

Beginning

CSS

Cascading Style Sheets for Web Design

Second Edition

Richard York

1807
} WWILEY |4
512007 2

>

Wiley Publishing, Inc.

nnnnnnnnnnnn

Beginning

CSS

Second Edition

Beginning

CSS

Cascading Style Sheets for Web Design

Second Edition

Richard York

1807
} WWILEY |4
512007 2

>

Wiley Publishing, Inc.

nnnnnnnnnnnn

Beginning CSS: Cascading Style Sheets
for Web Design, Second Edition

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-09697-0

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data
York, Richard, 1978-
Beginning CSS : cascading style sheets for Web design / Richard York. — 2nd ed.
p- cm.
Includes index.
ISBN 978-0-470-09697-0 (paper/website)
1. Web sites—Design. 2. Cascading style sheets. I. Title.
TK5105.888.Y67 2007
006.7—dc22
2007008853

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are

trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respec-

tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

To my own cousin Ryan Wood

In the words of Ryan’s favorite comedian, Dave Chappelle,
“I'm rich, bitch!”

Rest in peace, brother. We love you and we miss you.

About the Author

Richard York is a web application developer for Trilithic, Inc., a company specializing in test equipment
for the telecommunications industry. He wrote his first book, Beginning CSS: Cascading Style Sheets for
Web Design (Wrox Press), in 2004.

Richard began his web development career taking courses at Indiana University—Purdue University
Indianapolis. Since college, he has continued a self-imposed curriculum, mastering various technologies
used in web development including HTML/XHTML, CSS, JavaScript, PHP, and MySQL. An avid sup-
porter of open source software, he has written an open source webmail application for PHP PEAR and is
currently working on an open source PHP library and framework called Hierophant, which he hopes to
release in 2007.

Richard maintains a personal website at http: / /www.richard-york.com where you can learn more
about his professional and personal interests.

Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian MacDonald

Technical Editor
Alexei Gorkov

Technical Reviewers
Robert Searing
Marybeth Fullmer

Copy Editor
Mildred Sanchez

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Joseph B. Wikert

Credits

Project Coordinator
Heather Kolter

Graphics and Production Specialists
Carrie A. Foster

Denny Hager

Joyce Haughey

Alicia B. South

Ronald Terry

Quality Control Technician
John Greenough

Proofreader
Sossity R. Smith

Indexer
Aptara

Anniversary Logo Design
Richard Pacifico

Contents

Acknowledgments XV
Introduction Xvii

Part I: The Basics

Chapter 1: Introducing Cascading Style Sheets 3
Who Creates and Maintains CSS? 4
How the Internet Works 5
How CSS Came to Be 6
Browsers 8

Internet Explorer 8
The Gecko Browsers: Mozilla Firefox, Netscape, Camino 12
Safari 13
Opera 13
Writing CSS 14
Your First CSS-Enabled Document 15
Advantages of Using CSS 21
Summary 22

Chapter 2: The Essentials 25
CSS Rules 25
Selectors 26
Declarations 27
Grouping Selectors 28
CSS Comments 29
Values 31

Keywords 31
Strings 34
Length and Measurement 36
Numbers 45
The URI 51
Including CSS in a Document 52
Including an Embedded Style Sheet 53

Linking to External Style Sheets 54

Contents

Importing Style Sheets 56
Inline Styles 56
Summary 57
Exercises 58
Chapter 3: Selectors 59
Class and ID Selectors 60
Class Selectors 60

ID Selectors 63
The Universal Selector 68
Descendant Selectors 71
Direct Child Selectors 75
Next Sibling Selector 79
Attribute Selectors 82
Selection Based on the Value of an Attribute 83
Attribute Substring Selectors 87
Pseudo-Elements :first-letter and :first-line 93
Pseudo-Classes 97
Dynamic Pseudo-Classes 97
The first-child Structural Pseudo-Class 102
Summary 106
Exercises 106
Chapter 4: The Cascade and Inheritance 109
The Cascade 109
Calculating the Specificity of a Selector 112
limportant Rules 118
Inheritance 121
Summary 125
Exercises 126

Part II: Properties

Chapter 5: Text Manipulation 131
The letter-spacing Property 132
The word-spacing Property 137
Indenting Paragraph Text Using text-indent 141
Aligning Text with the text-align Property 147
The text-decoration Property 150

Contents

The text-transform Property 155
The white-space Property 158
Summary 164
Exercises 164
Chapter 6: Fonts 167
Specifying Fonts with the font-family Property 167
Font Families 169
Generic Font Families 171
The font-style Property 175
The font-variant Property 181
The font-weight Property 183
The font-size Property 185
Absolute Font Sizes 185
Relative Font Sizes 187
Percentage Font Sizes 189
The font Shorthand Property 194
The font Properties 194
System Fonts 200
Summary 203
Exercises 203
Chapter 7: The Box Model 205
Overview 205
Margin 208
Margin Property with Four Values 209
Margin Property with Three Values 211
Margin Property with Two Values 213
Margin Property with One Value 214
Margin Collapsing 216
Horizontally Aligning Elements with the Margin Property 220
Borders 230
border-width 230
border-style 233
border-color 236
Border Shorthand Properties 236
Padding 242
Setting Dimensions 244
width 245
height 247

Xi

Contents

Auto Values for width and height 249
Percentage Measurements 255
Quirks Mode width and height in Internet Explorer 256
Minimum and Maximum Dimensions 259
Overflowing Content 271
CSS 3 overflow-x and overflow-y 273
Summary 273
Exercises 274
Chapter 8: CSS Buoyancy: Floating and Vertical Alignment 277
The float Property 277
Floating Box Model 282
The clear Property 293
Float Bugs in IE 6 298
The Peek-A-Boo Bug 298
The Guillotine Bug 300
The Three-Pixel Jog 303
The Double-Margin Bug 305
The vertical-align Property 306
Subscript and Superscript Text 307
The top, middle, and bottom Keywords 308
The text-top and text-bottom Keywords 310
Percentage and Length Value 311
Vertically Aligning the Contents of Table Cells 312
Summary 318
Exercises 319
Chapter 9: List Properties 321
The list-style-type Property 321
Styling Unordered Lists 322
Styling Ordered Lists 324
The list-style-image Property 330
The list-style-position Property 331
The list-style shorthand Property 333
Summary 337
Exercises 337
Chapter 10: Backgrounds 339
The background-color Property 339
The background-image Property 343

Xii

Contents

The background-repeat Property 346
The background-position Property 350
Mixing Different Kinds of Position Values 352
Tiling and Position 354
The background-attachment Property 360
The background shorthand Property 365
Summary 369
Exercises 370
Chapter 11.: Positioning 371
Introduction to Positioning 372
Absolute Positioning 372
Relative Positioning 381
Fixed Positioning 389
The z-axis and the z-index Property 428
The z-index Property with an Integer Value 430
Layering Nested Elements 433
The IE 6/IE 7 z-index Bug 434
Other Ways to Apply Positioning 441
Horizontally and Vertically Aligning Positioned Content 441
Multicolumn Layout 444
Summary 452
Exercises 452
Chapter 12: Tables 455
Optional Table Elements 455
Table Captions and the caption-side Property 457
Table Columns 459
Controlling Table Width with the table-layout Property 469
Removing Cell Spacing with the border-collapse Property 478
The border-spacing Property 479
Summary 484
Exercises 484

Part lll: Advanced CSS and Alternative Media

Chapter 13: Styling for Print 487
Applying Styles Based on Media 487
The @media Rule 491

Xiii

Contents

Controlling Page Breaks 497
Summary 500
Exercises 500
Chapter 14: XML 501
Crash Course in XML 502
Creating an XML Schema 505
The XML Declaration 510

The display Property 514
Styling Inline Elements with display: inline 515
Styling Block Elements with display: block 516
Styling List Items with display: list-item 517
Table Display Values 523
Other Display Values 534
Summary 535
Exercises 536
Chapter 15: The Cursor Property 537
Cursor Compatibility 538
Custom Cursors 540
Additional CSS Resources 542
Beginning CSS, Second Edition Online 542
Summary 542
Exercises 543
Appendix A: Answers to Exercises 545
Appendix B: CSS Reference 563
Appendix C: CSS Colors 593
Appendix D: Browser Rendering Modes 607
Index 611

Xiv

Acknowledgments

As I'wrote this book, so much has happened. Through the course of about 10 months, many people have
been instrumental in making this happen, either directly or indirectly. I owe my success to all of you.

I'd like to thank my boss at Trilithic, Karalee Slayton. I appreciate all the encouragement, understanding,
and help you’ve given me along the way. And I have just one more thing to say, shhhhhhhhht!

I'd like to thank Marybeth Fulmer, my colleague and friend. Thanks for always being willing to listen
and help.

I want to thank again, Jim Minatel from Wiley, for giving me the opportunity to write for Wrox again.
Thanks for listening to all my wild ideas, and for being willing to take the risks on all the new things
we’ve done with this book.

A great big thanks to Brian MacDonald, my development editor. I appreciate your patience and under-
standing, and you’ve been truly great to work with. This book owes much to your meticulous attention
to every detail.

I'd also like to thank my tech editor, Alexei Gorkov. Your incredible attention to detail has been a
tremendous asset on this project.

I want to thank my friends and family, who have been very supportive through some very difficult
times: my aunt, Brenda; my uncle, Johnny; my cousins, Amanda, Kimberly, and Amy. Be strong, but
don’t be afraid to talk about your son, your brother, and my cousin, Ryan. Let’s always keep in mind the
good times, and the good things that happened, and not dwell on the bad. We can’t change what hap-
pened, but we can keep his memory alive. Here’s to you. Here’s to me...

I want to thank Richelle Brown. You are a truly awesomely good friend. As we enter the year of our
Paul, 5AP, I'm very proud of all of your accomplishments as of late. Egg-cellent! Keep your nose up.
Let’s find another Paul McCartney show so we can reset the Paul clock.

Thanks to my parents, John and Tammy. Thanks for your help and support. I love you.

And finally, I want to thank my best friend, Lisa Ratliff. 'm very sorry that I haven’t been there for you.
I should have been. There are so many things that I should have said and done, but didn’t. I regret that
we grew apart. Thanks for listening and thanks for understanding. Despite our ups and downs, you
should know that I will always be here for you, and I will always love you. Snotface.

Introduction

Cascading style sheets (CSS) are the modern standard for website presentation. When combined with a
structural markup language such as HTML, XHTML, or XML (though not limited to these), cascading
style sheets provide Internet browsers with the information that enables them to present all the visual
aspects of a web document. Cascading style sheets apply things such as borders, spacing between para-
graphs, headings or images, control of font faces or font colors, background colors and images, textual
effects such as underlined or strike-through text, layering, positioning, and a number of other presenta-
tional effects. CSS controls the presentational aspects of a web page’s design, whereas HTML, XHTML,
or XML controls the structure of a web page, which means little more than determining that certain text
is a heading, other text is a paragraph, still other text is a list of hyperlinks, and so on. CSS provides
enhanced and precise visual rendering; markup languages such as HTML provide meaning and structure.

Beginning CSS: Cascading Style Sheets for Web Design, Second Edition covers all the details required to com-
bine CSS with HTML, XHTML, or XML to create rich, aesthetically powerful designs. Throughout the
book, I focus on combining CSS with XHTML specifically because XHTML is the standard hailed by
Internet standards bodies as the successor to HTML and the present and future of website design. CSS
and XHTML allow a web document to be presented with less code, resulting in a significantly smaller
file size and greatly increased ease of maintenance. CSS also enables the presentation of a web document
to be centralized, which allows for the look and feel of an entire website to be written and centralized in
one or a few simple documents, which makes updating a website a breeze. With only a few simple edits
to a single document, the look and feel of an entire website can be completely changed.

By using modern standards like CSS and XHTML, you can drastically reduce the cost of building and
maintaining a website when compared to legacy HTML-only pages. You can also greatly reduce the
amount of physical bandwidth and hard disk space required, resulting in immediate long-term benefits
for any website.

In this book, I also discuss how to style XML documents with CSS— XML being a more advanced
markup language with multipurpose applications. XML will play an increasingly larger role in the pro-
duction of XHTML documents in the future.

What'’s New in the Second Edition

This second edition of Beginning CSS features a near-complete overhaul of the content from the first edi-
tion. I listened to what my readers had to say about the first edition and took that feedback to create the
most comprehensive introduction on CSS available on the market. Throughout this book, you see CSS
broken down into simple examples that focus on a single concept at a time. This allows you to better
understand how and why something works, since you aren’t presented with a lot of irrelevant code, and
you can better see the bits and pieces that come together that make something work. While these exam-
ples may not be particularly pretty, they are extremely valuable learning tools that will help you master
cascading style sheets.

Introduction

To enhance the learning experience, I've presented most of the source code examples in syntax-colored
code, a special feature in this book. Syntax coloring is a feature that you commonly see in fancy develop-
ment software, such as Zend Studio (used to develop PHP), or Microsoft’s Visual Studio (used to
develop ASP, C#, and so on), and other software used by professional programmers every day. Syntax
coloring is used in these software suites to make programming easier and more intuitive, and I think
that it offers tremendous benefits in teaching as well. It allows you to see what the different bits and
pieces are in source code, since each of the different bits and pieces has a different coloring to identify

its purpose. It helps you to distinguish the building blocks of code more easily, and if you use similar
development software to write your CSS and HTML documents, you'll also find that you make fewer
mistakes and typos, since syntax coloring also helps you to write code that is more bug free.

I've also added annotations to many of the source code examples to highlight important, not-to-be-
forgotten bits of information, and to visually point out concepts that are discussed in the surrounding text.

This edition also features every screenshot from a browser in color, a first for Wrox. Presenting the
browser screenshots in color makes it easier for you to compare your results with what you see in the
book.

This book also approaches CSS development from a browser-neutral point of view, and provides all the
information that you need to get a good healthy start on professional cross-browser, cross-platform web-
site design with IE 6, IE 7, Firefox 2, Opera 9, and Safari 2, which will allow you to reach over 99 percent
of the web browsing public.

You also see comprehensive coverage of bugs, and workarounds for the IE 6 and IE 7 web browsers.
Long a thorn in the side of CSS developers, making CSS work in IE 6 can be quite a chore without
detailed knowledge of its quirks and shortcomings. I have covered throughout this book many of the
hacks and nonstandard workarounds that you may need to develop compatible CSS content in IE 6. IE 7
features many great improvements to CSS support, and though they are much fewer than its predeces-
sor, you still need a few tricks to make your web page shine in Microsoft’s latest browser. I have covered
the workarounds that you'll need to make your pages work just as well in IE 7 as they do in all the other
popular browsers. In addition, you'll find the quick reference in Appendix B updated to reflect all of

IE 7’s new CSS support.

Along with better coverage of Internet Explorer, I've also greatly improved coverage of Mac OS X
browsers, Safari, Firefox, and Opera. You'll see that Mac browsers are equally represented among their
Windows brethren.

I'had so much new content that I've even written an additional chapter that will appear online, on the
Wrox website, which you'll be able to download for free. In this chapter I discuss additional workarounds
for IE 6, and walk you through putting all of the knowledge that you've learned throughout the book
together in a real-life web page.
You can visit the book’s web page at:

http://www.wrox.com/go/beginning_css2e
The following sections tell you what Beginning CSS: Cascading Style Sheets for Web Design, Second Edition

covers, whom this book is intended for, how it is structured, what equipment you need to use it, where
you can go if you have a problem or question, and the conventions used in writing it.

xviii Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Introduction

Whom Is This Book For?

This book’s primary audience is anyone seeking to learn how to use cascading style sheets to present
web documents. Because cascading style sheets are used to control the presentational layout of a web
document, people from backgrounds in art, graphic design, or those who prepare print layouts for pub-
lishing will feel at home using CSS. Regardless of your background, CSS is a simple and powerful lan-
guage designed so that anyone can understand and use it.

To get the most out of this book, you need some experience with markup languages like HTML or
XHTML. If you are completely new to website design and development, I recommend you begin learn-
ing web programming with Jon Duckett’s Beginning Web Programming with HTML, XHTML, and CSS.
Jon Duckett’s book provides a complete overview of website development and design for the complete
beginner, whereas Beginning CSS: Cascading Style Sheets for Web Design, Second Edition focuses specifically
on the role of CSS in website design.

Throughout this book, I present all of the material you need to become comfortable with writing CSS
from scratch.

What Does This Book Cover?

This book covers portions of the CSS Level 1, 2, 2.1, and 3 specifications. These specifications are
created by an independent, not-for-profit Internet standards organization called the World Wide Web
Consortium (W3C) that plans and defines how Internet documents work. The majority of the book is
written using what is defined in the CSS Level 2.1 specification.

This book leads you through how to write CSS so that it is compatible with all of the most popular web
browsers. I have focused on all of the following popular browsers:
Q Microsoft Internet Explorer 6 for Windows

QO Windows Internet Explorer 7 for Windows XP Service Pack 2, Windows Server 2003, Windows
XP Professional 64 bit, and Windows Vista

Q Safari 2 for Mac OS X 10.4 (Tiger)
O Mouzilla Firefox 2 for Mac OS X, Windows, and Linux
Q Opera9 for Mac OS X, Windows, and Linux
The preceding browsers make up over 99 percent of the web browser market share at the time of this

writing. For your convenience, this book also includes an integrated CSS feature reference throughout
the book, as well as notes on browser compatibility. A CSS reference is also included in Appendix B.

How This Book Is Structured

This book is divided into three parts. The following explains each of these three parts in detail, and what
each chapter covers.

Xix

Introduction

Part I: The Basics

Throughout Chapters 1 through 4 you learn the founding principles of CSS-based web design.

Q

Chapter 1, “Introducing Cascading Style Sheets”: In this first chapter, I talk about what CSS is,
why it exists, who created it, where it is maintained, and how it has evolved. I also discuss some
of the basic differences among the various CSS specifications—CSS Level 1, CSS Level 2, CSS
Level 2.1, and CSS Level 3—and how these specifications define what CSS is. You also learn
more about each of the most popular browsers in use today, how to obtain them, and write your
first CSS-enabled document. I also show you how to install Internet Explorer 6 and Internet
Explorer 7 side-by-side on the same computer for testing.

Chapter 2, “The Essentials”: This chapter introduces the basics of CSS. Now that you have seen
an example CSS document, this chapter introduces CSS rules and how selectors and declarations
are combined to create rules. I demonstrate the various methods used to include CSS in a docu-
ment. I explain how keywords are used in CSS to create predefined behavior, and how strings
are used in CSS to refer to font names in a style sheet. I present the various units of measure-
ment that CSS supports. Finally, I talk about the different ways of specifying color.

Chapter 3, “Selectors”: Chapter 2 introduced the concept of selectors. In Chapter 3 I talk about
complex selectors, and how you apply style to a portion of a document based on its context
within the document or user-initiated events.

Chapter 4, “The Cascade and Inheritance”: In Chapter 4, you learn about how to override
styles, how precedence works in a style sheet, and how some styles can be considered more
important than others, concepts that come together to define the cascade in cascading style sheets.
You also learn how once you set some styles in a document, those styles can be inherited to
other parts of a document depending on the context in which they are applied.

Part Il: Properties

Throughout Chapters 5 through 12, you learn about properties that are used to manipulate the presenta-
tion of a document.

XX

Qa

Chapter 5, “Text Manipulation”: In Chapter 5, I present the various properties that CSS pro-
vides for text manipulation. These properties provide effects such as controlling the amount of
space between the letters of words, controlling the amount of space between the words of a
paragraph, controlling text alignment, underlining, overlining, or strike-through text. I also
show how to control the case of text by making text all lowercase, uppercase, or capitalized.

Chapter 6, “Fonts”: After you have seen the properties that CSS provides for text manipulation
in Chapter 5, Chapter 6 presents the CSS properties you can use to manipulate the presentation
of fonts. These effects include applying bold text, setting a font face, setting the font size, setting
an italic font, as well as learning to use a property that enables you to specify all CSS’s font
effects in one single property.

Chapter 7, “The Box Model”: Chapter 7 elaborates on a design concept fundamental to CSS
design: The Box Model. You learn how the box model plays an important role in determining
layout dimensions. Using the margin, border, padding, width, and height properties, you can
control how much space elements within a document occupy, how much space separates them,
whether there are borders around them, whether scroll bars should be included. I also discuss a

Introduction

CSS phenomenon known as margin collapsing, which is what happens when top or bottom
margins come into direct contact with other top or bottom margins in a web document.

Chapter 8, “CSS Buoyancy: Floating and Vertical Alignment”: In Chapter 8, I discuss £loat
and clear, two properties used to control the flow of layout in a web document and often used
to flow text beside images. I also discuss the vertical-align property, which is used to create
effects like subscript or superscript text, as well as to control vertical alignment in table cells.

Chapter 9, “List Properties”: In this chapter, I look at the properties CSS provides to control pre-
sentation of ordered and unordered lists. This discussion includes the options CSS provides for
predefined list markers, custom list markers, and the position of list markers.

Chapter 10, “Backgrounds”: In Chapter 10, I present the properties CSS provides to control
backgrounds in a web page. This includes properties that set a background color or background
image, as well as those that control the position of a background, the tiling of a background, and
whether a background remains fixed in place as a web page is scrolled or remains static. Finally,
the chapter shows you how to use a property that combines all these individual effects into a
single property.

Chapter 11, “Positioning”: I discuss four different types of positioning: static, relative, absolute,
and fixed. You use positioning primarily to layer portions of a document. I also describe some of
the practical uses for positioning, such as creating a multicolumn layout.

Chapter 12, “Tables”: In Chapter 12, I present the different properties that CSS provides for
styling (X)HTML tables. The properties presented in this chapter let you control the spacing
between the cells of a table, the placement of the table caption, and whether empty cells are ren-
dered. I also look in detail at the available tags and options that (XYHTML provides for structur-
ing tabular data.

Part IlI: Advanced CSS and Alternative Media

Throughout Chapters 13, 14, and 15 you learn about how to use CSS to make documents for printing,
and another kind of document altogether, XML.

a

Q

Chapter 13, “Styling for Print”: In this chapter, I discuss what steps to take to use CSS to pro-
vide alternative style sheets to create a printer-friendly version of a web document.

Chapter 14, “XML": In this chapter, I show how you can use CSS to style XML content. This
chapter focuses specifically on the CSS display property and how you use this property to
change the behavior of tags in an XML or HTML/XHTML document.

Chapter 15, “The Cursor Property”: In this chapter, I show you how you can change the user’s
mouse cursor using CSS, how you can customize the mouse cursor, and what browsers support
which cursor features.

Chapter 16, “Dean Edwards’s ‘IE7"”: In this chapter I talk about one alternative to many of the
hacks and workarounds that you need for IE6. I talk about how to install an HTTP server for your
website, and how to install and use Dean Edwards’s “IE7” JavaScript, which is a collection of IE6
hacks and workarounds designed to make “IE6” feature compatible with its successor. This chap-
ter is available online only, on the Wrox website at www.wrox. com/go/beginning_css2e.

Appendixes: Appendix A contains the answers to chapter exercises. Appendix B, “CSS
Reference,” provides a place for you to look up CSS features and browser compatibility on

XXi

Introduction

the fly. Appendix C, “CSS Colors,” provides a reference of CSS named colors. Appendix D,
“Browser Rendering Modes,” provides a reference for the browser rendering modes invoked
by the presence or absence of a Document Type Declaration (discussed in Chapter 7).

What Do You Need to Use This Book?

To make use of the examples in this book, you need the following:

0 Several Internet browsers to test your web pages

QO Text-editing software

Designing content for websites requires being able to reach more than one type of audience. Some of
your audience may be using different operating systems or different browsers other than those you have
installed on your computer. This book focuses on the most popular browsers available at the time of this
writing.

I discuss how to obtain and install each of these browsers in greater detail in Chapter 1. The examples in
this book also require that web page source code be composed using text-editing software. Chapter 1
also discusses a few different options for the text-editing software available on Windows or Macintosh
operating systems.

Conventions

To help you get the most from the text and keep track of what’s happening, I've used a number of con-
ventions throughout the book:

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q Thighlight important words when I introduce them.
0 Ishow keyboard strokes like this: Ctrl+A.

QO Ishow URLs and code within the text in a special monofont typeface, like this: persistence
.properties.

0 Ipresent code in the following two ways:

In code examples, I highlight new and important code with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

xXii

Introduction

Source Code

As you work through the examples in this book, you may choose either to type the code yourself or use
the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox.com/go/beginning_css2e. When you arrive at the site, simply click the
Download Code link on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-09697-0.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www . wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty piece
of code, we would be very grateful for your feedback. By sending in errata you may save another reader
hours of frustration; at the same time, you will be helping us provide even higher quality information.

To find the errata page for this book, go to www . wrox . com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox . com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these

steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

XXxiii

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P; but, in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works, as well as answers to many common questions specific to
P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXiv

Part |
The Basics

Chapter 1: Introducing Cascading Style Sheets
Chapter 2: The Essentials
Chapter 3: Selectors

Chapter 4: The Cascade and Inheritance

Introducing
Cascading Style Sheets

Cascading style sheets is a language intended to simplify website design and development. Put
simply, CSS handles the look and feel of a web page. With CSS, you can control the color of text, the
style of fonts, the spacing between paragraphs, how columns are sized and laid out, what back-
ground images or colors are used, as well as a variety of other visual effects.

CSS was created in language that is easy to learn and understand, but it provides powerful
control over the presentation of a document. Most commonly, CSS is combined with the markup
languages HTML or XHTML. These markup languages contain the actual text you see in a web
page — the hyperlinks, paragraphs, headings, lists, and tables—and are the glue of a web docu-
ment. They contain the web page’s data, as well as the CSS document that contains information
about what the web page should look like, and JavaScript, which is another language that pro-
vides dynamic and interactive functionality.

HTML and XHTML are very similar languages. In fact, for the majority of documents today, they
are pretty much identical, although XHTML has some strict requirements about the type of syntax
used. I discuss the differences between these two languages in detail in Chapter 2, and I also pro-
vide a few simple examples of what each language looks like and how CSS comes together with
the language to create a web page. In this chapter, however, I discuss the following:

Q The W3C, an organization that plans and makes recommendations for how the web
should function and evolve

0O How Internet documents work, where they come from, and how the browser displays
them

0 An abridged history of the Internet

U

Why CSS was a desperately needed solution
Q The advantages of using CSS

Part I: The Basics

The next section takes a look at the independent organization that makes recommendations about how
CSS, as well as a variety of other web-specific languages, should be used and implemented.

Who Creates and Maintains CSS?

Creating the underlying theory and planning how cascading style sheets should function and work in a
browser are tasks of an independent organization called the World Wide Web Consortium, or W3C. The
W3C is a group that makes recommendations about how the Internet works and how it should evolve. I
emphasize should, because the World Wide Web Consortium has no control over the implementation of
the standards that it defines. The W3C is comprised of member companies and organizations that come
together to create agreed-upon standards for how the web should function. Many prominent companies
and organizations are W3C members, including Microsoft, Adobe, The Mozilla Foundation, Apple,
Opera Software, and IBM. The W3C oversees the planning of several web languages including CSS,
HTML, XHTML, and XML, all of which are mentioned in this book.

CSS is maintained through a group of people within the W3C called the CSS Working Group. The CSS
Working Group creates documents called specifications. When a specification has been discussed and
officially ratified by W3C members, it becomes a recommendation. These ratified specifications are
called recommendations because the W3C has no control over the actual implementation of the language.
Independent companies and organizations create that software.

The specifications created by the W3C are not limited only to web browsers; in fact, the specifications
can be used in a variety of software, including word processor and spreadsheet applications, as well as
by different types of hardware devices, such as PDAs and cell phones. For that reason, the software
implementing a specification is referred to by the W3C as the user agent, which is a generic term that
encompasses all the different types of software that implement W3C specifications.

The W3C merely recommends that a language be implemented in a certain way to ensure that the lan-
guage does what is intended no matter which operating system, browser, or other type of software is
being used. The goal of this standardization is to enable someone using the Netscape browser, for
example, to have the same Internet experience as someone using Internet Explorer, and likewise, for
developers to have a common set of tools to accomplish the task of data presentation. Were it not for
web standards, developing documents for the web might require an entirely different document for a
given user agent. For example, Internet Explorer would require its own proprietary document format,
while Mozilla Firefox would require another. Common community standards provide website develop-
ers with the tools they need to reach an audience, regardless of the platform the audience is using.

As I write this, CSS comes in four different versions, each newer version building on the work of the last.
The first version is called CSS level 1, and became a W3C recommendation in 1996. The second version,
CSS level 2, became a W3C recommendation in 1998. The third version, CSS level 2.1, is currently a
working draft, downgraded from a candidate recommendation since I wrote the first edition of this
book in 2004. A candidate recommendation is the status the W3C applies to a specification when it feels

the specification is complete and ready to be implemented and tested. After the specification has been
implemented and tested by at least a few of the member companies, the candidate recommendation is
then more likely to become a full recommendation. A working draft is the status the W3C applies to an
ongoing work, which is subject to change. The fourth version of CSS is called CSS level 3, and many por-
tions of it are still in development. Although portions of CSS are officially subject to change by the W3C

Chapter 1: Introducing Cascading Style Sheets

standards body, I may discuss these features anyway if at least one browser maker has implemented the
feature in question. I preface any such discussion with the warning that these features are still under
development and could be subject to change.

This book discusses the portions of CSS available in browsers at the time of this writing — that includes
most of CSS 2 and CSS 2.1, and a little of CSS 3. Some portions of CSS 2.1 contradict CSS 2 and are not
yet implemented in any browser. Where appropriate throughout the book and before introducing a new
CSS feature, I reference the W3C specification in which that CSS feature is documented by including the
phrase Documented in CSS followed by the version number. Later in this chapter, I discuss the browsers
that you need to test and build CSS-enabled web documents.

You can find the W3C website at www.w3 . org. Go there to find documents that browser makers refer to
when they are looking to implement languages such as CSS into a browser or other software. Be advised,
these specifications lean heavily toward the technical side. They aren’t intended as documentation for
people who use CSS; rather, they are aimed at those who write programs that interpret CSS. Despite the
heavily technical nature of the W3C specification documents, many web developers refer to the W3C
documents as end-user documentation anyway, since it is the most complete resource.

Now that you know a little about who is responsible for planning and outlining the development of CSS,
the next section describes how a web document makes its way into your browser.

How the Internet Works

As you probably already know, the Internet is a complex network of computers. Most of what goes on
behind the scenes is of little interest to the person developing content for a website, but it is important to
understand some of the fundamentals of what happens when you type an Internet address into your
browser. Figure 1-1 shows a simple diagram of this process.

At the top of the diagram in Figure 1-1, you see a computer labeled server-side and a computer labeled
client-side. The diagram is by no means an exhaustive or complete picture of what happens when you
type in an Internet address, but it serves the purpose of illustrating the portions of the process that the
aspiring web designer needs to understand. The server-side computer houses the documents and data
of the website and is generally always running so that the website’s visitors can access the website at any
time of day. The client-side computer is, of course, your own computer.

The server-side computer contains HTTP server software that handles all the incoming requests for web
pages. When you type an Internet address into a browser, the browser sends out a request that travels
through a long network of computers that act as relays for that request until the address of the remote
(server-side) computer is found. After the request reaches the HTTP server, the HTTP server sees what it
is you are trying to find, searches for the page on the server’s hard drive, and responds to the request
you've made, sending the web page that you expect. That response travels back through another long
chain of computers until your computer is found. Your browser then opens the response and reads what
the HTTP server has sent back to it. If that server has sent an HTML document or another type of docu-
ment that your browser can interpret, it reads the source code of that document and processes it into a
displayable web page.

Part I: The Basics

(1. You type a www address into the browser.

(2. Browser contacts the HTTP server at that address.)

(3. HTTP server receives the request from the browser.)

(4. HTTP server looks up the web document.)
Client-side
/
Server-side <5. HTTP server sends the web document. >
(6. Your browser receives the document. >
< 7. Your browser processes the source code. >
(8. The browser displays the web page.)

Figure 1-1

This is where CSS enters the picture. If CSS is present in the document, the CSS describes what the
HTML page should look like to the browser. If the browser understands the CSS, it processes the web
page into something you can see and interact with. If the browser understands only some of the CSS, it
generally ignores what it doesn’t understand. If the browser doesn’t understand CSS at all, it usually
displays a plain-looking version of the HTML document.

How CSS Came to Be

During the mid-1990s, use of the Internet exploded. At that time, HTML was the only option for present-
ing a web page. As the Internet began to be used by more regular folks (as opposed to government, edu-
cational institutions, and researchers, as in the early days), users began demanding more control over
the presentation of HTML documents. A great quandary arose — clearly HTML alone was not good
enough to make a document presentable. In fact, not only was it not good enough, HTML alone simply
wasn't suited for the job. HTML did not have the functionality that professional publishing required and
had no way of making magazine- or newspaper-like presentations of an electronic document.

Chapter 1: Introducing Cascading Style Sheets

At the time, style sheets were not a new invention. In fact, style sheets were part of the plan from the
beginning of HTML in 1990. Unfortunately, however, no standardized method of implementing style
sheets was ever outlined, leaving this function up to the various browsers. In 1994, Tim Berners-Lee
founded the World Wide Web Consortium, and a few days later, Hikon Wium Lie published his first
draft of Cascading HTML Style Sheets. This draft was a proposal for how HTML documents could be
styled using simple declarations.

Of those that responded to Hékon’s draft of Cascading HTML Style Sheets was Bert Bos, who was work-
ing on a style sheet proposal of his own. The two joined forces and came up with cascading style sheets.
They dropped HTML from the title, realizing that CSS would be better as a general style sheet language,
applicable to more than one type of document. CSS caused some controversy at its inception because
part of the underlying fundamentals of the new style sheet language was that it created a balance between
the browser’s style sheet, the user’s style sheet, and the author’s style sheet. Some simply didn’t like the
idea that the user could have control over the presentation of a web document. Ultimately, however, the
Internet community accepted CSS.

Among CSS supporters was Microsoft, who pledged support for the new style sheet language in its
Internet Explorer web browser. Netscape, on the other hand, another popular web browser at the time,
remained skeptical about CSS and went forward with a style sheet language of its own called JavaScript
Style Sheets, or JSSS. Ultimately, Netscape’s style sheets were not successful. Eventually, because of a
series of bad decisions and setbacks on the part of Netscape as a whole and Netscape’s management,
Netscape ultimately began losing market share, and Microsoft’s Internet Explorer (IE) browser grew
more and more popular. At IE’s peak, it held 95 to 98 percent of the browser market share. Although IE
has since lost market share to the likes of Mozilla Firefox and Safari, at the time of this writing, IE is still
the dominant browser, most firms putting IE’s market share at 50 to 85 percent, depending on the web-
site’s audience. Mainstream sites will see upward of 85 percent, but technical websites may see around
50 percent. Your own website’s browser statistics will depend largely on the content of your site. One
such site to reference for statistics is http: / /www.upsdell.com/BrowserNews/stat . htm. However,
keep in mind the quote, “There are lies, damn lies —and statistics” — Disraeli (later made famous by
Mark Twain).

During the time that CSS was being planned, browsers began allowing HTML features that control pre-
sentation of a document into the browser. This change is the primary reason for much of the bloated and
chaotic source code in the majority of websites operating today on the Internet. Even though HTML was
never supposed to be a presentational language, it grew to become one. Unfortunately, by the time CSS
level 1 was made a full W3C recommendation in 1996, the seed had already been planted. Presentational
HTML had already taken root in mainstream website design and continues today.

However, all is not lost. Today, the most popular browsers have fantastic support for cascading style
sheets. Ironically, the browser exhibiting the least support is Microsoft’s Internet Explorer for Windows,
which still has plenty of CSS support to do away with most presentational HTML design. More ironic
still, among the browsers with the best CSS support is Netscape’s browser, and its open source offspring,
Mozilla Firefox. This may beg the question: If Microsoft was such an avid supporter of cascading style
sheets in the beginning, why is Microsoft’s browser the least standards-compliant today? The answer is
that Microsoft did indeed follow through with its promise for CSS support, and it was the most compre-
hensive and impressive implementation of CSS even up to the release of Internet Explorer 6 in 2001.
Even so, CSS implementation in Internet Explorer has declined since the release of Internet Explorer 5.
We can only speculate as to why Microsoft’s browser declined in its support for CSS.

Part I: The Basics

In the next section, I talk about the different types of browsers that you'll need to work through the
examples for this book.

Browsers

Because CSS is a standard web language, many browsers support it. Therefore, it stands to reason that
the aspiring web designer would want to harness that standardization to reach the largest audience pos-
sible, regardless of operating system or platform. In this section I provide an overview of each of these
browsers, and where you can look to obtain a new version of that browser. Together, the following
browsers combined comprise over 99 percent of the browser market share for the majority of websites
in operation today:

Q Internet Explorer 6 and 7 for Windows

O Mozilla Firefox for Windows, Mac, and Linux
QO Opera for Windows, Mac, and Linux

Q Safari for Mac OS X

In the next section, I discuss Internet Explorer 6 and 7 for Windows.

Internet Explorer

Internet Explorer is Microsoft’s flagship browser that comes preloaded with the Windows operating sys-
tem. The current stable version, as of this writing, is version 7.

Internet Explorer 7

Late in 2004, after the first edition of this book was published, Microsoft finally began work on a new
version of Internet Explorer. IE 7 includes stronger security, tabbed browsing, and other goodies for
users, and for developers —improvements to IE’s support for CSS!

IE 7 comes just over five years after the release of IE 6, which was released in 2001. IE 7 is a fantastic
improvement over IE 6, but it still doesn’t quite meet the level of CSS present in competing browsers
like Apple’s Safari browser, or Mozilla Firefox. Although it doesn’t exhibit the best CSS support, there is
hope that future versions of IE will make significant progress in this area. Internet Explorer developers,
and even Bill Gates, have publicly stated that Microsoft has returned to a more frequent release cycle for
Internet Explorer, and we can expect new versions of Internet Explorer every year for the foreseeable
future. Microsoft has even gone so far as to admit that it made a mistake by waiting too long to release a
new version of IE.

Even though IE 7 is finally here, it will be years still before it achieves sufficient market penetration that
web developers can officially dump support for IE 6. Because of IE 6’s deficiencies, many are chomping
at the bit for that time to come. In the meantime, we’ll have to continue to support it and work around
its shortcomings.

Chapter 1: Introducing Cascading Style Sheets

IE 7 is available for the following operating systems:

U 0 U U

Windows XP Service Pack 2
Windows XP Pro 64-bit Edition
Windows Server 2003
Windows Vista

You can obtain IE 7 from Microsoft’'s website at http: //www.microsoft.com/ie.

Internet Explorer 6

At the time of this writing Internet Explorer 6 is still the top dog with its browser market share between
50 and 85 percent, depending on the website’s audience (see my discussion of Internet Explorer’s market
share in the section titled “How CSS Came to Be” earlier in this chapter). If you don’t already have IE 6,
you can obtain it from http: //www.microsoft.com/windows/ie/ie6/default.mspx.

Installing Multiple Versions of Internet Explorer for Testing

At the time of this writing, you cannot install IE 7 alongside IE 6 on the same copy of Windows. For
development, you need a way to test IE 6 and IE 7 both, since you'll have visitors to your website on
both browsers. The following are a few ways to do this.

a

Use PC virtualization/emulation software such as Virtual PC (a product made by Microsoft),
which allows you to install and run different versions of Windows (or other operating systems,
such as Linux) from within Windows or Mac OS X. Essentially, you can load up a new instance
of Windows from your Windows desktop, and have that instance of Windows run in a window,
independently. For example, Figure 1-2 shows a screenshot of me running Windows XP and IE 6
from my Mac OS X desktop, using the open source software Q, which lets me install and run
Windows from within Mac OS X.

Another option is setting up two different physical computers, one with IE 6 installed, and the
other with IE 7.

If you're feeling particularly adventurous, you can set up two installations of Windows on the
same computer, although for this discussion, this method is a bit too advanced for me to ade-
quately cover here. If you’d like to learn more about installing Windows more than once on the
same computer, more information about that can be found at http: //www.microsoft.com/
windowsxp/using/setup/learnmore/multiboot .mspx.

Figure 1-2 shows two instances of Windows XP running in Parallels Desktop for Mac; one is running
IE 6, and the other is running IE 7.

Most people prefer to keep it simple, and have all of their development tools at their fingertips. That
makes the virtualization/emulation method the most attractive, in lieu of actually being able to install
IE 6 alongside IE 7. I discuss this method in further detail in the next section.

Part I: The Basics

Figure 1-2

Installing Windows Using PC Virtualization/Emulation Software

10

Today many companies make PC virtualization or emulation software, which allows you to run an
entire operating system from a window on your desktop in the manner illustrated in Figure 1-2. More or
less, it’s like having multiple computers all consolidated into one. You can boot up a virtual computer,
with all default settings so you can test your web pages. Here are some of the titles available.

Chapter 1: Introducing Cascading Style Sheets

0 VMWare, Player: Available for free from http: //www.vmware.com/products/player/ for
Windows and Linux.

Q Virtual PC: Made by Microsoft, available for $129 from http: //www.microsoft.com/windows/
virtualpc (the price does not include a license for running Windows in the Virtual PC).
Requires Windows or a PowerPC-based Mac.

Q Q (pictured in Figure 1-2): Available for free from http: //www.kberg.ch/q. If you're using
Mac OS X, Q is available as a universal application (it runs on both PowerPC-based and Intel-
based Macs).

Q Parallels: Available for $49.99 from http: //www.parallels.com for Windows, Mac (PowerPC
and Intel-based), and Linux.

The best software for installing Windows from another operating system is software that uses virtualiza-
tion. Without going into the technical details, software using virtualization runs much faster. The other,
slower, much slower, in fact, method is emulation. Parallels and VMWare use virtualization, whereas, at
the time of this writing, Microsoft’s Virtual PC and “Q” both use emulation. Your computer will also
need serious horsepower to run two operating systems at the same time; see each respective website for
the system requirements of each of the aforementioned solutions. In my experience, software like this
works best with at least 1GB of RAM and about a 2 GHz processor.

Without the ability to install and work with Windows virtually using software such as VMWare, your
last resort is to uninstall IE 7 every time you need to test in IE 6, which can throw a pretty big wrench in
the testing process. Currently, the virtual machine solution is the one officially sanctioned and recom-
mended by Microsoft for testing in multiple versions of Internet Explorer. The IE team has responded

to requests from web developers for the ability to install and run multiple versions of Internet Explorer
side-by-side, and have said they are looking at the problem, but have not yet publicly announced a solu-
tion or released software to remedy the problem.

Internet Explorer for PowerPC Mac 0S X

For PowerPC Macintosh users, I recommend not using or testing in IE for Mac. The capabilities and
bugs of IE for Windows and IE for Mac are very different. IE for the Macintosh has better support for
CSS (compared to IE 6), but it is an entirely different browser. The name may be the same, but the
browsers are very different. In fact, Microsoft has completely dropped support for IE for Mac, having
stopped development with a public announcement made in 2003, and having completely stopped sup-
port in 2005. It has less than a tenth of a percent of market share, if that much, and it does not run on
Apple’s Intel-based Macs.

For Mac users, I recommend Apple’s own Safari or a Gecko browser, such as Camino or Mozilla Firefox,
which I discuss further in the coming sections. If you don’t have Internet Explorer for Windows, you still
can work through most exercises and examples presented in this book, but if you are serious about web-
site design, you will need to find a way to test your websites in Internet Explorer on Windows, since it
has the majority of market share, and will enjoy that status far into the foreseeable future.

For news on what is transpiring in the world of Internet Explorer development, you might like to check

out the Internet Explorer Team’s blog at http: //blogs.msdn.com/ie. New IE features and news of
anything relating to Internet Explorer are announced on the IE Team blog.

11

Part I: The Basics

The Gecko Browsers: Mozilla Firefox, Netscape, Camino

12

Gecko was created in January 1998. At that time, Netscape announced that it was making its browser
free to its users and that its browser would be open source, meaning that its source code would be freely
available for modification and distribution. This led to the creation of Mozilla; at the time Mozilla was
the organization charged with developing and managing the Netscape code base. America Online later
purchased Netscape, and until July 2003 Mozilla remained a part of Netscape. In July 2003, the Mozilla
Foundation was created, making Mozilla an independent, not-for-profit corporation. When the Netscape
browser became open source, its rendering engine, the part of the browser software responsible for mak-
ing the source code of a web page into something you can see and interact with, was given the name
Gecko.

Gecko is the foundation that a whole suite of browsers relies on to do the behind-the-scenes work of ren-
dering web pages. Gecko is included in AOL for Mac OS X, Camino, Netscape 6, Netscape 7, Netscape 8,
Mozilla Suite, Mozilla Sea Monkey, and Mozilla Firefox.

Netscape’s browser market share has greatly diminished, whereas Mozilla Firefox continues to gain in
popularity, occupying the number-two spot at between 5 and 30% market share (again, depending on
the website’s audience). Netscape’s (and other Gecko browsers, for that matter) market share is charted
by most statistics at less than one percent.

The following table shows the relationship between other Gecko browsers and Mozilla Firefox. This
table illustrates the version of the underlying Gecko engine that each browser has in common with
Firefox. Each of these browsers can be expected to render a web page identically and have the same
capabilities in the area of CSS and document layout as the version of Firefox cited.

Other Gecko Browser Firefox

Netscape 8.1 Firefox 1.5
Netscape 8.0 Firefox 1.0
Netscape 7.2 Firefox 0.9
Camino 1.0 Firefox 1.5
SeaMonkey 1.0 (formerly Mozilla Suite) Firefox 1.5
Mozilla Suite 1.8 Firefox 1.0
Mozilla Suite 1.7 Firefox 0.9
Mozilla Suite 1.6 Firefox 0.8

Netscape 8.0 and 8.1 both feature the ability to switch between IE and Gecko for rendering a web page
from within the Netscape browser, so essentially it is both Internet Explorer and Gecko in the same
browser. The version of Internet Explorer in Netscape 8.0 and 8.1 is the same as the version of IE
installed on the system. Netscape uses Gecko by default, but may try to “automatically” select the best
rendering engine to use for a given website.

Chapter 1: Introducing Cascading Style Sheets

You can see that Firefox 0.9 and Mozilla Suite 1.7 can be expected to behave identically where CSS and
design layout is concerned.

Because gecko browsers share the same brain (and because of Firefox’s popularity), for the remainder of
this book, I cite only Firefox when referring to a Gecko browser.

Depending on which Gecko browser you happen to like, you can obtain Gecko browsers from the fol-
lowing places:

Q Mozilla Firefox for Windows, Mac, and Linux: Available from http: //www.mozilla.com/
firefox

0 Netscape for Windows: Available from http: //www.netscape.com/download

(]

Camino for Mac: Available from http: //www.caminobrowser.org/

0 SeaMonkey for Windows, Mac, and Linux: Available from http://www.mozilla.org/
projects/seamonkey/

Safari

The next browser that I discuss is Safari, which is based on Konqueror, an open source browser available
for Linux operating systems. The rendering engine used in the Safari and Konqueror web browsers is
called KHTML. While Konqueror and Safari both have KHTML in common, Safari is a fork of KHTML
(a fork means they shared the exact same source code at one point, but now each is developed indepen-
dently), and features found in Safari may not necessarily appear in Konqueror and vice versa. Despite
this, the two browsers render documents very similar to one another. Apple develops Safari, indepen-
dently of Konqueror, and is the browser included with Macintosh OS X operating systems. Before Safari,
Internet Explorer for Mac and Gecko had been dominant on the Mac.

For the purpose of this book, I note Safari compatibility when appropriate. Safari is available only for
Mac OS X and can be obtained from www.apple.com/safari. Konqueror is only available for Linux
(and any operating system in which KDE, the K Desktop Environment, runs) at the time of this writing;
it can be found at www . konqueror. org.

Opera

Opera is a lesser-known, Norwegian-based company. Opera users are fewer, accounting for only a few per-
cent market share by most statistical estimates. Again, that figure can be much higher or lower depending
on a website’s audience. Also be aware that Opera and Mozilla Firefox browsers can be configured to iden-
tify themselves to a website as Microsoft Internet Explorer browsers. This, of course, can distort statistical
analysis. This spoofing is done because websites often create content targeting Microsoft Internet Explorer
and Netscape specifically, leaving everyone else out in the cold —even though third-party browsers like
Mozilla Firefox and Opera probably support the required functionality.

At the time of this writing, the current version of the Opera browser is 9.0. You can download this

browser for free from www . opera . com. The Opera browser is available for Windows, Macintosh, Linux,
and a variety of other platforms.

13

Pa

rt I: The Basics

Writing CSS

14

To write CSS, just as is the case when writing HTML source, you will need a text editor. WYSIWYG
(What You See Is What You Get) editors such as Microsoft Word aren’t ideally suited for CSS because the
environment is not ideal for the composition of source code. WYSIWYG programs often have features
like AutoCorrection and line wrapping; a plain text editor is more appealing precisely because it does
not have these automatic features. Furthermore, the more automated WYSIWYG editors are designed to
write the source code for you behind the scenes, so you don’t have complete control over the structure
and formatting of the source code. In contrast, a plain text editor doesn’t insert anything into the source
code beyond what you type into the text editor.

The Windows Notepad program is one example of a text editor that is ideal for composing source code.
To launch Notepad, choose Start => Run and then type Notepad in the Open text box. You can also use
Microsoft FrontPage, but FrontPage is best used in view source mode where you can edit the source code
directly instead of via the WYSIWYG interface. The same holds true for Macromedia Dreamweaver.

On Mac OS X, the Notepad equivalent is TextEdit, which can be found in the Mac OS X Applications
folder.

If Notepad or TextEdit is just too basic for your taste, a text editor that highlights markup and CSS syn-
tax might suit your needs better. The following are full-featured alternative text editors for Windows:

Q Crimson Editor: www.crimsoneditor.com (free)

O HTML-kit: www.chami . com/html-kit (free)
Here are some alternative text editors that work with Mac OS X:

QO CreaText: http://creatext.sourceforge.net (free)

Q BBEdit: www.barebones . com (shareware)

If you're using Linux, you're probably already familiar with the different text editors that come bundled
with the various distributions.

You must create HTML files with the .html extension. If you use Notepad or TextEdit, beware of your
files being saved with a . txt extension, which will not result in the HTML file you were going for.

To ensure that your files are saved properly on Windows, choose Start = Run and type Explorer (or
right-click Start and choose Explore from the pop-up menu) to open Windows Explorer. After Windows
Explorer is open, choose Tools = Folder Options to open the Folder Options window, click the View tab,
and uncheck the Hide Extensions for Known File Types box (see Figure 1-3). Then click OK.

HTML files are not the only file type in which the document extension is important; other file types
require specific extensions as well. Those file types are covered later in this chapter.

Chapter 1: Introducing Cascading Style Sheets

Figure 1-3

On Mac OS X, open Finder, and go to Finder &> Preferences. Select the Advanced tab, and check the box
for Show All File Extensions, which is depicted in Figure 1-4.

Figure 1-4

Armed with a browser and a text editor, in the next section I present an example of what CSS can do.

Your First CSS-Enabled Document

The following example is designed to introduce you to what CSS is capable of. It is designed to help you
get your feet wet and get straight down to the business of writing style sheets.

15

Part I: The Basics

You can find the images and source code for the following example at www .wrox . com. While you can
obtain the source code from www .wrox . com, I recommend that you type out the example so that you
can get used to writing the syntax, and take in the different bits that come together in the example.

Try It Out Creating a CSS-Enabled Document

Example 1-1. To write your first CSS-enabled document, follow these steps.

1. Inyour text editor of choice, enter the following markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>The Gas Giants</title>
<link rel='stylesheet' type='text/css' href='solar_ system.css' />
<script type='text/javascript'>
var fixpng = function(S$img) {};
</script>
<!--[if 1t IE 7]>
<link rel='stylesheet' type='text/css' href='solar_system.ie.css' />
<script type='text/javascript'>
// This fixes PNG transparency in IE
var fixpng = function ($img)

{
var S$html =
'<span ' +
((Simg.id)? "id='" + $img.id + "' ") o+
(($img.className)? "class='" + $img.className + "' " : '') +
((Simg.title)? "title='" + $img.title + "' " c'Y) 4+
'style=""' +

'display: inline-block;' +

'width: ' + Simg.width + 'px;' +

'height: ' + $img.height + 'px;' +

"filter:progid:DXImageTransform.Microsoft.AlphalmageLoader (" +

"src='" + $Simg.src + "', sizingMethod='scale'); " +
Simg.style.cssText + '" ';

if ($img.getAttribute ('mouseoversrc'))
{
$html += "mouseoversrc='" + $img.getAttribute('mouseoversrc') + "' ";

if ($img.getAttribute('mouseoutsrc'))

Shtml += "mouseoutsrc='" + S$Simg.getAttribute('mouseoutsrc') + "' ";
}

Shtml += '>';

$img.outerHTML = Shtml;

16

Chapter 1: Introducing Cascading Style Sheets

}
</script>
<![endif]-->
</head>
<body>
<!--
Image reuse guidelines:
http://www.nasa.gov/multimedia/guidelines/index.html
-—>
<div id='solar-system'>
<div class='planet jupiter'>
<img src='images/jupiter.png'
alt="'Jupiter'
class='planet'
onload="'fixpng (this);"' />
<div class='planet-copy'>
<hl>Jupiter</hl>

Distance from the Sun: 78,412,020 km</1li>
Equatorial Radius: 71,492 km</1li>
Volume: 1,425,500,000,000,000 km³
Mass: 1,898,700,000,000,000,000,000,000,000 kg</1li>

More Facts

</1i>

<img src='images/symbols/jupiter.png'
alt='Mythological Symbol for Jupiter'
onload="fixpng (this);"' />

</div>
</div>

<div class='planet saturn'>
<img src='images/saturn.png'
alt='Saturn'
class="planet'
onload="'fixpng (this);'/>
<div class='planet-copy'>
<hl>Saturn</hl>

Distance from the Sun: 1,426,725,400 km</1li>
Equatorial Radius: 60,268 km
Volume: 827,130,000,000,000 km³
Mass: 568,510,000,000,000,000,000,000,000 kg</1li>

More Facts

</1li>

<img src='images/symbols/saturn.png'

17

Part I: The Basics

alt='Mythological Symbol for Saturn'
onload="'fixpng (this);"' />
</div>
</div>
<div class='planet uranus'>
<img src='images/uranus.png'
alt='Uranus'
class='planet'
onload="'fixpng (this);"' />
<div class='planet-copy'>
<hl>Uranus</hl>

Distance from the Sun: 2,870,972,200 km</1i>
Equatorial Radius: 25,559 km</1li>
Volume: 69,142,000,000,000 km³
Mass: 86,849,000,000,000,000,000,000,000 kg

More Facts

</1i>

<img src='images/symbols/uranus.png'
alt='Mythological Symbol for Uranus'
onload="'fixpng(this);"' />

</div>
</div>

<div class='planet neptune'>
<img src='images/neptune.png'’
alt="'Neptune'
class="'planet'
onload="'fixpng (this);"' />
<div class='planet-copy'>
<hl>Neptune</hl>

Distance from the Sun: 4,498,252,900 km</1li>
Equatorial Radius: 24,764 km</1li>
Volume: 62,526,000,000,000 km³
Mass: 102,440,000,000,000,000,000,000,000 kg</1li>

More Facts

</1li>

<img src='images/symbols/neptune.png'
alt='Mythological Symbol for Neptune'
onload="'fixpng (this);'/>
</div>
</div>
</div>
</body>
</html>

18

Chapter 1: Introducing Cascading Style Sheets

2. Savethe preceding file in a new folder of its own as index.html.
3. Create a new, blank document in your text editor, and enter the following CSS:
body {
margin: 0;
padding: 0;
background: #000 url ('images/backgrounds/star.png') no-repeat fixed;
font: 12px sans-serif;
}
a {
text-decoration: none;
color: lightblue;
}
a:hover {
color: yellow;
}

div#solar-system {

}

position: relative;

height: 575px;

margin: 50px 0 0 0;

border-top: 1lpx solid #000;

border-bottom: 1px solid #000;

background: #000 url ('images/backgrounds/star_darker.png') no-repeat fixed;
overflow: auto;

white-space: nowrap;

div.planet {

}

position: absolute;
top: 0;

left: 0;

bottom: 25px;

div.jupiter img.planet {

}

margin: 75px 0 0 40px;

div.saturn {

}

left: 900px;

div.uranus {

}

left: 1900px;

div.uranus img.planet {

}

margin: 175px 0 0 100px;

div.neptune {

}

left: 2750px%;

div.neptune img.planet {

}

margin: 175px 0 0 200px;

div.planet img {

float: left;
margin-top: 20px;

19

Part I: The Basics

}
div.planet-copy {
color: white;
padding: 10px;
margin-left: 520px;
background: #000 url ('images/backgrounds/star darker_still.png') no-repeat
fixed;
position: absolute;
top: 0;
bottom: 0;
left: 0;
border-left: 1px solid #000;
border-right: 1px solid #000;
}
div.planet-copy hl {
border-bottom: 1px solid #000;
margin: 0 -10px;
padding: 0 10px;
}
div.planet-copy ul {
list-style: none;

}

4. Save the preceding CSS in the same folder where you saved index.html, as solar_system.css.
5. Enter the following CSS in a new document in your text editor:

div.planet {

height: expression(document.getElementById('solar-system').offsetHeight - 25);
}
div.planet-copy {

height: expression(document.getElementById('solar-system') .offsetHeight - 45);
}

6. Savethe preceding document in the same folder as index.html and solar_system.css, as
solar_system.ie.css. The preceding source code results in the image in Figure 1-5, when
loaded into Safari on Mac OS X.

To see how index.html looks in other browsers, you can load it up by going to the File menu
of the browser you'd like to view it in, and then select Open or Open File, and then locate
index.html on your hard disk.

How It Works

20

Example 1-1 is an introduction to a little of what CSS is capable of. This example is designed to get your
hands dirty up front with CSS, as a preview of what you can expect throughout the rest of the book.
With each new chapter, I introduce and explain each of the nuts and bolts that come together to make
examples like the preceding one. In Figure 1-5, you can see that CSS can be used to specify background
images, and other aesthetic aspects of an XHTML document. I continue to revisit and explain the CSS
that resulted in Figure 1-5 throughout the book.

Chapter 1: Introducing Cascading Style Sheets

Figure 1-5

You might also note that Example 1-1 took some additional handy work to make it come out the same in
Internet Explorer, as it did in Safari, Firefox, and Opera. Throughout this book, you also learn the hacks
and workarounds that you need to make CSS-enabled web pages compatible with IE 6.

Advantages of Using CSS

By using cascading style sheets for the presentation of a web document, you can substantially reduce the
amount of time and work spent on composing not only a single document, but an entire website.
Because more can be done with less, cascading style sheets can reduce the amount of hard disk space
that a website occupies, as well as the amount of bandwidth required to transmit that website from the
server to the browser. Cascading style sheets have the following advantages:

21

Part I: The Basics

a

The presentation of an entire website can be centralized to one or a handful of documents,
enabling the look and feel of a website to be updated at a moment’s notice. In legacy HTML
documents, the presentation is contained entirely in the body of each document. CSS brings a
much needed feature to HTML: the separation of a document’s structure from its presentation.
CSS can be written independently of HTML.

Users of a website can compose style sheets of their own, a feature that makes websites more
accessible. For example, a user can compose a high-contrast style sheet that makes content
easier to read. Many browsers provide controls for this feature for novice users, but it is CSS
nonetheless.

Browsers are beginning to support multiple style sheets, a feature that allows more than one
design of a website to be presented at the same time. The user can simply select the look and
feel that he or she likes most. This could only be done previously with the aid of more complex
programming languages.

Style sheets allow content to be optimized for more than one type of device. By using the same
HTML document, different versions of a website can be presented for handheld devices such as
PDAs and cell phones or for printing.

Style sheets download much more quickly because web documents using CSS take up less hard
disk space and consume less bandwidth. Browsers also use a feature called caching, a process
by which your browser will download a CSS file or other web document only once, and not
request that file from the web server again unless it’s been updated, further providing your
website with the potential for lightning-fast performance.

Cascading style sheets allow the planning, production, and maintenance of a website to be simpler than
HTML alone ever could be. By using CSS to present your web documents, you curtail literally days of
development time and planning.

Summary

Cascading style sheets are the very necessary solution to a cry for more control over the presentation of a
document. In this chapter, you learned the following:

22

a

The World Wide Web Consortium plans and discusses how the Internet should work and
evolve. CSS is managed by a group of people within the W3C called the CSS Working Group.
This group of people makes recommendations about how browsers should implement CSS
itself.

The Internet is a complex network of computers all linked together. When you request a web
document, that request travels through that network to a computer called an HTTP server that
runs software. It sends a response containing the page you requested back through the network.
Your browser receives the response and turns it into something you can see and interact with.

CSS answers a need for a style sheet language capable of controlling the presentation of not only
HTML documents, but also several types of documents.

Internet Explorer 6, Gecko, Opera, and KHTML browsers make up the majority of browsers in
use today, with Internet Explorer 6 being the world’s most popular browser.

Chapter 1: Introducing Cascading Style Sheets

O CSS has many advantages. These include being accessible, applicable to more than one lan-
guage; applicable to more than one type of device, and allowing a website to be planned, pro-
duced, and maintained in much less time. CSS also enables a website to take up significantly
less hard disk space and bandwidth than formerly possible.

Now that you have the tools to write CSS, and have seen a little of what CSS can do, in Chapter 2,

I begin talking about the bits and pieces that come together in a CSS document to define the CSS
language.

23

The Essentials

In Chapter 1 you received a taste of what CSS is capable of in Example 1-1, a web page that con-
tains the four gas giant planets of our solar system and some facts about them. In this chapter, I
begin the process of drilling down into CSS syntax. Throughout Chapter 2, I take an exacto knife
to the solar_system. css style sheet that you wrote for Example 1-1, and explore what makes
CSS work. I begin this discussion with CSS rules.

CSS Rules

As you dissect a style sheet, it can be broken down into progressively smaller bits. From large to
small, it goes like this:

a
a
a
a
a

Qa

Style sheet
Rule
Selector
Declaration

Property
Value

In between, some special characters are used to mark the beginning and ending of one bit from
another. Figure 2-1 shows a CSS rule.

Part I: The Basics

- . The hichlghizd is o oomploe stdeskos rule, ' -

by |
mardging ©OF
saddings Uy
nackgroucd: 00 i 'imagos dbackgroonds fstar.png' | no-ropoat Eixcds
Tomta px mans—sarifp
P
& rle heging with a selaetar fnlowed by a et curke :
RGeS T AkEn one Grmara desaraiare. and hie rala
s Wik oA right corky Reaiee
Figure 2-1

You can set the layout of the rule according to your preferences; you can add line breaks and spacing to
make CSS readable, sensible, and organized:

body {
margin: 0;
padding: 0;
background: #000 url('images/backgrounds/star.png') no-repeat fixed;
font: 12px sans-serif;
}

Or you can scrunch it all together:

body {margin: 0; padding: 0; background: #000 url('images/backgrounds/star.png')
no-repeat fixed; font: 12px sans-serif;}

Like HTML, CSS can use white space and line breaks for purposes of readability. The interpreter reading
the CSS doesn’t care how much white space appears in the style sheet or how many line breaks are used.
Humans, however, must often add some sort of structure to prevent eyestrain, and to increase maintain-

ability and productivity.

Within a rule, the bit that chooses what in the HTML document to format is called a selector.

Selectors

In CSS, a selector is the HTML element or elements to which a CSS rule is applied. Put simply, the selec-
tor tells the browser what to format. The simple selector that you saw in the last section is called a type
selector; it merely references an HTML element. The selector portion of a CSS rule is highlighted in

Figure 2-2.

The selecor prececos e lirst curky brsces,

.
'

meckqrounds U0 | VimanessbeskaroondsSscer oo 3o Pl ol t i

Iont =cpil SARS Sorsly

.
:

Figure 2-2
26

Chapter 2: The Essentials

body is written in the style sheet without the left and right angle brackets, < >. This rule applies the CSS
properties: margin, padding, background, and font to the <body> element. I talk more about what
these properties do in Chapters 6, 7, and 10.

Declarations

Declarations are enclosed within curly braces to separate them from selectors. A declaration is the combina-
tion of a CSS property and value. Figure 2-3 highlights the property and value portions of a declaration.

Thiis is e procerly.

nsrgin: Oy Avcalon separsing e amperly and ealsn.
paiding: :
barkoround: SO000 weli’ imogesfbackorounds fstex opng ' s R | i
Tz 12 ST TR ST B
i Froen the oo e the seriecalae is Che walae,
Figure 2-3

The property appears before the colon, and the colon is used to separate the property from the value.
Declarations are used to describe. What would the CSS be like if I used CSS to describe myself? It might
look like the following

richard ({
mood: content;
height: 6.1ft;
weight: auto;
hair: brown;
eyes: hazel;
belly: full;

}

A declaration is a complete instruction for styling a property of an HTML element. The whole declara-
tion appears highlighted in Figure 2-4.

The declaraian is the zsorbraion of a proporty

- and valus,
D00 weli dmages backorcunds fstear . png ' s R | is
—un= = LTz
| Erpch chissabionm anss wilh i somicnlon

Figure 2-4

A declaration always ends with a semi-colon.

When more than one declaration or selector appears in the same rule, they are said to be grouped.

27

Part I: The Basics

Grouping Selectors

You can group multiple selectors together in a single rule by providing a comma after each selector; this
is illustrated in Figure 2-5. The result is that a rule applies to more than one selector at a time.

Aonilr may eamain msee than roe selkectar. This alloees a
k1, h#, h3, k. h3, hé { ruks ko etsrenns mose tian ana A kL alemert at onoe
. Each soloctar is separaind by o comma

Figure 2-5

The rule in Figure 2-5 applies to the HTML elements, <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>. Try it for
yourself.

Try It Out Grouping Selectors

Example 2-1. To see how a selector is used to select HTML elements in the body, follow these steps.

1. Fire up your favorite text editor and type the following XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8' />
<title>Selectors and Grouping</title>
<style type='text/css'>
hl, h2, h3, h4, h5, hé6 {
font-family: sans-serif;
color: maroon;
border-bottom: 1px solid rgb (200, 200, 200);
}
</style>
</head>
<body>
<hl>Style Sheet</hl>
<h2>Rule</h2>
<h3>Selector</h3>
<h4>Declaration</h4>
<h5>Property</h5>
<h6>Value</h6>
</body>
</html>

2. Save this as Example_2-1.html.

3. Fire up your favorite browser and load the file. Figure 2-6 shows how CSS selects the different
headings in the body of the HTML document to apply style.

28

Chapter 2: The Essentials

Figure 2-6

How It Works

In Figure 2-6 you see the hierarchy of a style sheet, drilling down from the whole style sheet to the value
of a property. In Example 2-1, you included a single CSS rule with a selector that provides properties for
all six HTML heading elements, <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>. The selector contains three
declarations that provide the browser with information about how to style the aforementioned heading
elements. The browser is told to give each heading text colored maroon in the sans-serif font face, and a
bottom border that’s gray, solid, and one pixel thick.

CSS Comments

As is the case with HTML, comment text can be added to style sheets as well. In a multipage template,
this helps you remember which CSS rule applies to what or why it was added in the first place. CSS sup-
ports multiline comments that begin with a forward slash and an asterisk (/*) and terminate with an
asterisk and a forward slash (* /). This is illustrated in Figure 2-7.

Conrureenr s besgin st a loreard

slash, folavsd By an asterisk,

CamiTants and with &n aslanzk,
lollavees o A lorwserd slesh.

body
farglo: oy Crmrrent iess azpears in the micdlz.
madding: 12
Lackgrounds ~O00 - 1¢ "inadeadtackgrmida/alar . ping '] oo=rapal Fiad;
foot: L2px Ssans-scrifl
b
Figure 2-7

29

Part I: The Basics

CSS comments provide a mechanism that allows you to insert notes about what the styles in the style
sheet do and why they were added. The design of a website can get complicated, and often it’s helpful to
make notes that help you remember why you added one thing or another. The following are some exam-
ples of what you can do with comments.

0O Comments can appear inside of a rule, as illustrated in Figure 2-8.

cody {
LaammEnl faet 220 eaasal
mETging U; insida ot A ks,
pREEaINg e H
hsckgroonds 000 ar 78 e Shackgrarnde Setaropne ' | =1 epeal CHH
tants: 1e3w mpnE-anr- -3
1
Figure 2-8

0O Comments can appear inside of a declaration, as demonstrated in Figure 2-9.

sody 1_ izl bk cacn Emasar
mATIIN: Af wiinin s caclaslon.

II._..:',..I: :
hackgranmd: vlloar ¢ imagesSbackgranndsfatar.pne’] n-Teneat ©c xRl

ks L e
farts 1 i H

Figure 2-9

0 Comments can span multiple lines, as shown in Figure 2-10.

Uinmrments ren Also sgan mothpks linss.
Cerginming oach line with an astensk is ol
ranuired. 2o is Samman pachce reang

body { rapenirnoed progrrmers
= in; I+
prsiings O
b skaoounds nipy e’ inegesSbackaroende Jetar.png' oo rEut ed;
Fanks 1 il =T H
}
Figure 2-10

0O Comments can be used to disable portions of a style sheet, as shown in Figure 2-11.

30

Chapter 2: The Essentials

anle § Rurnanging a iuk with
R samrystt syntax dizaales o

Lozkgouend: i I amgsaend t paston k s
(] 1= 1 EE T
a |
cext—decoretion: moreg & dacaralion B as0 dizabkd
“zzlzr. _igktblaz:s wlin encloeed @il cormrienl synlss.
L
Figure 2-11

Disabling portions of a style sheet can be useful if you are trying to track down problematic styles, or if
you are simply experimenting with different effects.

Values

CSS can become quite complex in terms of what it allows a property’s value to be. Figure 2-5 illustrates
some, but not all, of the potential types of values that you see in CSS. In the coming sections I discuss
each of the different types of values that CSS allows in greater detail, beginning with keyword values.

Keywords

A keyword value is used to invoke a predefined function. For example, red, green, and blue are CSS
keywords, red, green and blue; all have a predefined purpose. Color keywords can be used on any
property that accepts a color value. Figure 2-12 shows some examples of keywords in a style sheet.

Eaady
horkgrounds rourly Images/hackgrovndnfator.arg ') mo-r Fiwrdy
a { Fa-repeas I0d S iSed 0 ceampies i Wrgainnis
b etdecmorabioms s lightblue s an ssan as ol oo kepwod,
Figure 2-12

The keywords in Figure 2-12 are no-repeat, fixed, and 1ightblue. no-repeat and fixed provide
the browser with instructions for how to render the background image. 1ightblue is a keyword that
tells the browser what color the text of hyperlinks should be.

31

Part I: The Basics

Many types of keywords are used in CSS, and sometimes a single keyword can have different meanings
depending on the element to which it is applied. The auto keyword, for example, is used by CSS to
apply some default style or behavior, and its meaning depends on the way it’s used, and what property
it is used with. Try the auto keyword in this example.

Try It Out Adding auto width to a Table

Example 2-2. To see the effects of the auto keyword as applied to a <table> element, follow these steps.

1. Enter the following XHTML-compliant markup.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8' />
<title>Auto width on tables</title>
<style type='text/css'>
table {
width: auto;
background: black;
color: white;
}
</style>
</head>
<body>
<table>
<tbody>
<tr>
<td>How will this table react to auto width?</td>
</tr>
</tbody>
</table>
</body>
</html>

2. Savethe preceding markup as Example_2-2.html, and then load it into a browser. Figure 2-13
shows width: auto; applied to the <table> element.

Figure 2-13
32

Chapter 2: The Essentials

How It Works

In Figure 2-13, you can see that the table expands only enough to accommodate the text within it.

When width: auto; is applied to a <table> element, it invokes a different mechanism for width mea-
surement than when it is applied to a <div> element. Next, see what happens when auto width is

applied to a <div> element.

Try It Out Applying auto width to a div

Example 2-3. To see the effects of the auto keyword as applied to a <div> element, follow these steps.

1. Enter the following document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv='Content-Type'
<title>Auto width on divs</title>
<style type='text/css'>
div {
width: auto;
background: black;
color: white;

content="'text/html; charset=UTF-8' />

}
</style>
</head>

<body>
<div>How will this div react to auto width?</div>

</body>
</html>

2. Save the preceding markup as Example_2-3.html. Figure 2-14 shows width: auto; applied

to the <div> element.

Figure 2-14

33

Part I: The Basics

How It Works

All elements with a width property have an auto value by default, but not all elements behave the same
way when auto width is applied. The <table> element, for instance, only expands horizontally to
accommodate its data, which is a method called shrink-to-fit. A <div> element, on the other hand,
expands horizontally as far as there is space, which is called expand-to-fit.

I've added a background for each element in Examples 2-2 and 2-3 so that you can see its width. The
border outlines the edges of each element, showing exactly how much space each element occupies. You
learn more about how width works in Chapter 7, “The Box Model.”

Keywords always invoke some special, predefined behavior. Another example I can present is with the
CSS border property: A border may take three separate keywords that define how it appears when the
browser renders it:

border: thin solid black;

This example defines a property with three keyword values: thin, solid, and black. Each value refers
to a different characteristic of the border’s appearance: thin refers to its measurement, solid to its
style, and black to its color.

Sometimes you have need of including content from a style sheet or referencing a file path or including a
font name that has spaces in its name or referencing an HTML element’s attribute value. To accomplish
these tasks, CSS supports a type of value called strings.

Strings

34

A string is any sequence of characters. For example, “Hello, World” is a string. In most programming
languages and in CSS, strings are enclosed within either single or double quotation marks. A string is
what is known as a data type. Data types are used to classify information. Integers, real numbers, and
strings are examples of data types. Strings may contain text, numbers, symbols — any type of character.
An integer can be a number that has a positive or negative value, and can only be a whole number, no
decimals. A real number can have decimal places. These data types are made to conform to their defined
rules by the language. Whereas a string can contain any character, real numbers are expected to be
whole numbers or decimals; a string cannot appear where a real number is expected, and a real number
cannot appear where an integer is expected, and so on.

One use of strings in CSS is to specify a font that contains spaces in its name.

font-family: "Times New Roman", Times, serif;
Font faces with spaces in the name are enclosed with quotations to keep the program that interprets CSS
from getting confused. The quotes act as marking posts for where the font face’s name begins and ends.

You see more about how fonts work in Chapter 6, “Fonts.”

Strings may also be used to include content in an HTML document from a style sheet. Try including con-
tent from a style sheet for yourself.

Chapter 2: The Essentials

Try It Out Including Content from a Style Sheet

Example 2-4. To include content from a style sheet, follow these steps.

1. Type in the following document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8' />
<title>Generated content</title>
<style type='text/css'>
div {
font-family: sans-serif;
}
div::before {
content: "I said, \"Hello, world!\"";
background: black;
color: white;
margin-right: 25px;
}
</style>
</head>
<body>
<div>The world said, "Hello, yourself!"</div>
</body>
</html>

2. Save the document as Example_2-4.html.

3. Open the example with Safari, Firefox, or Opera—IE 6 and IE 7 don’t support this feature.
Figure 2-15 shows that the string “I said, “Hello, world!”” is inserted into the <div> element
using the content property.

Figure 2-15

35

Part I: The Basics

How It Works

You included the string “I said, “Hello, world!”” in the HTML document by using the CSS content
property.

Strings may contain any sequence of characters of any length (at least up to whatever arbitrary limit a
browser may have defined) —even quotation marks are allowed. However, strings may contain quota-
tion marks only if they’re escaped using another special character, the backslash character. When you
escape quotation marks, you tell the browser: “Ignore the quotation mark; it is part of the string.” The
backslash is used to quote Foghorn Leghorn in the following code:

div {
content: "Foghorn said: \"Get away from me son, you bother me.\"";
}

As an escape character, a backslash is included to tell the browser to ignore only the quotation mark that
appears directly after it. The same backslash character is used to escape single quotes as well, if the
string is enclosed by single quotes:

div {
content: 'Foghorn said: \'Get away from me son, you bother me.\'';

}

The browser also ignores the single quotes in the middle with the use of the backslash character before
the quote mark. Quotation marks do not have to be escaped if single quotes are used within a string
enclosed by double quotes or vice versa. In this example

div {
content: "Foghorn said: 'Get away from me son, you bother me.'";

}

the single quotes do not have to be escaped because double quotes enclose the string.

Length and Measurement

There are two kinds of lengths used in CSS: relative and absolute. Absolute lengths are not dependent on
any other measurement. An absolute measurement retains its length regardless of the environment
(operating system, browser, or screen resolution of a computer monitor) in which it is applied. Relative
lengths, on the other hand, depend on the environment in which they’re used, such as the computer
monitor’s screen resolution or the size of a font.

Absolute measurements are defined based on real-world units such as inches, centimeters, points, and
so on. These measurements have been used for centuries in the print industry, and one would be accus-
tomed to finding them on a ruler.

Absolute Measurement

CSS supports a variety of real-world measurements. Each absolute length unit supported by CSS is
defined in the following table.

36

Chapter 2: The Essentials

Unit Abbreviation Description

in Inches

cm Centimeters

mm Millimeters

pt Points, 1 point is equal to 1/72nd of an inch
pc Picas, 1 pica is equal to 12 points

Absolute lengths are not intended for the computer screen; they are intended for where a physical mea-
surement is necessary. For example, printing a document requires real-word measurements. When you
are composing a web document, you want the printable version of that document to be made using
lengths that are reliable for the print environment.

On the other hand, when absolute measurements are applied to the computer screen, some inconsisten-
cies surface.

The Pitfalls of Onscreen Absolute Measurement

Coding real-world physical lengths into a computer isn’t as easy as it may seem. When applied to a com-
puter screen, physical measurements are based on pixels. Pixels are tiny dots that a computer monitor
uses to create the image you see, and the number of pixels displayed depends on the monitor’s screen
resolution. For example, a computer monitor set to an 800 x 600 screen resolution displays 800 pixels
horizontally and 600 pixels vertically for a possibility of 480,000 total pixels.

Windows defines one inch as 96 pixels, by default. The definition of an inch as 96 pixels depends on an
operating system display setting called DPI, or dots per inch. The DPI setting of an operating system is a
user-configurable setting for defining the number of dots (or pixels) that make up an inch.

In the earlier days of the web, Macintosh and Windows had different DPI settings; a Mac’s default DPI
was 72 and Windows’ was 96. Today all modern browsers, including those on the Macintosh, have stan-
dardized on Windows’ 96 DPI measurement as the de facto default standard for DPI. While this de facto
standardization makes for a greater likelihood of consistency, because the DPI setting can be customized,
absolute measurement cannot be relied upon for onscreen layout. For example, Firefox still includes a
setting in its font options menu for the DPI to either 72 or 96 DPI, and it’s possible to change the DPI set-
ting through other means, such as within Windows display settings control panel.

Figure 2-16 shows Firefox 1.5’s DPI setting, a setting that has since been eliminated from Firefox 2.0,
since Macs just use the same DPI setting as Windows these days.

37

Part I: The Basics

Figure 2-16

In the next two examples, you set up an experiment to see how the DPI can affect absolute measure-
ments in CSS, and ultimately discover the reason why absolute measurements are not suited for

onscreen layout purposes.

Try It Out Testing 96 DPI Equals an Inch

Example 2-5. To see a side-by-side comparison of pixels to inches, follow these steps.

1. Enter the following document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv='Content-Type'
<title>Pixels to Inches</title>
<style type='text/css'>
div {
background: #000;
border: 1px solid rgb(128, 128, 128);
color: white;
font: 9px monospace;
margin: 15px;
text-align: center;

content="'text/html; charset=UTF-8' />

}

div#inches {
width: 1in;
height: 1in;

}

div#pixels {

38

Chapter 2: The Essentials

width: 96px;
height: 96px;
}

</style>
</head>
<body>
<div id='inches'><-- 1 Inch --></div>
<div id='pixels'><-- 96 Pixels --></div>
</body>
</html>
2. Save the document you just created as Example_2-5.html.
3. Open the document in your browser of choice. Figure 2-17 shows two <div> elements: The top

<div> element has a height and width of 1 inch, and the bottom <div> has a height and width
of 96 pixels. Both have a black background with white text for clarity. Switching the screen reso-
lution from 800 x 600 pixels to 1280 x 1024 shows that the measurement of 1 inch remains the
same as the 96-pixel measurement.

Figure 2-17

How It Works

By default, browsers conform to the Windows default of 96 dots per inch for the onscreen definition of
what an inch is.

Obviously, since absolute measurement is not well suited for onscreen layout, there must surely be
another, right? Yes! The other method of measurement in CSS is relative measurement.

Relative Measurement

Relative measurement is better suited for the purpose of onscreen layout. The following table defines the
four types of relative measurement that CSS allows.

39

Part I: The Basics

Unit Abbreviation Description

em Length relevant to the nearest font size.

ex The x-height of the relevant font (height of the letter x).

px Pixels, relative to the viewing device, for example, a computer
monitor.

% Percentage measurement; how percentage length is calculated

depends on what property it is being applied to.

The em and ex units are measured relative to the font size of a document, pixels use the real pixels of the
monitor’s screen resolution, and percentage measurement depends on what property it is being applied
to. In the coming sections you explore each type of relative measurement in greater detail.

Measurement Based on the Font Size

Measurement in em is currently the most favored of relative measurement for onscreen layout, for most
measurements. A measurement that is relative to the font size allows for designs that scale up and down
gracefully with the user’s font size preferences.

Try It Out

Example 2-6. To see how the em measurement compares to pixel measurement, follow these steps.

Comparing em to Pixels

1. Enter the following XHTML document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8' />
<title>Em Measurement Comparison to Pixels</title>
<style type='text/css'>
body {
font: lem sans-serif;
}
p {
background: rgb (234, 234, 234);
border: 1px solid rgb (200, 200, 200);
}
p#em-measurement {
width: 12em;
padding: lem;
}
p#px-measurement {
width: 192px;
padding: 16px;

40

Chapter 2: The Essentials

</style>
</head>
<body>
<p id='em-measurement'>
This paragraph is 12em wide, with a lem padding.
</p>
<p id='px-measurement'>
This paragraph is 192 pixels wide, with 16 pixels of
padding.
</p>
</body>
</html>

2. Savethe preceding document as Example_2-6.html, and load it up in your favorite browser.
When Example 2-6 is loaded up, you should see something like that in Figure 2-18.

Figure 2-18

How It Works

In Figure 2-18 you see that 12em is the same measurement as 192 pixels. When the font size is set to 16
pixels (the default in all modern browsers). So with the em unit, you can layout a whole web page that
scales with the user’s font size preference.

All modern browsers provide a mechanism for scaling the font size up or down to the user’s preference.
On the Mac, 8-+ increases the size of the text, and on Windows, it’s Ctrl-+. Figure 2-19 shows what hap-
pens when the text is scaled up in Safari or Firefox with Example 2-6 loaded.

In Figure 2-19, you see that the 12em measurement no longer matches the 192-pixel measurement when

the text is scaled up. IE 7 and Opera do not display the effect the same as seen in Figure 2-19, however,

since they scale everything, even the size of a pixel.

Figure 2-20 shows what happens when text is scaled down.

41

Part I: The Basics

42

Figure 2-19

Figure 2-20

In Figure 2-20, the opposite of what you observed in Figure 2-19 has happened; the top paragraph is
now smaller than the paragraph with a 192-pixel width. Em measurement lets you layout a web page
with the font size preferences of the end user in mind, which in turn makes your website more accessible
to people with visual disabilities. Again, IE 7 and Opera do not display the effect the same as shown in
Figure 2-20, since they scale all content, which many would argue is much better than having designers
trying to design scalable websites with features like the em unit. The IE 7 and Opera approach takes
designers out of the equation and puts users in charge, which is much better for accessibility.

Like the em unit, the ex unit is based on font size, but unlike the em unit, the ex unit is based on the

u, o

height of the lowercase letter “x.

Chapter 2: The Essentials

Measurements Based on the Height of the Lowercase Letter x

The ex measurement, also known as x-height, is (like the em) based on the font size. However, the ex
measurement is relative to the height of the lowercase letter x. The ex measurement is another unit of
measurement derived from typography.

Like measurement in inches, the ex measurement is unreliable, but for different reasons. Because it is dif-
ficult to determine the actual height of the lowercase letter x for a given font, most browser creators take
a shortcut in implementing the ex measurement. Instead of relying on the height of the lowercase letter
x, ex measurement is defined by taking the measurement of half of 1lem, or 0.5em. Because of its incon-
sistencies, ex measurement is yet another unit of measure to be avoided when designing for display on a
computer monitor.

Pixel Measurements

As you may have guessed from the discussion in this chapter about absolute measurements, pixels, the
px measurement, are measured relative to the computer monitor’s settings. This measurement depends
on the resolution of the user’s monitor. For instance, a 1px measurement viewed at a resolution of 800 x
600 is larger than a 1px measurement viewed at a resolution of 1024 x 768.

Pixels are easiest to understand when they specify the width and height of an image because most
images are created based on the number of pixels they contain. This type of image is known as a bitmap
image. Examples of bitmap images are the J-PEG, GIF, and PNG image formats. These image formats
store information about an image by the pixel, and those are mapped together to create the image that
you see. To illustrate my point, Figure 2-21 is a screenshot of Safari’s window controls from the upper
left-hand corner of Figure 2-20 while zoomed to the maximum of 1600% in Photoshop. At this level of
detail the pixels are clearly visible as individual squares, and it becomes easier to imagine what a pixel
is, since you're actually seeing them.

Figure 2-21

43

Part I: The Basics

Keeping the image portrayed in Figure 2-21 in mind, when you measure in pixels with CSS, the individ-
ual pixels are as wide as the squares you see in Figure 2-21, which can be larger or smaller depending on
the screen resolution setting of your monitor.

Pixel measurements have some advantages and disadvantages. Pixel measurements use the actual pixels
on your computer monitor. Although that is often fine for screen display;, it is not as precise when it
comes to printing documents. The size of a pixel can change depending on many factors, among which
are monitor size and resolution and the fine-tuning settings that stretch and shrink the display output.
Therefore, defining a pixel measurement for print leaves lots of room for browser inconsistencies. How
big is a pixel in the real world? It simply isn’t a constant measurement for physical length the same way
that centimeters are. This is an area best suited for the absolute units that I discussed earlier in the chap-
ter. I discuss this issue further in Chapter 13, “Styling for Print.”

Use the right tool for the job! Pixels should be used for measurements where a user’s
font size preference won’t be a factor, and where a real-world, absolute length
wouldn’t be superior, such as for print. An example of a good place to use pixels
would be for the width of a border around a box.

The last type of relative measurement that CSS has to offer is percentage measurement.

Percentage Measurements

Percentage measurements are always dependent on something else; therefore, percentage measurements
are also a form of relative measurement. The behavior of a percentage measurement changes depending
on the element to which the measurement is being applied. Try applying a percentage width yourself.

Try It Out Experimenting with Percentage Measurement

Example 2-7. To see how percentage measurement works, follow these steps.

1. Enter the following markup into your text editor.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8' />
<title>Experimenting with Percentage Measurement</title>
<style type='text/css'>
div {
width: 100%;
background: black;
color: white;
}
</style>
</head>
<body>
<div>What happens when I apply a 100% width?</div>
</body>
</html>

44

Chapter 2: The Essentials

2. Save the document as Example 2-7.html, and load it up into your favorite browser. When you
load Example 2-7 into a browser, you should see something like Figure 2-22.

Figure 2-22

How It Works

Percentage measurement works differently depending on what property it is applied to; you'll continue
to see examples of this throughout this book. In Example 2-7, you applied the declaration width: 100%;
to the <div> element, and when loaded into a browser you see that the <div> element expands for the
whole width of the window. If you've been paying attention, you might have noted that this result is
identical to the one you observed for Example 2-3, earlier in this chapter. Yes, when applied this way, the
width: auto; declaration and the width: 100%; declaration produce identical results; however, there
are fundamental differences between these two completely different methods of specifying width. The
percentage method used here calculates the width of the <div> element based on its parent element. In
this case, the parent element is the <body> element, and the width of the <div> is set to 100% of the
width of the <body> element, no ifs, ands, or buts. Although you may not see why auto width is differ-
ent at this point, it is, and that is a topic that is much too big to get into right now. You learn more about
the differences between auto width and percentage width in Chapter 7, “The Box Model.”

Because it’s a presentational language, most of CSS is affected in some way by length and units of mea-
surement. The fundamental unit for all measurements when you design for display on a computer mon-
itor is the pixel, because computers display images in pixels. You can define lengths relative to font sizes,
using em units as the most practical and consistent solution. Absolute lengths, on the other hand, are
better suited for print because of the multitude of inconsistencies that occur when absolutes are used for
presentations on a computer monitor. In the next section, I continue the discussion of CSS property val-
ues with a look at how CSS interprets numbers.

Numbers

CSS allows numbers as values for several properties. Two types of numbers are accepted by CSS: integers
and real numbers. Like strings, integers and real numbers are data types and are often used in CSS for the
measurement of length. The first type, integer, is expected to be exclusively a whole number, meaning no
decimals are allowed.

45

Part I: The Basics

Integers
In CSS, an integer may be preceded by a plus (+) or minus (-) to indicate the sign. Although some prop-

erties do not accept negative values, many do. As you can see in the following example, one property

that allows negative values is the margin property.

Try It Out Setting a Negative Margin

Example 2-8. To see what happens when the margin property has a negative value, follow these steps.

1. Enter the following markup:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>

<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8' />
<title>Setting a Negative Margin</title>
<style type='text/css'>
div {
background: black;
color: white;
margin: -10px 0 0 -15px;
font: 12px sans-serif;
}
</style>
</head>

<body>
<div>What happens when I apply a negative margin?</div>

</body>
</html>

2.

Save the markup that you entered as Example_2-8.html, and load it into your favorite
browser. You should see something like what you see in Figure 2-23.

Figure 2-23

46

Chapter 2: The Essentials

How It Works

From Figure 2-23, you can see that the position of the <div> element has been altered by the addition of
the negative margin. It has been moved a little off-screen on the left and just a tad off-screen on the top.
This is one example of how you can use an integer in CSS. You learn more about how the margin prop-
erty works in Chapter 7, “The Box Model.”

Real Numbers

Real numbers can have a decimal value, and decimal values increase the precision of measurements in CSS.
As was the case for integers, real numbers in CSS can also be preceded by plus (+) or minus (-) to indicate
the number’s sign. The value 1.2em, for example, means 1.2 times the font size. As in mathematics, a posi-
tive sign is assumed if no sign is present. If I have a declaration that says margin-left: -1.2em;, this
causes an element to shift to the left 1.2 times the font size.

CSS provides some basic and reasonable rules for the specification of integers and real numbers in property
values. CSS is also very flexible with how colors are specified, a topic I discuss in the following section.

Colors

CSS has a number of options for specifying colors, ranging from a 216-color, web-safe palette to the full
range of colors available in the RGB format, a total of 16,777,216 colors! More specifically, those options
are as follows:

Q Color keywords: These enable you to specify a color by its name.

O RGB values: These enable you to specify a color via a Red, Green, Blue representation, which
provides access to millions of colors.

0 RGB Percentage: This option is the same as RGB but uses percentages.

0O RGBA (RGB with Alpha channel [available in CSS 3]): The RGB palette is used with the addi-
tion of an alpha channel to specify transparency.

QO Hexadecimal: This enables you to specify a color by a special hexadecimal number.
0 Shorthand Hexadecimal: This is a shortened representation of hexadecimal numbers; it is lim-

ited to a special 216-color, web-safe palette.

Each method is a means of accomplishing the same thing: specifying a color. You can use these methods
to specify text color, border color, or background color. Next, you see what each of these methods looks
like when used in the context of a style sheet rule.

Color Keywords

The first method for specifying color, mentioned previously, is to use a color keyword. This is the most intu-
itive method because all you need to do is reference the name of the color itself. Here are some examples:

div {
color: black;
background-color: red;
border: thin solid orange;

47

Pa

rt I: The Basics

This rule applies to any <div> element contained in the document. I have specified that each <div> ele-
ment should have black text, a red background, and a thin, solid orange border around the element. In this
example, black, red, and orange are color keywords, so a color keyword is simply the name of the color.

In CSS 3, 147 colors are named. Browser support for these colors is very good. I have found only a single
color not supported by IE 6. That color is 1ightgray, spelled with an a; however, the browser does sup-
port 1ightgrey, spelled with an e. This is an obscure bug that arises because Internet Explorer allows
only the British spelling of grey and not the American English gray. The CSS specification supports both
spellings of gray. Firefox, Opera, and Safari support all 147 named colors.

A complete table of CSS-supported color keywords is available in Appendix C.

RGB Colors

48

RGB stands for Red, Green, and Blue. These are the primary colors used to display the color of pixels on
a computer monitor. When you use these three colors in various combinations, it is possible to create
every color of the rainbow. This is done through different colored lights either overlapping each other or
appearing side by side in different intensities to display color. RGB is also known as luminous or additive
color. Luminous means that RGB uses light in varying intensities to create color, and additive means
colors are added to one another to produce the colors of the spectrum. Many computer monitors are
capable of displaying millions of colors: 16,777,216 colors, in fact. CSS RGB color is specified using a
special three-number syntax, with each one representing a color channel. This first number is red, the
second green, and the third blue:

body {
background-color: rgb(128, 128, 128);
}

This produces the same color as the CSS color keyword gray. Equal amounts of all three channels form
a variation of gray, where 0, 0, 0 is black and 255, 255, 255 is white.

Here’s another example:

body {
background-color: rgb(135, 206, 235);
}

This produces the same color as the CSS color keyword skyblue. The number 135 refers to the red chan-
nel, 206 to the green channel, and 235 to the blue channel. RGB values may also be represented using
percentages:

body {
background-color: rgb(50%, 50%, 50%);
}

This also produces the same color as the CSS color keyword gray.

CSS 3 is to introduce one more variation on the RGB scheme, with RGBA. This specification includes
an alpha channel, which is used to make an element transparent. The alpha channel of RGBA is speci-
fied in the same manner as regular RGB with the A indicating how transparent the color is, with 0

being fully opaque, and 255 being fully transparent. No browser supports the RGBA specification yet.

Chapter 2: The Essentials

RGB color is also often specified in hexadecimal format.

Hexadecimal Colors

Hexadecimal colors have been around nearly as long as the World Wide Web has been. Hexadecimal
refers to a numbering scheme that uses 16 characters as its base, expressed in a combination of letters
and numbers. The decimal numbering system, on the other hand, uses 10 numbers as its base. A hex-
adecimal system uses 0-9 for the first 10 digits and A-F to represent the remaining 6 digits. Letter A cor-
responds to the number 10, B to 11, C to 12, and so on up to 15, which is represented by F. Hexadecimal
values are another way of expressing an RGB value. For instance, #FFFFFF refers to white, which is
expressed in RGB as 255, 255, 255. To switch from RGB values to hexadecimal, each channel is converted
to its hexadecimal equivalent, so each 255 becomes FF in hexadecimal. To calculate the hexadecimal
value, divide the RGB number by 16. The result is the first hexadecimal digit. The remainder from the
division becomes the second hexadecimal digit. The RGB value 255 divided by 16 equals 15 with a
remainder of 15. In hexadecimal, the number “15” is represented by “F”, so applying this formula results
in FF. The process is repeated for each RGB color channel, so the hexadecimal notation of 255, 255, 255 is
FF, FF, FF or #FFFFFFE. In CSS, hexadecimal colors are included just as RGB or color keywords are, as
shown in the following example.

div {
color: #000000;
background-color: #FF0000;
border: thin solid #FFA500;
}

#000000 is the hexadecimal representation of black; the same as RGB 0, 0, 0 or simply the black color
keyword. #FF0000 is a hexadecimal representation of red, or RGB 255, 0, 0, or the red color keyword.
Finally, #FFA500 is a hexadecimal representation of orange, or RGB 255, 165, 0, or the orange color
keyword.

Short Hexadecimal and Web-Safe Colors

There are 216 web-safe colors. A web-safe color is a hexadecimal color comprised of any combination of
the following: FF, CC, 99, 66, 33, 00, for a potential of 216 colors. These colors were originally identified
and given their web-safe name by Lynda Weinman, a graphic and web design guru and author of
numerous graphic and web design books. These 216 colors were identified as colors safe for cross-
platform, cross-browser use on computer systems capable of displaying only 256 colors; in other words,
8-bit systems. There are 216 colors, minus 40 colors reserved for use by operating systems. Different
operating systems, such as Macintosh OS and Windows OS, do not reserve the same 40 colors, so these
40 colors cannot be relied upon. If you attempt to use a color outside of the 216-color palette on a system
capable of displaying only 256 colors, the operating system may attempt to display the color through a
process called dithering. Dithering is a process in which the operating system attempts to mix two colors
that it is capable of displaying to get the requested color. While today the majority of computers are
comfortably able to display millions of colors, there is still one audience that is using devices that aren’t
capable of displaying that many colors, and that is people using cell phones and other small screen
devices to access the web.

Figure 2-24 shows a normal image.

Figure 2-25 shows the dithered image.

49

Part I: The Basics

Figure 2-24

50 Figure 2-25

Chapter 2: The Essentials

If you look at these two figures together, you should be able to see the effects of dithering. The image in
Figure 2-26 is pixelated and grainy; the image in Figure 2-25 is smooth and fluid.

Dithering causes all sorts of nasty things to happen to an image or solid color. In some cases a grid appears
on a solid background where the operating system attempts to display the color using two colors.

Hexadecimal notation is capable of expressing all 16,777,216 colors allowed by RGB. If a color outside
the web-safe palette is used, this leads to dithering. Short hexadecimal notation, on the other hand,
allows only the 216-color, web-safe palette:

div {
color: #000;
background-color: #F00;
border: thin solid #FFA500;
}

Only FF, CC, 99, 66, 33, and 00 are allowable in the web-safe palette, so the notation for these can be
simplified. FF becomes simply F, CC becomes C, 99 becomes 9, and so on. A single digit rather than two
represents the pair. So in this example, #000 refers to black and #F00 refers to red. #FFA500 is not repre-
sentable in short hexadecimal notation because A5 cannot be simplified to a single digit. Only pairs in
which both numbers have the same value can be converted to short hexadecimal notation.

Although in the past the web-safe pallet was frequently necessary for designers, today advanced graphic
cards capable of displaying millions of colors have become so common that the number of 8-bit systems
capable of displaying only 256 colors has fallen dramatically. Today; it is safer to design creatively with
color. The browser-safe pallet is not yet completely dead — it still has a place in designing web content
for display on PDAs and cell phones, most of which are limited to 256 colors.

The URI

CSS uses a special term — URI (Universal Resource Indicator) —when the location of a resource or data file
must be specified. The acronym URI is related to two other acronyms, URL (Universal Resource Locator),
and URN (Universal Resource Name). The ideas behind both of these specifications are combined to get
the URI, the term used in the W3C CSS specifications. URIs are most used in CSS for two purposes:

Q The inclusion of style sheets

Q The inclusion of background images
The URI is referenced using a special method, as shown in the following example:
background: url (mypicture.jpg);

The url () syntax is used to enclose the URI of the file being referenced. In this example, mypicture.jpg
must exist in the same directory as the style sheet. If the style sheet is named mystyle.css and it’s located
athttp://www.example.com/styles/mystyle.css, the mypicture.jpg file must also exist in the styles
directory, where its path is http: //www.example.com/styles/mypicture. jpg. The complete, abso-
lute path or the shortened relative paths are both acceptable references to the file. I address this topic
again in Chapter 10, “Backgrounds,” where I discuss the background property and the syntax it allows.

51

Part I: The Basics

Including CSS in a Document

CSS is very flexible regarding how you call it in a document. You can include CSS in a document in
four ways:

0O CSS can be included in a document by using embedded style sheets, which are included
between <style> and </style> tags directly in an HTML document, as demonstrated in
Figure 2-26. These tags must appear between the <head> and </head> tags.

<!CCTYPE atml PO2LIC SAMACYSDTD XHTML 1.0 Etrict/SEWC
. 3 1:14 nl 1Dy xbhamll -striot.dod >
#ml s leng="=n -

<html xmlans="htzpi/ e

“heeds
wipeta httg—ecuiv="cootent-Tyvoe’ cuntent="tedt/ltnl; clarset=0Trr-5" /=
et it lebbelectors and Sooupingess s it e

eEtyle tyme="teaxtfoge’
hl, Lz, hd, bd, K5, be {

Funt-familys sana-—-ga= s
color; mEroony
border-bothom: LgE acild rqiq200, 200, Z007;:
}
Aty e Frabedded stvla shaeds dppear batwes the
< fhzads “nbylos dne s Ssnyles lege, ard rost appes:
ooy mizltiert e < heade and = hasd= s,

1 vEEyLa Sheebke bl
SecRulee o
1. Be_pokartcn
~rd e larations s
iarFroperty e
SLevAiues Tl
wf b
wShtmlo
Figure 2-26

0 CSS can be included in its own document and linked to an HTML document by using the
<link> element, shown in Figure 2-27.

S TYPE L] TUALTE "-# JWIC/A0TE ¥HTHL 1.0 Bheick/ =
ez S e wli oo VR el LoD nkenl gt ek dEd "
whinl snlfs=" hbcp: SOewn o wioorg 19097 xhikn] . solzlang="mi" =
- Lz e
sk http-egulv="Contenc-Tvee " collbenk="texo Jibnl; charsoc=CTF=-3" J»
stitlosfcloctars and Grovping-ftitlos
£link rel='styleachest type='texticsp’ href=s'gp-ylechest.ocse' s

aF ends-

thdye Extarral arde shaets are included wia the <1 ks
Syl Bhipens f alemart. Like crmhoddend st shaols, the bene, foxlenss,
Fule: b A also requred. Tha re aiinbute, o relaticnsho atribabe
firleelen i TSl ke styeshact, and g pata oo GRS Al s

_' _'-"'-""-']-Jfﬂt—'-"-_ S mcludest in e brel atiitole,
s Y

Yalue-

g

<Shbml>

Figure 2-27
52

Chapter 2: The Essentials

Q CSS can be imported from within another style sheet by using an @import rule, as shown in

Figure 2-28.
Blmport(' ‘pathiocfstyleshoot . oss’ b Bimoert ruies gie dsed W inchade a sivkechsal ain
whhir & styleseat 0 inpoe s niles mnst sppass s
ki, h#, h3, ki, h3, ki | atiha tap ol & alyle ahaal, heloia ciarn stde 2hael
ot =Femily:s =uasim—re i 1Ules
lizkz 'H
rilar=bottoan s It 1 1 [+l Ci R Y
H
Figure 2-28

0 CSS can be included directly in an element in an HTML document by using inline styles with
the style attribute, as shown in Figure 2-29.

=tyle=" tpopi-Temilys senE-E=r1fp oDlDCF MACOSDO)f H==ding

el alples sre sapled cirssily Woar @lemenl vsing b siyle
arride Cinly declarations may appasy as 1ha stirisie =
vibie,

Figure 2-29

Each method has its own particular usefulness. The upcoming sections describe how you can use each of
these methods to include CSS in an HTML document.

Including an Embedded Style Sheet

You use the <style></style> tag set to include embedded style sheets directly in the document. You
can include HTML comment tags if you want to hide style sheet rules from non-equipped browsers.
Since HTML'’s early days, HTML has supported the capability of adding comment text to a document.
Comment text gives the web author the ability to add notes to a project so he can recall why he did
something in a certain way or to mark the sections of a document. In HTML, you add a comment by typ-
ing a left angle bracket, an exclamation mark, two dashes, at least one space, and then the comment text
itself. You close the comment by typing at least one space, two more dashes, and the right angle bracket.
Here’s what a comment looks like:

<!-- Hi. I'm comment text. -->

In the context of an embedded style sheet, comments have a special meaning. Because they appear
inside the <style></style> tags, they tell browsers that don’t support CSS to ignore the text that
appears between them. Modern CSS-equipped browsers, on the other hand, read the sequence of
<style>, followed by <! --, and know that style sheet rules appear there. This allows CSS to be hidden
from browsers that are incapable of interpreting it. The following snippet shows how you can use com-
ment tags to hide CSS from older browsers:

<style type='text/css'>
<l==

53

Part I: The Basics

body, td {
color: blue;

}

-——>
</style>

Older browsers simply ignore any CSS rules defined inside the HTML comments.
For the <style> tag to be strictly formed XHTML syntax, a type attribute is required for the <style>
tag. This is intended to tell the browser what type of syntax follows. For the purposes of CSS, the type

attribute appears in the <style> tag with a value of text/css, as shown in the preceding block of code.

The next section describes how CSS can be written in its own document and included in an HTML or
XHTML document.

Linking to External Style Sheets

54

The authors of CSS recognized that HTML-template creation is a common need. As such, the W3C body
made recommendations that allow external style sheets to be included in a document from within
HTML or XHTML by use of the <1ink> element or from within a style sheet itself using the @import
rule. External style sheets are the preferred method of CSS inclusion in a web document. External style
sheets can be cached by the user’s browser. This frees the user, who no longer needs to download the
web page or website’s style sheet on every page request. This also ensures that documents load very
quickly, which is another feature of CSS that conserves expensive bandwidth.

Here’s a demonstration of the <1ink> element method:
<link rel='stylesheet' href='/path/to/stylesheet.css' type='text/css' />
The following attributes are required to use the <1ink> element for linking to a CSS document:

0 rel: Defines the relation between the external document and the calling document. In this case,
the relation is that the external document is the style sheet for the calling document.

Q href: Like the anchor tag, <a>, href stands for hyperlink reference. It accepts an absolute or
relative path to the style sheet document.

0 type: Refers to the MIME type of the external file.

An absolute path means the complete path to the file. For instance, http: //www. example.comis an abso-
lute path. A relative path triggers the application to find the document relative to the requesting document.
So if the example file’s URLis http: //www.example.com/example.html and the CSS document is
stored in the stylesheets directory as stylesheet.css, the relative path included in <1ink> is stylesheets/
stylesheet.css and the absolute path to the document is http: //www.example.com/stylesheets/
stylesheet.css or /stylesheets/stylesheet.css.

A style sheet is really easy to set up, and I discuss this in the next section.

Chapter 2: The Essentials

How to Structure an External CSS Document

External style sheets are essentially the same thing as embedded style sheets; the key difference is that

no markup exists in a CSS file. When you create an external, independent CSS document, it must be cre-
ated using the . css file extension.

An external CSS document may contain nothing but CSS rules or comments. A CSS document cannot
contain any markup; see how this is done in the following Try It Out.

Try It Out Linking to an External Style Sheet

Example 2-9. To link to an external style sheet, follow these steps.

1. Enter the following XHTML document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>

<meta http-equiv='Content-Type' content='text/html; charset=UTF-8' />
<title>Selectors and Grouping</title>

<link rel='stylesheet' type='text/css' href='stylesheet.css' />
</head>

<body>
<hl>Style Sheet</hl>
<h2>Rule</h2>
<h3>Selector</h3>
<h4>Declaration</h4>
<h5>Property</h5>
<h6>Value</h6>

</body>

</html>

2. Save the XHTML document as Example_2-9 .html.

3. Inanew document, enter the following CSS:

hl, h2, h3, h4, h5, h6 {
font-family: sans-serif;
color: maroon;
border-bottom: 1px solid rgb (200, 200, 200);

4. Savethe CSS as stylesheet.css in the same folder that Example 2-9.html was saved in.

5. Load up the document in a browser. You should see output that looks like Figure 2-6.

How It Works

The embedded style sheet between the <style>... </style> tags has been replaced with an external
style sheet by placing the rules inside the embedded style sheet into their own document, saving that
document with a . css file extension, and then linking to the new file by including the <1ink> element
in the XHTML document. One of the benefits of an external style sheet is that it allows the same style

55

Part I: The Basics

rules to be applied to as many documents as the author wishes. This is one of the key benefits of CSS-
based design. An external style sheet offers flexibility to the author that saves both time and resources.

Importing Style Sheets

You can also link to an external style sheet by using the @import rule. Here’s a demonstration:

<style type='text/css'>
@import url (path/to/cssdoc.css);
</style>

This example uses the <style></style> method but includes the @import notation. It’s very straight-
forward: Plug in the @import rule followed by the url (), which may contain an absolute or relative path.

The @import method is not supported by older browsers, and it is sometimes used as a hack to hide
styles from browsers that would crash horribly if these styles were present. One such browser is
Netscape Navigator 4, which has horrible CSS support and has been known to lock up when certain
styles are present.

The next section describes how styles can be included inline, directly on elements, by using the style
attribute.

Inline Styles

The last method for including CSS in a document is from within the XHTML elements themselves.
Sometimes it doesn’t make sense to clutter your external or embedded style sheets with a rule that will
be used on only one element in one document. This is where the style="" attribute comes into play; it's
demonstrated by the following markup:

<table style="border: lpx solid black; margin: auto;">
<tr>
<td style="text-align: right; font-size: 18pt;">
Some text aligned left.
</td>
</tr>
</table>

This method allows for the text to be formatted from within the document and may be applied to any
rendered element.

The following Try It Out demonstrates how the style attribute is used to add styles directly to the ele-
ments of a web document.

Try It Out Including CSS Using the style Attribute

Example 2-10. To use the style attribute to apply styles directly to the elements of a document, follow
these steps.

56

Chapter 2: The Essentials

1. Returnto your text editor and enter the following XHTML.:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8' />
<title>Selectors and Grouping</title>
<link rel='stylesheet' type='text/css' href='stylesheet.css' />
</head>
<body style='font-family: sans-serif; color: maroon;'>
<hl style='border-bottom: 1lpx solid rgb (200, 200, 200);'>
Style Sheet

</hl>

<h2 style='border-bottom: 1lpx solid rgb (200, 200, 200);'>
Rule

</h2>

<h3 style='border-bottom: 1lpx solid rgb (200, 200, 200);'>
Selector

</h3>

<h4 style='border-bottom: 1lpx solid rgb (200, 200, 200);'>
Declaration

</h4>

<h5 style='border-bottom: 1lpx solid rgb (200, 200, 200);'>
Property

</hb>

<h6 style='border-bottom: lpx solid rgb (200, 200, 200);'>
Value

</h6>

</body>

</html>

2. Save the preceding document as Example 2-10.html

3. Load up Example 2-10 in your favorite browser. You should see output like that in Figure 2-6.

How It Works

Note that the output is identical to output of the earlier example shown in Figure 2-6. The style
attribute allows CSS declarations to be included directly in the XHTML element. The style attribute,
however, is not as dynamic as a style sheet. It gives you no way to group repetitive rules or declarations.
The style attribute should only be used when a more efficient method is not available (if, for example,
the element to be styled does not appear on multiple pages).

Summary

Throughout this chapter you learned about the bits and pieces that make CSS work. You learned the
following:

Q Style sheets are made up of rules.

O Rules are made up of selectors and declarations.

57

Part I: The Basics

(]

o O

U 0 U oo

Q

Declarations are made up of properties and values.
Values can be keywords, lengths, colors, strings, integers, real numbers, or URIs.

The em measurement is better for onscreen layout. Absolute units such as inches and centi-
meters are better for print layout. The pixel unit should be used where the user’s font size
preference won't be a factor.

Dithering is a method of mixing known colors to simulate an unknown one.

RGB is additive color. The colors red, green, and blue are added to each other in varying intensi-
ties to produce every color on the rainbow.

Hexadecimal color is just another way of expressing RGB color.

Short hexadecimal is a way of expressing web-safe colors.

The URI is used to include style sheets and background images (external documents) in CSS.
Style sheets can be embedded directly in an HTML document with the <style> element.

A style sheet can appear in its own document, and linked to from an HTML document using the
<link> element, or linked from a style sheet using the @import rule.

Styles can be included inline, directly in an HTML element using the style attribute.

Chapter 3 continues the discussion with selectors.

Exercises

58

1.
2.

No OaR®

Style sheets are made of what?

What's the difference between when width: auto; is applied to a <table> as opposed to a
<div> element?

Complete the sequence: Declaration, Property,

Convert the color RGB(234, 123, 45) to hexadecimal.
What is the shortened hexadecimal notation of #FFFFFE?
When does dithering occur?

If I have a style sheet located at http: //www.example.com/stylesheet.css, and a web page
located at http: //www.example.com/index.html, what markup would I include in
index.html to include stylesheet.css via a relative path?

Selectors

In this chapter, you learn about the different types of selectors that CSS supports. In Chapter 2,
you learned about the type selector, which is a selector that applies style sheet declarations by
using the HTML element’s name. “Selectors” is an area of CSS that I discuss that has spotty sup-
port with regards to IE 6. To those ends, as I introduce each section, if a selector is not supported
by IE 6, I note that. IE 7 features much better selector support, and in fact supports nearly all of the
selectors discussed in this chapter, but there are a few selectors that IE 7 doesn’t support. This is
also noted where appropriate. Other browsers such as Mozilla Firefox, Safari, and Opera all have
excellent support for the selectors discussed in this chapter. With each example, I note what
browser you should use to view the example, and which browsers the example won’t work with.

You may wonder why I bother discussing selectors that don’t work in IE 6. I chose to include the
selectors with at least some browser support, because each reader’s needs and development
requirements are different. If you are, for instance, developing a corporate intranet-based applica-
tion in which you have full control over the browser the end user is using, your needs are different
from someone who is developing a publicly-accessible Internet website. Someone developing a
corporate intranet site can, for instance, choose Mozilla Firefox as their development platform,
rather than IE 6, or that corporation may choose to upgrade to IE 7. In short, not everyone has the
same end-user requirements for browser usage, and this book is written with that in mind.

You can also use JavaScript applications that enable a greater spectrum of CSS support in IE 6.
JavaScript is a programming language that you can use to create scripts that are included in an
HTML document in much the same way as CSS. JavaScript opens up possibilities that HTML and
CSS alone aren’t capable of. Using JavaScript technology, you can give IE 6 CSS capabilities that
are impossible without it. When you use JavaScript, most of the very same examples that you
encounter in this chapter that don’t work in IE 6, can work in IE 6 flawlessly and reliably, and
without the end user having to upgrade IE 6 or take any other action. I discuss how you, too, can
harness this incredibly useful, and seemingly magical, technology in Chapter 16, available at

www . wrox.com/go/beginning_css2e. The best part is, you need no experience programming
JavaScript to use the technology that I present in Chapter 15. So, if you feel discouraged by IE 6’s
lack of support for many of these useful selectors, continue on; there are hackadelic methods yet to
be discussed.

Part I: The Basics

You may also wish to see more practical applications of the features presented in this chapter. If that is the
case, I provide some real-world projects at the end of this book that help you to put CSS into a real-world
context. As is the case throughout this book, I present all the bits and pieces of the language with proof-of-
concept examples, and then later in the book you see how to put it all together with some real, skill-
building projects. Alternatively, you may also be interested in my book CSS Instant Results (Wrox, 2006),
an intermediate-level CSS book that focuses on real-world projects exclusively.

I'begin the discussion of selectors with the most common and widely supported selectors, class and id
selectors.

Class and ID Selectors

Class and id selectors are the most widely supported selectors. In fact, they are as widely supported as
the type selector introduced in Chapter 2. There are two types of selectors. The class attribute is more
generic, meaning it may encompass many elements in a given document, even elements of different
types or purposes. On the other hand, you can use the id attribute only once per document. The name
id tells you that the id must be unique. Besides using it in CSS, you can also use an element’s id to
access it via a scripting language like JavaScript. You can also link to the location of the element with an
id name using anchors. Anchors are appended to URL:s to force a browser to go to a specific place in a
document. So the id attribute serves more than one purpose. Think of it as an element’s address inside a
document —no two addresses can be the same. The discussion continues with class selectors.

Class Selectors

Figure 3-1 is an example of a class name selector.

& Lot Deging 8 ClaEs NEMe salacior Nt sUde sheal, 1w
-A5E Nama 15 & name ket you maks Jp. The Ziass nara
= typler ity coly eomoslsee of letors nombass ar bypnens

Figure 3-1

The class name selector begins with a dot, followed by the class name itself, which you choose. Typically,
the class name is comprised of letters, numbers, and hyphens only, since this provides the best compati-
bility with older browsers. Class names also cannot include spaces. In Figure 3-2, you see the element
that the class name planet applies style to in the HTML document.

60

Chapter 3: Selectors

Ziiv olaps="plans=t >
«1mg sro= imAagessCrpitaT.prg’ alt="Topiter’ S
i
Tha dezs nane 15 inclidad i e HTRL
panUmert usng 1 o lana ottdbobe.

Figure 3-2
The dot appearing before the class name in the CSS rule tells CSS that you are referencing a class selec-

tor. The dot does not need to appear in the class attribute value itself; in fact it cannot, because the
value of the class attribute is just the class name itself.

When used in this context, the type of element doesn’t matter. In other words, you can also apply the
class to other elements, as is illustrated in Figure 3-3.

iy alasa="planst =
ving sro="imagesSupiter.prg’ elt="Jupiter’ clase="planet

Rl Ry
Calaases miatrrees oot e fo by speacilic o e of
alpmar, The <dis= slenar ang 18 <ina> alemert
oo bt howe a elass name of planst | desired.
Figure 3-3

The same rule applies to the element as applies to the <div> element. Both now have an absolute
position, offset from the top zero pixels, offset from the left of zero pixels, and offset from the bottom of
15 pixels. What if you wanted to give both the <div> and element the same class name, but have
a style sheet rule that applies to <div> elements, but not elements? You can do that, too. Limiting
a class selector to a type of element is demonstrated in Figure 3-4.

Aapnnd a class salaror with A typr salecar @ bmi 1he
div.planat | byl shesd ruke b2 a cartan bige af elemart,

Figure 3-4

In Figure 3-4, you see the combination of two types of selectors that you are already familiar with, the
type selector from Chapter 2, and the class selector. When you append a type selector to a class selector,
you limit the scope of the style sheet rule to only that type of element. In Figure 3-4, the rule is limited so
that it only applies to <div> elements, causing it to no longer apply to elements, or any other
type of element for that matter. You can still create additional rules that reference other elements, such as
a new rule that only applies to elements with a class name of planet, such as img.planet, but
the rule that you see in Figure 3-4 applies exclusively to <div> elements with a class name of planet.

61

Part I: The Basics

Elements can also be assigned more than one class name. Figure 3-5 shows an example of this.

el e lase="plane . ool ler e
Cihej BLC="Llmacams joailer pies ' dll="Toxl g Clams=planel' v
1-'+l e

Bl i e annes Gan Leapaliaad W oa giny o glananl
LCach clzss mam= must oe separabec oy 2 $rgle soacs.

Figure 3-5

The value of this class attribute actually contains two class names: planet and jupiter. Each class
name in the attribute is separated by a space. In the corresponding style sheet, the two classes may be
referenced by two separate rules, as illustrated in Figure 3-6.

div . olanslh
IR <d lere w01 2050 planet and Susoicwer Slgss rames oon B

elenenonn by feen separale rules.

div, jupiter (
lefty O3
L

Figure 3-6

The two style sheet rules in Figure 3-6 result in the <div> element with both planet and jupiter class
names receiving the declarations of both rules.

The class names may also be chained together in the style sheet, as shown in Figure 3-7.

divonlanat. oplrar 0 UAgE REMEE can fe chalnad (o ore anoher b refsrencss en alaman

Lestg vg gl fras i Dplke cdse nane salogs,

Figure 3-7
The preceding rule applies only to elements that reference both class names in their class attribute.
IE 6 interprets chained class names per the CSS 1 specification, which did not allow chained class names
in the style sheet. In IE 6, only the last class name in the chain is recognized. In the preceding example,

IE 6 would interpret the .planet. jupiter selector as . jupiter only. This has been fixed in IE 7.

Whereas classes are meant to reference more than one element, ids are meant to reference only one ele-
ment in a document.

62

Chapter 3: Selectors

ID Selectors

id selectors are unique identifiers; an id is meant to be unique, defined once per document. Like class
selectors discussed in the previous section, a special character precedes id selectors in a style sheet. To
reference an id, you precede the id name with a hash mark (or pound sign, #). Like class names, this
name cannot contain spaces. You should use names that only include letters, numbers, and spaces for
compatibility with the older browsers. You see how this is done in Figure 3-8.

£ i A An i seleclzr beqins aith A hash mers foe, o gnn presern, the anond sign e,
lesty vz han likalhs claze selachar, tha hash mans £ holawsad by e d nsira ol the

} el

Figure 3-8

Since there’s only one Jupiter in the solar system, Jupiter lends itself as a good example of the concept of
an id selector. Just as there is only one Jupiter in the solar system, the id name jupiter can be used only
once in a document, on one element.

Browsers are forgiving of multiple id names per document as far as style sheets are concerned. However,
using an id name more than once in a document can cause conflicts with other applications of unique id
names. For example, id names can be used to link to a location within a document (as HTML anchors),
or when referencing an element by id name from JavaScript. When you have an id name appearing more
than once in the HTML document, on more than one element, the browser won’t know which one you're
linking to, or which one you want to refer to from JavaScript, and will have to guess. It’s best to just use
the id name for its intended purpose, just once per document.

An id name must be unique in so far as other id names are concerned. An id name may be repeated as a
class name, should you want to do so.

The element can then be defined in the document using the id attribute. This is demonstrated in Figure 3-9.

wdiy fd="Tipiban >
Cimg wre="inagess Jopiter.prg | oalt="Jupiter’ slages planest fe
i L . . .
The i raree iz ivcdudas in tie HTRAL docuarenl usiog Ui a8 sl oot

Figure 3-9

You can make both class and id selectors more specific by appending the name of the element to the
beginning of the selector. For instance, if in the last examples you only want <div> elements for each
rule, the selector will look like what you see in Figure 3-10.

R S TR R 28] .
Pmtgn s Liwz class ankcsars, an i selecfor can oo preperned w000 a Dpe selkestar
' ! I rigka i gelaclor sppey ok 1o g certain tvpa of alanant

Figure 3-10

63

Part I: The Basics

Now each rule is applied only to <div> elements that contain the corresponding class and id names. You
may wonder why this is useful for an id selector, since an id element has to be unique in a document.
Appending the selector with the type of element is useful in situations where one style sheet applies to
more than one HTML document, where it’s possible that you have a unique id in one of those docu-
ments that applies to for instance, an element, but in another, separate document, that unique
id name applies to a <div> element. Of course, it’s best practice to avoid situations like that by making
each element’s 1d name unique, even in different documents, to avoid confusion. Sometimes, it can’t be
avoided. The other reason this is useful is that it makes the style sheet more intuitive and easier to fol-
low. When you are reading a style sheet and see the id name jupiter but no type selector, that id can
apply to any element in the document and would require you to scan the whole document from top to
bottom without any other search criteria. With the type selector appended, you can narrow the search;
if the element is a <div> element, then you know that the id selector doesn’t apply to images, links,
paragraphs, and so on.

Although the id must be unique, in these examples you can name only one element jupiter. The CSS
style sheet, however, may contain as many references to that id as are necessary. The uniqueness rule
only applies to naming the elements, not the references to them. You can apply classes, on the other
hand, to as many elements in the body as necessary.

Now that you've had a proper introduction to the different types of things that id and class name selectors
are capable of, try the following proof-of-concept exercise that lets you see how id and class selectors work.

Try It Out Class and ID Selectors

Example 3-1. To see how class and id selectors work, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Class and ID Selectors</title>
<link rel='stylesheet' type='text/css' href='Example 3-1l.css' />
</head>
<body>
<p class='container'>
A class represents something that you can have more than one of.
You aptly name your class to reflect the type of item that you
may or may not have more than one of. The class name for this
paragraph is <i>container</i>. It could very well be that you
have many containers, or just one.
</p>
<p class='container box'>
You can chain together class names within the class attribute.
From a purely semantic standpoint, the class names may or may
not have a relationship with each other. Here, the class names
are <i>container</i> and <i>box</i>. It could be said that boxes
and containers are related, since <i>box</i> is a type of
<i>container</i>.

64

Chapter 3: Selectors

</p>

<p class='container tank'>
It is wise to put thought behind the naming conventions you use
within a document. Here, <i>tank</i> is another type of
<i>container</i>. All containers have some properties in common.
Dimensions, color, volume, etc. But some containers may have
properties that are unique to that container. Perhaps it has a
different color, or capacity, or is intended to hold a different
kind of material.

</p>

<p class='container' id='container-1234'>
An i1d is used but once per document. Semantically speaking, the
id should be able to identify uniquely, and be descriptive.
You may have several containers, but only one container has the id
<i>1234</i>. Since only one container is named <i>1234</i>, it
becomes easier to find that container among the others.

</p>

</body>
</html>

2. Save the preceding document as Example 3-1.html.
3. Enter the following style sheet into your text editor:

body {
font-family: sans-serif;
}
p.container {
border: 1px solid rgb(29, 179, 82);
background: rgb (202, 222, 245);
padding: 10px;
width: 245px;
height: 245px;
float: left;
margin: 10px;

}

p.box {
border: 1px solid rgb(69, 199, 115);
background: rgb(164, 201, 245);

}

p.tank {
border: 1px solid rgb (107, 214, 145);
background: rgb(124, 180, 245);
clear: left;

}

p#container-1234 {
border: 1px solid rgb(154, 232, 181);
background: rgb(82, 157, 245);

4. Save the preceding style sheet as Example_3-1.css. Figure 3-11 shows what Example 3-1
looks like when rendered in Safari. You should see something similar in Firefox, IE 6, IE 7, and
Opera.

65

Pa

rt I: The Basics

Figure 3-11

How It Works

66

In Example 3-1, you put your newly acquired class and id selector skills to use. The following is a rule-
by-rule review of the relevant class and id styles you applied in Example_3-1.css.

First, you created a rule that is applied to all four <p> elements, since all four <p> elements have a class
name of container. You were able to select all four elements because each <p> element in the document
has a container class name in the value of the class attribute that appears on all four <p> elements.

p.container {
border: 1px solid rgb(29, 179, 82);
background: rgb (202, 222, 245);
padding: 10px;
width: 245px;

Chapter 3: Selectors

height: 245px;
float: left;
margin: 10px;

Since the preceding rule applied to all four <p> elements, it set common properties such as dimensions
using the width, height, padding, border, and margin properties. You learn more about these proper-
ties in Chapter 7, “The Box Model.” For now, just examine how the p.container selector is working to
select the elements, rather than the actual styling being applied.

In the next rule, you selected the next <p> element that also has two class names, box and container.

p.box {
border: 1px solid rgb (69, 199, 115);
background: rgb(164, 201, 245);

Although you could have chained the class names in the style sheet by using the selector p. container
.box, you avoid doing this since there are known problems with this approach in IE 6. IE 6, on the other
hand, supports just fine multiple class names in the class attribute. Referencing just the box class name
allows you to select the element, too. You give the element a slightly richer shade of light blue, and a
slightly lighter green border than was specified in the previous rule, which referenced all four <p> ele-
ments by the class name, container. You see that the background and border declarations set here
overrode the previously set background and border declarations in the first container rule; you'll learn
more about this in Chapter 4, “The Cascade and Inheritance.”

In the next rule, you set properties on the <p> element with both the class names container and tank.
Again, you gave the element an even richer light blue background (compared to the last rule, which was
applied to the <p> element with container and box class names).

p.tank {
border: 1px solid rgb (107, 214, 145);
background: rgb(124, 180, 245);
clear: left;

In the last rule, you used an id selector to select the fourth <p> element, which has an id attribute set
with a value of container-1234. For the fourth <p> element, there is an even richer still light blue
background, and an even lighter green border around it.

p#container-1234 {
border: 1px solid rgb(154, 232, 181);
background: rgb(82, 157, 245);

Now that you have worked through this simple, proof-of-concept demonstration of class and id selec-
tors for yourself, continue to the next section, which discusses the universal, or wildcard selector.

67

Part I: The Basics

The Universal Selector

The universal selector is an asterisk. When used alone, the universal selector tells the CSS interpreter to
apply the CSS rule to all elements in the document. Figure 3-12 shows what a universal selector looks like.

LY an astemsl m fwidzamd sekecar or vnveesal selechar
vnrdars i When nduded alone gl Slemantz ir e dacamend ara
EQleniac,
Figure 3-12

This rule is applied to all elements contained in the document. The universal selector applies to every-
thing, including form input fields and tables of data. It applies style to any and every element present in
a document.

Try It Out The Universal Selector

Example 3-2. To see how the universal selector works, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Class and ID Selectors</title>
<link rel='stylesheet' type='text/css' href='Example 3-2.css' />
</head>
<body>
<hl>Universal Selectors</hl>
<p>
Universal selectors are wildcard selectors.
</p>
<p>
When a universal selector is used alone, all elements
within a document are selected.
</p>
<p>
Even form elements are selected.
</p>
<form method='post' action='Example_3-2.html'>
<fieldset>
<legend>Feedback Form</legend>
<table>
<tbody>

68

Chapter 3: Selectors

<tr>
<td><label for='topic'>Topic:</label></td>
<td><input type='text'
name="'topic'
id="'topic"
value='Universal Selectors'
size='25"' />
</td>
</tr>
<tr>
<td><label for='feedback'>Feedback:</label></td>
<td>
<textarea cols='55"' rows='10' name='feedback' id='feedback'>
Universal selectors have some practical applications.
For instance, when debugging styles you can select
all elements and apply a border to see dimensions.
This could help you identify rogue elements causing
undue disorder in a document.
</textarea>
</td>
</tr>
</tbody>
</table>
</fieldset>
</form>
</body>
</html>

2. Save the preceding document as Example_3-2.html and load it into your favorite browser.

3. Enter the following CSS into a new document in your text editor.

body {
font-family: sans-serif;

}

* {
border: lpx solid yellowgreen;
color: green;
padding: 5px;
font-weight: normal;
font-size: 12px;

}

4. Savethe preceding styles as Example_3-2.css. After loading Example 3-2 into your browser,
you should see output similar to that of Figure 3-13.

69

Part I: The Basics

Figure 3-13

Figure 3-13 shows the results from Mac Firefox. Safari 2.0 produces similar results; the difference being
only the font color is applied to the form elements. Safari 2.0 does not support custom styling of form
elements very well. However, later versions have made progress in this area. IE 6 and IE 7 also differ
slightly from the output here, in that the <label> elements are missing the top border, which is
because of a bug in IE. While the results are not perfect from browser to browser, you get the idea of
what the universal selector does.

How It Works

70

The concepts at play in Example 3-2 are very simple; the universal selector is included in the style sheet
as an asterisk. The declarations in the rule that follow the asterisk are applied to all of the elements that
appear in the document, provided that element is allowed to have the property in question applied.
For instance, the <tbody> and <tr> elements do not accept most visual styles (borders, padding, and
dimensions, for example). The universal selector, alone, doesn’t have much practical application,
although as previously mentioned, it can be helpful for debugging styles and highlighting element
dimensions in complex documents. By applying a border to all elements, you are able to immediately
see the space an element occupies.

Chapter 3: Selectors

The universal selector can also be used with other kinds of selectors, such as contextual selectors, also
known as descendant selectors.

Descendant Selectors

Descendant selectors apply style based on whether one element is a descendant of another. In CSS,
descendant means an element that is a child, grandchild, great grandchild, and so on, of another element.
This type of relationship is referred to as an ancestral relationship. Take for example the document in
Figure 3-14. If you were looking to map the ancestral relationship between the elements in Figure 3-14,
you would see a tree like that in Figure 3-15.

Sy R bem] UL T T SR ST R S RIS R TR B
‘hetz: Ffwww . wl.org/ RS chtml L70rDyxhen] lastoiot dtd™ s
shinl snlns-"hk e Sfwwn o wi3oorg 1809 7 xhilnd s salzlang="ai '
slzad s
C IR (TP N T F
7 esd s
R

sdoy id='hoading =
<kl shomeptral Relat-2onechips fmone TN 3lensnbs

<p=
& omtedy of linesars in sogle-broecket cotuments.
<
2 Sl
sl ad="hde s
-'_.p._\
Neritwgs is inportant in 079G Socansnte . Cne s ement
tomt =l1 =lements have 1o common L5 the
vmper lapas=" 0l ine-code 0 EIES R Aagb i v panie
-::_.'15;:-
g
ABacmelral relacionshipa alfTasl anclhine S8R Taoliorea,
vimirheritanceclis o which 1 discampa in Chustar 4,
R
e
“a Bral="hl Loz S plpawras . con " »Wras PITSar 18 a gimal.
wlace to go when vou have cochnical cwussciomns.
R
2 dive
o e
</html=
Figure 3-14

As a web designer, you get used to visualizing markup documents as a tree. Perhaps not as a real tree, as
you see in Figure 3-15, but visualizing the lineage of an element. The concept of ancestral relationships
between elements is a fundamental cornerstone to web development, and as you read on throughout
this chapter and Chapter 4, you'll see that ancestral relationships play a large role in CSS development.

71

Part I: The Basics

Figure 3-15

Descendant selectors apply style based on the lineage of an element. Keeping in mind the markup pre-
sented in Figure 3-14, one example of a descendant selector appears in Figure 3-16.

AnNcesine [nserndant
Jescendari sakeciare bagin wih an ancesior selacior, alloaed
i dtedy| Rpeit. o7 §asecede £ Dy e deseendanl o e ancasion
font - fantle: iyl mber] s Latu)

H
Thez sz bedvesen the seleciors ndicasss o descemdant elatianskip.

Figure 3-16

Descendant selectors are used to select an element based on the context it appears in the document. In
the example code in Figure 3-16, you select a element with an inline-code class name, and
apply the monospace font to it, but only if the inline-code element is a descendant of the
<div> element with a body id name.

Descendant selectors aren’t limited to just two elements; you can include more elements in the ancestral

lineage, if it suits your needs. Each selector in a descendant selector chain must be separated by a space.
This is demonstrated in code in Figure 3-17.

72

Chapter 3: Selectors

od can Includs pE ATy S STHTE 19 e liMeage a8 il

T T B wart . Eacn aslanceir a desdisadart selectae oFaa roar
. e - = = T e umpermles] by i osise

i it - F st e omen

.
:

Figure 3-17

In fact, the entire lineage from the eldest ancestor, the <html> element, down through the generations to
the element you want to select, can be included in a descendant selector chain.

Descendant selectors can also be combined with the universal selector. You can see an example of this in
Figure 3-18.

The untearssl seleclor can e el a8 pert o 8 dasteniant salactar
divgbedy p| §
border: (ox scl d orsase;

H
Figure 3-18

The universal selector can appear in any part of a descendant selector. When it is included, it is a wild-
card. In Figure 3-18, you select all descendants of the body <div> element.

Because descendant selectors are part of the oldest CSS 1 specification, they are the widest supported
contextual selector. The upcoming sections (through to the section titled “Attribute Selectors”) are CSS 2
selectors, which are not supported by IE 6.

In the CSS level 1 specification, descendant selectors are referred to as contextual selectors. The name

change was made in the CSS level 2 specification. The name change likely resulted from new selectors in
CSS 2, several of which can also be considered contextual because their selection is based on the context

in which the target element appears in the document.

Try It Out Descendant Selectors

Example 3-3. To see how descendant selectors work, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Descendant Selectors</title>
<link rel='stylesheet' type='text/css' href='Example_3-3.css' />
</head>
<body>
<hl>Descendant Selectors</hl>
<p>
Descendant selectors apply styles based on ancestral relationships.

73

Part I: The Basics

74

2.
3.

4,

The first descendant example I present applies style to the

 element named code,
which is a descendant of <p> elements.
To do this, the selector p span.code is used.

</p>

<p>

Using CSS, styles can be applied to any number of documents. Since
this is the case, there may be
elements with a class name of code in several documents, but
have different styles applied depending on the context it appears,
which is the exact situation the inventors of the descendant

selector had in mind when it was conceived.

</p>
<p class='note'>

The note text is given different styles. To do this another descendant
selector is used. This time the selector is p.note
span.code

</p>

</body>
</html>

body {

Save the preceding document as Example_3-3.html.

Enter the following CSS in a new document in your text editor:

font-face: sans-serif;

}
hl {
margin:

border:

5px;

1px solid rgb (200, 200, 200);

background: rgb(234, 234, 234);

padding:

margin:
}
p.note {

S5px;
5px;

background: yellow;

border:
}

span.code {

lpx solid gold;

font-family: monospace;

padding:

}

p span.code

0 10px;

{

background: yellow;

}

p.note span.code {
background: lightyellow;

Save the preceding CSS as Example_3-3.css. This example results in the output you see in

Figure 3-19.

Chapter 3: Selectors

Figure 3-19

How It Works

Descendant selectors apply style based on an ancestral relationship. The first example of descendant
selectors that you see in Example 3-3 is p span. code. This selector selects elements with class
names of code, but only when they appear as descendants of <p> elements. That is to say, when a
element exists in the document and it has a class name of code, and it is the child, grandchild, great
grandchild, and so on, of a <p> element, those elements receive a yellow background.

The second example of descendant selectors in Example 3-3 is p.note span.code, where two type and
class selectors are included in a descendant selector. In this selector any <p> elements appearing in the
document with a class name of note that have descendant elements, which have a class name of
code, receive lightyellow backgrounds.

Descendant selectors allow you to apply style based on ancestral relationships. In the next section, you
see a similar selector, the direct child selector, which also applies style based on an ancestral relationship,
but a narrower, more specific ancestral relationship, parent and child.

Direct Child Selectors

Direct child selectors operate much like descendant selectors in that they also rely on an ancestral rela-
tionship to decide where to apply style. Descendant selectors, however, are more ambiguous because
they apply to any descendant of an element; the descendant can be a grandchild or a great-grandchild,
or a great-great-grandchild, and so on. Direct child selectors apply only to immediate children of the ele-
ment. This is achieved by introducing a new syntax for the selector. Figure 3-20 is an example of a direct
child selector.

75

Part I: The Basics

76

IE 6 does not support direct child selectors natively; see this book’s website at www.wrox.com/go/
beginning_css2e for compatibility help.

Likr: neseerdant salectar. drect child seloebars @0

p v wpan.inlins-cods 4 aiwained legelher ool instean ol o space, g presar-lban
Sontefamilel momcsproc symiznl far right angle arecket] is used in sepasmn razh

L - alemerl in b saleclion

Figure 3-20

In Figure 3-20 you see that the greater than sign (or right angle bracket), >, is used in the style sheet
to select an element in the HTML document. In Figure 3-20, you see a parent/child relationship in
the direct child selector, p > span.inline-code. In order to apply the declaration font-family:

monospace;, the element with the class name inline-code, must be the child of a <p>
element.

Direct child selectors are selectors that depend on the context that an element appears in a document.
The context in this case is a parent/child relationship. Like descendant selectors, a direct child selector
chain can have as many elements as you like; an example of this is shown in Figure 3-21.

o irclue a5 rrany 2lerenis in e cirect child
Aivencdyl = pl» kpan.inline-code | #* salor Sain a8 nessssar.
Tont-tamt 1§yt menApane]

L
:

Figure 3-21

In Figure 3-21, you see two parent/child relationships represented in one selector. The <p> element is a

direct child of the <div> with an id name of body and the with a class name of inline-code is
a direct child of the <p> element.

You can also mix selectors, if you have need of it. Figure 3-22 shows mixing descendant selectors with
direct child selectors.

diraes ohid and dascendant sslecsoes can B2 mixed fngathes
divébody * p epan.inline—cods
Tont-famt Iy1L mencspaos)

.
:

Figure 3-22

In fact, you can mix and match selectors in pretty much any way imaginable — direct child selectors

with descendant selectors, with universal selectors. CSS is very flexible in this regard, provided browser
support for the selector exists.

Chapter 3: Selectors

Try It Out Direct Child Selector

Example 3-4. To see how the direct child selectors work, follow these steps.

1. Using the markup in Example_3-3.html, make the following highlighted changes:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>

<head>

<title>Direct Child Selectors</title>
<link rel='stylesheet' type='text/css' href='Example 3-4.css' />

</head>
<body>

<hl><ins>Direct Child</ins> Descendant Selectors</hl>

<p>

</p>

<p>

</p>

<ins>Direct Child</ins> Descendant selectors apply styles
based on <ins>parent/child</ins> ancestral relationships.
The first <ins>direct child</ins> descendant example I
present applies style to the

 element named code,
which is a descendant <ins>child</ins> of

<p> elements.

To do this, the selector p <ins>></ins>
span.code is used.

Using CSS, styles can be applied to any number of documents. Since
this is the case, there may be
elements with a class name of code in several documents, but
have different styles applied depending on the context it appears,
which is the exact situation the inventors of the descendant
<ins>child</ins> selector had in mind when it was conceived.

<p class='note'>

</p>

</body>
</html>

The note text is given different styles. To do this another
descendant <ins>direct child</ins>

selector is used, this time the selector is

p.note <ins>></ins> span.code

2. Savethe preceding markup document as Example_3-4.html.

3. Using the style sheet that you made for Example 3-3, Example_3-3.css, make the following
highlighted changes.

body {

font-face: sans-serif;

}
hl {
margin:

S5px;

77

Part I: The Basics

del {
color: crimson;
}
ins {
color: forestgreen;

p {
border: 1px solid rgb (200, 200, 200);
background: rgb (234, 234, 234);
padding: b5px;
margin: 5px;

}

p.note {

background: yellow;
border: 1px solid gold;
}
span.code {
font-family: monospace;
padding: 0 10px;
}
p > span.code {
background: yellow;
}
p.note > span.code {
background: lightyellow;
}

4. Save the preceding style sheet as Example_3-4.css. The preceding example results in the ren-
dered document pictured in Figure 3-23.

Figure 3-23

78

Chapter 3: Selectors

How It Works

As is illustrated in Example 3-4, the direct child selector is pretty similar to the descendant selector. In
most situations you can get away with using a descendant selector where a child selector could be used
and vice versa, the only difference being the direct child must be a parent/child relationship, and the
descendant selector can be a more ambiguous ancestral relationship. Using a descendant selector, you
have greater compatibility since IE 6 does not support the direct child selector (at least, not without a
workaround, which you can find in Chapter 16, available at www.wrox.com/go/beginning_css2e).

There are some situations where a descendant selector would not be desired, and a direct child selector
would come in handy, or it wouldn’t exist. Those situations are a bit too complex to explain properly
here, in addition to being rare.

In Example 3-4, you see that the direct child selector uses a greater than sign (>) within the selector to
indicate the parent/child relationship, whereas the descendant selector you saw in Example 3-3 uses
space between selectors to indicate an ancestral relationship, which is not limited to parent/child, but
could indicate grandparent/grandchild, great-grandparent/great-grandchild, and so on.

Selecting a child element based on the element’s parent can be helpful. These contextual selectors allow
developers to define fewer class and id names in a markup document, and instead select elements based
on the context they appear in a document. In the next section I present another contextual selector, the
direct adjacent sibling combinator (its official name), or next sibling for short (because that’s just too long!).

Next Sibling Selector

The official name of the selector I discuss in this section, according to the W3C is the adjacent sibling com-
binator. I think that’s too long and complicated, so I've shortened it to just next sibling. The next sibling
selector selects, surprise, an element’s next sibling. Looking back on the markup in Figure 3-14, the
markup in Figure 3-24 is a demonstration of what a next sibling selector looks like in a style sheet.

IE 6 does not support next sibling selectors natively; see this book’s website at www.wrox.com/go/
beginning_css2e for compatibility help.

A need shing searar Usas A pus sgnis fstess e zhing
relalicrehie petveen Iwd elensanis,
diveheading + diveoody |
Tordar: e w101 b 200 [I 1
' L -

Figure 3-24

In Figure 3-24, you see that a plus sign is used to denote the sibling relationship between two elements.
You may be thinking to yourself at this point, well that’s just fine and dandy, but what’s the practical applica-
tion? Can’t you just reference the div#body alone and get the same result? Why do you need a next sibling selec-
tor? I'm glad you asked. This selector can be useful in certain situations, such as when you have several
HTML documents that reference the same style sheet. In some of these documents, the <div> with an id

79

Part I: The Basics

name of heading and the <div> with an id name of body are siblings, and they appear in the source one
right after the other. In other documents these two elements may not be siblings. Naturally, if you have
different template requirements in these theoretical two different kinds of documents, you may like to
have a way to reference the ones where these elements are siblings explicitly, and that is one example of
a practical application of the next sibling selector. Also, as I mentioned in the previous section, “Direct
Child Selectors,” sometimes you want to avoid creating new id and class names. In some situations
when you use the next sibling selector, you can potentially avoid creating new class and id names.

In the following proof-of-concept example, you try out the next sibling selector for yourself.

Try It Out Next Sibling Selector

80

Example 3-5. To see how the next sibling selector works, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Next Sibling Selectors</title>
<link rel='stylesheet' type='text/css' href='Example 3-5.css' />
</head>
<body>
<hl1>Next Sibling Selectors</hl>
<p>
The next sibling selector (or adjacent sibling combinator as
it's officially called) allows you to select an element based on
its sibling. This paragraph has a lightyellow background and
darkkhaki text.
</p>
<p>
This paragraph has a yellowgreen background and green text.
</p>
<p>
This paragraph has no colored background, border, or text.
</p>
</body>
</html>

2. Save the preceding markup as Example_3-5.html.
3. Enter the following CSS into your text editor:

body {
font: 12px sans-serif;
}
p {
padding: 5px;
}
hl + p {
background: lightyellow;
color: darkkhaki;
border: 1px solid darkkhaki;

Chapter 3: Selectors

}

hl + p + p {
background: yellowgreen;
color: green;
border: 1px solid green;

4, Save the style sheet as Example_3-5.css. Once loaded into your next sibling selector support-
ing browser, you should see something like that in Figure 3-25.

Figure 3-25

How It Works

The next sibling selector applies a style based on a sibling relationship. The following is a review of the
relevant styles that you applied in Example_3-5.css.

The first style you applied in Example_3-5.css is applied to the first paragraph in Example_3-5.html.
The selector h1 + p means that if a <p> element is the next, directly adjacent sibling to an <h1> element,
apply the declarations in this rule.

hl + p {
background: lightyellow;
color: darkkhaki;
border: 1px solid darkkhaki;
}

The rule only applies when a <p> element is the directly adjacent sibling of an <h1> element.
In the second rule, you have a more complex next sibling selector. It says that if a <p> element is the
directly adjacent sibling of another <p> element, which in turn is the directly adjacent sibling to an <h1>

element, apply the declarations in the rule.

hl + p + p {
background: yellowgreen;

81

Part I: The Basics

color: green;
border: 1px solid green;

Just as the direct child selector allows you to apply a style based on a parent/child relationship, next sib-
ling selectors allow you to apply style based on a sibling relationship.

Sometimes, it’s useful to have a selector that can apply styles based on the existence or value of an ele-
ment’s attributes.

Attribute Selectors

82

Attribute selectors are used to apply style sheet declarations based on the presence of attributes or
attribute values of an HTML element.

IE 6 does not support attribute selectors natively; see this book’s website at www.wrox.com/go/
beginning_css2e for compatibility help.

Figure 3-26 is an example of an attribute selector that applies a style sheet rule based on the presence of
an attribute.

e &Triaete & ircdueaed in e selactor suroanded &y Squane
fazats. This rule saplias il he &l stiizule & gel on <imo>

=g|alt] | alemanms fhe valea = el aesnt)
S

= T 4 -1 7:1 LT

L
]

Figure 3-26

In Figure 3-26, if the alt attribute is set on elements, those elements receive a blue border.
Detecting the presence of an alt attribute is good practice, since the alt attribute is required on all
 elements per the HTML 4.01 specification. When the rule in Figure 3-26 is used, elements
that don’t have a blue border need an alt attribute applied.

You are not limited to detecting the presence of an attribute; there are several types of attribute selectors,
and CSS is capable of detecting attributes based on the following criteria:

The presence of an attribute

The value of an attribute

Whether one of several possible values is present in an attribute
Whether the attribute value begins with a specific string

Whether the attribute value ends with a specific string

U 0000 o

Whether the attribute value contains a specific string anywhere in the value, be it at the begin-
ning, end, or middle

Chapter 3: Selectors

The following sections examine each type of attribute selector in greater depth and provide examples of
the syntax for each.

Selection Based on the Value of an Attribute

Attribute value selectors delegate style declarations based on an attribute’s presence and value. In
Figure 3-27, you see an example of what the syntax looks like to select an element based on an attribute’s
presence and value.

Figure 3-27
In Figure 3-27, you see how to select a text <input> element based on the presence of the attribute type
and a value of text.

You are not limited to the presence of only one attribute. An element may also be selected based on the
presence and value of multiple attributes, which you see an example of in Figure 3-28.

Spet [ErEeT mEEE o mAmem 2iest meas 01 vy nan eelset 21 element bassd on fhe
i _" H N B mresarnn and walue af mane shan are
mlors o .) L altrbuwbe.
porclarz IR T I | 1y H
H
cingut Svpee='text ' nopes'forpt pame | cveplyse'Bioherd’ gige=’ So S
Figure 3-28

83

Part I: The Basics

In Figure 3-28, you see a rule that selects an element based on the presence and value of two attributes:
the type and name attributes. In Figure 3-28, when the type attribute is text and the name attribute is
first_name, the declarations in the rule are applied to that element. Attribute selectors let you avoid
the need of setting class or id selectors when they are otherwise unnecessary.

In the following example, you try out attribute value selectors for yourself.

Try It Out Attribute Value Selectors

Example 3-6. To see how attribute value selectors work, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Attribute Selectors</title>
<link rel='stylesheet' type='text/css' href='Figure_3-28.css' />

</head>
<body>
<form method='post' action='Example_3-3.html'>
<fieldset>
<legend>Feedback Form</legend>
<table>
<tbody>
<tr>
<td>
<label for='first-name'>First Name:</label>
</td>
<td>
<input type='text'
name="'first_name'
id='first-name'
value="'Richard'
size='25"' />
</td>
</tr>
<tr>
<td>
<label for='last-name'>Last Name:</label>
</td>
<td>
<input type='text'
name="'last_name'
id="'last-name'
value="'York'
size='25"' />
</td>
</tr>
<tr>
<td>
<label for='account-password'>Password:</label>
</td>
<td>

84

Chapter 3: Selectors

<input type='password'
name="'password'
id="'account-password'
size="'25"
value='mypass' />
</td>
</tr>
</tbody>
</table>
</fieldset>
</form>
</body>
</html>

2. Save the markup as Example_3-6.html.
3. Enter the following CSS into a new document in your text editor:
=
font: 12px sans-serif;

padding: 5px;
color: royalblue;

}
fieldset {
border: 3px solid rgb(234, 234, 234);
background: rgb (244, 244, 244);
}
label {
display: block;
text-align: right;
width: 100px;
}

label, legend {
background: gold;
border: 1px solid rgb(75, 75, 75);
color: rgb(75, 75, 75);
}
input [type="'text'] {
background: blue;
color: lightblue;
border: 3px solid lightblue;
}
input[type="'text'] [name='last_name'] {
background: forestgreen;
color: yellowgreen;
border: 3px solid yellowgreen;
}
input [type="'password'] [name="'password'] {
background: crimson;
color: pink;
border: 3px solid pink;

4, Save the CSS as Example_3-6.css. Figure 3-29 shows what Example 3-6 looks like rendered in
a browser that supports attribute selection based on value.

85

Pa

rt I: The Basics

Figure 3-29

How It Works

86

In Example 3-6, you saw an example of the attribute selector. This type of attribute selector makes a
selection based on the value of an attribute in the HTML document. Following is a review of the relevant
rules in Example 3-6.

The first selector applies to all <input> elements that have a type="text" attribute. (Keep in mind that
the quoting style can be either single or double quotes in either place; it doesn’t matter which. Use what
makes sense to you.)

input [type="'text'] {

background: blue;

color: lightblue;

border: 3px solid lightblue;
}

Two elements in the document match the criteria: the First Name and the Last Name <input> fields of the
form. The preceding rule is applied only to the First Name field though, since the last name field has a
rule of its own that overrides the preceding rule. The concept of overriding one rule with another is
called the cascade, and you learn more about the cascade in Chapter 4. So, the preceding rule applies to
this markup:

<input type='text' name='first_name' id='first-name' value='Richard' value='25' />

The preceding markup appears all on one line, whereas in the original Example_3-6.html, it was
spread out over several lines to accommodate the width constraints of this printed text.

The preceding <input> field receives a blue background, the text within is colored 1ightblue via the
color property, and a border, three pixels wide, solid and also 1ightblue goes around it.

The next rule applies to the Last Name field; it receives a forestgreen background, yellowgreen text,
and a border three pixels wide, solid, and also yellowgreen.

Chapter 3: Selectors

input [type="'text'] [name='last_name'] {
background: forestgreen;
color: yellowgreen;
border: 3px solid yellowgreen;

}

In the preceding rule you select the <input> element based on the value of two attributes: the type
attribute and the name attribute.

Finally, in the last rule you select the <input> element with a type="password" attribute, and like the
last rule, you select the element based on the value of two attributes, the type and name attributes.

input [type="'password'] [name="'password'] {
background: crimson;
color: pink;
border: 3px solid pink;

While selecting an attribute based on a value is useful, you can also select an attribute based on just part
of the value. These are called attribute substring selectors.

Attribute Substring Selectors

Taking the flexibility of attribute selectors even further, the selectors in the following sections choose ele-
ments based on whether a particular string appears at the beginning of an attribute’s value, at the end of
an attribute’s value, or anywhere inside an attribute’s value. A string that appears inside another string
is referred to as a substring. You can select an element based on what appears at the beginning of an
attribute’s value.

Selection Based on Attribute Values That Begin with a String

The first type of substring attribute selector chooses elements with an attribute value that begins with a
particular string. You see an example of this in Figure 3-30.

In Figure 3-30, the rule selects <a> elements that have an href attribute. When the value of the href
attribute begins with ftp://, the rule selects all of the FTP links in a web page and gives them a floppy
disk icon in the background, 20 pixels of left padding so that the text of the link doesn’t overlap the
floppy disk icon image, and colors them crimson.

vzarzt characior, alawed 7y an cguals sigr ndeates thot only ihe
Eveginnninngg ol this slir ol widoes is meing rmsiched.

mlhret =FEpe '] |

'.“"\."Er:' [H l I¢ -;

v hrefe fepn S froaevempl e, oo Conpany FTF Ssrye S w

Figure 3-30a

87

Part I: The Basics

Figure 3-30b

This attribute substring selector introduces the caret (*) character in the selector syntax, which indicates
that the attribute value begins with ftp://. Each href attribute prefixed with ftp:// is then styled according
to the declarations defined in the rule.

Another example of this syntax in action is to match all e-mail links in a page, and you can see an exam-
ple of this in Figure 3-31.

aflarel " ="rmallloz["]
i by P b i Cemumlene o ane) . " I - -
yacding-lefzy it 1
]
wa liewl=Tpailbwswelman oo Desmrple, cun' 5EBoail <iw asohmoebeos |2 a
Figure 3-31a
Figure 3-31b

88

Chapter 3: Selectors

When the selector is a [href~="mailto: "] you match all e-mail links within a document.

Just as you can match values that appear at the beginning of a string, you can also match values that
appear at the end of a string.

Selection Based on Attribute Values That End with a String

The next substring attribute selector chooses elements with attributes whose value ends with a string.
An example of this appears in Figure 3-32.

Tz rmaabeh 3 sie ngg el apozars @l e aned ol allibale's sz, oo use 3
oo larsg, lksvwed By e aguals 20,

albrelf <" _Elwl®] {
racdiog-lalcr J2oam)

o nref= harc.hmmll AGo Back ne The nome pogo.sdas

Figure 3-32a

Figure 3-32b

The selector of the preceding rule uses the dollar sign to signify that the selector matches the end of the
attribute value. This changes all links that end in an .html suffix to blue, with a Firefox document icon,
25 pixels of left padding, and no underline.

The href attribute’s value ends with the string .html, so it receives a text color of blue. Conversely, this
principle does not apply to the href attribute of the following <a> element:

A PHP Page

89

Part I: The Basics

The attribute’s value in this example ends with a .php suffix, so it does not receive a text color of blue,
and a Firefox document icon, 25 pixels of left padding, and the underline are removed.

You've seen how to select an attribute’s value based on what appears at the beginning and at the end of
the attribute’s value. The next section describes how to select an attribute’s value based on the value
being anywhere: at the beginning, the end, or anywhere in between.

Selection Based on Attribute Values That Contain a String

The final type of attribute substring selector is a wildcard attribute substring selector. It selects an ele-
ment that contains an attribute whose value contains a string anywhere in the value: at the beginning,
the end, or anywhere in the middle. This attribute substring selector uses an asterisk in the syntax to
indicate that the selector is looking anywhere inside the value, as shown in Figure 3-33.

Toomekth A vellie TAeT apEEArs YA An AR Al s, v 1ee 80
ek bl bry e eopuals s

A arett =11, php i
rackgrovmd: ar L "thopderblrdopng” e | 1
vl | ="k : :
- .y .
H
2a href="Saddrees beokhphpfeid=abda€2 88112381 33aT2{ 262028 0ot "~
Laviech Lhe Addices Book
o da
Figure 3-33a
Figure 3-33b

This matches any URL that contains a .php extension regardless of whether the URL contains anchors or
query strings.

20

Chapter 3: Selectors

All that after the question mark is called the query string, which holds special meaning for programming
languages such as PHP, ASP, Perl, and others. What that does isn’t important. What is important is that
using this style sheet rule, the selector finds the .php extension even though it is in the middle of the
value. The selector also finds the .php value if it appears at the beginning or the end of the URL:

A .php page

The markup presented in Figure 3-33 and in the preceding example both receive a Thunderbird icon, 25
pixels of left padding, steelblue text, and the underline removed.

In the following example, you experiment with attribute substring selectors.

Try It Out Attribute Substring Selectors

Example 3-7. To see how attribute substring selectors work, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Attribute Substring Selectors</title>
<link rel='stylesheet' type='text/css' href='Example_3-7.css' />

</head>
<body>
<hl>Proof-of-Concept: Attribute Substring Selectors</hl>

HTML Page Link
PDF Link
FTP Link</1li>
Anchor Link</1li>

</body>
</html>

2. Save the preceding markup as Example_3-7.html.
3. Enter the following style sheet:

body {

font: 1l4px sans-serif;
}
hl {

font-size: 16px;

ul {
list-style: none;

margin: 5px 0;

padding-left: 20px;

921

Part I: The Basics

}
alhref~="ftp://"] {
color: goldenrod;
background: url('save.png') no-repeat left center;

}
alhref*="#"1 {
color: cadetblue;
background: url('anchor.png') no-repeat left center;

}
alhrefs=".html"] {
color: dodgerblue;
background: url ('firefox.png') no-repeat left center;

}
alhrefs=".pdf"] {
color: red;
background: url('pdf.png') no-repeat left center;

4. Save the preceding style sheet as Example_3-7.css. The preceding markup and style sheet
result in the rendered output that you see in Figure 3-34.

Figure 3-34

How It Works

In Example 3-7, you see how to select an attribute based on just a small portion of its value. The follow-
ing is a review of the relevant attribute substring selectors.

The first attribute substring rule that you applied styles the FTP link. The selector a [href~="ftp://"]
applies the style because the href attribute value in the HTML begins with the characters ftp://.To
select only the beginning of the string, you used a caret character followed by the equals sign.

alhref~="ftp://"] {

color: goldenrod;
background: url('save.png') no-repeat left center;

92

Chapter 3: Selectors

The second attribute substring selector that you applied styles the anchor link. The selector a [href*="4#"]
finds the special hash mark (or pound sign) within the value of the href attribute in the HTML,
http://www.example.com/#note. The hash character can appear anywhere in that value, and the
rule still would apply cadetblue colored text and the anchor . png image to the background.

alhref*="#"] {

color: cadetblue;

background: url('anchor.png') no-repeat left center;
}

The third attribute substring selector that you applied styles the plain old HTML document link. Because
the value of the href attribute ends in .htm1l, the color dodgerblue is applied as the text color, and the
firefox.png image is applied to the background.

alhrefs$="_.html"] {
color: dodgerblue;
background: url('firefox.png') no-repeat left center;

}

The last attribute substring rule that you applied was just like the last, only now you are styling links to
PDF documents. When the value of the href attribute ends in . pdf, the link is colored red, and given a
PDF icon as the background image.

alhref$=".pdf"] {
color: red;
background: url('pdf.png') no-repeat left center;

In the next section you begin to explore a different type of selector, pseudo-element selectors.

Pseudo-Elements :first-letter and :first-line

Pseudo-elements represent certain aspects of a document not easily modifiable with plain markup.
Pseudo-elements may be used to modify the formatting of the first letter of a paragraph, or the first line
of a paragraph, for example.

The pseudo-elements : first-letter and : first-1line refer to the first letter and first line of an ele-
ment containing text. When you design a website, it is helpful to have control over how you present con-
tent. With the : first-letter and : first-1line pseudo-elements, you can control the formatting of
the first letter and first line of a paragraph completely from CSS. You may add an increased font size or
other font effects, apply a background color or image, or use just about any text effect supported by CSS
and the browser.

You can apply pseudo-elements to a specific element, via a selector, or to all elements. Figure 3-35 shows
an example of styling the first letter of a paragraph using the : first-letter pseudo-element.

93

Part I: The Basics

n spiact TR Arsk eear af an alnmend, o aopend
arilbar selzcter with liesl-letier,
pifirst-letier

Eranlgroacndd s o TR e

oolors pink;

. D B THenbype Corside
H
Figure 3-35a

Figure 3-35b

In Figure 3-35, you see that to select the first letter in the paragraph, “Y”, you use a : first-letter
pseudo-element.

CSS 3 changes pseudo-element syntax to use a double colon (: :) preceding each
pseudo-element. For example, p: : first-letter refers to the first letter of a para-
graph instead of p: first-letter. This syntax distinguishes pseudo-elements from
pseudo-classes, which use single colon syntax, as in a:hover, which is a reference to
a pseudo-class.

IE 6 appears to support the double-colon syntax without any problems, but IE 7 does not support this
syntax, which is why I present the single colon syntax here. CSS includes more pseudo-elements than
those mentioned here; I've selected only those that have the most browser compatibility and support.
See Appendix B for additional pseudo-elements.

The following Try It Out shows you what the : first-letter and : first-1line pseudo-elements look
like in a style sheet and demonstrates some of the textual effects you can apply.

94

Chapter 3: Selectors

Try It Out first-letter and :first-line Pseudo-Elements

Example 3-8. To see how the : first-letter and : first-line pseudo-elements work, follow these
steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Pseudo-Element Selectors</title>
<link rel='stylesheet' type='text/css' href='Example_3-8.css' />
</head>
<body>
<p class='quote'>
You see, wire telegraph is a kind of a very, very long cat.
You pull his tail in New York and his head is meowing in Los
Angeles. Do you understand this? And radio operates exactly
the same way: you send signals here, they receive them there.
The only difference is that there is no cat.
</p>
<p class='byline'>
- Albert Einstein
</p>
</body>
</html>

2. Save the preceding markup as Example 3-8.html.

3. Enter the following style sheet:

p {
color: darkblue;
border: 1px solid lightblue;
padding: 2px;
font: 14px sans-serif;
}

p.quote:first-letter ({
background: darkblue;
color: white;
font: 55px "Monotype Corsiva";
float: left;

margin-right: 5px;

—

p.quote:first-line {
font-weight: bold;
letter-spacing: 3px;

}

p.byline {
text-align: right;
font-style: italic;
font-size: 10px;
border: none;

}

95

Part I: The Basics

4. Savethe preceding style sheet as Example_3-8.css. The markup and CSS that you entered
should look something like Figure 3-36 when rendered in a browser.

Figure 3-36

How It Works

96

In Example 3-8 you see an example of both the : first-letter and : first-1line pseudo-elements.
The following is a review of the relevant style sheet rules in Example_3-8.css. In the following rule,
you styled the first letter of the <p> element with a class name of quote. To select the first letter of the
<p> element, “Y”, you used the selector p.quote:first-letter.

p.quote:first-letter ({
background: darkblue;
color: white;
font: 55px "Monotype Corsiva'";
float: left;
margin-right: 5px;

}

As shown in Figure 3-36, the first letter of the Einstein quote received a darkblue background, white
text, a large 55-pixel font size, and the font face Monotype Corsiva. It's floated to the left so that subse-
quent lines wrap around it. It's given five pixels of right margin.

Then, the first line of the quote receives additional styling. It’s selected with the selector p. quote: :
first-line, and given bold text, in addition to each letter in the line being spaced three pixels apart.

p.quote::first-line {
font-weight: bold;
letter-spacing: 3px;

In the next section, I present another type of selector, pseudo-class selectors.

Chapter 3: Selectors

Pseudo-Classes

Pseudo-classes are used to represent dynamic events, a change in state, or a more general condition
present in the document that is not easily accomplished through other means. This may be the user’s
mouse rolling over or clicking on an element. In more general terms, pseudo-classes style a specific state
present in the target element. This state may be hovering your mouse cursor over an element, or visiting
a hyperlink. Pseudo-classes allow the author the freedom to dictate how the element should appear
under either condition. Unlike pseudo-elements, pseudo-classes have a single colon before the pseudo-
class property.

Dynamic Pseudo-Classes
The following are considered dynamic pseudo-classes. They are a classification of elements that are only
present after certain user actions have or have not occurred:
O :link:signifies unvisited hyperlinks
O :visited:indicates visited hyperlinks
0 :hover: signifies an element that currently has the user’s mouse pointer hovering over it
Q

:active: signifies an element on which the user is currently clicking

The first two dynamic pseudo-classes that I discuss are : 1ink and :visited.

:link and :visited
The :1ink pseudo-class refers to an unvisited hyperlink, whereas :visited, of course, refers to visited
hyperlinks. These two pseudo-classes are used to separate styles based on user actions. An unvisited
hyperlink may be blue, whereas a visited hyperlink may be purple. Those are the default styles your
browser applies. Using dynamic pseudo-classes it is possible to customize those styles.

Figure 3-37 demonstrates how these pseudo-classes are applied.

In Figure 3-37, unvisited links are styled with the : 1ink dynamic pseudo-class. They receive
meduimblue colored text. Visited links, on the other hand have magenta colored text.

For obvious reasons, the : 1ink and :visited pseudo-classes apply only to <a> elements.]

ik prsepdio-e/emerls lorc ode g smepeco-class p ol

shicol, ven afi! lhe paonebe-chiss o the ane ol e deerond
1 wOLG ke T apdadic. Hate, urasded ks aw
ariias o wandi unalwe and vigned | ks &8 massnba,

et w1
aolocn n ag

1
Figure 3-37a

97

Part I: The Basics

Figure 3-37b

The order in which the :1ink and :visited dynamic pseudo-classes appear in the style sheet is impor-
tant and has to do with the cascade, which I discuss in Chapter 4. If the : 1ink pseudo-class is defined
after the :visited pseudo-class in the style sheet, the : 1ink pseudo-class takes precedence. The decla-
rations with the : 1ink pseudo-class override those defined for the : visited pseudo-class. As you see
in Chapter 4, this has to do with how specific the selector is; in this example, the specificity is the same.

A mnemonic device used to remember the order in which dynamic pseudo-classes
(as applied to links) must appear in style sheets is LoVe HAte, or : 1ink, :visited,
:hover and :active.

:hover

The :hover pseudo-class refers to an element over which the user’s mouse pointer is currently hover-
ing. While the user’s mouse pointer is over the element, the specified style is applied; when the user’s
mouse pointer leaves the element, it returns to the previously specified style. The : hover pseudo-class
is applied in the same way that the : 1ink and :visited pseudo-classes are applied. An example of this
appears in Figure 3-38.

In Figure 3-38, when the user’s mouse hovers over an <a> element, the text within the <a> element is

underlined.
a1link i
JOiDzn o[1 ! Wrm i iEET R OISR CUPST WTCTS T ar
1
!) e ele el Ui gl munder el
s lmd ol

1
1

Figure 3-38a

98

Chapter 3: Selectors

Figure 3-38b

In IE 6, the :hover pseudo-class applies only to hyperlinks (which is incorrect under the CSS 2 specifi-
cation), whereas other browsers recognize the :hover pseudo-class on any rendered element, per the
CSS 2 specification. This problem is fixed in IE 7.

:active
The :active pseudo-class refers to an element that the user is currently clicking and holding down the
mouse button on. The specified style remains in place while the user holds down the mouse button, and
the element does not return to its original state until the user releases the mouse button. You can see an
example of this in Figure 3-39.

In Figure 3-39 you see the :active pseudo-class in action. When the user clicks on an <a> element,
while the mouse button is held down, and before it is released, the element is said to be active, in which
case the styles in the :active pseudo-class rule are applied.

InIE 6 and IE 7, : active applies only to hyperlinks; whereas, other browsers allow it to be applied to
any element.

i L Ve [cear dicke onan wes elemenl, al e
aredsamed lime the Click besgir g 1o She Srme the vier rebeages
eted F the M s buttom -anelement is saad in e ackie
4
Sl 1
ot -deo [afel J
i
T 1
. B :
1
Figure 3-39a

99

Part I: The Basics

Figure 3-39b

Now that you have been introduced to dynamic pseudo-class selectors, you can try them out for your-
self in the following example.

Try It Out Dynamic Pseudo-Class Selectors

Example 3-9. To try out dynamic pseudo-class selectors, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Dynamic Pseudo-Class Selectors</title>
<link rel='stylesheet' type='text/css' href='Example 3-9.css' />
</head>
<body>
<hl>Proof-of-Concept: Dynamic Pseudo-Class Selectors</hl>

Wrox</1i>
Wrox P2P</1li>
Google</1i>
Amazon</1li>

</body>
</html>

2. Savethe preceding markup as Example_3-9.html.
3. Enter the following CSS into your text editor:

body {

font: 14px sans-serif;
}
hl {

font-size: 16px;

100

Chapter 3: Selectors

ul {

list-style: none;

1i {

margin: 5px 0;

}

a:link {
color:

}

a:visited
color:

}

a:hover {
color:

}

a:zactive {
color:

}

steelblue;
{
darkorchid;

orange;

crimson;

4. Save the preceding style sheet as Example_3-9.css. Upon completion of the HTML and CSS
files, you should see output in your browser like that in Figure 3-40.

Figure 3-40

How It Works

In Example 3-9, you tried out the dynamic pseudo-classes for yourself. In Example 3-9 there were four

dynamic pseudo-classes in use.

The first dynamic pseudo-class that you used styles unvisited links. Unvisited links receive the color

steelblue.

a:1link {
color:

}

steelblue;

The second dynamic pseudo-class that you used styles visited links. Visited links receive the color

darkorchid.

101

Part I: The Basics

a:visited {
color: darkorchid;

}

The third selector that you used, the : hover dynamic pseudo-class, applies styles when the user’s mouse
cursor hovers over a link. When a user’s mouse cursor comes over a link, the link is colored orange.

a:hover {
color: orange;

}

Last, you used the :active dynamic pseudo-class, which applies style when the user clicks and holds
down the mouse button on a link. When the user clicks and holds down the mouse button, the link is
colored crimson.

a:active {
color: crimson;

}

The last pseudo-class that I discuss in this chapter is the : first-child structural pseudo-class.

The first-child Structural Pseudo-Class

Much like the direct child and next sibling selectors earlier in this chapter, structural pseudo-classes are
used to refer to an element’s position in a document. The : first-child structural pseudo-class applies
only when an element is the first child of another element.

IE 6 does not support the : £irst-child structural pseudo-class. See this book’s website at
www.wrox.com/go/beginning_css2e for compatibility help.

In Figure 3-41, you see an example of the : first-child structural pseudo-class. Try it out for yourself
in the following example.

wckgroond: 1im; The : Z_zal=choldsirich - pseado-class s ussd 10 seact
wrders lox solid 1 e fiest chile af anodhe s clamine:
1
" "1'|":' -4
Sy
The e locles applics Lo _his cloeocol; moceasic DL ks L
Lipwml child,
g
e Y
It does rot apply to thic c_ement, bocauce 2t 1s met <he
Liiwml <lald.
ol il
o fntmls
Figure 3-41a

102

Chapter 3: Selectors

Figure 3-41b

Try It Out The first-child Structural Pseudo-Class

Example 3-10. To see how the : first-child structural pseudo-class works, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>:first-child</title>
<link rel='stylesheet' type='text/css' href='Example 3-10.css' />

</head>
<body>
<hl>Abridged Beatles Discography</hl>
<table>
<thead>
<tr>
<th>Album</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>

<td>Please Please Me</td>
<td>March 1963</td>

</tr>

<tr>
<td>With The Beatles</td>
<td>November 1963</td>

</tr>

<tr>
<td>A Hard Day's Night</td>
<td>July 1964</td>

</tr>

<tr>

103

Part I: The Basics

<td>Beatles For Sale</td>
<td>December 1964</td>
</tr>
<tr>
<td>Help!</td>
<td>August 1965</td>
</tr>
<tr>
<td>Rubber Soul</td>
<td>December 1965</td>
</tr>
<tr>
<td>Revolver</td>
<td>August 1966</td>
</tr>
<tr>
<td>Sgt. Pepper's Lonely Hearts Club Band</td>
<td>June 1967</td>
</tr>
<tr>
<td>Magical Mystery Tour</td>
<td>November 1967</td>
</tr>
<tr>
<td>The Beatles (a.k.a. 'The White Album')</td>
<td>November 1968</td>
</tr>
<tr>
<td>Yellow Submarine</td>
<td>January 1969</td>
</tr>
<tr>
<td>Abbey Road</td>
<td>September 1969</td>
</tr>
<tr>
<td>Let It Be</td>
<td>May 1970</td>
</tr>
</tbody>
</table>
</body>
</html>

2. Save the preceding as Example 3-10.html.

3. Enter the following CSS into your text editor:

body {
font-size: 12px sans-serif;
}

table {
background: slateblue;
color: #fff;
width: 100%;

104

Chapter 3: Selectors

border-collapse: collapse;
border: 1px solid mediumslateblue;
}
td {
border: 1px solid darkslateblue;
padding: 2px;

th {
background: lightsteelblue;
color: darkslateblue;
font-size: 18px;
text-align: left;

}

table tbody tr:first-child td {
background: mediumslateblue;

}

4. Save the CSS you entered as Example_3-10.css. The markup and CSS you entered should
look something like what you see in Figure 3-42.

Figure 3-42

How It Works

In Example 3-10, you entered in a table containing some information about albums made by The Beatles.
In the style sheet you applied a variety of styles, and among them was an example of the : first-child
structural pseudo-class.

table tbody tr:first-child td {

background: mediumslateblue;

}

105

Part I: The Basics

The preceding rule applies a mediumslateblue background to the cells of the first row of the table. It
does this because of the tr: first-child selector, when <tr> is the first child of the <tbody> element,
which is in turn a descendant of a <table> element. The descendant <td> elements of the <tr> element
receive each a mediumslateblue background.

Summary

CSS selectors provide a flexible and diverse array of options for applying style to a document. CSS 2

greatly expanded the options made available in CSS 1, with the direct child, attribute value, and next
sibling selectors, and CSS 3 has again expanded selector options with selectors like the attribute sub-
string selectors.

In this chapter you learned the following;:

Q

a
a
a
a

Selectors may also be user-defined using the class and/or id attributes.

The universal selector applies style to all conceivable page elements.

Descendant selectors apply style based on document hierarchy and ancestral relationships.
Using child selectors makes the methodology created for descendant selectors more specific.

Direct adjacent sibling combinators (that’s a mouthful), or as I have termed them, next sibling
selectors, apply style if two elements, appearing back to back in a document as siblings, have
the same parent.

Attribute selectors delegate style depending on the presence of attributes or attribute values.

Pseudo-elements are used for situations where it would be difficult to use real markup, such as
in the styling of the first letter or first line of a paragraph.

Dynamic pseudo-classes are used to style a change in state; examples include visited hyper-
links, rolling the mouse cursor over an element, or actively clicking on an element.

In Chapter 4, I begin discussing concepts also fundamental to CSS, the cascade and inheritance.

Exercises

1.

2.

Does the selector body * apply to <input> elements (assuming an <input> element appears
between the <body> and </body> tags)?

In the following HTML document, do the selectors 1i a and 11 > a refer to the same element(s)?
Can those selectors be used interchangeably? What type of selector is each? Which one is better
to use and why?

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>

106

<head>

Chapter 3: Selectors

N

<title>Dynamic Pseudo-Class Selectors</title>
<link rel='stylesheet' type='text/css' href='Example_3-9.css' />
</head>

<body>
<hl>Proof-of-Concept: Dynamic Pseudo-Class Selectors</hl>

Wrox</1li>
Wrox P2P
Google</1li>
Amazon</1li>

</body>

</html>

Given the HTML document in question 2, does the selector ul + h1 apply? What is the official
name of that selector?

If you wanted to apply a style based on an HTML attribute’s value, what would the selector
look like?

If you were to style an element based on the presence of an HTML attribute, what would the
selector look like?

What special character must you include in an attribute value selector to style an element based
on what appears at the beginning of an attribute’s value? What does a sample selector using
that character look like?

How many class names can one element have?

What special character must you include in an attribute value selector to style an element based
on what appears at the end of an attribute’s value? What does a sample selector using that char-
acter look like?

If you wanted to style a link a different color when the user’s mouse hovers over it, what might
the selector look like?

107

The Cascade and Inheritance

In Chapter 3, I discussed the various types of selectors that CSS supports. In this chapter, now that
you have some understanding of the basic nuts and bolts that make up CSS, you continue along
that path with the cascade and inheritance. In CSS, inheritance and the cascade are as fundamental
as selectors, lengths, and properties. In fact, the importance of precedence is implied by the name
of the language itself: cascading style sheets. Cascading is a term used to describe precedence.
Because CSS declarations can appear more than once for a single element, the CSS specification
includes a set of guidelines defining which declarations can take precedence over others and how
this is decided. In this chapter, I discuss the following:

The cascade and how style sheets and some selectors take precedence over others
Inheritance and why the values of some properties are inherited and some are not

The ! important rule and how to force precedence

U 0 U0 U

Custom style sheets and how to override website styles with them

The Cascade

Style sheets can come from more than one place. A style sheet can originate from any of the follow-
ing sources:

Q From the browser (default look and feel)
O From the user visiting the website (a user-defined style sheet)

Q From the web page itself (the website’s author)

Because a style sheet can originate from more than one source, it is necessary to establish an order
of precedence to determine which style sheet applies style for the page the user is seeing. The first
style sheet comes from the browser, and this style sheet applies some default styles for a web page,
such as the default font and text color, how much space is applied between each line of text, and
how much space is applied between each letter of text. In a nutshell, it controls the look and feel of
the web page by controlling the behavior of each element when no styles are specified.

Part I: The Basics

A style sheet can also be applied by a user visiting the website via a user-defined style sheet, which is
discussed later in this chapter. This allows the user to specify his or her own look and feel. This aspect of
CSS makes the web more accessible: A user with visual disabilities can write a style sheet to accommo-
date his or her needs, or the browser can provide options that generate the user’s style sheet behind the
scenes. No knowledge of CSS is required.

Finally, the author of the web page can specify a style sheet (of course). The precedence of each style
sheet is as follows:

Q The browser’s style sheet is the weakest.
O The user’s style sheet takes precedence over the browser’s style sheet.

O The author’s style sheet is the strongest and takes precedence over the user’s and the browser’s
style sheets.

The (X)HTML style attribute is more important than styles defined in any style sheet.

You might be wondering what kind of styles does the browser apply? Figure 4-1a demonstrates this.

ST PRE Loan]l TUALTE "= W30 070 BHTHL 1.0 Slricly =2
heto: Hwew o wl . ocg /R chtml L7000y xhend l=st oot ded™
Shibonl snlos-" L Gps Sfwen o widoorg 19097 2hilnd s snl s labng="mi "=
hzads
AL el Canl L BLyTeasd LLLTax
o head
“hrady
Deofaalt Ebvlos
Zp>

EBrowsers apply detsult stwles —o some clonsnts.

i
-.'l_1.'p-
Txamsles irc ludes
N B
il
w1
pargon or gadding iy azploed to the 1t rhodydagr; =lament,
R
]
Barglo i= apnllel Lo haodling alaneals SLralage; Lhrcaagh
alishbigos
R
<li=flargin 13 apolice ©0 alc:paogts Sloments.<f5lis
“listtarglo or pechdlng 1A aapd] Lo Lhe E1L;ulagie; mlamanl. /1=
ERES
sl
wrhemls
Figure 4-1a

This results in the output in Figure 4-1b.

110

Chapter 4: The Cascade and Inheritance

Figure 4-1b

In Figure 4-1b, you can see an example of some of the default styles that a browser applies. One example
is the spacing between the heading “Default Styles” and the text in the paragraph that follows. The
unordered list (element) has a bullet before each list item (the <1i> element).

Figure 4-2a demonstrates a style sheet that removes the default styles shown in Figure 4-1b.

by |
marg itz 0 1 the sl abemers, snme hiwrsers apaly mangin,
wddings U erhile cihers sppy paddirg. | talk e=ut the differencs
) rohwnen e tan araperins in Caaptar 7
[SRAN |
(TR S BT R
font-wolght! o P
Tunb-aloe: [6.n;
'
P o
maroing L)
H
o
mercoing Ll
pwddings L
List-sTwlei nonog
H
Figure 4-2a

The style sheet in Figure 4-2a is applied to the markup in Figure 4-1a, which results in the output in

Figure 4-2b.

111

Part I: The Basics

Figure 4-2b

When you compare Figure 4-2b with Figure 4-1b, you get an idea of what kinds of styles a browser
applies by default. The browser applies spacing between elements and depending on the element, that
spacing can be controlled by either the margin or the padding property. You learn more about those two
properties in Chapter 7, “The Box Model.” Figure 4-2 demonstrates, however, that it is possible to over-
ride the browser’s default styles. Overriding the default styles is made possible by the cascade.

The cascade sets the order of precedence, and in Figure 4-2, it says that my style sheet rules (the
author’s) have stronger precedence (are more important) than the browser’s built-in style sheet rules.

By and large, there are only two situations that a web designer will ever encounter in composing a style
sheet: overriding the browser’s default styles, and overriding styles set in other style sheets within the
same website, that is, overriding the web designer’s own styles set elsewhere in the same document.

In CSS, the precedence is determined by how specific a selector is. That is to say a vague selector has less
precedence than a more specific selector. In the next section, I discuss how to find out how specific a
selector is using a simple, easy-to-remember formula.

Calculating the Specificity of a Selector

In addition to style sheet precedence, an order of precedence exists for the selectors contained in each
style sheet. This precedence is determined by how specific the selector is. For instance, an id selector is
the most specific, and the universal selector is the most general. Between these, the specificity of a selec-
tor is calculated using the following formula:

Q Count 1 if the styles are applied from the (X)HTML style attribute, and 0 otherwise; this
becomes variable a.

0 Count the number of ID attributes in the selector; the sum is variable b.

112

Chapter 4: The Cascade and Inheritance

O Count the number of attributes, pseudo-classes, and class names in a selector; the sum is
variable c.

0 Count the number of element names in the selector; this is variable d.
Q Ignore pseudo-elements.
Concatenate each number together to get the specificity of the selector. Concatenate is a programming

term that means glue together. In this case if I concatenate a, b, ¢, and d I get abcd, instead of the sum of 4,
b, ¢, and d, which I might refer to as e. Following are some examples.

Selector Selector Type Specificity

* Universal Selector 0000
(a=0,b=0,c=0,d=0)

1i Element Name 0001
(a=0,b=0,c=0,d=1)

ul 1i Element Name 0002
(a=0,b=0,c=0,d=2)

divhl +p Element Name 0003

(a=0,b=0,c=0,d=3)

input [type="'text"'] Element Name + Attribute 0011
(a=0,b=0,c=1,d=1)

.someclass Class Name 0010
(a=0,b=0,c=1,d=0)

div.someclass Element Name + 0011
Class Name (a=0,b=0,c=1,d=1)

div.someclass.someother Element Name + 0021
Class Name + Class Name (a=0,b=0,c=2,d=1)

#someid ID Name 0100
(a=0,b=1,¢=0,d=0)

div#someid Element Name + ID Name 0101
(a=0,b=1,c=0,d=1)

style (attribute) style (attribute) 1000

(@=1,b=0,c=0,d=0)

I'have included the leading zeros in the specificity chart to clarify how concatenation works, but these
are actually dropped. To determine the order of precedence, simply determine the highest number. The
selector with the highest number wins. Consider the example in Figure 4-3a.

113

Part I: The Basics

bady |
tomteGt anL Mopel
1
Elir arm f Tha g alemant with id I'Ial'l'lﬂl II'IDI'IE'. chaant qel q valos
hacEgrounds none rarkaraund, heran sz its sparilicity s 1001, which = muzh
! Flgbsr than e anaral <qe alerant selachos’s spastinm
b nf 1.

naaxgrounne: yolliower
L

Figure 4-3a

Apply the CSS in Figure 4-3a to the markup in Figure 4-3b.

SEESY PR Beal FOu 0 "= M aie s 0rn i R R TR P
"hittom: S fwew s wlaoeg TR whbml 700 shen] l-striot . ded" o
Shind #ilne— Bl e Srwdn Wi nrg 1000 uhiln] s 2al = lakg="ail "=
Chpaad

Sl aSpme i TRl Ly L0 Ty
link pel='styloshoot typo- 'textfoss' heof=' 00977 208gldlicas '
= Sl =
T [Fa
'\.'_E|'J-
This parcgraoh has a wvollow bockosound.
<
<@ Lds Taonc =
Thig Raledgiaoh desei’ b have o velloew achdicind,
booaase the 1d scloooor 15 nors spocifie than the
elamenl galeclor,
< /p=
w i Eadyn
“rhtml-

Figure 4-3b

The result looks like the output shown in Figure 4-3c.

Figure 4-3c
114

Chapter 4: The Cascade and Inheritance

In Figure 4-3, you see an example of precedence via the selector’s specificity. In Figure 4-3a, a rule is set
for all <p> elements to have a yellow background. Because the selector is vague, it has a low specificity.
Using the table at the beginning of this section, you find that the selector

p {
background: yellow;

}

has a specificity of 1, which is very low. The <p> element with id name none is set to have no back-
ground, and because it has a higher specificity than the other selector, which again using the table at the
beginning of this section you find the specificity to be 101, results in the <p> element with id name none
having no background.

In Figure 4-3, you can see that the order that the rules appeared in the style sheet does not matter; the
rules can swap places in the style sheet and the outcome would be the same. So you might be asking

yourself, does the order matter? Sometimes, it does matter, but only when there are two rules of the
same specificity. Consider the example in Figure 4-4a.

Figure 4-4a

Apply the style sheet in Figure 4-4a to the markup in Figure 4-4b.

LA IR ALl o SEET T I E I | IR R AT R L A N M R B L B X
"hbtoms Sfwww o wlooeg/ UR sheml L7000 s ktnl l-at ook dbd" =
whinl snlas=" bkl Sleen ow i ong 1100 xhilnd s Knlzlang="ai ' =
2heads
Sl lasFpan i PRl Ly Lo
2link pel='stywloeshoot typo-'toxblioss' heof="00R9 7078 208gldla. ass '’ My
EE I TSN |
ez
'\.'.t|ﬁ-
This parcgrazh has o yollow Lackopound.
w i
-ﬁl_‘l:-
Thiz potegraosh also Loz a vellow Dockgiolbs,
= p
£ nadys
Ziheml>
Figure 4-4b

The result is shown in Figure 4-4c.

115

Part I: The Basics

Figure 4-4c

In Figure 4-4c, you see that when two or more selectors have the same specificity, the last one wins.

When an (X)HTML style attribute is applied, it is considered the most specific of any selector on the
page. That’s because according to the CSS specification, it is defined as having a specificity all of its own,
that is higher than any other. The style attribute has a specificity of 1000. Because the style attribute
appears after any styles appearing in style sheets, it also takes precedence over the all other selectors.
Therefore, the style attribute takes precedence over all other rules.

Try It Out Experimenting with Specificity

Example 4-1. Follow these steps to experiment with specificity.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Specificity</title>
<link rel='stylesheet' type='text/css' href='Example_4-1.css' />
</head>
<body>
<p>
Specificity is determined by how specific the selector is.
A specific selector wins
over a more general one.
</p>
<p>
Order isn't important until there are one or more elements
of the same specificity referring to the same element. In
which case, the last one wins.
</p>
</body>
</html>

2. Save the preceding document as Example_4-1.html.

116

Chapter 4: The Cascade and Inheritance

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;
}
span#specific {
background: pink;
}
span {
background: red;
}
span {
background: yellow;
}

4. Save the preceding style sheet as Example_4-1.css. Example 4-1 results in the output you see
in Figure 4-5.

Figure 4-5

How It Works

In Example 4-1, you saw an example of the cascade in action. In the markup there are three
elements, and one has an id name of specific. It gets a pink background because the selector
spanispecific has a specificity of 101, which is more specific than the subsequent selectors, which
each have a specificity of 1.

spanfspecific {
background: pink;
}

Then there are two additional rules in the style sheet, each with the same specificity of 1. The last selec-
tor wins, since both selectors have the same specificity of 1, which in turn results in the last two
elements in the markup getting yellow backgrounds.

span {

background: red;

}

117

Part I: The Basics

span {
background: yellow;
}

In the next section, I describe how you can override specificity by including special syntax within a CSS
declaration.

limportant Rules

Along with the need for the cascade in CSS came the need to override it. This is where ! important rules
come in. The ! important syntax appears within a declaration, after the property value and before the semi-
colon that terminates the declaration. Two components make up this syntax: an exclamation mark, used here
as a delimiter, and the important keyword. A delimiter marks the ending of one thing and the beginning of
another. Here the exclamation mark signals the end of the declaration. The important keyword must
appear next, followed by a semicolon to terminate the declaration; this is demonstrated in Figure 4-6a.

by
tontent o Cop
. - The Serperrtant rule GEass arecederce

=

apckgqrourd: Tigho T oe linporgent

Figure 4-6a

A declaration containing the ! important rule, like the preceding one, takes precedence over any other
declaration. The CSS in Figure 4-6a is combined with the markup in Figure 4-6b.

P PR Benl BPURLTG "= 2 W30S ST K0T O BREich S SRR
"hetos Sfeww o wdaorg/ RS shteml L7000 skl l-at oot did" o
“hibnl snlms=" L Cge: S0wen o wdoorgs 1009 7 2hilnd sl z Tabig="wi "%
hpzads
SLivlaefpmoilicily, Dopor aanls L0 ey
link pel='stwloshoot typo- 'textfoss' heof="00Rd7 7 208gldlh.oas |
R TSP
et
'\.'_E|?
This parcgraoh has o lightilue bockgroand.
T
-ﬁl_‘l:-
Thiz potegrooh also lLas o loigbobloe Decdoiodicd,
< /p=
= radyx
</ hEml’>
Figure 4-6b

The result of Figure 4-6a and Figure 4-6b result in the output in Figure 4-6c¢.

118

Chapter 4: The Cascade and Inheritance

Figure 4-6¢

In Figure 4-6, you see the same example as you saw in Figure 4-4 —two selectors for <p> elements with dif-
ferent background declarations. In Figure 4-4, the last selector won because both selectors have the same
specificity. In Figure 4-6, the first selector includes the ! important syntax, which causes the cascade to be
overridden, and thus makes the background of both <p> elements in the XHTML document 1ightblue.

The ! important rule also takes precedence over the style attribute. Figure 4-7 is an example of this.

by {
Font: Z4ps sona—Aan: [z Tha 1 iomoctant rabelskes pecedance cuar tha
1 FOETRAL Shwte ntivilaie.
[N}
brckarocunde oins 1important;
L
Figure 4-7a

The CSS in Figure 4-7a is combined with the markup in Figure 4-7b.

T PR Bl FURL T "= f WO ST S0 R BUR T A
hbto: Sfwew o wiora/ CE sheml L7orDsshktnl l-wtooot. dtd" o
shionl snlas-" bk Gps: S0wwn o wdoorg 11097 xhilnd s ©nlzlang="mi" =
2hpeads
Sl leRan i Phei Ly, Donpok Lan b 0L L
link rel=s'stwloshoot types'toextioss' hoof=" 0GRS T TR205gidl Y oas ' O
= e
shezdys
-\.'_t|1-
This parcgrash bas o pink Cazsoround.
e
g style='kLackooodad: Loohoplucs: e
Thiz paicgrash alsos Loz o Blpd Dockaioabd.
= p
£ S zadys
srhtml-
Figure 4-7b

119

Part I: The Basics

The CSS in Figure 4-7a and the markup in Figure 4-7b result in the output in Figure 4-7c.

Figure 4-7c

In Figure 4-7¢, you see that the background for both paragraphs is pink, despite one of the two para-
graphs having a declaration setting the background of that <p> element to 1ightblue, which demon-
strates to you that the ! important rule takes precedence over even the style attribute.

If more than one ! important rule appears in a style sheet, and the style sheet has the same origin —
that is, both rules come from the author’s style sheet or both come from the user’s style sheet — the latter
rule wins out over any specified previously.

Try It Out Working with !limportant Rules

Example 4-2. Follow these steps to experiment with specificity.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Specificity, !important</title>
<link rel='stylesheet' type='text/css' href='Example 4-2.css' />

</head>
<body>
<p>
limportant rules are used to override specificity. The
limportant syntax causes a selector to have

greater precedence than those without it.

It also

has greater precedence than the (x)HTML style attribute.

</p>
</body>
</html>

120

Chapter 4: The Cascade and Inheritance

2. Savethe preceding document as Example_4-2.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;
}
span#precedence {
background: lightyellow;
}
span {
background: orange !important;

}

4. Save the preceding style sheet as Example_4-2.css. Example 4-2 results in the output shown
in Figure 4-8.

Figure 4-8

How It Works

In Example 4-2, you see how the ! important rule overrides precedence. Because the following declara-
tion contains the ! important syntax, it causes the background of all the elements to be orange.

span {
background: orange !important;

}

So far you've seen precedence, a concept that decides how the browser applies styles based on the
importance of the selector. In the next section, I talk about inheritance, which is how the browser applies
certain styles to an element and all that element’s children.

Inheritance

CSS is designed to simplify web document creation, enabling a property to be applied to all elements in
a document. To put it another way, after a property has been applied to a particular element, its children
retain those property values as well. This behavior is called inheritance. 121

Part I: The Basics

Many properties in CSS are inheritable; some are not. Where it is supported and appropriate, inheritance
makes writing style sheets a snap. For the most part, two types of properties can be inherited: text and
font properties. Figure 4-9 shows an example of inheritance.

bady |
. Tomf=gimeL 2 opey Froparlies thal se i nharilslbe, sush 82 Se eoloc o the
! toxt-align propebes, are nheriaed be gl ol the
g alerignt's ealklren,
cnlors erinweeg
trut-al ign: e
Hnraars e =il ol TR
naddinge lopxs
H
Figure 4-9a

The CSS in Figure 4-9a is combined with the markup in Figure 4-9b.

SIEEETYPE el PUALTS "= & /WEo s S0OT0 XHTH 1o BhFichs S =Fk
“hiezme S wl oS UESeheml Lo ekl Lot Zoe L dEd " -
Shtnl gnlos="hbtps: Sfwen o wioord 10097 2hiknd solzlabng="ai "=
[N Tat= TR
whitlet Inbml Loenses ALl ler
flipik pel='stwlcsheolt typos 'toxbt /oms’ hrof=' OS9RST7TLZ0Zgid0d.cEs 7=
= hends
“imcde
i L
TehaTTansa
s
Sune prroswrtise Do OS5 are ivheriterd fo sl T ewn aTaneisa
4= woy can see hece, The Slernlige; hesding and the
Al pealts alammbe Iotwme DL salor and ol lginsmml T Lha
glasdivior:, bet not the bordor and che padding.
-\.'__n'i:;.-
a i
ol
@ fntml=
Figure 4-9b

The CSS in Figure 4-9a and the markup in Figure 4-9b result in the output in Figure 4-9c.

In the preceding code, the rule is applied to the <div> element, and the color and text-align proper-
ties are inherited by the <h1> and <p> elements contained within the <div> element. The advantage of
inherited properties is that you don’t have to specify a property again for each nested element. On the
other hand, the border and the padding properties are not inherited, since it is not likely a web
designer would desire those properties to be inherited. Figure 4-10 shows what Figure 4-9 would look
like if the border and padding properties were inherited.

122

Chapter 4: The Cascade and Inheritance

Figure 4-9c

Figure 4-10

123

Part I:

The Basics

In Figure 4-10, you see that some properties, such as border and padding, are not inherited because
inheriting would not be appropriate. Most of the time, you want these to be set only on a selected ele-
ment and not on that selected element’s children elements. I discuss the border and padding properties

in more detail in Chapter 7, “The Box Model.”

Inheritance for each property is outlined in Appendix B.

Try It Out Working with Inheritance

Example 4-3. Follow these steps to experiment with inheritance.

1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

2.
3.

124

Enter the following markup into your text editor:

"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>

<head>
<title>Inheritance</title>
<link rel='stylesheet' type='text/css' href='Example_4-3.css' />

</head>
<body>
<p>
In CSS, some properties are inherited, such as the color, font,
and text properties. Other properties, such as border, margin,
and padding, are not inherited, since it wouldn't be
practical.
</p>
</body>
</html>
Save the preceding document as Example_4-3.html.
Enter the following CSS into your text editor:
body {

font: 14px sans-serif;

color: darkslateblue;

border: 5px dashed darkslateblue;
margin: 10px;

padding: 10px;

text-align: center;

4. Savethe preceding style sheet as Example_4-3.css. Example 4-3 results in the output shown

in Figure 4-11.

Chapter 4: The Cascade and Inheritance

Figure 4-11

How It Works

In Example 4-3, you see an example of inheritance. In the style sheet, the properties font, color, and
text-align are inherited by the <p> element, while the border, margin, and padding properties are

not inherited.

body {
font: 14px sans-serif;
color: darkslateblue;
border: 5px dashed darkslateblue;
margin: 10px;
padding: 10px;
text-align: center;

Summary

Inheritance and the cascade are fundamental to CSS. Inheritance makes controlling the effects of prop-
erty values a breeze, because each property is defined either to inherit or not, as is appropriate to its pur-
pose. The cascade provides some rules for precedence to determine which styles win when multiple
style sheets and rules containing the same declarations come into play. Precedence is determined by a
simple formula that calculates which selector wins. In this chapter you learned the following:

0 Some properties are inherited, which reduces redundancy in the document by eliminating the
need for declarations to be written multiple times.

0 Some properties are not inherited, which also reduces redundancy by preventing the effects of
declarations from being applied to the element’s descendants.

Q The cascade provides both some ground rules and a simple formula to determine the prece-
dence of style sheets and selectors.

125

Part I: The Basics

Now that you know the background of CSS, Chapter 5 introduces you to CSS’s text manipulation
properties.

Exercises

1. In the following style sheet, determine the specificity of each selector.

ul#hmenu ul.menu {
margin: 0;
padding: 0;
list-style: none;
position: absolute;
top: 35px;
left: 0;
width: 100%;
visibility: hidden;
text-align: left;
background: rgb (242, 242, 242);
border: 1px solid rgb(178, 178, 178);
border-right: 1lpx solid rgb(128, 128, 128);
border-bottom: 1px solid rgb (128, 128, 128);
}
ul#hmenu 1i 1i:hover ({
background: rgb (200, 200, 200);
}
ul#hmenu ul.menu ul.menu {
top: -lpx;
left: 100%;
}
ul#hmenu li#menu-204 ul.menu ul.menu,
ul#hmenu li#menu-848 ul.menu ul.menu ul.menu ul.menu,
ul#hmenu li#menu-990 ul.menu ul.menu {
left: auto;
right: 100%;
}
ul#hmenu > li.menu.eas + li.menu.eas ul.menu ul.menu ul.menu ul.menu {
right: auto;
left: 100%;

1i.menu,
1i.menu-highlight {
position: relative;

ul.menu 1i a {
text-decoration: none;
color: black;
font-size: 12px;
display: block;
width: 100%;
height: 100%;

ul.menu 1i a span {
display: block;

126

Chapter 4: The Cascade and Inheritance

}

padding: 3px 10px;

ul.menu span.arrow {

2.

position: absolute;

top: 2px;
right: 10px;
width: 1lpx;

height: 1lpx;
background: url('/images/arrow.gif') no-repeat;

According to the following style sheet, what color is the link?

.context:1link {

color: blue;

.context:visited {

color: purple;

.context :hover {

color: green;

.context:active {

color: red;

According to the following style sheet, what color is the link?

.context:visited {

color: purple;

.context:hover {

color: green;

.context:active ({

color: red;

.context:link {

color: blue;

According to the following style sheet, what color is the link?

.context:1link {

color: blue;

.context:visited {

color: purple !important;

.context :hover {

color: green;

.context:active {

color: red;

127

Part Il
Properties

Chapter 5: Text Manipulation

Chapter 6: Fonts

Chapter 7: The Box Model

Chapter 8: CSS Buoyancy: Floating and Vertical Alighment
Chapter 9: List Properties

Chapter 10: Backgrounds

Chapter 11: Positioning

Chapter 12: Tables

Text Manipulation

In Chapter 4, you learned how certain properties in CSS are inherited and how the cascade deter-
mines which style rules are the most important. In this and subsequent chapters, I begin an in-
depth look at the individual properties of CSS and how these come together to style a document.

In this chapter, I look specifically at properties that manipulate the presentation of text. You can
manipulate text in a variety of ways, from the length of space between letters in words of text, to
the length of space between the words of a sentence, to the spacing between sentences in a para-
graph, to how much space is used to indent the text contained in a paragraph.

I cover the various CSS text-manipulation properties:
Q The letter-spacing property and how it is used to add or subtract space between the
letters that make up a word

0O The word-spacing property and how it is used to add or subtract space between the
words of a sentence

0 The text-indent property and how it is used to indent the text of a paragraph
Q The text-align property and how it is used to align the text of a document

0O The text-decoration property and how it is used to underline, overline, and
strikethrough text

O The text-transform property and how it is used to capitalize text or convert text to
uppercase or lowercase letters

0 The white-space property and how it is used to control the flow and formatting of text

The text manipulation properties of CSS allow you to design the layout of a document in much the
same way as you use a word processing application.

Part Il: Properties

The letter-spacing Property

The letter-spacing property, as I have demonstrated briefly in previous chapters, controls the
amount of space between the letters. The following table shows its allowable values.
Property Value

letter-spacing normal | <length>

Initial value: normal

The letter-spacing property is a simple property that accepts a length as its value. A <1length> value
is any length value supported by CSS, as I discussed in Chapter 2. A normal value is the default value,
and is determined by the font that’s being used. This value is equal to a zero length value.

Figure 5-1a shows an example of the letter-spacing property.

b -
i Farbr Mm% mepe mere - Tha letser-spacing profgery odely encasch adjusts
o sparing hoheaen Ieflars. Hkakes & kgt ealon.
l=ttec-ppacings L
Fankgroundl -okbys Ioeep

colars wadd ek "
maT n=hottan: 1

Forder-bot tans o=t il kbl i

oonuLar: nNAarTe [P
maATyin=-top: g
torc-pipar dpey

]
Figure 5-1a

In Figure 5-1a, you see how the letter-spacing property would be specified; Figure 5-1b shows the
corresponding markup.

Figure 5-1c shows the rendered output of the CSS in Figure 5-1a and the markup in Figure 5-1b in the
Safari browser.

The letter-spacing property may have either a positive or negative value. When given a negative
value, letters are rendered closer together. Figure 5-2a shows an example of this.

132

Chapter 5: Text Manipulation

=TECTYPR hiknl TUALIC "= 4 FAOTD ¥HTHL 1.0 Shrick =k
"httms Sy w i e RS e 0 bl l—mt o L dEdA
whiton] wnloe= hbin: Slesw o wdoorg 1990 /uhibn] S el zlang="mic" >
vhimadl
whlitleaxlatbey—spaaings s Llklax
“llnk pels'stylesleet types'tesitivss’ eel=" 00697 VRZ0lglas0l cme’ S
= e
hasdes
4-Wide Leliar Spacing: L4
T
In this ememale bhe spose Dotwesn loktoers ta bhe hoasoy is
get ko 10 pixels.
= ps
= madys
=shbml=

Figure 5-1b

Figure 5-1c

k.4 l
e e o 5 ATt =]-El wa el E'.-|:||:| ad, hers al e IE"!:]E-

Tore L ' element arn mndecer sinser tgethar,
ntar - Epeeing e

anCEgToInI E |'| '_.'f"l ol |

calinrs =edrlabroasi;

|E|":'i"l— OTnTamL Lig

anrdar-htto s) mal i whek g

onlors 11k .
wrain=tops ;
tont-at om! T

L

Figure 5-2a

133

Part Il: Properties

The CSS in Figure 5-2a is combined with the markup in Figure 5-2b.

CIDECTYPE em] TURLTE - # AWI0S0TE SHTHL 1.0 ke fok s f BE
"hitos Jfwew . wilorg B S shem] L s shtn] =t ek L deAT s
Shbtnl gnlos="hbtps: Sfwen o widoord 19197 2hiknd sol s labng="mi "=
whpmagds
Shlelaslabber—spacingss Ll lax
w1llnk pel="stylesheet types'test/vse' eel=" 0097 VR20lgia02 ocan’ o
= S hod
E R [
Warxow Letilor Spacing
TR
In this cxooale Lhe spocce fZetwoon lobbors tn Lhe heacoy is
gt ko -. pix=le,
=S p
= madys
< /html=
Figure 5-2b

Figure 5-2c shows the rendered output of Figures 5-2a and 5-2b.

Figure 5-2¢

As you can see in Figure 5-2c, the letters of the paragraph are condensed together because the value of
the letter-spacing property is a negative value.

You can use the letter-spacing property to add or subtract space between letters. In the following
example, you try the letter-spacing property out for yourself.

134

Chapter 5: Text Manipulation

Try It Out The letter-spacing Property

Example 5-1. To see the letter-spacing property in action, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>letter-spacing</title>
<link rel='stylesheet' type='text/css' href='Example 5-1.css' />
</head>
<body>
<h4>Letter Spacing</h4>
<p>
The letter-spacing property can take either a
positive or negative length value. The higher the value, the
farther apart the letters; the lower the
value, the closer together the letters.
</p>
</body>
</html>

2. Save the preceding markup as Example_5-1.html.

3. Enter the following CSS:

body {
font: 14px sans-serif;

}
hd {
border-bottom: 1px solid green;
margin-bottom: 3px;
}
p {
margin: 0;
}
.code {
font-family: monospace;
}
.higher,
.lower {
letter-spacing: 5px;
background: lavender;
color: midnightblue;
}
.lower {
letter-spacing: -1px;
}

135

Part Il: Properties

4. Savethe preceding CSS as Example_5-1.css. The preceding example results in the rendered
output in Figure 5-3.

Figure 5-3

How It Works

In Example 5-1, you typed in an example of the letter-spacing property, so that you could see it
work in a browser for yourself. You applied two relevant style sheet rules. The first rule refers to ele-
ments with class names higher and lower. Both elements initially receive a letter-spacing value of
five pixels, a lavender background, and midnightblue text. The letter-spacing value of five pixels
causes the letters to be spaced farther apart.

.higher,

.lower ({
letter-spacing: 5px;
background: lavender;
color: midnightblue;

}

In a subsequent rule, you apply another letter-spacing value for the element with class name lower;
it receives a value of negative one pixel. This causes the letters in that element to be spaced close
together. This new rule overrides the letter-spacing style set in the previous rule for elements with
class name lower.

.lower {
letter-spacing: -1px;
T E

In the next section, I present a property similar to the letter-spacing property, the word-spacing
property.

136

Chapter 5: Text Manipulation

The word-spacing Property

The word-spacing property, in essence, functions identically to the letter-spacing property.
However, (of course) instead of controlling the space between letters, the word-spacing property con-
trols the space between words. The following table shows its allowable values.

Property Value

word-spacing normal | <length>

Initial value: normal

To demonstrate the effect of the word-spacing property, consider the style sheet rule in Figure 5-4a.

kA
I'T_- ity apr rars aee- o Lke e letter-spazing prapety, Reger veues of the
word-spacingi fops; gty sdpglied 0 he word-smacona properly iesulls in
ARCEgTEArT o T1 5t yransy Wt e Garthee aparl,
Tiars (T L]
meRrgin= :
AT I =il H
'
0
lor: orinsang
wroiri=tops g
tont-a1 am! o
H
Figure 5-4a

The style sheet in Figure 5-4a is coupled with the markup in Figure 5-4b.

STIEEETEPE Lol PUALTE "= 2SS0 A0TE SHTH 1.0 BhFick Rk
"hdtms S fwew . wl.era B S whEm] L 00 s bl =gt roe o ded " s
whinl snlam=" hbcp: Slwwn o wioorg 1197 xhiknd . Kolzlang="mi' =
nhpmad
Shlitlasward-rpeainga 0L ETax
llnk pel="miylosheet type="testlvss' lwel="0897TR200g00 00, con’ S
= hesd -
whwzidys

Wide Word Bpacing
b B
In this cxarole bhe space betwoon words ino tho heoader 1s
gt o 25 pix=ls,
=/ pe
= madys
S ntmls

Figure 5-4b

Figure 5-4a and Figure 5-4b together result in the output shown in Figure 5-4c; 25 pixels of space now
separate each word of the <h4> element.

137

Part Il: Properties

Figure 5-4¢

Additionally, like the 1etter-spacing property, the word-spacing property can contain a negative
value. If given a negative value, the effects are less space between each word. This is demonstrated in
CSS in Figure 5-5a.

Fe g)
fomer 1%aw sare seeicy Lkelle Letter- spoeing prooely s el
wold=g sacing : : o ghe =nglh suppied 1o e wold=spachog I7Qpemy
L wads 1o loo e PESUNIR worgs soaced closer iogetner

bt AN = Lok ; T
DAIJLN-OOTTHLL 27

Lepr ey =Bl Loy 1 h Lk

Color:z il
nargin=Lop: 0;

W = b g
|
Figure 5-5a

Again, the CSS in Figure 5-5a is combined with the markup in Figure 5-5b.

STEETYTPE Lawl PUHLIC "= 2 WEC/SOTER HATHL 1.0 Bheichk SRk
"Thiets: Sy wila e B S shem] L Snrns shen 1l l—me ko ded
Shtnl #ilnm= hebps: Srwdu Wi nrd 1100 7 8hikin] S 2al z lakg="aic "=
kg

wlhiclaswcid-speaings Ll Llax
1llnk pel="stylesheet type="teitloss

heel=" 09697 722000505 . can’ fw

S [T=te
2l
4 Hapraw Word Spacibg: - ha
TR
In this cxomole Lho spoce CZetwoson words Lo Lho hoader 13
get ko -5 pixzle.
o
= madys
</ hbml=
Figure 5-5b

138

Chapter 5: Text Manipulation

The CSS in Figure 5-5a and the markup in Figure 5-5b result in the output depicted in Figure 5-5c.

Figure 5-5¢

As you did with the letter-spacing property in Example 5-1, in the following Try It Out you experi-
ment with the word-spacing property for yourself.

Try It Out The word-spacing Property

Example 5-2. To see the word-spacing property in action for yourself, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>word-spacing</title>
<link rel='stylesheet' type='text/css' href='Example 5-2.css' />
</head>
<body>
<h4>Word Spacing</h4>
<p>
The word-spacing property can take either a
positive or negative length value. The higher the value, the
farther apart the words; the lower the
value, the closer together the words.
</p>
</body>
</html>

2. Save the preceding markup as Example_5-2.html.

139

Part Il: Properties

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;
}
hd {
border-bottom: 1lpx solid pink;
margin-bottom: 3px;
}
p {
margin: 0;
}
.code {
font-family: monospace;
}
.higher,
.lower {
word-spacing: 15px;
background: mistyrose;
color: crimson;
}
.lower {
word-spacing: -5px;

}

4. Savethe preceding CSS as Example_5-2.css. The preceding markup and CSS results in the
output shown in Figure 5-6.

Figure 5-6

How It Works

In Example 5-2, you experimented with the word-spacing property. Example 5-2 is nearly identical to
Example 5-1, the only difference being that you are modifying the space between words, rather than the
space between letters. Following is a recap of the relevant rules.

140

Chapter 5: Text Manipulation

The first rule you applied to elements with class names higher and lower, just as you did in Example 5-1.
This time you applied the word-spacing property with a value of 15 pixels, meaning that 15 pixels of
space separate the words contained within the element. This is coupled with a mistyrose background,
and crimson text.

.higher,

.lower {
word-spacing: 15px;
background: mistyrose;
color: crimson;

}

Then, in a subsequent rule you applied a different word-spacing value to elements with a lower class
name. This time space is subtracted from between words, five pixels in fact.

.lower {
word-spacing: -5px;
}

Now that you have seen how to control the space between letters and words, the next section describes
how to indent text within a paragraph.

Indenting Paragraph Text Using text-indent

Indenting text in CSS is done using the text-indent property. The text-indent property identifies
the first line of text of a paragraph and inserts the specified length before the first line of text, thus
indenting the text. The following table shows this property’s allowed values.

Property Value

text-indent <length> | <percentage>

Initial value: 0

The text-indent property accepts either a normal length value or a percentage value. Figure 5-7a
demonstrates the text-indent property with a normal length value in pixels applied.

ro
relori 1
CAC IQITomaln 1
L. = B P& Loxl=iadainl proseryy soceals a kenglh vale
paddings : wilzh aron cpplind, of coose oS e e o
taut—iRdent: i the fange- eiemnl

l

Figure 5-7a

141

Part Il: Properties

Figure 5-7a is combined with the markup in Figure 5-7b.

STIEEETYTRE Lioml PUAHLTE "=2 MWE0 0070 $HTH 1.0 BhEichy S EEk
"httome Sfewe wl oo TR ehtml LS00 ekt Lot eo ot L dEd " -
whtal #nlons='hbto: Srwen o widoord 1000 72hikn] ol zlabg="mi "
< lcadd s
wbliblerteri-Lndanes/Lic ler
slipk rel='stulozhocl types toxt/oss' ACCS= 0SHSTTAZOSQUGOT.cas Jo
2 haedn
-Ll_'h:d".'.'\-
a2

"Thgarie cirm b wawrs il comatrosbing o Aol baa e desige; ons way B
<o mEce it wo simple thet there e chviooely oo deficisncies,
witdh Bl atlar way LA ko nake o so gonnlloabed Chol chinfe are oo
wbvicon doficiceneies, The Eirst pethed s far poco diffical=."
-, k. . Hiaiw
< pe
gy
<Snemls

Figure 5-7b

Figure 5-7c shows the result of the preceding rule and markup.

Figure 5-7c

Figure 5-7 demonstrates the most common use of the text-indent property, with a normal length
value, used to indent the text of the target element. The text-indent property can also accept a per-
centage width. This is demonstrated in the rule in Figure 5-8a.

Figure 5-8a is combined with the markup from Figure 5-7b, to get the output you see in Figure 5-8b.
The percentage width assigned by the text-indent property depends on the width of the <p> ele-

ment’s parent element. In this example, the parent element is the <body> element. By default, the
<body> element’s width expands horizontally, filling the entire browser window.

142

Chapter 5: Text Manipulation

D
color: sendlabrowng
mucsgqroargd = 11 oi=1 T e g
anrdar: pvoaclid shaoki g
mudcirimgs ey .
o Cn e FR W yow desie, wou son alse a5t o sorcemlzgs valuc
. — — ¢ tar e Teal-ndenl propsny.,
Figure 5-8a

Figure 5-8b

For instance, if the <p> element were to be assigned a fixed width of 200 pixels, since the indentation for
the <p> element is based on the width of the <body> element, which is more than 200 pixels, let’s say for
this example it’s 800 pixels wide. Given a 10% indention, the indention of the first line of the <p> ele-
ment would be 80 pixels, rather than 20 pixels, since 10% of 800 is 80.

Like the letter-spacing and word-spacing properties, the text-indent property can also accept a
negative value. Figure 5-9a shows an example of the text-indent property with a negative value.

|

0w Tl i 1

baggoaundn 1

Lo -

pmm g Wi o wooviede a nagalive walue (e toxs diadonz
| Zhoinl praimrg e sl al e angel denenl & reveen indaiad
Figure 5-9a

The CSS rule in Figure 5-9a is combined with the markup from Figure 5-7b. Safari (or your browser of
choice) gives you the output in Figure 5-9b.

Figure 5-9b shows that the text is shifted the other way.

143

Part Il: Properties

Figure 5-9b

Now that you've seen some examples of the text-indent property, in Example 5-3, you experiment
with it for yourself.

Try It Out Applying the text-indent Property

Example 5-3. To experiment with the text-indent property, follow these steps.

1. Enter the following markup into your editor. (Don’t want to type out the “lipsum” dummy text?
Visit http://www.lipsum.com/.)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>text-indent</title>
<link rel='stylesheet' type='text/css' href='Example 5-3.css' />
</head>
<body>
<h4>Indenting Text With CSS</h4>
<p>
Text can be indented by a positive length value, as is demonstrated
by the following paragraph.
</p>
<p class='indent-example' id='indent'>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.
</p>
<p>
Text can be indented via a percentage value, as is demonstrated

144

Chapter 5: Text Manipulation

by the following paragraph.

</p>

<p class='indent-example' id='indent-percentage'>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>

<p>
Finally, text can be reverse indented by providing a negative
length value, which is demonstrated by the following paragraph.

</p>

<p class='indent-example' id='indent-reverse'>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>

</body>
</html>

2. Save the preceding markup as Example_5-3.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;
}
p {
padding: 5px 25px;
}
p#indent {
text-indent: 25px;
}

p#indent-percentage {
text-indent: 10%;

}

p#indent-reverse {
text-indent: -25px;

}

p.indent-example {
background: lightyellow;
border: 1lpx solid darkkhaki;

4, Save the preceding CSS as Example_5-3.css. The CSS and markup of Example 5-3 result in
the output you see in Figure 5-10.

145

Part Il: Properties

Figure 5-10

How It Works

In Example 5-3 you tried three different methods of indenting text via CSS’s text-indent property.
Following is a review of the relevant styles you applied.

In the first rule in which you applied the text-indent property, you applied a length value of 25 pixels.

p#indent {
text-indent: 25px;
}

In the second rule you indented the text 10% of the parent element of the <p> element with id name indent-
percentage, which would be the <body> element. So the 10% value is 10% of the width of the <body> element.

p#indent-percentage {
text-indent: 10%;
}

146

Chapter 5: Text Manipulation

In the third rule, you reverse indented the <p> element with id name indent-reverse, which resulted in the
first line being indented 25 pixels to the left.

p#indent-reverse {
text-indent: -25px;
}

In the next section, I discuss the text-align property.

Aligning Text with the text-align Property

The purpose of the text-align property is simple: It aligns text! The following table outlines each of
the possible values for the text-align property.

Property Value

text-align left | right | center | justify

Initial value: left

The text-align property should be fairly straightforward and obvious in its purpose. Figures 5-11a, 5-11b,
and 5-11c demonstrate what the different keyword values of the text-align property do.

body o
Ion 1.2y T i
Tors de-welabesl s
EL
Tan 14 1A= I
mardgilos H
sabder-Battami r 154 tom ko
=]
naasInge e
i Ihe raxt—m’ ign prozery lakes one
[T ol fows walucs. 1efL, coneor, riohl
treut-aligne 1o-tg af Sestisy
proasniar f
Lot -alidine cunboLr
pFricht |
Lext-alinne: 1l
P justify {

Erxt=mlion:z ERT.1TY ¢

Figure 5-11a

147

Part Il: Properties

The CSS in Figure 5-11a is combined with the markup in Figure 5-11b.

SI0OUTeHE Rtml FUOBCLIC "o 0 SWA0SSDLD HHTML 1.0 Bzrioc/dJEH
"hotp e fwemeawiooeg S TR xhoml LADTD vhtn]l L-serict . dbd™ >
hibel enlns="lillo: S fwen wioaorg S IPE ahilnl ' =ml: lang="an'>
“headn
fritlexteyc-aligraieitlex
“link roel="stylecshoot byppo="toxt/cos' hrof="099%7 7vl0E8glill.oss’ /=
M
bl o

b -HMizch Hedkeng Quotes
dpodd=' lefo'e
"Falloocioe o Crado 1A mocarenl and cheeea Tor oamollal"

i
=p id='right =
"Rice iz greoet if wou ro rocally hungry asnd want to zat btwo
Llastsaied o samalo 1y - "

e

“p id='conter -
"I'm lactose iatolorankt, S0 I ek oy szroal with o foxrk.

""."l.h-"

vp did=" jostily '™
"When I went to Coglend co tell this fogHe, T had to £find cur if
they know who Smokcy ths Bocar was. ot thow <idn't. Lo England,
Fngiey Lhe Bear Le ongl the fepgsb fivg peeventilon repressnbative.
Tlaey love Swwcky Lhas srogs -b'e fusbt lise o bear, bas iL'a =
Trog. I think it's 8 betzer syetem, I zhink we should adopt it
Brcanne OnATE Sar 2 mesn, bb o trags see siways cool. Wewer has
Lhers Boon a [rod apking Lovard mg, and © Lhought "Man, I3
BELbar mlay ddad, lEce cunsz Ll [Lode.. Tl LEYSL day LlELE

cores thet frog' in o8 neErvous nanner. It's alwaye opTimiszic.
"Hey, hers comes that troge all ormight. Fagke hef D methle memr
mee and T ocan pet alwe and sbick him in o mayonngiss jor. wilh o
glick wod m leal, Lo reczesate Lis pabluzael senyopomens.”
i F.;..
= S hadye
wdhtmls
Figure 5-11b

The CSS and markup from Figures 5-11a and 5-11b result in the output observed in Figure 5-11c.

In Figure 5-11c, there are no surprises; left aligns text left, right, to the right, and center to the mid-
dle. You may not, however, be familiar with the justify keyword. In Figure 5-11c, you can see that the
text is lined up on the left and on the right; spacing between words on the line is adjusted automatically
so that both the beginning and the end of each line are lined up. To put this in perspective, Figure 5-12
shows the same code, but with the text-align: justify; declaration removed.

148

Chapter 5: Text Manipulation

Figure 5-11c

Figure 5-12

In Figure 5-12 you can see that the ends of each line are no longer lined up.

149

Part Il: Properties

The text-decoration Property

The text-decoration property applies underlining, overlining, and strikethrough to text. The follow-
ing table outlines the text-decoration property and the values it allows.

Property Value

text-decoration none | [underline | | overline | | line-through | | blink

Initial value: none

Safari and IE do not support the b1link keyword.

Because this property is a little more complicated than those covered previously, a simple explanation of
its use is warranted.

To demonstrate the various styles available using this property, consider the example in Figure 5-13a.
The CSS in Figure 5-13a is combined with the markup in Figure 5-13b.

Figure 5-13c shows the various effects provided by the text-decoration property as specified by the
preceding code.

However, this is not all that is possible with the text-decoration property. This notation
[underline || overline || line-through || blink]

means that the text-decoration property can accept one or more of these values. To specify more than
one value, each value is separated by a single space. Take for example the code in Figure 5-14a.

il T el I =]
}
cuneder T e ceser T e, LT ne—thoaigh OB L)
] arkred:
i] H
1
ey e
ah d =oorakian: o | H
] - ard -
L owerling d he text - dezoration popenly labay
fext-fororaticn oveslines fromm are o Tour kespward vabies. Thase
] Cial e eny combineon ol unnzrline,
, Line-throuch { overline, lire-+through, or klick
tavb=r=eorat anz Trs=bor, H
]
Jhlink
taxt=tmooratian: hloine;
H
Figure 5-13a

150

Chapter 5: Text Manipulation

STy PR BenT PURGLTL =
"hitt

Fehtmll==tr ot dtd™s

shinl wmline-"Tl L fwme wl,
iR

ANRRIES I i SRS FeT) RN T | Lol M A =i

“link rel="piyleshess" type="test/ops href="0080570205g05] 5,08

< Sheds
vkl e
-c:|_-_|:-
G oof DNk 201, the reut=descrst on prooscty popports Foos
different styles, <sgan cless= onderline sanderlines/spans,
St laea="nve T Toe v T neet Sxpein
txman clexs='line-<hrough »line-throvghe/smans and

o

vHpelt lepa="ET vk "2 inke S wzaanie o] Sefwri, RhankTally, oo
novk wuppoct the snnoying <epen clasps="'Glink sblinkeSspens style.
sTrMgh 07 ol muek have Tk, 6 can b duae @TEY Jevelaesiph.
= pa
S SRR
oihemls
Figure 5-13b
Figure 5-13c
oy
-'-'-1‘ H - - = T2
H
Cinderoves, ovarthroogl, underoverEhroooh f
wolurs durkred;
e e Tex ity rnnres thize oo
1 tent - dezoration syl v jusl

-undarovar { separals aach keyward with 3 girgks

textemzooratian vaezrling ooescling)
¢ [SaS
H
cowerthrowglh |
tayt—rErmerat O p D 1 tie rne-throunk ;

I

cunderoverthoough
raxt_ripeoration: cnecrline meerline r-=hrooaghe

H
Figure 5-14a

Part Il: Properties

The CSS in Figure 5-14a is combined with the markup in Figure 5-14b.

STIEEETYTRE Lioml PUAHLTE "=2 MWE0 0070 $HTH 1.0 BhEichy S EEk
"httome Sfewe wl oo TR ehtml LS00 ekt Lot eo ot L dEd " -
whbtnl snlms='hbtp: Srwen o wioorgs 10007 2hiknd - ol zlabg=" o' =
= hsad -
whlblerieb=decoral Lobe doic e
flipk rel=‘stwlcshoot types toxti/oss’ hrcf=' O9RSTTRZOSQINIL.cEGs F=
S e
Rt
a2
st oilbcnsebicn Aty ee can by sombieends For Dnakanse, el ocan
bwve wppen class= ynoesover *fext that g underlined snd
a1l S A ol can Diava
“ruan oleomss 'overthrouch '»kext chak iz overlined with z line
shiresigbes s Apans. ol san wven Lava

=sgan closss"undoerovorchroagh =bEoxk bthat 15 cndeorlined,
aifelined, with & lips-thtounbsfepen>. <hafhis S=x voy weald wans
Tz oo kthis 1z ancther cuestion =sltogether.
2 s
< oy
L

Figure 5-14b

The code in Figures 5-14a and 5-14b result in the output shown in Figure 5-14c.

Figure 5-14c

The notation for the text-decoration property indicates that it can accept up to four values. Those
values can be any combination of underline, overline, line-through, and blink. The values none
or inherit can be used instead of any of those four values; so if either the value none or inherit is
used, only that lone value may appear.

152

Chapter 5: Text Manipulation

Try It Out Applying the text-decoration Property

Example 5-4. To experiment with the text-decoration property, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>

<head>

<title>text-decoration</title>
<link rel='stylesheet' type='text/css' href='Example_ 5-4.css' />

</head>
<body>

<h4>CSS's text-decoration Property</h4>

<p>

CSS supports four text-decoration styles, officially. Those are
underline,

overline,

line-through,

and blink. IE and Safari do not
support the extremely useless blink
keyword.

</p>

<p>

</p>

</body>
</html>

It is also possible to combine text-decoration styles. You can

for instance underline and overline
text, underline and
line-through text, or overline
and line-through text, though it is unlikely you'd ever want to.

2. Save the preceding markup as Example_5-4.html.

3. Enter the following CSS into your text editor:

body {

font: 14px sans-serif;

}
p {

padding:

5px 25px;

background: lightblue;

border:

}

1px solid black;

span.underline {
text-decoration: underline;

}

span.overline {
text-decoration: overline;

}

span.line-through {
text-decoration: line-through;

}

span.blink {

153

Part Il: Properties

text-decoration: blink;
}
span.underover {
text-decoration: underline overline;
}
span.underthrough {
text-decoration: underline line-through;
}
span.overthrough ({
text-decoration: overline line-through;
}
span.example {
background: mistyrose;

}

4. Save the preceding CSS as Example_5-4.css. The aforementioned CSS and markup result in
the output in Figure 5-15.

Figure 5-15

How It Works

In Example 5-4 you applied various styles of the text-decoration property. The first four rules
are pretty straightforward; you created a separate rule for each of the four individual styles of the
text—decorationfﬂoperﬁaunderline,overline,1ine—through,andk&ink.

span.underline {
text-decoration: underline;

}

span.overline {
text-decoration: overline;

}

span.line-through {
text-decoration: line-through;

}

span.blink {
text-decoration: blink;

}

154

Chapter 5: Text Manipulation

In the next three style sheet rules, you applied some combinations of styles. The text-decoration
property allows you to specify more than one style at the same time, if you have need of doing that.
Each keyword value must be separated by a single space.

span.underover {
text-decoration: underline overline;
}
span.underthrough {
text-decoration: underline line-through;
}
span.overthrough {
text-decoration: overline line-through;

}

In the next section, I discuss the text-transform property, which allows you to control the case of text
via CSS.

The text-transform Property

The text-transform property exists purely to manipulate the case of text, for instance, to capitalize
or make all characters uppercase or all characters lowercase. The following table shows the text-
transform property and its possible values.

Property Value

text-transform capitalize | uppercase | lowercase | none

Initial value: none

Consider the CSS in Figure 5-16a.

wly |

tonts 1lpm zans ~1f
H
Framitalize 1 1= tpes = ranalors papady can kLae
[P I | -: ane af ur sues, capilaliz e,
_I HEIpe FaielHH, Tadarmrrze =1, OF nona,
Sl prsrcease
raxt-sren=form: Upnerodaes
H
FlowercEss |
vt =S T e g
H
Figure 5-16a

This CSS is combined with the markup in Figure 5-16b.

155

Part Il: Properties

SIECETYPR] PUALIC "= W30 AT SETWL 1.0 Surlal fEHT
"httprf fwewowl ooy T2 xhonl LADID skl L=stroct dEd ™
whinl ®plies="TLLp: S wonrg 1010 xhun]l ' sl s lang="rn *
hoads-
LANRRES Iy WSS TR T TR L W B e
“lipk pel= sivloshoot' bvpe=' tonbiess hrof- ' OB8S77iE0Egislh.css A
< head-
shody -

wpodde='capitelice sevesy o wors of bhos phpkement is captoiteliced ol pe
“p 1d4= 'uppercase severy letter in o this statsment 1E In uppeorzass. oo pe
=p ide' lowercese DEVERY LITTEE IN THIS STATLMENT IR IK LOMERIASE .= p-
« fharips
efhemls

Figure 5-16b

Figure 5-16c shows that the text-transform property overrides the case of the text, no matter how it
appears in the source code.

Figure 5-16¢

In the first paragraph, even though in the source the sentence appears in all lowercase, if you apply the
text-transform: capitalize; declaration, each word of the sentence is capitalized. Likewise, in the
next paragraph, even though the source code contains all lowercase letters, with the addition of the
text-transform: uppercase; declaration, each word of the sentence appears in all uppercase letters
in the rendered output. In the last paragraph, each word appears in uppercase in the markup source
code, but with the addition of the text-transform: lowercase; declaration, each word of the sen-
tence appears in all lowercase in the actual output rendered by the browser.

Now that you've seen an example of what the text-transform property does, in the following exam-
ple you try out the text-transform property for yourself.

156

Chapter 5: Text Manipulation

Try It Out Apply the text-transform Property

Example 5-5. To get a feel for the text-transform property, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>text-transform</title>
<link rel='stylesheet' type='text/css' href='Example_ 5-5.css' />
</head>
<body>
<h4>Manipulating Case With the text-transform Property</h4>
<p>
You can control the case of text using CSS. For instance,
you can make UPPERCASE TEXT
LOWERCASE or lowercase
text uppercase, or you can just
capitalize every word
in a sentence.
</p>
</body>
</html>

2. Save the preceding markup as Example_5-5.html.

3. Enter the following CSS into your text editor:

body {
font: 14px sans-serif;

}

p {
padding: 5px 25px;
background: mistyrose;
border: lpx solid orange;

}

span.lower {
text-transform: lowercase;
}
span.upper {
text-transform: uppercase;
}
span.capitalize {
text-transform: capitalize;
}
span.example {
background: pink;
}

4. Save the preceding CSS as Example_5-5.css. The aforementioned CSS and markup result in
the output in Figure 5-17.

157

Part Il: Properties

Figure 5-17

How It Works

In Example 5-5, you tried out the different methods that CSS provides for manipulating the case of text
in a document. Following are the relevant three rules. In the first rule, you made the uppercase text in
the element with class name lower, lowercase.

span.lower {
text-transform: lowercase;

}

In the second rule, you made the lowercase text in the element with class name upper all
uppercase.

span.upper {
text-transform: uppercase;

}

In the third rule, you capitalized each word of the all-lowercase text in the element with class
name capitalize.

span.capitalize {
text-transform: capitalize;

}

In the next section, I present CSS’s white-space property, which controls whether or not spaces and
line breaks in the source code are recognized, and whether or not text wraps automatically.

The white-space Property

The white-space property allows you to control text formatting in the source code of the web document.
The following table outlines the possible keyword values of the white-space property as of CSS 2.

158

Chapter 5: Text Manipulation

Property

white-space

Value

normal | pre | nowrap

Initial value: normal

IE 6 and IE 7 support white-space: pre; only in standards rendering mode. For more information
on rendering modes, see Chapter 7, “The Box Model.”

Figure 5-18a is an example of the white-space: pre; declaration.

I've specified a monospace font for clarity. The CSS in Figure 5-18a is combined with the markup in

Figure 5-18b.

by |
fant car AT =1
H
e - . . -
whitm—-pames - hz zza kepwond ol ter whZoo-szace prapearly
J ransns spmeng and IRe breaks 1 me soures cnoe s
A gt bz atrermra el
colory pur ‘
H
span ,authoo {
T —rirs: 17: 0§
H
Figure 5-18a
SIEEETSTPE Land PUALTG " =8 0WE30ES AT EETHL 1.0 Sanlak/ fENT
"https fwawewleoog s TR shonl lyprodshenl L-stroot dtd "o
“htn]l ®nlies="Tibbp: S e w oeg A1 790 whien] ' sl e lang="un >
e
LTRSS | G LR PR P TRTE A S FE
slink pel-'sivlesheet' bype="todb/cos hesf="0009578208q05 0 cns ' Fe
= S
<hecdy-
'\.'Fi'-

“Zpan class="'quots'=>From the manent I pocsced ws

vour book antil Iolald Ltoecwn,
I war convalosed with lemuchosr.
Ao dAey T oanteond roading tb .-:.-'r,r:._-:r:-

CERAM rlaRAE Ak 2e GEanshn MAPTO ERATY

2o
i b wdip
oihemls

Figure 5-18b

159

Part Il: Properties

The result looks like Figure 5-18c.

Figure 5-18c

In the source code for the output shown in Figure 5-18c¢, I've added spaces before each line and line
breaks. With the white-space: pre; declaration, those spaces and line breaks are preserved in the
browser’s rendered output.

By default, the browser will collapse the extra spaces between words and ignore the line breaks, which is
the behavior of the white-space: normal; declaration. The white-space: pre; declaration preserves
that extra space and keeps the line breaks where they appear in the source code. Under normal circum-
stances, if there is too much text to appear on a single line, the extra text overflows onto the following
line or lines. The white-space: nowrap; declaration prevents that overflow from happening and
forces the text to stay on one line, unless an HTML line break
 element is encountered. That forces
a line break. Figure 5-19a is an example of this.

Thot nicewera keyeraro prewsnls el Inoen wrepiping

b Corl ned lines aulorralicaly, darless an ez
2) CEAHTEAL livwes brasek b 22 s e
W I'--l"I': H 1 [
H
Figure 5-19a

The CSS in Figure 5-19a is combined with the markup in Figure 5-19b.

Figure 5-19c shows that the text has flowed off the screen to the right because there is more text than can
fit on the screen.

Compare the output in Figures 5-18c and 5-19c¢ to that in Figure 5-20 where no white-space property

is applied. That is, applying the white-space: normal; declaration is the same as applying no white-
space property, because normal is the initial value of the white-space property.

160

Chapter 5: Text Manipulation

SIINEETHPR el TURLIE "= 8 JWE0 1o Rkricksf R
et S www o wlopea/ VRS sheml L0000 skenl l-gt ook . ded " o
whbtnl snlns="hbce: Sl o wioorg 1800 7 xhiknd “alzlabng=" o' =
Wit
Sl el bR e Ol
#link pel='siylosheet type-'textfozs' hees=" 0909779208000 cos ' >
= Shead e
“msde
-, Fi'.-)
Frcm the moment picked up
wour book unkild laid Lk osown,
I waep cornwalsed with lasuqghser,
Some doy T ointend roading 1t

SOTL X

- Grousan Hary
Lo s B
IC.'.:HII!'_-\.':J
= html=

Figure 5-19b

Figure 5-19¢

Figure 5-20

161

Part Il: Properties

Now that you've had an overview of what the white-space property is, the following Try It Out gives
you an opportunity to test the white-space property for yourself.

Try It Out Applying the white-space Property

Example 5-6. Follow these steps to see the white-space property in action for yourself.

1. Enter the following markup into your text editor. Again, the dummy text in the example can be
copied from http: //www.lipsum.com/.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>white-space</title>
<link rel='stylesheet' type='text/css' href='Example 5-6.css' />
</head>
<body>
<h4>Controlling white-space With CSS</h4>
<p>
CSS provides a property for controlling how the white-space
in the source code is handled. When you use the pre keyword
with the white-space property, for example, all the spaces
and line breaks in the source code are preserved, as is
demonstrated by the following paragraph.
</p>
<p id='pre' class='example'>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum nisl tortor, vehicula eu, eleifend a, tincidunt ac,
erat. Ut ut turpis. Nullam urna odio, tempor eget, egestas at,
luctus tristique, felis. Donec eget velit. Vestibulum
scelerisque felis in dolor.
</p>
<p>
You can also prevent text from wrapping automatically. This is
done using the nowrap keyword in conjunction with the white-space
property, as is demonstrated by the following paragraph.
</p>
<p id='nowrap' class='example'>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vestibulum
nisl tortor, vehicula eu, eleifend a, tincidunt ac, erat. Ut ut turpis.
Nullam urna odio, tempor eget, egestas at, luctus tristique, felis.
Donec eget velit. Vestibulum scelerisque felis in dolor.
</p>
</body>
</html>

2. Save the preceding markup as Example_5-6.html.

162

Chapter 5: Text Manipulation

3.

4,

Enter the following CSS into your text editor:

body {
font: 14px sans-serif;
}
p {
padding: 5px;
}
p#pre {
white-space: pre;
}
p#nowrap {
white-space: nowrap;
}
p.example {
background: lightyellow;

border: 1px solid darkkhaki;

Save the preceding CSS as Example_5-6.css
the output in Figure 5-21.

Figure 5-21

. The aforementioned CSS and markup result in

163

Part Il: Properties

How It Works

In Example 5-6 you tried out two keywords of the white-space property. Following is a review of the
two relevant rules. In the first rule, you applied the pre keyword of the white-space property. The pre
keyword causes all spacing and line breaks in the source code to be preserved in the rendered output.

p#pre {
white-space: pre;

}

In the second rule, you applied the nowrap keyword of the white-space property, which prevents the
text of the <p> element with id name nowrap from wrapping.

p#nowrap {
white-space: nowrap;

}

Summary

In this chapter, I discussed a variety of CSS text-manipulation properties, which include the following:

QO The letter-spacing property, which is used to specify the length of space between letters
QO The word-spacing property, which is used to specify the length of space between words
QO The text-indent property, which is used to indent text

QO The text-align property, which is used to align the text of a document

QO The text-decoration property, which is used to apply decorative styling to text, such as
underlining, overlining, strikethrough, or blinking text

U

The text-transform property, which is used to control the case of text regardless of what case
is used in the document’s source code

QO The white-space property, which is used to control text formatting as it relates to how the text
appears in the document’s source code

Chapter 6 continues along the same vein of text manipulation, with a discussion of the font properties
in CSS.

Exercises

1. 1t you wanted to reduce the spacing between letters, how would it be done? Provide an example
declaration.

2. How would you produce the output you see in Figure 5-22? Provide the declaration.

164

Chapter 5: Text Manipulation

P ow

Figure 5-22

When indenting text in a paragraph, how is a percentage value calculated?
What are the keywords that CSS offers for changing the case of text within an element?

If you wanted to preserve line breaks and spacing as formatted in the source code, what would
the CSS declaration be?

What browsers do not support the annoying blink keyword?

If you wanted to put a line over a section of text, rather than underlining it, what property and
keyword would you use?

165

Fonts

Chapter 5 presented a variety of text manipulation properties. This chapter continues the discus-
sion of text manipulation with CSS’s font manipulation properties. CSS includes a variety of prop-
erties that change the face, size, and style of a font. This chapter covers:

Q The font-family property and how it is used to change the face of a font

Q The font-style property and how it is used to make a font italic or oblique

0O The font-variant property, a property similar to the text-transform property pre-
sented in Chapter 5, and how this property is used to create a small-caps effect

Q The font-weight property and how it is used to increase or decrease how bold or light a
font appears

Q The font-size property and how it is used to increase or decrease the size of a font

Q The font property and how it is used as shorthand to specify a number of other font
properties

I begin the discussion of CSS’s font properties with the font-family property.

Specifying Fonts with
the font-family Property

The font-family property is used to specify fonts. The following table outlines the font-family
property and the values that it allows.

Property Value
font-family [[<family-name> | <generic-family>] [, <family-name> | <generic-
family>]*]

Initial value: Varies depending on the browser or user agent.

Part Il: Properties

Figure 6-1a is an example of the basic use of the font-family property.

hexdy {
oolor: royv=lslac F

mib=mower Foreng

L

[T l"":: _..:.,I_I ..,. I.-Il naE e Foman Fanis walh sRaces in sk reErme Fuest b

. ' e - " erckised In quotatians.

pzciel { . Fants withart spacas Inthe namea oo not
. ant-Fuml 1y = RFiw]; (Ui quedaiane.

Figure 6-1a

The rules in Figure 6-1a are combined with the markup in Figure 6-1b.

' fE T X B RS TR A

- F R

"hitms f

L I S o LA ST B SR | R

hprads
LU Tomb=Cand Ty 7 L0
<link rel="astylosheot type- 'toxtf/oss
E N TR I
et [23
g el Linma—nea = ok | =
Times Hew Eoman
=
<p ld="arial’ =
Arial
< p
£ eadys
“rktmle

Figure 6-1b

The CSS and markup in Figures 6-1a and 6-1b result in the output in Figure 6-1c.

Figure 6-1c

168

faww o wdawrd VRS sheml L0rD S shend L-str oot dtd o
Shind #ilom— Bl g Srw oWl nrg S 1000 7 shilnd S wnl = lahg-="wi

'hrcE=" 08RG TR 0ZglEl Ll oss

(e

S

Chapter 6: Fonts

The example is pretty straightforward. Times New Roman is applied to the first paragraph with the id
name times-new-roman, and Arial is applied to the second paragraph, with id name arial. There is
one fundamental difference between the two: Times New Roman appears enclosed in double quotes.
The name of the font itself contains white space, and so enclosing the name of the font in quotes pre-
vents the browser from getting confused. The second example, which specifies an Arial font, does not
appear enclosed in quotes because no white space appears in the name of the font.

The notation for the font-family property can accept one or more fonts for its value, which is what is
meant by the repetition of the syntax in the notation and the presence of the asterisk. The asterisk indi-
cates that the syntax may be repeated one or more times, and a comma is used to separate each font
name provided. You can specify two types of fonts. The first is documented as <family-name> in the
preceding table. The <family-name> notation refers to fonts installed on the user’s computer, which
means that the available fonts depend on the user’s operating system and the fonts available to that
operating system. The <generic-family> notation refers to a small subset of predefined fonts that can
be expected to always be available; this is discussed shortly.

Font Families

The available font families that can be specified vary depending on the operating system. Using a
default installation, Windows does not provide the same fonts as Mac OS X, for instance. Furthermore,
the available fonts also vary depending on the programs installed on the user’s computer. For instance,
Microsoft Office installs a number of extra fonts in addition to those that ship with Mac OS X or Windows.
In fact, with the exception of a few fonts, Mac OS X with Microsoft Office installed provides pretty much
the same fonts as installed on Windows. Without Microsoft Office installed, however, many Windows
fonts are not available on the Mac platform.

It is for this reason, the possibility of font inconsistencies, that the font-family property is dynamic.

It can accept more than one font as its value. The browser will use the first font provided that is installed
and available on the end user’s computer. The browser will fall back to the next font in the list in

the event that previous fonts are not available. So subsequent fonts in the list are called fallback fonts.
This capability is provided because it is difficult to foresee which fonts will be available on the user’s
computer.

It is best to test your web page on several different platforms using different browsers on different oper-
ating systems to ensure that your fonts are working as you intend them to. Providing fallback fonts
ensures consistency of fonts. Take for example the rule in Figure 6-2a.

Ry |

(SR

i
& el ol knls ez e supgilied o ibe fom= - far Ty popeny. Foeids alar iFa i
igri are cabac fallpack tors, wh o are oriy Jeed in e aveitl that previgue onts
ara gt availlab @, & CoMmals usec K 2adarabe & ach ot wnha st

Figure 6-2a

169

Part Il: Properties

The CSS in Figure 6-2a is combined with the markup in Figure 6-2b.

SHERSTYTPE Diem]l PUHLTE "= 2 MWE0 SO0 XHTH 1.0 BhFicky SRR
Fehtml o onrnsshtnl =gt et dtdt s

"hitos Jfwew, wi.rgs”
Shbtnl gnlos="hbtps: Sfwen o widoord 19197 2hiknd sol s labng="mi "=
whpmagds
shlelas Tonb=Tani T2 ki lae
w1llnk pel="stylesheet types'teat/vse' eel=" 00697 VR20lgiall coa’ o
Eg T=Psts k5
E R [
'\.'l_'|'.'
Clin tert aposdrs Lo Celilveooen bE, 0 velifconican FE L
crallakle. If Calitforrpian PE iz nob aval sbls, ApploMymg o L5
vead,
= pe
= madys
Z/neml=

Figure 6-2b

The CSS and markup in Figure 6-2a and Figure 6-2b produce the results shown in Figure 6-2c.

Figure 6-2¢

170

Chapter 6: Fonts

In the example in Figure 6-2, two fonts are specified as the value of the font-family property. This
allows you to specify a fallback font. In this case, if Californian FB (common to Windows computers) is
not installed on the user’s computer, the browser attempts to display the AppleMyungjo font (common
to Macintosh computers). If neither font is available, the browser uses its default font, which is the same
as the font used when no font is specified and varies depending on the browser. The font-family
allows a potentially unlimited list of fonts to be specified, meaning that you can specify as many fonts as
you’d like to fall back on. It may also be possible that you do not have any of these fonts, since certain
software packages such as Microsoft Office, and Adobe Creative Suite install various fonts along with
the software; fonts available will vary from computer to computer.

The effect of the following code is that the browser goes through the list of comma-separated fonts until
it finds one that it is capable of displaying;:

p {
font-family: Arial, Shruti, "Microsoft Sans Serif", Tahoma, Mangal, Helvetica;

}

CSS provides a couple of generic fonts, serif, sans-serif, monospace, fantasy, and cursive, that you can
always rely on being installed.

Generic Font Families

As I mentioned in the previous section, the available fonts vary from operating system to operating sys-
tem. They can vary even more with individual user’s computer systems because even more fonts can be
installed along with certain programs. The only way to maintain consistency displaying from platform
to platform is to provide either a list of font families (so a fallback font can be called upon if the desired
font is not installed) or to specify a generic font. Generic fonts are a set of basic fonts that are available
regardless of the user’s operating system.

The following table outlines the generic font family names defined in CSS.

Generic Font Resembles

serif Times, Times New Roman
sans-serif Helvetica, Arial

cursive Zapf-Chancery

fantasy Western

monospace Courier, Courier New

Generic fonts are often mapped, by the browser, to other fonts that already exist on the system. For
example, on Windows, IE maps the sans-serif font to Arial and the serif font to Times New Roman. In
fact some browsers provide user-configurable generic fonts. In Firefox, for example, you can set the font
used for the serif, sans-serif, cursive, fantasy, and monospace generic fonts.

The generic font names display fonts similarly in different browsers and operating systems. Figure 6-3
shows generic font output in various browsers, as they appear by default.

171

Part Il: Properties

Figure 6-3

172

Chapter 6: Fonts

Figure 6-3 shows how various browsers render generic fonts. From the output shown in those figures,
you can see that generic font rendering is not exactly identical between browsers and platforms. Fonts
that display consistently are serif, sans-serif, and monospace. Because of the wildly varying differences
in rendering of the fantasy and cursive fonts, designers seldom use these two fonts.

In the notation for the font-family property documentation, <generic-family> refers to the possible
specification of a generic font name. Often a generic font is included as a last fallback option, as shown
in the following rule:

p {
font-family: Arial, Shruti, Tahoma, Mangal, Helvetica, sans-serif;

}

The addition of sans-serif to the end of the font list for the font-family property means that as a last
resort, if none of the other fonts specified are installed on the user’s computer, the generic sans-serif font
should be used.

Use the following Try It Out to experiment with the font-family property for yourself.

Try It Out Applying the font-family Property

Example 6-1. Follow these steps to experiment with the font-family property.

1. Write the following markup in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>font-family</title>
<link rel='stylesheet' type='text/css' href='Example_ 6-1.css' />

</head>
<body>
<p>
The font-family property allows you to specify a
<gspan class='fontl'>font face.
It has the built-in ability of allowing you to
specify fallback fonts,
<gpan class='font3'>
fonts that are used when your first choice
(or choices) aren't installed on the end user's 0S
.
Even though, these days, because of the dominance of the
Windows platform,
cross-platform fonting is less of an issue.
</p>
</body>
</html>

2. Save Example 6-1.html.

173

Part Il: Properties

3. Write the following CSS in your text editor:

body {
font: 14px sans-serif;
line-height: 30px;
}
span {
background: mistyrose;
border: 1px solid pink;
}
span. fontl {
font-family: "Perpetua Titling MT", serif;
}
span. font2 {
font-family: "Baskerville 0ld Face", serif;
}
span. font3 {
font-family: "Lucida Bright", monospace;
}
span. fontd {
font-family: Herculanum, "Eras Demi ITC", sans-serif;

}

4. Savethe CSSas Example 6-1.css. The results of these modifications are shown in Figure 6-4.

Figure 6-4

174

Chapter 6: Fonts

How It Works

In Example 6-1, you made use of four examples of the font-family property. Following is a review of
each of the four relevant rules.

The first example of the font-family property you used was applied to the element with class
name font1l. It is given the Perpetua Titling MT font face, which is enclosed in quotations because the
font name contains spaces. As you can see in the screenshot of Safari and IE 6 in Figure 6-4, this font
works on both Mac and Windows platforms.

span.fontl {
font-family: "Perpetua Titling MT", serif;
}

In the second example, you specify the Baskerville Old Face font, which is again present on both Mac OS X
and Windows.

span.font2 {
font-family: "Baskerville 0ld Face", serif;
}

In the third example, you specify the Lucida Bright font, and like the previous two, this font is present on
both Mac OS X and Windows. The generic font, monospace, is specified as a fallback font, just in case
Lucida Bright is not installed on the end user’s OS.

span.font3 {
font-family: "Lucida Bright", monospace;

}

Finally, in the last example you encounter a font that is not shared between Mac and Windows,
Herculanum, which is installed on Mac OS X. On Windows, the browser falls back to Eras Demi ITC, and
if neither of those fonts are present, the browser falls back to the generic sans-serif font.

span.fontd {
font-family: Herculanum, "Eras Demi ITC", sans-serif;
}

In the next section, I discuss how to make text italic or oblique with the font-style property.

The font-style Property

The font-style property is used to switch between styles provided by a particular font. Those styles
are italic or oblique, and they are a part of the font itself. The following table outlines the possible values
for the font-style property.

175

Part Il: Properties

Property Value

font-style normal | italic | oblique

Initial value: normal

The italic and oblique values are, with most fonts, indistinguishable in how they render. Consider the

example in Figure 6-5a.

hody |

lonbemimms fdpan;
H Fortne ms|orty ot fores, 1he e anc abigque
poi shyles ora reniered idordically

maceging s

r
p¥italic |
fonb-abwle: 1l
pFobligus |
tomt-styler obliguse
L

Figure 6-5a

Combine the rules in Figure 6-5a with the markup in Figure 6-5b.

ST DPRE Liewm]l TUALTE "= W30 A0TE BHTHL 1.0 Shrich s =2
hetor Ffaww o wd iocg/UES ahtml LPorDsxhen] loutrore ded® -
Shtnl gnlos="hbtps: Sfwen o wioord 10097 2hiknd solzlabng="ai "=
s lpoad s
whleler [utnh=gy s S LiLLey
<link pel='stploshock typos 'toxb/oms’ hrcf=' OSASTTRZ0ZgUElh.css
=/ head=
“lmsde
Qs

Thig FonT B AaTRal o
= ipe
g idd=" PTG
Thie Fome ofw o itslio.
<
o ids"ekligus s
This Foms LA Gliguie.
= p
S gy
Z/neml=

Figure 6-5b

176

S

Chapter 6: Fonts

Figure 6-5c shows that the oblique and italic values are identical.

Figure 6-5¢

This test of the oblique and italic values shows that if the font has an italic style, that italic style is used
when either the italic or oblique values are specified, there is no difference between the two values. This
behavior is identical when viewed in IE, Opera, or Firefox. In my experience, because it is identical to the
italic style, and the browser will automatically select the italic style if a font has no oblique style and vice
versa, I have never seen the oblique style actually used in real-world sites.

However, not all fonts have an italic style or an oblique style. Consider the example in Figure 6-6, which
demonstrates what happens when a font has neither an italic nor an oblique style.

by o
Tontest meL Moo
t
D i
nureicis 1
Tont=family: “"Honotype Corsive’!
1
paiEmlic
ont-mtwles ital i Hame tontz do rad hese ar Helic noe sn o2ligae ahda Tha
L rerLle ol Troe b s 0 Sicrsern web e =rnilalio o qn
peublique { naligue style B specifies 100 arls el oo 0o hava thasa stvks
Tont-anylee anl g
H
Figure 6-6a

Combine the style sheet in Figure 6-6a with the markup in Figure 6-6b.

177

Part Il: Properties

STEETYTPE Liawnl TPUALIC "= 2 WEC/SOTER HATHL 1.0 Bheich SRk
"hittze Sewe wl oS URSehbml L0100 ekt Lot es ot L dbd " -
whtnl snlos='hbtp: Sfwwe o wioong 19197 5hiknd s sl zlabng="ai '
= hsad -
whlole [unih-gy o S LiLLg>
flipi rel=‘stwlcshoot types toxti/oss’ hrcf=' O9RSTTRZOSQUEOAR.CsGE " F=
= hands
s de
a2

This font e normal o
i
S iad=" ikaT i
Thie Font e oditsloo.
W
S old-"ekbligqus 'y
This Foms LA Gligile.
i pe
T g
asnumle

Figure 6-6b

Figure 6-6¢ shows Monotype Corsiva, a font that has neither an italic style nor an oblique style —it has
only one style.

Figure 6-6¢

178

Chapter 6: Fonts

In Figure 6-6¢, you can see that Safari and IE treat fonts that do not have an italic or an oblique style dif-
ferently. Safari falls back on the default font, rather than rendering the font. IE just ignores the italic and
oblique styles and goes ahead and renders the font.

In the following Try It Out you experiment with the font-style property.

Try It Out Applying the font-style Property

Example 6-2. Follow these steps to try out the font-style property.

1. Write the following markup in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>font-style</title>
<link rel='stylesheet' type='text/css' href='Example 6-2.css' />
</head>
<body>
<p>
When it comes to the font-style property,
oblique and
italic are interchangeable.
</p>
<p class='naught'>
Some fonts have neither an oblique nor an italic style.
Safari differs from IE, Firefox, and Opera on what to do
when one of these is encountered.
</p>
</body>
</html>

2. Save the preceding markup as Example_6-2.html.
3. Write the following CSS in your text editor:

body {
font: 14px sans-serif;
line-height: 30px;
}
span {
background: yellow;
border: 1px solid gold;
}
span.oblique {
font-style: oblique;
}
span.italic {
font-style: italic;
}
p.naught {

179

Part Il: Properties

font-family: "Monotype Corsiva";
font-style: italic;

4. Save the preceding CSS as Example_6-2.css. The example results in the output in Figure 6-7.

Figure 6-7

180

Chapter 6: Fonts

How It Works

In Example 6-2 you experimented a bit with the font-style property. You found that browsers use the
italic and oblique style interchangeably, as evidenced by the following two rules.

First you applied the oblique font style to the element with class name oblique.

span.oblique ({
font-style: oblique;
}

Then you applied the italic font-style to the element with class name italic. In Figure 6-7
you can see that the rendered output of the italic and the oblique style are indistinguishable.

span.italic {
font-style: italic;
}

Finally, in the last example you specified a font with neither an oblique nor an italic style, Monotype
Corsiva. In Figure 6-7, you can see that Safari differs from IE, Firefox, and Opera in what it does when a
font with neither an italic nor an oblique style is set to either italic or oblique. Safariignores the
font altogether, while IE, Firefox, and Opera just ignore the italic or oblique style.

p.naught {
font-family: "Monotype Corsiva";
font-style: italic;

In the next section, I introduce the font-variant property.

The font-variant Property

The font-variant property provides an effect that is only slightly different from that of the
text-transform: uppercase; declaration presented in Chapter 5. The following table outlines the
font-variant property and its possible values.

Property Value

font-variant normal | small-caps

Initial value: normal

The font-variant: small-caps; declaration causes letters to appear in uppercase but scaled slightly
smaller than capitalized letters. Consider the example in Figure 6-8a.

181

Part Il: Properties

o=y 1
Iunt-size; 2dpa;

Lest-allgis =

f Thee carvali-ces sbyke ol 2 @lle smilan o lhe
maraging) feet-branstonn: usperzaza; daclarsion, tha
I3 dASgranee baing e small-caps shde rosuis in
s e R errcisn Inters baing slghtly seabed doer
mArgin-tope “hpig Lipeicase |lettarns.
text-tCAnE IOEmE LpPpSCTRESC]
cialesr g oo neEean s
]
oFEmall-caps |
font-rariants rmw TEpng
marcgin=batbom: Lip
ColoEr s ibeany

1
Figure 6-8a

Combine the style sheet in Figure 6-8a with the markup in Figure 6-8b.

SIHICTYPE html PURBLIC "= SWAESADTER EETHML 1.0 Sorloes fEHT

“hbtp: S Swmmw o wd oorgs TR xhonl LADIDSwntnll-strdct . dbd™=
<btnl xmlos='bttod/Swoeowd o orgslEdy fcheml’ xnlilesog="en >

heads

SLitlerfoal-varianl« Litlex

slAnk rel="styloshoect’ Eypes " toxcsone hyef="08837 7R a0 gladR. 055
< ‘reads
Chadus

L

gundaxrl Junday! Sumdayl

P

=n

u

row Press Fresenbs
= L
=@ id='upecroasc” =
peercosse

g
g del=mie 1 g T
griall Cana

R

i.'F|:I-
& Cight to the <h=lbali« bt

L

L4 F:-
eomedwe 11 mell oo the whols soet, bBuz voo 11 colve neoed the
adae | femn

1

L BT ||:|'_-\. =
= ktnl=

Figure 6-8b

182

fr

Chapter 6: Fonts

The result is shown in Figure 6-8c.

Figure 6-8¢

Figure 6-8c shows that when compared side by side with the text-transform: uppercase; declara-
tion, the effect of the font-variant: small-caps; declaration is obvious. The capitalized letter main-
tains its case and size, but all lowercase letters are displayed as capital letters scaled slightly smaller than
any real capital letters appearing in the markup’s source code.

The next section continues the discussion of font manipulation properties with the font-weight property.

The font-weight Property

The font-weight property provides the functionality to specify how bold a font is. The following table
outlines the font-weight property and the values that it allows.

Property Value
font-weight normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 |
700 | 800 | 900

Initial value: normal

As you can see in the preceding table, the font-weight property has several values. Despite all of these
different values being available for the font-weight property, in real-world web design, a font is either
bold or it isn’t. That is to say, in real-world web design, the only two values that matter in the preceding
table are the normal and bold values.

In the preceding table, you can see that CSS allows for up to nine different variations of bold, from 100,
being very light, to 900, being very bold. The reasoning behind there being several possible values for
the font-weight property is in professional typography, designers are likely to have access to fonts
with nine different variations of bold. However, these high-end professional fonts aren’t available by
default on any operating system, and in order to make use of the 100 through 900 values, you'd need to

183

Part Il: Properties

purchase a professional font package. Purchase of a font package that contains nine different variations
of bold can be quite expensive. The average price tag for a font package (one single font) with this many
variations is on average about $300.

Setting aside the values of the font-weight property that you're extremely unlikely to ever have need
of, there are two uses for the font-weight property: to make text bold, or to make bold text normal.
This is demonstrated in Figure 6-9a.

hd [
: Tamb—weiobtr cearmal) Toremave Bad lowatiing om an clemast that 5 kel by
defzol, suzh as the vha throwgn <hoe elemsns, setthe
B i 0f e cant-wasghs praacely o ronmadl Consrsnly,
Tunt—weiabit: Lolls tm FI|'I-|'.-|_'_-' hnld 1nrrn.-11'ri|1:'_p ard the waloe ot the fanb—we <hit
] propaty o s,
Figure 6-9a

The CSS in Figure 6-9a is combined with the markup in Figure 6-9b.

SHESSTYRE Bal FUBLTC "=S PR30 050000 2rwn 1ol Sihr e S5
"hetp: S fwwwenl ooy TR S sbtnl LSO shtnl et oict ded " e
whinl #mldms="hoie: Srwee Wl ocrg 10 wbhnl ' sl s lang="an'>
<“lcads
LU LT T b= gl L L T
wlink roel-'stvlcshect' twpe='texcioss hrct= D937 TRZ0tg0ali.css’ fa
ECR ITEIS TN I
s L

Wit everyullng Lo dail, il Youd vable v Daks i lldlil.
aprHhzn avervithaing is lighc, =ed wau wvant o make 1t dark.sdfpe
</ zadys
< kitml =

Figure 6-9b

The CSS and markup in Figure 6-9a and Figure 6-9b result in the output in Figure 6-9c.

Figure 6-9c¢

184

Chapter 6: Fonts

In Figure 6-9a, you see two elements in the body of the document, an <h4> element and a <p> element.
The <h4> element is formatted bold by default. To take away the bold formatting, you simply include
the font-weight: normal; declaration. The text within <p> elements is not bold by default. To make
that text bold, you use the font-weight: bold; declaration.

Now that you have seen how to make font bold, or not, depending on the element, the next section
describes how to use the font-size property.

The font-size Property

The font-size property is, of course, used to control the size of fonts. The following table outlines the
font-size property and its possible values.

Property Value

font-size <absolute-size> | <relative-size> | <length> | <percentage>

Initial value: medium

The bad news, as I mentioned in Chapter 2 in the discussion of CSS length units, is the number of
caveats and fallbacks attached to each measurement. Some are better suited for screen and some are bet-
ter suited for print, and not all length units are interpreted consistently on different browsers. The same
is true of the keyword values for the font-size property that I discuss in the following sections.

Absolute Font Sizes

The <absolute-size> value notation of the font-size property refers to one of seven keyword val-
ues. Absolute values for the font-size property are defined using keywords that range from xx-large
to xx-small. The following table outlines the absolute values and their relation to HTML heading sizes
as of CSS 2.0.

Absolute

Keyword xx-small x-small small medium large x-large xx-large
HTML n/a <h6> <h5> <hd> <h3> <h2> <hl>
Heading

These keywords specify the font size based on a scaling factor of 1.2. Scaling factor is the ratio between
two shapes. The scaling factor is determined by multiplying the font size by 1.2 to determine the next
font size relative to the previous one. For instance, if a font size of 16 pixels is assumed for the medium
keyword value, the 1arge keyword would be approximately 20 pixels, rounding up from 19.2 because
16 multiplied by 1.2 equals 19.2.

185

Part Il: Properties

These keywords exist for sizing fonts relative to the browser user’s font-size preferences. The browser
precalculates the value of each keyword depending on those preferences. The name absolute is somewhat
misleading because each keyword is relative to the user’s font-size preferences. The actual length unit
size of each keyword varies depending on a number of factors, such as:

Q The browser’s default font size
O The user’s font size preferences

Q The font family being used

Despite all of these variables, this is one place where the three browsers, IE, Firefox, Safari, and Opera,
seem to be consistent.

Figure 6-10 shows each absolute font size in relation to the default HTML heading size and a size speci-
fied in points.

Figure 6-10

Although this association between font size keywords and length units works for the Rockwell font I
used in Figure 6-10, the point sizes depicted are approximations and might not be the same point unit
values when another font is used. If you increase or decrease the size of the text using the zoom feature
of the browser, you'd notice that the point sizes change in response to the absolute keyword values if
you are using IE 7, Safari, Opera, or Firefox. However, IE 6 ignores the user’s adjustments to font size
preferences on font sizes specified in points (or any other absolute length unit, like inches or centime-
ters). Therefore, the point sizes do not change with the size of the absolute keywords when adjustments
to the user’s font size preferences are made. You can make adjustments in the size of the font in Internet
Explorer from the View = Text Size menu. In IE 7, Windows Opera, and Windows Firefox, changes to
font size can be made by pressing Ctrl-+ (The control key and the plus sign key) or Ctrl-— (The control
key and the minus sign key), or from the View => Text Zoom menu. Safari, Mac Opera, and Mac Firefox
use the shortcut, 8-+ (Command, plus sign key), or 38-— (Command, minus key).

Relative font-size keywords, covered in the following section, are closely associated with the absolute
font size keywords.

186

Chapter 6: Fonts

Relative Font Sizes

The <relative-size> notation of the font-size property refers to two values: larger and smaller.
When either of these two values is used, the font size is determined by the values appearing in the

table for absolute size keywords discussed in the previous section. Take, for instance, the example in
Figure 6-11a.

- R The sealen mocl g keyvannts Crise A DeiisEse
.) ’ T of Inreass i 7a oy 6 sceling woetaral 1.2

i
p¥largory span

font-sizes 2Lpxg
L

pRensl ler §
Font=miams rmal =g
'

preneller @pen {

Fomb-sioes

Elan {
background: mistyroso)
!

Figure 6-11a

Combine the CSS in Figure 6-11a with the markup in Figure 6-11b.

SR PR Bem] BT "= S w e S e R B TS FE
"hitz: S feww s wlioog S VRS thtml LoD shtnl L-ste oot dbd” -
Shion] #ilas—" Bl e Srwdu oWl nrg 100 Juhilnd s 2al zlakg=" il " >

=hsad
“hilbler [vib-ghgess Lille™
2lipk rel='‘stulozhost types toxtfoss’ REcS=' OSHRSTTLREZO=SQUELl.c=s o
= heads
ey
-'_.p_‘
Tha larger avd anal er Reyunrde of Fag Fonc-pize properhy
tunctico ueing the soaling tmosor of L.d.
WA
“p id='larger' >
Fhise Fomt e 1.5 tines bhe defeolt font, o0 20 pive’ s doe S
A nFEY Dlancad Ty L in _::L.-'il.l.—:.l T=bmlarabim . < fAan=
A
ko Led="amel Tas '
This foot iz L.z smalleor than the dofaals sizc, ar pixsls.<kEr O
sapminrEvlilancad by Lhis poinl-oT-ralarabce. fapans
< pe
ety
“lhemls

Figure 6-11b

187

Part Il: Properties

The results are shown in Figure 6-11c.

Figure 6-11c

Figure 6-11 demonstrates how the next value in the absolute font-size keyword table is chosen. Because
the font for the <body> element is made medium in size with the font-size: medium; declaration,
when font-size: larger; is applied to the <p> element, the browser chooses the next larger value in
the absolute keyword table and applies a font size that is the same as would be generated by the font-
size: large; declaration. If the value is specified with a length unit— say, for instance, as pixels — the
browser simply applies a 1.2 scaling factor to that size to get the larger size.

Figure 6-12 shows how a font size specified as 16 pixels gets increasingly larger when font-size:
larger; is applied to descendant elements.

Figure 6-12

In contrast to the font-size: larger; declaration, Figure 6-13 shows what happens when the font-
size: smaller; declaration is used instead.

188

Chapter 6: Fonts

Figure 6-13

The font-size: smaller; declaration performs the same scaling factor changes that the font-size:
larger; declaration does, but does them in reverse.

Percentage Font Sizes

Percentage font sizes work much like the em units discussed in Chapter 2. Consider the example in
Figure 6-14a.

Epen o

et gt oroe ey WDED epEiling a 1ont size by percealage, @ vakle

b wmr | ; ' larger 1ham 100% meELTs In & lont s 78 lerger than the
' preet elenanl, or Deciaesal defaull. & walue of 1708
mpen Epen { riears ra zharns in fom size

-} L riar H i |-

1 - 9 - F

H
Figure 6-14a

Combine the CSS in Figure 6-14a with the markup in Figure 6-14b.
The result is shown in Figure 6-14c.

Figure 6-14c shows that percentage values are based on the element’s ancestry. The font size for the <p>
element is the default font size, which is medium or typically 16 pixels. The font size of the first
element is made 50% larger than the font size of its parent element, the <p> element. Assuming the
default font size is 16 pixels, that makes the font size of the first element 24 pixels. Then, the
nested, child element is made 25% bigger than the font size of its parent element, which
comes to 30 pixels.

189

Part Il: Properties

SEESY PR Beal FOu 0 "= M aie s 0rn i R R TR P
"hitome Sewe wl oeg S URSehbml L7010 nhkn] Lot esok L dbd" -
whibnl snlosm=" bl Cp: Sfwwe o wioorg 19197 xhilnd s «nlzlabg="mi "=
E =T
wLivler [otib-sliges/ Lille>
flipi rel=‘stwlcshoot types toxtioss' hrof=' 09RSTTRZOSQUIGle.css’ F=
= heads

alody o
-'.'p.'l
Tersavbage *ont 2trep apsly & foark gize velamive to o she
parent elepsnt's toot cize, Foro osxarple, <br S
LI
Tais fonk sims oe S04 Roggee Roan thet of the
el ipEas: alanens, hr S
wmpeal
Thiw font is 250 Bigner chan the Fons ased
Far Lhe pereil &1 Lpspaikdly alanmub.,
2 mpent
A
= p
S
<rhneml=

Figure 6-14b

Figure 6-14c

A percentage font size measurement might also be used to decrease the size of a font. Take, for instance,
the CSS in Figure 6-15a.

oRCAgrouRdE mlrturosc) When sprcilying o lent sz by peroenage, aovalue
Pont-mlams Song sivallar Crenn 100%: regulls in o tonl sze sinaler ean
H the parznl alemears, or troeser ceault.
=Eten Il'i:.-l'l
ngcggrounds mins
Foantb=a! 2me 7593
H

Figure 6-15a

190

Chapter 6: Fonts

The CSS in Figure 6-15a is combined with the markup in Figure 6-15b.

P PR Bl FURL L "= F fW30 SnTn S0 0 SEriehS SRR
httoe Sfwww . wili ool URS html LorDsnhktndl l-strore . ded ™ -
“hbnl snlis=" bl e S0een ol nd g 1100 7 xhilnd S ©alzlang="mi' >
=luzad -
ShibleIonb-ghae/LiLle>
Zlink pel='stwloshool typos'toEbi/oss' Rrof="09R9771Z0Zg0El0.aas J@
= heads
.:de:r-:.
l'_.p_'l

Tha gane privsiple can B oapp 1es ko mase tork gines emal ler
by poroentage, For exanple,<kr S
ke NN

Tadis tont soEe o 24%% snmllsc than thas ot toe

el ipEat: alanens, Chr S0

ARl
Thig font im 25@ ans1 er Fhan thie font paed
For Ll merenl £ L pspainkdlr alanmab.,
< Ruant
= A
=
= ol
“lhemls
Figure 6-15b

The result is shown in Figure 6-15c.

Figure 6-15¢c

As you saw in Figure 6-14c, Figure 6-15¢ shows how percentage fonts can be used to make a font
smaller. Again assuming the default font size is 16 pixels, the child element is made 25% smaller
than the font of the <p> element, which comes to 12 pixels. Then the nested element is made
25% smaller than its parent element, which comes to 9 pixels.

Now that you've had an overview of how the font-size property works, you can try out the font-
size property firsthand.

191

Part Il: Properties

Try It Out Applying a Font Size

Example 6-3. Follow these steps to try out the font-size property.

1. Inyour text editor, type the following markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>font-size</title>
<link rel='stylesheet' type='text/css' href='Example_6-3.css' />
</head>
<body>
<p>
The font-size property supports a variety of methods for
specifying a font size. For example, there
are seven different absolute size keywords, which set the
font size relative to the user's font size preference.
</p>

<1li style='font-size: xx-small;'>xx-small</1li>
<1li style='font-size: x-small;'>x-small</1i>
<1li style='font-size: small;'>small</1i>
<li style='font-size: medium; '>medium</1i>
<1li style='font-size: large;'>large</1li>
<1li style='font-size: x-large;'>x-large</1li>
<1li style='font-size: xx-large;'>xx-large

<p>
You can also make fonts
larger or
smaller by way
of the larger or
smaller keywords.
</p>
<p>
You can make fonts
50% larger
or 25% smaller by way
of percentages.
</p>
<p>
You can even make a font
50% larger
or 25% smaller by way
of em units.
</p>
</body>
</html>

2. Save the markup as Example_6-3.html.

3. Inanew document in your text editor, write the following CSS:

192

Chapter 6: Fonts

body {

font: 16px sans-serif;
}
span {

background: mistyrose;

}

4. Save the preceding CSS as Example_6-3.css. The results of these modifications can be seen in
Figure 6-16.

Figure 6-16

How It Works

In Example 6-3, you tried a variety of different methods of setting a font size. You began by typing out
all seven absolute font sizes, from xx-small to xx-large.

Next you experimented with three different ways of adjusting a font size relative to the parent element
or browser default font size. You began with the larger and smaller keywords. The larger keyword
makes the font size 1.2 times larger, and the smaller keyword makes the font size 1.2 times smaller.

<p>
You can also make fonts
larger or
smaller by way
of the larger or
smaller keywords.
</p>

193

Part Il: Properties

Next, you experimented with percentage font size. A percentage value larger than 100 results in a larger
font size, while a percentage value under 100 results in a smaller font size.

<p>
You can make fonts
50% larger
or 25% smaller by way
of percentages.
</p>

The em unit is pretty much identical to the percentage font size, except you can use the em unit on any
element, not just font sizes (such as defining the width of a <div>; more on this in Chapter 7). You get
identical results when using em units as you did with the percentage size.

<p>
You can even make a font
50% larger
or 25% smaller by way
of em units.
</p>

The next section examines a special shorthand property used to specify several font properties in one.

The font Shorthand Property

The font property is a shorthand property that allows you to write several font-related properties in a
single property. The following table outlines the font property and the values that it allows.

Property Value
font [<'font-style’> | | <’font-variant> | | <’font-weight’> |? <’font-size’>

[/ <'line-height"> |? <’font-family’> | caption | icon | menu | message-box |
small-caption | status-bar

The notation for the font property is somewhat more complicated than those presented in previous
examples. For now, just ignore the caption, icon, menu, message-box, small-caption, and
status-bar values — these are called system fonts, and I discuss them in the next section.

The font Properties

As for the first part of the notation, here’s a breakdown of each portion:

[<'font-style'> || <'font-variant'> || <'font-weight'>]?

194

Chapter 6: Fonts

This indicates that either a font-style, font-variant, or font-weight value can be provided. The
question mark indicates that this part is optional; you don’t have to include a font-style, font-
variant, or a font-weight. The double vertical bars in the notation indicates that each value is
optional, and they also indicate that any combination of the three can appear. You can include just a
font-style,justa font-variant, justa font-weight, all three, or any combination of the three.
The next part indicates that a font size must be specified:

<'font-size'>

The font size is not optional, so a font-size value must always be provided.

The next part indicates that a 1ine-height (discussed in Chapter 7) may be specified, but because a
question mark follows it, the line height is optional:

[/ <'line-height'>]?
The forward slash in the notation indicates that if a line height is specified, a forward slash must sepa-
rate the font-size and line-height properties. The question mark after the closing square bracket
indicates that this portion of the syntax is optional.
The last portion indicates that a font-family must be specified:

<'font-family'>

So at the very least, a font-size value and a font-family value must be specified. Now that you
understand the notation, Figure 6-17a is an example of this property including all its optional values.

The lenl saerihzed praperly acalilales the
3 - spnoticahnn af 2ix miferent aroaertics
M just ane.

Ionk: oollo Sma “aps bold CoLome deh sans-scribs

Figure 6-17a

195

Part Il: Properties

The CSS in Figure 6-17a is combined with the markup in Figure 6-17b.

STV ERE Beml PURLTE "= F WO ST ST I O B Y B
“hetos Sfwww o wlaprg/ RS sheml L/0rD S shend l-gtrict.ded® o
shibonl snlos-" bl Gps Sfwee o wdoorg 19197 2hilnd s snl s labng="ai ' =
hpcrads
Sl LT Tanlsf L L L
<link rel="astylozheot types 'toxtfoss' heoS=' 09RS VTR 205glel . ioas’ O
= =
I
e
The fanl prosorty i oall iks wpmolosbtod oloey.
e
<
Leecks 1ike o Ioph won woald Zld i oo cunls book,
2 g
S zadyx
arhtml>
Figure 6-17b

The result is shown in Figure 6-17c.

Figure 6-17c¢

This rule includes all the values possible with the font property shorthand. Figure 6-17 shows that this
rule makes the font italic, small-caps, bold, 1lem in size with a 1.5em line-height and a sans-serif font. I
haven’t discussed the 1ine-height property yet because this property is discussed in Chapter 7, but
essentially the 1ine-height property accepts a normal length value, which sets the height for each line
of text.

In contrast to the example in Figure 6-17, the example in Figure 6-18a shows the font property with a
minimal set of values.

196

Chapter 6: Fonts

e Woll MU specty ableast 8 Font-miee 800

Tontnoopn REMETERE DSCEIVED cone rani Ly el alher valles aia apiongl,

solors Seckelatabloe;

Figure 6-18a

The CSS in Figure 6-18a is combined with the markup in Figure 6-18b.

ST BRE Bl PURLTE "= f SWIC TSN ST I O U TRY B
heto: S fwww o wliora/ VRS sheml L7000 shtnl l-wt oot ded™ o
shinl snlns-" bk e Sfwen o wi3oorg 1819 7 xhilnd s salzlabng="ai '
gl
Sl LT Tomls f L L L
clink rel='stylozheot types'toxt/oss' heef='09A9774205gtElR oas’ o
= k=
Rt (S5
e

The famt proocriy woith 3 mininzl sob of valuos is -usk a
slee amd Lonl-Zonlle,
<=
L E T L
arhtml-

Figure 6-18b

The result is shown in Figure 6-18c.

Figure 6-18c

The notation indicates that at least a font size and a font family must be provided, as is reflected in the
preceding example. Figure 6-18c shows output with a Monotype Corsiva font 32px in size.

197

Part Il: Properties

Here are a few more possible variations of the font property:
font: bold 1.2em Arial, sans-serif;

This makes the font bold and 1.2em in size. Then, like the font-family property, the font property
accepts a list of fonts. I've specified an Arial font, which is common. If that font isn’t found on the user’s
computer, the generic sans-serif font is used. The following is another variation of the font property:

font: italic 1.2/2em "Times New Roman", Times, serif;

The preceding rule makes the font italic and 1.2em in size with a 2em line height. Those specifications
are followed by a list of font families.

Now that you’ve had an overview of the font shorthand property, you can try out the font property for
yourself in the following Try It Out.

Try It Out Applying the font Property

Example 6-4. Follow these steps to try out the font property.

1. Inyour text editor, type the following markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>font</title>
<link rel='stylesheet' type='text/css' href='Example_ 6-4.css' />
</head>
<body>
<p>
The font shorthand property lets you combine up to six
different properties in one single property.
</p>
<p class='fontl'>
You can make text that's bold, 24 pixels in size,
and sans-serif.
</p>
<p class='font2'>
You can make text that's italic, bold, small-caps,
24 pixel sans-serif, which looks like a comic
book font.
</p>
<p class='font3'>
Or you can just keep it simple, 16 pixels and
monospace.
</p>
</body>
</html>

198

Chapter 6: Fonts

2. Savethe markup as Example_6-4.html.

3. Inanew document in your text editor, write the following CSS:

4,

body {
font: 16px sans-serif;
}
p.fontl {
font: bold 24px sans-serif;
}
p.font2 {
font: italic bold small-caps 24px sans-serif;
}
p.font3 {
font: 16px monospace;
}
Save the preceding CSS as Example_6-4.css. The results of these modifications are shown in
Figure 6-19.
Figure 6-19

How It Works

In Example 6-4, you saw four examples of the font shorthand property. The first example sets the font
for the whole document, 16px, sans-serif. Because the font property is inherited, the font will stay 16px
and sans-serif unless specified otherwise for a child element.

body {

}

font: 16px sans-serif;

199

Part Il: Properties

You then set the font to be bold, 24pXx, sans-serif for the <p> element with class name font1.

p.fontl {
font: bold 24px sans-serif;

}

Next you made the font italic, bold, small-caps, 24px, and sans-serif for the <p> element with class name
font2.

p.font2 {
font: italic bold small-caps 24px sans-serif;

}
Finally, you set the font to 16px, monospace for the <p> element with class name font3.
p.font3 {

font: 16px monospace;

}

In the next section I talk about system fonts, which are fonts that you can use to style a web page based
on an end user’s operating system fonts.

System Fonts

System fonts are keywords that refer to a font predefined by the user’s operating system. The following
table outlines each available system font.

Font Name Font Description

Caption Refers to the font used for captioned controls.

Icon Refers to the font used to label icons like those found on the desktop.
Menu Refers to the font used in menus, drop-down menus, and menu lists.
message-box The font used in dialog boxes.

small-caption The font used for labeling small controls.

status-bar The font used in window status bars.

System fonts may only be set as a whole when a system font is specified using the font shorthand prop-
erty, the font-family, font-size, font-weight properties, and all other aspects of font display are
set at once.

The CSS in Figure 6-20a is combined with the markup in Figure 6-20b.

Figure 6-20c shows what system fonts look like in various browsers on various operating systems.

200

Chapter 6: Fonts

e g i e
Teanlk = aprd H
pFicon | .
fonts S=ar Bustor forss can beowsad oostee Tk ina
wab documend he zame as ey are 1o wanious
pFmenL | anrpanss af e e noeahng sestan
fonks Mav s
|:|+:|1|-u|-ll|-_|.--|::: i
Tonti nesracs- o)
|:|-l::-\. ll—capsiom {
Ttz =me T Tecapt g
p¥Fetatis=kat [
Teanlh = aaLba=ar g
Figure 6-20a
SERCTEY PR BT BT A SRS AT R S S B RS B

"hiLbgs S fmne wdorg S TR ehlml
whin]l #mlas-"hlig: Sieen i org s 13008 /ahilnd S el =lang="mic" =
= loads
cticlergvsten fonbscftitles
flink pel='stploshect types bext/oss’ hrof=' 0SR57TLZ0SgUEID.oss
S hends
ksl
«<p id=‘caption’ s
This im the cantior fork,
'\-':|'I|_|'-'
wpoidd="dcoan
This iw Lhe doan Ton,
=
“hr ded=Tisni
This 15 the monn Fonc.
e
P ld=tmessago Do
Thiz iz the meoscaqs-box Sont,
< dp
Zp id=‘mrall-ception s
Thie im the 2o’ l=mapticn Sont,
'\-'.-"|_|'-'
g id="etatug-barc'>
Thia ia Ll sLtala=s=Llar Tanl..
2
-f.l':;_uﬂ':llﬁ-
</ hbml=

Figure 6-20b

Figure 6-20c demonstrates each of the system fonts. From left to right and top to bottom the screenshots
in Figure 6-20c are Safari, Windows XP IE 6, Windows Vista IE 7, Mac Opera 9, Ubuntu Linux Firefox 1.5,

Windows XP Opera 9, Mac Firefox 1.5, Windows XP Firefox 1.5.

rofehin] l-gteiob did" s

S

Part Il: Properties

Figure 6-20c

System fonts are intended to allow a web designer to set fonts based on a user’s font preferences as
defined for his or her operating system. While system fonts sound great in theory, Figure 6-20c shows
that system fonts are a bit of a hit and miss proposition. They don’t work in IE 7 on Windows Vista, in
Firefox on Ubuntu Linux, or in Safari on Mac OS X. Because system fonts can’t be relied upon absolutely,
it may be better to just define font styles for yourself.

Additionally, different aspects of system fonts can be overridden via the cascade by specifying the differ-
ent font properties after a font declaration with a system font value. This is demonstrated by the follow-
ing rule:

p {
font: caption;
font-size: 2em;
font-style: italic;
}

In the preceding example, the font size and font style replace those specified for the system font.

202

Chapter 6: Fonts

Summary

This chapter demonstrated several properties CSS provides for manipulating font display. These proper-
ties allow both simple and complex control over how fonts are presented to the end user. In this chapter
you learned:

a
a
a
a
H]

Q

a

How to specify the font face using the font-family property.

How to make the font style oblique or italic with the font-style property.

How to style the small-caps effect using the font-variant property.

How to control the lightness and boldness of a font using the font-weight property.

How to take advantage of specifying a font size that adjusts based on the user’s font size prefer-
ences with the font-size property and absolute keywords.

How to increase the size of a font based on the font size of an element’s parent using relative
keywords, percentage font sizes, or em units with the font-size property.

How to combine the various font properties into one using the font shorthand property.

After learning some of CSS’s simpler properties for text manipulation in Chapter 5 and going over font
manipulation in this chapter, you now learn about the CSS box model in Chapter 7.

Exercises

1.

2.

D

}

Why aren’t the values of the font-weight property 100 through 900, bolder, and lighter
used in real-world web design?

If “Font A” is supported on Mac OS X, and “Font B” is supported on Windows XP, and “Font C”
is supported on Linux, what style would you write so that one of the three would always be
used in the absence of one of the others?

If you want to make text italic, what are two possible declarations for doing that?

What's the difference between the font-variant: small-caps; and text-transform:
uppercase; declarations?

How could the following rules be better written?

font-family: Arial, sans-serif;
font-weight: bold;

font-size: 24px;

color: crimson;

p.copy {

}

font-style: italic;
font-weight: bold;
line-height: 2em;

p#footer {

203

Part Il: Properties

font-size: 12px;
line-height: 2em;
font-family: Helvetica, Arial, sans-serif;

6. What's wrong with the following rule?

font-size: 24;

7. If youinclude the declaration font-size: larger; in a style sheet rule, how much larger
would the text be?

8. Would the declaration font-size: 75%; make the font size larger or smaller?

204

The Box Model

In this chapter, I discuss one of the most important concepts in CSS-based web design, the box
model. The box model is a set of rules that dictate how width, height, padding, borders, and mar-
gin are measured on HTML elements.

In this chapter, I discuss:

0 The CSS box model

0 CSSbox model properties, padding, margins, borders, width, and height
0 Controlling line height

0 Establishing minimum and maximum dimensions

Qa

Overflowing content

The next section begins with an overview of what the box model is.

Overview

The CSS box model is a collection of properties that define the amount of space around an ele-
ment, its dimensions, its margins, its borders, and padding between text content and the borders.
In Figure 7-1, you see a diagram of the box model.

In Figure 7-1 you see what the different components that come together to make the box model
look like. Around the outside of an element is space called the margin, inside of the margin is
the border, inside of the border is the padding, and inside of the padding is the content of the ele-
ment. Figure 7-2 takes the box model in Figure 7-1 and reproduces it in an (X)HTML document
with CSS.

Part Il: Properties

206

margin-top

margin-left

woljog-uTbIeuw

Figure 7-1

Fenwdy
mATgine 0
paddinge Uy

H

FlvdbasweanpE© f
Facrg-armds S50
Fordomn Zpe coloc 2LLD)

k

Fludkan |
Fatrde~: Fl=w w04 1 Fh;
marging 2Laxp
paddings Zojea;
Fasegearmis Y0

r

cimfbon-inner |
Lacagoocisds SL L5

Ealar: ~grdsda. cea, vea)

r
Figure 7-2a

Wangir is insisible: you se the sackground af t1e
ramrr zlemem bare, snobatyeo see whans it s
apalisd

1 e Cackyrown color & apglied romira culside
Easder edge and incudes ke paddine and sammeat
ared, Toghee The osmier] ares 8 Jifensqr Backgndand.
sy s e naceing avs, pooinckdnd anmbee
ehemant and gave it awhile paCkground {48

Jubta-uthasw

Chapter 7: The Box Model

The CSS in Figure 7-2a is combined with the markup in Figure 7-2b.

FAER'

T RE Benl BURLTE "= FSW30 s 7 wHman 1.0
“htop:od fwww.wl.oon Entpll orDsxhtnl l=gtoict.ded®
A1AD S wbial Y owml s Taing— e >

whinl selom—" bl
alzads
ol PR Sn WEEE TRN (S A A
=linik rol='stvlcshoot’ tyoe- coxb/css’ hroE='DURITTRICEQITOZ.css O
L TEE T
et s LUFS
wdiy Lod='bhox-wrappsc s
iy id= ox =
“giv id= box-inner >
Toren ipstm o lor 81t anel, coneseTtetaer edipiEcing
glit. Proin consechebost Denue &7 SC0O5. wovaoras wel

mikh. Westibolue sliguanr negque g onigi. Hollen ea
turpie. Fooin pi. Cras dictun sesper Selie, Mascenss
porctitor nengue st dolor. nteges vl Jikeso vitas
ante lahortis trostigas. Morht =anian dian, Sriatigoe
mad, plecerat pheacssra, Toaospe snast, neErquos,
TalleilmAciie Teo aellia, aolllalceiin g, meladidada
witee, warios cites coar, Dresoeget bel Toe opes] soaens

dapibis gharclra.

Tneacllis varivs winooidanl guan. Macoanas vIVGEEG
matTis oool. Etram porbtbiteor luctas ligqulas. Uk oac
mibkh. T conrmads impordicl soplen. Malla wel sasian
zod peEuris eulsmor pharotra. QUiSgus Cu acte opct
[sdde Cplabique Cinolduonl. Corsbiiar e eral en lioerc
alquem placcrat. Pellontezsmgue telis crat;, ocursas

Crdiue
Ll b RLE
i
£ f s
i nemls
Figure 7-2b

The result of the CSS in Figure 7-2a and the markup in Figure 7-2b is shown in Figure 7-2c.

In Figure 7-2a, you can see how space around an element is controlled with the three properties, margin,
border, and padding. All three of these properties are specified on the <div> element with id name
box. Then to highlight the presence of these properties, you included two additional elements, one
wrapping the <div> element named box, where the element is given id name box-wrapper, and one
wrapping the content within the element, where the element is given the id name box-inner.

The element box-wrapper is given a yellow background of #££0. This is because margins don’t have
backgrounds themselves; therefore, in order to highlight the margin area, an element needs to wrap
around the element with margin applied to it, and be given a different background color. The area that
is the darkest yellow (#ff0) is the margin area of the box element. The box-wrapper also has a one-
pixel, solid, white border applied to it. This is to prevent box model behavior that arises in some cir-
cumstances called margin collapsing. You’ll learn more about margin collapsing later in this chapter; for
now, just disregard that border.

207

Part Il: Properties

Figure 7-2c

The border can have its own color separate from the background, so you specified the border as
border: 20px solid #££6;. This yellow is slightly lighter than that used for the margin area. The
padding is the area between the inside border edge and the outside edge of the content of the element.
Since the padding and content area actually have the same background color, you included another
<div> element with id name box-inner. The box-inner element is given a white background (#££f)
to highlight only the content area.

In the coming sections, I pick apart the various properties that comprise the box model in CSS, begin-
ning with margin.

Margin

The margin property applies space outside the box, between the box and the browser window, or
between the box and the other elements in the document. The following table shows the various margin
properties.

Property Value
Margin [<length> | <percentage> | auto] {1,4}
margin-top <length> | <percentage> | auto

margin-right
margin-bottom
margin-left

208

Chapter 7: The Box Model

The margin property is a shorthand property for the four individual margin properties, margin-top,
margin-right, margin-bottom, and margin-left.

Margin Property with Four Values

Figure 7-3 shows a comparison between the individual margin properties and the margin shorthand
property with four values.

ke |
LaCRaln bl tH H

padding G

'
div
idsh: | onpe; Bramgin for e siea can be spacilisd ind o daaly,
h=ightz TR0 Lo werilhen sy e any 0 ooy wOisn
baczgzoaade moce: =1 provides e adilty o spesify mangin dae 2l four sdes
Learder s Jpx solid ool (L R Tt) Pl ol el ey
'
2 ...__.;_..\,.__ e -|'-|--I--~1--.-"r—' it f
mATaI T -tane L]
margin-right: 1orp=)
naldgln=bollor: 100x;
nardin=lelf.: _uU_o=;

H
civitop-right-bottom-lelft-1 [
parging Abpe Lpx LOpx L0m)

'
rnarg Floe marginerght mangin-Dollom s D mengineledl

Figure 7-3a

The CSS in Figure 7-3a is combined with the markup in Figure 7-3b.

ST BFE henl BURLTE "=f W30 s 2nn 2HTL 1.0 St Tee s fRE
"hitspsd e el orn S TR st e L L DT sRhen D st it L dbd " s
shtnl smlom="hbtps S Peweawd e 1A% 50 enl " gl 2T mnsg="san "5
riasdi
L B o I T [T oo S B oY
=link pel='sty lesheet ' tupe= coxtroeg’ href="pupaeoscsofouine . cse

o

A el
.:h‘:d-:.:..
il T ddd="hop—r Tghi=hebbarn="Tn e wa g iun
iy ide'too-rinhs —hoteom-leEs -t fdies
R R [
wihemls

Figure 7-3b

The CSS in Figure 7-3a and the markup in Figure 7-3b result in the output you see in Figure 7-3c.

209

Part Il: Properties

Figure 7-3c

In Figure 7-3, you see how the four individual margin properties can be used to specify the margin of an
element, and how those four individual properties can be consolidated into a single margin shorthand

property.

Box model shorthand properties are always specified in order clockwise from the
top: top, right, bottom, and left — for example: margin: 10px 10px 10px 10px;.

In Figure 7-3, you specified 10 pixels of margin around both <div> elements, but used two different
ways of doing it. Figure 7-4 shows the output of Figure 7-3 with the margin area highlighted yellow.

Figure 7-4

210

Chapter 7: The Box Model

In Figure 7-4, the 10 pixels of margin on each side of each <div> element appears in yellow. Also take
note of the orange area, which is 10 pixels of margin, rather than 20, as you might have expected. This is
caused by margin collapsing, which I discuss later in this section.

Margin Property with Three Values

In Figure 7-3, you saw an example of specifying margin using four values, but you can also specify only
three values for the margin shorthand property. This is demonstrated in Figure 7-5.

body |
mergin: g

H
wWidihz [N HTES
beichts 00 Wiarn e Inft and righd margins ars the samea,
hackgroands o ! 3 LSIT R - aul U o ared Sellom irargns ang dillerzn?
nurdore i wlid p krr che sieme & ernenk, wod gan usa the naygin
:) o o arooeriy will ines velyse,
divrbtop—rightloft-bottom [

mrgin-Lops Ifoag
margin=rightl Do
marcin-Rottom 10p;

maroin- letzy boxs

5
divrtop-cigatlett-oattom=-1 |
'1I_¢rd-_i'.: Spx Soo vpe;
i
nargin-sap mergin-right margin-othom
margin-leA

Figure 7-5a

The CSS in Figure 7-5a is combined with the markup in Figure 7-5b.

ST BFE henl BURLTE "=f W30 s 2nn 2HTL 1.0 St Tee s fRE
"hitspsd e el orn S TR st e L L DT sRhen D st it L dbd " s
shtnl smlom="hbtps S Peweawd e 1A% 50 enl " gl 2T mnsg="san "5
whasds
L B o I T [T oo S B oY
2link pel='sty psheet’ tope= cegtfose’ href="0ULA 000 Egl Tl o S
RIS TY
.:h.:d-:.:..
sl T idd="ton=r Tgheleih=lshhun el
ediy ide'too-righsleft-botton-1 " medd iy
R R [
wihemls

Figure 7-5b

211

Part Il: Properties

The source code in Figure 7-5a and Figure 7-5b results in the output you see in Figure 7-5c.

Figure 7-5¢

In Figure 7-5, you see how when you have the same margin value for the left and right margins, and dif-
ferent values for the top and bottom margins, the solution is to use the margin shorthand property with
three values.

Box model shorthand properties with three values always follow the convention top,
right and left, bottom — for example: margin: 15px 5px 10px;.

Figure 7-6 shows the different margin areas of Figure 7-5 highlighted.

Figure 7-6

212

Chapter 7: The Box Model

In Figure 7-6, you see the margin area highlighted for each <div> element appearing in Figure 7-5. Take
note of the collapsed margin, which I talk about later in this chapter.

Margin Property with Two Values

Naturally, the margin shorthand property also supports two values. When two values are specified, the
first value refers to the top and bottom sides, and the second value refers to the right and left sides. This
is demonstrated in Figure 7-7.

hady |
marging o}

wWidlhs 0Nk
koighte “oCpe:
nackgrouisiz o LRt
oopdorE solid pinkp
r Whan teo margin values aa spaciad, the
davtbopottan- rightleft el value refers 1o he g end Solom sicss,
mungin-tops 1w wheress 1ha second value wahars to 1he
martgla=rightl ap=q rigghl Al el sites
murgin-bottom; F
mAargin- lptne Loy
r
divdbapbacb tun-rightTefe-1 [
mucgins -Spsl Sosg
d maAlgin=t s igi-righl

rargir-actam mann-les

Figure 7-7a

The CSS in Figure 7-7a is combined with the markup in Figure 7-7b.

CCTR PR Benl PUBLTE "= Wl i i 1.0 St TeedfEe'
"hitspidrwwe el oo TR 0t e L L SDTDS shen D l—wt ot L dbd " s
shitnl xwlrm=" bk bps S e owd Corg /130050 enl " w1 2T mnsg="san "o
whmad
S B e T SR TR
wlink rel="stylesghset’ tuge= cwegkscsp’ href="MLa 0 nsofgi o oss 0 S
<A e
.:h‘:d-_‘.:.
sl id="ronbtonm=richtTale wafdive
ediv ide'tookot-on-richt leFoal o divs
SR E RIS Rtk
wimemls
Figure 7-7b

The CSS in Figure 7-7a and the markup in Figure 7-7b result in the output you see in Figure 7-7c.

In Figure 7-7, you see what happens when just two values are supplied to the margin shorthand property.

213

Part Il: Properties

Figure 7-7c

Box model shorthand properties with two values always follow the convention top
and bottom, right and left— for example: margin: 15px 10px;.

Margin Property with One Value

You can specify just one value for the margin property, which simultaneously sets all four sides of an ele-
ment’s margin. An example of the margin shorthand property with just one value appears in Figure 7-8.

by 4
nArgin: U
pade ings L
r
widilhz [N TES
Feights Lo
hackgrouid: LRy
bordsr: _po =olid pocks
r
div¥toprightbotbomleit |
b k= Loprs Tl
naroinerogkty 1icm Whaen one walue & soeciied for the magin shanlsnd
margin-bobtom: [hoax: crvgrery, e vales is apolied o all Teor gidee.
nocoin-left) Llpos
r
divetoorightbottomleit=1 o
nateing 0ps
) rErg ri-lg
margn-roht
inEArg n=bollonn
margn-laf
Figure 7-8a

214

Chapter 7: The Box Model

The CSS in Figure 7-8a is combined with the markup in Figure 7-8b.

CCTR PR Benl PUBLTE "= Wl i i 1.0 St TeedfEe'
R M T Tt o (R

"htspid fwww . el oo TR
shitnl xwlrm=" bk bps S e owd Corg /130050 enl " w1 2T mnsg="san "o
whmad
S B e T SR TR
wlink rel="styleshset’ tuge= cwegkfcsp’ href="090a 0 woofol
<A e
.:h‘:d-_‘.:.
il T ddd="tom ighthosbomTe 78 el
2diy ide'togprighthostomlest— 1 waddivie
SR E RIS Rtk
wimemls

Figure 7-8b

The resulting screenshot appears in Figure 7-8c.

Figure 7-8c

ict.dtd" s

B

In Figure 7-8 you see how all four sides can be set with just one margin property and keyword value, as

opposed to four.

of the box.

Box model shorthand properties with one value always set the property for all sides

215

Part Il: Properties

Margin Collapsing

In CSS, margin collapsing occurs when the top or bottom margin of one element comes into contact with
the top or bottom margin of another element. The concept is simple: The smaller of the two margins is
reduced to zero; if both element margins are the same length, then one of the margins is reduced to zero.
Margin collapsing is demonstrated in Figure 7-9.

by {
i

= [ipe- ¢
keighty _olpx:
Lracskgicnin = Tty s Mzmns collapse whare san manging
bmrsery e ==lid galds come imn ceootand aith aach ataer
H
daviton |
'I“'::I'I -||| 2 .";
' T lerger Of U las riarging wers, e
divéhottom 4 amaller soarglm ls mede s= thaugh It
nArging e disezn] e sl =l all
:' .
Figure 7-9a

You combine the CSS in Figure 7-9a with the markup in Figure 7-9b.

ST EE Benl PURLTE "= 8830 s fnrn kHDAlL 1.0 S6y Tk BT
“hroprd roae Wl e /TR eNee L OTD ekl l—gorick ded" >
shtal snles="hbvgs M fewwowd cnra /T30 0htal " il T wnig="san "=
=slmads
[R SR T T W T I 4 ey TR]
slink Fel="alvloshaol’ Lyge- Loxlfcss’ href="DAIRITTRZOLGOTON. Q55" =
= neads
sy

adoy 1o=ton e Sdive
sy dd=" Dot ton sl ivs
< ady e
aihEmls

Figure 7-9b

The source code in the preceding two figures results in what you see in Figure 7-9c.
In Figure 7-9, you see the most common form of margin collapsing; the top margin of one element comes

into contact with the bottom margin of another element. When this happens, the element with the bigger
margin wins.

216

Chapter 7: The Box Model

Figure 7-9c¢

Margin collapsing also happens when an element is contained inside of another element. It doesn’t mat-
ter where the two margins come into contact, even an element inside of another element will margin col-
lapse with its parent if the two margins come into contact. An example of this appears in Figure 7-10.

bady {
(CE =R I H] H
wdding: Ug ‘whrn a chid slamsals margin comizs kg
L acrilinzl with & narenl ekement s reagic. margin
div + collapsing = nggpered,
Wiadllhz O ;
medohts 0GR Az waz the cese with adasenl ziblng deimantz,
1 ther bigger smerggin is II.n: o Ul is apaled, T
divFparcnt | Maigin is atwaye asaliad b te caenl e sinent.
Batcing 0ps 200w ant tha chikl's rarge aleays collapeps
oackqround s el Lo
h
disEohild |
mEcging Upx)
e E T =1 =17 ;
bl o) [ol |
H
Figure 7-10a

The CSS in Figure 7-10a is included in the markup in Figure 7-10b, and that results in the output you see
in Figure 7-10c.

217

Part Il: Properties

| TV RE henl PURLTG "=F 88304 000 BHTL 1.0 5k Tee s fEBR
“hitcprd/rwee wi _nrofTRSentel L OrDdshenl l-ptrict ded® >
whinl snlem="hreps M fene wd cura /100 b bal ™ w1 2T cng="sn "o
= laads-
wllilernurgpins oo ler
=link rel='alyloshool' Lype= coxlfoas’ href="DMIRITTRICEQITIN. a3 S
< S hcads-
=Ly
~doy pd-marcnt -
wdivr igm oRilc’a
h=F Loy
R
< o
a2 hbmls

Figure 7-10b

Figure 7-10c

In Figure 7-10, you see how margin collapsing works between a parent and child element. If a child’s
margin comes into direct contact with the margin of a parent, the margins collapse. Like the example in
Figure 7-9 that contained adjacent sibling margins collapsing, the larger margin is the winning margin.
The winning margin is always applied to the parent element, and the child element’s margin always col-
lapses. In this scenario, margin collapsing can be stopped if you prevent the two margins from coming into
contact with one another. You can prevent the two margins from coming into contact with one another by
applying padding or a border to the parent element. An example of this appears in Figure 7-11.

The CSS in Figure 7-11a is included in the markup in Figure 7-11b to get the output that you see in
Figure 7-11c.

In Figure 7-11, you see how to stop margin collapsing from happening. You must give the parent ele-
ment a border or padding to prevent the top and bottom margin of the child element from coming into
contact with the top and bottom margin of the parent element.

218

Chapter 7: The Box Model

hody |
margin: g
padei g L

Waniern o spoly . serder O padding o ile parent
i alamart, megie SollsEeing & Severded, Blargin
div | cillrpweing avly Bmpeenes wten e og o Detlioan
widihz 100 margin ot oe eament comes ok conlecs with
hedghty _UCp the bap or aedine margn of aaather elerment

irrparent
margin: COpx Ihgak:
backqroundr wollcw)
horder: i |

diwkchild {
MoLG1o T P
hl_ﬂ-_'l-'-|r:_"_|r = H jhtowe o,
horasT) pw =al1d gl
L

Figure 7-11a

S TYRE Benl PURLTE "= W30 0 KHTal 1.0 56y Tk JRRS
"hicprd rvew el oeg TRt l L OTD whvknl l—enriot . dtd" >
shbtal snlas="hbbes S faneowd Cora/ 10050 bal " w21 winig="ean e
EJSTetaTs kS
Ll lernargine ol e
slink rel="alyliashool’ Ly@es CoeLA035" hrel="DMIRITTRIOLQOTII.CaR " /=
= ncads-
ey
=dzy 1= 'moarcat e
agiv fid= oRilc’n
Rk B L
= i
< S mades
eihemls

Figure 7-11b

Figure 7-11c

219

Part Il: Properties

Horizontally Aligning Elements with the Margin Property

The margin property has one other useful function: It can be used to center or align elements. An exam-
ple of this concept appears in Figure 7-12.

by o
margin: Cilpe
wAddinms |]
) e & H
1chnke Uit
g1 H LB e mdl| 1
oordorE [l by) 1
daivirleit
meEcging _Upx sats _Upx U
H . .
divéoenter 4 Trm v e krard & nmed in cnnunction with the
mAFain: Cipe Abes acgLn proparty 1 algnng &n slhreat o iha
. oo, menkar, nerigh.
w1t
mMErcs1nt N i i sl
H
Figure 7-12a

The CSS you see in Figure 7-12a is included in the markup in Figure 7-12b; this results in what you see in
Figure 7-12c.

ST EE henT BUBRLTE "= 83 0 e 1.0 Sk T f AR
“htzp: e el orof TR/ xhtol L /OTD xhenl legtoict dtd®
hinl wnTas="bbep: M fene ool Cnra S TA00 5 0heal " wml 2T cngg="can "2
s laad
ol B el T R LT]
=slink rel='alylashael’ Lypes Lol s’ href="DMIRITTRZOTgOTIZ. a5 =
< heads
wlecdys
adrw 1d=" Lottt
il
=diy 1d="oconter -
e Sy
=div id-'right =
A AR
< F oy
Lo] A

Figure 7-12b

In Figure 7-12, you see a technique that is used to align elements in a document via the combination of
the auto keyword with the left or right margin of an element. The margin that is specified must be either
the left or the right margin, because the auto keyword is ignored when applied to the top or bottom
margin. The element is not aligned vertically, as you might expect.

220

Chapter 7: The Box Model

Figure 7-12c

Aligning Elements in IE 6 and IE 7 in Quirks Rendering Mode

Every modern browser today supports what'’s called the DOCTYPE switch, a method of selecting the
rendering mode of your browser based on the Document Type Declaration that appears at the top of
an (X)HTML document. If you structure your documents like the example you see here in this book,
you'll never encounter quirks rendering mode, but if you are working with legacy websites that must
maintain backward compatibility with the web of yesterday, chances are you'll encounter a quirks
mode site sooner or later. Appendix D, “Browser Rendering Modes,” shows a listing of Document Type
Declarations that trigger quirks rendering mode, and as such, I won't reiterate that here.

If you encounter quirks mode, you'll also discover that some CSS features don’t work in quirks mode,
but do work in standards mode. Aligning an element using the auto keyword in conjunction with the
margin property is one such quirks mode incompatibility. In IE, this feature is only implemented in
standards mode. Whereas the example that you see in Figure 7-12 will work fine in IE, it won’t work
if you change the Document Type Declaration to a quirks mode invoking DOCTYPE. The CSS from
Figure 7-12a is combined with the markup that you see in Figure 7-13a to get the result you see in
Figure 7-13b.

| EETYTE ETHL PURLTE "=/ fHICA /U0 AOME S0l TranslLlonal s S3H" =
Clhknl=
R T s
sticlosmargin: Snicles
21k Fel="alyleslanl’ Lppe— el foEGm’ hrel="AITTRZOTYNT I a6a '
= e ad
ol
sdiw 1d=" Lot e
& Vg
adiw 1d="conter -
LAt
sdow o= 'right -
LA it
e fanys
a2 fheml

Figure 7-13a

221

Part Il: Properties

Figure 7-13b

In Figure 7-13, you see what happens when quirks rendering mode is invoked and the auto keyword of
the margin property used. IE 6 (and IE 7) ignore the auto keyword in quirks mode (they work fine in
standards mode). To work around this problem, you can use an IE bug to your advantage. A demonstra-
tion of this appears in Figure 7-14.

I'"l'_.' .i
margqine liinue
[alets AMIE=: H
divy div
widilli: R0
heigkt: sdzu:
Emckgraund: rgbi{FI1F, 20, Fol);
barder: lios selid ok i 15 e N
LrEl—alige: lel.g
[
div@lelt |
text-nligomm dotcor
1 IE diganives 1 st cmn e ha osl-aige
div®oenter | propects tor sligning alameats. This tachnioe
text-nligqry certec; Ares it wnrk nathes bBrosssars
]
dive®rioh:t
Fretonl igmt voohed
I
Figure 7-14a

The CSS in Figure 7-14a is included in the markup in Figure 7-14b to get the output that you see in
Figure 7-14c.

222

Chapter 7: The Box Model

S EETETPE ETHL PURLTE "= SW30 s 00
Chtnlie
=Ml
wtitlernarginy S oocler
S1ink Prl="atylasalaak’
< Fheads
=t [F
adzw o=t Lot e
RS R R
= iy
adiw Lo=toontor e
L. RLAEAY. EE TR
ERrh
“doy lo='ciqat =~
DGR R BT, R
E L FRE
e
oS hemls

Figure 7-14b

L=

Figure 7-14c

I HUMI

LI

e

TrainEl e

snalf SRR -

hyal="MIRITTREICTYNTIL . ameE "

In Figure 7-14, you see how the text-align property can help you align elements in IE in quirks
mode. Wherever possible, I recommend setting the Document Type Declaration to a standards mode
DOCTYPE, which will allow you to use the standard method of aligning elements. The technique that
you see here can also be easily combined with the margin method, which is common for aligning ele-
ments in IE 5.5, which has no standards rendering mode and does not support the margin method of
alignment.

Vertical alignment of an element requires layering (also called positioning) an element, and because of
this I discuss vertical alignment of elements in Chapter 11, “Positioning.”

223

Part Il: Properties

Try It Out

Applying Margin

Example 7-1. To recap the margin property, follow these steps.

224

Enter the following markup in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>

<title>margin</title>
<link rel='stylesheet' type='text/css' href='Example_7-1.css' />

</head>
<body>

<p>
The margin shorthand property can accept from one to four values.
When all four values are provided, each is provided in order clockwise,
beginning with the top property. Box model properties are
always specified in order clockwise.

</p>

<div class='margin-wrapper'>
<div id='margin'></div>

</div>

<p>
You can also specify margin via one of the four separate margin
properties: margin-top, margin-right, margin-bottom, and margin-left.

</p>

<div class='margin-wrapper'>
<div id='margin-properties'></div>

</div>

<p>
When three values are supplied to the margin shorthand property,
the top is the first value, the right and left sides are the second
value, and the bottom is the third value.

</p>

<div class='margin-wrapper'>
<div id='margin-three'></div>

</div>

<p>
When two values are supplied to the margin shorthand property,
the top and bottom are the first value, right and left sides are the
second value.

</p>

<div class='margin-wrapper'>
<div id='margin-two'></div>

</div>

<p>
When one value is supplied to the margin shorthand property, all four
sides are specified with that one value.

</p>

<div class='margin-wrapper'>
<div id='margin-one'></div>

Chapter 7: The Box Model

</div>
<p>
If the auto keyword is supplied for the left or right margins, the
element that margin is applied to is aligned horizontally.
</p>
<div class='margin-wrapper alignment'>
<div id='margin-left'></div>
<div id='margin-center'></div>
<div id='margin-right'></div>
</div>
<p>
Margin collapsing happens when the top or bottom margin of one element
comes into contact with the top or bottom margin of another element.
The smaller of the two margins is eliminated; if they are equal size,
then one margin is still eliminated. This happens with adjacent
siblings.
</p>
<div class='margin-wrapper'>
<div id='top'></div>
<div id='bottom'></div>
</div>
<p>
Margin collapsing also happens between parent and child elements.
</p>
<div class='margin-wrapper'>
<div id='parent'>
<div id='child'></div>
</div>
</div>
</body>

</html>

2.
3.

Save the preceding document as Example_7-1.html.

Enter the following CSS in a new document in your text editor:

body {

}

div.

div.

font: 12px sans-serif;

margin-wrapper {
background: lightyellow;
border: 1px solid gold;
float: left;

margin: 5px;

clear: left;
margin: 5px;
margin-wrapper div {

background: khaki;
border: 1px solid black;

225

Part Il: Properties

width: 25px;
height: 25px;

}

div#margin {
margin: 4px 6px 8px 10px;

}

div#margin-properties {
margin-top: 2pX;
margin-right: 4px;
margin-bottom: 6px;
margin-left: 8px;

}

div#margin-three {
margin: 2px 10px 4px;

}

div#margin-two {
margin: 2px 10px;

}

div#margin-one {
margin: 2px;

}

div.alignment {
float: none;

}

div#margin-left {
margin-right: auto;

}

div#margin-center {
margin: 0 auto;

}

div#margin-right {
margin-left: auto;

}

div#top {
margin: 5px;

}

div#bottom {
margin: 5px;

}

div#parent {
margin: 5px;
border: none;
background: crimson;

}

div#child {
margin: 5px;

4. Save the CSS document as Example 7-1.css. The preceding example results in the output that
you see in Figure 7-15.

226

Chapter 7: The Box Model

Figure 7-15

How It Works

In Example 7-1, you recapped the margin property. You begin with an example of the margin shorthand
property with values for all four sides of a box. Because each example has a wrapping <div> element
around it, you can see the amount of space that the margin occupies. In the first example you set all four
margin values; you can see what happened in Figure 7-16.

227

Part Il: Properties

mergin: AFx kBpx Lper Llper;
px

10— | e ey

S an

Figure 7-16

In the second example, you set each margin value via the separate margin properties, which are illus-
trated in Figure 7-17.

marg—r=t=-o: X

=
NPT PP) i u.m.--l |—=hu-'.i-l elghle lpay
A

macgiu bolluor Cpng

Figure 7-17

In the next example, you set the margin shorthand property with three values. The first value sets the
value for the top margin, the second value sets the left and right margins, and the third value sets the
bottom margin. The result is illustrated in Figure 7-18.

eRzgin: aJpme LU= Spas;

T
I
10px — | | — 1l
Agen

Figure 7-18

Figure 7-19 is an example of the margin shorthand property with two values. When only two values are
specified, the first value sets both the top and bottom margins, and the second value sets the left and
right margins.

mazgin: Pmem LUps;

LR
J.i.l.l:L—| —lila=x

P

Figure 7-19

Figure 7-20 is an example of the margin property with just one value. When only one value is set, all
four margin values are set at once.

228

Chapter 7: The Box Model

T

Ipx
0

A= = e

Ap
Figure 7-20

Next, you did an example of horizontally aligning elements with the margin property. You did this by
setting either the left or right margin, or both, to auto. An example of horizontal alignment using the
margin property appears in Figure 7-21.

i 1t ot

Figure 7-21

In the next example you see margin collapsing in action. When the bottom margin of the element with id
name top came into contact with the top margin of the element with id name bot tom, margin collapsing
occurred. Instead of 10 pixels separating the top and bottom elements, one margin is collapsed, and
only 5 pixels separate each element. An example of this appears in Figure 7-22.

|—‘ - Bt of rzngin cwlkapsing
| anly S ol irrangin sepengde
the bop and Dxtom demartz.

Figure 7-22

In the final example, you see how to create margin collapsing between parent and child elements. Just as
was the case in the previous example of adjacent sibling elements where the bottom margin of the top
sibling collapsed with the top margin of the bottom sibling, when a child’s top or bottom margin comes
into contact with the top or bottom margin of its parent element, margin collapsing also takes place. An
example of this appears in Figure 7-23.

) lere marg 1 ccllageing lakes pecs
= Datwesr 2E5erT 8rd onlid elemants
A o e crild Roan & mp
margm of hpe ©% RN e clapsno
wailt K e nl= meaogin
Figure 7-23

In the next section I discuss the next box model property, borders.

229

Part Il: Properties

Borders

Borders appear between the margin and padding in the box model depicted in Figure 7-1. It’s obvious
that borders put lines around boxes. Applying borders usually makes the other box model properties
easier to see. The following sections examine each individual border property.

border-width

The border-width properties all control the width of a box border in some fashion. The following table
outlines each border-width property.

Property Value
border-top-width <border-width>
border-right-width Initial value: medi
border-bottom-width ftial vatue: medium
border-left-width

border-width <border-width> {1,4}
A <border-width> value refers to one of the following: Initial value: medium

thin | medium | thick | <length>

The individual border-top-width, border-right-width, border-bottom-width, and border-
left-width properties exist for setting the width of the individual sides of a box. Each of these proper-
ties can be combined into the single border-width shorthand property.

Borders aren’t allowed to have percentage values; however, they are capable of accepting any length
measurement supported by CSS (em, pixel, centimeter, and so on). In addition to length units, the border
width may also be specified using one of three keywords: thin, medium, and thick. Figure 7-24 shows
the rendered output of these three keywords.

The CSS in Figure 7-24a is combined with the markup in Figure 7-24b.

paaning: -pEp

PP s -

G TIET

1
backgrounds n [usEG
i ik S
1 T berear-widnh prapedy cian lake & engh sl
wilhin] ar ame of ree kenseeard valaes: vk, madion, and
boroesr-widihe Lhim diiai,
divtn=diam |
kapdar-pt d+hz med dm;
s ._*_I. i - 13 1
horder-widthe Fhiak:
Figure 7-24a

230

Chapter 7: The Box Model

STINEETHPE el PURLTE "= W30 /000 BHTHL 1.0 Sy fen YRR
"htop:dfwww . el ooo /TR 2Nt L L0rDS xhtnl l=gtoict . dtd™
Shinl gnlos-"hlops) feww o wd oora /17927 xhiinl © xml: Lailg—"san ">
wlzads
LD LT el e = B b S L L
=link rol='stvlcshoct’ btyoes coxtfcas’ hroE='DORITTREZCEQOT2a.css” O
< Ahead
s LUFS
=div id="thin ' '»chin=</ iy

=dzw o= ‘modoan” smonlome Adows
st didmthick =thickofd iy
€ S andya
=i hEmls

Figure 7-24b

When loaded into a browser, you should see output like that in Figure 7-24c resulting from the CSS and
markup in Figures 7-24a and 7-24b.

Figure 7-24c

In Figure 7-24, you see what the three keyword values (thin, medium, and thick) of the border-width
property look like. The border-width property can also take an arbitrary length value; an example of
this appears in Figure 7-25.

The CSS in Figure 7-25a is combined with the markup in Figure 7-25b.

Figure 7-25c shows the rendered output of Figure 7-25a and Figure 7-25b.

In Figure 7-25, you see that the border-width property with a length value can be specified in a variety
of ways. You can use the individual border-width properties, border-top-width, border-right-
width, border-bottom-width, and border-left-width, or you can use the border-width short-

hand property. Like the margin property that you examined in the last section, it can take from one to
four values for specifying the border width of each side of the box.

231

Part Il: Properties

div |

Like e margzn oroderly, e bocder width
rackground: _13acycl Loses) . s .. . g
P wreperly it shorthand propery thel can aeceal

. ane w3 faur Izngth valies. Tag wicth of aach
. A6 nan alss e spesrad v e
e ikl
r
|
divForoporiics |
Dot s = lope il T g

porder-right=widehs |

morler-Dotton—widthl <ps)

mardor-loeft—widthy 10poes
1
divFlone
dar-wlilhe (Zpweps Spx L02X poroer-lestowidth

borier-con—winth Eordar=boliocn=-widih

rorfar—ciqht—width
el T
rorder-width: £px ipx Upes

]

Lordar-Lop-widih Erarclir=righit=-swideh Brder =tar bt am=ta ik
knrdar-Teft—yideh

ch it
sorder-width: Upx Cpmk

|
nordar-op-wiilh bordor-righL-wildil
T dian =l lan=widih Beender =T e T L= Ll

divacne
PR U Oy T ;
i
zorder-top-width
zorder-rcigkt-widsh
Cordoer-botoom-wiaks
FRERSTER I PN e i W

Figure 7-25a

< 10QCTYFE himl PUOPLIS AORACSSDTID ¥HTEL L.0 Btraict/SERC
=t I|_'\-:.'_-'l.l.-\.'.i.'.-\. cargd TR xhtml LA Sohtmll=s=trigt b =
Zherl owm nn=thetpo S S ol oS N Rt Ea TR LT P et
sthisudn
A N VR REN T=T i § W B T
=liok sol- wlploenimocl’ Cypo-'Losblioens’ tool- "CEesT e 00gltelicuns" i
o Lt
chpiws
xg17T 1d= properctieos seipivs
ELE T ERE P TERER s, BT
cgiw dde’ shree Ul dies
R R T PR TR T B R]
=4y dd="one'weodive
sy
=Skl

Figure 7-25b
232

Chapter 7: The Box Model

Figure 7-25¢

In the next section I discuss the border-style property, and how it is used to change the style of border.

border-style

You use the border-style property to specify the style of border to be used. The border-style prop-
erty is very similar to the border-width property presented in the previous section in that it uses an
identical syntax to specify the style of border to be used for each side of the box. The following table out-
lines the border-style family of properties.

Property Value
border-style <border-style> {1,4}
A <border-style> value refers to one of the following: Initial value: none

none | hidden | dotted | dashed | solid |
double | groove | ridge | inset | outset

border-top-style <border-style>
border-right-style
border-bottom-style
border-left-style

Initial value: none

Like the border-width property, the border-style property is also a shorthand property, which
combines the individual border-top-style, border-right-style, border-bottom-style, and
border-left-style properties into the single border-style property. Figure 7-26 shows the ren-
dered representation of each of the border-style keywords.

The CSS in Figure 7-26a is included in the markup in Figure 7-26b.

233

Part Il: Properties

podaingy Zpxy

border—color: or 108G)

borosr—wrdths Jdeg Iha hordder—ssyla propade suoports 10 ditte et
narging .pxy L glvas.

tloats ettt

wideh: wOpy

Eeights SLpxr

divehiddsn {harder—atyles |idedaa;]
div#dottad {border-styles ootsaod))
divegrpahad {hardsc-atyles daalad;]
divéralid Jhardersstylez =olid; 3§
divedonble {hardsc=styles Gooable;)

divdgrcevn Jhardar—alylaz S
iwgridas Jhordec—mtel ez lega s

divalinaml. [hardar-alyla: odel;
iwdontest Jhordsc-mtylss Fweat g

divdane Thardar —atwlas I

Figure 7-26a

SIIEETYPRE DLieml PURLTC "= SWSES 7000 EHTRT o0 SevickS5ER"
"httpr S fwew owd Lo TR xktnl LTS html l-striot dEd™ s
whitn]l gnlos="hbbps S A o0 oarg /T ehin T wal s Tang= "' >
=heads
Ssticlerlmpder-soylesiLic ler
“link rel- stylosncot' cwpo='toxtseoss' Ayl CUHENTILEAEQDT2h.cms ' -
Ciheedn
e
el dde" s doden niddens S ivs
el Ty b=kt dobbend Sl e
iy dde'deshed oasheds Sfivs
sl fdd="an 100 Aol il sl T
sdiv id='double' sdoables fdivs
vl Td="gu oo roraniiee Sl
diy 1d='ridac
adiie id="inse: »inmsetsSglies
Zdzw id='outset ' soutsets foive
i ddenone pomed Sd et
< F b
B i

Figure 7-26b

You should get something like the output in Figure 7-26¢ from the code in Figures 7-26a and 7-26b.

In Figure 7-26, you can see what each border style looks like in each of the major browsers, Safari, IE 6,
IE 7, Firefox 2, and Opera.

234

Chapter 7: The Box Model

Figure 7-26¢

Like the border-width property, the border-style property can accept up to four values to specify
the style for each side of the box. The rules for specifying styles for different sides of the box are the
same as the border-width property of the previous section, but instead of the length, like this:

border-width: 2px 4px 6px 8pX;

235

Part Il: Properties

There would be a border style, for example:
border-style: hidden dotted dashed solid;

As is the case for the margin and border-width properties, the shorthand is specified as top, right, bot-
tom, and left, and border-style also supports the three-value, two-value, and one-value shorthand
syntax as the border-width and margin properties.

border-color

The border-color property is another shorthand property. Like the border-style and border-
width properties, you can use border-color to control how a border is styled. The border-color
property, as you may have guessed, specifies the border color for each side of the box. The following
table outlines the border-color family of properties.

Property Value

border-color [<color> | transparent] {1,4}
Initial value: the value of the ‘color” property

border-top-color <color> | transparent
border-right-color
border-bottom-color
border-left-color

Initial value: the value of the ‘color” property

IE 6 and IE 7 do not support the transparent keyword as applied to border color; in IE the
transparent keyword is rendered as black.

Like border-style, margin, and border-width, the border-color property can accept up to four
values. This property accepts a <color> value, meaning that it can accept a color keyword, a hexadeci-
mal value, short hexadecimal value, or an RGB value; any color value accepted by the color property is
also acceptable to the border-color properties.

When the border-color property is not specified, the border-color is the same
color as specified for the color property.

Now that you've seen an overview of what is possible with borders, the upcoming sections discuss the
border shorthand properties.

Border Shorthand Properties

The border-top, border-right, border-bottom, border-left, and border properties combine the
border-width, border-style, and border-color properties into single properties for each side of
the box, or all sides of the box. The following table outlines the possible values for these five properties.

236

Chapter 7: The Box Model

Property Value
border-top <border-width> | | <border-style> | | <color>
border-right

border-bottom
border-left

border <border-width> | | <border-style> | | <color>

The notation for the border-top, border-right, border-bottom, border-left, and border properties
indicates that one to three values are possible; each value refers to a border-width value, a border-
style value, and a border-color value. Figure 7-27 demonstrates the border shorthand properties.

AL
At SR Lach of 1re five borcer shorthand
1 e . prapens fonnnd e kasdes-wiA-h
i At . Fro=de Fr=AF3 e 00 serdibF-cnler
widthnl Sepxd -
hgdohl: Sé o Eacl sode wan o eosaled ordividua g,

y crall 2t anoe wilk @ Dok der properh.

AlvEpropmge Lias

berdar-top: 1px lid derkkhkoki;

s Pl - R ‘ 4 H
border-agskocmE 15X ac ! i
beopchgk=1afl: Lax dealicd da A
r Bl ol i L Tl Tt H

Al vElop daE |
i TR i dealied da takaz
1

Figure 7-27a

The CSS in Figure 7-27a is included in the markup in Figure 7-27b.

STV EE Benl PURLTE "= S f farm el 1.0 S6r Tk f SRR
"htoprdrwoee Wi _orof TRt DrDsshtnl l—morick . dtd” >
whbtal snTem="hbps M fewe wd Cnra /1900 7 0hbnl " el 2T wnng="san "=
sliaads

L) SRRy
bordar-Log, bordor-righoe, bordor-bRoctom, Dordar-lefl, border
~/titles
=link pel="alyloshaol’ Ly@me=s G@EL/C&5" heef="DIRITTRICLQOTIT.CaR" /=
= hoads-
Lt PR
=diw 1d-'npropertics ewddie
iy ide morder T hafSgivs
< S adys
=l hEmls

Figure 7-27b

237

Part Il: Properties

The CSS in Figure 7-27a and the markup in Figure 7-27b result in the output that you see in Figure 7-27c.

Figure 7-27c

In Figure 7-27, you see two methods for specifying an element’s borders using border shorthand proper-
ties. The first method that you see uses four individual border shorthand properties, one for each side of
the box, border-top, border-right, border-bottom, and border-1left, and the second method uses
the border shorthand property, which specifies the border for all four sides of the box at once.

Unlike the margin shorthand property, the border property may only be used to specify all four sides
of the box at once. If you want a different style, or width, or color for the different sides, you'll need to
use the individual shorthand properties.

In the following Try It Out you recap what is possible with CSS border properties.

Try It Out Applying Borders

Example 7-2. To review what is possible with the border properties, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>border</title>
<link rel='stylesheet' type='text/css' href='Example_7-2.css' />
</head>
<body>
<p>
CSS provides a variety of ways for specifying borders. At a minimum,
you must specify a border-style.

238

Chapter 7: The Box Model

</p>

<div id='border-style-properties'>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

</div>

<p>
Like the margin properties, the individual border-style properties
can be combined into a single property.

</p>

<div id='border-style'>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

</div>

<p>
When no border-color is specified, the border color is the value of
the color property.

</p>

<div id='color-default'>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

</div>

<p>
The border-width property can take either one of three keywords or a

length

value.

</p>

<div id='border-width'>
<div id='thin'>thin</div>
<div id='medium'>medium</div>
<div id='thick'>thick</div>

</div>

<p>
Four shorthand properties can be used to specify border-width,
border-style, and border-color in just one property for each
side of the box.

</p>

<div id='shorthand-sides'>
border-top, border-right, border-bottom, border-left

</div>

<p>
One shorthand property, the border property, can be used to specify
border-width, border-style, and border-color for all four sides at
once.

</p>

<div id='shorthand'>
border

</div>

</body>
</html>

2. Save the preceding markup as Example 7-2.html

239

Part Il: Properties

3. Enter the following style sheet in your text editor:

body {
font: 12px sans-serif;

}

div#border-style-properties {
border-top-style: solid;
border-right-style: dashed;
border-bottom-style: double;
border-left-style: inset;

}

div#border-style {
border-style: solid dashed double inset;

}

div#color-default {
color: crimson;
border-style: solid dotted;

}

div#border-width {
overflow: hidden;

}

div#border-width div {
float: left;
border-style: solid;
border-color: red;
margin: 0 5px;

}

div#thin {
border-width: thin;

}

div#medium {
border-width: medium;

}

div#thick {
border-width: thick;

}

div#shorthand-sides {
border-top: lpx solid pink;
border-right: lpx solid crimson;
border-bottom: 1px solid pink;
border-left: 1px solid crimson;
padding: 5px;

}

div#shorthand {
border: 1px solid crimson;
padding: 5px;

}

4. Save the preceding style sheet as Example_7-2.css. After loading Example 7-2 into a browser,
you should come up with something that looks like Figure 7-28.

240

Chapter 7: The Box Model

Figure 7-28

How It Works

In Example 7-2, you recapped what was possible with the border properties. You can set an element’s
border style by four different properties, one for each side, border-top-style, border-right-style,
border-bottom-style, and border-left-style, or via a shorthand property that lets you set all four
sides in the same way as the margin shorthand property, the border-style property. The process is the
same for border-width; you can use the four separate border width properties, border-top-width,
border-right-width, border-bottom-width, and border-left-width, or the shorthand border-
width property. Then there are also the similar border-color properties that allow you to set the border
color of each side via individual border color properties, border-top-color, border-right-color,
border-bottom-color, and border-left-color, or the border-color shorthand property.

You learned that when there is no border style specified, the default style is none; when there is no
width specified; the default width is medium, and when there is no border color specified, the default
border color is the value of the color property (in other words, the same as the text color).

You also learned that there are four shorthand properties that allow you to combine border-width,
border-style, and border-color into single shorthand properties. These exist for all four sides,
border-top, border-right, border-bottom, and border-left. The last border shorthand property
lets you set all four sides of the box at once, and that’s the border shorthand property.

In the next section you examine box padding.

241

Part Il: Properties

Padding

Padding is the space between the content of an element and its borders, as has been mentioned briefly in
previous examples. Refer to the diagram in Figure 7-1 to see where padding appears in the box model.
The following table shows the various padding properties.

Property Value

padding [<length> | <percentage> | {1,4}
padding-top <length> | <percentage>
padding-right

padding-bottom

padding-left

Like margin, border-width, border-style, and border-color, the padding property is a shorthand
property, meaning that it is a simplified representation of the other padding properties, padding-top,
padding-right, padding-bottom, and padding-1left. In the preceding table, the square brackets

are used to group the values. In this context, the padding property can accept either a length or a per-
centage value, and can have one to four space-separated values. Figure 7-29 examines the padding

property.

W ' ' S lar e b aymo come cha ekt Loag prasiarty e
n LILY] wfe fmllar o = ran) nopmesey Fas- mkds
H ca i asii Diad wedradhuclly wed g vl v ual
diw div | ool 2 e e padeing slioalieael gioaafy
F L]
apFarnde a0 '
' ' '
mzlac: dun L p=tih]
L H H
s . CE
'L LE a
-
s a Fyoey
' '
H
divatzpr-ve_mas | pedzizg:z dpx Gpod oo -
a0 CRCRRE Tl R R o T CLB T 'S BT Bty IR O R ' T B B
divathram-valass | pedzizg: Epx Ip= dpoy
padddrg=top | padding-right padddog-men-or
paddine-"af
divamum-ralian i pedZi=g= Jpx. dpx;
el e o Preaiaid cop-t gl
pedZizg-ctbor. prédicgelats
divfune-valls i padliiige ZpK;
Pad-iag-tep
wil En-v Lag o
il B 1w
padiag-laft
Figure 7-29a

242

Chapter 7: The Box Model

The CSS in Figure 7-29a is combined with the markup in Figure 7-29b.

SHESTYTE Liln]l PURLTE "= dW@308 /000 SHTHAL 1.0 5Ly el s JERT
"htop:/fwww . wl.oop/ TR/t L OrDS xhtnl l=stoict. dtd"
shionl #nlos—" hlips S fwae el cora /1925 5 xhial ' wmlzTaiig—"wn ">
wlhzads
SLILT aepacid i ng S L DL Tl
clink rel='stvlocshook' bwmpes coxbloss’ hroE='BOA377R20E0lT28, cas” M-
< head=
s PP
“diy ide'oropersies’s
woire
Locer ipsum dolor sLit smet, consectetaer adipiscing elis.
¥illa hihenoum eras sth amsk Ientis. Mume eras nassag
interdor ok, congues g, sosleripque gaiys, tellae,
wided i ule
o S
sdie 1A= fotr-dalilas ' e
wiiive
Foakarm Tpmiin dolar =l Loadwel., cohAecielasr ad! placiag elio.
Nzlla bibendum cros sikb amck lestes. Mune cras nassa.
inbemrdion B, congar L, AcETler Tagiie adlA, Le 1l
Er kR LES
= SR
~dzw id=-‘throo-valoes =
g i
Lovem lpsum aclor it amcok, congsectobtacr adopomsoing oliz.
Hulla Bibencum erce sit amet lestos. ¥unc erop neses,
itterdw oty congie 0T, sesleriaqer s, hellan,
a2t i
Wi
sy id="tya—ve s
Wb
Lizrap Zpswn dolor =it amst, consectebaer adipglisoing elic.
A2l la Lililmrciam svos =Ll amml Techioa. Wl mros MadRa,
intordur ch, congue vo, soclorisges sais, bollos.
L TR
Al e
dly bd-"ono-value'
LR KA
Lotar fpgim 4oler 214 amet, coppectetier adiplesing &lit.
Hzlla bibencum orocs sikb oamst lectus. XNunc oros nassa,
interdur ok, congue us, soslerisque gais, tellae,
< i
L FRE
& fanrdss
itEm e

Figure 7-29b

The markup in Figure 7-29b and the CSS in Figure 7-29a result in the output that you see in
Figure 7-29c.

243

Part Il: Properties

Figure 7-29c

In Figure 7-29, you see that the padding property is similar to the margin property. The main differ-
ences with the padding property are as follows:

QO The padding area is the area between the inside edge of the border and the outer edge of the
content.

QO The auto keyword has no effect with the padding property.
O The padding property cannot accept a negative value (the margin property can).

Q There is no collapsing padding; only margins can collapse.

In the next section, I examine the different length properties supported by CSS.

Setting Dimensions

CSS 1 introduced the width and height properties as part of the CSS box model. CSS 2 expands on
those properties, providing minimum and maximum dimensions when variable lengths are involved, as
is the case with percentage width and height values.

The following sections examine each of CSS’s dimension properties individually.

244

Chapter 7: The Box Model

width

The width property is a pretty simple property; it sets the width of an element. According to the CSS
box model diagram presented in Figure 7-1, width is the space measured from inside padding edge to
inside padding edge. The following table outlines the width property and its possible values.

Property Value

Width <length> | <percentage> | auto

initial value: auto

The width property accepts a length unit, which is indicated in the preceding table with the <length>
notation. In Figure 7-30, you see a simple example of the width property using a length unit.

The CSS in Figure 7-30a is combined with the markup in Figure 7-30b.

baody {
MabEgir: O3
padiingz o7 widihig the gmaa ram inside paddng sdge o
Foml: 1E) antA=ant il inside padeing soos.
i
divfuropooe
bordert _ox solid wasteod
hashgresund: ool
wiclzhy c20px:
¥
rirdhowe |
nErTisn; i
I I E EoEe | H
huskar rnd: el 1
|_I 1 ._;: 'l r
= [H] URES
¥
div#innee |
background: «llioz;
L] 1ligus i H
i}
Figure 7-30a

Figure 7-30c shows the result of the CSS in Figure 7-30a and the markup in Figure 7-30b.

In Figure 7-30, the <div> with the white background, which contains the Peter Piper copy, has a
width of 250 pixels. Width is added in addition to the other box model properties, margin, border,
and padding. Figure 7-31 demonstrates how this breaks down using the output that you see in
Figure 7-30.

245

Part Il: Properties

SIINEETYPE sl PURLTE "= SW3C0F /000 EHTHL 1.0 Sk e s JER
f W nro TR RNt LoD skl lontrict . dedt

AL S Ehkn]l " Hinl s Lailg="an ">

whtnl snldeae="hibcps Ve wd ook
sad s
stlclerwicdehe titler
=link roel='stvilocshoot' byees coxbizas’ hreE="DUR977Rz0EalTi0.cas’ -

L hamdn
by
wdiy id="wrapoer
iy dad= e

fdiv id= inperc's
Pabtrr Plgar picked o pecd ol plocklel peppees.

Cid fober Fiper pick 2 seelx of pickled pepposs?
OF Py Pipen pliokKed g psck ol picklad peppeers,
wicrs 5 cho zoes of picklcd peppo:s Fobexr Dipor cickcd?
£ P
< Foire
L R
E g
S hEml
Figure 7-30b

Figure 7-30c

Figure 7-31
246

Chapter 7: The Box Model

When you apply a width to an element, you must also take into account the margin, borders, and
padding as part of the overall horizontal area that the element will occupy. In Figure 7-31, you see that
the margin, border, padding, and width add up to 20 pixels, which is the width of the wrapper box. In
the next section, you see what happens when your margin, border, padding, and width add up to more
than the containing element.

In the next section, I talk about the height property.

height

Like the width property, the height property sets the amount of space between the top-inside padding
edge and the bottom-inside padding edge. The following table outlines the height property and its pos-
sible values.

Property Value

height <length> | <percentage> | auto

initial value: auto

The height property causes an element to behave somewhat differently than its HTML height attribute
counterpart in standards-compliant browsers. When you explicitly specify a height, the height remains
the same regardless of how much text you place inside the element. Figure 7-32 is an example of what
happens when there is more content than the height allows.

Figure 7-32a is combined with the tongue twister in Figure 7-32b.

bady
margiinz L
naddimg: g Wihsa ihers 18 maore cortent than he ight alkess,
ol iAo swer Il e cacnse sondonl cec i,

divewrapper
1

nariere

whdblas LI0ps;
oo
divebax

Hedlic L1d

"o
L

T

e TP g
oaddinmegr SpEx

moighie LAdoes

}

CivEnned
buckaboiwd:s wlilLes;
test-aligns Jastifty;
]
Figure 7-32a

247

Part Il: Properties

Figure 7-32c shows the output of the markup and CSS in Figure 7-32a and Figure 7-32b in various
browsers.

10T RE html FUORLIC FAAICSSDTD KHIEL 1.7 StricclYEH
htbp: A fwnmrowd oog A IR/ xhtnl LCTD A shknl L —skrice.ded ">
Shikn]l =zmlima="hibo:) S wd core S 1U8% Swlakml sl |u'l'—]— iV
ahsadie
weitleshoightsfoitles
“link rol='styleshoot' type='toubsfoss' hrof="0Ea977420Eg0732 05"
2 heads
Bl FERTE L
Cllw dd=wrepoess
wdiy dd- box =
=ddy Ld=" innce =
Mgbtgl Plpor pleked o peck of olesled sespela.
id Fetepr Piper plock o osck of pickled ceppscad
Tt Permr Popsr picsed a peck of pickled pepasros
whetre = ohe poot af mig<lod peoapors Bobor Diaey oo ded?
L
il e
odive
< 7 by
=shtml =

Figure 7-32b

Figure 7-32c

248

Chapter 7: The Box Model

In Figure 7-32, you can see that IE 6 does not correctly interpret CSS dimensions. You can also see that
this bug has been fixed in IE 7, because it correctly overflows the excess content as Safari, Firefox, and
Opera do. In IE 6, width and height are closer to the definition of the CSS min-width and min-height
properties that I talk about later in this chapter.

The next section continues the discussion of dimensions with auto values for width and height.

Auto Values for width and height

By default, width and height properties have an auto value. So, when you do not specify a width or
height, the value is the auto keyword. The meaning of the auto keyword changes depending on the
type of element that it is applied to. When used on a <div> element, the element spans all the horizontal
space available to it and expands vertically to accommodate any content inside of it, including text,
images, or other boxes. Elements with this behavior are called block elements. Some examples of block
elements are <div>, <p>, <hl> through <h6>, <form> and elements. The example in Figure 7-33
demonstrates auto width for block elements.

Elrck remnnkz cwpanc 4o bl &1t space aeadaaie o

b kg II:. ol 1liss Hramn 1Az cetally b detal
Figure 7-33a

The CSS in Figure 7-33a is combined with the markup in Figure 7-33b.

SESTYTPE Ll PURLIE "= W30 /000 KHTHAL 1.7 fAERT
"hitcp:ffwwew el ooo /TR et L L0ID xhknl l=gtoiot . dtd"
whinl snlns="hlCes S fwwe wd Jorg /17905 9 xhinl © xml e Lailg="dan "
<lzads
LI il S LE LT
=linik rol='stvlicchoot’ byoes coxtfoss’ hroE='DEARITTRZOEQOTIZ.css O
R (125" 1 =y
Rt s U
B ERER
mubs width oo = blocs cleomesnt.
E R
& ¥ anma
Cihemls
Figure 7-33b

The output that you see in Figure 7-33c is a result of the CSS in Figure 7-33a and the markup in
Figure 7-33b. All three windows pictured display the same document, but at different sizes.

249

Part Il: Properties

Figure 7-33c

In the screenshot in Figure 7-33c, you can see that the width of the <div> element adjusts to any changes
in the window size. This makes auto width on block elements synonymous with fluid width. The same
behavior occurs with other block elements like <p> or <div>, or headings <h1> through <h6>. By defini-
tion, block elements are to occupy the entire line. When an element takes up all the space available to it
horizontally, this method of sizing is called expand-to-fit. Auto height on a block element, on the other
hand, works a little differently; the element only expands vertically enough to accommodate the content
within the element. This method of sizing is known as shrink-to-fit. In Figure 7-33, you can see from the
yellow background of the <div> element that as you add more text, images, or other (X)HTML content,
the height of the <div> will expand to accommodate that content.

The auto value can also have different meanings depending on the type of element you use it with. The
<table> element is an example of an element where the auto value has different meaning than as say
applied to a block element. Similar to height on block elements, <table> elements, by default, expand
and contract only enough to accommodate the content they contain, but unlike block elements, this siz-
ing is applied both horizontally and vertically. This is demonstrated in Figure 7-34.

The CSS in Figure 7-34a is included in the markup in Figure 7-34b.

250

Chapter 7: The Box Model

table |
mergin-cottomy Sy cealTer £omelsaspand cnd conkees o
-I

i ol s\t e elid O 52 oy
L d I5 called sfn et

takble, td [
Lokt =

Figure 7-34a

SLEESTYTPE Lunl PURLTIE "= 2W30s8/0T0 SHTHEL 1.0 S fens JER
"hicp:/fwww el orp PR/ NEn L LIO0D xhenl l=gtoiot . dEd"
whionl snlns=" bl e S Swwe oWl Jorg /1997 9xhinl © wmlzLaiig="san '
=cads
LG eeewidlas S LE LT as
zlips rel=t
RS (1= 11
Rt [(TES
Ztphlan
ooy
3 =
E s

byme= coxbfzas’ hroE='BORITTRECEQOTIL . 2as)

Lorem ipgan doloc sit oares,

monsectetyer adipiscing
HT i,

WAl b T ke Tom i, digalmsin arb,
conescusat ime SonosctetneEr et, nizh. Dopes luctos
witlm el neigiie coaivallia olorloina.
< ed
L B
=7 Loy
< pulile
shobloe
ety
e
a2t
Torem o insan dolor 51t oamet, consectotenT anipisning
eliz,
RS |
R
Lrh B ST
v rabler
o I R
“toodr=
S W
atd=>
Loaben Lnwan Jdulob sil afel. ..
= ttde
£ S
R
R o
o fandys
2fhemls

Figure 7-34b

251

Part Il: Properties

In Figure 7-34c, you can see the rendered output of the source code presented in Figure 7-34a and
Figure 7-34b. All three windows pictured display the same document, but at different sizes.

Figure 7-34c

In Figure 7-34, you can see that the <table> element’s size, by default, depends on the content inside of
it. Once a <table> element has a lot of content, it behaves more like a block element, in that if there is
enough content, it will expand to fill up the whole line, then expand vertically as much as necessary to
accommodate content.

The element is another example of an element where the auto keyword has another meaning.
When the auto keyword is used on images, the auto value allows the image to be displayed as is. If the
image is 500 pixels by 600 pixels, the auto value displays the image as 500 by 600 pixels. In that light,
the graphics program that generated the image determines the image’s dimensions. When you use
height: auto; on an image, and you explicitly specify the image’s width, the image’s height scales in
aspect ratio to the image’s width, as is demonstrated in Figure 7-35.

252

Chapter 7: The Box Model

The CSS in Figure 7-35a is included in the (X)HTML document in Figure 7-35b.

lawg §
bardes: 1oy o1l i
TATOIMI Jmx)
]
imgiu-aspeot-1 4
widbkhy #0nes Wihen saabed o an <ona Sy 8lemert, auto YEUS
heightt aatof cawses the cing f+ dop b resize while mainkring
}) Ll mspecl rmlic, 1 one wooth of he 1qbt value i=
img#u-nRpReEE-2 4 tha aot o kevward and tha apposta vales is an
widbhy [50nes expicl kgl
B lglhil: aulaeg
1
imgeu—cRprzl-3 |
widih: 1h0oxs
Be Lol aulog

imgesiwed |

widrbhy Clenwe
hainkt; .-':I' 7

}

img#y-espest-1 4
wWidbkhs waleg
heighio: fulines

t

img®y-ompecsi-2
tridtkr zutea
hicighio: 1500z

1

imgFy-aepesi-3
widihr zatcg
haights Dol g

}
Figure 7-35a

Figure 7-35c shows the output of the CSS in Figure 7-35a and the markup in Figure 7-35b.

In Figure 7-35, you see how the auto keyword works with elements. By default, whatever
dimensions the image was saved with using a graphic editor are the dimensions the is dis-
played with. If you include an explicit value for either width or height, and the opposite value is the
auto keyword, the image is resized preserving the aspect ratio. In the next section, I talk about percent-
age measurement.

253

Part Il: Properties

SIBCTYRE henl PURLTE "=7 S83e s s BHTAL 1.0 56 Tekef JERT
cpr Sl el oo/ PRI RNt L LD kbl =gt oiok dbd"
F S 10T b Lnl " Ml s Lailg= e

whibinl wmlns==" bl Saae Wl
=cads
LTl widlh witd hafghias Ll e
zlinik rol='stvlicshoct’ tyaes Coxtfoss’ hroE='DEARITTLIOEQOTIO.CaS =
< head>
gy
.-_d'_'|_l|_'|.
<img zre="gropchs mark ang che yoliow hrick read.ipo’ oF
<img sre='qrowchs marx moo the vellow brick coad.ipao’
L= w=pmppesk-1" s
<img zre='growsho marx moo cthe yellow brick ccad.jpg’
id= w—pmpest=2" F
<img sro='gropcho mars_ans che welloe brick road.jpog’
id=" d—pmpest=3 " S
= SRy
sl e
=lmg sEo="Jgrawchs_mars_and_ cha_wallow brick _road.{pg’
fd= fimed' In
slmgy REo="growchs _marx_and_Cho_wallow brick _road.{pd’
id= wemspmob-l' f=
slmg ZEC="gronZho mar¥ abf e yellow bBrick road.ipg’
id= wemspoobe2’ S
<img ero='groushs mescx sof che yellow bBrick rosd.ipg’
id= y=mcpoot=31° fx
L - A
S mady s
eihemls

Figure 7-35b

254 Figure 7-35¢

Chapter 7: The Box Model

Percentage Measurements

When a percentage measurement is used, the size that the percentage is based on is the parent element
of the element the percentage width is applied to. Consider the example in Figure 7-36.

div {
_,I R "'I P Aareariage dimensicns e dertaed fram e
st S widlh o hiaight of e glemant’s parsal,
AR L ER [A [~
waicith o] H
e lghts 1000%;
macdingi H
)
Figure 7-36a

The CSS in Figure 7-36a is applied to the markup in Figure 7-36b.

ST EE henl PURLTE "= S S BHTAaL 1.0 St e RS
"hicprf fwww el oop TR xhtn L LIOID xbrknl l=gtoiot dEd"
whinl snlns="hlCes S fwwe wd Jorg /17905 9 xhinl © xml e Lailg="dan "
iuzads
LU eepm i can bage inepasdisiein LS L L Tas
zlipk rel='stvlicshock’ twacs coxbfzas’ hrof=' DORITTLEOEO0TIR. aas I
= Pl =
Rty LU
v Liie
Loroh insun dolor it aret, conscototiooy asipiscicg olik.

veetibnlur celloy orci, digris=sim s, conssquat in, consectetoesr
eh, nibh. Dones Lloctus ants 3 nogae comvallis ultricies.
Curssitor sz lorsem, Tt mn saciniscing, nmiei id ele fend Zewqriaz,
dii lborem tenpoe Taons, at o cobram eotas Higola qei s diam.
o SR
€ fandys
ol meml

Figure 7-36b

Figure 7-36c shows the rendered output of Figure 7-36a and Figure 7-36b.

The output that you see in Figure 7-36 is probably pretty puzzling to you, in that you more than likely
expected the <div> element to fill up all the space horizontally and vertically without scroll bars appear-
ing. There is a horizontal scroll bar because of how percentage measurement works; the width of the <div>
element is made to be the same width as the width of its parent element, the <body> element. Now before
you take into consideration padding or borders, the <div> element already takes up the whole width of
the <body> element. Once 5 pixels of padding, and 1 pixel of border are added for each side, the <div> ele-
ment becomes 12 pixels bigger than the width of the <body> element, causing it to overflow horizontally,
and also a horizontal scroll bar to appear. In Figure 7-36, the <div> element doesn’t stretch at all vertically.
That’s because the <body> and <html> elements are block elements, which means that the height of those

255

Part Il: Properties

elements is determined by the amount of content contained within them, and since a percentage height is
based on the height of the element’s parent, the height of the <div> element becomes the same height as
the height of the <body> element. How then can you get fluid height in the same way that you can get
fluid width with the auto keyword applied to a block element? The answer involves positioning the ele-
ment, and since that is off-topic for this chapter, see Chapter 11, “Positioning,” for the answer.

Figure 7-36¢

In the next section, I describe what happens to the box model when IE is in quirks mode.

Quirks Mode width and height in Internet Explorer

As I mentioned earlier in this chapter in the section titled “Aligning Elements in IE 6 and IE 7 in Quirks
Rendering Mode,” IE is a very different browser in quirks rendering mode.

IE in quirks mode is meant to be backward-compatible with the Internet of the past. Having both a stan-
dards and a quirks rendering mode lets Microsoft maintain backward compatibility with legacy content
created using past methods, while at the same time implementing and supporting W3C standards and
moving forward. Microsoft in the past has not always rigidly followed the W3C standards, and one area
where Microsoft was at odds with the W3C was in how the box model should be defined. IE up to IE 5.5
used Microsoft’s own proprietary box model, which differs from the W3C box model in one very big way:
It defined the “width” property as from outside border edge to outside border edge, rather than inside
padding edge to inside padding edge as is defined in the W3C box model. In IE 6, Microsoft reconciled the
difference by introducing the DOCTYPE switch, thus making two rendering modes, quirks mode and
standards mode. When in standards mode, IE uses the W3C box model, but in quirks mode IE uses the
Microsoft box model. Introducing two rendering modes has let Microsoft continue to build on IE and make
it compliant with the various W3C standards while maintaining backward compatibility with legacy con-
tent that relied on that particular “quirk” being present in the IE browsers that came out prior to IE 6.

Figure 7-37 diagrams the differences between the standards box model and the IE box model in quirks
rendering mode.

256

Chapter 7: The Box Model

Figure 7-37

The box-sizing Property

If you are faced with a website that requires IE to be in quirks rendering mode, you have two options for
keeping your design consistent between browsers.

The first option is the box-sizing property. The box-sizing property allows you to switch between

the standard CSS box model and the IE quirks mode box model. The box-sizing property is outlined
in the following table.

Property Value

box-sizing content-box | border-box

initial value: content-box

257

Part Il: Properties

In Firefox and other Gecko-based browsers, you must add the -moz- prefix. So it would be
-moz-box-sizing instead of box-sizing. -moz-box-sizing also supports one additional
keyword, padding-box.

The declaration box-sizing: border-box; is provided for Safari and Opera, and the declaration
-moz-box-sizing: border-box; is provided for all Gecko-based browsers, Firefox, Netscape, Mozilla
SeaMonkey, and so on; thus those browsers use Microsoft’s box model instead of the standard W3C

box model.

Conditional Comments

The other method that you can use is to alter output for IE instead of altering for other browsers, by
using conditional comments to specifically target IE, which is the method that I personally prefer. By
targeting the quirk in IE specifically, you can use the standard W3C box model, and not use a property
that may or may not be implemented in other lesser-known third party browsers. Conditional comments
are a Microsoft-proprietary HTML feature, and they allow you to target various or specific versions of
Internet Explorer. Conditional comments were introduced in IE 5.0; Figure 7-38 is an example of condi-
tional comments in action.

The markup in Figure 7-38a results in the output that you see in Figure 7-38b.

= ICOCTYTFE atme. JUELIC FRECASDTID EETHL LW StroztsYEAT
"hbtps S fwewewlooog TR bl L BTR chinll-gtrict . ded ™=
“htnl xmlns= 'hotp!SiwmerawioorgslessSxhonl’ xmlslenao='cn >
hencs
“titlesTomeitiana | Ooementosast ke
o head
LS HES E
1 i 1 |
lLiv Lex. _k = | 1atl . ard Wi IR 15 1
I | I R TR I | -1 1 I 11 oAb
3 e . kLHL coromen
16
Proadit
Hk I [
! toxt lo 1w e o LD 5.0
.'p
1oads b
It oot IZ 4]
e
Thta ta=t R Svlw oaeer £y TT U0
[ERIT) R
byt
= vkl
Figure 7-38a

258

Chapter 7: The Box Model

Figure 7-38b

In Figure 7-38, you see how conditional comments can target different versions of IE, and how condi-
tional comments are just ignored by other browsers (you see no output at all in Safari). Conditional com-
ments allow you to provide custom style sheets for Internet Explorer while writing standard CSS for all
other browsers. Using conditional comments, you are able to reconcile differences in the box model by
providing different width lengths to IE than you would to other browsers.

In the next section, I discuss minimum and maximum dimensions.

Minimum and Maximum Dimensions

The min-width, max-width, min-height, and max-height properties define minimum and maximum
boundaries when it is necessary to constrain a width or height from expanding or contracting past a cer-
tain point. In a variable width design, where you design content to adapt to multiple screen resolutions,
it is sometimes helpful to define where you want the document to stop stretching or stop contracting.
For instance, if you have designed primarily with an 800 x 600 or 1024 x 768 screen resolution in mind, a
user viewing your website at 1600 x 1200 pixels may see the content stretched pretty thin if an auto key-
word or percentage values are used to define the width. This is where the CSS properties min-width,
max-width, min-height, and max-height come into play.

min-width

The min-width property defines a lower-size constraint on an element. The available values for the
min-width property are outlined in the following table.

259

Part Il: Properties

Property Value

min-width <length> | <percentage>

initial value: 0

IE 6.0 and less do not support the min-width property.

The min-width property defines when an element using an auto keyword or percentage width should
stop shrinking to fit the user’s window. Consider the example in Figure 7-39.

P
fomt1 12pa Goni oo r INemio-widzh popaly 2/ ows you o place
Leol ez . i ; 2 lower constra Aten an & emerts dirensions
e g s 4 X v Thiz moans batif 1o windcs 5 sizod small,
raddt g : b frmenl wot't shenlk past et theesanin
min widthk 1

|
Figure 7-39a

The CSS in Figure 7-39a is combined with the markup in Figure 7-39b.

TR benT EUBRLTE "= T OMHTAL 1.0 Sty e 400
“hicp:ffwww . wloor FahtpllorDsxhenl l=stoict.ded”
whinl gnlos-"hillge /S el FIAPTSEhLal " HmlsTailg="ean >
lcads
o PP T PP I I
zlink rol='stvicshect’ twes coxbfsoas’ hrof= ORI TTRzofolTi8.cas -
= el
FYCe.Y. (TrN
o o
Loroh izsuan dolor it oret, conscototesry adilplscieg =lib.

Veetibulor selley ocrei, digris=zsim us, consequat in, consectetoss
et, nibn. Dooes loctus ants 3 negae convallis altricies,
Cursritar &z Lazem, Ttomn scdiniscing, niei id ele fend Zeaqoas,
il lorem teonpoe lacns, st orohran ectons Ligola qeis diam.
i
LA T L
ihEmls

Figure 7-39b

Figure 7-39c demonstrates that, if you run this snippet in a browser, when the browser window or con-
taining element becomes smaller than 500 pixels, the <p> stops shrinking and a scroll bar appears across
the bottom of the browser window.

260

Chapter 7: The Box Model

Figure 7-39¢

If the <p> is inside another element, and that element becomes smaller than the <p> element’s min-
width, the <p> element overflows the edges of that element. But this useful property does not work in
IE. In the next section, I describe how to work around the lack of support in IE.

min-width in IE 6 and IE 5.5

IE 6 and IE 5.5 don’t support any of the min/max width/height properties, but support for these proper-
ties was introduced in IE 7.0. Despite this functionality not being present in older versions of IE, you can
work around the problem fairly effortlessly and achieve the same results as having these properties
available. This is done in older versions of IE via the combination of two proprietary features, and taking
advantage of IE’s quirky handling of width and height. In IE 6.0 and earlier, the width and height
properties behave more like the standard CSS properties, min-width and min-height. Although they
aren’t exactly the same, this can be used to get results similar to what you see in other browsers with the
standard properties.

The recipe calls for conditional comments, so you can hide the workaround from other browsers, and
another Microsoft-proprietary feature called CSS expressions. CSS expressions allow you to place
JavaScript within style sheets. Of course, if the client has disabled JavaScript, CSS expressions won't

work either, but for most designers this is an acceptable trade-off.

The example that you saw in Figure 7-39 is recreated with IE 6.0 compatibility in Figure 7-40.

261

Part Il: Properties

The markup from Figure 7-39a is modified to look like the markup that you see in Figure 7-40b.

sshy |
widths espress_on|dooune lesmabeloenonldih <= 5000 =m0 5 'wobks');
! In (T, RaveSeriog mxprassons can be oses o cveroames
IE B2 lack ab supacr b e min—wid=h pogsm
Figure 7-40a
B TYERE henT FURLTE "= SW3e s fnrn wHmal 1.0 Sk Tae i JERT
"hicp: /P wSaore TR shte L DD skl l-stoict.dEd" o
whinl snlas="hiboe: S Sewd wd oors /19005 xhlnl © sdml=Tailg="an ">
w g
(o RS T LT I T U)
=link rel='stvloshoet' tyoe=s coxtdoass! href="00897%420fai a0 cas ' M
(o = R
link oo Ssiylosnzel’ —vpx CLIxifoss
MLwZ-"C8ESTF 500 lul 40, i, v
AN = G I
< el
Byt LS
‘:E:I . I
Lorow 1suan dolor sit oamet, consootoiusr anipiscics oliks
Veerimglor selley oreci, digri=zwim us, sonsequat ie, sonsectetosrs
oty nibh. Dones luoctus ants a noeque comvallis altricies.
Cursritor sz Lazem, Ttosn sdioiscing, niei id ele_fend Zeaqosat,
il loram fteapoe laos, &t vukram eetns lignla qeis diam.
w g
DR RIS [
2ihEmls ’
Figure 7-40b

Figure 7-40c is the result of the hack required to emulate the min-width property in IE 6.0.

The scenario outlined in Figure 7-40 only works for IE 6.0, and only if you are working with IE in stan-
dards mode. If you also require compatibility with IE 6.0 in quirks mode, IE 5.5, and IE 5.0, the hack is
changed to the following:

body {
width: expression (document.body.clientWidth <= 500? 500 : 'auto');
}

IE 6.0 in standards mode must have the documentElement .clientWidth as the hack; otherwise it will
crash and burn miserably. The hack doesn’t have to be applied to the <body> element; it can also be
applied to a containing <div>. The hack itself will remain the same; only fill in the numbers that your

particular project requires.

The opposite scenario, defining a maximum width, is covered in the next section.

262

Chapter 7: The Box Model

Figure 7-40c

max-width
In contrast to the min-width property, the max-width property is used to set an upper constraint for
width with elements using either an auto keyword or percentage measurement for width. The max-

width property is defined in the following table.

Property Value

max-width <length> | <percentage> | none

initial value: none
As is the case for min-width, IE 6.0 does not support the max-width property.

The max-width property allows you to define a maximum length if the area available to the element
becomes larger. An example of the max-width property appears in Figure 7-41.

The CSS in Figure 7-41a is combined with the markup that you see in Figure 7-41b.

FOMTE GAL ETl The mex-wid=h propaity can sel 6N upper consheint

:..', I.,:IIL_, B 'I_ r i _H_:_: F O Muied eesrspenls s thal iy slop ssosnd g sl
mmeing T So s 1@ thrgshoi vou = oecity
;:..:- ..'i-::".'.: TR

¥

Figure 7-41a

263

Part Il: Properties

SHEESTYTE Lanl PIRLIG "= 2WI0s /D00 SHTHAL 1.0 Shy fea JERT
Srewww e ore/ TR entr LSOO skl lostriot dEd" s

whtnl snlos="hbcp: S fwwe owd Jorc /1300 xhiknl © xmlzlaiig="san'>
=cads
Chlilemad-vldihe s ol Lax
alink rol='stwlicshoct’ byoes coxtsocas’ href=' B9AITTRzCtoilvdl.css
el = [

snbyrle bywe— Toxbszss
worth RpRACESS o TnTITe R enErt LT et HomE s= HIndE ROl o oAt

[k max-widch Faskar IL £ e 2ame 88 9 ndn-widch

1 mnS - mark; wou LEt checs far geatar-skar oo snanl-ea, sk
< Pl cal b sselan or ecpal-Lo,
s
S
Lorom insuan dolor sit arec, conscototioor atipdscing olik.
Wostibwlian celles crpci, dlgieizainm oo, sundsglal i, oondeclely
ct, nibh. Doneo lochkus anco a nogac comvallis ultricics.
Cura-itur ac loszm, Ttimn adiniscinog, nmicl id eleifend Zeuaqisz
dui loverm teppus lacus, at rwkrum lootus Ligola gquis diam.
= o
e
oS Emls

Figure 7-41b

-

S

=l

Figure 7-41c shows that the <p> element stops expanding horizontally when it reaches an 800-pixel

width.

Figure 7-41c
264

Chapter 7: The Box Model

See the section on min-width, which discusses how to handle hacks for IE 6 in quirks mode, IE 5.5
and IE 5.

As a block-level element, the <p> element expands horizontally, filling all the available space. In this
light, it is fluid. On a high-resolution monitor set to 1280 x 1024 pixels, for instance, the content inside of
the <p> element could potentially get stretched very thin. The minimum and maximum width proper-
ties allow an upper and lower limit to be set for the size of an element and allow an author to take
advantage of fluid design that adjusts to accommodate the user’s environment.

Sometimes, however, you will need both minimum and maximum constraints in IE, and I cover this in
the next section.

Hacking Both Minimum and Maximum Widths in IE 6

Hacking both minimum and maximum widths in IE is done using the same technique that I covered for
minimum and maximum widths, but combined together. You just do the following:

body {
width: expression(
documentElement.clientWidth >= 8007
800

(documentElement.clientWidth <= 500? 500 : 'auto')
) g
}

In this example, 800 is the upper constraint, or max-width, and 500 is the lower constraint or min-
width. All you have to do is replace those numbers with your own values. The same rules apply
here as were the case for IE 6 in quirks mode, IE 5.5, and IE 5; in those versions, documentElement
.clientwidth is replaced with document .body. clientwidth. Again, the width declaration can be
applied to a container <div> as well. If you require the content to be centered, it does not have to be
applied to the <body> element. In that scenario, only the selector and your minimum and maximum
values will change; the rest will remain the same.

CSS also offers identical properties to set upper and lower limits for height.
min-height
If you are using a variable or percentage height, the min-height property lets you specify when you

want the element to stop shrinking vertically. The following table outlines the possible values for the
min-height property.

Property Value

min-height <length> | <percentage>

initial value: 0

IE 6 supports the min-height property only when used on <td>, <th>, and <tr> elements.

265

Part Il: Properties

In some layouts it’s handy to have a property that can set the minimum height of an element, especially
with dynamic templates that can have content of varying lengths. Sometimes there will be very little
content, and to keep your template from being broken, you need to define a lower height constraint.
This is where the min-height property is useful. Figure 7-42 is a demonstration of the min-height

property.

p [}
r" ¢ 1 [P oEAnE e - The nin-ledabs progerly exisls ke selling 2
h"“'-"“ b L1d o Ledazg Ieer hzipht consirainl, vehich is mos wsetol
backgqreand: 11ghtsteelnlie; ‘rmsking conzislen? ok,
prddings bpsl
nin=peight s T

h

Figure 7-42a

In Figure 7-42b, you see the markup that goes with the CSS in Figure 7-42a. You also see the hack for
min-height for IE 6 and earlier.

SEEETYTPE Lum]l PURLTE "= dW308 /000 BHPEL 1.0 SLefen s fERY
“hitcprdfwwe wd.pro /PR xntelLOrDs el l-strict. dtd® =
whion]l #elos—"hilips Sfwe el oes /1990 5 xhiial ' wmlzTaig—"n ">
iuzad s

Ll leFmic-eighl s oitles
slink rel="stvlocshoct’ bypes coxbfoss’ hrof='DOR3T77Rz0EalTd2.ass’

N =R |
asbyle Dyne ot foga e o
- T et e s et i IC £ e ey, wall pou
yhe .z B haws to dois sl tha e Lahl proparty 1o ibe
| . chaared mninimwen height.
Dlamaiiol 1ot
SR b
'-'L'h;ﬂ:t"-'
Cps

Lorem izaun dalasr RiL ares, comaccleliey adipiscing elil. In el
culls, Vestibelem ante fpeum ocimdis e t=asiboas orss lustas et
rleximes aaenere cuzt 1ta Juvas: FaeZeras 316 oamel 1rmala.

-~ .'.p."'

Phanellun pores augae, wartins =u, nenper oid, ornare oao, tellion,

=S

e
fripn bibandun snts st oenim,. Maoris conpectastaser depihes fel ie,
Cras cuis lackk. Suapebdisse rhoncos felis ok felis. Paace ralll)
ni in likberz. Pooin sed Zpsem. Viwvarmus wlbtrsices. _p fotmentun
eyosbas mana. Mauria ses enlme Dooes nadna alth, bhocdeoeil ol
culicmod 1d, DoRuTarr C1, AL, Cras morts nobus. Cras diotam.
Cipasitar ‘d ripi matt g napgss aigeod oUnerse. Sed duaTm, Lensdn
[l = o Rl gh [

=i

< mady s
ihemls

Figure 7-42b

266

Chapter 7: The Box Model

In Figure 7-42¢, you see the desired effect has been achieved; each <p> element has at least a height of 50
pixels.

Figure 7-42¢

Continuing the discussion on minimum and maximum dimensions, I cover the max-height property
next.

max-height

The opposite of the min-height property is the max-height property, which allows the author to tell
the browser when an element should stop expanding. It allows an upper height constraint to be speci-
fied for the element. The max-height property is outlined in the following table.

267

Part Il: Properties

Property Value

max-height <length> | <percentage> | none

initial value: none

IE 6 does not support the max-height property.

The max-height property does for height what the max-width property does for width. Unfortunately
there is no workaround for the max-height property in IE 6, but this property is implemented in IE 7.
Figure 7-43 is a demonstration of the max-height property.

Lont lipx Sani-seril) [f mzx-hodghs PROSEMY SRSt 100 260ng
borczrs pw wolod cton bluog an uppar height aonsican,

hackgrourd: 113905 celh :

prddings Lpil

max-hoaghbe hilvw)

Figure 7-43a

The CSS in Figure 7-43a is included in the markup in Figure 7-43b.

B TYERE henTl FURLTE "= SW3e s fnrn wHmal 1.0 Sk Ty JEeT
“hitcprdfwee wl mre PR REr L OrDS ikl Lostrict ded" >
shionl gnlaea-"hibigs M Swve w3 oora /19005 =hlnl © sZmlsLaig—"wan ">
=lcad:-
CLiblemas -t ighbay il las
=link rol='atvilpshocot' types coXbfcas’ hroE='DM9ARITTRICEalTdd.coss A=
= heads
sheodyr
e

Torren 1nEan dalor st amen, aonsectetirey atipissirg elib. Tnoer
culla, Westibelem =sate ipeun ocimis in toasibos orss Luctas et

vltricss zompere oo 1 e Dures; Pascerse ait amet Tizala.
F_I'-D_'l.
s
Piliaa |l las purtiis algae, Gt LA i, ECTETEEE Lib, wriiares ez, leallos.
W
'\.'F'.-
ELlon bibegdun enbe ol weoln. Maoriv copsecbeboer dapiias Iellic,
Cras cuis lactk. Suapendisse rhoneos Tella ok felis. FPuaoo mollis
ni in likerz. Proin sod Lpsum. Vovarums clbtsicos. In toomentum
GEEsLal Wans. Mouria neg enlo. DoneE Dadna alsh, Lhenfrspil gl
culcmod od, DonuTmer o, [L. Cras Corts nobtus. Crac dicotum.
Cursritor -d riepi matt s meess svigron oonece, Sed guan, Bepesn
gzolerisgac.
=i pe
< ¢ oy
Lo] A
Figure 7-43b

268

Chapter 7: The Box Model

The output in Figure 7-43c shows that the third paragraph stops growing vertically when the height
reaches 50 pixels. If only there were a property that could handle that overflowing text. Wait, there is!
Stay tuned to the section on the overflow property for information on how to control overflowing
text.

Figure 7-43c

The next section wraps up discussion of dimensions with the 1ine-height property.

The line-height property

As I mentioned in Chapter 6, the 1ine-height property refers to the height of the line on which each
line of text appears. The 1ine-height property and its possible values are outlined in the following
table.

Property Value

line-height normal | <number> | <length> | <percentage>

initial value: normal

This property allows an explicit length to be defined for each line of text. Consider the CSS in
Figure 7-44a and the markup in Figure 7-44b.

[
Ionb) lepx sonua-serily Wit e Line-hedght prapery, vau e
border: lpx eolid stee_blueg adust e ling-nEighs ol each line ol s
hackgronnd: 1abbstee ke
prddings opxg
ine-haignt: 1=

Figure 7-44a

269

Part Il: Properties

S| EEEITVRE henl RPUBRLTG "=F 883020000 BHTL 1.0 Sk Tee s dERS
“hitcprdfwee vl pro PR entelLorDdshenl lostrict . ded® >
whinl gnlos-"hillge /S el PR B e TN B Er D IR BFTHES o T
sads
e W = I R 6 T | P W W
=link rel='stvlocshoot' btyoes coxticas’ hreE="DURI77Rz0falTdd.cas’ -
= heads
Sy
ek

wrren dipEun dolor vit emes, consectetosr adipi=sicg elit. Inoe-
culla, Vestibelem ante ipeun poimis e fmacibas oros luctas et
vltricss posuere cobz]l | Curas; Fasssnse sit amet 1osala.
Uhasellus pures azgue, warlies @u, senper id, croare ac, Lellos.
FErinn Bibsrlon anbe sl o woin. Maar s comeecstabamr dapitana Tel i
Cras cuis lacts. Suapendisae chonews Tella bk felis. Puacs rmollis
ni in likerz. Peooin sed Zpsem. Yiwvamus clbtrices. np foitmentunm
egeaLafs mans . dauria nes enim. Domes nadna nizh, hendrerib ot
culsmeod Ld, DoneTmes oa, BAL. Cras poris nobes. Cras diotum.
Cupzoivar Zd niel mallile maess elisrod afazbe, 2ol guan, Senezn
coolorlsaac.
i
< ¢ s
Ll A

Figure 7-44b

Figure 7-44c shows that each line of text is contained in a 1ine-height 3em high. This produces the
effect of quadruple-spaced text because a lem font-size is specified.

Figure 7-44c

In the next section I discuss the overflow property.

270

Chapter 7: The Box Model

Overflowing Content

The CSS overflow property exists to manage content that is susceptible to dimensional constraints,
where the content could possibly overflow the boundaries of those dimensional constraints. The follow-
ing table outlines the over f1low property and its possible values.

Property Value

overflow visible | hidden | scroll | auto

initial value: visible

The two most common uses of the overflow property are to hide content when more content than space
is available, or to apply scroll bars so that the extra content can be accessed. By default, the value of the
overflow property is the visible keyword, the effects of which you saw in Figure 7-32¢, and will again
in Figure 7-45c. These figures show that when the width and height specified are smaller than the con-
tent allows, the content overflows the edges of the box containing it. It is possible to control that over-
flow by causing scroll bars to appear, or the overflowing content to be invisible.

Figure 7-45 demonstrates each of the possible values for the overflow property.

Tra ovesfLow progerty 12 u&ed 0 corinal what
hapazns wee carsenl thal is arger than ths
alemen i & oonlzined amin.

—
EERET]

Irmighils "GO0
Floakts lerfs:
makeing 3
:
peripinle |
DS IICWE W1lZ1l.o1C II
i
pERunn |
gyerIlows =ukog
p=croll o
ube Tk = 11;

i
el lddan
oproxrflow: Lildoois

L
i

Figure 7-45a

The CSS in Figure 7-45a is then combined with the markup you see in Figure 7-45b.

271

Part Il: Properties

SHEESTYTE Lunl PURLIC "= 2WI0s /000 SHTHAL 1.0 Sl il JER’
"htop: e wd oo TR st L LS00 bkl Lt oiot dEd"
whtnl sndes="hilise /i A1 IEhlnl o wml s Taiig ="
“lcads
LT el T s
=link rol='styiozh Lyae= coxbfzss’ hroE='DUGR3 7 7Lz0EalTdh.ans
4 tgand>
Bt [UE

o Bd-tvizible o
Pobor Fiper piloksc a mess ot odcaledl popposs.
nic Feter Piper pick & peck of sicxled peopers)
It Fotzr Foper picked a portk of pilckicd popochs,
whe=re 'y the pecsk of pickled perocers Peter Fiper pooked?
= pe
=@ ig="wato =
Prelbaer Papsr piakss o gess ol _:|;|:-L|H:J LA -
nid Fekwer Fiper pick 8 peck of oioxled penpers)
IT Palawr Pipes pickend o poeck o pickKled psspoasrs,
wh=os's the pech of pickled pspoers Petec Fip=r plshedy
-\:.l'|_|'.-
ep id="soepoll s
Dbt Plipsanr plabedd a0 pes ol Do led pappsesa.
Dicd Fokbor Dipor plck a pock of piczlosd poopors?
IT Palar Pipes pickend o poeck O pickled pseposrs,
whoso's thc pock of plekleod popecrs Potbor Plper pookod?
S
2@ id='hicden’s
Peter Fipwer pichkes 8 gess af picsled peppecs,
Did Ecker Pipor pick a peck of micslen poopsrs?s
Tt Peter PFiper picked & pesk of pickled pepoecs,
whoe ' s tae peok ot pickied popoers Feter FipeTr prokied?
= e
e fandys
ol emls

Figure 7-45b

Figure 7-45¢

272

Chapter 7: The Box Model

In Figure 7-45, you see what the possible keyword values of the overflow property translate to when
applied. The overflowing content can be visible, or the browser can decide if there is overflow to apply
scroll bars where necessary, as is the case with the auto keyword. You can force scroll bars to always be
visible with the scroll keyword, or you can hide overflow content with the hidden keyword.

CSS 3 overflow-x and overflow-y

The overflow-x and overflow-y properties were originally proprietary to IE, but are now included in a
W3C CSS 3 working draft. IE 6, IE 7, and Mozilla Firefox now support the overflow-x and overflow-y
properties. Support for these properties is in the next version of Safari, and Opera support is planned.

Property Value

overflow-x visible | hidden | scroll | auto
initial value: visible
overflow-y visible | hidden | scroll | auto

initial value: visible

IE 6 and IE 7 only support the overflow-x and overflow-y properties when in standards compli-
ant mode.

Like the overflow property, overflow-x and overflow-y control overflow content, but they also
allow users to control the overflowing content with a scroll bar: only a vertical scroll bar for the
overflow-y property, and only a horizontal scroll bar for the over f1ow-x property. Each property
accepts the same values as the overflow property.

Summary

The CSS box model is a set of rules that tells the browser how to handle the width of a box, padding,
borders, and margins. The box model offers the designer consistency across multiple platforms and
browsers. Margin and padding are essential to a document and prevent the document from rendering in
complete chaos. Borders offer more aesthetic possibilities. CSS dimensions offer controls over how wide
and high an element can be. Finally, overflow allows the simulation of inline frames and gives you con-
trol over content when it is larger than the element containing it.

To recap the material presented in this chapter, you learned the following:

0O How to apply border widths, border styles, and border colors with the border family of
properties

0 How to apply dimensions to the elements of a document using the width and height family of
properties

QO How to control the line height of text using the 1ine-height property

273

Part Il: Properties

0O How to apply padding to a document with the padding property

(]

How to apply margins to a document with the margin property

0O How you can use the overflow property to manage content in cases where the content of an
element is bigger than the element itself

Now that you’ve had a fairly in-depth exposure to the properties fundamental to CSS design, Chapter 8
discusses CSS buoyancy, a topic involving the float and vertical-align properties of CSS.

Exercises

1. From left to right, what are the seven box model properties that make up the left, center, and
right sides of a box?

N

How do you left-, center-, and right-align a block-level box (using the standard method)?

3. When the margin shorthand property has four values, what side of the target element does
each value apply margin to, in order?

4. What are the three keyword values of the border-width property?

5. If the border-color shorthand property has three values, what side of the target element does
each value apply to, in order?

6. Name the shorthand properties that encompass the border-width, border-style, and
border-color properties.

7. If you target IE 6 in quirks mode and earlier versions of IE, which property would you use to
align a box?

8. If the padding shorthand property only has two values, what side of the target element does
each value apply to, in order?

9. Describe briefly the two situations in which margin collapsing occurs?

10. Inthe following document, which element’s width is the <p> element’s width based on if it
were to be given a percentage width value?

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>

<head>
<title></title>
</head>
<body>
<p>
Peter Piper picked a peck of pickled peppers.
Did Peter Piper pick a peck of pickled peppers?
If Peter Piper picked a peck of pickled peppers,
where's the peck of pickled peppers Peter Piper picked?
</p>
</body>
</html>

274

Chapter 7: The Box Model

11.
12.

13.
14.
15.
16.

17.

18.

How do you resize an image while maintaining the aspect ratio?

In IE 6 quirks mode and previous versions of IE, what properties of the box model are included
in the measurement specified by the width property?

What is one method of emulating the min-width property in IE 6?
How is the min-height property emulated in IE 6?
What browsers do conditional comments apply to?

If you wanted both min-width and max-width, what declaration would you use to bring IE 6
on board?

If you wanted to increase the amount of spacing between lines of text, which property would
you use?

What are the four keywords of the overflow property?

275

CSS Buoyancy: Floating
and Vertical Alignment

In Chapter 7, I presented a subset of properties that combine to define a concept known as the CSS
box model. In this chapter, I continue introducing new properties, this time focusing on two prop-
erties most often misunderstood by users new to CSS design: the £1oat and clear properties.
These properties are often misunderstood because of their unique effect on the elements in a docu-
ment. In this chapter I discuss:

Q The float property and how it is used to change the flow of elements in a document —
for instance, to place text beside an image

Q The clear property and how this property is used to cancel the effects of the f1loat property

Q The vertical-align property and how this property is used to control the vertical
alignment of text to create subscript or superscript text or control vertical alignment in
table cells

The next section begins the discussion of the £loat property.

The float Property

A simple explanation of the £1loat property is that it is used to put content side by side. In the
coming sections, you look in depth at the £1oat property, its idiosyncrasies, and how you can use
it to lay out a web page. The following table outlines the £1oat property and its possible values.

Property Value

float left | right | none

Initial value: none

At this point, the £1oat property appears fairly simple. It accepts keyword values of 1eft, right,
and none. The effects of the f1oat property are intrinsically tied to the CSS box model. After the
float property is applied to an element, regardless of the type of element, that element takes on the

Part Il: Properties

behavior of a block element, where its dimensions are defined by width, height, padding, borders, and
margins. Before you see some examples of this, Figure 8-1 shows you how the float property affects a
document’s layout.

imy ol
widbhy ZH0po: Foalirg ceuses corent b i arauens 1he
Bmightzs aabig demenl he clcat procedlys = eoplisd o
Eloatt Lofny
[EEET R TR I S
Frsrali- = *TH S LH| R Vi

oA
fonts (Yre putig-seribg

Figure 8-1a

The CSS in Figure 8-1a is applied to the markup you see in Figure 8-1b.

ST PR Bkl PUBRLTE =7 Sl A BHTAL 1.0 S Tekyf fERT
"hicprdfwww ol ore/ PR ente L LOID skl lostrict . dibd" >
shionl snlns=" bl s S Swwe owd Jorg /17979 xhinl © o xmlzLailg="sn '
wluzads
LI Lgalez FLE L Lo
=link rol='stvilpshococt® tyaes coXtfocas ' hrok='DO9AITTRICEQOBOl.css” =
= fheads
sy
Zing =ro='antique,py’ <='Aptigus’
alpin

Lorem iggun dolor sit ames, consectetusr atipiscicg olit, Huno
mrar Tec, nolescie s, Teprest oo, chomses soacip b, bortor.
Fumes dnlardion, msalaA e :-||||='i|.|.'i:-| mzllim, lovan aiigize TEang! 1la
Teo, st presiem oaespna forcar sed 1Tigquolas Rallas id rial, Cras
fnbarcian vl in =il arsl TastA. Th oegesles. Tobleger ol il
Jhasellus sagikcis ccogue del. Aohocon pUrus ncgue, Tiveria at,
Digmabclinl =Bl woal, didinfsalm val, sdoplein. B0&peiadl=fea L& i,
Fuzze nmane. DPollonbosgue wliriocs roons in loo. ¥Wostibalan
eligdzm guoan [ormenlun sapien, feoeab welil ebal, weslizoaluon eL.
ST, BACMOUSs 2, VIvorTra vitic, _acus. Bolam wortiiiol, manris e
wplpotste eqeptey, tortor doloc tincidunt le=o, non epoelecisnque
nagna a4t wates urna. Trwvemes ub omasse. YestiDolion st amet
pumien et pEons vscios @moctor, Sed @ naona, Fell sctesgque nononmngs
i vanr ecnE o FelTeabmmnos Sab i bomt noctai ke Tak laqoes pansc s Wl
retuy ot nmalspueda fanmEs B Rurnis BgesTas,

e

'\.'l_'l'.-
Yaed man 3T wn bertane Tmperdist brrciree it FLTan na Teaisla .
Deodn eulrew licula cu nibh. Maccanas Sit amsh gal. In area.
2eoin =lit lacue, wolutpat ok, sagqiztis sk, coowrallis =it amet,
saplan, Fusoe blbondun awces vikae soplen. Hoebki foogial
venenatls labero. Vestobulum o»orttocor. Cras neque anks, luactos
Lipmede, alegenktlm wslatpas, aviermcd ecss, pase., Braggant Srhars.
Hzzmrils cursus doloos,

= p

< oady >
i hEmls

Figure 8-1b
278

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

In Figure 8-1c¢, you can see that the image is floated to the left, meaning that the content in the para-
graphs that follow the image floats up to the right of the image.

Figure 8-1c

If you were to take away the float property from the example in Figure 8-1, you would get the output
that you see in Figure 8-2.

In Figure 8-2, the effects of the f1loat property become more obvious — primarily, the f1oat property is

used to place one element beside one or more other elements. In Figure 8-1, the element being floated
was the element, and the elements it floated beside were two <p> elements.

279

Part Il: Properties

Figure 8-2

You can also include both left and right floats in a document; this is demonstrated in Figure 8-3.

mg
makgin: T0peg

bubeder i lpe swlld cqlelZE, L2326, LZSi;

img¥Fstartisn |

Cloab: 1ol
K Laf aad righl Taets can ba prasant 38 10e zaime tima,
hgE lake |

LoEL1 rgaty

Fon+ g 1]

Figure 8-3a

280

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

The CSS in Figure 8-3a is included in the markup in Figure 8-3b.

I TYRE Benl BURLTE "= W30 0 KHTah 1.0 Ser Tk JER
"htoprdfwww. wl oeg/ TR/t l L DrDs shitnl l—steict. dtd® -
“hitnl sndas="hlle: S fewd W] Jorg /1900 xhiial © ximl s Lailg—=" i ">
slcads
CSLibleIloalsdLELLe>
«link rel='stvlicshoot’ tyoes coxbfoss’ hroE='DOAITTRZOEQUBOI. css’
< head>
':I:"‘:d:t':'
“ipg src='startich.qpr’ alt= stercish’ ifd='gtarzish’ &=
i'_t".'i

Lorem ipgan doloc it ares, consectetusr adipiscicg elit. Hops
R L B L L PR AL S TR I JERTE T T S THE THAN- RS B 5T B
rusze interdun, metusm en esacittism nollie, lorso scgue fringzlls

Tead, ab preciom neigae buriaar swd TigoTae Ralla 08 rial. Cras
Interdun welic sk amel loces. Tnoegestos. Tnboeger oliooel.
s Tam =agiboi= aengue i Banecr puirda nesgus, S ibsrra b,

twperdiet sit anck, dignissim vel, soplen. Suapondlsse Lriatigoe.

Fuzza nanc. DMellanloague aliviccs mooms in loo. Yescibalun
zlizazm oazw tormontur sapleon. henean wellt orat, wesbloalur oit
CTEr, PACONE T, WITCTTa Y1Tac, lanns. Briam sarttitor, manvis or
vulpateate eqeckes, tortor doleor tincicwunt loo, non ecelerisogue
nuana dol wites arna. Yivemes ot mem=s. Ssebitolon =it amet
gEplen ot maqrm varius muttoo. Sod B onmgra, Folleptengue nomamny
piin vee pesar . Felleatesmoes bal i bant nochi broiphoggoe pensctoe sb
Pebata sl nelarondad Danes o LUFG A mdrE.ala,

sl

i
Ged gon dolor wt bortor Zmpecdist heodoecit. Ltlan nalssusda.
Dradn rubliie Ticala wa infhlv. Mascabos &LL aisl man, Tnoaias.
Proin =lit lacos, walatpat ety sagaittiis ob, cocavallis sit amet,
genlan, Fusse DLLOndan auowe vikas soplen, Morbhl Feugial
venenakbils libers, Vestobwlum sorttizor, Cras ncgque sanks, luactes
Lucstos, eleserktun wolotpas, =oismod eses, nonc. Pracesnt crnaoe.
Hazoiz cursus doloo.

w Spn

R
2 Em]

Figure 8-3b

In Figure 8-3¢, you can see what happens when there is both a left and right float; the right image floats
to the right and allows the content that comes after it to wrap around it. Figure 8-3c shows three images
so you can see what happens when the window is made smaller; the browser just reflows the content,
and the second float is moved up or down as necessary to make room for the copy.

281

Part Il: Properties

Figure 8-3c

On the surface the concept of floating is pretty simple, and for most things that you set out to accom-
plish, this is about as complicated as it will get, but there is quite a complex set of rules under the surface
of the float property. To understand what happens when an element is floated, you need to know
about how the box model is affected, and what happens when certain types of elements are floated.
These concepts are explored in the coming sections.

Floating Box Model

Because floated elements are repositioned to allow other content to flow around them, they exhibit
unique behavior. This behavior is outlined here:

282

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

Q The margins of floated elements do not collapse, no matter what they are next to.

0 Only the contents of elements following a floated element are affected by the floated element.
That is, the backgrounds, margins, borders, padding, and width (the box model and dimen-
sions) of elements following a floated element are not affected.

Q Afloated element is always treated like a block element.

Each rule is important in determining how floated elements are positioned and rendered. This section
examines each rule in depth.

The margins of floated elements never collapse. Consider the diagram in Figure 8-4, which shows how
the box model is incorporated when an element has been floated.

box margin
box border

box padding

float margin
float border
float padding

floated
element

float margin
float border
float padding
Suipped 1eo|)
JapJoq 120))
uigiew 1eol}

Suipped 1eoy}

N o0 JapJoqg 1e0 o
I ;s E pioq 1eo(} g K g
N © S < I X
c WM T uidiew eoyy Il o B
A B 1 E
o B = K
S B S = * B
Suipped xoq
Japioq Xoq
uigiew xoq
Figure 8-4

283

Part Il: Properties

When an element is floated, it takes on the behavior of a block element, with one major difference: Its
sizing becomes shrink-to-fit horizontally and vertically. That means that if you float a <div> element,
its dimensions change such that it only expands enough to accommodate the content within it. In
Chapter 7, you learned that the default dimensions of a <div> element are expand-to-fit horizontally,
meaning the <div> takes up the whole line, but not so when a <div> element is floated. Figure 8-5 is an
example of how a <div> element changes once floated.

tag {
margoee Li !
viley s D w0 s, 1ZA:
1
(eI}) w'her a klock elermart 1= flaeted, (Fs cetaglr
tanks lisaosan SRR width hoeamcs steirkcsa-it nstead of
¥ snaand bt
div¥iifty=-ctates |
LaE L=l OIL: o [~F o]
baordexe lpx sc_ad cobd 200 dol . 2allye
Gackgeaiing s LighLysl T

TArqim: L)
[loal.: |

I
Figure 8-5a

The CSS in Figure 8-5a is included in the markup in Figure 8-5b.

284

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

SHEESTYTE Lunl PURLIC "= 2WI0s /000 SHTHAL 1.0 Sl il JER’
"htop: RISV JERT ot eR Ll L S S R b ek 5 PR R Sk B S § = R

whibnl #ndas="hiloe: S fwwe oud e /19005 xhinl © smlzTaiig="san ">
lzads
SLILIewTloal=SLE Llax
zlink rel='stvicshoct’ bwaes coxbfoas’ href= ' BORITTLzOFQOROL . oz =
2 A
-y e

iy ide' fifty-pierey '
<img sre='titty states.jpo’ ale= cirty states' fw
o p'J-
a1 man dnlor ur tavtoe impardt et heandesTit. Betam
malemasds, Frodin rotrem liquls ee nish,

Locon izwan dolor it aroc, conscoetotess adipiscicg clit. Hupoz
o oo, nolarlia ail, Taobeal ail, shoiacla adacipll, Lok e .
Fuzzo imberdum, mobds ou saolbbils pollis, lorom acgus friagolla
Doy, adle pebmnfiim edgrg Lineaar mad 1igiola. Balla id pial., Qoas
nborcunm welic sik amct looes. In egestos. Imboogoer clisachk.
Plhzgellos cagli iz coouue ALl fSedogll plbds negue, Yiveltbd 4l
mperciict it zmot, dignoicsim wel, Saplen. Suspendicss kristigue.
Puese panc. Pellentesque wletrices saone in lec. Yeeptiboalon
zliga=m guam tormentam sapicn. henean welit corat, weskioalum it
ETE=E, CACOCUE =, viverrs vitse, lacos, OBRism porttitorc, maurie ob
rulpatate agertas, torior dolor tinocoart leo, nor scslsTisgqe
nuons dul wites prns. Yivemey ot passe, Vesktisolon git amet

mHpiEr B magee Gar oA mezhor o Sedd ow o mmgea . FaT EEEEEgESE nonanny
i ves wetue . Fellestescees Bab i btant nochi o briastgque sansctoe eE
Pabald sl nalasoadad TaleA g LIFRTA adedlaa,

e ips

s
Sl non da.lor wo borbar impercich bepsrerit, Ehian malosuaada.
Prada ralbdos Ticala wa il Mascarnes gLl gl m=.. T e,
Proin clibt lacws, walatpat ab, sagicttiis ob, coowallis sit amet,
paplen, Foacoe Lllopdidn adgde vilae gaplein, Mobbl Deigial
venenabls liboro, Wostobulum aortticor. CCAS nogque snko, luctes
lystas, elegsntem wolotpas, scismod esoeEs, nono. Praegent orpsoe.
Hazsis cursus doloo.

= pn
t F s
i hemls

Figure 8-5b

285

Part Il: Properties

In Figure 8-5¢, you see what happens before the <div> with id name fifty-states receives the
float: left; declaration. You can see that the <div> is normal at this point; it expands to fill the
whole line.

Figure 8-5¢

In Figure 8-5d, you see what happens after the <div> with id name fifty-states receives the float:
left; declaration; its width has changed. Now the <div> element only expands enough horizontally to
accommodate the content inside of it.

286

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

Figure 8-5d

In Figure 8-5 you see what happens when a block element is floated, but what about an inline element,
such as the element, or the <a> element? This is demonstrated in Figure 8-6.

nErs Ll I

s | 1 i TEF, 128, e
1
R Wbk aninlng elerrars 1S Aostacd, IF
3 Ponte lecw sonsoacoily hernimes 2 saent-ba-hl Block slemors,
spanFsallbost

eEL—aligns o (B

Barcers lix soa_1d cqbdeol, 20D, Dol

Lackgooind:s rolif 24 Z44, Z<e]:

margimi g

I = Eigihily
I
Figure 8-6a

287

Part Il: Properties

The CSS in Figure 8-6a is included in the XHTML markup that you see in Figure 8-6b.

I TYRE Bbnl BUBRLTE "= 8W30 s Snen KHman 1.0 S
"hitcp: !

L SCETR R R Y

whbnl sndes=" i
=cad:s
“tlclenfloatsiticlan
=link reol="’
R - = B
r_l-l..g,_q:.l_'.
e
wE N

PR A AE IR NN D B

stvlpsheok !’

czEbfoas’ hrois='

Lwmac=

id=" mmi kot '
£img arn="dresart ot
g A
Furoo bibonsum aagoo
vonendt iy Libecug.
e Epans
Lorom insuan doloo

baat.jog ' alns

ritao aapich.

51T ameT;

sl =Teaiig="s

dagart mallhoat’

Horbi

conscociotesr anipilscing olit,

FL’

ferns e d oo PR ahEr L LoD st losteiot dEd"

T

MAFITTRECEQIROG . caE " S

]

Toglal

ez

erof lec, nolestie en, laoresl en, rhomous suacipli, Lorior.

Fucze interdum, mebas ea sacitbis poolic,
leo, &t preciym meagna torcar sed liguls.
rbercur walon 21t Arat
Phepsllon sanit-i= coooue dei,
mpisr el et

Fus=oa manc.

MEriEEn
=it

Mzl lontoague wltrioos macno
el isaam s Terasnbion s Bn. Seaaan wel
SmEh,. BACHCUSs 2, ViTerra vitic, Lacus.
Willpalale eqgoelag,
naona dal witao urna. Viwames
gRolen of pEgRE veriuns muTbor,

uk masss.

pebus =t malepuede Sames mo borpis
¢F|I-
el moan oo
DEaadn
Pooin e2lit lawus,
saplan,
vernenatis labero. Westoibulum porttizor,
uciaz, clewcnbem wololpas, coiamod cool,
Haosils cursus doloo.
= S
w2 awe
i hemls

Figure 8-6b

vn bortor npercist el coes

plutpat Bk,

288

Briam wartiitoo,
Lok Loy dolo: LiocZduil leo, ool eoeler icguoe
Vosbtifulun sibk amct

Fod W ommona,
nfio nEn wetne. Fallentessue fazs tant morol
gaesTan,

Falrvize Ticala wa nible. Moacaboas &00
sagothly =k,
Fusce blbondar avgws vikae soplen. Morbki fecgiak
cras ncgue ankeo,

loren avgue tring:lls
Falls id rizxl, Cras

ATER. TN AYARECAE. Trteger aligiek.
pUCES nenue,
sl dign Tealin ve’ L Mol En.

viverra at,

Suapmendimeas Lrias fgua.
vostibalam
(LY B R RN ERT

in lao.
it =i

M3IOYXis Lo

=F il v

Fellentengque nomanms
trigt qre gensotng ar

1. Ftosn nalsgosadea.
il H=L .

coswallliy yit aret,

T wia=.

luctes

Mofs . Pracssnl croare.

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

In Figure 8-6¢, you see what happens prior to applying the float: right; declaration to the
element with the id name sailboat.

Figure 8-6¢

In Figure 8-6d, you see that after applying the float: right; declaration to the element with
id name sailboat. The element becomes a block element with shrink-to-fit width and height.
The width and height properties are not applicable to inline elements typically; in this situation, if you
were to apply width or height to the as a floated element, it would work, since it is now a block
element.

289

Part Il: Properties

Figure 8-6d

Now that you've had an overview of the f1loat property, the following Try It Out is a recap of what is
possible with the float property.

Try It Out Applying the float Property

Example 8-1. To review what'’s possible with the f1loat property, follow these steps.

1. Enter the following markup in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>

<head>

<title>float</title>

<link rel='stylesheet' type='text/css' href='Example_8-1.css' />
</head>
<body>

<p>

290

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

The float property is used to force content to wrap around
another element. Elements can be floated to the right
or the left.

</p>

<p class='block'>
When a block level element is floated, its sizing changes
from expand-to-fit, to shrink-to-fit, and is no longer
subject to margin collapsing.

</p>

<p>
When an inline element is floated, it becomes a

block-level element with shrink-to-fit sizing.

</p>

</body>
</html>

2. Savethe preceding as Example_8-1.html.
3. Key in the following CSS in a new document in your text editor:

p.block {
float: left;
margin: 5px;
background: lightyellow;
border: 1px solid khaki;
width: 150px;
height: 150px;
padding: 5px;

}

span#inline {
float: left;
background: khaki;
border: 1px solid gold;
padding: 5px;
margin: 5px;

}

img {
border: 1px solid rgb(244, 244, 244);
margin: 5px;

}

img#left {
float: left;

}

img#right {
float: right;
}

4. Save the preceding style sheet as Example_8-1.css. The preceding markup and style sheet
result in the output that you see in Figure 8-7.

291

Part Il: Properties

Figure 8-7

How It Works

In Example 8-1, you reviewed three major points about the f1oat property: floated elements cause the
copy, text, and other elements that follow them to float up beside the floated element. By applying either
the float: right; or float: left; declarations, you can have content that wraps around the left or
right of an element, as was the case with the sun.png images.

When you float an element, the rules that determine the floated element’s size are changed from the
default. Floated elements always use the shrink-to-fit sizing, even if the element was originally an inline
or a block-level element.

In the next section I present a property that allows you to control floated elements, the clear
property.

292

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

The clear Property

In this section, I discuss a property intrinsically related to the f1loat property: the clear property. The
clear property is used to control floating content. The following table outlines the clear property and

its possible values.

Property Value

clear none | left | right | both

Initial value: none

The simplest explanation for the clear property is that it is used to cancel the effects of one or more

floated elements. An example of its use can be observed in Figure 8-8.

imy
MLy lit: Lluog
bardert 1ox sooid oobdlis, L2E. LEs)l
|
| .
| MTAme T Cede s -ben The Gl ee s @oaemy's only popass &b clear or
" clemri L -k cancrd T ptfesds afthe D loa L armpoee
H
I = S |
1
Figure 8-8a

The CSS in Figure 8-8a is combined with the markup in Figure 8-8b.

293

Part Il: Properties

294

sy e b

whitnl #ilom—
=ocads
ETRA
=lin
< head>
sl
«imn
i

- .'.Fl.‘

=ing

lpin

e

=S pe
< ndy e
“ihEmls

Figure 8-8b

a1l FUBRLTE "= F Sl S wHL 1.0 5t FEAER
"htop:rf fwww el oo fx Lliorodxhenl l=stoiot . did™ s
Bl ffwend Wl o 1309 xhlnl * sml=Lailg="an ">
e T lsals S LE LT
K rel='stvicchoct’ btyoes coxbsfoas’ hroE= DOGITTLE0OLQOBOR.css o

erz="qchn lemnon. g’ mlt="7ohn lenoon’ id= Jocho-lennon’ =

Dorem igpgan dolor wit armes, consectetoesr sdipiscicg elit., Hons
Hreaw Dz, i e e el | ensr el min, hiomzia AiA TR FEFT § BT O
Fusze interdum, metos eg epscittis nollie, lores sogue fringills
Tean, wb e o egae burtaar sl Tigole. Ralla id rial. Cras=
nbercum velic sit oamet leces. In egestes. Inkeger eligoet.
FhapaTTam magi iz cague i Baripor poirdd negos, S0 srra at,
froerdiel afh anck, dignissim wel, soplen. Auapondlisse Lristigoe.
Fumes nari. PRl Tenbeanue ol bricea sosms in Tag. WVestibalan
cligaam guow Fermenlun soplen. hescan welic craL, wesblzalon sL.
cmek s thomous =, vwiveorrs vitacs, laous. Eeoism wortiizoe, maaciz oes
vilpabato egestas, btortor dolor tincisunt loo, mon soolorisguo
naonas dul vitms ucns. Yivemes ut masse, Vestisulun sit o amet
spoiey ot magen warins anctor. 3cd a nagna. To 1l ertesgus nonormy
piliz m=c metus,. Fellentescue nalitant moool tristogue sensotuc et
rebug of nalleposds Sanrer s born o Bogestaa,

pro="nmeroedes bene, jog’ sle="meroedee hene '
id="'mercadrs=hrnz" f»

Faed nomn adalor on Lerlar Soperdial beieivasis, ELLan naleatada.
Secpin Fabtrim Ticdla sa kb, Mascena= & 6 gl Bpan. T &Sros=.

Dealn £lil Losus, welulpas ab, a3giclls o, conwallis sil arok,
sapicn. fuasce bibonduam aucues vitas sepleon. Sochi fouriot
venenzbis libers. Veslibolum portlicor. Sras segue onbe, luslos
_wotas, clemectem wvolutpat, Sulsmod ecsi, naoc. Pracsent croars.
Haoeiz cursus Jolor,

Yectibulaw ance ipsam primic in taucibus ovci loctus =t ultrices
pospsrs cuhil s Curas: Corahitoar v isee regue oaed riei Tockos
pocnmEan. Holle tincodont, wisus sed sadrles molestim, BT RTDS
Tutas bellos, pr e el dolor quis mearis. Dores sharetcs
ol licibliadtn Ly pia. Vidaiks Taimsmblian Dilaebdin eidn. Proin
pollicitoud noeros st aenque. Bollan we]l torpi= s risss intercdeom
lhricsma. Orar =il arsl dlan i aven ol Lsicas chobasice . Tolege
sapicn. Fusoe zfisiscing. Donoe: leoctws torber, rmalostic a, parbs
e, LEialigoe med, anin. Allguan o Toren o aial Cringilla pod s
Ut aliguact arcu nos arcu. Sed 1n olit oi o oocdo viverya Lomoum.
Ciis sisl esl, posdere =220 voel, veieiialls e, Lavsllas nec,
welit, Festibolum maleswsds tristioue venn, Fusoc ot ost. Sed
sdipiecing nuns ged mi. Yiveosows welit nibh, wiverrs ek, corsuoe
ot, commodo neo, motus. Scd bibendur ost in odic.

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

In Figure 8-8c, you see what happens before the clear: left; declaration is applied to the ele-
ment with the id name mercedes-benz. The mercedes-benz drawing has floated up beside the draw-
ing of John Lennon. This is where the clear property can help; it can cancel the effects of a f1oat on the
element that it is applied to.

Figure 8-8c

In Figure 8-8d, you see the results of the application of the clear: left; declaration on the
element with the id name mercedes-benz. The effects of the f1oat applied to the drawing of John
Lennon has been canceled, and the image is dropped down below the drawing of John Lennon.
However, because the float: left; declaration is also applied to the mercedes-benz image (since
it is applied to all images via the img selector), the text still wraps around it.

So the clear property is used to control what happens when elements are floated. When you use the
clear property, you can cancel a float on a particular element.

295

Part Il: Properties

Figure 8-8d

In the following Try It Out, you recap the clear property.

Try It Out Applying the clear Property

Example 8-2. To review the clear property, follow these steps.

1. Enter the following markup in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>clear</title>
<link rel='stylesheet' type='text/css' href='Example_8-2.css' />
</head>
<body>

<p>
The clear property cancels the effects of the

296

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

float property, and can prevent wrapping from
taking place.
</p>
</body>
</html>

2. Savethe preceding document as Example_8-2.html.

3. Enter the following style sheet in a new document in your text editor:

img#left {
float: left;

}
img#right {
float: right;
}
p {
clear: both;
margin: 20px 0 0 0;
font: 12px sans-serif;
border: 1px solid rgb (200, 200, 200);
background: rgb(244, 244, 244);

padding: 5px;

4. Save the CSS that you just keyed in as Example_8-2.css. The markup and CSS of Example 8-2
result in the rendered output that you see in Figure 8-9.

Figure 89

How It Works
In Example 8-2, you tried the clear property for yourself and observed how the clear property is used
to cancel the effects of the f1oat property on the element that it is applied to.

In the next section I look at some float bugs in IE 6.

297

Part Il: Properties

Float Bugs in IE 6

The following section takes a look at float bugs that arise in IE 6 and a few of the techniques you can use
to work around these bugs. The bugs that I discuss here are as follows:

O Peek-a-boo bug: As the name implies, this bug involves the use of floats where certain content
on a page disappears and occasionally reappears.

Q Guillotine bug: This is another bug that comes up in IE when using floats, where content is cut
in half.

0 Three-pixel jog: This bug causes 3 pixels of space to mysteriously appear when using floats in IE.

0O Double-margin bug: This bug causes the left or right margins of a floated box to double when
using floats in IE.

Even though the following bugs are a problem in IE 6, all of them have been fixed in IE 7.

The Peek-A-Boo Bug

The peek-a-boo bug can come up in several different contexts —in fact, in far too many to list here. It
involves content that disappears and reappears seemingly at random (hence its aptly applied name). The
example in Figure 8-10 demonstrates the peek-a-boo bug.

ey

toart o I i Pl

POd g GEXT
s hawcr

backgoound 1 crimzong

i

border: 1oax = L 2D, EAC, NG :
bavkaround: cqbi2d<, 234, 21cy;
1
div.content |
Erackg=ound
bardest 1o soolcl Lobd 200, I00, 200y
]
diveiolenr |
hordesr: Iox s’ e o, ni, Al
backgroundr nrenoe
cleprs boethi;

}
Figure 8-10a

298

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

The CSS in Figure 8-10a is combined with the markup in Figure 8-10b.

STIEECETSTPE Ll PURLTE "= SWICHA /00T BHTAL 1.7 A ITERT
"hitcprdfwww vl ore/ PR entel L0000 skl lostrict. . dEd" >
whinl #nlns="hil e S Swwe owd Jorg /1797 9xhinl © o wmlzLailg="san '
wcads
Ll lerpeckalasos s L e
=link rol='stvicshoct” byaes CcoXtross’ hrof='DOARITTLZCOECORLD.css -
= ¢ heads
sy
“drvy id='container' s
waidie ded= Tt
[loat tews. w8 nref= & 'sLink tegt< es,
el
Conlenl Lexl, Fa arefo'S'sLink Loexldtar,
salit eslenAa="1na om0 e
Conkaenl Lewo. <a nref=' " =Link coxlelas,
CAdLe
Conlenl Lesa, o arel=' @ sLink oeElssasx,
2div class="oonoone s
Content tewt, wa aref='&'=TAny certafax,
2t
Content teEwe, s rEfs'EELink cEgEadai
=div class= oonoont =
Content teExs, g nrefs"E'alhink spaEig
T T [RTER
Conteat teExs, g nrefs'E'hlhink cpaEaddal
iy did= clpaxr's
Clzar toxt. <2 hrof- #':=Link textdlox,
< e
LR RLE
Eeathaer dlw,
L= R LS
Ly AT]
< oy
wiheml>

Figure 8-10b

Figure 8-10c shows that when this document is loaded into IE 6, none of the content beside the floated
element is visible until you hover your mouse over a link. Hovering causes the lost content to reappear.
If you hover your mouse cursor over the links that have reappeared, you find some of the content disap-
pears again.

299

Part Il: Properties

Figure 8-10c

Three properties present in the style sheet trigger this bug:

Q

Q

a

Floating an element by applying a float: left; declaration (float: right; also triggers
the bug).

Including a background on the containing element. In this example, this is the background:
rgb (234, 234, 234) ; declaration.

Including a clear on an element following the float, where the margins of the clearing element
come into contact with the floating element.

So, with an overview of what causes the peek-a-boo bug and what it is, what do you do to work around
the bug? You have more than one option:

a

U 000 0o

Apply aposition: relative; declaration to the containing element and floating element.
Prevent the margins of the clearing element from coming into contact with the floating element.
Avoid applying a background to the containing element.

Apply the declaration zoom: 1; to the containing element.

Apply the declaration display: inline-block; to the containing element.

Apply a fixed width to the containing element.

The next section continues the discussion of Internet Explorer bugs with the guillotine bug.

The Guillotine Bug

The guillotine bug is another aptly named bug where only part of the content disappears. The guillotine
bug is demonstrated in the documents in Figure 8-11.

300

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

The CSS in Figure 8-11a is combined with the markup in Figure 8-11b.

diwdconte iner {
Tosnl= Riis Sari=—t
morder: _pxoqol 1 aiz
mwiEglms T30
backoaround) wellor:

=

H
& koarer
Tl AT o (| H
'
h
dlweriloa
rackoround) go_dr
£leat Eg -

Figure 8-11a

CHCTSRE Benl RUBRLTE "= WA 00 BHTaL 1.0 Sty Tee s fERT
“htop:rd fwww el oop/ TRIntn L LIOUD xhtn]l l=gtoict dtd"
whinl snlns=" bl S fwwe ol Jorg /1997 9xhinl © wmlzLaiig="gan '
=cads
LI e i T Tl S L LT
zlipk rel='stvicshock” twaes coxbtfoas’ href=' BOARITTLIZOFOOBll.css -
< heads
hedyrs
“diy id='contsiner’ s
sdiy 4= floont &
e
Tlopat Fext, wa hret="a'>lon=prk ol ale
FTlomt text, Flomt text., Flomt text, Float text,
Tlost Fext,. loat Fext, lost =exk, "loat -ext,
-:_I’L-_-::-

nEe

TmiA edl A choppeet GITL Thila ekl s cloppsed o701
Thm taent s choppesd of L Thiw Fsaxt i=m chopps:d oF1
- e
Er= R L
sl
<li~=a href-'¥'~Caotent om, < fam<iLlis
Sliza hrel='='=Conoenl oo, slassr 11
<liwta hrof-'@'~Cancent oof.<fasssLlos
tlizwy href='s='sConcent off,«</am=a/lis
wliwca hrof-'+'~Content oof. < as-s/Lo:
Ll
N b e
oA rody
Cer e ST T

Figure 8-11b

v

v

301

Part Il: Properties

After you load the preceding in Internet Explorer, when you hover your mouse cursor over the Content
Off links, part of the content inside the floating element is chopped off! You can see this in the output in
Figure 8-11c.

Figure 8-11c

The guillotine bug occurs when the following conditions are present:

Qa

a
a
a

IE is in standards-compliant rendering mode.
An element is floated inside of a container element.
Links exist inside the container element in non-floated content that appears after the float.

A :hover pseudo-class is applied to <a> elements that change certain properties.

The guillotine bug is yet another bizarre IE rendering bug. The fix is not nearly as elegant as that for the
peek-a-boo bug. To fix the guillotine bug, a clearing element must appear after the containing element.
The best method to apply this clearing element without affecting the original design is to apply the fol-
lowing rule to the clearing element:

div#clearing {

}

clear: both;
visibility: hidden;

Then in the markup, add the clearing element:

Content off.</1li>

</div>
<div id='clearing'></div>
</body>

</html>

302

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

After you apply this rule and markup, the guillotine bug is corrected without any effects on the intended
design. The visibility: hidden; declaration is similar to the display: none; declaration (see
Chapter 13 and Chapter 14). The key difference is that an element with display: none; is not rendered
and does not appear in a document, whereas an element with visibility: hidden; is rendered, does
appear in the document, but is invisible. The easiest way to distinguish between the two is that the
display property with a none keyword makes it seem an element doesn’t exist at all. If you use the
display: none; declaration, properties are not applied and the element takes up no space. If you use
visibility: hidden; instead with this declaration, the element still exists; properties are applied, and
the dimensions of the element are still honored, even though the element is invisible.

The nest section continues the discussion of IE 6 float bugs with the three-pixel jog.

The Three-Pixel Jog

The next Internet Explorer rendering bug, which also involves floated elements, is called the three-pixel
jog. As the name implies, this bug causes 3 pixels of space to appear between text inside an element that
follows a floated element and the inner border of that element. This bug is demonstrated by the docu-
ments in Figure 8-12.

11wz nt o ire
Tonlo S 1LA— I
vergin I
ST ol = 1 i
th= ny
'
diveiluat
L Lglo s lonfaexd, = ENH
Iloabs Llulog
rdar: o | | :
cidths o
heighls: Siip

marqin- Ltz LIIE 2
sopdar: lpx solid bl H

Figure 8-12a
The CSS in Figure 8-12a is combined with the markup in Figure 8-12b.
Figure 8-12c shows the subtle effects of the three-pixel jog. If you look closely in the screenshot, you can

see that the first three lines of the paragraph are 3 pixels farther to the right than the two lines that fol-
low, which corresponds directly to the height of the floated element.

303

Part Il: Properties

ST RE henl PURLTE "=7 83 s BHTL 1.0 Shr Tk JERT
"hitcprd fwww . ol oo/ TR et LS00 kel lostriot . dEd"
whibnl snleas="hilCe: S fwwe owd Jorc /1300 xhiinl © xmlzlaiig="san'>
=lizads

sl lew hbee=nidel o< LilLles
=linik rol='stvlcshoot’ tyoes coxb/css’ hroE='DURITTRIZCEQIBLI.css O

= fheads
':I:H:'::ll:'
=dry id='container’s
S 1= mEh
Tloat ftext.
L FRT
t‘p‘:
Fairangroph bexh, Saragoaph bedb . farauraph Lesi,
Foragraph Lexl. Taragraph Loxl. Darogrash Lexo.
FPafagbaph Leil, Farodzapl besl. Po-esposit s,
B _."\:_-.1-
S di s
= S nadws
<rheml>
Figure 8-12b
Figure 8-12¢

The three-pixel jog doesn’t look like much of a big deal, but it can be —especially if a design must be the
same, pixel for pixel, in all browsers. The three-pixel jog can be corrected by applying either a width or
height (other than auto) to the element that follows the float. Because an explicit width or height is not
always desirable, a few methods target IE 6 and less specifically. The first method uses conditional com-
ments like those you saw in Chapter 7.

<!--[if 1t IE 7]>
<style type='text/css'>
p {
height: 1lpx;
}
</style>
<![endif]-->

304

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

This is a very clean, acceptable method to target IE 6 for Windows explicitly, and because IE 6 and earlier
versions have incorrect support for the height property, the content isn’t adversely affected by includ-
ing this declaration. Other browsers won't be so forgiving, however, so this solution must be applied

only to Internet Explorer to avoid complications. The next section continues discussion of Internet
Explorer rendering bugs with the double-margin bug.

The Double-Margin Bug

Here’s yet another Internet Explorer rendering bug involving floated elements. The double-margin bug
is demonstrated in the documents in Figure 8-13.

Al onkaiiiay £
muacgine L4l '

B sarta—mar by

margin- letky Sl
SEgroung s cntesd . ha. Z3d0:
Ilocaty Lotk
skders g aclid bl H
wlathnl i
hgighibs Sl
b
Figure 8-13a

The CSS in Figure 8-13a is combined with the markup in Figure 8-13b.

SE=TYRE Beal FURLIE "= W3 s e

TRHTAL 1.0 Sk Taes SRR
“hicprd g vl nrefTRSRNEr L L DT ekl l—enrick ded"
shtnl smlom="hbtps S Peweawd e 1A% 50 enl " gl 2T mnsg="san "5
< Luzad s

Ll lede bl nore s fLir s
<link rel='atyleshect’® Lypes

cRELACAR " hrel="DMIRITTRICEONRLI. a8 " 7=

< S hcads-
Sy
~drw wd-'ocontainor’ =
whiv idm Slomcth
Float toxt.
w2t ie
sl e
s :\gd}'!l
Eer ST T

Figure 8-13b

Figure 8-13c shows the double-margin bug in action.

305

Part Il: Properties

Figure 8-13c

Three ingredients are required to reproduce this bug:

O A containing element
O Afloated element inside the containing element

QO Aleft margin specified on the floated element

When these ingredients are present, the left margin of the floated element doubles, so Figure 8-13¢
shows the floated element with 100 pixels of left margin instead of only 50, as is specified in the style
sheet. The fix for this bug is very simple. All you need to do is apply a display: inline; declaration to
the floated element. If you recall from earlier in this chapter, all floated elements are always block ele-
ments. Using the display: inline; declaration somehow tricks IE 6 into correct behavior. Be sure to
test this fix with different browsers to ensure that unexpected side effects are not encountered. As is the
case with the three-pixel jog, you can target IE 6 specifically by including this declaration within a rule
inside of a style sheet that resides in conditional comments.

The vertical-align Property

The vertical-align property is used primarily in two contexts. In one context, it is used to vertically
align text appearing within the lines of a paragraph. One example of this creates subscript or superscript
text. The vertical-align property may also be used to align the content appearing inside a table cell.
The following table outlines the vertical-align property and its possible values.

Property Value

vertical-align baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length>

Initial value: baseline

306

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

The vertical-align property applies exclusively to inline elements, such as and . It
has different meaning when applied to table cells. I discuss its use in cells in an upcoming section. In the
next section, however, I look at how to format subscript text with the vertical-align property.

Subscript and Superscript Text

Within a paragraph, you may need several different types of styles that are only applied to snippets of
the text, such as bold or italic fonts. Subscript text is an example of styles that often apply only to a selec-
tion of text, rather than to a whole paragraph. Subscript text is text that appears slightly smaller than the
text surrounding it and slightly lower than the baseline of the surrounding text. The baseline is the invis-
ible line created for each line of text against which the bottom of each letter is aligned. In other words,
the baseline is the line that letters “sit” on. Superscript text, on the other hand, is text raised above the
baseline and that appears slightly smaller than the surrounding text. Figure 8-14 is a demonstration of
subscript and superscript text.

Eo
Frari=: B] - Fs
ARCEATL saps L Tha st kaywond iz used for subscip taxt
S gl e maper waywond i used 1o supeissil
A& I-_{ o Tet, wiink caLEes ted e Inwer ard ca s e
e I fesrding, mspoct iy
snanfFoupse |
[i 1 i H

Figure 8-14a

The CSS in Figure 8-14a is included in the markup document that you see in Figure 8-14b.

STIEEETYTPE Lenl FUHLIC "=2 W30 070 ¥HTML 1.0 Skricks =R
"hetms S fwww o wlaorg/ UES sheml LADCD sheml l-strict.ded ™ o
Shitonl #lne=" Bk v ol nrg S 1800 Suhikn] snl=lang="mi ">
g
clLitlesvrarbical-alignes Litlas
<link rel='stylozhect type-'textiose' heoef=" 0964977120 8qiEliicss’ M=
R =T k8
oy
l\:I_'|:-
SumEcript texkt L5 sspan 1d= sub sloweredsSepEns
- fp.‘“
-'_'F'_'l
SupersoTipt kext GE SEpan A= EULSY ' ETALEefLIERANS
=i
'-C.'.:HII’:\.':‘
S Eml
Figure 8-14b

307

Part Il: Properties

The rendered output of the source code appears in Figure 8-14c.

Figure 8-14c

Figure 8-14 shows that the content of the element of the first paragraph appears lower than that
of the rest of the line, which is a result of applying the vertical-align: sub; declaration. The figure
also shows that the element of the second paragraph appears slightly higher, which is a result of
the vertical-align: super; declaration.

The next section continues the discussion of the vertical-align property with top, middle, and bot-
tom vertical alignment text.

The top, middle, and bottom Keywords

The top, middle, and bottom keywords are used to control vertical alignment of selections of text that
are slightly smaller than the surrounding text. The top keyword is demonstrated in Figure 8-15.

=l |
| et B Thee bz kepword aligrs the wlive box
pdontral b £ o af he ling bos
tomtegizor lUOpxe
5= Kt [l] LR]
]
pEzontrol span |
bardars Tpe & oid ToREEMIL x00, FIN):
backaround; 1k y ' v
]
pEzontrol sBpan spar
IR | el =uligns H
Fort—p iz
e Wy ronlind R RTH
1=z e 1 |
H
Figure 8-15a

308

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

Combine the style sheet in Figure 8-15a with the markup in Figure 8-15b.

SRR Benl FUALTE " =2 Ma30 7500 e OO B RS A
"hebos S fwww o wloorg/ RS sheml L0000 skt l-st oot . ded ™ o
whionl dnlns=" Ll e Sfeen w3 g T80 /8 hilnd s =al =labg="ai '
oo
Sl LTt wvan Lical —aligas s LLLTax
<link pel='styloeshoot typo- 'bexbtioss' hoodf=' 085977120 8giBLlb.css’ M
L TSR
Rlaata (S
i

%2 Eo Cc [Od Ec FE£ Og HR Ii T- Fk L1 Hm
< fpn
“p id=‘ceoatrol s
SuTantln Oo Fp o cspensTops f spens ey soens
-'.'.'P.'\-
Lo e
OT Fr &5 TT T W W Wy Yy °F
4.'."E|."
l-:.'.:HII!'_-\.':i

aihemls

Figure 8-15b

This source code results in the output depicted in Figure 8-15c.

Figure 8-15¢c

In Figure 8-15¢, you see that the element with the contents Top is aligned to the top of the line
box. Figure 8-16 demonstrates the middle keyword.

309

Part Il: Properties

In Figure 8-16, you can see that the middle keyword lines the inline box up relative to the center point of
the lowercase letters on the line.

Figure 8-16

Figure 8-17 demonstrates the bot tom keyword.

Figure 8-17

In Figure 8-17, you can see that the inline box is aligned with the bottom of the line box. In the next sec-
tion, I discuss the text-top and text-bottom keywords.

The text-top and text-bottom Keywords

Like the top, middle, and bottom values, the text-top and text-bottom keywords raise or lower
a subset of text. The difference in the text-top keyword as opposed to the top keyword is that the
text-top keyword causes alignment to happen with respect to the tallest character of the font of

310

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

the surrounding text, for instance the lowercase letters t, I, f, or the uppercase letters. Likewise the
text-bottom keyword aligns with respect to the lowest character, for instance the letters p, y, or g,
which drop below the baseline. The text-top and text-bottom keyword values produce output simi-
lar to that produced by the top and bottom keywords. The most important difference between top and
text-top is that top causes the border of the inline box to align with the top border of the line contain-
ing that inline box, whereas text-top aligns with respect to the tallest character in the font.

The next section discusses percentage and length values as applied to the vertical-align property.

Percentage and Length Value

If the selection of keywords I presented in the previous sections weren’t enough for you, the vertical-
align property also allows percentage and length values to be applied. Figure 8-18 demonstrates the
vertical-align property with a value of 300%.

Figure 8-18

Percentage values with the vertical-align property are based on the 1ine-height of the element the
percentage value is applied to. If you remember back to Figure 8-15b, which shows the markup structure
of this document, the element that contains the text 300% has a 1ine-height of 23 pixels. If you
recall, I didn’t give the element an explicit 1ine-height; I determined the 1ine-height by
including the 1ine-height property and increasing or decreasing the value until I achieved the same
results that you see in Figure 8-18. To calculate the pixel value of 300%, I take the 1ine-height, 23, and
multiply it by 3, to get 69, so the pixel value of 300% in Figure 8-18 is 69px. The default line height differs
from browser to browser and between different font sizes, so your own results may vary.

Figure 8-19 demonstrates the vertical-align property with a length of 69 pixels, which should be
identical to what you see in Figure 8-18, concerning the placement of the box.

311

Part Il: Properties

Figure 8-19

Vertically Aligning the Contents of Table Cells

The vertical-align property has completely different meaning when it is applied to table cells.
When applied to table cells, only the baseline, top, middle, and bottom keywords are applicable, and
the vertical-align property is used to align the entire contents of the cell. This is demonstrated in
Figure 8-20.

(B {
famts 1igx san
borders Lps wusdd wlack;
waddonge Do
sidthe 00
]

trdoaseline |

tont-sizeoe Silax)
wartioal-aligqni bBeooline . .y .

' : ; Thex b §rs, top, midd e and sotton

Fimmse] ne—comy | kewards of the vertical-alion arooery hawe

E - d=zreat meanings whea apolicd £ tabk calls.

I

itz
vartical-aligne

}

Ledmlddle
verh Tmel =sTicgas 0 e

H

Ldmobton
rorbtioal -aligns oom

I

Figure 8-20a

312

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

Apply the style sheet in Figure 8-20a to the markup in Figure 8-20b.

CHESTYPE henl BURLTE "=F W3 s Jnrn mHML 1.0 Sk fee R
“hitcprdfwww . wi.pro /PR RNt l LOrDS shenl l-strict. dtd" =
whblnl #nlns=" Ll /S wd Corg /1990 9 whial © il zLailg=" i ">

<hacads

Shluleevgibical-alivn= Ll Lle>

slink rel="stylocshoct’ btypes coxtfoss’ hrof='DOR377Rz0EglB20. ass’ T
= heads
':L-"‘:d:t':'

“Ztmbles

o nmdys
B
bl G hewe] ine-mapy '
LorEm o ignan delor 51t ares, Sonsecteteosr adipiscing

sireidant ut, eligoan nes,

mli=, Frzip megri= a2,
Tlaar aglanl

il Ly icsa id, :-||||_|i|-|||| S 1 S RN T [T LA LIEMa.
ol B0 s Tasmn aed TR o Bnrequssrl e pnsnitia
BORLED, par fnoeplhos Syranoacos.
oitd=
<bd fg="hamraeline vBEiraelines tas-
2td ip=' btop' =Top< it
=L La=middog cHLAS LG Ll
=td io='bobttor =~Bobzoms Stde
L]
R ol
St mb]len
< S oady
wiheml>

Figure 8-20b

Figure 8-20c shows the output from this example.

Figure 8-20c

313

Part Il: Properties

The preceding example is a demonstration of the four vertical-align properties that are applicable to
table cells: baseline, top, middle, and bottom. The first two cells are aligned to the baseline. The
baseline of a table cell is determined by the baseline of the table row. The baseline of the table row
is determined by taking the baseline of the first line of each baseline-aligned table cell in that row.
The one with the largest font, or other inline content, such as an image, determines the baseline of the
row, which each table cell is aligned against.

In short, this complicated summary of baselining results in the line Lorem ipsum in the first table cell in
Figure 8-16c having the same baseline as the word Baseline that appears in the second cell. In this case,
the font size of Baseline determines where the baseline of the table row is.

The third cell is top-aligned, which means the content begins at the top of the cell and flows on down-
ward from there. The fourth cell is middle-aligned, which means that the height of the content is mea-
sured to determine the middle point of the content, and then that midpoint is aligned with the midpoint
of the cell. Finally, the fifth cell is bottom-aligned, which means that the bottom-most point of the con-
tent in the cell is aligned with the bottom of the cell.

Although you might expect the vertical-align property to apply to all elements — to block elements,
for example, in the same way it is applied to table cells — this isn’t the case. The vertical-align prop-
erty is applicable only to inline elements and table cell elements, <td> and <th>.

The following Try It Out is a recap of the vertical-align property.

Try It Out Applying the vertical-aligh Property

Example 8-3. To review the vertical-align property, follow these steps.

1. Enter the following XHTML in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>vertical-align</title>
<link rel='stylesheet' type='text/css' href='Example 8-3.css' />
</head>
<body>
<p>
The vertical-align property is used in two scenarios: to
vertically align inline elements with respect to the line
box, and to vertically align the contents of table cells.
</p>
<p>
When vertically aligning inline elements within a line box,
the vertical-align property can be used with the keywords
top, middle, bottom, text-top, text-bottom.
</p>
<p>

314

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

Gg
Top
Middle
Bottom
Text Top
Text Bottom

</p>
<p>
The top and bottom keywords align to the top and bottom of
the line-box respectively. The middle keyword aligns to the
center point of the highest lowercase letter. The text-top
and text-bottom keyword align to the tallest and lowest character,
respectively.
</p>
<p>
The vertical-align property can also accept either a
percentage or length value. The percentage value is a
percentage of the line-height value; the length is offset
from the bottom of the line-height.

</p>
<p>

Gg
200%
46px

</p>
<p>

Finally, when applied to table cells, the baseline, top, middle,
and bottom keywords have different meanings.

</p>
<table>
<tbody>
<tr>
<td id='baseline-copy'>
This copy aligns with the bottom of the tallest content
in the first row of the table.
</td>
<td id='baseline'>Baseline</td>
<td id='td-top'>Top</td>
<td id='td-middle'>Middle</td>
<td id='td-bottom'>Bottom</td>
</tr>
</tbody>
</table>
</body>

</html>

2. Save the preceding XHTML document as Example_8-3.html.

315

Part Il: Properties

3. Type the following style sheet in your text editor:

p {
font: 12px sans-serif;
}
span.line {
border: 1px solid rgb (200, 200, 200);
background: rgb (244, 244, 244);
font-size: 100px;
}
span.line span {
vertical-align: 300%;
font-size: 20px;
background: white;
border: 1px solid black;
}
span#top {
vertical-align: top;
}
span#middle {
vertical-align: middle;
}
span#tbottom {
vertical-align: bottom;
}
spanftext-top {
vertical-align: text-top;
}
spanftext-bottom {
vertical-align: text-bottom;
}
span#percentage {
vertical-align: 200%;
}
span#length {
vertical-align: 46px;
}
td {
padding: 5px;
width: 100px;
border: 1px solid black;
}
td#baseline-copy {
vertical-align: baseline;
}
td#baseline {
font-size: 50px;
vertical-align: baseline;
}
td#td-top {
vertical-align: top;

}

316

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

td#td-middle {
vertical-align: middle;

}

td#td-bottom {
vertical-align: bottom;

}

4, Save the preceding style sheet as Example_8-3.css. The preceding source code results in the
output that you see in Figure 8-21.

Figure 8-21

317

Part Il: Properties

How It Works

In Example 8-3, you reviewed the more complicated portions of the vertical-align property. You set
up text cases for each of the keywords, save the sub and super keywords, which are used to apply sub-
script and superscript text styling, respectively.

First were the top, middle, bottom, text-top, and text-bottom keywords. You see that with this
example that there really is no discernable difference between the text-top and text-bottom key-
words; most browsers simply map these to the top and bottom keywords. You set up a line to test each
keyword where the font is 100 pixels, and each line has a border and background so that you can easily
see the dimensions of the line box. The top and text-top, and the bottom and text-bottom keywords
align to the top and bottom of the line box, respectively. The middle keyword aligns to the center point
of the lowercase letter.

In the next test case you set up a line for testing the vertical-align property with a percentage and a
length value. The percentage value is based on the height of the line; in this case the line height is 23 pix-
els, you verify this by the next example, which gives the vertical-align property a length value of 46
pixels, which is offset from the bottom of the line box, just like the percentage.

In the last test, you set up a table for the four values of the vertical-align property that have
special value when applied to a table. The first line of the first cell is aligned to the bottom of the word
“Baseline” that appears in the second cell. When table cells are aligned to the baseline, each cell is
aligned to the bottom of the largest content that appears in the first row of the table. In the last three
cells, the contents of each cell are aligned to the top, middle, and bottom.

Summary

This chapter focused on three key areas of CSS design. In this chapter you learned the following:

QO The float property is a seemingly complex property that has a unique place in CSS design. The
float property is used for layout— for instance, to include content in the flow of paragraph
text in such a way that text wraps around the floated element.

Q The clear property is used to control the effects of the £1oat property in situations where you
don’t want all the content following a floated element to float beside it.

QO Thevertical-align property is used to vertically align inline elements such as the
element or the element relative to the line containing those inline elements; this prop-
erty can be used, for instance, to create subscript or superscript text.

QO Thevertical-align property may also be applied to table cells to control vertical alignment
of the content within table cells. If the vertical-align property is applied to table cells, only
a subset of properties are applicable. These include the baseline, top, middle, and bottom
properties. The behavior of these properties is completely different when applied to table cells
as opposed to normal inline content.

Chapter 9 discusses how to control the styling of list elements with CSS.

318

Chapter 8: CSS Buoyancy: Floating and Vertical Alignment

Exercises

1.

2.
3.
4

o a

When an element is floated, what rule governs its dimensions?
What happens when an inline element, such as a element, is floated?
What are the three keywords of the f1loat property?

If an element is floated to the right, and you don’t want the following element to wrap around
it, what declaration would you apply to that element?

What declarations would you use to create subscript and superscript text?

When vertically aligning an inline element to the middle, how is the element positioned on
the line?

What is the difference between the text-top and top keywords of the vertical-align
property?

If you are aligning table cells to the baseline, what determines the baseline?

319

List Properties

In Chapter 8, you saw how the float and clear properties are used to control the flow of content
in a web document. In this chapter, I look at properties used to control the styling of list elements.
I cover the following;:

QO Thelist-style-type property and how it’s used to present different types of lists
through a variety of marker styles for bulleted lists and numbered lists

QO The list-style-image property and how it’s used to provide a custom marker for each
list item

Q Thelist-style-position property and how it’s used to control the positioning of list
item markers

Like the CSS properties I covered in previous chapters, the CSS list properties give you complete
control over the way you present and style list items.

The list-style-type Property

You use the 1ist-style-type property to change the presentation of bulleted and numbered
lists. For example, you can change an ordered list to a list using Roman numerals for markers, or
you can change a bulleted list to one using squares instead of circles for markers. The following
table outlines the 1ist-style-type property and its possible values (as of CSS 2.1).

Property Value

list-style-type disc | circle | square | decimal | decimal-
leading-zero | lower-roman | upper-roman |
lower-greek | lower-latin | upper-latin |
armenian | georgian | none

Initial value: disc

Part Il: Properties

IE 6 and IE 7 support only CSS 1 keyword values: disc | circle | square | decimal | lower-
roman | upper-roman | lower-alpha | upper-alpha | none.

Naturally, the default list type used also depends on whether <o1> or list elements are used to
structure the list. A variety of keywords allows for a variety of presentational styles.

Styling Unordered Lists

Figure 9-1a demonstrates what’s possible with unordered lists (lists made with the element).
There’s a possibility of four different styles: disc, circle, square, and none.

liddicgez |
) LEC-Ftyle-TypsE dasog The ligt-ptyle-tyze ety B alp bo to eithar
Lo) wli=on el elerEnle, Uy used o change T syl
1fcios e | ar e madoar Bebars s dems
lizzestyle-typsl cirole)
ifequars |
T —gby m—twpsp anasre|
] i€none {
A= by m= e e
l. TEaruases
HE G il FJR o
Figure 9-1a

The style sheet in Figure 9-1a is combined with the markup in Figure 9-1b.
Figure 9-1c shows the results of the code in Figure 9-1a and Figure 9-1b.

As you can see from the code in Figure 9-1a and Figure 9-1b, and the output in Figure 9-1c, unordered
lists can have four different styles, disc, circle, square, and none.

322

Chapter 9: List Properties

ST PR Bl FURLTE "= F PW3es ST S0 R PO TR e
"hbto: Sfwew . wlioeg/ RS xheml LoD ekt l=st oot dbd" s
“hbinl snlis=" bl e S0een ol ne g 1100 7 xhilnd S ©alzlang="mi" >
<lzads
Sl LT e Tia b—m iy T L L Ll
2link pel='stwlcshoot typos'textiozs' hrof="08a877TRZ0ZqUs0l.cms’ Ja-
= el
=z dy e
iyl
<l1 id= disz e
This Liwt iten hew » diss nsckero,
iyl
=liwThild mazkecs don = interct che parent 's osoyle,flin
BRI RS
wilis
<11 1d= savnle ' #This 1tat 1tem haa a oiTve B markar.<) (1x
wli dd= epouare'5This ligt iten hes 8 squeres nerker, <001
ST dil=rorws
This Liwt iten hey no marcser,
sl Til="asgaern =
wliw
Lial wopleas can be opplis;d Lo sDLalésgn; alammsl=
Lo
L
=l
-0 1A
ERI S
o]
S ntml=

Figure 9-1b

Figure 9-1c

In the next section you see how to style ordered lists.

323

Part Il: Properties

Styling Ordered Lists

Ordered lists can be styled using a variety of different lettering and numbering conventions. The follow-
ing series of figures demonstrates what each style looks like in the most popular browsers of the Mac
and Windows platforms.

Figure 9-2a shows what each keyword looks like in Safari, Firefox, and Opera on Mac OS X Tiger.

Figure 9-2a

324

Chapter 9: List Properties

In Figure 9-2a, you can see that three of the keyword values have no effect in Safari: decimal-leading-
zero, armenian, and georgian are not supported by Safari. Also in Figure 9-2a, you see that the
armenian and georgian keyword values are not supported by Firefox or Opera for Mac OS X.

Figure 9-2b shows the various keywords in browsers on Windows XP.

Figure 9-2b

325

Part Il: Properties

In Figure 9-2b, you see that IE 6 does not support the keywords decimal-leading-zero, lower-
greek, lower-latin, upper-latin, armenian, or georgian. Firefox and Opera on Windows support
all of the demonstrated keywords. Figure 9-2c demonstrates each keyword in IE 7 on Windows Vista.

Figure 9-2¢

In Figure 9-2¢, you can see that nothing has changed with respect to 1ist-style-type keyword sup-
portinIE 7.

Try It Out Applying the list-style-type Property
Example 9-1. To apply the list-style-type property, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>list-style-type</title>
<link rel='stylesheet' type='text/css' href='Example_9-1.css' />
</head>
<body>
<p>
The list-style-type allows you to make use of a variety of
different markers for list items. For unordered lists,
there are three: disc, square, and circle.
</p>

<1li id='disc' class='safe'>disc</1i>

326

Chapter 9: List Properties

<1li id='square' class='safe'>square
<1li id='circle' class='safe'>circle</1i>

<p>
For ordered lists, there are eleven different styles of marker:
</p>

<li id='decimal' class='safe'>decimal</1li>
<1li id='decimal-leading-zero'>decimal-leading-zero</1li>
<1li id='lower-roman' class='safe'>lower-roman</1li>
<1li id='upper-roman' class='safe'>upper-roman</1li>
<1li id='lower-greek'>lower-greek</1li>
<li id='lower-latin'>lower-latin</1li>
<1li id='upper-latin'>upper-latin</1li>
<li id='armenian'>armenian
<1li id='georgian'>georgian
<1li id='upper-alpha' class='safe'>upper-alpha</1li>
<1li id='lower-alpha' class='safe'>lower-alpha</1li>

<p>
Markers that are known to have the most compatibility in all
browsers are marked with a background of mistyrose.
</p>
<p>
The marker can be removed from either ordered or unordered lists with
the none keyword.
</p>
<ul class='none'>
<1li class='safe'>No marker</1li>

<ol class='none'>
<1li class='safe'>No marker</1li>

</body>
</html>

2. Savethe preceding markup as Example_9-1.html.

3. Enter the following style sheet into your text editor:

li#decimal {
list-style-type: decimal;

}
li#square {

list-style-type: square;
}

li#circle {
list-style-type: circle;

327

Part Il: Properties

.none {
list-style-type: none;
}
li#decimal {
list-style-type: decimal;
}
li#decimal-leading-zero {
list-style-type: decimal-leading-zero;
}
li#lower-roman {
list-style-type: lower-roman;
}
li#upper-roman {
list-style-type: upper-roman;
}
li#lower-greek {
list-style-type: lower-greek;
}
li#lower-latin {
list-style-type: lower-latin;
}
li#upper-latin {
list-style-type: upper-latin;
}
li#armenian {
list-style-type: armenian;
}
li#georgian {
list-style-type: georgian;
}
li#lower-alpha {
list-style-type: lower-alpha;
}
li#upper-alpha {
list-style-type: upper-alpha;
}
li.safe {
background: mistyrose;

}
4. Save the preceding style sheet as Example_9-1.css. Since Firefox for Windows has better sup-

port for the 1ist-style-type keywords than other browsers, load up the example in Firefox
for Windows to get the output in Figure 9-3.

328

Chapter 9: List Properties

Figure 9-3

How It Works

In Example 9-1 you recapped each of the keyword properties that are allowed by the 1ist-style-type
keyword. Since some keywords pose compatibility problems, you're better off sticking with the ones
that have the best browser support. Those keywords are disc, square, circle, decimal, lower-
roman, upper-roman, upper-alpha, lower-alpha, and none.

In the next section, I discuss the 1ist-style-image property.

329

Part Il: Properties

The list-style-image Property

Like the 1ist-style-type property, you can use the 1ist-style-image property to change the
marker used for list items. The 1ist-style-image property is most suited for custom bulleted lists.
The following table outlines the 1ist-style-image property and its possible values.

Property Value

list-style-image <uri> | none
Initial value: none

The 1ist-style-image property is quite straightforward; it accepts a file path to the image, which is
denoted in the preceding table by the <uri> notation. In Figure 9-4, you see a simple example of the
list-style-image property in action. In Figure 9-4a, you see the CSS required to make a custom list

marker.
i

List-giyos-1maged Lwol| acrow.pRy |) Tt prsitle a okt list ke, sirly

h . i cheide the AL 101he iimsge willin e
gEother | LEl] =ik,

Tiat—atwTe—inages -7 Tarrued Jpns' j;
r
Figure 9-4a

The CSS in Figure 9-4a is combined with the markup in Figure 9-4b.

STV RE Benl FURLITE =AW S il 1.0
“hitoprd fwww.wd oon/ TR 2

JAER
JLrornsebenl l-ytoiot ded e

whibnl snleas="hilCe: S fwwe owd Jorc /1300 xhiinl © xmlzlaiig="san'>
“acads
o R L R T] I e S B R B
clink rol—'stvlicshoot’ tyoes coxbfoss’ hroE= ' DEGRITTREZOEQUANL.csE
R [ETH TN
chadyrs
Cigle

Z1lizList marsiors oan Do orsoomlzodissLlis

<linVon can ues sny omeage won lige <l Lin

“li ic- other'=

Size sand poeiticn, howsyer, csnnos be sookro)led,
“il1e
ET
e f o
i nemls

Figure 9-4b

330

Chapter 9: List Properties

The CSS in Figure 9-4a and the markup in Figure 9-4b result in the output in Figure 9-4c.

Figure 9-4¢c

As you can see in Figure 9-4c, the arrow.png and arrow2 . png icons have replaced the list bullets.

In the next section, I discuss the 1ist-style-position property, which enables you to control the
placement of list markers.

The list-style-position Property

You can use the 1ist-style-position property to control the placement of list item markers and
whether the list item marker appears on the inside of the list item element or outside of it. Where the list
marker is placed is only obvious when the <1i> element has a border. The following table outlines the
list-style-position property and its possible values.

Property Value
list-style-position inside | outside

Initial value: outside

You can highlight the effects of the 1ist-style-position property. Figure 9-5 demonstrates what the
list-style-position property does, beginning with the CSS in Figure 9-5a.

The CSS in Figure 9-5 is combined with the markup in Figure 9-5b.

This results in the output shown in Figure 9-5c.

331

Part Il: Properties

1i 4
Dackgroord = oAby The lian-skyla—-nnRtninn Smnry mnhaks
L sabwxiher list marea = anoear irside o1 § B
marders or ausside ol i

l&lnRida {

ligt-stvie—poaition: ingid=;
:-
slfookside |

liab-atylo—poaibian: oansideg

Figure 9-5a

SHEESTYTE Lanl PIRLIG "= 2WI0s /000 SHTHAL 1.0 Shr fen/ JERT
Srwaw e oo/ TR etr LSOO ekl Lostriot dEd" s

TR RF EINR FRERTR N Y B ISTIRT ERs TR

whtnl sndom= hibogs 7
=lcad:s
Shiblevlizb-alylo-pea il LLL L
zlink rol='stvicshoct’ bypes coxbscss ' hroE=s' DOAITTLEOEQUANG . C5G
< heads>
b=l [
LT i
< 'i *Tre markavs for taese 11sF 1Tans are on Fhe IrET D&
fnl id=insmide’s
Lo R NI I
all e L
I
wfli=
Sl1iwTha mwrhiesm Tl aeme Tlak fbeans arm o Bl cices e,
<2l fd="orkbsilos e
ol B THE= S B ey
=li=Twoss 1
= /ul=
“SLie
Lo
« oy
S hEmls

Figure 9-5b

Figure 9-5¢

332

-

Lo

Chapter 9: List Properties

In Figure 9-5, you can see that the 1ist-style-position property is used to control whether the list
marker appears on the inside of the <1i> element’s borders or on the outside.

The next section wraps up the discussion of CSS list properties with the 1ist-style shorthand prop-
erty. Using this property, you can combine several properties into one.

The list-style shorthand Property

Like the shorthand properties I presented in previous chapters, the 1ist-style shorthand property
allows multiple properties to be combined into one property. The following table outlines the 1ist-
style shorthand property and the possible values it allows.

Property Value
list-style <'list-style-type’> | | <'list-style-position’> | |
<'list-style-image’>

Initial value: n/a

The 1ist-style property enables you to specify from one to three values, with each value correspond-
ing to the list style properties I have discussed throughout this chapter: 1ist-style-type, list-
style-image, and list-style-position. Figure 9-6 is a demonstration of what is possible with the
list-style property.

The CSS in Figure 9-6a is combined with the markup in Figure 9-6b.

i
sacaaeounds nistvrooe]
'
Li®arrow |
list-stylos somnare oy arnow.ong) olat sy
k
Livarrow-insides
ligt-styles vold 'arcow.pna’ | 1asode)
1
Lisnarer-inaide {
ligt-stylc: s“ouore Lisidos
H
Livmarer-imagqe |
ligt—abyla: =oaalre vyl arsow sy b
Iwarrow—only |
Timb—ptyTes o - T Tarrisn.png’ | 3
' - Lo pr vigan
! fnurieur | The Zisc-abyle proaery is o shorlband
L itk elos e nransiy that somnnass she
St-ntylar AT
1 Ligtostyle-type, loist-soylo—imags, 4
:i"."r".".i tion { Tlal=alyla-moa i Llon amperics mha
Timb—ptyles vailde; ."IL'J"'J“EJFJI'IHI-:I'-
I
Figure 9-6a

333

Part Il: Properties

oS AAICA TR RHTL 1.0
"hitop:f fwwe . wBooo /TR
PR ST X A U] N D B

STy R Benl PlBnLILe

whibnl ®nlns=" Ll S Swae il
<luzads
=LLu

eelial—a by e Lillax

urnl = Taiig="u

Hhr TS ARET

ntellSorDdxhenl l=stoiot . dbd" s

]

slifk rel='stylosheck' tyaes coxbf/oss’ href=' DORITTLICEQIS0R. oas
RS (1= 11
R =ts [

le

w11 1c="arrow’ =

5Ll three stvl=:s can bz poowvoded.
AR
<li ic='mrrow-inside =

The Tnage sed the position,
2411
Cli dg="markEr=in=ide

T matkars ana tha pnsizion.
il
w1i dd="mar ey = linaga >

The markes snd the inege,

L

Cliodde Tarrudeonly '
Jaak Lhe lmage.

Sl

<11 id="markes ' =
Jzst the marker.

L

“li del='position’>
Jout the poepiticn,

“iLlie

=L
tfandya
A hEml

Figure 9-6b

The CSS in Figure 9-6a and the markup in Figure 9-6b results in the output in Figure 9-6¢.

Figure 9-6¢
334

-

S

Chapter 9: List Properties

In Figure 9-6, you can see that all three list style properties, 1ist-style-type, list-style-image,
and list-style-position can be all consolidated into a single 1ist-style property, which allows
any combination of the three styles to be present.

Try It Out Applying the list-style Property

Example 9-2. To try out the 1ist-style property, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.o0rg/1999/xhtml' xml:lang='en'>
<head>
<title>list-style</title>
<link rel='stylesheet' type='text/css' href='Example 9-2.css' />
</head>
<body>
<p>
The list-style property allows you to combine three separate
properties, list-style-type, list-style-image, and
list-style-position, into one single property; any combination of
those three separate properties can be present.
</p>

<1li id='marker'>You can specify only a marker.
<1li id='position'>You can specify only the position.
<1li id='image'>You can specify only a marker image.
<li id='marker-position'>
The marker and the position can be specified.
</1i>
<li id='marker-image'>
The marker and the image can be specified.
</1li>
<1li id='image-position'>
The image and the position can be specified.
</1li>
<1li id='all-three'>
Or you can specify all three styles.
</1li>

</body>
</html>

2. Save the preceding markup as Example_9-2.html.
3. Enter the following CSS into your text editor:
1i {
background: lightyellow;
border: 1px solid gold;

padding: 5px;
margin: 2px;

335

Part Il: Properties

li#marker {
list-style: square;
}
li#position {
list-style: inside;
}
li#image {
list-style: url('arrow.png');
}
li#marker-position ({
list-style: square inside;
}
li#marker-image {
list-style: square url('arrow.png');
}
li#image-position {
list-style: url('arrow.png') inside;
}
li#all-three {
list-style: square url('arrow.png') inside;

}

4. Save the preceding CSS as Example_9-2.css. The preceding CSS and markup result in the out-
put in Figure 9-7.

Figure 9-7

336

Chapter 9: List Properties

How It Works

The 1ist-style property exists as a shortcut for specifying list styles. In fact, its existence pretty much
negates the need to ever use the individual 1ist-style-type, list-style-image, and list-style-
position properties, since it facilitates all of the functionality of the three individual properties in just
one, shorter property.

In Example 9-2, you recapped what’s possible with the 1ist-style property by writing out an example
that implements every possible combination of the 1ist-style-type, list-style-image, and list-
style-position properties.

Summary

The CSS list properties provide complete control over how list elements are presented. To recap, in this
chapter you learned the following;:

Q

A variety of predefined options are available for the display of list item markers using the
list-style-type property.

The 1ist-style-image property may be used to provide a custom image as the list item marker.

The 1ist-style-position property dictates whether the markers appear inside the list item
element or outside of it.

The 1ist-style property provides a shortcut syntax where all three list style properties may
be referenced at once.

In Chapter 10, I explore the properties that CSS provides for control over the presentation of backgrounds.

Exercises

1.

2.
3.
4

Name which keywords of the 1ist-style-type property are not supported by IE 6?
What 1ist-style-type keywords are supported by IE 7?
What properties does the 1ist-style property render utterly and completely useless?

Can size and position be controlled with the 1ist-style-image property? If so, how?

337

10

Backgrounds

In Chapter 9, you learned how CSS lists are styled. In this chapter, I explore the CSS background
properties and see how these provide control over the presentation of the background. In this
chapter, I discuss the following:

Q

Q
a
H]

(]

How to use the background-color property to set a background color
How to use the background-image property to specify a background image
How to use the background-repeat property to control background tiling

How to use the background-position property to control how the background is
positioned

How to use the background-attachment property to control whether the background
scrolls with the page or remains fixed in place with respect to the view port

How to use the background shorthand property to combine all the separate background
properties into a single property

Backgrounds play a large role in CSS design and are often the bread and butter of the overall aes-
thetic presentation of a web page. This chapter begins the discussion of background properties by
exploring the background-color property.

The background-color Property

The background-color property is used to specify a solid background color. The following table
shows the possible values for the background-color property.

Property Value

background-color <color> | transparent

Initial value: transparent

Part Il: Properties

The background-color property allows any of the color values supported by CSS, such as a color
keyword, an RGB value, or a hexadecimal, or short hexadecimal value. It may also be given the
transparent keyword, which indicates that no color should be used. Consider the example in
Figure 10-1.

body |

baic kgranid-aaldar: vl g
: I'he nackgmune praoary can e
div any robar salue, ke © asniar keeesard,

widths A0 HIEE valus, hesedecimal, of shart

Baight: TOpe; Fewadeeama eedor salae Inarkiiton
bordery Lpx solid vabfl2E. lzd, LiEke Ao e, L soppors are aedilioeal
RaEging S -:-|:|1i:|1.'.':l.|15p~.'.|r':rrl.
Flocaty Lotz

'

divéons |
b kground-molar: oonig

;

divdtwe {
Lo kgurenidd=onlar o 7 1 . 0;

[l

vt LI el

bachkground-zolor: *LEEf

-

divetoar |
backqround-solar £000;

div#five |
bazkgyround-zolar brans
L

Figure 10-1a

The CSS in Figure 10-1a is combined with the markup in Figure 10-1b.

SESETHTE Lien]l PURLTE =0 SWE30# /000 KHTHEL 1.0 AL
“htoprd fuwwe.wl oo

FlA W e S 1A S lal

FEL o
SURSNte Ll DrDs el l-wroiot dEd" e

whibnl snlem=" L E
hcads

(o] BT

wrnl =z Teaaitg="wai

L T SRRSTRTTTN PR ERT R BRI

clink rol='stvlcshoot’ byoes coxbf/oss’ hroE='DUGITTRI0OEQLDOLl.css S
T =11
lmzdyes

adiny id="ane »ofdius

adrw 1d-'two eSdive

iy dd='thres meigiws

adry io=' sour i ea fnges

widiv dde Sive helSgivs
« f andws

2 Em]

Figure 10-1b

The CSS in Figure 10-1a and the markup in Figure 10-1b result in the output you see in Figure 10-1c.

340

Chapter 10: Backgrounds

Figure 10-1c

In Figure 10-1, you see a few different methods of specifying a background color via CSS. The
background-color property takes a color value, which as you saw in Chapter 2, can be a color
keyword, like pink, an RGB value like rgb (200, 0, 0), a hexadecimal color value such as #£f£fff,
or a short hexadecimal color like #000. The background-color property also supports one additional
color keyword not supported by most other color properties, transparent. The transparent
keyword is also supported by the border-color property, but not by IE, as you saw in Chapter 7.

The following exercise applies the background-color property to a style sheet.

Try It Out Applying a Background Color

Example 10-1. To apply the background-color property, follow these steps.

1. Enter the following HTML document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>background-color</title>
<link rel='stylesheet' type='text/css' href='Example_10-1.css' />
</head>
<body>
<p>
The background-color property accepts a color value. The
color value can be a color keyword,
an RGB value, a
hexadecimal value or a
short hexadecimal value or,
additionally, the value can be the
transparent keyword, which
is also the default value.
</p>
</body>
</html>

341

Part Il: Properties

2. Savethe preceding as Example_10-1.html.
3. Enter the following style sheet:

body {
background-color: pink;
line-height: 32px;

}

span {
border: 1px solid rgb(0, 0, 0);

}

span#keyword {
background-color: yellow;

}

span#rgb {
background-color: rgb (200, 0, 0);
color: #fff;

}

spanf#hexadecimal {
background-color: #000000;
color: #ffffff;

}

spanf#short-hex {
background-color: #fff;
color: #000;

}

span#transparent {
background-color: transparent;

}

4. Save the preceding document as Example_10-1.css. The rendered output of Example 10-1
should look like the screenshot you see in Figure 10-2.

Figure 10-2

342

Chapter 10: Backgrounds

How It Works

In Example 10-1, you created an example for the background-color property that makes use of all the
various color values supported by it. In Example 10-1, you can also see that the background-color
property is applicable to either inline elements or block-level elements. In fact, the background-color
property can be applied to just about every HTML element there is, save for the <col /> element, which
is used in the layout of HTML tables.

In the next section I discuss the background-image property.

The background-image Property

As you probably guessed, the background-image property enables you to provide an image for the back-
ground. The following table outlines the possible values available for the background-image property.

Property Value
background-image <uri> | none

Initial value: none

Like the 1ist-style-image property that I discussed in Chapter 9, the background-image property
allows you to reference a URL, which is indicated by the <uri> notation in the preceding table, or a key-
word of none. When you specify a background image, by default the image tiles across the entire area
available to it. You can see an example of this in Figure 10-3.

bady |
amcegrourd=imaga: ¢ [‘EUN.png ! The: rmage suk. pag is
s e uming thet e 2i 5 syl
G el the rrage is bk
seellically and harizonial v,
Figure 10-3a

343

Part Il: Properties

The CSS in Figure 10-3a is combined with the markup in Figure 10-3b.

SIEECTE PR Bkl BIRLTE "= F 2830 P nn wHTn 1.0 56 Tk SRR
"htsped fewe el oro TR et r L L 0TS sl l—st ot L dbd " s
whtal snTems"hbves S feweowd Jnra /13005 0hbnl " il 2T wnig="san "
vipmadi
sob DR T el bk o= ng sl LT 0T R0
=link rel='styleshset ' tege= cegbSosg’ href="04630 0 oo fgl i, oss S
R ITE TR T
.:h‘_—,'-l-J.:..
S P

oihemls>

Figure 10-3b

The CSS in Figure 10-3a and the markup in Figure 10-3b result in the output you see in Figure 10-3c.

Figure 10-3c

In Figure 10-3, you see the background-image property applied to the <body> element; by default it
tiles both horizontally (along the x-axis) and vertically (along the y-axis). You'll see how to control tiling
in the next section with the background-repeat property.

In the following Try It Out, you try the background-image property for yourself. The images and
source code for this and all the other examples in this book can be found online at www . wrox . com.

344

Chapter 10: Backgrounds

Try It Out Applying a Background Image
Example 10-2. In the following steps, you apply background images to a web page.

1. Enter the following (XYHTML document into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>background-image</title>
<link rel='stylesheet' type='text/css' href='Example_10-2.css' />

</head>
<body>
<p>
The background-image property uses the url() syntax to specify
a background-image. The image is tiled along the x-axis and
the y-axis.
</p>
</body>
</html>

2. Savethe preceding document as Example_10-2.html.
3. Enter the following CSS in your text editor:

body {
background-image: url('pattern.png');
}
p {
background-color: #fff;
padding: 3px;
margin: 3px;
border: 1px solid rgb(244, 244, 244);
width: 200px;
margin: auto;

4. Save the preceding document as Example_10-2.css. The output of Example 10-2 can be seen
in Figure 10-4.

Figure 10-4
345

Part Il: Properties

How It Works

In Example 10-2, you applied an image to the <body> element, pattern.png, which was then tiled hori-
zontally along the x-axis, and vertically along the y-axis for the whole of the document as you can see in
Figure 10-4, where you have the lovely beginnings of a toilet paper homepage. Don't squeeze the Safari!

As you saw with the background-image property, the image is tiled by default. In the next section, I
describe how to control tiling with the background-repeat property.

The background-repeat Property

The background-repeat property is used to control how an image is tiled, or if it is tiled at all. The fol-
lowing table shows the possible values for the background-repeat property.

Property Value

background-repeat repeat | repeat-x | repeat-y | no-repeat

Initial value: repeat

As you saw in the last section, by default, a background is tiled vertically and horizontally. The
background-repeat property offers control over this. For instance, you can limit the tiling of a back-
ground image to the x-axis by supplying the repeat-x keyword value to the background-repeat
property. Figure 10-5 demonstrates the various keywords of the background-repeat property.

div {
W1atnz LLx !
Fsichts FRepxs
mlEgiiz S

ek oz L]

anEgrobnd=inageaz | " llmrie. g T

packgroucd-colors Jlohbivsllow;

FRERT N C O I vl rgh T2E. FFR, LNDY;

paddings Spos
'
divFrepeat |

nackgronbd—rapaats Fopoals A o vooul escezl, e
! Earrnround-renes = IR0y
divrrepeat-x | prosites wou sl canbol auer ios

bEcEqToand=remeaty copoat we e bazkgoaas @ liled, Tiling can be
L lianed] I = o Thie w=axis wilb e
dir¥repeat-yw | repeet - AN0 recest -y KEGIns,

SECEgTOUn G- reDeaT 3 et —y g respecdtesly, ardiling -&7 be tnmad off
! vellh e no-repess bewward,
divérno-repest

ARCEgTOUND=ADRAT T N5=FennT]
'
Figure 10-5a

346

Chapter 10: Backgrounds

The CSS in Figure 10-5a is combined with the markup in Figure 10-5b.

SIECTYPE henl PURLTE "=7 fW{3 s dnrh BHTAL 1.0 56 Tk JERT
"htoprdrwww Wi org/ TR LL DTD shtnl l-girict. dtd" >
shbtal snlas="hbbes S faneowd Cora/ 10050 bal " w21 winig="ean e
<laads
il lerbackgqromnd-repmate SLL L La
slink rel="alyliashool’ Ly@es CoeELA0R5" hrel="DMIRITTRZOLQIDOG.CaR " /=
</ neads
ey
adzw o= froocatt e Snive
iy 8= pasagt - na SS g
adow o= ronestow S
wdiv ide'no-repest thlsdies
</ modys
eihemls

Figure 10-5b

The CSS in Figure 10-5a and the markup in Figure 10-5b result in the output you see in Figure 10-5c.

Figure 10-5¢

347

Part Il: Properties

In Figure 10-5, you see a demonstration of each of the keywords of the background-repeat property;
repeat is the default value, and images are repeated along both the x-axis and y-axis. The repeat-x key-
word limits tiling to the x-axis, and the repeat-y keyword limits tiling to the y-axis. The no-repeat
keyword turns off tiling altogether.

Try It Out Controlling Background Repetition

Example 10-3. In the following steps you can see the effects of the background-repeat property.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>background-repeat</title>
<link rel='stylesheet' type='text/css' href='Example_ 10-3.css' />

</head>
<body>
<p>
The background-repeat property controls repetition. The default
value is repeat, which causes the background image to be tiled
along both the x-axis and y-axis.
</p>
<div id='repeat'>
</div>
<p>
The repeat-x keyword forces repetition along only the x-axis.
</p>
<div id='repeat-x'>
</div>
<p>
The repeat-y keyword forces repetition along only the y-axis.
</p>
<div id='repeat-y'>
</div>
<p>
Finally, no-repeat, causes there to be no repetition along
either axis, and the background image to be included but once.
</p>
<div id='no-repeat'>
</div>
</body>
</html>

2. Save the preceding markup as Example_10-3.html.

3. Enter the following CSS into your text editor:

p {
background: lightyellow;
padding: 3px;

}

div {

height: 81lpx;
margin: 10px 0;

348

Chapter 10: Backgrounds

background-image: url('note.png');
}
div#repeat {
background-repeat: repeat;
}
div#repeat-x {
background-repeat: repeat-x;
}
div#repeat-y {
background-repeat: repeat-y;
}
div#no-repeat {
background-repeat: no-repeat;

}

4. Savethe preceding CSS as Example_10-3.css. The output from the code in Example 10-3 is
shown in Figure 10-6.

Figure 10-6
349

Part Il: Properties

How It Works

In Example 10-3, you deploy all possible keyword values of the background-repeat property. You
begin with an example of repeat, the default value, which tiles the background image along both the
x-axis and y-axis. Then you include the repeat-x keyword, which limits the background image to
repetition along the x-axis. The repeat-y keyword, naturally, limits the background image to repetition
along the y-axis. Finally, the no-repeat keyword stops repetition all together.

In the next section, I discuss the background-position property.

The background-position Property

The background-position property, as its name implies, allows you to control the placement of the
background. The following table shows the possible values for the background-position property.

Property Value

background-position [<percentage> | <length>]{1,2} | [[top | center |
bottom] | | [left | center | right] |

Initial value: 0% 0%

At first glance, this property looks a little complicated; in truth, it isn’t all that complex. The notation
boils down to this: The property allows one or two values that express the position of the background.
Square brackets are used to group the possible values. The following is the first subgrouping of values
within the first grouping:

[<percentage> | <length>]{1,2}
The first grouping indicates that the value may be a percentage or length value. Either one or two values
may be provided. The second subgrouping is preceded by a vertical bar, which indicates another possi-
bility for the value:

| [[top | center | bottom] || [left | center | right]]
The second grouping indicates that either one or two keyword values may be provided. If two values
are provided, it may be any keyword from the first grouping combined with any of the keywords from
the second grouping. In addition, any of the keyword values can be mixed with either a <1ength> or

<percentage> value.

Figure 10-7 demonstrates some possible values for the background-position property.

350

Chapter 10: Backgrounds

widithy 1uops;

vhy Lo Tha baskqground—poziticn 02ty
Povw oA rasd e, EEL TeAry Gan ke a lenglhovakie, s peceniage

H TR vala, or gniy aorbnsrtizn ol tha fhrae
flamts rm-mg krveivls, tap. hootom cerkher del e
UE I res Koy ths, Teft, cight) menkar

hackgroond-inaoe: 018

hrckgraund-repest

Fombs 1o - H

H
shackgrovnd-positicns Dpes g :-
dbackgqroond=positicn: b EA) '
fhackgroynd-paiticn: i Tty -

div¥top-nantar fhackgroond-poaitiones op onnTars 1

divetom=-right shackgrovnd=positicns: Y il H

div¥right-scanter {hackgroong-poaitizne wichb aeatore |

divdhotbom-right fhackgropnd-poaiticn: b ighty 1

divFhotbom-npnter {hackgroond-poaitione homoom cantocel

o iwshottom=Tefs iz hes alyg H

ol Lt =k Ly P | nharg H

i oEntsar—oEnteT 1z iTHr b caciber gt

Figure 10-7a

The CSS in Figure 10-7a is combined with the markup in Figure 10-7b.

CHESTYPE henl BURLTE "=F W3 s Jurn mHTL 1.0 Sk fee SRR
“htcpid fwvw o wdeorg/ TR EDEDL L DD shtbnl l-stoict.dEd"
shion]l welas—" b s Sfwve el coes /1990 5xhiial ' wmlzTaig—"an'>

heards
Sl ULt backgr aiind=poa i Lo S L LT ws
=link rel="stvloshoeot' tyoes coxtdoss' href='m0aav wedEal ot cas ' M-

El (TS T

s
adled L= longlb " =l0ps, 1Quss/ dive
adiw 1d-oorconcocs =10%, 108 Solve
adly L=t Lo-lell g, lafoo i dLlus
adiw 1dsbonocentor shon, oopoore fdlees
wdiy idetoo—riabs "akap, roghsdSdies
~divw 1d-'rigqht-cercter ' sroqgbz, centbsrsSdivs
diy ide='botton-riaght "shotton, rightedien
~diw 1o='sotton contor thottom, centersSdivs
wdiy ide'metton-lefs "wbottor, Leftd dies
it idz’ e~ t-pAntar ' Flatt, centETeSiTs,
sdiy ide'center—center ' roancer, centers diens

SRR E RIS Rrk

wihemls

Figure 10-7b

The CSS in Figure 10-7a and the markup in Figure 10-7b result in the output you see in Figure 10-7c.

351

Part Il: Properties

Figure 10-7c

In Figure 10-7, you see what the background-position property with two values looks like. This fig-
ure shows what happens when both values are of the same ilk, that is to say: both length values, or both
percentage values, or both keyword values.

Mixing Different Kinds of Position Values

What happens when you mix length with percentage, or percentage with a keyword? This question
is answered by the example in Figure 10-8.

-
rrdthe JLiines
teicahtz Loy . .
- e oz rris ard rraich eyt of

ardai s e w10 s 126, z
Iz TN .

mucgiong e

Tlowals Tl

Dackgrouni-image: crl]'trec.pnia’ |
nackgronisi-rapsals vo-r sl

Zontl _epx 5ans serity

Y
daivtrkevword=Length [brckgrocund-position:
il enagt - EeminEs [Ba=kgrourd-paait iar:
divFkoyword-poroentagqe [backirocund-position: conbor ©
divépercent age—hkeyword {beskground-pasition: T
divFnercentage=length [hackgroond-positinm e
divdlength-peracentage {hackgroond=-pas it ion s

Figure 10-8a

[

352

Chapter 10: Backgrounds

Per the CSS 2.1 specification, when keywords are mixed with nonkeyword values,
the first value must be left or right, if left or right is used, and the second value must
be top or bottom, if top or bottom is used. Some technically invalid declarations
appear in Figure 10-8a for proof-of-concept.

The CSS in Figure 10-8a is combined with the markup in Figure 10-8b.

SRR Renl PUBLTE "= SW30 A 00 BHTL 100 56y Tee S e
“hicprdrwwe el nro/ TR/ ntel LS 0rDys xhenl legtoict dtd ™
shtnl smlom="hbtps S Peweawd e 1A% 50 enl " gl 2T mnsg="san "5
< Luzad s
Ll B ER T = N BTN TR B TR T N B F LT Lt A B e
slink rel="alvlashael’ Lype- LQELACEE" hrel="DMIRITTRZOLJIDOR.Ca5 " /=
< fheads
-.'I:q;ﬂ:t".-

~drw id-'kowword-longth’ »top, lips: fdivs-

sdiv 1= lenglh=-royeord ' = 10py, coosfdivs

~drw id-'koweord-porcontagqe’ roopkor, SO0%SSdowe
wdiy id='mercepcears-keyword 2508, cepkena/does
=drw id='porocentags-lengta =S0%; 1l0gxs Sdove-
ediy ide’ length-peroentagqe = 10px, S0 divs

< ¢ oo
wihemls

Figure 10-8b

The CSS and markup in Figure 10-8a and Figure 10-8b are combined to get the rendered output you see
in Figure 10-8c.

Figure 10-8c

353

Part Il: Properties

In Figure 10-8, you see the combination of each different type of value for the background-position
property. You'll note the difference in the rendering of the first box between Safari and Firefox. Firefox
rejects the background position of the first box entirely because the top keyword appears first, rather
than second as required by the CSS 2.1 specification. Safari tolerates the ordering being different.

Tiling and Position

What happens when the background is tiled and a position is set? You see an example of positioning a
tiled background with a length measurement in Figure 10-9.

div {
wid iz Lol
Feights Lipxg
Dk Gt = TN
muargine o
Tlowablzs 1wl g
DA OJTDUARI-1oagos Lt

'

r

divFropcat |
seckgqround-pozitiond
i
divéepeat-single {
AR EgTANPS L3R O

L
]

Tt — ke]
.-‘!'.'.:'::r:l'lrf- HEEaTI
:.
divFrropeat-x |
DushagLoani-pus il
DRl T DA

—Fdpsnals
L
i
div¥rocpocat-x-songla §
omcsqround—position

nacEgTOnrd-reneats

L

i

diverepeat—y—rontrel |
AR SgTRURI — I DEATE

L

i

A g L=
P s oo —pos it Lo
DRl LT OO - O psiall s

1

diverepedt-y-5 Lngla
backqround-positiant
C LqroInd-reseat 3

i

br {
olears Lotk

i

i

Figure 10-9a

culif 136, 138, 12

e 1pecy
lipws
wibey]
Lipes Lopsg
VA k-
gy
Ap=al =i
e

Whnen btk axes are filed, the position
spocificd acjusts waen Hing of the imags
aeging.

Wik st one axes is liled, the peeilion
aparitied acjusls ta offeat ol B ik
Awiz. The wp pasmion of fe eams. for
arample. alluals whera ha asla s
drawn. 2l e lzf pastion arjusts
whese btz liling o the rrage: bagins,

The CSS in Figure 10-9a is combined with the markup in Figure 10-9b.

354

Chapter 10: Backgrounds

SIROCTYER BeinT BURL TG "=/ 203057000 WHTRD 1o Sk ok SRR T
"kttt SSwneewd vang RS shtnd LAETDS shtml L-swo Lot o ded " o
Shicn] #ilne-"hlle: S Seeae w0 o g/ D90 whln L wnl: Tang— e
gl
ol DL T b g i gm0 L Laond ST LT
=link rel- styloshocot' cwpo='toxtless' heoef="C0077%zdfgldid. . cag ' A=
Eol T TE T
RILTT. [SES
wldly Ld="remoel-conlrol’ = iy
Zdir id='rencab’ =esdins
vcdly Ld-"repegl-gingle mofdlyn
by A=
cdiy ide’ resesk-on-contrn] helfd e
“div 1d='rencctoxn weSdove
Zdiv id='regesk-x-vingle s dies
“hr £
“diy ide'regest-oy-control el fd Dl
<ty id='repeat=y b Sl
ediy ide'repesk-y-pingle s dies
-{.":Hlli:.':ﬂ

S Eml

Figure 10-9b

The CSS in Figure 10-9a and the markup in Figure 10-9b produce the output you see in Figure 10-9c.

Figure 10-9c

In Figure 10-9, you see how specifying a background position affects the tiling of a background image.
When both axes are tiled, the position that you specify determines where the image tiling begins.

355

Part Il: Properties

Specifying background-position: 10px 10px; causes the tiling to begin with the first ten pixels of the
image clipped. When the same declaration is applied to an element with background-repeat:
repeat-x;, you can see that the tiling of the image also begins with the first ten pixels of the image
clipped for the value of the left position. The value of the top position causes the axis of tiled images to
be offset ten pixels from the top border.

Just for the sake of completeness, what happens when keywords are used instead of lengths to position a
tiled image? The answer is found in Figure 10-10.

div
yleg 72 A% 200
AT star.oag Wk bath xes are diled, the pasiion
: saocitied adjezs whon tiling af twe imags
divFroooat 4 breginre
background-pozEitions ceontor conterg

divérepeat-=ingle {
haakgranrd-paRi tinne aer T EES

v repsa b= ez 1]
brchkground=repeast: reEdpEL=x;
divropeat-x 1
bashyrwsand-pueiclvns venoer genkely Wibary jusst oo sxs & lild, e position
baskground-ropnal s alned = saeciiad edjuats te ottsed of Hie Hiad
b axis. The ne ansdian o e wams, inr
divfropcat -x-sinale | RAEITOR . SrjUELS whers tha x-ax s 18
bechkaqround-poEltloni ConTor] drawn, but ihe el ansdoen acjusts
hackground-repsat: repes - whizre The fling o the miage bagins
L
diverepeat-v—contoel |
hackground-repeats renentow]
H
divdrapanl -5]
hackgroord-poriticn: cer e b
backgraund-repial s Dol =1
1
diverepeal-v=aingla {
bazkground-posltlon: CconToll
backgqronnd-repeals o L
br {
cleary Dotk

Figure 10-10a

The CSS in Figure 10-10a is combined with the markup in Figure 10-10b.

356

Chapter 10: Backgrounds

SIRECTYRE Benl BUBLTE =7 SW30s S0 n 21T 1.0 Shr Tk ARRS
"htoped FvvwawSoogd TRAENEDLL S OTD shitnl l-stoict.dEd" »
Shin] #ilae— hli: S el Jors A1 5 whial © o wml s Taiig— "' >
g
LU T s backgrGinind=grsa i L S LD Ta

=link roel='stvloshoot' twyae- coxtdoss' href='00fa7 acdfuldlii.cas’ M=
Rl TSI
by
=dly Ld-"Lesgab-conLboel sl dive-
a=diw id='roacat” s Sdlve
ad Ly Ld-'remeal-glngle mo ALy
altr i
wdiy ide’ resest-w-oonkeol el Sgive
=diw 1d-'roucatox s Soine
wdiy id='reoeat-r-single s dies
zhr &=
wdiy id='resest-v-oontool Tl Sdie
st ids' regeat=y = ioive
wdiy ide' reoceat-v-single s dies
ETR TR
i hEmls

Figure 10-10b

The result of the CSS in Figure 10-10a and the markup in Figure 10-10b is seen in Figure 10-10c.

Figure 10-10c

In Figure 10-10 you used the center keyword instead of a length measurement. When the tiling is along
the x-axis, one center keyword centers the tiled images along the y-axis, and the other center key-
word causes the tiling of each image to begin with the center of the image, rather than the left border of
the image. This result is the same in every browser.

357

Part Il: Properties

Try It Out Controlling the Background’s Position

Example 10-4. The following steps recap how you can use the background-position property in a web
page.

1. Enter the following HTML document into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>background-position</title>
<link rel='stylesheet' type='text/css' href='Example_10-4.css' />

</head>
<body>
<p>
The background-position property allows you to specify a
position using one of three primary methods, by length,
by percentage, or by keyword.
</p>
<div id='length'>
</div>
<div id='percentage'>
</div>
<div id='keyword'>
</div>
<p>
You can mix and match different types of positions.
</p>
<div id='length-percentage'>
</div>
<div id='percentage-keyword'>
</div>
<div id='length-keyword'>
</div>
<p>
When positioning a tiled image, the position can adjust where
tiling of the image begins with respect to the image itself, or
the position of the axis of tiled images.
</p>
<div id='tiled'>
</div>
<div id='x-tiled'>
</div>
<div id='y-tiled'>
</div>
</body>
</html>

2. Save the HTML document as Example_10-4.html.

358

Chapter 10: Backgrounds

3.

4,

Enter the following CSS in your text editor:
body {
font: 12px sans-serif;
} =
p {
background: yellow;
padding: 3px;
clear: left;
}
div {
height: 81lpx;
width: 8lpx;
margin: 20px;
background-image: url('fish.png');
background-repeat: no-repeat;
float: left;
border: 1px solid rgb (128, 128, 128)
}
div#length {
background-position: 10px 10px;
}
div#percentage {
background-position: 60% 60%;

}

div#keyword {
background-position: center center;

}

div#length-percentage {
background-position: 80% 10px;

}

div#percentage-keyword {
background-position: center 100%;

}

div#length-keyword {
background-position: center 10px;

}

div#tiled {
background-repeat: repeat;
background-position: center center;

}

div#x-tiled {
background-repeat: repeat-x;
background-position: center center;

}

div#y-tiled {
background-repeat: repeat-y;
background-position: center center;

Save the CSS document as Example_10-4.
thing like what you see in Figure 10-11.

7

Css

. The source code in Example 10-4 renders some-

359

Part Il: Properties

Figure 10-11

How It Works

In Example 10-4, you recapped the different ways that a background image can be positioned with the
background-position property. You can choose one of three different methods of positioning, key-
word, length, or percentage, and any one of those will get the job done. You can also mix different meth-
ods, such as percentage with a keyword, or length with a keyword, and the browser can handle that.
You can also use the background-position property to adjust the position of a tiled background
image, be it the axis of tiled images, or where tiling of the image begins.

In the next section, I describe how to control the background-position when the page is scrolled with
the background-attachment property.

The background-attachment Property

You can use the background-attachment property to control whether a background image scrolls with
the content of a web page (when scroll bars are activated because that content is larger than the browser
window). The following table outlines the possible values for the background-attachment property.

360

Chapter 10: Backgrounds

Property Value

background-attachment scroll | fixed

Initial value: scroll

IE 6 supports the f£ixed keyword only if applied to the <body> element; IE 7, Firefox, Opera, and
Safari support the £ixed keyword as applied to any element.

The background-attachment property provides one very cool effect. By default, the background
image scrolls with the content of the web page; this is the behavior of the background-attachment :
scroll; declaration. If the fixed keyword is provided and the browser in question supports it, the

background image remains fixed in place while the page scrolls. Figure 10-12 shows an example of this
scenario.

Figure 10-12a

The CSS in Figure 10-12a is combined with the markup in Figure 10-12b.

The CSS in Figure 10-12a and the markup in Figure 10-12b result in the output you see in Figure 10-12c.
Keep in mind that two separate images come together to create the illusion of transparency.

361

Part Il: Properties

SHESTYTE Lienl PURLIG "= 2W30s /070 SHTHEL 1.0 Shy fea s JERT
"htz fovw B o pro TR Nt L LS00 kel st it dEd"
whitnl snlns=" oo/ Swwe o wd Jorc/ 17979 hinl © xmlzLailg="gan >
<kzad:s
Shivlevbackqrouind-wobashinebes LLLELy>
zlink rol='stvlcshoct’ btypes coxtfcas’ hroE='DY9ARITTREZCEQLDLIZ.css =
< head>
=l L
‘:D:I ¥ ¥ ¥
TATRET 1nSIN dnloe BiT aTaAT, oonseCtRTERT Atipisnirg rlI1E. Sed
witws womques. Yivamus voverce lizero e pede, Ham ciel dissoar,
Hlsd Temd g’ dgues, Tacreet esl, o igues ron, droe. Jeia agat wenwl Tk
ped metus tincidunt wiverss, ulls inperdiet liguls nes walit.
VIvamIa aadgioe peede, pRarenla ao, dfobiln o gala, aligues ab, abibe.
Aliooem webioele czoou o liguele. Howrls wosamian oocs ot toctos.

-

Amrman ¥ilkar REDA. Maoacrbaa FUOLran == i mmbiaa. Mlis ac leo.
Thzsollas =it zmok dian,. oo sompor, purts db ccrnods iatordan,
nl toibor Ullewoobiper tulple, gal3 puriie pode apbe wiltas 2ial,
Inkogor inporcick bompous poruas . Aliguam crak vwolotpat. Kliguem
eret maqns. Hens chooous @i witse welic, Proin tenpus tellus
mom crci. Halls nos torcor.

g
e
=S Emls

Figure 10-12b

Figure 10-12¢c

362

Chapter 10: Backgrounds

In Figure 10-12, you see one of the primary effects of the background-attachment property. When the
fixed keyword is provided, the background image’s position is set offset relative to the <body> ele-
ment, no matter what element the background image is applied to. The other effect the fixed keyword
creates is the background image stays fixed in place as the document content is scrolled. If you make the
window smaller and adjust the position of the scroll bar, you can see the effect shown in Figure 10-13.

Figure 10-13

In Figure 10-13, you can see that as the page is scrolled both background images remain fixed in place,
providing the illusion of transparency — scrolling the page makes it as though I've just applied some
kind of filter or transparency to the <p> element. I've done neither. Because the images are positioned in
exactly the same spot, you can make small adjustments to one of the images to provide the illusion of
transparency. In IE 6, only the image applied to the <body> element remains fixed in place. The back-
ground image applied to the <p> element does not, since IE 6 does not support fixed background images
on any element other than the <body> element.

363

Part Il: Properties

The following Try It Out recaps the background-attachment property.

Try It Out Fixing the Background in Place

Example 10-5. To recap the background-attachment property, follow these steps.

1. Enter the following HTML document in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>background-attachment</title>
<link rel='stylesheet' type='text/css' href='Example_10-5.css' />
</head>
<body>
<p>
The background-attachment property provides two effects.
First it positions the background image relative to the
&1lt;body> element. Second it forces the background
image to remain fixed in place when the document is
scrolled.
</p>
</body>
</html>

2. Save the preceding HTML document as Example_10-5.html.
3. Enter the following CSS document in your text editor:

body, p {
background-color: #fff;
background-attachment: fixed;
background-image: url('palms.jpg');
background-position: right bottom;
background-repeat: no-repeat;

width: 400px;

margin: 20px auto;

padding: 20px;

border: 1px solid rgb (200, 200, 200);
background-image: url('palms2.jpg');
height: 400px;

4. Save the preceding CSS document as Example_10-5.css. The code from Example 10-5 should

look something like the screenshot you see in Figure 10-14.

364

Chapter 10: Backgrounds

Figure 10-14

How It Works

In Example 10-5, you recapped the background-attachment property with another brief demonstra-
tion of what it does. Using the background-attachment property, you can position images relative to
the <body> element, even if they are applied to <p> elements or <div> elements or <td> elements.
When the background-attachment: fixed; declaration is provided, the background image is always
positioned relative to the <body> element, regardless of what element the background image is applied
to. The background image also remains fixed in place as the content within the document is scrolled.
One use for this effect is to provide effects that mimic and give the illusion of transparency.

In the next section, I describe how to simplify the plethora of separate background properties into just
one property using the background shorthand property.

The background shorthand Property

Like the shorthand properties I introduced in previous chapters, the background property combines
each of the individual background properties into a single property. The following table outlines the val-
ues allowed by the background property.

365

Part Il: Properties

Property Value

background <’background-color’> | | <’background-image’> | |
<'background-repeat’> | | <’background-attachment’>
| | <’background-position’>

Initial value: n/a

With the background property, you can specify anywhere from one to five separate background proper-

ties. An example of how the background property combines different background properties appears in
Figure 10-15.

Ly o nd=-rapsaa Ly ne
hucegrupnd=-pttachns=nt TR H
[EPTESER SRS R TIRTIN RN |

cowund-inoge: 1f"pelosm.pag "1t

]
The aackgioured elonthard peapie canmbines lege Tee sapa sla progenas ims
asdnple propety, Al Tve propeiies can be presenl, wslare, or any comrbirabon,
oy
backoround: white ool 'palms.pag’) no repoab trzed batkom coobers
1

Figure 10-15a

The CSS in Figure 10-15a is combined with the markup in Figure 10-15b.

< IDOCTYPE html FIELIC °-//HIC/ D7D XHTEL 1.0 Stricts/BE®

"hilp: g w3 Grg s TR Nt nl 1 ETD shbpl l-shriat Jdiat =
<ntml xplnz= ottar S See wiooro s 1EEs s watrl ' xnlelang- ‘oo =
= haad=
stitlesbackqrounds Stitles
=link rel="alylerhael’ Lywe="LexL 0as" heal="00p077920T910055 .aa5 S
=fhonne
-.-bq;rJ:ln-
) oy
- Fhrnd =

Figure 10-15b

The source code in Figures 10-15a and 10-15b result in the output you see in Figure 10-15¢

In Figure 10-15, you see how to use the background shorthand property to combine the five separate
background properties, background-color, background-image, background-repeat, background-
attachment, and background-position into just one single background property. Using the

background property, you can include all five properties, or any combination of the other properties,
in any order.

366

Chapter 10: Backgrounds

Figure 10-15c¢c

The following Try It Out recaps the background shorthand property.

Try It Out Applying the Background Shorthand Property

Example 10-6. To see how individual background properties can be rewritten using the background
property, follow these steps.

1. Enter the following HTML document into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>background</title>
<link rel='stylesheet' type='text/css' href='Example 10-6.css' />
</head>
<body>
<p>
The background shorthand property provides for specifying all
five separate background properties in one single property.
</p>

367

Part Il: Properties

<p>
You can specify all five background properties.
</p>
<div id='background'>
</div>
<p>
You can also specify just one property or any combination of
each of the five separate background properties.
</p>
<div id='background-color'>
</div>
<div id='background-image-position'>
</div>
<div id='background-image-repeat'>
</div>
<div id='background-image-repeat-attachment'>
</div>
</body>

</html>

2. Save the preceding document as Example_10-6.html.

3. Enter the following CSS document in your text editor:

clear: left;

div {
border: 1px solid yellow;
width: 100px;
height: 100px;
margin: 10px;
float: left;
}
div#tbackground {
background: white url('pattern.png') no-repeat scroll center center;
}
divi#tbackground-color {
background: yellow;
}
divi#tbackground-image-position {
background: white url('pattern.png') center center;
}
divi#tbackground-image-repeat {
background: url('pattern.png') repeat-x;
}
divi#tbackground-image-repeat-attachment {
background: url('pattern.png') repeat-y scroll;

}

4, Save the preceding document as Example_10-6.css. The result of the source code in
Example 10-6 should look something like the screenshot that you see in Figure 10-16.

368

Chapter 10: Backgrounds

Figure 10-16

How It Works

In Example 10-6, you recapped how the background property is used to simplify setting element back-
grounds via its ability to specify one to five of the separate background properties: background-color,
background-image, background-repeat, background-attachment, and background-position.
All five properties can be specified, or just one property can be specified, or any combination of the five.
Typically, when only one property is specified, it’s the background-color or the background-image,
and when more than one property is specified, typically a background-image is specified, since you
can’t modify the position, the tiling or whether or not the image scrolls without, you guessed it, a back-
ground image.

Summary

The CSS background properties provide a fine-grained control over the presentation of backgrounds in a
web document, which allows interesting aesthetic possibilities. To recap, in this chapter you learned the
following:

0 You can specify a solid background color by using the background-color property.

O You can use the background-image property to provide a background image that tiles all the
space available to it by default.

369

Part Il: Properties

a

You can use the background-repeat property to control the tiling of background images. This
can be limited to the x-axis or the y-axis, or you can use the no-repeat keyword to prevent the
background image from tiling.

You can use the background-position property to position the background image.

You can use the background-attachment property to control whether a background image
scrolls with a page or remains fixed in place. If the image is fixed in place, it becomes positioned
relative to the browser window itself instead of the element it is applied to.

You can use the background shorthand property to put the control of all five properties into
one property.

Chapter 11 discusses the properties that CSS provides to position elements. In this, the most important
chapter of the book, you'll learn how to layer content, and how to apply layering in practical ways, for
example, how to do the much-coveted multicolumn layout.

Exercises

1.

A

o N

10.
11.

370

What are two properties that you can use to specify a background color in a web page?
What are different color values that you can use for a background color?

What declaration causes a background image to be tiled only along the x-axis?

What keyword value can you use to turn off tiling of a background image?

What are the three methods of positioning a background image?

If you wanted to offset an image ten pixels from the left and ten pixels from the top, what decla-
ration would you use?

Can the different methods of positioning a background image be mixed with one another?
If you wanted a background image to scroll with the document, what declaration would you use?

When a background image is said to be “fixed,” what (XYHTML element does the background
image position relative to?

What is the only element that IE 6 supports “fixed” backgrounds on?

Write a declaration that contains all five background properties in one.

11

Positioning

This chapter examines the various properties that CSS provides to position elements in a docu-
ment. Positioning can be thought of as layering, in that the various elements of a page can be lay-
ered on top of others and given specific places to appear in the browser’s window. In this chapter
I discuss:

0O The position property and the four types of positioning that CSS has to offer: static,
relative, absolute, and fixed

0O The offset properties top, right, bottom, and left, and how these are used to deliver an
element to a specific position in a web document

0 The z-index property and how this property is used to layer the elements of a document

0 Some practical applications of positioning, such as multicolumn layouts and vertically
centering a positioned element

Positioning makes CSS a very powerful presentational language, and further enhances its flexibil-
ity. Like floating elements, positioning offers some unique characteristics that allow behavior you
might not always expect. This chapter begins the discussion of positioning with none other than
the position property.

Part Il: Properties

Introduction to Positioning

The position property is used to give elements different types of positioning. Positioning, gives you
the ability to, with precision, dictate where in a document you want an element to appear. You can
choose whether an element appears relative to another element, or relative to the browser window. You
can layer elements one on top of another.

The following table outlines the position property and its possible values, and the four offset proper-
ties, top, right, bottom, and left, and their possible values.

Property Value

position static | relative | absolute | fixed
Initial value: static

top <length> | <percentage> | auto
Initial value: auto

right <length> | <percentage> | auto
Initial value: auto

bottom <length> | <percentage> | auto
Initial value: auto

left <length> | <percentage> | auto

Initial value: auto

Positioning gives you a fantastic amount of control and increases the possibilities for the layout of a doc-
ument, since you can specifically say where you want an element to appear, in addition to layering ele-
ments one on top of another.

In the next section, I begin the discussion of positioning with absolute positioning.

Absolute Positioning

Absolute positioning allows you to render an element to a particular place in a document. The only way
to grasp this concept is to see a demonstration of it in action. Figure 11-1 shows a document that we’ll
apply absolute positioning to.

The CSS in Figure 11-1a is combined with the markup in Figure 11-1b.

372

Chapter 11: Positioning

oy
agkgraund: cohbya s Toees

topbE: 1Y IET L H

A1 4
widLl: 1000
hzighkt: 1.
| ETRRR (=1 N D TURNC AR gugAan, 00, ZOn);

1

div@che
Eackarcund: poik By deliud, clermers ane posilinned

i gisrcslly, which means thay ust apoaar

divdtuo cxrer after ancher in the docomenl
backascundi mhtbluag

] T rigjenby ol exaurizles b oot

divdchrees | seen 20 Me) a0s axgrnples of slslic
backorcund: v R LTI [l g Ty |

e

I
divaf {
Bamkgroundl nranoe)

1]
Figure 11-1a

SLEECETYTPE Lienl PURLIC "=/ 2W30A /070 EHTAL 1.0 Shy fen s JERT
"htoprfrwww. wi org TR/t l L OrD s shtnl l—strict. dtd" -
“hbtnl dnlns=' koo S0 owd Jorg/ 1990 whtal © ®inl 2 Lailg="i ">
=hcads
Sl lerpositloningssoin les
=link rol='stvicshoct’ byaes coxtf/oss’ href='DUARITTLIOECLLOl.css O
w A heads
-Lbcdy.'\-
‘:D:I v v v
LerET 1@Ann dslor a1k aran, aonagatetier anipaaniryg elikl Sed
Eit amet sew ouly orci ralspgsds Sscilieis, Folls doctuem
ra Tealada magre . cisgoe bz set sk nThln prarba smonmy L Cras prede
torter, ldavinis et, elelfent cuis,. consesast vel, odio. Proln
o mi, Tenilisis ab, aolamspial s, soaelasiagoe Yel, Tacaa. Mo
curpls. Yoestibolum scd Eclis.
-\:_I'I_r.-
adiw 1= aone saddies
adiiy id="twe »osidiun
~diy id='throe =< /dive-
sy dde' Soar hellgiys
<7 modvs
oS hEml

Figure 11-1b

373

Part Il: Properties

The CSS in Figure 11-1a and the markup in Figure 11-1b results in the output that you see in Figure 11-1c.

Figure 11-1c

In Figure 11-1, you see what the document looks like before any kind of positioning is applied. Each
<div> element in the example appears one after another from top to bottom. This is static positioning.
In Figure 11-2, you can see how absolute positioning works.

374

Chapter 11: Positioning

body |
bacsground: Tig tH
Fronts lopiw wspd—amr

SRR 3
siiddlhiz I0Mpe s
hologhts DO0po:

bobdals —po swllid tualp 207,
noz-opacitys 0,77
Filtars o .'.i' MR TRareTransEorn - Microeo | a1 phe fopeac . g

apacitys Loof
H
divéons |
g roarads piat Absaluie sositicaing is wsed w0 oeslian an
poallicns cheolabe; alemer in s spes iz place in a docuiment
ke The e kiwnrds socapl o kg boealog
. ek g or & peicenlags valve, and are Jged 12 line-
o e i elemnart s ooadion,

becogrounds Liqatsz_ue)
positicn: shanlnles
pal='j=} Y-

ightbs f

divethres {
[SHTESTREIRTR 1
paewitione ch=nlurs;
boblboms ©3f
Lesty 02

'

divétoar |
hackgqrounds oo
positicor aboolate
hottomy o
rigoty Iy

L
:

Figure 11-2a

The CSS in Figure 11-2a is combined with the markup in Figure 11-2b to get the output that you see in
Figure 11-2c.

375

Part Il: Properties

SHEESTYTE Lanl PIRLIG "= 2WI0s /D00 SHTHAL 1.0 Shy fea JERT
Srewww e ore/ TR entr LSOO skl lostriot dEd" s
N B 0 L] TR ST B 0 B TERT DR P

whtnl snleas=' hbcp:) Sewe Wl oo

slcads

il lewpositiooiog=soinles

=linik rol='stvlcshoot’ byoe~s coxbi/css’ hroE='DURITTRICEQLLOLl.css O
vl heads

'iIleCd}'-"'
i
ToFET ipAann dnlor aie ares, fonasctetier atipdanieg e11E. Sad
pit amet sew ouly orci ralespesds Secolipis, Folls doctum
naleaiada magee. Ciisgoe s seb sk nThle pracba amy . Cras peilde
tortcr, ldacinis st, elelfend cudis, cocsecast vel . adio. Prolo
crra mi, Tanilisis ab, oobaesgial e, roelasisgoe wel, Tacaa. Hoie
turpls. Wostoibolum scd Eelis.
=g
e
adiw o= ane =addiee
2diy id="two »Lfdive
=diw 1d="three ~</dire-
sidiy dde’ Sour Thelifies
« s
oS hemls

Figure 11-2b

Figure 11-2¢
376

Chapter 11: Positioning

In Figure 11-2¢, you can see that the four <div> elements are positioned in specific places in the docu-
ment. The declaration position: absolute; causes the element to leave the normal flow of the docu-
ment and become layered along an invisible z-axis. The position of each element is controlled by the four
offset keywords, top, right, bottom, and left.

You also see in Figure 11-2a that I've used a few properties that you haven’t seen before. These are the
opacity, -moz-opacity, and filter properties. These are all used for the same thing: to make the posi-
tioned <div> elements semitransparent so that you can see what’s underneath each <div>. I use three
properties for the best cross-browser compatibility. Firefox prior to Firefox 1.5, Netscape, and the Mozilla
SeaMonkey browser suite all used the -moz-opacity property for transparency. Firefox 1.5 and later,
Safari, and Opera 9 all support the official CSS 3 opacity property. Both -moz-opacity and the CSS 3
opacity property take a floating-point value between 0 and 1, with 0 being fully transparent and 1
being fully opaque. For example, the value 0.5 would be half transparent and half opaque. The filter
property, if you hadn’t already guessed by its value, is proprietary to Microsoft and works in IE 5.5 and
later. Although its syntax is quite a bit more verbose, it provides an identical effect to the CSS 3 opacity
property supported by other browsers. Instead of a floating-point value between 0 and 1, it takes a per-
centage value between 0 and 100, where 100 is fully opaque, and 0 is fully transparent.

You'll notice in the simple example that I provide that the boxes are positioned relative to the viewport.
This is made clearer by adding more copy to the document to make it scroll. In Figure 11-3a, you can see

that each <div> element is positioned relative to the browser’s viewport, that is, the initial visible area of
the document.

Figure 11-3a

377

Part Il: Properties

In Figure 11-3b, you can see that when you scroll down, the boxes stay where they were initially posi-
tioned when the page was loaded up.

Figure 11-3b

You can modify what element is used as the point of reference for absolutely positioned elements. The
rules are pretty simple: If an absolutely positioned element is contained within another element that has
a position other than static, then that element is used as the point of reference for positioned elements.
One common way to change the point of reference for positioned elements is to give the containing ele-
ment a “relative” position, and that is the topic of the next section.

Try It Out A Recap of Absolute Positioning

Example 11-1. To review the concepts of absolute positioning that you learned in this section, follow these
steps.

1. Enter the following XHTML document in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Absolute Positioning</title>
<link rel='stylesheet' type='text/css' href='Example_1l1-1l.css' />
</head>
<body>

378

Chapter 11: Positioning

<p>
Elements that are absolutely positioned are positioned, by default,
relative to the browser's viewport. This is done using the
position property. The position property is used in conjunction
with four offset properties, which are used to control where on
the screen an absolutely positioned element is placed.

</p>

<div id='top-left'>
Top, Left

</div>

<div id='top-right'>
Top, Right

</div>

<div id='bottom-left'>
Bottom, Left

</div>

<div id='bottom-right'>
Bottom, Right

</div>
</body>
</html>
2. Save the preceding document as Example_11-1.html.
3. Enter the following CSS in your text editor:
body {
background: yellowgreen;
}
D
margin: 10px 110px;
}
div {
position: absolute;
background: yellow;
padding: 5px;
width: 100px;
height: 100px;
}

div#top-left {

}

top:

0;

left: 0;
border-right: lpx solid black;
border-bottom: 1px solid black;

div#top-right ({

}

top:

0;

right: 0;
border-left: lpx solid black;
border-bottom: 1px solid black;

div#bottom-left {
bottom: 0;
left: 0;

379

Part Il: Properties

border-right: lpx solid black;
border-top: 1lpx solid black;

}

div#bottom-right {
bottom: 0;
right: 0;
border-left: 1px solid black;
border-top: 1lpx solid black;

4. Save the preceding document as Example_11-1.css. The preceding source results in the out-
put in Figure 11-4.

Figure 11-4

How It Works

In Example 11-1, you saw a brief recap of the concepts presented so far. Elements that are absolutely
positioned are delivered to a specific place onscreen, more specifically, to a specific place in the
browser’s viewport, which is the visible area of the rendered document. In Example 11-1, you placed
four <div> elements at the four corners of the browser’s viewport by absolutely positioning each <div>
element with the position: absolute; declaration, and then specifically positioning each one with
various combinations of the four offset properties. For example, the declarations top: 0; and left: 0;
places the <div> element with the id name fop-left to the top left corner of the viewport. Then you
repeated the process for each of the other three <div> elements, positioning them in each of the three
other corresponding corners of the browser’s viewport. Later in this chapter you will observe some
more practical uses for absolute positioning with various multicolumn layouts.

In the next section, I introduce a concept that goes hand-in-hand with absolute positioning because it
enables you to control the context used when an element is positioned, and that is relative positioning.

380

Chapter 11: Positioning

Relative Positioning

Relative positioning is very similar to static positioning; elements to which relative positioning is
applied do not leave the document flow. There are three differences between relative positioning and
static positioning;:

1. Elements with a relative position can be used as a point of reference for elements nested within
them that are absolutely positioned.

2. The position of a relatively positioned element can be adjusted using the offset properties.

3. A relatively positioned element can have a position on the (invisible) z-axis (more on this later

in this chapter).

To observe how a relatively positioned element can be used as a point of reference for absolutely posi-
tioned descendant elements, take a look at Figure 11-5.

As always, the CSS in Figure 11-5a is combined with the markup in Figure 11-5b to produce the output
that you see in Figure 11-5c.

by o
apapground s L1gatuenl o
F=n il A==ty
: Cine ase o melaiee apstnning is o change
1 wdzontainer § sk proind af reterercs usal e azsolimaly
creAd Linkis il iaiir gy pastinnnd dusoondants. The clemart in
widths =Llpo: ik ralEne :IE-:-I'"\'.'INHE 5 aaplad
sighils N0 rameuns i the dacame Ao
maroing coood
H
[pig
[} ot
- ol id Ak Al i niuls
E L= Los
I
divEnna 4
mecRground Ve
Eosee H
et ;g
v |
BECE] iz 1 1 H
Loss H
plygbiks oF
'
divéchroes |
Fa'Fa Ll b = vesl X
oottomr O
gl D
:'
davaFooar |
] Efidie p i | o AT |
] AT
gata of
H
Figure 11-5a

381

Part Il: Properties

STEEETYTE hienl PUKLIC "=/ SWICS/TT0 SHTAL 1.0 Shricay JERS

THAxntell oD ehknl losrrict ded"
N B 0 L] TR ST B 0 B TERT DR P

Slwwwawl oo

whbtnl gnlos==" koo) S oWl

slcads

shiblevpusibicoioy= il

=link rol='stvlcshoot’ byoes coxbfoss’ hroE='DURITTRZ0Egllib.css s
“fhead>

“osdre
J:D:l
TArRET 1RSI dnlor BiT aTaT, oomsectRTERT Atipisnirg RITE. Sed
pit amet semr ouly orcl melespgsds Ssocolipis, Rolls doctum
naleaiada mages. Gnidque wis o s=k sk nThle pracka cneamy . Cras preide
Tortor, lacinis e, eleifent cuis, sonsegust wel, adio, Prooo
e mi, Tanilisis ek, colfasglal e, soelarisguoe del,
wurpla. Yoestobulum god folis.
-\:_l'lr.-

Tacii=. M

adow id-'containes -
ALy Ld= cpe wwldive
iy id- bweo s-=ddiare
2div id= three®s<fdios
“oiw ld- Cour seloiwe

L R

e
oS Emls

Figure 11-5b

Figure 11-5¢

382

Chapter 11: Positioning

In Figure 11-5¢, you can see that the position of each <div> element has changed. By nesting them inside
a descendant of a <div> element that has a relative position, each <div> is positioned relative to the
<div> element with an id name of container.

What happens if the <div> element with id name container has a static position? The output is shown in
Figure 11-6.

Figure 11-6

In Figure 11-6, you see that the point of reference for positioning is determined by which element in
the positioned element’s ancestry has a position other than static (absolute, relative, or fixed). If there
aren’t any elements with a position other than static, the element is positioned relative to the browser’s
viewport.

When no position is defined for any of an element’s ancestral lineage (parent, grand-
parent, and so on), all elements are positioned relative to the browser’s viewport by
default. If an element does have a relative, absolute, or fixed position and is the
ancestor of an element with absolute positioning, that element is used as the point
of reference for the absolutely positioned element.

383

Part Il: Properties

Applying Offset Positioning to Relatively Positioned Elements

The position of elements with relative positioning can be adjusted using combinations of the four offset
properties, top, right, bottom, and left. For example, the top and left properties can be used to
adjust the position of a relatively positioned element. This works similarly to the margin property that
you saw in Chapter 7. An example appears in Figure 11-7.

Bary |
oncegreand: l1gatve W
Pt L]] i;

(LTRSS |

non
—
=
e

(el el |

nackqreunde sinns
EEES R 1o syl fft, 200, FA0);

omdClnery Pt

The fmur pifees pranaries 220 be oson o mod iy
e posiior ab relatiehy posiionen Semens.

-

Figure 11-7a

The CSS in Figure 11-7a is included in the markup in Figure 11-7b.

384

Chapter 11: Positioning

S TYBE Bbnl BUBRLTC "= Sad0 A 700 wETl 1.0 S Dok f 7 e
SlvewowE org/ TR ehtel LApID xhinl Lo striot did™s

whibnl smlosm=" Lo 50w Joorg 100 ehibnl Y sl lang="wn =
EEIGT=reTs
Ll lerpeeil ionEg< Ll les
clini pol='stvicsheot’ types toxbioss hrof= J88STTRI0ICll0T.csm’ #=
- s heads
-:leﬂhl:'

“p Ld='margin =
Tereen apmun doloe ais emek, conspotespss adipirsing alibl Dores ag
nusps. Phapellor est eroe, malesoads w=l, tenpus gois, pharssos st

Toucmiaa e =B smmb Tikmro. &liguoens wrab, velotpeb o Moarbi mreeboo Sdme:
et paras viton torkor sodoles auctor. ¥Wella molestic, Fellentosgoc
anbe maur = beiabigue e, placerat =i anel, plecssab s, snbe,

Yealilalon interdum. Dones vitae tellus, Rliguow sral wololpot.
Acpean diviun dolor ul sen.

-:.I’p'.-

2p id='relative” =
O comode . Sod aom ndsEoabl leo aligeoh loborlis. Domcs a elic wel
cella coarctra ficnissiw. Lorem dpsun color Ssit &mct, conscTIobucy
gaipiasing el 1k, Lliques soraga =arear eqat digw. Pel lavtagqre
prlleatepque torpils sped ec=mt, Tuids mnon likbsrec vel metus
pellicitod n sligquet. Asresn osgqoe. Bors @get quen 8 omaar is
sulpatate [mnrart. HAoris dictan, mens wananat:s tringilla

webicula, sartas aggue digris=in arte, id ioperdiet risos msepisn
el elic. Tramaanl Tigula n Dol Yilas, Tecili=ia al,
feramatun con, diam. lctegsc =2it anet liguls guis lectus bBibendum
prek an Bl igoen nengan TpRicn, aligue. sl aciipen el Slasadin wo,
nazsa. Ztiom porttitocr “esktz id arcw. Ut ante lacus, ratrun

webicula mon, Taucibus §n, Toran. Tolsder @l aiilbe 2l malr i=
rhopous molzctlo. henesn wk oSt ot leztus tempor pharctra. Fusoo
ges nisk. Clege apdkant saciki sacised) ad li=ars sovquess per
ConULD1a NOSTrdy °Cn .'i.'.'l':'ED:\:'E AVIECSOLDDE .
= fp
<4y
S hemls

Figure 11-7b

In Figure 11-7¢, you see what happens when the offset properties top and left are applied to a rela-
tively positioned <p> element, as opposed to margin with the same values applied to another <p>
element.

In Figure 11-7c, you see that relatively positioned elements can be layered. In the example, the top and
left properties each have a value of 25px, which results in the <p> element with an id name of relative
being layered over the border of the <body> element. You also see how this differs from margin— the
top <p> element with an id name of margin —is given a top and left margin of 25px. The top element’s
width is adjusted to accommodate the 25px of margin, but the bottom element width is not adjusted to
accommodate the 25px that it is offset from the top and left.

385

Part Il: Properties

Figure 11-7c

A recap of relative positioning:
0 Relative positioning is just like static positioning, in that the elements remain in the normal doc-
ument flow, but that’s where the similarities end.

0 Relatively positioned elements can be used as a point of reference for absolutely positioned
elements.

O Relatively positioned elements can accept combinations of the four offset properties, top and
left, top and right, bottomand left, and bottom and right. The browser will ignore com-
binations of the offset properties beyond those mentioned here. For example, you can’t combine
the top and bottom offset properties on the same relatively positioned element.

0 Relatively positioned content can be stacked and layered along the z-axis (more on this later in
this chapter).

In the next section I cover fixed positioning.

Try It Out Applying Relative Positioning

Example 11-2. To review the concept of relative positioning, follow these steps.

1. Enter the following XHTML document in your text editor:

386

Chapter 11: Positioning

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Relative Positioning</title>
<link rel='stylesheet' type='text/css' href='Example 11-2.css' />

</head>
<body>
<p>
Relative positioning has two primary purposes in web design.
The first purpose is to create a point of reference for an
absolutely positioned element. When an element with absolute
positioning is nested within an element with relative positioning,
the absolutely positioned element is positioned in context to
the dimensions of the relatively positioned element.
</p>
<div id='relative'>
<p>
Relative positioning is a lot like static positioning; elements
don't appear to leave the flow of the document.
</p>
<p id='bottom-right'>
This element is positioned to the bottom right of the
relatively positioned element.
</p>
</div>
<p>
The four offset properties can also be applied to relatively
positioned elements, which can be used to modify the position
of an element.
</p>
<div>
<p id='offset'>
This element is offset from its original position.
</p>
</div>
</body>
</html>

2. Save the preceding document as Example_11-2.html.
3. Enter the following CSS in your text editor:

body {
font: 12px sans-serif;
}
div {
background: yellow;
border: 1px solid black;
margin: 0 20px;
}
div#relative {
position: relative;
height: 200px;

387

Part Il: Properties

}

p {
padding: 5px;

}

p#bottom-right {
margin: 0;
background: gold;
border: 1px solid crimson;
height: 50px;
width: 200px;
position: absolute;
bottom: 5px;
right: b5px;

}

pH#offset {
margin: 0;
background: pink;
border: 1px solid crimson;
position: relative;
top: 10px;
left: 10px;

4. Save the preceding document as Example_11-2.css. The preceding source code results in the
rendered output that you see in Figure 11-8.

Figure 11-8

388

Chapter 11: Positioning

How It Works

In Example 11-2, you reviewed two concepts used for positioning an element relatively: the first using
an element as a point of reference for positioning absolutely positioned elements, and the second, using
the four offset properties to adjust the position of a relatively positioned element.

To create a point-of-reference, you made a <div> element, with an id name of relative, which had one
absolutely positioned child <p> element with an id name of bottom-right. The <p> element with the id
name bottom-right is given an absolute position, and the declarations bottom: 5px; and right: 5px;.
As you see in the rendered output in Figure 11-8, this causes the element to be positioned to the bottom
and right of the <div> element with id name relative. If the position: relative; declaration were to
be removed from the <div> element with id name relative, the bottom-right <p> element would be posi-
tioned relative to the viewport, as you saw in Figure 11-6.

The second concept at play in Example 11-2 is using offset properties to adjust the position of a relatively
positioned element. The <p> element with id name offset is given the position: relative; declara-
tion, and the declarations top: 10px; and left: 10px;, which caused its position to be modified from
the top by 10 pixels, from its original position, which is where it would have been if it were a statically
positioned element, and to the left 10 pixels. This causes it to overlap its parent <div> element. If these
properties were not present, you would not see any of the parent <div> element’s yellow background,
since the <p> element would have completely blocked it out.

In the next section, I continue the concept of positioning with fixed positioning, which is similar to abso-
lute positioning, in that the element leaves the normal flow of the document, but unlike absolute posi-
tioning, the context of a fixed positioned element cannot be altered by nesting the element in a relatively
positioned element or another absolutely positioned element. Fixed position elements are always posi-
tioned relative to the browser’s viewport, and remain in that position, even if the document is scrolled.

Fixed Positioning

Fixed positioning is used to make an element remain in the same fixed position, even if the document is
being scrolled. Alas, IE 6 does not support fixed positioning, so the example that follows will not work
in IE 6. All is not lost however; there is a well-known workaround for IE 6’s lack of support for fixed
positioning, which is covered in the next section.

Elements with a fixed position are always positioned relative to the viewport, regardless of whether it is

contained in an element with relative or absolute positioning applied. An example of fixed positioning
appears in Figure 11-9.

389

Part Il: Properties

by |
n:-::-":_|rr\-'1r.'=: l1ganvel =

Tk % pata=Eeri

Tine-hrighl.: Zoeg

marging _Uow Llipxs

wildlhs 1000x;

molghts “uDps;

sorders Jpee solid onbi220, ZO0, Z200Y;

aositione tlmods
H
diwgeons |

pEmmArmAnEE Fixzd positicning causss an slameam @
renriirt Fsesel iy ol s wehile thee rest of
tha decument = aeralled.

'II;--+; (]

divetws |
facgranbads T gt T aeg

LoEs s

rigghiks Of

'
[
divatibes {
nackground s vol lodoreenng
bottcome o}
Laft: ©;

divefoar |
SQRCATOURLE SCOSLOCT
mxbtoms g
righta Of

L

Figure 11-9a

The CSS in Figure 11-9a is included in the markup that appears in Figure 11-9b.

390

Chapter 11: Positioning

SHESTYRR benl FUNLTE "=/ 20300000 SHTRL ol SkricnS ed”

"httro wewtowd ooeg TR xhenl L7DTD ehtnl l —shpict . ded ">
whiinl snlis="hLLg: S Swow owT arg IR0 dubiiml " vl s Tang="wn ">
= Loads
Ll levpaaal Livling S uicle>
Zlink rcl='styloshoct’ cypo='toxtsoss' href=' 0537 7220f7ll0d.cms’ =
= heads
shady
-'.'r-|I'|.
Torenm peum dolor 17 amet, coreactebtner acisdiso g alit. Dores 2u
muums, PFhupellys @pt eros, melevasds vel, begppos quis, pharesce st
Tuciia. o wib o aneh T lhsrals BT iguam srat walabpeal. Hisr bl =ral . Hine:
=t purus vitae tortor sedalee suctor. Holls poleptie. Fellestepgoe
sk melris, bridblaoe aa, plaeral ait wieb, plecHrsb s, stk
Wegakibelon inlerdun. noee wilos telluos. Aliguan eral woluoLpeb.
e L Bt L T 1T E (R TS S RSN T L
-\.'_.l'l_'n-
W

T conreds . Bed nar plal ot leos aliguoet Ioborbia. Dooes a elit wal
nulla paczetra diqriscim,. Zorsn ipsum dalor sit Smet, consooIoTusT
ziipdscing olit. Aliguam oursus bortor oock dian. Dollaounbtesques
mellegtepmue turplie eod orat,. Dulw oon libesms wel petus
aallicrtrsn aligner . Lensan nesie. dNro edel gUAT 8 mAalria
vulpotate lmcreet, Maurcis dictem, ercs wensnatis tringills
vehionl a, tortor scnee dignissin snta, G inperdi et riaogs gapien
=t odips Fracsaent ligela mAgrs, nonomey vitas, feorlinis az,

Fermmatun ron, dian, Intager st snet Tigule qoie Tectas Bhendun
ek L. &l |q||-||'|| SIETR TR Ii""'-""r wl Dol wl, =edngsa wil, blandin as,
musg=a. Etiem poerctitor qusto id acoa. Db oprts lasos, cotroor dr
vehianla o, Tamcibics io, Tosen, Tabeday sal o anbe 20 salde =

plecocuy polestiv. Sopedn oD ech ot lecius begpeer plhorsbrd. Fosows
sed nibii. Clasa aplent Lacill sooleagqu ad Llblora Lo@guanl per
oonubis Roshtra, per incewtocs hvmonaccs.
‘-'.l"El7‘
“doy 1d=one s-sdiws
i ddeten melddiwi
Zdrr id='thres sesdivs
iy dde’ foor il Sdies
LR T L1
e L

Figure 11-9b

In Figure 11-9c¢, you see how fixed positioning is different from the example of absolute positioning that
you saw in Figure 11-2c and Figure 11-3c. The same document is shown three times with the scroll bar in
different positions to illustrate how the <div> elements with id names one, two, three, and four remain
fixed in place as the document is scrolled.

391

Part Il: Properties

Figure 11-9¢

392

Chapter 11: Positioning

Fixed positioning keeps the elements snapped into their positions, which is always determined relative
to the viewport, as the document is scrolled. This type of positioning can be used for things such as side
columns, headings, footers, or watermarks that remain in place as the document is scrolled. In the next
section, you see some workarounds for IE 6 for its lack of support for fixed positioning.

In the following sections, I discuss two different methods of achieving fixed positioning without actually
using CSS fixed positioning. The first method applies to IE exclusively, and it entails emulating fixed
positioning in IE 6 with JavaScript and proprietary CSS features. The second method I present is appli-
cable to all browsers, even those with proper support for fixed positioning, and is useful beyond fixing
up IE’s lack of support, and can be used for web page layouts in general, in all browsers.

Emulating Fixed Positioning

A well-known and annoying limitation of IE 6 is that it does not support fixed positioning. Not to be left
without this useful feature, some developers have gone to great lengths to find alternative methods that
produce the same results.

I first read about the following IE 6 fixed positioning hacks on Anne van Kesteren’s blog at http: //
annevankesteren.nl/test/examples/ie/position-fixed.html. Therefore, the following
workarounds are derivative of the ones collected by Anne and others as documented in his blog.

This first technique involves reproducing the same effects you would get if the declaration position:
fixed; were supported in IE 6. For this technique, you'll need Microsoft’s proprietary expression ()
feature, which allows you to use JavaScript within a style sheet, which you first saw in Chapter 7, where
it helped you to overcome IE 6’s lack of support for the min/max width/height properties. The first
example demonstrates position: fixed; with top: 0; and left: 0; as the offset properties, and
works when IE 6 is in standards-compliant rendering mode (see Chapter 7).

Emulation of fixed positioning is demonstrated in Figure 11-10.

The style sheets in Figures 11-10a and 11-10b are included in the markup that you see in Figure 11-10c.

Bady |
agt = | vl ;
1t 3 o o Eritg
h Ther i mewhe shzet = set un like norral far
B 1re brovears ihat o oo ligsd paEtoning .
|INRITS hils: 2ang
margine "ilp i P s
H
div |
idtha lpsy
~ighte OCpog
DTCOETE LpE solid Db JNU, i LENE
CEgTonndE Tinass
aositions tixed)

Figure 11-10a

393

Part Il: Properties

nody 4 aEgraslong | 15w rehrence Ihe pastkn
bacsgreoancy Lichoveo_ces arls "htope S 0 zozzor OllPe acdll b wicn Jeve3cipl evaln iz sl 1o
. tarea (2 oo raoddly sesvRlnene ta pral o
Jdiv © albe scoizar
poEltico; she: up

S REREIS L TR ERL RTS8 FEENTIEVR N B R TR RN TR B) RS

Figure 11-10b

ST PR Bein] BUALIE "= A0S T RHTRL DL Bk s S0 Ed
httoe: S feww owd oo TR S chtnl 170Dy ahtml L —stplot . dod ™=
Shicn] #nlne-"hiile: S v wd oarg DA ahilem? " wml : Tasg="wan ">
=hoads
shlblepssal Liviilng< il e
“<link pol='styloshioet’ bypo='toxtsoss' heef= 03697 7820Fgl11d . c5s" f=

vhg

L=]

L L

L
Lorem ipeun dolor gic smet, copgsctetosr sdiziscing =lit, Cones sy
mpasa . PhasmelTa= seb wrea, melusaada wnm’ o Leigeas aqui =, pliereis o al
lasua. UL zil amel libexc. Aliguam aerab vslulpal. Hoebi aral. Hane
st prarnes Db br b AeslaTee woctor o BoT Ta nleet e Fel Teoise:g e
znle nourls, Leisbigee ac, placsral it onel, oloceral waaec, cnLe.
wedlibolon Dnterdun, Doaee vlies Lelloas. allgoan erskh voloipeb.
Agacan dizium dolar Lo San.

<l pe

l\:I._'|:'
Ut comnods,. Sod pon mlsi st leo aliguoer looorctis, Domes a8 elit owel
rulla phsrerra digrigeim. Toren ipanm dzisr 3tk emer, sonasctetysr
=miipisoiny =lit, Aligusam curgue torctor sost dism. Pelleatesqus
pellantmpaye tarpie ged srat. Doie non Jibsoo vel netga
mollicttedin aliguet. fensan neTis. Huno s=gebk quanm 2 TAUTIR
velpotets Tporest. Vepris diston, sros wvensnatis Frirgilla

vehicoula, Lor o RTHEY :!:!:lll'i:-H'll anla, i :IIiH-l.rII'H.. plaua :-|.-u|_|||-|||

st pdin. Frasseas Tiguls seqgre, nonomey wites, Feoiliwi= at,
TwimmnLuan bon, dian. Tolager RIL amel Tidula ofai= Teciias LDLDeidun
pocbd. AlLgudam segue Lesom, alloast e, sopper wel, Dlandic ez,
maasa. Bolom periliior juate £0 aren. DL anbe lacus, sabear 4,
vohicula mon, faucibes in, lorem. Iotcosr oun antc ot mauris
heneus peleabic. Astean oL est @b loclus Longeor pharsbra. Fuscs
zod niba. €lass apiont taciti sooicsgu md Litora tosouont pexr
cominie noebra, per onoectos hymenaecs.

Zipe

L RRUE T B R

< 7 o
E T T

Figure 11-10c

You get the output that you see in Figure 11-10d, an element that acts as though the position: fixed;
declaration is applied in IE 6.

This source code in Figure 11-11 results in the output that you see in Figure 11-11d.

394

Chapter 11: Positioning

Figure 11-10d
395

Part Il: Properties

There are a few things to keep in mind about this effect:

QO You must specify a “fixed” background image. The image doesn’t have to exist; you can just
include http: // as the background image, as I have. If you are using this effect in an SSL
encrypted web page, be sure to make that https://, or you'll see SSL errors in IE. Without this
essential hack, the element that you want to give a fixed position to will flicker as the page scrolls.

Q This effect does not work in IE 6 or IE 7 in quirks mode, or IE 5.5. To get a compatible hack for
IE 6 and IE 7 in quirks mode and IE 5.5, just change the declaration for the top property to:

top: expression(eval (document.body.scrollTop)) ;

Q This effect does not work if JavaScript is disabled.

O The effect emulates top: 0;. To get a pixel value other than zero, use something like the follow-

ing declaration:

top: expression(eval (documentElement.scrollTop) + 5);

Just replace 5 with the pixel value you want.

O You specify the 1eft or right properties as you normally would.

What if you're looking for bottom: 0;, instead of top: 0; with a fixed position element? An example of
this appears in Figure 11-11. Figure 11-11a begins with the style sheet that you give to all browsers.

body o
Egroniie | yl H
ontE = 4 LCF
:.
B
11 nee= iz Zoeg
margime i (=R
H
div |
dths [=x)
heights Dol
porders px $olic DRSO, EUN, LU
SACEQTOUTO irLE
SOLDLITIADNE Z1XC0]
sicbtomes g
lest L

1

Figure 11-11a

The main style sheet in Figure 11-11a is followed by the IE 6 style sheet that appears in Figure 11-11b. As
you see in Figure 11-11b, slightly more complicated trickery is required to emulate bottom: 0;. You

have to subtract two pixels from the value; otherwise when the user scrolls to the bottom in IE 6, it will
continue scrolling infinitely.

The style sheets in Figure 11-11a and Figure 11-11b are included in the markup document that you see in
Figure 11-1lc.

396

Chapter 11: Positioning

Figure 11-11b

sy e o

<lilml

(.

LIS RS R I R

Pl =t leit=n 1=t ila o - “ [=1 1 -
In IF, 4 Ak pas i anakEmert 10 tha aodam s s iepe ¥ooiske s
pashnn af roe sl barand add tkar 1z the Aeighd of e visana, 1en
sebnszet i beignl o the alemers. Thisiset orecse, ameaver, ared pou
e 10 adjus] Uie sl Dy w0 pess,
inl PUALIE "=/M30 0 0T BHTRL 1.l Skricts o
"httro wowd urg TR A xhtnl L0700 ahtml L —steiot . ded ™
wnlpe=" DLl S Swem G org s 10 fuhiiml Y ol lang= "'
=hzads
Ll levpaaal Livling S uicle>
Zlink rol= styloshoct cypoe='toxisoss’ hrelf= 0587713 0f7llll.cms’ =

< pesde
Chady

W

= ip

ﬁp:-

< e

MdAAd .
1rohicula non,

Lorem ipeun dolor eit smet, conesctetger sdiviscion =lit,. Cones ey
=g, Phasel Ta= seb wred, meTueasda wwl . bengeas aqui=, pliaireie gt
Lacuaa. UL #ib amel libke=a. Aliguan cral volulpal. Hoebi aral. Fune
-t Foane Laan Ac=lei T nczbar .

ErarLs 6 faat Ho® 1o nelest e Felleaiemg e

anbe monrls, beistigoe ac, placeral ait amet, ploooral @oc, onio.
vegbibulun Lokerdun, Ponse vlioes tellus. allgoan ersk voluoopeb.
Rencan diztum dolar oL San.

Ut cornodD. Scd non clsi oat leo aliquoe:s loooctis. Dones & elit wel
rilla prgeerra drgrigeim. Taren ipanm dolor 30F ener . aonassterar

=dipisoiny =lit, Aligquam cursus ktoctor sost disn. Psllaotesque
ol lanteegue tarpie sed arat. Noie nen Tibsce ve] netos

ralliattedon aligoet. fencAn neTae. ¥0no sget gquem o8 meurin
vulpatete Tacraes. Mepria diston, sros wvensnati= Fringilla
vahiconla,
st i,
Tk Mk LUn g,
woLkd.

Lo Ll aligiie :Hgll‘i:—H' noanls, el illi:-H.l‘ll'H.. plaua :-|.-u|_|||-|||
Timula waore, nonommy vitas, Feoilivi= at,
[AENSTIN ALl amel ToAgula auiis Tecias BDencdun
Rliwjuam neguee Leson, elloast el, wweoper vel, Dlasdic ao,
Trlom ertlitor justa id aren. UL ante lacus, =ubeam L4,
faucrbues 1in, lorem. Iokcomry ou ante vt mauris
Ehgigus nolealic. AGnan UL esL &L laclug Lempol phabslrka. Tuacs
zod niba. €Llass apiort tacdti sooicsqu =d Litora tooguont per

Frasgent

Tnlage

conunie nopbra, per onoectos hynensecs.

sl fdivn

LR T L1
e L

Figure 11-11c

397

Part Il: Properties

Figure 11-11d
398

Chapter 11: Positioning

Emulating position: fixed; with bottom: 0; is similar to the process required for top: 0;, and itis
therefore subject to the same limitations. Again, to create this effect in IE 6 and IE 7 in quirks mode, and
IE 5.5, just replace documentElement with document . body. For emulating the bottom property with a
value other than 0, take the value, add 2 to it, and replace where 2 is being subtracted with your new
value. For example, to emulate bottom: 5px;, you'd do the following;:

top: expression(
(documentElement.scrollTop + documentElement.clientHeight - this.clientHeight) - 7

)

I use the value 7 in the preceding example, because at least 2 pixels must always be subtracted, so, 2 +
5 = 7. In the next section, I explore how you create the illusion of fixed positioning to workaround the
lack of support for fixed positioning in IE 6.

Try It Out A Review of Fixed Positioning

Example 11-3. To recap the concept of fixed positioning, follow these steps.

1. Enter the following XHTML document in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Fixed Positioning</title>
<link rel='stylesheet' type='text/css' href='Example 11-3.css' />
<!--[if 1t IE 7]>
<link rel='stylesheet' type='text/css' href='Example_11-3.ie.css' />
<![endif]-->
</head>
<body>
<div id='fixed-top'>
</div>
<div id='fixed-bottom'>
</div>
<p>
The concept of fixed positioning is pretty straightforward.
Elements with a fixed position stay in place, even when a document
is scrolled. Elements with a fixed position are always positioned
relative to the browser's viewport, no matter where they appear
in a document's structure.
</p>
<p>
IE 6 and IE 7 in quirks mode do not support fixed positioning, even
though IE 7 in standards mode does support fixed positioning. Some
tricks are employed to make the document work in IE 6, in standards
mode.
</p>
<p>
Even though fixed positioning technically allows an element to be
placed anywhere in the document's structure, the IE hacks that I
present here require that fixed position elements always be immediate
children of the <body> element.
</p>

399

Part Il: Properties

<p id='long'>
This element is used to make the document longer, so that scroll bars
are invoked.
</p>
</body>
</html>

2. Save the preceding document as Example_11-3.html.

3. Enter the following CSS in your text editor:

body {
font: 12px sans-serif;
background: lightyellow;
}

p {
padding: b5px;
margin-left: 110px;
}
p#long {
height: 400px;
}
div {

position: fixed;
background: gold;
border: 1px solid black;
width: 100px;
height: 100px;

}

div#fixed-top {
top: 5px;
left: bpx;

}

div#fixed-bottom {
bottom: 5px;
left: bpx;

4. Savethe preceding CSS document as Example_11-3.css.
5. Enter the following style sheet for IE 6 in your text editor:

body {
background: lightyellow url('http://') fixed;
}
div#fixed-top {
position: absolute;
top: expression(eval (documentElement.scrollTop) + 5);
}
div#fixed-bottom {
position: absolute;
bottom: auto;
top: expression((documentElement.scrollTop +
documentElement.clientHeight - this.clientHeight) - 7);

400

Chapter 11: Positioning

6. Save the preceding document as Example_11-3.ie.css. The preceding source code results in
the rendered output that you see in Figure 11-12.

Figure 11-12

How It Works

In Example 11-3 you see the tools required for making cross-browser, fixed-position elements. These ele-
ments stay fixed in place even when the content is scrolled. For most browsers, Safari, Firefox, IE 7 in
standards mode, and Opera, this is done using standard CSS 2. You apply the declaration position:
fixed; to an element in tandem with offset properties, which provide the position of the element. In
Example 11-3, you made two examples: one fixed-position element that’s positioned to the top and left
of the browser’s viewport, and one fixed-position element that’s positioned to the left and bottom of the
browser’s viewport.

To make this work in IE 6, you supplied a Microsoft-proprietary conditional comment style sheet, which
uses dynamic expressions and a tiny snippet of JavaScript. The JavaScript that you keyed in dynamically
updates the position of the pseudo-fixed position elements. For the fixed position element that’s posi-
tioned to the top and left, you supply the declaration position: absolute;, since IE 6 doesn’t recog-
nize position: fixed;, and in the dynamic expression, you evaluate the position of the viewport’s
scroll bar with the JavaScript eval (documentElement.scrollTop). This causes the element to remain
fixed in place as the document is scrolled. But you need one more hack to make it function as fluid as

401

Part Il: Properties

position: fixed; does on other browsers; you must give the <body> element a fixed background
image. As you saw in Example 11-3, the background image doesn’t even have to exist. The application
of this hack causes IE 6 to render the fixed position element smoothly as the document is scrolled, rather
than jerky. To get the same result as top: 5px; you also have to add 5 to the result of the evaluation,
which gives you the following CSS:

top: expression(eval (documentElement.scrollTop) + 5);

To fix position an element to the bottom and left of the viewport in IE 6, you see a little more involved
script. The element is again absolutely positioned, but instead of positioning from the bottom, as you
might expect, the element is positioned from the top. To do this, you reset the bot tom property to its
default value, bottom: auto;. To get the element on the bottom, you get the position of the scroll bar,
the height of the viewport, then subtract the height of the element that’s being fixed positioned, which
results in the same output as position: fixed;, with the declaration bottom: 5px; and left: 5px;.

top: expression((documentElement.scrollTop +
documentElement.clientHeight - this.clientHeight) - 7);

In the next section, I discuss how to create the illusion of fixed positioning using only absolute positioning.

Creating the lllusion of Fixed Positioning

The other way to get around IE 6, IE 5.5, and IE 7 quirks mode lack of support for fixed positioning is to
just not use it at all, and use the principles of absolute positioning to your advantage. The following sec-
tions describe how to do the following:

Q Make a fixed header

O Make a fixed footer

Q Make fixed side columns

All are with support for IE 6, and all are the usual suspects, Safari, Firefox, Opera, and so on. I begin
with a discussion of how to stretch content by using offset properties in pairs.

Stretching Content by Using Offset Properties in Pairs

One fundamental concept that is essential to making the fixed header, footer, and side columns tech-
niques work has to do with how absolutely positioned elements handle sizing. In Chapter 7, you learned
that block elements have a width that is expand-to-fit by default. Block elements such as <h1>, <div>,
<p>, and so on, expand to fill the space available to them horizontally, and expand vertically in the
shrink-to-fit fashion, that is, only enough to accommodate the content contained within them. When ele-
ments are positioned absolutely, they all take on the shrink-to-fit sizing behavior, for both width and
height. An example of this appears in Figure 11-13.

402

Chapter 11: Positioning

body |
b dgroirads Dogal in
Font g [vHnu-—us T
wraginz g

ahszlctey and Bsed pastonen Slerens Usn

oadding: 0 , .
shrirk-wa-lit =izing.

.
r
p o
backgqioaind: vellovvrou;
oordors [pE osolid oroon
anddisigs Spul
marging SpEd
k
Eebsalute {
sositicos abhoolukep
b tomes g
Leztr ujp
1

Figure 11-13a

The main style sheet in Figure 11-13a contains two demonstrations of sizing: a statically positioned <p>
element, and an absolutely positioned <p> element. As you'll see in Figure 11-13c, positioning an element
absolutely causes it to use a different method of sizing, shrink-to-fit. The main style sheet in Figure 11-13a is
included in the markup that you see in Figure 11-13b to create the rendered output in Figure 11-13c.

S EEETYTE iewl PURLIC "= fRNACS SOTO RETML 1.0 Sae Lok 5ye
‘hitor S fwwwawioorg TR ehtel LAorDyshtnl l-strict . ded ™
whton] #nlas=' hbbps Sfwan o wd org 109 fahitnl ' wmlz Taing="wn "=

sluzad s
Ll letrpog i ey and sialimesoit en
zlipk rel='stylochect’ type= toxk/oss’ href="J8L97TRI0Zrlll0.css S

w s heade
<y
wn
wrrwn ipaum Gulor Al swet, gumEpctetdss adipieaiog @ik Doress: s
neEyd.
-\:_l'|_|'.-
=p id='absclute” -
Dobeln ipaan dolor 3it ewet, consectetus: odipiscliog elit. Dobes el
Nazsd.
- Spe
by e
S hem]s

Figure 11-13b

In Figure 11-13c, you see that the two <p> elements have different dimensions. The statically positioned
one takes up all the horizontal area that’s available to it, and the absolutely positioned <p> element only
expands enough to accommodate the content that it contains.

403

Part Il: Properties

Figure 11-13c

To use absolute positioning to emulate fixed positioning for a header, you need a way to make an abso-
lutely positioned element use the other method of sizing, expand-to-fit. The CSS specification just so
happens to support just such a feature, and specifying opposing offset properties on the same absolutely
positioned element does it. For example, to stretch content horizontally for the entire width available to
it, you specify both the 1eft and right offset properties to imply width. Or if you want to stretch an
element vertically for all the space available to it, you specify both the top and bottom offset properties
to imply height. The term imply is used here because you don’t actually specify width or height.
Dimensions are implied because you expect specifying both the 1eft and right offset properties on

the same absolutely or fixed positioned element to stretch the element.

If you want both horizontal and vertical fluidity on an absolutely positioned element, you specify all four
offset properties on the same element. Unfortunately IE 7 in quirks rendering mode, IE 6, and earlier do not
support this useful feature (IE 7 in standards mode does support this feature), but as is the case with most
problems with IE, there is a relatively painless workaround, which you observe later in this chapter.

An example of horizontally stretching an absolutely positioned element appears in Figure 11-14.

H
B
| kg = 1 [
(] sol1] L
liings Ljpds
narTinog Lxy
pAabsolute |
positicn: =k Luke;
bottomr o}
lwit; 17 Spanifing ambths 1L ard ¢igh. aflsel
Tights oF propeties ontbe came alemant imaliss width

L

Figure 11-14a

404

Chapter 11: Positioning

In Figure 11-14a, you see the main style sheet, and within it you see an example strikingly similar to the
one you saw in the source code and screenshot that make up Figure 11-13. That is to say, you have a stat-
ically positioned <p> element, and an absolutely positioned <p> element. This time the absolutely posi-
tioned <p> element will wind up having the same dimensions as the statically positioned <p> element,
and this is done by specifying 1left: 0; and right: 0; on that element to make it stretch horizontally,
for all the space available to it, the same way that the statically positioned <p> element is sized as a nor-
mal block-level element. The main style sheet in Figure 11-14a is included in the markup that you see in
Figure 11-14b.

ST PR BenT PURCE =SS0 ST KT TeD Sk kS SRR
"hitbom: S fwew owl . org TR xhEnl 1700 Y xbhiem] lestrict ., dkd '
shitnl wnT rpes" hEtps Slwewowdoerg 1T179092TknT Wil s Tang=" w1 "a
B Tt T
TR Texher faomta 1Ty abveneling gosnpr bl T L Te
=link pel="alyloahacl’ Lype='laxl/oRs’ heel="09RE77%20LQ1I114.285° ‘&
< S head®
Loy s
=B

Loven ipson A0ler 10 Jmet, conseslolner adiplacing el
= ips
gp ld='shsclobes
Lorem ipsun dzlor Sit £mct, conseThbobusr adipiscing clot,
= fpn
< f hodwr
efhemls

Figure 11-14b

In Figure 11-14c, the screenshot shows that the statically positioned <p> element and the absolutely posi-
tioned <p> element now have the same width. You'll see the same results in IE 7, but as I mentioned ear-
lier, IE 6 has other plans, which you see a workaround for later in this chapter.

Figure 11-14c

405

Part Il: Properties

In Figure 11-14c, the concept of horizontally stretching an absolutely positioned element via specifying
both the 1eft and right properties is made clear, but this example begs the question, why can’t you
just specify the width as 100 percent? That’s a good question, and a common misconception made by
beginners. The answer to this question is, when you have any block element, absolutely positioned or
not, and you apply padding, borders, or margin to it, and then give it a width of 100 percent on top of
those properties, you won't end up with the results that you expect. This has to do with how percentage
measurement works. If you recall from Chapter 7, a percentage width is determined by the width of an
element’s parent. So if the parent element has a width of 700 pixels, for example, your element with

100 percent width will also have a width of 700 pixels, and then the lengths for margin, borders, and
padding are applied on top of that width, and your element overflows the boundaries of its parent. If the
parent element is the <body> element, and the 700 pixels measurement happens to be the width of the
browser’s viewport, you'll wind up with your element with 100 percent width causing horizontal scroll
bars, because it is too big to fit in that 700-pixel width. By stretching elements with opposing offset prop-
erties, the resulting width is whatever is left over after margin, borders, and padding are already
applied, thus avoiding scroll bars.

Still not clear on how percentage width works? Try a small experiment for testing percentage width.
Take the source code from Figure 11-14a and Figure 11-14b (you can get the source code for all of this
book’s examples with the book’s source code download from www.wrox. com), and try applying a width
of 100 percent to the absolutely positioned <div>. Compare the resulting output with what you see in
Figure 11-14c. Notice any differences?

Conversely, Figure 11-15 demonstrates how to stretch an element vertically by specifying both the top
and bottom offset properties.

hody {
haakgranrd: ighkse !
ton Leps = I
ek g H
paddi = uf
H
p o
Laee: kg cctaiad = 1 AL e
by for sal1d gQrocns
padding: Spsg
ML 7101 =k 4
pPoboolute
positicn: sheolube;
= BN
ights o Eparifying anthths Lo and el aon nifsn
hotrom: o} prepedies on fhe same akeners nslies neigh

L

Figure 11-15a

In the main style sheet that you see in Figure 11-15a, the absolutely positioned <p> element now has
both the top and bottom properties set as top: 0; and bottom: 0;, which will cause the <p> element
to be stretched vertically for the height of the browser’s viewport.

In Figure 11-15c¢, you observe that the absolutely positioned <p> element is stretched vertically for the
height of the browser’s viewport.

406

Chapter 11: Positioning

SEES YRR Lenl Fidn L S TR O I M L) [IS R T B
"htbo: M fwew . wl org /TR S xhenl 17070 Y xhtm]l lestrict ., dtd'
whbtnl s mms" Dbkt S fwan o d rg TT15 2Tk =il Tang="wr "o
=Ll
TR TRy Cian Ty abreiching eonirn b L ETar
<link pel="alyloshacl’ Lype='loxl/oRs" heel=" 05977520041 010 283" F=
< head
sy
L=

Dovetn Apsun Aoler 240 Qmet, conscrlolngr odlplacing oL,
< g
en i mrmslobe s
Lorem dpsun dolor £it emet, copsecbotuer adipiscing clot.
= Fp
< oy
=l hEml

Figure 11-15b

Figure 11-15c

Figure 11-16 demonstrates both horizontal and vertical fluidity on the same element via specification of

all four offset properties.

In the main style sheet that appears in Figure 11-16a, the absolutely positioned <p> element now has all
four offset properties set, which causes the <p> element to be stretched both horizontally and vertically.

The CSS from Figure 11-16a is included in the markup that you see in Figure 11-16b.

In Figure 11-16¢, you see that the <p> element is stretched both vertically and horizontally, taking up the

whole browser window.

407

Part Il: Properties

hady |

armcegroard: Ligateel Lows

Fomt s [eana—marif
WEG ;
nuddings U

H

o

naeciying oopesing afsal propeamas om the
hottome O sAme alamet inplies dimensions.
lefkb: 0;

Figure 11-16a

SIINEETYDPRE Linl TUARDTE "= 0300 OTn HHT 1. 51
"htep: £
whilnl sl = Dl ls &

lyeads

AL SERT
Vwiw wd oog P UREShtnl L7070 A xhoml l=wtrice
Few w3 arg s 10T Subhiln] il lang=" ">

LI esrmbimblehing conleses s Ld Lles
<lipk rol="styloshock

<2 et

& bz o

e

Lypo= ' toxt foms’ oEat

hrof="DSa577RZ0EgQLL 1

Lorem ipsun dsolar £it =met, copsecketuer adipiscing eliot.
o fpn

« £ anpiwa

< ihemls

Figure 11-16b

Figure 11-16¢
408

cdkd e

Chapter 11: Positioning

The screenshot shows how both horizontal and vertical fluidity is achieved through specifying top,
right, bottom, and left on the same element. At this point you may be asking yourself, does the value
of the offset property have to be zero? No, it does not. You can use any value you like, a value larger
than zero will simply modify where the element is positioned and decrease its dimensions.

Try It Out Implying Dimensions by Opposing Offset Properties

Example 11-4. To recap the concepts at play with implying dimensions via opposing offset properties, fol-
low these steps.

1. Enter the following XHTML document in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Opposing Offset Properties</title>
<link rel='stylesheet' type='text/css' href='Example 11-4.css' />
</head>
<body>
<div id='offset-four'>
<p id='offset-x'>
When the left and right offset properties are applied to the same
element, width is implied.
</p>
<p id='offset-y'>
When the top and bottom offset properties are applied to the same
element, height is implied.
</p>
<p id='offset-four-copy'>
When all four offset properties are specified on the same element
both width and height are implied.
</p>
</div>
</body>
</html>

2. Save the preceding document as Example_11-4.html.

3. Enter the following CSS in your text editor:

body {
font: 12px sans-serif;
background: lightyellow;
}
div#offset-four {
background: yellow;
border: 1px solid rgb(128, 128, 128);
position: absolute;
top: 20px;
right: 20px;
bottom: 20px;
left: 20px;

margin: 0;

409

Part Il: Properties

padding: 5px;
border: 1px solid black;
}
p#offset-x {
position: absolute;
bottom: 5px;
left: bpx;
right: 123px;
background: gold;
}
p#offset-y {
position: absolute;
top: 5px;
right: 5px;
bottom: 5px;
width: 100px;
background: khaki;
}
p#offset-four-copy ({
border: none;
margin-right: 123px;

4. Savethe preceding document as Example_11-14.css. When viewed in IE 7, Safari, Opera, or
Firefox, you should see output like that in Figure 11-17. Bear in mind that this example does not
work in IE 6, but you see a workaround for this lack of support in the coming sections.

Figure 11-17

How It Works

In Example 11-4, you see three different examples of using opposing offset properties to imply width or
height, or both. The first example is a <p> element with id name offset-x. It is positioned relative to the
<div> element with id name offset-four, and it is positioned relative to this element rather than the view-
port, since the offset-four <div> element is positioned absolutely. To get the offset-x <p> element to span

410

Chapter 11: Positioning

the bottom of the offset-four <div> element, you supplied to it both the 1eft and right offset properties.
In this example, you also see that the value can be any measurement you like. In this case, you offset
from the left, 5 pixels, and from the right 123 pixels, which causes the element to be stretched along the
bottom of the offset-four <div> element.

The second example that you see in Example 11-4 of using opposing offset properties is with the <p> ele-
ment with id name offset-y. It is offset from the right 5 pixels, from the top 5 pixels, and from the bottom
5 pixels. Since it is offset from both the top and bottom by five pixels, height is implied, and the <p> ele-
ment spans the whole height of the offset-four <div> element.

The third and last example that you see in Example 11-4 of using offset properties to imply dimensions is
in the <div> element with id name offset-four. It is offset from all four sides by 20 pixels, which causes it
to be stretched both horizontally and vertically relative to the browser’s viewport.

This concept of stretching elements via absolute positioning is also an essential ingredient in the multi-
column layouts that I present later in this chapter. In the next section, I discuss how to make a fixed
header without fixed positioning.

A Fixed Heading

A fixed heading is pretty easy to pull off, without support for fixed positioning. You simply use absolute
positioning to make a fixed heading, and a second container element that is also absolutely positioned,
that invokes scroll bars using the overflow property that you saw in Chapter 7. Making a fixed heading
is demonstrated in Figure 11-18.

In Figure 11-18a, you see the main style sheet that all browsers will see. The <h1> element is acting as
your fixed heading for this example, and the document’s content is going to be kept inside the <div>
element with id name container. Both the <h1> element and the container <div> element are given an
absolute position, so that their place on the screen can be dictated with fine precision. For the heading,
you take the <h1> element and stretch it horizontally by specifying both the 1eft and right offset
properties with a value of zero. This will cause the absolutely positioned <h1> element to act like a stati-
cally positioned <h1> element, and take up all the space available to it horizontally. Could you just use a
statically positioned <h1> element and get the same result? You can. It is not essential that the <h1> ele-
ment be absolutely positioned; it’s just another means to the same end, and a fine example of how web
designers sometimes forget fundamental design concepts when designing a page, and actually end up
over-engineering a design. The rule for the <h1> element could be rewritten as follows:

hl {
height: 20px;
font-weight: normal;
font-size: 18px;
border-bottom: 1px solid rgb (200, 200, 200);
background: white;
margin: 0;
padding: 5px;
}

The preceding rule produces the same result. I've included the over-engineered version to demonstrate
how unnecessary properties can creep in unexpectedly. While it doesn’t have to be positioned, I'm going
to leave it that way merely for consistency with the other elements on the page, but bear in mind, it
doesn’t have to be that way.

411

Part Il: Properties

by {
macEgronds Tighis et
Tontbs leops Rapd-g=c_0
nargine O

saddings Dy

sositicois zbhoolukeg
Fomy
I'i-'|"|‘: iH

Twfhs: N;

heightz Zbhpxs
Tont-wrights voarnal;
Tomb-aizes IR
bopder=bottop: lua =olld cqlegz0o, 202, 200);
oackgrouand: whikop

mEroing UF

naddings Speg

H
Al nntaireEr
noAitinne ohEslubs

rlghts D:
bottome O

Lefb: O
oercbEIlowe kD)
aadding:s 0 TDpu;
linc-beighty 2omyg

L
]

Figure 11-18a

For IE 6 to properly stretch the absolutely positioned elements, it needs a bit of help. The workarounds
appear in Figure 11-18b.

k1 [
Wializ wepe wa=io loanlneal [ETIETHL MUY il
'
divdconlaiier £
bopd 3Ep!
Wializ eepe wa=io (loanlneal TERIIETEL MUY B LI U T B T T
hedqht: crsrossionldozumencZlonsal oS fancHeighl e Y
H

Figure 11-18b

The CSS in Figure 11-18b is included because IE 6 does not support stretching an element via specifying
opposing offset properties on the same element. As you've seen in earlier examples in this Chapter,

and in Chapter 7, a dynamic expression is used to emulate the effect of opposing offset properties in

IE 6. You simply include the dynamic expression feature, which references a small snippet of JavaScript.
documentElement refers to the <html> element, and offsetHeight is a property that is used to get the
<html> element’s, well, offset height, which for you and me means the height of the browser’s viewport.
Remember, if you use a Document Type Declaration that causes IE 6 or IE 7 to render in quirks mode, this

412

Chapter 11: Positioning

trick won’t work. If you face this situation, you'll want to use document .body . of fsetHeight instead of
documentElement .offsetHeight. See Chapter 7 for more information on quirks rendering mode ver-
sus standard rendering mode (nearly all of the examples in this book invoke standards rendering mode).

The CSS in Figure 11-18a and Figure 11-18b are included in the markup that you see in Figure 11-18c.

S ENETYPE Ll PURLTE "= 006 JOTO KHTHL 1.0 SLviclf JEM"
"https M fvwemaw] oS TR chtml L0 D shem] l-sorictadtd e
<htpl xnloe='hbtpid fwew . owsorg/ 199% zhinl’ znlslang= en'=>
ha=adie
“titlerpoeitionings it les
s1ink rel='styleshoct’ typestextioss” hrof= 0697 7R20FQl 118055 -

w2f haadns
LA |:E_I|I.'-'

' g Fiwed Needingo o
“drvw id= containper '

e
e
L
g
=S A=
L REES R
=ihtnln

Figure 11-18c

Loper fpsum dolor gik spes, oooesctetesr mdipioming elit, Donec oo
nassa. Fhascllas ost oras, malesuwadas wol, beomons culs, aharckra ac,
Lacus, 't sit anet libero, fldquam eret woluoksnas, Morbil =ras, Bunco
ot pares witcs torior sadaloes auckor. Halla molcskbic. Foellepbosgus
cibe pouria, Leiabloae ac, wlacecral =il anel, placoroos nac, aabad
Vestibelam icterduon. Jooes votac kellus. hligasm orat wolatpat.
somean dicbun doelar bl o@on.

e emreshe . Sl rar nie i wb Tenoal Tnueb Todane b Te L Duress oa w1 iE wel
rulla pharetry digqrissim. Loren igsun doloc it amet, consectetoss
edipeiming w7 ik BT iguen mursns boroar sgeb dican. Pa7 Teabassus

pellesntesqoe furpie sed scst. Ouis pon Loibesso cel ostes
rollicicadin 2liquet, denesn necoe. Hons eget quam & narin
vulpatetrs lagrwees . Maoaris dicsom, srop venseat g frinsills
wehiculs, tortor acTae dovnissom ante, id Lopercict risas smplen
st odin. Prasesent ligqula maqna, aonerey etras, facilteis at,
termentum nor, dian, Intersr sot oanet ligule quis lectus sibezndan
porta. nliguem noges ipsum, alicuct oo, scmpor weol, blawdit ac,
neses, Ltisp porsticcr “teko did arer. Ut mpce lecus, @ukitan id,
vohloula non, faueibas in, lorem. Intoger oe anco ubk maaris
rhoncns molostic. Acacom ol eslh ol lecbus Lorgoy pharelra. Fuaca
god nibh, Class amtocnt tacitl sociosae ad likors torgusznt peo
comilais noalkra, per incopooa hynonooas .

413

Part Il: Properties

IE 6 and IE 7 continue to show a scroll bar for the whole window, even though it isn’t needed. You apply
the overflow: hidden; declaration to the <html> element to get rid of the scroll bar via Microsoft’s
conditional comments that target IE 7 and earlier versions. Now the redundant scroll bar is no more.

The source code in Figure 11-18 a, b, and c gives you a layout that works well between the different
browsers, as you see in the screenshot that appears in Figure 11-18d.

Figure 11-18d

In Figure 11-18d, you can see that the heading stays in place whenever the content is scrolled. You could
just as easily replace the <h1> with a <div> there and include additional content that stays fixed in place
at the top of the page. But how do you do a fixed footer? This is covered in the next section.

414

Chapter 11: Positioning

A Fixed Footer

For a fixed footer, the idea is pretty much the same as you saw for making a fixed heading, but every-
thing’s reversed to the bottom. A demonstration of how to do a fixed footer appears in Figure 11-19.

oedy

braczkeag e carned = whilsy

fortz 14] =
marglin: Dg
padding: Ja
1
divfoankbainer |
pogiticnt akeoluks)
Lapy 0
raight U
hoteom: ipEr
Tmfeg U
e T ol 'H
pagiingy o ups
Tirms=haighits Xrung

divafoute: {
positicm: absz_pls:
bottomi Uj
Tighty i}
=kt U
beight: Sops;
fart-weighti noemal;g
Foart—piras dpeg
El—aligens :
burde-tups cpe. guelod cubip 00, 200, Z000;
backgraunds ol o
margipy A3
Padiing s SRy

1

divefookter p |
narginl U3

1
Figure 11-19a

Then as was the case with the fixed heading example in the last section, another style sheet targeting IE 6
is made with adjustments to facilitate a fixed footer rather than a heading. The technique can have sev-
eral approaches, but the principle is that either the top or the bot tom offset property can be set, and the
height of the container element must be adjusted in relation to the height of the viewport, and the height
of the footer. The IE 6 style sheet appears in Figure 11-19b.

div¥footer

wWidths ceEprossicnidesangatElonen., ol Tkt
'
i
divecontaine:
Eozy autor
ol Lons Topd
widthy cxprossioaidocunsntELlcpent. ofssctiiskk AT
beighls epras [l LT lanert ., e Heschil 33):

Figure 11-19b
415

Part Il: Properties

Again, the scroll bar for the viewport that is present by default must be turned off in IE 6 and IE 7,
just as it was for the fixed heading example in the previous section. The CSS from Figure 11-19a and
Figure 11-19b are included in the markup that appears in Figure 11-19c.

SHRAGTYEE BhaT BUAGTE "= S50 S e €11 1o0 Sk T d SRR
"Mttt e w i enra S TR hEn] LI v hem] | s ins L dbd e
<html xnlor="httpsSSwerawlarg 19249 <html ' sl lang="en'~
=g
“trtlespositioningsStitles
wlink rel="etylesheal’ typss texb/oes' aref="0SER77LE0Fo111%9 085 O
= heads
Wbl yie
wdiv id="containes '
e

cren dpEan dizlor sit amet . conssshetass pdipissing e2Tit. Nones s
racza, Phasellus est sros, mals=suede wvel, teppus quis, sheretrca as,
apd. e owik eneb |ibare, Al igoen erat volotpss. Horb sreas, Hores
et parus vitas tortor sodsales suotor, Hellas polestoe. Fellentescgue
ants mauris, tristiques ac, placerzht sit zmok, placerac snes, asto.
Yeptibulem intesdam., Dooec witae s=llus, pliques erst wo_utpat.
mcnocan dickun dolor ot Som.

W

'ﬁp:-
UL cenmends, Sed ooon DIa1 al Tees wliguel Tobarlte. Dobes o wlil el
walla phecgboa ddgnlegdnn, Sooen Jpeu Jdelot sLlU0 angs, sulpeclelug:s
adipiacing elit. kliguam cu¥Rus Loroor eget dian. Fellestesguo
e Tanbeegar borgia med srot, Bate van Tilero wel netia
sollicitedin aligquat. Acnoan nogque. Hung egol guom o maaris
T pakerbn Tacreel. Hedria dictoan, @roa sensnet s Fringilla
webiculs, torctos aaque diqoisein ence, 14 dpperdiet risos sepien
wlh oc=lioie Prossaanh Diogela e, ooy o bam, e | wi1a al,
fermentun non, diam., Inteqer pit emet liquls culy lectus Bibendon
parta. Aliguar poqae i1Tsum, aliquet ot memoer weol, blandiz as,
reEra. Stisan poctbitos Juats id osroe, Us osnte Teoas, toetron id,
wekicula oo, tEocibuee in, Llooem. Inteqaer =u moss us mearic
rhoneus npolestio. hwenoan ut oskt oo loctes btoppor pharctra. Puaeo
sed nikn, Clase saptent taciti sooioeqa md litore torgquent peo
oopusia postra, goer ipocpbos Dymornaoos.

i

AL

<l dad=' Cocler "=
(A=)

L B TR B) I

-\.'__.'i;;\.-

ER IR AEES

Rl FEES B
Lintnln

Figure 11-19¢

416

Chapter 11: Positioning

The result of the source code appears in Figure 11-19d, where you see a fixed footer that works on a vari-
ety of browsers and platforms.

Figure 11-19d

In Figure 11-19d, top has become bot tom, and the heading becomes the footer. The same concepts are at
play here as you saw for the fixed heading. So naturally, it ought to be easy to combine the two now in
one example. The next section describes how to do both.

A Fixed Heading and a Fixed Footer

The concepts of the previous two sections are now married into one example, which is demonstrated in
the source code and screenshots shown in Figure 11-20. In Figure 11-20a, you see the styles from the
fixed heading and the fixed footer examples have been merged into one style sheet.

Again, in Figure 11-20b, you see the IE 6 style sheet, which now contains styles that facilitate both a fixed
heading and a fixed footer.

417

Part Il: Properties

by |

:.II'\.:‘I:ll L] B

fonts Aps

kgl Ty

waddimay U

Ml O LUILE
(el
rights Ujf
leste
heeights L
Teanb=tmiagh
ol it b -
esriler =kt

Lackground:

.|-|rl\.| 1

padding: Tom

L

divroontalnoy
TOSATIONE

caldd g 1
li=-limivl

H

divéfooter |
poRltion:
mooktome v
raghts I
lezts o)
haeights »0
Tont-wrigh

Teanb—ml v

-

LedL=allan

nopder—tops;

Sl AT il
oaLrqlLot
el [n R T H

div#icoter o |
WACQLOE U]

H
Figure 11-20a

k1, divFrifaootor [
Wldlhz wrpirnmai
'
divason Lainar
bops 3Enme

Widlhiz e

Laginny

] " g e T

Alasullaef

%
(TR
flmeg

LR IH Li®

porE s
TS Py B

1

ADSC_aTTF

Ls Zeig

dedathd e ’d ey

e

k= =ornn
JE§
HE] =] B 1 =

hedghts cxpoossicn

H
Figure 11-20b

418

B

7=
'
FIER

Chapter 11: Positioning

Then the styles from Figure 11-20a and Figure 11-20b

SLENETTEE BT BURLTC =) T K HTH .
"hbtps e w] arg TR
Zhtpl smloe='httpi/Swee w3 orgd 199% zhtml
wha=adin
tiklesporitionings title
slink rel='styloshocl’ types"toxtsc

are included in Figure 11-20c.

I oSibsigt s ERT

hetml i ndshiem] l=-grrictodrd ">
#nlzlang= en'>
5" heof= 096T7TR20E0ll20.c5a’ =

w2f haadns
< ez
B Timed Hesding s
«diy 1d= —ontasner e
T
Lorer psum dolox ik smes, conescciptuesr sdipicoing elit. Donec cw
naasa. Mhaacllus esl eros, wolesuada wol, Lewsos cuis, sharebva ac,
Toacmia. LEoath o aneh Tikeroo 27 iguan srab dnlobaes . Mokl o sras. Rares
el pares wikos Lorior sodales aeslor . ¥alla melesbic. Fellepbosgoe
pnbes mer TAa, briAklaoas en:, T O B L T S et P R
Vestilkolom irterdon, Domes vosse tel lew, aliguan ecst soalatpet,
Apngcarn i ihon ddaTor al =en,
i
<P
Ue eomnedie . fmed mor nied st Teooal iooer Toboet e, Dones s slit el
rulls pharstrs diqrissonm. Loren iosen dolor =it osmest, consectoetuaes
ciipilscing clit. ALiguanm cursus bertor cgobk diam, Folloakesouc
prlleotesqoe turpic sed erat. Duls pon libooo vel oetesn
sollicitadin aliguet. &cncan noeous. Hone sgob gquam a maaris
Pulpeileis laorasn. vaonr Ts dicoion, eros Yeitaial s Teingilla
vohndionla, bortor acgac dionissim oance, id imporoick risas sopdosm
whoowalin, Pramaan. Tigula noagha, nohinmy @llaa, Tacilizsia al,
Fermescgn nor, dian, Trtessr v anet Tigels quis leccas Bhendoan
prok La. Aldguen fegios psion, ol Zgael s, senper Yal, Llandil ac,
neara. Dhian porctitor Joebe dd srce . UF osnse Teoow, catrun id,
wehilculs oo, ssucibas in, lorem, Zhteger oo ante ut naarcis
rhonoue noleetis. Aensen pb Bet st Tectos teasor soharebea, Foscs
ged nibh, Claes aptent tasit: socioeae sd Likore tocquent peo
conusis nestra, per inccptos hemchacos.
i
w f1ars
div 1d=" foaoblar ">
p
A Ilved Ioolaer.
e
< dlare
e FEE P
Zihtnln

Figure 11-20c

419

Part Il: Properties

You see the result of the merged fixed heading and fixed footer examples in Figure 11-20d.

Figure 11-20d

In Figure 11-20d, you can see that with just a few tweaks, you can have both a fixed heading and a fixed
footer in your document. In the next section, I continue this style of layout with fixed side columns
instead of a fixed heading or a fixed footer.

420

Chapter 11: Positioning

Fixed Side Columns

The ideas at play for making fixed side columns are along the same lines that you've observed in the
previous three sections. With just a few modifications, you can have fixed side columns instead of fixed
heading or a fixed footer. The source code and screenshots are in the collection of figures that together
make up Figure 11-21. You begin with the main style sheet that’s presented in Figure 11-21a.

LAl EQTONRDY Ligantgml Lo

beady |
L]
“eant s AL EHtiEe—mE i T
tmibgline Oy

vadding: 1;

H
div¥leit,
Alwxeighl
soRitiom: sbhaoluiss
Loms Oy
bottome o)
wildbhis [N IR
LDACEQrounIll ol te)
padding; b
I
Alrelest
le=te i3
sorder—cighe: Ipe =olid eghpzna, o SIHE

o .
w15
pighlz ;
rorder=left: lpx solid cgbj2in, o0, <ong;
b
glivvoontainzy
FUEE] NIRRT PETEN
oy
i I -
bottome o)
lwsts 71 pog
crzrtlowe auckor
maddino: | Wt
linar-hnighby e

L
]

Figure 11-21a

421

Part Il: Properties

In Figure 11-21a, you see that instead of an <h1> element for the heading, and a <div> with an id name
of footer for the footer, you have two <div> elements with id names left and right. Common style sheet
declarations that both the left and right <div> elements share are grouped together, and additional rules
appear for declarations that are unique to each. Again, the concept of absolute positioning is to create
elements that remain fixed in place when the <div> element with id name container is scrolled. Like the
examples that you saw for the fixed heading and the fixed footer, you use opposing offset properties to
stretch each of the absolutely positioned elements vertically, which is done by specifying both the top
and bottom offset properties on all three absolutely positioned elements to imply height. You must also
alter the container <div> element so that there is enough room for the side columns; otherwise the side
columns would simply overlap that container <div> element. You do this by setting the left and right
offset properties to 211 pixels. This figure is arrived at by taking the width of the left <div>, for example,
plus its left padding, plus its right padding, plus one pixel of border, which together add up to 211 pix-
els. The remaining styles present in the style sheet aren’t really important, since they’re really just cos-
metic and don't effect the overall concept of making fixed side columns.

Of course, as you saw in previous examples, specifying opposing offset properties to stretch an element
doesn’t work in IE 6. You correct this deformity by supplying IE 6 a style sheet all its own, as you did in
previous examples. This style sheet appears in Figure 11-21b.

1iveleit,

div¥right !
Fasighh s wopir=ma gilie:n vl Temen Lo Tasliie sl r

r

divdoontainer +
widthy cxproosicaidocunsnzElopent.»izscthilih T1ib]y
boight : cxprassiangdan LT D, o Tl ot R] PR

Figure 11-21b

The IE 6 style sheet makes similar adjustments as you've seen in previous examples. The two <div>
elements with id names left and right are stretched for the whole height of the browser’s viewport

via a dynamic expression that calls a small snippet of JavaScript, which provides the height of the
documentElement, or the <html> element, via its of fsetHeight property. Remember, this technique
does not work in IE 6 or IE 7 when those browsers are in quirks rendering mode, nor older versions

of IE prior to version 6, and must be replaced with document . body . of fsetHeight, instead of
documentElement .offsetHeight. The style sheets that you saw in Figure 11-21a and Figure 11-21b
are included in the markup that you see in Figure 11-21c.

422

Chapter 11: Positioning

SHEOCTYFE BT PURBLTS "= 00500 700 S0H L0 Shriahd SRR
“hitg
“htpl axmloe='httpid A w300
haspdir
stitlesporitionings titles
wlink rel-'styloshoot’ types'textloss” heefs 096%77R20E0ll2l.o5s’ A=

L arg TR shiml LA nd shem] lemtr iot odbd e
pi1d98 bl wnlilang= en'>

El

i hmadn
= = LA T
iy dde Jatk s
Loit side ooluama.
=l
adw id= sicht’ =
Right alde solunn.
SRR
=div d="conbalnar "=
e
Lorem Dpsum dolor pit enmes, coneectetesr edipiscing elit, Donec e
naara. FheaeT Tas et mros, nelesaeands wel o Leopos aais, pgharsbea oo,
lwens, Ut ogit spet likero, fldgquar eret wolokzss, Yorbi erss, Boos
ot parus witas toroor sadesles awctor. Halla molcostic. Follenpkosque
enbe meuria, Frimbigos s, plecerat smib oames, placsrss nec, ante.
Vestibolam interdun, Dooes votas telles, pliguam ecat wolatpat,
somean fickun dolor gt seom.

e
DL el . Sead nol nisd al lao aligoel Tobmoelis. Dobes g wlil vel
rulla pharctra digrissim. Lorcn igsem dolor it amch, consccobotuacy
widipdacing el il Bl Iguen car=ns Lor ooy agel dion. Pallaaleassaa
pel lastearoe Farpie s seab. Mois roe 1 hseoe ow]l oastes
el licicmdin aligoei, Aaboaan teside . Hiins mgel giam a aaak i=
vulpatetrs lagrwees . Maaris dicsom, scop venseat g frinsills
wehiculs, tortor avTae dornissom ante, id Loapercict risas smplen
et oeedin, Prasesss Tigula megoe, nooenmy wibes, facil eis st
termentum nor, dian, Intersr sot oanet ligule quis lectus sibezndan
porta. Lliguam nequs ipsum, aliruct o2, sempor wol, blandit ac,
nuses, Ceism porstitcr Soepto id sroce. Ut pnse leoeow, cobtcounoid,
FoAlCULR nich, faucibas in, loxeom. Intoger ow ants ut maacis
rhoncus melostic. Aoncon ol eal ol leslas Leosor oharebra. Paaca
zod nibh. Class aptont tacits sociosdge ad Litores torguent per
coaunis nealra, per incopocs hynoaooos.

e
- ddlrs
Lo RHE RO

=/ htnls
Figure 11-21c

423

Part Il: Properties

Again in Figure 11-21c, the redundant scroll bar that IE 6 and IE 7 include is nullified with the
overflow: hidden; declaration. Now IE 6, IE 7, Safari, Firefox, and Opera all produce the same
results. The output from IE 6 as well as Safari appears in Figure 11-21d.

Figure 11-21d

And to wind down the examples of fixed headings and footers and side columns, the next section
demonstrates all of them together in the same document.

A Fixed Heading, Footer, and Side Columns

In this example, you put together the examples of the previous two sections to get a document with a
fixed heading, footer, and side columns. You begin with the style sheet shown in Figure 11-22a.

424

Chapter 11: Positioning

body |
nackgroard: ligthea Lo
Tonts lopw pspa—asr 13
makging T
paddings Uf

H

ki,

divaToclar
opositicn: choolubos
Elgiila Of

Lozty g
mwemgroands white;
marcing Lf
puddings Spef
FRighte Clipees

i

di vt Tomrbar
ooktom: U
Tonbmm i am s
Lanb-alion: H
Dobdair=Lop: Tpx Al al =g 20l 20

¥

LL |
bLoms s
Tont-wedightt no
font-sizos 1Eg
border-bottomr lox solid oabdeuo, 20D, 2uoyp

H

div¥lest,

diveright {
positicns eheolubte;
bz B1pe
aobbom:s o _jpus
widbhes I00px
Dackground: whii b
puddiomgs Spur

¥
divlest |
Lait: 0
porder-rights Lo molin citfeou, =ul, Saulg
='- - .
divéright |
rightbs Of
norder-1eftr Izw seltd roRdaieg fn, 2dp
='- .
dhyson Lai e
ppgitinn: ehenlure;
Lags Flaeg
cightts o Llpxr
oobbom: Slpxs
Lest) 2l.pxy
araEIlows b}
padoingy b Liposs
Lina-Heighs i Fomg
div¥éfootar p £
marcine g

5
i

Figure 11-22a
425

Part Il: Properties

No surprises here. The main style sheet in Figure 11-22a makes adjustments to the container <div> ele-
ment to accommodate both a heading and a footer and side columns. You'll note that the container <div>
element is offset from the top and bottom respective to the collective height of the heading and the
footer, that is to say, the height property, plus top and bottom margin, border, and padding, and from
the 1eft and right relative to the collective width of the left and right side columns, which is the
width property plus left and right margin, border, and padding. The side columns are also adjusted
from the top and bottom with respect to the collective height of the footer and the heading. With the
exception of these minor tweaks, the concept is basically the same as you've seen in previous sections. In
Figure 11-22b, you see the IE 6 style sheet that’s required to bring IE 6 on par with the output seen in
other browsers.

k1,
div#toster |
widkh: arprearicnldaminearcT are rt maA Fis
L
I
T
divdrigqht |
mighhtz uxp . (el L= Teann LLn " Tan pichl., = A3%;
'
I
divecontainer
boms i
- -I i
widbhy evpressiem{onninencF |l epen . ot -ne i I il
Eeights ewvporases [l e nk T lenerk se==l1eirht o b g

Figure 11-22b

In the IE 6 style sheet that you see in Figure 11-22b, you again see a marriage of the concepts that you've
observed in previous sections, only now you see measurements that accommodate both side columns, a
heading, and a footer. The style sheets in Figure 11-22a and Figure 11-22b are included in the markup
that you see in Figure 11-22c.

426

Chapter 11: Positioning

' SHOH .0 Rlxials JEN"
e o TR ehtnl Lirend shem] l-goriot o dbd e

SIEOCTYPE Liuml TUBRLTC "= 7 0WE00 S
"https
<htpl xnloe='hbtpidiwewows oo 1998 xhtel’ znlslang= en'=>
=i
“titlespoeitioningsStitle>
wlink rel='sbyloshccel’ types'text/oss” heef= C96S77R2Z0L0LIZE.cEs’ =

B T W]
iy
' g Fiwed Needings s
=dzy id='lett s
Leoft sice oolums.
ERy FRLEY
adzw id- zight’ =
Tight alde solunn.
o i
=div ld="conbainar "=
Lpsr
Lovenm lpaan dolor s1lb ones, copsaclolioor adigdacing elil. Doneo i
nHArEa . FleiaeT Tas met mrons, nelesaals wsl . Lensos asnis=, zabarsbra wn,
Taoma. LE ait amet Tikero, 57 dguar eret colubzes, Yorhi osrss, Foos
wl peitich Wikes Lod Lo osondales wilalos o KalTa e lealie. Feal Tei Ledgion
ente peurig, trimptigoee sz, plecerat sitoamess, placerss sc, ante.
Yestibulam interduan, Dooes vozac telles, Rliguoan ccat volatpat.
Amngart dicton doloar gt =s=mn.

Ut copnzdo, Eo0d non nigi ek leo aliguek lobootie, Cones 2 elit wel
rella pharctrz diqriszs:w. Loren insum dolsme 5it amck, consectotaer
céipiscing elik. Aliguon cursus Lorocor egel dion. Pellaabesguc
pollentosgqae turpis sed erat. Dels non libows wol metes
solliciiadin aliguet. Acnean negue. Hine egel giam a naaris
sulgatets Tauraac. Maur b= dicoon, wras varacal s Trinsilla
vohloula, Lorior acgae dignissin ance, id ingerdicl risus sigicn
etoesl o, Prameaat TigoTa magre, normomny @l bas, Tazilisia at,
Fermasnsgm mer, dian, rteser g0s amet ligele quis lecsgs B bsadon
prsk a. Aldiguen faeegie SpEian, el igaal we, smsnper val, Llaadil aa,
nuara. LEian porctibor Joebo Gd sroco. UF snce Tecowe, cobrun id,
wehiculs ocn, Saucibas in, lorem, Zhteger oo ants ot maacis
rhoncos moelestis. Asneen ot set st Tectos bepos pharetra, Foscs
ged nibh, Clazs aptent taTits sociloeqr ad Litcre torquent peo
gconusic nostra. per lnoccpoos hyDoaoocos.

< Sl
sdiv Ld=' Tooler "=
e
A Tlwed Soeler.
e
=l
L EH BT

ihtnln

Figure 11-22¢ 427

Part Il: Properties

The output that you see in Figure 11-22d is what results from the source code in Figure 11-22a,
Figure 11-22b, and Figure 11-22c.

Figure 11-22d

In the next section, I discuss how you can control layering of positioned elements with the z-index
property.

The z-axis and the z-index Property

The z-index property is used to control layering of positioned elements along an invisible z-axis, which
you might imagine as an invisible line coming out of the computer screen. The following table outlines
the z-index property and its possible values.

Property Value

z-index auto | <integer>

Initial value: auto

428

Chapter 11: Positioning

The z-index property controls elements’ position on along the invisible z-axis, if those elements are
positioned relative, absolute, or fixed. The concept of the z-axis is used to create dynamic applications
like pop-up menus. The z-index property is demonstrated in Figure 11-23.

esdy
Emazhkgroing: wlabwzl liva;z
1
div
pasiiiont abnolpoos
widlly: 1000w
hooghts 10maxs
Eorders Lo @olly ol ool 200, ZO00;
J..'.- PLOIT oSOy Lol ml il i REL L

—roE-onaoites oL, g

R R i el STt 'Rk ol Wl S (Rl Rl Rt o PLE R TR
£iltmrs oo ds T muge T ot T [Pt Sy i onei by ¥
! 'l LS ol A
PR T ;
vl i 1hazg
l
divfenm £
backoround: ks
Lgps 1Dpeg
dofioe 1ilzas
I
divaten |
bamkomoundi mhebLlu=g
bigpis A1
detos Uz
¥
div@thras 1
EBeazhgromimids we” Towgramnag
Lajps ANesg
lefior Z0zoxg
1
divdzaus |
bFackrraind Peinleg
tope GLpor
Tefe: dlzx;
]

Figure 11-23a

In the main style sheet in Figure 11-23a, four <div> elements are absolutely positioned to the top and
left; each is increasingly positioned 10 pixels more from the top and left from the last so that they are
overlapping, but each of the overlapped elements are still visible. For all of the <div> elements, the dec-
laration z-index: auto; is supplied, although since this is the default value of the z-index property,

it does not have to be provided at all. The style sheet in Figure 11-23a is included in the markup in
Figure 11-23b.

429

Part Il: Properties

SHENGTYFE Beinl PURLTS "= S8 5087011 KHTH L NGl SRR
"htt s Swww ., wl org TR xhtnl L0 DS sheml l-s-rict . obd '
Shtme xmloz= hbtp!y Jwew . ws . oorg/ 1995/ x0tn. xplilang= con =
head
ctitlesz o inoersseitles
=link rel="styleoshecl’ Lype="toxidoss’ heel= 0O6F7T%20001123.083° o7
<7 hoade
= b.n£1:l'.-

div id= ome'wSdle

sdiv ld=" Dot e d i

il Q=" thram vl ive

sdiv ld="four e ddiv
R BERS Ko

=i hknl
Figure 11-23b

In Figure 11-23c, you see how the z-index property with an auto value works. Each additional element
in the document that is positioned absolutely has a higher z-index value than the last, so the <div> ele-
ment with an id name of one is positioned at z-index: 1; on up to four.

Figure 11-23c
In the next section, you see how to control the behavior of the z-index property with an integer value.

The z-index Property with an Integer Value

To control the layering of elements in a document, all you need to do is supply an integer value to the
z-index property. In Figure 11-24, you see the layering of each of the positioned elements is reversed
from what you saw in Figure 11-23c.

430

Chapter 11: Positioning

pody

Esazlg e il ; Ula ezl livaz
¥
[SERTEY
pusition: absoloos;
widlle: 1070w
hcighits 120mes
Brclar = Dosw e’ 1 g 00 200,
3 102 QLo Lo lmyy U

moE—opacilye 0.7
dizronoih wrzprizlory bilozu
Tilbers troaidiDEImeqeTrene Sonr
- . .

D WIAT LAY pronclLy

divdooe |

bahgrs 1 k
taps

Ttz 11

Z=lindax: 4;

t
dilvdivn
Eackdiround) Zichiblucs
Lojps 0Kz
letoy iz
a-indexi 3
I
div#threes |
Lackaround) pe_Lomegoocny
tops lip=g
latrs =iaw
w-inmdeny A
¥
div#fogurs |
Ereazlgromimds emgeg
Lajps Slpeng
Tz AN

F-lndoMe H

t
Figure 11-24a

In the main style sheet that you see in Figure 11-24a, you explicitly set the z-index of each of the four
<div> elements present in the document, giving the <div> element with id name one the highest
z-index and the <div> element with id name four the lowest z-index. The style sheet in Figure 11-24a

is included in the markup that you see in Figure 11-24b.

431

Part Il: Properties

SHENCTTYEE Bein] BURLTG "= 5300 701 KA L0 Shviohd SERT
‘het o f e w) org S TR xhtnl L0 nd sheml l-popict . oed '
“htnl amloe='hktp: s Ao s o 1925 notel’ xple:lang= on' =
< Razad
vl lere-indaa LI ley
=link pel='sbelociboel’ Lype='Lexlicas” heael= COETTRZ0L011Z4 283" 7+
Erl RYSTTS b
by

=diyr 1d- oo e g

. R B e = KA T

adiyr id=thzoe safdive

sdiv ld= Towur e sdivs
Rri REFE R

= htnls
Figure 11-24b

In Figure 11-24c, you can see that the layering of the <div> elements is reversed from what you saw in
Figure 11-23c. The <div> element with id name one is now on top, and the <div> element with id name
four is now on the bottom.

Figure 11-24c

Although I presented the z-index in Figure 11-24a with z-index values that ascend from one to four,
you don’t have to keep the values sequential. You can have any z-index value you like, 1,000, even
10,000, if you deem it appropriate. The browser will sort the highest z-index value as being on top, and
the lowest on the bottom where elements are layered one on top of another.

432

Chapter 11: Positioning

Layering Nested Elements

Nested elements take on a different behavior where the z-index property is concerned. Nested ele-
ments behave like z-index is set to auto, and the integer value is ignored. Take for example the code
presented in Figure 11-25.

In the main style sheet, you see something similar to what you saw in Figure 11-24a, with the exception
that all four <div> elements are offset from the top and left ten pixels. This is done since the elements
are now nested one inside of each other, as you can see in the markup in Figure 11-25b.

oedy
Backascundl _sokkrsl Lo

1

diwr |
ESBELELSRT =g ki
widthl Lulpzue
height 1odme;
Rovedeesy g 201

PoVlor PrOpr mTury aral P Rl et~k N

Lops DD
Jefc: Llun;

1

divdcoe
background : | -
T=LlROcxK1 i}

1

divdtwn |
backgrounds 7 obrblos;
Z-LmOsxED =]

]

div@thramn |
backoround: we’ Tongras
s=linday s 2

t

[B RTE S AT
backorcund: arcnocs
e Dt

1
Figure 11-25a

433

Part Il: Properties

SIEOCTYPE DLl TUBRLTC "=/ 0WESS/OTO ¥

"httz

St w

<htpl xnloe='httpi s owww Wi, orgd 199% /xhoml

Chasadi
titlesrg-indax<seitles

wlink rel-'stylesacet’ type-
= headn
bl = T
iy Ld=" ones '
=oiy id='two'w
gl id= ' Lhres s
sl fd=" Toar "=
S
oS R
w i ivn
s EREE
Er RHFE R
Zihtnln

Figure 11-25b

HUH

1.0 Rhrickd JER
Hoehtnl LA nd shem] | =-m=r
#nlilang= on'>

i S T

g

‘text/oss” Ruel= 09LEYTAEDECLLlILS.oEs

In Figure 11-25c¢, you find that the z-index is being ignored; the <div> element with id name one is still
on the bottom. This fulfills the rule that an element’s descendents cannot have a higher z-index than

it does.

Figure 11-25c¢

The IE 6/IE 7 z-index Bug

IE 6 and IE 7 support the z-index property just fine, but both browsers have trouble with the z-index
property in certain situations. It doesn’t take a vary complex design to invoke these bugs either, so any-
one looking to utilize positioning in a layout should be aware of how to spot and crush these bugs. In
the following source, you actually see two IE 6/1E 7 bugs. The first bug has to do with z-index stack-
ing, and the other has to do with spacing between <11i> elements. The example in Figure 11-26 demon-

strates these bugs.

434

Chapter 11: Positioning

b=y |

sackoroundi linhzysllow)
i
ul o

1 at-anyle: nareg

widths #lilize;

sk

veibg iz Fpexg
poallion: pelalive:
widths 2000a;
fcriglaihs Zilow;

dlv {
tackoround) liahiblez)
=arder: 1pd o8s i da g

TOSLITIORE 353C_U0TC?
g—inchexy

Tyt I R

leefts Sipe;
heighbzs I0gx;
widths *Llise;

Figure 11-26a

In the main style sheet you see that I've set up a list, where the <11i> elements are relatively positioned, and
the <div> element is absolutely positioned. The style sheet in Figure 11-26a is included in Figure 11-26b.

SIEOCTYPE baml PUOBLIC "=00WEC/SOTO XHTHL LD Stzichs 7EX'
"https 7S e w
<htpl xmloe='httpi /o, wi orpd/ 1998/ xhtel’ xplilang= en'>
ha=udn
“tielesp-indexs eitles
=link rel-‘stylcsocet’ twpe-'textsoss” hoef- C¥LEYVARUDECLLlZb.oss' e

irg S TR shenl LAnnd shem] l=—mmr ot e d e

L T B
oz
wiyl=
w1
HES RLER RS B
L A

=lissslis
A BT
clivs1im
ol
L SEE R

i htnls
Figure 11-26b

435

Part Il: Properties

In Figure 11-26¢, the problem becomes clear. In IE the absolutely positioned <div> element is positioned
correctly where its parent <11i> element is concerned, but incorrectly where the additional <11> elements
are concerned. IE also has a list bug, where if an absolutely positioned element appears in an <11i> ele-
ment, additional space is included above or below the <1i> element. Luckily, both of these problems
have a fix, but they aren’t pretty.

Figure 11-26¢

To correct the z-1index bug that you see in Figure 11-26, you have to manually z-index all of the ele-
ments involved. That is to say, beginning with the first <1i> element, assign each a z-index in decreas-
ing order. So the first <1i> element would be four, the second <1i> element would be three, and so on
to the last <1i> element. This is demonstrated in Figure 11-27. There are no changes in the main style
sheet from the CSS that you saw in Figure 11-26a, so you begin with the markup in Figure 11-27a.

In Figure 11-27a, you see that I've applied this fix inline, since I didn’t believe that it would be any better
to create a unique id for each <1i> element, and then apply each z-index in the external style sheet.
You'll see that the <div> element doesn’t need a z-index at all. Since it is a nested element, it has a
higher z-index than its parent, and the z-index problem that you see here is with the z-index of each
<1i> element, rather than the <div> element.

436

Chapter 11: Positioning

STENCTYPE Beml PUOBLTS "= 0WE0SAOTOD KHTHL LU0 Shrich? JER'

"http: S wd L org S TR xhtn] LDy shem] l-gmrict o fed "
<htpl amloe='httpi o, wi orgd 19989 2htel’ zplilang= en'>
haspd
“titlesp-indaxs eitles
«link pel='styleshcer’ type-'textsoss” hkooeb= 08LSTTLIDECLIZ2V.osst s
=/ keadns
bl - =LA
L
11 skwvle='z indexy Cp' s
L8 RLETRES bt
L R
«=li sbvlo='z-odmdew: Hi =sflis
=1i skyl goindia: St Sl
wli ey les="roindex: 1 W7 G0
lele
R REF Eo
=l htnls

Figure 11-27a

Figure 11-27b

As for the <1i> spacing bug, there is only one known fix: to make the <1i> element an inline element
with the declaration display: inline;. Since this would have adverse effects for other browsers, you
need to apply the fix to IE only (via conditional comments), and to avoid the content collapsing, you
need to nest a block-level element inside each <1i> element, like this: <l1i><div></div></1i>. The
nested <div> element prevents the content from collapsing, as would be the case if the <1i> elements
were inline elements.

437

Part Il: Properties

Try It Out The z-index Property

Example 11-5. To review the z-index property, follow these steps.

1. Enter the following XHTML in your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>The z-index</title>
<link rel='stylesheet' type='text/css' href='Example_11-5.css' />

</head>
<body>
<div class='slide'>
<p>

The z-index property controls how elements are layered along an
invisible z-axis. By default, elements are layered automatically.
The first instance of an absolutely positioned element results in
a z-index value of one, and with each subsequent element, the
z-index is increased.
</p>
<div class='container'>
<div class='zauto zone'></div>
<div class='zauto ztwo'></div>
<div class='zauto zthree'></div>
<div class='zauto zfour'></div>
</div>
</div>
<div class='slide'>
<p>
You can control the z-index explicitly, however, by providing an
integer value to the z-index property.
</p>
<div class='container'>
<div class='zauto zone' id='five'></div>
<div class='zauto ztwo' id='six'></div>
<div class='zauto zthree' id='seven'></div>
<div class='zauto zfour' id='eight'></div>
</div>
</div>
<div class='slide'>
<p>
Nested elements handle the z-index property differently. Descendant
elements must always have a z-index higher than that of their
parent.
</p>
<div class='container' id='nested'>
<div class='zauto zone' id='nine'>
<div class='zauto ztwo' id='ten'>
<div class='zauto zthree' id='eleven'>
<div class='zauto zfour' id='twelve'></div>
</div>
</div>
</div>

438

Chapter 11: Positioning

</div>
</div>
</body>
</html>

2. Save the preceding XHTML source code as Example 11-5.html.
3. Enter the following style sheet in your text editor:

body {
font: 12px sans-serif;
background: lightyellow;

div.container {
height: 132px;
position: relative;

div.zauto {
position: absolute;
border: 1px solid black;
width: 100px;
height: 100px;

div.zone {
background: purple;
top: 0;
left: 0;

div.ztwo ({
background: orange;
top: 10px;
left: 10px;

div.zthree {
background: magenta;
top: 20px;
left: 20px;

div.zfour {
background: yellow;

top: 30px;
left: 30px;
}
div#five,

div#nine ({
z-index: 4;

}

div#six,

div#ten {
z-index: 3;

}

div#seven,

div#eleven {
z-index: 2;

439

Part Il: Properties

}

div#eight,

div#twelve {
z-index: 1;

}

div#nested div {

top: 10px;
left: 10px;
}
div.slide {

float: left;

padding: 5px;

width: 200px;

border: 1px solid rgb (200, 200, 200);
background: white;

margin: 5px;

height: 400px;

4. Save the preceding style sheet as Example_11-5.css. When you run the preceding source code
in your browser, you should see output like that in Figure 11-28.

Figure 11-28

440

Chapter 11: Positioning

How It Works

In Example 11-5, you saw three fundamental concepts to the z-index property. In the first example, you
saw how when there is no explicit z-index defined, it is defined automatically, and each subsequent
element is positioned higher than the last one.

Then, in the second example, you gave each of the elements an explicit z-index; starting with the <div>
element with the id name five through the <div> element with id name eight. The <div> element with id
name five is positioned highest in this stack, since it has a z-index of 4, then each subsequent <div> ele-
ment is stacked lower, all the way to the <div> element with id name eight, which has a z-index of 1.

In the third example, you see how the z-index is ignored when it is placed on descendant elements, since
descendant elements must always have a higher z-index than that of their parents and ancestors.

In the next section I demonstrate how to apply positioning to some real-world examples, such as verti-
cally aligning content and multicolumn layouts.

Other Ways to Apply Positioning

Positioning is a powerful tool that enables you to create applications in web-based layouts from the sim-
ple to the very complex. In the following sections I examine a couple of practical applications of posi-
tioning in website design, starting with vertically and horizontally aligning content.

Horizontally and Vertically Aligning Positioned Content

The following technique is used to horizontally and vertically center content in a web browser, although,
it could be easily adapted for other alignment scenarios. The technique is demonstrated in Figure 11-29.

In the main style sheet in Figure 11-29a, you see two fundamental concepts coming together. The <div>
element with id name dialogue is positioned absolutely, and then offset from the top and the 1eft by 50
percent. This is one of the few places where percentage measurement is actually useful. Then the top
and left margins of the <div> with id name dialogue are adjusted in the negative by exactly half of the
element’s collective width and collective height. So the top margin is set to a negative number that is
exactly half of the sum of the top and bottom border-width, padding, and height values. In this case
that number is 112, so half of 112 is 56. Then the left margin is adjusted in the negative by exactly half of
the element’s collective width, or the left and right border-width, padding, and width values, which
comes to the sum of 212, half of which is 106.

The style sheet in Figure 11-29a is included in the markup in Figure 11-29b.

Once the source code in Figure 11-29a and Figure 11-29b is rendered in a browser, you get output like
that in Figure 11-29c¢.

441

Part Il: Properties

Bizschyr
rackground; lisatyel o
omt e -pX E305 ZCErlil]

Iy

[ERREE S R Y FEE TR |

somitioms HbealoaTe

=1

widbhe 200z
wodghte JUpes
e Egronbiais el Tivag
rordor: lper solid o«
Loips S0&;
Lofts Divg:
TAaraing Lhps 0o gl B |
madddngr Loy

i

h

(L)
mErain: i

Figure 11-29a

SIUEOETYEE el BUBLTE "= S0 300 71101 2HTH L Berich s FEES
"htt o M dwew.wl . org/ TR xhtnl Lo nd shem] l=gtriat odbd e
<htel xnloe="http: S Swewowd oo/ 1999 xhtnl’ xplslang= en's>
<head
“trtlesVertical and Ezcizoptal Alignnenc<stitles
wlink pel='styloshoet’ types'textloss” keof= 0ORSTT7LI0ECLIZ2O9.oms’ U=
M T
by
“dir id="dialagua»
|:rh_'h
The disloqoe Elrpdivest: elenens i sliqoed versicslly and
Ezrizontally, na pathber what che size of Che Crowssr
wineon.
B
= rdiars
Tl
“ihtnln

Figure 11-29b

In Figure 11-29¢, you see that the <div> element with id name dialogue is centered both vertically
and horizontally in the browser window. Having seen this technique, you might wonder if this can be
achieved with variable width or variable height content, that is to say, have a <div> with id name dia-
logue that doesn’t have a fixed width or height. And the answer is no, the element this technique is
applied to must have a fixed width and height for this technique to succeed. For the overwhelming
majority of cases, however, this isn’t a problem. You can always overflow content, and provide scroll
bars if necessary with the overflow property.

442

Chapter 11: Positioning

Figure 11-29¢

With this technique, you can create dialogues for your users that pop up layered over other content, for
example, as shown in Figure 11-30.

You can make the <div> with id name dialogue a fixed position element, and you'll have a dialogue that
stays in place as the user scrolls. This technique is typically coupled with JavaScript to create pop-up
dialogues, and those despised pop-up advertisements that come floating onto the screen from nowhere.

Unfortunately, pop-ups like this have many, many legitimate uses, too, so browsers are unable to block
them.

Figure 11-30

In the next section I discuss multicolumn layouts.

443

Part Il: Properties

Multicolumn Layout

Multicolumn layouts are the crown jewel of web design. Multicolumn web design is pretty ubiquitous
and, thankfully, they're easy to crank out too. Earlier in this chapter I demonstrated how to make fixed
side columns, and fixed headers and footers. The techniques I discuss in this section are very similar.
In fact, you'll see some familiar techniques from those earlier examples at play in the ones that follow,
with the difference being that these designs feature no “fixed” position elements, and are designed to
be scalable.

A challenge of web page design in making pages that work on a variety of platforms, operating systems,
and viewing environments is that different environments hold different challenges. One challenge in
particular is creating fluid designs that function on a variety of screen resolutions. A typical goal today
is to design for a minimum, 800 x 600 screen resolution, and scale up if the resolution is higher. Thank-
fully, the number of people still using an 800 x 600 screen resolution is diminishing all the time; you can
expect to see about 10 percent of your audience using this screen resolution, and less than a fraction of a
percent are using a lower screen resolution, with the majority of people at 1024 x 768 or greater. The
designs that I present here scale down to 800 x 600 as the lowest screen resolution threshold, and up to
1024 x 768 as an upper viewing threshold. In Chapter 7, you saw that the min-width and max-width
properties are used to define thresholds like this.

So without further ado, the first example of a multicolumn layout that I demonstrate is a simple two-
column design. This is demonstrated in Figure 11-31.

In the main style sheet in Figure 11-31a, you see that the <div> element with id name container contains
some groundwork for the multicolumn design. As the id name implies, the container <div> element con-
tains the elements that will come together to create the two-column layout. It is given a relative position,
so that the absolutely positioned left column <div> positions relative to it. It has a lower width threshold
of 600 pixels, and an upper threshold of 1,000 pixels, so that the design can scale up and down, as neces-
sary, to accommodate changes to the window size, or the user’s screen resolution. The element that
holds the document’s content is the <div> element with id name content. It is given a left margin equal
to the left column <div> element’s collective width, which includes the sum of that element’s left and
right margin, border, padding, and width. Thus, the framework for a two-column layout is made. In
Figure 11-31b, you see a style sheet that targets IE 6 and less.

In Figure 11-31b, you'll recognize the dynamic expressions from both Chapter 7 and earlier in this chap-
ter. To emulate the min-width and max-width properties, you apply a dynamic expression to the con-
tainer <div> element. When the width of the browser’s viewport is greater than 1,000, the width of the
container <div> element is set to 1000; when it’s less than 1,000, but greater than 600, the width of the
container element is set to auto; and when the browser’s viewport is smaller than 600 pixels, the width
is set to 600 pixels. The second hack present emulates setting opposing offset properties to imply height
for the left column. The style sheets in Figure 11-31a and Figure 11-31b are included in the markup in
Figure 11-31c.

444

Chapter 11: Positioning

ody |
baskg=oand: igakwe [owg
frarts: | L B - i;
marging 0;
padidings of

¥

divdpantainers |
bardar : HEE S I B E TR S
nic-widthy GOl
pat=widih: 1©
pasiticar ro_ookiwvcs

nwTging 0ps

]
divalete |
paeikisone shenluka:
apr 1
brex Licin:
Twafts 0z
widih: Z000x g
bavkground: cozd2:q, 22
inigz Spkg
bardcr-righics 1mm solilc

preazic:

1

divdoonkent o
Aargin-lafsy F17-%;
backyzcundr whito)
hmrses; v polid whibe;
paddingy Topery

13

Figure 11-31a

dlvsoantaince |

widbkhi exmrepy oni

gooumentBlement cclozntWidth = 1on

Jdocrnenkl leners ool jen—t
i

t

divglmfe |
opi lowi
Il ghts Lot HE =

LB "eontalna

1
Figure 11-31b

445

Part Il: Properties

SIENETYPE bual PUOBRLIC "= 0WERS/O0TO XHTHL 1.0 Shricls JER'
gl TR S =htnl Lndshem] l-s-riat o obd e

1. ®plilang= en'>

<html xmloe='httpid Swmew Wi ooy 1998 =

hasud
“trtlesHulti-colamn Levguta bit les
<link rel='styloshcet’ types'textisoss” heef= C9677%20fgllil.css’ =
“nk roo Cslvossaccs’ Lyme CLexolIss” koot CURIITLZOECLIEl.iz.Iss
H ES R
< fhoads
'\-'b-ﬂi'l_."-'

wdly fd="conlalpar '
ol ld="lefl ' =
e e T i
idiws
e i ddd="wun ket
T Lorem Ipeums 1
.-_:F‘:_-\.
Lopren ipeon dolor it sees, conpecteatpss adipive ng el -,
Conss = masss, Fhasellus eect eror, nelesaacs wel, tompues gose,
whevatra ab, leamas. 00 570 amet thaTn, ol ousm eval valubpat.
Morbi arat, Huns et puras viktas tortor sodalszs suttor, Fulls
malostie. Fellenbosques ance mawrsis, tristiqes ao, glaserak sic
danel, vlefteral wec, aille. Yeslibolan Lposodim, Doss v2iae
bellas. dliquan crat wolucpak. fencan dictom colox ak zom.
-:_.':;.1-
|_'I_.:|
UL zemmcds, fSed non niei al leo aliguel leborbia. Donee a clic
v ol Te sherebra alTonimm o, oren Tpmon lalor =R anen,
aorsaototuar adipisoing sliz. Aliguan seesus bortor sqes dian.
Fem Taabprgar prl Ter bregar bdrsa e eed wrab. Daia non 1Tikers wnl
metys sollicitedin aligues. Senesn necws, Hons sget gusmn s
el = 14 wolpibate leuresl. Hauros o torbium, mroe serenalboi=
sringille wvehiculs, toctors puque diqoiseinr enbe, id inpecdiat
ricus saplen &t odog. Fraecent loiculs megna, monummmye votas,
Fapiligie at, Fereesten oo, dosan, Trcscer gk anek Liguls quis
lectas bobesdun corta, Alidiquam pecus ipeum, aliquek =t memomer
nxl, blanfibt ac, pessa, 3oiam porcbtitor qusco id apcu. U ante
lacus, rutram 1, vehizulms noo, fruc-bue in, lzrem. Imteger eouw
anto uk naaris rhaoneows molestic. fdomcan ok SRk ot loeckus bonpor
sheralba. FoAce amd nliae Claas oplabe cacfod aoclaaga ad Tilora
tarsacent por econabia nostra, ser ipccphios hymonacos.
-:,.':;.1-
el e
=l
Tl

=ihtnls
Figure 11-31c

w

Figure 11-31d shows a simple two-column layout that works in a variety of browsers.

446

Chapter 11: Positioning

Figure 11-31d

The technique presented in Figure 11-31 puts together concepts from Chapter 7, and concepts that
you've see throughout this chapter, but why stop with just a two-column layout? In the next section, I
present how to add a heading and a footer to the two-column layout.

Multicolumn Layout with a Heading and Footer

Adding a heading and footer to the multicolumn layout is pretty straightforward; you simply have to
make room with the left column, and everything else falls into place. Figure 11-32 demonstrates how to
alter the multicolumn layout to accommodate a heading and footer.

447

Part Il: Properties

448

hardy |
:III'\.:*-.II:I] - I..'.
Tt [HatH—meri g
marging 0
oaddings U 2lhoss

H

divhoading,

diveoonlaiper,

diveiocter o
Fu Dl m Tt ol P solid ke
max=withi i
min-widtky viui-

g ronrai s ranf24d, i, ZdAy g
i
9 s TR
oositions rolabkives
mabgin: O o
'
diedheading |
margin: Cipr adbo o lpn 3uLos
b
divsheading b1 {
muerging Cpeeg
H
Biv#lest !

maaibiomis ehalo e

widtha C0px)

background: roo{eid. I 4, 234l

paddings Ypx)

morder=riaohbs Toee walad o sk
L

I

A i mntant
margin-1lrfn: Alipu:
hmckgrourd s wSrite;

oordar:s Tpe aclid wh

waddioms L0
'
divefocter o
makin: Tt b Tl au H

divéfooter p {
marTing LpeE|

H
Figure 11-32a

Chapter 11: Positioning

The main style sheet in Figure 11-32a is followed by the IE 6 style sheet that you see in Figure 11-32b.

div&hesd ing,
divdconialnze
d T vk {
ES 1 B
daeunlEl el sl sr UL 1 = LJduard
150
plecinen LE L 1 A 1 i 1
3
i i1 H
[
divelaf [
QCLTRtl CEETCISZICT

omaEnt . oE et Peld | "oontsiner) .ot t 1l 1 [

1]
Figure 11-32b

The style sheets in Figure 11-32a and the style sheet in Figure 11-32b are included in the markup in
Figure 11-32c.

Figure 11-32d shows a flexible, two-column design that includes a heading and footer.

There are a few important concepts at play that you need to be aware of in this example. First, have a
look at the styles for the heading and the footer; each contains an element that has margin applied. The
heading has an <h1> element nested with 5 pixels of margin applied, and the footer has a <p> element
nested within it with 5 pixels of margin applied. The heading and the footer both have a one-pixel,
solid, black border around each. This is done for more than mere aesthetic reasons; without the border
you have the margin of the nested element collapsing with the margin of its parent element. If you recall
from Chapter 7, margin collapsing happens whenever the top or bottom margin of one element comes
into contact with the top or bottom margin of a parent, or adjacent element. In this example, to prevent
margin collapsing from taking place, you need to apply a border to the parent elements, which are the
<div> elements with id names heading and footer. If you remove the border, do so remembering to take
margin collapsing into account.

The heading and the footer are also included outside of the container <div> element; you do this to
accommodate content in each of these that is of variable height. If the heading and footer were to be
placed inside of the container <div> element, you would have to give each a fixed height, and adjust the
top and bottom properties of the left column <div> with respect to the collective height of the heading
and the footer.

449

Part Il: Properties

LRGP EE BanT PTG SESETY BHTHT. T2 S5kr Tk JEMT
"hitbps S wd enra TR xhEn] LI s hem] | — st it L dbd e
<htpl amloe='httpis wer,wl orgdl¥923 xhtml ' wnlilang='eon' -
=g
wtrtlesMulii-oolemm Lavoata titles
swlink rel= styleshoct twpes toxbless’ ArcE='0%e577%Z0f01132 . 055 F=

L sledoshacl oesl Laxloons (o Loy SRR N i 0 B B R =t
B NIRRT
< Shoads
< Loy
cil T dd=" Fimud ing " >
“LT-Hacding: L1
o S
cdiv id=' containes s
el id="Twmru'>
Lafr mide colunn,
<rdies
#fiv id='oootent Tk
“olsLoren Ipsans s oii-
LSRR
Loren ipsun dolor sit ams<, oconesctebesr mdipiescony eloz,
Tapcs ou possa. rhascllies ost oxos, maleswzsa vol, terpes guis,
erettlba L, laciia. UL osic anel Tilme o, &1 2guan wral. Soldlpel.
orks crat. Mune ok pares witos Lorcor sofslos cuckaer. Fulla
maTeslien . Mellabbedgda ans mokria, Lriablldgie we, plamaral @00
anet, placesat ses, ante, vessiholon intecdem, Dorss w i sas
Lellia . &1 0aiam mral voldogal. Asseen dicoon dolor gl =en.
oA
“pm
o cmemincha . Hed o pon nisml sk Tea ool ot Tobr B Ts o Binen: o w0
vl nplla pharetrs diqoisein. Locen ipyan dolor sit oares,
consestotuer adipiscing =lit. Aliguem cuarsus tortor eqgez diam.
Fallentesque pellentesque tarpie sef ecat, Dois non Liberc wel
metus sollizitadon aligqusT. Socncan nooue. Henc cogck quam a
mauris wulpubale lacraos. dauris dicbim, eros eenenalls
tfrinoilla vohiculs, torsor aucue dicnissim onte, 1d iwmpordict
pimus aandien ab odic, Tracsaenc liguolo magoo, @ononny 2ioac,
TeziTiaia wh, Teramaban mem, Sidn. Totsges ik ansl T igula quis
legtes bibendar porta. Aligaom noque ipsum, aliouck oo, scnpes
vl Blamdll g, masAa. Foian porlllLor Toees 28 araio. UL wnle
Tarsoe, robtrun didy vehicels woe, fausibos o, lorss, ntegsr ey
afibe db ez iaA dhoncdd felealla. Britean . wAl sl Taclios Lk
prEretra, Fugos ped nibbh, Claps sptens tes i od soocicsgqo oed T itora
torquent pes ccoovbis noekra, p=roincspkos hymenmeoDs,
oA
w2 Sl
AL
“div id= tooter &
g
Corem dpsum dolosr ait amel, conacclebaer adiplesing elik. Donec oo
racsa. Phasellus est cros, malosusde wel,. toppus quis, nharctra az,
lasila.
-\.'_..'i;;\.-
=Sl
Ll FEE EO

=S htnls
Figure 11-32¢c

450

Chapter 11: Positioning

Figure 11-32d

In the IE style sheet, you'll see one odd declaration, height: 1px;. You'll also note that the height of the
heading, footer, and container <div> elements is not one pixel in IE 6. This is a hack! In the web design
community, this hack is a variation of a famous hack known as the “Holly Hack.” Big John and Holly
Gergevin of positioniseverything.net originally devised the Holly Hack. The Holly Hack is used to
correct certain layout calculation errors that can come up in IE 6 and IE 7. In this case, the left column
<div> element was not positioning correctly; the values of top and left were inconsistent with other
browsers. When you encounter this, it is usually a case where the Holly Hack is appropriate. To fix a lay-
out bug in IE, you need to apply the Holly Hack to each parent of the element with wacky positioning
until its layout corrects. Since explaining the Holly Hack requires a complicated discussion about the

451

Part Il: Properties

internals of IE 6, I avoid going deeper into the topic than what I've explained here. If you’d like to learn
more about the Holly Hack, and the concepts at play there, have a look at http: //www.satzansatz.de/
cssd/onhavinglayout.html.

Summary

In this chapter, you saw the power of positioning in web design. Positioning offers web designers solu-
tions to challenges both simple and complex. In this chapter, you learned the following;:

a
a

Absolute positioned elements are positioned relative to the viewport, by default.
Relative positioning allows you to change the point of reference used for absolute positioning.

The four offset properties can be used on relatively positioned content to adjust its position with
respect to its static origin.

Fixed position elements remain in the same place when a document is scrolled, and fixed posi-
tion elements are always positioned relative to the viewport.

IE 6 doesn’t support fixed positioning, but you can use dynamic expressions and JavaScript to
work around the lack of support.

Specifying opposing offset properties on the same element is used to imply dimensions, which
is used to get positioned elements that are stretched with fluidity.

You can create the illusion of fixed positioning with absolute positioning, a technique that’s
often used to create frame-like designs without the frames.

The way in which positioned elements are layered can be controlled with the z-index property,
which accepts an integer value.

By default, elements are stacked in ascending order.
Nested elements can’t have a higher z-index than their parent.

You can center content vertically and horizontally using positioning, and some tricks with the
margin property.

Absolute positioning is key in making multicolumn designs.

Exercises

1.
2.
3.

452

What is the default value of the top, right, bottom, and left properties?
What are offset properties used for?

If the <body> element has a sole child that is positioned absolutely, what point of reference is
used for its positioning?

Chapter 11: Positioning

If the <body> element has a sole child that is positioned relatively, with an id name of relative-
element, and that relatively positioned element has a child that is absolutely positioned, what
point of reference is used for the absolutely positioned element?

If the element from Exercise 4, relative-element, has a fixed position child, what point of reference
is used for its positioning?

Write a rule that you would use to make an element with the following standard CSS work in IE
6 in standards rendering mode.

div#element {

position: fixed;
top: 0;
left: 0;

To make fixed position elements compatible with IE 6, what element must you always place
fixed position elements inside of?

Write a rule that you would use to make an element with the following standard CSS work in IE
6 and IE 7 in quirks rendering mode.

div#element {

position: fixed;
bottom: 0;
left: 0;

The following rule refers to an element that you want to take up all of the space available to it
vertically, and positioned to the left. Fill in the blanks.

div#column {

10.

11.

position: absolute;
___: 05
: 0;
: 0;
padding: 10px;
border: 1px solid black;

You have five elements that are all absolutely positioned siblings, but no z-index is specified
for any of them. Name the stacking order that the browser will use for those elements’ z-index
property. Provide the z-index declaration for each element, in order.

How do you fix the z-index bug in IE 6 and IE 7?

453

12

Tables

In Chapter 11, I introduced positioning. In this chapter, I discuss some odds and ends related to
styling (X)HTML <table> elements and the controls that CSS provides for flexibility.

Tables are primarily a method to show the relationship between data, much as a spreadsheet
application does. As I explore some acceptable uses of tables in this chapter, I discuss:

Q The optional table elements that can make it easier to style a table and that make the
structure more intuitive

Q Controlling placement of the table caption
Q Controlling the layout of the table

Q Controlling the spacing between table cells

Tables can be complex creatures in (X)HTML. If used properly, they allow information to be pre-
sented in a neat, organized, and consistent manner. Put simply, data that needs to show relation and
logic should be placed into tables. The discussion presented in this chapter also plays heavily into the
discussion about styling XML in Chapter 14. The examples presented in Chapter 14 are identical to
those presented in this chapter with one very important difference: They’re written in XML.

Tables have several optional elements that may be used to further enhance the structure and pre-
sentation of a table. This is where I start the discussion.

Optional Table Elements

The <table> element has several optional elements that can be used to enhance the presentation
of a table, including captions, columns, headings, and footers. Take a look at a <table> element
that makes use of all these optional elements. When I get into the discussion of styling tables,
beginning with the section “Table Captions and the caption-side Property,” you'll need to under-
stand what is possible in a table. I also present CSS 2 properties that are table-specific, allowing
more control over table presentation. The markup in Figure 12-1 shows a table complete with all
the optional bells and whistles.

Part Il: Properties

S EOCTYEE html FURLIC - SWACS SO0 X HTHI L BEricts I ER"
L SSwne W E L g S TRAED L L ETD e hln] 1A Ly D L T
cheml snlop="http: S ewwewdorg 2999 2htnl’ anlilang="en'»
Lt [T b

sritle™lakles<ieitles
&]

The «<zmpticns eement wolde e pame o the a@ls,

._ﬁd:.l._:l..l.lll;':' o soene Uliner polas aboul ils oupess.
soaptians
Tallmr My Esvorite rcecorde.
~doaption=
Coolaroups et = oalemerds are used 43 cordeed eedain
sl la=talmoars f prozserles aboul mech bl colorme: rrosl)
wool Ld='artipt’ S eommoy this s used in ek the widkth
il Ted="releaaed | e wl each colarme.
<foolgroops
ksl The b el alzrannt cosionanes
Lo thize Geboles hepclen= |1y are orictng
Silee aliun =il g long taale, tha cantants o s
=Lh= ariist SALEE o oppads wemenl m reoeaed ol e
. Zth» releazed =iehs top o sy prinbed gege.
N
<t heads>
”""*'ﬂ:___ The <k alamer 12 ust ke e o
) . A alairant, I'-.-il'tl'q'l‘l A mleinds am imela
Rubber foul SN anid and carsarsd by dataus,
The Bemrtles - el
163 a b
=ldz Brovn Byed Sirl = fkds
<7d™ van Horsicocn <A
<= Ld= 19A7 o Kl
<itre
Shrs
<t Mellon Collic and the Imfinits E=dness < bds
et The Speeking Punpkine o
1o 1933 < feds
LS =
= L::-|.||.|'_-\."Jl'
wEfopte
L
vidr albar C e
=l arLiAl & F gl
stos peloasch = M=
N
=/tiact> The b foocs elerenbis Fre e = chead = ekrmeal, WWhen o'
itablex ades nn g lang dskle dhe coments of thaed = Foo== damars am
= fhody repeales] Al e Dodlom ol sas sege.
< html
Figure 12-1

In Figure 12-1, you can see that (X)HTML tables support many additional, optional elements.

QO The <caption> element is used to provide the table with a caption or the name of the table.

A The <colgroup> element is used to enclose each of the table <col /> elements.

456

Chapter 12: Tables

0 <col /> elements are used to control certain properties about each table column, the most com-
mon being the column width.

Q The <thead> element encloses information about column headers. If you print a table that spans
more than one page, the information in the <thead> element is repeated at the top of each page.

O The <tbody> element contains the main table data.

Q The <tfoot> element is similar to the <thead> element. When you print a table that spans
more than one page, the information in the <t foot> element is repeated at the bottom of
each page.

In the coming sections, you learn more about what properties CSS offers for tweaking the visual presen-
tation of (X)HTML tables.

Table Captions and the
caption-side Property

Captions are presented in the <caption> element. By default, these are rendered above the table in the
document. You use the caption-side property to control the placement of the table caption.

The following table shows the caption-side property and its possible values.

Property Value

caption-side top | bottom

Initial value: top
Although IE 6 and IE 7 support the <caption> element for tables, neither IE 6 nor IE 7 supports the
CSS caption-side property.

Using the caption-side property, you can control whether the caption appears above or below the
table. Figure 12-2 is a demonstration of the caption-side property.

body |
Fosnb=Fe i TH RT s I

L e suotion—gide promsay ool

ahle { whather the Bahlke camizn anpears
topdors ve, aolld sgbpaun, g, 200k oo o aioe e snanlas,

(AN B 1 ny

I
oackqround: Ligal "

1. bd
=t f=lt o B Lid =abiiyl, «d ruk
padd inigs Sp

Figure 12-2a

457

Part Il: Properties

The CSS in Figure 12-2a is included in the markup in Figure 12-2b.

S EOCTY R hEml BURL TS = S SWEOS ST RITHG | L0 Seriet S KT
Tl F i Wl Lo 2 SOl 1ADTD A s 1=a by e dldt =
Chim] =nlne="http: Sfwwy . wi.ornd (999 whitnl el s lameg="gr "
(LI TETES e
wiikloetcaption- g ides Foitlots
“livk val='alylasfimnl’ Liime- e WMrel="0MRA77SI00GgI 2N (oas " &=
< Shcads
e
wtables
wzastiops
Tab_c: ¥v Eavorrite rocarxds.
Cloaptions
~colgraups
wool rde'alban’ S
“onl tA='arkiet’ o
gl jd='relesaesd’
wf e lyrol e
e
LT
<th® alkun < fch>
el ar ki A (b
=Lh= polocomos = foh=
L &
< ftheads-
whdys
“TIr=-
rdx Rubker boul Lt
“Tar The Reatles T
rd Lo = eds
o e
ntroe
Sladx Brosn Byed i Ll
vrdr van Horciseo L
“lide 1967 <l
3§
L e
ctde Hellon Collic ond the Iatindte Sadncss < Sods
clge The Ensghlng Bumpking o nd
“tas 1249% T
LT 4
« ftroady=
2 rmh]l e
Lt [
=i hemls
Figure 12-2b

In Figure 12-2¢, you see how the caption-side property works in the browsers that support it. In Safari
and Firefox, the table caption appears beneath the table, but in IE 6 and IE 7, neither of which support
the caption-side property, the table caption appears above the table (which is the default position of
the caption).

In the next section, I continue the discussion of tables with what styles are allowed on table columns.

458

Chapter 12: Tables

Figure 12-2¢

Table Columns

In HTML/XHTML, the <colgroup> and <col> elements allow the vertical columns of a table to be con-
trolled. This is useful for controlling the width of a column of data or other aspects of presentation, such
as background color or text color.

459

Part Il: Properties

By using these elements, you can span more than one column or have one column defined for each
actual column, as in the following example:

<table>
<colgroup>
<col span='2"' />
<col />
</colgroup>
<tbody>
<tr>
<td> column 1 </td>
<td> column 2 </td>
<td> column 3 </td>
</tr>
</tbody>
</table>

<col span="'2" /> controls the presentation of the <td> elements containing the text of column 1 and
column 2, the first two columns of the table. The last <col /> element (without the span attribute)
controls the presentation of column 3, contained in the last <td> element.

Using CSS, I can continue the example containing my favorite records. This example shows a column
defined for each actual column of data, or in other words, each <td> element appearing in a row. In the
example in Figure 12-3, a column is defined for each cell, and each row has three cells; consequently,

there are three columns. In Figure 12-3, you see what styles are allowed on the <col /> element.

The CSS in Figure 12-3a is included in the markup in Figure 12-3b.

Joroers s dalic gLl lit, ey, UihE:

Er molid rghiEnn, and, Fili;

culdaliun {
widbhiz E0Mx
backgrounds rosd 244, 244, 2451: The <ol S e mastcamranly ueed 1o
color: or Lnsai: corlal cod wrre eedih, g ince i is e
. Mot algpoeted 55 lashine
colereleaged {
widbhs 1wy

oo Eqrounds rosd A0, AT, S [

Figure 12-3a

460

Chapter 12: Tables

Figure 12-3c shows what you get when the markup is loaded into a browser. You can see in Figure 12-3c
that Safari supports no CSS on the (XYHTML <col /> element. IE 6 (and IE 7) support the width,
background, and color properties on the <col /> element. Mozilla Firefox supports the width and
background properties.

CIOCTYEE hEnl BURLTC =S SWACS SN KM L0 Se ek S SR
L T T B £ Ao eh 1 1010 xhum] 1—a ks fen il =
Cheml znlme="http: Sfwwr.wi-ored 1900 hend ml s lamng="gnr "
L TR TSREN
writloscolannss S oitloes
=lick tal-"slylashienl’ Lyoes—"Lachyoss' hial=-"00RA7TRR00Q1 208 oaa " A
a fnpmes
il
wrable
oAkl aps
Tablocr My tavorito pocords.
<loaptions
s lgranp
wpogl id='alkun’ S
“pnl 1A='artist’ fa
] jd='relesesd’ f
el lgrolpe
wkhmade
L)
<th® alkun <fche
< Ll ar Lisl L
<th= reloomes =fohe
=SLTE
= ftheads
ohd s
Ztr>
wtds Rubher Boul Lt
Atns THae Rearles o
Crde 1dha Ll
=ty
i
Brown: Eyeai Gind AR b
Van Maroisoo o d
1967 LA b
Medlon Sollic and the Imfindte Sadness = ods
Thoe Eneshlng Pompkins oS
<Los 1293 < Fod=
L & =
< St oody-
=icmblas
< fendye
ol hEmls

Figure 12-3b

461

Part Il: Properties

Figure 12-3c

In the following Try It Out, I show how all the extra bells and whistles available for <table> elements
work in a real-world project and how these elements help you take advantage of CSS. This Try It Out
demonstrates placing a recipe in a table. I'm also adding a little eye candy here with CSS background
images to enhance the look and feel of the document. This example is also important in Chapter 14,
where I show you how it can be ported to XML and styled with CSS as an XML document.

462

Chapter 12: Tables

Try It Out Applying Tables to a Real Project

Example 12-1. In the following steps, you apply tables to a real-world project.

1. Type the following XHTML markup into your text editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns='http://www.w3.0rg/1999/xhtml' xml:lang='en'>
<head>
<title>Spicy Thai Peanut Sauce</title>
<link rel='stylesheet' type='text/css' href='Example_ 12-1.css' />

</head>
<body>
<table class='recipe'>
<caption>
Spicy Thai Peanut Sauce
</caption>
<colgroup>
<col/>
<col/>
<col/>
<col/>
</colgroup>
<thead>
<tr>
<th> quantity </th>
<th> measurement </th>
<th> product </th>
<th> instructions </th>
</tr>
</thead>
<tbody>
<tr>
<td> &fracl2; </td>
<td> CUPS </td>
<td> Peanut 0il </td>
<td></td>
</tr>
<tr>
<td> 12 </td>
<td> Each </td>
<td> Serrano Peppers </td>
<td> Sliced </td>
</tr>
<tr>
<td> 16 </t