom of the dialog to access your com-
puter’s website. Mine is shown as http://192.168.1.100/~richy/; yours will differ depending on
your computer’s IP address, and your Mac OS X username. Once you load the URL, you should see a
page like the one shown in Figure 16-7.

The documents are stored in the “Sites” folder, which is found in your user folder. For example, mine is
located at /Users/richy/Sites.

9

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 9

Figure 16-7

IIS in Windows
IIS stands for Internet Information Services and is Microsoft’s HTTP server software. Unfortunately, IIS is
included only in Professional versions of Windows XP and Windows Vista, and of course is included in
Windows Server 2003. That means IIS is not available for Windows XP Home, or Home Basic, or Home
Premium versions of Windows Vista. To install IIS, go to Start➪Control Panel, and then click Add or Remove
Programs. Once the Add or Remove Programs dialog opens, click the Add/Remove Windows Components
button on the left side of the dialog; you should see something like what appears in Figure 16-8.

10

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 10

Figure 16-8

With your Windows install CD-ROM inserted in your CD- or DVD-ROM drive, click Next to begin
installing IIS. Once IIS is installed, your web documents are stored at C:\Inetpub\wwwroot, so if
you create the document index.html at C:\Inetpub\wwwroot\index.html, you can type http://
localhost/index.html to access that file. You can simply delete the other files in that directory, if you
choose; they are not essential to running IIS.

Installing Dean Edwards’s “IE7”
After you have installed an HTTP server, the following Try It Out walks you through the process of
extracting the files contained in the “IE7” zip archive. It also instructs you on how to install those files to
the root directory of your HTTP server (or, in other words, the directory from which the documents of
your website are served using the HTTP server you just installed).

Try It Out Installing Dean Edwards’s “IE7”
Example 16-2. To extract the files of “IE7,” follow these steps:

1. Download “IE7” from https://sourceforge.net/project/showfiles.php?group
_id=109983.

11

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 11

2. For Windows XP, open the zip archive using Windows Explorer. You do this by double-clicking
the archive file. If your operating system does not natively support zip archive extraction, you
may obtain third-party software from www.download.com by supplying the search term zip to
the download.com search box in conjunction with your operating system (use the advanced
search option to select a specific operating system). Several third-party software solutions are
available free of charge.

On Mac OS X, you can simply double-click the zip archive to unzip it; the unzipped folder is
created in the same folder the zip archive appears in. If you’re using Mac OS X, skip to step 9.

3. In Windows XP, click the Extract All Files link in the left pane of the window under Folder
Tasks, as shown in Figure 16-9.

Figure 16-9

4. This opens the native Windows XP zip archive extraction wizard. If you installed IIS, skip to
step 7.

5. Select the directory to which you wish to save the extracted files. For these files to be served
by Apache on Windows through the http://localhost URL, they must be stored in the root
www directory. As you saw earlier in this chapter, by default, Apache creates an htdocs direc-
tory for this purpose. Therefore, the files must be extracted to C:\Program Files\Apache
Software Foundation\Apache2.2\htdocs. Update the file path accordingly in the Extraction
Wizard dialog if you chose to install Apache to a different location. This window is shown in
Figure 16-10.

6. Rename the “IE7” directory located at C:\Program Files\Apache Software Foundation\
Apache2.2\htdocs to “ie7” (all lowercase letters), and skip ahead to step 10.

12

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 12

Figure 16-10

7. If you installed IIS, the “IE7” archive must be extracted to the IIS root www directory so that
the “IE7” files can be accessed from the http://localhost URL. To do this, enter the path
C:\Inetpub\wwwroot beneath the input box labeled “Files will be extracted to this directory;”
the Extraction Wizard dialog should look something like the one shown in Figure 16-11.

Figure 16-11

8. Rename the “IE7” directory located at C:\Inetpub\wwwroot to “ie7,” and skip ahead to step 10.

13

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 13

9. If you’re using Apache on Mac OS X, copy the extracted “IE7” directory to your Sites folder,
and rename it “ie7.”

10. Type http://localhost/ie7/test.html if you’re using Apache for Windows or IIS, or
your personal website URL if you’re using Mac OS X, which will look something like http://
192.196.1.100/~richy/ie7/test.html, but with your IP address and your username
instead of mine.

Of course, no matter what operating system you installed your HTTP server software on, you
must load the “IE7” test page up in IE 6 on Windows to see if installing Dean Edwards’s “IE7”
worked. If you installed Apache on Mac OS X, this is as simple as typing the address in your
Windows virtual machine, or in the address bar of IE 6 running on a PC on the same network as
your Mac. If you see a page like that in Figure 16-12, you are successful.

Figure 16-12

14

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 14

How It Works
The IE 7 solution works most painlessly if the files are installed to the root directory of your HTTP
server. The files arrive in a special compressed zip format. This reduces the size of the files so they can
be downloaded in less time or stored on a hard drive using less space. Windows XP and Mac OS X have
built-in zip archive extraction utilities capable of reading this special format. Additionally, several soft-
ware solutions are available at www.download.com if your operating system does not support zip
archive extraction.

Now that you have “IE7” installed, in the next section, you try it out.

Applying Dean Edwards’s “IE7”
Now that you have the script installed, in this section I describe how to include Dean Edwards’s “IE7”
in your pages. “IE7” is designed to target only IE 6 and older versions. Because the “IE7” JavaScript is
written to take advantage of proprietary functionality found in IE 6, IE 5.5, and IE 5, the script must be
provided only to those versions of Internet Explorer. To accomplish this, the “IE7” script is included in
a document via conditional HTML comments, a Microsoft proprietary feature that you’ve seen in previ-
ous chapters, such as Chapter 7, where I described how to get around IE 6’s lack of support for the min-
width property. Assuming you installed “IE7” correctly, and your HTTP server is functioning properly,
you need only add the following code in between the <head> and </head> tags in your (X)HTML code.

<!-- compliance patch for microsoft browsers -->
<!--[if lt IE 7]>

<script src=’/ie7/ie7-standard-p.js’ type=’text/javascript’></script>
<![endif]-->

And that’s it! All you have to do when you want to include the “IE7” JavaScript within a web page is to
include the preceding code between the <head> and </head> tags of your (X)HTML document.

In the following Try It Out, you apply Dean Edwards’s “IE7” JavaScript to Example 3-4 from Chapter 3,
which featured direct child selectors that didn’t work in IE 6. In the following example, you see how to
bridge the compatibility gap for IE 6 and make the direct child selectors work.

Try It Out Trying Out Dean Edwards’s “IE7”
Example 16-3. To test Dean Edwards’s “IE7” with a page of your own, follow these steps.

1. Modify Example_3-4.html as you see here. Be sure to modify the reference to Example_3-4
.css to Example_16-3.css

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=’http://www.w3.org/1999/xhtml’ xml:lang=’en’>
<head>

<title>Direct Child Selectors</title>

15

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 15

<link rel=’stylesheet’ type=’text/css’ href=’Example_16-3.css’ />
<!-- compliance patch for microsoft browsers -->
<!--[if lt IE 7]>

<script src=’/ie7/ie7-standard-p.js’ type=’text/javascript’></script>
<![endif]-->

</head>
<body>

<h1><ins>Direct Child</ins> Descendant Selectors</h1>
<p>

<ins>Direct Child</ins> Descendant selectors apply styles
based on <ins>parent/child</ins> ancestral relationships.
The first <ins>direct child</ins> descendant example I
present applies style to the
 element named code,
which is a descendant <ins>child</ins> of
<p> elements.
To do this, the selector p <ins>></ins>
span.code is used.

</p>
<p>

Using CSS, styles can be applied to any number of documents. Since
this is the case, there may be
elements with a class name of code in several documents, but
have different styles applied depending on the context it appears,
which is the exact situation the inventors of the descendant
<ins>child</ins> selector had in mind when it was conceived.

</p>
<p class=’note’>

The note text is given different styles. To do this another
descendant <ins>direct child</ins>
selector is used, this time the selector is
p.note <ins>></ins> span.code

</p>
</body>

</html>

2. Save the modified HTML file as Example_16-3.html. You should create this file in your www
root folder so that it can be accessed from http://localhost/Example_16-3.html.

3. Copy and rename Example_3-4.css to Example_16-3.css. It should have the same CSS as
found in the original Example 3-4 from Chapter 3. This file should also be in your root www
folder so that it can be accessed from http://localhost/Example_16-3.css.

Before the “IE7” JavaScript was applied, you get what you see in Figure 16-13.

16

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 16

Figure 16-13

After the “IE7” JavaScript is applied, you get the results that you see in Figure 16-14.

Figure 16-14

17

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 17

How It Works
In Figure 16-14, you see that the direct child selectors are now working in IE 6. With the help of Dean
Edwards’s handy dandy “IE7” JavaScript, you get the illusion that IE 6 supports CSS that it actually
doesn’t support officially. That’s because, behind the scenes, “IE7” is reading all of the style sheets in the
document and looking for bits that IE 6 doesn’t understand, and dynamically translates these into bits
that it does understand at document load time.

Summary
CSS designs go far beyond what HTML alone is capable of. In this chapter, you’ve seen that CSS can
often be used to overcome differences in how browsers render web pages. In this chapter, you’ve learned
the following:

❑ How to install an HTTP server to serve and test web pages on your own computer.

❑ What the “IE7” package is and how to deploy this solution in a web page.

18

Chapter 16: Using Dean Edwards’s “IE7”

bc_096970 ch16.qxp 4/17/07 2:48 PM Page 18

	Beginning CSS: Cascading Style Sheets for Web Design, Second Edition
	About the Author
	Credits
	Contents
	Acknowledgments
	Introduction
	What’s New in the Second Edition
	Whom Is This Book For?
	What Does This Book Cover?
	How This Book Is Structured
	What Do You Need to Use This Book?
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: The Basics
	Chapter 1: Introducing Cascading Style Sheets
	Who Creates and Maintains CSS?
	How the Internet Works
	How CSS Came to Be
	Browsers
	Writing CSS
	Your First CSS-Enabled Document
	Advantages of Using CSS
	Summary

	Chapter 2: The Essentials
	CSS Rules
	Selectors
	Declarations
	Grouping Selectors
	CSS Comments
	Values
	Including CSS in a Document
	Summary
	Exercises

	Chapter 3: Selectors
	Class and ID Selectors
	The Universal Selector
	Descendant Selectors
	Direct Child Selectors
	Next Sibling Selector
	Attribute Selectors
	Pseudo-Elements :first-letter and :first-line
	Pseudo-Classes
	Summary
	Exercises

	Chapter 4: The Cascade and Inheritance
	The Cascade
	Inheritance
	Summary
	Exercises

	Part II: Properties
	Chapter 5: Text Manipulation
	The letter-spacing Property
	The word-spacing Property
	Indenting Paragraph Text Using text-indent
	Aligning Text with the text-align Property
	The text-decoration Property
	The text-transform Property
	The white-space Property
	Summary
	Exercises

	Chapter 6: Fonts
	Specifying Fonts with the font-family Property
	The font-style Property
	The font-variant Property
	The font-weight Property
	The font-size Property
	The font Shorthand Property
	Summary
	Exercises

	Chapter 7: The Box Model
	Overview
	Margin
	Borders
	Padding
	Setting Dimensions
	Overflowing Content
	Summary
	Exercises

	Chapter 8: CSS Buoyancy: Floating and Vertical Alignment
	The float Property
	The clear Property
	Float Bugs in IE 6
	The vertical-align Property
	Summary
	Exercises

	Chapter 9: List Properties
	The list-style-type Property
	The list-style-image Property
	The list-style-position Property
	The list-style shorthand Property
	Summary
	Exercises

	Chapter 10: Backgrounds
	The background-color Property
	The background-image Property
	The background-repeat Property
	The background-position Property
	The background-attachment Property
	The background shorthand Property
	Summary
	Exercises

	Chapter 11: Positioning
	Introduction to Positioning
	The z-axis and the z-index Property
	Other Ways to Apply Positioning
	Summary
	Exercises

	Chapter 12: Tables
	Optional Table Elements
	Table Captions and the caption-side Property
	Table Columns
	Controlling Table Width with the table-layout Property
	Removing Cell Spacing with the border-collapse Property
	The border-spacing Property
	Summary
	Exercises

	Part III: Advanced CSS and Alternative Media
	Chapter 13: Styling for Print
	Applying Styles Based on Media
	The @media Rule
	Controlling Page Breaks
	Summary
	Exercises

	Chapter 14: XML
	Crash Course in XML
	Creating an XML Schema
	The display Property
	Other Display Values
	Summary
	Exercises

	Chapter 15: The Cursor Property
	Cursor Compatibility
	Custom Cursors
	Additional CSS Resources
	Beginning CSS, Second Edition Online
	Summary
	Exercises

	Appendix A: Answers to Exercises
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15

	Appendix B: CSS Reference
	Reference Conventions
	Selectors
	Pseudo-Classes
	Pseudo-Elements
	Color Properties
	Font Properties
	Background Properties
	Text Properties
	Box Model Properties
	Visual Effects
	Positioning
	Table Properties
	User Interface
	Generated Content, Automatic Numbering, and Lists
	Paged Media
	Microsoft Proprietary Extensions
	Gecko Proprietary Extensions
	Webkit (Safari) Proprietary Extensions

	Appendix C: CSS Colors
	Colors Sorted Alphabetically
	Colors Sorted by Color
	User-Interface Color Keywords

	Appendix D: Browser Rendering Modes
	Index
	Bonus Chapter: Using Dean Edwards’s “IE7”
	Approaching CSS Bugs in IE
	How Dean Edwards’s “IE7” Came to Be
	What Dean Edwards’s “IE7” Is
	Getting the Source Code for Dean Edwards’s “IE7”
	CSS Features Provided by Dean Edwards’s “IE7”
	Installing an HTTP Server
	Installing Dean Edwards’s “IE7”
	Applying Dean Edwards’s “IE7”
	Summary

