
Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Beginning

Visual C#® 2010

Karli Watson, Christian Nagel, Jacob Hammer Pedersen, Jon D. Reid, Morgan Skinner

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

BEGINNING VISUAL C# 2010

INTRODUCTION . xxxiii

� PART I THE C# LANGUAGE

CHAPTER 1 Introducing C# . 3

CHAPTER 2 Writing a C# Program . 13

CHAPTER 3 Variables and Expressions . 31

CHAPTER 4 Flow Control . 59

CHAPTER 5 More About Variables . 93

CHAPTER 6 Functions . 125

CHAPTER 7 Debugging and Error Handling . 155

CHAPTER 8 Introduction to Object-Oriented Programming . 185

CHAPTER 9 Defining Classes . 209

CHAPTER 10 Defining Class Members . 241

CHAPTER 11 Collections, Comparisons, and Conversions . 277

CHAPTER 12 Generics . 331

CHAPTER 13 Additional OOP Techniques . 373

CHAPTER 14 C# Language Enhancements . 401

� PART II WINDOWS PROGRAMMING

CHAPTER 15 Basic Windows Programming . 447

CHAPTER 16 Advanced Windows Forms Features . 497

CHAPTER 17 Deploying Windows Applications . 533

� PART III WEB PROGRAMMING

CHAPTER 18 ASP.NET Web Programming . 577

CHAPTER 19 Web Services . 637

CHAPTE

Continues

� PART IV DATA ACCESS

CHAPTER 21 File System Data . 683

CHAPTER 22 XML . 725

CHAPTER 23 Introduction to LINQ . 753

CHAPTER 24 Applying LINQ . 795

� PART V ADDITIONAL TECHNIQUES

CHAPTER 25 Windows Presentation Foundation . 829

CHAPTER 26 Windows Communication Foundation . 899

CHAPTER 27 Windows Workflow Foundation . 935

APPENDIX A Exercise Solutions . 957

INDEX . 1009

BEGINNING

Visual C# 2010

BEGINNING

Visual C# 2010

Karli Watson
Christian Nagel

Jacob Hammer Pedersen
Jon Reid

Morgan Skinner

Wiley Publishing, Inc.

Beginning Visual C# 2010

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-50226-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010920663

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. C# is a registered trademark of Microsoft Corporation in the United States
and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not
associated with any product or vendor mentioned in this book.

for Donna

— Karli Watson

ABOUT THE AUTHORS

KARLI WATSON is consultant at Infusion Development (www.infusion.com), a technology architect at
Boost.net (www.boost.net), and a freelance IT specialist, author, and developer. For the most part, he
immerses himself in .NET (in particular C# and lately WPF) and has written numerous books in the
field for several publishers. He specializes in communicating complex ideas in a way that is accessible
to anyone with a passion to learn, and spends much of his time playing with new technology to find
new things to teach people about.

During those (seemingly few) times where he isn’t doing the above, Karli will probably be wishing
he was hurtling down a mountain on a snowboard. Or possibly trying to get his novel published.
Either way, you’ll know him by his brightly colored clothes. You can also find him tweeting online at
www.twitter.com/karlequin, and maybe one day he’ll get around to making himself a website. Karli
authored chapters 1 through 14, 21, 25 and 26.

CHRISTIAN NAGEL is a Microsoft Regional Director and Microsoft MVP, an associate of Thinktecture,
and owner of CN Innovation. He is a software architect and developer who offers training and con-
sulting on how to develop Microsoft .NET solutions. He looks back on more than 25 years of software
development experience. Christian started his computing career with PDP 11 and VAX/VMS systems,
covering a variety of languages and platforms. Since 2000, when .NET was just a technology preview,
he has been working with various .NET technologies to build numerous .NET solutions. With his pro-
found knowledge of Microsoft technologies, he has written numerous .NET books, and is certified as a
Microsoft Certified Trainer and Professional Developer. Christian speaks at international conferences
such as TechEd and Tech Days, and started INETA Europe to support .NET user groups. You can
contact Christian via his web sites, www.cninnovation.com and www.thinktecture.com and follow his
tweets on www.twitter.com/christiannagel. Christian wrote chapters 17 through 20.

JACOB HAMMER PEDERSEN is a Senior Application Developer at Elbek & Vejrup. He just about started
programming when he was able to spell the word ‘BASIC’, which, incidentally is the first programming
language he ever used. He started programming the PC in the early ’90s, using Pascal but soon changed
his focus to C++, which still holds his interest. In the mid ’90s his focus changed again, this time to
Visual Basic. In the summer of 2000 he discovered C# and has been happily exploring it ever since.
Primarily working on the Microsoft platforms, his other expertise includes MS Office development,
SQL Server, COM and Visual Basic.Net.

A Danish citizen, Jacob works and lives in Aarhus, Denmark. He authored chapters 15, 16, and 22.

JON D. REID is a software engineering manager at Metrix LLC, an ISV of field service management soft-
ware for the Microsoft environment. He has co-authored a variety .NET books, including Beginning
Visual C# 2008, Beginning C# Databases: From Novice to Professional, Pro Visual Studio .NET, and
many others. Jon wrote chapters 23 and

ABOUT THE AUTHORS

MORGAN SKINNER began his computing career at a young age on the Sinclair ZX80 at school, where
he was underwhelmed by some code a teacher had written and so began programming in assembly
language. Since then he’s used all sorts of languages and platforms, including VAX Macro Assembler,
Pascal, Modula2, Smalltalk, X86 assembly language, PowerBuilder, C/C++, VB, and currently C#
(of course). He’s been programming in .NET since the PDC release in 2000, and liked it so much he
joined Microsoft in 2001. He now works in premier support for developers and spends most of his time
assisting customers with C#. Morgan wrapped up the book by authoring chapter 27. You can reach
Morgan at www.morganskinner.com.

x

ABOUT THE TECHNICAL EDITOR

A ‘‘blue-badge’’ .NET architect and developer at Intel Corporation since March 2007, Doug Holland
is part of the Visual Computing Group and is presently working within an advanced tools and devel-
opment team with an emphasis on chipset and driver testing. Doug Holland holds a Master’s Degree
in Software Engineering from Oxford University and has been awarded both the Microsoft MVP and
Intel Black Belt Developer awards. Outside of work, Doug enjoys spending time with his wife and four
children; and is also an officer in the Civil Air Patrol/U.S. Air Force Auxiliary. Beyond architecting and
developing software you can often find Doug at the local airport flying Cessnas over the California
landscape.

CREDITS

ACQUISITIONS EDITOR

Paul Reese

DEVELOPMENT EDITOR

Maryann Steinhart

PROJECT EDITOR

Ami Frank Sullivan

TECHNICAL EDITOR

Doug Holland

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Luann Rouff

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefield

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE

GROUP PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Lynsey Stanford

PROOFREADER

Josh Chase, Word One

INDEXER

J & J Indexing

COVER DESIGNER

Michael E. Trent

COVER IMAGE

© Lisa Loyd/istockphoto

ACKNOWLEDGMENTS

FROM KARLI WATSON: Thanks to all at Wiley for their support and assistance on this project, as well
as their understanding and flexibility in dealing with an author who never seems to have enough time
to write. Special thanks to my editor for this book, Ami Sullivan, for adding sparkle and making this
book shine. Also, thanks to friends, family, and work colleagues for understanding why I haven’t have
time for much socializing lately, and to Donna, as always, for all her support and for putting up with
all the late nights.

FROM CHRISTIAN NAGEL: To my two girls Angela and Stephanie. It’s great to have you. Thanks for
your great support and the big love you gave me during the hardest time of my life in 2009. Without
you I couldn’t have made it through. Stephanie, while not born yet, you were my biggest motivation
during that time. I love you both!

Also, a big thank you to my co-authors and the team at Wrox/Wiley for getting a great book out.

CONTENTS

INTRODUCTION xxxiii

PART I: THE C# LANGUAGE

CHAPTER 1: INTRODUCING C# 3

What is the .NET Framework? 3
What’s in the .NET Framework? 4
Writing Applications Using the .NET Framework 5

CIL and JIT 5
Assemblies 5
Managed Code 6
Garbage Collection 6
Fitting It Together 7
Linking 8

What is C#? 8
Applications You Can Write with C# 9
C# in This Book 10

Visual Studio 2010 10
Visual Studio 2010 Express Products 11
Solutions 11

Summary 11

CHAPTER 2: WRITING A C# PROGRAM 13

The Development Environments 14
Visual Studio 2010 14
Visual C# 2010 Express Edition 17

Console Applications 18
The Solution Explorer 22
The Properties Window 23
The Error List Window 23

Windows Forms Applications 24
Summary 28

CHAPTER 3: VARIABLES AND EXPRESSIONS 31

as 32

CONTENTS

Basic C# Console Application Structure 34
Variables 35

Simple Types 36
Variable Naming 40

Naming Conventions 41
Literal Values 42

String Literals 43
Variable Declaration and Assignment 44

Expressions 45
Mathematical Operators 45
Assignment Operators 50
Operator Precedence 51
Namespaces 51

Summary 55

CHAPTER 4: FLOW CONTROL 59

Boolean Logic 59
Boolean Assignment Operators 62
Bitwise Operators 64
Operator Precedence Updated 68

The goto Statement 68
Branching 69

The Ternary Operator 70
The if Statement 70

Checking More Conditions Using if Statements 73
The switch Statement 74

Looping 77
do Loops 78
while Loops 80
for Loops 83
Interrupting Loops 87
Infinite Loops 88

Summary 89

CHAPTER 5: MORE ABOUT VARIABLES 93

Type Conversion 94
Implicit Conversions 94
Explicit Conversions 96
Explicit Conversions Using the Convert Commands 99

Complex Variable Types 102
Enumerations 102

xviii

CONTENTS

Defining Enumerations 103
Structs 107

Defining Structs 107
Arrays 110

Declaring Arrays 110
foreach Loops 113
Multidimensional Arrays 113
Arrays of Arrays 115

String Manipulation 116
Summary 121

CHAPTER 6: FUNCTIONS 125

Defining and Using Functions 126
Return Values 128
Parameters 130

Parameter Matching 132
Parameter Arrays 132
Reference and Value Parameters 134
Out Parameters 136

Variable Scope 137
Variable Scope in Other Structures 140
Parameters and Return Values versus Global Data 142

The Main() Function 143
Struct Functions 146
Overloading Functions 147
Delegates 149
Summary 152

CHAPTER 7: DEBUGGING AND ERROR HANDLING 155

Debugging in VS and VCE 156
Debugging in Nonbreak (Normal) Mode 157

Outputting Debugging Information 158
Tracepoints 163
Diagnostics Output Versus Tracepoints 164

Debugging in Break Mode 166
Entering Break Mode 166
Monitoring Variable Content 170
Stepping Through Code 172
Immediate and Command Windows 173
The Call Stack Window 174

Error Handling 175
try . . . catch . . . finally 176

xix

CONTENTS

Listing and Configuring Exceptions 181
Notes on Exception Handling 182

Summary 183

CHAPTER 8: INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 185

What Is Object-Oriented Programming? 186
What Is an Object? 187

Properties and Fields 188
Methods 189

Everything’s an Object 189
The Life Cycle of an Object 190

Constructors 190
Destructors 191

Static and Instance Class Members 191
Static Constructors 191
Static Classes 192

OOP Techniques 192
Interfaces 193

Disposable Objects 194
Inheritance 194
Polymorphism 196

Interface Polymorphism 197
Relationships Between Objects 198

Containment 198
Collections 199

Operator Overloading 200
Events 200
Reference Types Versus Value Types 201

OOP in Windows Applications 201
Summary 204

CHAPTER 9: DEFINING CLASSES 209

Class Definitions in C# 209
Interface Definitions 212

System.Object 215
Constructors and Destructors 217

Constructor Execution Sequence 218
OOP Tools in VS and VCE 222

The Class View Window 222
The Object Browser 224
Adding Classes 226
Class Diagrams 227

xx

CONTENTS

Class Library Projects 229
Interfaces Versus Abstract Classes 232
Struct Types 235
Shallow Copying Versus Deep Copying 237
Summary 237

CHAPTER 10: DEFINING CLASS MEMBERS 241

Member Definitions 241
Defining Fields 242
Defining Methods 242
Defining Properties 244
Adding Members from a Class Diagram 249

Adding Methods 250
Adding Properties 251
Adding Fields 252

Refactoring Members 252
Automatic Properties 253

Additional Class Member Topics 253
Hiding Base Class Methods 254
Calling Overridden or Hidden Base Class Methods 255

The this Keyword 256
Nested Type Definitions 257

Interface Implementation 257
Implementing Interfaces in Classes 258

Explicit Interface Member Implementation 260
Adding Property Accessors with Nonpublic Accessibility 260

Partial Class Definitions 261
Partial Method Definitions 262
Example Application 264

Planning the Application 264
The Card Class 264
The Deck Class 265

Writing the Class Library 265
Adding the Suit and Rank Enumerations 266
Adding the Card Class 268
Adding the Deck Class 269

A Client Application for the Class Library 272
The Call Hierarchy Window 274
Summary 275

CHAPTER 11: COLLECTIONS, COMPARISONS, AND CONVERSIONS 277

Collections 278

xxi

CONTENTS

Using Collections 278
Defining Collections 284
Indexers 286
Adding a Cards Collection to CardLib 288
Keyed Collections and IDictionary 291
Iterators 293
Iterators and Collections 297
Deep Copying 299
Adding Deep Copying to CardLib 301

Comparisons 303
Type Comparisons 303

Boxing and Unboxing 303
The is Operator 305

Value Comparisons 308
Operator Overloading 308
Adding Operator Overloads to CardLib 313
The IComparable and IComparer Interfaces 318
Sorting Collections Using the IComparable and IComparer Interfaces 320

Conversions 324
Overloading Conversion Operators 324
The as Operator 326

Summary 327

CHAPTER 12: GENERICS 331

What Are Generics? 332
Using Generics 333

Nullable Types 333
Operators and Nullable Types 334
The ?? Operator 336

The System.Collections.Generics Namespace 340
List<T> 341
Sorting and Searching Generic Lists 343
Dictionary<K, V> 349
Modifying CardLib to Use a Generic Collection Class 350

Defining Generic Types 351
Defining Generic Classes 351

The default Keyword 354
Constraining Types 354
Inheriting from Generic Classes 361
Generic Operators 362
Generic Structs 363

Defining Generic Interfaces 364
Defining Generic Methods 364

xxii

CONTENTS

Defining Generic Delegates 366
Variance 366

Covariance 367
Contravariance 368

Summary 369

CHAPTER 13: ADDITIONAL OOP TECHNIQUES 373

The :: Operator and the Global Namespace Qualifier 373
Custom Exceptions 375

Adding Custom Exceptions to CardLib 375
Events 377

What Is an Event? 377
Handling Events 378
Defining Events 380

Multipurpose Event Handlers 385
The EventHandler and Generic EventHandler<T> Types 388
Return Values and Event Handlers 388
Anonymous Methods 389

Expanding and Using CardLib 389
A Card Game Client for CardLib 390

Summary 398

CHAPTER 14: C# LANGUAGE ENHANCEMENTS 401

Initializers 402
Object Initializers 402
Collection Initializers 404

Type Inference 407
Anonymous Types 409
Dynamic Lookup 413

The dynamic Type 414
IDynamicMetaObjectProvider 417

Advanced Method Parameters 418
Optional Parameters 418

Optional Parameter Values 419
Optional Parameter Order 420

Named Parameters 420
Named and Optional Parameter Guidelines 424

Extension Methods 424
Lambda Expressions 429

Anonymous Methods Recap 429
Lambda Expressions for Anonymous Methods 430
Lambda Expression Parameters 434

xxiii

CONTENTS

Lambda Expression Statement Bodies 434
Lambda Expressions As Delegates and Expression Trees 435
Lambda Expressions and Collections 436

Summary 439

PART II: WINDOWS PROGRAMMING

CHAPTER 15: BASIC WINDOWS PROGRAMMING 447

Controls 448
Properties 448
Anchoring, Docking, and Snapping Controls 449
Anchor and Dock Properties 450
Events 451

The Button Control 453
Button Properties 453
Button Events 453
Adding the Event Handlers 455

The Label and LinkLabel Controls 456
The TextBox Control 457

TextBox Properties 457
TextBox Events 458
Adding the Event Handlers 460

The RadioButton and CheckBox Controls 464
RadioButton Properties 465
RadioButton Events 465
CheckBox Properties 466
CheckBox Events 466
The GroupBox Control 466

The RichTextBox Control 470
RichTextBox Properties 470
RichTextBox Events 472

The ListBox and CheckedListBox Controls 477
ListBox Properties 477
ListBox Methods 478
ListBox Events 478

The ListView Control 481
ListView Properties 481
ListView Methods 481
ListView Events 481
ListViewItem 484
ColumnHeader 484
The ImageList Control 484

xxiv

CONTENTS

The TabControl Control 491
TabControl Properties 491
Working with the TabControl 492

Summary 494

CHAPTER 16: ADVANCED WINDOWS FORMS FEATURES 497

Menus and Toolbars 498
Two Is One 498
Using the MenuStrip Control 498
Creating Menus Manually 499
Properties of the ToolStripMenuItem 501
Adding Functionality to Menus 501

Toolbars 503
ToolStrip Properties 504
ToolStrip Items 504
Adding Event Handlers 507
StatusStrip 509
StatusStripStatusLabel Properties 510

SDI and MDI Applications 512
Building MDI Applications 513
Creating Controls 522

Adding Properties 524
Adding the Event Handlers 525

Debugging User Controls 527
Extending the LabelTextbox Control 527

Adding More Properties 528
Adding More Event Handlers 529
Adding a Custom Event Handler 529

Summary 530

CHAPTER 17: DEPLOYING WINDOWS APPLICATIONS 533

Deployment Overview 533
ClickOnce Deployment 534

Creating the ClickOnce Deployment 534
Installing the Application with ClickOnce 543
Creating and Using Updates of the Application 545

Visual Studio Setup and Deployment Project Types 546
Microsoft Windows Installer Architecture 547

Windows Installer Terms 548
Advantages of the Windows Installer 549

Creating an Installation Package for the MDI Editor 550
Planning the Installation 550

xxv

CONTENTS

Creating the Project 552
Project Properties 553

Packaging 553
Prerequisites 554
Setup Editors 556

File System Editor 556
Adding Items to Special Folders 557
File Properties 557

File Types Editor 559
Create Actions 560

Launch Condition Editor 561
User Interface Editor 561

Additional Dialogs 563
Building the Project 565
Installation 566

Welcome 566
Read Me 566
License Agreement 567
Optional Files 568
Select Installation Folder 568

Disk Cost 568
Confirm Installation 569
Progress 570
Installation Complete 571
Running the Application 571
Uninstall 571

Summary 571

PART III: WEB PROGRAMMING

CHAPTER 18: ASP.NET WEB PROGRAMMING 577

Overview of Web Applications 578
ASP.NET Runtime 578
Creating a Simple Page 578
Server Controls 587
ASP.NET Postback 588
ASP.NET AJAX Postback 593
Input Validation 597
State Management 600

Client-Side State Management 601
View State 601
Cookies 602

xxvi

CONTENTS

Server-Side State Management 603
Session 603
Application 605
Cache 605

Styles 606
Master Pages 611
Site Navigation 616
Authentication and Authorization 619

Authentication Configuration 619
Using Security Controls 623

Reading from and Writing to a SQL Server Database 626
Summary 634

CHAPTER 19: WEB SERVICES 637

Where to Use Web Services 637
A Hotel Travel Agency Application Scenario 638
A Book Distributor Application Scenario 638
Client Application Types 639

Application Architecture 639
Web Services Architecture 640

Calling Methods and the Web Services Description Language 640
Calling a Method 641
WS-I Basic Profile 642

Web Services and the .NET Framework 642
Creating a Web Service 643

WebService Attribute 643
WebMethod Attribute 643
WebServiceBinding Attribute 644

Client 645
SoapHttpClientProtocol 645
Alternative Client Protocols 645

Creating a Simple ASP.NET Web Service 645
Adding a Web Method 648

Testing the Web Service 649
Implementing a Windows Client 649
Calling the Service Asynchronously 655
Implementing an ASP.NET Client 658
Passing Data 659
Summary 662

CHAPTER 20: DEPLOYING WEB APPLICATIONS 665

Internet Information Services 665

xxvii

CONTENTS

IIS Configuration 666
Copying a Website 669
Publishing a Web Application 672
Windows Installer 675

Creating a Setup Program 675
Installing the Web Application 677

Summary 678

PART IV: DATA ACCESS

CHAPTER 21: FILE SYSTEM DATA 683

Streams 683
The Classes for Input and Output 684

The File and Directory Classes 686
The FileInfo Class 687
The DirectoryInfo Class 689
Path Names and Relative Paths 690
The FileStream Object 690

File Position 691
Reading Data 692
Writing Data 695

The StreamWriter Object 697
The StreamReader Object 699

Reading Data 701
Delimited Files 702

Reading and Writing Compressed Files 706
Serialized Objects 710
Monitoring the File System 715
Summary 722

CHAPTER 22: XML 725

XML Documents 726
XML Elements 726
Attributes 727
The XML Declaration 728
Structure of an XML Document 728
XML Namespaces 729
Well-Formed and Valid XML 730
Validating XML Documents 730

DTDs 730
Schemas 731

Using XML in Your Application 734

xxviii

CONTENTS

XML Document Object Model 734
XmlDocument Class 735
XmlElement Class 735
Changing the Values of Nodes 739

Selecting Nodes 744
XPath 745

Summary 749

CHAPTER 23: INTRODUCTION TO LINQ 753

First LINQ Query 754
Declaring a Variable for Results Using the var Keyword 756
Specify Data Source: from Clause 756
Specify Condition: where Clause 757
Select Items: select Clause 757
Finishing Up: Using the foreach Loop 757
Deferred Query Execution 757

Using the LINQ Method Syntax 758
LINQ Extension Methods 758
Query Syntax versus Method Syntax 758

Ordering Query Results 760
orderby Clause 761
Ordering Using Method Syntax 762
Querying a Large Data Set 764
Aggregate Operators 766
Querying Complex Objects 770
Projection: Creating New Objects in Queries 774
Projection: Method Syntax 776
Select Distinct Query 776
Any and All 777
Ordering by Multiple Levels 779
Multi-Level Ordering Method Syntax: ThenBy 781
Group Queries 781
Take and Skip 783
First and FirstOrDefault 785
Set Operators 787
Joins 790
Summary 791

CHAPTER 24: APPLYING LINQ 795

LINQ Varieties 795
Using LINQ with Databases 796
Installing SQL Server and the Northwind Sample Data 797

xxix

CONTENTS

Installing SQL Server Express 2008 797
Installing the Northwind Sample Database 797

First LINQ to Database Query 798
Navigating Database Relationships 801
Using LINQ with XML 804
LINQ to XML Functional Constructors 804

Constructing XML Element Text with Strings 808
Saving and Loading an XML Document 808

Loading XML from a String 811
Contents of a Saved XML Document 811

Working with XML Fragments 812
Generating XML from Databases 814
How to Query an XML Document 817
Using LINQ to XML Query Members 818

Elements() 818
Descendants() 819
Attributes() 821

Summary 823

PART V: ADDITIONAL TECHNIQUES

CHAPTER 25: WINDOWS PRESENTATION FOUNDATION 829

What Is WPF? 830
WPF for Designers 830
WPF for C# Developers 833

Anatomy of a Basic WPF Application 834
WPF Fundamentals 845

XAML Syntax 845
Object Element Syntax 845
Attribute Syntax 846
Property Element Syntax 846
Content Syntax 847
Mixing Property Element Syntax and Content Syntax 847
Markup Extensions 848

Desktop and Web Applications 848
The Application Object 849
Control Basics 849

Dependency Properties 850
Attached Properties 852
Routed Events 852
Attached Events 858

Control Layout 858

xxx

CONTENTS

Stack Order 859
Alignment, Margins, Padding, and Dimensions 859
Border 860
Canvas 860
DockPanel 861
Grid 863
StackPanel 866
WrapPanel 868

Control Styling 868
Styles 869
Templates 869

Triggers 874
Animation 875

Timelines without Key Frames 876
Timelines with Key Frames 877

Static and Dynamic Resources 878
Static Resources 878
Dynamic Resources 878
Referencing Style Resources 879

Programming with WPF 884
WPF User Controls 884
Implementing Dependency Properties 884

Summary 895

CHAPTER 26: WINDOWS COMMUNICATION FOUNDATION 899

What Is WCF? 900
WCF Concepts 901

WCF Communication Protocols 901
Addresses, Endpoints, and Bindings 902
Contracts 904
Message Patterns 905
Behaviors 905
Hosting 906

WCF Programming 906
The WCF Test Client 914
Defining WCF Service Contracts 917

Data Contracts 918
Service Contracts 918
Operation Contracts 919
Message Contracts 920
Fault Contracts 920

Self-Hosted WCF Services 925
Summary 933

xxxi

CONTENTS

CHAPTER 27: WINDOWS WORKFLOW FOUNDATION 935

Hello World 936
Workflows and Activities 937

If Activity 938
While Activity 938
Sequence Activity 938

Arguments and Variables 939
Custom Activities 944

Workflow Extensions 946
Activity Validation 952
Activity Designers 953

Summary 955

APPENDIX A: EXERCISE SOLUTIONS 957

INDEX 1009

xxxii

INTRODUCTION

C# is a relatively new language that was unveiled to the world when Microsoft announced the first
version of its .NET Framework in July 2000. Since then its popularity has rocketed, and it has arguably
become the language of choice for both Windows and Web developers who use the .NET Framework.
Part of the appeal of C# comes from its clear syntax, which derives from C/C++ but simplifies some
things that have previously discouraged some programmers. Despite this simplification, C# has retained
the power of C++, and there is now no reason not to move into C#. The language is not difficult and
it’s a great one to learn elementary programming techniques with. This ease of learning, combined with
the capabilities of the .NET Framework, make C# an excellent way to start your programming career.

The latest release of C#, C# 4, which is included with version 4 of the .NET Framework, builds on the
existing successes and adds even more attractive features. The latest release of Visual Studio (Visual
Studio 2010), and the Express line of development tools (including Visual C# 2010 Express) also bring
many tweaks and improvements to make your life easier and dramatically increase your productivity.

This book is intended to teach you about all aspects of C# programming, from the language itself,
through Windows and Web programming, to making use of data sources, and finally to some new and
advanced techniques. You’ll also learn about the capabilities of Visual C# 2010 Express, Visual Web
Developer 2010 Express, and Visual Studio 2010, and all the ways that these products can aid your
application development.

The book is written in a friendly, mentor-style fashion, with each chapter building on previous ones,
and every effort is made to ease you into advanced techniques painlessly. At no point will technical
terms appear from nowhere to discourage you from continuing; every concept is introduced and dis-
cussed as required. Technical jargon is kept to a minimum; but where it is necessary, it too is properly
defined and laid out in context.

The authors of this book are all experts in their field, and are all enthusiastic in their passion for both
the C# language and the .NET Framework. Nowhere will you find a group of people better qualified
to take you under their collective wing and nurture your understanding of C# from first principles to
advanced techniques. Along with the fundamental knowledge it provides, this book is packed full of
helpful hints, tips, exercises, and full-fledged example code (available for download at p2p.wrox.com)
that you will find yourself returning to repeatedly as your career progresses.

We pass this knowledge on without begrudging it, and hope that you will be able to use it to become
the best programmer you can be. Good luck, and all the best!

WHO THIS BOOK IS FOR

This book is for everyone who wants to learn how to program in C# using the .NET Framework.
The early chapters cover the language itself, assuming no prior programming experience. If you have
programmed in other languages before, then much of the material in these chapters will be familiar.

INTRODUCTION

Many aspects of C# syntax are shared with other languages, and many structures are common to
practically all programming languages (such as looping and branching structures). However, even if
you are an experienced programmer you will benefit from looking through these chapters to learn the
specifics of how these techniques apply to C#.

If you are new to programming, you should start from the beginning. If you are new to the .NET
Framework but know how to program, you should read Chapter 1 and then skim through the next few
chapters before continuing with the application of the C# language. If you know how to program but
haven’t encountered an object-oriented programming language before, you should read the chapters
from Chapter 8 onward.

Alternatively, if you already know the C# language you may wish to concentrate on the chapters dealing
with the most recent .NET Framework and C# language developments, specifically the chapters on
collections, generics, and C# 4 language enhancements (Chapters 11 to 14), or skip the first section of
the book completely and start with Chapter 15.

The chapters in this book have been written with a dual purpose in mind: They can be read sequentially
to provide a complete tutorial in the C# language, and they can be dipped into as required as reference
material.

In addition to the core material, starting with Chapter 3 each chapter also includes a selection of
exercises at the end, which you can work through to ensure that you have understood the material.
The exercises range from simple multiple choice or true/false questions to more complex exercises that
require you to modify or build applications. The answers to all the exercises are provided as a download
from the book’s Web page at www.wrox.com.

WHAT’S NEW IN THIS EDITION

This book has been given plenty of love and attention to coincide with the release of C# 4 and
.NET 4. Every chapter has been given an overhaul, with less relevant material removed, and new
material added. All of the code has been tested against the latest version of the development tools used,
and all of the screenshots have been retaken in Windows 7 to provide the most current windows and
dialogs.

Although we hate to admit our own fallibility, any errors from previous editions have been fixed, and
many other reader comments have been addressed. Hopefully, we haven’t introduced many new errors,
but any that may have slipped through our web of experts will be corrected online as soon as we find
them.

New highlights of this edition include the following:

➤ Additional and improved code examples for you to try out

➤ Coverage of everything that’s new in C# 4, from simple language improvements such as
named and optional method parameters, to advanced techniques such as variance in generic
types

➤ Streamlined coverage of advanced techniques to focus on those most appropriate to beginners
without getting too obscure

xxxiv

INTRODUCTION

HOW THIS BOOK IS STRUCTURED

This book is divided into six sections:

➤ Introduction: Purpose and general outline of the book’s contents

➤ The C# Language: Covers all aspects of the C# language, from the fundamentals to object-
oriented techniques

➤ Windows Programming: How to write Windows applications in C# and how to deploy them

➤ Web Programming: Web application development, Web services, and Web application
deployment

➤ Data Access: How to use data in your applications, including data stored in files on your hard
disk, data stored in XML format, and data in databases

➤ Additional Techniques: An examination of some extra ways to use C# and the .NET
framework, including WPF, WCF, and WF — technologies introduced with .NET 3.0 and
enhanced for .NET 4.

The following sections describe the chapters in the five major parts of this book.

The C# Language (Chapters 1–14)
Chapter 1 introduces you to C# and how it fits into the .NET landscape. You’ll learn the fundamentals
of programming in this environment, and how Visual C# 2010 Express (VCE) and Visual Studio 2010
(VS) fit in.

Chapter 2 starts you off with writing C# applications. You’ll look at the syntax of C# and put the
language to use with sample command-line and Windows applications. These examples will demon-
strate just how quick and easy it can be to get up and running, and along the way you’ll be introduced
to the VCE and VS development environments and the basic windows and tools that you’ll be using
throughout the book.

Next you’ll learn more about the basics of the C# language. You’ll learn what variables are and how
to manipulate them in Chapter 3. You’ll enhance the structure of your applications with flow control
(looping and branching) in Chapter 4, and see some more advanced variable types such as arrays in
Chapter 5. In Chapter 6 you’ll start to encapsulate your code in the form of functions, which make it
much easier to perform repetitive operations and make your code much more readable.

By the beginning of Chapter 7 you’ll have a handle on the fundamentals of the C# language, and will
focus on debugging your applications. This involves looking at outputting trace information as your
applications are executed, and at how VS can be used to trap errors and lead you to solutions for them
with its powerful debugging environment.

From Chapter 8 onward you’ll learn about object-oriented programming (OOP), starting with a look
at what this term means, and an answer to the eternal question ‘‘What is an object?’’ OOP can seem
quite difficult at first. The whole of Chapter 8 is devoted to demystifying it and explaining what makes
it so great, and you won’t actually deal with much C# code until the very end of the chapter.

xxxv

INTRODUCTION

Everything changes in Chapter 9, when you put theory into practice and start using OOP in your
C# applications. This is where the true power of C# lies. You’ll start by looking at how to define
classes and interfaces, and then move on to class members (including fields, properties, and methods)
in Chapter 10. At the end of that chapter you’ll start to assemble a card game application, which is
developed over several chapters, and will help to illustrate OOP.

Once you’ve leaned how OOP works in C#, Chapter 11 moves on to look at common OOP scenar-
ios, including dealing with collections of objects, and comparing and converting objects. Chapter 12
takes a look at a very useful feature of C# that was introduced in .NET 2.0: generics, which enables
you to create very flexible classes. Next, Chapter 13 continues the discussion of the C# language and
OOP with some additional techniques, notably events, which become very important in, for example,
Windows programming. Finally, Chapter 14 focuses on C# language features that were introduced
with versions 3.0 and 4 of the language.

Windows Programming (Chapters 15–17)
Chapter 15 starts by introducing you to what is meant by Windows programming, and looks at how
this is achieved in VCE and VS. Again, you’ll start with the basics and build up your knowledge in both
this chapter and Chapter 16, which demonstrates how you can use the wealth of controls supplied by
the .NET Framework in your applications. You’ll quickly understand how .NET enables you to build
Windows applications in a graphical way, and assemble advanced applications with the minimum of
effort and time.

Chapter 17 discusses how to deploy your applications, including how to make installation programs
that enable your users to get up and running with your applications in double-quick time.

Web Programming (Chapters 18–20)
This section is structured in a similar way to the Windows programming section. It starts with
Chapter 18, which describes the controls that make up the simplest of Web applications, and how you
can fit them together and make them perform tasks using ASP.NET. The chapter then moves on to
look at more advanced techniques, ASP.NET AJAX, versatile controls, and state management in the
context of the Web, as well as how to conform to Web standards.

Chapter 19 is an excursion into the wonderful world of Web services, which provide programmatic
access to information and capabilities across the Internet. Web services enable you to expose complex
data and functionality to Web and Windows applications in a platform-independent way. This chapter
discusses how to use and create Web services, and the additional tools that .NET provides, including
security.

Finally, Chapter 20 examines the deployment of Web applications and services, in particular the fea-
tures of VS and VWD that enable you to publish applications to the Web with the click of a button.

Data Access (Chapters 21–24)
Chapter 21 looks at how your applications can save and retrieve data to disk, both as simple text files
and as more complex representations of data. You’ll also learn how to compress data, how to work
with legacy data such as comma-separated value (CSV) files, and how to monitor and act on file system
changes.

xxxvi

INTRODUCTION

In Chapter 22 you’ll learn about the de facto standard for data exchange — namely, XML. By this
point in the book, you’ll have touched on XML several times in preceding chapters, but this chapter
lays out the ground rules and shows you what all the excitement is about.

The remainder of this part looks at LINQ, which is a query language built in to the latest versions of
the .NET Framework. You start in Chapter 23 with a general introduction to LINQ, and then you will
use LINQ to access a database and other data in Chapter 24.

Additional Techniques (Chapters 25–27)
Finally, in this part of the book you will look at some exciting new technologies that have emerged
with the most recent .NET Framework releases. In Chapter 25 you will get to play with Windows
Presentation Foundation (WPF) and see how it promises enormous changes to both Windows and
Web development. Chapter 26 looks at Windows Communication Foundation (WCF), which extends
and enhances the concept of Web services to an enterprise-level communication technology. The last
chapter of the book, Chapter 27, looks at Windows Workflow Foundation (WF). WF enables you to
implement workflow functionality in your applications, meaning you can define operations that are
performed in a specific order controlled by external interactions, which is very useful for many types of
applications.

WHAT YOU NEED TO USE THIS BOOK

The code and descriptions of C# and the .NET Framework in this book apply to .NET 4. You don’t
need anything other than the Framework to understand this aspect of the book, but many of the
examples require a development tool. This book uses Visual C# 2010 Express as its primary devel-
opment tool, although some chapters use Visual Web Developer 2010 Express. In addition, some
functionality is available only in Visual Studio 2010, which is noted where appropriate.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING Boxes with this icon hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are
accompanied by this icon treatment.

xxxvii

INTRODUCTION

As for styles in the text:

➤ New terms and important words are italicized when introduced.

➤ Keyboard strokes are shown like this: Ctrl+A.

➤ Filenames, URLs, and code within the text looks like so: persistence.properties.

➤ Code is presented in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bolded monofont to emphasize code that is of particular importance in
the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Code snippets that are downloadable from wrox.com are easily identified with an icon; the filename
of the code snippet follows in a code note that appears after the code, much like the one that follows
this paragraph. If it is an entire code listing, the filename should appear in the listing title.

Code snippet filename

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-0-470-50226-6.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

ERRATA

Every effort is made to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
a faulty piece of code, your feedback is welcome. By sending in errata, you might save another reader
hours of frustration, and at the same time you will help us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can

xxxviii

INTRODUCTION

view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/techsupport.

shtml and complete the form there to send us the error you have found. Once the information is
checked, a message is posted to the book’s errata page and the problem is fixed in subsequent editions
of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and to interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxxix

PART I
The C# Language

� CHAPTER 1: Introducing C#

� CHAPTER 2: Writing a C# Program

� CHAPTER 3: Variables and Expressions

� CHAPTER 4: Flow Control

� CHAPTER 5: More About Variables

� CHAPTER 6: Functions

� CHAPTER 7: Debugging and Error Handling

� CHAPTER 8: Introduction to Object-Oriented Programming

� CHAPTER 9: Defining Classes

� CHAPTER 10: Defining Class Members

� CHAPTER 11: Collections, Comparisons, and Conversions

� CHAPTER 12: Generics

� CHAPTER 13: Additional OOP Techniques

� CHAPTER 14: C# Language Enhancements

1
Introducing C#

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What the .NET Framework is and what it contains

➤ How .NET applications work

➤ What C# is and how it relates to the .NET Framework

➤ What tools are available for creating .NET applications with C#

Welcome to the first chapter of the first section of this book. This section will provide you with
the basic knowledge you need to get up and running with C#. This chapter provides an overview
of C# and the .NET Framework, including what these technologies are, the motivation for using
them, and how they relate to each other.

First is a general discussion of the .NET Framework. This technology contains many concepts
that are tricky to come to grips with initially. This means that the discussion, by necessity, covers
many new concepts in a short amount of space. However, a quick look at the basics is essential
to understanding how to program in C#. Later in the book you will revisit many of the topics
covered here, exploring them in more detail.

After that general introduction, the chapter provides a basic description of C# itself, including
its origins and similarities to C++. Finally, you look at the primary tools used throughout this
book: Visual Studio 2010 (VS) and Visual C# 2010 Express (VCE).

WHAT IS THE .NET FRAMEWORK?

The .NET Framework (now at version 4) is a revolutionary platform created by Microsoft
for developing applications. The most interesting thing about this statement is how vague it
is — but there are good reasons for this. For a start, note that it doesn’t ‘‘develop applications

4 ❘ CHAPTER 1 INTRODUCING C#

on the Windows operating system.’’ Although the Microsoft release of the .NET Framework runs
on the Windows operating system, it is possible to find alternative versions that will work on other
systems. One example of this is Mono, an open-source version of the .NET Framework (including a C#
compiler) that runs on several operating systems, including various flavors of Linux and Mac OS. In
addition, you can use the Microsoft .NET Compact Framework (essentially a subset of the full .NET
Framework) on personal digital assistant (PDA) class devices and even some smartphones. One of the
key motivations behind the .NET Framework is its intended use as a means of integrating disparate
operating systems.

In addition, the preceding definition of the .NET Framework includes no restriction on the type of
applications that are possible. That’s because there is no restriction — the .NET Framework enables
the creation of Windows applications, Web applications, Web services, and pretty much anything else
you can think of. Also, with Web applications it’s worth noting that these are, by definition, multi-
platform applications, since any system with a Web browser can access them. With the recent addition
of Silverlight, this category also includes applications that run inside browsers on the client, as well as
applications that merely render Web content in the form of HTML.

The .NET Framework has been designed so that it can be used from any language, including C# (the
subject of this book) as well as C++, Visual Basic, JScript, and even older languages such as COBOL.
For this to work, .NET-specific versions of these languages have also appeared, and more are being
released all the time. Not only do all of these have access to the .NET Framework, but they can also
communicate with each other. It is perfectly possible for C# developers to make use of code written by
Visual Basic programmers, and vice versa.

All of this provides an extremely high level of versatility and is part of what makes using the .NET
Framework such an attractive prospect.

What’s in the .NET Framework?
The .NET Framework consists primarily of a gigantic library of code that you use from your client
languages (such as C#) using object-oriented programming (OOP) techniques. This library is catego-
rized into different modules — you use portions of it depending on the results you want to achieve.
For example, one module contains the building blocks for Windows applications, another for net-
work programming, and another for Web development. Some modules are divided into more specific
submodules, such as a module for building Web services within the module for Web development.

The intention is for different operating systems to support some or all of these modules, depending on
their characteristics. A PDA, for example, would include support for all the core .NET functionality
but is unlikely to require some of the more esoteric modules.

Part of the .NET Framework library defines some basic types. A type is a representation of data, and
specifying some of the most fundamental of these (such as ‘‘a 32-bit signed integer’’) facilitates inter-
operability between languages using the .NET Framework. This is called the Common Type System
(CTS).

As well as supplying this library, the .Net Framework also includes the .NET Common Language
Runtime (CLR), which is responsible for maintaining the execution of all applications developed using
the .NET library.

What is the .NET Framework? ❘ 5

Writing Applications Using the .NET Framework
Writing an application using the .NET Framework means writing code (using any of the languages that
support the Framework) using the .NET code library. In this book you use VS and VCE for your devel-
opment. VS is a powerful, integrated development environment that supports C# (as well as managed
and unmanaged C++, Visual Basic, and some others). VCE is a slimmed down (and free) version of VS
that supports C# only. The advantage of these environments is the ease with which .NET features can
be integrated into your code. The code that you create will be entirely C# but use the .NET Framework
throughout, and you’ll make use of the additional tools in VS and VCE where necessary.

In order for C# code to execute, it must be converted into a language that the target operating system
understands, known as native code. This conversion is called compiling code, an act that is performed
by a compiler. Under the .NET Framework, this is a two-stage process.

CIL and JIT
When you compile code that uses the .NET Framework library, you don’t immediately create
operating-system-specific native code. Instead, you compile your code into Common Intermediate
Language (CIL) code. This code isn’t specific to any operating system (OS) and isn’t specific to C#.
Other .NET languages — Visual Basic .NET, for example — also compile to this language as a first
stage. This compilation step is carried out by VS or VCE when you develop C# applications.

Obviously, more work is necessary to execute an application. That is the job of a just-in-time (JIT)
compiler, which compiles CIL into native code that is specific to the OS and machine architecture
being targeted. Only at this point can the OS execute the application. The just-in-time part of the name
reflects the fact that CIL code is compiled only when it is needed.

In the past, it was often necessary to compile your code into several applications, each of which targeted
a specific operating system and CPU architecture. Typically, this was a form of optimization (to get code
to run faster on an AMD chipset, for example), but at times it was critical (for applications to work
in both Win9x and WinNT/2000 environments, for example). This is now unnecessary, because JIT
compilers (as their name suggests) use CIL code, which is independent of the machine, operating system,
and CPU. Several JIT compilers exist, each targeting a different architecture, and the appropriate one is
used to create the native code required.

The beauty of all this is that it requires a lot less work on your part — in fact, you can forget about
system-dependent details and concentrate on the more interesting functionality of your code.

NOTE You may come across references to Microsoft Intermediate Language
(MSIL) or just IL. MSIL was the original name for CIL, and many developers still
use this terminology.

Assemblies
When you compile an application, the CIL code created is stored in an assembly. Assemblies include
both executable application files that you can run directly from Windows without the need for any

6 ❘ CHAPTER 1 INTRODUCING C#

other programs (these have a .exe file extension) and libraries (which have a .dll extension) for use by
other applications.

In addition to containing CIL, assemblies also include meta information (that is, information about the
information contained in the assembly, also known as metadata) and optional resources (additional
data used by the CIL, such as sound files and pictures). The meta information enables assemblies to be
fully self-descriptive. You need no other information to use an assembly, meaning you avoid situations
such as failing to add required data to the system registry and so on, which was often a problem when
developing with other platforms.

This means that deploying applications is often as simple as copying the files into a directory on a
remote computer. Because no additional information is required on the target systems, you can just run
an executable file from this directory and (assuming the .NET CLR is installed) you’re good to go.

Of course, you won’t necessarily want to include everything required to run an application in one
place. You might write some code that performs tasks required by multiple applications. In situations
like that, it is often useful to place the reusable code in a place accessible to all applications. In the
.NET Framework, this is the global assembly cache (GAC). Placing code in the GAC is simple — you
just place the assembly containing the code in the directory containing this cache.

Managed Code
The role of the CLR doesn’t end after you have compiled your code to CIL and a JIT compiler has
compiled that to native code. Code written using the .NET Framework is managed when it is executed
(a stage usually referred to as runtime). This means that the CLR looks after your applications by
managing memory, handling security, allowing cross-language debugging, and so on. By contrast,
applications that do not run under the control of the CLR are said to be unmanaged, and certain
languages such as C++ can be used to write such applications, which, for example, access low-level
functions of the operating system. However, in C# you can write only code that runs in a managed
environment. You will make use of the managed features of the CLR and allow .NET itself to handle
any interaction with the operating system.

Garbage Collection
One of the most important features of managed code is the concept of garbage collection. This is the
.NET method of making sure that the memory used by an application is freed up completely when the
application is no longer in use. Prior to .NET this was mostly the responsibility of programmers, and a
few simple errors in code could result in large blocks of memory mysteriously disappearing as a result
of being allocated to the wrong place in memory. That usually meant a progressive slowdown of your
computer followed by a system crash.

.NET garbage collection works by periodically inspecting the memory of your computer and removing
anything from it that is no longer needed. There is no set time frame for this; it might happen thousands
of times a second, once every few seconds, or whenever, but you can rest assured that it will happen.

What is the .NET Framework? ❘ 7

There are some implications for programmers here. Because this work is done for you at an unpre-
dictable time, applications have to be designed with this in mind. Code that requires a lot of memory
to run should tidy itself up, rather than wait for garbage collection to happen, but that isn’t as tricky as
it sounds.

Fitting It Together
Before moving on, let’s summarize the steps required to create a .NET application as discussed previ-
ously:

1. Application code is written using a .NET-compatible language such as C# (see Figure 1-1).

C# code

FIGURE 1-1

2. That code is compiled into CIL, which is stored in an assembly (see Figure 1-2).

C# application
code AssemblyCompilation

FIGURE 1-2

3. When this code is executed (either in its own right if it is an executable or when it is used from
other code), it must first be compiled into native code using a JIT compiler (see Figure 1-3).

Assembly
Native CodeJIT Compilation

FIGURE 1-3

8 ❘ CHAPTER 1 INTRODUCING C#

4. The native code is executed in the context of the managed CLR, along with any other running
applications or processes, as shown in Figure 1-4.

Native Code

.NET CLR

System Runtime

Native Code Native Code

FIGURE 1-4

Linking
Note one additional point concerning this process. The C# code that compiles into CIL in step 2 needn’t
be contained in a single file. It’s possible to split application code across multiple source code files,
which are then compiled together into a single assembly. This extremely useful process is known as
linking. It is required because it is far easier to work with several smaller files than one enormous one.
You can separate out logically related code into an individual file so that it can be worked on indepen-
dently and then practically forgotten about when completed. This also makes it easy to locate specific
pieces of code when you need them and enables teams of developers to divide the programming bur-
den into manageable chunks, whereby individuals can ‘‘check out’’ pieces of code to work on without
risking damage to otherwise satisfactory sections or sections other people are working on.

WHAT IS C#?

C#, as mentioned earlier, is one of the languages you can use to create applications that will run in the
.NET CLR. It is an evolution of the C and C++ languages and has been created by Microsoft specifically
to work with the .NET platform. The C# language has been designed to incorporate many of the best
features from other languages, while clearing up their problems.

Developing applications using C# is simpler than using C++, because the language syntax is simpler.
Still, C# is a powerful language, and there is little you might want to do in C++ that you can’t do in C#.
Having said that, those features of C# that parallel the more advanced features of C++, such as directly
accessing and manipulating system memory, can be carried out only by using code marked as unsafe.
This advanced programmatic technique is potentially dangerous (hence its name) because it is possible
to overwrite system-critical blocks of memory with potentially catastrophic results. For this reason,
and others, this book does not cover that topic.

What is C#? ❘ 9

At times, C# code is slightly more verbose than C++. This is a consequence of C# being a type-safe
language (unlike C++). In layperson’s terms, this means that once some data has been assigned to a
type, it cannot subsequently transform itself into another unrelated type. Consequently, strict rules
must be adhered to when converting between types, which means you will often need to write more
code to carry out the same task in C# than you might write in C++. However, you get two benefits: the
code is more robust and debugging is simpler, and .NET can always track the type of a piece of data at
any time. In C#, you therefore may not be able to do things such as ‘‘take the region of memory 4 bytes
into this data and 10 bytes long and interpret it as X,’’ but that’s not necessarily a bad thing.

C# is just one of the languages available for .NET development, but it is certainly the best. It has the
advantage of being the only language designed from the ground up for the .NET Framework and is
the principal language used in versions of .NET that are ported to other operating systems. To keep
languages such as the .NET version of Visual Basic as similar as possible to their predecessors yet
compliant with the CLR, certain features of the .NET code library are not fully supported, or at least
require unusual syntax. By contrast, C# can make use of every feature that the .NET Framework code
library has to offer. The latest version of .NET includes several additions to the C# language, partly in
response to requests from developers, making it even more powerful.

Applications You Can Write with C#
The .NET Framework has no restrictions on the types of applications that are possible, as discussed
earlier. C# uses the framework and therefore has no restrictions on possible applications. However,
here are a few of the more common application types:

➤ Windows applications: Applications, such as Microsoft Office, that have a familiar Windows
look and feel about them. This is made simple by using the Windows Forms module of the
.NET Framework, which is a library of controls (such as buttons, toolbars, menus, and so
on) that you can use to build a Windows user interface (UI). Alternatively, you can use Win-
dows Presentation Foundation (WPF) to build Windows applications, which gives you much
greater flexibility and power.

➤ Web applications: Web pages such as those that might be viewed through any Web browser.
The .NET Framework includes a powerful system for generating Web content dynamically,
enabling personalization, security, and much more. This system is called ASP.NET (Active
Server Pages .NET), and you can use C# to create ASP.NET applications using Web Forms.
You can also write applications that run inside the browser with Silverlight.

➤ Web services: An exciting way to create versatile distributed applications. Using Web
services you can exchange virtually any data over the Internet, using the same simple syntax
regardless of the language used to create a Web service or the system on which it resides.
For more advanced capabilities, you can also create Windows Communication Foundation
(WCF) services.

Any of these types may also require some form of database access, which can be achieved using the
ADO.NET (Active Data Objects .NET) section of the .NET Framework, through the ADO.NET
Entity Framework, or through the LINQ (Language Integrated Query) capabilities of C#. Many other
resources can be drawn on, such as tools for creating networking components, outputting graphics,
performing complex mathematical tasks, and so on.

10 ❘ CHAPTER 1 INTRODUCING C#

C# in This Book
The first part of this book deals with the syntax and usage of the C# language without too much empha-
sis on the .NET Framework. This is necessary because you won’t be able to use the .NET Framework
at all without a firm grounding in C# programming. We’ll start off even simpler, in fact, and leave the
more involved topic of OOP until you’ve covered the basics. These are taught from first principles,
assuming no programming knowledge at all.

After that, you’ll be ready to move on to developing more complex (but more useful) applications.
Part II of this book looks at Windows Forms programming, Part III tackles Web application and Web
service programming, Part IV examines data access (for database, file system, and XML data), and
Part V covers some other .NET topics of interest.

VISUAL STUDIO 2010

In this book, you use the Visual Studio 2010 (VS) or Visual C# 2010 Express (VCE) development tools
for all of your C# programming, from simple command-line applications to more complex project
types. A development tool, or integrated development environment (IDE), such as VS isn’t essential for
developing C# applications, but it makes things much easier. You can (if you want to) manipulate C#
source code files in a basic text editor, such as the ubiquitous Notepad application, and compile code
into assemblies using the command-line compiler that is part of the .NET Framework. However, why
do this when you have the power of an IDE to help you?

The following is a short list of some Visual Studio features that make it an appealing choice for .NET
development:

➤ VS automates the steps required to compile source code but at the same time gives you com-
plete control over any options used should you wish to override them.

➤ The VS text editor is tailored to the languages VS supports (including C#) so that it can intel-
ligently detect errors and suggest code where appropriate as you are typing. This feature is
called IntelliSense.

➤ VS includes designers for Windows Forms, Web Forms, and other applications, enabling sim-
ple drag-and-drop design of UI elements.

➤ Many types of C# projects may be created with ‘‘boilerplate’’ code already in place. Instead of
starting from scratch, you will often find that various code files are started for you, reducing
the amount of time spent getting started on a project. This is especially true of the ‘‘Starter
Kit’’ project type, which enables you to develop from a fully functional application base.
Some starter kits are included with the VS installation, and you can find plenty more online
to play with.

➤ VS includes several wizards that automate common tasks, many of which can add appropri-
ate code to existing files without you having to worry about (or even, in some cases, remem-
ber) the correct syntax.

➤ VS contains many powerful tools for visualizing and navigating through elements of your
projects, whether they are C# source code files or other resources such as bitmap images or
sound files.

Summary ❘ 11

➤ As well as simply writing applications in VS, you can create deployment projects, making it
easy to supply code to clients and for them to install it without much trouble.

➤ VS enables you to use advanced debugging techniques when developing projects, such as the
capability to step through code one instruction at a time while keeping an eye on the state of
your application.

There is much more than this, but you get the idea!

Visual Studio 2010 Express Products
In addition to Visual Studio 2010, Microsoft also supplies several simpler development tools known as
Visual Studio 2010 Express Products. These are freely available at http://www.microsoft.com/express.

Two of these products, Visual C# 2010 Express and Visual Web Developer 2010 Express, together
enable you to create almost any C# application you might need. They both function as slimmed-down
versions of VS and retain the same look and feel. While they offer many of the same features as VS,
some notable feature are absent, although not so many that they would prevent you from using these
tools to work through the chapters.

In this book you’ll use VCE to develop C# applications wherever possible, and only use VS where it is
necessary for certain functionality. Of course, if you have VS there is no need to use an express product.

Solutions
When you use VS or VCE to develop applications, you do so by creating solutions. A solution, in VS
and VCE terms, is more than just an application. Solutions contain projects, which might be Windows
Forms projects, Web Form projects, and so on. Because solutions can contain multiple projects, you
can group together related code in one place, even if it will eventually compile to multiple assemblies in
various places on your hard disk.

This is very useful because it enables you to work on shared code (which might be placed in the GAC)
at the same time as applications that use this code. Debugging code is a lot easier when only one devel-
opment environment is used, because you can step through instructions in multiple code modules.

SUMMARY

In this chapter, you looked at the .NET Framework in general terms and discovered how it makes it
easy for you to create powerful and versatile applications. You saw what is necessary to turn code in
languages such as C# into working applications, and what benefits you gain from using managed code
running in the .NET CLR.

You also learned what C# actually is and how it relates to the .NET Framework, and you were intro-
duced to the tools that you’ll use for C# development — Visual Studio 2010 and Visual C# 2010
Express.

In the next chapter, you get some C# code running, which will give you enough knowledge to sit back
and concentrate on the C# language itself, rather than worry too much about how the IDE works.

12 ❘ CHAPTER 1 INTRODUCING C#

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

.NET Framework
fundamentals

The .NET Framework is Microsoft’s latest development platform, and is currently
in version 4. It includes a common type system (CTS) and common language
runtime (CLR). .NET Framework applications are written using object oriented
programming (OOP) methodology, and usually contain managed code. Memory
management of managed code is handled by the .NET runtime; this includes
garbage collection.

.NET Framework
applications

Applications written using the .NET framework are first compiled into CIL. When
an application is executed, the JIT compiles this CIL into native code. Applications
are compiled and different parts are linked together into assemblies that contain
the CIL.

C# basics C# is one of the languages included in the .NET Framework. It is an evolution
of previous languages such as C++, and can be used to write any number of
applications, including both web sites and Windows applications.

Integrated
Development
Environments
(IDEs)

You can use Visual Studio 2010 to write any type of .NET application using
C#. You can also use the free, but less powerful, express product range (includ-
ing Visual C# Developer Express) to create .NET applications in C#. Both of these
IDEs work with solutions, which can consist of multiple projects.

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

2
Writing a C# Program

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ A basic working knowledge of Visual Studio 2010 and Visual C#
2010 Express Edition

➤ How to write a simple console application

➤ How to write a Windows Forms application

Now that you’ve spent some time learning what C# is and how it fits into the .NET Framework,
it’s time to get your hands dirty and write some code. You use Visual Studio 2010 (VS) and
Visual C# 2010 Express (VCE) throughout this book, so the first thing to do is have a look at
some of the basics of these development environments.

VS is an enormous and complicated product, and it can be daunting to first-time users, but using
it to create basic applications can be surprisingly simple. As you start to use VS in this chapter,
you will see that you don’t need to know a huge amount about it to begin playing with C# code.
Later in the book you’ll see some of the more complicated operations that VS can perform, but
for now a basic working knowledge is all that is required.

VCE is far simpler for getting started, and in the early stages of this book all the examples
are described in the context of this IDE. However, if you prefer, you can use VS instead, and
everything will work in more or less the same way. For that reason, you’ll see both IDEs in this
chapter, starting with VS.

After you’ve had a look at the IDEs, you put together two simple applications. You don’t need
to worry too much about the code in these for now; you just prove that things work. By working
through the application creation procedures in these early examples, they will become second
nature before too long.

The first application you create is a simple console application. Console applications are those
that don’t make use of the graphical windows environment, so you won’t have to worry about

14 ❘ CHAPTER 2 WRITING A C# PROGRAM

buttons, menus, interaction with the mouse pointer, and so on. Instead, you run the application in a
command prompt window and interact with it in a much simpler way.

The second application is a Windows Forms application. The look and feel of this is very familiar to
Windows users, and (surprisingly) the application doesn’t require much more effort to create. However,
the syntax of the code required is more complicated, even though in many cases you don’t actually have
to worry about details.

You use both types of application over the next two parts of the book, with slightly more emphasis on
console applications at the beginning. The additional flexibility of Windows applications isn’t necessary
when you are learning the C# language, while the simplicity of console applications enables you to
concentrate on learning the syntax and not worry about the look and feel of the application.

THE DEVELOPMENT ENVIRONMENTS

This section explores the VS and VCE development environments, starting with VS. These environ-
ments are similar, and you should read both sections regardless of which IDE you are using.

Visual Studio 2010
When VS is first loaded, it immediately presents you with a host of windows, most of which are empty,
along with an array of menu items and toolbar icons. You will be using most of these in the course of
this book, and you can rest assured that they will look far more familiar before too long.

If this is the first time you have run VS, you will be presented with a list of preferences intended for users
who have experience with previous releases of this development environment. The choices you make
here affect a number of things, such as the layout of windows, the way that console windows run, and
so on. Therefore, choose Visual C# Development Settings; otherwise, you may find that things don’t
quite work as described in this book. Note that the options available vary depending on the options
you chose when installing VS, but as long as you chose to install C# this option will be available.

If this isn’t the first time that you’ve run VS, but you chose a different option the first time, don’t panic.
To reset the settings to Visual C# Development Settings you simply have to import them. To do this,
select Tools ➪ Import and Export Settings, and choose the Reset All Settings option, shown in
Figure 2-1.

Click Next, and indicate whether you want to save your existing settings before proceeding. If you have
customized things, you might want to do this; otherwise, select No and click Next again. From the
next dialog, select Visual C# Development Settings, shown in Figure 2-2. Again, the available options
may vary.

Finally, click Finish to apply the settings.

The VS environment layout is completely customizable, but the default is fine here. With C# Developer
Settings selected, it is arranged as shown in Figure 2-3.

The Development Environments ❘ 15

FIGURE 2-1

FIGURE 2-2

16 ❘ CHAPTER 2 WRITING A C# PROGRAM

FIGURE 2-3

The main window, which contains a helpful Start Page by default when VS is started, is where all your
code is displayed. This window can contain many documents, each indicated by a tab, so you can easily
switch between several files by clicking their filenames. It also has other functions: It can display GUIs
that you are designing for your projects, plain-text files, HTML, and various tools that are built into
VS. You will come across all of these in the course of this book.

Above the main window are toolbars and the VS menu. Several different toolbars can be placed here,
with functionality ranging from saving and loading files to building and running projects to debugging
controls. Again, you are introduced to these as you need to use them.

Here are brief descriptions of each of the main features that you will use the most:

➤ The Toolbox toolbar pops up when the mouse moves over it. It provides access to, among
other things, the user interface building blocks for Windows applications. Another tab, Server
Explorer, can also appear here (selectable via the View Server Explorer menu option) and
includes various additional capabilities, such as providing access to data sources, server
settings, services, and more.

➤ The Solution Explorer window displays information about the currently loaded solution.
A solution, as you learned in the previous chapter, is VS terminology for one or more projects
along with their configurations. The Solution Explorer window displays various views of the
projects in a solution, such as what files they contain and what is contained in those files.

➤ Just below the Solution Explorer window you can display a Properties window, not shown in
Figure 2-3 because it appears only when you are working on a project (you can also toggle its

The Development Environments ❘ 17

display using View Properties Window). This window provides a more detailed view of the
project’s contents, enabling you to perform additional configuration of individual elements.
For example, you can use this window to change the appearance of a button in a Windows
form.

➤ Also not shown in the screenshot is another extremely important window: the Error List
window, which you can display using View Error List. It shows errors, warnings, and other
project-related information. The window updates continuously, although some information
appears only when a project is compiled.

This may seem like a lot to take in, but it doesn’t take long to get used to. You start by building the first
of your example projects, which involves many of the VS elements just described.

NOTE VS is capable of displaying many other windows, both informational and
functional. Many of these can share screen space with the windows mentioned
here, and you can switch between them using tabs. Several of these windows are
used later in the book, and you’ll probably discover more yourself when you
explore the VS environment in more detail.

Visual C# 2010 Express Edition
With VCE you don’t have to worry about changing the settings. Obviously, this product isn’t going to
be used for Visual Basic programming, so there is no equivalent setting to worry about here. When you
start VCE for the first time, you are presented with a screen that is very similar to the one in VS (see
Figure 2-4).

FIGURE 2-4

18 ❘ CHAPTER 2 WRITING A C# PROGRAM

CONSOLE APPLICATIONS

You use console applications regularly in this book, particularly at the beginning, so the following
Try It Out provides a step-by-step guide to creating a simple one. It includes instructions for both VS
and VCE.

TRY IT OUT Creating a Simple Console Application

1. Create a new console application project by selecting File ➪ New ➪ Project in VS or File ➪ New
Project in VCE, as shown in Figures 2-5 and 2-6.

FIGURE 2-5

FIGURE 2-6

2. In VS, ensure that the Visual C# node is selected in the
Installed Templates pane of the window that appears,
and choose the Console Application project type in
the middle pane (see Figure 2-7). In VCE, simply
select Console Application in the Templates pane (see
Figure 2-8). In VS, change the Location text box to
C:\BegVCSharp\Chapter02 (this directory is created
automatically if it doesn’t already exist). For both VS and
VCE, leave the default text in the Name text box (Con-
soleApplication1) and the other settings as they are (refer
to Figures 2-7 and 2-8).

3. Click the OK button.

4. If you are using VCE, after the project is initialized click
the Save All button on the toolbar or select Save All from
the File menu, set the Location field to C:\BegVCSharp
\Chapter02, and click Save.

Console Applications ❘ 19

FIGURE 2-7

FIGURE 2-8

20 ❘ CHAPTER 2 WRITING A C# PROGRAM

5. Once the project is initialized, add the following lines of code to the file displayed in the main
window:

namespace ConsoleApplication1
{

class Program
{

static void Main(string[] args)
{

// Output text to the screen.
Console.WriteLine("The first app in Beginning C# Programming!");
Console.ReadKey();

}
}

}
Code snippet ConsoleApplication1\Program.cs

6. Select the Debug ➪ Start Debugging menu item. After a few moments you should see the window
shown in Figure 2-9.

FIGURE 2-9

7. Press any key to exit the application (you may need to click on the console window to focus on
it first).

In VS, the preceding display appears only if the Visual C# Developer Settings are applied, as described
earlier in this chapter. For example, with Visual Basic Developer Settings applied, an empty console
window is displayed, and the application output appears in a window labeled Immediate. In this case,
the Console.ReadKey() code also fails, and you see an error. If you experience this problem, the
best solution for working through the examples in this book is to apply the Visual C# Developer
Settings — that way, the results you see match the results shown here. If this problem persists,
then open the Tools ➪ Options dialog and uncheck the Debugging ➪ Redirect all Output . . . option,
as shown in Figure 2-10.

How It Works

For now, we won’t dissect the code used thus far because the focus here is on how to use the development
tools to get code up and running. Clearly, both VS and VCE do a lot of the work for you and make the
process of compiling and executing code simple. In fact, there are multiple ways to perform even these
basic steps — for instance, you can create a new project by using the menu item mentioned earlier, by
pressing Ctrl+Shift+N, or by clicking the corresponding icon in the toolbar.

Console Applications ❘ 21

FIGURE 2-10

Similarly, your code can be compiled and executed in several ways. The process you used
previously — selecting Debug ➪ Start Debugging — also has a keyboard shortcut (F5) and a
toolbar icon. You can also run code without being in debugging mode using the Debug ➪ Start Without
Debugging menu item (or by pressing Ctrl+F5), or compile your project without running it (with debug-
ging on or off) using Build ➪ Build Solution or F6. Note that you can execute a project without debugging
or build a project using toolbar icons, although these icons don’t appear on the toolbar by default.
After you have compiled your code, you can also execute it simply by running the .exe file produced in
Windows Explorer, or from the command prompt. To do this, open a command prompt window, change
the directory to C:\BegVCSharp\Chapter02\ConsoleApplication1\ConsoleApplication1\bin\Debug\,
type ConsoleApplication1, and press Enter.

NOTE In future examples, when you see the instructions ‘‘create a new console
project’’ or ‘‘execute the code,’’ you can choose whichever method you want to
perform these steps. Unless otherwise stated, all code should be run with
debugging enabled. In addition, the terms ‘‘start,’’ ‘‘execute,’’ and ‘‘run’’ are used
interchangeably in this book, and discussions following examples always assume
that you have exited the application in the example.

Console applications terminate as soon as they finish execution, which can mean that you don’t get a
chance to see the results if you run them directly through the IDE. To get around this in the preceding
example, the code is told to wait for a key press before terminating, using the following line:

Console.ReadKey();

You will see this technique used many times in later examples. Now that you’ve created a project, you can
take a more detailed look at some of the regions of the development environment.

22 ❘ CHAPTER 2 WRITING A C# PROGRAM

The Solution Explorer
The Solution Explorer window is in the top-right corner of the screen. It is the same for both VS and
VCE (as are all the windows examined in this chapter unless otherwise specified). By default, this
window is set to auto-hide, but you can dock it to the side of the screen by clicking the pin icon when it
is visible. The Solution Explorer window shares space with another useful window called Class View,
which you can display using View ➪ Class View. Figure 2-11 shows both of these windows with all
nodes expanded (you can toggle between them by clicking on the tabs at the bottom of the window
when the window is docked).

NOTE In VCE, the Class View window is only available if you turn on Expert
Settings, which you can do through the Tools ➪ Settings ➪ Expert Settings
menu item.

FIGURE 2-11

This Solution Explorer view shows the files that make up the ConsoleApplication1 project. The file
to which you added code, Program.cs, is shown along with another code file, AssemblyInfo.cs, and
several references.

NOTE All C# code files have a .cs file extension.

You don’t have to worry about the AssemblyInfo.cs file for the moment. It contains extra information
about your project that doesn’t concern us yet.

You can use this window to change what code is displayed in the main window by double-clicking
.cs files; right-clicking them and selecting View Code; or by selecting them and clicking the toolbar
button that appears at the top of the window. You can also perform other operations on files here,
such as renaming them or deleting them from your project. Other file types can also appear here, such
as project resources

Console Applications ❘ 23

FIGURE 2-12

(resources are files used by the project that might not be C#
files, such as bitmap images and sound files). Again, you can
manipulate them through the same interface.

The References entry contains a list of the .NET libraries
you are using in your project. You’ll look at this later; the
standard references are fine for now. The other view, Class
View, presents an alternative view of your project by showing
the structure of the code you created. You’ll come back to
this later in the book; for now the Solution Explorer display
is appropriate. As you click on files or other icons in these
windows, you may notice that the contents of the Properties
window (shown in Figure 2-12) changes.

The Properties Window
The Properties window (select View ➪ Properties Window if it isn’t already displayed) shows addi-
tional information about whatever you select in the window above it. For example, the view shown
in Figure 2-12 is displayed when the Program.cs file from the project is selected. This window also
displays information about other selected items, such as user interface components (as shown in the
‘‘Windows Forms Applications’’ section of this chapter).

Often, changes you make to entries in the Properties window affect your code directly, adding lines of
code or changing what you have in your files. With some projects, you spend as much time manipulat-
ing things through this window as making manual code changes.

The Error List Window
Currently, the Error List window (View ➪ Error List) isn’t showing much of interest because there is
nothing wrong with the application. However, this is a very useful window indeed. As a test, remove
the semicolon from one of the lines of code you added in the previous section. After a moment, you
should see a display like the one shown in Figure 2-13.

FIGURE 2-13

In addition, the project will no longer compile.

NOTE In Chapter 3, when you start looking at C# syntax, you will learn that
semicolons are expected throughout your code — at the end of most lines, in fact.

24 ❘ CHAPTER 2 WRITING A C# PROGRAM

This window helps you eradicate bugs in your code because it keeps track of what you have to do to
compile projects. If you double-click the error shown here, the cursor jumps to the position of the error
in your source code (the source file containing the error will be opened if it isn’t already open), so you
can fix it quickly. Red wavy lines appear at the positions of errors in the code, so you can quickly scan
the source code to see where problems lie.

The error location is specified as a line number. By default, line numbers aren’t displayed in the VS text
editor, but that is something well worth turning on. To do so, tick the Line numbers check box in the
Options dialog (selected via the Tools ➪ Options menu item). It appears in the Text Editor ➪ C# ➪

General category, as shown in Figure 2-14.

FIGURE 2-14

NOTE In VCE you must select Show All Settings for this option to become
available, and the list of options looks slightly different from Figure 2-14.

Many useful options can be found through this dialog, and you will use several of them later
in this book.

WINDOWS FORMS APPLICATIONS

It is often easier to demonstrate code by running it as part of a Windows application than through a
console window or via a command prompt. You can do this using user interface building blocks to
piece together a user interface.

The following Try It Out shows just the basics of doing this, and you’ll see how to get a Windows
application up and running without a lot of details about what the application is actually doing. Later
you take a detailed look at Windows applications.

Windows Forms Applications ❘ 25

TRY IT OUT Creating a Simple Windows Application

1. Create a new project of type Windows Forms Application (VS or VCE) in the same location as
before (C:\BegVCSharp\Chapter02; and if you are using VCE, save the project to this location after
you create it) with the default name WindowsFormsApplication1. If you are using VS and the first
project is still open, make sure the Create New Solution option is selected to start a new solution.
These settings are shown in Figures 2-15 and 2-16.

FIGURE 2-15

2. Click OK to create the project. You should see an empty Windows form. Move the mouse pointer
to the Toolbox bar on the left of the screen, then to the Button entry of the All Windows Forms
tab, and double-click the entry to add a button to the main form of the application (Form1).

3. Double-click the button that has been added to the form.

4. The C# code in Form1.cs should now be displayed. Modify it as follows (only part of the code in
the file is shown here for brevity):

private void button1_Click(object sender, EventArgs e)
{

MessageBox.Show("The first Windows app in the book!");
}

Code snippet WindowsFormsApplication1\Form1.cs

5. Run the application.

26 ❘ CHAPTER 2 WRITING A C# PROGRAM

FIGURE 2-16

6. Click the button presented to open a message dialog box, as shown in Figure 2-17.

FIGURE 2-17

7. Click OK, and then exit the application by clicking the X in
the top-right corner, as per standard Windows applications.

How It Works

Again, it is plain that the IDE has done a lot of work for you and
made it simple to create a functional Windows application with
little effort. The application you created behaves just like other
windows — you can move it around, resize it, minimize it, and so
on. You don’t have to write the code to do that — it works. The
same is true for the button you added. Simply by double-clicking it,
the IDE knew that you wanted to write code to execute when a user
clicked the button in the running application. All you had to do was
provide that code, getting full button-clicking functionality for free.

Of course, Windows applications aren’t limited to plain forms with buttons. Look at the toolbar where
you found the Button option and you’ll see a whole host of user interface building blocks, some of which
may be familiar. You will use most of these at some point in the book, and you’ll find that they are all easy
to use, saving you a lot of time and effort.

The code for your application, in Form1.cs, doesn’t look much more complicated than the code in the
previous section, and the same is true for the code in the other files in the Solution Explorer window.
Much of the code generated is hidden by default. It is concerned with the layout of controls on the form,

Windows Forms Applications ❘ 27

which is why you can view the code in design view in the main window — it’s a visual translation of this
layout code. A button is an example of a control that you can use, as are the rest of the UI building blocks
found in the Windows Forms section of the Toolbox bar.

FIGURE 2-18

You can take a closer look at the button as a control example.
Switch back to the design view of the form using the tab on the
main window, and click once on the button to select it. When
you do so, the Properties window in the bottom-right corner of
the screen shows the properties of the button control (controls
have properties much like the files shown in the last example).
Ensure that the application isn’t currently running, scroll down
to the Text property, which is currently set to button1, and
change the value to Click Me, as shown in Figure 2-18.

The text written on the button in Form1 should also reflect
this change.

There are many properties for this button, ranging from simple formatting of the color and size to more
obscure settings such as data binding settings, which enable you to establish links to databases. As briefly
mentioned in the previous example, changing properties often results in direct changes to code, and this
is no exception. However, if you switch back to the code view of Form1.cs, you won’t see any change in
the code.

To see the modified code, you need to look at the hidden code mentioned previously. To view the file that
contains this code, expand Form1.cs in the Solution Explorer, which reveals a Form1.Designer.cs node.
Double-click that file to see what’s inside.

At a cursory glance, you might not notice anything in this code reflecting the button property change at all.
That’s because the sections of C# code that deal with the layout and formatting of controls on a form are
hidden (after all, you hardly need to look at the code if you have a graphical display of the results).

VS and VCE use a system of code outlining to achieve this subterfuge. You can see this in Figure 2-19.

Looking down the left side of the code (just next to the line numbers if you’ve turned them on), you may
notice some gray lines and boxes with + and – symbols in them. These boxes are used to expand and
contract regions of code. Toward the bottom of the file is a box with a + in it, and a box in the main body
of the code reading ‘‘Windows Form Designer generated code.’’ This label is basically saying, ‘‘Here is
some code generated by VS that you don’t need to know about.’’ You can look at it if you want, however,
and see what you have done by changing the button properties. Simply click the box with the + in it and
the code will become visible, and somewhere within it you should see the following line:

this.button1.Text = "Click Me";

Without worrying too much about the syntax used here, you can see that the text you typed in the Proper-
ties window has popped up directly in your code.

This outlining method can be very handy when you are writing code because you can expand and contract
many other regions, not just those that are normally hidden. Just as looking at a book’s table of contents
can help you by providing a quick summary of what it contains, looking at a series of collapsed regions of
code can make it much easier to navigate through what can be vast amounts of C# code.

28 ❘ CHAPTER 2 WRITING A C# PROGRAM

FIGURE 2-19

SUMMARY

This chapter introduced some of the tools that you will use throughout the rest of this book. You have
had a quick tour around the Visual Studio 2010 and Visual C# 2010 Express development environ-
ments and used them to build two types of applications. The simpler of these, the console application,
is quite enough for most needs, and it enables you to focus on the basics of C# programming. Windows
applications are more complicated but are visually more impressive and intuitive to use for anyone
accustomed to a Windows environment (and let’s face it, that’s most of us).

Now that you know how to create simple applications, you can get down to the real task of learning
C#. After dealing with basic C# syntax and program structure, you move on to more advanced object-
oriented methods. Once you’ve covered all that, you can begin to learn how to use C# to gain access to
the power available in the .NET Framework.

For subsequent chapters, unless otherwise specified, instructions refer to VCE, although, as shown in
this chapter, adapting these instructions for VS is not difficult, and you can use whichever IDE you
prefer, or to which you have access.

Summary ❘ 29

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Visual Studio 2010 settings This book requires the C# development settings option, chosen when
first run or by resetting settings.

Console applications Console applications are simple command-line applications, used in
much of this book to illustrate techniques. Create a new console appli-
cation with the Console Application template that you see when you
create a new project in VS or VCE. To run a project in debug mode,
use the Debug ➪ Start Debugging menu item, or press F5.

IDE windows The project contents are shown in the Solution Explorer window. The
properties of the selected item are shown in the Properties window.
Errors are shown in the Error List window.

Windows Forms applications Windows Forms applications are applications that have the look and
feel of standard desktop applications, including the familiar icons to
maximize, minimize, and close an application. They are created with
the Windows Forms template in the New Project dialog box.

3
Variables and Expressions

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ Basic C# syntax

➤ Variables and how to use them

➤ Expressions and how to use them

To use C# effectively, it’s important to understand what you’re actually doing when you create
a computer program. Perhaps the most basic description of a computer program is that it is a
series of operations that manipulate data. This is true even of the most complicated examples,
such as vast, multifeatured Windows applications (e.g., Microsoft Office Suite). Although
this is often completely hidden from users of applications, it is always going on behind the
scenes.

To illustrate this further, consider the display unit of your computer. What you see onscreen
is often so familiar that it is difficult to imagine it as anything other than a ‘‘moving pic-
ture.’’ In fact, what you see is only a representation of some data, which in its raw form
is merely a stream of 0s and 1s stashed away somewhere in the computer’s memory. Any
onscreen action — moving a mouse pointer, clicking on an icon, typing text into a word
processor — results in the shunting around of data in memory.

Of course, simpler situations show this just as well. When using a calculator application, you
are supplying data as numbers and performing operations on the numbers in much the same
way as you would with paper and pencil — but a lot quicker!

If computer programs are fundamentally performing operations on data, this implies that you
need a way to store that data, and some methods to manipulate it. These two functions are pro-
vided by variables and expressions, respectively, and this chapter explores what that means,
both in general and specific terms.

32 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

First, though, you’ll take a look at the basic syntax involved in C# programming, because
you need a context in which you can learn about and use variables and expressions in the
C# language.

BASIC C# SYNTAX

The look and feel of C# code is similar to that of C++ and Java. This syntax can look quite confusing at
first and it’s a lot less like written English than some other languages. However, as you immerse yourself
in the world of C# programming, you’ll find that the style used is a sensible one, and it is possible to
write very readable code without much effort.

Unlike the compilers of some other languages, C# compilers ignore additional spacing in code, whether
it results from spaces, carriage returns, or tab characters (collectively known as whitespace characters).
This means you have a lot of freedom in the way that you format your code, although conforming to
certain rules can help make things easier to read.

C# code is made up of a series of statements, each of which is terminated with a semicolon. Because
whitespace is ignored, multiple statements can appear on one line, although for readability it is usual to
add carriage returns after semicolons, to avoid multiple statements on one line. It is perfectly acceptable
(and quite normal), however, to use statements that span several lines of code.

C# is a block-structured language, meaning statements are part of a block of code. These blocks, which
are delimited with curly brackets ({ and }), may contain any number of statements, or none at all. Note
that the curly bracket characters do not need accompanying semicolons.

For example, a simple block of C# code could take the following form:

{
<code line 1, statement 1>;
<code line 2, statement 2>

<code line 3, statement 2>;
}

Here the <code line x, statement y> sections are not actual pieces of C# code; this text is used as a
placeholder where C# statements would go. In this case, the second and third lines of code are part of
the same statement, because there is no semicolon after the second line.

The following simple example uses indentation to clarify the C# itself. This is actually standard practice,
and in fact VS automatically does this for you by default. In general, each block of code has its own
level of indentation, meaning how far to the right it is. Blocks of code may be nested inside each other
(that is, blocks may contain other blocks), in which case nested blocks will be indented further:

{
<code line 1>;
{

<code line 2>;
<code line 3>;

}
<code line 4>;

}

In addition, lines of code that are continuations of previous lines are usually indented further as well,
as in the third line of code in the first example above.

Basic C# Syntax ❘ 33

NOTE Look in the VCE or VS Options dialog box (select Tools ➪ Options) to see
the rules that VCE uses for formatting your code. There are very many of these, in
subcategories of the Text Editor ➪ C# ➪ Formatting node. Most of the settings
here reflect parts of C# that haven’t been covered yet, but you might want to
return to these settings later if you want to tweak them to suit your personal style
better. For clarity, this book shows all code snippets as they would be formatted
by the default settings.

Of course, this style is by no means mandatory. If you don’t use it, however, you will quickly find that
things can get very confusing as you move through this book!

Something else you often see in C# code are comments. A comment is not, strictly speaking, C# code at
all, but it happily cohabits with it. Comments are self-explanatory: They enable you to add descriptive
text to your code — in plain English (or French, German, Mongolian, and so on) — which is ignored
by the compiler. When you start dealing with lengthy code sections, it’s useful to add reminders about
exactly what you are doing, such as ‘‘this line of code asks the user for a number’’ or ‘‘this code section
was written by Bob.’’

C# provides two ways of doing this. You can either place markers at the beginning and end of a com-
ment or you can use a marker that means ‘‘everything on the rest of this line is a comment.’’ The latter
method is an exception to the rule mentioned previously about C# compilers ignoring carriage returns,
but it is a special case.

To indicate comments using the first method, you use /* characters at the start of the comment and
*/ characters at the end. These may occur on a single line, or on different lines, in which case all lines
in between are part of the comment. The only thing you can’t type in the body of a comment is */,
because that is interpreted as the end marker. For example, the following are OK:

/* This is a comment */

/* And so...

... is this! */

The following, however, causes problems:

/* Comments often end with "*/" characters */

Here, the end of the comment (the characters after "*/") will be interpreted as C# code, and errors will
occur.

The other commenting approach involves starting a comment with //. After that, you can write what-
ever you like — as long as you keep to one line! The following is OK:

// This is a different sort of comment.

The following fails, however, because the second line is interpreted as C# code:
// So is this,

but this bit isn’t.

This sort of commenting is useful to document statements because both can be placed on a single line:

<A statement>; // Explanation of statement

34 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

It was stated earlier that there are two ways of commenting C# code, but there is a third type of com-
ment in C# — although strictly speaking this is an extension of the // syntax. You can use single-line
comments that start with three / symbols instead of two, like this:

/// A special comment

Under normal circumstances, they are ignored by the compiler — just like other comments — but you
can configure VS to extract the text after these comments and create a specially formatted text file when
a project is compiled. You can then use it to create documentation. In order for this documentation to
be created, the comments must follow the rules of XML documentation — a subject not covered in this
book but one that is well worth learning about if you have some spare time.

A very important point about C# code is that it is case sensitive. Unlike some other languages, you
must enter code using exactly the right case, because using an uppercase letter instead of a lowercase
one will prevent a project from compiling. For example, consider the following line of code, taken from
Chapter 2:

Console.WriteLine("The first app in Beginning C# Programming!");

This code is understood by the C# compiler, as the case of the Console.WriteLine() command is
correct. However, none of the following lines of code work:

console.WriteLine("The first app in Beginning C# Programming!");
CONSOLE.WRITELINE("The first app in Beginning C# Programming!");
Console.Writeline("The first app in Beginning C# Programming!");

Here the case used is wrong, so the C# compiler won’t know what you want. Luckily, as you will soon
discover, VCE is very helpful when it comes to entering code, and most of the time it knows (as much
as a program can know) what you are trying to do. As you type, it suggests commands that you might
like to use, and it tries to correct case problems.

BASIC C# CONSOLE APPLICATION STRUCTURE

Let’s take a closer look at the console application example from Chapter 2 (ConsoleApplication1), and
break down the structure a bit. Here’s the code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{

class Program
{

static void Main(string[] args)
{

// Output text to the screen.
Console.WriteLine("The first app in Beginning C# Programming!");
Console.ReadKey();

}
}

}

Variables ❘ 35

You can immediately see that all the syntactic elements discussed in the previous section are present
here — semicolons, curly braces, and comments, along with appropriate indentation.

The most important section of code at the moment is the following:
static void Main(string[] args)
{

// Output text to the screen.
Console.WriteLine("The first app in Beginning C# Programming!");
Console.ReadKey();

}

This is the code that is executed when you run your console application. Well, to be more precise, the
code block enclosed in curly braces is executed. The comment line doesn’t do anything, as mentioned
earlier; it’s just there for clarity. The other two code lines output some text to the console window and
wait for a response, respectively, though the exact mechanisms of this don’t concern us for now.

Note how to achieve the code outlining functionality shown in the previous chapter, albeit for a Win-
dows application, since it is such a useful feature. You can do this with the #region and #endregion

keywords, which define the start and end of a region of code that can be expanded and collapsed. For
example, you could modify the generated code for ConsoleApplication1 as follows:

#region Using directives

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

#endregion

This enables you to collapse this code into a single line and expand it again later should you want to
look at the details. The using statements contained here, and the namespace statement just underneath,
are explained at the end of this chapter.

NOTE Any keyword that starts with a # is actually a preprocessor directive and
not, strictly speaking, a C# keyword. Other than the two described here, #region
and #endregion, these can be quite complicated, and they have very specialized
uses. This is one subject you might like to investigate yourself after you have
worked through this book.

For now, don’t worry about the other code in the example, because the purpose of these first few
chapters is to explain basic C# syntax, so the exact method of how the application execution gets to the
point where Console.WriteLine() is called is of no concern. Later, the significance of this additional
code is made clear.

VARIABLES

As mentioned earlier, variables are concerned with the storage of data. Essentially, you can think of
variables in computer memory as boxes sitting on a shelf. You can put things in boxes and take them

36 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

out again, or you can just look inside a box to see if anything is there. The same goes for variables; you
place data in them and can take it out or look at it, as required.

Although all data in a computer is effectively the same thing (a series of 0s and 1s), variables come in
different flavors, known as types. Using the box analogy again, boxes come in different shapes and sizes,
so some items fit only in certain boxes. The reasoning behind this type system is that different types of
data may require different methods of manipulation, and by restricting variables to individual types
you can avoid mixing them up. For example, it wouldn’t make much sense to treat the series of 0s and
1s that make up a digital picture as an audio file.

To use variables, you have to declare them. This means that you have to assign them a name and a
type. After you have declared variables, you can use them as storage units for the type of data that you
declared them to hold.

C# syntax for declaring variables merely specifies the type and variable name:

<type> <name>;

If you try to use a variable that hasn’t been declared, your code won’t compile, but in this case the
compiler tells you exactly what the problem is, so this isn’t really a disastrous error. Trying to use a
variable without assigning it a value also causes an error, but, again, the compiler detects this.

There are an almost infinite number of types that you can use. This is because you can define your own
types to hold whatever convoluted data you like. Having said this, though, there are certain types of
data that just about everyone will need to use at some point or another, such as a variable that stores a
number. Therefore, you should be aware of several simple, predefined types.

Simple Types
Simple types include types such as numbers and Boolean (true or false) values that make up the fun-
damental building blocks for your applications. Unlike complex types, simple types cannot have
children or attributes. Most of the simple types available are numeric, which at first glance seems a
bit strange — surely, you only need one type to store a number?

The reason for the plethora of numeric types is because of the mechanics of storing numbers as a
series of 0s and 1s in the memory of a computer. For integer values, you simply take a number of bits
(individual digits that can be 0 or 1) and represent your number in binary format. A variable storing
N bits enables you to represent any number between 0 and (2N– 1). Any numbers above this value are
too big to fit into this variable.

For example, suppose you have a variable that can store two bits. The mapping between integers and
the bits representing those integers is therefore as follows:

0 = 00
1 = 01
2 = 10
3 = 11

In order to store more numbers, you need more bits (three bits enable you to store the numbers from
0 to 7, for example).

The inevitable result of this system is that you would need an infinite number of bits to be able to store
every imaginable number, which isn’t going to fit in your trusty PC. Even if there were a quantity of

Variables ❘ 37

bits you could use for every number, it surely wouldn’t be efficient to use all these bits for a variable
that, for example, was required to store only the numbers between 0 and 10 (because storage would be
wasted). Four bits would do the job fine here, enabling you to store many more values in this range in
the same space of memory.

Instead, a number of different integer types can be used to store various ranges of numbers, which take
up differing amounts of memory (up to 64 bits). These types are shown in the following table.

NOTE Each of these types uses one of the standard types defined in the .NET
Framework. As discussed in Chapter 1, this use of standard types is what enables
language interoperability. The names you use for these types in C# are aliases
for the types defined in the framework. The following table lists the names of
these types as they are referred to in the .NET Framework library.

TYPE ALIAS FOR ALLOWED VALUES

sbyte System.SByte Integer between –128 and 127

byte System.Byte Integer between 0 and 255

short System.Int16 Integer between –32768 and 32767

ushort System.UInt16 Integer between 0 and 65535

int System.Int32 Integer between –2147483648 and 2147483647

uint System.UInt32 Integer between 0 and 4294967295

long System.Int64 Integer between –9223372036854775808 and
9223372036854775807

ulong System.UInt64 Integer between 0 and 18446744073709551615

The u characters before some variable names are shorthand for unsigned, meaning that you can’t store
negative numbers in variables of those types, as shown in the Allowed Values column of the table.

Of course, you also need to store floating-point values, those that aren’t whole numbers. You can use
three floating-point variable types: float, double, and decimal. The first two store floating points in the
form +/−m × 2e, where the allowed values for m and e differ for each type. decimal uses the alternative
form +/−m × 10e. These three types are shown in the following table, along with their allowed values
of m and e, and these limits in real numeric terms:

APPROX. APPROX.

TYPE ALIAS FOR MIN M MAX M MIN E MAX E MIN VALUE MAX VALUE

float System.Single 0 224 –149 104 1.5 × 10–45 3.4 ×1038

double System.Double 0 253 –1075 970 5.0 ×10–324 1.7 ×10308

decimal System.Decimal 0 296 –28 0 1.0 ×10–28 7.9 ×1028

38 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

In addition to numeric types, three other simple types are available:

TYPE ALIAS FOR ALLOWED VALUES

char System.Char Single Unicode character, stored as an integer between 0 and
65535

bool System.Boolean Boolean value, true or false

string System.String A sequence of characters

Note that there is no upper limit on the amount of characters making up a string, because it can use
varying amounts of memory.

The Boolean type bool is one of the most commonly used variable types in C#, and indeed similar types
are equally prolific in code in other languages. Having a variable that can be either true or false has
important ramifications when it comes to the flow of logic in an application. As a simple example, con-
sider how many questions can be answered with true or false (or yes and no). Performing comparisons
between variable values or validating input are just two of the programmatic uses of Boolean variables
that you will examine very soon.

Now that you’ve seen these types, consider a short example that declares and uses them. In the fol-
lowing Try It Out you use some simple code that declares two variables, assigns them values, and then
outputs these values.

TRY IT OUT Using Simple Type Variables

1. Create a new console application called Ch03Ex01 and save it in the directory
C:\BegVCSharp\Chapter03.

2. Add the following code to Program.cs:

static void Main(string[] args)
{

int myInteger;
string myString;
myInteger = 17;
myString = "\"myInteger\" is";
Console.WriteLine("{0} {1}.", myString, myInteger);
Console.ReadKey();

}
Code snippet Ch03Ex01\Program.cs

3. Execute the code. The result is shown in Figure 3-1.

Variables ❘ 39

FIGURE 3-1

How It Works

The added code does three things:

➤ It declares two variables.

➤ It assigns values to those two variables.

➤ It outputs the values of the two variables to the console.

Variable declaration occurs in the following code:

int myInteger;
string myString;

The first line declares a variable of type int with a name of myInteger, and the second line declares a
variable of type string called myString.

NOTE Variable naming is restricted; you can’t use just any sequence of
characters. You learn about this in the section ‘‘Variable Naming.’’

The next two lines of code assign values:

myInteger = 17;
myString = "\"myInteger\" is";

Here you assign two fixed values (known as literal values in code) to your variables using the = assign-
ment operator (the ‘‘Expressions’’ section of this chapter has more details about operators). You assign the
integer value 17 to myInteger, and the string "myInteger" (including the quotes) to myString. When you
assign string literal values in this way, double quotation marks are required to enclose the string. There-
fore, certain characters might cause problems if they are included in the string itself, such as the double
quotation characters, and you must escape some characters by substituting a sequence of other characters
(an escape sequence) that represents the character(s) you want to use. In this example, you use the sequence
\" to escape a double quotation mark:

myString = "\"myInteger\" is";

If you didn’t use these escape sequences and tried coding this as follows, you would get a compiler error:

myString = ""myInteger" is";

40 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

Note that assigning string literals is another situation in which you must be careful with line breaks — the
C# compiler rejects string literals that span more than one line. If you want to add a line break, then use
the escape sequence for a new line character in your string, which is \n. For example, the assignment

myString = "This string has a\nline break.";

would be displayed on two lines in the console view as follows:

This string has a
line break.

All escape sequences consist of the backslash symbol followed by one of a small set of characters (you’ll
see the full set later). Because this symbol is used for this purpose, there is also an escape sequence for the
backslash symbol itself, which is simply two consecutive backslashes (\\).

Getting back to the code, there is one more new line to look at:

Console.WriteLine("{0} {1}.", myString, myInteger);

This looks similar to the simple method of writing text to the console that you saw in the first example,
but now you are specifying your variables. To avoid getting ahead of ourselves here, we’ll avoid a lot of
the details about this line of code at this point. Suffice it to say that it is the technique you will be using in
the first part of this book to output text to the console window. Within the brackets you have two things:

➤ A string

➤ A list of variables whose values you want to insert into the output string, separated by
commas

The string you are outputting, "{0} {1}.", doesn’t seem to contain much useful text. As shown earlier,
however, this is not what you actually see when you run the code. This is because the string is actu-
ally a template into which you insert the contents of your variables. Each set of curly brackets in the
string is a placeholder that will contain the contents of one of the variables in the list. Each placeholder
(or format string) is represented as an integer enclosed in curly brackets. The integers start at 0 and are
incremented by 1, and the total number of placeholders should match the number of variables specified
in the comma-separated list following the string. When the text is output to the console, each place-
holder is replaced by the corresponding value for each variable. In the preceding example, the {0} is
replaced with the actual value of the first variable, myString, and {1} is replaced with the contents of
myInteger.

This method of outputting text to the console is what you use to display output from your code in the
examples that follow. Finally, the code includes the line shown in the earlier example for waiting for user
input before terminating:

Console.ReadKey();

Again, the code isn’t dissected now, but you will see it frequently in later examples. For now, understand
that it pauses code execution until you press a key.

Variable Naming
As mentioned in the previous section, you can’t just choose any sequence of characters as a variable
name. This isn’t as worrying as it might sound, however, because you’re still left with a very flexible
naming system.

Variables ❘ 41

The basic variable naming rules are as follows:

➤ The first character of a variable name must be either a letter, an underscore character (_), or
the at symbol (@).

➤ Subsequent characters may be letters, underscore characters, or numbers.

There are also certain keywords that have a specialized meaning to the C# compiler, such as the using

and namespace keywords shown earlier. If you use one of these by mistake, the compiler complains,
however, so don’t worry about it.

For example, the following variable names are fine:

myBigVar
VAR1
_test

These are not, however:

99BottlesOfBeer
namespace
It’s-All-Over

Remember that C# is case sensitive, so be careful not to forget the exact case used when you declare
your variables. References to them made later in the program with even so much as a single letter in the
wrong case prevents compilation. A further consequence of this is that you can have multiple variables
whose names differ only in case. For example, the following are all separate names:

myVariable
MyVariable
MYVARIABLE

Naming Conventions
Variable names are something you will use a lot, so it’s worth spending a bit of time learning the sort
of names you should use. Before you get started, though, bear in mind that this is controversial ground.
Over the years, different systems have come and gone, and many developers will fight tooth and nail to
justify their personal system.

Until recently the most popular system was what is known as Hungarian notation. This system involves
placing a lowercase prefix on all variable names that identify the type. For example, if a variable were
of type int, then you might place an i (or n) in front of it, for example iAge. Using this system, it is
easy to see a variable’s type at a glance.

More modern languages, however, such as C#, make this system tricky to implement. For the types
you’ve seen so far, you could probably come up with one- or two-letter prefixes signifying each type.
However, because you can create your own types, and there are many hundreds of these more complex
types in the basic .NET Framework, this quickly becomes unworkable. With several people working on
a project, it would be easy for different people to come up with different and confusing prefixes, with
potentially disastrous consequences.

Developers have realized that it is far better to name variables appropriately for their purpose. If any
doubt arises, it is easy enough to determine what the type of a variable is. In VS and VCE, you just have
to hover the mouse pointer over a variable name and a pop-up box indicates the type soon enough.

42 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

Currently, two naming conventions are used in the .NET Framework namespaces: PascalCase and
camelCase. The case used in the names indicates their usage. They both apply to names that comprise
multiple words and they both specify that each word in a name should be in lowercase except for its
first letter, which should be uppercase. For camelCase terms, there is an additional rule: The first word
should start with a lowercase letter.

The following are camelCase variable names:

age
firstName
timeOfDeath

These are PascalCase:
Age
LastName
WinterOfDiscontent

For your simple variables, stick to camelCase. Use PascalCase for certain more advanced naming,
which is the Microsoft recommendation. Finally, note that many past naming systems involved fre-
quent use of the underscore character, usually as a separator between words in variable names, such as
yet_another_variable. This usage is now discouraged (which is just as well; it looks ugly!).

Literal Values
The previous Try It Out showed two examples of literal values: integer and string. The other variable
types also have associated literal values, as shown in the following table. Many of these involve suffixes,
whereby you add a sequence of characters to the end of the literal value to specify the type desired. Some
literals have multiple types, determined at compile time by the compiler based on their context (also
shown in the following table).

TYPE(S) CATEGORY SUFFIX EXAMPLE/ALLOWED VALUES

bool Boolean None true or false

int, uint, long, ulong Integer None 100

uint, ulong Integer u or U 100U

long, ulong Integer l or L 100L

ulong Integer ul, uL, Ul, UL,
lu, lU, Lu, or LU

100UL

float Real f or F 1.5F

double Real None, d, or D 1.5

decimal Real m or M 1.5M

char Character None ’a’, or escape sequence

string String None "a . . . a", may include escape sequences

Variables ❘ 43

String Literals
Earlier in the chapter, you saw a few of the escape sequences you can use in string literals. Here is a
full table of these for reference purposes:

ESCAPE SEQUENCE CHARACTER PRODUCED UNICODE VALUE OF CHARACTER

\’ Single quotation mark 0x0027

\" Double quotation mark 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert (causes a beep) 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The Unicode Value column of the preceding table shows the hexadecimal values of the characters as
they are found in the Unicode character set. As well as the preceding, you can specify any Unicode
character using a Unicode escape sequence. These consist of the standard \ character followed by a
u and a four-digit hexadecimal value (for example, the four digits after the x in the preceding table).

This means that the following strings are equivalent:

"Karli\’s string."
"Karli\u0027s string."

Obviously, you have more versatility using Unicode escape sequences.

You can also specify strings verbatim. This means that all characters contained between two double
quotation marks are included in the string, including end-of-line characters and characters that would
otherwise need escaping. The only exception to this is the escape sequence for the double quotation
mark character, which must be specified to avoid ending the string. To do this, place the @ character
before the string:

@"Verbatim string literal."

This string could just as easily be specified in the normal way, but the following requires this method:

@"A short list:
item 1
item 2"

44 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

Verbatim strings are particularly useful in filenames, as these use plenty of backslash characters. Using
normal strings, you’d have to use double backslashes all the way along the string:

"C:\\Temp\\MyDir\\MyFile.doc"

With verbatim string literals you can make this more readable. The following verbatim string is equiv-
alent to the preceding one:

@"C:\Temp\MyDir\MyFile.doc"

NOTE As shown later in the book, strings are reference types, unlike the other
types you’ve seen in this chapter, which are value types. One consequence of
this is that strings can also be assigned the value null, which means that the
string variable doesn’t reference a string (or anything, for that matter).

Variable Declaration and Assignment
To recap, recall that you declare variables simply using their type and name:

int age;

You then assign values to variables using the = assignment operator:

age = 25;

NOTE Remember that variables must be initialized before you use them. The
preceding assignment could be used as an initialization.

There are a couple of other things you can do here that you are likely to see in C# code. One, you can
declare multiple variables of the same type at the same time by separating their names with commas
after the type, as follows:

int xSize, ySize;

Here, xSize and ySize are both declared as integer types.

The second technique you are likely to see is assigning values to variables when you declare them, which
basically means combining two lines of code:

int age = 25;

You can use both techniques together:

int xSize = 4, ySize = 5;

Here, both xSize and ySize are assigned different values. Note that

int xSize, ySize = 5;

results in only ySize being initialized — xSize is just declared, and it still needs to be initialized before
it’s used.

Expressions ❘ 45

EXPRESSIONS

Now that you’ve learned how to declare and initialize variables, it’s time to look at manipulating them.
C# contains a number of operators for this purpose. By combining operators with variables and literal
values (together referred to as operands when used with operators), you can create expressions, which
are the basic building blocks of computation.

The operators available range from the simple to the highly complex, some of which you might never
encounter outside of mathematical applications. The simple ones include all the basic mathematical
operations, such as the + operator to add two operands; the complex ones include manipulations of
variable content via the binary representation of this content. There are also logical operators specifi-
cally for dealing with Boolean values, and assignment operators such as =.

This chapter focuses on the mathematical and assignment operators, leaving the logical ones for the
next chapter, where you examine Boolean logic in the context of controlling program flow.

Operators can be roughly classified into three categories:

➤ Unary — Act on single operands

➤ Binary — Act on two operands

➤ Ternary — Act on three operands

Most operators fall into the binary category, with a few unary ones, and a single ternary one called the
conditional operator (the conditional operator is a logical one and is discussed in Chapter 4). Let’s start
by looking at the mathematical operators, which span both the unary and binary categories.

Mathematical Operators
There are five simple mathematical operators, two of which (+ and -) have both binary and unary
forms. The following table lists each of these operators, along with a short example of its use and the
result when it’s used with simple numeric types (integer and floating point).

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

+ Binary var1 = var2 + var3; var1 is assigned the value that is the sum of var2
and var3.

- Binary var1 = var2 - var3; var1 is assigned the value that is the value of var3
subtracted from the value of var2.

* Binary var1 = var2 * var3; var1 is assigned the value that is the product of
var2 and var3.

/ Binary var1 = var2 / var3; var1 is assigned the value that is the result of divid-
ing var2 by var3.

% Binary var1 = var2 % var3; var1 is assigned the value that is the remainder
when var2 is divided by var3.

+ Unary var1 = +var2; var1 is assigned the value of var2.

- Unary var1 = -var2; var1 is assigned the value of var2 multiplied by -1.

46 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

NOTE The + (unary) operator is slightly odd, as it has no effect on the result. It
doesn’t force values to be positive, as you might assume — if var2 is -1, then
+var is also -1. However, it is a universally recognized operator, and as such is
included. The most useful fact about this operator is shown later in this book
when you look at operator overloading.

The examples use simple numeric types because the result can be unclear when using the other simple
types. What would you expect if you added two Boolean values together, for example? In this case,
nothing, because the compiler complains if you try to use + (or any of the other mathematical operators)
with bool variables. Adding char variables is also slightly confusing. Remember that char variables are
actually stored as numbers, so adding two char variables also results in a number (of type int, to be
precise). This is an example of implicit conversion, which you’ll learn a lot more about shortly (along
with explicit conversion), because it also applies to cases where var1, var2, and var3 are of mixed types.

The binary + operator does make sense when used with string type variables. In this case, the table
entry should read as shown in the following table:

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

+ Binary var1 = var2 + var3; var1 is assigned the value that is the concatena-
tion of the two strings stored in var2 and var3.

None of the other mathematical operators, however, work with strings.

The other two operators you should look at here are the increment and decrement operators, both of
which are unary operators that can be used in two ways: either immediately before or immediately after
the operand. The results obtained in simple expressions are shown in the next table:

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

++ Unary var1 = ++var2; var1 is assigned the value of var2 + 1. var2 is
incremented by 1.

-- Unary var1 = --var2; var1 is assigned the value of var2 - 1. var2 is
decremented by 1.

++ Unary var1 = var2++; var1 is assigned the value of var2. var2 is incre-
mented by 1.

-- Unary var1 = var2--; var1 is assigned the value of var2. var2 is
decremented by 1.

Expressions ❘ 47

These operators always result in a change to the value stored in their operand:

➤ ++ always results in its operand being incremented by one.

➤ −− always results in its operand being decremented by one.

The differences between the results stored in var1 are a consequence of the fact that the placement
of the operator determines when it takes effect. Placing one of these operators before its operand means
that the operand is affected before any other computation takes place. Placing it after the operand
means that the operand is affected after all other computation of the expression is completed.

This merits another example! Consider this code:
int var1, var2 = 5, var3 = 6;
var1 = var2++ * --var3;

What value will be assigned to var1? Before the expression is evaluated, the -- operator preceding var3

takes effect, changing its value from 6 to 5. You can ignore the ++ operator that follows var2, as it
won’t take effect until after the calculation is completed, so var1 will be the product of 5 and 5, or 25.

These simple unary operators come in very handy in a surprising number of situations. They are really
just a shorthand for expressions such as this:

var1 = var1 + 1;

This sort of expression has many uses, particularly where looping is concerned, as shown in the next
chapter. The following Try It Out provides an example demonstrating how to use the mathematical
operators, and it introduces a couple of other useful concepts as well. The code prompts you to type in
a string and two numbers and then demonstrates the results of performing some calculations.

TRY IT OUT Manipulating Variables with Mathematical Operators

1. Create a new console application called Ch03Ex02 and save it to the directory
C:\BegVCSharp\Chapter03.

2. Add the following code to Program.cs:

static void Main(string[] args)
{

double firstNumber, secondNumber;
string userName;
Console.WriteLine("Enter your name:");
userName = Console.ReadLine();
Console.WriteLine("Welcome {0}!", userName);
Console.WriteLine("Now give me a number:");
firstNumber = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("Now give me another number:");
secondNumber = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("The sum of {0} and {1} is {2}.", firstNumber,

secondNumber, firstNumber + secondNumber);
Console.WriteLine("The result of subtracting {0} from {1} is {2}.",

secondNumber, firstNumber, firstNumber - secondNumber);

48 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

Console.WriteLine("The product of {0} and {1} is {2}.", firstNumber,
secondNumber, firstNumber * secondNumber);

Console.WriteLine("The result of dividing {0} by {1} is {2}.",
firstNumber, secondNumber, firstNumber / secondNumber);

Console.WriteLine("The remainder after dividing {0} by {1} is {2}.",
firstNumber, secondNumber, firstNumber % secondNumber);

Console.ReadKey();
}

Code snippet Ch03Ex02\Program.cs

3. Execute the code. The display shown in Figure 3-2 appears.

FIGURE 3-2

4. Enter your name and press Enter. Figure 3-3 shows the display.

FIGURE 3-3

5. Enter a number, press Enter, enter another number, and then press Enter again. Figure 3-4 shows
an example result.

FIGURE 3-4

Expressions ❘ 49

How It Works

As well as demonstrating the mathematical operators, this code introduces two important concepts that
you will often come across:

➤ User input

➤ Type conversion

User input uses a syntax similar to the Console.WriteLine() command you’ve already seen — you
use Console.ReadLine(). This command prompts the user for input, which is stored in a string

variable:

string userName;
Console.WriteLine("Enter your name:");
userName = Console.ReadLine();
Console.WriteLine("Welcome {0}!", userName);

This code writes the contents of the assigned variable, userName, straight to the screen.

You also read in two numbers in this example. This is slightly more involved, because the
Console.ReadLine() command generates a string, but you want a number. This introduces the
topic of type conversion, which is covered in more detail in Chapter 5, but let’s have a look at the code
used in this example.

First, you declare the variables in which you want to store the number input:

double firstNumber, secondNumber;

Next, you supply a prompt and use the command Convert.ToDouble() on a string obtained by
Console.ReadLine() to convert the string into a double type. You assign this number to the firstNumber

variable you have declared:

Console.WriteLine("Now give me a number:");
firstNumber = Convert.ToDouble(Console.ReadLine());

This syntax is remarkably simple, and many other conversions can be performed in a similar way.

The remainder of the code obtains a second number in the same way:

Console.WriteLine("Now give me another number:");
secondNumber = Convert.ToDouble(Console.ReadLine());

Next, you output the results of adding, subtracting, multiplying, and dividing the two numbers, in addition
to displaying the remainder after division, using the remainder (%) operator:

Console.WriteLine("The sum of {0} and {1} is {2}.", firstNumber,
secondNumber, firstNumber + secondNumber);

Console.WriteLine("The result of subtracting {0} from {1} is {2}.",
secondNumber, firstNumber, firstNumber - secondNumber);

Console.WriteLine("The product of {0} and {1} is {2}.", firstNumber,
secondNumber, firstNumber * secondNumber);

Console.WriteLine("The result of dividing {0} by {1} is {2}.",
firstNumber, secondNumber, firstNumber / secondNumber);

Console.WriteLine("The remainder after dividing {0} by {1} is {2}.",
firstNumber, secondNumber, firstNumber % secondNumber);

50 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

Note that you are supplying the expressions, firstNumber + secondNumber and so on, as a parameter to
the Console.WriteLine() statement, without using an intermediate variable:

Console.WriteLine("The sum of {0} and {1} is {2}.", firstNumber,
secondNumber, firstNumber + secondNumber);

This kind of syntax can make your code very readable, and reduce the number of lines of code you need
to write.

Assignment Operators
So far, you’ve been using the simple = assignment operator, and it may come as a surprise that any
other assignment operators exist at all. There are more, however, and they’re quite useful! All of the
assignment operators other than = work in a similar way. Like =, they all result in a value being assigned
to the variable on their left side based on the operands and operators on their right side.

The following table describes the operators:

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

= Binary var1 = var2; var1 is assigned the value of var2.

+= Binary var1 += var2; var1 is assigned the value that is the sum of
var1 and var2.

-= Binary var1 -= var2; var1 is assigned the value that is the value of
var2 subtracted from the value of var1.

*= Binary var1 *= var2; var1 is assigned the value that is the product of
var1 and var2.

/= Binary var1 /= var2; var1 is assigned the value that is the result of
dividing var1 by var2.

%= Binary var1 %= var2; var1 is assigned the value that is the remainder
when var1 is divided by var2.

As you can see, the additional operators result in var1 being included in the calculation, so code like

var1 += var2;

has exactly the same result as

var1 = var1 + var2;

NOTE The += operator can also be used with strings, just like +.

Using these operators, especially when employing long variable names, can make code much easier
to read.

Expressions ❘ 51

Operator Precedence
When an expression is evaluated, each operator is processed in sequence, but this doesn’t necessarily
mean evaluating these operators from left to right. As a trivial example, consider the following:

var1 = var2 + var3;

Here, the + operator acts before the = operator. There are other situations where operator precedence
isn’t so obvious, as shown here:

var1 = var2 + var3 * var4;

In the preceding example, the * operator acts first, followed by the + operator, and finally the = oper-
ator. This is standard mathematical order, and it provides the same result as you would expect from
working out the equivalent algebraic calculation on paper.

Similarly, you can gain control over operator precedence by using parentheses, as shown in this
example:

Here, the content of the parentheses is evaluated first, meaning that the + operator acts before the *

operator.

The following table shows the order of precedence for the operators you’ve encountered so far, whereby
operators of equal precedence (such as * and /) are evaluated from left to right:

PRECEDENCE OPERATORS

Highest ++, -- (used as prefixes); +, - (unary)

*, /, %

+, -

=, *=, /=, %=, +=, -=

Lowest ++, -- (used as suffixes)

NOTE You can use parentheses to override this precedence order, as described
previously. In addition, note that ++ and --, when used as suffixes, only have
lowest priority in conceptual terms, as described in the table. They don’t operate
on the result of, say, an assignment expression, so you can consider them to
have a higher priority than all other operators. However, because they change
the value of their operand after expression evaluation, it’s easier to think of their
precedence as shown in the preceding table.

Namespaces
Before moving on, it’s worthwhile to consider one more important subject — namespaces. These are the
.NET way of providing containers for application code, such that code and its contents may be uniquely

52 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

identified. Namespaces are also used as a means of categorizing items in the .NET Framework. Most of
these items are type definitions, such as the simple types in this chapter (System.Int32 and so on).

C# code, by default, is contained in the global namespace. This means that items contained in this code
are accessible from other code in the global namespace simply by referring to them by name. You can
use the namespace keyword, however, to explicitly define the namespace for a block of code enclosed
in curly brackets. Names in such a namespace must be qualified if they are used from code outside of
this namespace.

A qualified name is one that contains all of its hierarchical information, which basically means that if
you have code in one namespace that needs to use a name defined in a different namespace, you must
include a reference to this namespace. Qualified names use period characters (.) between namespace
levels, as shown here:

namespace LevelOne
{

// code in LevelOne namespace

// name "NameOne" defined
}

// code in global namespace

This code defines one namespace, LevelOne, and a name in this namespace, NameOne (no actual code
is shown here to keep the discussion general; instead, a comment appears where the definition would
go). Code written inside the LevelOne namespace can simply refer to this name using NameOne — no
classification is necessary. Code in the global namespace, however, must refer to this name using the
classified name LevelOne.NameOne.

NOTE By convention, namespaces are usually written in PascalCase.

Within a namespace, you can define nested namespaces, also using the namespace keyword. Nested
namespaces are referred to via their hierarchy, again using periods to classify each level of the hierarchy.
This is best illustrated with an example. Consider the following namespaces:

namespace LevelOne
{

// code in LevelOne namespace

namespace LevelTwo
{

// code in LevelOne.LevelTwo namespace

// name "NameTwo" defined
}

}

// code in global namespace

Expressions ❘ 53

Here, NameTwo must be referred to as LevelOne.LevelTwo.NameTwo from the global namespace,
LevelTwo.NameTwo from the LevelOnenamespace, and NameTwo from the LevelOne.LevelTwonamespace.

The important point here is that names are uniquely defined by their namespace. You could define the
name NameThree in the LevelOne and LevelTwo namespaces:

namespace LevelOne
{

// name "NameThree" defined

namespace LevelTwo
{

// name "NameThree" defined
}

}

This defines two separate names, LevelOne.NameThree and LevelOne.LevelTwo.NameThree, which can
be used independently of each other.

After namespaces are set up, you can use the using statement to simplify access to the names they
contain. In effect, the using statement says, ‘‘OK, I’ll be needing names from this namespace, so don’t
bother asking me to classify them every time.’’ For example, the following code says that code in the
LevelOne namespace should have access to names in the LevelOne.LevelTwo namespace without clas-
sification:

namespace LevelOne
{

using LevelTwo;

namespace LevelTwo
{

// name "NameTwo" defined
}

}

Code in the LevelOne namespace can now refer to LevelTwo.NameTwo by simply using NameTwo.

Sometimes, as with the NameThree example shown previously, this can lead to problems with clashes
between identical names in different namespaces (if you use such a name, then your code won’t
compile — and the compiler will let you know that there is an ambiguity). In cases such as these, you
can provide an alias for a namespace as part of the using statement:

namespace LevelOne
{

using LT = LevelTwo;

// name "NameThree" defined

namespace LevelTwo
{

// name "NameThree" defined
}

}

54 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

Here, code in the LevelOne namespace can refer to LevelOne.NameThree as NameThree and
LevelOne.LevelTwo.NameThree as LT.NameThree.

using statements apply to the namespace they are contained in, and any nested namespaces that
might also be contained in this namespace. In the preceding code, the global namespace can’t use
LT.NameThree. However, if this using statement were declared as

using LT = LevelOne.LevelTwo;

namespace LevelOne
{

// name "NameThree" defined

namespace LevelTwo
{

// name "NameThree" defined
}

}

then code in the global namespace and the LevelOne namespace could use LT.NameThree.

Note one more important point here: The using statement doesn’t in itself give you access to names
in another namespace. Unless the code in a namespace is in some way linked to your project, by being
defined in a source file in the project or being defined in some other code linked to the project, you
won’t have access to the names contained. In addition, if code containing a namespace is linked to your
project, then you have access to the names contained in that code, regardless of whether you use using.
using simply makes it easier for you to access these names, and it can shorten otherwise lengthy code
to make it more readable.

Going back to the code in ConsoleApplication1 shown at the beginning of this chapter, the following
lines that apply to namespaces appear:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{

...
}

The four lines that start with the using keyword are used to declare that the System,
System.Collections.Generic, System.Linq, and System.Text namespaces will be used in this
C# code and should be accessible from all namespaces in this file without classification. The System

namespace is the root namespace for .NET Framework applications and contains all the basic
functionality you need for console applications. The other two namespaces are very often used in
console applications, so they are there just in case.

Finally, a namespace is declared for the application code itself, ConsoleApplication1.

Summary ❘ 55

SUMMARY

In this chapter, you covered a fair amount of ground on the way to creating usable (if basic) C# appli-
cations. You’ve looked at the basic C# syntax and analyzed the basic console application code that VS
and VCE generate for you when you create a console application project.

The major part of this chapter concerned the use of variables. You have seen what variables are, how
you create them, how you assign values to them, and how you manipulate them and the values that
they contain. Along the way, you’ve also looked at some basic user interaction, which showed how you
can output text to a console application and read user input back in. This involved some very basic
type conversion, a complex subject that is covered in more depth in Chapter 5.

You also learned how you can assemble operators and operands into expressions, and looked at the
way these are executed and the order in which this takes place.

Finally, you looked at namespaces, which will become increasingly important as the book pro-
gresses. By introducing this topic in a fairly abstract way here, the groundwork is completed for
later discussions.

So far, all of your programming has taken the form of line-by-line execution. In the next chapter,
you learn how to make your code more efficient by controlling the flow of execution using looping
techniques and conditional branching.

EXERCISES

1. In the following code, how would you refer to the name great from code in the namespace
fabulous?
namespace fabulous
{

// code in fabulous namespace
}

namespace super
{

namespace smashing
{

// great name defined
}

}

2. Which of the following is not a legal variable name?

➤ myVariableIsGood

➤ 99Flake

➤ _floor

➤ time2GetJiggyWidIt

➤ wrox.com

continues

56 ❘ CHAPTER 3 VARIABLES AND EXPRESSIONS

3. Is the string "supercalifragilisticexpialidocious" too big to fit in a string variable? If so, why?

4. By considering operator precedence, list the steps involved in the computation of the following
expression:

resultVar += var1 * var2 + var3 % var4 / var5;

5. Write a console application that obtains four int values from the user and displays the product.
Hint: You may recall that the Convert.ToDouble() command was used to convert the input
from the console to a double; the equivalent command to convert from a string to an int is
Convert.ToInt32().

Answers to Exercises can be found in Appendix A.

Summary ❘ 57

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Basic C# syntax C# is a case sensitive language, and each line of code is terminated with a semi-
colon. Lines can be indented for ease of reading if they get too long, or to identify
nested blocks. You can include non-compiled comments with // or /* . . . */ syntax.
Blocks of code can be collapsed into regions, also to ease readability.

Variables Variables are chunks of data that have a name and a type. The .NET Framework
defines plenty of simple types, such as numeric and string (text) types for you to use.
Variables must be declared and initialized for you to use them. You can assign literal
values to variables to initialize them, and variables can be declared and initialized in
a single step.

Expressions Expressions are built from operators and operands, where operators perform
operations on operands. There are three types of operators — unary, binary, and
ternary — that operate on 1, 2, and 3 operands respectively. Mathematical operators
perform operations on numeric values, and assignment operators place the result of
an expression into a variable. Operators have a fixed precedence that determines
the order in which they are processed in an expression.

Namespaces All names defined in a .NET application, including variable names, are contained in
a namespace. Namespaces are hierarchical, and you often have to qualify names
according to the namespace that contains them in order to access them.

4
Flow Control

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ Boolean logic and how to use it

➤ How to branch code

➤ How to loop code

All of the C# code you’ve seen so far has had one thing in common. In each case, program
execution has proceeded from one line to the next in top-to-bottom order, missing nothing.
If all applications worked like this, then you would be very limited in what you could do. This
chapter describes two methods for controlling program flow — that is, the order of execution
of lines of C# code: branching and looping. Branching executes code conditionally, depending
on the outcome of an evaluation, such as ‘‘only execute this code if the variable myVal is less
than 10.’’ Looping repeatedly executes the same statements, either a certain number of times or
until a test condition has been reached.

Both of these techniques involve the use of Boolean logic. In the last chapter you saw the bool
type, but didn’t actually do much with it. This chapter uses it a lot, so the chapter begins by
discussing what is meant by Boolean logic so that you can use it in flow control scenarios.

BOOLEAN LOGIC

The bool type introduced in the previous chapter can hold one of only two values: true or
false. This type is often used to record the result of some operation, so that you can act on this
result. In particular, bool types are used to store the result of a comparison.

NOTE As a historical aside, it is the work of the mid-nineteenth-century English
mathematician George Boole that forms the basis of Boolean logic.

60 ❘ CHAPTER 4 FLOW CONTROL

For instance, consider the situation (mentioned in the chapter introduction) in which you want to exe-
cute code based on whether a variable, myVal, is less than 10. To do this, you need some indication of
whether the statement ‘‘myVal is less than 10’’ is true or false — that is, you need to know the Boolean
result of a comparison.

Boolean comparisons require the use of Boolean comparison operators (also known as relational oper-
ators), which are shown in the following table. In all cases here, var1 is a bool type variable, whereas
the types of var2 and var3 may vary.

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

== Binary var1 = var2 == var3; var1 is assigned the value true if var2 is equal
to var3, or false otherwise.

!= Binary var1 = var2 != var3; var1 is assigned the value true if var2 is not
equal to var3, or false otherwise.

< Binary var1 = var2 < var3; var1 is assigned the value true if var2 is less
than var3, or false otherwise.

> Binary var1 = var2 > var3; var1 is assigned the value true if var2 is greater
than var3, or false otherwise.

<= Binary var1 = var2 <= var3; var1 is assigned the value true if var2 is less
than or equal to var3, or false otherwise.

>= Binary var1 = var2 >= var3; var1 is assigned the value true if var2 is greater
than or equal to var3, or false otherwise.

You might use operators such as these on numeric values in code:

bool isLessThan10;
isLessThan10 = myVal < 10;

This code results in isLessThan10 being assigned the value true if myVal stores a value less than 10, or
false otherwise.

You can also use these comparison operators on other types, such as strings:

bool isKarli;
isKarli = myString == "Karli";

Here, isKarli is true only if myString stores the string "Karli".

You can also compare variables with Boolean values:

bool isTrue;
isTrue = myBool == true;

Here, however, you are limited to the use of the == and != operators.

Boolean Logic ❘ 61

NOTE A common code error occurs if you unintentionally assume that because
val1 < val2 is false, val1 > val2 is true. If val1 == val2, then both these
statements are false.

Some other Boolean operators are intended specifically for working with Boolean values, as shown in
the following table:

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

! Unary var1 = !var2; var1 is assigned the value true if var2 is false, or
false if var2 is true. (Logical NOT)

& Binary var1 = var2 & var3; var1 is assigned the value true if var2 and var3 are
both true, or false otherwise. (Logical AND)

| Binary var1 = var2 | var3; var1 is assigned the value true if either var2 or var3
(or both) is true, or false otherwise. (Logical OR)

ˆ Binary var1 = var2 ˆ var3; var1 is assigned the value true if either var2 or var3,
but not both, is true, or false otherwise. (Logical XOR
or exclusive OR)

Therefore, the previous code snippet could also be expressed as follows:

bool isTrue;
isTrue = myBool & true;

The & and | operators also have two similar operators, known as conditional Boolean operators, shown
in the following table:

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

&& Binary var1 = var2 && var3; var1 is assigned the value true if var2 and var3 are
both true, or false otherwise. (Logical AND)

|| Binary var1 = var2 || var3; var1 is assigned the value true if either var2 or var3
(or both) is true, or false otherwise. (Logical OR)

The result of these operators is exactly the same as & and |, but there is an important difference in the
way this result is obtained, which can result in better performance. Both of these look at the value of
their first operands (var2 in the preceding table) and, based on the value of this operand, may not need
to process the second operands (var3 in the preceding table) at all.

62 ❘ CHAPTER 4 FLOW CONTROL

If the value of the first operand of the && operator is false, then there is no need to consider the value
of the second operand, because the result will be false regardless. Similarly, the || operator returns
true if its first operand is true, regardless of the value of the second operand. This isn’t the case for the
& and | operators shown earlier. With these, both operands are always evaluated.

Because of this conditional evaluation of operands, you get a small performance increase if you use &&

and || instead of & and |. This is particularly apparent in applications that use these operators a lot.
As a rule of thumb, always use && and || where possible. These operators really come into their own
in more complicated situations, where computation of the second operand is possible only with certain
values of the first operand, as shown in this example:

var1 = (var2 != 0) && (var3 / var2 > 2);

Here, if var2 is zero, then dividing var3 by var2 results in either a ‘‘division by zero’’ error or var1
being defined as infinite (the latter is possible, and detectable, with some types, such as float).

NOTE At this point, you may be asking why the & and | operators exist at all. The
reason is that these operators may be used to perform operations on numeric
values. In fact, as you will see shortly in the section ‘‘Bitwise Operators,’’ they
operate on the series of bits stored in a variable, rather than the value of the
variable.

Boolean Assignment Operators
Boolean comparisons can be combined with assignments by using Boolean assignment operators. These
work in the same way as the mathematical assignment operators that were introduced in the preceding
chapter (+=, *=, and so on). The Boolean versions are shown in the following table:

EXAMPLE

OPERATOR CATEGORY EXPRESSION RESULT

&= Binary var1 &= var2; var1 is assigned the value that is the result of var1 & var2.

|= Binary var1 |= var2; var1 is assigned the value that is the result of var1 | var2.

ˆ = Binary var1 ˆ = var2; var1 is assigned the value that is the result of var1 ˆ var2.

These work with both Boolean and numeric values in the same way as &, |, and ˆ .

NOTE Note that the &= and |= assignment operators do not make use of the &&

and || conditional Boolean operators; that is, all operands are processed
regardless of the value to the left of the assignment operator.

In the Try It Out that follows, you type in an integer and then the code performs various Boolean
evaluations using that integer.

Boolean Logic ❘ 63

TRY IT OUT Using Boolean Operators

1. Create a new console application called Ch04Ex01 and save it in the directory
C:\BegVCSharp\Chapter04.

2. Add the following code to Program.cs:

static void Main(string[] args)
{

Console.WriteLine("Enter an integer:");
int myInt = Convert.ToInt32(Console.ReadLine());
bool isLessThan10 = myInt < 10;
bool isBetween0And5 = (0 <= myInt) && (myInt <= 5);
Console.WriteLine("Integer less than 10? {0}", isLessThan10);
Console.WriteLine("Integer between 0 and 5? {0}", isBetween0And5);
Console.WriteLine("Exactly one of the above is true? {0}",

isLessThan10 ˆ isBetween0And5);
Console.ReadKey();

}
Code snippet Ch04Ex01\Program.cs

3. Execute the application and enter an integer when prompted. The result is shown in Figure 4-1.

FIGURE 4-1

How It Works

The first two lines of code prompt for and accept an integer value using techniques you’ve already seen:

Console.WriteLine("Enter an integer:");
int myInt = Convert.ToInt32(Console.ReadLine());

You use Convert.ToInt32()to obtain an integer from the string input, which is simply another conversion
command in the same family as the Convert.ToDouble()command used previously.

Next, two Boolean variables, isLessThan10 and isBetween0And5, are declared and assigned values with
logic that matches the description in their names:

bool isLessThan10 = myInt < 10;
bool isBetween0And5 = (0 <= myInt) && (myInt <= 5);

These variables are used in the next three lines of code, the first two of which output their values, while the
third performs an operation on them and outputs the result. You work through this code assuming that
the user enters 7, as shown in the screenshot.

The first output is the result of the operation myInt < 10. If myInt is 6, which is less than 10, then the result
is true, which is what you see displayed. Values of myInt of 10 or higher result in false.

64 ❘ CHAPTER 4 FLOW CONTROL

The second output is a more involved calculation: (0 <= myInt) && (myInt <= 5). This involves two
comparison operations, to determine whether myInt is greater than or equal to 0 and less than or equal
to 5, and a Boolean AND operation on the results obtained. With a value of 6, (0 <= myInt)returns true, and
(myInt <= 5)returns false. The result is then (true) && (false), which is false, as you can see from
the display.

Finally, you perform a logical exclusive OR on the two Boolean variables isLessThan10 and
isBetween0And5. This will return true if one of the values is true and the other false, so only if
myInt is 6, 7, 8, or 9. With a value of 6, as in the example, the result is true.

Bitwise Operators
The & and | operators you saw earlier serve an additional purpose: They may be used to perform
operations on numeric values. When used in this way, they operate on the series of bits stored in a
variable, rather than the value of the variable, which is why they are referred to as bitwise operators.

In this section you will look at these and other bitwise operators that are defined by the C# language.
Using this functionality is fairly uncommon in most development, apart from mathematical applica-
tions. For that reason there is no Try it Out for this section.

Let’s start by considering & and | in turn. Each bit in the first operand is compared with the bit in the
same position in the second operand, resulting in the bit in the same position in the resultant value
being assigned a value, as shown here:

OPERAND 1 BIT OPERAND 2 BIT & RESULT BIT

1 1 1

1 0 0

0 1 0

0 0 0

| is similar, but the result bits are different:

OPERAND 1 BIT OPERAND 2 BIT | RESULT BIT

1 1 1

1 0 1

0 1 1

0 0 0

For example, consider the operation shown here:
int result, op1, op2;
op1 = 4;
op2 = 5;
result = op1 & op2;

Boolean Logic ❘ 65

In this case, you must consider the binary representations of op1 and op2, which are 100 and 101,
respectively. The result is obtained by comparing the binary digits in equivalent positions in these two
representations as follows:

➤ The leftmost bit of result is 1 if the leftmost bits of op1 and op2 are both 1, or 0 otherwise.

➤ The next bit of result is 1 if the next bits of op1 and op2 are both 1, or 0 otherwise.

➤ Continue for all remaining bits.

In this example, the leftmost bits of op1 and op2 are both 1, so the leftmost bit of result will be 1,
too. The next bits are both 0, and the third bits are 1 and 0, respectively, so the second and third bits
of result will be 0. The final value of result in binary representation is therefore 100, so the result is
assigned the value 4. This is shown graphically in the following equations:

1 0 0 4
& 1 0 1 & 5

1 0 0 4
The same process occurs if you use the | operator, except that in this case each result bit is 1 if either
of the operand bits in the same position is 1, as shown in the following equations:

1 0 0 4
| 1 0 1 | 5

1 0 1 5
You can also use the ˆ operator in the same way, where each result bit is 1 if one or other of the
operand bits in the same position is 1, but not both, as shown in the following table:

OPERAND 1 BIT OPERAND 2 BIT ˆ RESULT BIT

1 1 0

1 0 1

0 1 1

0 0 0

C# also allows the use of a unary bitwise operator (~), which acts on its operand by inverting each of
its bits, so that the result is a variable having values of 1 for each bit in the operand that is 0, and vice
versa. This is shown in the following table:

OPERAND BIT ∼ RESULT BIT

1 0

0 1

The way integer numbers are stored in .NET, known as two’s complement, means that using the
~ unary operator can lead to results that look a little odd. If you remember that an int type is
a 32-bit number, for example, then knowing that the ~ operator acts on all 32 of those bits can

66 ❘ CHAPTER 4 FLOW CONTROL

help you to see what is going on. For example, the number 5 in its full binary representation is
as follows:

000000000000000000000000000000101

This is the number –5:

111111111111111111111111111111011

In fact, by the two’s complement system, (–x) is defined as (∼x + 1). That may seem odd, but this system
is very useful when it comes to adding numbers. For example, adding 10 and –5 (that is, subtracting 5
from 10) looks like this in binary format:

000000000000000000000000000001010
+ 111111111111111111111111111111011
= 1000000000000000000000000000000101

NOTE By ignoring the 1 on the far left, you are left with the binary representation
for 5, so while results such as ∼1 = –2 may look odd, the underlying structures
force this result.

The bitwise operations you’ve seen in this section are quite useful in certain situations, because they
enable an easy method of using individual variable bits to store information. Consider a simple
representation of a color using three bits to specify red, green, and blue content. You can set these bits
independently to change the three bits to one of the configurations shown in the following table:

BITS DECIMAL REPRESENTATION MEANING

000 0 black

100 4 red

010 2 green

001 1 blue

101 5 magenta

110 6 yellow

011 3 cyan

111 7 white

Suppose you store these values in a variable of type int. Starting from a black color — that is, an int

variable with the value of 0 — you can perform operations like this:

int myColor = 0;
bool containsRed;
myColor = myColor | 2; // Add green bit, myColor now stores 010
myColor = myColor | 4; // Add red bit, myColor now stores 110
containsRed = (myColor & 4) == 4; // Check value of red bit

Boolean Logic ❘ 67

The final line of code assigns a value of true to containsRed, as the red bit of myColor is 1. This
technique can be quite useful for making efficient use of information, particularly because the oper-
ations involved can be used to check the values of multiple bits simultaneously (32 in the case of int
values). However, there are better ways to store extra information in single variables (making use of
the advanced variable types discussed in the next chapter).

In addition to these four bitwise operators, this section considers two others, shown in the following
table:

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

>> Binary var1 = var2 >> var3; var1 is assigned the value obtained when the
binary content of var2 is shifted var3 bits to the
right.

<< Binary var1 = var2 << var3; var1 is assigned the value obtained when the
binary content of var2 is shifted var3 bits to the
left.

These operators, commonly called bitwise shift operators, are best illustrated with a quick example:

int var1, var2 = 10, var3 = 2;
var1 = var2 << var3;

Here, var1 is assigned the value 40. This can be explained by considering that the binary representation
of 10 is 1010, which shifted to the left by two places is 101000 — the binary representation of 40. In
effect, you have carried out a multiplication operation. Each bit shifted to the left multiplies the value
by 2, so two bit-shifts to the left result in multiplication by 4. Conversely, each bit shifted to the right
has the effect of dividing the operand by 2, with any non-integer remainder being lost:

int var1, var2 = 10;
var1 = var2 >> 1;

In this example, var1 contains the value 5, whereas the following code results in a value of 2:

int var1, var2 = 10;
var1 = var2 >> 2;

You are unlikely to use these operators in most code, but it is worth being aware of their existence.
Their primary use is in highly optimized code, where the overhead of other mathematical operations
just won’t do. For this reason, they are often used in, for example, device drivers or system code.

The bitwise shift operators also have assignment operators, as shown in the following table:

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

>>= Unary var1 >>= var2; var1 is assigned the value obtained when the
binary content of var1 is shifted var2 bits to the
right.

<<= Unary var1 <<= var2; var1 is assigned the value obtained when the
binary content of var1 is shifted var2 bits to the
left.

68 ❘ CHAPTER 4 FLOW CONTROL

Operator Precedence Updated
Now that you have a few more operators to consider, the operator precedence table from the previous
chapter should be updated to include them. The new order is shown in the following table:

PRECEDENCE OPERATORS

Highest ++, –– (used as prefixes); (), +, – (unary), !, ~

*, /, %

+, –

<<, >>

<, >, <=, >=

==, !=

&

ˆ

|

&&

||

=, *=, /=, %=, +=, –=, <<=, >>=, &=, ˆ =, |=

Lowest ++, –– (used as suffixes)

This adds quite a few more levels but explicitly defines how expressions such as the following will be
evaluated, where the && operator is processed after the <= and >= operators (in this code var2 is an
int value):

var1 = var2 <= 4 && var2 >= 2;

It doesn’t hurt to add parentheses to make expressions such as this one clearer. The compiler knows
what order to process operators in, but we humans are prone to forget such things (and you might want
to change the order). Writing the previous expression as

var1 = (var2 <= 4) && (var2 >= 2);

solves this problem by explicitly ordering the computation.

THE GOTO STATEMENT

C# enables you to label lines of code and then jump straight to them using the goto statement. This has
its benefits and problems. The main benefit is that it’s a simple way to control what code is executed
when. The main problem is that excessive use of this technique can result in spaghetti code that is
difficult to understand.

The goto statement is used as follows:

goto <labelName>;

Branching ❘ 69

Labels are defined as follows:

<labelName>:

For example, consider the following:
int myInteger = 5;
goto myLabel;
myInteger += 10;
myLabel:
Console.WriteLine("myInteger = {0}", myInteger);

Execution proceeds as follows:

➤ myInteger is declared as an int type and assigned the value 5.

➤ The goto statement interrupts normal execution and transfers control to the line marked
myLabel:.

➤ The value of myInteger is written to the console.

The highlighted line in the following code is never executed:
int myInteger = 5;
goto myLabel;
myInteger += 10;
myLabel:
Console.WriteLine("myInteger = {0}", myInteger);

In fact, if you try to compile this code in an application, the Error List window will show a warning
labeled ‘‘Unreachable code detected,’’ along with location details. You will also see a wavy green line
under myInteger on the unreachable line of code.

goto statements have their uses, but they can make things very confusing indeed. In fact, if you can
avoid it (and by using the techniques you’ll learn in the remainder of this chapter you’ll be able to),
never use goto. The following example shows some spaghetti code arising from the use of this unfortu-
nate keyword:

start:
int myInteger = 5;
goto addVal;
writeResult:
Console.WriteLine("myInteger = {0}", myInteger);
goto start;
addVal:
myInteger += 10;
goto writeResult;

This is perfectly valid code but very difficult to read! Try it out for yourself and see what happens.
Before doing that, though, try to first determine what this code will do by looking at it, and then give
yourself a pat on the back if you’re right. You’ll revisit this statement a little later, because it has impli-
cations for use with some of the other structures in this chapter.

BRANCHING

Branching is the act of controlling which line of code should be executed next. The line to jump to is
controlled by some kind of conditional statement. This conditional statement is based on a comparison
between a test value and one or more possible values using Boolean logic.

70 ❘ CHAPTER 4 FLOW CONTROL

This section describes three branching techniques available in C#:

➤ The ternary operator

➤ The if statement

➤ The switch statement

The Ternary Operator
The simplest way to perform a comparison is to use the ternary (or conditional) operator mentioned
in the last chapter. You’ve already seen unary operators that work on one operand, and binary oper-
ators that work on two operands, so it won’t come as a surprise that this operator works on three
operands. The syntax is as follows:

<test> ? <resultIfTrue>: <resultIfFalse>

Here, <test> is evaluated to obtain a Boolean value, and the result of the operator is either
<resultIfTrue> or <resultIfFalse> based on this value.

You might use this as follows to test the value of an int variable called myInteger:

string resultString = (myInteger < 10) ? "Less than 10"
: "Greater than or equal to 10";

The result of the ternary operator is one of two strings, both of which may be assigned to
resultString. The choice of which string to assign is made by comparing the value of myInteger
to 10, where a value of less than 10 results in the first string being assigned, and a value of greater
than or equal to 10 results in the second string being assigned. For example, if myInteger is 4, then
resultString will be assigned the string Less than 10.

This operator is fine for simple assignments such as this, but it isn’t really suitable for executing larger
amounts of code based on a comparison. A much better way to do this is to use the if statement.

The if Statement
The if statement is a far more versatile and useful way to make decisions. Unlike ?: statements, if
statements don’t have a result (so you can’t use them in assignments); instead, you use the statement to
conditionally execute other statements.

The simplest use of an if statement is as follows, where <test> is evaluated (it must evaluate to a
Boolean value for the code to compile) and the line of code that follows the statement is executed if
<test> evaluates to true:

if (<test>)
<code executed if <test> is true>;

After this code is executed, or if it isn’t executed due to <test> evaluating to false, program execution
resumes at the next line of code.

You can also specify additional code using the else statement in combination with an if statement.
This statement is executed if <test> evaluates to false:

if (<test>)
<code executed if <test> is true>;

else
<code executed if <test> is false>;

Branching ❘ 71

Both sections of code can span multiple lines using blocks in braces:

if (<test>)
{

<code executed if <test> is true>;
}
else
{

<code executed if <test> is false>;
}

As a quick example, you could rewrite the code from the last section that used the ternary operator:

string resultString = (myInteger < 10) ? "Less than 10"
: "Greater than or equal to 10";

Because the result of the if statement cannot be assigned to a variable, you have to assign a value to
the variable in a separate step:

string resultString;
if (myInteger < 10)

resultString = "Less than 10";
else

resultString = "Greater than or equal to 10";

Code such as this, although more verbose, is far easier to read and understand than the equivalent
ternary form, and enables far more flexibility.

The following Try It Out illustrates the use of the if statement.

TRY IT OUT Using the if Statement

1. Create a new console application called Ch04Ex02 and save it in the directory
C:\BegVCSharp\Chapter04.

2. Add the following code to Program.cs:

static void Main(string[] args)
{

string comparison;
Console.WriteLine("Enter a number:");
double var1 = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("Enter another number:");
double var2 = Convert.ToDouble(Console.ReadLine());
if (var1 < var2)

comparison = "less than";
else
{

if (var1 == var2)
comparison = "equal to";

else
comparison = "greater than";

}
Console.WriteLine("The first number is {0} the second number.",

comparison);
Console.ReadKey();

}
Code snippet Ch04Ex02\Program.cs

72 ❘ CHAPTER 4 FLOW CONTROL

3. Execute the code and enter two numbers at the prompts (see Figure 4-2).

FIGURE 4-2

How It Works

The first section of code is very familiar. It simply obtains two double values from user input:

string comparison;
Console.WriteLine("Enter a number:");
double var1 = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("Enter another number:");
double var2 = Convert.ToDouble(Console.ReadLine());

Next, you assign a string to the string variable comparison based on the values obtained for var1 and
var2. First you check whether var1 is less than var2:

if (var1 < var2)
comparison = "less than";

If this isn’t the case, then var1 is either greater than or equal to var2. In the else section of the first com-
parison, you need to nest a second comparison:

else
{

if (var1 == var2)
comparison = "equal to";

The else section of this second comparison is reached only if var1 is greater than var2:

else
comparison = "greater than";

}

Finally, you write the value of comparison to the console:

Console.WriteLine("The first number is {0} the second number.",
comparison);

The nesting used here is just one method of performing these comparisons. You could equally have
written this:

if (var1 < var2)
comparison = "less than";

if (var1 == var2)
comparison = "equal to";

if (var1 > var2)
comparison = "greater than";

Branching ❘ 73

The disadvantage with this method is that you are performing three comparisons regardless of the values
of var1 and var2. With the first method, you perform only one comparison if var1 < var2 is true, and two
comparisons otherwise (you also perform the var1 == var2 comparison), resulting in fewer lines of code
being executed. The difference in performance here is slight, but it would be significant in applications
where speed of execution is crucial.

Checking More Conditions Using if Statements
In the preceding example, you checked for three conditions involving the value of var1. This covered all
possible values for this variable. Sometimes, you might want to check for specific values — for example,
if var1 is equal to 1, 2, 3, or 4, and so on. Using code such as the preceding can result in annoyingly
nested code:

if (var1 == 1)
{

// Do something.
}
else
{

if (var1 == 2)
{

// Do something else.
}
else
{

if (var1 == 3 || var1 == 4)
{

// Do something else.
}
else
{

// Do something else.
}

}
}

COMMON MISTAKES It’s a common mistake to write conditions such as if

(var1 == 3 || var1 == 4) as if (var1 == 3 || 4). Here, owing to operator
precedence, the == operator is processed first, leaving the || operator to operate
on a Boolean and a numeric operand, which causes an error.

In these situations, consider using a slightly different indentation scheme and contracting the section
of code for the else blocks (that is, using a single line of code after the else blocks, rather than a
block of code). That way, you end up with a structure involving else if statements:

if (var1 == 1)
{

// Do something.
}

74 ❘ CHAPTER 4 FLOW CONTROL

else if (var1 == 2)
{

// Do something else.
}
else if (var1 == 3 || var1 == 4)
{

// Do something else.
}
else
{

// Do something else.
}

These else if statements are really two separate statements, and the code is functionally identical to
the previous code, but much easier to read. When making multiple comparisons such as this, consider
using the switch statement as an alternative branching structure.

The switch Statement
The switch statement is similar to the if statement in that it executes code conditionally based on the
value of a test. However, switch enables you to test for multiple values of a test variable in one go,
rather than just a single condition. This test is limited to discrete values, rather than clauses such as
‘‘greater than X,’’ so its use is slightly different; but it can be a powerful technique.

The basic structure of a switch statement is as follows:
switch (<testVar>)
{

case <comparisonVal1>:
<code to execute if <testVar> == <comparisonVal1> >
break;

case <comparisonVal2>:
<code to execute if <testVar> == <comparisonVal2> >
break;

. . .

case <comparisonValN>:
<code to execute if <testVar> == <comparisonValN> >
break;

default:
<code to execute if <testVar> != comparisonVals>
break;

}

The value in <testVar> is compared to each of the <comparisonValX> values (specified with case

statements). If there is a match, then the code supplied for this match is executed. If there is no match,
then the code in the default section is executed if this block exists.

On completion of the code in each section, you have an additional command, break. It is illegal for the
flow of execution to reach a second case statement after processing one case block.

NOTE The behavior where the flow of execution is forbidden from flowing from
one case block to the next is one area in which C# differs from C++. In C++ the
processing of case statements is allowed to run from one to another.

Branching ❘ 75

The break statement here simply terminates the switch statement, and processing continues on the
statement following the structure.

There are alternative methods of preventing flow from one case statement to the next in C# code.
You can use the return statement, which results in termination of the current function, rather than
just the switch structure (see Chapter 6 for more details about this), or a goto statement. goto state-
ments (as detailed earlier) work here because case statements actually define labels in C# code. Here is
an example:

switch (<testVar>)
{

case <comparisonVal1>:
<code to execute if <testVar> == <comparisonVal1> >
goto case <comparisonVal2>;

case <comparisonVal2>:
<code to execute if <testVar> == <comparisonVal2> >
break;

...

One exception to the rule that the processing of one case statement can’t run freely into the next: If
you place multiple case statements together (stack them) before a single block of code, then you are
in effect checking for multiple conditions at once. If any of these conditions is met, then the code is
executed. Here’s an example:

switch (<testVar>)
{

case <comparisonVal1>:
case <comparisonVal2>:

<code to execute if <testVar> == <comparisonVal1> or
<testVar> == <comparisonVal2> >

break;
. . .

These conditions also apply to the default statement. There is no rule stipulating that this statement
must be the last in the list of comparisons, and you can stack it with case statements if you want.
Adding a breakpoint with break, goto, or return ensures that a valid execution path exists through the
structure in all cases.

Each of the <comparisonValX> comparisons must be a constant value. One way of doing this is to
provide literal values, like this:

switch (myInteger)
{

case 1:
<code to execute if myInteger == 1>
break;

case -1:
<code to execute if myInteger == -1>
break;

default:
<code to execute if myInteger != comparisons>
break;

}

Another way is to use constant variables. Constant variables (also known as just ‘‘constants,’’ avoiding
the oxymoron) are just like any other variable except for one key factor: The value they contain never

76 ❘ CHAPTER 4 FLOW CONTROL

changes. Once you assign a value to a constant variable, then that is the value it has for the duration
of code execution. Constant variables can come in handy here, because it is often easier to read code
where the actual values being compared are hidden from you at the time of comparison.

You declare constant variables using the const keyword in addition to the variable type, and you must
assign them values at this time, as shown here:

const int intTwo = 2;

The preceding code is perfectly valid, but if you try

const int intTwo;
intTwo = 2;

you will get an error and won’t be able to compile your code. This also happens if you try to change
the value of a constant variable through any other means after initial assignment.

The following Try It Out uses a switch statement to write different strings to the console, depending
on the value you enter for a test string.

TRY IT OUT Using the switch Statement

1. Create a new console application called Ch04Ex03 and save it to the directory
C:\BegVCSharp\Chapter04.

2. Add the following code to Program.cs:

static void Main(string[] args)
{

const string myName = "karli";
const string sexyName = "angelina";
const string sillyName = "ploppy";
string name;
Console.WriteLine("What is your name?");
name = Console.ReadLine();
switch (name.ToLower())
{

case myName:
Console.WriteLine("You have the same name as me!");
break;

case sexyName:
Console.WriteLine("My, what a sexy name you have!");
break;

case sillyName:
Console.WriteLine("That’s a very silly name.");
break;

}
Console.WriteLine("Hello {0}!", name);
Console.ReadKey();

}
Code snippet Ch04Ex03\Program.cs

Looping ❘ 77

3. Execute the code and enter a name. The result is shown in Figure 4-3.

FIGURE 4-3

How It Works

The code sets up three constant strings, accepts a string from the user, and then writes out text to the
console based on the string entered. Here, the strings are names.

When you compare the name entered (in the variable name) to your constant values, you first force it into
lowercase with name.ToLower(). This is a standard command that works with all string variables, and it
comes in handy when you’re not sure what the user entered. Using this technique, the strings Karli, kArLi,
karli, and so on all match the test string karli.

The switch statement itself attempts to match the string entered with the constant values you have defined,
and, if successful, writes out a personalized message to greet the user. If no match is made, you offer a
generic greeting.

switch statements place no limit on the amount of case sections they contain, so you could extend this
code to cover every name you can think of should you want . . . but it might take a while!

LOOPING

Looping refers to the repeated execution of statements. This technique comes in very handy because it
means that you can repeat operations as many times as you want (thousands, even millions, of times)
without having to write the same code each time.

As a simple example, consider the following code for calculating the amount of money in a bank
account after 10 years, assuming that interest is paid each year and no other money flows into or
out of the account:

double balance = 1000;
double interestRate = 1.05; // 5% interest/year
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;

78 ❘ CHAPTER 4 FLOW CONTROL

balance *= interestRate;
balance *= interestRate;
balance *= interestRate;

Writing the same code 10 times seems a bit wasteful, and what if you wanted to change the duration
from 10 years to some other value? You’d have to manually copy the line of code the required amount
of times, which would be a bit of a pain! Luckily, you don’t have to do this. Instead, you can have a
loop that executes the instruction you want the required number of times.

Another important type of loop is one in which you loop until a certain condition is fulfilled. These
loops are slightly simpler than the situation detailed previously (although no less useful), so they’re a
good starting point.

do Loops
do loops operate as follows. The code you have marked out for looping is executed, a Boolean test is
performed, and the code executes again if this test evaluates to true, and so on. When the test evaluates
to false, the loop exits.

The structure of a do loop is as follows, where <Test> evaluates to a Boolean value:

do
{

<code to be looped>
} while (<Test>);

NOTE The semicolon after the while statement is required.

For example, you could use the following to write the numbers from 1 to 10 in a column:

int i = 1;
do
{

Console.WriteLine("{0}", i++);
} while (i <= 10);

Here, you use the suffix version of the ++ operator to increment the value of i after it is written to the
screen, so you need to check for i <= 10 to include 10 in the numbers written to the console.

The following Try It Out uses this for a slightly modified version of the code shown earlier, where you
calculated the balance in an account after 10 years. Here, you use a loop to calculate how many years
it will take to get a specified amount of money in the account, based on a starting amount and a fixed
interest rate.

TRY IT OUT Using do Loops

1. Create a new console application called Ch04Ex04 and save it to the directory
C:\BegVCSharp\Chapter04.

Looping ❘ 79

2. Add the following code to Program.cs:

static void Main(string[] args)
{

double balance, interestRate, targetBalance;
Console.WriteLine("What is your current balance?");
balance = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("What is your current annual interest rate (in %)?");
interestRate = 1 + Convert.ToDouble(Console.ReadLine()) / 100.0;
Console.WriteLine("What balance would you like to have?");
targetBalance = Convert.ToDouble(Console.ReadLine());
int totalYears = 0;
do
{

balance *= interestRate;
++totalYears;

}
while (balance < targetBalance);
Console.WriteLine("In {0} year{1} you’ll have a balance of {2}.",

totalYears, totalYears == 1 ? "": "s", balance);
Console.ReadKey();

}
Code snippet Ch04Ex04\Program.cs

3. Execute the code and enter some values. A sample result is shown in Figure 4-4.

FIGURE 4-4

How It Works

This code simply repeats the simple annual calculation of the balance with a fixed interest rate as many
times as is necessary for the balance to satisfy the terminating condition. You keep a count of how
many years have been accounted for by incrementing a counter variable with each loop cycle:

int totalYears = 0;
do
{

balance *= interestRate;
++totalYears;

}
while (balance < targetBalance);

80 ❘ CHAPTER 4 FLOW CONTROL

You can then use this counter variable as part of the result output:

Console.WriteLine("In {0} year{1} you’ll have a balance of {2}.",
totalYears, totalYears == 1 ? "": "s", balance);

NOTE Perhaps the most common usage of the ?: (ternary) operator is to
conditionally format text with the minimum of code. Here, you output an ‘‘s’’ after
‘‘year’’ if totalYears isn’t equal to 1.

Unfortunately, this code isn’t perfect. Consider what happens when the target balance is less than the
current balance. The output will be similar to what is shown in Figure 4-5.

FIGURE 4-5

do loops always execute at least once. Sometimes, as in this situation, this isn’t ideal. Of course, you could
add an if statement:

int totalYears = 0;
if (balance < targetBalance)
{

do
{

balance *= interestRate;
++totalYears;

}
while (balance < targetBalance);

}
Console.WriteLine("In {0} year{1} you’ll have a balance of {2}.",

totalYears, totalYears == 1 ? "": "s", balance);

Clearly, this adds unnecessary complexity. A far better solution is to use a while loop.

while Loops
while loops are very similar to do loops, but they have one important difference: The Boolean test in
a while loop takes place at the start of the loop cycle, not at the end. If the test evaluates to false,
then the loop cycle is never executed. Instead, program execution jumps straight to the code following
the loop.

Looping ❘ 81

Here’s how while loops are specified:

while (<Test>)
{

<code to be looped>
}

They can be used in almost the same way as do loops:

int i = 1;
while (i <= 10)
{

Console.WriteLine("{0}", i++);
}

This code has the same result as the do loop shown earlier; it outputs the numbers 1 to 10 in a column.
The following Try It Out demonstrates how you can modify the last example to use a while loop.

TRY IT OUT Using while Loops

1. Create a new console application called Ch04Ex05 and save it to the directory
C:\BegVCSharp\Chapter04.

2. Modify the code as follows (use the code from Ch04Ex04 as a starting point, and remember to
delete the while statement at the end of the original do loop):

static void Main(string[] args)
{

double balance, interestRate, targetBalance;
Console.WriteLine("What is your current balance?");
balance = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("What is your current annual interest rate (in %)?");
interestRate = 1 + Convert.ToDouble(Console.ReadLine()) / 100.0;
Console.WriteLine("What balance would you like to have?");
targetBalance = Convert.ToDouble(Console.ReadLine());
int totalYears = 0;
while (balance < targetBalance)
{

balance *= interestRate;
++totalYears;

}
Console.WriteLine("In {0} year{1} you’ll have a balance of {2}.",

totalYears, totalYears == 1 ? "": "s", balance);
if (totalYears == 0)

Console.WriteLine(
"To be honest, you really didn’t need to use this calculator.");

Console.ReadKey();
}

Code snippet Ch04Ex05\Program.cs

3. Execute the code again, but this time use a target balance that is less than the starting balance, as
shown in Figure 4-6.

82 ❘ CHAPTER 4 FLOW CONTROL

FIGURE 4-6

How It Works

This simple change from a do loop to a while loop has solved the problem in the last example. By moving
the Boolean test to the beginning, you provide for the circumstance where no looping is required, and you
can jump straight to the result.

Of course, other alternatives are possible in this situation. For example, you could check the user input to
ensure that the target balance is greater than the starting balance. In that case, you can place the user input
section in a loop as follows:

Console.WriteLine("What balance would you like to have?");
do
{

targetBalance = Convert.ToDouble(Console.ReadLine());
if (targetBalance <= balance)

Console.WriteLine("You must enter an amount greater than " +
"your current balance!\nPlease enter another value.");

}
while (targetBalance <= balance);

This rejects values that don’t make sense, so the output looks like Figure 4-7.

FIGURE 4-7

This validation of user input is an important topic when it comes to application design, and many examples
of it appear throughout this book.

Looping ❘ 83

for Loops
The last type of loop to look at in this chapter is the for loop. This type of loop executes a set
number of times and maintains its own counter. To define a for loop you need the following
information:

➤ A starting value to initialize the counter variable

➤ A condition for continuing the loop, involving the counter variable

➤ An operation to perform on the counter variable at the end of each loop cycle

For example, if you want a loop with a counter that increments from 1 to 10 in steps of one, then the
starting value is 1; the condition is that the counter is less than or equal to 10; and the operation to
perform at the end of each cycle is to add 1 to the counter.

This information must be placed into the structure of a for loop as follows:

for (<initialization>; <condition>; <operation>)
{

<code to loop>
}

This works exactly the same way as the following while loop:

<initialization>
while (<condition>)
{

<code to loop>
<operation>

}

The format of the for loop makes the code easier to read, however, because the syntax involves the
complete specification of the loop in one place, rather than dividing it over several statements in differ-
ent areas of the code.

Earlier, you used do and while loops to write out the numbers from 1 to 10. The code that follows
shows what is required to do this using a for loop:

int i;
for (i = 1; i <= 10; ++i)
{

Console.WriteLine("{0}", i);
}

The counter variable, an integer called i, starts with a value of 1 and is incremented by 1 at the end of
each cycle. During each cycle, the value of i is written to the console.

When the code resumes after the loop, i has a value of 11. That’s because at the end of the cycle where
i is equal to 10, i is incremented to 11. This happens before the condition i <= 10 is processed, at
which point the loop ends. As with while loops, for loops execute only if the condition evaluates to
true before the first cycle, so the code in the loop doesn’t necessarily run at all.

84 ❘ CHAPTER 4 FLOW CONTROL

As a final note, you can declare the counter variable as part of the for statement, rewriting the preceding
code as follows:

for (int i = 1; i <= 10; ++i)
{

Console.WriteLine("{0}", i);
}

If you do this, though, the variable i won’t be accessible from code outside this loop (see the section
‘‘Variable Scope’’ in Chapter 6).

The next Try It Out uses for loops, and because you have already used several loops now, this example
is a bit more interesting: It displays a Mandelbrot set (but using plain-text characters, so it won’t look
that spectacular).

TRY IT OUT Using for Loops

1. Create a new console application called Ch04Ex06 and save it to the directory
C:\BegVCSharp\Chapter04.

2. Add the following code to Program.cs:

static void Main(string[] args)
{

double realCoord, imagCoord;
double realTemp, imagTemp, realTemp2, arg;
int iterations;
for (imagCoord = 1.2; imagCoord >= -1.2; imagCoord -= 0.05)
{

for (realCoord = -0.6; realCoord <= 1.77; realCoord += 0.03)
{

iterations = 0;
realTemp = realCoord;
imagTemp = imagCoord;
arg = (realCoord * realCoord) + (imagCoord * imagCoord);
while ((arg < 4) && (iterations < 40))
{

realTemp2 = (realTemp * realTemp)-(imagTemp * imagTemp)
-realCoord;

imagTemp = (2 * realTemp * imagTemp) -imagCoord;
realTemp = realTemp2;
arg = (realTemp * realTemp) + (imagTemp * imagTemp);
iterations += 1;

}
switch (iterations % 4)
{

case 0:
Console.Write(".");
break;

case 1:
Console.Write("o");
break;

case 2:
Console.Write("O");
break;

Looping ❘ 85

case 3:
Console.Write("@");
break;

}
}
Console.Write("\n");

}
Console.ReadKey();

}
Code snippet Ch04Ex06\Program.cs

3. Execute the code. The result is shown in Figure 4-8.

FIGURE 4-8

How It Works

Details about calculating Mandelbrot sets are beyond the scope of this chapter, but you should understand
why you need the loops used in this code. Feel free to skim through the following two paragraphs if the
mathematics doesn’t interest you; it’s an understanding of the code that is important here.

Each position in a Mandelbrot image corresponds to an imaginary number of the form N = x + y*i, where
the real part is x, the imaginary part is y, and i is the square root of -1. The x and y coordinates of the
position in the image correspond to the x and y parts of the imaginary number.

86 ❘ CHAPTER 4 FLOW CONTROL

For each position on the image, you look at the argument of N, which is the square root of x*x + y*y. If
this value is greater than or equal to 2, you say that the position corresponding to this number has a value
of 0. If the argument of N is less than 2, you change N to a value of N*N-N (giving you N = (x*x-y*y-x) +

(2*x*y-y)*i) and check the argument of this new value of N again. If this value is greater than or equal
to 2, you say that the position corresponding to this number has a value of 1. This process continues until
you either assign a value to the position on the image or perform more than a certain number of iterations.

Based on the values assigned to each point in the image, you would, in a graphical environment, place a
pixel of a certain color on the screen. However, because you are using a text display, you simply place
characters onscreen instead.

Now, back to the code, and the loops contained in it. You begin by declaring the variables you need for
your calculation:

double realCoord, imagCoord;
double realTemp, imagTemp, realTemp2, arg;
int iterations;

Here, realCoord and imagCoord are the real and imaginary parts of N, and the other double variables are
for temporary information during computation. iterations records how many iterations it takes before
the argument of N (arg) is 2 or greater.

Next, you start two for loops to cycle through coordinates covering the whole of the image (using a slightly
more complex syntax for modifying your counters than ++ or --, a common and powerful technique):

for (imagCoord = 1.2; imagCoord >= -1.2; imagCoord -= 0.05)
{

for (realCoord = -0.6; realCoord <= 1.77; realCoord += 0.03)
{

Here, appropriate limits have been used to show the main section of the Mandelbrot set. Feel free to play
around with these if you want to try ‘‘zooming in’’ on the image.

Within these two loops you have code that pertains to a single point in the Mandelbrot set, giving you a
value for N to play with. This is where you perform your calculation of iterations required, giving you
a value to plot for the current point.

First, initialize some variables:

iterations = 0;
realTemp = realCoord;
imagTemp = imagCoord;
arg = (realCoord * realCoord) + (imagCoord * imagCoord);

Next, you have a while loop to perform your iterating. Use a while loop rather than a do loop, in case the
initial value of N has an argument greater than 2 already, in which case iterations == 0 is the answer you
are looking for and no further calculations are necessary.

Note that you’re not quite calculating the argument fully here. You’re just getting the value of x*x + y*y

and checking whether that value is less than 4. This simplifies the calculation, because you know that 2 is
the square root of 4 and don’t have to calculate any square roots yourself:

while ((arg < 4) && (iterations < 40))
{

realTemp2 = (realTemp * realTemp)-(imagTemp * imagTemp)
-realCoord;

imagTemp = (2 * realTemp * imagTemp)-imagCoord;

Looping ❘ 87

realTemp = realTemp2;
arg = (realTemp * realTemp) + (imagTemp * imagTemp);
iterations += 1;

}

The maximum number of iterations of this loop, which calculates values as detailed above, is 40.

Once you have a value for the current point stored in iterations, you use a switch statement to choose a
character to output. You just use four different characters here, instead of the 40 possible values, and use
the modulus operator (%) so that values of 0, 4, 8, and so on provide one character; values of 1, 5, 9, and
so on provide another character, and so forth:

switch (iterations % 4)
{

case 0:
Console.Write(".");
break;

case 1:
Console.Write("o");
break;

case 2:
Console.Write("O");
break;

case 3:
Console.Write("@");
break;

}

You use Console.Write()here, rather than Console.WriteLine(), because you don’t want to start a new
line every time you output a character. At the end of one of the innermost for loops, you do want to end a
line, so you simply output an end-of-line character using the escape sequence shown earlier:

}
Console.Write("\n");

}

This results in each row being separated from the next and lining up appropriately. The final result of
this application, though not spectacular, is fairly impressive, and certainly shows how useful looping and
branching can be.

Interrupting Loops
Sometimes you want finer-grained control over the processing of looping code. C# provides four com-
mands to help you here, three of which were shown in other situations:

➤ break — Causes the loop to end immediately

➤ continue — Causes the current loop cycle to end immediately (execution continues with the
next loop cycle)

➤ goto — Allows jumping out of a loop to a labeled position (not recommended if you want
your code to be easy to read and understand)

➤ return — Jumps out of the loop and its containing function (see Chapter 6)

88 ❘ CHAPTER 4 FLOW CONTROL

The break command simply exits the loop, and execution continues at the first line of code after the
loop, as shown in the following example:

int i = 1;
while (i <= 10)
{

if (i == 6)
break;

Console.WriteLine("{0}", i++);
}

This code writes out the numbers from 1 to 5 because the break command causes the loop to exit when
i reaches 6.

continue only stops the current cycle, not the whole loop, as shown here:

int i;
for (i = 1; i <= 10; i++)
{

if ((i % 2) == 0)
continue;

Console.WriteLine(i);
}

In the preceding example, whenever the remainder of i divided by 2 is zero, the continue statement
stops the execution of the current cycle, so only the numbers 1, 3, 5, 7, and 9 are displayed.

The third method of interrupting a loop is to use goto, as shown earlier:

int i = 1;
while (i <= 10)
{

if (i == 6)
goto exitPoint;

Console.WriteLine("{0}", i++);
}
Console.WriteLine("This code will never be reached.");
exitPoint:
Console.WriteLine("This code is run when the loop is exited using goto.");

Note that exiting a loop with goto is legal (if slightly messy), but it is illegal to use goto to jump into a
loop from outside.

Infinite Loops
It is possible, through both coding errors and design, to define loops that never end, so-called infinite
loops. As a very simple example, consider the following:

while (true)
{

// code in loop
}

This can be useful, and you can always exit such loops using code such as break statements or manually
by using the Windows Task Manager. However, when this occurs by accident, it can be annoying.
Consider the following loop, which is similar to the for loop in the previous section:

Summary ❘ 89

int i = 1;
while (i <= 10)

{
if ((i % 2) == 0)

continue;
Console.WriteLine("{0}", i++);

}

Here, i isn’t incremented until the last line of code in the loop, which occurs after the continue state-
ment. If this continue statement is reached (which it will be when i is 2), the next loop cycle will be
using the same value of i, continuing the loop, testing the same value of i, continuing the loop, and so
on. This will cause the application to freeze. Note that it’s still possible to quit the frozen application in
the normal way, so you won’t have to reboot if this happens.

SUMMARY

In this chapter, you increased your programming knowledge by considering various structures that
you can use in your code. The proper use of these structures is essential when you start making more
complex applications, and you will see them used throughout this book.

You first spent some time looking at Boolean logic, with a bit of bitwise logic thrown in for good
measure. Looking back on this after working through the rest of the chapter should confirm the sug-
gestion that this topic is very important when it comes to implementing branching and looping code
in your programs. It is essential to become very familiar with the operators and techniques detailed in
this section.

Branching enables you to conditionally execute code, which, when combined with looping, enables you
to create convoluted structures in your C# code. When you have loops inside loops inside if structures
inside loops, you start to see why code indentation is so useful! If you shift all your code to the left of
the screen, it instantly becomes difficult to parse by eye, and even more difficult to debug. Make sure
you’ve got the hang of indentation at this stage — you’ll appreciate it later! VS does a lot of this for
you, but it’s a good idea to indent code as you type it anyway.

The next chapter covers variables in more depth.

EXERCISES

1. If you have two integers stored in variables var1 and var2, what Boolean test can you perform to
determine whether one or the other (but not both) is greater than 10?

2. Write an application that includes the logic from Exercise 1, obtains two numbers from the user,
and displays them, but rejects any input where both numbers are greater than 10 and asks for two
new numbers.

continues

90 ❘ CHAPTER 4 FLOW CONTROL

3. What is wrong with the following code?

int i;
for (i = 1; i <= 10; i++)
{

if ((i % 2) = 0)
continue;

Console.WriteLine(i);
}

4. Modify the Mandelbrot set application to request image limits from the user and display the cho-
sen section of the image. The current code outputs as many characters as will fit on a single line
of a console application; consider making every image chosen fit in the same amount of space to
maximize the viewable area.

Answers to Exercises can be found in Appendix A.

Summary ❘ 91

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Boolean
logic

Boolean logic involves using Boolean (true or false) values to evaluate conditions.
Boolean operators are used to perform comparisons between values and return Boolean
results. Some Boolean operators are also used to perform bitwise operations on the
underlying bit structure of values, and there are some specialized bitwise operators too.

Branching You can use Boolean logic to control program flow. The result of an expression that eval-
uates to a Boolean value can be used to determine whether a block of code is executed.
You do this with if statements or the ?: (ternary) operator for simple branching, or the
switch statement to check multiple conditions simultaneously.

Looping Looping allows you to execute blocks of code a number of times according to conditions
you specify. You can use do and while loops to execute code while a Boolean expres-
sion evaluates to true, and for loops to include a counter in your looping code. Loops
can be interrupted by cycle (with continue) or completely (with break). Some loops only
end if you interrupt them; these are called infinite loops.

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

5
More About Variables

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to perform implicit and explicit conversions between types

➤ How to create and use enum types

➤ How to create and use struct types

➤ How to create and use arrays

➤ How to manipulate string values

Now that you’ve seen a bit more of the C# language, let’s go back and tackle some of the more
involved topics concerning variables.

The first subject you look at in this chapter is type conversion, whereby you convert values
from one type into another. You’ve already seen a bit of this, but you look at it formally here.
A grasp of this topic gives you a greater understanding of what happens when you mix types in
expressions (intentionally or unintentionally) as well as tighter control over the way that data is
manipulated. This helps you to streamline your code and avoid nasty surprises.

Then you’ll look at a few more types of variables that you can use:

➤ Enumerations: Variable types that have a user-defined discrete set of possible values that can
be used in a human-readable way.

➤ Structs: Composite variable types made up of a user-defined set of other variable types.

➤ Arrays: Types that hold multiple variables of one type, allowing index access to the individual
value.

These are slightly more complex than the simple types you’ve been using up to now, but they
can make your life much easier. Finally, you’ll explore another useful subject concerning strings:
basic string manipulation.

94 ❘ CHAPTER 5 MORE ABOUT VARIABLES

TYPE CONVERSION

Earlier in this book you saw that all data, regardless of type, is simply a sequence of bits — that is,
a sequence of zeros and ones. The meaning of the variable is determined by the way in which this
data is interpreted. The simplest example of this is the char type. This type represents a character in
the Unicode character set using a number. In fact, the number is stored in exactly the same way as a
ushort — both of them store a number between 0 and 65535.

However, in general, the different types of variables use varying schemes to represent data. This implies
that even if it were possible to place the sequence of bits from one variable into a variable of a different
type (perhaps they use the same amount of storage, or perhaps the target type has enough storage space
to include all the source bits), the results might not be what you expect.

Instead of this one-to-one mapping of bits from one variable into another, you need to use type conver-
sion on the data. Type conversion takes two forms:

➤ Implicit conversion: Conversion from type A to type B is possible in all circumstances,
and the rules for performing the conversion are simple enough for you to trust in the
compiler.

➤ Explicit conversion: Conversion from type A to type B is possible only in certain circum-
stances or where the rules for conversion are complicated enough to merit additional
processing of some kind.

Implicit Conversions
Implicit conversion requires no work on your part and no additional code. Consider the code
shown here:

var1 = var2;

This assignment may involve an implicit conversion if the type of var2 can be implicitly converted
into the type of var1, but it could just as easily involve two variables with the same type, in which
case no implicit conversion is necessary. For example, the values of ushort and char are effectively
interchangeable, because both store a number between 0 and 65535. You can convert values between
these types implicitly, as illustrated by the following code:

ushort destinationVar;
char sourceVar = ‘a’;
destinationVar = sourceVar;
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

Here, the value stored in sourceVar is placed in destinationVar. When you output the variables with
the two Console.WriteLine() commands, you get the following output:

sourceVar val: a
destinationVar val: 97

Type Conversion ❘ 95

Even though the two variables store the same information, they are interpreted in different ways using
their type.

There are many implicit conversions of simple types; bool and string have no implicit conversions,
but the numeric types have a few. For reference, the following table shows the numeric conversions
that the compiler can perform implicitly (remember that chars are stored as numbers, so char counts
as a numeric type).

TYPE CAN SAFELY BE CONVERTED TO

byte short, ushort, int, uint, long, ulong, float, double, decimal

sbyte short, int, long, float, double, decimal

short int, long, float, double, decimal

ushort int, uint, long, ulong, float, double, decimal

int long, float, double, decimal

uint long, ulong, float, double, decimal

long float, double, decimal

ulong float, double, decimal

float double

char ushort, int, uint, long, ulong, float, double, decimal

Don’t worry — you don’t need to learn this table by heart, because it’s actually quite easy to work
out which conversions the compiler can do implicitly. Back in Chapter 3, you saw a table showing the
range of possible values for every simple numeric type. The implicit conversion rule for these types is
this: Any type A whose range of possible values completely fits inside the range of possible values of
type B can be implicitly converted into that type.

The reasoning for this is simple. If you try to fit a value into a variable but that value is outside the
range of values the variable can take, then there will be a problem. For example, a short type variable
is capable of storing values up to 32767, and the maximum value allowed into a byte is 255, so there
could be problems if you try to convert a short value into a byte value. If the short holds a value
between 256 and 32767, then it simply won’t fit into a byte.

If you know that the value in your short type variable is less than 255, then you should be able to con-
vert the value, right? The simple answer is that, of course, you can. The slightly more complex answer
is that, of course, you can, but you must use an explicit conversion. Performing an explicit conversion
is a bit like saying ‘‘OK, I know you’ve warned me about doing this, but I’ll take responsibility for what
happens.’’

96 ❘ CHAPTER 5 MORE ABOUT VARIABLES

Explicit Conversions
As the name suggests, an explicit conversion occurs when you explicitly ask the compiler to convert a
value from one data type to another. These conversions require extra code, and the format of this code
may vary, depending on the exact conversion method. Before you look at any of this explicit conversion
code, look at what happens if you don’t add any.

For example, the following modification to the code from the last section attempts to convert a short

value into a byte:

byte destinationVar;
short sourceVar = 7;
destinationVar = sourceVar;
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

If you attempt to compile the preceding code, you will receive the following error:

Cannot implicitly convert type ‘short’ to ‘byte’. An explicit conversion exists
(are you missing a cast?)

Luckily for you, the C# compiler can detect missing explicit conversions!

To get this code to compile, you need to add the code to perform an explicit conversion. The easiest
way to do that in this context is to cast the short variable into a byte (as suggested by the preceding
error string). Casting basically means forcing data from one type into another, and it uses the following
simple syntax:

<(destinationType)sourceVar>

This will convert the value in <sourceVar> into <destinationType>.

NOTE Casting is only possible in some situations. Types that bear little or no
relation to each other are likely not to have casting conversions defined.

You can, therefore, modify your example using this syntax to force the conversion from a short to a
byte:

byte destinationVar;
short sourceVar = 7;
destinationVar = (byte)sourceVar;
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

This results in the following output:

sourceVar val: 7
destinationVar val: 7

What happens when you try to force a value into a variable into which it won’t fit? Modifying your
code as follows illustrates this:

byte destinationVar;
short sourceVar = 281;

Type Conversion ❘ 97

destinationVar = (byte)sourceVar;
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

This results in the following:

sourceVar val: 281
destinationVar val: 25

What happened? Well, look at the binary representations of these two numbers, along with the maxi-
mum value that can be stored in a byte, which is 255:

281 = 100011001
25 = 000011001

255 = 011111111

You can see that the leftmost bit of the source data has been lost. This immediately raises
a question: How can you tell when this happens? Obviously, there will be times
when you will need to explicitly cast one type into another, and it would be nice to know
if any data has been lost along the way. Not detecting this could cause serious errors — for
example, in an accounting application or an application determining the trajectory of a
rocket to the moon.

One way to do this is simply to check the value of the source variable and compare it with
the known limits of the destination variable. Another technique is to force the system to pay
special attention to the conversion at runtime. Attempting to fit a value into a variable when
that value is too big for the type of that variable results in an overflow, and this is the situation you
want to check for.

Two keywords exist for setting what is called the overflow checking context for an expression: checked
and unchecked. You use these in the following way:

checked(<expression>)
unchecked(<expression>)

You can force overflow checking in the last example:

byte destinationVar;
short sourceVar = 281;
destinationVar = checked((byte)sourceVar);
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

When this code is executed, it will crash with the error message shown in Figure 5-1 (this was compiled
in a project called OverflowCheck).

However, if you replace checked with unchecked in this code, you get the result shown earlier, and no
error occurs. That is identical to the default behavior, also shown earlier.

You also can configure your application to behave as if every expression of this type includes the
checked keyword, unless that expression explicitly uses the unchecked keyword (in other words,
you can change the default setting for overflow checking). To do this, you modify the properties
for your project by right-clicking on it in the Solution Explorer window and selecting the Properties
option. Click Build on the left side of the window to bring up the Build settings, as shown in
Figure 5-2.

98 ❘ CHAPTER 5 MORE ABOUT VARIABLES

FIGURE 5-1

FIGURE 5-2

Type Conversion ❘ 99

The property you want to change is one of the Advanced settings, so click the Advanced button. In the
dialog that appears, enable the Check for Arithmetic Overflow/Underflow option, as shown in
Figure 5-3. By default, this setting is disabled; enabling it provides the checked behavior detailed
previously.

FIGURE 5-3

Explicit Conversions Using the Convert Commands
The type of explicit conversion you have been using in many of the Try It Out examples in this book is
a bit different from those you have seen so far in this chapter. You have been converting string values
into numbers using commands such as Convert.ToDouble(), which is obviously something that won’t
work for every possible string.

If, for example, you try to convert a string like Number into a double value using Convert.ToDouble(),
you will see the dialog shown in Figure 5-4 when you execute the code.

FIGURE 5-4

As you can see, the operation fails. For this type of conversion to work, the string supplied must be a
valid representation of a number, and that number must be one that won’t cause an overflow. A valid
representation of a number is one that contains an optional sign (that is, plus or minus), zero or more

100 ❘ CHAPTER 5 MORE ABOUT VARIABLES

digits, an optional period followed by one or more digits, and an optional ‘‘e’’ or ‘‘E’’ followed
by an optional sign, one or more digits, and nothing else except spaces (before or after this sequence).
Using all of these optional extras, you can recognize strings as complex as -1.2451e-24 as being a
number.

You can specify many such explicit conversions in this way, as the following table shows:

COMMAND RESULT

Convert.ToBoolean(val) val converted to bool

Convert.ToByte(val) val converted to byte

Convert.ToChar(val) val converted to char

Convert.ToDecimal(val) val converted to decimal

Convert.ToDouble(val) val converted to double

Convert.ToInt16(val) val converted to short

Convert.ToInt32(val) val converted to int

Convert.ToInt64(val) val converted to long

Convert.ToSByte(val) val converted to sbyte

Convert.ToSingle(val) val converted to float

Convert.ToString(val) val converted to string

Convert.ToUInt16(val) val converted to ushort

Convert.ToUInt32(val) val converted to uint

Convert.ToUInt64(val) val converted to ulong

Here, val can be most types of variable (if it’s a type that can’t be handled by these commands, the
compiler will tell you).

Unfortunately, as the table shows, the names of these conversions are slightly different from the C# type
names; for example, to convert to an int you use Convert.ToInt32(). That’s because these commands
come from the .NET Framework System namespace, rather than being native C#. This enables them to
be used from other .NET-compatible languages besides C#.

The important thing to note about these conversions is that they are always overflow-checked, and the
checked and unchecked keywords and project property settings have no effect.

The next Try It Out is an example that covers many of the conversion types from this section. It declares
and initializes a number of variables of different types and then converts between them implicitly and
explicitly.

Type Conversion ❘ 101

TRY IT OUT Type Conversions in Practice

1. Create a new console application called Ch05Ex01 and save it in the directory
C:\BegVCSharp\Chapter05.

2. Add the following code to Program.cs:

static void Main(string[] args)
{

short shortResult, shortVal = 4;
int integerVal = 67;
long longResult;
float floatVal = 10.5F;
double doubleResult, doubleVal = 99.999;
string stringResult, stringVal = "17";
bool boolVal = true;

Console.WriteLine("Variable Conversion Examples\n");

doubleResult = floatVal * shortVal;
Console.WriteLine("Implicit, -> double: {0} * {1} -> {2}", floatVal,

shortVal, doubleResult);

shortResult = (short)floatVal;
Console.WriteLine("Explicit, -> short: {0} -> {1}", floatVal,

shortResult);

stringResult = Convert.ToString(boolVal) +
Convert.ToString(doubleVal);

Console.WriteLine("Explicit, -> string: \"{0}\" + \"{1}\" -> {2}",
boolVal, doubleVal, stringResult);

longResult = integerVal + Convert.ToInt64(stringVal);
Console.WriteLine("Mixed, -> long: {0} + {1} -> {2}",

integerVal, stringVal, longResult);
Console.ReadKey();

}
Code snippet Ch05Ex01\Program.cs

3. Execute the code. The result is shown in Figure 5-5.

FIGURE 5-5

102 ❘ CHAPTER 5 MORE ABOUT VARIABLES

How It Works

This example contains all of the conversion types you’ve seen so far — both in simple assignments, as in
the short code examples in the preceding discussion, and in expressions. You need to consider both cases
because the processing of every non-unary operator may result in type conversions, not just assignment
operators. For example, the following multiplies a short value by a float value:

shortVal * floatVal

In situations such as this, where no explicit conversion is specified, implicit conversion will be
used if possible. In this example, the only implicit conversion that makes sense is to convert the short

into a float (as converting a float into a short requires explicit conversion), so this is the one that
will be used.

However, you can override this behavior should you want, as shown here:

shortVal * (short)floatVal

NOTE Interestingly, multiplying two short values together doesn’t return a short

value. Because the result of this operation is quite likely to exceed 32767 (the
maximum value a short can hold), it actually returns an int.

Explicit conversions performed using this casting syntax take the same operator precedence as other unary
operators (such as ++ used as a prefix) — that is, the highest level of precedence.

When you have statements involving mixed types, conversions occur as each operator is processed, accord-
ing to operator precedence. This means that ‘‘intermediate’’ conversions may occur:

doubleResult = floatVal + (shortVal * floatVal);

The first operator to be processed here is *, which, as discussed previously, will result in shortVal being
converted to a float. Next, you process the + operator, which won’t require any conversion because it acts
on two float values (floatVal and the float type result of shortVal * floatVal). Finally, the float result
of this calculation is converted into a double when the = operator is processed.

The conversion process can seem complex at first glance, but as long as you break expressions
down into parts by taking the operator precedence order into account, you should be able to work
things out.

COMPLEX VARIABLE TYPES

In addition to all the simple variable types, C# also offers three slightly more complex (but very use-
ful) sorts of variable: enumerations (often referred to as enums), structs (occasionally referred to as
structures), and arrays.

Enumerations
Each of the types you’ve seen so far (with the exception of string) has a clearly defined set of allowed
values. Admittedly, this set is so large in types such as double that it can practically be considered a

Complex Variable Types ❘ 103

continuum, but it is a fixed set nevertheless. The simplest example of this is the bool type, which can
take only one of two values: true or false.

There are many other circumstances in which you might want to have a variable that can take one of a
fixed set of results. For example, you might want to have an orientation type that can store one of the
values north, south, east, or west.

In situations like this, enumerations can be very useful. Enumerations do exactly what you want in this
orientation type: They allow the definition of a type that can take one of a finite set of values that you
supply. What you need to do, then, is create your own enumeration type called orientation that can
take one of the four possible values.

Note that there is an additional step involved here — you don’t just declare a variable of a given type;
you declare and detail a user-defined type and then declare a variable of this new type.

Defining Enumerations
You can use the enum keyword to define enumerations as follows:

enum <typeName>
{

<value1>,
<value2>,
<value3>,
...
<valueN>

}

Next, you can declare variables of this new type as follows:

<typeName> <varName>;

You can assign values using the following:

<varName> = <typeName>.<value>;

Enumerations have an underlying type used for storage. Each of the values that an enumeration type
can take is stored as a value of this underlying type, which by default is int. You can specify a different
underlying type by adding the type to the enumeration declaration:

enum <typeName> : <underlyingType>
{

<value1>,
<value2>,
<value3>,
...
<valueN>

}

Enumerations can have underlying types of byte, sbyte, short, ushort, int, uint, long, and
ulong.

By default, each value is assigned a corresponding underlying type value automatically according to the
order in which it is defined, starting from zero. This means that <value1> gets the value 0, <value2>

104 ❘ CHAPTER 5 MORE ABOUT VARIABLES

gets 1, <value3> gets 2, and so on. You can override this assignment by using the = operator and
specifying actual values for each enumeration value:

enum <typeName> : <underlyingType>
{

<value1> = <actualVal1>,
<value2> = <actualVal2>,
<value3> = <actualVal3>,
...
<valueN> = <actualValN>

}

In addition, you can specify identical values for multiple enumeration values by using one value as the
underlying value of another:

enum <typeName> : <underlyingType>
{

<value1> = <actualVal1>,
<value2> = <value1>,
<value3>,
...
<valueN> = <actualValN>

}

Any values left unassigned are given an underlying value automatically, whereby the values used are
in a sequence starting from 1 greater than the last explicitly declared one. In the preceding code, for
example, <value3> will get the value <value1> + 1.

Note that this can cause problems, with values specified after a definition such as <value2> = <value1>

being identical to other values. For example, in the following code <value4> will have the same value
as <value2>:

enum <typeName> : <underlyingType>
{

<value1> = <actualVal1>,
<value2>,
<value3> = <value1>,
<value4>,
...
<valueN> = <actualValN>

}

Of course, if this is the behavior you want, then this code is fine. Note also that assigning values in a
circular fashion will cause an error:

enum <typeName> : <underlyingType>
{

<value1> = <value2>,
<value2> = <value1>

}

The following Try It Out shows an example of all of this. The code defines and then uses an enumera-
tion called orientation.

Complex Variable Types ❘ 105

TRY IT OUT Using an Enumeration

1. Create a new console application called Ch05Ex02 and save it in the directory
C:\BegVCSharp\Chapter05.

2. Add the following code to Program.cs:

namespace Ch05Ex02
{

enum orientation : byte
{

north = 1,
south = 2,
east = 3,
west = 4

}

class Program
{

static void Main(string[] args)
{

orientation myDirection = orientation.north;
Console.WriteLine("myDirection = {0}", myDirection);
Console.ReadKey();

}
}

}
Code snippet Ch05Ex02\Program.cs

3. Execute the application. You should see the output shown in Figure 5-6.

FIGURE 5-6

4. Quit the application and modify the code as follows:

byte directionByte;
string directionString;
orientation myDirection = orientation.north;
Console.WriteLine("myDirection = {0}", myDirection);
directionByte = (byte)myDirection;
directionString = Convert.ToString(myDirection);
Console.WriteLine("byte equivalent = {0}", directionByte);
Console.WriteLine("string equivalent = {0}", directionString);
Console.ReadKey();

5. Execute the application again. The output is shown in Figure 5-7.

106 ❘ CHAPTER 5 MORE ABOUT VARIABLES

FIGURE 5-7

How It Works

This code defines and uses an enumeration type called orientation. The first thing to notice is that the
type definition code is placed in your namespace, Ch05Ex02, but not in the same place as the rest of your
code. That is because definitions are not executed; that is, at runtime you don’t step through the code in a
definition as you do the lines of code in your application. Application execution starts in the place you’re
used to and has access to your new type because it belongs to the same namespace.

The first iteration of the example demonstrates the basic method of creating a variable of your new type,
assigning it a value and outputting it to the screen. Next, you modify the code to show the conversion
of enumeration values into other types. Note that you must use explicit conversions here. Even though
the underlying type of orientation is byte, you still have to use the(byte)cast to convert the value of
myDirection into a byte type:

directionByte = (byte)myDirection;

The same explicit casting is necessary in the other direction, too, if you want to convert a byte into an
orientation. For example, you could use the following code to convert a byte variable called myByte into
an orientation and assign this value to myDirection:

myDirection = (orientation)myByte;

Of course, care must be taken here because not all permissible values of byte type variables map to defined
orientation values. The orientation type can store other byte values, so you won’t get an error straight
away, but this may break logic later in the application.

To get the string value of an enumeration value you can use Convert.ToString():

directionString = Convert.ToString(myDirection);

Using a (string) cast won’t work because the processing required is more complicated than just
placing the data stored in the enumeration variable into a string variable. Alternatively, you can use
the ToString() command of the variable itself. The following code gives you the same result as using
Convert.ToString():

directionString = myDirection.ToString();

Converting a string to an enumeration value is also possible, except that here the syntax required is
slightly more complex. A special command exists for this sort of conversion, Enum.Parse(), which is used
in the following way:

(enumerationType)Enum.Parse(typeof(enumerationType), enumerationValueString);

This uses another operator, typeof, which obtains the type of its operand. You could use this for your
orientation type as follows:

string myString = "north";
orientation myDirection = (orientation)Enum.Parse(typeof(orientation),

myString);

Complex Variable Types ❘ 107

Of course, not all string values will map to an orientation value! If you pass in a value that doesn’t map
to one of your enumeration values, you will get an error. Like everything else in C#, these values are case
sensitive, so you still get an error if your string agrees with a value in everything but case (for example, if
myString is set to North rather than north).

Structs
The struct (short for structure) is just that. That is, structs are data structures are composed of several
pieces of data, possibly of different types. They enable you to define your own types of variables based
on this structure. For example, suppose that you want to store the route to a location from a starting
point, where the route consists of a direction and a distance in miles. For simplicity you can
assume that the direction is one of the compass points (such that it can be represented using the
orientation enumeration from the last section), and that distance in miles can be represented as a
double type.

You could use two separate variables for this using code you’ve seen already:

orientation myDirection;
double myDistance;

There is nothing wrong with using two variables like this, but it is far simpler (especially where multiple
routes are required) to store this information in one place.

Defining Structs
Structs are defined using the struct keyword as follows:

struct <typeName>
{

<memberDeclarations>
}

The <memberDeclarations> section contains declarations of variables (called the data members of the
struct) in almost the same format as usual. Each member declaration takes the following form:

<accessibility> <type> <name>;

To allow the code that calls the struct to access the struct’s data members, you use the keyword public

for <accessibility>. For example:

struct route
{

public orientation direction;
public double distance;

}

Once you have a struct type defined, you use it by defining variables of the new type:

route myRoute;

In addition, you have access to the data members of this composite variable via the period character:

myRoute.direction = orientation.north;
myRoute.distance = 2.5;

108 ❘ CHAPTER 5 MORE ABOUT VARIABLES

This is illustrated in the following Try It Out, where the orientation enumeration from the last Try It
Out is used with the route struct shown earlier. This struct is then manipulated in code to give you a
feel for how structs work.

TRY IT OUT Using a Struct

1. Create a new console application called Ch05Ex03 and save it in the directory
C:\BegVCSharp\Chapter05.

2. Add the following code to Program.cs:

namespace Ch05Ex03
{

enum orientation: byte
{

north = 1,
south = 2,
east = 3,
west = 4

}

struct route
{

public orientation direction;
public double distance;

}

class Program
{

static void Main(string[] args)
{

route myRoute;
int myDirection = -1;
double myDistance;
Console.WriteLine("1) North\n2) South\n3) East\n4) West");
do
{

Console.WriteLine("Select a direction:");
myDirection = Convert.ToInt32(Console.ReadLine());

}
while ((myDirection < 1) || (myDirection > 4));
Console.WriteLine("Input a distance:");
myDistance = Convert.ToDouble(Console.ReadLine());
myRoute.direction = (orientation)myDirection;
myRoute.distance = myDistance;
Console.WriteLine("myRoute specifies a direction of {0} and a " +

"distance of {1}", myRoute.direction, myRoute.distance);
Console.ReadKey();

}
}

}
Code snippet Ch05Ex03\Program.cs

3. Execute the code, select a direction by entering a number between 1 and 4, and then enter a
distance. The result is shown in Figure 5-8.

Complex Variable Types ❘ 109

FIGURE 5-8

How It Works

Structs, like enumerations, are declared outside of the main body of the code. You declare your route
struct just inside the namespace declaration, along with the orientation enumeration that it uses:

enum orientation: byte
{

north = 1,
south = 2,
east = 3,
west = 4

}

struct route
{

public orientation direction;
public double distance;

}

The main body of the code follows a structure similar to some of the example code you’ve already seen,
requesting input from the user and displaying it. You perform some simple validation of user input by
placing the direction selection in a do loop, rejecting any input that isn’t an integer between 1 and 4 (with
values chosen such that they map onto the enumeration members for easy assignment).

NOTE Input that cannot be interpreted as an integer will result in an error. You’ll
see why this happens, and what to do about it, later in the book.

The interesting point to note is that when you refer to members of route they are treated exactly the same
way that variables of the same type as the member would be. The assignment is as follows:

myRoute.direction = (orientation)myDirection;
myRoute.distance = myDistance;

You could simply take the input value directly into myRoute.distance with no ill effects as follows:

myRoute.distance = Convert.ToDouble(Console.ReadLine());

The extra step allows for more validation, although none is performed in this code. Any access to members
of a structure is treated in the same way. Expressions of the form <structVar>.<memberVar> can be said
to evaluate to a variable of the type of <memberVar>.

110 ❘ CHAPTER 5 MORE ABOUT VARIABLES

Arrays
All the types you’ve seen so far have one thing in common: Each of them stores a single value (or a
single set of values in the case of structs). Sometimes, in situations where you want to store a lot of
data, this isn’t very convenient. You may want to store several values of the same type at the same time,
without having to use a different variable for each value.

For example, suppose you want to perform some processing that involves the names of all your friends.
You could use simple string variables as follows:

string friendName1 = "Robert Barwell";
string friendName2 = "Mike Parry";
string friendName3 = "Jeremy Beacock";

But this looks like it will require a lot of effort, especially because you need to write different code to
process each variable. You couldn’t, for example, iterate through this list of strings in a loop.

The alternative is to use an array. Arrays are indexed lists of variables stored in a single array type
variable. For example, you might have an array called friendNames that stores the three names shown
in the preceding string variables. You can access individual members of the array by specifying their
index in square brackets, as shown here:

friendNames[<index>]

The index is simply an integer, starting with 0 for the first entry, using 1 for the second, and so on. This
means that you can go through the entries using a loop:

int i;
for (i = 0; i < 3; i++)
{

Console.WriteLine("Name with index of {0}: {1}", i, friendNames[i]);
}

Arrays have a single base type — that is, individual entries in an array are all of the same type. This
friendNames array has a base type of string because it is intended for storing string variables. Array
entries are often referred to as elements.

Declaring Arrays
Arrays are declared in the following way:

<baseType>[] <name>;

Here, <baseType> may be any variable type, including the enumeration and struct types you’ve seen in
this chapter. Arrays must be initialized before you have access to them. You can’t just access or assign
values to the array elements like this:

int[] myIntArray;
myIntArray[10] = 5;

Arrays can be initialized in two ways. You can either specify the complete contents of the array
in a literal form or specify the size of the array and use the new keyword to initialize all array
elements.

Complex Variable Types ❘ 111

Specifying an array using literal values simply involves providing a comma-separated list of element
values enclosed in curly braces:

int[] myIntArray = { 5, 9, 10, 2, 99 };

Here, myIntArray has five elements, each with an assigned integer value.

The other method requires the following syntax:

int[] myIntArray = new int[5];

Here, you use the new keyword to explicitly initialize the array, and a constant value to define the size.
This method results in all the array members being assigned a default value, which is 0 for numeric
types. You can also use nonconstant variables for this initialization:

int[] myIntArray = new int[arraySize];

In addition, you can combine these two methods of initialization if you want:

int[] myIntArray = new int[5] { 5, 9, 10, 2, 99 };

With this method the sizes must match. You can’t, for example, write the following:

int[] myIntArray = new int[10] { 5, 9, 10, 2, 99 };

Here, the array is defined as having 10 members, but only five are defined, so compilation will fail. A
side effect of this is that if you define the size using a variable, then that variable must be a constant:

const int arraySize = 5;
int[] myIntArray = new int[arraySize] { 5, 9, 10, 2, 99 };

If you omit the const keyword, this code will fail.

As with other variable types, there is no need to initialize an array on the same line that you declare it.
The following is perfectly legal:

int[] myIntArray;
myIntArray = new int[5];

In the following Try It Out you create and use an array of strings, using the example from the intro-
duction to this section.

TRY IT OUT Using an Array

1. Create a new console application called Ch05Ex04 and save it in the directory
C:\BegVCSharp\Chapter05.

2. Add the following code to Program.cs:

static void Main(string[] args)
{

string[] friendNames = { "Robert Barwell", "Mike Parry",
"Jeremy Beacock" };

int i;
Console.WriteLine("Here are {0} of my friends:",

friendNames.Length);

112 ❘ CHAPTER 5 MORE ABOUT VARIABLES

for (i = 0; i < friendNames.Length; i++)
{

Console.WriteLine(friendNames[i]);
}
Console.ReadKey();

}
Code snippet Ch05Ex04\Program.cs

3. Execute the code. The result is shown in Figure 5-9.

FIGURE 5-9

How It Works

This code sets up a string array with three values and lists them in the console in a for loop. Note that
you have access to the number of elements in the array using friendNames.Length:

Console.WriteLine("Here are {0} of my friends:", friendNames.Length);

This is a handy way to get the size of an array. Outputting values in a for loop is easy to get wrong. For
example, try changing < to <= as follows:

for (i = 0; i <= friendNames.Length; i++)
{

Console.WriteLine(friendNames[i]);
}

Compiling the preceding code results the dialog shown in Figure 5-10.

FIGURE 5-10

Here, the code attempted to access friendNames[3]. Remember that array indices start from 0, so the last
element is friendNames[2]. If you attempt to access elements outside of the array size, the code will fail.
It just so happens that there is a more resilient method of accessing all the members of an array: using
foreach loops.

Complex Variable Types ❘ 113

foreach Loops
A foreach loop enables you to address each element in an array using this simple syntax:

foreach (<baseType> <name> in <array>)
{

// can use <name> for each element
}

This loop will cycle through each element, placing it in the variable <name> in turn, without danger of
accessing illegal elements. You don’t have to worry about how many elements are in the array, and you
can be sure that you’ll get to use each one in the loop. Using this approach, you can modify the code in
the last example as follows:

static void Main(string[] args)
{

string[] friendNames = { "Robert Barwell", "Mike Parry",
"Jeremy Beacock" };

Console.WriteLine("Here are {0} of my friends:",
friendNames.Length);

foreach (string friendName in friendNames)
{

Console.WriteLine(friendName);
}
Console.ReadKey();

}

The output of this code will be exactly the same as that of the previous Try It Out. The main difference
between using this method and a standard for loop is that foreach gives you read-only access to the
array contents, so you can’t change the values of any of the elements. You couldn’t, for example, do
the following:

foreach (string friendName in friendNames)
{

friendName = "Rupert the bear";
}

If you try this, compilation will fail. If you use a simple for loop, however, you can assign values to
array elements.

Multidimensional Arrays
A multidimensional array is simply one that uses multiple indices to access its elements. For example,
suppose you want to plot the height of a hill against the position measured. You might specify a posi-
tion using two coordinates, x and y. You want to use these two coordinates as indices, such that an
array called hillHeight would store the height at each pair of coordinates. This involves using multi-
dimensional arrays.

A two-dimensional array such as this is declared as follows:

<baseType>[,] <name>;

Arrays of more dimensions simply require more commas:

<baseType>[,,,] <name>;

114 ❘ CHAPTER 5 MORE ABOUT VARIABLES

This would declare a four-dimensional array. Assigning values also uses a similar syntax, with commas
separating sizes. Declaring and initializing the two-dimensional array hillHeight, with a base type of
double, an x size of 3, and a y size of 4 requires the following:

double[,] hillHeight = new double[3,4];

Alternatively, you can use literal values for initial assignment. Here, you use nested blocks of curly
braces, separated by commas:

double[,] hillHeight = { { 1, 2, 3, 4 }, { 2, 3, 4, 5 }, { 3, 4, 5, 6 } };

This array has the same dimensions as the previous one — that is, three rows and four columns. By
providing literal values, these dimensions are defined implicitly.

To access individual elements of a multidimensional array, you simply specify the indices separated by
commas:

hillHeight[2,1]

You can then manipulate this element just as you can other elements. This expression will access the
second element of the third nested array as defined previously (the value will be 4). Remember that
you start counting from 0 and that the first number is the nested array. In other words, the first number
specifies the pair of curly braces, and the second number specifies the element within that pair of braces.
You can represent this array visually, as shown in Figure 5-11.

hillHeight [0,0]

1

hillHeight [0,1]

2

hillHeight [0,2]

3

hillHeight [0,3]

4

hillHeight [1,0]

2

hillHeight [1,1]

3

hillHeight [1,2]

4

hillHeight [1,3]

5

hillHeight [2,0]

3

hillHeight [2,1]

4

hillHeight [2,2]

5

hillHeight [2,3]

6

FIGURE 5-11

The foreach loop gives you access to all elements in a multidimensional way, just as with single-
dimensional arrays:

double[,] hillHeight = { { 1, 2, 3, 4 }, { 2, 3, 4, 5 }, { 3, 4, 5, 6 } };
foreach (double height in hillHeight)
{

Console.WriteLine("{0}", height);
}

Complex Variable Types ❘ 115

The order in which the elements are output is the same as the order used to assign literal values. This
sequence is as follows (the element identifiers are shown here rather than the actual values):

hillHeight[0,0]
hillHeight[0,1]
hillHeight[0,2]
hillHeight[0,3]
hillHeight[1,0]
hillHeight[1,1]
hillHeight[1,2]
...

Arrays of Arrays
Multidimensional arrays, as discussed in the last section, are said to be rectangular because each ‘‘row’’
is the same size. Using the last example, you can have a y coordinate of 0 to 3 for any of the possible x

coordinates.

It is also possible to have jagged arrays, whereby ‘‘rows’’ may be different sizes. For this, you need an
array in which each element is another array. You could also have arrays of arrays of arrays, or even
more complex situations. However, all this is possible only if the arrays have the same base type.

The syntax for declaring arrays of arrays involves specifying multiple sets of square brackets in the
declaration of the array, as shown here:

int[][] jaggedIntArray;

Unfortunately, initializing arrays such as this isn’t as simple as initializing multidimensional arrays.
You can’t, for example, follow the preceding declaration with this:

jaggedIntArray = new int[3][4];

Even if you could do this, it wouldn’t be that useful because you can achieve the same effect with simple
multidimensional arrays with less effort. Nor can you use code such as this:

jaggedIntArray = { { 1, 2, 3 }, { 1 }, { 1, 2 } };

You have two options. You can initialize the array that contains other arrays (we’ll call these sub-arrays
for clarity) and then initialize the sub-arrays in turn:

jaggedIntArray = new int[2][];
jaggedIntArray[0] = new int[3];
jaggedIntArray[1] = new int[4];

Alternately, you can use a modified form of the preceding literal assignment:

jaggedIntArray = new int[3][] { new int[] { 1, 2, 3 }, new int[] { 1 },
new int[] { 1, 2 } };

This can be simplified if the array is initialized on the same line as it is declared, as follows:

int[][] jaggedIntArray = { new int[] { 1, 2, 3 }, new int[] { 1 },
new int[] { 1, 2 } };

116 ❘ CHAPTER 5 MORE ABOUT VARIABLES

You can use foreach loops with jagged arrays, but you often need to nest these to get to the actual
data. For example, suppose you have the following jagged array that contains 10 arrays, each of which
contains an array of integers that are divisors of an integer between 1 and 10:

int[][] divisors1To10 = { new int[] { 1 },
new int[] { 1, 2 },
new int[] { 1, 3 },
new int[] { 1, 2, 4 },
new int[] { 1, 5 },
new int[] { 1, 2, 3, 6 },
new int[] { 1, 7 },
new int[] { 1, 2, 4, 8 },
new int[] { 1, 3, 9 },
new int[] { 1, 2, 5, 10 } };

The following code will fail:

foreach (int divisor in divisors1To10)
{

Console.WriteLine(divisor);
}

That’s because the array divisors1To10 contains int[] elements, not int elements. Instead, you have
to loop through every sub-array as well as through the array itself:

foreach (int[] divisorsOfInt in divisors1To10)
{

foreach(int divisor in divisorsOfInt)
{

Console.WriteLine(divisor);
}

}

As you can see, the syntax for using jagged arrays can quickly become complex! In most cases, it is
easier to use rectangular arrays or a simpler storage method. Nonetheless, there may well be situations
in which you are forced to use this method, and a working knowledge can’t hurt.

STRING MANIPULATION

Your use of strings so far has consisted of writing strings to the console, reading strings from the con-
sole, and concatenating strings using the + operator. In the course of programming more interesting
applications, you will discover that manipulating strings is something that you end up doing a lot.
Therefore, it is worth spending a few pages looking at some of the more common string manipulation
techniques available in C#.

To start with, a string type variable can be treated as a read-only array of char variables. This means
that you can access individual characters using syntax like the following:

string myString = "A string";
char myChar = myString[1];

However, you can’t assign individual characters this way. To get a char array that you can write to,
you can use the following code. This uses the ToCharArray() command of the array variable:

string myString = "A string";
char[] myChars = myString.ToCharArray();

String Manipulation ❘ 117

Then you can manipulate the char array the standard way. You can also use strings in foreach loops,
as shown here:

foreach (char character in myString)
{

Console.WriteLine("{0}", character);
}

As with arrays, you can also get the number of elements using myString.Length. This gives you the
number of characters in the string:

string myString = Console.ReadLine();
Console.WriteLine("You typed {0} characters.", myString.Length);

Other basic string manipulation techniques use commands with a format similar to this
<string>.ToCharArray() command. Two simple, but useful, ones are <string>.ToLower()

and <string>.ToUpper(). These enable strings to be converted into lowercase and uppercase,
respectively. To see why this is useful, consider the situation in which you want to check for a specific
response from a user — for example, the string yes. If you convert the string entered by the user into
lowercase, then you can also check for the strings YES, Yes, yeS, and so on — you saw an example of
this in the previous chapter:

string userResponse = Console.ReadLine();
if (userResponse.ToLower() == "yes")
{

// Act on response.
}

This command, like the others in this section, doesn’t actually change the string to which it is applied.
Instead, combining this command with a string results in the creation of a new string, which you can
compare to another string (as shown here) or assign to another variable. The other variable may be the
same one that is being operated on:

userResponse = userResponse.ToLower();

This is an important point to remember, because just writing

userResponse.ToLower();

doesn’t actually achieve very much!

There are other things you can do to ease the interpretation of user input. What if the user accidentally
put an extra space at the beginning or end of the input? In this case, the preceding code won’t work.
You need to trim the string entered, which you can do using the <string>.Trim() command:

string userResponse = Console.ReadLine();
userResponse = userResponse.Trim();
if (userResponse.ToLower() == "yes")
{

// Act on response.
}

The preceding code is also able detect strings like this:

" YES"
"Yes "

118 ❘ CHAPTER 5 MORE ABOUT VARIABLES

You can also use these commands to remove any other characters, by specifying them in a char array,
for example:

char[] trimChars = {’ ‘, ‘e’, ‘s’};
string userResponse = Console.ReadLine();
userResponse = userResponse.ToLower();
userResponse = userResponse.Trim(trimChars);
if (userResponse == "y")
{

// Act on response.
}

This eliminates any occurrences of spaces, the letter ‘‘e,’’ and the letter ‘‘s’’ from the beginning or end
of your string. Providing there aren’t any other characters in the string, this will result in the detection
of strings such as

"Yeeeees"
" y"

and so on.

You can also use the <string>.TrimStart() and <string>.TrimEnd() commands, which will trim
spaces from the beginning and end of a string, respectively. These can also have char arrays specified.

You can use two other string commands to manipulate the spacing of strings: <string>.PadLeft() and
<string>.PadRight(). They enable you to add spaces to the left or right of a string to force it to the
desired length. You use them as follows:

<string>.PadX(<desiredLength>);

Here is an example:

myString = "Aligned";
myString = myString.PadLeft(10);

This would result in three spaces being added to the left of the word Aligned in myString. These meth-
ods can be helpful when aligning strings in columns, which is particularly useful for positioning strings
containing numbers.

As with the trimming commands, you can also use these commands in a second way, by supplying the
character to pad the string with. This involves a single char, not an array of chars as with trimming:

myString = "Aligned";
myString = myString.PadLeft(10, ‘-’);

This would add three dashes to the start of myString.

There are many more of these string manipulation commands, many of which are only useful in very
specific situations. These are discussed as you use them in the forthcoming chapters. Before moving on,
though, it is worth looking at one of the features contained in both Visual C# 2010 Express Edition and
Visual Studio 2010 that you may have noticed over the course of the last few chapters, and especially
this one. In the following Try It Out, you examine auto-completion, whereby the IDE tries to help you
out by suggesting what code you might like to insert.

String Manipulation ❘ 119

TRY IT OUT Statement Auto-Completion in VS

FIGURE 5-12

1. Create a new console application called Ch05Ex05 and save it in the
directory
C:\BegVCSharp\Chapter05.

2. Type the following code into Program.cs, exactly as written,
noting windows that pop up as you do so:

static void Main(string[] args)
{

string myString = "This is a test.";
char[] separator = {’ ‘};
string[] myWords;
myWords = myString.

}
Code snippet Ch05Ex05\Program.cs

3. As you type the final period, the window shown in Figure 5-12
appears.

4. Without moving the cursor, type sp. The pop-up window changes, and the tooltip shown in
Figure 5-13 appears (it is yellow, which can’t be seen in the screenshot).

FIGURE 5-13

FIGURE 5-14

5. Type the following characters: (se. Another pop-up win-
dow appears, as shown in Figure 5-14.

6. Then type these two characters:);. The code should
look as follows, and the pop-up windows should
disappear:

static void Main(string[] args)
{

string myString = "This is a test.";
char[] separator = {’ ‘};
string[] myWords;
myWords = myString.Split(separator);

}

120 ❘ CHAPTER 5 MORE ABOUT VARIABLES

7. Add the following code, noting the windows as they pop up:

static void Main(string[] args)
{

string myString = "This is a test.";
char[] separator = {’ ‘};
string[] myWords;
myWords = myString.Split(separator);
foreach (string word in myWords)
{

Console.WriteLine("{0}", word);
}
Console.ReadKey();

}

8. Execute the code. The result is shown in Figure 5-15.

FIGURE 5-15

How It Works

Two main aspects of this code are the new string command used and the use of the auto-completion
functionality. The command, <string>.Split(), converts a string into a string array by splitting it at
the points specified. These points take the form of a char array, which in this case is simply populated by
a single element, the space character:

char[] separator = {’ ‘};

The following code obtains the substrings you get when the string is split at each space — that is, you get
an array of individual words:

string[] myWords;
myWords = myString.Split(separator);

Next, you loop through the words in this array using foreach and write each one to the console:

foreach (string word in myWords)
{

Console.WriteLine("{0}", word);
}

NOTE Each word obtained has no spaces, either embedded in the word or at
either end. The separators are removed when you use Split().

Summary ❘ 121

Next, on to auto-completion. Both VS and VCE are very intelligent packages that work out a lot of infor-
mation about your code as you type it in. Even as you type the first character on a new line, the IDE tries
to help you by suggesting a keyword, a variable name, a type name, and so on. Only three letters into the
preceding code (str), the IDE correctly guessed that you want to type string. Even more useful is when
you type variable names. In long pieces of code, you often forget the names of variables you want to use.
Because the IDE pops up a list of these as you type, you can find them easily, without having to refer to
earlier code.

By the time you type the period after myString, it knows that myString is a string, detects that you want to
specify a string command, and presents the available options. At this point, you can stop typing if desired,
and select the command you want using the up and down arrow keys. As you move through the available
options, the IDE describes the currently selected command and indicates what syntax it uses.

As you start typing more characters, the IDE moves the selected command to the top of the commands you
might mean automatically. Once it shows the command you want, you can simply carry on typing as if
you’d typed the whole name, so typing ‘‘(’’ takes you straight to the point where you specify the additional
information that some commands require — and the IDE even tells you the format this extra information
must be in, presenting options for those commands that accept varying amounts of information.

This feature of the IDE, known as IntelliSense, comes in very handy, enabling you to find information
about strange types with ease. You might find it interesting to look at all the commands that the string

type exposes and experiment — nothing you do is going to break the computer, so play away!

NOTE Sometimes the displayed information can obscure some of the code you
have already typed, which can be annoying. This is because the hidden code
may be something that you need to refer to when typing. However, you can press
the Ctrl key to make the command list transparent, enabling you to see what was
hidden.

SUMMARY

In this chapter, you’ve spent some time expanding your knowledge of variables. Perhaps the most
important topic covered in this chapter is type conversion, which will appear again throughout this
book. Getting a sound grasp of the concepts involved now will make things a lot easier later.

You’ve also seen a few more variable types that you can use to help you store data in a more developer-
friendly way. You’ve learned how enumerations can make your code much more readable with easily
discernable values; how structs can be used to combine multiple, related data elements in one place;
and how you can group similar data together in arrays. You see all of these types used many times
throughout the rest of this book.

Finally, you looked at string manipulation, including some of the basic techniques and principles
involved. Many individual string commands are available, and although you only examined a few,

122 ❘ CHAPTER 5 MORE ABOUT VARIABLES

you now know how to view the available commands in your IDE. Using this technique, you can have
some fun trying things out. At least one of the following exercises can be solved using one or more
string commands you haven’t seen yet, but you’ll have to figure out which!

This chapter extended your knowledge of variables to cover the following:

➤ Type conversions

➤ Enumerations

➤ Structs

➤ Arrays

➤ String manipulation

EXERCISES

1. Which of the following conversions can’t be performed implicitly?

a. int to short

b. short to int

c. bool to string

d. byte to float

2. Show the code for a color enumeration based on the short type containing the colors of the
rainbow plus black and white. Can this enumeration be based on the byte type?

3. Modify the Mandelbrot set generator example from the last chapter to use the following struct for
complex numbers:

struct imagNum
{

public double real, imag;
}

4. Will the following code compile? Why or why not?

string[] blab = new string[5]
string[5] = 5th string.

5. Write a console application that accepts a string from the user and outputs a string with the
characters in reverse order.

6. Write a console application that accepts a string and replaces all occurrences of the string no

with yes.

7. Write a console application that places double quotes around each word in a string.

Answers to Exercises can be found in Appendix A.

Summary ❘ 123

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Type conversion Values can be converted from one type into another, but there are rules that apply
when you do so. Implicit conversion happens automatically, but only when all pos-
sible values of the source value type are available in the target value type. Explicit
conversion is also possible, but you run the risk of values not being assigned as
expected, or even causing errors.

Enumerations Enums, or enumerations, are types that have a discrete set of values, each of which
has a name. Enums are defined with the enum keyword. This makes them easy to
understand in code because they are very readable. Enums have an underlying
numeric type (int by default), and you can use this property of enum values to
convert between enum values and numeric values, or to identify enum values.

Structs Structs, or structures, are types that contain several different values at the same
time. Structs are defined with the struct keyword. The values contained in a struct
each have a name and a type; there is no requirement that every value stored in a
struct is the same type.

Arrays An array is a collection of values of the same type. Arrays have a fixed size, or
length, which determines how many values they can contain. You can define mul-
tidimensional or jagged arrays to hold different amounts and shapes of data. You
can also iterate through the values in an array with a foreach loop.

6
Functions

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to define and use simple functions that don’t accept or return
any data

➤ How to transfer data to and from functions

➤ Working with variable scope

➤ How to use command-line arguments with the Main() function

➤ How to supply functions as members of struct types

➤ How to use function overloading

➤ How to use delegates

All the code you have seen so far has taken the form of a single block, perhaps with some
looping to repeat lines of code, and branching to execute statements conditionally. Performing
an operation on your data has meant placing the code required right where you want it
to work.

This kind of code structure is limited. Often, some tasks — such as finding the highest value
in an array, for example — may need to be performed at several points in a program. You
can place identical (or nearly identical) sections of code in your application whenever neces-
sary, but this has its own problems. Changing even one minor detail concerning a common
task (to correct a code error, for example) may require changes to multiple sections of code,
which may be spread throughout the application. Missing one of these could have dramatic
consequences and cause the whole application to fail. In addition, the application could get very
lengthy.

126 ❘ CHAPTER 6 FUNCTIONS

The solution to this problem is to use functions. Functions in C# are a means of providing blocks of
code that can be executed at any point in an application.

NOTE Functions of the specific type examined in this chapter are known as
methods, but this term has a very specific meaning in .NET programming that will
only become clear later in this book. Therefore, for now, the term method will not
be used.

For example, you could have a function that calculates the maximum value in an array. You can use
the function from any point in your code, and use the same lines of code in each case. Because you only
need to supply this code once, any changes you make to it will affect this calculation wherever it is used.
The function can be thought of as containing reusable code.

Functions also have the advantage of making your code more readable, as you can use them to group
related code together. This way, your application body itself can be made very short, as the inner
workings of the code are separated out. This is similar to the way in which you can collapse regions of
code together in the IDE using the outline view, and it gives your application a more logical structure.

Functions can also be used to create multipurpose code, enabling them to perform the same operations
on varying data. You can supply a function with information to work with in the form of parameters,
and you can obtain results from functions in the form of return values. In the preceding example,
you could supply an array to search as a parameter and obtain the maximum value in the array as a
return value. This means that you can use the same function to work with a different array each time.
The name and parameters of a function (but not its return type) collectively define the signature of a
function.

DEFINING AND USING FUNCTIONS

This section describes how you can add functions to your applications and then use (call) them from
your code. Starting with the basics, you look at simple functions that don’t exchange any data with
code that calls them, and then look at more advanced function usage. The following Try It Out gets
things moving.

TRY IT OUT Defining and Using a Basic Function

1. Create a new console application called Ch06Ex01 and save it in the directory
C:\BegVCSharp\Chapter06.

2. Add the following code to Program.cs:

class Program
{

static void Write()
{

Console.WriteLine("Text output from function.");
}

Defining and Using Functions ❘ 127

static void Main(string[] args)
{

Write();
Console.ReadKey();

}
}

Code snippet Ch06Ex01\Program.cs

3. Execute the code. The result is shown in Figure 6-1.

FIGURE 6-1

How It Works

The following four lines of your code define a function called Write():

static void Write()
{

Console.WriteLine("Text output from function.");
}

The code contained here simply outputs some text to the console window, but this behavior isn’t that
important at the moment, because the focus here is on the mechanisms behind function definition and use.

The function definition consists of the following:

➤ Two keywords: static and void

➤ A function name followed by parentheses: Write()

➤ A block of code to execute, enclosed in curly braces

NOTE Function names are usually written in PascalCase.

The code that defines the Write() function looks very similar to some of the other code in your application:

static void Main(string[] args)
{

...
}

That’s because all the code you have written so far (apart from type definitions) has been part of a function.
This function, Main(), is the entry point function for a console application. When a C# application is
executed, the entry point function it contains is called; and when that function is completed, the application
terminates. All C# executable code must have an entry point.

128 ❘ CHAPTER 6 FUNCTIONS

The only difference between the Main() function and your Write() function (apart from the lines of code
they contain) is that there is some code inside the parentheses after the function name Main. This is how
you specify parameters, which you see in more detail shortly.

As mentioned earlier, both Main() and Write() are defined using the static and void keywords. The
static keyword relates to object-oriented concepts, which you come back to later in the book. For now,
you only need to remember that all the functions you use in your applications in this section of the book
must use this keyword.

In contrast, void is much simpler to explain. It’s used to indicate that the function does not return a value.
Later in this chapter, you’ll see the code that you need to use when a function has a return value.

Moving on, the code that calls your function is as follows:

Write();

You simply type the name of the function followed by empty parentheses. When program execution
reaches this point, the code in the Write() function runs.

NOTE The parentheses used both in the function definition and where the
function is called are mandatory. Try removing them if you like — the code won’t
compile.

Return Values
The simplest way to exchange data with a function is to use a return value. Functions that have return
values evaluate to that value exactly the same way that variables evaluate to the values they contain
when you use them in expressions. Just like variables, return values have a type.

For example, you might have a function called GetString() whose return value is a string. You could
use this in code, such as the following:

string myString;
myString = GetString();

Alternatively, you might have a function called GetVal() that returns a double value, which you could
use in a mathematical expression:

double myVal;
double multiplier = 5.3;
myVal = GetVal() * multiplier;

When a function returns a value, you have to modify your function in two ways:

➤ Specify the type of the return value in the function declaration instead of using the void key-
word.

➤ Use the return keyword to end the function execution and transfer the return value to the
calling code.

Defining and Using Functions ❘ 129

In code terms, this looks like the following in a console application function of the type you’ve been
looking at:

static <returnType> <FunctionName>()
{

...
return <returnValue>;

}

The only limitation here is that <returnValue> must be a value that either is of type <returnType> or
can be implicitly converted to that type. However, <returnType> can be any type you want, including
the more complicated types you’ve seen. This might be as simple as the following:

static double GetVal()
{

return 3.2;
}

However, return values are usually the result of some processing carried out by the function; the pre-
ceding could be achieved just as easily using a const variable.

When the return statement is reached, program execution returns to the calling code immediately. No
lines of code after this statement are executed, although this doesn’t mean that return statements can
only be placed on the last line of a function body. You can use return earlier in the code, perhaps after
performing some branching logic. Placing return in a for loop, an if block, or any other structure
causes the structure to terminate immediately and the function to terminate:

static double GetVal()
{

double checkVal;
// CheckVal assigned a value through some logic (not shown here).
if (checkVal < 5)

return 4.7;
return 3.2;

}

Here, one of two values may be returned, depending on the value of checkVal. The only restriction in
this case is that a return statement must be processed before reaching the closing } of the function. The
following is illegal:

static double GetVal()
{

double checkVal;
// CheckVal assigned a value through some logic.
if (checkVal < 5)

return 4.7;
}

If checkVal is >= 5, then no return statement is met, which isn’t allowed. All processing paths must
reach a return statement. In most cases, the compiler detects this and gives you the error ‘‘not all code
paths return a value.’’

As a final note, return can be used in functions that are declared using the void keyword (those that
don’t have a return value). In that case, the function simply terminates. When you use return this

130 ❘ CHAPTER 6 FUNCTIONS

way, it is an error to provide a return value between the return keyword and the semicolon that
follows.

Parameters
When a function is to accept parameters, you must specify the following:

➤ A list of the parameters accepted by the function in its definition, along with the types of those
parameters

➤ A matching list of parameters in each function call

This involves the following code, where you can have any number of parameters, each with a type and
a name:

static <returnType> <FunctionName>(<paramType> <paramName>, ...)
{

...
return <returnValue>;

}

The parameters are separated using commas, and each of these parameters is accessible from code
within the function as a variable. For example, a simple function might take two double parameters
and return their product:

static double Product(double param1, double param2)
{

return param1 * param2;
}

The following Try It Out provides a more complex example.

TRY IT OUT Exchanging Data with a Function (Part 1)

1. Create a new console application called Ch06Ex02 and save it in the directory
C:\BegVCSharp\Chapter06.

2. Add the following code to Program.cs:

class Program
{

static int MaxValue(int[] intArray)
{

int maxVal = intArray[0];
for (int i = 1; i < intArray.Length; i++)
{

if (intArray[i] > maxVal)
maxVal = intArray[i];

}
return maxVal;

}

static void Main(string[] args)
{

Defining and Using Functions ❘ 131

int[] myArray = { 1, 8, 3, 6, 2, 5, 9, 3, 0, 2 };
int maxVal = MaxValue(myArray);
Console.WriteLine("The maximum value in myArray is {0}", maxVal);
Console.ReadKey();

}
}

Code snippet Ch06Ex02\Program.cs

3. Execute the code. The result is shown in Figure 6-2.

FIGURE 6-2

How It Works

This code contains a function that does what the example function at the beginning of this chapter hoped
to do. It accepts an array of integers as a parameter and returns the highest number in the array. The
function definition is as follows:

static int MaxValue(int[] intArray)
{

int maxVal = intArray[0];
for (int i = 1; i < intArray.Length; i++)
{

if (intArray[i] > maxVal)
maxVal = intArray[i];

}
return maxVal;

}

The function, MaxValue(), has a single parameter defined, an int array called intArray. It also has a
return type of int. The calculation of the maximum value is simple. A local integer variable called maxVal

is initialized to the first value in the array, and then this value is compared with each of the subsequent
elements in the array. If an element contains a higher value than maxVal, then this value replaces the current
value of maxVal. When the loop finishes, maxVal contains the highest value in the array, and is returned
using the return statement.

The code in Main() declares and initializes a simple integer array to use with the MaxValue() function:

int[] myArray = { 1, 8, 3, 6, 2, 5, 9, 3, 0, 2 };

The call to MaxValue() is used to assign a value to the int variable maxVal:

int maxVal = MaxValue(myArray);

Next, you write that value to the screen using Console.WriteLine():

Console.WriteLine("The maximum value in myArray is {0}", maxVal);

132 ❘ CHAPTER 6 FUNCTIONS

Parameter Matching
When you call a function, you must match the parameters as specified in the function definition exactly.
This means matching the parameter types, the number of parameters, and the order of the parameters.
For example, the function

static void MyFunction(string myString, double myDouble)
{

...
}

can’t be called using the following:

MyFunction(2.6, "Hello");

Here, you are attempting to pass a double value as the first parameter, and a string value as the second
parameter, which is not the order in which the parameters are defined in the function definition.

You also can’t use

MyFunction("Hello");

because you are only passing a single string parameter, where two parameters are required. Attempt-
ing to use either of the two preceding function calls will result in a compiler error, because the compiler
forces you to match the signatures of the functions you use.

NOTE Recall from the introduction that the signature of a function is defined by
the name and parameters of the function.

Going back to the example, MaxValue() can only be used to obtain the maximum int in an array of
int values. If you replace the code in Main() with

static void Main(string[] args)
{

double[] myArray = { 1.3, 8.9, 3.3, 6.5, 2.7, 5.3 };
double maxVal = MaxValue(myArray);
Console.WriteLine("The maximum value in myArray is {0}", maxVal);
Console.ReadKey();

}

the code won’t compile because the parameter type is wrong. In the ‘‘Overloading Functions’’ section
later in this chapter, you’ll learn a useful technique for getting around this problem.

Parameter Arrays
C# enables you to specify one (and only one) special parameter for a function. This parameter, which
must be the last parameter in the function definition, is known as a parameter array. Parameter arrays
enable you to call functions using a variable amount of parameters, and they are defined using the
params keyword.

Parameter arrays can be a useful way to simplify your code because you don’t have to pass arrays from
your calling code. Instead, you pass several parameters of the same type, which are placed in an array
you can use from within your function.

Defining and Using Functions ❘ 133

The following code is required to define a function that uses a parameter array:

static <returnType> <FunctionName>(<p1Type> <p1Name>, ...,
params <type>[] <name>)

{
...
return <returnValue>;

}

You can call this function using code like the following:

<FunctionName>(<p1>, ..., <val1>, <val2>, ...)

<val1>, <val2>, and so on are values of type <type>, which are used to initialize the <name> array. The
number of parameters that you can specify here is almost limitless; the only restriction is that they must
all be of type <type>. You can even specify no parameters at all.

This final point makes parameter arrays particularly useful for specifying additional information for
functions to use in their processing. For example, suppose you have a function called GetWord() that
takes a string value as its first parameter and returns the first word in the string:

string firstWord = GetWord("This is a sentence.");

Here, firstWord will be assigned the string This.

You might add a params parameter to GetWord(), enabling you to optionally select an alternative word
to return by its index:

string firstWord = GetWord("This is a sentence.", 2);

Assuming that you start counting at 1 for the first word, this would result in firstWord being assigned
the string is.

You might also add the capability to limit the number of characters returned in a third parameter, also
accessible through the params parameter:

string firstWord = GetWord("This is a sentence.", 4, 3);

Here, firstWord would be assigned the string sen.

The following Try It Out defines and uses a function with a params type parameter.

TRY IT OUT Exchanging Data with a Function (Part 2)

1. Create a new console application called Ch06Ex03 and save it in the directory
C:\BegVCSharp\Chapter06.

2. Add the following code to Program.cs:

class Program
{

static int SumVals(params int[] vals)
{

int sum = 0;
foreach (int val in vals)
{

sum += val;

134 ❘ CHAPTER 6 FUNCTIONS

}
return sum;

}

static void Main(string[] args)
{

int sum = SumVals(1, 5, 2, 9, 8);
Console.WriteLine("Summed Values = {0}", sum);
Console.ReadKey();

}
}

Code snippet Ch06Ex03\Program.cs

3. Execute the code. The result is shown in Figure 6-3.

FIGURE 6-3

How It Works

The function SumVals() is defined using the params keyword to accept any number of int parameters (and
no others):

static int SumVals(params int[] vals)
{

...
}

The code in this function simply iterates through the values in the vals array and adds the values together,
returning the result.

In Main(), you call SumVals() with five integer parameters:

int sum = SumVals(1, 5, 2, 9, 8);

You could just as easily call this function with none, one, two, or 100 integer parameters — there is no
limit to the number you can specify.

Reference and Value Parameters
All the functions defined so far in this chapter have had value parameters. That is, when you have used
parameters, you have passed a value into a variable used by the function. Any changes made to this
variable in the function have no effect on the parameter specified in the function call. For example,
consider a function that doubles and displays the value of a passed parameter:

static void ShowDouble(int val)
{

val *= 2;
Console.WriteLine("val doubled = {0}", val);

}

Defining and Using Functions ❘ 135

Here, the parameter, val, is doubled in this function. If you call it like this,

int myNumber = 5;
Console.WriteLine("myNumber = {0}", myNumber);
ShowDouble(myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

then the text output to the console is as follows:

myNumber = 5
val doubled = 10
myNumber = 5

Calling ShowDouble() with myNumber as a parameter doesn’t affect the value of myNumber in Main(),
even though the parameter it is assigned to, val, is doubled.

That’s all very well, but if you want the value of myNumber to change, you have a problem. You could
use a function that returns a new value for myNumber, like this:

static int DoubleNum(int val)
{

val *= 2;
return val;

}

You could call this function using the following:

int myNumber = 5;
Console.WriteLine("myNumber = {0}", myNumber);
myNumber = DoubleNum(myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

However, this code is hardly intuitive and won’t cope with changing the values of multiple variables
used as parameters (as functions have only one return value).

Instead, you want to pass the parameter by reference, which means that the function will work with
exactly the same variable as the one used in the function call, not just a variable that has the same
value. Any changes made to this variable will, therefore, be reflected in the value of the variable used as
a parameter. To do this, you simply use the ref keyword to specify the parameter:

static void ShowDouble(ref int val)
{

val *= 2;
Console.WriteLine("val doubled = {0}", val);

}

Then, specify it again in the function call (this is mandatory):

int myNumber = 5;
Console.WriteLine("myNumber = {0}", myNumber);
ShowDouble(ref myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

The text output to the console is now as follows:

myNumber = 5
val doubled = 10
myNumber = 10

This time myNumber has been modified by ShowDouble().

136 ❘ CHAPTER 6 FUNCTIONS

Note two limitations on the variable used as a ref parameter. First, the function may result in a change
to the value of a reference parameter, so you must use a nonconstant variable in the function call. The
following is therefore illegal:

const int myNumber = 5;
Console.WriteLine("myNumber = {0}", myNumber);
ShowDouble(ref myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

Second, you must use an initialized variable. C# doesn’t allow you to assume that a ref parameter will
be initialized in the function that uses it. The following code is also illegal:

int myNumber;
ShowDouble(ref myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

Out Parameters
In addition to passing values by reference, you can specify that a given parameter is an out parameter
by using the out keyword, which is used in the same way as the ref keyword (as a modifier to the
parameter in the function definition and in the function call). In effect, this gives you almost exactly the
same behavior as a reference parameter, in that the value of the parameter at the end of the function
execution is returned to the variable used in the function call. However, there are important differences:

➤ Whereas it is illegal to use an unassigned variable as a ref parameter, you can use an unas-
signed variable as an out parameter.

➤ An out parameter must be treated as an unassigned value by the function that uses it.

This means that while it is permissible in calling code to use an assigned variable as an out parameter,
the value stored in this variable is lost when the function executes.

As an example, consider an extension to the MaxValue() function shown earlier, which returns the
maximum value of an array. Modify the function slightly so that you obtain the index of the element
with the maximum value within the array. To keep things simple, obtain just the index of the first
occurrence of this value when there are multiple elements with the maximum value. To do this, you
add an out parameter by modifying the function as follows:

static int MaxValue(int[] intArray, out int maxIndex)
{

int maxVal = intArray[0];
maxIndex = 0;
for (int i = 1; i < intArray.Length; i++)
{

if (intArray[i] > maxVal)
{

maxVal = intArray[i];
maxIndex = i;

}
}
return maxVal;

}

Variable Scope ❘ 137

You might use the function like this:

int[] myArray = { 1, 8, 3, 6, 2, 5, 9, 3, 0, 2 };
int maxIndex;
Console.WriteLine("The maximum value in myArray is {0}",

MaxValue(myArray, out maxIndex));
Console.WriteLine("The first occurrence of this value is at element {0}",

maxIndex + 1);

That results in the following:

The maximum value in myArray is 9
The first occurrence of this value is at element 7

You must use the out keyword in the function call, just as with the ref keyword.

NOTE One has been added to the value of maxIndex returned here when it is
displayed onscreen. This is to translate the index to a more readable form so that
the first element in the array is referred to as element 1, rather than element 0.

VARIABLE SCOPE

Throughout the last section, you may have been wondering why exchanging data with functions is
necessary. The reason is that variables in C# are accessible only from localized regions of code. A given
variable is said to have a scope from which it is accessible.

Variable scope is an important subject and one best introduced with an example. The following Try It
Out illustrates a situation in which a variable is defined in one scope, and an attempt to use it is made
in a different scope.

TRY IT OUT Variable Scope

1. Make the following changes to Ch06Ex01 in Program.cs:

class Program
{

static void Write()
{

Console.WriteLine("myString = {0}", myString);
}

static void Main(string[] args)
{

string myString = "String defined in Main()";
Write();
Console.ReadKey();

}
}

Code snippet Ch06Ex01\Program.cs

138 ❘ CHAPTER 6 FUNCTIONS

2. Compile the code and note the error and warning that appear in the task list:

The name ‘myString’ does not exist in the current context
The variable ‘myString’ is assigned but its value is never used

How It Works

What went wrong? Well, the variable myString defined in the main body of your application (the Main()

function) isn’t accessible from the Write() function.

The reason for this inaccessibility is that variables have a scope within which they are valid. This scope
encompasses the code block that they are defined in and any directly nested code blocks. The blocks of
code in functions are separate from the blocks of code from which they are called. Inside Write(), the
name myString is undefined, and the myString variable defined in Main() is out of scope — it can be used
only from within Main().

In fact, you can have a completely separate variable in Write() called myString. Try modifying the code as
follows:

class Program
{

static void Write()
{

string myString = "String defined in Write()";
Console.WriteLine("Now in Write()");
Console.WriteLine("myString = {0}", myString);

}

static void Main(string[] args)
{

string myString = "String defined in Main()";
Write();
Console.WriteLine("\nNow in Main()");
Console.WriteLine("myString = {0}", myString);
Console.ReadKey();

}
}

This code does compile, resulting in the output shown in Figure 6-4.

FIGURE 6-4

The operations performed by this code are as follows:

➤ Main() defines and initializes a string variable called myString.

➤ Main() transfers control to Write().

Variable Scope ❘ 139

➤ Write() defines and initializes a string variable called myString, which is a different variable
from the myString defined in Main().

➤ Write() outputs a string to the console containing the value of myString as defined in
Write().

➤ Write() transfers control back to Main().

➤ Main() outputs a string to the console containing the value of myString as defined in Main().

Variables whose scopes cover a single function in this way are known as local variables. It is also possible
to have global variables, whose scopes cover multiple functions. Modify the code as follows:

class Program
{

static string myString;

static void Write()
{

string myString = "String defined in Write()";
Console.WriteLine("Now in Write()");
Console.WriteLine("Local myString = {0}", myString);
Console.WriteLine("Global myString = {0}", Program.myString);

}

static void Main(string[] args)
{

string myString = "String defined in Main()";
Program.myString = "Global string";
Write();
Console.WriteLine("\nNow in Main()");
Console.WriteLine("Local myString = {0}", myString);
Console.WriteLine("Global myString = {0}", Program.myString);
Console.ReadKey();

}
}

The result is now as shown in Figure 6-5.

FIGURE 6-5

Here, you have added another variable called myString, this time further up the hierarchy of names in the
code. The variable is defined as follows:

static string myString;

Again, the static keyword is required. Without going into too much detail, understand that in this type of
console application, you must use either the static or the const keyword for global variables of this form.

140 ❘ CHAPTER 6 FUNCTIONS

If you want to modify the value of the global variable, you need to use static because const prohibits the
value of the variable from changing.

To differentiate between this variable and the local variables in Main() and Write() with the same names,
you have to classify the variable name using a fully qualified name, as described in Chapter 3. Here, you
refer to the global version as Program.myString. This is only necessary when you have global and local
variables with the same name; if there were no local myString variable, you could simply use myString to
refer to the global variable, rather than Program.myString. When you have a local variable with the same
name as a global variable, the global variable is said to be hidden.

The value of the global variable is set in Main() with

Program.myString = "Global string";

and accessed in Write() with
Console.WriteLine("Global myString = {0}", Program.myString);

You might be wondering why you shouldn’t just use this technique to exchange data with functions, rather
than the parameter passing shown earlier. There are indeed situations where this is the preferable way to
exchange data, but there are just as many scenarios (if not more) where it isn’t. The choice of whether
to use global variables depends on the intended use of the function in question. The problem with using
global variables is that they are generally unsuitable for ‘‘general-purpose’’ functions, which are capable
of working with whatever data you supply, not just data in a specific global variable. You look at this in
more depth a little later.

Variable Scope in Other Structures
One of the points made in the last section has consequences above and beyond variable scope between
functions: that the scopes of variables encompass the code blocks in which they are defined and any
directly nested code blocks. This also applies to other code blocks, such as those in branching and
looping structures. Consider the following code:

int i;
for (i = 0; i < 10; i++)
{

string text = "Line " + Convert.ToString(i);
Console.WriteLine("{0}", text);

}
Console.WriteLine("Last text output in loop: {0}", text);

Here, the string variable text is local to the for loop. This code won’t compile because the call to
Console.WriteLine() that occurs outside of this loop attempts to use the variable text, which is out
of scope outside of the loop. Try modifying the code as follows:

int i;
string text;
for (i = 0; i < 10; i++)
{

text = "Line " + Convert.ToString(i);
Console.WriteLine("{0}", text);

}
Console.WriteLine("Last text output in loop: {0}", text);

Variable Scope ❘ 141

This code will also fail because variables must be declared and initialized before use, and text is only
initialized in the for loop. The value assigned to text is lost when the loop block is exited. However,
you can make the following change:

int i;
string text = "";
for (i = 0; i < 10; i++)
{

text = "Line " + Convert.ToString(i);
Console.WriteLine("{0}", text);

}
Console.WriteLine("Last text output in loop: {0}", text);

Code snippet VariableScopeInLoops\Program.cs

This time text is initialized outside of the loop, and you have access to its value. The result of this
simple code is shown in Figure 6-6.

FIGURE 6-6

The last value assigned to text in the loop is accessible from outside the loop. As you can see, this
topic requires a bit of effort to come to grips with. It is not immediately obvious why, in light of the
earlier example, text doesn’t retain the empty string it is assigned before the loop in the code after
the loop.

The explanation for this behavior is related to memory allocation for the text variable, and indeed any
variable. Merely declaring a simple variable type doesn’t result in very much happening. It is only when
values are assigned to the variables that values are allocated a place in memory to be stored. When this
allocation takes place inside a loop, the value is essentially defined as a local value and goes out of scope
outside of the loop.

Even though the variable itself isn’t localized to the loop, the value it contains is. However, assigning a
value outside of the loop ensures that the value is local to the main code, and is still in scope inside the
loop. This means that the variable doesn’t go out of scope before the main code block is exited, so you
have access to its value outside of the loop.

Luckily for you, the C# compiler detects variable scope problems, and responding to the error messages
it generates certainly helps you to understand the topic of variable scope.

142 ❘ CHAPTER 6 FUNCTIONS

Finally, be aware of best practices. In general, it is worth declaring and initializing all variables before
any code blocks that use them. An exception to this is when you declare looping variables as part of a
loop block:

for (int i = 0; i < 10; i++)
{

...
}

Here, i is localized to the looping code block, but that’s fine because you will rarely require access to
this counter from external code.

Parameters and Return Values versus Global Data
Let’s take a closer look at exchanging data with functions via global data and via parameters and return
values. To recap, consider the following code:

class Program
{

static void ShowDouble(ref int val)
{

val *= 2;
Console.WriteLine("val doubled = {0}", val);

}

static void Main(string[] args)
{

int val = 5;
Console.WriteLine("val = {0}", val);
ShowDouble(ref val);
Console.WriteLine("val = {0}", val);

}
}

NOTE This code is slightly different from the code shown earlier in this chapter,
when you used the variable name myNumber in Main(). This illustrates the fact that
local variables can have identical names and yet not interfere with each other. It
also means that the two code samples shown here are more similar, enabling
you to focus on the specific differences without worrying about variable names.

Compare it with this code:
class Program
{

static int val;

static void ShowDouble()
{

val *= 2;
Console.WriteLine("val doubled = {0}", val);

}

The Main() Function ❘ 143

static void Main(string[] args)
{

val = 5;
Console.WriteLine("val = {0}", val);
ShowDouble();
Console.WriteLine("val = {0}", val);

}
}

The results of both of these ShowDouble() functions are identical.

There are no hard-and-fast rules for using one technique rather than another, and both techniques are
perfectly valid, but you may want to consider the following guidelines.

To start with, as mentioned when this topic was first introduced, the ShowDouble() version that uses
the global value only uses the global variable val. To use this version, you must use this global variable.
This limits the versatility of the function slightly and means that you must continuously copy the global
variable value into other variables if you intend to store the results. In addition, global data might be
modified by code elsewhere in your application, which could cause unpredictable results (values might
change without you realizing it until it’s too late).

However, this loss of versatility can often be a bonus. Sometimes you only want to use a function for
one purpose, and using a global data store reduces the possibility that you will make an error in a
function call, perhaps passing it the wrong variable.

Of course, it could also be argued that this simplicity actually makes your code more difficult to under-
stand. Explicitly specifying parameters enables you to see at a glance what is changing. If you see a call
that reads FunctionName(val1, out val2), you instantly know that val1 and val2 are the important
variables to consider and that val2 will be assigned a new value when the function is completed. Con-
versely, if this function took no parameters, then you would be unable to make any assumptions about
what data it manipulated.

Finally, remember that using global data isn’t always possible. Later in this book, you will see code
written in different files and/or belonging to different namespaces communicating with each other via
functions. In these cases, the code is often separated to such a degree that there is no obvious choice for
a global storage location.

Feel free to use either technique to exchange data. In general, use parameters rather than global data;
but there are certainly cases where global data might be more suitable, and it certainly isn’t an error to
use that technique.

THE MAIN() FUNCTION

Now that you’ve covered most of the simple techniques used in the creation and use of functions, it’s
time to take a closer look at the Main() function.

Earlier, you saw that Main() is the entry point for a C# application and that execution of this func-
tion encompasses the execution of the application. That is, when execution is initiated, the Main()

function executes, and when the Main() function finishes, execution ends.

144 ❘ CHAPTER 6 FUNCTIONS

The Main() function can return either void or int, and can optionally include a string[] args param-
eter, so you can use any of the following versions:

static void Main()
static void Main(string[] args)
static int Main()
static int Main(string[] args)

The third and fourth versions return an int value, which can be used to signify how the application
terminates, and often is used as an indication of an error (although this is by no means mandatory). In
general, returning a value of 0 reflects normal termination (that is, the application has completed and
can terminate safely).

The optional args parameter of Main() provides you with a way to obtain information from outside
the application, specified at runtime. This information takes the form of command-line parameters.

You may well have come across command-line parameters already. When you execute an application
from the command line, you can often specify information directly, such as a file to load on application
execution. For example, consider the Notepad application in Windows. You can run Notepad simply
by typing Notepad in a command prompt window or in the window that appears when you select the
Run option from the Windows Start menu. You can also type something like Notepad ‘‘myfile.txt’’ in
these locations. The result is that Notepad will either load the file myfile.txt when it runs or offer to
create this file if it doesn’t already exist. Here, ‘‘myfile.txt’’ is a command-line argument. You can write
console applications that work similarly by making use of the args parameter.

When a console application is executed, any specified command-line parameters are placed in this args
array. You can then use these parameters in your application. The following Try It Out shows this in
action. You can specify any number of command-line arguments, each of which will be output to the
console.

TRY IT OUT Command-Line Arguments

1. Create a new console application called Ch06Ex04 and save it in the directory
C:\BegVCSharp\Chapter06.

2. Add the following code to Program.cs:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("{0} command line arguments were specified:",
args.Length);

foreach (string arg in args)
Console.WriteLine(arg);

Console.ReadKey();
}

}
Code snippet Ch06Ex04\Program.cs

3. Open the property pages for the project (right-click on the Ch06Ex04 project name in the Solution
Explorer window and select Properties).

The Main() Function ❘ 145

4. Select the Debug page and add any command-line arguments you want to the Command line argu-
ments setting. Figure 6-7 shows an example.

FIGURE 6-7

5. Run the application. Figure 6-8 shows the output.

FIGURE 6-8

How It Works

The code used here is very simple:

Console.WriteLine("{0} command line arguments were specified:",
args.Length);

foreach (string arg in args)
Console.WriteLine(arg);

You’re just using the args parameter as you would any other string array. You’re not doing anything fancy
with the arguments; you’re just writing whatever is specified to the screen. You supplied the arguments via

146 ❘ CHAPTER 6 FUNCTIONS

the project properties in the IDE. This is a handy way to use the same command-line arguments whenever
you run the application from the IDE, rather than type them at a command-line prompt every time. The
same result can be obtained by opening a command prompt window in the same directory as the project
output (C:\BegCSharp\Chapter06\Ch06Ex04\Ch06Ex04\bin\Debug) and typing this:

Ch06Ex04 256 myFile.txt "a longer argument"

Each argument is separated from the next by spaces. To supply an argument that includes spaces, you can
enclose it in double quotation marks, which prevents it from being interpreted as multiple arguments.

STRUCT FUNCTIONS

The last chapter covered struct types for storing multiple data elements in one place. Structs are actually
capable of a lot more than this. For example, they can contain functions as well as data. That may
seem a little strange at first, but it is, in fact, very useful. As a simple example, consider the following
struct:

struct CustomerName
{

public string firstName, lastName;
}

If you have variables of type CustomerName and you want to output a full name to the console, you
are forced to build the name from its component parts. You might use the following syntax for a
CustomerName variable called myCustomer, for example:

CustomerName myCustomer;
myCustomer.firstName = "John";
myCustomer.lastName = "Franklin";
Console.WriteLine("{0} {1}", myCustomer.firstName, myCustomer.lastName);

By adding functions to structs, you can simplify this by centralizing the processing of common tasks.
For example, you can add a suitable function to the struct type as follows:

struct CustomerName
{

public string firstName, lastName;

public string Name()
{

return firstName + " " + lastName;
}

}

This looks much like any other function you’ve seen in this chapter, except that you haven’t used the
static modifier. The reasons for this will become clear later in the book; for now, it is enough to know
that this keyword isn’t required for struct functions. You can use this function as follows:

CustomerName myCustomer;
myCustomer.firstName = "John";
myCustomer.lastName = "Franklin";
Console.WriteLine(myCustomer.Name());

Overloading Functions ❘ 147

This syntax is much simpler, and much easier to understand, than the previous syntax. The Name()

function has direct access to the firstName and lastName struct members. Within the customerName

struct, they can be thought of as global.

OVERLOADING FUNCTIONS

Earlier in this chapter, you saw how you must match the signature of a function when you call it. This
implies that you need to have separate functions to operate on different types of variables. Function
overloading provides you with the capability to create multiple functions with the same name, but
each working with different parameter types. For example, earlier you used the following code, which
contains a function called MaxValue():

class Program
{

static int MaxValue(int[] intArray)
{

int maxVal = intArray[0];
for (int i = 1; i < intArray.Length; i++)
{

if (intArray[i] > maxVal)
maxVal = intArray[i];

}
return maxVal;

}

static void Main(string[] args)
{

int[] myArray = { 1, 8, 3, 6, 2, 5, 9, 3, 0, 2 };
int maxVal = MaxValue(myArray);
Console.WriteLine("The maximum value in myArray is {0}", maxVal);
Console.ReadKey();

}
}

This function can only be used with arrays of int values. You could provide different named functions
for different parameter types, perhaps renaming the preceding function as IntArrayMaxValue() and
adding functions such as DoubleArrayMaxValue() to work with other types. Alternatively, you could
just add the following function to your code:

...
static double MaxValue(double[] doubleArray)
{

double maxVal = doubleArray[0];
for (int i = 1; i < doubleArray.Length; i++)
{

if (doubleArray[i] > maxVal)
maxVal = doubleArray[i];

}
return maxVal;

}
...

148 ❘ CHAPTER 6 FUNCTIONS

The difference here is that you are using double values. The function name, MaxValue(), is the same,
but (crucially) its signature is different. That’s because the signature of a function, as shown earlier,
includes both the name of the function and its parameters. It would be an error to define two functions
with the same signature, but because these two functions have different signatures, this is fine.

NOTE The return type of a function isn’t part of its signature, so you can’t define
two functions that differ only in return type; they would have identical signatures.

After adding the preceding code, you have two versions of MaxValue(), which accept int and double

arrays, returning an int or double maximum, respectively.

The beauty of this type of code is that you don’t have to explicitly specify which of these two func-
tions you want to use. You simply provide an array parameter, and the correct function is executed
depending on the type of parameter used.

Note another aspect of the IntelliSense feature in VS and VCE: When you have the two functions shown
previously in an application and then proceed to type the name of the function, for example, Main(),
the IDE shows you the available overloads for that function. For example, if you type

double result = MaxValue(

FIGURE 6-9

the IDE gives you information about both versions of
MaxValue(), which you can scroll between using the up
and down arrow keys, as shown in Figure 6-9.

All aspects of the function signature are included when overloading functions. You might, for example,
have two different functions that take parameters by value and by reference, respectively:

static void ShowDouble(ref int val)
{

...
}
static void ShowDouble(int val)
{

...
}

Deciding which version to use is based purely on whether the function call contains the ref keyword.
The following would call the reference version:

ShowDouble(ref val);

This would call the value version:

ShowDouble(val);

Alternatively, you could have functions that differ in the number of parameters they require, and
so on.

Delegates ❘ 149

DELEGATES

A delegate is a type that enables you to store references to functions. Although this sounds quite
involved, the mechanism is surprisingly simple. The most important purpose of delegates will become
clear later in the book when you look at events and event handling, but it will be useful to briefly con-
sider them here. Delegates are declared much like functions, but with no function body and using the
delegate keyword. The delegate declaration specifies a return type and parameter list.

After defining a delegate, you can declare a variable with the type of that delegate. You can then initial-
ize the variable as a reference to any function that has the same return type and parameter list as that
delegate. Once you have done this, you can call that function by using the delegate variable as if it were
a function.

When you have a variable that refers to a function, you can also perform other operations that would
be otherwise impossible. For example, you can pass a delegate variable to a function as a parameter,
and then that function can use the delegate to call whatever function it refers to, without knowing what
function will be called until runtime. The following Try It Out demonstrates using a delegate to access
one of two functions.

TRY IT OUT Using a Delegate to Call a Function

1. Create a new console application called Ch06Ex05 and save it in the directory
C:\BegVCSharp\Chapter06.

2. Add the following code to Program.cs:

class Program
{

delegate double ProcessDelegate(double param1, double param2);

static double Multiply(double param1, double param2)
{

return param1 * param2;
}

static double Divide(double param1, double param2)
{

return param1 / param2;
}

static void Main(string[] args)
{

ProcessDelegate process;
Console.WriteLine("Enter 2 numbers separated with a comma:");
string input = Console.ReadLine();
int commaPos = input.IndexOf(’,’);
double param1 = Convert.ToDouble(input.Substring(0, commaPos));
double param2 = Convert.ToDouble(input.Substring(commaPos + 1,

input.Length - commaPos - 1));
Console.WriteLine("Enter M to multiply or D to divide:");

150 ❘ CHAPTER 6 FUNCTIONS

input = Console.ReadLine();
if (input == "M")

process = new ProcessDelegate(Multiply);
else

process = new ProcessDelegate(Divide);
Console.WriteLine("Result: {0}", process(param1, param2));
Console.ReadKey();

}
}

Code snippet Ch06Ex05\Program.cs

3. Execute the code. Figure 6-10 shows the result.

FIGURE 6-10

How It Works

This code defines a delegate (ProcessDelegate) whose return type and parameters match those of the two
functions (Multiply() and Divide()). The delegate definition is as follows:

delegate double ProcessDelegate(double param1, double param2);

The delegate keyword specifies that the definition is for a delegate, rather than a function (the definition
appears in the same place that a function definition might). Next, the definition specifies a double return
value and two double parameters. The actual names used are arbitrary; you can call the delegate type and
parameter names whatever you like. Here, we’ve used a delegate name of ProcessDelegate and double
parameters called param1 and param2.

The code in Main() starts by declaring a variable using the new delegate type:

static void Main(string[] args)
{

ProcessDelegate process;

Next, you have some fairly standard C# code that requests two numbers separated by a comma, and then
places these numbers in two double variables:

Console.WriteLine("Enter 2 numbers separated with a comma:");
string input = Console.ReadLine();
int commaPos = input.IndexOf(’,’);
double param1 = Convert.ToDouble(input.Substring(0, commaPos));
double param2 = Convert.ToDouble(input.Substring(commaPos + 1,

input.Length -- commaPos -- 1));

Delegates ❘ 151

NOTE For demonstration purposes, no user input validation is included here. If
this were ‘‘real’’ code, you’d spend much more time ensuring that you had valid
values in the local param1 and param2 variables.

Next, you ask the user to multiply or divide these numbers:

Console.WriteLine("Enter M to multiply or D to divide:");
input = Console.ReadLine();

Based on the user’s choice, you initialize the process delegate variable:

if (input == "M")
process = new ProcessDelegate(Multiply);

else
process = new ProcessDelegate(Divide);

To assign a function reference to a delegate variable, you use slightly odd-looking syntax. Much like
assigning array values, you must use the new keyword to create a new delegate. After this keyword, you
specify the delegate type and supply a parameter referring to the function you want to use — namely, the
Multiply() or Divide() function. This parameter doesn’t match the parameters of the delegate type or
the target function; it is a syntax unique to delegate assignment. The parameter is simply the name of the
function to use, without any parentheses.

In fact, you can use slightly simpler syntax here, if you want:

if (input == "M")
process = Multiply;

else
process = Divide;

The compiler recognizes that the delegate type of the process variable matches the signature of the two
functions, and automatically initializes a delegate for you. Which syntax you use is up to you, although
some people prefer to use the longhand version, as it is easier to see at a glance what is happening.

Finally, call the chosen function using the delegate. The same syntax works, regardless of which function
the delegate refers to:

Console.WriteLine("Result: {0}", process(param1, param2));
Console.ReadKey();

}

Here, you treat the delegate variable as if it were a function name. Unlike a function, though, you can also
perform additional operations on this variable, such as passing it to a function via a parameter, as shown
in this simple example:

static void ExecuteFunction(ProcessDelegate process)
{

process(2.2, 3.3);
}

This means that you can control the behavior of functions by passing them function delegates, much
like choosing a ‘‘snap-in’’ to use. For example, you might have a function that sorts a string array
alphabetically. You can use several techniques to sort lists, with varying performance depending on the

152 ❘ CHAPTER 6 FUNCTIONS

characteristics of the list being sorted. By using delegates, you can specify the function to use by passing a
sorting algorithm function delegate to a sorting function.

There are many such uses for delegates, but, as mentioned earlier, their most prolific use is in event han-
dling, covered in Chapter 13.

SUMMARY

This chapter provided a fairly complete overview of the use of functions in C# code. Many of the
additional features that functions offer (delegates in particular) are more abstract, and you need to
understand them in regard to object-oriented programming, the subject of Chapter 8.

Knowing how to use functions is central to all of the programming you are likely to do. Later chapters,
particularly when you get to OOP (from Chapter 8 onward), explain a more formal structure for
functions and how they apply to classes. You will likely find that the capability to abstract code into
reusable blocks is the most useful aspect of C# programming.

EXERCISES

1. The following two functions have errors. What are they?

static bool Write()
{

Console.WriteLine("Text output from function.");
}

static void MyFunction(string label, params int[] args, bool showLabel)
{

if (showLabel)
Console.WriteLine(label);

foreach (int i in args)
Console.WriteLine("{0}", i);

}

2. Write an application that uses two command-line arguments to place values into a string and an
integer variable, respectively. Then display those values.

3. Create a delegate and use it to impersonate the Console.ReadLine() function when asking for
user input.

Exercises ❘ 153

4. Modify the following struct to include a function that returns the total price of an order:

struct order
{

public string itemName;
public int unitCount;
public double unitCost;

}

5. Add another function to the order struct that returns a formatted string as follows (as a single line
of text, where italic entries enclosed in angle brackets are replaced by appropriate values):

Order Information: <unit count> <item name> items at $<unit cost> each,
total cost $<total cost>

Answers to Exercises can be found in Appendix A.

154 ❘ CHAPTER 6 FUNCTIONS

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Defining functions Functions are defined with a name, zero or more parameters, and a return type.
The name and parameters of a function collectively define the signature of the
function. It is possible to define multiple functions whose signatures are differ-
ent even though their names are the same — this is called function overloading.
Functions can also be defined within struct types.

Return values and
parameters

The return type of a function can be any type, or void if the function does not return
a value. Parameters can also be of any type, and consist of a comma-separated
list of type and name pairs. When calling a function, any parameters specified
must match those in the definition both in type and in order. A variable number
of parameters of a specified type can be specified through a parameter array.
Parameters can be specified as ref or out parameters in order to return values to
the caller.

Variable scope Variables are scoped according to the block of code where they are defined.
Blocks of code include methods as well as other structures, such as the body of
a loop. It is possible to define multiple, separate variables with the same name at
different scope levels.

Command-line
parameters

The Main() function in a console application can receive command-line parame-
ters that are passed to the application when it is executed. These parameters are
separated by spaces, but longer parameters can be passed in quotes.

Delegates As well as calling functions directly, it is possible to call them through delegates.
Delegates are variables that are defined with a return type and parameter list. A
given delegate type can match any method whose return type and parameters
match the delegate definition.

7
Debugging and Error Handling

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ Debugging methods available in the IDE

➤ Error-handling techniques available in C#

So far this book has covered all the basics of simple programming in C#. Before you move on to
object-oriented programming in the next part, you need to look at debugging and error handling
in C# code.

Errors in code are something that will always be with you. No matter how good a program-
mer is, problems will always slip through, and part of being a good programmer is realizing
this and being prepared to deal with it. Of course, some problems are minor and don’t affect
the execution of an application, such as a spelling mistake on a button, but glaring errors are
also possible, including those that cause applications to fail completely (usually known as fatal
errors). Fatal errors include simple errors in code that prevent compilation (syntax errors), or
more serious problems that occur only at runtime. Some errors are subtle. Perhaps your appli-
cation fails to add a record to a database because a requested field is missing, or adds a record
with the wrong data in other restricted circumstances. Errors such as these, where application
logic is in some way flawed, are known as semantic errors, or logic errors.

Often, you won’t know about these subtle errors until a user of your application complains that
something isn’t working properly. This leaves you with the task of tracing through your code
to find out what’s happening and fixing it so that it does what it was intended to do. In these
situations, the debugging capabilities of VS and VCE are a fantastic help. The first part of this
chapter looks at some of the techniques available and applies them to some common problems.

Then, you’ll learn the error-handling techniques available in C#. These enable you to take pre-
cautions in cases where errors are likely, and to write code that is resilient enough to cope with
errors that might otherwise be fatal. The techniques are part of the C# language, rather than a
debugging feature, but the IDE provides some tools to help you here, too.

156 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

DEBUGGING IN VS AND VCE

Earlier, you learned that you can execute applications in two ways: with debugging enabled or without
debugging enabled. By default, when you execute an application from VS or VCE, it executes with
debugging enabled. This happens, for example, when you press F5 or click the green Play arrow in
the toolbar. To execute an application without debugging enabled, choose Debug ➪ Start Without
Debugging, or press Ctrl+F5.

Both VS and VCE allow you to build applications in two configurations: Debug (the default) and
Release. (In fact, you can define additional configurations, but that’s an advanced technique not covered
here.) You can switch between these configurations using the Solution Configurations drop-down in
the Standard toolbar.

NOTE In VCE the Solution Configurations drop-down list is inactive by default. To
work through this chapter, enable it by selecting Tools ➪ Options. In the Options
dialog, ensure that Show All Settings is selected, choose the General
subcategory of the Projects and Solutions category, and enable the Show
Advanced Build Configurations option.

When you build an application in debug configuration and execute it in debug mode, more is going on
than the execution of your code. Debug builds maintain symbolic information about your application,
so that the IDE knows exactly what is happening as each line of code is executed. Symbolic information
means keeping track of, for example, the names of variables used in uncompiled code, so they can be
matched to the values in the compiled machine code application, which won’t contain such human-
readable information. This information is contained in .pdb files, which you may have seen in your
computer’s Debug directories. This enables you to perform many useful operations:

➤ Outputting debugging information to the IDE

➤ Looking at (and editing) the values of variables in scope during application execution

➤ Pausing and restarting program execution

➤ Automatically halting execution at certain points in the code

➤ Stepping through program execution one line at a time

➤ Monitoring changes in variable content during application execution

➤ Modifying variable content at runtime

➤ Performing test calls of functions

In the release configuration, application code is optimized, and you cannot perform these operations.
However, release builds also run faster; and when you have finished developing an application, you
will typically supply users with release builds because they won’t require the symbolic information that
debug builds include.

This section describes debugging techniques you can use to identify and fix areas of code that don’t
work as expected, a process known as debugging. The techniques are grouped into two sections
according to how they are used. In general, debugging is performed either by interrupting program

Debugging in VS and VCE ❘ 157

execution or by making notes for later analysis. In VS and VCE terms, an application is either running
or in break mode — that is, normal execution is halted. You’ll look at the nonbreak mode (runtime or
normal) techniques first.

Debugging in Nonbreak (Normal) Mode
One of the commands you’ve been using throughout this book is the Console.WriteLine() function,
which outputs text to the console. As you are developing applications, this function comes in handy for
getting extra feedback about operations:

Console.WriteLine("MyFunc() Function about to be called.");
MyFunc("Do something.");
Console.WriteLine("MyFunc() Function execution completed.");

This code snippet shows how you can get extra information concerning a function called MyFunc(). This
is all very well, but it can make your console output a bit cluttered; and when you develop other types
of applications, such as Windows Forms applications, you won’t have a console to output information
to. As an alternative, you can output text to a separate location — the Output window in the IDE.

Chapter 2, which describes the Error List window, mentions that other windows can also be displayed
in the same place. One of these, the Output window, can be very useful for debugging. To display
this window, select View ➪ Output. This window provides information related to compilation and
execution of code, including errors encountered during compilation. You can also use this window,
shown in Figure 7-1, to display custom diagnostic information by writing to it directly.

FIGURE 7-1

NOTE The Output window contains a drop-down menu from which different
modes can be selected, including Build and Debug. These modes display
compilation and runtime information, respectively. When you read ‘‘writing to the
Output window’’ in this section, it actually means ‘‘writing to the debug mode
view of the Output window.’’

Alternatively, you might want to create a logging file, which has information appended to it when your
application is executed. The techniques for doing this are much the same as those for writing text to the
Output window, although the process requires an understanding of how to access the file system from
C# applications. For now, leave that functionality on the back burner because there is plenty you can
do without getting bogged down by file-access techniques.

158 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

Outputting Debugging Information
Writing text to the Output window at runtime is easy. You simply replace calls to Console.WriteLine()

with the required call to write text where you want it. There are two commands you can use to do this:

➤ Debug.WriteLine()

➤ Trace.WriteLine()

These commands function in almost exactly the same way — with one key difference: The first
command works in debug builds only; the latter works for release builds as well. In fact, the
Debug.WriteLine() command won’t even be compiled into a release build; it just disappears, which
certainly has its advantages (the compiled code will be smaller, for one thing). You can, in effect, create
two versions of your application from a single source file. The debug version displays all kinds of
extra diagnostic information, whereas the release version won’t have this overhead, and won’t display
messages to users that might otherwise be annoying!

These functions don’t work exactly like Console.WriteLine(). They work with only a single string
parameter for the message to output, rather than letting you insert variable values using {X}syntax.
This means you must use an alternative technique to embed variable values in strings — for example,
the + concatenation. You can also (optionally) supply a second string parameter, which displays a
category for the output text. This enables you to see at a glance what output messages are displayed
in the Output window, which is useful when similar messages are output from different places in the
application.

The general output of these functions is as follows:

<category>: <message>

For example, the following statement, which has "MyFunc" as the optional category parameter,

Debug.WriteLine("Added 1 to i", "MyFunc");

would result in the following:

MyFunc: Added 1 to i

The next Try It Out demonstrates outputting debugging information in this way.

TRY IT OUT Writing Text to the Output Window

1. Create a new console application called Ch07Ex01 and save it in the directory
C:\BegVCSharp\Chapter07.

2. Modify the code as follows:

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;

Debugging in VS and VCE ❘ 159

namespace Ch07Ex01
{

class Program
{

static void Main(string[] args)
{

int[] testArray = {4, 7, 4, 2, 7, 3, 7, 8, 3, 9, 1, 9};
int[] maxValIndices;
int maxVal = Maxima(testArray, out maxValIndices);
Console.WriteLine("Maximum value {0} found at element indices:",

maxVal);
foreach (int index in maxValIndices)
{

Console.WriteLine(index);
}
Console.ReadKey();

}
static int Maxima(int[] integers, out int[] indices)
{

Debug.WriteLine("Maximum value search started.");
indices = new int[1];
int maxVal = integers[0];
indices[0] = 0;
int count = 1;
Debug.WriteLine(string.Format(

"Maximum value initialized to {0}, at element index 0.", maxVal));
for (int i = 1; i < integers.Length; i++)
{

Debug.WriteLine(string.Format(
"Now looking at element at index {0}.", i));

if (integers[i] > maxVal)
{

maxVal = integers[i];
count = 1;
indices = new int[1];
indices[0] = i;
Debug.WriteLine(string.Format(

"New maximum found. New value is {0}, at element index {1}.",
maxVal, i));

}
else
{

if (integers[i] == maxVal)
{

count++;
int[] oldIndices = indices;
indices = new int[count];
oldIndices.CopyTo(indices, 0);
indices[count - 1] = i;
Debug.WriteLine(string.Format(

"Duplicate maximum found at element index {0}.", i));
}

}
}

160 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

Trace.WriteLine(string.Format(
"Maximum value {0} found, with {1} occurrences.", maxVal, count));

Debug.WriteLine("Maximum value search completed.");
return maxVal;

}
}

}

Code snippet Ch07Ex01\Program.cs

3. Execute the code in debug mode. The result is shown in Figure 7-2.

FIGURE 7-2

4. Terminate the application and check the contents of the Output window (in debug mode). A trun-
cated version of the output is shown here:

...

Maximum value search started.
Maximum value initialized to 4, at element index 0.
Now looking at element at index 1.
New maximum found. New value is 7, at element index 1.
Now looking at element at index 2.
Now looking at element at index 3.
Now looking at element at index 4.
Duplicate maximum found at element index 4.
Now looking at element at index 5.
Now looking at element at index 6.
Duplicate maximum found at element index 6.
Now looking at element at index 7.
New maximum found. New value is 8, at element index 7.
Now looking at element at index 8.
Now looking at element at index 9.
New maximum found. New value is 9, at element index 9.
Now looking at element at index 10.
Now looking at element at index 11.
Duplicate maximum found at element index 11.
Maximum value 9 found, with 2 occurrences.
Maximum value search completed.
The thread ‘vshost.RunParkingWindow’ (0x110c) has exited with code 0 (0x0).
The thread ‘<No Name>’ (0x688) has exited with code 0 (0x0).
The program ‘[4568] Ch07Ex01.vshost.exe: Managed (v4.0.20506)’ has exited with
code 0 (0x0).

Debugging in VS and VCE ❘ 161

FIGURE 7-3

5. Change to release mode using the drop-down menu on the Standard toolbar,
as shown in Figure 7-3.

6. Run the program again, this time in release mode, and recheck the Output
window when execution terminates. The output (again truncated) is as fol-
lows:

...
Maximum value 9 found, with 2 occurrences.
The thread ‘vshost.RunParkingWindow’ (0xa78) has exited with code 0 (0x0).
The thread ‘<No Name>’ (0x130c) has exited with code 0 (0x0).
The program ‘[4348] Ch07Ex01.vshost.exe: Managed (v4.0.20506)’ has exited with
code 0 (0x0).

How It Works

This application is an expanded version of one shown in Chapter 6, using a function to calculate the
maximum value in an integer array. This version also returns an array of the indices where maximum
values are found in an array, so that the calling code can manipulate these elements.

First, an additional using directive appears at the beginning of the code:

using System.Diagnostics;

This simplifies access to the functions discussed earlier because they are contained in the
System.Diagnostics namespace. Without this using directive, code such as

Debug.WriteLine("Bananas");

would need further qualification, and would have to be rewritten as

System.Diagnostics.Debug.WriteLine("Bananas");

The using directive keeps your code simple and reduces verbosity.

The code in Main() simply initializes a test array of integers called testArray; it also declares another
integer array called maxValIndices to store the index output of Maxima() (the function that performs the
calculation), and then calls this function. Once the function returns, the code simply outputs the results.

Maxima() is slightly more complicated, but it doesn’t use much code that you haven’t already seen. The
search through the array is performed in a similar way to the MaxVal() function in Chapter 6, but a record
is kept of the indices of maximum values.

Especially note (other than the lines that output debugging information) the function used to keep track of
the indices. Rather than return an array that would be large enough to store every index in the source array
(needing the same dimensions as the source array), Maxima() returns an array just large enough to hold the
indices found. It does this by continually recreating arrays of different sizes as the search progresses. This
is necessary because arrays can’t be resized once they are created.

The search is initialized by assuming that the first element in the source array (called integers locally) is
the maximum value and that there is only one maximum value in the array. Values can therefore be set for
maxVal (the return value of the function and the maximum value found) and indices, the out parameter
array that stores the indices of the maximum values found. maxVal is assigned the value of the first element

162 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

in integers, and indices is assigned a single value, simply 0, which is the index of the array’s first element.
You also store the number of maximum values found in a variable called count, which enables you to keep
track of the indices array.

The main body of the function is a loop that cycles through the values in the integers array, omitting
the first one because it has already been processed. Each value is compared to the current value of maxVal
and ignored if maxVal is greater. If the currently inspected array value is greater than maxVal, then maxVal

and indices are changed to reflect this. If the value is equal to maxVal, then count is incremented and a
new array is substituted for indices. This new array is one element bigger than the old indices array,
containing the new index found.

The code for this last piece of functionality is as follows:

if (integers[i] == maxVal)
{

count++;
int[] oldIndices = indices;
indices = new int[count];
oldIndices.CopyTo(indices, 0);
indices[count - 1] = i;
Debug.WriteLine(string.Format(

"Duplicate maximum found at element index {0}.", i));
}

This works by backing up the old indices array into oldIndices, an integer array local to this if

code block. Note that the values in oldIndices are copied into the new indices array using the
<array>.CopyTo() function. This function simply takes a target array and an index to use for the first
element to copy to and pastes all values into the target array.

Throughout the code, various pieces of text are output using the Debug.WriteLine() and
Trace.WriteLine() functions. These functions use the string.Format() function to embed vari-
able values in strings in the same way as Console.WriteLine(). This is slightly more efficient than using
the + concatenation operator.

When you run the application in debug mode, you see a complete record of the steps taken in the loop
that give you the result. In release mode, you see just the result of the calculation, because no calls to
Debug.WriteLine() are made in release builds.

In addition to these WriteLine() functions, there are a few more you should be aware of. To start with,
there are equivalents to Console.Write():

➤ Debug.Write()

➤ Trace.Write()

Both functions use the same syntax as the WriteLine() functions (one or two parameters, with a message
and an optional category), but differ in that they don’t add end-of-line characters.

There are also the following commands:

➤ Debug.WriteLineIf()

➤ Trace.WriteLineIf()

Debugging in VS and VCE ❘ 163

➤ Debug.WriteIf()

➤ Trace.WriteIf()

Each of these has the same parameters as the non-If counterparts, with the addition of an extra, manda-
tory parameter that precedes them in the parameter list. This parameter takes a Boolean value (or an
expression that evaluates to a Boolean value) and results in the function only writing text if this value
evaluates to true. You can use these functions to conditionally output text to the Output window.

For example, you might require debugging information to be output in only certain situations, so you can
have a great many Debug.WriteLineIf() statements in your code that all depend on a certain condition
being met. If this condition doesn’t occur, then they aren’t displayed, which prevents the Output window
from being cluttered with superfluous information.

Tracepoints
An alternative to writing information to the Output window is to use tracepoints. These are a feature
of VS, rather than C#, but they serve the same function as using Debug.WriteLine(). Essentially, they
enable you to output debugging information without modifying your code.

NOTE Tracepoints are a feature only available in VS, not in VCE. If you are using
VCE, you may choose to skip this section.

To demonstrate tracepoints, you can use them to replace the debugging commands in the previous
example. (See the Ch07Ex01TracePoints file in the downloadable code for this chapter.) The process
for adding a tracepoint is as follows:

1. Position the cursor at the line where you want the tracepoint to be inserted. The tracepoint
will be processed before this line of code is executed.

2. Right-click the line of code and select Breakpoint ➪ Insert Tracepoint.

3. Type the string to be output in the Print a Message text box in the When Breakpoint Is Hit
dialog that appears. If you want to output variable values, enclose the variable name in curly
braces.

4. Click OK. A red diamond appears to the left of the line of code containing a tracepoint, and
the line of code itself is shown with red highlighting.

As implied by the title of the dialog for adding tracepoints, and the menu selections required for them,
tracepoints are a form of breakpoint (and can cause application execution to pause, just like a break-
point, if desired). You look at breakpoints, which typically serve a more advanced debugging purpose,
a little later in the chapter.

Figure 7-4 shows the tracepoint required for line 31 of Ch07Ex01TracePoints, where line numbering
applies to the code after the existing Debug.WriteLine() statements have been removed.

164 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

FIGURE 7-4

NOTE As shown in the text in Figure 7-4, tracepoints enable you to insert other
useful information concerning the location and context of the tracepoint.
Experiment with these values, particularly $FUNCTION and $CALLER, to see what
additional information you can glean. You can also see that it is possible for the
tracepoint to execute a macro, an advanced feature that isn’t covered here.

There is another window (only available in VS) that you can use to quickly see the tracepoints in an
application. To display this window, select Debug ➪ Windows ➪ Breakpoints from the VS menu. This
is a general window for displaying breakpoints (tracepoints, as noted earlier, are a form of breakpoint).
You can customize the display to show more tracepoint-specific information by adding the When Hit
column from the Columns drop-down in this window. Figure 7-5 shows the display with this column
configured and all the tracepoints added to Ch07Ex01TracePoints.

Executing this application in debug mode has the same result as before. You can remove or temporarily
disable tracepoints by right-clicking on them in the code window or via the Breakpoints window. In
the Breakpoints window, the check box to the left of the tracepoint indicates whether the tracepoint is
enabled; disabled tracepoints are unchecked and displayed in the code window as diamond outlines,
rather than solid diamonds.

Diagnostics Output Versus Tracepoints
Now that you have seen two methods of outputting essentially the same information, consider the pros
and cons of each. First, tracepoints have no equivalent to the Trace commands; that is, there is no way
to output information in a release build using tracepoints. This is because tracepoints are not included
in your application. Tracepoints are handled by Visual Studio and, as such, do not exist in the compiled
version of your application. You will see tracepoints doing something only when your application is
running in the VS debugger.

Debugging in VS and VCE ❘ 165

FIGURE 7-5

The chief disadvantage of tracepoints is also their major advantage, which is that they are stored in
VS. This makes them quick and easy to add to your applications as and when you need them, but also
all too easy to delete. Deleting a tracepoint is as simple as clicking on the red diamond indicating its
position, which can be annoying if you are outputting a complicated string of information.

One bonus of tracepoints, though, is the additional information that can be easily added, such as
$FUNCTION, as noted in the previous section. While this information is available to code written using
Debug and Trace commands, it is trickier to obtain. In summary, use these two methods of outputting
debug information as follows:

➤ Diagnostics output: Use when debug output is something you always want to output from an
application, particularly where the string you want to output is complex, involving several

166 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

variables or a lot of information. In addition, Trace commands are often the only option
should you want output during execution of an application built in release mode.

➤ Tracepoints: Use these when debugging an application to quickly output important informa-
tion that may help you resolve semantic errors.

There is also the obvious difference that tracepoints are only available in VS, whereas diagnostics
output is available in both VS and VCE.

Debugging in Break Mode
The rest of the debugging techniques described in this chapter work in break mode. This mode can be
entered in several ways, all of which result in the program pausing in some way.

Entering Break Mode
Start

FIGURE 7-6

The simplest way to enter break mode is to click the Pause button
in the IDE while an application is running. This Pause button
is found on the Debug toolbar, which you should add to the
toolbars that appear by default in VS. To do this, right-click in
the toolbar area and select Debug. Figure 7-6 shows the Debug
toolbar that appears.

The first four buttons on the toolbar allow manual control of breaking. In Figure 7-6, three of these
are grayed out because they won’t work with a program that isn’t currently executing. The one that
is enabled, Start, is identical to the button that exists on the standard toolbar. The following sections
describe the rest of the buttons as needed.

Restart

Stop

Pause

FIGURE 7-7

When an application is running, the toolbar changes to look like
Figure 7-7.

The three buttons next to Start that were grayed out now enable
you to do the following:

➤ Pause the application and enter break mode.

➤ Stop the application completely (this doesn’t enter break mode, it just quits).

➤ Restart the application.

Pausing the application is perhaps the simplest way to enter break mode, but it doesn’t give you fine-
grained control over exactly where to stop. You are likely to stop in a natural pause in the application,
perhaps where you request user input. You might also be able to enter break mode during a lengthy
operation, or a long loop, but the exact stop point is likely to be fairly random. In general, it is far
better to use breakpoints.

Breakpoints
A breakpoint is a marker in your source code that triggers automatic entry into break mode. Break-
points are available in both VS and VCE, but they are more flexible in VS. Breakpoints may be config-
ured to do the following:

➤ Enter break mode immediately when the breakpoint is reached.

Debugging in VS and VCE ❘ 167

➤ (VS only) Enter break mode when the breakpoint is reached if a Boolean expression evaluates
to true.

➤ (VS only) Enter break mode once the breakpoint is reached a set number of times.

➤ (VS only) Enter break mode once the breakpoint is reached and a variable value has changed
since the last time the breakpoint was reached.

➤ (VS only) Output text to the Output window or execute a macro (see the section ‘‘Trace-
points’’ earlier in the chapter).

These features are available only in debug builds. If you compile a release build, all breakpoints
are ignored.

There are several ways to add breakpoints. To add simple breakpoints that break when a line is reached,
just left-click on the far left of the line of code, right-click on the line, and select Breakpoint ➪ Insert
Breakpoint; select Debug ➪ Toggle Breakpoint from the menu; or press F9.

A breakpoint appears as a red circle next to the line of code, which is highlighted, as shown in
Figure 7-8.

FIGURE 7-8

The remainder of this section applies only to VS, not VCE. If you are using VCE, then feel free to skip
ahead to the section ‘‘Other Ways to Enter Break Mode.’’

In VS, you can also see information about a file’s breakpoints using the Breakpoints window (you saw
how to enable this window earlier). You can use the Breakpoints window to disable breakpoints (by
removing the tick to the left of a description; a disabled breakpoint shows up as an unfilled red circle),
to delete breakpoints, and to edit the properties of breakpoints.

The columns shown in this window, Condition and Hit Count, are only two of the available ones, but
they are the most useful. You can edit these by right-clicking a breakpoint (in code or in this window)
and selecting Condition or Hit Count.

Selecting Condition opens a dialog in which you can type any Boolean expression, which may involve
any variables in scope at the breakpoint. For example, you could configure a breakpoint that triggers

168 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

when it is reached and the value of maxVal is greater than 4 by entering the expression "maxVal > 4" and
selecting the "Is true" option. You can also check whether the value of this expression has changed and
only trigger the breakpoint then (you might trigger it if maxVal changed from 2 to 6 between breakpoint
encounters, for example).

Selecting Hit Count opens a dialog in which you can specify how many times a breakpoint needs to be
hit before it is triggered. A drop-down list offers the following options:

➤ Break always

➤ Break when the hit count is equal to

➤ Break when the hit count is a multiple of

➤ Break when the hit count is greater than or equal to

The option chosen, combined with the value entered in the text box next to the options, determines the
behavior of the breakpoint. The hit count is useful in long loops, when you might want to break after,
say, the first 5,000 cycles. It would be a pain to break and restart 5,000 times if you couldn’t do this!

NOTE A breakpoint with additional properties set (such as a condition or hit
count) is displayed slightly differently. Instead of a simple red circle, a configured
breakpoint consists of a red circle containing a white + (plus) symbol. This can be
useful because it enables you to see at a glance which breakpoints will always
cause break mode to be entered and which will only do so in certain
circumstances.

Other Ways to Enter Break Mode
There are two more ways to get into break mode. One is to enter it when an unhandled exception is
thrown. This subject is covered later in this chapter, when you look at error handling. The other way is
to break when an assertion is generated.

Assertions are instructions that can interrupt application execution with a user-defined message. They
are often used during application development to test whether things are going smoothly. For example,
at some point in your application you might require a given variable to have a value less than 10. You
can use an assertion to confirm that this is true, interrupting the program if it isn’t. When the assertion
occurs, you have the option to Abort, which terminates the application; Retry, which causes break
mode to be entered; or Ignore, which causes the application to continue as normal.

As with the debug output functions shown earlier, there are two versions of the assertion function:

➤ Debug.Assert()

➤ Trace.Assert()

Again, the debug version is only compiled into debug builds.

Debugging in VS and VCE ❘ 169

These functions take three parameters. The first is a Boolean value, whereby a value of false causes
the assertion to trigger. The second and third are string parameters to write information both to a
pop-up dialog and the Output window. The preceding example would need a function call such as the
following:

Debug.Assert(myVar < 10, "myVar is 10 or greater.",
"Assertion occurred in Main().");

Assertions are often useful in the early stages of user adoption of an application. You can distribute
release builds of your application containing Trace.Assert()functions to keep tabs on things.
Should an assertion be triggered, the user will be informed, and this information can be passed
on to you. You can then determine what has gone wrong even if you don’t know how it went
wrong.

You might, for example, provide a brief description of the error in the first string, with instructions as
to what to do next as the second string:

Trace.Assert(myVar < 10, "Variable out of bounds.",
"Please contact vendor with the error code KCW001.");

Should this assertion occur, the user will see the dialog shown in Figure 7-9.

FIGURE 7-9

Admittedly, this isn’t the most user-friendly dialog in the world, as it contains a lot of information that
could confuse users, but if they send you a screenshot of the error, you could quickly track down the
problem.

Now it’s time to look at what you can actually do after application execution is halted and you are in
break mode. In general, you enter break mode to find an error in your code (or to reassure yourself
that things are working properly). Once you are in break mode, you can use various techniques, all of
which enable you to analyze your code and the exact state of the application at the point in its execution
where it is paused.

170 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

Monitoring Variable Content
Monitoring variable content is just one example of how VS and VCE help you a great deal by simpli-
fying things. The easiest way to check the value of a variable is to hover the mouse over its name in the
source code while in break mode. A yellow tooltip showing information about the variable appears,
including the variable’s current value.

You can also highlight entire expressions to get information about their results in the same way. For
more complex values, such as arrays, you can even expand values in the tooltip to see individual element
entries.

You may have noticed that when you run an application, the layout of the various windows in the
IDE changes. By default, the following changes are likely to occur at runtime (this behavior may vary
slightly depending on your installation):

➤ The Properties window disappears, along with some other windows, probably including the
Solution Explorer window.

➤ The Error List window is replaced with two new windows across the bottom of the
IDE window.

➤ Several new tabs appear in the new windows.

The new screen layout is shown in Figure 7-10. This may not match your display exactly, and some
of the tabs and windows may not look exactly the same, but the functionality of these windows as
described later will be the same, and this display is completely customizable via the View and Debug ➪

Windows menus (during break mode), as well as by dragging windows around the screen to reposition
them.

The new window that appears in the bottom-left corner is particularly useful for debugging. It enables
you to keep tabs on the values of variables in your application when in break mode. The tabs displayed
here vary between VS and VCE:

➤ Autos (VS only): Variables in use in the current and previous statements (Ctrl+D, A)

➤ Locals: All variables in scope (Ctrl+D, L)

➤ Watch N: Customizable variable and expression display (where N is 1 to 4, found on Debug
Windows Watch)

All these tabs work in more or less the same way, with various additional features depending on their
specific function. In general, each tab contains a list of variables, with information on each variable’s
name, value, and type. More complex variables, such as arrays, may be further examined using the +

and – tree expansion/contraction symbols to the left of their names, enabling a tree view of their con-
tent. For example, Figure 7-11 shows the Locals tab obtained by placing a breakpoint in the example
code. It shows the expanded view for one of the array variables, maxValIndices.

You can also edit the content of variables from this view. This effectively bypasses any other variable
assignment that might have happened in earlier code. To do this, simply type a new value into the
Value column for the variable you want to edit. You might do this to try out some scenarios that
would otherwise require code changes, for example.

Debugging in VS and VCE ❘ 171

FIGURE 7-10

FIGURE 7-11

The Watch window (or Watch windows in VS, which can display up to four) enables you to monitor
specific variables, or expressions involving specific variables. To use this window, type the name of
a variable or expression into the Name column and view the results. Note that not all variables in
an application are in scope all the time, and are labeled as such in a Watch window. For example,
Figure 7-12 shows a Watch window with a few sample variables and expressions in it, obtained when
a breakpoint just before the end of the Maxima() function is reached.

172 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

FIGURE 7-12

The testArray array is local to Main(), so you don’t see a value here. Instead, you get a message inform-
ing you that the variable isn’t in scope.

NOTE You can also add variables to a Watch window by dragging them from the
source code into the window.

One nice feature about the various displays of variables accessible in this window is that they show you
variables that have changed between breakpoints. Any new value is shown in red, rather than black,
making it easy to see whether a value has changed.

As mentioned earlier, to add more Watch windows in VS, in break mode you can use the Debug ➪

Windows ➪ Watch ➪ Watch N menu options to toggle the four possible windows on or off. Each
window may contain an individual set of watches on variables and expressions, so you can group
related variables together for easy access.

As well as these windows, VS also has a QuickWatch window that provides detailed information about
a variable in the source code. To use this, simply right-click the variable you want to examine and
select the QuickWatch menu option. In most cases, though, it is just as easy to use the standard Watch
windows.

Watches are maintained between application executions. If you terminate an application and then rerun
it, you don’t have to add watches again — the IDE remembers what you were looking at the last time.

Stepping Through Code
So far, you’ve learned how to discover what is going on in your applications at the point where
break mode is entered. Now it’s time to see how you can use the IDE to step through code
while remaining in break mode, which enables you to see the exact results of the code being
executed. This is an extremely valuable technique for those of us who can’t think as fast as
computers can.

When break mode is entered, a cursor appears to the left of the code view (which may initially appear
inside the red circle of a breakpoint if a breakpoint was used to enter break mode), by the line of code
that is about to be executed, as shown in Figure 7-13.

Debugging in VS and VCE ❘ 173

FIGURE 7-13

Step Out

Step Over

Step Into

FIGURE 7-14

This shows you what point execution has reached when break
mode is entered. At this point, you can have execution proceed
on a line-by-line basis. To do so, you use some of the Debug
toolbar buttons shown in Figure 7-14.

The sixth, seventh, and eighth icons control program flow in
break mode. In order, they are as follows:

➤ Step Into: Execute and move to the next statement to execute.

➤ Step Over: Similar to Step Into, but won’t enter nested blocks of code, including functions.

➤ Step Out: Run to the end of the code block and resume break mode at the statement that
follows.

To look at every single operation carried out by the application, you can use Step Into to follow the
instructions sequentially. This includes moving inside functions, such as Maxima() in the preceding
example. Clicking this icon when the cursor reaches line 15, the call to Maxima(), results in the cursor
moving to the first line inside the Maxima() function. Alternatively, clicking Step Over when you reach
line 15 moves the cursor straight to line 16, without going through the code in Maxima() (although this
code is still executed). If you do step into a function that you aren’t interested in, you can click Step
Out to return to the code that called the function. As you step through code, the values of variables are
likely to change. If you keep an eye on the monitoring windows just discussed, you can clearly see this
happening.

In code that has semantic errors, this technique may be the most useful one at your disposal. You can
step through code right up to the point where you expect problems to occur, and the errors will be
generated as if you were running the program normally. Along the way, watch the data to see just
what is going wrong. Later in this chapter, you use this technique to find out what is happening in an
example application.

Immediate and Command Windows
The Command (VS only) and Immediate windows (found on the Debug Windows menu) enable you to
execute commands while an application is running. The Command window enables you to perform VS

174 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

operations manually (such as menu and toolbar operations), and the Immediate window enables you
to execute additional code besides the source code lines being executed, and to evaluate expressions.

In VS, these windows are intrinsically linked (in fact, earlier versions of VS treated them as the same
thing). You can even switch between them by entering commands: immed to move from the Command
window to the Immediate window, and >cmd to move back.

FIGURE 7-15

This section concentrates on the Immediate window
because the Command window is only really useful for
complex operations and is only available in VS, whereas
the Immediate window is available in both VS and VCE.
The simplest use of this window is to evaluate expressions,
a bit like a one-shot use of the Watch windows. To do
this, type an expression and press Return. The information
requested will then be displayed.
An example is shown in Figure 7-15.

FIGURE 7-16

You can also change variable content here, as demonstrated
in Figure 7-16.

In most cases, you can get the effects you want more easily
using the variable monitoring windows shown earlier, but
this technique is still handy for tweaking values, and it’s
good for testing expressions for which you are unlikely to
be interested in the results later.

The Call Stack Window
The final window to look at is the Call Stack window, which shows you the way in which the current
location was reached. In simple terms, this means showing the current function along with the function
that called it, the function that called that, and so on (that is, a list of nested function calls). The exact
points where calls are made are also recorded.

In the earlier example, entering break mode when in Maxima(), or moving into this function using code
stepping, reveals the information shown in Figure 7-17.

FIGURE 7-17

If you double-click an entry, you are taken to the appropriate location, enabling you to track the way
code execution has reached the current point. This window is particularly useful when errors are first
detected, because you can see what happened immediately before the error. Where errors occur in
commonly used functions, this helps you determine the source of the error.

Error Handling ❘ 175

NOTE Sometimes the Call Stack window shows some very confusing
information. For example, errors may occur outside of your applications due to
using external functions in the wrong way. In such cases, this window could
contain a long list of entries, but only one or two might look familiar. You can see
external references (should you ever need to) by right-clicking in the window and
selecting Show External Code.

ERROR HANDLING

The first part of this chapter explained how to find and correct errors during application development
so that they won’t occur in release-level code. Sometimes, however, you know that errors are likely to
occur and there is no way to be 100 percent sure that they won’t. In those situations, it may be prefer-
able to anticipate problems and write code that is robust enough to deal with these errors gracefully,
without interrupting execution.

Error handling is the term for all techniques of this nature, and this section looks at exceptions and
how you can deal with them. An exception is an error generated either in your code or in a function
called by your code that occurs at runtime. The definition of error here is more vague than it has been
up until now, because exceptions may be generated manually, in functions and so on. For example, you
might generate an exception in a function if one of its string parameters doesn’t start with the letter
‘‘a.’’ Strictly speaking, this isn’t an error outside of the context of the function, although it is treated as
one by the code that calls the function.

You’ve seen exceptions a few times already in this book. Perhaps the simplest example is attempting to
address an array element that is out of range:

int[] myArray = { 1, 2, 3, 4 };
int myElem = myArray[4];

This outputs the following exception message and then terminates the application:

Index was outside the bounds of the array.

NOTE You’ve already seen some examples of the exception helper window that
is displayed in previous chapters. It has a line connecting it to the offending code
and includes links to reference topics in the .NET help files, as well as a View
Detail link to more information about the exception.

Exceptions are defined in namespaces, and most have names that make their purpose clear. In this
example, the exception generated is called System.IndexOutOfRangeException, which makes sense
because you have supplied an index that is not in the range of indices permissible in myArray. This
message appears, and the application terminates, only when the exception is unhandled. In the next
section, you’ll see exactly what you have to do to handle an exception.

176 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

try . . . catch . . . finally
The C# language includes syntax for structured exception handling (SEH). Three keywords mark code
as being able to handle exceptions, along with instructions specifying what to do when an excep-
tion occurs: try, catch, and finally. Each of these has an associated code block and must be used in
consecutive lines of code. The basic structure is as follows:

try
{

...
}
catch (<exceptionType> e)
{

...
}
finally
{

...
}

It is also possible, however, to have a try block and a finally block with no catch block, or a try

block with multiple catch blocks. If one or more catch blocks exist, then the finally block is optional;
otherwise, it is mandatory. The usage of the blocks is as follows:

➤ try — Contains code that might throw exceptions (‘‘throw’’ is the C# way of saying ‘‘gener-
ate’’ or ‘‘cause’’ when talking about exceptions)

➤ catch — Contains code to execute when exceptions are thrown. catch blocks may be set to
respond only to specific exception types (such as System.IndexOutOfRangeException) using
<exceptionType>, hence the ability to provide multiple catch blocks. It is also possible to
omit this parameter entirely, to get a general catch block that responds to all exceptions.

➤ finally — Contains code that is always executed, either after the try block if no excep-
tion occurs, after a catch block if an exception is handled, or just before an unhandled
exception moves ‘‘up the call stack.’’ This phrase means that SEH allows you to nest
try...catch...finally blocks inside each other, either directly or because of a call to a
function within a try block. For example, if an exception isn’t handled by any catch blocks
in the called function, it might be handled by a catch block in the calling code. Eventually,
if no catch blocks are matched, then the application will terminate. The fact that the
finally block is processed before this happens is the reason for its existence; otherwise, you
might just as well place code outside of the try...catch...finally structure. This nested
functionality is discussed further in the ‘‘Notes on Exception Handling’’ section a little later,
so don’t worry if all that sounds a little confusing.

Here’s the sequence of events that occurs after an exception occurs in code in a try block:

➤ The try block terminates at the point where the exception occurred.

➤ If a catch block exists, then a check is made to determine whether the block matches the type
of exception that was thrown. If no catch block exists, then the finally block (which must
be present if there are no catch blocks) executes.

Error Handling ❘ 177

➤ If a catch block exists but there is no match, then a check is made for other catch blocks.

➤ If a catch block matches the exception type, then the code it contains executes, and then the
finally block executes if it is present.

➤ If no catch blocks match the exception type, then the finally block of code executes if it is
present.

The following Try It Out demonstrates handling exceptions, throwing and handling them in several
ways so you can see how things work.

TRY IT OUT Exception Handling

1. Create a new console application called Ch07Ex02 and save it in the directory
C:\BegVCSharp\Chapter07.

2. Modify the code as follows (the line number comments shown here will help you match up your
code to the discussion afterward, and they are duplicated in the downloadable code for this
chapter for your convenience):

class Program
{

static string[] eTypes = { "none", "simple", "index", "nested index" };

static void Main(string[] args)
{

foreach (string eType in eTypes)
{

try
{

Console.WriteLine("Main() try block reached."); // Line 23
Console.WriteLine("ThrowException(\"{0}\") called.", eType);

// Line 24
ThrowException(eType);
Console.WriteLine("Main() try block continues."); // Line 26

}
catch (System.IndexOutOfRangeException e) // Line 28
{

Console.WriteLine("Main() System.IndexOutOfRangeException catch"
+ " block reached. Message:\n\"{0}\"",
e.Message);

}
catch // Line 34
{

Console.WriteLine("Main() general catch block reached.");
}
finally
{

Console.WriteLine("Main() finally block reached.");
}
Console.WriteLine();

}
Console.ReadKey();

}

178 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

static void ThrowException(string exceptionType)
{

// Line 49
Console.WriteLine("ThrowException(\"{0}\") reached.", exceptionType);
switch (exceptionType)
{

case "none":
Console.WriteLine("Not throwing an exception.");
break; // Line 54

case "simple":
Console.WriteLine("Throwing System.Exception.");
throw (new System.Exception()); // Line 57

case "index":
Console.WriteLine("Throwing System.IndexOutOfRangeException.");
eTypes[4] = "error"; // Line 60
break;

case "nested index":
try // Line 63
{

Console.WriteLine("ThrowException(\"nested index\") " +
"try block reached.");

Console.WriteLine("ThrowException(\"index\") called.");
ThrowException("index"); // Line 68

}
catch // Line 70
{

Console.WriteLine("ThrowException(\"nested index\") general"
+ " catch block reached.");

}
finally
{

Console.WriteLine("ThrowException(\"nested index\") finally"
+ " block reached.");

}
break;

}
}

}

Code snippet Ch07Ex02\Program.cs

3. Run the application. The result is shown in Figure 7-18.

How It Works

This application has a try block in Main() that calls a function called ThrowException(). This function
may throw exceptions, depending on the parameter it is called with:

➤ ThrowException("none"): Doesn’t throw an exception

➤ ThrowException("simple"): Generates a general exception

➤ ThrowException("index"): Generates a System.IndexOutOfRangeException exception

Error Handling ❘ 179

➤ ThrowException("nested index"): Contains its own try block, which contains code that
calls ThrowException("index") to generate a System.IndexOutOfRangeException exception

FIGURE 7-18

Each of these string parameters is held in the global eTypes array, which is iterated through in the Main()

function to call ThrowException() once with each possible parameter. During this iteration, various mes-
sages are written to the console to indicate what is happening. This code gives you an excellent opportunity
to use the code-stepping techniques shown earlier in the chapter. By working your way through the code
one line at a time, you can see exactly how code execution progresses.

Add a new breakpoint (with the default properties) to line 23 of the code, which reads as follows:

Console.WriteLine("Main() try block reached.");

NOTE Code is referred to by line numbers as they appear in the downloadable
version of this code. If you have line numbers turned off, remember that you can
turn them back on (select Tools ➪ Options in the Text Editor ➪ C# ➪ General
options section). Comments are included in the preceding code so that you can
follow the text without having the file open in front of you.

Run the application in debug mode. Almost immediately, the program will enter break mode, with the
cursor on line 23. If you select the Locals tab in the variable monitoring window, you should see that eType
is currently "none". Use the Step Into button to process lines 23 and 24, and confirm that the first line of

180 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

text has been written to the console. Next, use the Step Into button to step into the ThrowException()

function on line 25.

Once in the ThrowException() function (on line 49), the Locals window changes. eType and args are no
longer in scope (they are local to Main()); instead, you see the local exceptionType argument, which is,
of course, "none". Keep pressing Step Into and you’ll reach the switch statement that checks the value of
exceptionType and executes the code that writes out the string Not throwing an exception to the screen.
When you execute the break statement (on line 54), you exit the function and resume processing in Main()

at line 26. Because no exception was thrown, the try block continues.

Next, processing continues with the finally block. Click Step Into a few more times to complete the
finally block and the first cycle of the foreach loop. The next time you reach line 25, ThrowException()
is called using a different parameter, "simple".

Continue using Step Into through ThrowException(), and you’ll eventually reach line 57:

throw (new System.Exception());

You use the C# throw keyword to generate an exception. This keyword simply needs to be provided with
a new-initialized exception as a parameter, and it will throw that exception. Here, you are using another
exception from the System namespace, System.Exception.

NOTE When you use throw in a case block, no break; statement is necessary.
throw is enough to end execution of the block.

When you process this statement with Step Into, you find yourself at the general catch block starting
on line 34. There was no match with the earlier catch block starting on line 28, so this one is processed
instead. Stepping through this code takes you through this block, through the finally block, and back into
another loop cycle that calls ThrowException() with a new parameter on line 25. This time the parameter
is "index".

Now ThrowException() generates an exception on line 60:

eTypes[4] = "error";

The eTypes array is global, so you have access to it here. However, here you are attempting
to access the fifth element in the array (remember that counting starts at 0), which generates a
System.IndexOutOfRangeException exception.

This time there is a matched catch block in Main(), and stepping into the code takes you to this block,
starting at line 28. The Console.WriteLine() call in this block writes out the message stored in the excep-
tion using e.Message (you have access to the exception through the parameter of the catch block). Again,
stepping through takes you through the finally block (but not the second catch block, as the exception is
already handled) and back into the loop cycle, again calling ThrowException() on line 25.

When you reach the switch structure in ThrowException(), this time you enter a new try block, starting on
line 63. When you reach line 68, you perform a nested call to ThrowException(), this time with the param-
eter "index". You can use the Step Over button to skip the lines of code that are executed here because
you’ve been through them already. As before, this call generates a System.IndexOutOfRangeException

Error Handling ❘ 181

exception, but this time it’s handled in the nested try...catch...finally structure, the one in
ThrowException(). This structure has no explicit match for this type of exception, so the general catch
block (starting on line 70) deals with it.

As with the earlier exception handling, you now step through this catch block and the associated
finally block, and reach the end of the function call, but with one crucial difference: Although an
exception was thrown, it was also handled — by the code in ThrowException(). This means there is no
exception left to handle in Main(), so you go straight to the finally block, and then the application
terminates.

Listing and Configuring Exceptions
The .NET Framework contains a whole host of exception types, and you are free to throw and handle
any of these in your own code, or even throw them from your code so that they may be caught in more
complex applications. The IDE supplies a dialog for examining and editing the available exceptions,
which can be called up with the Debug ➪ Exceptions menu item (or by pressing Ctrl+D, E). Figure 7-19
shows the dialog (the list will vary if you use VCE, which only includes the second and third entries
shown in Figure 7-19).

FIGURE 7-19

Exceptions are listed by category and .NET library namespace. You can see the exceptions in the System
namespace by expanding the Common Language Runtime Exceptions tab, and then the System tab. The
list includes the System.IndexOutOfRangeException exception you used earlier.

Each exception may be configured using the check boxes shown. You can use the first option, (break
when) Thrown, to cause a break into the debugger even for exceptions that are handled. The second
option enables you to ignore unhandled exceptions, and suffer the consequences. In most cases, this
results in break mode being entered, so you will likely need to do this only in exceptional circumstances.

Typically, the default settings here are fine.

182 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

Notes on Exception Handling
You must always supply catch blocks for more specific exceptions before more general catching. If
you get this wrong, the application will fail to compile. Note also that you can throw exceptions from
within catch blocks, either in the ways used in the previous example or simply by using the following
expression:

throw;

This expression results in the exception handled by the catch block being rethrown. If you throw an
exception in this way, it will not be handled by the current try...catch...finally block, but by parent
code (although the finally block in the nested structure will still execute).

For example, if you changed the try...catch...finally block in ThrowException() as follows:

try
{

Console.WriteLine("ThrowException(\"nested index\") " +
"try block reached.");

Console.WriteLine("ThrowException(\"index\") called.");
ThrowException("index");

}
catch
{

Console.WriteLine("ThrowException(\"nested index\") general"
+ " catch block reached.");

throw;
}
finally
{

Console.WriteLine("ThrowException(\"nested index\") finally"
+ " block reached.");

}

then execution would proceed first to the finally block shown here, then with the matching catch

block in Main(). The resulting console output changes, as shown in Figure 7-20.

FIGURE 7-20

Exercises ❘ 183

This screenshot shows extra lines of output from the Main() function, as the
System.IndexOutOfRangeException is caught in this function.

SUMMARY

This chapter concentrates on techniques that you can use to debug your applications. A variety of
techniques are possible, most of which are available for whatever type of project you are creating, not
just console applications.

You have now covered everything that you need to produce simple console applications, along with the
methods for debugging them. From the next chapter onward, you’ll look at the powerful technique of
object-oriented programming.

EXERCISES

1. ‘‘Using Trace.WriteLine()is preferable to using Debug.WriteLine(), as the Debug version only
works in debug builds.’’ Do you agree with this statement? If so, why?

2. Provide code for a simple application containing a loop that generates an error after 5,000 cycles.
Use a breakpoint to enter break mode just before the error is caused on the 5000th cycle. (Note:
A simple way to generate an error is to attempt to access a nonexistent array element, such as
myArray[1000]in an array with 100 elements.)

3. ‘‘finally code blocks only execute if a catch block isn’t executed.’’ True or false?

4. Given the enumeration data type orientation defined in the following code, write an application
that uses structured exception handling (SEH) to cast a byte-type variable into an orientation-
type variable in a safe way. (Note: You can force exceptions to be thrown using the checked key-
word, an example of which is shown here. This code should be used in your application.)

enum Orientation : byte
{

North = 1,
South = 2,
East = 3,
West = 4

}
myDirection = checked((Orientation)myByte);

Answers to Exercises can be found in Appendix A.

184 ❘ CHAPTER 7 DEBUGGING AND ERROR HANDLING

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Error types Fatal errors cause your application to fail completely, either at com-
pile time (syntax errors) or at runtime. Semantic, or logic, errors are
more insidious, and may cause your application to function incorrectly
or unpredictably.

Outputting debugging
information

You can write code that outputs helpful information to the Output win-
dow to aid debugging in the IDE. You do this with the Debug and Trace

family of functions, where Debug functions are ignored in release builds.
For production applications, you may want to write debugging output to a
log file instead. In VS, you can also use tracepoints to output debugging
information.

Break mode You can enter break mode (essentially a state where the application is
paused) manually, through breakpoints, through assertions, or when unhan-
dled exceptions occur. You can add breakpoints anywhere in your code,
and in VS you can configure breakpoints to only break execution under
specific conditions. When in break mode, you can inspect the content of
variables (with the help of various debug information windows) and step
through code a line at a time to assist you in determining where errors may
be occurring.

Exceptions Exceptions are errors that occur at runtime and that you can trap and pro-
cess programmatically to prevent your application from terminating. There
are many different types of exceptions that might occur when you call func-
tions or manipulate variables. You can also generate exceptions with the
throw keyword.

Exception handling Exceptions that are not handled in your code will cause the application
to terminate. You handle exceptions with try, catch, and finally code
blocks. try blocks mark out a section of code for which exception handling
is enabled. catch blocks consist of code that is executed only if an excep-
tion occurs, and can match specific types of exceptions. You can include
multiple catch blocks. finally blocks specify code that is executed after
exception handling has occurred, or after the try block finishes if no excep-
tion occurs. You can include only a single finally block, and if you include
any catch blocks, then the finally block is optional.

8
Introduction to Object-Oriented
Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What object-oriented programming is

➤ OOP techniques

➤ How Windows Forms applications rely on OOP

At this point in the book, you’ve covered all the basics of C# syntax and programming, and
have learned how to debug your applications. Already, you can assemble usable console appli-
cations. However, to access the real power of the C# language and the .NET Framework, you
need to make use of object-oriented programming (OOP) techniques. In fact, as you will soon
see, you’ve been using these techniques already, though to keep things simple we haven’t focused
on this.

This chapter steers away from code temporarily and focuses instead on the principles behind
OOP. This leads you back into the C# language because it has a symbiotic relationship with
OOP. All of the concepts introduced in this chapter are revisited in later chapters, with illus-
trative code — so don’t panic if you don’t grasp everything in the first read-through of this
material.

To start with, you’ll look at the basics of OOP, which include answering that most fundamental
of questions, ‘‘What is an object?’’ You will quickly find that a lot of terminology related to
OOP can be quite confusing at first, but plenty of explanations are provided. You will also see
that using OOP requires you to look at programming in a different way.

As well as discussing the general principles of OOP, this chapter also looks at an area requiring a
thorough understanding of OOP: Windows Forms applications. This type of application (which
makes use of the Windows environment, with features such as menus, buttons, and so on) pro-
vides plenty of scope for description, and you will be able to observe OOP points effectively in
the Windows Forms environment.

186 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

NOTE OOP as presented in this chapter is really .NET OOP, and some of the
techniques presented here don’t apply to other OOP environments. When
programming in C#, you use .NET-specific OOP, so it makes sense to concentrate
on these aspects.

WHAT IS OBJECT-ORIENTED PROGRAMMING?

Object-oriented programming is a relatively new approach to creating computer applications that
seeks to address many of the problems with traditional programming techniques. The type of pro-
gramming you have seen so far is known as functional (or procedural) programming, often resulting
in so-called monolithic applications, meaning all functionality is contained in a few modules of code
(often just one). With OOP techniques, you often use many more modules of code, each offering specific
functionality, and each module may be isolated or even completely independent of the others. This
modular method of programming gives you much more versatility and provides more opportunity for
code reuse.

To illustrate this further, imagine that a high-performance application on your computer is a top-
of-the-range race car. Written with traditional programming techniques, this sports car is basically a
single unit. If you want to improve this car, then you have to replace the whole unit by sending it back
to the manufacturer and getting their expert mechanics to upgrade it, or by buying a new one. If OOP
techniques are used, however, you can simply buy a new engine from the manufacturer and follow their
instructions to replace it yourself, rather than taking a hacksaw to the bodywork.

In a more traditional application, the flow of execution is often simple and linear. Applications are
loaded into memory, begin executing at point A, end at point B, and are then unloaded from memory.
Along the way various other entities might be used, such as files on storage media, or the capabilities
of a video card, but the main body of the processing occurs in one place. The code along the way
is generally concerned with manipulating data through various mathematical and logical means. The
methods of manipulation are usually quite simple, using basic types such as integers and Boolean values
to build more complex representations of data.

With OOP, things are rarely so linear. Although the same results are achieved, the way of getting there
is often very different. OOP techniques are firmly rooted in the structure and meaning of data, and the
interaction between that data and other data. This usually means putting more effort into the design
stages of a project, but it has the benefit of extensibility. After an agreement is made as to the represen-
tation of a specific type of data, that agreement can be worked into later versions of an application, and
even entirely new applications. The fact that such an agreement exists can reduce development time
dramatically. This explains how the race car example works. The agreement here is how the code for
the ‘‘engine’’ is structured, such that new code (for a new engine) can be substituted with ease, rather
than requiring a trip back to the manufacturer. It also means that the engine, once created, can be used
for other purposes. You could put it in a different car, or use it to power a submarine, for example.

OOP programming often simplifies things by providing an agreement about the approach to data repre-
sentation as well as about the structure and usage of more abstract entities. For example, an agreement
can be made not just on the format of data that should be used to send output to a device such as
a printer, but also on the methods of data exchange with that device, including what instructions it

What Is Object-Oriented Programming? ❘ 187

understands, and so on. In the race car analogy, the agreement would include how the engine connects
to the fuel tank, how it passes drive power to the wheels, and so on.

As the name of the technology suggests, this is achieved using objects.

What Is an Object?
An object is a building block of an OOP application. This building block encapsulates part of the
application, which may be a process, a chunk of data, or a more abstract entity.

In the simplest sense, an object may be very similar to a struct type such as those shown earlier in the
book, containing members of variable and function types. The variables contained make up the data
stored in the object, and the functions contained allow access to the object’s functionality. Slightly more
complex objects might not maintain any data; instead, they can represent a process by containing only
functions. For example, an object representing a printer might be used, which would have functions
enabling control over a printer (so you can print a document, a test page, and so on).

Objects in C# are created from types, just like the variables you’ve seen already. The type of an object
is known by a special name in OOP, its class. You can use class definitions to instantiate objects, which
means creating a real, named instance of a class. The phrases instance of a class and object mean the
same thing here; but class and object mean fundamentally different things.

NOTE The terms class and object are often confused, and it is important to
understand the distinction. It may help to visualize these terms using the earlier
race car analogy. Think of a class as the template for the car, or perhaps the
plans used to build the car. The car itself is an instance of those plans, so it could
be referred to as an object.

In this chapter, you work with classes and objects using Unified Modeling Language (UML) syntax.
UML is designed for modeling applications, from the objects that build them to the operations they
perform to the use cases that are expected. Here, you use only the basics of this language, which are
explained as you go along. UML is a specialized subject to which entire books are devoted, so its more
complex aspects are not covered here.

NOTE VS has a class viewer that is a powerful tool in its own right that can be
used to display classes in a similar way. For simplicity, though, the figures in this
chapter were hand drawn.

Printer

FIGURE 8-1

Figure 8-1 shows a UML representation of your printer class, called Printer. The
class name is shown in the top section of this box (you learn about the bottom two
sections a little later).

188 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

myPrinter : Printer

FIGURE 8-2

Figure 8-2 shows a UML representation of an instance of this Printer class
called myPrinter.

Here, the instance name is shown first in the top section, followed by the
name of its class. The two names are separated by a colon.

Properties and Fields
Properties and fields provide access to the data contained in an object. This object data is what differ-
entiates separate objects because it is possible for different objects of the same class to have different
values stored in properties and fields.

The various pieces of data contained in an object together make up the state of that object. Imagine an
object class that represents a cup of coffee, called CupOfCoffee. When you instantiate this class (that is,
create an object of this class), you must provide it with a state for it to be meaningful. In this case, you
might use properties and fields to enable the code that uses this object to set the type of coffee used,
whether the coffee contains milk and/or sugar, whether the coffee is instant, and so on. A given coffee
cup object would then have a given state, such as ‘‘Columbian filter coffee with milk and two sugars.’’

Both fields and properties are typed, so you can store information in them as string values, as int
values, and so on. However, properties differ from fields in that they don’t provide direct access to
data. Objects can shield users from the nitty-gritty details of their data, which needn’t be represented
on a one-to-one basis in the properties that exist. If you used a field for the number of sugars in a
CupOfCoffee instance, then users could place whatever values they liked in the field, limited only by the
limits of the type used to store this information. If, for example, you used an int to store this data, then
users could use any value between −2147483648 and 2147483647, as shown in Chapter 3. Obviously,
not all values make sense, particularly the negative ones, and some of the large positive amounts might
require an inordinately large cup. If you use a property for this information, then you could limit this
value to, say, a number between 0 and 2.

In general, it is better to provide properties rather than fields for state access because you have more
control over various behaviors. This choice doesn’t affect code that uses object instances because the
syntax for using properties and fields is the same.

Read/write access to properties may also be clearly defined by an object. Certain properties may be
read-only, allowing you to see what they are but not change them (at least not directly). This is often a
useful technique for reading several pieces of state simultaneously. You might have a read-only property
of the CupOfCoffee class called Description, returning a string representing the state of an instance of
this class (such as the string given earlier) when requested. You might be able to assemble the same data
by interrogating several properties, but a property such as this one may save you time and effort. You
might also have write-only properties that operate in a similar way.

As well as this read/write access for properties, you can also specify a different sort of access permission
for both fields and properties, known as accessibility. Accessibility determines which code can access
these members — that is, whether they are available to all code (public), only to code within the class
(private), or should use a more complex scheme (covered in more detail later in the chapter, when it
becomes pertinent). One common practice is to make fields private and provide access to them via
public properties. This means that code within the class has direct access to data stored in the field,
while the public property shields external users from this data and prevents them from placing invalid
content there. Public members are said to be exposed by the class.

What Is Object-Oriented Programming? ❘ 189

One way to visualize this is to equate it with variable scope. Private fields and properties, for example,
can be thought of as local to the object that possesses them, whereas the scope of public fields and
properties also encompasses code external to the object.

CupOfCoffee

+BeanType : string
+Instant : bool
+Milk : bool
+Sugar : byte
+Description : string

FIGURE 8-3

In the UML representation of a class, you use the second section to display
properties and fields, as shown in Figure 8-3.

This is a representation of the CupOfCoffee class, with five members (prop-
erties or fields, because no distinction is made in UML) defined as discussed
earlier. Each of the entries contains the following information:

➤ Accessibility: A + symbol is used for a public member, a − symbol is
used for a private member. In general, though, private members are
not shown in the diagrams in this chapter because this information
is internal to the class. No information is provided as to read/write
access.

➤ The member name.

➤ The type of the member.

A colon is used to separate the member names and types.

Methods
Method is the term used to refer to functions exposed by objects. These may be called in the same way
as any other function and may use return values and parameters in the same way — you looked at
functions in detail in Chapter 6.

Methods are used to provide access to the object’s functionality. Like fields and properties, they can be
public or private, restricting access to external code as necessary. They often make use of an object’s
state to affect their operations, and have access to private members, such as private fields, if required.
For example, the CupOfCoffee class might define a method called AddSugar(), which would provide
a more readable syntax for incrementing the amount of sugar than setting the corresponding Sugar

property.

CupOfCoffee

+BeanType : string
+Instant : bool
+Milk : bool
+Sugar : byte
+Description : string

+AddSugar(in amount : byte) : byte

FIGURE 8-4

In UML, class boxes show methods in the third section, as shown
in Figure 8-4.

The syntax here is similar to that for fields and properties, except
that the type shown at the end is the return type, and method
parameters are shown. Each parameter is displayed in UML with
one of the following identifiers: in, out, or inout. These are used
to signify the direction of data flow, where out and inout roughly
correspond to the use of the C# keywords out and ref described
in Chapter 6. in roughly corresponds to the default C# behavior,
where neither the out nor ref keyword is used.

Everything’s an Object
At this point, it’s time to come clean: You have been using objects, properties, and methods throughout
this book. In fact, everything in C# and the .NET Framework is an object! The Main() function in a

190 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

console application is a method of a class. Every variable type you’ve looked at is a class. Every com-
mand you have used has been a property or a method, such as <String>.Length, <String>.ToUpper(),
and so on. (The period character here separates the object instance’s name from the property or method
name, and methods are shown with () at the end to differentiate them from properties.)

Objects really are everywhere, and the syntax to use them is often very simple. It has certainly been
simple enough for you to concentrate on some of the more fundamental aspects of C# up until now.
From this point on, you’ll begin to look at objects in detail. Bear in mind that the concepts introduced
here have far-reaching consequences — applying even to that simple little int variable you’ve been
happily playing around with.

The Life Cycle of an Object
Every object has a clearly defined life cycle. Apart from the normal state of ‘‘being in use,’’ this life cycle
includes two important stages:

➤ Construction: When an object is first instantiated it needs to be initialized. This initialization
is known as construction and is carried out by a constructor function, often referred to simply
as a constructor for convenience.

➤ Destruction: When an object is destroyed, there are often some clean-up tasks to perform,
such as freeing memory. This is the job of a destructor function, also known as a destructor.

Constructors
Basic initialization of an object is automatic. For example, you don’t have to worry about finding the
memory to fit a new object into. However, at times you will want to perform additional tasks during
an object’s initialization stage, such as initializing the data stored by an object. A constructor is what
you use to do this.

All class definitions contain at least one constructor. These constructors may include a default construc-
tor, which is a parameterless method with the same name as the class itself. A class definition might also
include several constructor methods with parameters, known as nondefault constructors. These enable
code that instantiates an object to do so in many ways, perhaps providing initial values for data stored
in the object.

In C#, constructors are called using the new keyword. For example, you could instantiate a CupOfCoffee

object using its default constructor in the following way:

CupOfCoffee myCup = new CupOfCoffee();

Objects may also be instantiated using nondefault constructors. For example, the CupOfCoffee class
might have a nondefault constructor that uses a parameter to set the bean type at instantiation:

CupOfCoffee myCup = new CupOfCoffee("Blue Mountain");

Constructors, like fields, properties, and methods, may be public or private. Code external to a class
can’t instantiate an object using a private constructor; it must use a public constructor. In this way, you
can, for example, force users of your classes to use a nondefault constructor (by making the default
constructor private).

What Is Object-Oriented Programming? ❘ 191

Some classes have no public constructors, meaning it is impossible for external code to instantiate them
(they are said to be noncreatable). However, that doesn’t make them completely useless, as you will see
shortly.

Destructors
Destructors are used by the .NET Framework to clean up after objects. In general, you don’t have to
provide code for a destructor method; instead, the default operation does the work for you. However,
you can provide specific instructions if anything important needs to be done before the object instance
is deleted.

When a variable goes out of scope, for example, it may not be accessible from your code, but it may
still exist somewhere in your computer’s memory. Only when the .NET runtime performs its garbage
collection cleanup is the instance completely destroyed.

NOTE Don’t rely on the destructor to free up resources used by an object
instance, as this may occur long after the object is of no further use to you. If the
resources in use are critical, then this can cause problems. However, there is a
solution to this — described in ‘‘Disposable Objects’’ later in this chapter.

Static and Instance Class Members
As well as having members such as properties, methods, and fields that are specific to object instances, it
is also possible to have static (also known as shared, particularly to our Visual Basic brethren) members,
which may be methods, properties, or fields. Static members are shared between instances of a class,
so they can be thought of as global for objects of a given class. Static properties and fields enable you
to access data that is independent of any object instances, and static methods enable you to execute
commands related to the class type but not specific to object instances. When using static members, in
fact, you don’t even need to instantiate an object.

MyClass

+InstanceProperty : int
+StaticProperty : int

+InstanceMethod() : void
+StaticMethod() : void

FIGURE 8-5

For example, the Console.WriteLine() and Convert.ToString()

methods you have been using are static. At no point do you need
to instantiate the Console or Convert classes (indeed, if you try,
you’ll find that you can’t, as the constructors of these classes aren’t
publicly accessible, as discussed earlier).

There are many situations such as these where static properties and
methods can be used to good effect. For example, you might use a
static property to keep track of how many instances of a class have
been created. In UML syntax, static members of classes appear with
underlining, as shown in Figure 8-5.

Static Constructors
When using static members in a class, you may want to initialize these members beforehand. You can
supply a static member with an initial value as part of its declaration, but sometimes you may want to

192 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

perform a more complex initialization, or perhaps perform some operations before assigning values or
allowing static methods to execute.

You can use a static constructor to perform initialization tasks of this type. A class can
have a single static constructor, which must have no access modifiers and cannot have any
parameters. A static constructor can never be called directly; instead, it is executed when one
of the following occurs:

➤ An instance of the class containing the static constructor is created.

➤ A static member of the class containing the static constructor is accessed.

In both cases, the static constructor is called first, before the class is instantiated or static members
accessed. No matter how many instances of a class are created, its static constructor will only be called
once. To differentiate between static constructors and the constructors described earlier in this chapter,
all nonstatic constructors are also known as instance constructors.

Static Classes
Often, you will want to use classes that contain only static members and cannot be used to instantiate
objects (such as Console). A shorthand way to do this, rather than make the constructors of the class
private, is to use a static class. A static class can contain only static members and can’t have instance
constructors, since by implication it can never be instantiated. Static classes can, however, have a static
constructor, as described in the preceding section.

NOTE If you are completely new to OOP, you might like to take a break before
embarking on the remainder of this chapter. It is important to fully grasp the
fundamentals before learning about the more complicated aspects of this
methodology.

OOP TECHNIQUES

Now that you know the basics, and what objects are and how they work, spend some time looking at
some of the other features of objects. This section covers all of the following:

➤ Interfaces

➤ Inheritance

➤ Polymorphism

➤ Relationships between objects

➤ Operator overloading

➤ Events

➤ Reference versus value types

OOP Techniques ❘ 193

Interfaces
An interface is a collection of public instance (that is, nonstatic) methods and properties that are
grouped together to encapsulate specific functionality. After an interface has been defined, you can
implement it in a class. This means that the class will then support all of the properties and members
specified by the interface.

Interfaces cannot exist on their own. You can’t ‘‘instantiate an interface’’ as you can a class. In addition,
interfaces cannot contain any code that implements its members; it just defines the members themselves.
The implementation must come from classes that implement the interface.

In the earlier coffee example, you might group together many of the more general-purpose properties
and methods into an interface, such as AddSugar(), Milk, Sugar, and Instant. You could call this inter-
face something like IHotDrink (interface names are normally prefixed with a capital I). You could use
this interface on other objects, perhaps those of a CupOfTea class. You could therefore treat these objects
in a similar way, and they may still have their own individual properties (BeanType for CupOfCoffee and
LeafType for CupOfTea, for example).

Interfaces implemented on objects in UML are shown using a lollipop syntax. In Figure 8-6, members
of IHotDrink are split into a separate box using class-like syntax.

«Interface»
IHotDrink

+Instant : bool
+Milk : bool
+Sugar : byte
+Description : string

+AddSugar(in amount : byte) : byte

CupOfCoffee

+BeanType : string

CupOfTea

+LeafType : string

IHotDrink

IHotDrink

FIGURE 8-6

A class can support multiple interfaces, and multiple classes can support the same interface. The concept
of an interface, therefore, makes life easier for users and other developers. For example, you might have
some code that uses an object with a certain interface. Provided that you don’t use other properties and
methods of this object, it is possible to replace one object with another (code using the IHotDrink

interface shown earlier could work with both CupOfCoffee and CupOfTea instances, for example). In
addition, the developer of the object itself could supply you with an updated version of an object, and
as long as it supports an interface already in use it would be easy to use this new version in your code.

Once an interface is published — that is, it has been made available to other developers or end
users — it is good practice not to change it. One way of thinking about this is to imagine the interface
as a contract between class creators and class consumers. You are effectively saying, ‘‘Every class
that supports interface X will support these methods and properties.’’ If the interface changes later,

194 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

perhaps due to an upgrade of the underlying code, this could cause consumers of that interface to run
it incorrectly, or even fail. Instead, you should create a new interface that extends the old one, perhaps
including a version number, such as X2. This has become the standard way of doing things, and you
are likely to come across numbered interfaces frequently.

Disposable Objects
One interface of particular interest is IDisposable. An object that supports the IDisposable interface
must implement the Dispose() method — that is, it must provide code for this method. This method
can be called when an object is no longer needed (just before it goes out of scope, for example) and
should be used to free up any critical resources that might otherwise linger until the destructor method
is called on garbage collection. This gives you more control over the resources used by your objects.

C# enables you to use a structure that makes excellent use of this method. The using keyword enables
you to initialize an object that uses critical resources in a code block, where Dispose() is automatically
called at the end of the code block:

<ClassName> <VariableName> = new <ClassName>();

...

using (<VariableName>)
{

...
}

Alternatively, you can instantiate the object <VariableName> as part of the using statement:

using (<ClassName> <VariableName> = new <ClassName>())
{

...
}

In both cases, the variable <VariableName> will be usable within the using code block and will be dis-
posed of automatically at the end (that is, Dispose() is called when the code block finishes executing).

Inheritance
Inheritance is one of the most important features of OOP. Any class may inherit from another, which
means that it will have all the members of the class from which it inherits. In OOP terminology, the
class being inherited from (derived from) is the parent class (also known as the base class). Classes in
C# may derive only from a single base class directly, although of course that base class may have a base
class of its own, and so on.

Inheritance enables you to extend or create more specific classes from a single, more generic base class.
For example, consider a class that represents a farm animal (as used by ace octogenarian developer
Old MacDonald in his livestock application). This class might be called Animal and possess methods
such as EatFood() or Breed(). You could create a derived class called Cow, which would support all of
these methods but might also supply its own, such as Moo() and SupplyMilk(). You could also create
another derived class, Chicken, with Cluck() and LayEgg()methods.

OOP Techniques ❘ 195

In UML, you indicate inheritance using arrows, as shown in Figure 8-7.

NOTE In Figure 8-7, the member return types are omitted for clarity.

Animal

+EatFood()
+Breed()

Chicken

+Cluck()
+LayEgg()

Cow

+Moo()
+SupplyMilk()

FIGURE 8-7

When using inheritance from a base class, the question
of member accessibility becomes an important one. Pri-
vate members of the base class are not accessible from
a derived class, but public members are. However, pub-
lic members are accessible to both the derived class and
external code. Therefore, if you could use only these two
levels of accessibility, you couldn’t have a member that
was accessible both by the base class and the derived class
but not external code.

To get around this, there is a third type of accessibility,
protected, in which only derived classes have access to a
member. As far as external code is aware, this is identical
to a private member — it doesn’t have access in either
case.

As well as defining the protection level of a member, you can also define an inheritance behavior for it.
Members of a base class may be virtual, which means that the member can be overridden by the class
that inherits it. Therefore, the derived class may provide an alternative implementation for the member.
This alternative implementation doesn’t delete the original code, which is still accessible from within
the class, but it does shield it from external code. If no alternative is supplied, then any external code
that uses the member through the derived class automatically uses the base class implementation of the
member.

NOTE Virtual members cannot be private because that would cause a
paradox — it is impossible to say that a member can be overridden by a derived
class at the same time you say that it is inaccessible from the derived class.

In the animals example, you could make EatFood() virtual and provide a new implementation
for it on any derived class — for example, just on the Cow class, as shown in Figure 8-8. This
displays the EatFood() method on the Animal and Cow classes to signify that they have their own
implementations.

Base classes may also be defined as abstract classes. An abstract class can’t be instantiated directly; to
use it you need to inherit from it. Abstract classes may have abstract members, which have no imple-
mentation in the base class, so an implementation must be supplied in the derived class. If Animal were
an abstract class, then the UML would look as shown in Figure 8-9.

196 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

Animal

+EatFood()
+Breed()

Chicken

+Cluck()
+LayEgg()

Cow

+Moo()
+SupplyMilk()
+EatFood()

FIGURE 8-8

+EatFood()
+Breed()

Chicken

+Cluck()
+LayEgg()
+EatFood()
+Breed()

Cow

+Moo()
+SupplyMilk()
+EatFood()
+Breed()

Animal

FIGURE 8-9

NOTE Abstract class names are shown in italics (or with a dashed line for their
boxes).

In Figure 8-9, both EatFood()and Breed()are shown in the derived classes Chicken and Cow, implying
that these methods are either abstract (and, therefore, must be overridden in derived classes) or virtual
(and, in this case, have been overridden in Chicken and Cow). Of course, abstract base classes can
provide implementation of members, which is very common. The fact that you can’t instantiate an
abstract class doesn’t mean you can’t encapsulate functionality in it.

Finally, a class may be sealed. A sealed class may not be used as a base class, so no derived classes are
possible.

C# provides a common base class for all objects called object (which is an alias for the System.Object

class in the .NET Framework). You take a closer look at this class in Chapter 9.

NOTE Interfaces, described earlier in this chapter, may also inherit from other
interfaces. Unlike classes, interfaces may inherit from multiple base interfaces (in
the same way that classes can support multiple interfaces).

Polymorphism
One consequence of inheritance is that classes deriving from a base class have an overlap in the methods
and properties that they expose. Because of this, it is often possible to treat objects instantiated from
classes with a base type in common using identical syntax. For example, if a base class called Animal

has a method called EatFood(), then the syntax for calling this method from the derived classes Cow
and Chicken will be similar:

OOP Techniques ❘ 197

Cow myCow = new Cow();
Chicken myChicken = new Chicken();
myCow.EatFood();
myChicken.EatFood();

Polymorphism takes this a step further. You can assign a variable that is of a derived type to a variable
of one the base types, as shown here:

Animal myAnimal = myCow;

No casting is required for this. You can then call methods of the base class through this variable:

myAnimal.EatFood();

This results in the implementation of EatFood() in the derived class being called. Note that
you can’t call methods defined on the derived class in the same way. The following code won’t
work:

myAnimal.Moo();

However, you can cast a base type variable into a derived class variable and call the method of the
derived class that way:

Cow myNewCow = (Cow)myAnimal;
myNewCow.Moo();

This casting causes an exception to be raised if the type of the original variable was anything other than
Cow or a class derived from Cow. There are ways to determine the type of an object, which you’ll learn
in the next chapter.

Polymorphism is an extremely useful technique for performing tasks with a minimum of code on dif-
ferent objects descending from a single class. It isn’t just classes sharing the same parent class that can
make use of polymorphism. It is also possible to treat, say, a child and a grandchild class in the same
way, as long as there is a common class in their inheritance hierarchy.

As a further note here, remember that in C# all classes derive from the base class object at the root of
their inheritance hierarchies. It is therefore possible to treat all objects as instances of the class object.
This is how Console.WriteLine()is able to process an almost infinite number of parameter combina-
tions when building strings. Every parameter after the first is treated as an object instance, allowing
output from any object to be written to the screen. To do this, the method ToString() (a member
of object) is called. You can override this method to provide an implementation suitable for your
class, or simply use the default, which returns the class name (qualified according to any namespaces
it is in).

Interface Polymorphism
Although you can’t instantiate interfaces in the same way as objects, you can have a variable of an
interface type. You can then use the variable to access methods and properties exposed by this interface
on objects that support it.

For example, suppose that instead of an Animal base class being used to supply the EatFood() method,
you place this EatFood() method on an interface called IConsume. The Cow and Chicken classes could
both support this interface, the only difference being that they are forced to provide an implementation

198 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

for EatFood() because interfaces contain no implementation. You can then access this method using
code such as the following:

Cow myCow = new Cow();
Chicken myChicken = new Chicken();
IConsume consumeInterface;
consumeInterface = myCow;
consumeInterface.EatFood();
consumeInterface = myChicken;
consumeInterface.EatFood();

This provides a simple way for multiple objects to be called in the same manner, and it doesn’t rely on
a common base class. For example, this interface could be implemented by a class called VenusFlyTrap

that derives from Vegetable instead of Animal:

VenusFlyTrap myVenusFlyTrap = new VenusFlyTrap();
IConsume consumeInterface;
consumeInterface = myVenusFlyTrap;
consumeInterface.EatFood();

In the preceding code snippets, calling consumeInterface.EatFood() results in the EatFood() method
of the Cow, Chicken, or VenusFlyTrap class being called, depending on which instance has been assigned
to the interface type variable.

Note here that derived classes inherit the interfaces supported by their base classes. In the first of the
preceding examples, it may be that either Animal supports IConsume or that both Cow and Chicken sup-
port IConsume. Remember that classes with a base class in common do not necessarily have interfaces
in common, and vice versa.

Relationships Between Objects
Inheritance is a simple relationship between objects that results in a base class being completely exposed
by a derived class, where the derived class may also have some access to the inner workings of its base
class (through protected members). There are other situations in which relationships between objects
become important.

This section takes a brief look at the following:

➤ Containment: One class contains another. This is similar to inheritance but allows the con-
taining class to control access to members of the contained class and even perform additional
processing before using members of a contained class.

➤ Collections: One class acts as a container for multiple instances of another class. This is simi-
lar to having arrays of objects, but collections have additional functionality, including index-
ing, sorting, resizing, and more.

Containment
Containment is simple to achieve by using a member field to hold an object instance. This member field
might be public, in which case users of the container object have access to its exposed methods and
properties, much like with inheritance. However, you won’t have access to the internals of the class via
the derived class, as you would with inheritance.

OOP Techniques ❘ 199

Udder

Cow

+Milk()

+Moo()
+SupplyMilk()

−containedUdder : Udder

1

1

FIGURE 8-10

Alternatively, you can make the contained member object a
private member. If you do this, then none of its members will
be accessible directly by users, even if they are public. Instead,
you can provide access to these members using members of
the containing class. This means that you have complete con-
trol over which members of the contained class to expose, if
any, and you can perform additional processing in the con-
taining class members before accessing the contained class
members.

For example, a Cow class might contain an Udder class with the
public method Milk(). The Cow object could call this method
as required, perhaps as part of its SupplyMilk() method, but
these details will not be apparent (or important) to users of the
Cow object.

Contained classes may be visualized in UML using an association line. For simple containment, you
label the ends of the lines with 1s, showing a one-to-one relationship (one Cow instance will contain one
Udder instance). You can also show the contained Udder class instance as a private field of the Cow class
for clarity (see Figure 8-10).

Collections
Chapter 5 described how you can use arrays to store multiple variables of the same type. This also
works for objects (remember, the variable types you have been using are really objects, so this is no real
surprise). Here’s an example:

Animal[] animals = new Animal[5];

A collection is basically an array with bells and whistles. Collections are implemented as classes in much
the same way as other objects. They are often named in the plural form of the objects they store — for
example, a class called Animals might contain a collection of Animal objects.

Animal

Animals

0..*

1

FIGURE 8-11

The main difference from arrays is that collections usually imple-
ment additional functionality, such as Add() and Remove()

methods to add and remove items to and from the collection.
There is also usually an Item property that returns an object
based on its index. More often than not this property is imple-
mented in such a way as to allow more sophisticated access. For
example, it would be possible to design Animals so that a given
Animal object could be accessed by its name.

In UML you can visualize this as shown in Figure 8-11.

Members are not included in Figure 8-11 because it’s the rela-
tionship that is being illustrated. The numbers on the ends of
the connecting lines show that one Animals object will contain
zero or more Animal objects. You’ll take a more detailed look at
collections in Chapter 11.

200 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

Operator Overloading
Earlier in the book, you saw how operators can be used to manipulate simple variable types. There
are times when it is logical to use operators with objects instantiated from your own classes. This is
possible because classes can contain instructions regarding how operators should be treated.

For example, you might add a new property to the Animal class called Weight. You could then compare
animal weights using the following:

if (cowA.Weight > cowB.Weight)
{

...
}

Using operator overloading, you can provide logic that uses the Weight property implicitly in your
code, so that you can write code such as the following:

if (cowA > cowB)
{

...
}

Here, the greater-than operator (>) has been overloaded. An overloaded operator is one for which you
have written the code to perform the operation involved — this code is added to the class definition
of one of the classes that it operates on. In the preceding example, you are using two Cow objects, so
the operator overload definition is contained in the Cow class. You can also overload operators to work
with different classes in the same way, where one (or both) of the class definitions contains the code to
achieve this.

You can only overload existing C# operators in this way; you can’t create new ones. However, you can
provide implementations for both unary and binary usages of operators such as +. You’ll see how to do
this in C# in Chapter 13.

Events
Objects may raise (and consume) events as part of their processing. Events are important occurrences
that you can act on in other parts of code, similar to (but more powerful than) exceptions. You might,
for example, want some specific code to execute when an Animal object is added to an Animals col-
lection, where that code isn’t part of either the Animals class or the code that calls the Add() method.
To do this, you need to add an event handler to your code, which is a special kind of function that is
called when the event occurs. You also need to configure this handler to listen for the event you are
interested in.

You can create event-driven applications, which are far more prolific than you might think. For
example, bear in mind that Windows-based applications are entirely dependent on events. Every button
click or scroll bar drag you perform is achieved through event handling, as the events are triggered by
the mouse or keyboard.

Later in this chapter you will see how this works in Windows applications, and there is a more in-depth
discussion of events in Chapter 13.

OOP in Windows Applications ❘ 201

Reference Types Versus Value Types
Data in C# is stored in a variable in one of two ways, depending on the type of the variable. This type
will fall into one of two categories: reference or value. The difference is as follows:

➤ Value types store themselves and their content in one place in memory.

➤ Reference types hold a reference to somewhere else in memory (called the heap) where con-
tent is stored.

In fact, you don’t have to worry about this too much when using C#. So far, you’ve used string vari-
ables (which are reference types) and other simple variables (most of which are value types, such as
int) in pretty much the same way.

One key difference between value types and reference types is that value types always contain a value,
whereas reference types can be null, reflecting the fact that they contain no value. It is, however, pos-
sible to create a value type that behaves like a reference type in this respect (that is, it can be null)
by using nullable types, which are a form of generic. Generics are an advanced technique described in
Chapter 12.

The only simple types that are reference types are string and object, although arrays are implic-
itly reference types as well. Every class you create will be a reference type, which is why this is
stressed here.

NOTE The key difference between struct types and classes is that struct types
are value types. The fact that struct types and classes are similar may have
occurred to you, particularly when you saw, in Chapter 6, how you can use
functions in struct types. You’ll learn more about this in Chapter 9.

OOP IN WINDOWS APPLICATIONS

In Chapter 2, you created a simple Windows application in C#. Windows applications are
heavily dependent on OOP techniques, and this section takes a look at this to illustrate some
of the points made in this chapter. The following Try It Out enables you to work through a
simple example.

TRY IT OUT Objects in Action

1. Create a new Windows application called Ch08Ex01 and save it in the
directory C:\BegVCSharp\Chapter08.

2. Add a new Button control using the Toolbox, and position it in the center of Form1, as shown in
Figure 8-12.

202 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

FIGURE 8-12

3. Double-click on the button to add code for a mouse click. Modify the code that appears as
follows:

private void button1_Click(object sender, System.EventArgs e)
{

((Button)sender).Text = "Clicked!";
Button newButton = new Button();
newButton.Text = "New Button!";
newButton.Click += new EventHandler(newButton_Click);
Controls.Add(newButton);

}

private void newButton_Click(object sender, System.EventArgs e)
{

((Button)sender).Text = "Clicked!!";
}

}
Code snippet Ch08Ex01“Form1.cs

4. Run the application. The form is shown in Figure 8-13.

FIGURE 8-13

OOP in Windows Applications ❘ 203

5. Click the button marked button1. The display changes (see Figure 8-14).

FIGURE 8-14

6. Click the button marked New Button! The display changes (see Figure 8-15).

FIGURE 8-15

How It Works

By adding just a few lines of code you’ve created a Windows application that does something, while at the
same time illustrating some OOP techniques in C#. The phrase ‘‘everything’s an object’’ is even more true
when it comes to Windows applications. From the form that runs to the controls on the form, you need
to make use of OOP techniques all the time. This example highlights some of the concepts you looked at
earlier in this chapter to show how everything fits together.

The first thing you did in your application was add a new button to the Form1 form. The button is an
object; it’s an instance of a class called Button, and the form is an instance of a class called Form1, which is
derived from a class called Form. Next, by double-clicking the button, you added an event handler to listen
for the Click event that the Button class exposes. The event handler is added to the code for the Form1

object that encapsulates your application, as a private method:

private void button1_Click(object sender, System.EventArgs e)
{
}

204 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

The code uses the C# keyword private as a qualifier. Don’t worry too much about that for now; the next
chapter explains the C# code required for the OOP techniques covered in this chapter.

The first line of code you added changes the text on the button that is clicked. This makes use of polymor-
phism, described earlier in the chapter. The Button object representing the button that you click is sent to
the event handler as an object parameter, which you cast into a Button type (this is possible because the
Button object inherits from System.Object, which is the .NET class that object is an alias for). You then
change the Text property of the object to change the text displayed:

((Button)sender).Text = "Clicked!";

Next, you create a new Button object with the new keyword (note that namespaces are set up in this
project to enable this simple syntax; otherwise, you’d need to use the fully qualified name of this object,
System.Windows.Forms.Button):

Button newButton = new Button();
newButton.Text = "New Button!";

Elsewhere in the code a new event handler is added, which you use to respond to the Click event generated
by the new button:

private void newButton_Click(object sender, System.EventArgs e)
{

((Button)sender).Text = "Clicked!!";
}

You register the event handler as a listener for the Click event, using overloaded operator syntax. Along
the way, you create a new EventHandler object using a nondefault constructor, with the name of the new
event handler function:

newButton.Click += new EventHandler(newButton_Click);

Finally, you make use of the Controls property. It is an object representing a collection of all the controls
on your form, and you use its Add() method to add your new button to the form:

Controls.Add(newButton);

The Controls property illustrates that properties don’t have to be simple types such as strings or integers,
but can be any kind of object. This short example used almost all of the techniques introduced in this
chapter. As you can see, OOP programming needn’t be complicated — it just requires a different point of
view to get right.

SUMMARY

This chapter has presented a full description of object-oriented techniques. You have worked through
this in the context of C# programming, but this has mainly been illustrative. The vast majority of this
chapter is relevant to OOP in any language.

Exercises ❘ 205

You first covered the basics, such as what is meant by the term object and how an object is an instance
of a class. Next, you learned how objects can have various members, such as fields, properties, and
methods. These members can have restricted accessibility, and you learned what is meant by public
and private members. Later, you saw that members can also be protected, as well as being virtual
and abstract (where abstract methods are only permissible for abstract classes). You also learned the
difference between static (shared) and instance members, and why you might want to use static classes.

Next, you took a quick look at the life cycle of an object, including how constructors are used in object
creation, and how destructors are used in object deletion. Later, after examining groups of members
in interfaces, you looked at more advanced object destruction with disposable objects supporting the
IDisposable interface.

Most of the remainder of the chapter covered the features of OOP, many of which you’ll explore in
more depth in the chapters that follow. You looked at inheritance, whereby classes inherit from base
classes; two versions of polymorphism, through base classes and shared interfaces; and how objects
can be used to contain one or more other objects (through containment and collections). Finally, you
saw how operator overloading can be used to simplify the syntax of object usage and how objects often
raise events.

The last part of this chapter demonstrated much of the theory in this chapter, using a Windows appli-
cation example. The next chapter looks at defining classes using C#.

EXERCISES

1. Which of the following are real levels of accessibility in OOP?

a. Friend

b. Public

c. Secure

d. Private

e. Protected

f. Loose

g. Wildcard

2. ‘‘You must call the destructor of an object manually or it will waste memory.’’ True or false?

3. Do you need to create an object to call a static method of its class?

continues

206 ❘ CHAPTER 8 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

4. Draw a UML diagram similar to the ones shown in this chapter for the following classes and
interface:

➤ An abstract class called HotDrink that has the methods Drink, AddMilk, and AddSugar,
and the properties Milk and Sugar

➤ An interface called ICup that has the methods Refill and Wash, and the properties Color

and Volume

➤ A class called CupOfCoffee that derives from HotDrink, supports the ICup interface, and
has the additional property BeanType

➤ A class called CupOfTea that derives from HotDrink, supports the ICup interface, and has
the additional property LeafType

5. Write some code for a function that will accept either of the two cup objects in the preceding
example as a parameter. The function should call the AddMilk, Drink, and Wash methods for any
cup object it is passed.

Answers to Exercises can be found in Appendix A.

Exercises ❘ 207

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Objects and classes Objects are the building blocks of OOP applications. Classes are type
definitions that are used to instantiate objects. Objects may contain
data and/or expose operations that other code can use. Data can be
made available to external code through properties, and operations
can be made available to external code through methods. Both prop-
erties and methods are referred to as class members. Properties can
allow read access, write access, or both. Class members can be public
(available to all code), or private (available only to code inside the class
definition). In .NET, everything is an object.

Object life cycle An object is instantiated by calling one of its constructors. When an
object is no longer needed, it is destroyed by executing its destructor.
To clean up after an object, it is often necessary to manually dispose
of it.

Static and instance members Instance members are only available on object instances of a class.
Static members are only available through the class definition directly,
and are not associated with an instance.

Interfaces Interfaces are a collection of public properties and methods that
may be implemented on a class. An instance-typed variable can be
assigned a value of any object whose class definition implements
that interface. Only the interface-defined members are then available
through the variable.

Inheritance Inheritance is the mechanism through which one class definition
can derive from another. A class inherits members from its parent,
of which it can have only one. Child classes cannot access private
members in its parent, but it is possible to define protected members
that are available only within a class or classes that derive from that
class. Child classes can override members that are defined as virtual
in a parent class. All classes have an inheritance chain that ends in
System.Object, which has the alias object in C#.

Polymorphism All objects instantiated from a derived class can be treated as if they
were instances of a parent class.

Object relationships and
features

Objects can contain other objects, and can also represent collec-
tions of other objects. To manipulate objects in expressions, you may
often need to define how operators work with objects, through oper-
ator overloading. Objects can expose events that are triggered due
to some internal process, and client code can respond to events by
providing event handlers.

9
Defining Classes

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to define classes and interfaces in C#

➤ How to use the keywords that control accessibility and inheritance

➤ What the System.Object class is and its role in class definitions

➤ How to use some helpful tools provided by VS and VCE

➤ How to define class libraries

➤ The differences and similarities between interfaces and
abstract classes

➤ More about struct types

➤ Some important information about copying objects

In Chapter 8, you looked at the features of object-oriented programming (OOP). In this chapter,
you put theory into practice and define classes in C#. You won’t go so far as to define class mem-
bers in this chapter, but will concentrate on the class definitions themselves. That may sound a
little limiting, but don’t worry — there’s plenty here to get your teeth into!

To begin, you explore the basic class definition syntax, the keywords you can use to determine
class accessibility and more, and the way in which you can specify inheritance. You also look at
interface definitions because they are similar to class definitions in many ways.

The rest of the chapter covers various related topics that apply when defining classes in C#.

CLASS DEFINITIONS IN C#

C# uses the class keyword to define classes:

class MyClass
{

// Class members.
}

210 ❘ CHAPTER 9 DEFINING CLASSES

This code defines a class called MyClass. Once you have defined a class, you are free to instantiate
it anywhere else in your project that has access to the definition. By default, classes are declared as
internal, meaning that only code in the current project will have access to them. You can specify this
explicitly using the internal access modifier keyword as follows (although you don’t have to):

internal class MyClass
{

// Class members.
}

Alternatively, you can specify that the class is public and should also be accessible to code in other
projects. To do so, you use the public keyword:

public class MyClass
{

// Class members.
}

NOTE Classes declared in their own right like this cannot be private or
protected, but you can use these modifiers to declare classes as class members,
as shown in the next chapter.

In addition to these two access modifier keywords, you can also specify that the class is either abstract
(cannot be instantiated, only inherited, and can have abstract members) or sealed (cannot be inherited).
To do this, you use one of the two mutually exclusive keywords, abstract or sealed. An abstract class
is declared as follows:

public abstract class MyClass
{

// Class members, may be abstract.
}

Here, MyClass is a public abstract class, while internal abstract classes are also possible.

Sealed classes are declared as follows:
public sealed class MyClass
{

// Class members.
}

As with abstract classes, sealed classes may be public or internal.

Inheritance can also be specified in the class definition. You simply put a colon after the class name,
followed by the base class name:

public class MyClass : MyBase
{

// Class members.
}

Only one base class is permitted in C# class definitions; and if you inherit from an abstract class, you
must implement all the abstract members inherited (unless the derived class is also abstract).

Class Definitions in C# ❘ 211

The compiler does not allow a derived class to be more accessible than its base class. This means that
an internal class can inherit from a public base, but a public class can’t inherit from an internal base.
This code is legal:

public class MyBase
{

// Class members.
}

internal class MyClass : MyBase
{

// Class members.
}

The following code won’t compile:

internal class MyBase
{

// Class members.
}

public class MyClass : MyBase
{

// Class members.
}

If no base class is used, the class inherits only from the base class System.Object (which has the alias
object in C#). Ultimately, all classes have System.Object at the root of their inheritance hierarchy.
You will take a closer look at this fundamental class a little later.

In addition to specifying base classes in this way, you can also specify interfaces supported after the
colon character. If a base class is specified, it must be the first thing after the colon, with interfaces
specified afterward. If no base class is specified, you specify the interfaces immediately after the colon.
Commas must be used to separate the base class name (if there is one) and the interface names from
one another.

For example, you could add an interface to MyClass as follows:

public class MyClass : IMyInterface
{

// Class members.
}

All interface members must be implemented in any class that supports the interface, although you
can provide an ‘‘empty’’ implementation (with no functional code) if you don’t want to do anything
with a given interface member, and you can implement interface members as abstract in abstract
classes.

The following declaration is invalid because the base class MyBase isn’t the first entry in the inheritance
list:

public class MyClass : IMyInterface, MyBase
{

// Class members.
}

212 ❘ CHAPTER 9 DEFINING CLASSES

The correct way to specify a base class and an interface is as follows:

public class MyClass : MyBase, IMyInterface
{

// Class members.
}

Remember that multiple interfaces are possible, so the following is also valid:

public class MyClass : MyBase, IMyInterface, IMySecondInterface
{

// Class members.
}

The following table shows the allowed access modifier combinations for class definitions.

MODIFIER DESCRIPTION

none or internal Class is accessible only from within the current project

public Class is accessible from anywhere

abstract or internal
abstract

Class is accessible only from within the current project, and cannot be
instantiated, only derived from

public abstract Class is accessible from anywhere, and cannot be instantiated, only
derived from

sealed or internal sealed Class is accessible only from within the current project, and cannot be
derived from, only instantiated

public sealed Class is accessible from anywhere, and cannot be derived from, only
instantiated

Interface Definitions
Interfaces are declared in a similar way to classes, but using the interface keyword, rather than class:

interface IMyInterface
{

// Interface members.
}

The access modifier keywords public and internal are used in the same way; and as with classes,
interfaces are defined as internal by default. To make an interface publicly accessible, you must use the
public keyword:

public interface IMyInterface
{

// Interface members.
}

Class Definitions in C# ❘ 213

The keywords abstract and sealed are not allowed because neither modifier makes sense in the con-
text of interfaces (they contain no implementation, so they can’t be instantiated directly, and they must
be inheritable to be useful).

Interface inheritance is also specified in a similar way to class inheritance. The main difference here is
that multiple base interfaces can be used, as shown here:

public interface IMyInterface : IMyBaseInterface, IMyBaseInterface2
{

// Interface members.
}

Interfaces are not classes, and thus do not inherit from System.Object. However, the members of
System.Object are available via an interface type variable, purely for convenience. In addition, as
already discussed, it is impossible to instantiate an interface in the same way as a class. The following
Try It Out provides an example of some class definitions, along with some code that uses them.

TRY IT OUT Defining Classes

1. Create a new console application called Ch09Ex01 and save it in the directory
C:\BegVCSharp\Chapter09.

2. Modify the code in Program.cs as follows:
namespace Ch09Ex01
{

public abstract class MyBase
{
}

internal class MyClass : MyBase
{
}

public interface IMyBaseInterface
{
}

internal interface IMyBaseInterface2
{
}

internal interface IMyInterface : IMyBaseInterface, IMyBaseInterface2
{
}

internal sealed class MyComplexClass : MyClass, IMyInterface
{
}

214 ❘ CHAPTER 9 DEFINING CLASSES

class Program
{

static void Main(string[] args)
{

MyComplexClass myObj = new MyComplexClass();
Console.WriteLine(myObj.ToString());
Console.ReadKey();

}
}

}
Code snippet Ch09Ex01\Program.cs

3. Execute the project. Figure 9-1 shows the output.

FIGURE 9-1

How It Works

This project defines classes and interfaces in the inheritance hierarchy shown in Figure 9-2.

System.Object

MyBase

MyClass

MyComplexClass«interface»
IMyInterface

Program

-Main(in args : string[])

IMyInterface

«interface»
IMyBaseInterface2

«interface»
IMyBaseInterface

FIGURE 9-2

System.Object ❘ 215

Program is included because it is a class defined in the same way as the other classes, even though it
isn’t part of the main class hierarchy. The Main() method possessed by this class is the entry point for
your application.

MyBase and IMyBaseInterface are public definitions, so they are available from other projects. The other
classes and interfaces are internal, and only available in this project.

The code in Main() calls the ToString() method of myObj, an instance of MyComplexClass:

MyComplexClass myObj = new MyComplexClass();
Console.WriteLine(myObj.ToString());

ToString() is one of the methods inherited from System.Object (not shown in the diagram because mem-
bers of this class are omitted for clarity) and simply returns the class name of the object as a string, qualified
by any relevant namespaces.

This example may not actually do a lot, but you will return to it later in this chapter, where it is used to
demonstrate several key concepts and techniques.

SYSTEM.OBJECT

Because all classes inherit from System.Object, all classes have access to the protected and public mem-
bers of this class. Therefore, it is worthwhile to take a look at what is available there. System.Object
contains the methods described in the following table:

METHOD RETURN TYPE VIRTUAL STATIC DESCRIPTION

Object() N/A No No Constructor for the System.Object

type. Automatically called by con-
structors of derived types.

~Object()

(also known as
Finalize() — see the
next section)

N/A No No Destructor for the System.Object

type. Automatically called by
destructors of derived types; can-
not be called manually.

Equals(object) bool Yes No Compares the object for which
this method is called with another
object and returns true if they are
equal. The default implementation
checks whether the object param-
eter refers to the same object
(because objects are reference
types). This method can be overrid-
den if you want to compare objects
in a different way, for example, to
compare the state of two objects.

continues

216 ❘ CHAPTER 9 DEFINING CLASSES

(continued)

METHOD RETURN TYPE VIRTUAL STATIC DESCRIPTION

Equals(object,
object)

bool No Yes Compares the two objects
passed to it and checks
whether they are equal. This
check is performed using the
Equals(object) method. If both
objects are null references, then
this method returns true.

ReferenceEquals

(object, object)
bool No Yes Compares the two objects

passed to it and checks whether
they are references to the same
instance.

ToString() String Yes No Returns a string corresponding
to the object instance. By default,
this is the qualified name of the
class type, but this can be over-
ridden to provide an implemen-
tation appropriate to the class
type.

MemberwiseClone() object No No Copies the object by creating a
new object instance and copying
members. This member copying
does not result in new instances
of these members. Any refer-
ence type members of the new
object refer to the same objects
as the original class. This method
is protected, so it can only be
used from within the class or from
derived classes.

GetType() System.Type No No Returns the type of the object in
the form of a System.Type object.

GetHashCode() int Yes No Used as a hash function for
objects where this is required. A
hash function is one that returns a
value identifying the object state
in some compressed form.

These are the basic methods that must be supported by object types in the .NET Framework, although
you might never use some of them (or you might use them only in special circumstances, such as
GetHashCode()).

Constructors and Destructors ❘ 217

GetType() is helpful when you are using polymorphism because it enables you to perform different
operations with objects depending on their type, rather than the same operation for all objects, as is
often the case. For example, if you have a function that accepts an object type parameter (meaning
you can pass it just about anything), you might perform additional tasks if certain objects are encoun-
tered. Using a combination of GetType() and typeof (a C# operator that converts a class name into a
System.Type object), you can perform comparisons such as the following:

if (myObj.GetType() == typeof(MyComplexClass))
{

// myObj is an instance of the class MyComplexClass.
}

The System.Type object returned is capable of a lot more than that, but only this is covered here. It can
also be very useful to override the ToString() method, particularly in situations where the contents of
an object can be easily represented with a single human-readable string. You see these System.Object

methods repeatedly in subsequent chapters, so you’ll learn more details as necessary.

CONSTRUCTORS AND DESTRUCTORS

When you define a class in C#, it’s often unnecessary to define associated constructors and destructors
because the compiler adds them for you when you build your code if you don’t supply them. How-
ever, you can provide your own, if required, which enables you to initialize and clean up after your
objects, respectively.

You can add a simple constructor to a class using the following syntax:

class MyClass
{

public MyClass()
{

// Constructor code.
}

}

This constructor has the same name as the class that contains it, has no parameters (making it the
default constructor for the class), and is public so that objects of the class may be instantiated using this
constructor (refer to Chapter 8 for more information about this).

You can also use a private default constructor, meaning that object instances of this class cannot be
created using this constructor (it is noncreatable — again, see the discussion in Chapter 8):

class MyClass
{

private MyClass()
{

// Constructor code.
}

}

Finally, you can add nondefault constructors to your class in a similar way, simply by
providing parameters:

218 ❘ CHAPTER 9 DEFINING CLASSES

class MyClass
{

public MyClass()
{

// Default constructor code.
}

public MyClass(int myInt)
{

// Nondefault constructor code (uses myInt).
}

}

You can supply an unlimited number of constructors (until you run out of memory or distinct sets of
parameters, so maybe ‘‘almost unlimited’’ is more appropriate).

Destructors are declared using a slightly different syntax. The destructor used in .NET (and supplied by
the System.Object class) is called Finalize(), but this isn’t the name you use to declare a destructor.
Instead of overriding Finalize(), you use the following:

class MyClass
{

~MyClass()
{

// Destructor body.
}

}

Thus, the destructor of a class is declared by the class name (like the constructor is), with the tilde (~)
prefix. The code in the destructor is executed when garbage collection occurs, enabling you to free
resources. After the destructor is called, implicit calls to the destructors of base classes also occur,
including a call to Finalize() in the System.Object root class. This technique enables the .NET Frame-
work to ensure that this occurs because overriding Finalize() would mean that base class calls would
need to be explicitly performed, which is potentially dangerous (you learn how to call base class meth-
ods in the next chapter).

Constructor Execution Sequence
If you perform multiple tasks in the constructors of a class, it can be handy to have this code in one
place, which has the same benefits as splitting code into functions, as shown in Chapter 6. You could
do this using a method (see Chapter 10), but C# provides a nice alternative. You can configure any
constructor to call any other constructor before it executes its own code.

First, though, you need to take a closer look at what happens by default when you instantiate a class
instance. Apart from facilitating the centralization of initialization code as noted previously, this is
worth knowing about in its own right. During development, objects often don’t behave quite as you
expect them to due to errors during constructor calling — usually a base class somewhere in the inher-
itance hierarchy of your class that you are not instantiating correctly, or information that is not being
properly supplied to base class constructors. Understanding what happens during this phase of an
object’s life cycle can make it much easier to solve this sort of problem.

For a derived class to be instantiated, its base class must be instantiated. For this base class to be instan-
tiated, its own base class must be instantiated, and so on all the way back to System.Object (the root

Constructors and Destructors ❘ 219

of all classes). As a result, whatever constructor you use to instantiate a class, System.Object.Object
is always called first.

Regardless of which constructor you use in a derived class (the default constructor or a nondefault
constructor), unless you specify otherwise, the default constructor for the base class is used. (You’ll see
how to change this behavior shortly.) Here’s a short example illustrating the sequence of execution.
Consider the following object hierarchy:

public class MyBaseClass
{

public MyBaseClass()
{
}

public MyBaseClass(int i)
{
}

}

public class MyDerivedClass : MyBaseClass
{

public MyDerivedClass()
{
}

public MyDerivedClass(int i)
{
}

public MyDerivedClass(int i, int j)
{
}

}

You could instantiate MyDerivedClass as follows:

MyDerivedClass myObj = new MyDerivedClass();

In this case, the following sequence of events will occur:

➤ The System.Object.Object constructor will execute.

➤ The MyBaseClass.MyBaseClass() constructor will execute.

➤ The MyDerivedClass.MyDerivedClass() constructor will execute.

Alternatively, you could use the following:

MyDerivedClass myObj = new MyDerivedClass(4);

The sequence is as follows:

➤ The System.Object.Object constructor will execute.

➤ The MyBaseClass.MyBaseClass() constructor will execute.

➤ The MyDerivedClass.MyDerivedClass(int i) constructor will execute.

220 ❘ CHAPTER 9 DEFINING CLASSES

Finally, you could use this:

MyDerivedClass myObj = new MyDerivedClass(4, 8);

The result is the following sequence:

➤ The System.Object.Object constructor will execute.

➤ The MyBaseClass.MyBaseClass() constructor will execute.

➤ The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

This system works fine most of the time, but sometimes you will want a little more control over the
events that occur. For example, in the last instantiation example, you might want to have the follow-
ing sequence:

➤ The System.Object.Object constructor will execute.

➤ The MyBaseClass.MyBaseClass(int i)constructor will execute.

➤ The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

Using this sequence you could place the code that uses the int i parameter in MyBaseClass(int i),
meaning that the MyDerivedClass(int i, int j) constructor would have less work to do — it would
only need to process the int j parameter. (This assumes that the int i parameter has an identical
meaning in both scenarios, which might not always be the case; but in practice, with this kind of
arrangement, it usually is.) C# allows you to specify this kind of behavior if you want.

To do this, you can use a constructor initializer, which consists of code placed after a colon in the
method definition. For example, you could specify the base class constructor to use in the definition of
the constructor in your derived class, as follows:

public class MyDerivedClass : MyBaseClass
{

...

public MyDerivedClass(int i, int j) : base(i)
{
}

}

The base keyword directs the .NET instantiation process to use the base class constructor, which has
the specified parameters. Here, you are using a single int parameter (the value of which is the value
passed to the MyDerivedClass constructor as the parameter i), so MyBaseClass(int i) will be used.
Doing this means that MyBaseClass will not be called, giving you the sequence of events listed prior to
this example — exactly what you want here.

You can also use this keyword to specify literal values for base class constructors, perhaps using the
default constructor of MyDerivedClass to call a nondefault constructor of MyBaseClass:

public class MyDerivedClass : MyBaseClass
{

public MyDerivedClass() : base(5)
{
}

...
}

Constructors and Destructors ❘ 221

This gives you the following sequence:

➤ The System.Object.Object constructor will execute.

➤ The MyBaseClass.MyBaseClass(int i) constructor will execute.

➤ The MyDerivedClass.MyDerivedClass() constructor will execute.

As well as this base keyword, you can use one more keyword as a constructor initializer: this. This
keyword instructs the .NET instantiation process to use a nondefault constructor on the current class
before the specified constructor is called:

public class MyDerivedClass : MyBaseClass
{

public MyDerivedClass() : this(5, 6)
{
}

...

public MyDerivedClass(int i, int j) : base(i)
{
}

}

Here, using the MyDerivedClass.MyDerivedClass() constructor gives you the following sequence:

➤ The System.Object.Object constructor will execute.

➤ The MyBaseClass.MyBaseClass(int i) constructor will execute.

➤ The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

➤ The MyDerivedClass.MyDerivedClass() constructor will execute.

The only limitation here is that you can only specify a single constructor using a constructor initializer.
However, as demonstrated in the last example, this isn’t much of a limitation, because you can still
construct fairly sophisticated execution sequences.

NOTE If you don’t specify a constructor initializer for a constructor, the compiler
adds one for you: base(). This results in the default behavior described earlier in
this section.

Be careful not to accidentally create an infinite loop when defining constructors. For example:

public class MyBaseClass
{

public MyBaseClass() : this(5)
{
}

public MyBaseClass(int i) : this()
{
}

}

222 ❘ CHAPTER 9 DEFINING CLASSES

Using either one of these constructors requires the other to execute first, which in turn requires the
other to execute first, and so on. This code will compile, but if you try to instantiate MyBaseClass you
will receive a SystemOverflowException.

OOP TOOLS IN VS AND VCE

Because OOP is such a fundamental aspect of the .NET Framework, several tools are provided by VS
and VCE to aid development of OOP applications. This section describes some of these.

The Class View Window
In Chapter 2, you saw that the Solution Explorer window shares space with a window called Class
View. This window shows you the class hierarchy of your application and enables you to see at a
glance the characteristics of the classes you use. Figure 9-3 shows the view for the example project in
the previous Try It Out.

The window is divided into two main sections; the bottom section shows members of types. To see
this in action with this example project, and to see what else is possible with the Class View window,
you need to show some items that are currently hidden. To do this, tick the items in the Class View
Grouping drop-down at the top of the Class View window, as shown in Figure 9-4.

FIGURE 9-3 FIGURE 9-4

OOP Tools in VS and VCE ❘ 223

Now you can see members and additional information, as shown in Figure 9-5.

FIGURE 9-5

Many symbols may be used here, including the following icons:

ICON MEANING ICON MEANING ICON MEANING

Project Property Event

Namespace Field Delegate

Class Struct Assembly

Interface Enumeration

Method Enumeration
item

Some of these are used for type definitions other than classes, such as enumerations and struct types.

Some of the entries may have other symbols placed below them signifying their access level (no symbol
appears for public entries):

224 ❘ CHAPTER 9 DEFINING CLASSES

ICON MEANING ICON MEANING ICON MEANING

Private Protected Internal

No symbols are used to denote abstract, sealed, or virtual entries.

As well as being able to look at this information here, you can also access the relevant code for many
of these items. Double-clicking on an item, or right-clicking and selecting Go To Definition, takes you
straight to the code in your project that defines the item, if it is available. If the code isn’t available,
such as code in an inaccessible base type (e.g., System.Object), you instead have the option to select
Browse Definition, which will take you to the Object Browser view (described in the next section).

One other entry that appears in Figure 9-5 is Project References. This enables you to see what assem-
blies are referenced by your projects, which in this case includes (among others) the core .NET types in
mscorlib and System, data access types in System.Data, and XML manipulation types in System.Xml.
The references here can be expanded, showing you the namespaces and types contained within these
assemblies.

You can find occurrences of types and members in your code by right-clicking on an item and selecting
Find All References; a list of search results displays in the Find Symbol Results window, which appears
at the bottom of the screen as a tabbed window in the Error List display area. You can also rename
items using the Class View window. If you do this, you’re given the option to rename references to
the item wherever it occurs in your code. This means you have no excuse for spelling mistakes in class
names because you can change them as often as you like!

In addition, VS 2010 introduces a new way to navigate through your code, called Call Hierarchy, which
is accessible from the Class View window through the View Call Hierarchy right-click menu option.
This functionality is extremely useful for looking at how class members interact with each other, and
you’ll look at it in the next chapter.

The Object Browser
The Object Browser is an expanded version of the Class View window, enabling you to view other
classes available to your project, and even completely external classes. It is entered either automatically
(for example, in the situation noted in the last section) or manually via View ➪ Object Browser. The
view appears in the main window, and you can browse it in the same way as the Class View window.

This window provides the same information as Class View but also shows you more of the .NET
types. When an item is selected, you also get information about it in a third window, as shown in
Figure 9-6.

Here, the ReadKey() method of the Console class has been selected. (Console is found in the System

namespace in the mscorlib assembly.) The information window in the bottom-right corner shows you
the method signature, the class to which the method belongs, and a summary of the method function.
This information can be useful when you are exploring the .NET types, or if you are just refreshing
your memory about what a particular class can do.

OOP Tools in VS and VCE ❘ 225

FIGURE 9-6

Additionally, you can make use of this information window in types that you create. Make the
following change to the code in Ch09Ex01:

/// <summary>
/// This class contains my program!
/// </summary>
class Program
{

static void Main(string[] args)
{

MyComplexClass myObj = new MyComplexClass();
Console.WriteLine(myObj.ToString());
Console.ReadKey();

}
}

Code snippet Ch09Ex01\Program.cs

Return to the Object Browser. The change is reflected in the information window. This is an example
of XML documentation, a subject not covered in this book but well worth learning about when you
have a spare moment.

NOTE If you made this code change manually, then you noticed that simply
typing the three slashes (///) causes the IDE to add most of the rest of the code
for you. It automatically analyzes the code to which you are applying XML
documentation and builds the basic XML documentation — more evidence,
should you need any, that VS and VCE are great tools to work with!

226 ❘ CHAPTER 9 DEFINING CLASSES

Adding Classes
VS and VCE contain tools that can speed up some common tasks, and some of these are applicable to
OOP. One of these tools, the Add New Item Wizard, enables you to add new classes to your project
with a minimum amount of typing.

This tool is accessible through the Project ➪ Add New Item menu item or by right-clicking on your
project in the Solution Explorer window and selecting the appropriate item. Either way, a dialog
appears, enabling you to choose the item to add. The default display for this window varies between
VS and VCE but the functionality is the same. In both IDEs, to add a class, select the Class item in the
templates window, as shown in Figure 9-7, provide a filename for the file that will contain the class,
and click Add. The class created is named according to the filename you provided.

FIGURE 9-7

In the Try It Out earlier in this chapter, you added class definitions manually to your Program.cs

file. Often, keeping classes in separate files makes it easier to keep track of your classes. Entering the
information in the Add New Item dialog when the Ch09Ex01 project is open results in the following
code being generated in MyNewClass.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch09Ex01
{

class MyNewClass
{
}

}

OOP Tools in VS and VCE ❘ 227

This class, MyNewClass, is defined in the same namespace as your entry point class, Program, so you
can use it from code just as if it were defined in the same file. As shown in the code, the class generated
for you contains no constructor. Recall that if a class definition doesn’t include a constructor, then the
compiler adds a default constructor when you compile your code.

Class Diagrams

FIGURE 9-8

One powerful feature of VS that you haven’t looked at yet is the capability to generate class diagrams
from code and use them to modify projects. The class diagram editor in VS enables you to generate
UML-like diagrams of your code with ease. You’ll see this in action in the following Try It Out when
you generate a class diagram for the Ch09Ex01 project you created earlier.

NOTE Unfortunately, the class diagrams feature is missing from VCE, so you can
only follow this Try It Out if you have VS.

TRY IT OUT Generating a Class Diagram

1. Open the Ch09Ex01 project created earlier in this chapter.

2. In the Solution Explorer window, select Program.cs and then
click the View Class Diagram button in the toolbar, as shown in
Figure 9-8.

3. A class diagram appears, called ClassDiagram1.cd.

4. Click the IMyInterface lollipop and, using the Properties window,
change its Position property to Right.

5. Right-click MyBase and select Show Base Type from the
context menu.

6. Move the objects in the drawing around by dragging them to achieve a more pleasing layout. At
this point, the diagram should look a little like Figure 9-9.

How It Works

With very little effort, you have created a class diagram not unlike the UML diagram presented in
Figure 9-2 (without the color, of course). The following features are evident:

➤ Classes are shown as blue boxes, including their name and type.

➤ Interfaces are shown as green boxes, including their name and type.

➤ Inheritance is shown with arrows with white heads (and in some cases, text inside class
boxes).

➤ Classes implementing interfaces have lollipops.

228 ❘ CHAPTER 9 DEFINING CLASSES

FIGURE 9-9

➤ Abstract classes are shown with a dotted outline and italicized name.

➤ Sealed classes are shown with a thick black outline.

Clicking on an object shows you additional information in a Class Details window at the bottom of the
screen (right-click an object and select Class Details if this window doesn’t appear). Here, you can see (and
modify) class members. You can also modify class details in the Properties window.

NOTE Chapter 10 takes a detailed look at adding members to classes using the
class diagram.

From the Toolbox, you can add new items such as classes, interfaces, and enums to the diagram, and define
relationships between objects in the diagram. When you do this, the code for the new items is automatically
generated for you.

Using this editor, you can design whole families of types graphically, without ever having to use the code
editor. Obviously, when it comes to actually adding the functionality you have to do things by hand, but
this is a great way to get started. You’ll return to this view in subsequent chapters and learn more about
what it can do for you. For now, though, you can explore things on your own.

Class Library Projects ❘ 229

CLASS LIBRARY PROJECTS

As well as placing classes in separate files within your project, you can also place them in completely
separate projects. A project that contains nothing but classes (along with other relevant type definitions,
but no entry point) is called a class library.

Class library projects compile into .dll assemblies, and you can access their contents by adding ref-
erences to them from other projects (which might be part of the same solution, but don’t have to be).
This extends the encapsulation that objects provide because class libraries may be revised and updated
without touching the projects that use them. That means you can easily upgrade services provided by
classes (which might affect multiple consumer applications).

The following Try It Out provides an example of a class library project and a separate project that
makes use of the classes that it contains.

TRY IT OUT Using a Class Library

1. Create a new project of type Class Library called Ch09ClassLib and save it in the directory
C:\BegVCSharp\Chapter09, as shown in Figure 9-10.

FIGURE 9-10

2. Rename the file Class1.cs to MyExternalClass.cs (by right-clicking on the file in the Solution
Explorer window and selecting Rename). Click Yes on the dialog that appears.

230 ❘ CHAPTER 9 DEFINING CLASSES

3. The code in MyExternalClass.cs automatically changes to reflect the class name change:

public class MyExternalClass
{
}

Code snippet Ch09ClassLib\MyExternalClass.cs

4. Add a new class to the project, using the filename MyInternalClass.cs.

5. Modify the code to make the class MyInternalClass explicitly internal:

internal class MyInternalClass
{
}

Code snippet Ch09ClassLib\MyInternalClass.cs

6. Compile the project (this project has no entry point, so you can’t run it as normal — instead, you
can build it by selecting Build ➪ Build Solution).

FIGURE 9-11

7. Create a new console application project called Ch09Ex02 and
save it in the directory C:\BegVCSharp\Chapter09.

8. Select Project ➪ Add Reference, or select the same option after
right-clicking References in the Solution Explorer window.

9. Click the Browse tab, navigate to
C:\BegVCSharp\Chapter09\Chapter09\Ch09ClassLib\bin\

Debug\, and double-click on Ch09ClassLib.dll.

10. When the operation completes, confirm that a reference was
added in the Solution Explorer window, as shown in
Figure 9-11.

11. Open the Object Browser window and examine the new refer-
ence to see what objects it contains (see Figure 9-12).

FIGURE 9-12

Class Library Projects ❘ 231

12. Modify the code in Program.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ch09ClassLib;

namespace Ch09Ex02
{

class Program
{

static void Main(string[] args)
{

MyExternalClass myObj = new MyExternalClass();
Console.WriteLine(myObj.ToString());
Console.ReadKey();

}
}

}
Code snippet Ch09Ex02\Program.cs

13. Run the application. The result is shown in Figure 9-13.

FIGURE 9-13

How It Works

This example created two projects: a class library project and a console application project. The class
library project, Ch09ClassLib, contains two classes: MyExternalClass, which is publicly accessible, and
MyInternalClass, which is internally accessible. Note that this class was implicitly internal by default
when you created it, as it had no access modifier. It is good practice to be explicit about accessibility,
though, because it makes your code more readable, which is why you add the internal keyword. The
console application project, Ch09Ex02, contains simple code that makes use of the class library project.

NOTE When an application uses classes defined in an external library, you can
call that application a client application of the library. Code that uses a class that
you define is often similarly referred to as client code.

232 ❘ CHAPTER 9 DEFINING CLASSES

To use the classes in Ch09ClassLib, you added a reference to Ch09ClassLib.dll to the console application.
For the purposes of this example, you simply point at the output file for the class library, although it would
be just as easy to copy this file to a location local to Ch09Ex02, enabling you to continue development of
the class library without affecting the console application. To replace the old assembly version with the
new one, simply copy the newly generated DLL file over the old one.

After adding the reference, you took a look at the available classes using the Object Browser. Because
the MyInternalClass is internal, you can’t see it in this display — it isn’t accessible to external projects.
However, MyExternalClass is accessible, and it’s the one you use in the console application.

You could replace the code in the console application with code attempting to use the internal class as
follows:

static void Main(string[] args)
{

MyInternalClass myObj = new MyInternalClass();
Console.WriteLine(myObj.ToString());
Console.ReadKey();

}

If you attempt to compile this code, you receive the following compilation error:

’Ch09ClassLib.MyInternalClass’ is inaccessible due to its protection level

This technique of making use of classes in external assemblies is key to programming with C# and the
.NET Framework. It is, in fact, exactly what you are doing when you use any of the classes in the .NET
Framework because they are treated in the same way.

INTERFACES VERSUS ABSTRACT CLASSES

This chapter has demonstrated how you can create both interfaces and abstract classes (without mem-
bers for now — you get to them in Chapter 10). The two types are similar in a number of ways, so it
would be useful to know how to determine when you would want to use one technique or the other.

First the similarities: both abstract classes and interfaces may contain members that can be inherited by
a derived class. Neither interfaces nor abstract classes may be directly instantiated, but you can declare
variables of these types. If you do, you can use polymorphism to assign objects that inherit from these
types to variables of these types. In both cases, you can then use the members of these types through
these variables, although you don’t have direct access to the other members of the derived object.

Now the differences: derived classes may only inherit from a single base class, which means that only a
single abstract class can be inherited directly (although it is possible for a chain of inheritance to include
multiple abstract classes). Conversely, classes can use as many interfaces as they want, but this doesn’t
make a massive difference — similar results can be achieved either way. It’s just that the interface way
of doing things is slightly different.

Abstract classes may possess both abstract members (these have no code body and must be implemented
in the derived class unless the derived class is itself abstract) and non-abstract members (these possess a
code body, and can be virtual so that they may be overridden in the derived class). Interface members,

Interfaces Versus Abstract Classes ❘ 233

conversely, must be implemented on the class that uses the interface — they do not possess code bodies.
Moreover, interface members are by definition public (because they are intended for external use), but
members of abstract classes may also be private (as long as they aren’t abstract), protected, internal, or
protected internal (where protected internal members are accessible only from code within the applica-
tion or from a derived class). In addition, interfaces can’t contain fields, constructors, destructors, static
members, or constants.

NOTE Abstract classes are intended for use as the base class for families of
objects that share certain central characteristics, such as a common purpose and
structure. Interfaces are intended for use by classes that might differ on a far
more fundamental level, but can still do some of the same things.

For example, consider a family of objects representing trains. The base class, Train, contains the
core definition of a train, such as wheel gauge and engine type (which could be steam, diesel, and
so on). However, this class is abstract because there is no such thing as a ‘‘generic’’ train. To create an
‘‘actual’’ train, you add characteristics specific to that train. For example, you derive classes such as
PassengerTrain, FreightTrain, and 424DoubleBogey, as shown in Figure 9-14.

Train

PassengerTrain FreightTrain 424DoubleBogey

FIGURE 9-14

A family of car objects might be defined in the same way, with an abstract base class of Car and derived
classes such as Compact, SUV, and PickUp. Car and Train might even derive from a common base class,
such as Vehicle. This is shown in Figure 9-15.

Some of the classes lower in the hierarchy may share characteristics because of their purpose, not just
because of what they are derived from. For example, PassengerTrain, Compact, SUV, and Pickup are all
capable of carrying passengers, so they might possess an IPassengerCarrier interface. FreightTrain
and Pickup can carry heavy loads, so they might both have an IHeavyLoadCarrier interface as well.
This is illustrated in Figure 9-16.

234 ❘ CHAPTER 9 DEFINING CLASSES

Vehicle

PassengerTrain FreightTrain

Train

424DoubleBogeyCompact SUV

Car

Pickup

FIGURE 9-15

«interface»
IPassengerCarrier

«interface»
IHeavyLoadCarrier

Vehicle

PassengerTrain FreightTrain

Train

424DoubleBogeyCompact SUV

Car

Pickup

FIGURE 9-16

Struct Types ❘ 235

By breaking down an object system in this way before going about assigning specifics, you can clearly
see which situations should use abstract classes rather than interfaces, and vice versa. The result of this
example couldn’t be achieved using only interfaces or only abstract inheritance.

STRUCT TYPES

Chapter 8 noted that structs and classes are very similar but that structs are value types and classes are
reference types. What does this actually mean to you? Well, the easiest way of looking at this is with an
example, such as the following Try It Out.

TRY IT OUT Classes versus Structs

1. Create a new console application project called Ch09Ex03 and save it in the directory
C:\BegVCSharp\Chapter09.

2. Modify the code as follows:

namespace Ch09Ex03
{

class MyClass
{

public int val;
}

struct myStruct
{

public int val;
}

class Program
{

static void Main(string[] args)
{

MyClass objectA = new MyClass();
MyClass objectB = objectA;
objectA.val = 10;
objectB.val = 20;
myStruct structA = new myStruct();
myStruct structB = structA;
structA.val = 30;
structB.val = 40;
Console.WriteLine("objectA.val = {0}", objectA.val);
Console.WriteLine("objectB.val = {0}", objectB.val);
Console.WriteLine("structA.val = {0}", structA.val);
Console.WriteLine("structB.val = {0}", structB.val);
Console.ReadKey();

}
}

}
Code snippet Ch09Ex03\Program.cs

236 ❘ CHAPTER 9 DEFINING CLASSES

3. Run the application. Figure 9-17 shows the output.

FIGURE 9-17

How It Works

This application contains two type definitions: one for a struct called myStruct, which has a single public
int field called val, and one for a class called MyClass that contains an identical field (you look at class
members such as fields in Chapter 10; for now just understand that the syntax is the same here). Next, you
perform the same operations on instances of both of these types:

1. Declare a variable of the type.

2. Create a new instance of the type in this variable.

3. Declare a second variable of the type.

4. Assign the first variable to the second variable.

5. Assign a value to the val field in the instance in the first variable.

6. Assign a value to the val field in the instance in the second variable.

7. Display the values of the val fields for both variables.

Although you are performing the same operations on variables of both types, the outcome is different.
When you display the values of the val field, both object types have the same value, whereas the struct
types have different values. What has happened?

Objects are reference types. When you assign an object to a variable you are actually assigning that variable
with a pointer to the object to which it refers. A pointer, in real code terms, is an address in memory. In
this case, the address is the point in memory where the object is found. When you assign the first object
reference to the second variable of type MyClass with the following line, you are actually copying this
address:

MyClass objectB = objectA;

This means that both variables contain pointers to the same object.

Structs are value types. Instead of the variable holding a pointer to the struct, the variable contains the
struct itself. When you assign the first struct to the second variable of type myStruct with the following
line, you are actually copying all the information from one struct to the other:

myStruct structB = structA;

Summary ❘ 237

You saw behavior like this earlier in this book for simple variable types such as int. The upshot is that the
two struct type variables contain different structs. The entire technique of using pointers is hidden from
you in managed C# code, making your code much simpler. It is possible to access lower-level operations
such as pointer manipulation in C# using unsafe code, but that is an advanced topic not covered here.

SHALLOW COPYING VERSUS DEEP COPYING

Copying objects from one variable to another by value instead of by reference (that is, copying them in
the same way as structs) can be quite complex. Because a single object may contain references to many
other objects, such as field members and so on, a lot of processing may be involved. Simply copying
each member from one object to another may not work because some of these members might be
reference types in their own right.

The .NET Framework takes this into account. Simple object copying by members is achievable through
the method MemberwiseClone, inherited from System.Object. This is a protected method, but it would
be easy to define a public method on an object that called this method. This copying method is known
as a shallow copy, in that it doesn’t take reference type members into account. This means that reference
members in the new object refer to the same objects as equivalent members in the source object, which
isn’t ideal in many cases. If you want to create new instances of the members in question by copying
the values across (rather than the references), you need to perform a deep copy.

There is an interface you can implement that enables you to do this in a standard way: ICloneable. If
you use this interface, then you must implement the single method it contains, Clone(). This method
returns a value of type System.Object. You can use whatever processing you want to obtain this object,
by implementing the method body however you choose. That means you can implement a deep copy
if you want to (although the exact behavior isn’t mandatory, so you could perform a shallow copy if
desired). You take a closer look at this in Chapter 11.

SUMMARY

This chapter showed how you can define classes and interfaces in C#, putting the theory from the last
chapter into a more concrete form. You’ve learned the C# syntax required for basic declarations, as
well as the accessibility keywords you can use, the way in which you can inherit from interfaces and
other classes, how to define abstract and sealed classes to control this inheritance, and how to define
constructors and destructors.

You then looked at System.Object, the root base class of any class that you define. It supplies several
methods, some of which are virtual, so you can override their implementation. This class also enables
you to treat any object instance as an instance of this type, enabling polymorphism with any object.

You also examined some of the tools supplied by VS and VCE for OOP development, including the
Class View window, the Object Browser window, and a quick way to add new classes to a project. As

238 ❘ CHAPTER 9 DEFINING CLASSES

an extension of this multifile concept, you learned how to create assemblies that can’t be executed but
that contain class definitions that you can use in other projects.

After that, you took a more detailed look at abstract classes and interfaces, including their similarities
and differences, and situations in which you use one or the other.

Finally, you revisited the subject of reference and value types, looking at structs (the value type equiv-
alent of objects) in slightly more detail. This led to a discussion about shallow and deep copying of
objects, a subject covered in more detail later in the book.

The next chapter looks at defining class members, such as properties and methods, which will enable
you to take OOP in C# to the level required to create real applications.

EXERCISES

1. What is wrong with the following code?

public sealed class MyClass
{

// Class members.
}

public class myDerivedClass : MyClass
{

// Class members.
}

2. How would you define a noncreatable class?

3. Why are noncreatable classes still useful? How do you make use of their capabilities?

4. Write code in a class library project called Vehicles that implements the Vehicle family of objects
discussed earlier in this chapter. There are nine objects and two interfaces that require implemen-
tation.

5. Create a console application project, Traffic, that references Vehicles.dll (created in question 4).
Include a function called AddPassenger that accepts any object with the IPassengerCarrier inter-
face. To prove that the code works, call this function using instances of each object that supports
this interface, calling the ToString method inherited from System.Object on each one and writing
the result to the screen.

Answers to Exercises can be found in Appendix A.

Summary ❘ 239

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Class and interface
definitions

Classes are defined with the class keyword, and interfaces with the
interface keyword. You can use the public and internal keywords
to define class and interface accessibility, and classes can be defined as
abstract or sealed to control inheritance. Parent classes and interfaces are
specified in a comma-separated list after a colon following the class or inter-
face name. Only a single parent class can be specified in a class definition,
and it must be the first item in the list.

Constructors and
destructors

Classes come ready-equipped with a default constructor and destructor
implementation, and you rarely have to provide your own destructor. You
can define constructors with an accessibility, the name of the class, and any
parameters that may be required. Constructors of base classes are executed
before those of derived classes, and you can control the execution sequence
within a class with the this and base constructor initializer keywords.

Class libraries You can create class library projects that only contain class definitions. These
projects cannot be executed directly; they must be accessed through client
code in an executable application. VS and VCE provide various tools for
creating, modifying, and examining classes.

Class families Classes can be grouped into families that exhibit common behavior or that
share common characteristics. You can do this by inheriting from a shared
base class (which may be abstract), or by implementing interfaces.

Struct definitions A struct is defined in a very similar way to a class, but remember that structs
are value types whereas classes are reference types.

Copying objects When you make a copy of an object, you must be careful to copy any objects
that it might contain, rather than simply copying the references to those
objects. Copying references is referred to as shallow copying, while a full
copy is referred to as a deep copy. You can use the ICloneable interface as
a framework for providing deep-copy capabilities in a class definition.

10
Defining Class Members

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to define class members

➤ How to use the class diagram to add members

➤ How to control class member inheritance

➤ How to define nested classes

➤ How to implement interfaces

➤ How to use partial class definitions

➤ How to use the Call Hierarchy window

This chapter continues exploring class definitions in C# by looking at how you define field,
property, and method class members. You start by examining the code required for each of
these types, and learn how to generate the structure of this code using wizards. You also learn
how to modify members quickly by editing their properties.

After covering the basics of member definition, you’ll learn some advanced techniques involv-
ing members: hiding base class members, calling overridden base class members, nested type
definitions, and partial class definitions.

Finally, you put theory into practice by creating a class library that you can build on and use in
later chapters.

MEMBER DEFINITIONS

Within a class definition, you provide definitions for all members of the class, including fields,
methods, and properties. All members have their own accessibility levels, defined in all cases by
one of the following keywords:

➤ public — Members are accessible from any code.

➤ private — Members are accessible only from code that is part of the class (the default
if no keyword is used).

242 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

➤ internal — Members are accessible only from code within the assembly (project) where they
are defined.

➤ protected — Members are accessible only from code that is part of either the class or a
derived class.

The last two of these can be combined, so protected internal members are also possible. These are
only accessible from code-derived classes within the project (more accurately, the assembly).

Fields, methods, and properties can also be declared using the keyword static, which means that they
are static members owned by the class, rather than by object instances, as discussed in Chapter 8.

Defining Fields
Fields are defined using standard variable declaration format (with optional initialization), along with
the modifiers discussed previously:

class MyClass
{

public int MyInt;
}

NOTE Public fields in the .NET Framework are named using PascalCasing, rather
than camelCasing, and that’s the casing methodology used here. That’s why the
field in this example is called MyInt instead of myInt. This is only a suggested
casing scheme, but it makes a lot of sense. There is no recommendation for
private fields, which are usually named using camelCasing.

Fields can also use the keyword readonly, meaning the field may be assigned a value only during
constructor execution or by initial assignment:

class MyClass
{

public readonly int MyInt = 17;
}

As noted in the chapter introduction, fields may be declared as static using the static keyword:

class MyClass
{

public static int MyInt;
}

Static fields are accessed via the class that defines them (MyClass.MyInt in the preceding example), not
through object instances of that class. You can use the keyword const to create a constant value. const
members are static by definition, so you don’t need to use the static modifier (in fact, it is an error to
do so).

Defining Methods
Methods use standard function format, along with accessibility and optional static modifiers, as
shown in this example:

Member Definitions ❘ 243

class MyClass
{

public string GetString()
{

return "Here is a string.";
}

}

NOTE Like public fields, public methods in the .NET Framework are named using
PascalCasing.

Remember that if you use the static keyword, then this method is accessible only through the class,
not the object instance. You can also use the following keywords with method definitions:

➤ virtual — The method may be overridden.

➤ abstract — The method must be overridden in non-abstract derived classes (only permitted
in abstract classes).

➤ override — The method overrides a base class method (it must be used if a method is being
overridden).

➤ extern — The method definition is found elsewhere.

Here’s an example of a method override:

public class MyBaseClass
{

public virtual void DoSomething()
{

// Base implementation.
}

}

public class MyDerivedClass : MyBaseClass
{

public override void DoSomething()
{

// Derived class implementation, overrides base implementation.
}

}

If override is used, then sealed may also be used to specify that no further modifications can be made
to this method in derived classes — that is, the method can’t be overridden by derived classes. Here is
an example:

public class MyDerivedClass : MyBaseClass
{

public override sealed void DoSomething()
{

// Derived class implementation, overrides base implementation.
}

}

Using extern enables you to provide the implementation of a method externally to the project, but this
is an advanced topic not covered here.

244 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

Defining Properties
Properties are defined in a similar way to fields, but there’s more to them. Properties, as already dis-
cussed, are more involved than fields in that they can perform additional processing before modifying
state — and, indeed, might not modify state at all. They achieve this by possessing two function-like
blocks: one for getting the value of the property and one for setting the value of the property.

These blocks, also known as accessors, are defined using get and set keywords respectively, and may
be used to control the access level of the property. You can omit one or the other of these blocks to
create read-only or write-only properties (where omitting the get block gives you write-only access,
and omitting the set block gives you read-only access). Of course, that only applies to external code
because code elsewhere within the class will have access to the same data that these code blocks have.
You can also include accessibility modifiers on accessors — making a get block public while the set

block is protected, for example. You must include at least one of these blocks to obtain a valid property
(and, let’s face it, a property you can’t read or change wouldn’t be very useful).

The basic structure of a property consists of the standard access modifying keyword (public, private,
and so on), followed by a type name, the property name, and one or both of the get and set blocks
that contain the property processing:

public int MyIntProp
{

get
{

// Property get code.
}
set
{

// Property set code.
}

}

NOTE Public properties in .NET are also named using PascalCasing, rather than
camelCasing; and, as with fields and methods, PascalCasing is used here.

The first line of the definition is the bit that is very similar to a field definition. The difference is that
there is no semicolon at the end of the line; instead, you have a code block containing nested get and
set blocks.

get blocks must have a return value of the type of the property. Simple properties are often associated
with a single private field controlling access to that field, in which case the get block may return the
field’s value directly:

// Field used by property.
private int myInt;

Member Definitions ❘ 245

// Property.
public int MyIntProp
{

get
{

return myInt;
}
set
{

// Property set code.
}

}

Code external to the class cannot access this myInt field directly due to its accessibility level (it is pri-
vate). Instead, external code must use the property to access the field. The set function assigns a value
to the field similarly. Here, you can use the keyword value to refer to the value received from the user
of the property:

// Field used by property.
private int myInt;

// Property.
public int MyIntProp
{

get
{

return myInt;
}
set
{

myInt = value;
}

}

value equates to a value of the same type as the property, so if the property uses the same type as the
field, then you never have to worry about casting in situations like this.

This simple property does little more than shield direct access to the myInt field. The real power of
properties is apparent when you exert a little more control over the proceedings. For example, you
might implement your set block as follows:

set
{

if (value >= 0 && value <= 10)
myInt = value;

}

Here, you modify myInt only if the value assigned to the property is between 0 and 10. In situations
like this, you have an important design choice to make: What should you do if an invalid value is used?
You have four options:

➤ Do nothing (as in the preceding code).

➤ Assign a default value to the field.

➤ Continue as if nothing had gone wrong but log the event for future analysis.

➤ Throw an exception.

246 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

In general, the last two options are preferable. Deciding between them depends on how the class will be
used and how much control should be assigned to the users of the class. Exception throwing gives users
a fair amount of control and lets them know what is going on so that they can respond appropriately.
You can use one of the standard exceptions in the System namespace for this:

set
{

if (value >= 0 && value <= 10)
myInt = value;

else
throw (new ArgumentOutOfRangeException("MyIntProp", value,

"MyIntProp must be assigned a value between 0 and 10."));
}

This can be handled using try ... catch ... finally logic in the code that uses the property, as you saw
in Chapter 7.

Logging data, perhaps to a text file, can be useful, such as in production code where problems really
shouldn’t occur. It enables developers to check on performance and perhaps debug existing code if
necessary.

Properties can use the virtual, override, and abstract keywords just like methods, something that
isn’t possible with fields. Finally, as mentioned earlier, accessors can have their own accessibilities, as
shown here:

// Field used by property.
private int myInt;

// Property.
public int MyIntProp
{

get
{

return myInt;
}
protected set
{

myInt = value;
}

}

Here, only code within the class or derived classes can use the set accessor.

The accessibilities that are permitted for accessors depend on the accessibility of the property, and it
is forbidden to make an accessor more accessible than the property to which it belongs. This means
that a private property cannot contain any accessibility modifiers for its accessors, whereas public
properties can use all modifiers on their accessors. The following Try It Out enables you to experiment
with defining and using fields, methods, and properties.

TRY IT OUT Using Fields, Methods, and Properties

1. Create a new console application called Ch10Ex01 and save it in the directory
C:\BegVCSharp\Chapter10.

Member Definitions ❘ 247

2. Add a new class called MyClass, using the Add Class shortcut, which will cause the new class to be
defined in a new file called MyClass.cs.

3. Modify the code in MyClass.cs as follows:

public class MyClass
{

public readonly string Name;
private int intVal;

public int Val
{

get
{

return intVal;
}
set
{

if (value >= 0 && value <= 10)
intVal = value;

else
throw (new ArgumentOutOfRangeException("Val", value,

"Val must be assigned a value between 0 and 10."));
}

}
public override string ToString()
{

return "Name: " + Name + "\nVal: " + Val;
}

private MyClass() : this("Default Name")
{
}

public MyClass(string newName)
{

Name = newName;
intVal = 0;

}
}

Code snippet Ch10Ex01\MyClass.cs

4. Modify the code in Program.cs as follows:

static void Main(string[] args)
{

Console.WriteLine("Creating object myObj...");
MyClass myObj = new MyClass("My Object");
Console.WriteLine("myObj created.");
for (int i = -1; i <= 0; i++)
{

try

248 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

{
Console.WriteLine("\nAttempting to assign {0} to myObj.Val...",

i);
myObj.Val = i;
Console.WriteLine("Value {0} assigned to myObj.Val.", myObj.Val);

}
catch (Exception e)
{

Console.WriteLine("Exception {0} thrown.", e.GetType().FullName);
Console.WriteLine("Message:\n\"{0}\"", e.Message);

}
}
Console.WriteLine("\nOutputting myObj.ToString()...");
Console.WriteLine(myObj.ToString());
Console.WriteLine("myObj.ToString() Output.");
Console.ReadKey();

}
Code snippet Ch10Ex01\Program.cs

5. Run the application. The result is shown in Figure 10-1.

FIGURE 10-1

How It Works

The code in Main() creates and uses an instance of the MyClass class defined in MyClass.cs. Instantiating
this class must be performed using a nondefault constructor because the default constructor of MyClass is
private:

private MyClass() : this("Default Name")
{
}

Using this("Default Name") ensures that Name gets a value if this constructor is ever called, which is
possible if this class is used to derive a new class. This is necessary because not assigning a value to the
Name field could be a source of errors later.

Member Definitions ❘ 249

The nondefault constructor used assigns values to the readonly field Name (you can only do this by assign-
ment in the field declaration or in a constructor) and the private field intVal.

Next, Main() attempts two assignments to the Val property of myObj (the instance of MyClass).
A for loop is used to assign the values -1 and 0 in two cycles, and a try ... catch structure is used
to check for any exception thrown. When -1 is assigned to the property, an exception of type
System.ArgumentOutOfRangeException is thrown, and code in the catch block outputs information about
the exception to the console window. In the next loop cycle, the value 0 is successfully assigned to the Val

property, and through that property to the private intVal field.

Finally, you use the overridden ToString() method to output a formatted string representing the contents
of the object:

public override string ToString()
{

return "Name: " + Name + "\nVal: " + Val;
}

This method must be declared using the override keyword, because it is overriding the virtual ToString()
method of the base System.Object class. The code here uses the property Val directly, rather than the
private field intVal. There is no reason why you shouldn’t use properties from within classes in this way,
although there may be a small performance hit (so small that you are unlikely to notice it). Of course, using
the property also gives you the validation inherent in property use, which may be beneficial for code within
the class as well.

Adding Members from a Class Diagram
The last chapter described how you can use the class diagram to explore the classes in a project. You
also learned that the class diagram can be used to add members, and this is what you will examine in
this section.

NOTE The class diagram is a feature of VS only; it is not available in VCE.

FIGURE 10-2

All the tools for adding and editing members are shown in the Class Details
window in the Class Diagram view. To see this in action, create a class
diagram for the MyClass class created in Ch10Ex01. You can see the exist-
ing members by expanding the view of the class in the class designer (by
clicking the icon that looks like two downward-pointing chevrons). The
resulting view is shown in Figure 10-2.

Figure 10-3 shows the information you’ll see in the Class Details window
when a class is selected.

The window shows all the currently defined members for the class
and includes spaces so you can add new members simply by typing
them in.

250 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

FIGURE 10-3

Adding Methods
To add a method to your class, simply type it in the box labeled <add method>. After you have named
a method, you can use the Tab key to navigate to subsequent settings, starting with the return type of
the method, and moving on to the accessibility of the method, summary information (which translates
to XML documentation), and whether to hide the method in the class diagram.

Once you have added a method, you can expand the entry and add parameters in the same way. For
parameters, you also have the option to use the modifiers out, ref, and params. Figure 10-4 shows an
example of a new method.

FIGURE 10-4

With the new method shown in Figure 10-4, the following code is added to your class:

public double MyMethod(double paramX, double paramY)
{

throw new System.NotImplementedException();
}

Member Definitions ❘ 251

You can configure other method settings in the Properties window, shown in Figure 10-5.

FIGURE 10-5

Among other things, you can make the method static here. Obviously, this technique can’t provide the
method implementation for you, but it does provide the basic structure, and certainly reduces typing
errors!

Adding Properties
Adding properties is achieved in much the same way. Figure 10-6 shows a new property added using
the Class Details window.

FIGURE 10-6

252 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

This adds the property shown here:

public int MyInt
{

get
{

throw new System.NotImplementedException();
}
set{}

}

You are left to provide the complete implementation yourself, which includes matching the property
with a field for simple properties, removing an accessor if you want the property to be read- or write-
only, or applying accessibility modifiers to accessors. However, the basic structure is provided for you.

Adding Fields
Adding fields is just as simple. Just type the name of the field, choose a type and access modifier, and
away you go.

Refactoring Members
One technique that comes in handy when adding properties is the capability to generate a property
from a field. This is an example of refactoring, which simply means modifying your code using a tool,
rather than by hand. This can be accomplished by right-clicking a member in a class diagram or in
code view.

NOTE VCE includes limited refactoring capabilities, which unfortunately do not
include the field encapsulation described here. VS has many more options than
VCE in this area.

FIGURE 10-7

For example, if the MyClass class contained the field

public string myString;

you could right-click on the field and select Refactor ➪

Encapsulate Field. That would bring up the dialog shown
in Figure 10-7.

Accepting the default options modifies the code for
MyClass as follows:

private string myString;
public string MyString
{

get
{

return myString;
}
set
{

myString = value;
}

}

Additional Class Member Topics ❘ 253

Here, the myString field has had its accessibility changed to private, and a public property called
MyString has been created and automatically linked to myString. Clearly, reducing the time required
to monotonously create properties for fields is a big plus!

Automatic Properties
Properties are the preferred way to access the state of an object because they shield external code from
the implementation of data storage within the object. They also give you greater control over how
internal data is accessed, as you have seen several times in this chapter’s code. However, you’ll typically
define properties in a very standard way — that is, you will have a private member that is accessed
directly through a public property. The code for this is almost invariably similar to the code in the
previous section, which was autogenerated by the VS refactoring tool.

Refactoring certainly speeds things up when it comes to typing, but C# has another trick up its sleeve:
automatic properties. With an automatic property, you declare a property with a simplified syntax and
the C# compiler fills in the blanks for you. Specifically, the compiler declares a private field that is used
for storage, and uses that field in the get and set blocks of your property — without you having to
worry about the details.

Use the following code structure to define an automatic property:

public int MyIntProp
{

get;
set;

}

You can even define an automatic property on a single line of code to save space, without making the
property much less readable:

public int MyIntProp { get; set; }

You define the accessibility, type, and name of the property in the usual way, but you don’t provide
any implementation for the get or set block. The implementations of these blocks (and the underlying
field) is provided by the compiler.

When you use an automatic property, you only have access to its data through the property, not
through its underlying private field. This is because you can’t access the private field without know-
ing its name, which is defined during compilation. However, that’s not really a limitation because using
the property name directly is fine. The only limitation of automatic properties is that they must include
both a get and a set accessor — you cannot define read- or write-only properties in this way.

ADDITIONAL CLASS MEMBER TOPICS

Now you’ve ready to look at some more advanced member topics. This section tackles the following:

➤ Hiding base class methods

➤ Calling overridden or hidden base class methods

➤ Nested type definitions

254 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

Hiding Base Class Methods
When you inherit a (non-abstract) member from a base class, you also inherit an implementation. If
the inherited member is virtual, then you can override this implementation with the override keyword.
Regardless of whether the inherited member is virtual, you can, if you want, hide the implementation.
This is useful when, for example, a public inherited member doesn’t work quite as you want it to.

You can do this simply by using code such as the following:

public class MyBaseClass
{

public void DoSomething()
{

// Base implementation.
}

}

public class MyDerivedClass : MyBaseClass
{

public void DoSomething()
{

// Derived class implementation, hides base implementation.
}

}

Although this code works fine, it generates a warning that you are hiding a base class member. That
gives you the chance to correct things if you have accidentally hidden a member that you actually want
to use. If you really do want to hide the member, you can use the new keyword to explicitly indicate
that this is what you want to do:

public class MyDerivedClass : MyBaseClass
{

new public void DoSomething()
{

// Derived class implementation, hides base implementation.
}

}

This works in exactly the same way but won’t show a warning. At this point, it’s worthwhile to note
the difference between hiding and overriding base class members. Consider the following code:

public class MyBaseClass
{

public virtual void DoSomething()
{

Console.WriteLine("Base imp");
}

}

public class MyDerivedClass : MyBaseClass
{

public override void DoSomething()
{

Console.WriteLine("Derived imp");
}

}

Additional Class Member Topics ❘ 255

Here, the overriding method replaces the implementation in the base class, such that the following code
uses the new version even though it does so through the base class type (using polymorphism):

MyDerivedClass myObj = new MyDerivedClass();
MyBaseClass myBaseObj;
myBaseObj = myObj;
myBaseObj.DoSomething();

This results in the following output:

Derived imp

Alternatively, you could hide the base class method:

public class MyBaseClass
{

public virtual void DoSomething()
{

Console.WriteLine("Base imp");
}

}

public class MyDerivedClass : MyBaseClass
{

new public void DoSomething()
{

Console.WriteLine("Derived imp");
}

}

The base class method needn’t be virtual for this to work, but the effect is exactly the same and the pre-
ceding code only requires changes to one line. The result for a virtual or nonvirtual base class method
is as follows:

Base imp

Although the base implementation is hidden, you still have access to it through the base class.

Calling Overridden or Hidden Base Class Methods
Whether you override or hide a member, you still have access to the base class member from the derived
class. There are many situations in which this can be useful, such as the following:

➤ When you want to hide an inherited public member from users of a derived class but still
want access to its functionality from within the class

➤ When you want to add to the implementation of an inherited virtual member rather than sim-
ply replace it with a new overridden implementation

To achieve this, you use the base keyword, which refers to the implementation of the base class con-
tained within a derived class (in a similar way to its use in controlling constructors, as shown in the last
chapter):

256 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

public class MyBaseClass
{

public virtual void DoSomething()
{

// Base implementation.
}

}

public class MyDerivedClass : MyBaseClass
{

public override void DoSomething()
{

// Derived class implementation, extends base class implementation.
base.DoSomething();
// More derived class implementation.

}
}

This code executes the version of DoSomething contained in MyBaseClass, the base class of
MyDerivedClass, from within the version of DoSomething() contained in MyDerivedClass. As base

works using object instances, it is an error to use it from within a static member.

The this Keyword
As well as using base in the last chapter, you also used the this keyword. As with base, this can
be used from within class members, and, like base, this refers to an object instance, although it is
the current object instance (which means you can’t use this keyword in static members because static
members are not part of an object instance).

The most useful function of the this keyword is the capability to pass a reference to the current object
instance to a method, as shown in this example:

public void doSomething()
{

MyTargetClass myObj = new MyTargetClass();
myObj.DoSomethingWith(this);

}

Here, the MyTargetClass instance that is instantiated (myObj) has a method called DoSomethingWith(),
which takes a single parameter of a type compatible with the class containing the preceding method.
This parameter type might be of this class type, a class type from which this class derives, an interface
implemented by the class, or (of course) System.Object.

Another common use of the this keyword is to use it to qualify local type members, for example:

public class MyClass
{

private int someData;

public int SomeData
{

get
{

return this.someData;
}

}
}

Interface Implementation ❘ 257

Many developers like this syntax, which can be used with any member type, as it is clear at a glance
that you are referring to a member rather than a local variable.

Nested Type Definitions
You can define types such as classes in namespaces, and you can also define them inside other classes.
Then you can use the full range of accessibility modifiers for the definition, rather than just public and
internal, and you can use the new keyword to hide a type definition inherited from a base class. For
example, the following code defining MyClass also defines a nested class called MyNestedClass:

public class MyClass
{

public class MyNestedClass
{

public int NestedClassField;
}

}

To instantiate MyNestedClass from outside MyClass, you must qualify the name, as shown here:

MyClass.MyNestedClass myObj = new MyClass.MyNestedClass();

However, you may not be able to do this at all if the nested class is declared as private or another
accessibility level that is incompatible with the code at the point at which this instantiation is per-
formed. The main reason for the existence of this feature is to define classes that are private to the
containing class so that no other code in the namespace has access to them.

INTERFACE IMPLEMENTATION

Before moving on, take a closer look at how you go about defining and implementing interfaces. In the
last chapter, you learned that interfaces are defined in a similar way as classes, using code such as the
following:

interface IMyInterface
{

// Interface members.
}

Interface members are defined like class members except for a few important differences:

➤ No access modifiers (public, private, protected, or internal) are allowed — all interface
members are implicitly public.

➤ Interface members can’t contain code bodies.

➤ Interfaces can’t define field members.

➤ Interface members can’t be defined using the keywords static, virtual, abstract, or
sealed.

➤ Type definition members are forbidden.

258 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

You can, however, define members using the new keyword if you want to hide members inherited from
base interfaces:

interface IMyBaseInterface
{

void DoSomething();
}

interface IMyDerivedInterface : IMyBaseInterface
{

new void DoSomething();
}

This works exactly the same way as hiding inherited class members.

Properties defined in interfaces define either or both of the access blocks, get and set, which are per-
mitted for the property, as shown here:

interface IMyInterface
{

int MyInt { get; set; }
}

Here the int property MyInt has both get and set accessors. Either of these may be omitted for a
property with more restricted access.

NOTE This syntax is similar to automatic properties, but remember that
automatic properties are defined for classes, not interfaces, and that automatic
properties must have both get and set accessors.

Interfaces do not specify how the property data should be stored. Interfaces cannot specify fields, for
example, that might be used to store property data. Finally, interfaces, like classes, may be defined
as members of classes (but not as members of other interfaces because interfaces cannot contain type
definitions).

Implementing Interfaces in Classes
A class that implements an interface must contain implementations for all members of that interface,
which must match the signatures specified (including matching the specified get and set blocks), and
must be public, as shown here:

public interface IMyInterface
{

void DoSomething();
void DoSomethingElse();

}

public class MyClass : IMyInterface
{

public void DoSomething()
{
}

Interface Implementation ❘ 259

public void DoSomethingElse()
{
}

}

It is possible to implement interface members using the keyword virtual or abstract, but not static
or const. Interface members can also be implemented on base classes:

public interface IMyInterface
{

void DoSomething();
void DoSomethingElse();

}

public class MyBaseClass
{

public void DoSomething()
{
}

}

public class MyDerivedClass : MyBaseClass, IMyInterface
{

public void DoSomethingElse()
{
}

}

Inheriting from a base class that implements a given interface means that the interface is implicitly
supported by the derived class. Here’s an example:

public interface IMyInterface
{

void DoSomething();
void DoSomethingElse();

}

public class MyBaseClass : IMyInterface
{

public virtual void DoSomething()
{
}

public virtual void DoSomethingElse()
{
}

}

public class MyDerivedClass : MyBaseClass
{

public override void DoSomething()
{
}

}

Clearly, it is useful to define implementations in base classes as virtual so that derived classes can replace
the implementation, rather than hide it. If you were to hide a base class member using the new keyword,

260 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

rather than override it in this way, the method IMyInterface.DoSomething() would always refer to the
base class version even if the derived class were being accessed via the interface.

Explicit Interface Member Implementation
Interface members can also be implemented explicitly by a class. If you do that, the member can only
be accessed through the interface, not the class. Implicit members, which you used in the code in the
last section, can be accessed either way.

For example, if the class MyClass implemented the DoSomething() method of IMyInterface implicitly,
as in the preceding example, then the following code would be valid:

MyClass myObj = new MyClass();
myObj.DoSomething();

This would also be valid:
MyClass myObj = new MyClass();
IMyInterface myInt = myObj;
myInt.DoSomething();

Alternatively, if MyDerivedClass implements DoSomething() explicitly, then only the latter technique is
permitted. The code for doing that is as follows:

public class MyClass : IMyInterface
{

void IMyInterface.DoSomething()
{
}

public void DoSomethingElse()
{
}

}

Here, DoSomething() is implemented explicitly, and DoSomethingElse() implicitly. Only the latter is
accessible directly through an object instance of MyClass.

Adding Property Accessors with Nonpublic Accessibility
Earlier it was stated that if you implement an interface with a property, you must implement match-
ing get/set accessors. That isn’t strictly true — it is possible to add a get block to a property in a
class where the interface defining that property only contains a set block, and vice versa. However,
this is only possible if you add the accessor with an accessibility modifier that is more restrictive than
the accessibility modifier on the accessor defined in the interface. Because the accessor defined by the
interface is, by definition, public, you can only add nonpublic accessors. Here’s an example:

public interface IMyInterface
{

int MyIntProperty
{

get;
}

}

Partial Class Definitions ❘ 261

public class MyBaseClass : IMyInterface
{

public int MyIntProperty { get; protected set; }
}

PARTIAL CLASS DEFINITIONS

When you create classes with a lot of members of one type or another, things can get quite confusing,
and code files can get very long. One thing that can help, which you’ve looked at in earlier chapters, is
to use code outlining. By defining regions in code, you can collapse and expand sections to make things
easier to read. For example, you might have a class defined as follows:

public class MyClass
{

#region Fields
private int myInt;
#endregion

#region Constructor
public MyClass()
{

myInt = 99;
}
#endregion

#region Properties
public int MyInt
{

get
{

return myInt;
}
set
{

myInt = value;
}

}
#endregion

#region Methods
public void DoSomething()
{

// Do something..
}
#endregion

}

Here, you can expand and contract fields, properties, the constructor, and methods for the class,
enabling you to focus only on what you are interested in. It is even possible to nest regions this way,
so some regions are only visible when the region that contains them is expanded.

However, even using this technique, things can still get out of hand. One alternative is to use partial
class definitions. Put simply, you use partial class definitions to split the definition of a class across

262 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

multiple files. You could, for example, put the fields, properties, and constructor in one file, and the
methods in another. To do that, you just use the partial keyword with the class in each file that
contains part of the definition, as follows:

public partial class MyClass
{

...
}

If you use partial class definitions, the partial keyword must appear in this position in every file con-
taining part of the definition.

Partial classes are used to great effect in Windows applications to hide from you the code relating to
the layout of forms. You’ve already seen this, in fact, in Chapter 2. A Windows form, in a class called
Form1, for example, has code stored in both Form1.cs and Form1.Designer.cs. This enables you to
concentrate on the functionality of your forms, without worrying about your code being cluttered with
information that doesn’t really interest you.

One final note about partial classes: Interfaces applied to one partial class part apply to the whole class,
meaning that the definition

public partial class MyClass : IMyInterface1
{

...
}

public partial class MyClass : IMyInterface2
{

...
}

is equivalent to

public class MyClass : IMyInterface1, IMyInterface2
{

...
}

Partial class definitions can include a base class in a single partial class definition, or more than one
partial class definition. If a base class is specified in more than one definition, though, it must be the
same base class; recall that classes in C# can only inherit from a single base class.

PARTIAL METHOD DEFINITIONS

Partial classes may also define partial methods. Partial methods are defined in one partial class definition
without a method body, and implemented in another partial class definition. In both places, the partial
keyword is used:

public partial class MyClass
{

partial void MyPartialMethod();
}

Partial Method Definitions ❘ 263

public partial class MyClass
{

partial void MyPartialMethod()
{

// Method implementation
}

}

Partial methods can also be static, but they are always private and can’t have a return value. Any
parameters they use can’t be out parameters, although they can be ref parameters. They also can’t use
the virtual, abstract, override, new, sealed, or extern modifier.

Given these limitations, it is not immediately obvious what purpose partial methods fulfill. In fact,
they are important when it comes to code compilation, rather than usage. Consider the following
code:

public partial class MyClass
{

partial void DoSomethingElse();

public void DoSomething()
{

Console.WriteLine("DoSomething() execution started.");
DoSomethingElse();
Console.WriteLine("DoSomething() execution finished.");

}
}

public partial class MyClass
{

partial void DoSomethingElse()
{

Console.WriteLine("DoSomethingElse() called.");
}

}

Here, the partial method DoSomethingElse is defined and called in the first partial class definition,
and implemented in the second. The output, when DoSomething is called from a console application,
is what you might expect:

DoSomething() execution started.
DoSomethingElse() called.
DoSomething() execution finished.

If you were to remove the second partial class definition or partial method implementation entirely (or
comment out the code), the output would be as follows:

DoSomething() execution started.
DoSomething() execution finished.

You might assume that what is happening here is that when the call to DoSomethingElse is made,
the runtime discovers that the method has no implementation and therefore continues executing the
next line of code. What actually happens is a little subtler. When you compile code that contains
a partial method definition without an implementation, the compiler actually removes the method

264 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

entirely. It also removes any calls to the method. When you execute the code, no check is made
for an implementation because there is no call to check. This results in a slight — but nevertheless
significant — improvement in performance.

As with partial classes, partial methods are useful when it comes to customizing autogenerated or
designer-created code. The designer may declare partial methods that you can choose to implement or
not depending on the situation. If you don’t implement them, you incur no performance hit because
effectively the method does not exist in the compiled code.

Consider at this point why partial methods can’t have a return type. If you can answer that to your
own satisfaction, you can be sure that you fully understand this topic — so that is left as an exercise
for you.

EXAMPLE APPLICATION

To illustrate some of the techniques you’ve been using so far, in this section you’ll develop a class
module that you can build on and make use of in subsequent chapters. The class module contains two
classes:

➤ Card — Representing a standard playing card, with a suit of club, diamond, heart, or spade,
and a rank that lies between ace and king

➤ Deck — Representing a full deck of 52 cards, with access to cards by position in the deck and
the capability to shuffle the deck

You’ll also develop a simple client to ensure that things are working, but you won’t use the deck in a
full card game application — yet.

Planning the Application
The class library for this application, Ch10CardLib, will contain your classes. Before you get down to
any code, though, you should plan the required structure and functionality of your classes.

The Card Class
The Card class is basically a container for two read-only fields: suit and rank. The reason for making
the fields read-only is that it doesn’t make sense to have a ‘‘blank’’ card, and cards shouldn’t be able to

+suit
+rank
+ToString()

Card

FIGURE 10-8

change once they have been created. To facilitate this, you’ll make the default con-
structor private, and provide an alternative constructor that builds a card from a
supplied suit and rank.

Other than that, the Card class will override the ToString method of
System.Object, so that you can easily obtain a human-readable string rep-
resenting the card. To make things a little simpler, you’ll provide enumerations
for the two fields suit and rank.

The Card class is shown in Figure 10-8.

Example Application ❘ 265

The Deck Class

0...*

1

Card

+suit
+rank

+ToString()

Deck

−cards : Card[]

+GetCard()
+Deck()
+Shuffle()

FIGURE 10-9

The Deck class will maintain 52 Card objects. You can use a
simple array type for this. The array won’t be directly acces-
sible because access to the Card object is achieved through a
GetCard()method, which returns the Card object with the given
index. This class should also expose a Shuffle() method to
rearrange the cards in the array. The Deck class is shown in
Figure 10-9.

Writing the Class Library
For the purposes of this example, it is assumed that you are
familiar enough with the IDE to bypass the standard Try It
Out format, so the steps aren’t listed explicitly, as they are
the same steps you’ve used many times. The important thing
here is a detailed look at the code. Nonetheless, several
pointers are included to ensure that you don’t run into any
problems along the way.

Both your classes and your enumerations will be contained in a class library project called
Ch10CardLib. This project will contain four .cs files: Card.cs, which contains the Card class
definition, Deck.cs, which contains the Deck class definition, and Suit.cs and Rank.cs files containing
enumerations.

You can put together a lot of this code using the VS class diagram tool.

NOTE Don’t worry if you are using VCE and don’t have the class diagram tool at
your disposal. Each of the following sections also includes the code generated by
the class diagram, so you’ll be able to follow along just fine. There are no
differences in the code for this project between the IDEs.

To get started, you need to do the following:

1. Create a new class library project called Ch10CardLib and save it in the directory
C:\BegVCSharp\Chapter10.

2. Remove Class1.cs from the project.

3. If you are using VS, open the class diagram for the project using the Solution Explorer win-
dow (you must have the project selected, rather than the solution, for the class diagram icon
to appear). The class diagram should be blank to start with because the project contains no
classes.

266 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

NOTE If you can see the Resources and Settings classes in the class diagram,
they can be hidden by right-clicking on them and selecting Remove from
Diagram.

Adding the Suit and Rank Enumerations
You can add an enumeration to the class diagram by dragging an Enum from the Toolbox into the

diagram, and then filling in the New Enum dialog that appears. For example, for the Suit enumeration,
fill out the dialog as shown in Figure 10-10.

Next, add the members of the enumeration using the Class Details window. Figure 10-11 shows the
values that are required.

FIGURE 10-10 FIGURE 10-11

Add the Rank enumeration from the Toolbox in the same way. The values required are shown in
Figure 10-12.

FIGURE 10-12

NOTE The value entry for the first member, Ace, is set to 1 so that the underlying
storage of the enum matches the rank of the card, such that Six is stored as 6, for
example.

Example Application ❘ 267

FIGURE 10-13

When you’ve finished, the diagram should look as shown
in Figure 10-13.

The code generated for these two enumerations, in the
code files Suit.cs and Rank.cs, is as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch10CardLib
{

public enum Suit
{

Club,
Diamond,
Heart,
Spade,

}
}

Code snippet Ch10CardLib\Suit.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch10CardLib
{

public enum Rank
{

Ace = 1,
Deuce,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
Ten,
Jack,
Queen,
King,

}
}

Code snippet Ch10CardLib\Rank.cs

If you are using VCE you can add this code manually by adding Suit.cs and Rank.cs code files
and then entering the code. Note that the extra commas added by the code generator after the last

268 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

enumeration member do not prevent compilation and do not result in an additional ‘‘empty’’ member
being created — although they are a little messy.

Adding the Card Class
To add the Card class, you’ll use a mix of the class designer and code editor in VS, or just the code
editor in VCE. Adding a class in the class designer is much like adding an enumeration — you drag the
appropriate entry from the Toolbox into the diagram. In this case, you drag a Class into the diagram,
and name the new class Card.

Use the Class Details window to add the fields rank and suit, and then use the Properties window to set
the Constant Kind of the field to readonly. You also need to add two constructors: a default constructor
(private), and one that takes two parameters, newSuit and newRank, of types Suit and Rank, respectively
(public). Finally, you override ToString(), which requires modifying the Inheritance Modifier in the
Properties window to override.

Figure 10-14 shows the Class Details window and the Card class with all the information entered.

FIGURE 10-14

Next, modify the code for the class in Card.cs as follows (or add the code shown to a new class called
Card in the Ch10CardLib namespace if you are using VCE):

public class Card
{

public readonly Suit suit;
public readonly Rank rank;

public Card(Suit newSuit, Rank newRank)
{

suit = newSuit;
rank = newRank;

}

Example Application ❘ 269

private Card()
{

}

public override string ToString()
{

return "The " + rank + " of " + suit + "s";
}

}

Code snippet Ch10CardLib\Card.cs

The overridden ToString() method writes the string representation of the enumeration value stored
to the returned string, and the nondefault constructor initializes the values of the suit and rank

fields.

Adding the Deck Class
The Deck class needs the following members defined using the class diagram:

➤ A private field called cards, of type Card[]

➤ A public default constructor

➤ A public method called GetCard(), which takes one int parameter called cardNum and returns
an object of type Card

➤ A public method called Shuffle(), which takes no parameters and returns void

When these are added, the Class Details window for the Deck class will appear as shown in
Figure 10-15.

FIGURE 10-15

270 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

To make things clearer in the diagram, you can show the relationships among the members and types
you have added. In the class diagram, right-click on each of the following in turn, and select Show as
Association from the menu:

➤ cards in Deck

➤ suit in Card

➤ rank in Card

When you have finished, the diagram should look like Figure 10-16.

FIGURE 10-16

Next, modify the code in Deck.cs (if you are using VCE, you must add this class first with the code
shown here). First you implement the constructor, which simply creates and assigns 52 cards in the
cards field. You iterate through all combinations of the two enumerations, using each to create a card.
This results in cards initially containing an ordered list of cards:

using System;
using System.Collections.Generic;
using System.Linq
using System.Text;

namespace Ch10CardLib
{

Example Application ❘ 271

public class Deck
{

private Card[] cards;

public Deck()
{

cards = new Card[52];
for (int suitVal = 0; suitVal < 4; suitVal++)
{

for (int rankVal = 1; rankVal < 14; rankVal++)
{

cards[suitVal * 13 + rankVal -1] = new Card((Suit)suitVal,
(Rank)rankVal);

}
}

}

Code snippet Ch10CardLib\Deck.cs

Next, implement the GetCard() method, which either returns the Card object with the requested index
or throws an exception as shown earlier:

public Card GetCard(int cardNum)
{

if (cardNum >= 0 && cardNum <= 51)
return cards[cardNum];

else
throw (new System.ArgumentOutOfRangeException("cardNum", cardNum,

"Value must be between 0 and 51."));
}

Finally, you implement the Shuffle() method. This method works by creating a temporary card array
and copying cards from the existing cards array into this array at random. The main body of this
function is a loop that counts from 0 to 51. On each cycle, you generate a random number between 0
and 51, using an instance of the System.Random class from the .NET Framework. Once instantiated, an
object of this class generates a random number between 0 and X, using the method Next(X). When you
have a random number, you simply use that as the index of the Card object in your temporary array in
which to copy a card from the cards array.

To keep a record of assigned cards, you also have an array of bool variables, and assign these to true

as each card is copied. As you are generating random numbers, you check against this array to see
whether you have already copied a card to the location in the temporary array specified by the random
number. If so, you simply generate another.

This isn’t the most efficient way of doing things because many random numbers may be generated
before finding a vacant slot into which a card can be copied. However, it works, it’s very simple, and
C# code executes so quickly you will hardly notice a delay. The code is as follows:

public void Shuffle()
{

Card[] newDeck = new Card[52];
bool[] assigned = new bool[52];
Random sourceGen = new Random();

272 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

for (int i = 0; i < 52; i++)
{

int destCard = 0;
bool foundCard = false;
while (foundCard == false)
{

destCard = sourceGen.Next(52);
if (assigned[destCard] == false)

foundCard = true;
}
assigned[destCard] = true;
newDeck[destCard] = cards[i];

}
newDeck.CopyTo(cards, 0);

}
}

}

The last line of this method uses the CopyTo method of the System.Array class (used whenever you
create an array) to copy each of the cards in newDeck back into cards. This means you are using the
same set of Card objects in the same cards object, rather than creating any new instances. If you had
instead used cards = newDeck, then you would be replacing the object instance referred to by cards

with another. This could cause problems if code elsewhere were retaining a reference to the original
cards instance — which wouldn’t be shuffled!

That completes the class library code.

A Client Application for the Class Library
To keep things simple, you can add a client console application to the solution containing the class
library. To do so, simply right-click on the solution in Solution Explorer and select Add ➪ New Project.
The new project is called Ch10CardClient.

To use the class library you have created from this new console application project, add a reference to
your Ch10CardLib class library project. You can do that through the Projects tab of the Add Reference
dialog, as shown in Figure 10-17.

Select the project, click OK, and the reference is added.

Because this new project is the second one created, you also need to specify that it is the startup project
for the solution, meaning the one that is executed when you click Run. To do so, simply right-click on
the project name in the Solution Explorer window and select the Set as StartUp Project menu option.

Next, add the code that uses your new classes. That doesn’t require anything particularly special, so
the following code will do:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ch10CardLib;

Example Application ❘ 273

namespace Ch10CardClient
{

class Program
{

static void Main(string[] args)
{

Deck myDeck = new Deck();
myDeck.Shuffle();
for (int i = 0; i < 52; i++)
{

Card tempCard = myDeck.GetCard(i);
Console.Write(tempCard.ToString());
if (i != 51)

Console.Write(", ");
else

Console.WriteLine();
}
Console.ReadKey();

}
}

}

Code snippet Ch10CardClient\Program.cs

FIGURE 10-17

Figure 10-18 shows the result.

This is a random arrangement of the 52 playing cards in the deck. You’ll continue to develop and use
this class library in later chapters.

274 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

FIGURE 10-18

THE CALL HIERARCHY WINDOW

Now is a good time to take a quick look at a new feature in VS 2010: the Call Hierarchy window. It
enables you to interrogate code to find out where your methods are called from and how they relate to
other methods. The best way to illustrate this is with an example.

Open the example application from the previous section, and open the Deck.cs code file. Find the
Shuffle() method, right-click on it, and select the View Call Hierarchy menu item. The window that
appears is shown in Figure 10-19 (which has some regions expanded).

FIGURE 10-19

Starting from the Shuffle() method, you can drill into the tree view in the window to find all the code
that calls the method, and all the calls that the method makes. For example, the highlighted method,
Next(int), is called from Shuffle(), so it appears in the Calls From ‘Shuffle’ section. When you click
on a call you can see the line of code that makes the call on the right, along with its location. You can
double-click on the location to navigate instantly to the line of code that is referred to.

Exercises ❘ 275

You can also drill into methods further down the hierarchy — in Figure 10-19 this has been done for
Main(), and the display shows calls from and to the Main() method.

This window is very useful when you are debugging or refactoring code, as it enables you to see at a
glance how different pieces of code are related.

SUMMARY

This chapter completes the discussion of how to define basic classes. There’s still plenty to cover, but
the techniques covered so far enable you to create quite complicated applications.

You looked at how to define fields, methods, and properties, including the various access levels and
modifier keywords. You also looked at the tools you can use to get the outline of a class together in
half the time.

You explored inheritance behavior in detail, learning how to hide unwanted inherited members with
the new keyword, and extending base class members rather than replacing their implementation, using
the base keyword. You also looked at nested class definitions, had a detailed look at interface definition
and implementation, including the concepts of explicit and implicit implementation, and learned how
to split definitions between code files using partial class and method definitions.

Finally, you developed and used a simple class library representing a deck of playing cards, making use
of the handy class diagram tool to make things easier. You’ll make further use of this library in later
chapters.

In the next chapter, you look at collections, a type of class you will frequently use in your development.

EXERCISES

1. Write code that defines a base class, MyClass, with the virtual method GetString(). This method
should return the string stored in the protected field myString, accessible through the write-only
public property ContainedString.

2. Derive a class, MyDerivedClass, from MyClass. Override the GetString() method to return
the string from the base class, using the base implementation of the method, but add the text
"(output from derived class)" to the returned string.

3. Partial method definitions must use the void return type. Provide a reason why this might be so.

4. Write a class called MyCopyableClass that is capable of returning a copy of itself using the
method GetCopy(). This method should use the MemberwiseClone() method inherited from
System.Object. Add a simple property to the class, and write client code that uses the class to
confirm that everything is working.

5. Write a console client for the Ch10CardLib library that draws five cards at one time from a shuf-
fled Deck object. If all five cards are the same suit, then the client should display the card names
onscreen along with the text Flush!; otherwise, it should quit after 50 cards with the text No flush.

Answers to Exercises can be found in Appendix A.

276 ❘ CHAPTER 10 DEFINING CLASS MEMBERS

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Member definitions You can define field, method, and property members in a class. Fields are
defined with an accessibility, name, and type. Methods are defined with an
accessibility, return type, name, and parameters. Properties are defined with
an accessibility, name, and a get and/or set accessor. Individual property
accessors can have their own accessibility, which must be less accessible than
the property as a whole.

Member hiding
and overrides

Properties and methods can be defined as abstract or virtual in base
classes to define inheritance. Derived classes must implement abstract mem-
bers, and can override virtual members, with the override keyword. They can
also provide new implementations with the new keyword, and prevent further
overrides of virtual members with the sealed keyword. Base implementa-
tions can be called with the base keyword.

Interface
implementation

A class that implements an interface must implement all of the members
defined by that interface as public. You can implement interfaces implicitly
or explicitly, where explicit implementations are only available through an inter-
face reference.

Partial definitions You can split class definitions across multiple code files with the partial key-
word. You can also create partial methods, with the partial keyword. Partial
methods have certain restrictions, including no return value or out parameters,
and are not compiled if no implementation is provided.

11
Collections, Comparisons,
and Conversions

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to define and use collections

➤ What different types of collection are available

➤ How to compare types and use the is operator

➤ How to compare values and overload operators

➤ How to define and use conversions

➤ How to use the as operator

You’ve covered all the basic OOP techniques in C# now, but there are some more advanced
techniques that are worth becoming familiar with. In this chapter, you look at the following:

➤ Collections — Collections enable you to maintain groups of objects. Unlike arrays, which
you’ve used in earlier chapters, collections can include more advanced functionality, such as
controlling access to the objects they contain, searching and sorting, and more. You’ll learn
how to use and create collection classes and learn about some powerful techniques for getting
the most out of them.

➤ Comparisons — When dealing with objects, you often want to make comparisons between
them. This is especially important in collections, because it is how sorting is achieved. You’ll
look at how to compare objects in a number of ways, including operator overloading, and
how to use the IComparable and IComparer interface to sort collections.

➤ Conversions — Earlier chapters showed how to cast objects from one type into another. In
this chapter, you’ll learn how to customize type conversions to suit your needs.

278 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

COLLECTIONS

In Chapter 5, you learned how you can use arrays to create variable types that contain a number of
objects or values. Arrays, however, have their limitations. The biggest is that once arrays have been
created, they have a fixed size, so you can’t add new items to the end of an existing array without
creating a new one. This often means that the syntax used to manipulate arrays can become overly
complicated. OOP techniques enable you to create classes that perform much of this manipulation
internally, simplifying the code that uses lists of items or arrays.

Arrays in C# are implemented as instances of the System.Array class and are just one type of what
are known as collection classes. Collection classes in general are used for maintaining lists of objects,
and they may expose more functionality than simple arrays. Much of this functionality comes through
implementing interfaces from the System.Collections namespace, thus standardizing collection syn-
tax. This namespace also contains some other interesting things, such as classes that implement these
interfaces in ways other than System.Array.

Because the collection’s functionality (including basic functions such as accessing collection items by
using [index] syntax) is available through interfaces, you aren’t limited to using basic collection classes
such as System.Array. Instead, you can create your own customized collection classes. These can be
made more specific to the objects you wish to enumerate (that is, the objects you want to maintain
collections of). One advantage of doing this, as you will see, is that custom collection classes can be
strongly typed. That is, when you extract items from the collection, you don’t need to cast them into
the correct type. Another advantage is the capability to expose specialized methods. For example, you
can provide a quick way to obtain subsets of items. In the deck of cards example, you could add a
method to obtain all Card items of a particular suit.

Several interfaces in the System.Collections namespace provide basic collection functionality:

➤ IEnumerable — Provides the capability to loop through items in a collection

➤ ICollection — Provides the capability to obtain the number of items in a collection and copy
items into a simple array type (inherits from IEnumerable)

➤ IList — Provides a list of items for a collection along with the capabilities for accessing these
items, and some other basic capabilities related to lists of items (inherits from IEnumerable

and ICollection)

➤ IDictionary — Similar to IList, but provides a list of items accessible via a key value, rather
than an index (inherits from IEnumerable and ICollection)

The System.Array class implements IList, ICollection, and IEnumerable. However, it doesn’t sup-
port some of the more advanced features of IList, and it represents a list of items by using a fixed size.

Using Collections
One of the classes in the Systems.Collections namespace, System.Collections.ArrayList, also
implements IList, ICollection, and IEnumerable, but does so in a more sophisticated way than

Collections ❘ 279

System.Array. Whereas arrays are fixed in size (you can’t add or remove elements), this class may
be used to represent a variable-length list of items. To give you more of a feel for what is possible with
such a highly advanced collection, the following Try It Out uses this class, as well as a simple array.

TRY IT OUT Arrays versus More Advanced Collections

1. Create a new console application called Ch11Ex01 and save it in the directory
C:\BegVCSharp\Chapter11.

2. Add three new classes, Animal, Cow, and Chicken, to the project by right-clicking on the project in
the Solution Explorer window and selecting Add ➪ Class for each.

3. Modify the code in Animal.cs as follows:

namespace Ch11Ex01
{

public abstract class Animal
{

protected string name;

public string Name
{

get
{

return name;
}
set
{

name = value;
}

}

public Animal()
{

name = "The animal with no name";
}

public Animal(string newName)
{

name = newName;
}

public void Feed()
{

Console.WriteLine("{0} has been fed.", name);
}

}
}

Code snippet Ch11Ex01\Animal.cs

4. Modify the code in Cow.cs as follows:

280 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

namespace Ch11Ex01
{

public class Cow : Animal
{

public void Milk()
{

Console.WriteLine("{0} has been milked.", name);
}

public Cow(string newName): base(newName)
{
}

}
}

Code snippet Ch11Ex01\Cow.cs

5. Modify the code in Chicken.cs as follows:

namespace Ch11Ex01
{

public class Chicken : Animal
{

public void LayEgg()
{

Console.WriteLine("{0} has laid an egg.", name);
}

public Chicken(string newName): base(newName)
{
}

}
}

Code snippet Ch11Ex01\Chicken.cs

6. Modify the code in Program.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch11Ex01

{
class Program
{

static void Main(string[] args)
{

Console.WriteLine("Create an Array type collection of Animal " +
"objects and use it:");

Collections ❘ 281

Animal[] animalArray = new Animal[2];
Cow myCow1 = new Cow("Deirdre");

animalArray[0] = myCow1;
animalArray[1] = new Chicken("Ken");

foreach (Animal myAnimal in animalArray)
{

Console.WriteLine("New {0} object added to Array collection, " +
"Name = {1}", myAnimal.ToString(), myAnimal.Name);

}

Console.WriteLine("Array collection contains {0} objects.",
animalArray.Length);

animalArray[0].Feed();
((Chicken)animalArray[1]).LayEgg();
Console.WriteLine();

Console.WriteLine("Create an ArrayList type collection of Animal " +
"objects and use it:");

ArrayList animalArrayList = new ArrayList();
Cow myCow2 = new Cow("Hayley");
animalArrayList.Add(myCow2);
animalArrayList.Add(new Chicken("Roy"));

foreach (Animal myAnimal in animalArrayList)
{

Console.WriteLine("New {0} object added to ArrayList collection," +
" Name = {1}", myAnimal.ToString(), myAnimal.Name);

}
Console.WriteLine("ArrayList collection contains {0} objects.",

animalArrayList.Count);
((Animal)animalArrayList[0]).Feed();
((Chicken)animalArrayList[1]).LayEgg();
Console.WriteLine();

Console.WriteLine("Additional manipulation of ArrayList:");
animalArrayList.RemoveAt(0);
((Animal)animalArrayList[0]).Feed();
animalArrayList.AddRange(animalArray);
((Chicken)animalArrayList[2]).LayEgg();
Console.WriteLine("The animal called {0} is at index {1}.",

myCow1.Name, animalArrayList.IndexOf(myCow1));
myCow1.Name = "Janice";
Console.WriteLine("The animal is now called {0}.",

((Animal)animalArrayList[1]).Name);
Console.ReadKey();

}
}

}
Code snippet Ch11Ex01\Program.cs

7. Run the application. The result is shown in Figure 11-1.

282 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

FIGURE 11-1

How It Works

This example creates two collections of objects: the first uses the System.Array class (that is, a simple
array), and the second uses the System.Collections.ArrayList class. Both collections are of Animal
objects, which are defined in Animal.cs. The Animal class is abstract, so it can’t be instantiated, although
you can have items in your collection that are instances of the Cow and Chicken classes, which are derived
from Animal. You achieve this by using polymorphism, discussed in Chapter 8.

Once created in the Main() method in Class1.cs, these arrays are manipulated to show their characteris-
tics and capabilities. Several of the operations performed apply to both Array and ArrayList collections,
although their syntax differs slightly. Some, however, are only possible by using the more advanced
ArrayList type.

You’ll learn cover the similar operations first, comparing the code and results for both types of collection.
First, collection creation. With simple arrays you must initialize the array with a fixed size in order to use
it. You do this to an array called animalArray by using the standard syntax shown in Chapter 5:

Animal[] animalArray = new Animal[2];

ArrayList collections, conversely, don’t need a size to be initialized, so you can create your list (called
animalArrayList) as follows:

ArrayList animalArrayList = new ArrayList();

You can use two other constructors with this class. The first copies the contents of an existing collection
to the new instance by specifying the existing collection as a parameter; the other sets the capacity of the
collection, also via a parameter. This capacity, specified as an int value, sets the initial number of items
that can be contained in the collection. This is not an absolute capacity, however, because it is doubled
automatically if the number of items in the collection ever exceeds this value.

With arrays of reference types (such as the Animal and Animal-derived objects), simply initializing the array
with a size doesn’t initialize the items it contains. To use a given entry, that entry needs to be initialized,
which means that you need to assign initialized objects to the items:

Cow myCow1 = new Cow("Deirdre");
animalArray[0] = myCow1;
animalArray[1] = new Chicken("Ken");

The preceding code does this in two ways: once by assignment using an existing Cow object, and once by
assignment through the creation of a new Chicken object. The main difference here is that the former
method creates a reference to the object in the array — a fact that you make use of later in the code.

Collections ❘ 283

With the ArrayList collection, there are no existing items, not even null-referenced ones. This means you
can’t assign new instances to indices in the same way. Instead, you use the Add() method of the ArrayList

object to add new items:

Cow myCow2 = new Cow("Hayley");
animalArrayList.Add(myCow2);
animalArrayList.Add(new Chicken("Roy"));

Apart from the slightly different syntax, you can add new or existing objects to the collection in the same
way. Once you have added items in this way, you can overwrite them by using syntax identical to that for
arrays:

animalArrayList[0] = new Cow("Alma");

You won’t do that in this example, though.

Chapter 5 showed how the foreach structure can be used to iterate through an array. This is possible
because the System.Array class implements the IEnumerable interface, and the only method on this inter-
face, GetEnumerator(), allows you to loop through items in the collection. You’ll look at this in more
depth a little later in the chapter. In your code, you write out information about each Animal object in the
array:

foreach (Animal myAnimal in animalArray)
{

Console.WriteLine("New {0} object added to Array collection, " +
"Name = {1}", myAnimal.ToString(), myAnimal.Name);

}

The ArrayList object you use also supports the IEnumerable interface and can be used with foreach. In
this case, the syntax is identical:

foreach (Animal myAnimal in animalArrayList)
{

Console.WriteLine("New {0} object added to ArrayList collection, " +
"Name = {1}", myAnimal.ToString(), myAnimal.Name);

}

Next, you use the array’s Length property to output to the screen the number of items in the array:

Console.WriteLine("Array collection contains {0} objects.",
animalArray.Length);

You can achieve the same thing with the ArrayList collection, except that you use the Count property that
is part of the ICollection interface:

Console.WriteLine("ArrayList collection contains {0} objects.",
animalArrayList.Count);

Collections — whether simple arrays or more complex collections — aren’t very useful unless they provide
access to the items that belong to them. Simple arrays are strongly typed — that is, they allow direct access
to the type of the items they contain. This means you can call the methods of the item directly:

animalArray[0].Feed();

The type of the array is the abstract type Animal; therefore, you can’t call methods supplied by derived
classes directly. Instead you must use casting:

((Chicken)animalArray[1]).LayEgg();

The ArrayList collection is a collection of System.Object objects (you have assigned Animal objects via
polymorphism). This means that you must use casting for all items:

((Animal)animalArrayList[0]).Feed();
((Chicken)animalArrayList[1]).LayEgg();

284 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

The remainder of the code looks at some of the ArrayList collection’s capabilities that go beyond those
of the Array collection. First, you can remove items by using the Remove() and RemoveAt() methods, part
of the IList interface implementation in the ArrayList class. These methods remove items from an array
based on an item reference or index, respectively. This example uses the latter method to remove the list’s
first item, the Cow object with a Name property of Hayley:

animalArrayList.RemoveAt(0);

Alternatively, you could use

animalArrayList.Remove(myCow2);

because you already have a local reference to this object — you added an existing reference to the array
via Add(), rather than create a new object. Either way, the only item left in the collection is the Chicken

object, which you access as follows:

((Animal)animalArrayList[0]).Feed();

Any modifications to items in the ArrayList object resulting in N items being left in the array will be
executed in such a way as to maintain indices from 0 to N-1. For example, removing the item with the
index 0 results in all other items being shifted one place in the array, so you access the Chicken object with
the index 0, not 1. You no longer have an item with an index of 1 (because you only had two items in the
first place), so an exception would be thrown if you tried the following:

((Animal)animalArrayList[1]).Feed();

ArrayList collections enable you to add several items at once with the AddRange() method. This method
accepts any object with the ICollection interface, which includes the animalArray array created earlier in
the code:

animalArrayList.AddRange(animalArray);

To check that this works, you can attempt to access the third item in the collection, which will be the
second item in animalArray:

((Chicken)animalArrayList[2]).LayEgg();

The AddRange() method isn’t part of any of the interfaces exposed by ArrayList. This method is specific to
the ArrayList class and demonstrates the fact that you can exhibit customized behavior in your collection
classes, beyond what is required by the interfaces you have looked at. This class exposes other interesting
methods too, such as InsertRange(), for inserting an array of objects at any point in the list, and methods
for tasks such as sorting and reordering the array.

Finally, you make use of the fact that you can have multiple references to the same object. Using the
IndexOf() method (part of the IList interface), you can see that myCow1 (an object originally added to
animalArray) is now not only part of the animalArrayList collection, but also its index:

Console.WriteLine("The animal called {0} is at index {1}.",
myCow1.Name, animalArrayList.IndexOf(myCow1));

As an extension of this, the next two lines of code rename the object via the object reference and display
the new name via the collection reference:

myCow1.Name = "Janice";
Console.WriteLine("The animal is now called {0}.",

((Animal)animalArrayList[1]).Name);

Defining Collections
Now that you know what is possible using more advanced collection classes, it’s time to learn how to
create your own strongly typed collection. One way of doing this is to implement the required methods

Collections ❘ 285

manually, but this can be a time-consuming and complex process. Alternatively, you can derive your
collection from a class, such as System.Collections.CollectionBase, an abstract class that supplies
much of the implementation of a collection for you. This option is strongly recommended.

The CollectionBase class exposes the interfaces IEnumerable, ICollection, and IList but only pro-
vides some of the required implementation — notably, the Clear() and RemoveAt() methods of IList
and the Count property of ICollection. You need to implement everything else yourself if you want
the functionality provided.

To facilitate this, CollectionBase provides two protected properties that enable access to the stored
objects themselves. You can use List, which gives you access to the items through an IList interface,
and InnerList, which is the ArrayList object used to store items.

For example, the basics of a collection class to store Animal objects could be defined as follows (you’ll
see a fuller implementation shortly):

public class Animals : CollectionBase
{

public void Add(Animal newAnimal)
{

List.Add(newAnimal);
}

public void Remove(Animal oldAnimal)
{

List.Remove(oldAnimal);
}

public Animals()
{
}

}

Here, Add() and Remove() have been implemented as strongly typed methods that use the standard
Add() method of the IList interface used to access the items. The methods exposed will now only
work with Animal classes or classes derived from Animal, unlike the ArrayList implementations shown
earlier, which work with any object.

The CollectionBase class enables you to use the foreach syntax with your derived collections. For
example, you can use code such as this:

Console.WriteLine("Using custom collection class Animals:");
Animals animalCollection = new Animals();
animalCollection.Add(new Cow("Sarah"));
foreach (Animal myAnimal in animalCollection)
{

Console.WriteLine("New {0} object added to custom collection, " +
"Name = {1}", myAnimal.ToString(), myAnimal.Name);

}

You can’t, however, do the following:

animalCollection[0].Feed();

To access items via their indices in this way, you need to use an indexer.

286 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

Indexers
An indexer is a special kind of property that you can add to a class to provide array-like access. In
fact, you can provide more complex access via an indexer, because you can define and use complex
parameter types with the square bracket syntax as you wish. Implementing a simple numeric index for
items, however, is the most common usage.

You can add an indexer to the Animals collection of Animal objects as follows:

public class Animals : CollectionBase
{

...

public Animal this[int animalIndex]
{

get
{

return (Animal)List[animalIndex];
}
set
{

List[animalIndex] = value;
}

}
}

The this keyword is used along with parameters in square brackets, but otherwise the indexer looks
much like any other property. This syntax is logical, because you access the indexer by using the name
of the object followed by the index parameter(s) in square brackets (for example, MyAnimals[0]).

The indexer code uses an indexer on the List property (that is, on the IList interface that provides
access to the ArrayList in CollectionBase that stores your items):

return (Animal)List[animalIndex];

Explicit casting is necessary here, as the IList.List property returns a System.Object object. The
important thing to note here is that you define a type for this indexer. This is the type that will be
obtained when you access an item by using this indexer. This strong typing means that you can write
code such as

animalCollection[0].Feed();

rather than

((Animal)animalCollection[0]).Feed();

This is another handy feature of strongly typed custom collections. In the following Try It Out, you
expand the previous Try It Out to put this into action.

TRY IT OUT Implementing an Animals Collection

1. Create a new console application called Ch11Ex02 and save it in the directory
C:\BegVCSharp\Chapter11.

Collections ❘ 287

2. Right-click on the project name in the Solution Explorer window and select Add ➪ Existing Item.

3. Select the Animal.cs, Cow.cs, and Chicken.cs files from the C:\BegVCSharp\Chapter11\
Ch11Ex01\Ch11Ex01 directory, and click Add.

4. Modify the namespace declaration in the three files you added as follows:

namespace Ch11Ex02
Code snippets Ch11Ex02\Animal.cs, Ch11Ex02\Cow.cs, and Ch11Ex02\Chicken.cs

5 Add a new class called Animals.

6. Modify the code in Animals.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch11Ex02
{

public class Animals : CollectionBase
{

public void Add(Animal newAnimal)
{

List.Add(newAnimal);
}

public void Remove(Animal newAnimal)
{

List.Remove(newAnimal);
}

public Animals()
{
}

public Animal this[int animalIndex]
{

get
{

return (Animal)List[animalIndex];
}
set
{

List[animalIndex] = value;
}

}
}

}
Code snippet Ch11Ex02\Animals.cs

288 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

7. Modify Program.cs as follows:

static void Main(string[] args)
{

Animals animalCollection = new Animals();
animalCollection.Add(new Cow("Jack"));
animalCollection.Add(new Chicken("Vera"));
foreach (Animal myAnimal in animalCollection)
{

myAnimal.Feed();
}
Console.ReadKey();

}
Code snippet Ch11Ex02\Program.cs

8. Execute the application. The result is shown in Figure 11-2.

FIGURE 11-2

How It Works

This example uses code detailed in the last section to implement a strongly typed collection of Animal
objects in a class called Animals. The code in Main() simply instantiates an Animals object called
animalCollection, adds two items (an instance of Cow and Chicken), and uses a foreach loop to call the
Feed() method that both objects inherit from their base class, Animal.

Adding a Cards Collection to CardLib
In the last chapter, you created a class library project called Ch10CardLib that contained a Card class
representing a playing card, and a Deck class representing a deck of cards — that is, a collection of Card
classes. This collection was implemented as a simple array.

In this chapter, you’ll add a new class to this library, renamed Ch11CardLib. This new class, Cards,
will be a custom collection of Card objects, giving you all the benefits described earlier in this chapter.
Create a new class library called Ch11CardLib in the C:\BegVCSharp\Chapter11 directory, delete the
autogenerated Class1.cs file; select Project ➪ Add Existing Item; select the Card.cs, Deck.cs, Suit.cs,
and Rank.cs files from the C:\BegVCSharp\Chapter10\Ch10CardLib\Ch10CardLib directory; and add
the files to your project. As with the previous version of this project, introduced in Chapter 10, these
changes are presented without using the standard Try It Out format. Should you want to jump straight

Collections ❘ 289

to the code, feel free to open the version of this project included in the downloadable code for this
chapter.

NOTE Don’t forget that when copying the source files from Ch10CardLib to
Ch11CardLib, you must change the namespace declarations to refer to
Ch11CardLib. This also applies to the Ch10CardClient console application that
you will use for testing.

The downloadable code for this chapter includes a project that contains all the
code you need for the various expansions to Ch11CardLib. The code is divided
into regions, and you can uncomment the section you want to experiment with.

If you decide to create this project yourself, add a new class called Cards and modify the code in
Cards.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch11CardLib
{

public class Cards : CollectionBase
{

public void Add(Card newCard)
{

List.Add(newCard);
}

public void Remove(Card oldCard)
{

List.Remove(oldCard);
}

public Cards()
{
}

public Card this[int cardIndex]
{

get
{

return (Card)List[cardIndex];
}
set
{

List[cardIndex] = value;
}

}

290 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

/// <summary>
/// Utility method for copying card instances into another Cards
/// instance — used in Deck.Shuffle(). This implementation assumes that
/// source and target collections are the same size.
/// </summary>
public void CopyTo(Cards targetCards)
{

for (int index = 0; index < this.Count; index++)
{

targetCards[index] = this[index];
}

}

/// <summary>
/// Check to see if the Cards collection contains a particular card.
/// This calls the Contains() method of the ArrayList for the collection,
/// which you access through the InnerList property.
/// </summary>
public bool Contains(Card card)
{

return InnerList.Contains(card);
}

}
}

Code snippet Ch11CardLib\Cards.cs

Next, modify Deck.cs to use this new collection, rather than an array:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch11CardLib
{

public class Deck
{

private Cards cards = new Cards();

public Deck()
{

// Line of code removed here
for (int suitVal = 0; suitVal < 4; suitVal++)
{

for (int rankVal = 1; rankVal < 14; rankVal++)
{

cards.Add(new Card((Suit)suitVal, (Rank)rankVal));
}

}
}

Collections ❘ 291

public Card GetCard(int cardNum)
{

if (cardNum >= 0 && cardNum <= 51)
return cards[cardNum];

else
throw (new System.ArgumentOutOfRangeException("cardNum", cardNum,

"Value must be between 0 and 51."));
}

public void Shuffle()
{

Cards newDeck = new Cards();
bool[] assigned = new bool[52];
Random sourceGen = new Random();
for (int i = 0; i < 52; i++)
{

int sourceCard = 0;
bool foundCard = false;
while (foundCard == false)
{

sourceCard = sourceGen.Next(52);
if (assigned[sourceCard] == false)

foundCard = true;
}
assigned[sourceCard] = true;
newDeck.Add(cards[sourceCard]);

}
newDeck.CopyTo(cards);

}
}

}

Code snippet Ch11CardLib\Deck.cs

Not many changes are necessary here. Most of them involve changing the shuffling logic to allow for
the fact that cards are added to the beginning of the new Cards collection newDeck from a random index
in cards, rather than to a random index in newDeck from a sequential position in cards.

The client console application for the Ch10CardLib solution, Ch10CardClient, may be used with this
new library with the same result as before, as the method signatures of Deck are unchanged. Clients
of this class library can now make use of the Cards collection class, however, rather than rely on arrays
of Card objects — for example, to define hands of cards in a card game application.

Keyed Collections and IDictionary
Instead of the IList interface, it is also possible for collections to implement the similar IDictionary
interface, which allows items to be indexed via a key value (such as a string name), rather than an index.
This is also achieved using an indexer, although here the indexer parameter used is a key associated with
a stored item, rather than an int index, which can make the collection a lot more user-friendly.

As with indexed collections, there is a base class you can use to simplify implementation of the
IDictionary interface: DictionaryBase. This class also implements IEnumerable and ICollection,
providing the basic collection manipulation capabilities that are the same for any collection.

292 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

DictionaryBase, like CollectionBase, implements some (but not all) of the members obtained through
its supported interfaces. Like CollectionBase, the Clear and Count members are implemented,
although RemoveAt() isn’t because it’s a method on the IList interface and doesn’t appear on the
IDictionary interface. IDictionary does, however, have a Remove() method, which is one of the
methods you should implement in a custom collection class based on DictionaryBase.

The following code shows an alternative version of the Animals class, this time derived from
DictionaryBase. Implementations are included for Add(), Remove(), and a key-accessed indexer:

public class Animals : DictionaryBase
{

public void Add(string newID, Animal newAnimal)
{

Dictionary.Add(newID, newAnimal);
}

public void Remove(string animalID)
{

Dictionary.Remove(animalID);
}

public Animals()
{
}

public Animal this[string animalID]
{

get
{

return (Animal)Dictionary[animalID];
}
set
{

Dictionary[animalID] = value;
}

}
}

The differences in these members are as follows:

➤ Add() — Takes two parameters, a key and a value, to store together. The dictionary
collection has a member called Dictionary inherited from DictionaryBase, which is an
IDictionary interface. This interface has its own Add() method, which takes two object
parameters. Your implementation takes a string value as a key and an Animal object as the
data to store alongside this key.

➤ Remove() — Takes a key parameter, rather than an object reference. The item with the key
value specified is removed.

➤ Indexer — Uses a string key value, rather than an index, which is used to access the stored
item via the Dictionary inherited member. Again, casting is necessary here.

One other difference between collections based on DictionaryBase and collections based on
CollectionBase is that foreach works slightly differently. The collection from the last section allowed
you to extract Animal objects directly from the collection. Using foreach with the DictionaryBase

Collections ❘ 293

derived class gives you DictionaryEntry structs, another type defined in the System.Collections

namespace. To get to the Animal objects themselves, you must use the Value member of this struct, or
you can use the Key member of the struct to get the associated key. To get code equivalent to the earlier

foreach (Animal myAnimal in animalCollection)
{

Console.WriteLine("New {0} object added to custom collection, " +
"Name = {1}", myAnimal.ToString(), myAnimal.Name);

}

you need the following:

foreach (DictionaryEntry myEntry in animalCollection)
{

Console.WriteLine("New {0} object added to custom collection, " +
"Name = {1}", myEntry.Value.ToString(),
((Animal)myEntry.Value).Name);

}

It is possible to override this behavior so that you can access Animal objects directly through foreach.
There are several ways to do this, the simplest being to implement an iterator.

Iterators
Earlier in this chapter, you saw that the IEnumerable interface enables you to use foreach loops. It’s
often beneficial to use your classes in foreach loops, not just collection classes such as those shown in
previous sections.

However, overriding this behavior, or providing your own custom implementation of it, is not always
simple. To illustrate this, it’s necessary to take a detailed look at foreach loops. The following steps
show what actually happens in a foreach loop iterating through a collection called collectionObject:

1. collectionObject.GetEnumerator() is called, which returns an IEnumerator reference. This
method is available through implementation of the IEnumerable interface, although this is
optional.

2. The MoveNext() method of the returned IEnumerator interface is called.

3. If MoveNext() returns true, then the Current property of the IEnumerator interface is used to
get a reference to an object, which is used in the foreach loop.

4. The preceding two steps repeat until MoveNext() returns false, at which point the loop ter-
minates.

To enable this behavior in your classes, you must override several methods, keep track of indices,
maintain the Current property, and so on. This can be a lot of work to achieve very little.

A simpler alternative is to use an iterator. Effectively, using iterators generates a lot of the code for you
behind the scenes and hooks it all up correctly. Moreover, the syntax for using iterators is much easier
to get a grip on.

A good definition of an iterator is a block of code that supplies all the values to be used in a foreach

block in sequence. Typically, this block of code is a method, although you can also use property acces-
sors and other blocks of code as iterators. To keep things simple, you’ll just look at methods here.

294 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

Whatever the block of code is, its return type is restricted. Perhaps contrary to expectations, this return
type isn’t the same as the type of object being enumerated. For example, in a class that represents a
collection of Animal objects, the return type of the iterator block can’t be Animal. Two possible return
types are the interface types mentioned earlier, IEnumerable or IEnumerator. You use these types as
follows:

➤ To iterate over a class, use a method called GetEnumerator() with a return type of
IEnumerator.

➤ To iterate over a class member, such as a method, use IEnumerable.

Within an iterator block, you select the values to be used in the foreach loop by using the yield key-
word. The syntax for doing this is as follows:

yield return <value>;

That information is all you need to build a very simple example, as follows:

public static IEnumerable SimpleList()
{

yield return "string 1";
yield return "string 2";
yield return "string 3";

}

static void Main(string[] args)
{

foreach (string item in SimpleList())
Console.WriteLine(item);

Console.ReadKey();
}

Code Snippet SimpleIterators\Program.cs

NOTE To test this code yourself, remember to add a using statement
for the System.Collections namespace or fully qualify the
System.Collections.IEnumerable interface. Alternately, you can find this code in
the SimpleIterators project in the downloadable code for this chapter.

FIGURE 11-3

Here, the static method SimpleList() is the itera-
tor block. Because it is a method, you use a return
type of IEnumerable. SimpleList() uses the yield

keyword to supply three values to the foreach

block that uses it, each of which is written to the
screen. The result is shown in Figure 11-3.

Obviously, this iterator isn’t a particularly useful one, but it does show how this works in action and
how simple the implementation can be. Looking at the code, you might wonder how the code knows

Collections ❘ 295

to return string type items. In fact, it doesn’t; it returns object type values. As you know, object is
the base class for all types, so you can return anything from the yield statements.

However, the compiler is intelligent enough that you can interpret the returned values as whatever type
you want in the context of the foreach loop. Here, the code asks for string type values, so those are
the values you get to work. Should you change one of the yield lines so that it returns, say, an integer,
you would get a bad cast exception in the foreach loop.

One more thing about iterators. It is possible to interrupt the return of information to the foreach loop
by using the following statement:

yield break;

When this statement is encountered in an iterator, the iterator processing terminates immediately, as
does the foreach loop using it.

Now it’s time for a more complicated — and useful! — example. In this Try It Out, you’ll implement
an iterator that obtains prime numbers.

TRY IT OUT Implementing an Iterator

1. Create a new console application called Ch11Ex03 and save it in the directory
C:\BegVCSharp\Chapter11.

2. Add a new class called Primes and modify the code as follows:
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch11Ex03
{

public class Primes
{

private long min;
private long max;

public Primes(): this(2, 100)
{
}

public Primes(long minimum, long maximum)
{

if (min < 2)
min = 2;

else
min = minimum;

max = maximum;
}

296 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

public IEnumerator GetEnumerator()
{

for (long possiblePrime = min; possiblePrime <= max; possiblePrime++)
{

bool isPrime = true;
for (long possibleFactor = 2; possibleFactor <=

(long)Math.Floor(Math.Sqrt(possiblePrime)); possibleFactor++)
{

long remainderAfterDivision = possiblePrime % possibleFactor;
if (remainderAfterDivision == 0)
{

isPrime = false;
break;

}
}
if (isPrime)
{

yield return possiblePrime;
}

}
}

}
}

Code snippet Ch11Ex03\Primes.cs

3. Modify the code in Program.cs as follows:

static void Main(string[] args)
{

Primes primesFrom2To1000 = new Primes(2, 1000);
foreach (long i in primesFrom2To1000)

Console.Write("{0} ", i);

Console.ReadKey();
}

Code snippet Ch11Ex03\Program.cs

4. Execute the application. The result is shown in Figure 11-4.

FIGURE 11-4

How It Works

This example consists of a class that enables you to enumerate over a collection of prime numbers between
an upper and lower limit. The class that encapsulates the prime numbers uses an iterator to provide this
functionality.

Collections ❘ 297

The code for Primes starts off with the basics: two fields to hold the maximum and minimum values to
search between, and constructors to set these values. Note that the minimum value is restricted — it can’t
be less than 2. This makes sense, because 2 is the lowest prime number. The interesting code is all in the
GetEnumerator() method. The method signature fulfils the rules for an iterator block in that it returns an
IEnumerator type:

public IEnumerator GetEnumerator()
{

To extract prime numbers between limits, you need to test each number in turn, so you start with a for

loop:

for (long possiblePrime = min; possiblePrime <= max; possiblePrime++)
{

Because you don’t know whether a number is prime or not, you first assume that it is and then check to see
if it isn’t. That means checking whether any number between 2 and the square root of the number to be
tested is a factor. If this is true, then the number isn’t prime, so you move on to the next one. If the number
is indeed prime, then you pass it to the foreach loop using yield:

bool isPrime = true;
for (long possibleFactor = 2; possibleFactor <=

(long)Math.Floor(Math.Sqrt(possiblePrime)); possibleFactor++)
{

long remainderAfterDivision = possiblePrime % possibleFactor;
if (remainderAfterDivision == 0)
{

isPrime = false;
break;

}
}
if (isPrime)
{

yield return possiblePrime;
}

}
}

An interesting fact reveals itself through this code if you set the minimum and maximum limits to very
big numbers. When you execute the application, the results appear one at a time, with pauses in between,
rather than all at once. This is evidence that the iterator code returns results one at a time, despite the fact
that there is no obvious place where the code terminates between yield calls. Behind the scenes, calling
yield does interrupt the code, which resumes when another value is requested — that is, when the foreach
loop using the iterator begins a new cycle.

Iterators and Collections
Earlier you were promised an explanation of how iterators can be used to iterate over the objects
stored in a dictionary-type collection without having to deal with DictionaryItem objects. Recall the
collection class Animals:

298 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

public class Animals : DictionaryBase
{

public void Add(string newID, Animal newAnimal)
{

Dictionary.Add(newID, newAnimal);
}

public void Remove(string animalID)
{

Dictionary.Remove(animalID);
}

public Animals()
{
}

public Animal this[string animalID]
{

get
{

return (Animal)Dictionary[animalID];
}
set
{

Dictionary[animalID] = value;
}

}
}

You can add this simple iterator to the code to get the desired behavior:

public new IEnumerator GetEnumerator()
{

foreach (object animal in Dictionary.Values)
yield return (Animal)animal;

}

Code snippet DictionaryAnimals\Animals.cs

Now you can use the following code to iterate through the Animal objects in the collection:

foreach (Animal myAnimal in animalCollection)
{

Console.WriteLine("New {0} object added to custom collection, " +
"Name = {1}", myAnimal.ToString(), myAnimal.Name);

}

Code snippet DictionaryAnimals\Program.cs

NOTE In the downloadable code for this chapter you will find this code in the
DictionaryAnimals project.

Collections ❘ 299

Deep Copying
Chapter 9 described how you can perform shallow copying with the System.Object.MemberwiseClone()
protected method, by using a method like the GetCopy() one shown here:

public class Cloner
{

public int Val;

public Cloner(int newVal)
{

Val = newVal;
}

public object GetCopy()
{

return MemberwiseClone();
}

}

Suppose you have fields that are reference types, rather than value types (for example, objects):

public class Content
{

public int Val;
}

public class Cloner
{

public Content MyContent = new Content();

public Cloner(int newVal)
{

MyContent.Val = newVal;
}

public object GetCopy()
{

return MemberwiseClone();
}

}

In this case, the shallow copy obtained though GetCopy() has a field that refers to the same object as
the original object. The following code, which uses this Cloner class, illustrates the consequences of
shallow copying reference types:

Cloner mySource = new Cloner(5);
Cloner myTarget = (Cloner)mySource.GetCopy();
Console.WriteLine("myTarget.MyContent.Val = {0}", myTarget.MyContent.Val);
mySource.MyContent.Val = 2;
Console.WriteLine("myTarget.MyContent.Val = {0}", myTarget.MyContent.Val);

The fourth line, which assigns a value to mySource.MyContent.Val, the Val public field of the MyContent
public field of the original object, also changes the value of myTarget.MyContent.Val. That’s because

300 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

mySource.MyContent refers to the same object instance as myTarget.MyContent. The output of the
preceding code is as follows:

myTarget.MyContent.Val = 5
myTarget.MyContent.Val = 2

To get around this, you need to perform a deep copy. You could just modify the GetCopy() method
used previously to do this, but it is preferable to use the standard .NET Framework way of doing
things: Implement the ICloneable interface, which has the single method Clone(). This method takes
no parameters and returns an object type result, giving it a signature identical to the GetCopy() method
used earlier.

To modify the preceding classes, try using the following deep copy code:

public class Content
{

public int Val;
}

public class Cloner: ICloneable
{

public Content MyContent = new Content();

public Cloner(int newVal)
{

MyContent.Val = newVal;
}

public object Clone()
{

Cloner clonedCloner = new Cloner(MyContent.Val);
return clonedCloner;

}
}

This created a new Cloner object by using the Val field of the Content object contained in the original
Cloner object (MyContent). This field is a value type, so no deeper copying is necessary.

Using code similar to that just shown to test the shallow copy but using Clone() instead of GetCopy()
gives you the following result:

myTarget.MyContent.Val = 5
myTarget.MyContent.Val = 5

This time, the contained objects are independent. Note that sometimes calls to Clone() are made recur-
sively, in more complex object systems. For example, if the MyContent field of the Cloner class also
required deep copying, then you might need the following:

public class Cloner : ICloneable
{

public Content MyContent = new Content();

...

Collections ❘ 301

public object Clone()
{

Cloner clonedCloner = new Cloner();
clonedCloner.MyContent = MyContent.Clone();
return clonedCloner;

}
}

You’re calling the default constructor here to simplify the syntax of creating a new Cloner object. For
this code to work, you would also need to implement ICloneable on the Content class.

Adding Deep Copying to CardLib
You can put this into practice by implementing the capability to copy Card, Cards, and Deck objects by
using the ICloneable interface. This might be useful in some card games, where you might not neces-
sarily want two decks with references to the same set of Card objects, although you might conceivably
want to set up one deck to have the same card order as another.

Implementing cloning functionality for the Card class in Ch11CardLib is simple, because shallow
copying is sufficient (Card contains only value-type data, in the form of fields). Just make the following
changes to the class definition:

public class Card : ICloneable
{

public object Clone()
{

return MemberwiseClone();
}

Code snippet Ch11CardLib\Card.cs

This implementation of ICloneable is just a shallow copy. There is no rule determining what should
happen in the Clone() method, and this is sufficient for your purposes.

Next, implement ICloneable on the Cards collection class. This is slightly more complicated because it
involves cloning every Card object in the original collection — so you need to make a deep copy:

public class Cards : CollectionBase, ICloneable
{

public object Clone()
{

Cards newCards = new Cards();
foreach (Card sourceCard in List)
{

newCards.Add(sourceCard.Clone() as Card);
}
return newCards;

}

Code snippet Ch11CardLib\Cards.cs

Finally, implement ICloneable on the Deck class. Note a slight problem here: The Deck class has no
way to modify the cards it contains, short of shuffling them. There is no way, for example, to modify a

302 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

Deck instance to have a given card order. To get around this, define a new private constructor for the
Deck class that allows a specific Cards collection to be passed in when the Deck object is instantiated.
Here’s the code to implement cloning in this class:

public class Deck : ICloneable
{

public object Clone()
{

Deck newDeck = new Deck(cards.Clone() as Cards);
return newDeck;

}

private Deck(Cards newCards)
{

cards = newCards;
}

Code snippet Ch11CardLib\Deck.cs

Again, you can test this out with some simple client code (as before, place this code within the Main()

method of a client project for testing):

Deck deck1 = new Deck();
Deck deck2 = (Deck)deck1.Clone();
Console.WriteLine("The first card in the original deck is: {0}",

deck1.GetCard(0));
Console.WriteLine("The first card in the cloned deck is: {0}",

deck2.GetCard(0));
deck1.Shuffle();
Console.WriteLine("Original deck shuffled.");
Console.WriteLine("The first card in the original deck is: {0}",

deck1.GetCard(0));
Console.WriteLine("The first card in the cloned deck is: {0}",

deck2.GetCard(0));
Console.ReadKey();

Code snippet Ch11CardClient\Program.cs

The output will be similar to what is shown in Figure 11-5.

FIGURE 11-5

Comparisons ❘ 303

COMPARISONS

This section covers two types of comparisons between objects:

➤ Type comparisons

➤ Value comparisons

Type comparisons — that is, determining what an object is, or what it inherits from — are important
in all areas of C# programming. Often when you pass an object — to a method, for example — what
happens next depends on the type of the object. You’ve seen this in passing in this and earlier chapters,
but here you will see some more useful techniques.

Value comparisons are also something you’ve seen a lot of, at least with simple types. When it comes
to comparing values of objects, things get a little more complicated. You have to define what is meant
by a comparison for a start, and what operators such as > mean in the context of your classes. This
is especially important in collections, for which you might want to sort objects according to some
condition, perhaps alphabetically or according to a more complicated algorithm.

Type Comparisons
When comparing objects, you often need to know their type, which may enable you to determine
whether a value comparison is possible. In Chapter 9 you saw the GetType() method, which all classes
inherit from System.Object, and how this method can be used in combination with the typeof()

operator to determine (and take action depending on) object types:

if (myObj.GetType() == typeof(MyComplexClass))
{

// myObj is an instance of the class MyComplexClass.
}

You’ve also seen how the default implementation of ToString(), also inherited from System.Object,
will get you a string representation of an object’s type. You can compare these strings too, although
that’s a rather messy way to accomplish this.

This section demonstrates a handy shorthand way of doing things: the is operator. This allows for
much more readable code and, as you will see, has the advantage of examining base classes. Before
looking at the is operator, though, you need to be aware of what often happens behind the scenes
when dealing with value types (as opposed to reference types): boxing and unboxing.

Boxing and Unboxing
In Chapter 8, you learned the difference between reference types and value types, which was illustrated
in Chapter 9 by comparing structs (which are value types) with classes (which are reference types).
Boxing is the act of converting a value type into the System.Object type or to an interface type that is
implemented by the value type. Unboxing is the opposite conversion.

304 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

For example, suppose you have the following struct type:

struct MyStruct
{

public int Val;
}

You can box a struct of this type by placing it into an object-type variable:

MyStruct valType1 = new MyStruct();
valType1.Val = 5;
object refType = valType1;

Here, you create a new variable (valType1) of type MyStruct, assign a value to the Val member of this
struct, and then box it into an object-type variable (refType).

The object created by boxing a variable in this way contains a reference to a copy of the value-type
variable, not a reference to the original value-type variable. You can verify this by modifying the orig-
inal struct’s contents and then unboxing the struct contained in the object into a new variable and
examining its contents:

valType1.Val = 6;
MyStruct valType2 = (MyStruct)refType;
Console.WriteLine("valType2.Val = {0}", valType2.Val);

This code gives you the following output:

valType2.Val = 5

When you assign a reference type to an object, however, you get a different behavior. You can see this
by changing MyStruct into a class (ignoring the fact that the name of this class isn’t appropriate now):

class MyStruct
{

public int Val;
}

With no changes to the client code shown previously (again ignoring the misnamed variables), you get
the following output:

valType2.Val = 6

You can also box value types into interface types, so long as they implement that interface. For example,
suppose the MyStruct type implements the IMyInterface interface as follows:

interface IMyInterface
{
}

struct MyStruct : IMyInterface
{

public int Val;
}

You can then box the struct into an IMyInterface type as follows:

MyStruct valType1 = new MyStruct();
IMyInterface refType = valType1;

Comparisons ❘ 305

You can unbox it by using the normal casting syntax:

MyStruct ValType2 = (MyStruct)refType;

As shown in these examples, boxing is performed without your intervention — that is, you don’t have
to write any code to make this possible. Unboxing a value requires an explicit conversion, however,
and requires you to make a cast (boxing is implicit and doesn’t have this requirement).

You might be wondering why you would actually want to do this. There are actually two very good
reasons why boxing is extremely useful. First, it enables you to use value types in collections (such as
ArrayList) where the items are of type object. Second, it’s the internal mechanism that enables you to
call object methods on value types, such as ints and structs.

It is worth noting that unboxing is necessary before access to the value type contents is possible.

The is Operator
Despite its name, the is operator isn’t a way to determine whether an object is a certain type. Instead,
the is operator enables you to check whether an object either is or can be converted into a given type.
If this is the case, then the operator evaluates to true.

Earlier examples showed a Cow and a Chicken class, both of which inherit from Animal. Using the is

operator to compare objects with the Animal type will return true for objects of all three of these types,
not just Animal. This is something you’d have a hard time achieving with the GetType() method and
typeof() operator shown previously.

The is operator has the following syntax:

<operand> is <type>

The possible results of this expression are as follows:

➤ If <type> is a class type, then the result is true if <operand> is of that type, if it inherits from
that type, or if it can be boxed into that type.

➤ If <type> is an interface type, then the result is true if <operand> is of that type or it is a type
that implements the interface.

➤ If <type> is a value type, then the result is true if <operand> is of that type or it is a type that
can be unboxed into that type.

The following Try It Out shows how this works in practice.

TRY IT OUT Using the is Operator

1. Create a new console application called Ch11Ex04 in the directory C:\BegVCSharp\Chapter11.

2. Modify the code in Program.cs as follows:

namespace Ch11Ex04
{

class Checker
{

306 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

public void Check(object param1)
{

if (param1 is ClassA)
Console.WriteLine("Variable can be converted to ClassA.");

else
Console.WriteLine("Variable can’t be converted to ClassA.");

if (param1 is IMyInterface)
Console.WriteLine("Variable can be converted to IMyInterface.");

else
Console.WriteLine("Variable can’t be converted to IMyInterface.");

if (param1 is MyStruct)
Console.WriteLine("Variable can be converted to MyStruct.");

else
Console.WriteLine("Variable can’t be converted to MyStruct.");

}
}

interface IMyInterface
{
}

class ClassA : IMyInterface
{
}

class ClassB : IMyInterface
{
}

class ClassC
{
}

class ClassD : ClassA
{
}

struct MyStruct : IMyInterface
{
}

class Program
{

static void Main(string[] args)
{

Checker check = new Checker();
ClassA try1 = new ClassA();
ClassB try2 = new ClassB();
ClassC try3 = new ClassC();
ClassD try4 = new ClassD();
MyStruct try5 = new MyStruct();
object try6 = try5;
Console.WriteLine("Analyzing ClassA type variable:");

Comparisons ❘ 307

check.Check(try1);
Console.WriteLine("\nAnalyzing ClassB type variable:");
check.Check(try2);
Console.WriteLine("\nAnalyzing ClassC type variable:");
check.Check(try3);
Console.WriteLine("\nAnalyzing ClassD type variable:");
check.Check(try4);
Console.WriteLine("\nAnalyzing MyStruct type variable:");
check.Check(try5);
Console.WriteLine("\nAnalyzing boxed MyStruct type variable:");
check.Check(try6);
Console.ReadKey();

}
}

}
Code snippet Ch11Ex04\Program.cs

3. Execute the code. The result is shown in Figure 11-6.

FIGURE 11-6

How It Works

This example illustrates the various results possible when using the is operator. Three classes, an interface,
and a structure are defined and used as parameters to a method of a class that uses the is operator to
determine whether they can be converted into the ClassA type, the interface type, and the struct type.

Only ClassA and ClassD (which inherits from ClassA) types are compatible with ClassA. Types that don’t
inherit from a class are not compatible with that class.

The ClassA, ClassB, and MyStruct types all implement IMyInterface, so these are all compatible with the
IMyInterface type. ClassD inherits from ClassA, so that it too is compatible. Therefore, only ClassC is
incompatible.

308 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

Finally, only variables of type MyStruct itself and boxed variables of that type are compatible with
MyStruct, because you can’t convert reference types to value types (although, of course, you can unbox
previously boxed variables).

Value Comparisons
Consider two Person objects representing people, each with an integer Age property. You might want
to compare them to see which person is older. You can simply use the following code:

if (person1.Age > person2.Age)
{

...
}

This works fine, but there are alternatives. You might prefer to use syntax such as the following:

if (person1 > person2)
{

...
}

This is possible using operator overloading, which you’ll look at in this section. This is a powerful
technique, but it should be used judiciously. In the preceding code, it is not immediately obvious that
ages are being compared — it could be height, weight, IQ, or just general ‘‘greatness.’’

Another option is to use the IComparable and IComparer interfaces, which enable you to define how
objects will be compared to each other in a standard way. This technique is supported by the various
collection classes in the .NET Framework, making it an excellent way to sort objects in a collection.

Operator Overloading
Operator overloading enables you to use standard operators, such as +, >, and so on, with classes that
you design. This is called ‘‘overloading’’ because you are supplying your own implementations for these
operators when used with specific parameter types, in much the same way that you overload methods
by supplying different parameters for methods with the same name.

Operator overloading is useful because you can perform whatever processing you want in the imple-
mentation of the operator overload, which might not be as simple as, for example, +, meaning ‘‘add
these two operands together.’’ Later, you’ll see a good example of this in a further upgrade of the
CardLib library, whereby you’ll provide implementations for comparison operators that compare two
cards to see which would beat the other in a trick (one round of card game play).

Because a trick in many card games depends on the suits of the cards involved, this isn’t as straightfor-
ward as comparing the numbers on the cards. If the second card laid down is a different suit from the
first, then the first card wins regardless of its rank. You can implement this by considering the order of
the two operands. You can also take a trump suit into account, whereby trumps beat other suits even if
that isn’t the first suit laid down. This means that calculating that card1 > card2 is true (that is, card1
will beat card2 if card1 is laid down first), doesn’t necessarily imply that card2 > card1 is false. If
neither card1 nor card2 are trumps and they belong to different suits, then both these comparisons will
be true.

To start with, though, here’s a look at the basic syntax for operator overloading. Operators may be
overloaded by adding operator type members (which must be static) to a class. Some operators have

Comparisons ❘ 309

multiple uses (such as -, which has unary and binary capabilities); therefore, you also specify how many
operands you are dealing with and the types of these operands. In general, you will have operands that
are the same type as the class in which the operator is defined, although it’s possible to define operators
that work on mixed types, as you’ll see shortly.

As an example, consider the simple type AddClass1, defined as follows:

public class AddClass1
{

public int val;
}

This is just a wrapper around an int value but it illustrates the principles. With this class, code such as
the following will fail to compile:

AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass1 op2 = new AddClass1();
op2.val = 5;
AddClass1 op3 = op1 + op2;

The error you get informs you that the + operator cannot be applied to operands of the AddClass1 type.
This is because you haven’t defined an operation to perform yet. Code such as the following works, but
it won’t give you the result you might want:

AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass1 op2 = new AddClass1();
op2.val = 5;
bool op3 = op1 == op2;

Here, op1 and op2 are compared by using the == binary operator to determine whether they refer to the
same object, not to verify whether their values are equal. op3 will be false in the preceding code, even
though op1.val and op2.val are identical.

To overload the + operator, use the following code:

public class AddClass1
{

public int val;

public static AddClass1 operator +(AddClass1 op1, AddClass1 op2)
{

AddClass1 returnVal = new AddClass1();
returnVal.val = op1.val + op2.val;
return returnVal;

}
}

As you can see, operator overloads look much like standard static method declarations, except that
they use the keyword operator and the operator itself, rather than a method name. You can now
successfully use the + operator with this class, as in the previous example:

AddClass1 op3 = op1 + op2;

Overloading all binary operators fits the same pattern. Unary operators look similar but have only one
parameter:

310 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

public class AddClass1
{

public int val;

public static AddClass1 operator +(AddClass1 op1, AddClass1 op2)
{

AddClass1 returnVal = new AddClass1();
returnVal.val = op1.val + op2.val;
return returnVal;

}

public static AddClass1 operator -(AddClass1 op1)
{

AddClass1 returnVal = new AddClass1();
returnVal.val = -op1.val;
return returnVal;

}
}

Both these operators work on operands of the same type as the class and have return values that are
also of that type. Consider, however, the following class definitions:

public class AddClass1
{

public int val;

public static AddClass3 operator +(AddClass1 op1, AddClass2 op2)
{

AddClass3 returnVal = new AddClass3();
returnVal.val = op1.val + op2.val;
return returnVal;

}
}

public class AddClass2
{

public int val;
}

public class AddClass3
{

public int val;
}

This will allow the following code:

AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass2 op2 = new AddClass2();
op2.val = 5;
AddClass3 op3 = op1 + op2;

When appropriate, you can mix types in this way. Note, however, that if you added the same operator
to AddClass2, then the preceding code would fail because it would be ambiguous as to which operator
to use. You should, therefore, take care not to add operators with the same signature to more than
one class.

Comparisons ❘ 311

In addition, if you mix types, then the operands must be supplied in the same order as the parameters to
the operator overload. If you attempt to use your overloaded operator with the operands in the wrong
order, the operation will fail. For example, you can’t use the operator like:

AddClass3 op3 = op2 + op1;

unless, of course, you supply another overload with the parameters reversed:

public static AddClass3 operator +(AddClass2 op1, AddClass1 op2)
{

AddClass3 returnVal = new AddClass3();
returnVal.val = op1.val + op2.val;
return returnVal;

}

The following operators can be overloaded:

➤ Unary operators: +, -, !, ~, ++, --, true, false

➤ Binary operators: +, -, *, /, %, &, |, ˆ , <<, >>

➤ Comparison operators: ==, !=, <, >, <=, >=

NOTE If you overload the true and false operators, then you can use classes in
Boolean expressions, such as if(op1){}.

You can’t overload assignment operators, such as +=, but these operators use their simple counterparts,
such as +, so you don’t have to worry about that. Overloading + means that += will function as expected.
The = operator can’t be overloaded because it has such a fundamental usage, but this operator is related
to the user-defined conversion operators, which you’ll look at in the next section.

You also can’t overload && and ||, but these operators use the & and | operators to perform their
calculations, so overloading these is enough.

Some operators, such as < and >, must be overloaded in pairs. That is, you can’t overload < unless
you also overload >. In many cases, you can simply call other operators from these to reduce the code
required (and the errors that might occur), as shown in this example:

public class AddClass1
{

public int val;

public static bool operator >=(AddClass1 op1, AddClass1 op2)
{

return (op1.val >= op2.val);
}

public static bool operator <(AddClass1 op1, AddClass1 op2)
{

return !(op1 >= op2);
}

// Also need implementations for <= and > operators.
}

312 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

In more complex operator definitions, this can reduce the lines of code. It also means that you have less
code to change if you later decide to modify the implementation of these operators.

The same applies to == and !=, but with these operators it is often worth overriding Object.Equals()

and Object.GetHashCode(), because both of these functions may also be used to compare objects. By
overriding these methods, you ensure that whatever technique users of the class use, they get the same
result. This isn’t essential, but it’s worth adding for completeness. It requires the following nonstatic
override methods:

public class AddClass1
{

public int val;

public static bool operator ==(AddClass1 op1, AddClass1 op2)
{

return (op1.val == op2.val);
}

public static bool operator !=(AddClass1 op1, AddClass1 op2)
{

return !(op1 == op2);
}

public override bool Equals(object op1)
{

return val == ((AddClass1)op1).val;
}

public override int GetHashCode()
{

return val;
}

}

GetHashCode() is used to obtain a unique int value for an object instance based on its state. Here, using
val is fine, because it is also an int value.

Note that Equals() uses an object type parameter. You need to use this signature or you will be over-
loading this method, rather than overriding it, and the default implementation will still be accessible to
users of the class. Instead, you must use casting to get the required result. It is often worth checking the
object type using the is operator discussed earlier, in code such as this:

public override bool Equals(object op1)
{

if (op1 is AddClass1)
{

return val == ((AddClass1)op1).val;
}
else
{

throw new ArgumentException(
"Cannot compare AddClass1 objects with objects of type "
+ op1.GetType().ToString());

}
}

Comparisons ❘ 313

In this code, an exception is thrown if the operand passed to Equals is of the wrong type or cannot be
converted into the correct type. Of course, this behavior may not be what you want. You may want
to be able to compare objects of one type with objects of another type, in which case more branching
would be necessary. Alternatively, you may want to restrict comparisons to those in which both objects
are of exactly the same type, which would require the following change to the first if statement:

if (op1.GetType() == typeof(AddClass1))

Adding Operator Overloads to CardLib
Now you’ll upgrade your Ch11CardLib project again, adding operator overloading to the Card class.
First, though, you’ll add the extra fields to the Card class that allow for trump suits and an option to
place aces high. You make these static, because when they are set, they apply to all Card objects:

public class Card
{

/// <summary>
/// Flag for trump usage. If true, trumps are valued higher
/// than cards of other suits.
/// </summary>
public static bool useTrumps = false;

/// <summary>
/// Trump suit to use if useTrumps is true.
/// </summary>
public static Suit trump = Suit.Club;

/// <summary>
/// Flag that determines whether aces are higher than kings or lower
/// than deuces.
/// </summary>
public static bool isAceHigh = true;

Code snippet Ch11CardLib\Card.cs

These rules apply to all Card objects in every Deck in an application. It’s not possible to have two
decks of cards with cards contained in each that obey different rules. That’s fine for this class library,
however, as you can safely assume that if a single application wants to use separate rules, then it could
maintain these itself, perhaps setting the static members of Card whenever decks are switched.

Because you have done this, it is worth adding a few more constructors to the Deck class to initialize
decks with different characteristics:

/// <summary>
/// Nondefault constructor. Allows aces to be set high.
/// </summary>
public Deck(bool isAceHigh) : this()
{

Card.isAceHigh = isAceHigh;
}

314 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

/// <summary>
/// Nondefault constructor. Allows a trump suit to be used.

/// </summary>
public Deck(bool useTrumps, Suit trump) : this()
{

Card.useTrumps = useTrumps;
Card.trump = trump;

}

/// <summary>
/// Nondefault constructor. Allows aces to be set high and a trump suit
/// to be used.
/// </summary>
public Deck(bool isAceHigh, bool useTrumps, Suit trump) : this()
{

Card.isAceHigh = isAceHigh;
Card.useTrumps = useTrumps;
Card.trump = trump;

}

Code snippet Ch11CardLib\Deck.cs

Each of these constructors is defined by using the : this() syntax shown in Chapter 9, so in all cases
the default constructor is called before the nondefault one, initializing the deck.

Now add your operator overloads (and suggested overrides) to the Card class:

public static bool operator ==(Card card1, Card card2)
{

return (card1.suit == card2.suit) && (card1.rank == card2.rank);
}

public static bool operator !=(Card card1, Card card2)
{

return !(card1 == card2);
}

public override bool Equals(object card)
{

return this == (Card)card;
}
public override int GetHashCode()
{

return 13*(int)rank + (int)suit;
}

public static bool operator >(Card card1, Card card2)
{

if (card1.suit == card2.suit)
{

Comparisons ❘ 315

if (isAceHigh)
{

if (card1.rank == Rank.Ace)
{

if (card2.rank == Rank.Ace)
return false;

else
return true;

}
else
{

if (card2.rank == Rank.Ace)
return false;

else
return (card1.rank > card2.rank);

}
}
else
{

return (card1.rank > card2.rank);
}

}
else
{

if (useTrumps && (card2.suit == Card.trump))
return false;

else
return true;

}
}

public static bool operator <(Card card1, Card card2)
{

return !(card1 >= card2);
}

public static bool operator >=(Card card1, Card card2)
{

if (card1.suit == card2.suit)
{

if (isAceHigh)
{

if (card1.rank == Rank.Ace)
{

return true;
}
else
{

if (card2.rank == Rank.Ace)
return false;

else
return (card1.rank >= card2.rank);

}
}

316 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

else

{
return (card1.rank >= card2.rank);

}
}
else
{

if (useTrumps && (card2.suit == Card.trump))
return false;

else
return true;

}
}

public static bool operator <=(Card card1, Card card2)
{

return !(card1 > card2);
}

Code snippet Ch11CardLib\Card.cs

There’s not much to note here, except perhaps the slightly lengthy code for the > and >= overloaded
operators. If you step through the code for >, you can see how it works and why these steps are
necessary.

You are comparing two cards, card1 and card2, where card1 is assumed to be the first one laid down
on the table. As discussed earlier, this becomes important when you are using trump cards, because
a trump will beat a nontrump even if the nontrump has a higher rank. Of course, if the suits of the
two cards are identical, then whether the suit is the trump suit or not is irrelevant, so this is the first
comparison you make:

public static bool operator >(Card card1, Card card2)
{

if (card1.suit == card2.suit)
{

If the static isAceHigh flag is true, then you can’t compare the cards’ ranks directly via their value in
the Rank enumeration, because the rank of ace has a value of 1 in this enumeration, which is less than
that of all other ranks. Instead, use the following steps:

➤ If the first card is an ace, then check whether the second card is also an ace. If it is, then the
first card won’t beat the second. If the second card isn’t an ace, then the first card wins:

if (isAceHigh)
{

if (card1.rank == Rank.Ace)
{

if (card2.rank == Rank.Ace)
return false;

else
return true;

}

Comparisons ❘ 317

➤ If the first card isn’t an ace, then you also need to check whether the second one is. If it is,
then the second card wins; otherwise, you can compare the rank values because you know
that aces aren’t an issue:

else
{

if (card2.rank == Rank.Ace)
return false;

else
return (card1.rank > card2.rank);

}
}

➤ If aces aren’t high, then you just compare the rank values:

else
{

return (card1.rank > card2.rank);
}

The remainder of the code concerns the case where the suits of card1 and card2 are different. Here,
the static useTrumps flag is important. If this flag is true and card2 is of the trump suit, then you can
say definitively that card1 isn’t a trump (because the two cards have different suits); and trumps always
win, so card2 is the higher card:

else
{

if (useTrumps && (card2.suit == Card.trump))
return false;

If card2 isn’t a trump (or useTrumps is false), then card1 wins, because it was the first card laid down:

else
return true;

}
}

Only one other operator (>=) uses code similar to this, and the other operators are very simple, so
there’s no need to go into more detail about them.

The following simple client code tests these operators (place it in the Main() method of a client project
to test it, like the client code shown earlier in the CardLib examples):

Card.isAceHigh = true;
Console.WriteLine("Aces are high.");
Card.useTrumps = true;
Card.trump = Suit.Club;
Console.WriteLine("Clubs are trumps.");

Card card1, card2, card3, card4, card5;
card1 = new Card(Suit.Club, Rank.Five);
card2 = new Card(Suit.Club, Rank.Five);
card3 = new Card(Suit.Club, Rank.Ace);
card4 = new Card(Suit.Heart, Rank.Ten);
card5 = new Card(Suit.Diamond, Rank.Ace);

318 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

Console.WriteLine("{0} == {1} ? {2}",
card1.ToString(), card2.ToString(), card1 == card2);

Console.WriteLine("{0} != {1} ? {2}",
card1.ToString(), card3.ToString(), card1 != card3);

Console.WriteLine("{0}.Equals({1}) ? {2}",
card1.ToString(), card4.ToString(), card1.Equals(card4));

Console.WriteLine("Card.Equals({0}, {1}) ? {2}",
card3.ToString(), card4.ToString(), Card.Equals(card3, card4));

Console.WriteLine("{0} > {1} ? {2}",
card1.ToString(), card2.ToString(), card1 > card2);

Console.WriteLine("{0} <= {1} ? {2}",
card1.ToString(), card3.ToString(), card1 <= card3);

Console.WriteLine("{0} > {1} ? {2}",
card1.ToString(), card4.ToString(), card1 > card4);

Console.WriteLine("{0} > {1} ? {2}",
card4.ToString(), card1.ToString(), card4 > card1);

Console.WriteLine("{0} > {1} ? {2}",
card5.ToString(), card4.ToString(), card5 > card4);

Console.WriteLine("{0} > {1} ? {2}",
card4.ToString(), card5.ToString(), card4 > card5);

Console.ReadKey();

Code snippet Ch11CardClient\Program.cs

The results are as shown in Figure 11-7.

FIGURE 11-7

In each case, the operators are applied taking the specified rules into account. This is particularly appar-
ent in the last four lines of output, demonstrating how trump cards always beat nontrumps.

The IComparable and IComparer Interfaces
The IComparable and IComparer interfaces are the standard way to compare objects in the .NET Frame-
work. The difference between the interfaces is as follows:

➤ IComparable is implemented in the class of the object to be compared and allows comparisons
between that object and another object.

➤ IComparer is implemented in a separate class, which allows comparisons between any two
objects.

Comparisons ❘ 319

Typically, you give a class default comparison code by using IComparable, and nondefault comparisons
using other classes.

IComparable exposes the single method CompareTo(), which accepts an object. You could, for example,
implement it in a way that enables you to pass a Person object to it and determine whether that person
is older or younger than the current person. In fact, this method returns an int, so you could also
determine how much older or younger the second person is:

if (person1.CompareTo(person2) == 0)
{

Console.WriteLine("Same age");
}
else if (person1.CompareTo(person2) > 0)
{

Console.WriteLine("person 1 is Older");
}
else
{

Console.WriteLine("person1 is Younger");
}

IComparer exposes the single method Compare(), which accepts two objects and returns an integer
result just like CompareTo(). With an object supporting IComparer, you could use code like the follow-
ing:

if (personComparer.Compare(person1, person2) == 0)
{

Console.WriteLine("Same age");
}
else if (personComparer.Compare(person1, person2) > 0)
{

Console.WriteLine("person 1 is Older");
}
else
{

Console.WriteLine("person1 is Younger");
}

In both cases, the parameters supplied to the methods are of the type System.Object. This means that
you can compare one object to another object of any other type, so you usually have to perform some
type comparison before returning a result, and maybe even throw exceptions if the wrong types are
used.

The .NET Framework includes a default implementation of the IComparer interface on a class called
Comparer, found in the System.Collections namespace. This class is capable of performing culture-
specific comparisons between simple types, as well as any type that supports the IComparable interface.
You can use it, for example, with the following code:

string firstString = "First String";
string secondString = "Second String";
Console.WriteLine("Comparing ‘{0}’ and ‘{1}’, result: {2}",

firstString, secondString,
Comparer.Default.Compare(firstString, secondString));

320 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

int firstNumber = 35;
int secondNumber = 23;
Console.WriteLine("Comparing ‘{0}’ and ‘{1}’, result: {2}",

firstNumber, secondNumber,
Comparer.Default.Compare(firstNumber, secondNumber));

This uses the Comparer.Default static member to obtain an instance of the Comparer class, and then
uses the Compare() method to compare first two strings, and then two integers.

The result is as follows:
Comparing ‘First String’ and ‘Second String’, result: -1
Comparing ‘35’ and ‘23’, result: 1

Because F comes before S in the alphabet, it is deemed ‘‘less than’’ S, so the result of the first comparison
is −1. Similarly, 35 is greater than 23, hence the result of 1. Note that the results do not indicate the
magnitude of the difference.

When using Comparer, you must use types that can be compared. Attempting to compare firstString

with firstNumber, for instance, will generate an exception.

Here are a few more points about the behavior of this class:

➤ Objects passed to Comparer.Compare() are checked to determine whether they support
IComparable. If they do, then that implementation is used.

➤ Null values are allowed, and are interpreted as being ‘‘less than’’ any other object.

➤ Strings are processed according to the current culture. To process strings according to a dif-
ferent culture (or language), the Comparer class must be instantiated using its constructor,
which enables you to pass a System.Globalization.CultureInfo object specifying the culture
to use.

➤ Strings are processed in a case-sensitive way. To process them in a non-case-sensitive way,
you need to use the CaseInsensitiveComparer class, which otherwise works exactly the
same.

Sorting Collections Using the IComparable and IComparer Interfaces
Many collection classes allow sorting, either by default comparisons between objects or by custom
methods. ArrayList is one example. It contains the method Sort(), which can be used without param-
eters, in which case default comparisons are used, or it can be passed an IComparer interface to use to
compare pairs of objects.

When you have an ArrayList filled with simple types, such as integers or strings, the default comparer
is fine. For your own classes, you must either implement IComparable in your class definition or create
a separate class supporting IComparer to use for comparisons.

Note that some classes in the System.Collection namespace, including CollectionBase, don’t expose
a method for sorting. If you want to sort a collection you have derived from this class, then you have
to do a bit more work and sort the internal List collection yourself.

Comparisons ❘ 321

The following Try It Out shows how to use a default and nondefault comparer to sort a list.

TRY IT OUT Sorting a List

1. Create a new console application called Ch11Ex05 in the directory C:\BegVCSharp\Chapter11.

2. Add a new class called Person and modify the code as follows:

namespace Ch11Ex05
{

class Person : IComparable
{

public string Name;
public int Age;

public Person(string name, int age)
{

Name = name;
Age = age;

}

public int CompareTo(object obj)
{

if (obj is Person)
{

Person otherPerson = obj as Person;
return this.Age - otherPerson.Age;

}
else
{

throw new ArgumentException(
"Object to compare to is not a Person object.");

}
}

}
}

Code snippet Ch11Ex05\Person.cs

3. Add another new class called PersonComparerName and modify the code as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch11Ex05
{

public class PersonComparerName : IComparer
{

public static IComparer Default = new PersonComparerName();

322 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

public int Compare(object x, object y)
{

if (x is Person && y is Person)
{

return Comparer.Default.Compare(
((Person)x).Name, ((Person)y).Name);

}
else
{

throw new ArgumentException(
"One or both objects to compare are not Person objects.");

}
}

}
}

Code snippet Ch11Ex05\PersonComparerName.cs

4. Modify the code in Program.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch11Ex05
{

class Program
{

static void Main(string[] args)
{

ArrayList list = new ArrayList();
list.Add(new Person("Jim", 30));
list.Add(new Person("Bob", 25));
list.Add(new Person("Bert", 27));
list.Add(new Person("Ernie", 22));

Console.WriteLine("Unsorted people:");
for (int i = 0; i < list.Count; i++)
{

Console.WriteLine("{0} ({1})",
(list[i] as Person).Name, (list[i] as Person).Age);

}
Console.WriteLine();

Console.WriteLine(
"People sorted with default comparer (by age):");

list.Sort();

Comparisons ❘ 323

for (int i = 0; i < list.Count; i++)
{

Console.WriteLine("{0} ({1})",
(list[i] as Person).Name, (list[i] as Person).Age);

}
Console.WriteLine();

Console.WriteLine(
"People sorted with nondefault comparer (by name):");

list.Sort(PersonComparerName.Default);
for (int i = 0; i < list.Count; i++)
{

Console.WriteLine("{0} ({1})",
(list[i] as Person).Name, (list[i] as Person).Age);

}

Console.ReadKey();
}

}
}

Code snippet Ch11Ex05\Program.cs

5. Execute the code. The result is shown in Figure 11-8.

FIGURE 11-8

How It Works

An ArrayList containing Person objects is sorted in two different ways here. By calling the
ArrayList.Sort() method with no parameters, the default comparison is used, which is the
CompareTo() method in the Person class (because this class implements IComparable):

public int CompareTo(object obj)
{

if (obj is Person)
{

Person otherPerson = obj as Person;
return this.Age - otherPerson.Age;

}

324 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

else
{

throw new ArgumentException(
"Object to compare to is not a Person object.");

}
}

This method first checks whether its argument can be compared to a Person object — that is, whether the
object can be converted into a Person object. If there is a problem, then an exception is thrown. Otherwise,
the Age properties of the two Person objects are compared.

Next, a nondefault comparison sort is performed using the PersonComparerName class, which implements
IComparer. This class has a public static field for ease of use:

public static IComparer Default = new PersonComparerName();

This enables you to get an instance using PersonComparerName.Default, just like the Comparer class shown
earlier. The CompareTo() method of this class is as follows:

public int Compare(object x, object y)
{

if (x is Person && y is Person)
{

return Comparer.Default.Compare(
((Person)x).Name, ((Person)y).Name);

}
else
{

throw new ArgumentException(
"One or both objects to compare are not Person objects.");

}
}

Again, arguments are first checked to determine whether they are Person objects. If they aren’t, then an
exception is thrown. If they are, then the default Comparer object is used to compare the two string Name

fields of the Person objects.

CONVERSIONS

Thus far, you have used casting whenever you have needed to convert one type into another, but this
isn’t the only way to do things. Just as an int can be converted into a long or a double implicitly as part
of a calculation, you can define how classes you have created may be converted into other classes (either
implicitly or explicitly). To do this, you overload conversion operators, much like other operators were
overloaded earlier in this chapter. You’ll see how in the first part of this section. You’ll also see another
useful operator, the as operator, which in general is preferable to casting when using reference types.

Overloading Conversion Operators
As well as overloading mathematical operators, as shown earlier, you can define both implicit and
explicit conversions between types. This is necessary if you want to convert between types that aren’t

Conversions ❘ 325

related — if there is no inheritance relationship between them and no shared interfaces, for example.

Suppose you define an implicit conversion between ConvClass1 and ConvClass2. This means that you
can write code such as the following:

ConvClass1 op1 = new ConvClass1();
ConvClass2 op2 = op1;

Alternatively, you can define an explicit conversion:

ConvClass1 op1 = new ConvClass1();
ConvClass2 op2 = (ConvClass2)op1;

As an example, consider the following code:

public class ConvClass1
{

public int val;

public static implicit operator ConvClass2(ConvClass1 op1)
{

ConvClass2 returnVal = new ConvClass2();
returnVal.val = op1.val;
return returnVal;

}
}

public class ConvClass2
{

public double val;

public static explicit operator ConvClass1(ConvClass2 op1)
{

ConvClass1 returnVal = new ConvClass1();
checked {returnVal.val = (int)op1.val;};
return returnVal;

}
}

Here, ConvClass1 contains an int value and ConvClass2 contains a double value. Because int val-
ues may be converted into double values implicitly, you can define an implicit conversion between
ConvClass1 and ConvClass2. The reverse is not true, however, and you should define the conversion
operator between ConvClass2 and ConvClass1 as explicit.

You specify this using the implicit and explicit keywords as shown. With these classes, the following
code is fine:

ConvClass1 op1 = new ConvClass1();
op1.val = 3;
ConvClass2 op2 = op1;

A conversion in the other direction, however, requires the following explicit casting conversion:

ConvClass2 op1 = new ConvClass2();
op1.val = 3e15;
ConvClass1 op2 = (ConvClass1)op1;

326 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

Because you have used the checked keyword in your explicit conversion, you will get an exception in
the preceding code, as the val property of op1 is too large to fit into the val property of op2.

The as Operator
The as operator converts a type into a specified reference type, using the following syntax:

<operand> as <type>

This is possible only in certain circumstances:

➤ If <operand> is of type <type>

➤ If <operand> can be implicitly converted to type <type>

➤ If <operand> can be boxed into type <type>

If no conversion from <operand> to <type> is possible, then the result of the expression will be null.

Conversion from a base class to a derived class is possible by using an explicit conversion, but it won’t
always work. Consider the two classes ClassA and ClassD from an earlier example, where ClassD

inherits from ClassA:

class ClassA : IMyInterface
{
}

class ClassD : ClassA
{
}

The following code uses the as operator to convert from a ClassA instance stored in obj1 into the
ClassD type:

ClassA obj1 = new ClassA();
ClassD obj2 = obj1 as ClassD;

This will result in obj2 being null.

However, it is possible to store ClassD instances in ClassA-type variables by using polymorphism. The
following code illustrates this, using the as operator to convert from a ClassA-type variable containing
a ClassD-type instance into the ClassD type:

ClassD obj1 = new ClassD();
ClassA obj2 = obj1;
ClassD obj3 = obj2 as ClassD;

This time the result is that obj3 ends up containing a reference to the same object as obj1, not null.

Summary ❘ 327

This functionality makes the as operator very useful, because the following code (which uses simple
casting) results in an exception being thrown:

ClassA obj1 = new ClassA();
ClassD obj2 = (ClassD)obj1;

The as equivalent of this code results in a null value being assigned to obj2 — no exception is thrown.
This means that code such as the following (using two of the classes developed earlier in this chapter,
Animal and a class derived from Animal called Cow) is very common in C# applications:

public void MilkCow(Animal myAnimal)
{

Cow myCow = myAnimal as Cow;
if (myCow != null)
{

myCow.Milk();
}
else
{

Console.WriteLine("{0} isn’t a cow, and so can’t be milked.",
myAnimal.Name);

}
}

This is much simpler than checking for exceptions!

SUMMARY

This chapter covered many of the techniques that you can use to make your OOP applications far more
powerful — and more interesting. Although these techniques take a little effort to accomplish, they can
make your classes much easier to work with and therefore simplify the task of writing the rest of the
code.

Each of the topics covered has many uses. You’re likely to come across collections of one form or
another in almost any application, and creating strongly typed collections can make your life much
easier if you need to work with a group of objects of the same type. You also learned how you can add
indexers and iterators to get easy access to objects within the collection.

Comparisons and conversions are another topic that crops up repeatedly. You learned how to perform
various comparisons, and saw some of the underlying functionality of boxing and unboxing. You also
learned how to overload operators for both comparisons and conversions, and how to link things
together with list sorting.

The next chapter covers something entirely new — generics. These enable you to create classes that
automatically customize themselves to work with dynamically chosen types. This is especially useful
with collections, and you’ll see how a lot of the code in this chapter can be simplified dramatically using
generic collections.

328 ❘ CHAPTER 11 COLLECTIONS, COMPARISONS, AND CONVERSIONS

EXERCISES

1. Create a collection class called People that is a collection of the following Person class. The items
in the collection should be accessible via a string indexer that is the name of the person, identical
to the Person.Name property.

public class Person
{

private string name;
private int age;

public string Name
{

get
{

return name;
}
set
{

name = value;
}

}

public int Age
{

get
{

return age;
}
set
{

age = value;
}

}
}

2. Extend the Person class from the preceding exercise so that the >, <, >=, and <= operators are
overloaded, and compare the Age properties of Person instances.

3. Add a GetOldest() method to the People class that returns an array of Person objects with the
greatest Age property (one or more objects, as multiple items may have the same value for this
property), using the overloaded operators defined in Exercise 2.

4. Implement the ICloneable interface on the People class to provide deep copying capability.

5. Add an iterator to the People class that enables you to get the ages of all members in a foreach

loop as follows:

foreach (int age in myPeople.Ages)
{

// Display ages.
}

Answers to Exercises can be found in Appendix A.

Summary ❘ 329

� WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT DESCRIPTION

Defining collections Collections are classes that can contain instances of other classes. You
can define a collection by deriving from CollectionBase, or implement
collection interfaces such as IEnumerable, ICollection, and IList your-
self. Typically, you will define an indexer for your collection in order to use
collection.[index] syntax to access members.

Dictionaries You can also define keyed collections, or dictionaries, where each item has an
associated key. In this case, the key can be used to identify an item, rather
than using the item’s index. You can define a dictionary by implementing
IDictionary or by deriving a class from DictionaryBase.

Iterators You can implement an iterator to control how looping code obtains val-
ues in its loop cycles. To iterate over a class, implement a method called
GetEnumerator() with a return type of IEnumerator. To iterate over a class
member, such as a method, use a return type of IEnumerable. In iterator code
blocks, return values with the yield keyword.

Type comparisons You can use the GetType() method to obtain the type of an object, or the
typeof() operator to get the type of a class. These type values can be com-
pared. You can also use the is operator to determine whether an object is
compatible with a certain class type.

Value comparisons If you want to make classes whose instances can be compared using stan-
dard C# operators, you must overload those operators in the class definition.
For other types of value comparison, you can use classes that implement the
IComparable or IComparer interfaces. These interfaces are particularly useful
for sorting collections.

The as operator You can use the as operator to convert a value to a reference type. If no conver-
sion is possible, the as operator returns a null value.

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502266

12
Generics

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What generics are

➤ How to use some of the generic classes provided by the .NET
Framework

➤ How to define your own generics

➤ How variance works with generics

One of the (admittedly few) criticisms leveled against the first version of C# was its lack of sup-
port for generics. Generics in C++ (known as templates in that language) had long been regarded
as an excellent way of doing things, as it enabled a single type definition to spawn a multitude
of specialized types at compile time and thus save a lot of time and effort. For whatever reason,
generics didn’t quite make it into the first release of C#, and the language suffered because of
it. Perhaps it was because generics are often seen as being quite difficult to get a handle on, or
maybe it was decided that they weren’t necessary. Fortunately, since C# version 2.0, generics
have joined the party. Even better, they aren’t very difficult to use, although they do require a
slightly different way of looking at things.

This chapter begins by looking at what generics are. You learn about generics in fairly abstract
terms at first, because learning the concepts behind generics is crucial to being able to use them
effectively.

Next, you see some of the generic types in the .NET Framework in action. This will help you
understand their functionality and power, as well as the new syntax required in your code. You
then move on to define your own generic types, including generic classes, interfaces, methods,
and delegates. You also learn additional techniques for further customizing generic types: the
default keyword and type constraints.

Finally, you’ll look at covariance and contravariance, two forms of variance that are new to
C# 4 and that allow greater flexibility when using generic classes.

332 ❘ CHAPTER 12 GENERICS

WHAT ARE GENERICS?

To best illustrate what generics are, and why they are so useful, recall the collection classes from the
previous chapter. You saw how basic collections can be contained in classes such as ArrayList, but
that such collections suffer from being untyped, so you need to cast object items into whatever type
of objects you actually stored in the collection. Because anything that inherits from System.Object

(that is, practically anything) can be stored in an ArrayList, you need to be careful. Assuming that
certain types are all that is contained in a collection can lead to exceptions being thrown, and code
logic breaking down. You learned some techniques to deal with this, including the code required to
check the type of an object.

However, you discovered that a much better solution is to use a strongly typed collection class initially.
By deriving from CollectionBase and providing your own methods for adding, removing, and other-
wise accessing members of the collection, you learned how you could restrict collection members to
those derived from a certain base type or supporting a certain interface. This is where you encounter a
problem. Every time you create a new class that needs to be held in a collection, you must do one of the
following:

➤ Use a collection class you’ve already made that can contain items of the new type.

➤ Create a new collection class that can hold items of the new type, implementing all the
required methods.

Typically, with a new type you need extra functionality, so more often than not you need a new collec-
tion class anyway. Therefore, making collection classes may take up a fair amount of your time!

Generic classes, conversely, make things a lot simpler. A generic class is one that is built around what-
ever type, or types, you supply during instantiation, enabling you to strongly type an object with hardly
any effort at all. In the context of collections, creating a ‘‘collection of type T objects’’ is as simple as
saying it aloud — and achievable in a single line of code. Instead of code such as

CollectionClass items = new CollectionClass();
items.Add(new ItemClass());

you can use this:

CollectionClass<ItemClass> items = new CollectionClass<ItemClass>();
items.Add(new ItemClass());

The angle bracket syntax is the way you pass type parameters to generic types. In the preceding code,
read CollectionClass<ItemClass> as CollectionClass of ItemClass. You will, of course, examine
this syntax in more detail later in the chapter.

There’s more to the subject of generics than just collections, but they are particularly suited to this area,
as you will see later in the chapter when you look at the System.Collections.Generic namespace. By
creating a generic class, you can generate methods that have a signature that can be strongly typed
to any type you wish, even catering to the fact that a type may be a value or reference type, and deal
with individual cases as they occur. You can even allow only a subset of types to be used, by restricting
the types used to instantiate a generic class to those that support a given interface or are derived from
a certain type. Moreover, you’re not restricted to generic classes — you can create generic interfaces,
generic methods (which can be defined on nongeneric classes), and even generic delegates. All this adds

Using Generics ❘ 333

a great deal of flexibility to your code, and judicious use of generics can eliminate hours of development
time.

You’re probably wondering how all this is possible. Usually, when you create a class, it is compiled
into a type that you can then use in your code. You might think that when you create a generic class, it
would have to be compiled into a plethora of types, so that you could instantiate it. Fortunately, that’s
not the case — and given the infinite amount of classes possible in .NET, that’s just as well. Behind
the scenes, the .NET runtime allows generic classes to be dynamically generated as and when you need
them. A given generic class A of B won’t even exist until you ask for it by instantiating it.

NOTE For those who are familiar with C++, or are interested, this is one
difference between C++ templates and C# generic classes. In C++ the compiler
detects where you used a specific type of template — for example, A of B — and
compiles the code necessary to create this type. In C# everything happens at
runtime.

To summarize, generics enable you to create flexible types that process objects of one or more specific
types, where these types are determined when you instantiate or otherwise use the generic. Now it’s
time to see them in action.

USING GENERICS

Before you look at how to create your own generic types, it’s worth looking at those that are supplied
by the .NET Framework. These include the types in the System.Collections.Generic namespace,
a namespace that you’ve seen several times in your code because it is included by default in console
applications. You haven’t yet used any of the types in this namespace, but that’s about to change.
This section looks at the types in this namespace and how you can use them to create strongly typed
collections and improve the functionality of your existing collections.

First, though, you’ll look at another simpler generic type that gets around a minor issue with value
types: nullable types.

Nullable Types
In earlier chapters, you saw that one of the ways in which value types (which include most of the basic
types such as int and double as well as all structs) differ from reference types (string and any class) is
that they must contain a value. They can exist in an unassigned state, just after they are declared and
before a value is assigned, but you can’t make use of the value type in that state in any way. Conversely,
reference types may be null.

There are times, and they crop up more often than you might think (particularly when you work with
databases), when it is useful to have a value type that can be null. Generics give you a way to do this
using the System.Nullable<T> type, as shown in this example:

System.Nullable<int> nullableInt;

334 ❘ CHAPTER 12 GENERICS

This code declares a variable called nullableInt, which can have any value that an int variable can,
plus the value null. This enables you to write code such as the following:

nullableInt = null;

If nullableInt were an int type variable, then the preceding code wouldn’t compile.

The preceding assignment is equivalent to the following:

nullableInt = new System.Nullable<int>();

As with any other variable, you can’t just use it before some kind of initialization, whether to null

(through either syntax shown above) or by assigning a value.

You can test nullable types to determine whether they are null, just like you test reference types:

if (nullableInt == null)
{

...
}

Alternatively, you can use the HasValue property:

if (nullableInt.HasValue)
{

...
}

This wouldn’t work for reference types, even one with a HasValue property of its own, because having
a null-valued reference type variable means that no object exists through which to access this property,
and an exception would be thrown.

You can also look at the value of a nullable type by using the Value property. If HasValue is
true, then you are guaranteed a non-null value for Value; but if HasValue is false — that is,
null has been assigned to the variable — then accessing Value will result in an exception of type
System.InvalidOperationException.

Note that nullable types are so useful that they have resulted in a modification of C# syntax. Rather
than use the syntax shown above to declare a nullable type variable, you can instead use the following:

int? nullableInt;

int? is simply a shorthand for System.Nullable<int> but is much more readable. In subsequent
sections, you’ll use this syntax.

Operators and Nullable Types
With simple types, such as int, you can use operators such as +, -, and so on to work with values. With
nullable type equivalents, there is no difference: The values contained in nullable types are implicitly
converted to the required type and the appropriate operators are used. This also applies to structs with
operators that you have supplied:

int? op1 = 5;
int? result = op1 * 2;

Using Generics ❘ 335

Note that here the result variable is also of type int?. The following code will not compile:

int? op1 = 5;
int result = op1 * 2;

To get this to work you must perform an explicit conversion or access the value through the Value

property, which requires code such as:

int? op1 = 5;
int result = (int)op1 * 2;

or
int? op1 = 5;
int result = op1.Value * 2;

This works fine as long as op1 has a value — if it is null, then you will get an exception of type
System.InvalidOperationException.

This raises the obvious question: What happens when one or both values in an operator evaluation that
involves two nullable values are null, such as op1 in the following code?

int? op1 = null;
int? op2 = 5;
int? result = op1 * op2;

The answer is that for all simple nullable types other than bool?, the result of the operation is null,
which you can interpret as ‘‘unable to compute.’’ For structs you can define your own operators to deal
with this situation (as shown later in this chapter), and for bool? there are operators defined for & and |

that may result in non-null return values. These are shown in the following table:

OP1 OP2 OP1 & OP2 OP1 | OP2

true true true true

true false false true

true null null true

false true false true

false false false false

false null false null

null true null true

null false false null

null null null null

The results in the table make perfect sense logically — if there is enough information to work out the
answer of the computation without needing to know the value of one of the operands, then it doesn’t
matter if that operand is null.

336 ❘ CHAPTER 12 GENERICS

The ?? Operator
To further reduce the amount of code you need in order to deal with nullable types, and to make it
easier to deal with variables that can be null, you can use the ?? operator. Known as the null coalescing
operator, it is a binary operator that enables you to supply an alternative value to use for expressions
that might evaluate to null. The operator evaluates to its first operand if the first operand is not null,
or to its second operator if the first operand is null. Functionally, the following two expressions are
equivalent:

op1 ?? op2
op1 == null ? op2 : op1

In this code, op1 can be any nullable expression, including a reference type and, importantly, a nullable
type. This means that you can use the ?? operator to provide default values to use if a nullable type is
null, as shown here:

int? op1 = null;
int result = op1 * 2 ?? 5;

Because in this example op1 is null, op1 * 2 will also be null. However, the ?? operator detects this and
assigns the value 5 to result. Importantly, note here that no explicit conversion is required to put the
result in the int type variable result. The ?? operator handles this conversion for you. Alternatively,
you can pass the result of a ?? evaluation into an int? with no problems:

int? result = op1 * 2 ?? 5;

This behavior makes the ?? operator a versatile one to use when dealing with nullable variables, and
a handy way to supply defaults without using either a block of code in an if structure or the often
confusing tertiary operator.

Use the following Try It Out to experiment with a nullable Vector type.

TRY IT OUT Nullable Types

1. Create a new console application project called Ch12Ex01 and save it in the directory
C:\BegVCSharp\Chapter12.

2. Add a new class called Vector in the file Vector.cs.

3. Modify the code in Vector.cs as follows:

public class Vector
{

public double? R = null;
public double? Theta = null;

public double? ThetaRadians
{

get
{

// Convert degrees to radians.
return (Theta * Math.PI / 180.0);

}
}

Using Generics ❘ 337

public Vector(double? r, double? theta)
{

// Normalize.
if (r < 0)
{

r = -r;
theta += 180;

}
theta = theta % 360;

// Assign fields.
R = r;
Theta = theta;

}

public static Vector operator +(Vector op1, Vector op2)
{

try
{

// Get (x, y) coordinates for new vector.
double newX = op1.R.Value * Math.Sin(op1.ThetaRadians.Value)

+ op2.R.Value * Math.Sin(op2.ThetaRadians.Value);
double newY = op1.R.Value * Math.Cos(op1.ThetaRadians.Value)

+ op2.R.Value * Math.Cos(op2.ThetaRadians.Value);

// Convert to (r, theta).
double newR = Math.Sqrt(newX * newX + newY * newY);
double newTheta = Math.Atan2(newX, newY) * 180.0 / Math.PI;

// Return result.
return new Vector(newR, newTheta);

}
catch
{

// Return "null" vector.
return new Vector(null, null);

}
}

public static Vector operator -(Vector op1)
{

return new Vector(-op1.R, op1.Theta);
}

public static Vector operator -(Vector op1, Vector op2)
{

return op1 + (-op2);
}

public override string ToString()
{

// Get string representation of coordinates.
string rString = R.HasValue ? R.ToString(): "null";
string thetaString = Theta.HasValue ? Theta.ToString(): "null";

338 ❘ CHAPTER 12 GENERICS

// Return (r, theta) string.
return string.Format("({0}, {1})", rString, thetaString);

}
}

Code snippet Ch12Ex01\Vector.cs

4. Modify the code in Program.cs as follows:

class Program
{

static void Main(string[] args)
{

Vector v1 = GetVector("vector1");
Vector v2 = GetVector("vector1");
Console.WriteLine("{0} + {1} = {2}", v1, v2, v1 + v2);
Console.WriteLine("{0} - {1} = {2}", v1, v2, v1 - v2);
Console.ReadKey();

}

static Vector GetVector(string name)
{

Console.WriteLine("Input {0} magnitude:", name);
double? r = GetNullableDouble();
Console.WriteLine("Input {0} angle (in degrees):", name);
double? theta = GetNullableDouble();
return new Vector(r, theta);

}

static double? GetNullableDouble()
{

double? result;
string userInput = Console.ReadLine();
try
{

result = double.Parse(userInput);
}
catch
{

result = null;
}
return result;

}
}

Code snippet Ch12Ex01\Program.cs

5. Execute the application and enter values for two vectors. Sample output is shown in Figure 12-1.

FIGURE 12-1

Using Generics ❘ 339

6. Execute the application again, but this time skip at least one of the four values. Sample output is
shown in Figure 12-2.

FIGURE 12-2

How It Works

x

y

rθ

FIGURE 12-3

This example created a class called Vector that represents a vector with polar coor-
dinates (that is, with a magnitude and an angle), as shown in Figure 12-3.

The coordinates r and θ are represented in code by the public fields R and Theta,
where Theta is expressed in degrees. ThetaRadians is supplied to obtain the value of
Theta in radians — this is necessary because the Math class uses radians in its static
methods. Both R and Theta are of type double?, so they can be null:

public class Vector
{

public double? R = null;
public double? Theta = null;

public double? ThetaRadians
{

get
{

// Convert degrees to radians.
return (Theta * Math.PI / 180.0);

}
}

Code snippet Ch12Ex01\Vector.cs

The constructor for Vector normalizes the initial values of R and Theta and then assigns the public fields:

public Vector(double? r, double? theta)
{

// Normalize.
if (r < 0)
{

r = -r;
theta += 180;

}
theta = theta % 360;

340 ❘ CHAPTER 12 GENERICS

// Assign fields.
R = r;
Theta = theta;

}

The main functionality of the Vector class is to add and subtract vectors using operator overloading,
which requires some fairly basic trigonometry not covered here. The important thing about the code is
that if an exception is thrown when obtaining the Value property of R or ThetaRadians — that is, if either
is null — then a ‘‘null’’ vector is returned:

public static Vector operator +(Vector op1, Vector op2)
{

try
{

// Get (x, y) coordinates for new vector.
.

}
catch
{

// Return "null" vector.
return new Vector(null, null);

}
}

If either of the coordinates making up a vector is null, then the vector is invalid, which is signified here
by a Vector class with null values for both R and Theta. The rest of the code in the Vector class overrides
the other operators required to extend the addition functionality to include subtraction, and overrides
ToString() to obtain a string representation of a Vector object.

The code in Program.cs tests the Vector class by enabling the user to initialize two vectors, and then adds
and subtracts them to and from one another. Should the user omit a value, it will be interpreted as null,
and the rules mentioned previously apply.

The System.Collections.Generics Namespace
In practically every application used so far in this book, you have seen the following namespaces:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

The System namespace contains most of the basic types used in .NET applications. The
System.Text namespace includes types relating to string processing and encoding. The
System.Linq namespace you’ll look at later in this book, from Chapter 23 onward. But what
about System.Collections.Generic, and why is it included by default in console applications?

The answer is that this namespace contains generic types for dealing with collections, and it is likely to
be used so often that it is configured with a using statement, ready for you to use without qualification.

As promised earlier in the chapter, you’ll now look at these types, which are guaranteed to make your
life easier. They make it possible for you to create strongly typed collection classes with hardly any
effort. The following table lists two types from the System.Collections.Generics namespace that are
covered in this section. More of the types in this namespace are covered later in this chapter.

Using Generics ❘ 341

TYPE DESCRIPTION

List<T> Collection of type T objects

Dictionary<K, V> Collection of items of type V, associated with keys of type K

This section also describes various interfaces and delegates used with these classes.

List<T>

Rather than derive a class from CollectionBase and implement the required methods as you did in
the last chapter, it can be quicker and easier simply to use the List<T> generic collection type. An
added bonus here is that many of the methods you’d normally have to implement, such as Add(), are
implemented for you.

Creating a collection of type T objects requires the following code:

List<T> myCollection = new List<T>();

That’s it. You don’t have to define any classes, implement any methods, or do anything else. You can
also set a starting list of items in the collection by passing a List<T> object to the constructor. An object
instantiated using this syntax supports the methods and properties shown in the following table (where
the type supplied to the List<T> generic is T):

MEMBER DESCRIPTION

int Count Property providing the number of items in the collection.

void Add(T item) Adds an item to the collection.

void AddRange(IEnumerable<T>) Adds multiple items to the collection.

IList<T> AsReadOnly() Returns a read-only interface to the collection.

int Capacity Gets or sets the number of items that the collection can
contain.

void Clear() Removes all items from the collection.

bool Contains(T item) Determines whether the item is contained in the collection.

void CopyTo(T[] array, int index) Copies the items in the collection into the array array,
starting from index index in the array.

IEnumerator<T> GetEnumerator() Obtains an IEnumerator<T> instance for iteration through
the collection. Note that the interface returned is strongly
typed to T, so no casting is required in foreach loops.

int IndexOf(T item) Obtains the index of the item, or −1 if the item is not con-
tained in the collection.

void Insert(int index, T item) Inserts the item into the collection at the specified index.

342 ❘ CHAPTER 12 GENERICS

MEMBER DESCRIPTION

bool Remove(T item) Removes the first occurrence of the item from the collection
and returns true. If the item is not contained in the collection,
it returns false.

void RemoveAt(int index) Removes the item at index index from the collection.

List<T> also has an Item property, enabling array-like access:

T itemAtIndex2 = myCollectionOfT[2];

This class supports several other methods, but that’s plenty to get you started. The following Try It Out
demonstrates how to use List<T> in practice.

TRY IT OUT Using List<T>

1. Create a new console application called Ch12Ex02 and save it in the directory
C:\BegVCSharp\Chapter12.

2. Right-click on the project name in the Solution Explorer window and select the Add ➪ Existing
Item . . . option.

3. Select the Animal.cs, Cow.cs, and Chicken.cs files from the C:\BegVCSharp\Chapter11\

Ch11Ex01\Ch11Ex01 directory and click Add.

4. Modify the namespace declaration in the three files you added as follows:

namespace Ch12Ex02
Code snippets Ch12Ex02\Animal.cs, Ch12Ex02\Cow.cs, and Ch12Ex02\Chicken.cs

5. Modify Program.cs as follows:

static void Main(string[] args)
{

List<Animal> animalCollection = new List<Animal>();
animalCollection.Add(new Cow("Jack"));
animalCollection.Add(new Chicken("Vera"));
foreach (Animal myAnimal in animalCollection)
{

myAnimal.Feed();
}
Console.ReadKey();

}
Code snippet Ch12Ex02\Program.cs

Using Generics ❘ 343

6. Execute the application. The result is exactly the same as the result for Ch11Ex02 in the last
chapter.

How It Works

There are only two differences between this example and Ch11Ex02. The first is that the line of code

Animals animalCollection = new Animals();

has been replaced with

List<Animal> animalCollection = new List<Animal>();

The second, and more crucial, difference is that there is no longer an Animals collection class in the project.
All that hard work you did earlier to create this class was achieved in a single line of code by using a generic
collection class.

An alternate way to get the same result is to leave the code in Program.cs as it was in the last chapter, and
use the following definition of Animals:

public class Animals : List<Animal>
{
}

Doing this has the advantage that the code in Program.cs is slightly easier to read, plus you can add addi-
tional members to the Animals class as you see fit.

You may, of course, be wondering why you’d ever want to derive classes from CollectionBase, which is
a good question. In fact, there aren’t many situations where you would. It’s certainly good to know how
things work internally because List<T> works in much the same way, but CollectionBase is basically
there for backward compatibility. The only situation in which you might want to use CollectionBase is
when you want much more control over the members exposed to users of the class. For example, if you
wanted a collection class with an internal access modifier on its Add() method, then using CollectionBase

might be the best option.

NOTE You can also pass an initial capacity to use to the constructor of List<T>

(as an int), or an initial list of items using an IEnumerable<T> interface. Classes
supporting this interface include List<T>.

Sorting and Searching Generic Lists
Sorting a generic list is much the same as sorting any other list. The last chapter described how you can
use the IComparer and IComparable interfaces to compare two objects and thereby sort a list of that
type of object. The only difference here is that you can use the generic interfaces IComparer<T> and

344 ❘ CHAPTER 12 GENERICS

IComparable<T>, which expose slightly different, type-specific methods. The following table explains
these differences:

GENERIC METHOD NONGENERIC METHOD DIFFERENCE

int IComparable<T>.

CompareTo(T otherObj)

int IComparable.CompareTo(

object otherObj)

Strongly typed in generic
versions.

bool IComparable<T>.

Equals(T otherObj)

N/A Doesn’t exist on a nongeneric
interface; can use inherited
object.Equals() instead.

int

IComparer<T>.Compare(

T objectA, T objectB)

int IComparer.Compare(

object objectA,

object objectB)

Strongly typed in generic
versions.

bool

IComparer<T>.Equals(

T objectA, T objectB)

N/A Doesn’t exist on a nongeneric
interface; can use inherited
object.Equals() instead.

int IComparer<T>.

GetHashCode(T objectA)

N/A Doesn’t exist on a nongeneric
interface; can use inherited
object.GetHashCode() instead.

To sort a List<T>, you can supply an IComparable<T> interface on the type to be sorted, or
supply an IComparer<T> interface. Alternatively, you can supply a generic delegate as a sorting
method. From the perspective of seeing how things are done, this is far more interesting because
implementing the interfaces shown above is really no more effort than implementing their nongeneric
cousins.

In general terms, all you need to sort a list is a method that compares two objects of type T; and to
search, all you need is a method that checks an object of type T to determine whether it meets certain
criteria. It is a simple matter to define such methods, and to aid you there are two generic delegate types
that you can use:

➤ Comparison<T>: A delegate type for a method used for sorting, with the following return type
and parameters:

int method(T objectA, T objectB)

➤ Predicate<T>: A delegate type for a method used for searching, with the following return
type and parameters:

bool method(T targetObject)

You can define any number of such methods, and use them to ‘‘snap-in’’ to the searching and sorting
methods of List<T>. The next Try It Out illustrates this.

Using Generics ❘ 345

TRY IT OUT Sorting and Searching List<T>

1. Create a new console application called Ch12Ex03 and save it in the directory
C:\BegVCSharp\Chapter12.

2. Right-click on the project name in the Solution Explorer window and select the Add Existing Item
option.

3. Select the Vector.cs file from the C:\BegVCSharp\Chapter12\Ch12Ex01\Ch12Ex01 directory and
click Add.

4. Modify the namespace declaration in the file you added as follows:

namespace Ch12Ex03

5. Add a new class called Vectors.

6. Modify Vectors.cs as follows:

public class Vectors : List<Vector>
{

public Vectors()
{
}

public Vectors(IEnumerable<Vector> initialItems)
{

foreach (Vector vector in initialItems)
{

Add(vector);
}

}

public string Sum()
{

StringBuilder sb = new StringBuilder();
Vector currentPoint = new Vector(0.0, 0.0);
sb.Append("origin");
foreach (Vector vector in this)
{

sb.AppendFormat(" + {0}", vector);
currentPoint += vector;

}
sb.AppendFormat(" = {0}", currentPoint);
return sb.ToString();

}
}

Code snippet Ch12Ex03\Vector.cs

7. Add a new class called VectorDelegates.

8. Modify VectorDelegates.cs as follows:

346 ❘ CHAPTER 12 GENERICS

public static class VectorDelegates
{

public static int Compare(Vector x, Vector y)
{

if (x.R > y.R)
{

return 1;
}
else if (x.R < y.R)
{

return -1;
}
return 0;

}

public static bool TopRightQuadrant(Vector target)
{

if (target.Theta >= 0.0 && target.Theta <= 90.0)
{

return true;
}
else
{

return false;
}

}
}

Code snippet Ch12Ex03\VectorDelegates.cs

9. Modify Program.cs as follows:

static void Main(string[] args)
{

Vectors route = new Vectors();
route.Add(new Vector(2.0, 90.0));
route.Add(new Vector(1.0, 180.0));
route.Add(new Vector(0.5, 45.0));
route.Add(new Vector(2.5, 315.0));

Console.WriteLine(route.Sum());

Comparison<Vector> sorter = new Comparison<Vector>(
VectorDelegates.Compare);

route.Sort(sorter);
Console.WriteLine(route.Sum());

Predicate<Vector> searcher =
new Predicate<Vector>(VectorDelegates.TopRightQuadrant);

Vectors topRightQuadrantRoute = new Vectors(route.FindAll(searcher));
Console.WriteLine(topRightQuadrantRoute.Sum());

Console.ReadKey();
}

Code snippet Ch12Ex03\Program.cs

10. Execute the application. The result is shown in Figure 12-4.

Using Generics ❘ 347

FIGURE 12-4

How It Works

In this example, you have created a collection class, Vectors, for the Vector class created in Ch12Ex01.
You could just use a variable of type List<Vector>, but because you want additional functionality you
use a new class, Vectors, and derive from List<Vector>, which enables you to add whatever additional
members you want.

One member, Sum(), returns a string listing each vector in turn, along with the result of summing them
all together (using the overloaded + operator from the original Vector class). Because each vector can be
thought of as a direction and a distance, this effectively constitutes a route with an endpoint:

public string Sum()
{

StringBuilder sb = new StringBuilder();
Vector currentPoint = new Vector(0.0, 0.0);
sb.Append("origin");
foreach (Vector vector in this)
{

sb.AppendFormat(" + {0}", vector);
currentPoint += vector;

}
sb.AppendFormat(" = {0}", currentPoint);
return sb.ToString();

}

Code snippet Ch12Ex03\Vector.cs

This method uses the handy StringBuilder class, found in the System.Text namespace, to build the
response string. This class has members such as Append() and AppendFormat() (used here), which make it
easy to assemble a string — the performance is better than concatenating individual strings. You use the
ToString() method of this class to obtain the resultant string.

You also create two methods to be used as delegates, as static members of VectorDelegates. Compare() is
used for comparison (sorting), and TopRightQuadrant() for searching. You’ll look at these as you review
the code in Program.cs.

The code in Main() starts with the initialization of a Vectors collection, to which are added several Vector
objects:

Vectors route = new Vectors();
route.Add(new Vector(2.0, 90.0));
route.Add(new Vector(1.0, 180.0));
route.Add(new Vector(0.5, 45.0));
route.Add(new Vector(2.5, 315.0));

Code snippet Ch12Ex03\Program.cs

348 ❘ CHAPTER 12 GENERICS

The Vectors.Sum() method is used to write out the items in the collection as noted earlier, this time in
their initial order:

Console.WriteLine(route.Sum());

Next, you create the first of your delegates, sorter. This delegate is of type Comparison<Vector> and,
therefore, can be assigned a method with the following return type and parameters:

int method(Vector objectA, Vector objectB)

This matches VectorDelegates.Compare(), which is the method you assign to the delegate:

Comparison<Vector> sorter = new Comparison<Vector>(
VectorDelegates.Compare);

Compare() compares the magnitudes of two vectors as follows:

public static int Compare(Vector x, Vector y)
{

if (x.R > y.R)
{

return 1;
}
else if (x.R < y.R)
{

return -1;
}
return 0;

}

This enables you to order the vectors by magnitude:

route.Sort(sorter);
Console.WriteLine(route.Sum());

The output of the application gives the result you’d expect — the result of the summation is the same
because the endpoint of following the ‘‘vector route’’ is the same regardless of the order in which you carry
out the individual steps.

Next, you obtain a subset of the vectors in the collection by searching. This uses VectorDelegates.

TopRightQuadrant():

public static bool TopRightQuadrant(Vector target)
{

if (target.Theta >= 0.0 && target.Theta <= 90.0)
{

return true;
}
else
{

return false;
}

}

This method returns true if its Vector argument has a value of Theta between 0 and 90 degrees — that is,
it points up and/or right in a diagram of the sort shown earlier.

In the Main() method, you use this method via a delegate of type Predicate<Vector> as follows:

Using Generics ❘ 349

Predicate<Vector> searcher =
new Predicate<Vector>(VectorDelegates.TopRightQuadrant);

Vectors topRightQuadrantRoute = new Vectors(route.FindAll(searcher));
Console.WriteLine(topRightQuadrantRoute.Sum());

This requires the constructor defined in Vectors:

public Vectors(IEnumerable<Vector> initialItems)
{

foreach (Vector vector in initialItems)
{

Add(vector);
}

}

Here, you initialize a new Vectors collection using an interface of IEnumerable<Vector>, which is neces-
sary because List<Vector>.FindAll() returns a List<Vector> instance, not a Vectors instance.

The result of the searching is that only a subset of Vector objects is returned, so (again, as you’d expect)
the result of the summation is different. The use of these generic delegate types to sort and search generic
collections can take a little while to get used to, but the result is code that is streamlined and efficient, and
which has a highly logical structure. It is well worth investing the time to learn the techniques presented in
this section.

As an aside to this example, note that the code

Comparison<Vector> sorter = new Comparison<Vector>(
VectorDelegates.Compare);

route.Sort(sorter);

can be simplified to the following:

route.Sort(VectorDelegates.Compare);

This removes the necessity to implicitly reference the Comparison<Vector> type. In fact, an instance of this
type is still created, but it is created implicitly. The Sort() method obviously needs an instance of this type
to work, but the compiler realizes this and creates one for you from the method that you supply. In this
situation, the reference to VectorDelegates.Compare() (without the parentheses) is referred to as a method
group. There are many situations in which you can use method groups to implicitly create delegates in this
way, which can make your code more readable.

Dictionary<K, V>

The Dictionary<K, V> type enables you to define a collection of key-value pairs. Unlike the other
generic collection types you’ve looked at in this chapter, this class requires instantiating two types: the
types for both the key and the value that represent each item in the collection.

Once a Dictionary<K, V> object is instantiated, you can perform much the same operations on it as you
can on a class that inherits from DictionaryBase, but with type-safe methods and properties already in
place. You can, for example, add key-value pairs using a strongly typed Add() method:

Dictionary<string, int> things = new Dictionary<string, int>();
things.Add("Green Things", 29);
things.Add("Blue Things", 94);
things.Add("Yellow Things", 34);
things.Add("Red Things", 52);
things.Add("Brown Things", 27);

350 ❘ CHAPTER 12 GENERICS

You can iterate through keys and values in the collection by using the Keys and Values properties:

foreach (string key in things.Keys)
{

Console.WriteLine(key);
}

foreach (int value in things.Values)
{

Console.WriteLine(value);
}

In addition, you can iterate through items in the collection by obtaining each as a KeyValuePair<K, V>

instance, much like you can with the DictionaryEntry objects shown in the last chapter:

foreach (KeyValuePair<string, int> thing in things)
{

Console.WriteLine("{0} = {1}", thing.Key, thing.Value);
}

One thing to note about Dictionary<K, V> is that the key for each item must be unique. Attempting
to add an item with an identical key to one already added will cause an ArgumentException exception
to be thrown. Because of this, Dictionary<K, V> allows you to pass an IComparer<K> interface to
its constructor. This may be necessary if you use your own classes as keys and they don’t support
an IComparable or IComparable<K> interface, or if you want to compare objects using a nondefault
process. For instance, in the preceding example, you could use a case-insensitive method to compare
string keys:

Dictionary<string, int> things =
new Dictionary<string, int>(StringComparer.CurrentCultureIgnoreCase);

Now you’ll get an exception if you use keys such as this:

things.Add("Green Things", 29);
things.Add("Green things", 94);

You can also pass an initial capacity (with an int) or set of items (with an IDictionary<K, V> interface)
to the constructor.

Modifying CardLib to Use a Generic Collection Class
One simple modification you can make to the CardLib project you’ve been building over recent
chapters is to change the Cards collection class to use a generic collection class, thus saving many lines
of code. The required modification to the class definition for Cards is as follows:

public class Cards : List<Card>, ICloneable
{

...
}

Code snippet Ch12CardLib\Cards.cs

Defining Generic Types ❘ 351

You can also remove all the methods of Cards except Clone(), which is required for ICloneable, and
CopyTo(), because the version of CopyTo() supplied by List<Card> works with an array of Card objects,
not a Cards collection. Clone() requires a minor modification because the List<T> class does not define
a List property to use:

public object Clone()
{

Cards newCards = new Cards();
foreach (Card sourceCard in this)
{

newCards.Add(sourceCard.Clone() as Card);
}
return newCards;

}

Rather than show the code here for what is a very simple modification, the updated version of CardLib,
called Ch12CardLib, is included in the downloadable code for this chapter, along with the client code
from the last chapter.

DEFINING GENERIC TYPES

You’ve now learned enough about generics to create your own. You’ve seen plenty of code involving
generic types and have had plenty of practice using generic syntax. This section looks at defining the
following:

➤ Generic classes

➤ Generic interfaces

➤ Generic methods

➤ Generic delegates

You’ll also look at the following more advanced techniques for dealing with the issues that come up
when defining generic types:

➤ The default keyword

➤ Constraining types

➤ Inheriting from generic classes

➤ Generic operators

Defining Generic Classes
To create a generic class, merely include the angle bracket syntax in the class definition:

class MyGenericClass<T>
{

...
}

352 ❘ CHAPTER 12 GENERICS

Here, T can be any identifier you like, following the usual C# naming rules, such as not starting with a
number and so on. Typically, though, you can just use T. A generic class can have any number of type
parameters in its definition, separated by commas:

class MyGenericClass<T1, T2, T3>
{

...
}

Once these types are defined, you can use them in the class definition just like any other type. You can
use them as types for member variables, return types for members such as properties or methods, and
parameter types for method arguments:

class MyGenericClass<T1, T2, T3>
{

private T1 innerT1Object;

public MyGenericClass(T1 item)
{

innerT1Object = item;
}

public T1 InnerT1Object
{

get
{

return innerT1Object;
}

}
}

Here, an object of type T1 can be passed to the constructor, and read-only access is permitted to this
object via the property InnerT1Object. Note that you can make practically no assumptions as to what
the types supplied to the class are. The following code, for example, will not compile:

class MyGenericClass<T1, T2, T3>
{

private T1 innerT1Object;

public MyGenericClass()
{

innerT1Object = new T1();
}

public T1 InnerT1Object
{

get
{

return innerT1Object;
}

}
}

Because you don’t know what T1 is, you can’t use any of its constructors — it might not even have any,
or it may have no publicly accessible default constructor. Without more complicated code involving the

Defining Generic Types ❘ 353

techniques shown later in this section, you can make only the following assumption about T1: You can
treat it as a type that either inherits from or can be boxed into System.Object.

Obviously, this means that you can’t really do anything very interesting with instances of this type, or
any of the other types supplied to the generic class MyGenericClass. Without using reflection, which
is an advanced technique used to examine types at runtime (and not covered in this chapter), you’re
limited to code that’s no more complicated than the following:

public string GetAllTypesAsString()
{

return "T1 = " + typeof(T1).ToString()
+ ", T2 = " + typeof(T2).ToString()
+ ", T3 = " + typeof(T3).ToString();

}

There is a bit more that you can do, particularly in terms of collections, because dealing with groups of
objects is a pretty simple process and doesn’t need any assumptions about the object types — which is
one good reason why the generic collection classes you’ve seen in this chapter exist.

Another limitation that you need to be aware of is that using the operator == or != is only permit-
ted when comparing a value of a type supplied to a generic type to null. That is, the following code
works fine:

public bool Compare(T1 op1, T1 op2)
{

if (op1 != null && op2 != null)
{

return true;
}
else
{

return false;
}

}

Here, if T1 is a value type, then it is always assumed to be non-null, so in the preceding code Compare

will always return true. However, attempting to compare the two arguments op1 and op2 fails to
compile:

public bool Compare(T1 op1, T1 op2)
{

if (op1 == op2)
{

return true;
}
else
{

return false;
}

}

That’s because this code assumes that T1 supports the == operator. In short, to do anything really
interesting with generics, you need to know a bit more about the types used in the class.

354 ❘ CHAPTER 12 GENERICS

The default Keyword
One of the most basic things you might want to know about types used to create generic class instances
is whether they are reference types or value types. Without knowing this, you can’t even assign null

values with code such as this:
public MyGenericClass()
{

innerT1Object = null;
}

If T1 is a value type, then innerT1Object can’t have the value null, so this code won’t compile. Luckily,
this problem has been addressed, resulting in a new use for the default keyword (which you’ve seen
being used in switch structures earlier in the book). This is used as follows:

public MyGenericClass()
{

innerT1Object = default(T1);
}

The result of this is that innerT1Object is assigned a value of null if it is a reference type, or a default
value if it is a value type. This default value is 0 for numeric types, while structs have each of their
members initialized to 0 or null in the same way. The default keyword gets you a bit further in terms
of doing a little more with the types you are forced to use, but to truly get ahead, you need to constrain
the types that are supplied.

Constraining Types
The types you have used with generic classes until now are known as unbounded types because no
restrictions are placed on what they can be. By constraining types, it is possible to restrict the types
that can be used to instantiate a generic class. There are a number of ways to do this. For example, it’s
possible to restrict a type to one that inherits from a certain type. Referring back to the Animal, Cow,
and Chicken classes used earlier, you could restrict a type to one that was or inherited from Animal, so
this code would be fine:

MyGenericClass<Cow> = new MyGenericClass<Cow>();

The following, however, would fail to compile:

MyGenericClass<string> = new MyGenericClass<string>();

In your class definitions this is achieved using the where keyword:

class My GenericClass<T> where T : constraint
{

...
}

Here, constraint defines what the constraint is. You can supply a number of constraints in this way
by separating them with commas:

class MyGenericClass<T> where T : constraint1, constraint2
{

...
}

Defining Generic Types ❘ 355

You can define constraints on any or all of the types required by the generic class by using multiple
where statements:

class MyGenericClass<T1, T2> where T1 : constraint1 where T2 : constraint2
{

...
}

Any constraints that you use must appear after the inheritance specifiers:

class MyGenericClass<T1, T2> : MyBaseClass, IMyInterface
where T1 : constraint1 where T2 : constraint2

{
...

}

The available constraints are shown in the following table:

CONSTRAINT DEFINITION EXAMPLE USAGE

struct Type must be a value type In a class that requires value
types to function — for example,
where a member variable of type
T being 0 means something

class Type must be a reference type In a class that requires reference
types to function — for example,
where a member variable of type
T being null means
something

base-class Type must be, or inherit from, base-class.
You can supply any class name as this
constraint.

In a class that requires certain
baseline functionality inherited
from base-class in order to
function

interface Type must be, or implement, interface In a class that requires certain
baseline functionality exposed
by interface in order to
function

new() Type must have a public, parameterless
constructor

In a class where you need to be
able to instantiate variables of
type T, perhaps in a constructor

NOTE If new() is used as a constraint, it must be the last constraint specified for
a type.

356 ❘ CHAPTER 12 GENERICS

It is possible to use one type parameter as a constraint on another through the base-class constraint as
follows:

class MyGenericClass<T1, T2> where T2 : T1
{

...
}

Here, T2 must be the same type as T1 or inherit from T1. This is known as a naked type constraint,
meaning that one generic type parameter is used as a constraint on another.

Circular type constraints, as shown here, are forbidden:

class MyGenericClass<T1, T2> where T2 : T1 where T1 : T2
{

...
}

This code will not compile. In the following Try It Out, you’ll define and use a generic class that uses
the Animal family of classes shown in earlier chapters.

TRY IT OUT Defining a Generic Class

1. Create a new console application called Ch12Ex04 and save it in the directory
C:\BegVCSharp\Chapter12.

2. Right-click on the project name in the Solution Explorer window and select the Add Existing Item
option.

3. Select the Animal.cs, Cow.cs, and Chicken.cs files from the C:\BegVCSharp\Chapter12\

Ch12Ex02\Ch12Ex02 directory and click Add.

4. Modify the namespace declaration in the file you have added as follows:

namespace Ch12Ex04
Code snippets Ch12Ex04\Animal.cs, Ch12Ex04\Cow.cs, and Ch12Ex04\Chicken.cs

5. Modify Animal.cs as follows:

public abstract class Animal
{

...

public abstract void MakeANoise();
}

Code snippet Ch12Ex04\Animal.cs

6. Modify Chicken.cs as follows:

public class Chicken : Animal
{

...

Defining Generic Types ❘ 357

public override void MakeANoise()
{

Console.WriteLine("{0} says ‘cluck!’", name);
}

}
Code snippet Ch12Ex04\Chicken.cs

7. Modify Cow.cs as follows:

public class Cow : Animal
{

...

public override void MakeANoise()
{

Console.WriteLine("{0} says ‘moo!’", name);
}

}
Code snippet Ch12Ex04\Cow.cs

8. Add a new class called SuperCow and modify the code in SuperCow.cs as follows:

public class SuperCow : Cow
{

public void Fly()
{

Console.WriteLine("{0} is flying!", name);
}

public SuperCow(string newName): base(newName)
{
}

public override void MakeANoise()
{

Console.WriteLine(
"{0} says ‘here I come to save the day!’", name);

}
}

Code snippet Ch12Ex04\SuperCow.cs

9. Add a new class called Farm and modify the code in Farm.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

358 ❘ CHAPTER 12 GENERICS

namespace Ch12Ex04
{

public class Farm<T> : IEnumerable<T>
where T : Animal

{
private List<T> animals = new List<T>();

public List<T> Animals
{

get
{

return animals;
}

}

public IEnumerator<T> GetEnumerator()
{

return animals.GetEnumerator();
}

IEnumerator IEnumerable.GetEnumerator()
{

return animals.GetEnumerator();
}

public void MakeNoises()
{

foreach (T animal in animals)
{

animal.MakeANoise();
}

}

public void FeedTheAnimals()
{

foreach (T animal in animals)
{

animal.Feed();
}

}

public Farm<Cow> GetCows()
{

Farm<Cow> cowFarm = new Farm<Cow>();
foreach (T animal in animals)
{

if (animal is Cow)
{

cowFarm.Animals.Add(animal as Cow);
}

}
return cowFarm;

}
}

}
Code snippet Ch12Ex04\Farm.cs

Defining Generic Types ❘ 359

10. Modify Program.cs as follows:

static void Main(string[] args)
{

Farm<Animal> farm = new Farm<Animal>();
farm.Animals.Add(new Cow("Jack"));
farm.Animals.Add(new Chicken("Vera"));
farm.Animals.Add(new Chicken("Sally"));
farm.Animals.Add(new SuperCow("Kevin"));
farm.MakeNoises();

Farm<Cow> dairyFarm = farm.GetCows();
dairyFarm.FeedTheAnimals();

foreach (Cow cow in dairyFarm)
{

if (cow is SuperCow)
{

(cow as SuperCow).Fly();
}

}
Console.ReadKey();

}
Code snippet Ch12Ex04\Program.cs

11. Execute the application. The result is shown in Figure 12-5.

FIGURE 12-5

How It Works

In this example, you have created a generic class called Farm<T>, which, rather than inheriting from a
generic list class, exposes a generic list class as a public property. The type of this list is determined by the
type parameter T that is passed to Farm<T> and is constrained to be, or inherit from, Animal:

public class Farm<T> : IEnumerable<T>
where T : Animal

{
private List<T> animals = new List<T>();

360 ❘ CHAPTER 12 GENERICS

public List<T> Animals
{

get
{

return animals;
}

}

Code snippet Ch12Ex04\Farm.cs

Farm<T> also implements IEnumerable<T>, where T is passed into this generic interface and is therefore also
constrained in the same way. You implement this interface to make it possible to iterate through the items
contained in Farm<T> without needing to explicitly iterate over Farm<T>.Animals. This is simple to achieve:
You simply return the enumerator exposed by Animals, which is a List<T> class that also implements
IEnumerable<T>:

public IEnumerator<T> GetEnumerator()
{

return animals.GetEnumerator();
}

Because IEnumerable<T> inherits from IEnumerable, you also need to implement IEnumerable.

GetEnumerator():
IEnumerator IEnumerable.GetEnumerator()
{

return animals.GetEnumerator();
}

Next, Farm<T> includes two methods that make use of methods of the abstract Animal class:

public void MakeNoises()
{

foreach (T animal in animals)
{

animal.MakeANoise();
}

}

public void FeedTheAnimals()
{

foreach (T animal in animals)
{

animal.Feed();
}

}

Because T is constrained to Animal, this code compiles fine — you are guaranteed to have access to these
methods whatever T actually is.

The next method, GetCows(), is more interesting. This method simply extracts all the items in the collection
that are of type Cow (or that inherit from Cow, such as the new SuperCow class):

public Farm<Cow> GetCows()
{

Farm<Cow> cowFarm = new Farm<Cow>();
foreach (T animal in animals)
{

Defining Generic Types ❘ 361

if (animal is Cow)
{

cowFarm.Animals.Add(animal as Cow);
}

}
return cowFarm;

}

What is interesting here is that this method seems a bit wasteful. If you wanted other methods of the same
sort, such as GetChickens() and so on, you’d need to implement them explicitly too. In a system with
many more types, you’d need many more methods. A far better solution here would be to use a generic
method, which you’ll implement a little later in the chapter.

The client code in Program.cs simply tests the various methods of Farm and doesn’t really contain much
you haven’t already seen, so there’s no need to examine this code in any greater detail — despite the
flying cow.

Inheriting from Generic Classes
The Farm<T> class in the preceding example, as well as several other classes you’ve seen in this chapter,
inherit from a generic type. In the case of Farm<T>, this type was an interface: IEnumerable<T>. Here, the
constraint on T supplied by Farm<T> resulted in an additional constraint on T used in IEnumerable<T>.
This can be a useful technique for constraining otherwise unbounded types. However, some rules need
to be followed.

First, you can’t ‘‘unconstrain’’ types that are constrained in a type from which you are inheriting. In
other words, a type T that is used in a type you are inheriting from must be constrained at least as much
as it is in that type. For example, the following code is fine:

class SuperFarm<T> : Farm<T>
where T : SuperCow

{
}

This works because T is constrained to Animal in Farm<T>, and constraining it to SuperCow is constrain-
ing T to a subset of these values. However, the following won’t compile:

class SuperFarm<T> : Farm<T>
where T : struct

{
}

Here, you can say definitively that the type T supplied to SuperFarm<T> cannot be converted into a T

usable by Farm<T>, so the code won’t compile.

Even situations in which the constraint is a superset have the same problem:

class SuperFarm<T> : Farm<T>
where T : class

{
}

362 ❘ CHAPTER 12 GENERICS

Even though types such as Animal would be allowed by SuperFarm<T>, other types that satisfy the
class constraint won’t be allowed in Farm<T>. Again, compilation will fail. This rule applies to all the
constraint types shown earlier in this chapter.

Also note that if you inherit from a generic type, then you must supply all the required type infor-
mation, either in the form of other generic type parameters, as shown above, or explicitly. This also
applies to nongeneric classes that inherit from generic types, as you’ve seen elsewhere. Here’s an
example:

public class Cards : List<Card>, ICloneable
{
}

This is fine, but attempting the following will fail:

public class Cards : List<T>, ICloneable
{
}

Here, no information is supplied for T, so no compilation is possible.

NOTE If you supply a parameter to a generic type, as in List<Card> above, then
you can refer to the type as closed. Similarly, inheriting from List<T> is inheriting
from an open generic type.

Generic Operators
Operator overrides are implemented in C# just like other methods and can be implemented in generic
classes. For example, you could define the following implicit conversion operator in Farm<T>:

public static implicit operator List<Animal>(Farm<T> farm)
{

List<Animal> result = new List<Animal>();
foreach (T animal in farm)
{

result.Add(animal);
}
return result;

}

This allows the Animal objects in a Farm<T> to be accessed directly as a List<Animal> should you
require it. This comes in handy if you want to add two Farm<T> instances together, such as with the
following operators:

public static Farm<T> operator +(Farm<T> farm1, List<T> farm2)
{

Farm<T> result = new Farm<T>();

foreach (T animal in farm1)
{

result.Animals.Add(animal);
}

Defining Generic Types ❘ 363

foreach (T animal in farm2)
{

if (!result.Animals.Contains(animal))
{

result.Animals.Add(animal);
}

}
return result;

}

public static Farm<T> operator +(List<T> farm1, Farm<T> farm2)
{

return farm2 + farm1;
}

You could then add instances of Farm<Animal> and Farm<Cow> as follows:

Farm<Animal> newFarm = farm + dairyFarm;

In this code, dairyFarm (an instance of Farm<Cow>) is implicitly converted into List<Animal>, which is
usable by the overloaded + operator in Farm<T>.

You might think that this could be achieved simply by using the following:

public static Farm<T> operator +(Farm<T> farm1, Farm<T> farm2)
{

...
}

However, because Farm<Cow> cannot be converted into Farm<Animal>, the summation will fail. To take
this a step further, you could solve this using the following conversion operator:

public static implicit operator Farm<Animal>(Farm<T> farm)
{

Farm <Animal> result = new Farm <Animal>();
foreach (T animal in farm)
{

result.Animals.Add(animal);
}
return result;

}

With this operator, instances of Farm<T>, such as Farm<Cow>, can be converted into instances of
Farm<Animal>, solving the problem. You can use either of the methods shown, although the latter is
preferable for its simplicity.

Generic Structs
You learned in earlier chapters that structs are essentially the same as classes, barring some minor
differences and the fact that a struct is a value type, not a reference type. Because this is the case, generic
structs can be created in the same way as generic classes, as shown here:

364 ❘ CHAPTER 12 GENERICS

public struct MyStruct<T1, T2>
{

public T1 item1;
public T2 item2;

}

Defining Generic Interfaces
You’ve now seen several generic interfaces in use — namely, those in the Systems.Collections.

Generic namespace such as IEnumerable<T> used in the last example. Defining a generic interface
involves the same techniques as defining a generic class:

interface MyFarmingInterface<T>
where T : Animal

{
bool AttemptToBreed(T animal1, T animal2);

T OldestInHerd { get; }
}

Here, the generic parameter T is used as the type of the two arguments of AttemptToBreed() and the
type of the OldestInHerd property.

The same inheritance rules apply as for classes. If you inherit from a base generic interface, you must
obey the rules, such as keeping the constraints of the base interface generic type parameters.

Defining Generic Methods
The last Try It Out used a method called GetCows(), and in the discussion of the example it was stated
that you could make a more general form of this method using a generic method. In this section you’ll
see how this is possible. A generic method is one in which the return and/or parameter types are deter-
mined by a generic type parameter or parameters:

public T GetDefault<T>()
{

return default(T);
}

This trivial example uses the default keyword you looked at earlier in the chapter to return a default
value for a type T. This method is called as follows:

int myDefaultInt = GetDefault<int>();

The type parameter T is provided at the time the method is called.

This T is quite separate from the types used to supply generic type parameters to classes. In fact, generic
methods can be implemented by nongeneric classes:

public class Defaulter
{

public T GetDefault<T>()
{

return default(T);
}

}

If the class is generic, though, then you must use different identifiers for generic method types. The
following code won’t compile:

Defining Generic Types ❘ 365

public class Defaulter<T>
{

public T GetDefault<T>()
{

return default(T);
}

}

The type T used by either the method or the class must be renamed.

Constraints can be used by generic method parameters in the same way that they are for classes, and in
this case you can make use of any class type parameters:

public class Defaulter<T1>
{

public T2 GetDefault<T2>()
where T2 : T1

{
return default(T2);

}
}

Here, the type T2 supplied to the method must be the same as, or inherit from, T1 supplied to the class.
This is a common way to constrain generic methods.

In the Farm<T> class shown earlier, you could include the following method (included, but commented
out, in the downloadable code for Ch12Ex04):

public Farm<U> GetSpecies<U>() where U : T
{

Farm<U> speciesFarm = new Farm<U>();
foreach (T animal in animals)
{

if (animal is U)
{

speciesFarm.Animals.Add(animal as U);
}

}
return speciesFarm;

}

This can replace GetCows() and any other methods of the same type. The generic type parameter used
here, U, is constrained by T, which is in turn constrained by the Farm<T> class to Animal. This enables
you to treat instances of T as instances of Animal, should you wish to do so.

In the client code for Ch12Ex04, in Program.cs, using this new method requires one modification:

Farm<Cow> dairyFarm = farm.GetSpecies<Cow>();

You could equally write

Farm<Chicken> poultryFarm = farm.GetSpecies<Chicken>();

or any other class that inherits from Animal.

Note here that having generic type parameters on a method changes the signature of the method. This
means you can have several overloads of a method differing only in generic type parameters, as shown
in this example:

366 ❘ CHAPTER 12 GENERICS

public void ProcessT<T>(T op1)
{

...
}

public void ProcessT<T, U>(T op1)
{

...
}

Which method should be used is determined by the amount of generic type parameters specified when
the method is called.

Defining Generic Delegates
The last generic type to consider is the generic delegate. You saw these in action earlier in the chapter
when you learned how to sort and search generic lists. You used the Comparison<T> and Predicate<T>

delegates, respectively, for this.

Chapter 6 described how to define delegates using the parameters and return type of a method, the
delegate keyword, and a name for the delegate:

public delegate int MyDelegate(int op1, int op2);

To define a generic delegate, you simply declare and use one or more generic type parameters:

public delegate T1 MyDelegate<T1, T2>(T2 op1, T2 op2) where T1: T2;

As you can see, constraints can be applied here too. You’ll learn a lot more about delegates in the next
chapter, including how you can use them in a common C# programming technique — events.

VARIANCE

Variance is the collective term for covariance and contravariance, two concepts that have been intro-
duced in .NET 4. In fact, they have been around longer than that (they were available in .NET 2.0), but
until .NET 4 it was very difficult to implement them, as this required custom compilation procedures.

The easiest way to grasp what these terms mean is to compare them with polymorphism. Polymor-
phism, as you will recall, is what enables you to put objects of a derived type into variables of a base
type, for example:

Cow myCow = new Cow("Geronimo");
Animal myAnimal = myCow;

Here, an object of type Cow has been placed into a variable of type Animal — which is possible because
Cow derives from Animal.

However, the same cannot be said for interfaces. That is to say, the following code will not work:

IMethaneProducer<Cow> cowMethaneProducer = myCow;
IMethaneProducer<Animal> animalMethaneProducer = cowMethaneProducer;

Variance ❘ 367

The first line of code is fine, assuming that Cow supports the interface IMethaneProducer<Cow>. How-
ever, the second line of code presupposes a relationship between the two interface types that doesn’t
exist, so there is no way of converting one into the other. Or is there? There certainly isn’t a way using
the techniques you’ve seen so far in this chapter, as all the type parameters for generic types have been
invariant. However, it is possible to define variant type parameters on generic interfaces and generic
delegates that cater to exactly the situation illustrated in the previous code.

To make the previous code work, the type parameter T for the IMethaneProducer<T> interface must be
covariant. Having a covariant type parameter effectively sets up an inheritance relationship between
IMethaneProducer<Cow> and IMethaneProducer<Animal>, so that variables of one type can hold values
of the other, just like with polymorphism (although a little more complicated).

To round off this introduction to variance, you need to look at the other kind, contravariance. This is
similar but works in the other direction. Rather than being able to place a generic interface value into
a variable that includes a base type as in covariance, contravariance enables us to place that interface
into a variable that uses a derived type, for example:

IGrassMuncher<Cow> cowGrassMuncher = myCow;
IGrassMuncher<SuperCow> superCowGrassMuncher = cowGrassMuncher;

At first glance this seems a little odd, as you couldn’t do the same with polymorphism. However, this is
a useful technique in certain circumstances, as you will see in the section ‘‘Contravariance.’’

In the next two sections, you look at how to implement variance in generic types and how the .NET
Framework uses variance to make your life easier.

NOTE All of the code in this section is included in a demo project called
VarianceDemo if you want to work through it as you go along.

Covariance
To define a generic type parameter as covariant, you use the out keyword in the type definition, as
shown in the following example:

public interface IMethaneProducer<out T>
{

...
}

For interface definitions, covariant type parameters may be used only as return values of methods or
property get accessors.

A good example of how this is useful is found in the .NET Framework, in the IEnumerable<T>

interface that you’ve used previously. The item type T in this interface is defined as being covariant.
This means that you can put an object that supports, say, IEnumerable<Cow> into a variable of type
IEnumerable<Animal>.

This enables the following code:

368 ❘ CHAPTER 12 GENERICS

static void Main(string[] args)
{

List<Cow> cows = new List<Cow>();
cows.Add(new Cow("Geronimo"));
cows.Add(new SuperCow("Tonto"));
ListAnimals(cows);
Console.ReadKey();

}

static void ListAnimals(IEnumerable<Animal> animals)
{

foreach (Animal animal in animals)
{

Console.WriteLine(animal.ToString());
}

}

Here the cows variable is of type List<Cow>, which supports the IEnumerable<Cow> interface.
This variable can, through covariance, be passed to a method that expects a parameter of type
IEnumerable<Animal>. Recalling what you know about how foreach loops work, you know that the
GetEnumerator() method is used to get an enumerator of IEnumerator<T>, and the Current property
of that enumerator is used to access items. IEnumerator<T> also defines its type parameter as covariant,
which means that it’s OK to use it as the get accessor of a parameter, and everything works perfectly.

Contravariance
To define a generic type parameter as contravariant, you use the in keyword in the type definition:

public interface IGrassMuncher<in T>
{

...
}

For interface definitions, contravariant type parameters may only be used as method parameters, not
return types.

Again, the best way to understand this is to look at an example of how contravariance is used in the
.NET Framework. One interface that has a contravariant type parameter, again one that you’ve already
used, is IComparer<T>. You might implement this interface for animals as follows:

public class AnimalNameLengthComparer : IComparer<Animal>
{

public int Compare(Animal x, Animal y)
{

return x.Name.Length.CompareTo(y.Name.Length);
}

}

This comparer compares animals by name length, so you could use it to sort, for example, an instance of
List<Animal>. However, through contravariance, you can also use it to sort an instance of List<Cow>,
even though the List<Cow>.Sort() method expects an instance of IComparer<Cow>:

Exercises ❘ 369

List<Cow> cows = new List<Cow>();
cows.Add(new Cow("Geronimo"));
cows.Add(new SuperCow("Tonto"));
cows.Add(new Cow("Gerald"));
cows.Add(new Cow("Phil"));
cows.Sort(new AnimalNameLengthComparer());

In most circumstances, contravariance is something that simply happens — and it’s been worked into
the .NET Framework to help with just this sort of operation. The good thing about both types of
variance in .NET 4, though, is that you can now implement it yourself with the techniques shown in
this section whenever you need it.

SUMMARY

This chapter examined how to use generic types in C# and create your own generic types, including
classes, interfaces, methods, and delegates. You also looked at how to use structs, including how to
create nullable types, and how to use the classes in the System.Collections.Generic namespace.

Generics, as you saw, are an extremely powerful new technique in C#. You can use them to create
classes that satisfy several purposes at the same time, and they can be used in a variety of situations.
Even if you don’t have any reason to create your own generic types, you’re almost certain to use the
generic collection classes repeatedly.

In the next chapter, you’ll continue your examination of the basic C# language by tying up a few loose
ends and looking at events.

EXERCISES

1. Which of the following can be generic?

a. Classes

b. Methods

c. Properties

d. Operator overloads

e. Structs

f. Enumerations

2. Extend the Vector class in Ch12Ex01 such that the * operator returns the dot product of two
vectors.

NOTE The dot product of two vectors is defined as the product of their
magnitudes multiplied by the cosine of the angle between them.

continues

370 ❘ CHAPTER 12 GENERICS

3. What is wrong with the following code? Fix it.

public class Instantiator<T>
{

public T instance;

public Instantiator()
{

instance = new T();
}

}

4. What is wrong with the following code? Fix it.

public class StringGetter<T>
{

public string GetString<T>(T item)
{

return item.ToString();
}

}

5. Create a generic class called ShortCollection<T> that implements IList<T> and consists of a
collection of items with a maximum size. This maximum size should be an integer that can be sup-
plied to the constructor of ShortCollection<T> or defaults to 10. The constructor should also be
able to take an initial list of items via a List<T> parameter. The class should function exactly like
Collection<T> but throw an exception of type IndexOutOfRangeException if an attempt is made
to add too many items to the collection, or if the List<T> passed to the constructor contains too
many items.

6. Will the following code compile? If not, why not?

public interface IMethaneProducer<out T>
{

void BelchAt(T target);
}

Answers to Exercises can be found in Appendix A.

Exercises ❘ 371

� WHAT YOU HAVE LEARNED IN THIS CHAPTER
TOPIC KEY CONCEPTS

Using generic
types

Generic types require one or more type parameters to work. You can use a
generic type as the type of a variable by passing the type parameters you
require when you declare a variable. You do this by enclosing a comma-
separated list of type names in angle brackets.

Nullable types Nullable types are types that can take any value of a specified value type or the
value null. You can use the syntax Nullable<T> or T? to declare a nullable type
variable.

The ??
operator

The null coalescing operator returns either the value of its first operand, or, if the
first operand is null, its second operand.

Generic
collections

Generic collections are extremely useful as they come with strong typing built in.
You can use List<T>, Collection<T>, and Dictionary<K, V> among other col-
lection types. These also expose generic interfaces. To sort and search generic
collections, you use the IComparer<T> and IComparable<T> interfaces.

Defining
generic
classes

You define a generic type much like any other type, with the addition of generic
type parameters where you specify the type name. As with using generic types,
you specify these as a comma-separated list enclosed in angle brackets. You
can use the generic type parameters in your code anywhere you’d use a type
name, for example, in method return values and parameters.

Generic type
parameter
constraints

In order to use generic type parameters more effectively in your generic type
code, you can constrain the types that can be supplied when the type is used.
You can constrain type parameters by base class, supported interface, whether
they must be value or reference types, and whether they support parameterless
constructors. Without such constraints, you must use the default keyword to
instantiate a variable of a generic type.

Other generic
types

As well as classes, you can define generic interfaces, delegates, and methods.

Variance Variance is a concept similar to polymorphism, but applied to type parameters.
It allows you to use one generic type in place of another, where those generic
types vary only in the generic type parameters used. Covariance allows con-
version between two types where the target type has a type parameter that is
a base class of the type parameter of the source type. Contravariance allows
conversion where this relationship is inverted. Covariant type parameters are
defined with the out parameter, and can only be used as return types and prop-
erty get accessor types. Contravariant type parameters are defined with the in

parameter and can only be used as method parameters.

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

13
Additional OOP Techniques

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What the :: operator is

➤ What the global namespace qualifier is

➤ How to create custom exceptions

➤ How to use events

➤ How to use anonymous methods

In this chapter, you continue exploring the C# language by looking at a few bits and pieces that
haven’t quite fit in elsewhere. This isn’t to say that these techniques aren’t useful — just that
they don’t fall under any of the headings you’ve worked through so far.

You also make some final modifications to the CardLib code that you’ve been building in the
last few chapters, and even use CardLib to create a card game.

THE :: OPERATOR AND THE GLOBAL NAMESPACE QUALIFIER

The :: operator provides an alternative way to access types in namespaces. This may be neces-
sary if you want to use a namespace alias and there is ambiguity between the alias and the actual
namespace hierarchy. If that’s the case, then the namespace hierarchy is given priority over the
namespace alias. To see what this means, consider the following code:

using MyNamespaceAlias = MyRootNamespace.MyNestedNamespace;

namespace MyRootNamespace
{

namespace MyNamespaceAlias
{

public class MyClass
{

374 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

}
}

namespace MyNestedNamespace
{

public class MyClass
{
}

}
}

Code in MyRootNamespace might use the following to refer to a class:

MyNamespaceAlias.MyClass

The class referred to by this code is the MyRootNamespace.MyNamespaceAlias.MyClass

class, not the MyRootNamespace.MyNestedNamespace.MyClass class. That is, the namespace
MyRootNamespace.MyNamespaceAlias has hidden the alias defined by the using state-
ment, which refers to MyRootNamespace.MyNestedNamespace. You can still access the
MyRootNamespace.MyNestedNamespace namespace and the class contained within, but it requires
different syntax:

MyNestedNamespace.MyClass

Alternatively, you can use the :: operator:

MyNamespaceAlias::MyClass

Using this operator forces the compiler to use the alias defined by the using statement, and therefore
the code refers to MyRootNamespace.MyNestedNamespace.MyClass.

You can also use the keyword global with the :: operator, which is essentially an alias to the top-
level, root namespace. This can be useful to make it clearer which namespace you are referring to, as
shown here:

global::System.Collections.Generic.List<int>

This is the class you’d expect it to be, the generic List<T> collection class. It definitely isn’t the class
defined with the following code:

namespace MyRootNamespace
{

namespace System
{

namespace Collections
{

namespace Generic
{

class List<T>
{
}

}
}

}
}

Custom Exceptions ❘ 375

Of course, you should avoid giving your namespaces names that already exist as .NET namespaces,
although this problem may arise in large projects, particularly if you are working as part of a large
team. Using the :: operator and the global keyword may be the only way you can access the types
you want.

CUSTOM EXCEPTIONS

Chapter 7 covered exceptions and explained how you can use try ... catch ... finally blocks to act
on them. You also saw several standard .NET exceptions, including the base class for exceptions,
System.Exception. Sometimes it’s useful to derive your own exception classes from this base class
for use in your applications, instead of using the standard exceptions. This enables you to be more
specific with the information you send to whatever code catches the exception, and it enables catching
code to be more specific about which exceptions it handles. For example, you might add a new property
to your exception class that permits access to some underlying information, making it possible for
the exception’s receiver to make the required changes, or just provide more information about the
exception’s cause.

Once you have defined an exception class, you can add it to the list of exceptions recognized by VS
using the Debug ➪ Exceptions dialog’s Add button, and then define exception-specific behavior as
shown in Chapter 7.

NOTE Two fundamental exception classes exist in the System namespace and
derive from Exception: ApplicationException and SystemException.
SystemException is used as the base class for exceptions that are predefined by
the .NET Framework. ApplicationException was provided for developers to
derive their own exception classes, but more recent best practice dictates that
you should not derive your exceptions from this class; you should use Exception

instead. The ApplicationException class will likely be deprecated at some point
in the future.

Adding Custom Exceptions to CardLib
How to use custom exceptions is, once again, best illustrated by upgrading the CardLib project. The
Deck.GetCard() method currently throws a standard .NET exception if an attempt is made to access a
card with an index less than 0 or greater than 51, but you’ll modify that to use a custom exception.

First, you need to create a new class library project called Ch13CardLib, save it in the BegVCSharp

\Chapter13 directory, and copy the classes from Ch12CardLib as before, changing the namespace to
Ch13CardLib as applicable. Next, define the exception. You do this with a new class defined in a new
class file called CardOutOfRangeException.cs, which you can add to the Ch13CardLib project with
Project ➪ Add Class:

public class CardOutOfRangeException : Exception
{

private Cards deckContents;

376 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

public Cards DeckContents
{

get
{

return deckContents;
}

}

public CardOutOfRangeException(Cards sourceDeckContents):
base("There are only 52 cards in the deck.")

{
deckContents = sourceDeckContents;

}
}

Code snippet Ch13CardLib\CardOutOfRangeException.cs

An instance of the Cards class is required for the constructor of this class. It allows access to this Cards
object through a DeckContents property and supplies a suitable error message to the base Exception

constructor so that it is available through the Message property of the class.

Next, add code to throw this exception to Deck.cs (replacing the old standard exception):

public Card GetCard(int cardNum)
{

if (cardNum >= 0 && cardNum <= 51)
return cards[cardNum];

else
throw new CardOutOfRangeException(cards.Clone() as Cards);

}

Code snippet Ch13CardLib\Deck.cs

The DeckContents property is initialized with a deep copy of the current contents of the Deck object,
in the form of a Cards object. This means that you see what the contents were at the point where the
exception was thrown, so subsequent modification to the deck contents won’t ‘‘lose’’ this information.

To test this, use the following client code (in Ch13CardClient in the downloadable code for
this chapter):

Deck deck1 = new Deck();
try
{

Card myCard = deck1.GetCard(60);
}
catch (CardOutOfRangeException e)
{

Console.WriteLine(e.Message);
Console.WriteLine(e.DeckContents[0]);

}
Console.ReadKey();

Code snippet Ch13CardClient\Program.cs

Events ❘ 377

This code results in the output shown in Figure 13-1.

FIGURE 13-1

Here, the catching code has written the exception Message property to the screen. You also displayed
the first card in the Cards object obtained through DeckContents, just to prove that you can access the
Cards collection through your custom exception object.

EVENTS

This section covers one of the most frequently used OOP techniques in .NET: events. You start, as
usual, with the basics — looking at what events actually are. After that, you’ll see some simple events
in action and learn what you can do with them. Then, you learn how you can create and use events of
your own.

At the end of this chapter, you’ll complete your CardLib class library by adding an event. Finally,
because this is the last port of call before arriving at some advanced topics, you’ll have a bit of fun
creating a card game application that uses this class library.

What Is an Event?
Events are similar to exceptions in that they are raised (thrown) by objects, and you can supply code
that acts on them. However, there are several important differences, the most important of which is that
there is no equivalent to the try . . . catch structure for handling events. Instead, you must subscribe
to them. Subscribing to an event means supplying code that will be executed when an event is raised, in
the form of an event handler.

Many handlers can be subscribed to a single event, all of which are called when the event is raised.
This may include event handlers that are part of the class of the object that raises the event, but event
handlers are just as likely to be found in other classes.

Event handlers themselves are simply methods. The only restriction on an event handler method is
that it must match the return type and parameters required by the event. This restriction is part of the
definition of an event and is specified by a delegate.

NOTE The fact that delegates are used in events is one of the reasons why
delegates are so useful. This is why some space was devoted to them in
Chapter 6. You may want to review that material to refresh your memory about
delegates and how you use them.

378 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

Application Connection
Creates

FIGURE 13-2

The basic sequence of processing is as follows: First, an
application creates an object that can raise an event. For
example, suppose an instant messaging application creates
an object that represents a connection to a remote user.
That connection object might raise an event when a mes-
sage arrives through the connection from the remote user
(see Figure 13-2).

Application

Display

Connection

Subscribes to
Creates

FIGURE 13-3

Next, the application subscribes to the event. Your
instant messaging application would do this by defining
a method that could be used with the delegate type spec-
ified by the event, passing a reference to this method to
the event. The event handler method might be a method
on another object, such as an object representing a dis-
play device to show instant messages when they arrive (see
Figure 13-3).

When the event is raised, the subscriber is notified. When
an instant message arrives through the connection object,
the event handler method on the display device object is
called. Because you are using a standard method, the object
that raises the event may pass any relevant information via
parameters, making events very versatile. In the example
case, one parameter might be the text of the instant message,
which the event handler could display on the display device
object. This is shown in Figure 13-4.

Handling Events

Application

Display

Connection

Calls

Raises Event

Hi Mum

FIGURE 13-4

As previously discussed, to handle an event you need to sub-
scribe to it by providing an event handler method whose
return type and parameters match that of the delegate spec-
ified for use with the event. The following example uses a
simple timer object to raise events, which results in a handler
method being called.

TRY IT OUT Handling Events

1. Create a new console application called Ch13Ex01 and save it in the directory
C:\BegVCSharp\Chapter13.

2. Modify the code in Program.cs as follows:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Timers;

Events ❘ 379

namespace Ch13Ex01
{

class Program
{

static int counter = 0;

static string displayString =
"This string will appear one letter at a time. ";

static void Main(string[] args)
{

Timer myTimer = new Timer(100);
myTimer.Elapsed += new ElapsedEventHandler(WriteChar);
myTimer.Start();
Console.ReadKey();

}
static void WriteChar(object source, ElapsedEventArgs e)
{

Console.Write(displayString[counter++ % displayString.Length]);
}

}
}

Code snippet Ch13Ex01\Program.cs

3. Run the application (once it is running, pressing a key will terminate the application). The result,
after a short period, is shown in Figure 13-5.

FIGURE 13-5

How It Works

The object you are using to raise events is an instance of the System.Timers.Timer class. This object is
initialized with a time period (in milliseconds). When the Timer object is started using its Start() method,
a stream of events is raised, spaced out in time according to the specified time period. Main() initializes a
Timer object with a timer period of 100 milliseconds, so it will raise events 10 times a second when started:

static void Main(string[] args)
{

Timer myTimer = new Timer(100);

The Timer object possesses an event called Elapsed, and the event handler required by this event must
match the return type and parameters of the System.Timers.ElapsedEventHandler delegate type, which is
one of the standard delegates defined in the .NET Framework. This delegate specifies the following return
type and parameters:

void <MethodName>(object source, ElapsedEventArgs e);

The Timer object sends a reference to itself in the first parameter and an instance of an ElapsedEventArgs

object in its second parameter. It is safe to ignore these parameters for now; you’ll take a look at them a
little later.

380 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

In your code you have a suitable method:

static void WriteChar(object source, ElapsedEventArgs e)
{

Console.Write(displayString[counter++ % displayString.Length]);
}

This method uses the two static fields of Program, counter and displayString, to display a single charac-
ter. Every time the method is called, the character that is displayed is different.

The next task is to hook this handler up to the event — to subscribe to it. To do this, you use the +=

operator to add a handler to the event in the form of a new delegate instance initialized with your event
handler method:

static void Main(string[] args)
{

Timer myTimer = new Timer(100);
myTimer.Elapsed += new ElapsedEventHandler(WriteChar);

This command (which uses slightly strange-looking syntax, specific to delegates) adds a handler to the list
that will be called when the Elapsed event is raised. You can add as many handlers as you like to this list as
long as they all meet the criteria required. Each handler is called in turn when the event is raised.

All that remains for Main() to do is start the timer running:

myTimer.Start();

You don’t want the application terminating before you have handled any events, so you put the Main()

method on hold. The simplest way to do this is to request user input, as this command won’t finish pro-
cessing until the user has pressed a key:

Console.ReadKey();

Although processing in Main() effectively ceases here, processing in the Timer object continues. When
it raises events it calls the WriteChar() method, which runs concurrently with the Console.ReadLine()

statement.

Note that the syntax for adding an event handler can be simplified slightly using the method group concept
introduced in the previous chapter, as follows:

myTimer.Elapsed += WriteChar;

The end result is exactly the same, but you do not have to explicitly specify the delegate type; it is inferred
by the compiler from the context in which you use it. However, many programmers dislike this syntax
because it reduces readability — it is no longer possible to tell at a glance what delegate type you are using.
Feel free to use this syntax if you prefer, but in this chapter all the delegates you use will be referenced
explicitly to make things clearer.

Defining Events
Now it’s time to define and use your own events. The following Try It Out implements an example
version of the instant messaging scenario introduced earlier in this chapter, creating a Connection

object that raises events that are handled by a Display object.

Events ❘ 381

TRY IT OUT Defining Events

1. Create a new console application called Ch13Ex02 and save it in the directory
C:\BegVCSharp\Chapter13.

2. Add a new class called Connection and modify Connection.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Timers;

namespace Ch13Ex02
{

public delegate void MessageHandler(string messageText);

public class Connection
{

public event MessageHandler MessageArrived;
private Timer pollTimer;

public Connection()
{

pollTimer = new Timer(100);
pollTimer.Elapsed += new ElapsedEventHandler(CheckForMessage);

}

public void Connect()
{

pollTimer.Start();
}

public void Disconnect()
{

pollTimer.Stop();
}

private static Random random = new Random();

private void CheckForMessage(object source, ElapsedEventArgs e)
{

Console.WriteLine("Checking for new messages.");
if ((random.Next(9) == 0) && (MessageArrived != null))
{

MessageArrived("Hello Mum!");
}

}
}

}

Code snippet Ch13Ex02\Connection.cs

3. Add a new class called Display and modify Display.cs as follows:

382 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

namespace Ch13Ex02
{

public class Display
{

public void DisplayMessage(string message)
{

Console.WriteLine("Message arrived: {0}", message);
}

}
}

Code snippet Ch13Ex02\Display.cs

4. Modify the code in Program.cs as follows:

static void Main(string[] args)
{

Connection myConnection = new Connection();
Display myDisplay = new Display();
myConnection.MessageArrived +=

new MessageHandler (myDisplay.DisplayMessage);
myConnection.Connect();
Console.ReadKey();

}

Code snippet Ch13Ex02\Program.cs

5. Run the application. The result is shown in Figure 13-6.

FIGURE 13-6

Events ❘ 383

How It Works

The Connection class does most of the work in this application. Instances of this class make use of a Timer

object much like the one shown in the first example of this chapter, initializing it in the class constructor
and providing access to its state (enabled or disabled) via Connect() and Disconnect():

public class Connection
{

private Timer pollTimer;

public Connection()
{

pollTimer = new Timer(100);
pollTimer.Elapsed += new ElapsedEventHandler(CheckForMessage);

}

public void Connect()
{

pollTimer.Start();
}

public void Disconnect()
{

pollTimer.Stop();
}

...
}

Also in the constructor, you register an event handler for the Elapsed event, just as you did in the first
example. The handler method, CheckForMessage(), raises an event on average once every 10 times it is
called. You will look at the code for this, but first it would be useful to look at the event definition itself.

Before you define an event, you must define a delegate type to use with the event — that is, a delegate type
that specifies the return type and parameters to which an event handling method must conform. You do
this using standard delegate syntax, defining it as public inside the Ch13Ex02 namespace to make the type
available to external code:

namespace Ch13Ex02
{

public delegate void MessageHandler(string messageText);

This delegate type, called MessageHandler here, is a void method that has a single string parameter. You
can use this parameter to pass an instant message received by the Connection object to the Display object.
Once a delegate has been defined (or a suitable existing delegate has been located), you can define the event
itself, as a member of the Connection class:

public class Connection
{

public event MessageHandler MessageArrived;

384 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

You simply name the event (here it is MessageArrived) and declare it by using the event keyword and
specifying the delegate type to use (the MessageHandler delegate type defined earlier). After you have
declared an event in this way, you can raise it simply by calling it by name as if it were a method with
the return type and parameters specified by the delegate. For example, you could raise this event using
the following:

MessageArrived("This is a message.");

If the delegate had been defined without any parameters, then you could simply use the following:

MessageArrived();

Alternatively, you could have defined more parameters, which would have required more code to raise the
event. The CheckForMessage() method looks like this:

private static Random random = new Random();

private void CheckForMessage(object source, ElapsedEventArgs e)
{

Console.WriteLine("Checking for new messages.");
if ((random.Next(9) == 0) && (MessageArrived != null))
{

MessageArrived("Hello Mum!");
}

}

You use an instance of the Random class shown in earlier chapters to generate a random number between
0 and 9, and raise an event if the number generated is 0, which should happen 10 percent of the time.
This simulates polling the connection to determine whether a message has arrived, which won’t be the
case every time you check. To separate the timer from the instance of Connection, you use a private static
instance of the Random class.

Note that you supply additional logic. You only raise an event if the expression MessageArrived != null

evaluates to true. This expression, which again uses the delegate syntax in a slightly unusual way, means
‘‘Does the event have any subscribers?’’ If there are no subscribers, then MessageArrived evaluates to null,
and there is no point in raising the event.

The class that will subscribe to the event is called Display and contains the single method,
DisplayMessage(), defined as follows:

public class Display
{

public void DisplayMessage(string message)
{

Console.WriteLine("Message arrived: {0}", message);
}

}

This method matches the delegate type (and is public, which is a requirement of event handlers in classes
other than the class that generates the event), so you can use it to respond to the MessageArrived event.

All that is left now is for the code in Main() to initialize instances of the Connection and Display

classes, hook them up, and start things going. The code required here is similar to that from the
first example:

Events ❘ 385

static void Main(string[] args)
{

Connection myConnection = new Connection();
Display myDisplay = new Display();
myConnection.MessageArrived +=

new MessageHandler(myDisplay.DisplayMessage);
myConnection.Connect();
Console.ReadKey();

}

Again, you call Console.ReadKey() to pause the processing of Main() once you have started things moving
with the Connect() method of the Connection object.

Multipurpose Event Handlers
The delegate you saw earlier, for the Timer.Elapsed event, contained two parameters that are of a type
often seen in event handlers:

➤ object source — A reference to the object that raised the event

➤ ElapsedEventArgs e — Parameters sent by the event

The reason the object type parameter is used in this event, and indeed in many other events, is that you
often need to use a single event handler for several identical events generated by different objects and
still tell which object generated the event.

To explain and illustrate this, we’ll extend the last example a little.

TRY IT OUT Using a Multipurpose Event Handler

1. Create a new console application called Ch13Ex03 and save it in the directory
C:\BegVCSharp\Chapter13.

2. Copy the code across for Program.cs, Connection.cs, and Display.cs from Ch13Ex02, making
sure that you change the namespaces in each file from Ch13Ex02 to Ch13Ex03.

3. Add a new class called MessageArrivedEventArgs and modify MessageArrivedEventArgs.cs as
follows:

namespace Ch13Ex03
{
public class MessageArrivedEventArgs : EventArgs

{
private string message;

public string Message
{

get
{

return message;
}

}

public MessageArrivedEventArgs()
{

message = "No message sent.";
}

386 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

public MessageArrivedEventArgs(string newMessage)
{

message = newMessage;
}

}
}

Code snippet Ch13Ex03\MessageArrivedEventArgs.cs

4. Modify Connection.cs as follows:

namespace Ch13Ex03
{

public delegate void MessageHandler(Connection source,
MessageArrivedEventArgs e);

public class Connection
{

public event MessageHandler MessageArrived;

public string Name { get; set; }

...

private void CheckForMessage(object source, EventArgs e)
{

Console.WriteLine("Checking for new messages.");
if ((random.Next(9) == 0) && (MessageArrived != null))
{

MessageArrived(this, new MessageArrivedEventArgs("Hello Mum!"));
}

}

...

}
}

Code snippet Ch13Ex03\Connection.cs

5. Modify Display.cs as follows (including the event argument type):

public void DisplayMessage(Connection source, MessageArrivedEventArgs e)
{

Console.WriteLine("Message arrived from: {0}", source.Name);
Console.WriteLine("Message Text: {0}", e.Message);

}

Code snippet Ch13Ex03\Display.cs

6. Modify Program.cs as follows:

Events ❘ 387

static void Main(string[] args)
{

Connection myConnection1 = new Connection();
myConnection1.Name = "First connection.";
Connection myConnection2 = new Connection();
myConnection2.Name = "Second connection.";
Display myDisplay = new Display();
myConnection1.MessageArrived +=

new MessageHandler(myDisplay.DisplayMessage);
myConnection2.MessageArrived +=

new MessageHandler(myDisplay.DisplayMessage);
myConnection1.Connect();
myConnection2.Connect();
Console.ReadKey();

}

Code snippet Ch13Ex03\Program.cs

7. Run the application. The result is shown in Figure 13-7.

FIGURE 13-7

How It Works

By sending a reference to the object that raises an event as one of the event handler parameters, you can
customize the response of the handler to individual objects. The reference gives you access to the source
object, including its properties.

By sending parameters that are contained in a class that inherits from System.EventArgs (as
ElapsedEventArgs does), you can supply whatever additional information is necessary as parameters
(such as the Message parameter on the MessageArrivedEventArgs class).

In addition, these parameters will benefit from polymorphism. You could define a handler for the
MessageArrived event such as this:

388 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

public void DisplayMessage(object source, EventArgs e)
{

Console.WriteLine("Message arrived from: {0}",
((Connection)source).Name);

Console.WriteLine("Message Text: {0}",
((MessageArrivedEventArgs)e).Message);

}

Then you could modify the delegate definition in Connection.cs as follows:

public delegate void MessageHandler(object source, EventArgs e);

The application will execute exactly as it did before, but you have made the DisplayMessage() method
more versatile (in theory at least — more implementation would be needed to make this production qual-
ity). This same handler could work with other events, such as the Timer.Elapsed, although you’d have
to modify the internals of the handler a bit more such that the parameters sent when this event is raised
are handled properly (casting them to Connection and MessageArrivedEventArgs objects in this way will
cause an exception; you should use the as operator instead and check for null values).

The EventHandler and Generic EventHandler<T> Types
In most cases, you will follow the pattern outlined in the previous section and use event handlers with a
void return type and two parameters. The first parameter will be of type object, and will be the event
source. The second parameter will be of a type that derives from System.EventArgs, and will contain
any event arguments. As this is so common, .NET provides two delegate types to make it easier to
define events: EventHandler and EventHandler<T>. Both of these are delegates that use the standard
event handler pattern. The generic version enables you to specify the type of event argument you want
to use.

So, rather than define your own MessageHandler delegate type as in the previous Try It Out, you could
instead define the MessageArrived event as follows:

public class Connection
{

public event EventHandler MessageArrived;

...
}

Or even:
public class Connection
{

public event EventHandler<MessageArrivedEventArgs> MessageArrived;

...
}

This is obviously a good thing to do, because it simplifies your code.

Return Values and Event Handlers
All the event handlers you’ve seen so far have had a return type of void. It is possible to provide a
return type for an event, but this can lead to problems because a given event may result in several event

Expanding and Using CardLib ❘ 389

handlers being called. If all of these handlers return a value, then it may be unclear which value was
actually returned.

The system deals with this by allowing you access to only the last value returned by an event handler.
That will be the value returned by the last event handler to subscribe to an event. Although this func-
tionality might be of use in some situations, it is recommended that you use void type event handlers,
and avoid out type parameters (which would lead to the same ambiguity regarding the source of the
value returned by the parameter).

Anonymous Methods
Instead of defining event handler methods, you can choose to use anonymous methods. An anony-
mous method is one that doesn’t actually exist as a method in the traditional sense — that is, it isn’t a
method on any particular class. Instead, an anonymous method is created purely for use as a target for
a delegate.

To create an anonymous method, you need the following code:

delegate(parameters)
{

// Anonymous method code.
};

parameters is a list of parameters matching those of the delegate type you are instantiating, as used by
the anonymous method code:

delegate(Connection source, MessageArrivedEventArgs e)
{

// Anonymous method code matching MessageHandler event in Ch13Ex03.
};

For example, you could use this code to completely bypass the Display.DisplayMessage() method in
Ch13Ex03:

myConnection1.MessageArrived +=
delegate(Connection source, MessageArrivedEventArgs e)
{

Console.WriteLine("Message arrived from: {0}", source.Name);
Console.WriteLine("Message Text: {0}", e.Message);

};

An interesting point about anonymous methods is that they are effectively local to the code block that
contains them, and they have access to local variables in this scope. If you use such a variable, then it
becomes an outer variable. Outer variables are not disposed of when they go out of scope as other local
variables are; instead, they live on until the anonymous methods that use them are destroyed. This may
be some time later than you expect, so it’s definitely something to be careful about. If an outer variable
takes up a large amount of memory, or if it uses resources that are expensive in other ways (for example,
resources that are limited in number), then this could cause memory or performance problems.

EXPANDING AND USING CARDLIB

Now that you’ve had a look at defining and using events, you can use them in Ch13CardLib. The event
you’ll add to your library will be generated when the last Card object in a Deck object is obtained by

390 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

using GetCard, and it will be called LastCardDrawn. The event enables subscribers to reshuffle the deck
automatically, cutting down on the processing necessary by a client. The delegate defined for this event
(LastCardDrawnHandler) needs to supply a reference to the Deck object such that the Shuffle() method
will be accessible from wherever the handler is. Add the following code to Deck.cs:

namespace Ch13CardLib
{

public delegate void LastCardDrawnHandler(Deck currentDeck);

Code snippet Ch13CardLib\Deck.cs

The code to define the event and raise it is simple:

public event LastCardDrawnHandler LastCardDrawn;

...

public Card GetCard(int cardNum)
{

if (cardNum >= 0 && cardNum <= 51)
{

if ((cardNum == 51) && (LastCardDrawn != null))
LastCardDrawn(this);

return cards[cardNum];
}
else

throw new CardOutOfRangeException((Cards)cards.Clone());
}

This is all the code required to add the event to the Deck class definition.

A Card Game Client for CardLib
After spending all this time developing the CardLib library, it would be a shame not to use it. Before
finishing this section on OOP in C# and the .NET Framework, it’s time to have a little fun and write
the basics of a card game application that uses the familiar playing card classes.

As in previous chapters, you’ll add a client console application to the Ch13CardLib solution, add a
reference to the Ch13CardLib project, and make it the startup project. This application will be called
Ch13CardClient.

To begin, you’ll create a new class called Player in a new file in Ch13CardClient, Player.cs. This
class will contain two automatic properties: Name (a string) and PlayHand (of type Cards). Both of
these properties have private get accessors, but despite this the PlayHand provides write access to its
contents, enabling you to modify the cards in the player’s hand.

You’ll also hide the default constructor by making it private, and supply a public nondefault construc-
tor that accepts an initial value for the Name property of Player instances.

Finally, you’ll provide a bool type method called HasWon(), which returns true if all the cards in the
player’s hand are the same suit (a simple winning condition, but that doesn’t matter too much).

Expanding and Using CardLib ❘ 391

Here’s the code for Player.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ch13CardLib;

namespace Ch13CardClient
{

public class Player
{

public string Name { get; private set; }

public Cards PlayHand { get; private set; }

private Player()
{
}

public Player(string name)
{

Name = name;
PlayHand = new Cards();

}

public bool HasWon()
{

bool won = true;
Suit match = PlayHand[0].suit;
for (int i = 1; i < PlayHand.Count; i++)
{

won &= PlayHand[i].suit == match;
}
return won;

}
}

}

Code snippet Ch13CardClient\Player.cs

Next, define a class that will handle the card game itself, called Game. This class is found in the file
Game.cs of the Ch13CardClient project. The class has four private member fields:

➤ playDeck — A Deck type variable containing the deck of cards to use

➤ currentCard — An int value used as a pointer to the next card in the deck to draw

➤ players — An array of Player objects representing the players of the game

➤ discardedCards — A Cards collection for the cards that have been discarded by players but
not shuffled back into the deck

The default constructor for the class initializes and shuffles the Deck stored in playDeck, sets the
currentCard pointer variable to 0 (the first card in playDeck), and wires up an event handler called

392 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

Reshuffle() to the playDeck.LastCardDrawn event. The handler simply shuffles the deck, initializes the
discardedCards collection, and resets currentCard to 0, ready to read cards from the new deck.

The Game class also contains two utility methods: SetPlayers() for setting the players for the game (as
an array of Player objects) and DealHands() for dealing hands to the players (seven cards each). The
allowed number of players is restricted to between two and seven to ensure that there are enough cards
to go around.

Finally, there is a PlayGame() method that contains the game logic itself. You’ll come back to this
method shortly, after you’ve looked at the code in Program.cs. The rest of the code in Game.cs is
as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ch13CardLib;

namespace Ch13CardClient
{

public class Game
{

private int currentCard;
private Deck playDeck;
private Player[] players;
private Cards discardedCards;

public Game()
{

currentCard = 0;
playDeck = new Deck(true);
playDeck.LastCardDrawn += new LastCardDrawnHandler(Reshuffle);
playDeck.Shuffle();
discardedCards = new Cards();

}

private void Reshuffle(Deck currentDeck)
{

Console.WriteLine("Discarded cards reshuffled into deck.");
currentDeck.Shuffle();
discardedCards.Clear();
currentCard = 0;

}

public void SetPlayers(Player[] newPlayers)
{

if (newPlayers.Length > 7)
throw new ArgumentException("A maximum of 7 players may play this" +

" game.");

Expanding and Using CardLib ❘ 393

if (newPlayers.Length < 2)
throw new ArgumentException("A minimum of 2 players may play this" +

" game.");

players = newPlayers;
}

private void DealHands()
{

for (int p = 0; p < players.Length; p++)
{

for (int c = 0; c < 7; c++)
{

players[p].PlayHand.Add(playDeck.GetCard(currentCard++));
}

}
}

public int PlayGame()
{

// Code to follow.
}

}
}

Code snippet Ch13CardClient\Game.cs

Program.cs contains the Main() method, which initializes and runs the game. This method performs
the following steps:

1. An introduction is displayed.

2. The user is prompted for a number of players between two and seven.

3. An array of Player objects is set up accordingly.

4. Each player is prompted for a name, used to initialize one Player object in the array.

5. A Game object is created and players are assigned using the SetPlayers() method.

6. The game is started by using the PlayGame() method.

7. The int return value of PlayGame() is used to display a winning message (the value returned
is the index of the winning player in the array of Player objects).

The code for this follows (commented for clarity):

static void Main(string[] args)
{

// Display introduction.
Console.WriteLine("KarliCards: a new and exciting card game.");
Console.WriteLine("To win you must have 7 cards of the same suit in" +

" your hand.");
Console.WriteLine();

394 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

// Prompt for number of players.
bool inputOK = false;
int choice = -1;
do
{

Console.WriteLine("How many players (2–7)?");
string input = Console.ReadLine();
try
{

// Attempt to convert input into a valid number of players.
choice = Convert.ToInt32(input);
if ((choice >= 2) && (choice <= 7))

inputOK = true;
}
catch
{

// Ignore failed conversions, just continue prompting.
}

} while (inputOK == false);

// Initialize array of Player objects.
Player[] players = new Player[choice];

// Get player names.
for (int p = 0; p < players.Length; p++)
{

Console.WriteLine("Player {0}, enter your name:", p + 1);
string playerName = Console.ReadLine();
players[p] = new Player(playerName);

}

// Start game.
Game newGame = new Game();
newGame.SetPlayers(players);
int whoWon = newGame.PlayGame();

// Display winning player.
Console.WriteLine("{0} has won the game!", players[whoWon].Name);

}

Code snippet Ch13CardClient\Program.cs

Now you come to PlayGame(), the main body of the application. Space limitations preclude us from
providing a lot of detail about this method, but the code is commented to make it more comprehensible.
None of the code is complicated; there’s just quite a bit of it.

Play proceeds with each player viewing his or her cards and an upturned card on the table. They
may either pick up this card or draw a new one from the deck. After drawing a card, each player
must discard one, replacing the card on the table with another one if it has been picked up, or
placing the discarded card on top of the one on the table (also adding the discarded card to the
discardedCards collection).

As you consider this code, bear in mind how the Card objects are manipulated. The reason why these
objects are defined as reference types, rather than value types (using a struct), should now be clear.

Expanding and Using CardLib ❘ 395

A given Card object may appear to exist in several places at once because references can be held by
the Deck object, the hand fields of the Player objects, the discardedCards collection, and the playCard

object (the card currently on the table). This makes it easy to keep track of the cards and is used in
particular in the code that draws a new card from the deck. The card is accepted only if it isn’t in any
player’s hand or in the discardedCards collection.

The code is as follows:

public int PlayGame()
{

// Only play if players exist.
if (players == null)

return -1;

// Deal initial hands.
DealHands();

// Initialize game vars, including an initial card to place on the
// table: playCard.
bool GameWon = false;
int currentPlayer;
Card playCard = playDeck.GetCard(currentCard++);
discardedCards.Add(playCard);

// Main game loop, continues until GameWon == true.
do
{

// Loop through players in each game round.
for (currentPlayer = 0; currentPlayer < players.Length;

currentPlayer++)
{

// Write out current player, player hand, and the card on the
// table.
Console.WriteLine("{0}’s turn.", players[currentPlayer].Name);
Console.WriteLine("Current hand:");
foreach (Card card in players[currentPlayer].PlayHand)
{

Console.WriteLine(card);
}
Console.WriteLine("Card in play: {0}", playCard);

// Prompt player to pick up card on table or draw a new one.
bool inputOK = false;
do
{

Console.WriteLine("Press T to take card in play or D to " +
"draw:");

string input = Console.ReadLine();
if (input.ToLower() == "t")
{

// Add card from table to player hand.
Console.WriteLine("Drawn: {0}", playCard);

396 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

// Remove from discarded cards if possible (if deck
// is reshuffled it won’t be there any more)
if (discardedCards.Contains(playCard))
{

discardedCards.Remove(playCard);
}
players[currentPlayer].PlayHand.Add(playCard);
inputOK = true;

}
if (input.ToLower() == "d")
{

// Add new card from deck to player hand.
Card newCard;
// Only add card if it isn’t already in a player hand
// or in the discard pile
bool cardIsAvailable;
do
{

newCard = playDeck.GetCard(currentCard++);
// Check if card is in discard pile
cardIsAvailable = !discardedCards.Contains(newCard);
if (cardIsAvailable)
{

// Loop through all player hands to see if newCard is
// already in a hand.
foreach (Player testPlayer in players)
{

if (testPlayer.PlayHand.Contains(newCard))
{

cardIsAvailable = false;
break;

}
}

}
} while (!cardIsAvailable);
// Add the card found to player hand.
Console.WriteLine("Drawn: {0}", newCard);
players[currentPlayer].PlayHand.Add(newCard);
inputOK = true;

}
} while (inputOK == false);

// Display new hand with cards numbered.
Console.WriteLine("New hand:");
for (int i = 0; i < players[currentPlayer].PlayHand.Count; i++)
{

Console.WriteLine("{0}: {1}", i + 1,
players[currentPlayer].PlayHand[i]);

}

Expanding and Using CardLib ❘ 397

// Prompt player for a card to discard.
inputOK = false;
int choice = -1;
do
{

Console.WriteLine("Choose card to discard:");
string input = Console.ReadLine();
try
{

// Attempt to convert input into a valid card number.
choice = Convert.ToInt32(input);
if ((choice > 0) && (choice <= 8))

inputOK = true;
}
catch
{

// Ignore failed conversions, just continue prompting.
}

} while (inputOK == false);

// Place reference to removed card in playCard (place the card
// on the table), then remove card from player hand and add
// to discarded card pile.
playCard = players[currentPlayer].PlayHand[choice - 1];
players[currentPlayer].PlayHand.RemoveAt(choice - 1);
discardedCards.Add(playCard);
Console.WriteLine("Discarding: {0}", playCard);

// Space out text for players
Console.WriteLine();

// Check to see if player has won the game, and exit the player
// loop if so.
GameWon = players[currentPlayer].HasWon();
if (GameWon == true)

break;
}

} while (GameWon == false);

// End game, noting the winning player.
return currentPlayer;

}

Figure 13-8 shows a game in progress.

Have fun playing the game — and make sure that you spend some time going through it in detail. Try
putting a breakpoint in the Reshuffle() method and playing the game with seven players. If you keep
drawing cards and discarding the cards drawn, it won’t take long for reshuffles to occur, because with
seven players there are only three cards to spare. This way, you can prove to yourself that things are
working properly by noting the three cards when they reappear.

398 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

FIGURE 13-8

SUMMARY

This chapter explained some advanced techniques that extend your knowledge of the C# language.
You first looked at namespace qualification, the :: operator, and the global keyword, which ensure
that references to types are references to the types you want. Next, you saw how to implement your
own exception objects and pass more detailed information to the exception handler. You then used a
custom exception in the code for CardLib — the card game library you’ve been developing in the last
few chapters.

Finally, you looked at the important topic of events and event handling. Although quite subtle, and
initially difficult to get your head around, the code involved is quite simple — and you’ll certainly be
using event handlers a lot in the rest of the book. You saw some simple illustrative examples of events

Exercises ❘ 399

and how to handle them, and modified the CardLib library and used it to create a simple card game
application. This application demonstrates nearly all the techniques you’ve looked at so far in this book.

With this chapter, you have completed not only a full description of OOP as applied to C# program-
ming, but also a full description of the fundamentals of the C# language. The next chapter describes
the new features of C# that have been added with versions 3 and 4 of the language.

EXERCISES

1. Write the code for an event handler that uses the general-purpose (object sender, EventArgs

e) syntax that will accept either the Timer.Elapsed event or the Connection.MessageArrived

event from the code shown earlier in this chapter. The handler should output a string
specifying which type of event has been received, along with the Message property of the
MessageArrivedEventArgs parameter or the SignalTime property of the ElapsedEventArgs

parameter, depending on which event occurs.

2. Modify the card game example to check for the more interesting winning condition of the popular
card game rummy. This means that a player wins the game if his or her hand contains two ‘‘sets’’
of cards, one of which consists of three cards and one of which consists of four cards. A set is
defined as either a sequence of cards of the same suit (such as 3H, 4H, 5H, 6H) or several cards
of the same rank (such as 2H, 2D, 2S).

Answers to Exercises can be found in Appendix A.

400 ❘ CHAPTER 13 ADDITIONAL OOP TECHNIQUES

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Namespace
qualification

To avoid ambiguity in namespace qualification, you can use the :: operator to
force the compiler to use aliases that you have created. You can also use the
global namespace as an alias for the top-level namespace.

Custom exceptions You can create your own exception classes by deriving from the root Exception
class. This is helpful because it gives you greater control over catching spe-
cific exceptions, and allows you to customize the data that is contained in an
exception in order to deal with it effectively.

Event handling Many classes expose events that are raised when certain triggers occur in their
code. You can write handlers for these events to execute code at the point
where they are raised. This two-way communication is a great mechanism for
responsive code, and prevents you from having to write what would otherwise
be complex, convoluted code that might poll an object for changes.

Event definitions You can define your own event types, which involves creating a named event
and a delegate type for any handlers for the event. You can use the standard
delegate type with no return type and custom event arguments that derive from
System.EventArgs to allow for multipurpose event handlers. You can also use
the EventHandler and EventHandler<T> delegate types to define events with
simpler code.

Anonymous
methods

Often, to make your code more readable, you can use an anonymous method
instead of a full event handler method. This means defining the code to execute
when an event is raised in-line at the point where you add the event handler.
You achieve this with the delegate keyword.

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502266

14
C# Language Enhancements

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to use initializers

➤ What the var type is and how to use type inference

➤ How to use anonymous types

➤ What the dynamic type is and how to use it

➤ How to use named and optional method parameters

➤ How to use extension methods

➤ What lambda expressions are and how to use them

The C# language is not static. Anders Hejlsberg (the inventor of C#) and others at Microsoft
continue to update and refine the language. At the time of this writing, the most recent changes
are part of version 4 of the C# language, which is released as part of the Visual Studio 2010
product line. At this point in the book you may be wondering what else could be needed; indeed,
previous versions of C# lack little in terms of functionality. However, this doesn’t mean that it
isn’t possible to make some aspects of C# programming easier, or that the relationships between
C# and other technologies can’t be streamlined.

Perhaps the best way to understand this is to consider an addition that was made between ver-
sions 1.0 and 2.0 of the language — generics. You could argue that while generics are extremely
useful, they don’t actually provide any functionality that you couldn’t achieve before. True, they
simplify things a great deal, and you would have to write a lot more code without them. None
of us would want to go back to the days before generic collection classes. Nonetheless, generics
aren’t an essential part of C#. They are, though, a definite improvement to the language.

The subsequent language enhancements are much the same. They provide new ways of achiev-
ing things that would have been difficult to accomplish before without lengthy and/or advanced
programming techniques. In this chapter you’ll look at several of these enhancements. Some,
such as variance, have already been covered in the appropriate sections earlier in the book.

402 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

INITIALIZERS

In earlier chapters you learned to instantiate and initialize objects in various ways. Invariably, that has
required you either to add additional code to class definitions to enable initialization or to instantiate
and initialize objects with separate statements. You have also learned how to create collection classes
of various types, including generic collection classes. Again, you may have noticed that there was no
easy way to combine the creation of a collection with adding items to the collection.

Object initializers provide a way to simplify your code by enabling you to combine instantiation and
initialization of objects. Collection initializers give you a simple, elegant syntax to create and populate
collections in a single step. This section explains how to use both of these features.

Object Initializers
Consider the following simple class definition:

public class Curry
{

public string MainIngredient { get; set; }
public string Style { get; set; }
public int Spiciness { get; set; }

}

This class has three properties that are defined using the automatic property syntax shown in
Chapter 10. If you want to instantiate and initialize an object instance of this class, you must execute
several statements:

Curry tastyCurry = new Curry();
tastyCurry.MainIngredient = "panir tikka";
tastyCurry.Style = "jalfrezi";
tastyCurry.Spiciness = 8;

This code uses the default, parameterless constructor that is supplied by the C# compiler if you don’t
include a constructor in your class definition. To simplify this initialization, you can supply an appro-
priate nondefault constructor:

public class Curry
{

public Curry(string mainIngredient, string style,
int spiciness)

{
MainIngredient = mainIngredient;
Style = style;
Spiciness = spiciness;

}

...
}

That enables you to write code combining instantiation with initialization:

Curry tastyCurry = new Curry("panir tikka", "jalfrezi", 8);

Initializers ❘ 403

This works fine, although it forces code that uses this class to use this constructor, which would prevent
the previous code, which used a parameterless constructor, from working. Often, particularly where
classes must be serializable, it is necessary to provide a parameterless constructor:

public class Curry
{

public Curry()
{
}

....
}

Now you have a situation where you can instantiate and initialize the Curry class any way you like.
However, you have added several lines of code to the initial class definition that don’t do anything
much other than provide the basic plumbing required for this flexibility.

Enter object initializers, which are a way to instantiate and initialize objects without having to add
additional code (such as the constructors detailed here) to a class. When you instantiate an object, you
supply values for publicly accessible properties or fields using a name-value pair for each property you
want to initialize. The syntax for this is as follows:

<ClassName> <variableName> = new <ClassName>
{

<propertyOrField1> = <value1>,
<propertyOrField2> = <value2>,
...
<propertyOrFieldN> = <valueN>

};

For example, you could rewrite the code shown earlier, which instantiates and initializes an object of
type Curry, as follows:

Curry tastyCurry = new Curry
{

MainIngredient = "panir tikka",
Style = "jalfrezi",
Spiciness = 8

};

Often you can put code like that on a single line without seriously degrading readability.

When you use an object initializer, you don’t have to explicitly call a constructor of the class. If you
omit the constructor parentheses (as in the previous code), the default parameterless constructor is
called automatically. This happens before any parameter values are set by the initializer, which enables
you to provide default values for parameters in the default constructor if desired. Alternatively, you can
call a specific constructor. Again, this constructor is called first, so any initialization of public properties
that takes place in the constructor may be overridden by values that you provide in the initializer. You
must have access to the constructor that you use (or the default one if you aren’t explicit) in order for
object initializers to work.

404 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

If one of the properties you want to initialize with an object initializer is more complex than the simple
types used in this example, then you may find yourself using a nested object initializer. That simply
means using the exact same syntax you’ve already seen:

Curry tastyCurry = new Curry
{

MainIngredient = "panir tikka",
Style = "jalfrezi",
Spiciness = 8,
Origin = new Restaurant
{

Name = "King’s Balti",
Location = "York Road",
Rating = 5

}
};

Here, a property called Origin of type Restaurant (not shown here) is initialized. The code initializes
three properties of the Origin property — Name, Location, and Rating — with values of type string,
string, and int, respectively. This initialization uses a nested object initializer.

Note that object initializers are not a replacement for nondefault constructors. The fact that you can
use object initializers to set property and field values when you instantiate an object does not mean
that you will always know what state needs initializing. With constructors you can specify exactly
what values are required for an object to function, and then execute code in response to those values
immediately.

Collection Initializers
Chapter 5 described how arrays can be initialized with values using the following syntax:

int[] myIntArray = new int[5] { 5, 9, 10, 2, 99 };

This is a quick and easy way to combine the instantiation and initialization of an array. Collection
initializers simply extend this syntax to collections:

List<int> myIntCollection = new List<int> { 5, 9, 10, 2, 99 };

By combining object and collection initializers, it is possible to configure collections with simple and
elegant code. Rather than code like this:

List<Curry> curries = new List<Curry>();
curries.Add(new Curry("Chicken", "Pathia", 6));
curries.Add(new Curry("Vegetable", "Korma", 3));
curries.Add(new Curry("Prawn", "Vindaloo", 9));

You can use the following:
List<Curry> moreCurries = new List<Curry>
{

new Curry
{

MainIngredient = "Chicken",
Style = "Pathia",
Spiciness = 6

},

Initializers ❘ 405

new Curry
{

MainIngredient = "Vegetable",
Style = "Korma",
Spiciness = 3

},
new Curry
{

MainIngredient = "Prawn",
Style = "Vindaloo",
Spiciness = 9

}
};

This works very well for types that are primarily used for data representation, and as such,
collection initializers are a great accompaniment for the LINQ technology described later in the
book.

The following Try It Out illustrates how you can use object and collection initializers.

TRY IT OUT Using Initializers

1. Create a new console application called Ch14Ex01 and save it in the directory C:\BegVCSharp\

Chapter14.

2. Right-click on the project name in the Solution Explorer window and select the Add Existing Item
option.

3. Select the Animal.cs, Cow.cs, Chicken.cs, SuperCow.cs, and Farm.cs files from the
C:\BegVCSharp\Chapter12\Ch12Ex04\Ch12Ex04 directory, and click Add.

4. Modify the namespace declaration in the file you have added as follows:

namespace Ch14Ex01

5. Remove the constructors from the Cow, Chicken, and SuperCow classes.

6. Modify the code in Program.cs as follows:

static void Main(string[] args)
{

Farm<Animal> farm = new Farm<Animal>
{

new Cow { Name="Norris" },
new Chicken { Name="Rita" },
new Chicken(),
new SuperCow { Name="Chesney" }

};
farm.MakeNoises();
Console.ReadKey();

}
Code snippet Ch14Ex01\Program.cs

7. Build the application. You should receive the build errors shown in Figure 14-1.

406 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

FIGURE 14-1

8. Add the following code to Farm.cs:

public class Farm<T> : IEnumerable<T>
where T : Animal

{
public void Add(T animal)
{

animals.Add(animal);
}

...
Code snippet Ch14Ex01\Farm.cs

FIGURE 14-2

9. Run the application. The result is shown in
Figure 14-2.

How It Works

This example combined object and collection initia-
lizers to create and populate a collection of
objects in a single step. It used the farmyard collection of objects that you have seen in previous chapters,
although two modifications are necessary for initializers to be used with these classes.

First, you removed the constructors from the classes derived from the base Animal class. You can remove
these constructors because they set the animal’s Name property, which you will do with object initializers
instead. Alternatively, we could have added default constructors. In either case, when using default con-
structors, the Name property is initialized according to the default constructor in the base class, which has
code as follows:

public Animal()
{

name = "The animal with no name";
}

However, when an object initializer is used with a class that derives from Animal, recall that any properties
set by the initializer are set after the object is instantiated, and therefore after this base class constructor
is executed. If a value for the Name property is supplied as part of an object initializer, it will override
this default value. In the example code, the Name property is set for all but one of the items added to the
collection.

Type Inference ❘ 407

Second, you add an Add() method to the Farm class. This is in response to a series of compiler errors of the
following form:

’Ch14Ex01.Farm<Ch14Ex01.Animal>’ does not contain a definition for ‘Add’

This error exposes part of the underlying functionality of collection initializers. Behind the scenes, the
compiler calls the Add() method of a collection for each item that you supply in a collection initializer.
The Farm class exposes a collection of Animal objects through a property called Animals. The compiler
cannot guess that this is the property you want to populate (through Animals.Add()), so the code fails.
To correct this problem, you add an Add() method to the class, which is initialized through the object
initializer.

Alternatively, you could modify the code in the example to provide a nested initializer for the Animals

property as follows:

static void Main(string[] args)
{

Farm<Animal> farm = new Farm<Animal>
{

Animals =
{

new Cow { Name="Norris" },
new Chicken { Name="Rita" },
new Chicken(),
new SuperCow { Name="Chesney" }

}
};
farm.MakeNoises();
Console.ReadKey();

}

With this code there is no need to provide an Add() method for the Farm class. This alternative technique
is appropriate when you have a class that contains multiple collections. In this case, there is no obvious
candidate for a collection to add to with an Add() method of the containing class.

TYPE INFERENCE

Earlier in this book you saw how C# is a strongly typed language, meaning that every variable has a
fixed type and can only be used in code that takes that type into account. In every code example you’ve
seen so far, you have declared variables with code of the following form:

<type> <varName>;

or

<type> <varName> = <value>;

The following code shows at a glance what type of variable <varName> is:

int myInt = 5;
Console.WriteLine(myInt);

408 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

FIGURE 14-3

You can also see that the IDE is aware of the variable type
simply by hovering the mouse pointer over the variable iden-
tifier, as shown in Figure 14-3.

C# 3 introduced the new keyword var, which you can use as
an alternative for type in the preceding code:

var <varName> = <value>;

In this code, the variable <varName> is implicitly typed to the type of value. Note that there is no type
called var. In the code

FIGURE 14-4

var myVar = 5;

myVar is a variable of type int, not of type var. Again, as
shown in Figure 14-4, the IDE is aware of this.

This is an extremely important point. When you use var you are not declaring a variable with no type,
or even a type that can change. If that were the case, C# would no longer be a strongly typed language.
All you are doing is relying on the compiler to determine the type of the variable.

NOTE The introduction of dynamic types in .NET 4 stretches the definition of C#
being a strongly typed language, as you will see in the section ‘‘Dynamic
Lookup’’ later in this chapter.

If the compiler is unable to determine the type of variable declared using var, then your code will not
compile. Therefore, you can’t declare a variable using var without initializing the variable at the same
time, because if you did there would be no value that the compiler could use to determine the type of
the variable. The following code, therefore, will not compile:

var myVar;

The var keyword can also be used to infer the type of an array through the array initializer:

var myArray = new[] { 4, 5, 2 };

In this code, the type of myArray is implicitly int[]. When you implicitly type an array in this way, the
array elements used in the initializer must be one of the following:

➤ All the same type

➤ All the same reference type or null

➤ All elements that can be implicitly converted to a single type

If the last of these rules is applied, then the type that elements can be converted to is referred to as the
best type for the array elements. If there is any ambiguity as to what this best type might be — that is,
if there are two or more types that all the elements can be implicitly converted to — your code will not
compile. Instead, you receive the error indicating that no best type is available:

var myArray = new[] { 4, "not an int", 2 };

Anonymous Types ❘ 409

Note also that numeric values are never interpreted as nullable types, so the following code will not
compile:

var myArray = new[] { 4, null, 2 };

You can, however, use a standard array initializer to make this work:

var myArray = new int?[] { 4, null, 2 };

A final point: The identifier var is not a forbidden identifier to use for a class name. This means, for
example, that if your code has a class called var in scope (in the same namespace or in a referenced
namespace), then you cannot use implicit typing with the var keyword.

In itself, type inference is not particularly useful because in the code you’ve seen in this section it only
serves to complicate things. Using var makes it more difficult to see at a glance the type of a given
variable. However, as you will see later in this chapter, the concept of inferred types is important
because it underlies other techniques. The next subject, anonymous types, is one for which inferred
types are essential.

ANONYMOUS TYPES

After programming for a while you may find, especially in database applications, that you spend a lot
of time creating simple, dull classes for data representation. It is not unusual to have families of classes
that do absolutely nothing other than expose properties. The Curry class shown earlier in this chapter
is a perfect example:

public class Curry
{

public string MainIngredient { get; set; }
public string Style { get; set; }
public int Spiciness { get; set; }

}

This class doesn’t actually do anything — it merely stores structured data. In database or spreadsheet
terms, you could think of this class as representing a row in a table. A collection class that was capable
of holding instances of this class would be a representation of multiple rows in a table or spreadsheet.

This is a perfectly acceptable use of classes, but writing the code for these classes can become
monotonous, and any modifications to the underlying data schema requires you to add, remove, or
modify the code that defines the classes.

Anonymous types are a way to simplify this programming model. The idea behind anonymous types
is that rather than define these simple data storage types, you can instead use the C# compiler to auto-
matically create types based on the data that you want to store in them.

The preceding Curry type can be instantiated as follows:

Curry curry = new Curry
{

MainIngredient = "Lamb",
Style = "Dhansak",
Spiciness = 5

};

410 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

Alternatively, you could use an anonymous type, as in the following code:

var curry = new
{

MainIngredient = "Lamb",
Style = "Dhansak",
Spiciness = 5

};

There are two differences here. First, the var keyword is used. That’s because anonymous types do not
have an identifier that you can use. Internally they do have an identifier, as you will see in a moment,
but it is not available to you in your code. Second, no type name is specified after the new keyword.
That’s how the compiler knows you want to use an anonymous type.

The IDE detects the anonymous type definition and updates IntelliSense accordingly. With the preced-
ing declaration, you can see the anonymous type, as shown in Figure 14-5.

FIGURE 14-5

Here, internally, the type of the variable curry is ‘a. Obviously, you can’t use this type in your
code — it’s not even a legal identifier name. The ‘ is simply the symbol used to denote an anonymous
type in IntelliSense. IntelliSense also enables you to inspect the members of the anonymous type, as
shown in Figure 14-6.

FIGURE 14-6

Note that the properties shown here are defined as read-only properties. This means that if you want
to be able to change the values of properties in your data storage objects, you cannot use anonymous
types.

The other members of anonymous types are implemented, as shown in the following Try It Out.

Anonymous Types ❘ 411

TRY IT OUT Using Anonymous Types

1. Create a new console application called Ch14Ex02 and save it in the directory
C:\BegVCSharp\Chapter14.

2. Modify the code in Program.cs as follows:

static void Main(string[] args)
{

var curries = new[]
{

new
{

MainIngredient = "Lamb",
Style = "Dhansak",
Spiciness = 5

},
new
{

MainIngredient = "Lamb",
Style = "Dhansak",
Spiciness = 5

},
new
{

MainIngredient = "Chicken",
Style = "Dhansak",
Spiciness = 5

}
};
Console.WriteLine(curries[0].ToString());
Console.WriteLine(curries[0].GetHashCode());
Console.WriteLine(curries[1].GetHashCode());
Console.WriteLine(curries[2].GetHashCode());
Console.WriteLine(curries[0].Equals(curries[1]));
Console.WriteLine(curries[0].Equals(curries[2]));
Console.WriteLine(curries[0] == curries[1]);
Console.WriteLine(curries[0] == curries[2]);

Console.ReadKey();
}

Code snippet Ch14Ex02\Program.cs

3. Run the application. The result is shown in Figure 14-7.

FIGURE 14-7

412 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

How It Works

In this example you create an array of anonymous type objects that you then proceed to use to perform
tests of the members supplied by anonymous types. The code to create the array of anonymously typed
objects is as follows:

var curries = new[]
{

new
{

MainIngredient = "Lamb",
Style = "Dhansak",
Spiciness = 5

},
...

};

This uses an array that is implicitly typed to an anonymous type, using a combination of syntax from this
section and the ‘‘Type Inference’’ section earlier in this chapter. The result is that the curries variable
contains three instances of an anonymous type.

The first thing the code does after creating this array is to output the result of calling ToString() on the
anonymous type:

Console.WriteLine(curries[0].ToString());

This results in the following output:

{ MainIngredient = Lamb, Style = Dhansak, Spiciness = 5 }

The implementation of ToString() in an anonymous type is to output the values of each property defined
for the type.

The code next calls GetHashCode() on each of the array’s three objects:

Console.WriteLine(curries[0].GetHashCode());
Console.WriteLine(curries[1].GetHashCode());
Console.WriteLine(curries[2].GetHashCode());

When implemented, GetHashCode() should return a unique integer for an object based on the object’s
state. The first two objects in the array have the same property values, and therefore the same state. The
result of these calls is the same integer for each of these objects, but a different integer for the third object.
The output is as follows:

294897435
294897435
621671265

Next, the Equals() method is called to compare the first object with the second object, and then to compare
the first object with the third object:

Console.WriteLine(curries[0].Equals(curries[1]));
Console.WriteLine(curries[0].Equals(curries[2]));

The result is as follows:
True
False

The implementation of Equals() in anonymous types compares the state of objects. The result is true

where every property of one object contains the same value as the comparable property on another
object.

Dynamic Lookup ❘ 413

That is not what happens when you use the == operator, however. The == operator, as shown in previ-
ous chapters, compares object references. The last section of code performs the same comparisons as the
previous section of code but uses == instead of Equals():

Console.WriteLine(curries[0] == curries[1]);
Console.WriteLine(curries[0] == curries[2]);

Each entry in the curries array refers to a different instance of the anonymous type, so the result is false
in both cases. The output is as expected:

False
False

Interestingly, when you created instances of the anonymous types, the compiler noticed that the parameters
are the same and created three instances of the same anonymous type — not three separate anonymous
types. However, this doesn’t mean that when you instantiate an object from an anonymous type the
compiler looks for a type to match it with. Even if you have defined a class elsewhere that has match-
ing properties, if you use anonymous type syntax, then an anonymous type will be created (or reused as in
this example).

DYNAMIC LOOKUP

The var keyword, as described earlier, is not in itself a type, and so doesn’t break the ‘‘strongly typed’’
methodology of C#. In C# 4, though, things are a little less fixed. C# 4 introduces the concept of
dynamic variables, which, as their name suggests, are variables that do not have a fixed type.

The main motivation for this is that there are many situations where you will want to use C# to manip-
ulate objects created by another language. This includes interoperability with older technologies such
as the Component Object Model (COM), as well as dealing with dynamic languages such as JavaScript,
Python, and Ruby. Without going into too much implementation detail, using C# to access methods
and properties of objects created by these languages has, in the past, involved awkward syntax. For
example, say you had code that obtained an object from JavaScript with a method called Add() that
added two numbers together. Without dynamic lookup, your code to call this method might look
something like the following:

ScriptObject jsObj = SomeMethodThatGetsTheObject();
int sum = Convert.ToInt32(jsObj.Invoke("Add", 2, 3));

The ScriptObject type (not covered in depth here) provides a way to access a JavaScript object, but
even this is unable to give us the capability to do the following:

int sum = jsObj.Add(2, 3);

Dynamic lookup changes everything — enabling us to write code just like the preceding. However, as
you will see in the following sections, this power comes at a price.

Another situation in which dynamic lookup can assist you is where you are dealing with a C# object
whose type you do not know. This may sound like an odd situation, but it happens more often than you
might think. It is also an important capability when writing generic code that can deal with whatever
input it receives. The ‘‘old’’ way to deal with this situation is called reflection, which involves using type
information to access types and members. In fact, the syntax for reflection is quite similar to that used
to access the JavaScript object as shown in the preceding code, which means it’s messy.

414 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

Under the hood, dynamic lookup is supported by the Dynamic Language Runtime (DLR). This is part
of .NET 4, just as the CLR is. An exact description of the DLR and how it makes interoperability easier
is beyond the scope of this book; here you’re more interested in how to use it in C#.

The dynamic Type
C# 4 introduces the dynamic keyword, which you can use to define variables. For example:

dynamic myDynamicVar;

Unlike the var keyword introduced earlier, there really is a dynamic type, so there is no need to initialize
the value of myDynamicVar when it is declared.

NOTE Unusually, the dynamic type only exists at compile time; at runtime the
System.Object type is used instead. This is a minor implementation detail but one
that is worth remembering, as it may clarify some of the discussion that follows.
Once you have a dynamic variable, you can proceed to access its members (the
code to actually obtain a value for the variable is not shown here):

myDynamicVar.DoSomething("With this!");

Regardless of the value that myDynamicVar actually contains, this code will compile. However, if
the requested member does not exist, you will get an exception when this code is executed, of type
RuntimeBinderException.

In effect, what you are doing with code like this is providing a ‘‘recipe’’ that should be applied at
runtime. The value of myDynamicVar will be examined, and a method called DoSomething() with a
single string parameter will be located and called at the point where it is required.

This is best illustrated with an example.

WARNING The following example is for illustrative purposes only! In general, you
should only use dynamic types if they are your only option — for example, if you
are dealing with non-.NET objects.

TRY IT OUT Using Dynamic Types

1. Create a new console application called Ch14Ex03 and save it in the directory C:\BegVCSharp\

Chapter14.

2. Modify the code in Program.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.CSharp.RuntimeBinder;

Dynamic Lookup ❘ 415

namespace Ch14Ex03
{

class MyClass1
{

public int Add(int var1, int var2)
{

return var1 + var2;
}

}

class MyClass2
{
}

class Program
{

static int callCount = 0;

static dynamic GetValue()
{

if (callCount++ == 0)
{

return new MyClass1();
}
return new MyClass2();

}

static void Main(string[] args)
{

try
{

dynamic firstResult = GetValue();
dynamic secondResult = GetValue();
Console.WriteLine("firstResult is: {0}",

firstResult.ToString());
Console.WriteLine("secondResult is: {0}",

secondResult.ToString());
Console.WriteLine("firstResult call: {0}",

firstResult.Add(2, 3));
Console.WriteLine("secondResult call: {0}",

secondResult.Add(2, 3));
}
catch (RuntimeBinderException ex)
{

Console.WriteLine(ex.Message);
}
Console.ReadKey();

}
}

}
Code snippet Ch14Ex03\Program.cs

3. Run the application. The result is shown in Figure 14-8.

416 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

FIGURE 14-8

How It Works

In this example you use a method that returns one of two types of object to obtain a dynamic value,
and then attempt to use the objects obtained. The code compiles without any trouble but an exception is
thrown (and handled) when an attempt is made to access a non-existent method.

To begin, you added a using statement for the namespace that contains the RuntimeBindingException

exception:

using Microsoft.CSharp.RuntimeBinder;

Next, you defined two classes, MyClass1 and MyClass2, where MyClass1 has an Add() method and MyClass2

has no members:
class MyClass1
{

public int Add(int var1, int var2)
{

return var1 + var2;
}

}

class MyClass2
{
}

You also added a field (callCount) and a method (GetValue()) to the Program class to provide a way to
obtain an instance of one of these classes:

static int callCount = 0;

static dynamic GetValue()
{

if (callCount++ == 0)
{

return new MyClass1();
}

return new MyClass2();
}

A simple call counter is used so that this method returns an instance of MyClass1 the first time it is called,
and instances of MyClass2 thereafter. Note that the dynamic keyword can be used as a return type for a
method.

Next, the code in Main() calls the GetValue() method twice and then attempts to call GetString() and
Add() on both values returned in turn. This code is placed in a try ... catch block to trap any exceptions
of type RuntimeBinderException that may occur:

static void Main(string[] args)
{

Dynamic Lookup ❘ 417

try
{

dynamic firstResult = GetValue();
dynamic secondResult = GetValue();
Console.WriteLine("firstResult is: {0}",

firstResult.ToString());
Console.WriteLine("secondResult is: {0}",

secondResult.ToString());
Console.WriteLine("firstResult call: {0}",

firstResult.Add(2, 3));
Console.WriteLine("secondResult call: {0}",

secondResult.Add(2, 3));
}
catch (RuntimeBinderException ex)
{

Console.WriteLine(ex.Message);
}

Console.ReadKey();
}

Sure enough, an exception is thrown when secondResult.Add() is called, as no such method exists on
MyClass2. The exception message tells you exactly that.

The dynamic keyword can also be used in other places where a type name is required, such as for method
parameters. You could rewrite the Add() method as follows:

public int Add(dynamic var1, dynamic var2)
{

return var1 + var2;
}

This would have no effect on the result. In this case, at runtime the values passed to var1 and var2 are
inspected to determine whether a compatible operator definition for + exists. In the case of two int values
being passed, such an operator does exist. If incompatible values are used, a RuntimeBinderException

exception is thrown. For example, if you try

Console.WriteLine("firstResult call: {0}", firstResult.Add("2", 3));

the exception message will be as follows:

Cannot implicitly convert type ‘string’ to ‘int’

The lesson to be learned here is that dynamic types are very powerful, but there’s a warning to learn
too. These sorts of exceptions are entirely avoidable if you use strong typing instead of dynamic typing.
For most C# code that you write, avoid the dynamic keyword. However, if a situation arises where you
need to use it, use it and love it — and spare a thought for those poor programmers of the past who
didn’t have this powerful tool at their disposal.

IDynamicMetaObjectProvider
Before moving on, it would be worthwhile to note how dynamic types are used, or, to be more precise,
what happens when a ‘‘recipe’’ for member access is applied at runtime. In fact, there are three different
ways that this might happen:

➤ If the dynamic value is a COM object, then COM techniques are used to access members
(through an interface called IUnknown, although you don’t need to know that here).

418 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

➤ If the dynamic value supports the IDynamicMetaObjectProvider interface, then that interface
is used to access type members.

➤ If neither of the above applies, then reflection is used.

The interesting case is the second one, which involves the IDynamicMetaObjectProvider interface.
Without delving into the details, note that you can implement this interface to control exactly what
happens when members are accessed at runtime. However, this is a subject for a more advanced level
book, and therefore not covered here.

ADVANCED METHOD PARAMETERS

C# 4 extends what is possible when defining and using method parameters. This is primarily in response
to a specific problem that arises when using interfaces defined externally, such as the Microsoft Office
programming model. Here, certain methods expose a vast number of parameters, many of which are
not required for every call. In the past, this has meant that a way to specify missing parameters has been
necessary, or that a lot of nulls appear in code:

RemoteCall(var1, var2, null, null, null, null, null);

In this code it is not at all obvious what the null values refer to, or why they have been omitted.

Perhaps, in an ideal world, there would be multiple overloads of this RemoteCall() method, including
one that only required two parameters as follows:

RemoteCall(var1, var2);

However, this would require many more methods with alternative combinations of parameters, which
in itself would cause more problems (more code to maintain, increased code complexity, and so on).

Languages such as Visual Basic have dealt with this situation in a different way, by allowing named
and optional parameters. With version 4, this is also possible in C#, demonstrating one way in which
the evolution of all .NET languages is converging.

In the following sections you will see how to use these new parameter types.

Optional Parameters
Often when you call a method, you pass in the same value for a particular parameter. This may be a
Boolean value, for example, which might control a non-essential part of the method’s operation. To be
more specific, consider the following method definition:

public List<string> GetWords(
string sentence,
bool capitalizeWords)

{
...

}

Regardless of the value passed into the capitalizeWords parameter, this method will return a list of
string values, each of which is a word from the input sentence. Depending on how this method was
used, you might occasionally want to capitalize the list of words returned (perhaps you are formatting

Advanced Method Parameters ❘ 419

a heading such as the one for this section, ‘‘Optional Parameters’’). In most cases, though, you might
not want to do this, so most calls would be as follows:

List<string> words = GetWords(sentence, false);

To make this the ‘‘default’’ behavior, you might declare a second method as follows:

public List<string> GetWords(string sentence)
{

return GetWords(sentence, false);
}

This method calls into the second method, passing a value of false for capitalizeWords.

There is nothing wrong with doing this, but you can probably imagine how complicated this would
become in a situation where many more parameters were used.

An alternative is to make the capitalizeWords parameter an optional parameter. This involves defining
the parameter as optional in the method definition by providing a default value that will be used if none
is supplied, as follows:

public List<string> GetWords(
string sentence,
bool capitalizeWords = false)

{
...

}

If you were to define a method in this way, then you could supply either one or two parameters, where
the second parameter is only required if you want capitalizeWords to be true.

Optional Parameter Values
As described in the previous section, a method definition defines an optional parameter with syntax as
follows:

<parameterType> <parameterName> = <defaultValue>

There are restrictions on what you can use for the <defaultValue> default value. Default values must be
either literal values, constant values, new object instances, or default value type values. The following,
therefore, will not compile:

public bool CapitalizationDefault;

public List<string> GetWords(
string sentence,
bool capitalizeWords = CapitalizationDefault)

{
...

}

In order to make this work, the CapitalizationDefault value must be defined as a constant:

public const bool CapitalizationDefault = false;

Whether it makes sense to do this depends on the situation; in most cases you will probably be better
off providing a literal value as in the previous section.

420 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

Optional Parameter Order
When you use optional values, they must appear at the end of the list of parameters for a method. No
parameters without default values can appear after any parameters with default values.

The following code, therefore, is illegal:

public List<string> GetWords(
bool capitalizeWords = false,
string sentence)

{
...

}

Here, sentence is a required parameter, and must therefore appear before the optional
capitalizedWords parameter.

Named Parameters
When you use optional parameters, you may find yourself in a situation where a particular method
has several optional parameters. It’s not beyond the realm of the imagination, then, to conceive of a
situation where you want to pass a value to, say, only the third optional parameter. With just the syntax
from the previous section there is no way to do this without supplying values for the first and second
optional parameters.

C# 4 introduces named parameters that enable you to specify whichever parameters you want. This
doesn’t require you to do anything in particular in your method definition; it is a technique that you
use when you are calling a method. The syntax is as follows:

MyMethod(
<param1Name>: <param1Value>,
...
<paramNName>: <paramNValue>);

The names of parameters are the names of the variables used in the method definition.

You can specify any number of parameters you like in this way, as long as the named parameters exist,
and you can do so in any order. Named parameters can be optional as well.

You can, if you wish, use named parameters for only some of the parameters in a method call. This is
particularly useful when you have several optional parameters in a method signature, but some required
parameters. You might specify the required parameters first, then finish off with named optional param-
eters. For example:

MyMethod(
requiredParameter1Value,
optionalParameter5: optionalParameter5Value);

If you mix named and positional parameters, though, note that you must include all positional param-
eters first, before the named parameters. However, you can use a different order if you prefer as long as
you use named parameters throughout. For example:

MyMethod(
optionalParameter5: optionalParameter5Value,
requiredParameter1: requiredParameter1Value);

If you do this you must include values for all required parameters.

Advanced Method Parameters ❘ 421

In the following Try It Out you will see how you can use named and optional parameters.

TRY IT OUT Using Named and Optional Parameters

1. Create a new console application called Ch14Ex04 and save it in the directory C:\BegVCSharp\

Chapter14.

2. Add a class called WordProcessor to the project and modify its code as follows:
public static class WordProcessor
{

public static List<string> GetWords(
string sentence,
bool capitalizeWords = false,
bool reverseOrder = false,
bool reverseWords = false)

{
List<string> words = new List<string>(sentence.Split(’ ‘));
if (capitalizeWords)

words = CapitalizeWords(words);
if (reverseOrder)

words = ReverseOrder(words);
if (reverseWords)

words = ReverseWords(words);
return words;

}

private static List<string> CapitalizeWords(
List<string> words)

{
List<string> capitalizedWords = new List<string>();
foreach (string word in words)
{

if (word.Length == 0)
continue;

if (word.Length == 1)
capitalizedWords.Add(

word[0].ToString().ToUpper());
else

capitalizedWords.Add(
word[0].ToString().ToUpper()
+ word.Substring(1));

}

return capitalizedWords;
}

private static List<string> ReverseOrder(List<string> words)
{

List<string> reversedWords = new List<string>();
for (int wordIndex = words.Count - 1;

wordIndex >= 0; wordIndex--)
reversedWords.Add(words[wordIndex]);

return reversedWords;
}

422 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

private static List<string> ReverseWords(List<string> words)
{

List<string> reversedWords = new List<string>();
foreach (string word in words)

reversedWords.Add(ReverseWord(word));

return reversedWords;
}

private static string ReverseWord(string word)
{

StringBuilder sb = new StringBuilder();
for (int characterIndex = word.Length - 1;

characterIndex >= 0; characterIndex--)
sb.Append(word[characterIndex]);

return sb.ToString();
}

}
Code snippet Ch14Ex04\WordProcessor.cs

3. Modify the code in Program.cs as follows:

static void Main(string[] args)
{

string sentence = "’twas brillig, and the slithy toves did gyre "
+ "and gimble in the wabe:";

List<string> words;

words = WordProcessor.GetWords(sentence);
Console.WriteLine("Original sentence:");
foreach (string word in words)
{

Console.Write(word);
Console.Write(’ ‘);

}

Console.WriteLine(’\n’);

words = WordProcessor.GetWords(
sentence,
reverseWords: true,
capitalizeWords: true);

Console.WriteLine("Capitalized sentence with reversed words:");
foreach (string word in words)
{

Console.Write(word);
Console.Write(’ ‘);

}

Console.ReadKey();
}

Code snippet Ch14Ex04\Program.cs

Advanced Method Parameters ❘ 423

4. Run the application. The result is shown in Figure 14-9.

FIGURE 14-9

How It Works

In this example you have created a utility class that performs some simple string manipulation, and used
that class to modify a string. The single public method exposed by the class contains one required parame-
ter and three optional ones:

public static List<string> GetWords(
string sentence,
bool capitalizeWords = false,
bool reverseOrder = false,
bool reverseWords = false)

{
...

}

Code snippet Ch14Ex04\WordProcessor.cs

This method returns a collection of string values, each of which is a word from the original input. Depend-
ing on which (if any) of the three optional parameters are specified, additional transformations may be
made — on the string collection as a whole or on individual word values.

NOTE We won’t look at the functionality of the WordProcessor class in any more
depth here; you are free to browse the code at your leisure. Along the way you
might like to think about how this code might be improved. For example, should
the word ‘twas actually be capitalized as ‘Twas? How would you go about
making that change?

When this method is called, only two of the available optional parameters are used; the third parameter
(reverseOrder) will have its default value of false:

words = WordProcessor.GetWords(
sentence,
reverseWords: true,
capitalizeWords: true);

Also, note that the two parameters specified are placed in a different order from how they are defined.

424 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

As a final point to note, IntelliSense can be quite handy when dealing with methods that have optional
parameters. When entering the code for this Try It Out, you may have noticed the tooltip for the
GetWords() method, shown in Figure 14-10 (you can also see this tooltip by hovering the mouse pointer
over the method call as shown).

FIGURE 14-10

This is a very useful tooltip, as it shows not only the names of available parameters, but also the default
values for optional parameters, so you can tell at a glance if you need to override a particular default.

Named and Optional Parameter Guidelines
Since named and optional parameters were announced, they have received a mixed reaction. Some
developers, in particular those who work with Microsoft Office, have been very enthusiastic about
them. However, many others see them as unnecessary changes to the C# language, arguing that a well-
defined user interface should not need such a means of access — at least not at the level of a change to
the language.

Personally, I think that there are some good points about named and optional parameters, but I worry
that their overuse could be detrimental to code. Some situations, such as the aforementioned Microsoft
Office scenario, will certainly benefit. Also, code similar to that shown in the preceding Try It Out,
where many options are defined to control the operation of a method, becomes much simpler — both
to write and to use. In most cases, though, I don’t think it’s a good idea to use named and optional
parameters without a good reason. Perhaps a good test would be to look at a method call and see if
you can determine what the result might be without knowing beforehand what the method should do.
If the parameters and how they are used is obvious (which, in well-written code, they should be), then
there is no need to use named and/or optional parameters to refactor your code.

EXTENSION METHODS

Extension methods are a way to extend the functionality of types without modifying the types them-
selves. You can even use extension methods to extend types that you cannot modify — including types
defined in the .NET Framework. Using an extension method, for example, you could even add func-
tionality to something as fundamental as the System.String type.

Extension Methods ❘ 425

In this context, to extend the functionality of a type means to provide a method that can be called
through an instance of that type. The method you create to do this, known as the extension method,
can take any number of parameters and return any return type (including void). To create and use an
extension method, you must do the following:

1. Create a nongeneric static class.

2. Add the extension method to the class you have created as a static method, using extension
method syntax (described shortly).

3. Ensure that the code where you want to use the extension method imports the namespace
containing the extension method class with a using statement.

4. Call the extension method through an instance of the extended type as if you were calling any
other method of the extended type.

The C# compiler works its magic between step 3 and step 4. The IDE is instantly aware that you have
created an extension method, and even displays it in IntelliSense, as shown in Figure 14-11.

FIGURE 14-11

In Figure 14-11, an extension method called MyMarvelousExtensionMethod()is available through a
string object (here just a literal string). This method, which is denoted with a slightly different method
icon that includes a blue, downward-pointing arrow, takes no additional parameters, and returns a
string.

To define an extension method, you define a method in the same way as any other method, but it must
meet the requirements of extension method syntax:

➤ The method must be static.

➤ The method must include a parameter to represent the instance of the type that the
extension method will be called on. (This parameter will be referred to here as the instance
parameter.)

➤ The instance parameter must be the first parameter defined for the method.

➤ The instance parameter must have no other modifier other than the this keyword.

426 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

The syntax for an extension method is as follows:

public static class ExtensionClass
{

public static <ReturnType> <ExtensionMethodName>(
this <TypeToExtend> instance)

{
...

}
}

Once you have imported the namespace containing the static class that includes this method (which is
known as making the extension method available), you can write code as follows:

<TypeToExtend> myVar;
// myVar is initialized by code not shown here.
myVar.<ExtensionMethodName>();

You can also include any additional parameters you want in the extension method, and make use of its
return type.

Effectively, this call is identical to the following, but with simpler syntax:

<TypeToExtend> myVar;
// myVar is initialized by code not shown here.
ExtensionClass.<ExtensionMethodName>(myVar);

The other advantage is that once it is imported, you can find the functionality you need much more
easily by looking at extension methods through IntelliSense. Extension methods may be spread across
multiple extension classes, or even libraries, but they will all show up in the member list of the extended
type.

When you define an extension method that can be used with a particular type, you can use it with any
types that derive from this type. Referring back to an example used earlier in this chapter, if you defined
an extension method for the Animal class, you could call it on, for example, a Cow object.

You can also define extension methods that operate on a particular interface, which you can then use
for any type that implements that interface.

Extension methods provide a fantastic way to provide libraries of utility code that you can reuse across
your applications. They are also used extensively in LINQ, which you will learn about later in this
book. To better understand them, work through a full Try It Out example.

TRY IT OUT Defining and Using Extension Methods

1. Create a new console application called Ch14Ex05 and save it in the directory C:\BegVCSharp\

Chapter14.

2. Add a new Class Library project to the solution called ExtensionLib.

3. Remove the existing Class1.cs class file from ExtensionLib and add the WordProcessor.cs
class file from Ch14Ex04 to the project.

Extension Methods ❘ 427

4. Modify the code in WordProcessor.cs as follows:

namespace ExtensionLib
{

public static class WordProcessor
{

public static List<string> GetWords(
this string sentence,
bool capitalizeWords = false,
bool reverseOrder = false,
bool reverseWords = false)

{
...

}
...
public static string ToStringReversed(this object inputObject)
{

return ReverseWord(inputObject.ToString());
}

public static string AsSentence(this List<string> words)
{

StringBuilder sb = new StringBuilder();
for (int wordIndex = 0; wordIndex < words.Count; wordIndex++)
{

sb.Append(words[wordIndex]);
if (wordIndex != words.Count - 1)
{

sb.Append(’ ‘);
}

}
return sb.ToString();

}
}

}
Code snippet ExtensionLib\WordProcessor.cs

5. Add a project reference to the ExtensionLib project to the Ch14Ex05 project.

6. Modify the code in Program.cs as follows:

using ExtensionLib;

namespace Ch14Ex05
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Enter a string to convert:");
string sourceString = Console.ReadLine();

428 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

Console.WriteLine("String with title casing: {0}",
sourceString.GetWords(capitalizeWords: true)

.AsSentence());
Console.WriteLine("String backwards: {0}",

sourceString.GetWords(reverseOrder: true,
reverseWords: true).AsSentence());

Console.WriteLine("String length backwards: {0}",
sourceString.Length.ToStringReversed());

Console.ReadKey();
}

}}
Code snippet Ch14Ex05\Program.cs

7. Run the application. When prompted, type in a string (at least 10 characters long and more than
one word for the best effect). An example result is shown in Figure 14-12.

FIGURE 14-12

How It Works

This example created a class library containing utility extension methods, which you used in a simple
client application. The class library includes an extended version of the static class WordProcessor from the
preceding Try It Out that contains the extension methods, and you imported the ExtensionLib namespace
that contains this class into the client application, thus making the extension methods available.

You created the three extension methods shown in the following table:

METHOD DESCRIPTION

GetWords() Flexible method for manipulating a string, as described in the previous Try
It Out. In this example, the method has been changed to be an extension
method. Returns a List<string>.

ToStringReversed() Uses ReverseWord() to reverse the order of letters in the string

returned by calling ToString() on an object. Returns a string.

AsSentence() ‘‘Flattens’’ a List<string> object to return a string consisting of the
words it contains.

The client code used each of these methods to modify the string you input in various ways. As the
GetWords() method defined previously returns a List<string>, its output is flattened to a string with
AsSentence() for ease of use.

Lambda Expressions ❘ 429

The ToStringReversed() extension method is an example of a more general extension method. Rather
than require a string type instance parameter, this method instead has an instance parameter of type
object. This means that this extension method can be called on any object and will show up in IntelliSense
on every object you use. There isn’t a lot you can do in this extension method, as you cannot assume very
much about the object that might be used. You could use the is operator or try conversion to find out
what the instance parameter type is and act accordingly, or you could do what is done in this example and
use basic functionality that is supported by all objects — the ToString() method:

public static string ToStringReversed(this object inputObject)
{

return ReverseWord(inputObject.ToString());
}

This method simply calls the ToString() method on its instance parameter and reverses it using the
ReverseWord() method described earlier. In the example client application, the ToStringReversed()

method is called on an int variable, which results in a string representation of the integer with its digits
reversed.

Extension methods that can be used with multiple types can be very useful. Remember as well that you can
define generic extension methods, which can apply constraints to the types that can be used, as shown in
Chapter 12.

LAMBDA EXPRESSIONS

Lambda expressions are a construct introduced in C# 3 that you can use to simplify certain aspects
of C# programming, in particular when combined with LINQ. They can be difficult to grasp at first,
mainly because they are so flexible in their usage. Lambda expressions are extremely useful when
combined with other C# language features, such as anonymous methods. Without looking at LINQ,
a subject left until later in the book, anonymous methods are the best entry point for examining this
subject. Start with a quick refresher.

Anonymous Methods Recap
In Chapter 13 you learned about anonymous methods — methods that you supply inline, where a
delegate type variable would otherwise be required. When you add an event handler to an event, the
sequence of events is as follows:

1. Define an event handler method whose return type and parameters match those of the dele-
gate required for the event to which you want to subscribe.

2. Declare a variable of the delegate type used for the event.

3. Initialize the delegate variable to an instance of the delegate type that refers to the event hand-
ler method.

4. Add the delegate variable to the list of subscribers for the event.

In practice, things are a bit simpler than this because you typically won’t bother with a variable to store
the delegate — you will just use an instance of the delegate when you subscribe to the event.

430 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

This was the case when you used the following code in Chapter 13:

Timer myTimer = new Timer(100);
myTimer.Elapsed += new ElapsedEventHandler(WriteChar);

This code subscribes to the Elapsed event of a Timer object. This event uses the ElapsedEventHandler

delegate type, which is instantiated using a method identifier, WriteChar. The result here is that when
the Timer raises the Elapsed event, the WriteChar() method is called. The parameters passed to
WriteChar() depend on the parameter types defined by the ElapsedEventHandler delegate and the
values passed by the code in Timer that raises the event.

In fact, as noted in Chapter 13, the C# compiler can achieve the same result with even less code through
method group syntax:

myTimer.Elapsed += WriteChar;

The C# compiler knows the delegate type required by the Elapsed event, so it can fill in the blanks.
However, this isn’t advisable in most circumstances because it makes it harder to read your code and
know exactly what is happening. When you use an anonymous method, the sequence of events shown
earlier is reduced to a single step:

1. Use an inline, anonymous method that matches the return type and the parameters of the
delegate required by an event to subscribe to that event.

The inline, anonymous method is defined by using the delegate keyword:

myTimer.Elapsed +=
delegate(object source, ElapsedEventArgs e)
{

Console.WriteLine(
"Event handler called after {0} milliseconds.",
(source as Timer).Interval);

};

This code works just as well as using the event handler separately. The main difference is that the
anonymous method used here is effectively hidden from the rest of your code. You cannot, for example,
reuse this event handler elsewhere in your application. In addition, the syntax used here is, for want
of a better description, a little clunky. The delegate keyword is immediately confusing because it
is effectively being overloaded — you use it both for anonymous methods and for defining delegate
types.

Lambda Expressions for Anonymous Methods
This brings us to lambda expressions. Lambda expressions are a way to simplify the syntax of
anonymous methods. In fact, they are more than that, but this section will keep things simple for
now. Using a lambda expression, you can rewrite the code at the end of the previous section as
follows:

myTimer.Elapsed += (source, e) => Console.WriteLine(
"Event handler called after {0} milliseconds.",
(source as Timer).Interval);

At first glance this looks . . . well, a little baffling (unless you are familiar with so-called functional
programming languages such as Lisp or Haskell, that is). However, if you look closer you can see, or

Lambda Expressions ❘ 431

at least infer, how this works and how it relates to the anonymous method that it replaces. The lambda
expression is made up of three parts:

➤ A list of (untyped) parameters in parentheses

➤ The => operator

➤ A C# statement

The types of the parameters are inferred from the context, using the same logic shown in the section
‘‘Anonymous Types’’ earlier in this chapter. The => operator simply separates the parameter list from
the expression body. The expression body is executed when the lambda expression is called.

The compiler takes this lambda expression and creates an anonymous method that works exactly the
same way as the anonymous method in the previous section. In fact, it will be compiled into the same
or similar Common Intermediate Language (CIL) code.

The following Try It Out clarifies what occurs in lambda expressions.

TRY IT OUT Using Simple Lambda Expressions

1. Create a new console application called Ch14Ex06 and save it in the directory C:\BegVCSharp\

Chapter14.

2. Modify the code in Program.cs as follows:

namespace Ch14Ex04
{

delegate int TwoIntegerOperationDelegate(int paramA, int paramB);

class Program
{

static void PerformOperations(TwoIntegerOperationDelegate del)
{

for (int paramAVal = 1; paramAVal <= 5; paramAVal++)
{

for (int paramBVal = 1; paramBVal <= 5; paramBVal++)
{

int delegateCallResult = del(paramAVal, paramBVal);
Console.Write("f({0},{1})={2}",

paramAVal, paramBVal, delegateCallResult);
if (paramBVal != 5)
{

Console.Write(", ");
}

}
Console.WriteLine();

}
}

static void Main(string[] args)
{

Console.WriteLine("f(a, b) = a + b:");
PerformOperations((paramA, paramB) => paramA + paramB);
Console.WriteLine();

432 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

Console.WriteLine("f(a, b) = a * b:");
PerformOperations((paramA, paramB) => paramA * paramB);
Console.WriteLine();
Console.WriteLine("f(a, b) = (a - b) % b:");
PerformOperations((paramA, paramB) => (paramA - paramB)

% paramB);
Console.ReadKey();

}
}

}
Code snippet Ch14Ex06\Program.cs

3. Run the application. The result is shown in Figure 14-13.

FIGURE 14-13

How It Works

This example uses lambda expressions to generate functions that can be used to return the result of per-
forming specific processing on two input parameters. Those functions then operate on 25 pairs of values
and output the results to the console.

You start by defining a delegate type called TwoIntegerOperationDelegate to represent a method that
takes two int parameters and returns an int result:

delegate int TwoIntegerOperationDelegate(int paramA, int paramB);

This delegate type is used later when you define your lambda expressions. These lambda expressions
compile into methods whose return type and parameter types match this delegate type, as you will see
shortly.

Next, you add a method called PerformOperations(), which takes a single parameter of type
TwoIntegerOperationDelegate:

static void PerformOperations(TwoIntegerOperationDelegate del)
{

The idea behind this method is that you can pass it a delegate instance (or an anonymous method or
lambda expression, because these constructs compile to delegate instances) and the method will call the
method represented by the delegate instance with an assortment of values:

Lambda Expressions ❘ 433

for (int paramAVal = 1; paramAVal <= 5; paramAVal++)
{

for (int paramBVal = 1; paramBVal <= 5; paramBVal++)
{

int delegateCallResult = del(paramAVal, paramBVal);

The parameters and results are then output to the console:

Console.Write("f({0},{1})={2}",
paramAVal, paramBVal, delegateCallResult);

if (paramBVal != 5)
{

Console.Write(", ");
}

}
Console.WriteLine();

}
}

In the Main() method you create three lambda expressions and use them to call PerformOperations()
in turn. The first of these calls is as follows:

Console.WriteLine("f(a, b) = a + b:");
PerformOperations((paramA, paramB) => paramA + paramB);

The lambda expression used here is as follows:

(paramA, paramB) => paramA + paramB

Again, this breaks down into three parts:

1. A parameter definition section. Here there are two parameters, paramA and paramB. These
parameters are untyped, meaning the compiler can infer the types of these parameters according
to the context. In this case the compiler can determine that the PerformOperations() method
call requires a delegate of type TwoIntegerOperationDelegate. This delegate type has two int

parameters, so by inference both paramA and paramB are typed as int variables.

2. The => operator. This separates the lambda expression parameters from the lambda expression
body.

3. The expression body. This specifies a simple operation, which is the summation of paramA and
paramB. Notice that there is no need to specify that this is a return value. The compiler knows that
in order to create a method that can be used with TwoIntegerOperationDelegate, the method
must have a return type of int. Because the operation specified, paramA + paramB, evaluates to an
int, and no additional information is supplied, the compiler infers that the result of this expres-
sion should be the return type of the method.

In longhand then, you can expand the code that uses this lambda expression to the following code that
uses an anonymous method:

Console.WriteLine("f(a, b) = a + b:");
PerformOperations(delegate(int paramA, int paramB)

{
return paramA + paramB;

});

The remaining code performs operations using two different lambda expressions in the same way:
Console.WriteLine();
Console.WriteLine("f(a, b) = a * b:");
PerformOperations((paramA, paramB) => paramA * paramB);
Console.WriteLine();

434 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

Console.WriteLine("f(a, b) = (a — b) % b:");
PerformOperations((paramA, paramB) => (paramA — paramB)

% paramB);
Console.ReadKey();

The last lambda expression involves more calculations but is no more complicated than the others. The
syntax for lambda expressions enables you to perform far more complicated operations, as you will see
shortly.

Lambda Expression Parameters
In the code you have seen so far, the lambda expressions have used type inference to determine the
types of the parameters passed. In fact, this is not mandatory; you can define types if you wish. For
example, you could use the following lambda expression:

(int paramA, int paramB) => paramA + paramB

This has the advantage of making your code more readable, although you lose out in both brevity and
flexibility. You could use the implicitly typed lambda expressions from the previous Try It Out for
delegate types that used other numeric types, such as long variables.

Note that you cannot use implicit and explicit parameter types in the same lambda expression. The fol-
lowing lambda expressions will not compile because paramA is explicitly typed and paramB is implicitly
typed:

(int paramA, paramB) => paramA + paramB

Parameter lists in lambda expressions always consist of a comma-separated list of either all implicitly
typed parameters or all explicitly typed parameters. If you have only one parameter, then you can
omit the parentheses; otherwise, they are required as part of the parameter list, as shown earlier. For
example, you could have the following as a single-parameter, implicitly typed lambda expression:

param1 => param1 * param1

You can also define lambda expressions that have no parameters. This is denoted by using empty
parentheses, ():

() => Math.PI

This could be used where a delegate requiring no parameters but returning a double value is required.

Lambda Expression Statement Bodies
In all the code that you have seen so far, a single expression has been used in the statement body of
lambda expressions. You have also seen how this single expression has been interpreted as the return
value of the lambda expression, which is, for example, how you can use the expression paramA + paramB

as the statement body for a lambda expression for a delegate with a return type of int (assuming both
paramA and paramB are implicitly or explicitly typed to int values, as they were in the example code).

An earlier example showed how a delegate with a void return type was less fussy about the code used
in the statement body:

myTimer.Elapsed += (source, e) => Console.WriteLine(
"Event handler called after {0} milliseconds.",
(source as Timer).Interval);

Lambda Expressions ❘ 435

Here, the statement doesn’t evaluate to anything, so it is simply executed without any return value
being used anywhere.

Given that lambda expressions can be visualized as an extension of the anonymous method syntax,
you may not be surprised to learn that you can also include multiple statements as a lambda expression
statement body. To do so, you simply provide a block of code enclosed in curly braces, much like any
other situation in C# where you must supply multiple lines of code:

(param1, param2) =>
{

// Multiple statements ahoy!
}

If you use a lambda expression in combination with a delegate type that has a non-void return type,
then you must return a value with the return keyword, just like any other method:

(param1, param2) =>
{

// Multiple statements ahoy!
return returnValue;

}

For example, earlier you saw how you could rewrite the following code from the Try It Out:

PerformOperations((paramA, paramB) => paramA + paramB);

as
PerformOperations(delegate(int paramA, int paramB)

{
return paramA + paramB;

});

Alternatively, you could rewrite the code as follows:
PerformOperations((paramA, paramB) =>

{
return paramA + paramB;

});

This is more in keeping with the original code because it maintains implicit typing of the paramA and
paramB parameters.

For the most part, lambda expressions are at their most useful — and certainly their most
elegant — when used with single expressions. To be honest, if you require multiple statements, your
code may read much better if you define a separate, non-anonymous method to use instead of a lambda
expression; that also makes your code more reusable.

Lambda Expressions As Delegates and Expression Trees
You have already seen some of the differences between lambda expressions and anonymous methods
where lambda methods have more flexibility — for example, implicitly typed parameters. At this point
it is worth noting another key difference, although the implications of this will not become apparent
until later in the book when you learn about LINQ.

You can interpret a lambda expression in two ways. The first way, which you have seen throughout
this chapter, is as a delegate. That is, you can assign a lambda expression to a delegate type variable, as
you did in the previous Try It Out.

436 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

In general terms, you can represent a lambda expression with up to eight parameters as one of the
following generic types, all defined in the System namespace:

➤ Action for lambda expressions with no parameters and a return type of void.

➤ Action<> for lambda expressions with up to eight parameters and a return type of void.

➤ Func<> for lambda expressions with up to eight parameters and a return type that is
not void.

Action<> has up to eight generic type parameters, one for each parameter, and Func<> has up to nine
generic type parameters, used for up to eight parameters and the return type. In Func<>, the return type
is always the last in the list.

For example, the following lambda expression, which you saw earlier:

(int paramA, int paramB) => paramA + paramB

can be represented as a delegate of type Func<int, int, int> because it has two parameters and a
return type all of type int.

The second way is to interpret the lambda expression as what is known as an expression tree. An
expression tree is an abstract representation of a lambda expression, and as such cannot be executed
directly. Instead, you can use the expression tree to analyze the lambda expression programmatically
and perform actions in response to the lambda expression.

This is, obviously, a complicated subject. However, expression trees are critical to the LINQ
functionality you will learn about later in this book. To give a more concrete example, the LINQ
framework includes a generic class called Expression<>, which you can use to encapsulate a lambda
expression. One of the ways in which this class is used is to take a lambda expression that you have
written in C# and convert it into an equivalent SQL script representation for executing directly in a
database.

You don’t need to know any more about that at this point. When you encounter this functionality later
in the book, you will be better equipped to understand what is going on, as you now have a thorough
grounding in the key concepts that the C# language provides.

Lambda Expressions and Collections
Now that you have learned about the Func<> generic delegate, you can understand some of the exten-
sion methods that the System.Linq namespace provides for array types (which you may have seen
popping up in IntelliSense at various points during your coding). For example, there is an extension
method called Aggregate(), which is defined with three overloads as follows:

public static TSource Aggregate<TSource>(
this IEnumerable<TSource> source,
Func<TSource, TSource, TSource> func);

public static TAccumulate Aggregate<TSource, TAccumulate>(
this IEnumerable<TSource> source,
TAccumulate seed,
Func<TAccumulate, TSource, TAccumulate> func);

Lambda Expressions ❘ 437

public static TResult Aggregate<TSource, TAccumulate,
TResult>(

this IEnumerable<TSource> source,
TAccumulate seed,
Func<TAccumulate, TSource, TAccumulate> func,
Func<TAccumulate, TResult> resultSelector);

As with the extension method shown earlier, this looks at first glance to be impenetrable, but if you
break it down you can work it out easily enough. The IntelliSense for this function tells you that it does
the following:

Applies an accumulator function over a sequence.

This means that an accumulator function (which you can supply in the form of a lambda expression)
will be applied for each pair of elements in a collection from beginning to end, with the output of each
evaluation becoming one of the inputs of the next.

In the simplest of the three overloads there is only one generic type specification, which can be inferred
from the type of the instance parameter. For example, in the following code the generic type specifica-
tion will be int (the accumulator function is left blank for now):

int[] myIntArray = { 2, 6, 3 };
int result = myIntArray.Aggregate(...);

This is equivalent to the following:

int[] myIntArray = { 2, 6, 3 };
int result = myIntArray.Aggregate<int>(...);

The lambda expression that is required here can be deduced from the extension method specification.
Because the type TSource is int in this code, you must supply a lambda expression for the delegate
Func<int, int, int>. For example, you could use one you’ve seen before:

int[] myIntArray = { 2, 6, 3 };
int result = myIntArray.Aggregate((paramA, paramB) => paramA + paramB);

This call results in the lambda expression being called twice, first with paramA = 2 and paramB = 6, and
once with paramA = 8 (the result of the first calculation) and paramB = 3. The final result assigned to the
variable result will be the int value 11 — the summation of all the elements in the array.

The other two overloads of the Aggregate() extension method are similar but enable you to perform
slightly more complicated processing. This is illustrated in the following short Try It Out.

TRY IT OUT Using Lambda Expressions with Collections

1. Create a new console application called Ch14Ex07 and save it in the directory C:\BegVCSharp\

Chapter14.

2. Modify the code in Program.cs as follows:

static void Main(string[] args)
{

string[] curries = { "pathia", "jalfrezi", "korma" };
Console.WriteLine(curries.Aggregate(

(a, b) => a + " " + b));
Console.WriteLine(curries.Aggregate<string, int>(

438 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

0,
(a, b) => a + b.Length));

Console.WriteLine(curries.Aggregate<string, string, string>(
"Some curries:",
(a, b) => a + " " + b,
a => a));

Console.WriteLine(curries.Aggregate<string, string, int>(
"Some curries:",
(a, b) => a + " " + b,
a => a.Length));

Console.ReadKey();
}

Code snippet Ch14Ex07\Program.cs

FIGURE 14-14

3. Run the application. The result is shown in
Figure 14-14.

How It Works

In this example you experimented with each of the
overloads of the Aggregate() extension method,
using a string array with three elements as source data.

First, a simple concatenation is performed:

Console.WriteLine(curries.Aggregate(
(a, b) => a + " " + b));

The first pair of elements is concatenated into a string using simple syntax. This is far from the best
way to concatenate strings — ideally you would use string.Concat() or string.Format() to optimize
performance — but here it provides a very simple way to see what is going on. After this first concate-
nation, the result is passed back into the lambda expression along with the third element in the array, in
much the same way as you saw int values being summed earlier. The result is a concatenation of the entire
array, with spaces separating entries.

Next, the second overload of the Aggregate() function, which has the two generic type parameters TSource
and TAccumulate, is used. In this case the lambda expression must be of the form Func<TAccumulate,

TSource, TAccumulate>. In addition, a seed value of type TAccumulate must be specified. This seed value
is used in the first call to the lambda expression, along with the first array element. Subsequent calls take
the accumulator result of previous calls to the expression. The code used is as follows:

Console.WriteLine(curries.Aggregate<string, int>(
0,
(a, b) => a + b.Length));

The accumulator (and, by implication, the return value) is of type int. The accumulator value is initially
set to the seed value of 0, and with each call to the lambda expression it is summed with the length of an
element in the array. The final result is the sum of the lengths of each element in the array.

Next you come to the last overload of Aggregate(). This takes three generic type parameters and differs
from the previous version only in that the return value can be a different type from both the type of the
elements in the array and the accumulator value. First, this overload is used to concatenate the string
elements with a seed string:

Console.WriteLine(curries.Aggregate<string, string, string>(
"Some curries:",

Summary ❘ 439

(a, b) => a + " " + b,
a => a));

The final parameter of this method, resultSelector, must be specified even if (as in this example)
the accumulator value is simply copied to the result. This parameter is a lambda expression of type
Func<TAccumulate, TResult>.

In the final section of code, the same version of Aggregate() is used again, but this time with an int

return value. Here, resultSelector is supplied with a lambda expression that returns the length of the
accumulator string:

Console.WriteLine(curries.Aggregate<string, string, int>(
"Some curries:",
(a, b) => a + " " + b,
a => a.Length));

This example hasn’t done anything spectacular, but it demonstrates how you can use more complicated
extension methods that involve generic type parameters, collections, and seemingly complex syntax. You’ll
see more of this later in the book.

SUMMARY

This chapter examined the new or recently added features that are included in version 4 of the C#
language, which is the version that you use in Visual Studio 2010 and Visual C# Express 2010. You
learned how these features simplify some of the coding required to achieve commonly used and/or
advanced functionality.

Highlights of this chapter included the following:

➤ How to use object and collection initializers to instantiate and initialize objects and collec-
tions in one step

➤ How the IDE and C# compiler are capable of inferring types from context, and how to use
the var keyword to permit type inference to be used with any variable type

➤ How to create and use anonymous types, which combine the initializer and type inference
topics already covered

➤ How to use dynamic lookup on variables that will only be interrogated for members at
runtime

➤ How to use named and optional parameters to call methods in a flexible way

➤ How to create extension methods that can be called on instances of other types without
adding code to the definition of these types, and how this technique can be used to supply
libraries of utility methods

➤ How to use lambda methods to provide anonymous methods to delegate instances, and how
the extended syntax of lambda methods makes additional functionality possible

Most of the C# features that you learned about in this chapter have been added specifically to cater to
the new LINQ capabilities of the .NET Framework. Much of the elegance, and many of the subtleties,
of the code that you have seen will only become apparent later. Having said that, you have learned
some extremely powerful techniques that you can put to work straight away to improve your C#
programming skills.

440 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

You have now covered the entire C# language as it stands with version 4. However, this is not the
same thing as knowing everything about programming with the .NET Framework. The C# language
gives you all the tools you need to write .NET applications, but it is the classes available to you in the
.NET Framework that give you the raw materials to build with. From this point on in the book, you
will become increasingly immersed in these classes, and you will learn how to perform a multitude of
tasks with them. The next chapter moves away from the console applications you have thus far spent
most of your time working with, and starts to use the rich functionality offered by Windows Forms to
create graphical user interfaces. As you do this, remember that the underlying principles are the same
regardless of the type of application you create. The skills you learned in the first part of this book will
serve you well as you progress through the following chapters.

EXERCISES

1. Why can’t you use an object initializer with the following class? After modifying this class to enable
the use of an object initializer, give an example of the code you would use to instantiate and ini-
tialize this class in one step:

public class Giraffe
{

public Giraffe(double neckLength, string name)
{

NeckLength = neckLength;
Name = name;

}
public double NeckLength {get; set;}
public string Name {get; set;}

}

2. True or false: If you declare a variable of type var, you will then be able to use it to hold any
object type.

3. When you use anonymous types, how can you compare two instances to determine whether they
contain the same data?

4. Try to correct the following code for an extension method, which contains an error:
public string ToAcronym(this string inputString)
{

inputString = inputString.Trim();
if (inputString == "")
{

return "";
}
string[] inputStringAsArray = inputString.Split(’ ‘);
StringBuilder sb = new StringBuilder();
for (int i = 0; i < inputStringAsArray.Length; i++)
{

if (inputStringAsArray[i].Length > 0)
{

sb.AppendFormat("{0}",

Summary ❘ 441

inputStringAsArray[i].Substring(
0, 1).ToUpper());

}
}
return sb.ToString();

}

5. How would you ensure that the extension method in question 4 was available to your client code?

6. Rewrite the ToAcronym() method shown here as a single line of code. The code should ensure
that strings including multiple spaces between words do not cause errors. Hint: You will require
the ?: tertiary operator, the string.Aggregate<string, string>() extension method, and a
lambda expression to achieve this.

Answers to Exercises can be found in Appendix A.

442 ❘ CHAPTER 14 C# LANGUAGE ENHANCEMENTS

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Initializers You can use initializers to initialize an object or collection at the same time as
creating it. Both types of initializers consist of a block of code surrounded by
curly brackets. Object initializers allow you to set property values by providing a
comma-separated list of property name/value pairs. Collection initializers simply
require a comma-separated list of values. When you use an object initializer, you
can also use a non-default constructor.

Type inference The var keyword allows you to omit the type of a variable when you declare
it. However, this is only possible if the type can be determined at compile time.
Using var does not break the strongly typed methodology of C# as a variable
declared with var has one and only one possible type.

Anonymous
types

For many simple types used to structure data storage, defining a type is not nec-
essary. Instead, you can use an anonymous type, whose members are inferred
from usage. You define an anonymous type with object initializer syntax, and
every property you set is defined as a read-only property.

Dynamic lookup Use the dynamic keyword to define a dynamic type variable that can hold any
value. You can then access members of the contained value with normal prop-
erty or method syntax, and these are only actually checked at runtime. If, at
runtime, you attempt to access a non-existent member, an exception is thrown.
This dynamic typing greatly simplifies the syntax required to access non-.NET
types, or .NET types whose type information is not available at compile time.
However, dynamic types must be used with caution as you lose compile time
code checking. You can control the behavior of dynamic lookup by implementing
the IDynamicMetaObjectProvider interface.

Optional method
parameters

Often, you may define a method with lots of parameters, many of which are
only rarely used. Instead of forcing client code to specify values for rarely used
parameters, you might provide multiple method overloads. Alternatively, you can
define these parameters as optional (and provide default values for parameters
that are not specified). Client code that calls your method can then specify only
as many parameters as are required.

Named method
parameters

Client code can specify method parameter values by position or by name (or a
mix of the two where positional parameters are specified first). Named parame-
ters can be specified in any order. This is particularly useful when combined with
optional parameters.

Summary ❘ 443

TOPIC KEY CONCEPTS

Extension methods You can define extension methods for any existing type without modifying
the type definition. This includes, for example, extending system-defined
types such as string. Extension methods are defined as static methods of a
nongeneric static class. The first parameter of an instance method is defined
with the this keyword, and is the instance value for which the method is
called. Once defined, an extension method can be called from any code that
references the namespace that contains the class that defines the method.
Extension methods can be called from instances of the type used in the
method definition or any derived type, so you can define general purpose
extension methods for families of types. Another way to create general pur-
pose extension methods is to create extension methods that can be used
with a particular interface.

Lambda expressions Lambda expressions are essentially a shorthand way of defining anonymous
methods, although they have additional capabilities such as implicit typing.
You define a lambda expression with a comma-separated list of parameters
(or empty parentheses for no parameters), the => operator, and an expres-
sion. The expression can be a block of code enclosed in curly brackets.
Lambda expressions with up to eight parameters and an optional return type
can be represented with the Action, Action<>, and Func<> delegate types.
Many LINQ extension methods that can be used with collections use lambda
expression parameters.

PART II
Windows Programming

� CHAPTER 15: Basic Windows Programming

� CHAPTER 16: Advanced Windows Forms Features

� CHAPTER 17: Deploying Windows Applications

15
Basic Windows Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ The Windows Forms Designer

➤ Controls for displaying information to the user, such as the Label
and LinkLabel controls

➤ Controls for triggering events, such as the Button control

➤ Controls that enable users of your application to enter text, such as
the TextBox control

➤ Controls that enable you to inform users of the current state of the
application and allow the user to change that state, such as the
RadioButton and CheckButton controls

➤ Controls that enable you to display lists of information, such as the
ListBox and ListView controls

➤ Controls that enable you to group other controls together, such as
the TabControl and Groupbox controls

About 10 years ago, Visual Basic won great acclaim for providing programmers with tools for
creating highly detailed user interfaces via an intuitive form designer, along with an easy to learn
programming language that together produced probably the best environment out there for
rapid application development (RAD). One of the advantages offered by RAD tools such as
Visual Basic is that they provide access to a number of prefabricated controls that can be used
to quickly build the user interface for an application.

At the heart of the development of most Visual Basic Windows applications is the Forms
Designer. You create a user interface by dragging and dropping controls from a Toolbox to
your form, placing them where you want them to appear when you run the program; double-
clicking the control adds a handler for that control. The controls provided by Microsoft, along
with additional custom controls that could be bought at reasonable prices, have supplied

448 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

programmers with an unprecedented pool of reusable, thoroughly tested code that is no more than a
mouse click away. Such application development is now available to C# developers through Visual
Studio.

In this chapter, you work with Windows Forms, and use some of the many controls that ship with
Visual Studio. These controls cover a wide range of functionality, and through the design capabilities
of Visual Studio, developing user interfaces and handling user interaction is very straightforward — and
fun! Presenting all of Visual Studio’s controls is impossible within the scope of this book, so this chapter
looks at some of the most commonly used controls, ranging from labels and text boxes to list views and
tab controls.

CONTROLS

You may not notice it, but when you work with Windows Forms, you are working with the
System.Windows.Forms namespace. This namespace is included in the using directives in one of the
files that hold the Form class. Most controls in .NET derive from the System.Windows.Forms.Control

class. This class defines the basic functionality of the controls, which is why many properties and
events in the controls you’ll see are identical. Many of these classes are themselves base classes for
other controls, as is the case with the Label and TextBoxBase classes (see Figure 15-1).

Object

MarshalByRefObject

Component

Label ListView TextBoxBase . . .

TechBoxLinkLabel RichTextBox

FIGURE 15-1

Properties
All controls have a number of properties that are used to manipulate the behavior of the control. The
base class of most controls, System.Windows.Forms.Control, has several properties that other controls
either inherit directly or override to provide some kind of custom behavior.

Table 15-1 shows some of the most common properties of the Control class. These properties are
present in most of the controls in this chapter, so they are not explained in detail again unless the
behavior changes for the control in question. Note that this table is not exhaustive; if you want to see
all of the properties in the class, please refer to the .NET Framework SDK documentation.

Controls ❘ 449

TABLE 15-1: Common Control Class Properties

PROPERTY DESCRIPTION

Anchor Specifies how the control behaves when its container is resized. See the next section
for a detailed explanation of this property.

BackColor The background color of a control.

Bottom Specifies the distance from the top of the window to the bottom of the control. This is
not the same as specifying the height of the control.

Dock Docks a control to the edges of its container. See the next section for a more detailed
explanation of this property.

Enabled Setting Enabled to true usually means that the control can receive input from the
user. Setting Enabled to false usually means that it cannot.

ForeColor The foreground color of the control.

Height The distance from the top to the bottom of the control.

Left The left edge of the control relative to the left edge of its container.

Name The name of the control. This name can be used to reference the control in code.

Parent The parent of the control.

Right The right edge of the control relative to the left edge of its container.

TabIndex The number the control has in the tab order of its container.

TabStop Specifies whether the control can be accessed by the Tab key.

Tag This value is usually not used by the control itself. It enables you to store information
about the control on the control itself. When this property is assigned a value through
the Windows Forms Designer, you can only assign a string to it.

Text Holds the text that is associated with this control.

Top The top edge of the control relative to the top of its container.

Visible Specifies whether the control is visible at runtime.

Width The width of the control.

Anchoring, Docking, and Snapping Controls
With Visual Studio 2005, the Forms Designer default was changed from using a gridlike surface on
which you could lay out your controls to a clean surface that uses snaplines to position the controls.
You can change between the two design styles by choosing Options on the Tools menu. Select the

450 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

Windows Forms Designer node in the tree to the left and set the Layout Mode. Which tool is best is
very much a question of personal preference. The following Try It Out uses the default.

TRY IT OUT Using Snaplines

Follow these steps to experiment working with snaplines in the Windows Forms Designer:

1. Create a new Windows Forms application and name it SnapLines.

2. Drag a single Button control from the Toolbox to the middle of the form.

3. Drag the button toward the upper-left corner of the form. Notice that when you are close to the
edge of the form, lines appear from the left and top of the form and the controls snap into position.
You can move the control beyond the snaplines or leave it in position.

4. Move the button back to the center of the form and drag another button from the Toolbox onto
the form. Move it under the existing button. Snaplines appear as you move the button below the
existing button. These snaplines enable you to line up the controls so that they are positioned
directly above or at exactly the same height as one another. If you move the new button up
toward the existing button, another snapline enables you to position the buttons with a preset
space between them.

5. Resize button1 to make it wider than button2. Then resize button2 as well and notice that when
button2 is the same width as button1, a snapline appears to enable you to set the width of the
controls to the same value.

6. Below the buttons, add a TextBox to the form and change the Text property of it to Hello World!

7. Add a Label to the form and move it to the left of the TextBox. Note that as you move the con-
trol, the two snaplines that enable you to snap to the top and bottom of the TextBox appear, but
between them is a third snapline. This snapline enables you to place the Label on the form so that
the text of the TextBox and the Label are at the same height.

Anchor and Dock Properties
The Anchor and Dock properties are especially useful when you are designing your form. Ensuring that a
window doesn’t become a mess to look at if the user decides to resize it is far from trivial, and previously
numerous lines of code had to be written to achieve this. Many programs solve the problem by simply
disallowing window resizing, which is the easiest solution but not always the best. The Anchor and
Dock properties that have been introduced with .NET enable you to solve this problem without writing
a single line of code.

The Anchor property specifies how the control behaves when a user resizes the window. You can specify
that the control should resize itself, anchoring itself in proportion to its own edges, or stay the same
size, anchoring its position relative to the window’s edges.

The Dock property specifies that a control should dock to an edge of its container. If a user resizes the
window, then the control continues to be docked to the edge of the window. If, for instance, you specify

Controls ❘ 451

that a control should dock with the bottom of its container, then the control resizes and/or moves itself
to always occupy the bottom part of the window, no matter how the window is resized.

You’ll learn more about the Anchor property later in this chapter.

Events
In Chapter 13, you learned what events are and how to use them. This section covers particular kinds
of events — specifically, the events generated by Windows Forms controls. These events are usually
associated with user actions. For example, when the user clicks a button, that button generates an
event indicating what just happened to it. Handling the event is the means by which the programmer
can provide some functionality for that button.

The Control class defines a number of events that are common to the controls you use in this chapter.
Table 15-2 describes a number of these events. Again, this is just a selection of the most common events;
to see the entire list, refer to the .NET Framework SDK documentation.

You will see many of these events in the examples in this chapter. All the examples follow the same for-
mat: You first create the form’s visual appearance, choosing and positioning controls, and so on, before
moving on to adding the event handlers — which is where the main work of the examples takes place.

There are three basic ways to handle a particular event. The first is to double-click a control, which
takes you to the event handler for the control’s default event — this event varies for different controls.
If that’s the event you want, then you’re fine. If you want an event other than the default, then you have
two possible ways to proceed.

FIGURE 15-2

One way is to use the Events list in the Properties window, shown
in Figure 15-2, which is displayed when you click the lightning bolt
button.

To add a handler for a particular event, double-click that event in
the Events list, and the code to subscribe the control to the event
is generated, along with the method signature to handle the event.
Alternatively, you can type a name for the method to handle the par-
ticular event next to that event in the Events list, and when you press
the Enter key, the event handler is generated with your chosen name.

Another option is to add the code to subscribe to the event your-
self. Even when you type the code that is needed to subscribe to an
event, Visual Studio detects what you are doing and offers to add
the method signature to the code, just as it would do from the Forms
Designer.

Each of these two options requires two steps — subscription to the event and the correct signature for
the method handler. If you double-click a control and try to handle another event by editing the method
signature of the default event for the event that you actually want handled, then you will fail — you
also need to alter the event subscription code in InitializeComponent(), so this cheating method is
not really a quick way to handle particular events.

452 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

TABLE 15-2: Common Control Class Events

EVENT DESCRIPTION

Click Occurs when a control is clicked. In some cases, this event also occurs when a user
presses the Enter key.

DoubleClick Occurs when a control is double-clicked. Handling the Click event on some controls,
such as the Button control, means that the DoubleClick event can never be called.

DragDrop Occurs when a drag-and-drop operation is completed — in other words, when an
object has been dragged over the control, and the user releases the mouse button.

DragEnter Occurs when an object being dragged enters the bounds of the control.

DragLeave Occurs when an object being dragged leaves the bounds of the control.

DragOver Occurs when an object has been dragged over the control.

KeyDown Occurs when a key is pressed while the control has focus. This event always occurs
before KeyPress and KeyUp.

KeyPress Occurs when a key is pressed while a control has focus. This event always occurs
after KeyDown and before KeyUp. The difference between KeyDown and KeyPress is
that KeyDown passes the keyboard code of the key that has been pressed, whereas
KeyPress passes the corresponding char value for the key.

KeyUp Occurs when a key is released while a control has focus. This event always occurs
after KeyDown and KeyPress.

GotFocus Occurs when a control receives focus. Do not use this event to perform validation of
controls. Use Validating and Validated instead.

LostFocus Occurs when a control loses focus. Do not use this event to perform validation of
controls. Use Validating and Validated instead.

MouseDown Occurs when the mouse pointer is over a control and a mouse button is pressed. This
is not the same as a Click event because MouseDown occurs as soon as the button is
pressed and before it is released.

MouseMove Occurs continually as the mouse travels over the control.

MouseUp Occurs when the mouse pointer is over a control and a mouse button is released.

Paint Occurs when the control is drawn.

Validated Fires when a control with the CausesValidation property set to true is about to
receive focus. It fires after the Validating event finishes and indicates that validation
is complete.

Validating Fires when a control with the CausesValidation property set to true is about to
receive focus. Note that the control to be validated is the control that is losing focus,
not the one that is receiving it.

The Button Control ❘ 453

You are now ready to start looking at the controls themselves, beginning with one that you’ve undoubt-
edly used countless times when working with Windows applications: the Button control.

THE BUTTON CONTROL

When you think of a button, you probably think of a rectangular button that can be clicked to perform
some task. However, the .NET Framework provides a class derived from Control — System.Windows

.Forms.ButtonBase — that implements the basic functionality needed in Button controls, so program-
mers can derive from this class and create their own custom Button controls.

The System.Windows.Forms namespace provides three controls that derive from ButtonBase: Button,
CheckBox, and RadioButton. This section focuses on the Button control (which is the standard, well-
known rectangular button); the other two are covered later in this chapter.

The Button control exists on just about any Windows dialog you can think of. A button is primarily
used to perform three kinds of tasks:

➤ To close a dialog with a state (e.g., the OK and Cancel buttons)

➤ To perform an action on data entered in a dialog (e.g., clicking Search after entering some
search criteria)

➤ To open another dialog or application (e.g., Help buttons)

Working with the Button control is very straightforward. It usually consists of adding the control to
your form and double-clicking it to add the code to the Click event, which is probably enough for most
applications you work on.

Button Properties
This section looks at some of the properties of the Button control. This will give you an idea of what
can be done with it. Table 15-3 lists the most commonly used properties of the Button class, even if
technically they are defined in the ButtonBase base class. Only the most commonly used properties are
described here. Please see the .NET Framework SDK documentation for a complete listing.

Button Events
By far, the most frequently used event of a button is the Click event. This event happens whenever a
user clicks the button, which means pressing the left mouse button and releasing it while the pointer is
over the button. Therefore, if you left-click the button and then draw the mouse away from the button
before releasing it, the Click event will not be raised. In addition, the Click event is raised when the
button has focus and the user presses the Enter key. If you have a button on a form, you should always
handle this event.

In the following Try It Out, you create a dialog with three buttons. Two of the buttons change the
language used from English to Danish and back. (Feel free to use whatever language you prefer.) The
last button closes the dialog.

454 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

TABLE 15-3: Common Button Class Properties

PROPERTY DESCRIPTION

FlatStyle Changes the style of the button. If you set the style to Popup, the button appears flat
until the user moves the mouse pointer over it. When that happens, the button pops
up to a 3-D look.

Enabled Although this is derived from Control, it’s mentioned here because it’s a very impor-
tant property for a button. Setting it to false means that the button becomes grayed
out and nothing happens when you click it.

Image Specifies an image (bitmap, icon, and so on) that will be displayed on the button.

ImageAlign Specifies where the image on the button appears.

TRY IT OUT Working with Buttons

Follow these steps to create a small Windows application that uses three buttons to change the text in the
caption of the dialog:

FIGURE 15-3

1. Create a new Windows application called ButtonDialog in the direc-
tory C:\BegVCSharp\Chapter15.

2. Pin the Toolbox down by clicking the pin icon next to the x in the
top-right corner of the window, and double-click the Button con-
trol three times. Move the buttons and resize the form as shown in
Figure 15-3.

3. Right-click a button and select Properties. Change the name of each
button as indicated in Figure 15-3 by selecting the (Name) edit field in the Properties window and
typing the relevant text.

4. Change the Text property of each button to be the same as the name, but omit the button prefix
for the Text property value.

5. You want to display a flag in front of the text to make it clear what you are talking about. Select
the English button and find the Image property. Click to the right of it to bring up a dialog where
you can add images to the resource file of the form. Click the Import button and browse to the
images, which are included in the project ButtonDialog that you can download from the Wrox
home page. Select the icons UK.PNG and DK.PNG.

6. Select UK and click OK. Then select buttonDanish, click the (. . .) on the Image property and
choose DK before clicking OK.

7. At this point, the button text and icon are placed on top of each other, so you need to change the
alignment of the image. For both the English and Danish buttons, change the ImageAlign property
to MiddleLeft.

The Button Control ❘ 455

8. You may want to adjust the width of the buttons so that the text doesn’t start right where the
images end. Do this by selecting each of the buttons and pulling the notch on the right edge of
the button.

9. Finally, click the form and change the Text property to Do you speak English?

FIGURE 15-4

That’s it for the user interface of your dialog. You should now have some-
thing that looks like Figure 15-4.

Now you are ready to add the event handlers to the dialog. Double-click
the English button. This takes you directly to the event handler for the con-
trol’s default event — the Click event is the default event for the button,
so that is the handler created.

Adding the Event Handlers
Double-click the English button and then add the following code to the event handler:

private void buttonEnglish_Click(object sender, EventArgs e)
{
Text = "Do you speak English?";

}

When Visual Studio creates a method to handle such an event, the method name is a concatenation of
the name of the control, followed by an underscore and the name of the event that is handled.

For the Click event, the first parameter, object sender, holds the control that was clicked. For this
example, that will always be the control indicated by the method name. In other cases, many controls
may use the same method to handle an event; and in those cases you can find out exactly which control
is calling by checking this value. The ‘‘TextBox Control’’ section later in this chapter demonstrates
how to use a single method for multiple controls. The other parameter, System.EventArgs e, holds
information about what actually happened. In this case, you won’t need any of that information.

Return to the design view and double-click the Danish button. You will be taken to the event handler
for that button. Here is the code:

private void buttonDanish_Click(object sender, EventArgs e)
{
Text = "Taler du dansk?";

}

This method is identical to btnEnglish_Click except that the text is in Danish. Finally, you add the
event handler for the OK button just as you’ve done twice now. The code is a little different, though:

private void buttonOK_Click(object sender, EventArgs e)
{
Application.Exit();

}

After this you exit the application and, with it, this first example. Compile it, run it, and click a few of
the buttons. You will see the text in the caption bar of the dialog change.

456 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

THE LABEL AND LINKLABEL CONTROLS

The Label control is probably the most frequently used control of them all. Look at any Windows
application and you see a label on just about every dialog you find. Label is a simple control with one
purpose only — to display text on the form.

The .NET Framework includes two label controls that present themselves in two distinct ways:

➤ Label — The standard Windows label

➤ LinkLabel — A label similar to the standard one (and derived from it) but that presents itself
as an Internet link (a hyperlink)

Usually, you don’t need to add event handling code for a standard Label, although it does support
events, like all controls. In the case of the LinkLabel, however, some extra code is needed to enable
users clicking it to go to the target of the LinkLabel.

You can set a surprising number of properties for the Label control. Most of these are derived from
Control, but some are new. Table 15-4 lists the most common properties. Unless stated otherwise, the
properties are common to both the Label and LinkLabel controls.

TABLE 15-4: Common Label Control Properties

PROPERTY DESCRIPTION

BorderStyle Specifies the style of the border around the label. The default is no border.

FlatStyle Determines how the control is displayed. Setting this property to Popup makes
the control appear flat until the user moves the mouse pointer over the control,
at which time the control appears raised.

Image Specifies a single image (bitmap, icon, and so on) to be displayed in the label.

ImageAlign Specifies where in the Label the image is shown.

LinkArea (LinkLabel only) Specifies the range in the text that should be displayed as a
link.

LinkColor (LinkLabel only) Indicates the color of the link.

Links (LinkLabel only) It is possible for a LinkLabel to contain more than one link.
This property enables you to find the link you want. The control keeps track of
the links displayed in the text. Not available at design time.

LinkVisited (LinkLabel only) Setting this to true means that the link is displayed in a differ-
ent color if it has been clicked.

TextAlign Specifies where in the control the text is shown.

VisitedLinkColor (LinkLabel only) Specifies the color of the LinkLabel after the user has
clicked it.

The TextBox Control ❘ 457

THE TEXTBOX CONTROL

Text boxes should be used whenever you want users to enter text that you have no knowledge of at
design time (e.g., the user’s name). The primary function of a text box is for users to enter text, but any
characters can be entered, and you can force users to enter numeric values only.

The .NET Framework comes with two basic controls to take text input from users: TextBox and
RichTextBox. Both controls are derived from a base class called TextBoxBase, which itself is derived
from Control.

TextBoxBase provides the base functionality for text manipulation in a text box, such as selecting
text, cutting to and pasting from the clipboard, and a wide range of events. Right now you won’t
focus so much on what is derived from where, but instead look at the simpler of the two controls
first — TextBox. You first build one example that demonstrates the TextBox properties, and then build
on that to demonstrate the RichTextBox control later.

TextBox Properties
Again, there are simply too many properties to describe them all, so Table 15-5 includes only the most
common ones.

TABLE 15-5: Common TextBox Control Properties

PROPERTY DESCRIPTION

CausesValidation When a control with this property set to true is about to receive focus, two
events are fired: Validating and Validated. You can handle these events
in order to validate data in the control that is losing focus. This may cause the
control never to receive focus. The related events are discussed in the following
section.

CharacterCasing A value indicating whether the TextBox changes the case of the text entered.
Three values are possible: Lower: All text entered is converted to lowercase.
Normal: No changes are made to the text. Upper: All text entered is converted
to uppercase.

MaxLength A value that specifies the maximum length, in characters, of any text entered
into the TextBox. Set this value to zero if the maximum limit is limited only by
available memory.

Multiline Indicates whether this is a multiline control, meaning it is able to show multiple
lines of text. When Multiline is set to true, you’ll usually want to set WordWrap
to true as well.

PasswordChar Specifies whether a password character should replace the actual characters
entered into a single-line TextBox. If the Multiline property is true, then this
has no effect.

continues

458 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

TABLE 15-5 (continued)

PROPERTY DESCRIPTION

ReadOnly A Boolean indicating whether the text is read-only.

ScrollBars Specifies whether a multiline TextBox should display scroll bars.

SelectedText The text that is selected in the TextBox.

SelectionLength The number of characters selected in the text. If this value is set to be larger
than the total number of characters in the text, then it is reset by the control to
be the total number of characters minus the value of SelectionStart.

SelectionStart The start of the selected text in a TextBox.

WordWrap Specifies whether a multiline TextBox should automatically wrap words if a line
exceeds the width of the control.

TextBox Events
Careful validation of the text in the TextBox controls on a form can make the difference between happy
users and angry users. You have probably experienced how annoying it is when a dialog only validates
its contents when you click OK. This approach to validating the data usually results in a message box
being displayed informing you that the data in ‘‘TextBox number three’’ is incorrect. You can then
continue to click OK until all the data is correct. Clearly, this is not a good approach to validating
data, so what can you do instead?

The answer lies in handling the validation events a TextBox control provides. To ensure that invalid
characters are not entered in the text box or that only values within a certain range are allowed, you
need to indicate to the user of the control whether the value entered is valid.

The TextBox control provides the events shown in Table 15-6 (all of which are inherited from Control).

TABLE 15-6: TextBox Control Events

EVENT DESCRIPTION

Enter

Leave

Validating

Validated

These four events occur in the order in which they are listed here. Known as focus
events, they are fired whenever a control’s focus changes, with two exceptions.
Validating and Validated are fired only if the control that receives focus has
the CausesValidation property set to true. The receiving control fires the event
because there are times when you do not want to validate the control, even if focus
changes. An example of this is when a user clicks a Help button.

The TextBox Control ❘ 459

TABLE 15-6 (continued)

EVENT DESCRIPTION

KeyDown

KeyPress

KeyUp

These three are known as key events. They enable you to monitor and change
what is entered into your controls. KeyDown and KeyUp receive the key code cor-
responding to the key that was pressed. This enables you to determine whether
special keys such as Shift or Ctrl and F1 were pressed. KeyPress, conversely,
receives the character corresponding to a keyboard key. This means that the value
for the letter a is not the same as the letter A. It is useful if you want to exclude a
range of characters — for example, only allowing numeric values to be entered.

TextChanged Occurs whenever the text in the text box is changed, no matter what the change.

In the following Try It Out, you create a dialog in which users can enter their name, address, occupa-
tion, and age. The purpose of this example is to give you a good grounding in manipulating properties
and using events, not to create something truly useful.

TRY IT OUT Working with a TextBox Control

You build the user interface first:

1. Create a new Windows application called TextBoxControls in the directory
C:\BegVCSharp\Chapter15.

2. Create the form shown in Figure 15-5 by dragging Label, TextBox, and Button controls
onto the design surface. Before you can resize the two TextBox controls textBoxAddress and
textBoxOutput as shown, you must set their Multiline property to true. Do this by right-clicking
the controls and selecting Properties.

3. Name the controls as indicated in Figure 15-5.

4. Set the Text property of all the other controls to match the name of the control, except for the
prefixes that indicate the type of the control (that is, Button, TextBox, and Label). Set the Text

property of the form to TextBox Controls.

5. Set the Scrollbars property of the two controls textBoxOutput and textBoxAddress to Vertical.

6. Set the ReadOnly property of the textBoxOutput control to true.

7. Set the CausesValidation property of the btnHelp Button to false. Remember from the discus-
sion of the Validating and Validated events that setting this to false enables users to click this
button without having to worry about entering invalid data.

460 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

FIGURE 15-5

8. When you have sized the form to fit snugly around the controls, it is time to anchor them so that
they behave properly when the form is resized. Set the Anchor property for each type of control
in one go: First, select all the TextBox controls except textBoxOutput by holding down the Ctrl
key while you select each TextBox in turn. Once you’ve selected them all, set the Anchor prop-
erty to Top, Left, Right from the Properties window; the Anchor property for each of the selected
TextBox controls will be set as well. Select just the textBoxOutput control and set the Anchor prop-
erty to Top, Bottom, Left, Right. Now set the Anchor property for both Button controls to Top,
Right.

The reason textBoxOutput is anchored rather than docked to the bottom of the form is that you
want the output text area to be resized as you pull the form. If you docked the control to the bot-
tom of the form, it would be moved to stay at the bottom but would not be resized.

9. One final thing should be set. On the form, find the Size and MinimumSize properties. Your form
has little meaning if it is sized to something smaller than it is now; therefore, set the MinimumSize
property to the same value as the Size property.

How It Works

The job of setting up the visual part of the form is now complete. If you run it nothing happens when you
click the buttons or enter text, but if you maximize or pull in the dialog, the controls behave exactly as you
want them to in a proper user interface: staying put and resizing to fill the whole area of the dialog.

Adding the Event Handlers
From design view, double-click the buttonOK button. Repeat this with the other button. As shown in
the button example earlier in this chapter, this causes event handlers for the Click event of the buttons
to be created. When the OK button is clicked, you want to transfer the text in the input text boxes to
the read-only output box.

The TextBox Control ❘ 461

Here is the code for the two Click event handlers:

private void buttonOK_Click(object sender, EventArgs e)
{
// No testing for invalid values are made, as that should
// not be necessary

string output;

// Concatenate the text values of the four TextBoxes.
output = "Name: " + textBoxName.Text + "\r\n";
output += "Address: " + textBoxAddress.Text + "\r\n";
output += "Occupation: " + textBoxOccupation.Text + "\r\n";
output += "Age: " + textBoxAge.Text;

// Insert the new text.
textBoxOutput.Text = output;

}

private void buttonHelp_Click(object sender, EventArgs e)
{
// Write a short description of each TextBox in the Output TextBox.
string output;

output = "Name = Your name\r\n";
output += "Address = Your address\r\n";
output += "Occupation = Only allowed value is ‘Programmer’\r\n";
output += "Age = Your age";

// Insert the new text.
this.textBoxOutput.Text = output;

}

Code snippet Chapter15\TextBoxControls\Form1.cs

In both functions, the Text property of each TextBox is used. The Text property of the textBoxAge

control is used to get the value entered as the age of the person, and the same property on the
textBoxOutput control is used to display the concatenated text.

You insert the information the user has entered without bothering to check whether it is correct, which
means you must do the checking elsewhere. In this example, a number of criteria ensure that the values
are correct:

➤ The name of the user cannot be empty.

➤ The age of the user must be a number greater than or equal to zero.

➤ The occupation of the user must be ‘‘Programmer’’ or be left empty.

➤ The address of the user cannot be empty.

From this, you can see that the check that must be done for two of the text boxes (textBoxName and
textBoxAddress) is the same. In addition, you should prevent users from entering anything invalid into
the Age box, and you must check whether the user claims to be a programmer.

462 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

To prevent users from clicking OK before anything is entered, start by setting the OK button’s Enabled
property to false — this time you do it in the constructor of your form, rather than from the Proper-
ties window. If you do set properties in the constructor, make sure you don’t set them until after the
generated code in InitializeComponent() has been called:

public Form1()
{

InitializeComponent();
buttonOK.Enabled = false;

}

Now you create the handler for the two text boxes that must be checked to see whether they are
empty. You do this by subscribing to the Validating event of the text boxes; and because the same
operation must be performed on both controls, you assign the same event handler to them. Select
both controls on the form and in the Events list select the Validating event, typing textBoxEmpty_
Validating as the name of the event. You find the Events list on the Properties by clicking the lightning
bolt icon.

Unlike the button event handler shown previously, the event handler for the Validating event is a
specialized version of the standard handler System.EventHandler. This event needs a special handler
because if the validation fails, there must be a way to prevent any further processing. If you were to
cancel further processing, that would effectively mean that it would be impossible to leave a text box
until the data entered is valid.

The Validating and Validated events combined with the CausesValidation property fix a nasty prob-
lem that occurred when using the GotFocus and LostFocus events to perform validation of controls in
earlier versions of Visual Studio. The problem occurred when the GotFocus and LostFocus events were
continually fired because validation code was attempting to shift the focus between controls, which
created an infinite loop.

Replace the throw statement in the event handler generated by Visual Studio with the following code:

private void textBoxEmpty_Validating (object sender,
System.ComponentModel.CancelEventArgs e)

{
TextBox tb = (TextBox)sender;

if (tb.Text.Length == 0)
tb.BackColor = Color.Red;

else
tb.BackColor = System.Drawing.SystemColors.Window;

ValidateOK();
}

Because more than one text box is using this method to handle the event, you cannot be sure which
is calling the function. You do know, however, that the effect of calling the method should be the
same no matter who is calling, so you can simply cast the sender parameter to a TextBox and work
on that:

TextBox tb = (TextBox)sender;

If the length of the text in the text box is zero, then set the background color to red and the Tag to
false. If it is not zero, then set the background color to the standard Windows color for a window.

The TextBox Control ❘ 463

NOTE Always use the colors found in the System.Drawing.SystemColors

enumeration when you want to set a standard color in a control. If you simply set
the color to white, your application will look strange when the user changes the
default color settings.

The description of the ValidateOK() function appears at the end of this example. Keeping with the
Validating event, the next handler you’ll add is for the Occupation text box. The procedure is exactly
the same as for the two previous handlers, but the validation code is different because occupation must
be ‘‘Programmer’’ or an empty string to be valid. To add the event handler, simply double-click the
Validating event of the textBoxOccupation control.

Then add the handler itself:
private void textBoxOccupation_Validating(object sender,

System.ComponentModel.CancelEventArgs e)
{

TextBox tb = (TextBox)sender;

if (tb.Text == "Programmer" || tb.Text.Length == 0)
tb.BackColor = System.Drawing.SystemColors.Window;

else
tb.BackColor = Color.Red;

ValidateOK();
}

Your second to last challenge is the Age text box. You don’t want users to type anything but posi-
tive numbers (including 0 to make the test simpler). To achieve this, you use the KeyPress event to
remove any unwanted characters before they are shown in the text box. You’ll also limit the number of
characters that can be entered into the control to three.

First, set the MaxLength of the textBoxAge control to 3. Then subscribe to the KeyPress event by double-
clicking the KeyPress event in the Events list of the Properties window. The KeyPress event handler is
specialized as well. The System.Windows.Forms.KeyPressEventHandler is supplied because the event
needs information about the key that was pressed.

Add the following code to the event handler itself:

private void textBoxAge_KeyPress(object sender, KeyPressEventArgs e)
{
if ((e.KeyChar < 48 || e.KeyChar > 57) && e.KeyChar != 8)

e.Handled = true;
}

The ASCII values for the characters between 0 and 9 lie between 48 and 57, so you ensure that the
character is within this range — with one exception. The ASCII value 8 is the backspace key, and for
editing reasons you allow this to slip through. Setting the Handled property of KeyPressEventArgs to
true tells the control that it shouldn’t do anything else with the character, so if the key pressed isn’t a
digit or a backspace, it is not shown.

As it is now, the control is not marked as invalid or valid. This is because you need another check
to determine whether anything was entered at all. This is easy, as you’ve already written the method

464 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

to perform this check. Select the textBoxEmpty_Validating event handler from the drop-down of the
Validating event for the textBoxAge control in the Events list.

Only one thing remains — the ValidateOK method that enables or disables the OK button:

private void ValidateOK()
{
buttonOK.Enabled = (textBoxName.BackColor != Color.Red &&
textBoxAddress.BackColor != Color.Red &&
textBoxOccupation.BackColor != Color.Red &&
textBoxAge.BackColor != Color.Red);

}

This method simply sets the value of the Enabled property of the OK button to true if none of the text
boxes have a red background.

When you test the program now, you should see something like what is shown in Figure 15-6 (without
the red background, of course). Notice that you can click the Help button while in a text box with
invalid data without the background color changing to red.

FIGURE 15-6

THE RADIOBUTTON AND CHECKBOX CONTROLS

As mentioned earlier, the RadioButton and CheckBox controls share their base class with the Button

control, although their appearance and use differs substantially from the Button.

Radio buttons traditionally display themselves as a label with a tiny circle to the left of it, which can be
either selected or not. You should use radio buttons when you want to give users a choice between two
or more mutually exclusive options — for example, male or female.

The RadioButton and CheckBox Controls ❘ 465

To group radio buttons together so they create one logical unit you must use a GroupBox control or
some other container. When you first place a GroupBox onto a form and then place the RadioButton

controls you need within the borders of the GroupBox, the RadioButton controls will automatically
change their state to reflect that only one option within the group box can be selected. If you do not
place the controls within a GroupBox, only one RadioButton on the form can be selected at any given
time.

A CheckBox control traditionally displays itself as a label with a small box at its immediate left. Use a
check box when you want to enable users to choose one or more options — for example, a question-
naire asking which operating systems the user has tried (e.g., Windows XP, Windows Vista, Linux, and
so on).

After looking next at the important properties and events of these two controls, starting with the
RadioButton, you’ll move on to a quick example of their use.

RadioButton Properties
Because the RadioButton control derives from ButtonBase and because you’ve already seen this in the
example that used the Button control earlier, there are only a few properties to describe (shown in
Table 15-7). For a complete list, please refer to the .NET Framework SDK documentation.

TABLE 15-7: Common RadioButton Control Properties

PROPERTY DESCRIPTION

Appearance A radio button can be displayed either as a label with a circular check to the left, middle,
or right of it, or as a standard button. When it is displayed as a button, the control
appears pressed when selected, and not pressed otherwise.

AutoCheck When true, a black point is displayed when the user clicks the radio button. When
false, the radio button must be manually checked in code from the Click event han-
dler.

CheckAlign Used to change the alignment of the check box portion of the radio button. The default
is ContentAlignment.MiddleLeft.

Checked Indicates the status of the control. It is true if the control is displaying a black point, and
false otherwise.

RadioButton Events
You will typically use only one event when working with RadioButton controls, but many others can be
subscribed to. Only the two described in Table 15-8 are covered in this chapter, and the second event
is mentioned only to highlight a subtle difference between the two.

466 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

TABLE 15-8: Common RadioButton Control Events

EVENT DESCRIPTION

CheckedChanged Sent when the check of the RadioButton changes.

Click Sent every time the RadioButton is clicked. This is not the same as the CheckedChange

event, because clicking a RadioButton two or more times in succession changes the
Checked property only once — and only if it wasn’t checked already. Moreover, if
the AutoCheck property of the button being clicked is false, then the button will not
be checked at all, and only the Click event will be sent.

CheckBox Properties
As you would imagine, the properties and events of this control are very similar to those of the
RadioButton, but Table 15-9 describes two new ones.

TABLE 15-9: New CheckBox Control Properties

PROPERTY DESCRIPTION

CheckState Unlike the radio button, a check box can have three states: Checked, Indeterminate,
and Unchecked. When the state of the check box is Indeterminate, the control check
next to the label is usually grayed out, indicating that either the current value of the
check is not valid; for some reason cannot be determined (e.g., the check indicates
the read-only state of files, and two are selected, of which one is read-only and the
other is not); or has no meaning under the current circumstances.

ThreeState When false, the user will not be able to change the CheckState state to
Indeterminate. You can, however, still change the CheckState property to
Indeterminate from code.

CheckBox Events
You’ll normally use only one or two events on this control. Although the CheckChanged event exists on
both the RadioButton and the CheckBox controls, the effects of the events differ. Table 15-10 describes
the CheckBox events.

This concludes coverage of the events and properties of the RadioButton and CheckBox controls; but
before looking at an example using these, let’s take a look at the GroupBox control, which was men-
tioned earlier.

The GroupBox Control
The GroupBox control is often used to logically group a set of controls such as the RadioButton and
CheckBox, and to provide a caption and a frame around this set.

The RadioButton and CheckBox Controls ❘ 467

TABLE 15-10: CheckBox Control Events

EVENT DESCRIPTION

CheckedChanged Occurs whenever the Checked property of the check box changes. Note
that in a CheckBox where the ThreeState property is true, it is possible to
click the check box without changing the Checked property. This happens
when the check box changes from Checked to Indeterminate status.

CheckStateChanged Occurs whenever the CheckedState property changes. As Checked and
Unchecked are both possible values of the CheckedState property, this
event is sent whenever the Checked property changes. In addition, it is also
sent when the state changes from Checked to Indeterminate.

Using the group box is as simple as dragging it onto a form and then dragging the controls it should
contain onto it (but not the reverse — that is, you can’t lay a group box over preexisting controls).
The effect of this is that the parent of the controls becomes the group box, rather than the form, so it is
possible to have more than one radio button selected at any given time. Within the group box, however,
only one radio button can be selected.

The relationship between parent and child probably needs to be explained a bit more. When a control is
placed on a form, the form is said to become the parent of the control, and hence the control is the child
of the form. When you place a GroupBox on a form, it becomes a child of a form. Because a group box
can itself contain controls, it becomes the parent of these controls. As a result, moving the GroupBox

control moves all of the controls placed on it.

Another effect of placing controls on a group box is that it enables you to affect the contained controls
by setting the corresponding property on the group box. For instance, if you want to disable all the
controls within a GroupBox control, you can simply set the Enabled property of the GroupBox to false.

You’ll use the GroupBox control in the following Try It Out.

TRY IT OUT Using RadioButton and CheckBox Controls

In this exercise, you modify the TextBoxControls example you created earlier in this chapter. In that
example, the only possible occupation was programmer. Instead of forcing users to type this out in full,
you will change this text box to a check box. To demonstrate the radio button, you ask users to provide
one more piece of information: their gender.

Change the text box example as follows:

1. Remove the label named labelOccupation and the text box named textBoxOccupation.

2. Add a CheckBox, a GroupBox, and two RadioButton controls, and name the new controls as shown
in Figure 15-7. Notice that the GroupBox control is located on the Containers tab in the Toolbox
panel. Unlike the other controls you’ve used so far, GroupBox is located in the Containers section
of the Toolbox.

3. The Text property of the RadioButton and CheckBox controls should be the same as the names of
the controls without the first three letters, and for the GroupBox the Text property should be Sex.

468 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

FIGURE 15-7

4. Set the Checked property of the checkBoxProgrammer check box to true. Note that the CheckState
property changes automatically to Checked.

5. Set the Checked property of either radioButtonMale or radioButtonFemale to true. Note that
you cannot set both to true. If you try to do this with a second button, the value of the first
RadioButton automatically changes to false.

No more needs to be done for the visual part of the example, but there are a number of changes in the
code. First, you need to remove all the references to the text box that you’ve removed. Using the existing
code, complete the following steps:

1. In the ValidateOK method, remove the test for the textBoxOccupation background:

private void ValidateOK()
{
// Set the OK button to enabled if all the Tags are true.
buttonOK.Enabled = (textBoxName.BackColor != Color.Red &&

textBoxAddress.BackColor != Color.Red &&
textBoxAge.BackColor != Color.Red);

}
Code snippet Chapter15\Radio and Check Buttons\Form1.cs

2. Remove the textBoxOccupation_Validating method entirely.

3. Remove the reference from buttonOK_Click.

How It Works

Because you are using a check box, rather than a text box, you know that users cannot enter any invalid
information because they will always be either a programmer or not.

The RadioButton and CheckBox Controls ❘ 469

You also know that the user is either male or female, and because you set the property of one of the radio
buttons to true, the user is prevented from choosing an invalid value. Therefore, the only thing left to do
is change the help text and the output. You do this in the button event handlers:

private void buttonHelp_Click(object sender, System.EventArgs e)
{

// Write a short description of each TextBox in the Output TextBox.
string output;

output = "Name = Your name\r\n";
output += "Address = Your address\r\n";
output += "Programmer = Check ‘Programmer’ if you are a programmer\r\n";
output += "Sex = Choose your sex\r\n";
output += "Age = Your age";

// Insert the new text.
this.textBoxOutput.Text = output;

}

Only the help text is changed, so there is nothing surprising in the help method. Slightly more interesting
is the OK method:

private void buttonOK_Click(object sender, EventArgs e)
{
// No testing for invalid values is done, as that should
// not be necessary.

string output;

// Concatenate the text values of the four TextBoxes.
output = "Name: " + this.textBoxName.Text + "\r\n";
output += "Address: " + this.textBoxAddress.Text + "\r\n";
output += "Occupation: " + (string)(checkBoxProgrammer.Checked ?

"Programmer": "Not a programmer") + "\r\n";
output += "Sex: " + (string)(radioButtonFemale.Checked ? "Female":

"Male") + "\r\n";
output += "Age: " + this.textBoxAge.Text;

// Insert the new text.
this.textBoxOutput.Text = output;

}

The first of the highlighted lines is the line in which the user’s occupation is printed. You investigate the
Checked property of the CheckBox and if it is true, then you write the string Programmer. If it is false, then
you write Not a programmer.

The second line examines only the radio button radioButtonFemale. If the Checked property is true on
that control, then you know that the user claims to be female. If it is false, then you know that the user
claims to be male. It is possible to start a program without any checked radio buttons, but because you
checked one of the radio buttons at design time, you can be certain that one of the two radio buttons will
always be checked.

When you run the example now, you should get a result similar to what is shown in Figure 15-8.

470 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

FIGURE 15-8

THE RICHTEXTBOX CONTROL

Like the normal TextBox, the RichTextBox control is derived from TextBoxBase. Because of this, it
shares a number of features with the TextBox, but is much more diverse. Whereas a TextBox is com-
monly used for the purpose of obtaining short text strings from the user, the RichTextBox is used
to display and enter formatted text (e.g., bold, underline, and italic). It does so using a standard for
formatted text called Rich Text Format, or RTF.

In the previous example, you used a standard TextBox. You could just as well have used a RichTextBox

to do the job. In fact, as shown in the example later, you can remove the TextBox name textBoxOutput

and insert a RichTextBox in its place with the same name, and the example behaves exactly as it did
before.

RichTextBox Properties
If this kind of text box is more advanced than the one you explored in the previous section, you’d
expect there to be more properties that can be used, and you’d be correct. Table 15-11 describes the
most commonly used properties of the RichTextBox.

As you can see from the preceding list, most of the new properties are related to a selection. This is
because any formatting you will be applying when users are working on their text will probably be
done on a selection made by the user. In case no selection is made, the formatting starts from the point
in the text where the cursor is located, called the insertion point.

The RichTextBox Control ❘ 471

TABLE 15-11: Common RichTextBox Control Properties

PROPERTY DESCRIPTION

CanRedo true when the last undone operation can be reapplied using Redo.

CanUndo true if it is possible to undo the last action on the RichTextBox. Note that
CanUndo is defined in TextBoxBase, so it is available to TextBox controls
as well.

RedoActionName Holds the name of an action that would be performed by the Redo

method.

DetectUrls Set to true to make the control detect URLs and format them (underline,
as in a browser).

Rtf Corresponds to the Text property, except that this holds the text in RTF.

SelectedRtf Use this to get or set the selected text in the control, in RTF. If you copy
this text to another application — Word, for example — it will retain all
formatting.

SelectedText As with SelectedRtf, you can use this property to get or set the selected
text. However, unlike the RTF version of the property, all formatting is lost.

SelectionAlignment Represents the alignment of the selected text. It can be Center, Left, or
Right.

SelectionBullet Use this to determine whether the selection is formatted with a bullet in
front of it, or use it to insert or remove bullets.

BulletIndent Specifies the number of pixels a bullet should be indented.

SelectionColor Changes the color of the text in the selection.

SelectionFont Changes the font of the text in the selection.

SelectionLength Set or retrieve the length of a selection.

SelectionType Holds information about the selection. It will indicate whether one or more
OLE objects are selected or if only text is selected.

ShowSelectionMargin If true, a margin will be shown at the left of the RichTextBox. This makes
it easier for the user to select text.

UndoActionName Gets the name of the action that will be used if the user chooses to undo
something.

SelectionProtected You can specify that certain parts of the text should not be changed by
setting this property to true.

472 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

RichTextBox Events
Most of the events used by the RichTextBox control are the same as those used by the TextBox control,
but Table 15-12 presents a few new ones of interest.

TABLE 15-12: TextBox Control Events

EVENT DESCRIPTION

LinkClicked Sent when a user clicks on a link within the text.

Protected Sent when a user attempts to modify text that has been marked as protected.

SelectionChanged Sent when the selection changes. If for some reason you don’t want the user to
change the selection, you can prevent the change here.

In the next Try It Out, you create a very basic text editor. The example demonstrates how to change
basic formatting of text and how to load and save the text from the RichTextBox. For the sake of
simplicity, the example loads from and saves to a fixed file.

TRY IT OUT Using a RichTextBox

As always, you start by designing the form:

1. Create a new C# Windows application called Simple Text Editor in the C:\BegVCSharp\Chapter15
directory.

2. Create the form as shown in Figure 15-9. The text box named textBoxSize should be a TextBox

control. The text box named RichTextBoxText should be a RichTextBox control.

FIGURE 15-9

3. Name the controls as indicated in Figure 15-9.

4. Apart from the text boxes, set the Text of all controls to match the names, except for the first part
of the name describing the type of the control.

5. Change the Text property of the textBoxSize text box to 10.

The RichTextBox Control ❘ 473

6. Anchor the controls as shown in the following table:

CONTROL NAME ANCHOR VALUE

buttonLoad and buttonSave Bottom

richTextBoxText Top, Left, Bottom, Right

All others Top

7. Set the MinimumSize property of the form to match the Size property.

How It Works

That concludes the visual part of the example. Moving straight to the code, double-click the Bold button
to add the Click event handler to the code. Here is the code for the event:

private void buttonBold_Click(object sender, EventArgs e)
{

Font oldFont;
Font newFont;

oldFont = this.richTextBoxText.SelectionFont;

if (oldFont.Bold)
newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Bold);

else
newFont = new Font(oldFont, oldFont.Style | FontStyle.Bold);

this.richTextBoxText.SelectionFont = newFont;
this.richTextBoxText.Focus();

}

Code snippet Chapter15\Simple Text Editor\Form1.cs

Begin by getting the font that is used in the current selection and assigning it to a local variable, oldFont.
Then, check whether this selection is already bold. If it is, remove the bold setting; otherwise, set it. You
create a new font using oldFont as the prototype but add or remove the bold style as needed.

Finally, you assign the new font to the selection and return focus to the RichTextBox.

The event handlers for buttonItalic and buttonUnderline are the same as shown earlier except that you
are checking the appropriate styles. Double-click the two buttons Italic and Underline and add this code:

private void buttonUnderline_Click(object sender, EventArgs e)
{
Font oldFont;
Font newFont;

// Get the font that is being used in the selected text.
oldFont = this.richTextBoxText.SelectionFont;

// If the font is using Underline style now, we should remove it.
if (oldFont.Underline)

newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Underline);

474 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

else
newFont = new Font(oldFont, oldFont.Style | FontStyle.Underline);

// Insert the new font.
this.richTextBoxText.SelectionFont = newFont;
this.richTextBoxText.Focus();

}

private void buttonItalic_Click(object sender, EventArgs e)
{

Font oldFont;
Font newFont;

// Get the font that is being used in the selected text.
oldFont = this.richTextBoxText.SelectionFont;

// If the font is using Italic style now, we should remove it.
if (oldFont.Italic)
newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Italic);

else
newFont = new Font(oldFont, oldFont.Style | FontStyle.Italic);

// Insert the new font.
this.richTextBoxText.SelectionFont = newFont;
this.richTextBoxText.Focus();

}

Double-click the last formatting button, Center, and add the following code:

private void buttonCenter_Click(object sender, EventArgs e)
{

if (this.richTextBoxText.SelectionAlignment == HorizontalAlignment.Center)
this.richTextBoxText.SelectionAlignment = HorizontalAlignment.Left;

else
this.richTextBoxText.SelectionAlignment = HorizontalAlignment.Center;

this.richTextBoxText.Focus();
}

Here, you must check another property, SelectionAlignment, to determine whether the text in the selec-
tion is already centered. You do this because you want the button to behave like a toggle button — if the
text is centered it becomes left-justified; otherwise, it becomes centered. HorizontalAlignment is an enu-
meration with values Left, Right, Center, Justify, and NotSet. In this case, you simply check whether
Center is set. If it is, then you set the alignment to left. If it isn’t, then you set it to Center.

The final formatting your little text editor will be able to perform is setting the size of text. You’ll add two
event handlers for the text box Size: one for controlling the input, and one to detect when the user has
finished entering a value.

Find and double-click the KeyPress and Validated events for the textBoxSize control in the Events list of
the Properties window to add the handlers to the code.

Unlike the Validating event you used earlier, the Validated event occurs after all validation has
completed. Both of the events use a helper method called ApplyTextSize that takes a string with the size
of the text:

The RichTextBox Control ❘ 475

private void textBoxSize_KeyPress(object sender, KeyPressEventArgs e)
{

if ((e.KeyChar < 48 || e.KeyChar > 57) &&
e.KeyChar != 8 && e.KeyChar != 13)

e.Handled = true;
else if (e.KeyChar == 13)
{

TextBox txt = (TextBox)sender;

if (txt.Text.Length > 0)
ApplyTextSize(txt.Text);

e.Handled = true;
this.richTextBoxText.Focus();

}
}

private void textBoxSize_Validated(object sender, EventArgs e)
{

ApplyTextSize(((TextBox)sender).Text);
this.richTextBoxText.Focus();

}

private void ApplyTextSize(string textSize)
{

float newSize = Convert.ToSingle(textSize);
FontFamily currentFontFamily;
Font newFont;

currentFontFamily = this.richTextBoxText.SelectionFont.FontFamily;
newFont = new Font(currentFontFamily, newSize);

this.richTextBoxText.SelectionFont = newFont; }

The KeyPress event prevents the user from typing anything but an integer and calls ApplyTextSize if the
user presses Enter. The work you are interested in takes place in the helper method ApplyTextSize().
It starts by converting the size from a string to a float. As stated previously, you prevented users from
entering anything but integers, but when you create the new font, you need a float, so you convert it to
the correct type.

After that, you get the family to which the font belongs and create a new font from that family with the
new size. Finally, you set the font of the selection to the new font.

That’s all the formatting you can do, but some is handled by the RichTextBox itself. If you try to run the
example now, you will be able to set the text to bold, italic, and underline, and you can center the text. That
is what you expect, but note something else that is interesting: Try to type a Web address — for example,
www.wrox.com — in the text. The text is recognized by the control as an Internet address, is underlined,
and the mouse pointer changes to a hand when you move it over the text. If you assume that you can click
it and be brought to the page, you are almost correct. You first need to handle the event that is sent when
the user clicks a link: LinkClicked.

Find the LinkClicked event in the Events list of the Properties window and double-click it to add an event
handler to the code. You haven’t seen this event handler before — it is used to provide the text of the link
that was clicked. The handler is surprisingly simple:

476 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

private void richTextBoxText_LinkClicked (object sender,
System.Windows.Forms.LinkClickedEventArgs e)

{
System.Diagnostics.Process.Start(e.LinkText);

}

This code opens the default browser if it isn’t open already and navigates to the site to which the link that
was clicked is pointing.

The editing part of the application is now done. All that remains is to load and save the contents of the
control. You use a fixed file to do this. Double-click the Load button and add the following code:

private void buttonLoad_Click(object sender, EventArgs e)
{

try
{
richTextBoxText.LoadFile("Test.rtf");

}
catch (System.IO.FileNotFoundException)
{
MessageBox.Show("No file to load yet");

}
}

That’s it! Nothing else has to be done. Because you are dealing with files, there is always a chance that you
might encounter exceptions, which you have to handle. In the Load method, you handle the exception that is
thrown if the file doesn’t exist. It is equally simple to save the file. Double-click the Save button and add this:

private void buttonSave_Click(object sender, EventArgs e)
{

try
{
richTextBoxText.SaveFile("Test.rtf");

}
catch (System.Exception err)
{
MessageBox.Show(err.Message);

}
}

Run the example now, format some text, and click Save. Clear the text box and click Load, and the text
you just saved should reappear.

When you run it, you should be able to produce something like what is shown in Figure 15-10.

FIGURE 15-10

The ListBox and CheckedListBox Controls ❘ 477

THE LISTBOX AND CHECKEDLISTBOX CONTROLS

List boxes are used to show a list of strings from which one or more can be selected at a time. Just like
check boxes and radio buttons, the list box provides a way to ask users to make one or more selections.
You should use a list box when at design time you don’t know the actual number of values from which
the user can choose (e.g., a list of co-workers). Even if you know all the possible values at design time,
you should consider using a list box if there are a large number of values.

The ListBox class is derived from the ListControl class, which provides the basic functionality for
list-type controls that ship with the .NET Framework.

Another kind of list box available is called CheckedListBox. Derived from the ListBox class, it provides
a list just like the ListBox does, but in addition to the text strings it provides a check for each item in
the list.

ListBox Properties
The properties described in Table 15-13 exist in both the ListBox class and CheckedListBox class unless
indicated.

TABLE 15-13: ListBox Properties

PROPERTY DESCRIPTION

SelectedIndex Indicates the zero-based index of the selected item in the list box. If the list box
can contain multiple selections at the same time, then this property holds the
index of the first item in the selected list.

ColumnWidth Specifies the width of the columns in a list box with multiple columns.

Items The Items collection contains all of the items in the list box. You use the proper-
ties of this collection to add and remove items.

MultiColumn A list box can have more than one column. Use this property to get or set
whether values should be displayed in columns.

SelectedIndices A collection that holds all of the zero-based indices of the selected items in the
list box.

SelectedItem In a list box where only one item can be selected, this property contains the
selected item, if any. In a list box where more than one selection can be made, it
will contain the first of the selected items.

SelectedItems A collection that contains all currently selected items.

continues

478 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

TABLE 15-13 (continued)

PROPERTY DESCRIPTION

SelectionMode You can choose from four different modes of selection from the
ListSelectionMode enumeration in a list box: None: No items can be selected.
One: Only one item can be selected at any time. MultiSimple: Multiple items
can be selected. With this style, when you click an item in the list it becomes
selected and stays selected even if you click another item until you click it again.
MultiExtended: Multiple items can be selected. You use the Ctrl, Shift, and
arrows keys to make selections. Unlike MultiSimple, if you simply click an item
and then another item afterwards, only the second item clicked is selected.

Sorted When set to true, the ListBox alphabetically sorts the items it contains.

Text You saw Text properties on a number of controls, but this one works differently
from any you’ve seen so far. If you set the Text property of the ListBox control,
it searches for an item that matches the text and selects it. If you get the Text

property, the value returned is the first selected item in the list. This property
cannot be used if the SelectionMode is None.

CheckedIndices (CheckedListBox only) A collection that contains indexes of all the items in the
CheckedListBox that have a Checked or Indeterminate state.

CheckedItems (CheckedListBox only) A collection of all the items in a CheckedListBox that are
in a Checked or Indeterminate state.

CheckOnClick (CheckedListBox only) If true, an item will change its state whenever the user
clicks it.

ThreeDCheckBoxes (CheckedListBox only) You can choose between CheckBoxes that are flat or
normal by setting this property.

ListBox Methods
To work efficiently with a list box, you should know a number of methods that can be called.
Table 15-14 describes the most common methods. Unless indicated, the methods belong to both the
ListBox and CheckedListBox classes.

ListBox Events
Normally, the events you will want to be aware of when working with a ListBox or CheckedListBox
are those related to the selections being made by the user. Table 15-15 describes ListBox events.

In the following Try It Out, you create both a ListBox and a CheckedListBox. Users can check items in
the CheckedListBox and then click a button that moves the checked items to the normal ListBox.

The ListBox and CheckedListBox Controls ❘ 479

TABLE 15-14: Common ListBox Methods

METHOD DESCRIPTION

ClearSelected() Clears all selections in the ListBox.

FindString() Finds the first string in the ListBox beginning with a string you specify. For
example, FindString("a")will find the first string in the ListBox beginning
with a.

FindStringExact() Like FindString, but the entire string must be matched.

GetSelected() Returns a value that indicates whether an item is selected.

SetSelected() Sets or clears the selection of an item.

ToString() Returns the currently selected item.

GetItemChecked() (CheckedListBox only) Returns a value indicating whether an item is
checked.

GetItemCheckState() (CheckedListBox only) Returns a value indicating the check state of an item.

SetItemChecked() (CheckedListBox only) Sets the item specified to a Checked state.

SetItemCheckState() (CheckedListBox only) Sets the check state of an item.

TABLE 15-15: ListBox Events

EVENT DESCRIPTION

ItemCheck (CheckedListBox only) Occurs when the check state of one of the list
items changes.

SelectedIndexChanged Occurs when the index of the selected item changes.

TRY IT OUT Working with ListBox Controls

You create the dialog as follows:

1. Create a new Windows application called Lists in the directory C:\BegVCSharp\Chapter15.

2. Add a ListBox, a CheckedListBox, and a Button to the form and change the names as shown in
Figure 15-11.

3. Change the Text property of the button to Move.

4. Change the CheckOnClick property of the CheckedListBox to true.

480 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

FIGURE 15-11

5. Open the Items editor of the CheckedListBox control by clicking the ellipses (. . .). Then enter
One, Two, Three, Four, Five, Six, Seven, Eight, and Nine on separate lines and click OK.

6. Insert one more item in the CheckedListBox, but do this from code like this:

public Form1()
{
InitializeComponent();

checkedListBoxPossibleValues.Items.Add("Ten");
}

Code snippet Chapter15\Lists\Form1.cs

It’s time to add the event handlers. Now you can add some code to move items from the
CheckedListBox to the normal ListBox. When the user clicks the Move button, you want to find
the items that are checked and copy those into the right-hand list box.

7. Double-click the button and enter this code:

private void buttonMove_Click(object sender, EventArgs e)
{

if (checkedListBoxPossibleValues.CheckedItems.Count > 0)
{
listBoxSelected.Items.Clear();
foreach (string item in checkedListBoxPossibleValues.CheckedItems)
{

listBoxSelected.Items.Add(item.ToString());
}
for (int i = 0; i < checkedListBoxPossibleValues.Items.Count; i++)

checkedListBoxPossibleValues.SetItemChecked(i, false);
}

}

How It Works

You start by checking the Count property of the CheckedItems collection. This will be greater than zero
if any items in the collection are checked. You then clear all items in the listBoxSelected list box, and
loop through the CheckedItems collection, adding each item to the listBoxSelected list box. Finally, you
remove all the checks in the CheckedListBox.

The ListView Control ❘ 481

If you run the application now, you will be able to select items on the left side and, by clicking on the Move
button, add the same items to the right side. This concludes the demonstration of ListBoxes and we move
straight on to something a little more exiting: ListViews.

THE LISTVIEW CONTROL

Figure 15-12 shows what is probably the most commonly known ListView in Windows. Even if
Windows now provides a number of additional possibilities for displaying files and folders, you will
recognize some of the options you have in a ListView, such as displaying large icons, details view, and
so on.

FIGURE 15-12

The list view is usually used to present data for which the user is allowed some control over the detail
and style of its presentation. It is possible to display the data contained in the control as columns
and rows much like in a grid, as a single column, or with varying icon representations. The most
commonly used list view is like the one shown earlier, which is used to navigate the folders on a
computer.

The ListView control is easily the most complex control you encounter in this chapter, and cover-
ing all of its aspects is beyond the scope of this book. This chapter provides a solid base for you to
build on by writing an example that utilizes many of the most important features of the ListView

control, including thorough descriptions of the numerous properties, events, and methods that can be
used. You also look at the ImageList control, which is used to store the images used in a ListView

control.

ListView Properties
Table 15-16 describes ListView properties.

ListView Methods
For a control as complex as the ListView, it has surprisingly few methods specific to it, as shown in
Table 15-17.

ListView Events
The ListView control events that you might want to handle are described in Table 15-18.

482 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

TABLE 15-16: ListView Properties

PROPERTY DESCRIPTION

Activation Controls how a user activates an item in the list view. The pos-
sible values are as follows: Standard: This setting reflects what
the user has chosen for his or her machine. OneClick: Clicking
an item activates it. TwoClick: Double-clicking an item acti-
vates it.

Alignment Controls how the items in the list view are aligned. The four
possible values are as follows: Default: If the user drags and
drops an item, it remains where it was dropped. Left: Items are
aligned to the left edge of the ListView control. Top: Items are
aligned to the top edge of the ListView control. SnapToGrid:
The ListView control contains an invisible grid to which the
items will snap.

AllowColumnReorder Set to true, this property enables users to change the order of
the columns in a list view. If you do so, be sure that the routines
that fill the list view are able to insert the items properly, even
after the order of the columns is changed.

AutoArrange Set to true, items will automatically arrange themselves accord-
ing to the Alignment property. If the user drags an item to the
center of the list view and Alignment is Left, the item will auto-
matically jump to the left of the list view. This property is only
meaningful if the View property is LargeIcon or SmallIcon.

CheckBoxes Set to true, every item in the list view will have a CheckBox

displayed to the left of it. This property is only meaningful if the
View property is Details or List.

CheckedIndices CheckedItems Gives you access to a collection of indices and items, respec-
tively, containing the checked items in the list.

Columns A list view can contain columns. This property gives you access
to the collection of columns through which you can add or
remove them.

FocusedItem Holds the item that has focus in the list view. If nothing is
selected, it is null.

FullRowSelect When this property is true and an item is clicked, the entire row
in which the item resides is highlighted. If it is false, then only
the item itself is highlighted.

GridLines Set to true, the list view draws grid lines between rows and
columns. This property is only meaningful when the View prop-
erty is Details.

The ListView Control ❘ 483

TABLE 15-16 (continued)

PROPERTY DESCRIPTION

HeaderStyle Controls how the column headers are displayed. Three styles
are possible: Clickable: The column header works like a button.
NonClickable: The column headers do not respond to mouse
clicks. None: The column headers are not displayed.

HoverSelection When this property is true, the user can select an item in the list
view by hovering the mouse pointer over it.

Items The collection of items in the list view.

LabelEdit When true, the user can edit the content of the first column in a
Details view.

LabelWrap If true, then labels will wrap over as many lines as needed to
display all of the text.

LargeImageList Holds the ImageList, which holds large images. These images
can be used when the View property is LargeIcon.

MultiSelect Set to true to allow the user to select multiple items.

Scrollable Set this property to true to display scroll bars.

SelectedIndices SelectedItems Contains the collections that hold the indices and items that are
selected, respectively.

SmallImageList When the View property is SmallIcon, this property holds the
ImageList that contains the images used.

Sorting Enables the list view to sort the items it contains. There are three
possible modes: Ascending, Descending, and None.

StateImageList The ImageList contains masks for images that are used as
overlays on the LargeImageList and SmallImageList images
to represent custom states.

TopItem Returns the item at the top of the list view.

View A list view can display its items in four basic modes: LargeIcon:
All items are displayed with a large icon (32 × 32) and a label.
SmallIcon: All items are displayed with a small icon (16 × 16) and
a label. List: Only one column is displayed. That column can
contain an icon and a label. Details: Any number of columns
can be displayed. Only the first column can contain an icon. Tile
(only available on Windows XP and newer Windows platforms):
Displays a large icon with a label and sub-item information to
the right of the icon.

484 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

TABLE 15-17: ListView Methods

METHOD DESCRIPTION

BeginUpdate() Tells the list view to stop drawing updates until EndUpdate() is called. This is
useful when you are inserting many items at once because it stops the view
from flickering, and dramatically increases speed.

Clear() Clears the list view completely. All items and columns are removed.

EndUpdate() Call this method after calling BeginUpdate. When you call this method, the list
view draws all of its items.

EnsureVisible() Tells the list view to scroll itself to make the item with the index you specified
visible.

GetItemAt() Returns the ListViewItem at position x,y in the list view.

TABLE 15-18: Common ListView Control Events

EVENT DESCRIPTION

AfterLabelEdit Occurs after a label has been edited

BeforeLabelEdit Occurs before a user begins editing a label

ColumnClick Occurs when a column is clicked

ItemActivate Occurs when an item is activated

ListViewItem
An item in a list view is always an instance of the ListViewItem class. The ListViewItem holds informa-
tion such as text and the index of the icon to display. ListViewItem objects have a SubItems property
that holds instances of another class, ListViewSubItem. These sub-items are displayed if the ListView

control is in Details or Tile mode. Each of the sub-items represents a column in the list view. The main
difference between the sub-items and the main items is that a sub-item cannot display an icon.

You add ListViewItems to the ListView through the Items collection, and ListViewSubItems to a
ListViewItem through the SubItems collection on the ListViewItem.

ColumnHeader
To make a list view display column headers, you add instances of a class called ColumnHeader to the
Columns collection of the ListView. ColumnHeaders provide a caption for the columns that can be
displayed when the ListView is in Details mode.

The ImageList Control
The ImageList control provides a collection that can be used to store images used in other controls on
your form. You can store images of any size in an image list, but within each control every image must

The ListView Control ❘ 485

be of the same size. In the case of the ListView, this means that you need two ImageList controls in
order to display both large and small images.

The ImageList is the first control you visit in this chapter that does not display itself at runtime. When
you drag it to a form you are developing, it is not placed on the form itself, but below it in a tray, which
contains all such components. This nice feature is provided to prevent controls that are not part of the
user interface from cluttering up the Forms Designer. The control is manipulated in exactly the same
way as any other control, except that you cannot move it onto the form.

You can add images to the ImageList at both design time and runtime. If you know at design time what
images you want to display, then you can add the images by clicking the button at the right side of the
Images property. This will bring up a dialog in which you can browse to the images you want to insert.
If you choose to add the images at runtime, you add them through the Images collection.

The best way to learn about using a ListView control and its associated image lists is through an
example. In the following Try It Out, you create a dialog with a list view and two image lists. The list
view will display files and folders on your hard drive. For the sake of simplicity, you will not extract
the correct icons from the files and folders, but instead use a standard folder icon for the folders and a
text icon for files.

By double-clicking the folders, you can browse to the folder tree, and a Back button is provided to
move up the tree. Five radio buttons are used to change the mode of the list view at runtime. If a file is
double-clicked, you’ll attempt to execute it.

TRY IT OUT Working with the ListView Control

As always, you start by creating the user interface:

1. Create a new Windows application called ListView in the C:\BegVCSharp\Chapter15 directory.

2. Add a ListView, a Button, a Label, and a GroupBox control to the form. Then add five radio but-
tons to the group box. Your form should look like the one shown in Figure 15-13. To set the
width of the Label control, set its AutoSize property to False. Make the Label control as wide
as the ListView control.

FIGURE 15-13

486 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

3. Name the controls as shown in Figure 15-13. The ListView will not display its name as in the
figure; an extra item is added just to show the name here — you don’t need to add this item.

4. Change the Text properties of the radio buttons to be the same as the name, except for the control
names, and set the Text property of the form to ListView.

5. Clear the Text property of the label.

6. Add two ImageList controls to the form by double-clicking this control’s icon in the Toolbox — it
is located in the Components section. Rename the controls imageListSmall and imageListLarge.

7. Change the Size property of the ImageList named imageListLarge to 32, 32.

8. Click the button to the right of the Images property of the imageListLarge image list to bring up
the dialog from which you can browse to the images you want to insert.

9. Click Add and browse to the folder ListView in the code for this chapter. The files are Folder

32x32.ico and Text 32x32.ico.

10. Make sure that the folder icon is at the top of the list.

11. Repeat steps 8 and 9 with the other image list, imageListSmall, choosing the 16 × 16 versions of
the icons.

12. Set the Checked property of the radio button radioButtonDetails to true.

13. Set the properties shown in the following table on the list view:

PROPERTY VALUE

LargeImageList imageListLarge

SmallImageList imageListSmall

View Details

Adding the Event Handlers

That concludes the user interface, and you can move on to the code. First, you need a field to hold the
folders you browsed through in order to be able to return to them when the Back button is clicked. You
will store the absolute path of the folders, so choose a StringCollection for the job:

partial class Form1: Form
{
private System.Collections.Specialized.StringCollection folderCol;

You didn’t create any column headers in the Forms Designer, so you have to do that now, using a method
called CreateHeadersAndFillListView():

private void CreateHeadersAndFillListView()
{
ColumnHeader colHead;

colHead = new ColumnHeader();
colHead.Text = "Filename";
listViewFilesAndFolders.Columns.Add(colHead); // Insert the header

The ListView Control ❘ 487

colHead = new ColumnHeader();
colHead.Text = "Size";
listViewFilesAndFolders.Columns.Add(colHead); // Insert the header

colHead = new ColumnHeader();
colHead.Text = "Last accessed";
listViewFilesAndFolders.Columns.Add(colHead); // Insert the header

}

Code snippet Chapter15\ListView\Form1.cs.

You start by declaring a single variable, colHead, which is used to create the three column headers. For
each of the three headers, you declare the variable as new and assign the Text to it before adding it to the
Columns collection of the ListView.

The final initialization of the form as it is displayed the first time is to fill the list view with files and folders
from your hard disk. This is done in another method:

private void PaintListView(string root)
{
try
{

ListViewItem lvi;
ListViewItem.ListViewSubItem lvsi;

if (string.IsNullOrEmpty(root))
return;

DirectoryInfo dir = new DirectoryInfo(root);
DirectoryInfo[] dirs = dir.GetDirectories();
FileInfo[] files = dir.GetFiles();

listViewFilesAndFolders.Items.Clear();
labelCurrentPath.Text = root;
listViewFilesAndFolders.BeginUpdate();

foreach (DirectoryInfo di in dirs)
{
lvi = new ListViewItem();
lvi.Text = di.Name;
lvi.ImageIndex = 0;
lvi.Tag = di.FullName;

lvsi = new ListViewItem.ListViewSubItem();
lvsi.Text = "";
lvi.SubItems.Add(lvsi);

lvsi = new ListViewItem.ListViewSubItem();
lvsi.Text = di.LastAccessTime.ToString();
lvi.SubItems.Add(lvsi);
listViewFilesAndFolders.Items.Add(lvi);

}

488 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

foreach (FileInfo fi in files)
{

lvi = new ListViewItem();
lvi.Text = fi.Name;
lvi.ImageIndex = 1;
lvi.Tag = fi.FullName;

lvsi = new ListViewItem.ListViewSubItem();
lvsi.Text = fi.Length.ToString();
lvi.SubItems.Add(lvsi);

lvsi = new ListViewItem.ListViewSubItem();
lvsi.Text = fi.LastAccessTime.ToString();
lvi.SubItems.Add(lvsi);
listViewFilesAndFolders.Items.Add(lvi);

}

listViewFilesAndFolders.EndUpdate();
}
catch (System.Exception err)
{
MessageBox.Show("Error: " + err.Message);

}
}

Code snippet Chapter15\ListView\Form1.cs.

How It Works

Before the first of the two foreach blocks, you call BeginUpdate() on the ListView control. Remember
that the BeginUpdate() method on the ListView signals the ListView control to stop updating its visible
area until EndUpdate() is called. If you did not call this method, then filling the list view would be slower
and the list may flicker as the items are added. Just after the second foreach block, you call EndUpdate(),
which causes the ListView control to draw the items you filled it with.

The two foreach blocks contain the code you are interested in. You start by creating a new instance of a
ListViewItem and then setting the Text property to the name of the file or folder you are going to insert.
The ImageIndex of the ListViewItem refers to the index of an item in one of the image lists. Therefore, it
is important that the icons have the same indexes in the two image lists. You use the Tag property to save
the fully qualified path to both folders and files, for use when the user double-clicks the item.

Next, you create the two sub-items. These are simply assigned the text to display and then added to the
SubItems collection of the ListViewItem.

Finally, the ListViewItem is added to the Items collection of the ListView. The ListView is smart enough
to simply ignore the sub-items if the view mode is anything but Details, so you add the sub-items no matter
what the view mode is now.

Note that some aspects of the code are not discussed here — namely, the lines that actually obtain infor-
mation about the files:

// Get information about the root folder.
DirectoryInfo dir = new DirectoryInfo(root);

The ListView Control ❘ 489

// Retrieve the files and folders from the root folder.
DirectoryInfo[] dirs = dir.GetDirectories();
FileInfo[] files = dir.GetFiles();

These lines use classes from the System.IO namespace for accessing files, so you need to add the following
to the using region at the top of the code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Windows.Forms;
using System.IO;

You learn more about file access and System.IO in Chapter 21, but to give you an idea of what’s going
on, the GetDirectories() method of the DirectoryInfo object returns a collection of objects that rep-
resents the folders in the directory you’re looking in, and the GetFiles() method returns a collection of
objects that represents the files in the current directory. You can loop through these collections, as you
just did, using the object’s Name property to return the name of the relevant directory or file, and create a
ListViewItem to hold this string.

All that remains to be done in order for the ListView to display the root folder is to call the two functions
in the constructor of the form. At the same time, you instantiate the folderCol StringCollection with the
root folder:

InitializeComponent();

folderCol = new System.Collections.Specialized.StringCollection();
CreateHeadersAndFillListView();
PaintListView(@"C:\");
folderCol.Add(@"C:\");

To enable users to double-click an item in the ListView to browse the folders, you need to subscribe to the
ItemActivate event. Select the ListView in the designer and double-click the ItemActivate event in the
Events list of the Properties window.

The corresponding event handler looks like this:

private void listViewFilesAndFolders_ItemActivate(object sender, EventArgs e)
{
System.Windows.Forms.ListView lw = (System.Windows.Forms.ListView)sender;
string filename = lw.SelectedItems[0].Tag.ToString();
if (lw.SelectedItems[0].ImageIndex != 0)
{

try
{
System.Diagnostics.Process.Start(filename);

}
catch { return; }

}
else
{

PaintListView(filename);
folderCol.Add(filename);

}}

490 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

The Tag of the selected item contains the fully qualified path to the file or folder that was double-clicked.
You know that the image with index 0 is a folder, so you can determine whether the item is a file or a
folder by looking at that index. If it is a file, then you attempt to load it. If it is a folder, then you call
PaintListView() with the new folder and then add the new folder to the folderCol collection.

Before you move on to the radio buttons, complete the browsing capabilities by adding the Click event to
the Back button. Double-click the button and fill the event handler with the following code:

private void buttonBack_Click(object sender, EventArgs e)
{

if (folderCol.Count > 1)
{
PaintListView(folderCol[folderCol.Count - 2].ToString());
folderCol.RemoveAt(folderCol.Count - 1);

}
else
PaintListView(folderCol[0].ToString());

}

If there is more than one item in the folderCol collection, then you are not at the root of the browser, and
you call PaintListView() with the path to the previous folder. The last item in the folderCol collection is
the current folder, which is why you need to take the second to last item. You then remove the last item in
the collection and make the new last item the current folder. If there is only one item in the collection, then
you simply call PaintListView() with that item.

Now you just need to be able to change the view type of the ListView. Double-click each of the radio
buttons and add the following code:

private void radioButtonLargeIcon_CheckedChanged(object sender, EventArgs e)
{
RadioButton rdb = (RadioButton)sender;
if (rdb.Checked)

this.listViewFilesAndFolders.View = View.LargeIcon;
}

private void radioButtonSmallIcon_CheckedChanged(object sender, EventArgs e)
{
RadioButton rdb = (RadioButton)sender;
if (rdb.Checked)

listViewFilesAndFolders.View = View.SmallIcon;
}

private void radioButtonList_CheckedChanged(object sender, EventArgs e)
{
RadioButton rdb = (RadioButton)sender;
if (rdb.Checked)

listViewFilesAndFolders.View = View.List;
}

private void radioButtonDetails_CheckedChanged(object sender, EventArgs e)
{
RadioButton rdb = (RadioButton)sender;
if (rdb.Checked)

listViewFilesAndFolders.View = View.Details;
}

The TabControl Control ❘ 491

private void radioButtonTile_CheckedChanged(object sender, EventArgs e)
{

RadioButton rdb = (RadioButton)sender;
if (rdb.Checked)
listViewFilesAndFolders.View = View.Tile;

}

Code snippet Chapter15\ListView\Form1.cs.

You check the radio button to see whether it has been changed to Checked — if it has, then you set the
View property of the ListView accordingly.

That concludes the ListView example. When you run it, you should see something like what is shown in
Figure 15-14.

FIGURE 15-14

THE TABCONTROL CONTROL

The TabControl control provides an easy way to organize a dialog into logical parts that can be
accessed through tabs located at the top of the control. A TabControl contains TabPages that essen-
tially work like a GroupBox control, in that they group controls together, although they are somewhat
more complex.

Using the TabControl is easy. You simply add the number of tabs you want to display to the con-
trol’s collection of TabPage objects and then drag the controls you want to display to the respective
pages.

TabControl Properties
The properties of the TabControl (shown in Table 15-19) are largely used to control the appearance of
the container of TabPage objects — in particular, the tabs displayed.

492 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

TABLE 15-19: TabControl Properties

PROPERTY DESCRIPTION

Alignment Controls where on the TabControl the tabs are displayed. The default is at the
top.

Appearance The Appearance property controls how the tabs are displayed. The tabs can be
displayed as normal buttons or with a flat style.

HotTrack If set to true, the appearance of the tabs on the control changes as the mouse
pointer passes over them.

Multiline If set to true, it is possible to have several rows of tabs.

RowCount RowCount returns the number of rows of tabs currently displayed.

SelectedIndex Returns or sets the index of the selected tab.

SelectedTab SelectedTab returns or sets the selected tab. Note that this property works on
the actual instances of the TabPages.

TabCount TabCount returns the total number of tabs.

TabPages The collection of TabPage objects in the control. Use this collection to add and
remove TabPage objects.

Working with the TabControl
The TabControl works slightly differently from all other controls you’ve seen so far. The control
itself is little more than a container for the tab pages, and is used to display them. When you
double-click a TabControl in the Toolbox, you are presented with a control that already has two
TabPages.

When you select the control, a small button with a triangle appears at the control’s upper-right cor-
ner. When you click this button, a small window is unfolded. Called the Actions window, this is
provided to enable you to easily access selected properties and methods of the control. You may have
noticed this earlier, as many controls in Visual Studio include this feature, but the TabControl is the
first of the controls in this chapter that actually enables you to do anything interesting in the Actions
Window. The Actions Window of the TabControl enables you to easily add and remove TabPages at
design time.

The procedure outlined in the preceding paragraph for adding tabs to the TabControl is provided in
order to quickly get you up and running with the control. However, if you want to change the behavior
or style of the tabs, you should use the TabPages dialog — accessed through the button when you
select TabPages in the Properties window. The TabPages property is also the collection used to access
the individual pages on a TabControl.

Once you’ve added the TabPages you need, you can add controls to the pages in the same way you did
earlier with the GroupBox. The following Try It Out demonstrates the basics of the control.

The TabControl Control ❘ 493

TRY IT OUT Working with TabPages

Follow these steps to create a Windows application that demonstrates how to develop controls located on
different pages on the TabControl:

1. Create a new Windows application called TabControl in the directory C:\BegVCSharp\Chapter15.

2. Drag a TabControl control from the Toolbox onto the form. Like the GroupBox, the TabControl is
found on the Containers tab in the Toolbox.

3. Find the TabPages property and click the button to the right of it after selecting it, to bring up the
TabPage Collection Editor.

4. Change the Text property of the tab pages to Tab One and Tab Two, respectively, and click OK to
close the dialog.

5. You can select the tab pages to work on by clicking on the tabs at the top of the control. Select the
tab with the text Tab One. Drag a button onto the control. Be sure to place the button within the
frame of the TabControl. If you place it outside, then the button will be placed on the form, rather
than on the control.

6. Change the name of the button to buttonShowMessage and change the Text of the button to Show
Message.

7. Click the tab with the Text property Tab Two. Drag a TextBox control onto the TabControl surface.
Name this control.

8. The two tabs should look as shown in Figures15-15 and 15-16.

FIGURE 15-15

FIGURE 15-16

You are now ready to access the controls. If you run the code as it is, you will see the tab pages displayed
properly. All that remains to do to demonstrate the TabControl is to add some code such that when users
click the Show Message button on one tab, the text entered in the other tab will be displayed in a message

494 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

box. First, you add a handler for the Click event by double-clicking the button on the first tab and adding
the following code:

private void buttonShowMessage_Click(object sender, EventArgs e)
{

MessageBox.Show(textBoxMessage.Text);
}

How It Works

You access a control on a tab just as you would any other control on the form. You get the Text property
of the TextBox and display it in a message box.

Earlier in the chapter, you saw that it is only possible to have one radio button selected at a time on a form
(unless you put them in a group box). The TabPages work precisely the same way group boxes do, so it
is possible to have multiple sets of radio buttons on different tabs without the need for group boxes. In
addition, as you saw in the buttonShowMessage_Click method, it is possible to access the controls located
on tabs other than the one that the current control is on.

The last thing you must know to be able to work with a TabControl is how to determine which tab is
currently being displayed. You can use two properties for this purpose: SelectedTab and SelectedIndex.
As the names imply, SelectedTab returns the TabPage object to you or null if no tab is selected, and
SelectedIndex returns the index of the tab or –1 if no tab is selected. It is left to you in Exercise 2 to
experiment with these properties.

SUMMARY

In this chapter, you visited some of the controls most commonly used for creating Windows applica-
tions, and you saw how they can be used to create simple, yet powerful, user interfaces. The chapter
covered the properties and events of these controls, provided examples demonstrating their use, and
explained how to add event handlers for the particular events of a control.

In the next chapter, you look at some of the more complex controls and features of creating Windows
Forms applications.

Exercises ❘ 495

EXERCISES

1. In previous versions of Visual Studio, it was quite difficult to get your own applications to display
their controls in the style of the current Windows version. For this exercise, locate where, in a Win-
dows Forms application, visual styles are enabled in a new Windows Forms project. Experiment
with enabling and disabling the styles and see how what you do affects the controls on the forms.

2. Modify the TabControl example by adding a couple of tab pages and displaying a message box
with the following text: You changed the current tab to <Text of the current tab> from <Text of
the tab that was just left>.

3. In the ListView example, you used the tag property to save the fully qualified path to the fold-
ers and files in the ListView. Change this behavior by creating a new class that is derived from
ListViewItem and use instances of this new class as the items in the ListView. Store the informa-
tion about the files and folders in the new class using a property named FullyQualifiedPath.

Answers to Exercises can be found in Appendix A.

496 ❘ CHAPTER 15 BASIC WINDOWS PROGRAMMING

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Labels Use the Label and LinkedLabel controls to display information to users.

Buttons Use the Button control and the corresponding Click event to enable users to
tell the application that they want some action to run.

TextBoxes Use the TextBox and RichTextBox controls to enable users to enter text as
either plain or formatted.

Selection controls Distinguish between the CheckBox and the RadioButton and how to use them.
You also learned how to group the two with the GroupBox control and how that
affected the behavior of the controls.

ListBoxes Use the CheckedListBox to provide lists from which the user can select items by
checking a check box. You also learned how to use the more common ListBox
control to provide a list similar to that of the CheckedListBox control, but without
the check boxes.

ListViews Use the ListView and ImageList controls to provide a list that users are able to
view in a number of different ways.

TabControls Use the TabControl to group controls on different pages on the same form that
the user is able to select at will.

16
Advanced Windows Forms
Features

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to use three common controls to create rich-looking menus,
toolbars, and status bars

➤ How to create MDI applications

➤ How to create your own controls

In the previous chapter, you looked at some of the controls most commonly used in Windows
application development. With controls such as these, it is possible to create impressive dialogs,
but very few full-scale Windows applications have a user interface consisting solely of a single
dialog. Rather, these applications use a Single Document Interface (SDI) or a Multiple Docu-
ment Interface (MDI). Applications of either of these types usually make heavy use of menus
and toolbars, neither of which were discussed in the previous chapter, but I’ll make amends for
that now.

NOTE With the addition of the Windows Presentation Foundation to the .NET
Framework, a few new types of Windows applications were introduced. They are
examined in detail in Chapter 25.

This chapter begins where the last left off, by looking at controls, starting with the menu control
and then moving on to toolbars, where you will learn how to link buttons on toolbars to specific
menu items, and vice versa. Then you move on to creating SDI and MDI applications, with the
focus on MDI applications because SDI applications are basically subsets of MDI applications.

So far, you’ve consumed only those controls that ship with the .NET Framework. As you saw,
these controls are very powerful and provide a wide range of functionality, but there are times

498 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

when they are not sufficient. For those cases, it is possible to create custom controls, and you look at
how that is done toward the end of this chapter.

MENUS AND TOOLBARS

How many Windows applications can you think of that do not contain a menu or toolbar of some
kind? None, right? Menus and toolbars are likely to be important parts of any application you will
write for the Windows operating system. To assist you in creating them for your applications, Visual
Studio 2010 provides two controls that enable you to create, with very little difficulty, menus and
toolbars that look like the menus you find in Visual Studio.

Two Is One
The two controls you are going to look at over the following pages were introduced in Visual Studio
2005, and they represent a handsome boost of power to the casual developer and professional alike.
Building applications with professional-looking toolbars and menus used to be reserved for those who
would take the time to write custom paint handlers and those who bought third-party components. Cre-
ating what previously could take weeks is now a simple task that, quite literally, can be done in seconds.

The controls you will use can be grouped into a family of controls that has the suffix Strip. They are the
ToolStrip, MenuStrip, and StatusStrip. You return to the StatusStrip later in the chapter. In their
purest form, the ToolStrip and the MenuStrip are in fact the same control, because MenuStrip derives
directly from the ToolStrip. This means that anything the ToolStrip can do, the MenuStrip can do.
Obviously, it also means that the two work really well together.

Using the MenuStrip Control
In addition to the MenuStrip control, several additional controls are used to populate a menu. The three
most common of these are the ToolStripMenuItem, ToolStripDropDown, and the ToolStripSeparator.
All of these controls represent a particular way to view an item in a menu or a toolbar. The
ToolStripMenuItem represents a single entry in a menu, the ToolStripDropDown represents an item
that when clicked displays a list of other items, and the ToolStripSeparator represents a horizontal or
vertical dividing line in a menu or toolbar.

There is another kind of menu that is discussed briefly after the discussion of the MenuStrip — the
ContextMenuStrip. A context menu appears when a user right-clicks on an item, and typically displays
information relevant to that item.

Without further ado, in the following Try It Out, you create the first example of the chapter.

TRY IT OUT Professional Menus in Five Seconds

This first example is very much a teaser, and you are simply going to introduce an aspect of the new
controls that is truly wonderful if you want to create standard menus with the right look and feel.

1. Create a new Windows application and name it Professional Menus in the directory
C:\BegVCSharp\Chapter16.

2. Drag an instance of the MenuStrip control from the Toolbox onto the design surface.

Menus and Toolbars ❘ 499

3. Click the triangle to the far right of the MenuStrip at the top of the dialog to display the Actions
window.

4. Click the small triangle in the upper-right corner of the menu and click the Insert Standard Items
link.

That’s it. If you drop down the File menu, you will see that it has been populated with all the familiar
entries, including keyboard shortcuts and icons. There is no functionality behind the menu yet — you will
have to fill that in. You can edit the menu as you see fit; and to do so, please read on.

Creating Menus Manually
Drag the MenuStrip control from the Toolbox to the design surface, and you will see that this control
places itself both on the form itself and in the control tray, but it can be edited directly on the form. To
create new menu items, you simply place the pointer in the box marked Type Here.

When entering the caption of the menu in the highlighted box, you may include an ampersand (&) in
front of a letter that you want to function as the shortcut key character for the menu item — this is the
character that appears underlined in the menu item and that can be selected by pressing Alt and the key
together.

It is quite possible to create several menu items in the same menu with the same shortcut key character.
The rule is that a character can be used for this purpose only once for each pop-up menu (for example,
once in the Files pop-up menu, once in the View menu, and so on). If you accidentally assign the same
shortcut key character to multiple menu items in the same pop-up menu, you’ll find that only the one
closest to the top of the control responds to the character.

When you select the item, the control automatically displays items under the current item and to the
right of it. When you enter a caption into either of these controls, you create a new item in relation to
the one you started out with. That’s how you create drop-down menus.

To create the horizontal lines that divide menus into groups, you must use the ToolStripSeparator

control instead of the ToolStripMenuItem, but you don’t actually insert a different control. Instead,
you simply type a ‘‘-’’ (dash) as the only character for the caption of the item and Visual Studio then
automatically assumes that the item is a separator and changes the type of the control.

In the following Try It Out, you create a menu without using Visual Studio to generate the items on it.

TRY IT OUT Creating Menus from Scratch

In this example, you are going to create the File and Help menus from scratch. The Edit and Tools menus
are left for you to do by yourself.

1. Create a new Windows Application project, name it Manual Menus, and save it to the
C:\BegVCSharp\Chapter16 folder.

2. Drag a MenuStrip control from the Toolbox onto the design surface.

3. Click in the text area of the MenuStrip control where it says Type Here, type &File, and press the
Enter key.

500 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

4. Type the following into the text areas below the File item:

➤ &New

➤ &Open

➤ -

➤ &Save

➤ Save &As

➤ -

➤ &Print

➤ Print Preview

➤ -

➤ E&xit

Notice how the dashes are automatically changed by Visual Studio to a line that separates the
elements.

5. Click in the text area to the right of Files and type &Help.

6. Type the following into the text areas below the Help item:

➤ Contents

➤ Index

➤ Search

➤ -

➤ About

7. Return to the File menu and set the shortcut keys for the items. To do this, select the item you
want to set and find the ShortcutKeys property in the Properties panel. When you click the drop-
down arrow, you are presented with a small window where you can set the key combination you
want to associate with the menu item. Because this menu is a standard menu, you should use the
standard key combinations, but if you are creating something else, feel free to select any other key
combination. Set the ShortcutKeys properties in the File menu as shown in the following table:

ITEM NAME PROPERTIES AND VALUES

&New Ctrl+N

&Open Ctrl+O

&Save Ctrl+S

&Print Ctrl+P

8. Now for the finishing touch: the images. Select the New item in the File menu and click on
the ellipses (. . .) to the left of the Image property in the Properties panel to bring up the Select
Resource dialog.

Menus and Toolbars ❘ 501

Arguably the most difficult thing about creating these menus is obtaining the images you want
to display. In this case, you can get the images by downloading the source code for this book at
www.wrox.com, but normally you will need to draw them yourself or get them in some other way.

9. Because there are currently no resources in the project, the Entry list box is empty, so click
Import. The images for this example can be found in the source code for this book under
Chapter16\Manual Menus\Images. Select all of the files there and click Open. You are currently
editing the New item, so select the New image in the Entry list and click OK.

10. Repeat step 9 for the images for the Open, Save, Save As, Print, and Print Preview buttons.

11. Run the project. You can select the File menu by clicking it or by pressing Alt+F, and you can
access the Help menu with Alt+H.

Properties of the ToolStripMenuItem
You should be aware of a few additional properties of the ToolStripMenuItem when you are creating
your menus. The list in the table that follows is in no way exhaustive — for a complete listing, please
refer to .NET Framework SDK documentation.

PROPERTY DESCRIPTION

Checked Indicates whether the menu is checked.

CheckOnClick When this property is true, a check mark is either added to or removed from the
position to the left of the text in the item that is otherwise occupied by an image.
Use the Checked property to determine the state of the menu item.

Enabled An item with Enabled set to false will be grayed out and cannot be selected.

DropDownItems Returns a collection of items that is used as a drop-down menu in relation to the
menu item.

Adding Functionality to Menus
Now you can produce menus that look every bit as good as the ones you find in Visual Studio, so the
only task left is to make something happen when you click on them. Obviously, what happens is up
to you, but in the following Try It Out you create a very simple example that builds on the previous
example.

To respond to selections made by the user, you should implement handlers for one of two events that
the ToolStripMenuItems sends:

EVENT DESCRIPTION

Click Sent whenever the user clicks on an item. In most cases this is the event you
want to respond to.

CheckedChanged Sent when an item with the CheckOnClick property is clicked.

502 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

You are going to extend the Manual Menus example from the previous Try It Out by adding a text box
to the dialog and implementing a few event handlers. You will also add another menu between Files
and Help called Format. In the code download, this project is named ‘‘Extended Manual Menus.’’

TRY IT OUT Handling Menu Events

1. Continue using the form you created in the previous Try It Out and drag a RichTextBox onto the
design surface and change its name to richTextBoxText. Set its Dock property to Fill.

2. Select the MenuStrip and then enter Format into the text area next to the Help menu item and
press the Enter key.

3. Select the Format menu item and drag it to a position between Files and Help.

4. Add a menu item to the Format menu with the text Show Help Menu.

5. Set the CheckOnClick property of the Show Help Menu item to true. Set its Checked property to
true.

6. Select showHelpMenuToolStripMenuItem and add an event handler for the CheckedChanged event
by double-clicking the event in the Events list of the Properties panel.

7. Add this code to the event handler:
private void showHelpMenuToolStripMenuItem_CheckedChanged(object sender,
EventArgs e)

{
ToolStripMenuItem item = (ToolStripMenuItem)sender;
helpToolStripMenuItem.Visible = item.Checked;

}

8. Double-click newToolStripMenuItem, saveToolStripMenuItem, and openToolStripMenuItem.
Double-clicking a ToolStripMenuItem in design view causes the Click event to be added to the
code. Enter this code:

private void newToolStripMenuItem_Click(object sender, EventArgs e)
{
richTextBoxText.Text = "";

}

private void openToolStripMenuItem_Click(object sender, EventArgs e)
{
try
{

richTextBoxText.LoadFile(@"Example.rtf");
}
catch { }

}

private void saveToolStripMenuItem_Click(object sender, EventArgs e)
{
try
{

richTextBoxText.SaveFile("Example.rtf");
}
catch { }

}

Toolbars ❘ 503

9. Run the application. When you click the Show Help Menu item, the Help menu disappears or
appears, depending on the state of the Checked property, and you should be able to open, save,
and clear the text in the text box.

How It Works

The showHelpMenuToolStripMenuItem_CheckedChanged event is handled first. The event handler for this
event sets the Visible property of MenuItemHelp to true if the Checked property is true; otherwise, it
should be false. This causes the menu item to behave like a toggle button for the Help menu.

Finally, the three event handlers for the Click events clear the text in the RichTextBox, save the text
in the RichTextBox to a predetermined file, and open said file, respectively. Notice that the Click and
CheckedChanged events are identical in that they both handle the event that happens when a user clicks
a menu item, but the behavior of the menu items in question are quite different and should be handled
according to the purpose of the menu item.

TOOLBARS

While menus are great for providing access to a multitude of functionality in your application, some
items benefit from being placed in a toolbar as well as on the menu. A toolbar provides one-click access
to such frequently used functionalities as Open, Save, and so on.

Figure 16-1 shows a selection of toolbars within Wordpad.

FIGURE 16-1

A button on a toolbar usually displays a picture and no text, although it is possible to have buttons
with both. Examples of toolbars with no text are those found in Word (refer to Figure 16-1), and
examples of toolbars that include text can be found in Internet Explorer. In addition to buttons, you
will occasionally see combo boxes and text boxes in the toolbars too. If you let the mouse pointer
hover above a button in a toolbar, it will often display a tooltip, which provides information about the
purpose of the button, especially when only an icon is displayed.

The ToolStrip, like the MenuStrip, has been made with a professional look and feel in mind. When
users see a toolbar, they expect to be able to move it around and position it wherever they want it. The
ToolStrip enables users to do just that — that is, if you allow them to.

When you first add a ToolStrip to the design surface of your form it looks very similar to the MenuStrip
shown earlier, except for two things: To the far left are four vertical dots, just as you know them from
the menus in Visual Studio. These dots indicate that the toolbar can be moved around and docked
in the parent application window. The second difference is that by default a toolbar displays images,
rather than text, so the default of the items in the bar is a button. The toolbar displays a drop-down
menu that enables you to select the type of the item.

504 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

One thing that is exactly like the MenuStrip is that the Actions window includes a link called Insert
Standard Items. When you click this, you don’t get quite the same number of items as you did with the
MenuStrip, but you get the buttons for New, Open, Save, Print, Cut, Copy, Paste, and Help. Instead of
going through a full Try It Out example as you did earlier, let’s take a look at some of the properties
of the ToolStrip itself and the controls used to populate it.

ToolStrip Properties
The properties of the ToolStrip control and manage how and where the control is displayed. Remem-
ber that this control is actually the base for the MenuStrip control shown earlier, so many properties are
shared between them. Again, the table that follows shows only a few properties of special interest — if
you want a complete listing please refer to .NET Framework SDK documentation.

PROPERTY DESCRIPTION

GripStyle Controls whether the four vertical dots are displayed at the far left of the tool-
bar. The effect of hiding the grip is that users can no longer move the toolbar.

LayoutStyle Controls how the items in the toolbar are displayed. The default is horizontally.

Items Contains a collection of all the items in the toolbar.

ShowItemToolTip Determines whether tooltips should be shown for the items in the toolbar.

Stretch By default, a toolbar is only slightly wider or taller than the items contained
within it. If you set the Stretch property to true, the toolbar will fill the entire
length of its container.

ToolStrip Items
You can use numerous controls in a ToolStrip. Earlier, it was mentioned that a toolbar should be able
to contain buttons, combo boxes, and text boxes. As you would expect, there are controls for each of
these items, but there are also quite a few others, described in the following table:

CONTROL DESCRIPTION

ToolStripButton Represents a button. You can use this for buttons with or without text.

ToolStripLabel Represents a label. It can also display images, which means that this
control can be used to display a static image in front of another con-
trol that doesn’t display information about itself, such as a text box or
combo box.

ToolStripSplitButton Displays a button with a drop-down button to the right that, when
clicked, displays a menu below it. The menu does not unfold if the but-
ton part of the control is clicked.

Toolbars ❘ 505

CONTROL DESCRIPTION

ToolStripDropDownButton Similar to the ToolStripSplitButton. The only difference is that the
drop-down button has been removed and replaced with an image of a
down arrow. The menu part of the control unfolds when any part of the
control is clicked.

ToolStripComboBox Displays a combo box.

ToolStripProgressBar Embeds a progress bar in your toolbar.

ToolStripTextBox Displays a text box.

ToolStripSeparator Creates horizontal or vertical dividers for the items. You saw this con-
trol earlier.

In the following Try It Out, you will extend your menus example to include a toolbar. The toolbar will
contain the standard controls of a toolbar and three additional buttons: Bold, Italic, and Underline.
There will also be a combo box for selecting a font. (The images you use in this example for the button
that selects the font can be found in the code download.)

TRY IT OUT Extending Your Toolbar

Follow these steps to extend the previous example with toolbars:

1. Continue working with the example from the previous Try It Out and remove the
ToolStripMenuItem that was used in the Format menu. Select the Show Help Menu option
and press the Delete key. Add three ToolStripMenuItems in its place and change each of their
CheckOnClick properties to true:

➤ Bold

➤ Italic

➤ Underline

2. Add a ToolStrip to the form. In the Actions window, click Insert Standard Items. Select and delete
the items for Cut, Copy, Paste, and the Separator after them. When you insert the ToolStrip, the
RichTextBox may fail to dock properly. If that happens, change the Dock style to none and man-
ually resize the control to fill the form. Then change the Anchor property to Top, Bottom, Left,

Right.

3. Create three new buttons and a separator at the end of the toolbar by selecting Button three times
and Separator once. (Click on the last item in the ToolStrip to bring up those options.)

4. Create the final two items by selecting ComboBox from the drop-down list and then adding a
separator as the last item.

5. Select the Help item and drag it from its current position to the position as the last item in the
toolbar.

506 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

6. The first three buttons are going to be the Bold, Italic, and Underline buttons, respectively. Name
the controls as shown in the following table:

TOOLSTRIPBUTTON NAME

Bold button boldToolStripButton

Italic button italicToolStripButton

Underline button underlineToolStripButton

ComboBox fontsToolStripComboBox

7. Select the Bold button, click on the ellipses (...) in the Image property, select the Project Resource
File radio button, and click Import. If you’ve downloaded the source code for this book, use the
three images found in the folder Chapter16\Toolbars\Images: BLD.ico, ITL.ico, and UNDRLN.ico.
Note that the default extensions suggested by Visual Studio do not include ICO, so when browsing
for the icons you will have to choose Show All Files from the drop-down.

8. Select BLD.ico for the image of the Bold button.

9. Select the Italic button and change its image to ITL.ico.

10. Select the Underline button and change its image to UNDRLN.ico.

11. Select the ToolStripComboBox. In the Properties panel, set the properties shown in the following
table:

PROPERTY VALUE

Items MS Sans Serif Times New Roman

DropDownStyle DropDownList

12. Set the CheckOnClick property for each of the Bold, Italic, and Underline buttons to true.

13. To select the initial item in the ComboBox, enter the following into the constructor of the class:

public Form1()
{
InitializeComponent();

fontsToolStripComboBox.SelectedIndex = 0;
}

14. Press F5 to run the example. You should see a dialog that looks like Figure 16-2.

Toolbars ❘ 507

FIGURE 16-2

Adding Event Handlers
You already have event handlers for the Save, New, and Open items on the menu, and obviously the
buttons on the toolbar should behave in exactly the same way as the menu items. This is easily achieved
by assigning the Click events of the buttons on the toolbars to the same handlers that are used by the
items on the menu. Set the events as follows:

TOOLSTRIPBUTTON EVENT

New newToolStripMenuItem_Click

Open openToolStripMenuItem_Click

Save saveToolStripMenuItem_Click

Now it’s time to add handlers for the Bold, Italic, and Underline buttons. These buttons are check
buttons, so you use the CheckedChanged event instead of the Click event. Go ahead and add that event
for each of the three buttons. Add the following code:

private void boldToolStripButton_CheckedChanged(object sender, EventArgs e)
{
Font oldFont, newFont;

bool checkState = ((ToolStripButton)sender).Checked;
oldFont = this.richTextBoxText.SelectionFont;

if (!checkState)
newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Bold);

else
newFont = new Font(oldFont, oldFont.Style | FontStyle.Bold);

richTextBoxText.SelectionFont = newFont;
richTextBoxText.Focus();

boldToolStripMenuItem.CheckedChanged -= new
EventHandler(boldToolStripMenuItem_CheckedChanged);

boldToolStripMenuItem.Checked = checkState;
boldToolStripMenuItem.CheckedChanged += new

EventHandler(boldToolStripMenuItem_CheckedChanged);
}

508 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

private void italicToolStripButton_CheckedChanged(object sender,
EventArgs e)

{
Font oldFont, newFont;

bool checkState = ((ToolStripButton)sender).Checked;
oldFont = this.richTextBoxText.SelectionFont;

if (!checkState)
newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Italic);

else
newFont = new Font(oldFont, oldFont.Style | FontStyle.Italic);

richTextBoxText.SelectionFont = newFont;
richTextBoxText.Focus();

italicToolStripMenuItem.CheckedChanged -= new
EventHandler(italicToolStripMenuItem_CheckedChanged);

italicToolStripMenuItem.Checked = checkState;
italicToolStripMenuItem.CheckedChanged += new

EventHandler(italicToolStripMenuItem_CheckedChanged);
}

private void UnderlineToolStripButton_CheckedChanged(object sender,
EventArgs e)

{
Font oldFont, newFont;

bool checkState = ((ToolStripButton)sender).Checked;
oldFont = this.richTextBoxText.SelectionFont;

if (!checkState)
newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Underline);

else
newFont = new Font(oldFont, oldFont.Style | FontStyle.Underline);

richTextBoxText.SelectionFont = newFont;
richTextBoxText.Focus();

underlineToolStripMenuItem.CheckedChanged -= new
EventHandler(underlineToolStripMenuItem_CheckedChanged);

underlineToolStripMenuItem.Checked = checkState;
underlineToolStripMenuItem.CheckedChanged += new

EventHandler(underlineToolStripMenuItem_CheckedChanged);
}

Code snippet Chapter16\Toolbars\Form1.cs

The event handlers simply set the correct style to the font used in the RichTextBox. The three final lines
in each of the three methods deal with the corresponding item in the menu. The first line removes the
event handler from the menu item. This ensures that no events trigger when the next line runs, which

Toolbars ❘ 509

sets the state of the Checked property to the same value as the toolbar button. Finally, the event handler
is reinstated.

The event handlers for the menu items should simply set the Checked property of the buttons on the
toolbar, allowing the event handlers for the toolbar buttons to do the rest. Add the event handlers for
the CheckedChanged event and enter this code:

private void boldToolStripMenuItem_CheckedChanged(object sender, EventArgs e)
{
boldToolStripButton.Checked = boldToolStripMenuItem.Checked;

}

private void italicToolStripMenuItem_CheckedChanged(object sender, EventArgs e)
{
italicToolStripButton.Checked = italicToolStripMenuItem.Checked;

}

private void underlineToolStripMenuItem_CheckedChanged(object sender,
EventArgs e)

{
underlineToolStripButton.Checked = underlineToolStripMenuItem.Checked;

}

The only thing left to do is allow users to select a font family from the ComboBox. Whenever a user
changes the selection in the ComboBox, the SelectedIndexChanged event is raised, so add an event han-
dler for that event:

private void fontsToolStripComboBox_SelectedIndexChanged(object sender,
EventArgs e)

{
string text = ((ToolStripComboBox)sender).SelectedItem.ToString();
Font newFont = null;

if (richTextBoxText.SelectionFont == null)
newFont = new Font(text, richTextBoxText.Font.Size);

else
newFont = new Font(text, richTextBoxText.SelectionFont.Size,

richTextBoxText.SelectionFont.Style);
richTextBoxText.SelectionFont = newFont;

}

Now run the code. You will be able to set bold, italic, and underline text from the toolbar. Notice that
when you check or uncheck a button on the toolbar, the corresponding item on the menu is checked or
unchecked.

StatusStrip
The last of the small family of strip controls is the StatusStrip. This control represents the bar that
you find at the bottom of the dialog in many applications. The bar is typically used to display brief
information about the current state of the application — a good example is Word’s display of the
current page, column, line, and so on in the status bar as you are typing.

The StatusStrip is derived from the ToolStrip, and you should be quite familiar with the view
that is presented as you drag the control onto your form. Three of the four possible controls

510 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

that can be used in the StatusStrip — ToolStripDropDownButton, ToolStripProgressBar, and
ToolStripSplitButton — were presented earlier. That leaves just one control that is specific to the
StatusStrip: the StatusStripStatusLabel, which is also the default item you get.

StatusStripStatusLabel Properties
The StatusStripStatusLabel is used to present the user with information about the current state of
the application, with text and images. Because the label is actually a pretty simple control, not a lot
of properties are covered here. The following two are not specific to the label, but nevertheless can and
should be used with some effect:

PROPERTY VALUE

AutoSize AutoSize is on by default, which isn’t really very intuitive because you don’t
want the labels in the status bar to jump back and forth just because you
changed the text in one of them. Unless the information in the label is static,
always change this property to false.

DoubleClickEnable Specifies whether the DoubleClick event will fire, which means users get a
second place to change something in your application. An example of this is
allowing users to double-click on a panel containing the word Bold to enable
or disable bold in the text.

In the following Try It Out, you create a simple status bar for the example you’ve been working on. The
status bar has four panels, three of which display an image and text; the last panel displays only text.

TRY IT OUT Working With the StatusStrip Control

Follow these steps to extend the small text editor you’ve been working on:

1. Double-click the StatusStrip in the ToolBox to add it to the dialog. You may need to resize the
RichTextBox on the form.

2. In the Properties panel, click the ellipses (. . .) in the Items property of the StatusStrip. This
brings up the Items Collection Editor.

3. Click the Add button four times to add four panels to the StatusStrip. Set the following proper-
ties on the panels:

PANEL PROPERTY VALUE

1 Name toolStripStatusLabelText

Text Clear this property

AutoSize False

DisplayStyle Text

Toolbars ❘ 511

PANEL PROPERTY VALUE

Font Arial; 8.25pt; style=Bold

Size 259, 17

TextAlign Middle Left

2 Name toolStripStatusLabelBold

Text Bold

DisplayStyle ImageAndText

Enabled False

Font Arial; 8.25pt; style=Bold

Size 47, 17

Image BLD

ImageAlign Middle-Center

3 Name toolStripStatusLabelItalic

Text Italic

DisplayStyle ImageAndText

Enabled False

Font Arial; 8.25pt; style=Bold

Size 48, 17

Image ITL

ImageAlign Middle-Center

4 Name toolStripStatusLabelUnderline

Text Underline

DisplayStyle ImageAndText

Enabled False

Font Arial; 8.25pt; style=Bold

Size 76, 17

Image UNDRLN

ImageAlign Middle-Center

512 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

4. Add this line of code to the event handler at the end of the boldToolStripButton_CheckedChanged
method:

toolStripStatusLabelBold.Enabled = checkState;

5. Add this line of code to the event handler at the end of the italicToolStripButton

_CheckedChanged method:

toolStripStatusLabelItalic.Enabled = checkState;

6. Add this line of code to the event handler at the end of the underlineToolStripButton

_CheckedChanged method:

toolStripStatusLabelUnderline.Enabled = checkState;

7. Select the RichTextBox and add the TextChanged event to the code. Enter the following code:

private void richTextBoxText_TextChanged(object sender, EventArgs e)
{
toolStripStatusLabelText.Text = "Number of characters: " +

richTextBoxText.Text.Length;
}

When you run the application you should have a dialog that looks like the one shown in
Figure 16-3.

FIGURE 16-3

SDI AND MDI APPLICATIONS

Traditionally, three kinds of applications can be programmed for Windows:

➤ Dialog-based applications: These present themselves to the user as a single dialog from which
all functionality can be reached.

➤ Single-document interfaces (SDI): These present themselves to the user with a menu, one or
more toolbars, and one window in which the user can perform some task.

➤ Multiple-document interfaces (MDI): These present themselves to the user in the same man-
ner as an SDI, but are capable of holding multiple open windows at one time.

Building MDI Applications ❘ 513

Dialog-based applications are usually small, single-purpose applications aimed at a specific task that
needs a minimum of data to be entered by the user or that target a very specific type of data. An example
of such an application is the Windows Calculator.

Single-document interfaces are each usually aimed at solving one specific task because they enable users
to load a single document into the application to be worked on. This task usually involves a lot of user
interaction, and users often want the capability to save or load the result of their work. Good examples
of SDI applications are WordPad and Paint, both of which come with Windows. The simple text editor
you’ve been creating in this chapter so far is another example of an SDI application.

However, only one document can be open at any one time, so if a user wants to open a second docu-
ment, a fresh instance of the SDI application must be opened, and it will have no reference to the first
instance. Any configuration you do to one instance is not carried over into the other. For example, in
one instance of Paint you might set the drawing color to red, but when you open a second instance of
Paint, the drawing color is the default, which is black.

Multiple-document interfaces are much the same as SDI applications, except that they can hold more
than one document open in different windows at any given time. A telltale sign of an MDI application
is the inclusion of the Window menu just before the Help menu on the menu bar. Visual Studio is an
advanced example of an MDI application. Every designer and editor in Visual Studio opens in the same
application, and the menus and toolbars adjust themselves to match the current selection.

BUILDING MDI APPLICATIONS

What is involved in creating an MDI? First, the task you want users to be able to accomplish should
be one for which they would want to have multiple documents open at one time. A good example of
this is a text editor or a text viewer. Second, you provide toolbars for the most commonly used tasks in
the application, such as setting the font style, and loading and saving documents. Third, you provide
a menu that includes a Window menu item that enables users to reposition the open windows relative
to each other (tile and cascade) and that presents a list of all open windows. Another feature of MDI
applications is that when a window is open and that window contains a menu, that menu should be
integrated into the main menu of the application.

An MDI application consists of at least two distinct windows. The first window you create is called an
MDI container. A window that can be displayed within that container is called an MDI child. This
chapter refers to the MDI container as the MDI container or main window interchangeably, and to the
MDI child as the MDI child or child window.

The following Try It Out is a small example that takes you through these steps. Then you move on to
more complicated tasks.

TRY IT OUT Creating an MDI Application

To create an MDI application, begin as you do for any other application — by creating a Windows Forms
application in Visual Studio.

1. Create a new Windows application called MDIBasic in the directory C:\BegVCSharp\Chapter16.

514 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

2. To change the main window of the application from a form to an MDI container, simply set the
IsMdiContainer property of the form to true. The background of the form changes color to indi-
cate that it is now merely a background on which you should not place visible controls (although
it is possible to do so and might even be reasonable in some cases, such as creating docking areas
for windows).

Select the form and set the following properties:

PROPERTY VALUE

Name frmContainer

IsMdiContainer True

Text MDI Basic

WindowState Maximized

3. To create a child window, add a new form to the project by choosing a Windows Form from the
dialog that appears by selecting Project ➪ Add New Item. Name the form frmChild.

4. The new form becomes a child window when you set the MdiParent property of the child window
to a reference to the main window. You cannot set this property through the Properties panel; you
have to do this using code. Change the constructor of the new form like this:

public frmChild(frmContainer parent)
{

InitializeComponent();

MdiParent = parent;
}

5. Two things remain before the MDI application can display itself in its most basic mode. You must
tell the MDI container which windows to display, and then you must display them. Simply create
a new instance of the form you want to display, and then call Show() on it. The constructor of the
form to display as a child should hook itself up with the parent container. You can arrange this by
setting its MdiParent property to the instance of the MDI container. Change the constructor of the
MDI parent form like this:

public frmContainer()
{

InitializeComponent();

frmChild child = newfrmChild(this);

child.Show();
}

Building MDI Applications ❘ 515

How It Works

All the code that you need to display a child form is found in the constructors of the form. First, look at
the constructor for the child window:

public frmChild(MdiBasic.frmContainer parent)
{

InitializeComponent();

// Set the parent of the form to the container.
this.MdiParent = parent;

}

To bind a child form to the MDI container, the child must register itself with the container. This is done
by setting the form’s MdiParent property as shown in the preceding code. Notice that the constructor you
are using includes the parameter parent.

Because C# does not provide default constructors for a class that defines its own constructor, the preceding
code prevents you from creating an instance of the form that is not bound to the MDI container.

Finally, you want to display the form. You do so in the constructor of the MDI container:

public frmContainer()
{

InitializeComponent();

frmChild child = newfrmChild(this);

child.Show();
}

FIGURE 16-4

You create a new instance of the child class and pass this to the
constructor, where this represents the current instance of the MDI
container class. Then you call Show()on the new instance of the child
form. That’s it! If you want to show more than one child window,
simply repeat the two highlighted lines in the preceding code for
each window.

Run the code now. You should see something like what is shown
in Figure 16-4 (although the MDI Basic form will initially be maxi-
mized, it’s resized here to fit on the page).

516 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

It’s not the most stunning user interface ever designed, but it is clearly a solid start. In the next Try It
Out you produce a simple text editor based on what you have already achieved in this chapter using
menus, toolbars, and status bars.

TRY IT OUT Creating an MDI Text Editor

Let’s create the basic project first and then discuss what is happening:

1. Return to the earlier status bar example. Rename the form frmEditor and change its Text prop-
erty to Editor.

2. Add a new form named frmContainer.cs to the project and set the following properties on it:

PROPERTY VALUE

Name frmContainer

IsMdiContainer True

Text Simple Text Editor

WindowState Maximized

3. Open the Program.cs file and change the line containing the Run statement in the Main method as
follows:

Application.Run(new frmContainer());

4. Change the constructor of the frmEditor form to this:

public frmEditor(frmContainer parent)
{

InitializeComponent();

this.ToolStripComboBoxFonts.SelectedIndex = 0;
MdiParent = parent;

}

5. Change the MergeAction property of the menu item with the text &File to Replace and the same
property of the item with the text &Format to MatchOnly.

Change the AllowMerge property of the toolbar to False.

6. Add a MenuStrip to the frmContainer form. Add a single item to the MenuStrip with the text
&File.

7. Change the constructor of the frmContainer form as follows:

public frmContainer()
{
InitializeComponent();

frmEditor newForm = new frmEditor(this);
newForm.Show();

}

Run the application. You should see something like what is shown in Figure 16-5.

Building MDI Applications ❘ 517

FIGURE 16-5

How It Works

Notice that a bit of magic has happened. The File menu and Help menu appear to have been removed from
the frmEditor. Select the File menu in the container window and you will see that the menu items from the
frmEditor dialog can now be found there.

The menus that should be contained in child windows are those that are specific to that window. The File
menu should be general for all windows and shouldn’t be contained in the child windows as the only place
it is found. The reason for this becomes apparent if you close the Editor window — the File menu now
contains no items! You want to be able to insert the items in the File menu that are specific to the child
window when the child is in focus, and leave the rest of the items to the main window to display.

The following properties control the behavior of menu items:

PROPERTY DESCRIPTION

MergeAction Specifies how an item should behave when it is to be merged into another menu. The
possible values are as follows:
Append — Causes the item to be placed last in the menu
Insert — Inserts the item immediately before the item that matches the criterion for where
this is inserted. This criterion is either the text in the item or an index.
MatchOnly — A match is required, but the item will not be inserted
Remove — Removes the item that matches the criterion for inserting the item
Replace — The matched item is replaced and the drop-down items are appended to the
incoming item

MergeIndex Represents the position of a menu item in regard to other menu items that are being
merged. Set this to a value greater than or equal to 0 if you want to control the order of the
items that are being merged; otherwise, set it to -1. When merges are being performed,
this value is checked and if it is not -1, this is used to match items, rather than the text.

AllowMerge Setting AllowMerge to false means the menus will not be merged.

518 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

In the following Try It Out, you continue with your text editor by changing how the menus are merged
to reflect which menus belong where.

TRY IT OUT Merging Menus

Follow these steps to change the text editor to use menus in both the container and child windows:

1. Add the following four menu items to the File menu on the frmContainer form. Notice the jump
in MergeIndex values.

ITEM PROPERTY VALUE

&New

MergeAction MatchOnly

MergeIndex 0

ShortcutKeys Ctrl + N

&Open

MergeAction MatchOnly

MergeIndex 1

ShortcutKeys Ctrl + O

- MergeAction MatchOnly

E&xit

MergeAction MatchOnly

MergeIndex 11

2. You need a way to add new windows, so double-click the menu item New and add the following
code. It is the same code you entered into the constructor for the first dialog to be displayed.

private void ToolStripMenuItemNew_Click(object sender, EventArgs e)
{
frmEditor newForm = new frmEditor(this);
newForm.Show();

}

Building MDI Applications ❘ 519

3. In the frmEditor form, delete the Open menu item from the File menu. Change the other menu
item properties as follows:

ITEM PROPERTY VALUE

&File MergeAction MatchOnly

MergeIndex -1

&New MergeAction MatchOnly

MergeIndex -1

- MergeAction Insert

MergeIndex 2

&Save MergeAction Insert

MergeIndex 3

Save &As MergeAction Insert

MergeIndex 4

- MergeAction Insert

MergeIndex 5

&Print MergeAction Insert

MergeIndex 6

Print Preview MergeAction Insert

MergeIndex 7

- MergeAction Insert

MergeIndex 8

E&xit Name closeToolStripMenuItem

Text &Close

MergeAction Insert

MergeIndex 9

520 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

4. Run the application. The two File menus have been merged, but there’s still a File menu on the
child dialog that contains one item: New.

How It Works

The items that are set to MatchOnly are not moved between the menus; but in the case of the &File menu
item, the fact that the text of the two items matches means that their menu items are merged.

The items in the File menus are merged based on the MergedIndex properties for the items that you are
interested in. The ones that should remain in place have their MergeAction properties set to MatchOnly; the
rest are set to Insert.

What is now very interesting is what happens when you click the menu items New and Save on the two
different menus. Remember that the New menu on the child dialog just clears the text box, whereas the
other should create a new dialog. Not surprisingly, because the two menus should belong to different
windows, both work as expected. But what about the Save item? That has been moved off of the dialog
and into its parent.

Open a few dialogs, enter some text into them, and then click Save. Open a new dialog and click Open
(remember that Save always saves to the same file). Select one of the other windows, click Save, return to
the new dialog, and click Open again. What you are seeing is that the Save menu item always follows the
dialog that is in focus. Every time a dialog is selected, the menus are merged again.

You just added a bit of code to the New menu item of the File menu in the frmContainer dialog, and
you saw that the dialogs were created. One menu that is present in most if not all MDI applications
is the Window menu. It enables you to arrange the dialogs and often lists them in some way. In the
following Try It Out, you add this menu to your text editor.

TRY IT OUT Tracking Windows

Follow these steps to extend the application to include the capability to display all open dialogs and arrange
them:

1. Add a new top-level menu item to the frmContainer menu called &Window.

2. Add the following three items to the new menu:

NAME TEXT

tileToolStripMenuItem &Tile

cascadeToolStripMenuItem &Cascade

WindowsSeperatorMenuItem -

3. Select the MenuStrip itself, not any of the items that are displayed in it, and change the
MDIWindowListItem property to windowToolStripMenuItem.

Building MDI Applications ❘ 521

4. Double-click first the tile item and then the cascade item to add the event handlers and enter the
following code:

private void ToolStripMenuItemTile_Click(object sender, EventArgs e)
{
LayoutMdi(MdiLayout.TileHorizontal);

}

private void ToolStripMenuItemCascasde_Click(object sender, EventArgs e)
{
LayoutMdi(MdiLayout.Cascade);

}

5. Change the constructor of the frmEditor dialog as follows:

public frmEditor(frmContainer parent, int counter)
{
InitializeComponent();

this.ToolStripComboBoxFonts.SelectedIndex = 0;

// Bind to the parent.
MdiParent = parent;
Text = "Editor " + counter.ToString();

}

6. Add a private member variable to the top of the code for frmContainer and change the construc-
tor and the event handler for the menu item New to the following:

public partial class frmContainer: Form
{

private int counter;

public frmContainer()
{
InitializeComponent();

counter = 1;
frmEditor newForm = new frmEditor(this, counter);
newForm.Show();

}

private void ToolStripMenuItemNew_Click(object sender, EventArgs e)
{
frmEditor newForm = new frmEditor(this, ++counter);
newForm.Show();

}

How It Works

The most interesting part of this example concerns the Window menu. To have a menu display a list of all
the dialogs that are opened in a MDI application, you only have to create a menu at the top level for it and
set the MdiWindowListItem property to point to that menu.

522 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

The framework will then append a menu item to the menu for each of the dialogs currently displayed. The
item that represents the current dialog will have a check mark next to it, and you can select another dialog
by clicking it in the list.

The other two menu items — Tile and Cascade — demonstrate a method of the form: MdiLayout. This
method enables you to arrange the dialogs in a standard manner.

The changes to the constructors and New item simply ensure that the dialogs are numbered. Run the
application and add a few windows and notice how the Window menu always reflects which window is
selected.

CREATING CONTROLS

Sometimes the controls that ship with Visual Studio just won’t meet your needs. The reasons for this
can be many — they don’t draw themselves the way you want them to, they are restrictive in some
way, or the control you need simply doesn’t exist. Recognizing this, Microsoft has supplied the means
to create controls that do meet your needs. Visual Studio provides a project type named Windows
Control Library, which you use when you want to create a control yourself.

You can develop two distinct kinds of homemade controls:

➤ User or composite controls: These build on the functionality of existing controls to create
a new control. Such controls are generally made to encapsulate functionality with the user
interface of the control, or to enhance the interface of a control by combining several controls
into one unit.

➤ Custom controls: You can create these controls when no existing control fits your
needs — that is, you start from scratch. A custom control draws its entire user interface itself
and no existing controls are used in its creation. You normally need to create a control like
this when the user interface control you want to create is unlike that of any available control.

This chapter focuses on user controls, because designing and drawing a custom control from scratch is
beyond the scope of this book.

NOTE ActiveX controls as used in Visual Studio 6 existed in a special kind of file
with the extension .ocx. These files were essentially COM DLLs. In .NET, a control
exists in exactly the same way as any other assembly, so the .ocx extension has
disappeared, and controls exist in DLLs.

User controls inherit from the System.Windows.Forms.UserControl class. This base class provides the
control you are creating with all the basic features a control in .NET should include, leaving you only
the task of creating the control. Virtually anything can be created as a control, from a label with a nifty
design to full-blown grid controls. In Figure 16-6, the box at the bottom, UserControl1, represents a
new control.

Creating Controls ❘ 523

NOTE User controls inherit from the System.Windows.Forms.UserControl class,
but custom controls derive from the System.Windows.Forms.Control class.

FIGURE 16-6

A couple of things are assumed when working with controls. If your control doesn’t
fulfill the following expectations, chances are good that people will be discouraged
from using it:

➤ The behavior of the design-time control should be very similar to its
behavior at runtime. This means that if the control consists of a Label

and a TextBox that have been combined to create a LabelTextbox, the
Label and TextBox should both be displayed at design time and the
text entered for the Label should also be shown at design time. While
this is fairly easy to achieve in this example, it can present problems in
more complex cases, where you’ll need to find an appropriate compro-
mise.

➤ Access to the properties of the control should be possible from the Forms
Designer in a logical manner. A good example of this is the ImageList

control, which presents a dialog from which users can browse to the
images they want to include, and once the images are imported, they are
shown in a list in the dialog.

The next few pages introduce you to the creation of controls by means of an
example. The example creates the LabelTextbox, and it demonstrates the basics
of creating a user control project, creating properties and events, and debugging
controls.

As the name of the control in the following section implies, this control com-
bines two existing controls to create a single one that performs, in one go, a task
extremely common in Windows programming: adding a label to a form, and then
adding a text box to the same form and positioning the text box in relation to the
label. Here’s what a user of this control will expect from it:

➤ The capability to position the text box either to the right of the label or below it. If the
text box is positioned to the right of the label, then it should be possible to specify a fixed
distance from the left edge of the control to the text box to align text boxes below each
other.

➤ Availability of the usual properties and events of the text box and label.

TRY IT OUT A LabelTextbox Control

Now that you know your mission, start Visual Studio and create a new project.

1. Create a new Windows Forms Control Library project called LabelTextbox and save it in
C:\BegVCSharp\Chapter16.

524 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

NOTE If you are using the Express edition of Visual Studio, then you might not
see this option. In that case, create a new Class Library project instead and add a
user control to the project manually from the Project menu.

The Forms Designer presents you with a design surface that looks somewhat different from what
you’re used to. First, the surface is much smaller. Second, it doesn’t look like a dialog at all. Don’t
let this new look discourage you in any way — things still work as usual. The main difference is
that up until now you have been placing controls on a form, but now you are creating a control to
be placed on a form.

2. Click the design surface and bring up the properties for the control. Change the name property of
the control to ctlLabelTextbox.

3. Double-click a Label in the Toolbox to add it to the control, placing it in the top-left corner of the
design surface. Change its Name property to labelCaption. Set the Text property to Label.

4. Double-click a TextBox in the Toolbox to add it to the control. Change its Name property to
textBoxText.

At design time, you don’t know how the user will want to position these controls, so you are going to
write code that will position the Label and TextBox. That same code will determine the position of the
controls when a LabelTextbox control is placed on a form.

The design of the control looks anything but encouraging — not only is the TextBox obscuring part of
the label, but the surface is too large. However, this is of no consequence, because, unlike what you’ve
been used to until now, what you see is not what you get! The code you are about to add to the control
will change the appearance of the control, but only when the control is added to a form.

The user should be able to decide how the controls are positioned, and for that you add not one but
two properties to the control. The Position property enables the user to choose between two options:
Right and Below. If the user chooses Right, then the other property comes into play. This property
is called TextboxMargin and is an int that represents the number of pixels from the left edge of the
control to where the TextBox should be placed. If the user specifies 0, then the TextBox is placed with
its right edge aligned with the right edge of the control.

Adding Properties
To give the user a choice between Right and Below, start by defining an enumeration with these two
values. Return to the control project, go to the code editor, and add this code:

public partial class ctlLabelTextbox: UserControl
{

public enum PositionEnum
{
Right,
Below

}

Creating Controls ❘ 525

This is just a normal enumeration, as covered in Chapter 5. Now for the magic: You want the position
to be a property that the user can set through code and the designer. You do this by adding a property to
the ctlLabelTextbox class. First, however, you create two member fields that will hold the values the
user selects:

private PositionEnum position = PositionEnum.Right;
private int textboxMargin = 0;

Then add the Position property as follows:

public PositionEnum Position
{
get { return position; }
set
{

position = value;
MoveControls();

}
}

The property is added to the class like any other property. If you are asked to return the property, you
return the position member field; and if you are asked to change the Position, you assign the value
to position and call the method MoveControls(). You’ll return to MoveControls() in a bit — for now
it is enough to know that this method positions the two controls by examining the values of position
and textboxMargin.

The TextboxMargin property is the same, except it works with an integer:

public int TextboxMargin
{
get { return textboxMargin; }
set
{

textboxMargin = value;
MoveControls();

}
}

Adding the Event Handlers
Before moving on to test the two properties, you add two event handlers as well. When the control is
placed on the form, the Load event is called. Use it to initialize the control and any resources the control
may use. You handle this event to move the control and to size the control to fit neatly around the two
controls it contains.

The other event you add is SizeChanged. It is called whenever the control is resized, and you should
handle the event to enable the control to draw itself correctly. Select the control and add the two events:
SizeChanged and Load.

Then add the event handlers:

private void ctlLabelTextbox_Load(object sender, EventArgs e)
{

labelCaption.Text = Name;
Height = textBoxText.Height > labelCaption.Height ?

526 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

textBoxText.Height : labelCaption.Height;
MoveControls();

}

private void ctlLabelTextbox_SizeChanged(object sender, System.EventArgs e)
{

MoveControls();
}

Again, you call MoveControls()to take care of positioning the controls. It is time to see this method,
before you test the control again:

private void MoveControls()
{
switch (position)
{

case PositionEnum.Below:
textBoxText.Top = labelCaption.Bottom;
textBoxText.Left = labelCaption.Left;
textBoxText.Width = Width;
Height = textBoxText.Height + labelCaption.Height;
break;

case PositionEnum.Right:
textBoxText.Top = labelCaption.Top;
if (textboxMargin == 0)
{

int width = Width - labelCaption.Width - 3;
textBoxText.Left = labelCaption.Right + 3;
textBoxText.Width = width;

}
else
{

textBoxText.Left = textboxMargin + labelCaption.Width;
textBoxText.Width = Width - textBoxText.Left;

}
Height = textBoxText.Height > labelCaption.Height ?

textBoxText.Height : labelCaption.Height;
break;

}
}

The value in position is tested in a switch statement to determine whether you should place the text
box below or to the right of the label. If the user chooses Below, you move the top of the text box
to the position at the bottom of the label. You then move the left edge of the text box to the left edge of
the control and set its width to the width of the control.

If the user chooses Right, then there are two possibilities. If the textboxMargin is zero, start by deter-
mining the width that is left in the control for the text box. Then set the left edge of the text box to
just a nudge right of the text and set the width to fill the remaining space. If the user specifies a margin,
place the left edge of the text box at that position and set the width again.

You are now ready to test the control. Before moving on, build the project.

Creating Controls ❘ 527

Debugging User Controls
Debugging a user control is quite different from debugging a Windows application. Normally, you
would just add a breakpoint somewhere, press F5, and see what happens. If you are still unfamiliar
with debugging, refer to Chapter 7 for a detailed explanation.

A control needs a container in which to display itself, and you have to supply it with one. You do that
in the following Try It Out by creating a Windows application project.

TRY IT OUT Debugging User Controls

1. From the File menu choose Add ➪ New Project. In the Add New Project dialog, create a new
Windows application called LabelTextboxTest. Because this application is to be used only to test
the user control, it’s a good idea to create the project inside the LabelTextBox project.

In the Solution Explorer, you should now see two projects open. The first project you cre-
ated, LabelTextbox, is written in boldface. That means if you try to run the solution, the
debugger will attempt to use the control project as the startup project. This will fail because
the control isn’t a standalone type of project. To fix this, right-click the name of the new
project — LabelTextboxTest — and select Set as StartUp Project. Run the solution now and the
Windows application project will be run and no errors will occur.

2. At the top of the Toolbox you should now see a tab named LabelTextBox Components. Visual
Studio recognizes that there is a Windows Control Library in the solution and that it is likely
that you want to use the controls provided by this library in other projects. Double-click
ctlLabelTextbox to add it to the form. Note that the References node in the Solution Explorer
is expanded. That happens because Visual Studio just added a reference to the LabelTextBox
project for you.

3. While in the code, search for the new ctlLabel. Search in the entire project. You will get a hit
in the ‘‘behind the scenes’’ file Form.Designer.cs where Visual Studio hides most of the code it
generates for you. Note that you should never edit this file directly.

4. Place a breakpoint on the following line:
this.ctlLabelTextbox1 = new LabelTextbox.ctlLabelTextbox();

5. Run the code. As expected, the code stops at the breakpoint you placed. Now step into the code
(if you are using the default keyboard maps, press F11 to do so). When you step into the code you
are transferred to the constructor of your new control, which is exactly what you want in order to
debug the component. You can also place breakpoints. Press F5 to run the application.

Extending the LabelTextbox Control
Finally, you are ready to test the properties of the control. Notice how the controls within the
LabelTextbox control move to the correct positions when the control is added to the form. Because

528 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

you set the default value of the Position property to Right, the text box is positioned next to the
Label within the control. Change the Position property to Below and notice how the text box moves
to below the Label.

Adding More Properties
You can’t do much with the control at the moment because, sadly, it is missing the capability to change
the text in the label and text box. You add two properties to handle this: LabelText and TextboxText.
The properties are added just as you added the two previous properties — open the project and add the
following:

public string LabelText
{
get { return labelCaption.Text; }
set
{

labelCaption.Text = labelText = value;
MoveControls();

}
}

public string TextboxText
{
get { return textBoxText.Text; }
set
{

textBoxText.Text = value;
}

You also need to declare the member variable labelText to hold the text:

private string labelText = "";

public ctlLabelTextbox()
{

You simply assign the text to the Text property of the Label and TextBox controls if you want to insert
the text, and return the value of the Text properties. If the label text is changed, then you need to call
MoveControls() because the label text may influence where the text box is positioned. Text inserted
into the text box, conversely, does not move the controls; and if the text is longer than the text box, it
disappears.

Finally, you must change the Load event like this:

private void ctlLabelTextbox_Load(object sender, EventArgs e)
{
labelCaption.Text = labelText;
Height = textBoxText.Height > labelCaption.Height ?

textBoxText.Height : labelCaption.Height;
MoveControls();

}

The Load event sets the text of the labelCaption control to the value of the property. By doing this, the
same text that is displayed at design time is also shown at runtime.

Creating Controls ❘ 529

Adding More Event Handlers
Now it is time to consider which events the control should provide. Because the control is derived from
the UserControl class, it has inherited a lot of functionality that you don’t need to handle. However,
there are several events — such as KeyDown, KeyPress, and KeyUp — that you don’t want to hand to the
user in the standard way. You need to change these events because users will expect them to be sent
when they press a key in the text box. As they are now, the events are sent only when the control itself
has focus and the user presses a key.

To change this behavior, you must handle the events sent by the text box and pass them on to the user.
Add the KeyDown, KeyPress, and KeyUp events for the text box and enter the following code:

private void textBoxText_KeyDown(object sender, KeyEventArgs e)
{
OnKeyDown(e);

}

private void textBoxText_KeyPress(object sender, KeyPressEventArgs e)
{
OnKeyPress(e);

}

private void textBoxText_KeyUp(object sender, KeyEventArgs e)
{
OnKeyUp(e);

}

Calling the OnKeyXXX method invokes a call to any methods subscribed to the event.

Adding a Custom Event Handler
When you want to create an event that doesn’t exist in one of the base classes, you must do a bit more
work. Create an event called PositionChanged that will occur when the Position property changes. To
create this event, you need three things:

➤ An appropriate delegate that can be used to invoke the methods the user assigns to the event.

➤ The user must be able to subscribe to the event by assigning a method to it.

➤ You must invoke the method the user has assigned to the event.

The delegate you use is the EventHandler delegate provided by the .NET Framework. As you learned
in Chapter 13, this is a special kind of delegate that is declared by its very own keyword, event. The
following line declares the event and enables the user to subscribe to it:

public event System.EventHandler PositionChanged;

public ctlLabelTextbox()
{

All that remains to do is raise the event. Because it should occur when the Position property changes,
you raise the event in the set accessor of the Position property:

public PositionEnum Position
{
get { return position; }

530 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

set
{
position = value;
MoveControls();
if (PositionChanged != null)

PositionChanged(this, new EventArgs());
}

}

First, ensure that there are some subscribers by checking whether PositionChanged is null. If it isn’t,
you invoke the methods.

You subscribe to the new custom event as you would any other, but there is a small catch: Before the
event is displayed in the events windows, you must build the control. After the control is built, select
the control on the form in the LabelTextboxTest project and double-click the PositionChanged event
in the Events part of the Properties panel. Then, add the following code to the event handler:

private void ctlLabelTextbox1_PositionChanged(object sender, EventArgs e)
{

MessageBox.Show("Changed");
}

Your custom event handler doesn’t really do anything sparkling — it simply points out that the position
has changed.

Finally, add a button to the form, double-click it to add its Click event handler to the project, and add
this code:

private void buttonToggle_Click(object sender, EventArgs e)
{
ctlLabelTextbox1.Position = ctlLabelTextbox1.Position ==

LabelTextbox.ctlLabelTextbox.PositionEnum.Right ?
LabelTextbox.ctlLabelTextbox.PositionEnum.Below:
LabelTextbox.ctlLabelTextbox.PositionEnum.Right;

}

When you run the application you can change the position of the text box at runtime. Every time the
text box moves, the PositionChanged event is called and a messagebox is displayed.

That completes the example. It could be refined a bit, but that’s left as an exercise for you.

SUMMARY

In this chapter, you started where you left off in the previous chapter, by examining the MainMenu

and ToolBar controls. You learned how to create MDI and SDI applications and how menus and
toolbars are used in those applications. You then moved on to create a control of your own: designing
properties, a user interface, and events for the control. The next chapter completes the discussion of
Windows Forms by looking at the one special type of form only glossed over so far: Windows common
dialogs.

Exercises ❘ 531

EXERCISES

1. Using the LabelTextbox example as the base, create a new property called MaxLength that stores
the maximum number of characters that can be entered into the text box. Then create two new
events called MaxLengthChanged and MaxLengthReached. The MaxLengthChanged event should be
raised when the MaxLength property is changed, and MaxLengthReached should be raised when
the user enters a character making the length of the text in the text box equal to the value of
MaxLength.

2. The StatusBar includes a property that enables users to double-click on a field on the bar and
trigger an event. Change the StatusBar example in such a way that users can set bold, italic, and
underline for the text by double-clicking on the status bar. Ensure that the display on the toolbar,
menu, and status bar is always in sync by changing the text ‘‘Bold’’ to be bold when it is enabled
and otherwise not. Do the same with Italic and Underlined.

Answers to Exercises can be found in Appendix A.

532 ❘ CHAPTER 16 ADVANCED WINDOWS FORMS FEATURES

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Menus Use the MenuStrip to display professional looking menus on your forms.

Toolbars Use the ToolStrip control to display toolbars on your forms.

Statusbars The StatusStrip provides a way to display information about the current state of
your application.

MDI applications Create MDI applications, which are used to extend the text editor even further.

Custom controls Create controls of your own by building on existing controls.

17
Deploying Windows Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ An overview of deployment options

➤ How to deploy a Windows application with ClickOnce

➤ How to create a Windows Installer deployment package

➤ How to install an application with Windows Installer

There are several ways to install Windows applications. Simple applications can be installed
with a basic xcopy deployment, but for installation to hundreds of clients, an xcopy deploy-
ment is not really useful. For that situation, you have two options: ClickOnce deployment or
the Microsoft Windows Installer.

With ClickOnce deployment, the application is installed by clicking a link to a website. In situ-
ations where the user should select a directory in which to install the application, or when some
registry entries are required, the Windows Installer is the deployment option to use.

This chapter covers both options for installing Windows applications.

DEPLOYMENT OVERVIEW

Deployment is the process of installing applications to the target systems. Traditionally, such
an installation has been done by invoking a setup program. If one hundred or even one thou-
sand clients must be installed, the installation can be very time-consuming. To alleviate this,
the system administrator can create batch scripts to automate this activity. However, it still
requires a lot of work to set up and support different client PCs and different versions of the
operating system.

Because of these challenges, many companies have converted their intranet applications to
Web applications, even though Windows applications offer a much richer user interface. Web

534 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

applications just need to be deployed to the server, and the client automatically gets the up-to-date
user interface.

NOTE Writing Silverlight applications is an option to provide a Web-based
deployment for rich client applications.

Using ClickOnce installation, many of these challenges deploying Windows applications can be
avoided. Applications can be installed just by clicking a link inside a Web page. The user on the client
system doesn’t need administrative privileges, as the application is installed in a user-specific directory.
With ClickOnce, you can install applications with a rich user interface. The application is installed
to the client, so there’s no need to remain connected with the client system after the installation
is completed. In other words, the application can be used offline. This way, an application icon is
available from the Start menu, the security issues are easier to resolve, and the application can easily
be uninstalled.

A nice feature of ClickOnce is that updates can happen automatically when the client application starts
or as a background task while the client application is running.

However, there are some restrictions accompanying ClickOnce deployment: ClickOnce cannot be used
if you need to install shared components in the global assembly cache; if the application needs COM
components that require registry settings; or if you want users to decide in what directory the appli-
cation should be installed. In such cases, you must use the Windows Installer, which is the traditional
way to install Windows applications. Before working with the Windows Installer packages, however,
the next section looks at ClickOnce deployment.

CLICKONCE DEPLOYMENT

With ClickOnce deployment there is no need to start a setup program on the client system. All the client
system’s user has to do is click a link on a Web page, and the application is automatically installed.
After the application is installed, the client can be offline — it doesn’t need to access the server from
which the application was installed.

ClickOnce installation can be done from a website, a UNC share, or a file location (e.g., a CD).
With ClickOnce, the application is installed on the client system, it is available with Start menu short-
cuts, and it can be uninstalled from the Add/Remove Programs dialog.

ClickOnce deployment is described by manifest files. The application manifest describes the appli-
cation and permissions required by the application. The deployment manifest describes deployment
configuration information, such as update policies. In the Try It Out exercises of this section, you con-
figure ClickOnce deployment for the MDI editor you created in Chapter 16, and will need those code
files again.

Creating the ClickOnce Deployment
In the following Try It Out exercise, you change the application name and define useful assembly
settings.

ClickOnce Deployment ❘ 535

TRY IT OUT Preparing the Application

1. Open the MDI Editor sample from Chapter 16 with Visual Studio. If you didn’t create the sam-
ple yourself, copy the complete folder MDI Editor from Chapter16Code.zip. Open the solution
file Manual Menus.sln within the folder MDI Editor using the Visual Studio menu File ➪ Open ➪

Project/Solution

FIGURE 17-1

FIGURE 17-2

2. Select Properties for the project in the Solution
Explorer, and select the Application tab, shown
in Figure 17-1.

3. Change the Assembly name to MDIEditor.

4. Click the Assembly Information . . . button.

5. Change the Title, Description, Company, Prod-
uct, and Copyright information as shown in
Figure 17-2.

6. Build the project by selecting Build ➪ Build
Solution.

536 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

How It Works

The assembly name defines the name of the assembly that is created from the build process. This assembly
needs to be deployed when installing the application. The properties that are changed with the Assembly
Information dialog change assembly attributes in the file AssemblyInfo.cs. This metadata information is
used by deployment tools. You can also read the metadata information from the Windows Explorer by
selecting the executable and clicking on the Properties in the menu. With the Details tab you can see the
information you’ve added.

Successfully deploying the assembly across the network requires a manifest that is signed with a cer-
tificate. The certificate is used to show information to the user about the organization that created the
application. This way the user can decide if he trusts the deployment. In the following Try It Out, you
create a certificate that is associated with the ClickOnce manifests.

TRY IT OUT Signing the ClickOnce Manifests

1. Select Properties for the project in the Solution Explorer, and select the Signing tab, shown in
Figure 17-3.

FIGURE 17-3

2. Check the Sign the ClickOnce manifests check box.

ClickOnce Deployment ❘ 537

FIGURE 17-4

3. Click the Create Test Certificate . . . button to
create a test certificate that is associated with
the ClickOnce manifests. Enter a password for
the certificate as requested. You must remember
the password for later settings. Then click OK.

4. Click the More Details button for certificate
information (see Figure 17-4).

How It Works

A certificate is used so that the user installing the applica-
tion can identify the creator of the installation package.
By reading the certificate, users can decide whether they
can trust the installation to approve the security require-
ments.

With the test certificate you just created, the user doesn’t
get real trust information and receives a warning that
this certificate cannot be trusted, as you will see later.
Such a certificate is for testing only. Before you make
the application ready for deployment, you have to get
a real certificate from a certification authority such as
VeriSign. If the application is deployed only within an
intranet, then you can also get a certificate from a local certificate server if one is installed with your local
network. The Microsoft Certificate Server can be installed with Windows Server 2003 or 2008. If you have
such a certificate, you can configure it by clicking Select from File within the Signing tab.

In the next Try It Out, you configure the security requirements of the assembly. When the assembly is
installed on the client, the required trust must be defined.

TRY IT OUT Defining the Security Requirements

1. Select Properties for the project in the Solution Explorer, select Security, as shown in
Figure 17-5, and select Enable ClickOnce security settings. Leave the default configuration
for the full trust application.

How It Works

With ClickOnce settings, you can configure the application to require full trust or run with partial trust
within a sandbox. With full trust, the application has full access to the system and can do anything the user
running the application is allowed to do. With the installation of the application, the user is warned about
these requirements. With a partial trust application, the application is not allowed to access the file system

538 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

other than the isolated storage or the registry. The application runs in a sandbox mode. Because the MDI
editor application requires access to the file system, full trust is required.

FIGURE 17-5

With the defined security requirements, you can start to publish the application by creating a
deployment manifest. This can easily be done with the Publish Wizard, as shown in the following
Try It Out.

TRY IT OUT More Publish Configuration Options

1. Select the Publish tab with the project properties. Click the Options button to open the Publish
Options dialog (see Figure 17-6). Select Description from the list on the left. Enter the publisher
name, the suite name, the product name, and a support URL.

2. Configure the Update options by selecting the Updates button and select the ‘‘The Application
Should Check for Updates’’ check box, as shown in Figure 17-7.

ClickOnce Deployment ❘ 539

FIGURE 17-6

FIGURE 17-7

TRY IT OUT Using the Publish Wizard

1. Start the Publish Wizard by selecting Build ➪ Publish SimpleEditor. Enter a path to the website
http://localhost/MDIEditor, as shown in Figure 17-8. Click the Next button.

540 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

NOTE To publish the application to a Web server on Windows 7 or Windows
Vista, Visual Studio 2010 must be started in elevated mode with administrative
privileges, and Internet Information Server (IIS) needs to be installed. If you do not
have IIS installed, select publishing to the local file system.

FIGURE 17-8

2. At step 2 in the Publish Wizard, select ‘‘Yes, this application is available online or offline,’’ as
shown in Figure 17-9. Click the Next button.

FIGURE 17-9

ClickOnce Deployment ❘ 541

3. The last dialog gives summary information, as you are Ready to Publish! (see Figure 17-10). Click
the Finish button.

FIGURE 17-10

How It Works

The Publish Wizard creates a website on the local Internet Information Services Web server. The assem-
blies of the application (executables and libraries), as well as the application and deployment manifests, a
setup.exe, and a sample Web page, publish.htm, are copied to the Web server. The deployment manifest
describes installation information, as shown here. With Visual Studio, you can open the deployment man-
ifest by opening the file MDIEditor.application in the Solution Explorer. With this manifest, you can see
a dependency to the application manifest with the XML element <dependentAssembly>:

<deployment install="true" mapFileExtensions="true">
<subscription>
<update>

<beforeApplicationStartup />
</update>

</subscription>
<deploymentProvider

codebase="http://oceania/MDIEditor/MDIEditor.application" />
</deployment>
<compatibleFrameworks xmlns="urn:schemas-microsoft-com:clickonce.v2">

<framework targetVersion="4.0" profile="Full" supportedRuntime="4.0.21205" />
</compatibleFrameworks>
<dependency>

<dependentAssembly dependencyType="install"
codebase="Application Files\MDIEditor_1_0_0_0\MDIEditor.exe.manifest"
size="7416">

<assemblyIdentity name="MDIEditor.exe" version="1.0.0.0"
publicKeyToken="4e48aff44fcfc18a" language="neutral"

542 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

processorArchitecture="x86" type="win32" />
<hash>
<dsig:Transforms>

<dsig:Transform
Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />

</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>+fiBvjYoMSuDkHZ680iLW2P4y+g=</dsig:DigestValue>

</hash>
</dependentAssembly>

</dependency>

By selecting the option shown in Figure 17-9, you specify that the application will be available online
and offline. That way, the application is installed on the client system and can be accessed from the Start
menu. You can also use Add/Remove Programs to uninstall the application. If you instead indicate that the
application should be available only online, users must always click the website link to load the application
from the server and start it locally.

The files that belong to the application are defined by the project output. To see the application files with
the properties of the application in the Publish settings, click the Application Files button. The Appli-
cation Files dialog opens (see Figure 17-11). By default, the assembly and the application manifest file
are deployed.

FIGURE 17-11

The prerequisites of the application are defined with the Prerequisites dialog (see Figure 17-12), accessed
by clicking the Prerequisites button. With .NET 4 applications, the prerequisite .NET Framework 4 is
automatically detected, as the figure shows. You can also select other prerequisites with this dialog.

NOTE For installing ClickOnce applications, administrative privileges are not
required. However, if prerequisites are not installed on the client system,
administrative privileges are required to install the prerequisites.

ClickOnce Deployment ❘ 543

FIGURE 17-12

Installing the Application with ClickOnce
Now you can install the application by executing the steps in the following Try It Out.

TRY IT OUT Installing the MDI Editor Application

1. Open the Web page publish.htm, shown in Figure 17-13.

FIGURE 17-13

544 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

2. Click the Install button to install the application. The security warning shown in Figure 17-14 will
pop up.

FIGURE 17-14

3. Click the More Information . . . link to see any potential security issues with the application. Read
through the categories of this dialog, shown in Figure 17-15.

FIGURE 17-15

4. After reading the dialog information, click the Close button and then click the Install button of the
Application Install dialog if you trust the application you created.

ClickOnce Deployment ❘ 545

How It Works

When the file publish.htm is opened, the target application is checked for version 4 of the .NET runtime.
This check is done by a JavaScript function inside the HTML page. If the runtime is not there, it is installed
before the client application. With the default publish settings, the runtime is copied from a Microsoft site.

By clicking the link to install the application, the deployment manifest is opened to install the application.
Next, the user is informed about any possible security issues of the application. If the user clicks OK, the
application is installed.

Creating and Using Updates of the Application
With the update options you configured earlier, the client application automatically checks the Web
server for a new version. In the following Try It Out, you try such a scenario with the MDI Editor
application.

TRY IT OUT Updating the Application

1. Make a change to the MDI Editor application that shows up immediately, such as setting the
background color of the rich text box in the file frmEditor.cs.

2. Verify that the publish version number changes to a new value in the project properties, selecting
the Publish section.

FIGURE 17-16

3. Build the application and click the Publish
Now button with the Publish section of the
project properties.

4. Do not click the publish.htm link on the
Web page; instead, start the client application
from the Start menu. When the application is
started, the Update Available dialog shown in
Figure 17-16 appears, asking whether a new
version should be downloaded. Click OK to
download the new version. When the new
version launches, you can see the application with the colored rich text box.

How It Works

The update policy is defined by a setting in the deployment manifest with the XML <update> element.
You can change the update policy by clicking the Updates button with the Publish settings. Remember to
access the Publish settings with the properties of the project. The Application Updates dialog is shown in
Figure 17-17.

546 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

FIGURE 17-17

Use this dialog to specify whether the client should look for updates at all. If updates should be checked,
then you can define whether the check should happen before the application starts or in the background
while the application is running. If the update should occur in the background, you can set the time
interval between them: with every start of the application or with a specific number of hours, days,
or weeks.

VISUAL STUDIO SETUP AND DEPLOYMENT PROJECT TYPES

Open the Visual Studio Add New Project dialog with the menu. Select Setup and Deployment from
the Installed Templates pane in the category Other Project Types ➪ Visual Studio Installer. The screen
shown in Figure 17-18 is displayed.

The following list describes the project types and what can be done with them:

➤ The Setup Project template is the one you will use. This template is used to create Windows
Installer packages, so it can be used for deploying Windows applications.

➤ The Web Setup Project template can be used to install Web applications. This project tem-
plate is used in Chapter 20.

➤ The Merge Module Project template is used to create Windows Installer merge modules. A
merge module is an installer file that can be included in multiple Microsoft Installer instal-
lation packages. For components that should be installed with more than one installation
program, a merge module can be created to include this module in the installation packages.
One example of a merge module is the .NET runtime itself: It is delivered in a merge module,
so the .NET runtime can be included with the installer package of an application. You will
use a merge module in the sample application.

Microsoft Windows Installer Architecture ❘ 547

FIGURE 17-18

➤ The Setup Wizard is a step-by-step technique for choosing the other templates. You first need
to ask yourself whether you want to create a setup program to install an application or a
redistributable package. Depending on your choice, a Windows Installer package, a merge
module, or a CAB file is created.

➤ The Cab Project template enables you to create cabinet files. Cabinet files can be used to
merge multiple assemblies into a single file and compress it. Because the cabinet files can be
compressed, a Web client can download a smaller file from the server.

MICROSOFT WINDOWS INSTALLER ARCHITECTURE

Before the Windows Installer existed, programmers had to create custom installation programs. Not
only was it more work to build such installation programs, but many of them didn’t follow the Win-
dows rules. Often, system DLLs were overwritten with older versions because the installation program
didn’t check the version. In addition, the directory to which the application files were copied was often
wrong. If, for example, a hard-coded directory string such as C:\Program Files was used and the sys-
tem administrator changed the default drive letter, or an international version of the operating system
was used where this directory was named differently, the installation failed.

The first version of the Windows Installer was released as part of Microsoft Office 2000 and as a
distributable package that could be included with other application packages. This first version added

548 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

support to register COM+ components. Version 1.2 added support for the file protection mechanism of
Windows ME. Version 2.0 was the first version that included support to install .NET assemblies, and
it supports the 64-bit release of Windows as well. With .NET 4, version 3.1 is the minimum version of
the Windows Installer to use.

Windows Installer Terms
In order to work with the Windows Installer, you need to be familiar with some terms related to its
technology: packages, features, and components.

NOTE In the context of the Windows Installer, a component is not the same thing
as a component in the .NET Framework. A Windows Installer component is just a
single file (or multiple files that logically belong together). Such a file can be an
executable, a DLL, or even a simple text file.

As shown in Figure 17-19, a package consists of one or more features. A package is a single Microsoft
Installer (MSI) database. A feature is the user’s view of the capabilities of a product and can consist of
features and components. A component is the developer’s view of the installation; it is the smallest unit
of installation and consists of one or more files. The differentiation between features and components
exists because a single component can be included in multiple features (as shown in Component2 in the
figure). A single feature cannot be included within multiple feature.

Package

FeatureA FeatureB

FeatureCComponent2Component1

Component3

FIGURE 17-19

Look at the features of a real-world example that you should already have: Visual Studio 2010.
Using the Programs and Features option in the Control Panel, you can change the installed features
of Visual Studio after installation by clicking the Uninstall/Change button in the toolbar, as shown in
Figure 17-20.

Microsoft Windows Installer Architecture ❘ 549

FIGURE 17-20

By clicking the Uninstall/Change button, you can visit the Visual Studio 2010 Maintenance Wizard.
This is a good way to see features in action. Clicking on the plus and minus signs in the tree on the left
side, you can see all the features of the Visual Studio 2010 package (see Figure 17-21).

The Visual Studio 2010 package includes the features Visual Basic, Visual C++, Visual C#, Visual F#,
Visual Web Developer, and Graphics Library.

Advantages of the Windows Installer
The Windows Installer offers several advantages:

➤ Features can be installed, not installed, or advertised. With advertisement, a feature of the
package is installed at first use. Maybe you have already seen the Windows Installer starting
during your work with Microsoft Word. If you use an advertised feature of Word that was
not installed, it will be installed automatically as soon as you use it.

➤ If an application becomes corrupt, it can self-repair through the repair feature of Windows
Installer packages.

➤ An automatic rollback will be performed if the installation fails. After the installation fails,
everything is left as before: no additional registry keys, files, and so on are left on the system.

550 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

FIGURE 17-21

➤ With an uninstall, all the relevant files, registry keys, and so on are removed — the
application can be completely uninstalled. No temporary files are left out, and the registry
is reinstated.

You can read the tables of the MSI database file to find information about such things as what files are
copied and what registry keys are written.

CREATING AN INSTALLATION PACKAGE FOR THE MDI EDITOR

In this section, you will use the MDI Editor solution from Chapter 16 to create a Windows Installer
package using Visual Studio 2010. Of course, you can use any other Windows Forms or WPF applica-
tion you have developed while you follow the steps; you just have to change some of the names used.

Planning the Installation
Before you can start building the installation program, you have to plan what you are going to put in
it. Consider the following questions:

Creating an Installation Package for the MDI Editor ❘ 551

➤ What files are needed for the application? Of course, the executable and probably some
component assemblies are required. It won’t be necessary for you to identify all dependen-
cies of these items because the dependencies are automatically included. Other required
files might include a documentation file, a readme.txt file, a license file, a document
template, pictures, and configuration files, among others. You have to know all the
required files.

For the MDI Editor application developed in Chapter 16, an executable is needed, and you
will also include the files readme.rtf and license.rtf, and a bitmap from Wrox Press to
appear in the installation dialogs.

➤ What directories should be used? Application files should be installed in Program Files\

Application name. The Program Files directory is named differently for each language vari-
ant of the operating system. In addition, the administrator can choose different paths for this
application. It is not necessary to know where this directory is, because there’s an API func-
tion call to get this directory. With the installer, you can use a special, predefined folder to put
files in the Program Files directory.

NOTE It’s worth making this point again: Under no circumstances should the
directories be hard-coded. With international versions, these directories are
named differently! Even if your application only supports English versions of
Windows (which isn’t a good idea), the system administrator could have moved
these directories to different drives.

The MDI Editor application will have the executable in the default application directory
unless the installing user selects a different path.

➤ How should the user access the application? You can put a shortcut to the executable in the
Start menu, or place an icon on the desktop, for example. If you want to place an icon on the
desktop, ensure that the user is happy with that. Since Windows XP, it is recommended that
the desktop be as clean as possible. With Windows 7, users can place gadgets (small active
programs) on the desktop. This is one of the reasons why the desktop should be clean and the
user should arrange the icons and gadgets as required. MDI Editor should be accessible from
the Start menu.

➤ What is the distribution media? Do you want to put the installation packages on a CD, floppy
disks, or a network share?

➤ What questions should users answer? Should users accept license information, view a
ReadMe file, or enter the path to install? Are some other options required for the installation?

The default dialogs supplied with the Visual Studio 2010 Installer are adequate for the Win-
dows Installer project you create over the remainder of the chapter. You will ask for the
directory where the program should be installed (the user may choose a path that is different
from the default), show a ReadMe file, and ask the user to accept the license agreement.

552 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

Creating the Project
Now that you know what should be in the installation package, you can use the Visual Studio 2010
Installer to create an installer project and add all the files that should be installed. In the following Try
It Out, you use the Project Wizard and configure the project.

TRY IT OUT Creating a Windows Installer Project

1. Open the solution file of the MDI Editor project you created in Chapter 16. You will add the
installation project to the existing solution. If you didn’t create the solution, you can copy the
complete folder MDI Editor from the file Chapter16Code.zip. Open the project with Visual
Studio by using the menu File ➪ Open ➪ Project/Solution . . . and select the solution file Manual

Menus.sln.

Open the solution file Manual Menus.sln within the folder MDI Editor using the Visual Studio
menu File ➪ Open ➪ Project/Solution

2. Add a Setup Project called MDIEditorSetup to the solution: Select File ➪ Add New Project, and
then choose Other Project Types ➪ Setup and Deployment ➪ Visual Studio Installer, and select
the Setup Project template, as shown in Figure 17-22, and click the OK button.

FIGURE 17-22

Creating an Installation Package for the MDI Editor ❘ 553

Project Properties
Up to this point, you have only a project file for the setup solution. The files to be installed must be
defined, but you also have to configure the project properties. To do this, you have to know what the
Packaging and Bootstrapper options mean.

Packaging
MSI is where the installation is started, but you can define how the files that are to be installed are
packaged using the three options in the dialog shown in Figure 17-23. This dialog opens if you right-
click on the MDIEditorSetup project and select Properties.

FIGURE 17-23

First look at the options in the Package files drop-down list:

➤ As loose uncompressed files — Stores all program and data files as they are. No compressing
takes place.

➤ In setup file — This option merges and compresses all the files into the MSI file. This option
can be overridden for single components in the package. If you put all your files into a single
MSI file, then you have to ensure that the size of the installation program fits in the target you
want to use, such as CDs or floppy disks. If you have so many files to install that they exceed
the capacity of a single floppy, you can try to change the compression option by selecting the
Optimized for Size option from the Compression drop-down list. If the files still don’t fit, then
choose the next option for packaging.

➤ In cabinet file(s) — With this method, the MSI file is used just to load and install the CAB
files. With CAB files, it is possible to set file sizes that enable installations on CDs or floppy
disks (you can set sizes of 1440KB for installations from floppy disks).

554 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

Prerequisites
In the same dialog, you can configure the prerequisites that must be present before the application can
be installed. When you click the Settings button near the Prerequisites URL text box, the Prerequisites
dialog appears, shown in Figure 17-24. As you can see, the .NET Framework 4 Client Profile is selected
by default as a prerequisite. If the client system doesn’t have the .NET Framework installed, it will
be installed from the setup program. You can also select other prerequisite options, as shown in the
following list:

➤ Windows Installer 3.1 — Windows Installer 3.1 is required for installer packages that are cre-
ated with Visual Studio 2010. If the target system is Windows Vista or Windows Server 2008,
the installer is already on the system. With older systems, the correct version of the Windows
Installer might not be there, so you can select this option to include Windows Installer 3.1
with the installation program. Windows 7 uses Version 5 of the Windows Installer, while
Version 4.5 is used by Visual Studio 2010.

➤ SQL Server 2008 Express — If you need a database on the client system, then you can include
the SQL Server 2008 Express Edition with the setup program. Accessing SQL Server with
ADO.NET is covered in Chapter 24.

➤ Microsoft Office 2007 Primary Interop Assemblies — For applications that make use of
Office automation, the primary interop assemblies for Office 2007 can be installed with
this component.

➤ Visual Basic PowerPacks 10.0 — The Visual Basic PowerPack offers additional features for
programming with Visual Basic that can be installed with this component.

➤ Visual F# Redistributable Package — For applications written with the programming lan-
guage F#, you need this package.

FIGURE 17-24

Creating an Installation Package for the MDI Editor ❘ 555

TRY IT OUT Configuring the Project

1. Change the Prerequisites option in the Property page that you just saw to include Windows
Installer 3.1 so that the application can be installed on systems where Windows Installer 3.1
is not available. In addition, change the output filename to WroxMDIEditor.msi, as shown in
Figure 17-25. Then click OK.

FIGURE 17-25

2. Using the Properties window, set the project properties to the values in the following table:

PROPERTY VALUE

Author Wrox Press

Description MDI Editor to print and edit text files.

Keywords Installer, Wrox Press, MDI Editor

InstallAllUsers True

Manufacturer Wrox Press

ManufacturerUrl http://www.wrox.com

Product Name Wrox MDI Editor

SupportUrl http://p2p.wrox.com

Title Installation Demo for MDI Editor

Version 1.0.0

556 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

Setup Editors
With a Visual Studio 2010 Setup Project, six editors are available. You can select the editor by opening
a deployment project and selecting View ➪ Editor:

➤ The File System Editor is used to add files to the installation package.

➤ With the Registry Editor, you can create registry keys for the application.

➤ The File Types Editor enables you to register specific file extensions for an application.

➤ With the User Interface Editor you can add and configure dialogs that are shown during
installation of the product.

➤ The Custom Actions Editor enables you to start custom programs during installation and
uninstallation.

➤ With the Launch Conditions Editor, you can specify requirements for your application — for
example, that the .NET runtime already has to be in place.

File System Editor
With the File System Editor, you can add files to the installation package and configure the
locations where they should be installed. To open this editor, select View ➪ Editor ➪ File System.
Some of the predefined special folders are automatically opened, as shown in Figure 17-26:

FIGURE 17-26

➤ The Application folder is used to store the exe-
cutables and libraries. The location is defined as
[ProgramFilesFolder]\[Manufacturer]\[ProductName].
On English language systems, [ProgramFilesFolder]
is resolved to C:\Program Files. The directories for
[Manufacturer] and [ProductName] are defined with the
Manufacturer and ProductName project properties.

➤ If you want to place an icon on the desktop, use the User’s Desktop folder. The default path
to this folder is C:\Users\username\Desktop or C:\Users\All Users\Desktop, depending on
whether the installation is for a single user or all users.

➤ The user will usually start a program from the All Programs menu. The default path is
C:\Documents and Settings\username\Start Menu\Programs. You can put a shortcut to the
application in this menu. The shortcut should have a name that includes the company and the
application name, so that the user can easily identify the application, such as Microsoft Excel.

Some applications create a submenu from which more than one application can be started — for
example, Microsoft Visual Studio 2010. According to the Windows guidelines, many programs do
this for the wrong reason, listing programs that are not necessary. For example, you shouldn’t put an
uninstall program in these menus, because this feature is available from Programs and Features in the
Control Panel and should be used from there. Nor should a help file be placed in this menu because this
should be available directly from the application. Thus, for many applications, it will be adequate to
place a shortcut to the application directly in the All Programs menu. The goal of these restrictions is
to ensure that the Start menu doesn’t become cluttered with too many items.

Creating an Installation Package for the MDI Editor ❘ 557

A great reference to this information can be found in the application specifications paper for
Microsoft Windows 7. You can find these documents at http://msdn.microsoft.com/en-us/windows
/dd203105.aspx.

You can add other folders by right-clicking and selecting Add Special Folder. Some of these folders
include the following:

➤ The Global Assembly Cache (GAC) Folder refers to the folder in which you can install shared
assemblies. The GAC is used for assemblies that should be shared between multiple applica-
tions.

➤ The User’s Personal Data Folder refers to the user’s default folder for storing documents.
C:\Users\[username]\My Documents is the default path. This path is the default directory
used by Visual Studio to store projects.

➤ The shortcuts placed in the User’s Send To menu extend the Send To context menu when a
file is selected. With this context menu the user can typically send a file to the target location,
such as the floppy drive, a mail recipient, or the My Documents folder.

Adding Items to Special Folders
To add items to a special folder, you can choose from a list by selecting a folder and choosing Action
➪ Add Special Folder. You can select Project Output, Folder, File, or Assembly. Adding the output of
a project to a folder automatically adds the generated output files and a .dll or .exe, depending on
whether the added project is a component library or an application. Selecting either Project Output or
Assembly automatically adds all dependencies (all referenced assemblies) to the folder.

File Properties
If you select the properties of a file in a folder, you can set properties such as those in the following
table. Depending on the file type, some of these properties don’t apply, and there may be additional
properties not listed here.

PROPERTY DESCRIPTION

Condition A condition can be defined with this property to determine whether the selected file
should be installed. This can be useful if you want to add this file only for specific oper-
ating system versions or if the user must make a selection in a dialog.

Exclude Set this to True if the file should not be installed. This way, the file can stay in the
project but doesn’t install. You can exclude a file if you are sure that it’s not a depen-
dency or that it already exists on every system on which the application is deployed.

PackageAs With PackageAs, you can override the default way the file is added to the installer pack-
age. For example, if the project configuration specifies ‘‘In setup file,’’ you can change
the package configuration with this option to Loose for a specific file so that the file
is not added to the MSI database file. This is useful, for example, if you want to add
a ReadMe file that users should read before starting the installation. Obviously, you
would not compress this file even if all the others were compressed.

continues

558 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

(continued)

PROPERTY DESCRIPTION

Permanent Setting this property to True means that the file will stay on the target computer after
uninstallation of the product. This can be used for configuration files. You might have
already seen this when installing a new version of Microsoft Outlook: if you configure
Microsoft Outlook, then uninstall the product and install it again, it’s not necessary to
reconfigure it because the configuration from the last install is not deleted.

ReadOnly This sets the read-only file attribute at installation.

Vital This property means that the file is essential for the installation of this product. If instal-
lation of this file fails, then the complete installation is aborted and a rollback occurs.

In the next Try It Out, you add the files that should be deployed to the Windows Installer package.

TRY IT OUT Adding Files to the Installer Package

FIGURE 17-27

a

1. Add the primary output of the MDI Editor project to
the Application folder of the installer project by select-
ing Project ➪ Add ➪ Project Output. In the Add Project
Output Group dialog, select Primary output, as shown
in Figure 17-27.

Click the OK button to add the primary output of the
MDI Editor project to the Application folder in the auto-
matically opened File System Editor. In this case, the
primary output is MDIEditor.exe.

2. Additional files to add are a logo, a license, and a
ReadMe file. In the File System Editor, create a subdi-
rectory named Setup in the Application folder. To do so,
select the Application folder and then choose Action ➪

Add ➪ Folder.

NOTE The Action menu in Visual Studio is available only if you select items in
the setup editors. If an item in the Solution Explorer or Class View is selected, the
Action menu is not available.

Creating an Installation Package for the MDI Editor ❘ 559

3. Add the files wroxlogo.bmp, wroxsetuplogo.bmp, readme.rtf, and license.rtf to the folder setup
by right-clicking on the Setup folder and selecting Add ➪ File. These files are available with the
code download for this chapter, but you can easily create them yourself. You can fill the text files
with license and ReadMe information. It is not necessary to change the properties of these files,
which will be used in the dialogs of the installation program.

The bitmap wroxsetuplogo.bmp should be sized 500 pixels wide and 70 pixels high. The left 420
pixels of the bitmap should only have a background graphic because the text of the installation
dialogs will cover this range.

4. Add the file readme.txt to the Application folder. You want this file to be available for users to
read before the installation is started. Set the property PackageAs to vsdpaLoose so that this file
is not compressed into the installer package. Set the ReadOnly property to true so this file can’t
be changed.

The project now includes two ReadMe files, readme.txt and readme.rtf. The file readme.txt can
be read by the user installing the application before the installation is started. The file readme.rtf
provides some information in the installation dialogs.

5. Drag and drop the file demo.txt to the User’s Desktop folder. This file should be installed only
after asking the user whether the install is really wanted, so set the Condition property of this file
to CHECKBOXDEMO. CHECKBOXDEMO is the condition that can be set by the user. The value must be
written in uppercase. The file is installed only if the CHECKBOXDEMO condition is set to true. Later,
you define a dialog where this property is set.

6. To make the program available from the Start ➪ Programs menu, you need a shortcut to the MDI
Editor program.

Select Primary Output from the MDI Editor item in the Application folder and select Action ➪

Create Shortcut to Primary output from MDIEditor. Set the Name property of the generated short-
cut to Wrox MDI Editor, and drag and drop this shortcut to the User’s Programs menu.

File Types Editor

FIGURE 17-28

If your application uses custom file types and you want to register file
extensions for files that should start your application when a user double-
clicks them, you can use the File Types Editor by selecting View ➪ Editor
➪ File Types. Figure 17-28 shows the File Types Editor with a custom file
extension added.

With the File Types Editor, you can configure a file extension that should
be handled from your application. The file extension has the properties
shown in the following table:

560 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

PROPERTY DESCRIPTION

Name Add a useful name describing the file type. This name is displayed in the File
Types Editor and written to the registry. Choose a unique name. An example for
.doc file types is Word.Document.12. It’s not necessary to use a ProgID as in
the Word example; simple text like wordhtmlfile, as used for the .dochtml file
extension, can also be used.

Command With the Command property you can specify the executable that should be started
when the user opens a file with this type.

Description Add a description.

Extensions This property is for the file extension where your application should be regis-
tered. The file extension will be registered in a section of the registry.

Icon Specify an icon to display for the file extension.

Create Actions
After creating the file types in the File Types Editor, you can add actions. The default action that is
automatically added is Open. You can add additional actions such as New and Print or whatever
actions are appropriate for your program. Together with the actions, the Arguments and Verb properties
must be defined. The Arguments property specifies the argument that is passed to the program, which
is registered for the file extension. For example, %1 means that the filename is passed to the application.
The Verb property specifies the action that should occur. With a print action, /print can be added if
supported by the application.

The next Try It Out adds an action to the MDIEditor installation program. You want to register a file
extension so that MDIEditor can be used from Windows Explorer to open files with the extension .txt.
After this registration, you can double-click these files to open them, and the MDIEditor application
will start automatically.

TRY IT OUT Setting the File Extension

1. Start the File Types Editor with View ➪ Editor ➪ File Types. Add a new file type by selecting
Action ➪ Add File Type, with the properties set as shown in the following table.

PROPERTY VALUE

(Name) Wrox.MDIEditor.Text

Command Primary output from MDIEditor

Description Text Documents

Extensions Txt

Creating an Installation Package for the MDI Editor ❘ 561

You can also set the Icon property to define an icon for the opening of files, and a MIME type.
Leave the properties of the Open action with the default values so that the filename is passed as an
application argument.

Launch Condition Editor

FIGURE 17-29

With the Launch Condition Editor, you can specify some require-
ments that the target system must have before the installation can
take place. Start the Launch Conditions Editor by selecting View ➪

Editor ➪ Launch Conditions, as shown in Figure 17-29.

The editor has two sections to specify the requirements: Search Target
Machine and Launch Conditions. In the first section, you can specify
what specific file or registry key to search for. The second section
defines the error message that occurs if the search is not successful.
Following are some of the launch conditions that you can define using
the Action menu:

➤ File Launch Condition — Searches the target system for a file you define before the installa-
tion starts

➤ Registry Launch Condition — Enables you to require a check of registry keys before the
installation starts

➤ Windows Installer Launch Condition — Makes it possible to search for Windows Installer
components that must be present

➤ .NET Framework Launch Condition — Checks whether the .NET Framework is already
installed on the target system

➤ Internet Information Services Launch Condition — Checks for installed Internet Information
Services. Adding this launch condition adds a registry search for a specific registry key that is
defined when Internet Information Services is installed, and adds a condition to check for a
specific version.

By default, a .NET Framework Launch Condition is included, and its properties have been set to pre-
defined values: the Message property is set to [VSDNETMSG], which is a predefined error message. If the
.NET Framework 4 is not installed, then a message informing the user to install the .NET Framework
pops up. InstallUrl, by default, is set to http://go.microsoft.com/fwlink/?LinkId=131000, so users
can easily start the installation of the .NET Framework.

User Interface Editor
With the User Interface Editor, you can define the dialogs the user sees when configuring the instal-
lation. Here, you can inform users about license agreements and ask for installation paths and other
information to configure the application.

In the next Try It Out, you start the User Interface Editor, which is used to configure the dialogs that
appear when the application is installed.

562 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

TRY IT OUT Starting the User Interface Editor

FIGURE 17-30

a

1. Start the User Interface Editor by selecting View ➪ Editor ➪ User
Interface.

2. Use the User Interface Editor to set properties for predefined
dialog boxes. Figure 17-30 shows the automatically generated
dialogs and two installation modes that you should see.

How It Works

As shown in Figure 17-30, there are two installation modes: Install and
Administrative Install. The Install mode is typically used to install the
application on a target system. With an Administrative Install, you can
install an image of the application on a network share. Afterward, a user
can install the application from the network.

Both installation modes have three phases during which dialogs can be
shown: Start, Progress, and End. Take a look at the default dialogs:

➤ The Welcome dialog displays a welcome message to the user.
You can replace the default welcome text with your own message. Users can only cancel the
installation or click Next.

➤ With the second dialog, Installation Folder, users can choose the folder where the application
should be installed. If you add custom dialogs (shown in a moment), then you have to add
them before this one.

➤ The Confirm Installation dialog is the last dialog before the installation starts.

➤ The Progress dialog displays a progress control so users can see the progress of the
installation.

➤ When installation is finished, the Finished dialog appears.

The default dialogs appear automatically at installation time, even if you never opened the User Inter-
face Editor in the solution, but you should configure these dialogs to display useful messages for your
application.

In the next Try It Out, you configure the default dialogs that are shown when the application is
installed. Here, the Administrative Install path will be ignored; only the typical installation path
is configured.

TRY IT OUT Configuring the Default Dialogs

1. Select the Welcome dialog. In the Properties window, you can see three properties for this dialog:
BannerBitmap, CopyrightWarning, and WelcomeText. Select the BannerBitmap property by click-
ing Browse in the combo box, and select the wroxsetuplogo.bmp file in the folder Application
Folder\Setup. The bitmap stored in this file will appear on top of this dialog.

Creating an Installation Package for the MDI Editor ❘ 563

The default text for the property CopyrightWarning is as follows:

WARNING: This computer program is protected by copyright law and international
treaties. Unauthorized duplication or distribution of this program, or any
portion of it, may result in severe civil or criminal penalties, and will be
prosecuted to the maximum extent possible under the law.

This text appears in the Welcome dialog also. Change this text if you want a stronger warning.
The WelcomeText property defines more text that is displayed in the dialog. Its default value is
as follows:

The installer will guide you through the steps required to install [ProductName]
on your computer.

You can change this text too. The string [ProductName] will be automatically replaced with the
property ProductName that you defined in the properties of the project.

2. Select the Installation Folder dialog. This dialog has just two properties: BannerBitmap and
InstallAllUsersVisible. The latter property has a default value of true. If this value is set
to false, then the application can only be installed for the user who is logged on while the
installation is running. Change the value of BannerBitmap to the wroxsetuplogo.bmp file, as you
did with the Welcome dialog. As each dialog can display a bitmap with this property, change the
BannerBitmap property for all the other dialogs, too.

Additional Dialogs
If you design a custom dialog, you can’t add it to the installation sequence with the Visual Studio
Installer. A more sophisticated tool, such as InstallShield or Wise for Windows, is required — but with
the Visual Studio Installer, you can add and customize many of the predefined dialogs by using the Add
Dialog screen.

Selecting the Start sequence in the User Interface Editor and choosing the menu options Action
➪ Add Dialog causes the Add Dialog dialog to be displayed (see Figure 17-31). All these dialogs
are configurable.

There are dialogs in which two, three, or four radio buttons appear, check-box dialogs that show up
to four check boxes, and text box dialogs that show up to four text boxes. You can configure these
dialogs by setting their properties.

Here’s a quick overview of some of the dialogs:

➤ The Customer Information dialog asks users for their name and company, and the product’s
serial number. If you don’t provide a serial number with the product, you can hide the Serial
Number text box by setting ShowSerialNumber to false.

➤ With the License Agreement dialog, users can accept a license before the installation starts. A
license file is defined with the LicenseFile property.

➤ In the Register User dialog, users can click a Register Now button to launch a program
defined with the Executable property. The custom program can send the data to an FTP
server, or it can transfer the data by e-mail.

564 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

FIGURE 17-31

➤ The Splash dialog just displays a splash screen before the installation starts, using a bitmap
specified by the SplashBitmap property.

In the next Try It Out, you add some additional dialogs: Read Me, License Agreement, and Check-
boxes.

TRY IT OUT Adding Other Dialogs

1. Add a Read Me, a License Agreement, and a Checkboxes (A) dialog to the Start sequence by
selecting Action ➪ Add Dialog. Define the order in the start sequence by dragging and dropping
as follows:

Welcome – Read Me – License Agreement – Checkboxes (A) – Installation Folder – Confirm

Installation.

2. Configure the BannerBitmap property for all these dialogs as you did earlier. For the Read Me
dialog, set the ReadmeFile property to readme.rtf, the file you added earlier to Application

Folder\Setup.

3. For the License Agreement dialog, set the LicenseFile property to license.rtf.

4. Use the Checkboxes (A) dialog to ask users whether the file demo.wroxtext (which you put into
the user’s Desktop folder) should be installed or not. Change the properties of this dialog accord-
ing to the following table:

Building the Project ❘ 565

PROPERTY VALUES

BannerText Optional Files

BodyText Installation of optional files

Checkbox1Label Do you want a demo file put onto the desktop?

Checkbox1Property CHECKBOXDEMO

Checkbox2Visible False

Checkbox3Visible False

Checkbox4Visible False

The Checkbox1Property property is set to the same value as the Condition property of the file
demo.wroxtext — you set this Condition value earlier when you added the file to the package
using the File System Editor. If the user checks this check box, the value of CHECKBOXDEMO will be
true, and the file will be installed; otherwise, the value is false, and the file will not be installed.

The CheckboxXVisible property of the other check boxes is set to false, because you need only a
single check box.

BUILDING THE PROJECT

Now you can complete the following Try It Out to start the build of the installer project.

TRY IT OUT Building the Project

1. To create the Windows Installer package, right-click the SimpleEditorSetup project and select
Build.

2. With a successful build you will find the files setup.exe and WroxSimpleEditor.msi, as well as a
readme.txt file in the Debug or Release directory (depending on your build settings).

How It Works

Setup.exe starts the installation of the MSI database file WroxSimpleEditor.msi. All files that you have
added to the installer project (with one exception) are merged and compressed into the MSI file because

566 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

you set the project properties to Package Files in Setup File. The exception to this is the readme.txt file,
for which the PackageAs property was changed so that it can be read immediately before the application is
installed. You can also find the installation package of the .NET Framework in the DotNetFx subdirectory.

INSTALLATION

Now you can start installing the MDI Editor application. Double-click the Setup.exe file or select
the WroxMDIEditor.msi file. Right-click to open the context menu and choose the Install option. You
can also start the installation from within Visual Studio 2010 by right-clicking the opened installation
project in the Solution Explorer and selecting Install.

As shown in the following sections, all the dialogs have the Wrox logo, and the inserted Read Me and
License Agreement dialogs appear with the configured files.

Welcome
The first dialog to appear is the Welcome dialog (see Figure 17-32). You can see the Wrox logo that
was inserted by setting the value of the BannerBitmap property. The text that appears is defined with the
WelcomeText and CopyrightWarning properties. The title of this dialog results from the ProductName

property that you set with the project properties.

FIGURE 17-32

Read Me
After clicking the Next button, you can see the Read Me dialog (see Figure 17-33). It shows the Rich
Text file readme.rtf that was configured by setting the ReadmeFile property.

Installation ❘ 567

FIGURE 17-33

License Agreement
The third dialog to appear is the license agreement. Here, you have configured only the BannerBitmap

and the LicenseFile properties. The radio buttons to agree to the license are added automatically.
As shown in Figure 17-34, the Next button remains disabled until the I Agree button is pressed. This
functionality is automatic with this dialog.

FIGURE 17-34

568 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

Optional Files
Agreeing to the license information and clicking the Next button displays the Checkboxes (A) dia-
log (see Figure 17-35). You should see the text that was defined with the BannerText, BodyText, and
Checkbox1Label properties. The other check boxes are not visible because the specific CheckboxVisible
property was set to false.

Selecting the check box will install the file demo.txt to the desktop.

FIGURE 17-35

Select Installation Folder
In the Select Installation Folder dialog (see Figure 17-36), users can select the path where the application
should be installed. This dialog allowed you to set only the BannerBitmap property. The default path
shown is [Program Files]\[Manufacturer]\[Product Name].

Users can also specify whether the application should be installed for everyone or just for the currently
logged-on user. Depending on the response to this option, the shortcut to the program file will be put
in the user-specific directory or the All Users directory.

Disk Cost
Pressing the Disk Cost button opens the dialog shown in Figure 17-37. Here, the disk space of all hard
drives is displayed, and the required space for every disk is calculated. This helps the user to choose a
disk where the application should be installed.

Installation ❘ 569

FIGURE 17-36

FIGURE 17-37

Confirm Installation
The Confirm Installation dialog (see Figure 17-38) is the last dialog to appear before the installa-
tion begins. No more questions are asked; this is just the last chance to cancel the installation before
it begins.

570 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

FIGURE 17-38

Progress
The Installing dialog (see Figure 17-39) shows a progress control during installation to indicate to users
that the installation is continuing and to provide a rough idea of how long the installation will last. The
editor is a small program, so this dialog finishes very fast.

FIGURE 17-39

Summary ❘ 571

Installation Complete
After a successful installation, you will see the last dialog: Installation Complete (see Figure 17-40).

FIGURE 17-40

Running the Application
The editor can be started by selecting Start ➪ All Programs ➪ Wrox MDI Editor. Because you registered
a file extension, there’s another way to start the application: double-click a file with the file extension
.txt. To choose which application should be used to open a file, select the file in the Windows Explorer
and open the context menu. From the context menu, go to Open with . . . and select the application you
want. To define what application should open the file with a double-click, open the context menu, go
to Open with . . . and select Choose default program The program you select there will be used
from now on.

If you selected the check box with the Optional Files dialog, you can find demo.txt on your desktop.

Uninstall
If you want to get rid of the Wrox MDI Editor, you can use Add/Remove Programs from the Control
Panel. Click the Remove button for Wrox MDI Editor.

SUMMARY

This chapter covered how to use ClickOnce deployment and the functionality of the Windows Installer,
including how to create installer packages using Visual Studio 2010. The Windows Installer makes it
easy to do standardized installations, uninstalls, and repairs.

572 ❘ CHAPTER 17 DEPLOYING WINDOWS APPLICATIONS

ClickOnce is a new technology that makes it easy to install Windows applications without the hassle of
needing to be logged on as a system administrator. ClickOnce offers easy deployment as well as updates
of client applications.

If more functionality than is available with ClickOnce is needed, the Windows Installer does a good
job. The Visual Studio 2010 Installer doesn’t possess all the functionality of the Windows Installer, but
for many applications its features are more than enough. Several editors enable configuration of the
generated Windows Installer file. With the File System Editor, you specify all files and shortcuts; the
Launch Conditions Editor can define some mandatory prerequisites; the File Types Editor is used to
register file extensions for applications; and the User Interface Editor makes it easy to adapt the dialogs
used for the installation.

EXERCISES

1. What are the advantages of ClickOnce deployment?

2. What is defined with a ClickOnce manifest?

3. When is it necessary to use the Windows Installer?

4. What different editors can you use to create a Windows Installer package using Visual Studio?

Answers to Exercises can be found in Appendix A.

Exercises ❘ 573

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

ClickOnce ClickOnce can be used to deploy applications without administrative
rights. Just by clicking a link on a Web page, a Windows Forms or
WPF application is installed. This is the big advantage of ClickOnce,
as it doesn’t give nightmares to the IT admins. ClickOnce deployment
can be created from the Publish section of the project properties.

Windows Installer package The Windows Installer allows installing shared applications on a sys-
tem. With this technology you can install application components that
require administrative privileges. An installer package can easily be
created with the Visual Studio Installer template Setup Project.

Customize installation
dialogs

The Visual Studio Setup Project provides some predefined dialogs
for the installation that can be customized by setting properties such
as the copyright text and the logos that are shown during installation.

PART III
Web Programming

� CHAPTER 18: ASP.NET Web Programming

� CHAPTER 19: Web Services

� CHAPTER 20: Deploying Web Applications

18
ASP.NET Web Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ An overview of ASP.NET development

➤ How to use ASP.NET server controls

➤ How to send an ASP.NET postback to different pages

➤ How to create ASP.NET Ajax postbacks

➤ How to validate user input

➤ How to manage state

➤ How to add styles to a Web page

➤ How to use master pages

➤ How to implement page navigation

➤ How to authenticate and authorize users

➤ How to read from and write to SQL Server databases

Windows Forms is the technology for writing Windows applications; with ASP.NET, you can
build Web applications that are displayed in any browser. ASP.NET enables you to write Web
applications in a similar way to that in which Windows applications are developed. This is
made possible by server-side controls that abstract the HTML code and mimic the behavior of
the Windows controls. Of course, there are still many differences between Windows and Web
applications because of the underlying technologies — HTTP and HTML — on which Web
applications are based.

This chapter provides an overview of programming Web applications with ASP.NET, how to
use Web controls, how to deal with state management (which is very different from how it’s
handled in Windows applications), how to perform authentication, and how to read and write
data to and from a database.

578 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

OVERVIEW OF WEB APPLICATIONS

A Web application causes a Web server to send HTML code to a client. That code is displayed in a
Web browser such as Internet Explorer. When a user enters a URL string in the browser, an HTTP
request is sent to the Web server. The HTTP request contains the filename that is requested along with
additional information such as a string identifying the client application, the languages that the client
supports, and additional data belonging to the request. The Web server returns an HTTP response that
contains HTML code, which is interpreted by the Web browser to display text boxes, buttons, and lists
to the user.

ASP.NET is a technology for dynamically creating Web pages with server-side code. These Web
pages can be developed with many similarities to client-side Windows programs. Instead of deal-
ing directly with the HTTP request and response and manually creating HTML code to send to the
client, you can use controls such as TextBox, Label, ComboBox, and Calendar, which create HTML code
themselves.

ASP.NET RUNTIME

Using ASP.NET for Web applications on the client system requires only a simple Web browser. You can
use Internet Explorer, Opera, Netscape Navigator, Firefox, or any other Web browser that supports
HTML. The client system doesn’t require .NET to be installed.

On the server system, the ASP.NET runtime is needed. If you have Internet Information Services (IIS) on
the system, the ASP.NET runtime is configured with the server when the .NET Framework is installed.
During development, there’s no need to work with Internet Information Services because Visual Studio
delivers its own ASP.NET Web Development Server that you can use for testing and debugging the
application.

To understand how the ASP.NET runtime goes into action, consider a typical Web request from a
browser (see Figure 18-1). The client requests a file, e.g., default.aspx, from the server. All ASP.NET
Web pages usually have the file extension .aspx. Because this file extension is registered with IIS, or
known by the ASP.NET Web Development Server, the ASP.NET runtime and the ASP.NET worker
process enter the picture. With the first request to the file default.aspx, the ASP.NET parser is started,
and the compiler compiles the file together with a C# file, which is associated with the .aspx file and
creates an assembly. Then the assembly is compiled to native code by the JIT compiler of the .NET
runtime. The assembly contains a Page class that is invoked to return HTML code to the client. Then
the Page object is destroyed. The assembly is kept for subsequent requests, though, so it is not necessary
to compile the assembly again.

CREATING A SIMPLE PAGE

In the following Try It Out, you create a simple Web page. In the sample application used in this and
the next chapter, a simple Event website will be created where attendees can register for events.

Creating a Simple Page ❘ 579

Web Browser IIS

ASP.NET Worker Process

Parser

Execute

Compiler
Internet

FIGURE 18-1

TRY IT OUT Creating a Simple Web Page

1. Create a new Web project by selecting File ➪ New ➪ Project within Visual Studio. In the New
Project dialog (see Figure 18-2), select the category Visual C# and the subcategory Web, and then
select the ASP.NET Empty Web Application template. Name the project EventRegistrationWeb.

FIGURE 18-2

2. After creating the Web project, create a new Web page using the menu Project ➪ Add New Item,
select the Web Form template (see Figure 18-3), and name it Registration.aspx.

580 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

FIGURE 18-3

3. A table is useful for arranging the controls. Click into the design view and add a table by select-
ing Table ➪ Insert Table. In the Insert Table dialog, set five rows and two columns, as shown in
Figure 18-4.

4. Add to the table four Label controls, three TextBox controls, a DropDownList, and a Button, as
shown in Figure 18-5.

5. Set the control properties as shown in the following table:

CONTROL TYPE (ID) TEXT

Label labelEvent Event:

Label labelFirstName First name:

Label labelLastName Last name:

Label labelEmail Email:

DropDownList dropDownListEvents

TextBox textFirstName

TextBox textLastName

TextBox textEmail

Button buttonSubmit Submit

Creating a Simple Page ❘ 581

FIGURE 18-4

FIGURE 18-5

6. In the DropDownList, select the Items property in the Properties window, and enter the strings
Introduction to ASP.NET, Introduction to Windows Azure, and Take off to .NET 4.0 in the List-
Item Collection Editor, as shown in Figure 18-6.

7. Switch the editor to the source view and verify that the generated code looks similar to the
following:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Registration.aspx.cs"
Inherits="EventRegistrationWeb.Registration" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

582 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title></title>
<style type="text/css">

.style1
{

width: 100%;
}

</style>
</head>
<body>

<form id="form1" runat="server">
<div>

<table class="style1">
<tr>

<td>
<asp:Label ID="labelEvent" runat="server" Text="Event:">
</asp:Label>

</td>
<td>

<asp:DropDownList ID="dropDownListEvents" runat="server">
<asp:ListItem>Introduction to ASP.NET</asp:ListItem>
<asp:ListItem>Introduction to Windows Azure</asp:ListItem>
<asp:ListItem>Take off to .NET 4.0</asp:ListItem>

</asp:DropDownList>
</td>

</tr>
<tr>

<td>
<asp:Label ID="labelFirstName" runat="server"

Text="First name:"></asp:Label>
</td>
<td>

<asp:TextBox ID="textFirstName" runat="server"></asp:TextBox>
</td>

</tr>
<tr>

<td>
<asp:Label ID="labelLastName" runat="server" Text="Last name:">
</asp:Label>

</td>
<td>

<asp:TextBox ID="textLastName" runat="server"></asp:TextBox>
</td>

</tr>
<tr>

<td>
<asp:Label ID="labelEmail" runat="server" Text="Email:">
</asp:Label>

</td>

Creating a Simple Page ❘ 583

<td>
<asp:TextBox ID="textEmail" runat="server"></asp:TextBox>

</td>
</tr>
<tr>

<td>
 </td>

<td>
<asp:Button ID="buttonSubmit" runat="server" Text="Submit" />

</td>
</tr>

</table>
</div>
</form>

</body>
</html>

Code snippet Registration.aspx

FIGURE 18-6

8. Before starting the application, go to the project properties and open the Web settings, as shown
in Figure 18-7. Verify that the start action is set to the current page; and within the Servers group,
verify that the Visual Studio Development Server is configured.

9. Open the file Registration.aspx again in the editor. Start the Web application by selecting Debug
➪ Start Without Debugging. When you start the application, the ASP.NET Development Server is
automatically started. You will find an icon for the ASP.NET Development Server in the Windows
Explorer taskbar. Double-click that icon to see a dialog similar to the one shown in Figure 18-8.
This dialog shows the physical and virtual paths of the Web server, and the port the Web server is
listening to. This dialog can also be used to stop the Web server.

Starting the application causes Internet Explorer to show the Web page, as shown in Figure 18-9.
You can view the HTML code by selecting View ➪ Source. You’ll see that the server-side controls
are converted to pure HTML code.

584 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

FIGURE 18-7

FIGURE 18-8

How It Works

The first line of the file Registration.aspx is the page directive:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Registration.aspx.cs"
Inherits="EventRegistrationWeb.Registration" %>

Code snippet Registration.aspx

Creating a Simple Page ❘ 585

FIGURE 18-9

This directive defines the programming language and the classes that are used. The property
AutoEventWireup="true" automatically links the event handlers to specific method names, as shown later.
Inherits="EventRegistrationWeb.Registration" means that the class that is dynamically generated
from the ASPX file derives from the base class Registration. This base class is in the code-behind file
Registration.aspx.cs, as defined with the CodeFile property. Later in the chapter, you add handler code
to the .cs file. The generated code-behind file Registration.aspx.cs is shown here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace EventRegistrationWeb
{

public partial class Registration : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
}

}

Code snippet Registration.aspx.cs

NOTE The partial keyword used in the preceding code is discussed in
Chapter 10.

586 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

Here is the code of the ASPX page. The client receives simple HTML code as it is; only the runat="server"
attribute is removed from the <head> tag when the page is sent to the client.

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title></title>
<style type="text/css">

.style1
{

width: 100%;
}

</style>
</head>
<body>

Code snippet Registration.aspx

You will also find other HTML elements with the attribute runat="server", such as the <form>

element. With the runat=server attribute, an ASP.NET server control is associated with the HTML
tag. The control can be used to write server-side code. Behind the <form> element is an object of type
System.Web.UI.HtmlControls.HtmlForm. The object has the variable name form1 as defined with the id

attribute. form1 can be used to invoke methods and properties of the HtmlForm class.

The HtmlForm object creates a <form> tag that is sent to the client:

<form id="form1" runat="server">

Code snippet Default.aspx

Of course, the runat attribute is not sent to the client.

The standard controls that you’ve dropped from the Toolbox onto the Forms Designer have elements that
begin with <asp: — <asp:Label> and <asp:DropDownList>. These are server-side ASP.NET Web controls
that are associated with .NET classes in the namespace System.Web.UI.WebControls. <asp:Label> is
represented by the class Label, and <asp:DropDownList> is represented by the class DropDownList:

<td>
<asp:Label ID="labelEvent" runat="server" Text="Event:"></asp:Label>

</td>
<td>

<asp:DropDownList ID="dropDownListEvents" runat="server">
<asp:ListItem>Introduction to ASP.NET</asp:ListItem>
<asp:ListItem>Introduction to Windows Azure</asp:ListItem>
<asp:ListItem>Take off to .NET 4.0</asp:ListItem>

</asp:DropDownList>
</td>

Code snippet Registration.aspx

<asp:Label> doesn’t send an <asp:Label> element to the client because this is not a valid HTML element.
Instead, <asp:Label> returns a tag. Similarly, <asp:DropDownList> returns a <select> element,
and <asp:TextBox> returns the element <input type="text">.

Server Controls ❘ 587

ASP.NET has UI control classes in the namespaces System.Web.UI.HtmlControls and System.Web.UI.

WebControls. Both of these namespaces have some similar controls, also known as HTML server con-
trols and Web server controls. Examples are the HTML server control HtmlInputText and the Web server
control TextBox. The HTML server controls offer methods and properties that are similar to the HTML
controls. With the Web server controls you will find much more complex controls such as Calendar,
DataGrid, and Wizard. If you don’t need to program a control from server-side code and just want to pro-
gram it from JavaScript you can stick with the HTML controls and not add the runat="server" attribute.

SERVER CONTROLS

The following table lists some of the principal Web server controls available with ASP.NET, and the
HTML code returned by these controls:

CONTROL HTML DESCRIPTION

Label Returns a span element containing text.

Literal static text Returns simple static text. With this control, it is
possible to transform the content depending on
the client application.

TextBox <input type="text"> Returns HTML <input type="text"> whereby
the user can enter some values. You can write
a server-side event handler when the text
changes.

Button <input type="submit"> Sends form values to the server.

LinkButton <a href="javascript:

dopostback()">

Creates an anchor tag that includes JavaScript
for doing a postback to the server.

ImageButton <input type="image"> Generates an input tag of type image to show a
referenced image.

HyperLink <a> Creates a simple anchor tag referencing a Web
page.

DropDownList <select> Creates a select tag whereby the user sees
one item and can select one of multiple items by
clicking on the drop-down list.

ListBox <select size=""> Creates a select tag with a size attribute that
shows multiple items at once.

CheckBox <input type="checkbox"> Returns an input element of type check box

to show a button that can be selected or dese-
lected. Instead of using the CheckBox, you could
use a CheckBoxList, which creates a table
consisting of multiple check box elements.

continues

588 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

(continued)

CONTROL HTML DESCRIPTION

RadioButton <input type="radio"> Returns an input element of type radio. With
a radio button, just one button of a group can
be selected. Similar to the CheckBoxList,
RadioButtonList provides a list of buttons.

Image Returns an img tag to display a GIF or JPG file
on the client.

Calendar <table> Displays a complete calendar from which
a date can be selected, the month can be
changed, and so on. For output, an HTML
table with JavaScript code is generated.

TreeView <div><table> Returns a div tag that includes multiple table

tags, depending on its content. JavaScript is
used to open and close the tree on the client.

ASP.NET POSTBACK

Web server controls can include event handlers that are invoked on the server. The Button control
can include a Click event; the DropDownList offers the event SelectedIndexChanged, and the TextBox

offers the event TextChanged.

The events occur on the server only when a postback occurs. When a value in a text box changes, the
TextChanged event doesn’t occur immediately; it occurs only when the form is submitted and sent to
the server, which happens when the Submit button is clicked. The ASP.NET runtime verifies that the
state of the control has changed before invoking the corresponding event handler. If the selection of the
DropDownList has been changed, then the SelectedIndexChanged event is invoked; the TextChanged

event is invoked accordingly when the value of a text box changes.

NOTE When you want a change event immediately posted to the server (e.g.,
when the selection of a DropDownList changes), you can set the AutoPostback

property to true. That way, client-side JavaScript is used to submit the form data
immediately to the server. Of course, network traffic is increased this way, so use
this feature with care.

To compare the old values of the control with the new values after the page is returned to the server,
the view state is used. View state is a hidden field that is sent with the page content to the browser.
When sending the page to the client, the view state contains the same values as the controls within a
form. With a postback to the server, the view state is sent to the server together with the new values
of the controls. That way, it can be verified whether the values change, and the event handler can be
invoked.

ASP.NET Postback ❘ 589

Until now, the sample application has sent only a simple page to the client. Now you need to deal with
the result from the user input. In the first example, the user input is displayed in the same page, and
then a different page is used. In the following Try It Out, you display the user input.

TRY IT OUT Displaying User Input

1. Open the previously created Web application EventRegistrationWeb using Visual Studio.

2. To display user input for the event registration, add a label with the name labelResult to the Web
page Registration.aspx. Clear the Text property of this label.

3. Double-click the Submit button to add a Click event handler to this button and add the following
code to the handler in the file Registration.aspx.cs:

protected void buttonSubmit_Click(object sender, EventArgs e)
{

string selectedEvent = dropDownListEvents.SelectedValue;
string firstName = textFirstName.Text;
string lastName = textLastName.Text;
string email = textEmail.Text;
labelResult.Text = String.Format("{0} {1} selected the event {2}",

firstName, lastName, selectedEvent);
}

Code snippet Registration.aspx.cs

4. Start the Web page using Visual Studio again. After you enter the data and click the Submit but-
ton, the same page displays the user input in the new label.

How It Works

Double-clicking the Submit button adds the OnClick attribute to the <asp:Button> element in the file
Registration.aspx:

<asp:Button ID="buttonSubmit" runat="server" Text="Submit"
onclick="buttonSubmit_Click" />

Code snippet Registration.aspx

With the Web server control, OnClick defines the server-side Click event that will be invoked when the
button is clicked.

Within the implementation of the buttonSubmit_Click() method, the values of the controls can be read
by using properties. dropDownListEvents is the variable that references the DropDownList control. In the
ASPX file, the ID is set to dropDownListEvents, so a variable is automatically created. The property
SelectedValue returns the current selection. With the TextBox controls, the Text property returns the
strings that have been entered by the user:

string selectedEvent = dropDownListEvents.SelectedValue;
string firstName = textFirstName.Text;
string lastName = textLastName.Text;
string email = textEmail.Text;

Code snippet Registration.aspx.cs

590 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

The label labelResult again has a Text property where the result is set:

labelResult.Text = String.Format("{0} {1} selected the event {2}",
firstName, lastName, selectedEvent);

Code snippet Registration.aspx.cs

Instead of displaying the results on the same page, ASP.NET makes it easy to display the results in a
different page, as shown in the following Try It Out.

TRY IT OUT Displaying the Results in a Second Page

1. Create a new WebForm with the name ResultsPage.aspx.

2. Add a label to the ResultsPage with the name labelResult.

3. Add code to the Page_Load method to the class ResultsPage as shown here:

using System;
using System.Web.UI.WebControls;

namespace EventRegistrationWeb
{

public partial class ResultsPage : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

try
{

DropDownList dropDownListEvents =
(DropDownList)PreviousPage.FindControl("dropDownListEvents");

string selectedEvent = dropDownListEvents.SelectedValue;
string firstName = ((TextBox)PreviousPage.FindControl(

"textFirstName")).Text;
string lastName = ((TextBox)PreviousPage.FindControl(

"textLastName")).Text;
string email = ((TextBox)PreviousPage.FindControl(

"textEmail")).Text;
labelResult.Text = String.Format("{0} {1} selected the event {2}",

firstName, lastName, selectedEvent);
}
catch
{

labelResult.Text = "The originating page must contain " +
"textFirstName, textLastName, textEmail controls";

}
}

}
}

Code snippet ResultsPage.aspx.cs

4. Set the Registration.aspx page’s Submit button’s PostbackUrl property to ResultsPage.aspx.

ASP.NET Postback ❘ 591

5. You can remove the Click event handler of the Submit button because it is not required anymore.

6. Start the Default.aspx page, fill in some data, and click the Submit button. You are redirected to
the page ResultsPage.aspx, where the entered data is displayed.

How It Works

With ASP.NET, the Button control implements the property PostbackUrl to define the page that should
be requested from the Web server. This property creates client-side JavaScript code to request the defined
page with the client-side onclick handler of the Submit button:

<input type="submit" name="buttonSubmit" value="Submit"
onclick="javascript:WebForm_DoPostBackWithOptions(

new WebForm_PostBackOptions("buttonSubmit", "", false,
"", "ResultsPage.aspx", false, false))"
id="buttonSubmit" />

The browser sends all the data from the form inside the first page to the new page. However, inside
the newly requested page it is necessary to get the data from controls that have been defined with
the previous page. To access the controls from a previous page, the Page class defines the property
PreviousPage. PreviousPage returns a Page object, where the controls of this page can be accessed using
the FindControl() method. FindControl() is defined to return a Control object, so you must cast the
return value to the control type that is searched:

DropDownList dropDownListEvents =
(DropDownList)PreviousPage.FindControl("dropDownListEvents");

Code snippet ResultsPage.aspx.cs

Instead of using the FindControl() method to access the values of the previous page, access to the pre-
vious page can be strongly typed, which is less error prone during development. To make this possible,
the next Try It Out defines a custom struct that is returned with a property from the default_aspx

class.

TRY IT OUT Creating a Strongly Typed PreviousPage

1. Add a new class item named RegistrationInfo to the project by selecting Project ➪ Add New
Class.

2. Implement the class RegistrationInfo as shown:

public class RegistrationInfo
{

public string FirstName { get; set; }
public string LastName { get; set; }
public string Email { get; set; }
public string SelectedEvent { get; set; }

}
Code snippet RegistrationInfo.cs

592 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

3. Add the public property RegistrationInfo to the class Registration in the file Registration.

aspx.cs:

public RegistrationInfo RegistrationInfo
{

get
{

return new RegistrationInfo
{

FirstName = textFirstName.Text,
LastName = textLastName.Text,
Email = textEmail.Text,
SelectedEvent = dropDownListEvents.SelectedValue

};
}

}
Code snippet Registration.aspx.cs

4. Add the PreviousPageType directive to the file ResultPage.aspx following the Page directive:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ResultsPage.aspx.cs"
Inherits="EventRegistrationWeb.ResultsPage" %>

<%@ PreviousPageType VirtualPath="~/Registration.aspx" %>
Code snippet ResultPage.aspx

5. Within the Page_Load() method of the class ResultsPage, now the code can be simplified:

protected void Page_Load(object sender, EventArgs e)
{

try
{

RegistrationInfo ri = PreviousPage.RegistrationInfo;

labelResult.Text = String.Format("{0} {1} selected the event {2}",
ri.FirstName, ri.LastName, ri.SelectedEvent);

}
catch
{

labelResult.Text = "The originating page must contain " +
"textFirstName, textLastName, textEmail controls";

}
}

Code snippet ResultPage.aspx.cs

How It Works

The PreviousPageType directive creates a property of type PreviousPage that returns the type associated
with the directive. Within its implementation, the PreviousPage property of the base class is invoked, as
shown in the following code snippet:

public new EventRegistrationWeb.Default PreviousPage {
get {

ASP.NET AJAX Postback ❘ 593

return ((EventRegistrationWeb.Default)(base.PreviousPage));
}

}

Instead of using the VirtualPath attribute of the PreviousPageType directive to define the type of the
previous page, the attribute TypeName can be used. This is useful if multiple previous pages are possible.
In that case you need to define a base class for all the previous pages and assign the base class to the
TypeName attribute.

ASP.NET AJAX POSTBACK

With a normal ASP.NET postback, a complete page is requested. With a postback to the same page
the user already has loaded, the postback returns the complete page again. To reduce the traffic on the
network, you can do an ASP.NET Ajax postback. With the Ajax postback, only a part of the page is
returned and refreshed using JavaScript. This can easily be done with the UpdatePanel.

For easy comparison between a ASP.NET postback and an ASP.NET Ajax postback, you will write the
current time to a label both with and without an UpdatePanel in the following Try It Out.

TRY IT OUT Using the Update Panel

1. Open the previously created project EventRegistrationWeb using Visual Studio.

2. Add a new AJAX Web Form named UpdatePanelDemo.aspx to the existing website.

3. From the AJAX Extensions category in the Toolbox, add an UpdatePanel to the page.

4. Add a Label and a Button within the UpdatePanel, and another Label and Button outside of the
UpdatePanel. Set the Text property of the Button within the UpdatePanel to AJAX Postback and
the Text property of the Button outside of the UpdatePanel to ASP.NET Postback:

<form id="form1" runat="server">
<div>

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

</div>
<asp:UpdatePanel runat="server">

<ContentTemplate>
<asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>
<asp:Button ID="Button1" runat="server" Text="AJAX Postback"

OnClick="OnButtonClick" />
</ContentTemplate>

</asp:UpdatePanel>
<asp:Label ID="Label2" runat="server" Text="Label"></asp:Label>
<asp:Button ID="Button2" runat="server" Text="ASP.NET Postback" />
</form>

Code snippet UpdatePanelDemo.aspx

594 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

5. Assign a Click event handler named OnButtonClick() to both buttons and implement it as
shown:

protected void OnButtonClick(object sender, EventArgs e)
{

DateTime now = DateTime.Now;
Label1.Text = now.ToLongTimeString();
Label2.Text = now.ToLongTimeString();

}
Code snippet UpdatePanelDemo.aspx.cs

FIGURE 18-10

6. Start the application and click both buttons.
Clicking the AJAX Postback button refreshes
only the first label. With the ASP.NET Post-
back button, the entire page is refreshed (see
Figure 18-10).

How It Works

With an ASP.NET AJAX page, a ScriptManager

object is required. This object is added by using the
AJAX Web Form template. The ScriptManager class
loads JavaScript functions for several features. You can
also use this class to load your own custom scripts.
ScriptManager properties are explained in the following table.

PROPERTY DESCRIPTION

EnablePageMethods. Defines whether public static methods defined in the ASPX page
should be callable from client script as Web service methods.

EnablePartialRendering To enable partial rendering with the UpdatePanel, this property must
be set to true, which is the default.

LoadScriptsBeforeUI Defines the position where the scripts are included in the returned
HTML page. By placing them inside the <head> element, the scripts
are loaded before the UI is loaded.

ScriptMode Specifies whether the debug or the release version of scripts should
be used.

ScriptPath Specifies the root path of the directory where the custom scripts are
located.

Scripts Contains a collection of custom script files that should be rendered on
the client.

Services Contains a collection of Web service references that can be called
from within client script.

ASP.NET AJAX Postback ❘ 595

The ASP.NET Button controls on the page result in the client creating HTML Submit buttons. Button2
makes a normal HTTP POST request to the server. Because Button1 is within an UpdatePanel, client
script attaches to the Click event of the button to do an Ajax POST request. The Ajax POST request
makes use of the XmlHttpRequest object to send a request to the server. The server returns only the data
required to update the UI. The data is interpreted, and JavaScript code modifies HTML controls within the
UpdatePanel for the new UI.

You can have multiple update panels in a page. Just adding multiple panels to a page, every
UpdatePanel is updated on an Ajax POST request. Updates can be controlled with triggers. You’ll try
that with the next Try it Out.

TRY IT OUT Update Panel with Triggers

1. Open the previously created project EventRegistrationWeb using Visual Studio.

2. Add a new AJAX Web Form named UpdatePanelWithTrigger.aspx to the existing website.

3. Add two UpdatePanel controls.

4. Add a Label and a Button control in each of the UpdatePanel controls.

5. Assign the Click event handler of both Button controls to the OnButtonClick() method and
implement the method as shown here:

protected void OnButtonClick(object sender, EventArgs e)
{

DateTime now = DateTime.Now;
Label1.Text = now.ToLongTimeString();
Label2.Text = now.ToLongTimeString();

}
Code snippet UpdatePanelWithTrigger.aspx.cs

FIGURE 18-11

6. Run the application. Both labels change
regardless of which Button control is clicked
(see Figure 18-11).

7. Change the property UpdateMode for both
UpdatePanel controls from Always to
Conditional.

8. Run the application again. Now only the
Label inside the UpdatePanel where the
Button is clicked changes.

9. Select the first UpdatePanel and click the ellipses
with the Triggers property, which opens the
dialog shown in Figure 18-12. Add an AsynchronousPostback trigger, set the ControlID property
to the button of the second UpdatePanel, Button2, and set the EventName to Click.

596 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

FIGURE 18-12

10. Run the application. Clicking Button2 updates the content of both UpdatePanel controls; clicking
Button1 updates only the content of the first UpdatePanel.

How It Works

The update behavior of the UpdatePanel can be influenced. By default, it is updated every time an Ajax
postback occurs. You can change the update so that controls are updated either when an update occurs
from within the panel, or the update is triggered from controls outside of the panel.

Here is the ASPX code to define an AsyncPostbackTrigger for UpdatePanel1:

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
<ContentTemplate>

<asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>
<asp:Button ID="Button1" runat="server" Text="Button"

OnClick="OnButtonClick" />
</ContentTemplate>
<Triggers>

<asp:AsyncPostBackTrigger ControlID="Button2" EventName="Click" />
</Triggers>

</asp:UpdatePanel>

Code snippet UpdatePanelWithTrigger.aspx

The following table describes the properties of the UpdatePanel control.

PROPERTY DESCRIPTION

ChildrenAsTriggers When set to true, the content of UpdatePanel is updated when child con-
trols of the UpdatePanel make a postback.

RenderMode Defines how the panel should render. Possible values are
UpdatePanelRenderMode.Block and UpdatePanelRenderMode.Inline.
The Block enumeration value specifies that a <div> tag should be ren-
dered; with Inline, a tag is rendered.

Input Validation ❘ 597

PROPERTY DESCRIPTION

UpdateMode Set to one of the UpdatePanelUpdateMode enumeration values. Always
updates the panel with every Ajax postback, Conditional only depending
on the triggers.

Triggers Specifies a collection of AsyncPostbackTrigger and PostbackTrigger

elements to define when the content of the panel should update.

INPUT VALIDATION

When users enter data, it should be checked to confirm that the data is valid. The check can happen on
the client and on the server. Checking the data on the client can be done by using JavaScript. However,
if the data is checked on the client using JavaScript, it should also be checked on the server, because you
can never fully trust the client. It is possible to disable JavaScript in the browser, and hackers can use
different JavaScript functions that accept incorrect input. It is absolutely necessary to check the data on
the server. Checking the data on the client as well leads to better performance, as no round-trips occur
to the server until the data is validated on the client.

With ASP.NET it is not necessary to write the validation functions yourself. Many validation controls
exist that create both client- and server-side validation.

The following example shows the RequiredFieldValidator validation control that is associated
with the text box textFirstname. All validator controls have the properties ErrorMessage and
ControlToValidate in common. If the input is not correct, then ErrorMessage defines the message that
is displayed. By default, the error message is displayed where the validator control is positioned. The
property ControlToValidate defines the control where the input is checked.

<asp:TextBox ID="textFirstname" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"

ErrorMessage="Enter your first name" ControlToValidate="textFirstName">
</asp:RequiredFieldValidator>

The following table lists and describes all the validation controls:

CONTROL DESCRIPTION

RequiredFieldValidator Specifies that input is required with the control that is validated. If
the control to validate has an initial value set, which the user has
to change, you can set this initial value with the InitialValue

property of the validator control.

RangeValidator Defines a minimum and maximum value that the user is allowed
to enter. The specific properties of the control are MinimumValue

and MaximumValue.

RegularExpressionValidator With the ValidationExpression property, a regular expression
using Perl 5 syntax can be set to check the user input.

continues

598 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

(continued)

CONTROL DESCRIPTION

CompareValidator Compares multiple values (such as passwords). Not only does this
validator support comparing two values for equality, additional
options can be set with the Operator property. The Operator

property is of type ValidationCompareOperator, which defines
enumeration values such as Equal, NotEqual, GreaterThan, and
DataTypeCheck. Using DataTypeCheck, the input value can be
checked to determine whether it is of a specific data type, e.g.,
correct date input.

CustomValidator If the other validator controls don’t fulfill the requirements of
the validation, the CustomValidator can be used. With the
CustomValidator, both a client- and server-side validation
function can be defined.

ValidationSummary Writes a summary for a page instead of writing error messages
directly to the input controls.

With the sample application that you’ve created so far, users can input first name, last name, and e-mail
address. In the following Try It Out, you extend the application by using validation controls.

TRY IT OUT Checking for Required Input and E-mail Address

1. Open the previously created project EventRegistrationWeb using Visual Studio.

2. Open the file Registration.aspx.

3. Add a new column to the table by selecting the right column in the design view of the editor and
choosing Table ➪ Insert ➪ Column to the Right.

4. First name, last name, and e-mail address are required inputs. A check is done to determine
whether the e-mail address has the correct syntax. Add three RequiredFieldValidator controls
and one RegularExpressionValidator control, as shown in Figure 18-13.

5. Configure the validation controls as defined in the following table:

VALIDATION CONTROL PROPERTY VALUE

RequiredFieldValidator ErrorMessage First name is required.

ControlToValidate textFirstName

RequiredFieldValidator ErrorMessage Last name is required.

ControlToValidate textLastName

Input Validation ❘ 599

VALIDATION CONTROL PROPERTY VALUE

RequiredFieldValidator ErrorMessage Email is required.

ControlToValidate textEmail

Display Dynamic

RegularExpressionValidator1 ErrorMessage Enter a valid email.

ControlToValidate textEmail

ValidationExpression \w+([-+.’]\w+)*@\w+([-.]

\w+)*\.\w+([-.]\w+)*

Display Dynamic

FIGURE 18-13

FIGURE 18-14

6. It is not necessary to enter the regular expression man-
ually. Instead, you can click the ellipses button of the
ValidationEpression property in the Properties win-
dow to start the Regular Expression Editor, shown in
Figure 18-14. This editor provides some predefined
regular expressions, including the regular expression
to check for an Internet e-mail address.

7. If a postback is done to a page other than the
page that includes the validator controls (using the
PostBackUrl property that was set earlier), in the new
page you must verify that the result of the previous page
was valid, using the IsValid property. Add the following
code to the Page_Load() method of the ResultsPage class:

protected void Page_Load(object sender, EventArgs e)
{

try
{

600 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

if (!PreviousPage.IsValid)
{

labelResult.Text = "Error in previous page";
return;

}
//...

Code snippet ResultsPage.aspx.cs

FIGURE 18-15

8. Now you can start the application. When data
is not entered, or is not entered correctly, the
validator controls show error messages, as
shown in Figure 18-15.

How It Works

The validator controls create both client-side Java-
Script code to verify input on the client, and server-
side code to validate input on the server. It is also
possible to turn JavaScript off by setting the validator
property EnableClientScript to false. Instead of
changing the property with every validator control,
you can also turn off JavaScript by setting
the property ClientTarget of the Page class.

Depending on the client type, the ASP.NET controls might return JavaScript to the client. This
behavior depends on the ClientTarget property. By default, the ClientTarget is set to the string
"automatic", where, depending on the Web browser’s functionality, scripting code is returned or not. If
the ClientTarget is set to "downlevel", then scripting code is not returned for any clients, whereas setting
the ClientTarget property to "uplevel" always returns scripting code.

Setting the property ClientTarget can be done inside the Page_Load() method of the Page class:

protected void Page_Load(object sender, EventArgs e)
{

ClientTarget = "downlevel";
}

STATE MANAGEMENT

The HTTP protocol is stateless. The connection that is initiated from the client to the server can be
closed after every request. However, normally it is necessary to remember some client information
from one page to the other. There are several ways to accomplish this.

The main difference among the various ways to keep state is whether the state is stored on the client or
on the server. The following table shows an overview of state management techniques and how long
the state can be valid:

State Management ❘ 601

STATE TYPE CLIENT OR SERVER RESOURCE TIME VALID

View State Client Within a single page only.

Cookie Client Temporary cookies are deleted when the browser is
closed; permanent cookies are stored on the disk of
the client system.

Session Server Session state is associated with a browser session.
The session is invalidated with a timeout (by default,
20 minutes).

Application Server Application state is shared among all clients. This
state is valid until the server restarts.

Cache Server Similar to application state, cache is shared. How-
ever, when the cache should be invalidated, there’s
much better control.

The following sections take a more detailed look at these techniques.

Client-Side State Management
In this section, you are going to step into client-side state management by looking at two techniques:
view state and cookies.

View State
One technique to store state on the client was already discussed: view state. View state is used auto-
matically by the Web server controls to make events work. The view state contains the same state as
the control when sent to the client. When the browser sends the form back to the server, the view state
contains the original values, but the values of the controls that are sent contain the new values. If there’s
a difference, the corresponding event handlers are invoked.

The disadvantage of using view state is that data is always transferred from the server to the client,
and vice versa, which increases network traffic. To reduce network traffic, view state can be turned off.
To do so for all controls within the page, set the EnableViewState property to false with the Page

directive:
<%@ Page Language="C#" AutoEventWireUp="true" CodeFile="Default.aspx.cs"

Inherits="Default" EnableViewState="false" %>

The view state can also be configured on a control by setting the EnableViewState property of a control.
Regardless of what the page configuration says, when the EnableViewState property is defined for the
control, the control value is used. The value of the page configuration is used only for these controls
when the view state is not configured.

It is also possible to store custom data inside the view state. This can be done by using an indexer with
the ViewState property of the Page class. You can define a name that is used to access the view state
value with the index argument:

ViewState["mydata"] = "my data";

602 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

You can read the previously stored view state as shown here:

string mydata = (string)ViewState["mydata"];

In the HTML code that is sent to the client, you can see the view state of the complete page within a
hidden field:

<input type="hidden" name=" VIEWSTATE"
value="/wEPDwUKLTU4NzY5NTcwNw8WAh4HbXlzdGF0ZQUFbXl2YWwWAgIDD2QWAg
IFDw8WAh4EVGV4dAUFbXl2YWxkZGTCdCywUOcAW97aKpcjt1tzJ7ByUA==" />

Using hidden fields has the advantage that every browser can use this feature, and the user cannot turn
it off.

The view state is only remembered within a page. If the state should be valid across different pages,
then using cookies is an option for state on the client.

Cookies
A cookie is defined in the HTTP header. Use the HttpResponse class to send a cookie to the client.
Response is a property of the Page class, which returns an object of type HttpResponse. The
HttpResponse class defines the Cookies property, which returns an HttpCookieCollection. Multiple
cookies can be returned to the client with the HttpCookieCollection.

The following sample code shows how a cookie can be sent to the client. First, an HttpCookie object
is instantiated. In the constructor of this class, the name of the cookie is set — here it is mycookie. The
HttpCookie class has a Values property to add multiple cookie values. If you just have one cookie value
to return, you can use the Value property instead. However, if you plan to send multiple cookie values,
it is better to add the values to a single cookie instead of using multiple cookies.

string myval = "myval";
var cookie = new HttpCookie("mycookie");
cookie.Values.Add("mystate", myval);
Response.Cookies.Add(cookie);

Cookies can be temporary and valid within a browser session, or they can be stored on the client disk.
To make the cookie permanent, the Expires property must be set with the HttpCookie object. With the
Expires property, a date defines when the cookie is not valid anymore; in the following example, it is
set to a date three months from the current date.

var cookie = new HttpCookie("mycookie");
cookie.Values.Add("mystate", "myval");
cookie.Expires = DateTime.Now.AddMonths(3);
Response.Cookies.Add(cookie);

Although a specific date can be set, there is no guarantee that the cookie is stored until the date is
reached. The user can delete the cookie, and the browser application deletes the cookie if too many
cookies are stored locally. The browser has a limit of 20 cookies for a single server, and 300 cookies
for all servers. When the limit is reached, the cookies that haven’t been used for some time are deleted.

When the client requests a page from the server, and a cookie for this server is available on the client,
the cookie is sent to the server as part of the HTTP request. Reading the cookie in the ASP.NET page
can be achieved by accessing the cookies collection in the HttpRequest object.

State Management ❘ 603

Similarly to the HTTP response, the Page class has a Request property that returns an object of type
HttpRequest. The property Cookies returns an HttpCookieCollection that can be used to read the
cookies sent by the client. A cookie can be accessed by its name with the indexer, and then the Values

property of the HttpCookie is used to get the value from the cookie:

HttpCookie cookie = Request.Cookies["mycookie"];
string myval = cookie.Values["mystate"];

ASP.NET makes it easy to use cookies, but you must be aware of the cookie’s restrictions. Recall that
a browser accepts just 20 cookies from a single server and 300 cookies for all servers. In addition, a
cookie cannot store more than 4K of data. These restrictions ensure that the client disk won’t be filled
with cookies.

Server-Side State Management
Instead of remembering state with the client, it is also possible to remember state with the server.
Recall that using client-side state has the disadvantage that the data sent across the network increases.
Using server-side state has the disadvantage that the server must allocate resources for its clients. The
following sections look at the server-side state management techniques.

Session
Session state is associated with a browser session. A session starts when the client first opens an
ASP.NET page on the server, and ends when the client doesn’t access the server for 20 minutes.

You can define your own code that should run when a session starts or ends within a global
application class. To create such a class, select Project ➪ Add New Item ➪ Global Applica-
tion Class. Creating this class, the file global.asax is created. Inside this file, some handler
routines are defined in the class Global that derives from the base class HttpApplication.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.SessionState;

namespace EventRegistrationWeb
{

public class Global : System.Web.HttpApplication
{

protected void Application_Start(object sender, EventArgs e)
{

// Code that runs on application startup
}

protected void Session_Start(object sender, EventArgs e)
{

// Code that runs when a new session is started
}

604 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

protected void Application_BeginRequest(object sender, EventArgs e)
{

}

protected void Application_AuthenticateRequest(object sender, EventArgs e)
{

}

protected void Application_Error(object sender, EventArgs e)
{

// Code that runs when an unhandled error occurs
}

protected void Session_End(object sender, EventArgs e)
{

// Code that runs when a session ends.
// Note: The Session_End event is raised only when the session state
// mode is set to InProc in the Web.config file. If session mode is
// set to StateServer or SQLServer, the event is not raised.

}

protected void Application_End(object sender, EventArgs e)
{

// Code that runs on application shutdown
}

}
}

Code snippet Global.asax.cs

Session state can be stored within an HttpSessionState object. The session state object associated
with the current HTTP context can be accessed with the Session property of the Page class. In the
Session_Start() event handler, session variables can be initialized; in the following example, the
session state named mydata is initialized to 0:

void Session_Start(Object sender, EventArgs e) {
// Code that runs on application startup
Session["mydata"] = 0;

}

The following example shows how session state is read with the Session property using the session
state name:

void Button1_Click(object sender, EventArgs e)
{

int val = (int)Session["mydata"];
Label1.Text = val.ToString();
val += 4;
Session["mydata"] = val;

}

To associate the client with its session variables, by default ASP.NET uses a temporary cookie with a
session identifier. ASP.NET also supports sessions without cookies, where URL identifiers are used to
map the HTTP requests to the same session.

State Management ❘ 605

Application
If data should be shared between different clients, then application state can be used. Application state
can be used in a manner that’s very similar to the way session state is used. With application state,
the class HttpApplicationState is used, and it can be accessed with the Application property of the
Page class.

In the following example, the application variable with the name userCount is initialized when the Web
application is started. Application_Start() is the event handler method in the file global.asax that is
invoked when the first ASP.NET page of the website is started. This variable is used to count every user
accessing the website:

void Application_Start(Object sender, EventArgs e) {
// Code that runs on application startup
Application["userCount"] = 0;

}

In the Session_Start() event handler, the value of the application variable userCount is incremented.
Before changing an application variable, the application object must be locked with the Lock() method;
otherwise, threading problems can occur because multiple clients can access an application variable
concurrently. After the value of the application variable is changed, the Unlock() method must be
called. Be aware that the time between locking and unlocking is very short — you shouldn’t read files
or data from the database during that time. Otherwise, other clients must wait until the data access
is completed.

void Session_Start(Object sender, EventArgs e) {
// Code that runs when a new session is started
Application.Lock();
Application["userCount"] = (int)Application["userCount"] + 1;
Application.UnLock();

}

Reading the data from the application state is as easy as it was with the session state:

Label1.Text = this.Application["userCount"].ToString();

Don’t store too much data in the application state because the application state requires server resources
until the server is stopped or restarted.

Cache
Cache is server-side state that is similar to application state insofar as it is shared with all clients. Cache
is different from application state in that cache is much more flexible: There are many options to
define when the state should be invalidated. Instead of reading a file with every request, or reading
the database, the data can be stored inside the cache.

For the cache, the namespace System.Web.Caching and the class Cache are needed. Adding an object to
the cache is shown in the following example:

Cache.Add("mycache", myobj, null, DateTime.MaxValue,
TimeSpan.FromMinutes(10), CacheItemPriority.Normal, null);

The Page class has a Cache property that returns a Cache object. Using the Add() method of the Cache

class, any object can be assigned to the cache. The first parameter of the Add() method defines the name

606 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

of the cache item. The second parameter is the object that should be cached. With the third parameter,
dependencies can be defined, e.g., the cache item can be dependent on a file. When the file changes, the
cache object is invalidated. In the preceding example there’s no dependency because null is set with
this parameter.

With parameters four and five, a time can be set specifying how long the cache item is valid. Param-
eter four defines an absolute time when the cache item should be invalidated, whereas parameter five
requires a sliding time that invalidates the cache item after it hasn’t been accessed for the time defined
with the sliding expiration. In the preceding example, a sliding time span is used, invalidating the cache
after the cache item hasn’t been used for 10 minutes.

Parameter six defines a cache priority. CacheItemPriority is an enumeration for setting the cache
priority. If the ASP.NET worker process has high memory usage, the ASP.NET runtime removes cache
items according to their priority. Items with a lower priority are removed first. With the last parameter,
it is possible to define a method that should be invoked when the cache item is removed. An example of
how this can be used is when the cache is dependent on a file. When the file changes, the cache item is
removed and the event handler is invoked. With the event handler, the cache can be reloaded by reading
the file once more.

Cache items can be read by using the indexer, as you’ve already seen with the session and application
state. Before using the object returned from the Cache property, always check whether the result is null,
which happens when the cache is invalidated. When the returned value from the Cache indexer is not
null, the returned object can be cast to the type that was used to store the cache item:

object o = Cache["mycache"];
if (o == null)
{

// Reload the cache.
}
else
{

// Use the cache.
MyClass myObj = (MyClass)o;
//...

}

STYLES

Visual Studio supports styling Web pages with Cascading Style Sheets (CSS). With CSS you can define
the look and formatting of HTML pages. Instead of customizing each HTML element, with CSS you
can define styles for specific elements (which you’ll do in the following Try it Out), and then reference
them by name for easy reuse.

TRY IT OUT Defining Styles for Elements

1. Open the Web application project named EventRegistrationWeb created previously.

2. Add a new folder named Styles by selecting Project ➪ New Folder.

Styles ❘ 607

3. Select this folder in the Solution Explorer and create a new style sheet by selecting Project ➪ Add
New Item, and select Style Sheet. Give the style sheet the name Site.css.

4. By default, this style sheet contains an empty body element.

5. Click within the curly brackets of the body, open the context menu, and choose Build Style. The
Modify Style dialog shown in Figure 18-16 will open.

FIGURE 18-16

6. Select the Font category and change the font-family setting to Arial, Helvetica, sans-serif;
change the font-size setting to .80 em, and change the color to #FFFF00.

7. Select the Background category in the same dialog and change the background color to #008080.

8. Select the Box category and change the padding and margin to 0.

9. The style sheet should now look like the following code snippet:

body
{

font-family: Arial, Helvetica, sans-serif;
font-size: .80em;
background-color: #008080;
color: #FFFF00;
padding: 0px;
margin: 0px;

}
Code snippet Site.css

608 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

FIGURE 18-17

10. In the source view of the CSS editor, select the
context menu Add Style Rule and select the
element a:hover as shown in Figure 18-17.
Click the OK button.

11. Select the Build Style menu to open the Mod-
ify Style dialog again. Select the Font category
and change the color to #FF0000 and check
the text-decoration underline and overline.
The resulting CSS code should look like this:

a:hover
{

color: #FF0000;
text-decoration: underline overline;

}
Code snippet Site.css

12. Add style rules for a:active, a:link, a:visited, and h1 according to the following code:

a:link, a:visited
{

color: #00FFFF;
}

a:active
{

color: #00FFFF;
}

a:hover
{

color: #FF0000;
text-decoration: underline overline;

}
h1
{

text-align: center;
}

Code snippet Site.css

13. Create a new Web page named StylesDemo.aspx. Drag and drop the file Site.css from the Solu-
tion Explorer to the design view of the editor. The background color of the page changes immedi-
ately.

14. Change to the source view to verify the new link entry referencing the style sheet:

<head runat="server">
<title></title>

Styles ❘ 609

<link href="Styles/Site.css" rel="stylesheet" type="text/css" />
</head>

Code snippet StylesDemo.aspx

15. Add an h1 tag and an anchor tag to the page within the body element as shown:

<body>
<form id="form1" runat="server">
<h1>

Styles Demo</h1>
<div>

Wrox Press
</div>
</form>

</body>
Code snippet StylesDemo.aspx

16. Start the browser to view the page by selecting Debug ➪ Start without Debugging. The page
should look like Figure 18-18. Verify the applied page styles to the heading, the header, and the
link; and hover over the link to see the change in color and text decorations.

FIGURE 18-18

How it Works

Because the CSS file is referenced with a link element, the browser requests this page alongside the HTML
code. The browser then uses the styled elements from the CSS file to change the look of the HTML
elements.

610 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

With CSS, you can not only change the style of specific HTML tags, you can also define classes that are
referenced from HTML tags. You do this in the following Try It Out.

TRY IT OUT Defining Style Classes

1. Open the style sheet Site.css.

2. Open the Add Style Rule editor and add a new class named bottom. The style rule preview in the
dialog prefixes the class name with a period (.). Click the OK button.

3. Open the Modify Style editor.

4. Select the Font category and choose a font-size of x-small.

5. Select the Block category and define vertical-align to text-bottom, and text-align to center.

6. Select the Box category and define a margin of 5 for all top, right, bottom, and left.

7. Select the Position category and define a height of 40 px.

8. Verify the result in the Site.css file:

.bottom
{

margin: 5px;
height: 40px;
text-align: center;
vertical-align: text-bottom;
font-size: x-small;

}
Code snippet Site.css

9. Open the file StylesDemo.aspx and add a div element containing the following text:

<div class="bottom">
Copyright (c) 2010 Wrox Press

</div>
Code snippet StylesDemo.aspx

10. Start the browser to view the file StylesDemo.aspx. Verify that the style for the div element
is applied.

How It Works

Instead of defining styles with every element in every page of the website, you can define styles in a common
place. The Modify Style editor can give you a good glimpse of all the things that can be changed. When the
page is opened, the browser is responsible for applying the styles and arranging the elements accordingly.

WARNING Some styles are applied differently in different browsers. Be sure to
verify the look of your page with all browsers that should be supported.

Master Pages ❘ 611

NOTE Using styles, you can not only apply font sizes and colors, but also define
the layout of a Web page. Alternately, instead of doing the layout with styles, it
can be done with HTML tables. CSS not only offers more flexibility in the layout
than HTML tables, it also provides advantages regarding accessibility by
separating content from visual information. That’s why nowadays a tableless
Web design is usually preferred.

Because this book is on C# programming and doesn’t focus on the design of HTML pages, it covers only a
very brief introduction to CSS. For more information on CSS, you should read the book Beginning HTML,
XHTML, CSS, and JavaScript by Jon Ducket (Wrox, 2009).

MASTER PAGES

Most websites reuse part of their content on every page — elements such as company logos and menus
are often available on each page. It’s not necessary to repeat the common user interface elements with
every page; instead, the common elements can be added to a master page. Master pages look like
normal ASP.NET pages but define placeholders that are replaced by content pages.

A master page has the file extension .master and uses the Master directive in the first line of the file, as
shown here:

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind="MasterPage.master.cs"
Inherits="MasterPage" %>

Only the master pages in the website make use of <html>, <head>, <body>, and <form> HTML elements.
The Web pages themselves contain only content that is embedded within the <form> element. The Web
pages can embed their own content within the ContentPlaceHolder control. The master page can define
default content for the ContentPlaceHolder if the Web page doesn’t:

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title> </title>

<asp:contentplaceholder id="head" runat="server">
</asp:contentplaceholder>

</head>
<body>
<form id="form1" runat="server">

<div>
<asp:contentplaceholder id="ContentPlaceHolder1" runat="server">
</asp:contentplaceholder>

</div>
</form>

</body>
</html>

To use the master page, you must apply the MasterPageFile attribute to the Page directive. To
replace the content of a master page, use the Content control. The Content control associates the
ContentPlaceHolder with the ContentPlaceHolderID:

612 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

<%Page Language="C#" MasterPageFile="~/MasterPage.master"
AutoEventWireUp="true" CodeFile="Default.aspx.cs" Inherits="default"
Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
Runat="Server"></asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server"></asp:Content>

Instead of defining the master page with the Page directive, you can assign a default master page to all
Web pages with the <pages> element in the Web configuration file, web.config:

<configuration>
<system.web>
<pages masterPageFile="~/MasterPage.master">
<!--...-->

</pages>
</system.web>

</configuration>

With the master page file configured within web.config, the ASP.NET pages need a Content element
configuration in the file as shown earlier; otherwise, the masterPageFile attribute would have no use.
If you use both the Page directive’s MasterPageFile attribute and the entry in web.config, the setting
of the Page directive overrides the setting from web.config. This way, it’s possible to define a default
master page file (with web.config), but override the default setting for specific Web pages.

It is also possible to programmatically change the master page. By doing so, different master pages can
be used for different devices or different browser types. The last place the master page can be changed
is in the Page_PreInit handler method. In the following sample code, the MasterPageFile property of
the Page class is set to IE.master if the browser sends the MSIE string with the browser name (which is
done by Microsoft Internet Explorer), or to Default.master for all other browsers:

public partial class ChangeMaster: System.Web.UI.Page
{

void Page_Load(object sender, EventArgs e)
{
}

void Page_PreInit(object sender, EventArgs e)
{

if (Request.UserAgent.Contains("MSIE"))
{

this.MasterPageFile = "~/IE.master";
}
else
{

this.MasterPageFile = "~/Default.master";
}

}
}

Now try creating your own master page in the following Try It Out. The sample master page here will
have a heading and a body, and the main part of the master page will be replaced by individual pages.

Master Pages ❘ 613

TRY IT OUT Creating a Master Page

1. Open the Web application project named EventRegistrationWeb.

2. Add a new Master Page item and name it Events.master.

3. Change to the design view of the editor and apply the style sheet Site.css. Drag and drop the file
Site.css from the Solution Explorer to the editor.

4. Rename the ID of the second ContentPlaceHolder to ContentPlaceHolderMain and assign the
CSS class content to the div element as shown:

<div class="content">
<asp:ContentPlaceHolder ID="ContentPlaceHolderMain" runat="server">
</asp:ContentPlaceHolder>

</div>
Code snippet Events.Master

5. Add the following div and h1 elements before the previously changed div element:

<div class="header">
<h1>

Event Registration
</h1>

</div>
<div class="navigation">

Menu will go here
</div>

Code snippet Events.Master

6. Add the following div element after the div element surrounding the ContentPlaceHolder:

<div class="bottom">
Copyright (c) 2010 Wrox Press

</div>
Code snippet Events.Master

7. The complete page should look similar to the following:

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind="Events.master.cs"
Inherits="EventRegistrationWeb.Events" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title></title>
<asp:ContentPlaceHolder ID="head" runat="server">
</asp:ContentPlaceHolder>
<link href="Styles/Site.css" rel="stylesheet" type="text/css" />

</head>

614 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

<body>
<form id="form1" runat="server">
<div class="header">

<h1>
Event Registration

</h1>
</div>
<div class="navigation">

Menu will go here
</div>
<div class="content">

<asp:ContentPlaceHolder ID="ContentPlaceHolderMain" runat="server">
</asp:ContentPlaceHolder>

</div>
<div class="bottom">

Copyright (c) 2010 Wrox Press
</div>
</form>

</body>
</html>

Code snippet Events.Master

How It Works

As previously discussed, the master page contains the HTML, including the FORM tags that contain the
content placeholders where the content will be replaced by the pages that use the master page. The HTML
together with the linked CSS defines the layout of the page. Only the content placeholders are replaced
from content pages. You can use multiple content placeholders if different parts of the page should
be replaced.

After you have created the master page, you can use it from a Web page, as shown in the following Try
It Out.

TRY IT OUT Using a Master Page

1. Add a new item of type Web Form using Master Page to the Web application and name it
Default.aspx.

2. The dialog Select a Master Page shown in Figure 18-19 pops up. Select the master page
Events.Master. Click OK.

3. The source view of the file Default.aspx shows just two Content controls after the Page directive
that references the ContentPlaceHolder controls from the master page. Change the ID properties
of the Content controls to ContentHead and ContentMain:

<%@ Page Title="" Language="C#" MasterPageFile="~/Events.Master"
AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="EventRegistrationWeb.Default" %>

<asp:Content ID="ContentHead" ContentPlaceHolderID="head" runat="server">
</asp:Content>
<asp:Content ID="ContentMain" ContentPlaceHolderID="ContentPlaceHolderMain"

Master Pages ❘ 615

runat="server">
</asp:Content>

Code snippet Default.aspx

FIGURE 18-19

4. Change to the design view in Visual Studio. This view shows you the content of the master page
that cannot be changed from the page, which includes the header and copyright information.
Enter some text to the Content control and align it to center.

5. Change to the source view, which shows the code as follows. The center alignment is changed to a
CSS style.

<%@ Page Title="" Language="C#" MasterPageFile="~/Events.Master"
AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="EventRegistrationWeb.Default" %>

<asp:Content ID="ContentHead" ContentPlaceHolderID="head" runat="server">
<style type="text/css">

.style1
{

text-align: center;
}

</style>
</asp:Content>
<asp:Content ID="ContentMain" ContentPlaceHolderID="ContentPlaceHolderMain"

runat="server">
<p class="style1">

Welcome to the</p>
<p class="style1">

Event Registration</p>
<p class="style1">

Sample application for Beginning Visual C# 2010!</p>
</asp:Content>

Code snippet Default.aspx

616 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

6. Open the browser to view the page. The result should look like what is shown in Figure 18-20.

FIGURE 18-20

SITE NAVIGATION

For navigation between multiple pages on a website, you can define an XML file that contains the struc-
ture of the site, and use some UI controls to display the navigation options. The important navigation
controls are listed in the following table:

CONTROL DESCRIPTION

SiteMapDataSource The SiteMapDataSource control is a data source control that references any
site map data provider. In the Visual Studio Toolbox, you can find this control
in the Data section.

Menu The Menu control displays links to pages as defined with a site map data
source. The Menu can be displayed horizontally or vertically, and it has many
options to configure its style.

SiteMapPath The SiteMapPath control uses a minimal space to display the current posi-
tion of a page within the hierarchy of the website. You can display text or
image hyperlinks.

TreeView The TreeView control displays a hierarchical view of the website.

In the next Try It Out you add a site map and a menu control to navigate between pages to the website.

Site Navigation ❘ 617

TRY IT OUT Adding Navigation

1. Open the Web application project EventRegistrationWeb.

2. Add a new Site Map item to the website by right-clicking on the project in the Solution Explorer
and selecting Add New Item. Keep the name Web.sitemap.

3. Change the content of the file as shown here:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

<siteMapNode url="Default.aspx" title="Home">
<siteMapNode url="EventRegister.aspx" title="Register"

description="Register to an Event" />
<siteMapNode url="EventList.aspx" title="Event List"

description="Lists Events Worldwide" />
<siteMapNode url="Admin/EventManagement.aspx" title="Event Management"

description="Management of Events" roles="Editors" />
</siteMapNode>

</siteMap>
Code snippet Web.sitemap

4. Open the file Events.Master.

5. Locate the SiteMapDataSource control under the Data Tab in your Toolbox and add it to the
page.

6. Add a Menu control from the Navigation tab of your Toolbox below the title ‘‘Registration Demo
Web.’’ Set the data source to SiteMapDataSource1.

7. Configure the Menu control with the properties Orientation set to Horizontal,
StaticDisplayLevels set to 2, and CssClass set to menu.

<div class="navigation">

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1"

Orientation="Horizontal" StaticDisplayLevels="2" CssClass="menu">
</asp:Menu>
<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" />

</div>
Code snippet Events.Master

8. Add the following style rules to the file Site.css to style the menu:

.menu ul li a
{

background-color: #008085;
border: 1px #4e667d solid;
color: #dde4ec;
display: block;
line-height: 1.35em;
padding: 4px 20px;
text-decoration: none;

618 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

white-space: nowrap;
}

.menu ul li a:hover
{

background-color: #bfcbd6;
color: #465c71;
text-decoration: none;

}
Code snippet Site.css

9. Add a SiteMapPath control below the Menu control.

10. Open the file Default.aspx in the browser. Notice the menu and the path that displays the posi-
tion of the current file in the website.

11. Create new pages named EventRegister.aspx and EventList.aspx with the template Web Form
using Master Page and select the master page Events.Master.

12. Create a new folder named Admin and create a new page EventManagement.aspx within this
folder. Again, use the template Web Form using Master Page to create this page.

13. You can add other pages that are referenced in the file Web.sitemap as needed by referencing the
same master page to show the defined menus.

14. Add the siteMap element as shown to the web.config file within the system.web element:

<siteMap defaultProvider="XmlSiteMapProvider" enabled="true">
<providers>

<clear />
<add name="XmlSiteMapProvider"

description="Default SiteMap Provider"
type="System.Web.XmlSiteMapProvider"
siteMapFile="Web.sitemap"
securityTrimmingEnabled="true" />

</providers>
</siteMap>

Code snippet Web.config

How It Works

The structure of the website is defined by the Web pages listed in the file Web.sitemap. This XML file
contains XML <siteMapNode> elements inside a <siteMap> root element. The <siteMapNode> element
defines a Web page. The filename of the page is set with the url attribute, and the title attribute specifies
the name as it should appear on menus. The hierarchy of the pages is defined by writing <siteMapNode>

elements as child elements of the page on which the link to the children should occur.

The SiteMapDataSource control is a data source control with similarities to the data source controls shown
in the previous chapter. This control can use different providers. By default, the XmlSiteMapProvider class
is used to get to the data; and by default, the XmlSiteMapProvider class uses the file Web.sitemap.

Because the roles attribute is applied to the siteMapNode EventManagement.aspx, only users
who are in the specified role Editors can see this menu entry. Because this authorization feature

Authentication and Authorization ❘ 619

of the XmlSiteMapProvider is by default not enabled, the web.config file is changed to set the
securityTrimmingEnabled property of the XmlSiteMapProvider. Without requiring roles for menus, this
configuration in web.config wouldn’t be needed at all.

With the Menu control you can edit menu items that appear in the ASPX source; or you can add menu items
programmatically. The easiest way to add menu items is to use a site map data source by configuring the
data source.

AUTHENTICATION AND AUTHORIZATION

To secure the website, authentication is used to verify that the user has a valid logon; and authorization
confirms that the user who was authenticated is allowed to use the resource.

ASP.NET offers both Windows and Forms authentication. The most frequently used authentication
technique for Web applications is Forms authentication, which is covered here. ASP.NET also has
some great new features for Forms authentication. Windows authentication makes use of Windows
accounts and IIS to authenticate users.

Membership Provider

Membership API

Security Controls

FIGURE 18-21

ASP.NET has many classes for user authentication. Figure 18-21 shows the
structure of the new architecture. With ASP.NET, many new security controls
such as Login or PasswordRecovery are available. These controls make use of
the Membership API. With the Membership API, it is possible to create and
delete users, validate logon information, or get information about currently
logged-in users. The Membership API itself makes use of a membership provider.
With ASP.NET 4, different providers exist to access users in an Access database,
the SQL Server database, or the Active Directory. It is also possible to create a
custom provider that accesses an XML file or any custom store.

Authentication Configuration
This chapter demonstrates Forms authentication with a Membership provider. In the following Try It
Out, you configure security for the Web application and assign different access lists to different folders.

TRY IT OUT Configuring Security

1. Open the previously created Web application EventRegistrationWeb using Visual Studio.

2. Create a new folder named Intro by selecting the Web directory in the Solution Explorer and then
selecting Website ➪ Add Folder ➪ Regular Folder. This folder will be configured for access by all
users, while the main folder will be accessible only to authenticated users. The previously created
folder Admin will be accessible only to users in the role Editors.

3. Start the ASP.NET Web Application Administration by selecting Project ➪ ASP.NET Configura-
tion in Visual Studio 2010.

4. Select the Security tab, as shown in Figure 18-22.

620 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

FIGURE 18-22

5. Click the link to the Security Setup Wizard. In the Welcome Screen, click the Next button. From
step 2 of the wizard, select the access method ‘‘From the internet,’’ as shown in Figure 18-23.

6. Click Next. Here, step 3, you can see the configured provider. The default provider is a SQL Server
database provider. This configuration cannot be changed in the Wizard mode, but you can change
it afterwards.

7. Click the Next button. Within the Define Roles screen, click the checkbox ‘‘Enable roles for this
Web site.’’

8. Click the Next button. Create a new role named Editors.

9. Click the Next button, which takes you to step 5, where you add new users (see Figure 18-24).
Create two new accounts. One of the accounts should be a member of the role Editors.

10. After the users are successfully created, click the Next button for step 6 of the wizard (see
Figure 18-25). Here, you can configure which users are allowed or denied access to the website or
specific directories. Add a rule to deny anonymous users. Next, select the Intro directory and add
a rule to allow anonymous users. Select the Admin folder to deny access to authenticated users,
and to allow access to users in the role Editors. Then click the Next button and finally the Finish
button.

Authentication and Authorization ❘ 621

FIGURE 18-23

How It Works

After you complete the security configuration, a new SQL Server database is created. Having refreshed
the files in the Solution Explorer, you can see a new SQL Server Express database ASPNETDB.mdf

in the directory App_Data. This database contains tables that are used by the SQL Membership
provider.

Now, along with the Web application you will also see the configuration file web.config. This file contains
the configuration for Forms authentication because authentication across the Internet was selected, and
the <authorization> section denies access to anonymous users. If the Membership provider were changed,
the new provider would be listed in the configuration file. Because the SQL provider is the default provider
already defined with the machine configuration file, there is no need for it to be listed here:

<authorization>
<deny users="?" />

</authorization>
<roleManager enabled="true" />
<authentication mode="Forms" />

Code snippet Web.config

622 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

FIGURE 18-24

Within the Intro subfolder, you can see another configuration file, web.config. The authentication section
is missing from this configuration file because the authentication configuration is taken from the parent
directory. However, the authorization section is different. Here, anonymous users are allowed with <allow

users="?" />:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<system.web>
<authorization>

<allow users="?" />
</authorization>

</system.web>
</configuration>

Code snippet Intro/Web.config

Within the Admin subfolder, you can see another configuration file, web.config. The authorization section
allows the Editors role and denies authenticated users:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<system.web>

Authentication and Authorization ❘ 623

<authorization>
<allow roles="Editors" />
<deny users="*" />

</authorization>
</system.web>

</configuration>

Code snippet Admin/Web.config

FIGURE 18-25

Using Security Controls
ASP.NET includes many security controls. Instead of writing a custom form to ask the user for a
username and password, a ready-to-use Login control is available. The security controls and their
functionality are described in the following table:

SECURITY CONTROL DESCRIPTION

Login A composite control that includes controls to ask for username and password.

LoginStatus Includes hyperlinks to log in or log out, depending on whether the user is
logged in or not.

continues

624 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

(continued)

SECURITY CONTROL DESCRIPTION

LoginName Displays the name of the user.

LoginView Different content can be displayed depending on whether the user is logged in
or not.

PasswordRecovery A composite control to reset forgotten passwords. Depending on the security
configurations, the user is asked for the answer to a previously set secret ques-
tion or the password is sent by e-mail.

ChangePassword A composite control that allows logged in users to change their password.

CreateUserWizard A wizard to create a new user and write the user information to the Membership
provider.

The following Try It Out adds a login page to the Web application.

TRY IT OUT Creating a Login Page

If you tried to start the website after it was configured to deny anonymous users, you should have received
an error because a login.aspx page is missing. If a specific login page is not configured with Forms authen-
tication, login.aspx is used by default. You now create a login.aspx page:

1. Add a new Web Form using Master Page and name it login.aspx.

2. Add the Login control to the form.

3. That’s all that’s necessary to create a login page. Now when you start the site default.aspx, you
are redirected to login.aspx, where you can enter the user credentials for the user you created
earlier.

How It Works

After adding the Login control, you can see this code in the source view:

<%@ Page Title="" Language="C#" MasterPageFile="~/Events.Master"
AutoEventWireup="true" CodeBehind="Login.aspx.cs"
Inherits="EventRegistrationWeb.Login" %>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderMain"
runat="server">

<asp:Login ID="Login1" runat="server">
</asp:Login>

</asp:Content>

Code snippet Login.aspx

The properties for this control enable you to configure the text for the header, username, and password
labels, and for the login button, too. You can make the check box ‘‘Remember me next time’’ visible by
setting the DisplayRememberMe property.

Authentication and Authorization ❘ 625

If you want more control over the look and feel of the Login control, you can convert the control
to a template. You can do this in the design view by clicking the smart tag and selecting Convert to
Template. Next, when you click Edit Templates, you get a view where you can add and modify any
controls.

For verifying the user credentials, when the Login button is clicked, the method Membership.

ValidateUser() is invoked by the control, and you don’t have to do this yourself.

When users don’t have an account to log in with the EventRegistration website, they should create
their own login. This can be done easily with the CreateUserWizard control, as shown in the next Try
It Out.

TRY IT OUT Using the CreateUser Wizard

1. Add a new Web page named RegisterUser.aspx in the Intro folder previously created. This folder
is configured to be accessed from anonymous users.

2. Add a CreateUserWizard control to this Web page.

3. Set the property ContinueDestinationPageUrl to ~/Default.aspx.

4. Add a LinkButton control to the Login.aspx page. Set the content of this control to Register

User, and the PostBackUrl property of this control to the Web page Intro/RegisterUser.aspx.

5. Now you can start the application. Clicking the link Register User on the Login.aspx page redi-
rects to the page RegisterUser.aspx, where a new account will be created with the entered data.

How It Works

The CreateUserWizard control is a wizard-like control that consists of multiple wizard steps, which are
defined with the element <WizardSteps>:

<%@ Page Title="" Language="C#" MasterPageFile="~/Events.Master"
AutoEventWireup="true" CodeBehind="RegisterUser.aspx.cs"
Inherits="EventRegistrationWeb.Intro.RegisterUser" %>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderMain"
runat="server">

<asp:CreateUserWizard ID="CreateUserWizard1" runat="server">
<WizardSteps>

<asp:CreateUserWizardStep ID="CreateUserWizardStep1" runat="server">
</asp:CreateUserWizardStep>
<asp:CompleteWizardStep ID="CompleteWizardStep1" runat="server">
</asp:CompleteWizardStep>

</WizardSteps>
</asp:CreateUserWizard>

</asp:Content>

Code snippet RegisterUser.aspx

These wizard steps can be configured in the designer. The smart tag of the control enables you to config-
ure each of these steps separately. Figure 18-26 shows configuration of the step Sign Up for Your New

626 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

Account. You can also add custom steps with custom controls to add special requirements, such as having
users accept a contract before signing up for an account.

FIGURE 18-26

READING FROM AND WRITING TO A SQL SERVER DATABASE

Most Web applications need access to a database to read data from it and write data to it. In this
section, you create a new database to store event information, and learn how to use this database from
ASP.NET. First you create a new SQL Server database in the next Try It Out. This can be done directly
from within Visual Studio 2010.

TRY IT OUT Creating a New Database

1. Open the previously created Web application EventRegistrationWeb.

2. Open the Server Explorer. If you cannot already see it in Visual Studio, you can open the window
by selecting View ➪ Other Windows ➪ Server Explorer.

Reading from and Writing to a SQL Server Database ❘ 627

FIGURE 18-27

3. In the Server Explorer, select Data Connections,
right-click to open the context menu, and select Cre-
ate New SQL Server Database. The dialog shown in
Figure 18-27 opens.

4. Enter (local)\sqlexpress for the server name, and
BegVCSharpEvents for the database name.

5. After the database is created, select the new database in
Server Explorer.

6. Select the entry Tables below the database, and
from Visual Studio select Data ➪ Add New ➪

Table.

7. Enter the following column names and data types:

COLUMN NAME DATA TYPE

Id int

Title nvarchar(50)

Date datetime

Location nvarchar(50)

8. Configure the ID column as a primary key column with an identity increment of 1 and an identity
seed of 1. Configure all columns to not allow nulls.

9. Save the table with the name Events.

10. Add a few events to the table with some sample titles, dates, and locations.

To display and edit data, there’s a separate Data section in the Toolbox, representing data controls. The
data controls can be categorized into two groups: data view and data source. A data source control is asso-
ciated with a data source such as an XML file, a SQL database, or a .NET class; data views are connected
with a data source to represent data. The following table describes all the data controls:

DATA CONTROL DESCRIPTION

GridView Displays data with rows and columns

DataList Displays a single column to display all items

DetailsView Can be used together with a GridView if you have a master/detail relationship with
your data

FormView Displays a single row of the data source

continues

628 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

(continued)
DATA CONTROL DESCRIPTION

Repeater Template-based. You can define what HTML elements should be generated around
the data from the data source

ListView This is template-based, similar to the Repeater control

The data source controls and their functionality are listed in the following table:

DATA SOURCE CONTROL DESCRIPTION

SqlDataSource Accesses the SQL Server or any other ADO.NET provider (e.g., Oracle,
ODBC, and OLEDB). Internally, it uses a DataSet or a DataReader class.

AccessDataSource Enables you to use an Access database.

EntityDataSource New in .NET 4.0. Enables using the ADO.NET Entity Framework as a data
source.

ObjectDataSource Enables you to use .NET classes as the data source.

XmlDataSource Enables you to access XML files. Using this data source, hierarchical
structures can be displayed.

SiteMapDataSource Uses XML files to define a site structure for creating links and references
with a website. This feature is discussed in Chapter 20.

In the next Try It Out, you use a GridView control to display and edit data from the previously created
database.

TRY IT OUT Using a GridView Control to Display Data

1. Open the previously created Web page EventsManagement.aspx in the Admin folder.

2. Add a GridView control to the Web page.

3. In the Choose Data Source combo box of the control’s smart tag, select <New data source.>. The
dialog shown in Figure 18-28 opens.

4. Select Database and enter the name EventsDataSource for this new data source.

5. Click OK to configure the data source. The Configure Data Source dialog opens. Click the New
Connection button to create a new connection.

6. In the Add Connection dialog, enter (local)\sqlexpress as the server name, and select the previ-
ously created database BegVCSharpEvents. Click the Test Connection button to verify that the
connection is correctly configured. When you’re satisfied that it is, click OK. The next dialog
(shown in Figure 18-29) opens, for storing the connection string.

Reading from and Writing to a SQL Server Database ❘ 629

FIGURE 18-28

FIGURE 18-29

630 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

7. Click the check box to save the connection and enter the connection string name EventsConnec-
tionString. Click Next.

8. In the next dialog, select the Events table to read the data from this table, as shown in
Figure 18-30. Select the ID, Title, Date, and Location columns to define the SQL command shown
in the figure. Then click the Next button.

FIGURE 18-30

9. With the last window of the Configure Data Source dialog, you can test the query. Finally, click
the Finish button.

10. In the designer, you can now see the GridView control with dummy data, and the SqlDataSource

with the name EventsDatasource.

11. For a more attractive layout of the GridView control, select AutoFormat from the smart tag and
select the scheme Mocha, as shown in Figure 18-31.

12. Start the page with Visual Studio, where you will see the events in a nice table like the one shown
in Figure 18-32.

Reading from and Writing to a SQL Server Database ❘ 631

FIGURE 18-31

FIGURE 18-32

632 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

How It Works

After you add the GridView control, you can see its configuration in the source code. The DataSourceID

attribute defines the association with the data source control, which can be found after the grid control.
Within the <Columns> element, all bound columns for displaying data are shown. HeaderText defines the
text of the header and DataField defines the field name within the data source.

The data source is defined with the <asp:SqlDataSource> element, where the SelectCommand defines how
the data is read from the database, and the ConnectionString defines how to connect with the database.
Because you chose to save the connection string in the configuration file, <%$ is used to make an association
with a dynamically generated class from the configuration file:

<%@ Page Title="" Language="C#" MasterPageFile="~/Events.Master"
AutoEventWireup="true" CodeBehind="EventsManagement.aspx.cs"
Inherits="EventRegistrationWeb.Admin.EventsManagement" %>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderMain"
runat="server">

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
BackColor="White" BorderColor="#DEDFDE" BorderStyle="None"
BorderWidth="1px" CellPadding="4" DataKeyNames="Id"
DataSourceID="EventsDataSource" ForeColor="Black"
GridLines="Vertical" PageSize="5">

<AlternatingRowStyle BackColor="White" />
<Columns>

<asp:BoundField DataField="Id" HeaderText="Id" InsertVisible="False"
ReadOnly="True" SortExpression="Id" />

<asp:BoundField DataField="Title" HeaderText="Title"
SortExpression="Title" />

<asp:BoundField DataField="Date" HeaderText="Date"
SortExpression="Date" />

<asp:BoundField DataField="Location" HeaderText="Location"
SortExpression="Location" />

</Columns>
<FooterStyle BackColor="#CCCC99" />
<HeaderStyle BackColor="#6B696B" Font-Bold="True" ForeColor="White" />
<PagerStyle BackColor="#F7F7DE" ForeColor="Black"

HorizontalAlign="Right" />
<RowStyle BackColor="#F7F7DE" />
<SelectedRowStyle BackColor="#CE5D5A" Font-Bold="True"

ForeColor="White" />
<SortedAscendingCellStyle BackColor="#FBFBF2" />
<SortedAscendingHeaderStyle BackColor="#848384" />
<SortedDescendingCellStyle BackColor="#EAEAD3" />
<SortedDescendingHeaderStyle BackColor="#575357" />

</asp:GridView>
<asp:SqlDataSource ID="EventsDataSource" runat="server"

ConnectionString="<%$ ConnectionStrings:BegVCSharpEventsConnectionString %>"
SelectCommand="SELECT [Id], [Title], [Date], [Location] FROM [Events]">

</asp:SqlDataSource>
</asp:Content>

Code snippet EventsManagement.aspx

Reading from and Writing to a SQL Server Database ❘ 633

In the web.config configuration file, you can find the connection string to the database:

<connectionStrings>
<add name="BegVCSharpEventsConnectionString"

connectionString="Data Source=’(local)\sqlexpress’;
Integrated Security=True;Pooling=False;
Initial Catalog=’BegVCSharpEvents’"
providerName="System.Data.SqlClient" />

</connectionStrings>

Code snippet web.config

Now the GridView control should be configured differently. In the next Try It Out, the ID is no longer
displayed to the user, and the date-time display shows only the date.

TRY IT OUT Configuring the GridView Control

1. Select the smart tag of the GridView control and select the Edit Columns menu. The Fields dialog,
shown in Figure 18-33, appears. Select the Id field, and change the Visible property to False.
You can arrange the columns with this dialog, and you can change the colors and define the header
text. Set the DataFormatString of the Date column to {0:D} to only show the date but not the
time.

FIGURE 18-33

634 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

FIGURE 18-34

2. For editing the GridView, an update command
must be defined with the data source. Select the
SqlDataSource control with the name Events-
DataSource, and select Configure Data Source
from the smart tag. In the Configure Data
Source dialog, click the Next button until you
can see the previously configured SELECT com-
mand. Click the Advanced button, and select
the check box ‘‘Generate INSERT, UPDATE,
and DELETE statements,’’ as shown
in Figure 18-34. Click OK. Then click the
Next and Finish buttons.

3. Select the smart tag of the GridView again. Now
there’s an Enable Editing item in the smart tag
menu. After you’ve selected the check box to enable editing, a new column is added to the
GridView control. You can also edit the columns with the smart tag menu to arrange the new Edit
button. In addition, select the Enable Paging, Enable Sorting, and Enable Selection options.

4. Start the application and edit the existing event records. Click on a header to see it sorted.

How It Works

No line of code had to be written manually in this example; everything was handled using ASP.NET Web
controls. Behind the scenes, these controls make use of many features.

For example, the SqlDataSource control fills a DataSet with the help of a SqlDataAdapter with data
from the database. The data used to fill the DataSet is defined with the connection string and the SELECT

command. Just by changing a property of the SqlDataSource, the SqlDataReader can be used instead of
the DataSet. Also, by setting the property EnableCaching to true, the Cache object (discussed earlier in the
chapter) is used automatically.

SUMMARY

This chapter described the architecture of ASP.NET, how to work with server-side controls, and some
base features of ASP.NET. ASP.NET offers several controls for which not much code is necessary, as
shown with the login and data controls.

After learning about the base functionality of ASP.NET with server controls and the event handling
mechanism, you learned about input validation, several methods for state management, authentication
and authorization, and displaying data from the database.

The exercises that follow will help you extend the Web application developed in this chapter.

Exercises ❘ 635

EXERCISES

1. Add the username to the master page you created in this chapter. You can use the LoginName

control for this task. Use the LoginView to display this information only if the user is authenticated.

2. Change the data source for the Registration.aspx page so that it uses the Events database for
displaying the events.

3. Create a new project of type ASP.NET Web Application. Check all the files and folders that are
created from this project template. All this should now look very familiar.

Answers to Exercises can be found in Appendix A.

636 ❘ CHAPTER 18 ASP.NET WEB PROGRAMMING

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Using Web Server
Controls

Web Server Controls are server-side controls that generate HTML code.
The use of these controls is similar to using Windows controls.

Using ASP.NET Postbacks The ASP.NET postback model is a very important concept in writing
ASP.NET Web applications. The server-side code only comes into play
on postbacks to the server. Now, with ASP.NET Ajax you can also define
ASP.NET Ajax postbacks where only parts of the pages are updated.

Verifying user input with
validation controls

ASP.NET offers several validation controls that can easily be used to
validate user input both on the client and on the server side. Validation
on the client is done for performance reasons, but because the Web client
can never be trusted, validation must happen on the server as well.

State management With Web applications it is necessary to think about where to store state.
State can be used on the client with cookies or view state; on the server
with session, cache, and application objects.

Master pages Master pages are used to separate the common parts of multiple pages
into a master.

Navigation Menu controls can be used to navigate between different pages on a
website. Instead of needing to add the links to the pages directly to the
menu control, a site map can be bound to the menu.

Reading from and writing
to a SQL server database

Accessing a database is abstracted with the help of ASP.NET controls.
The GridView can be easily customized from the designer. The data
source of this grid can be a data source where all that needs to be done
is set the properties to read and write data from a database (instead of
writing C# code).

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502266

19
Web Services

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ An overview of Web Services

➤ How to create a Web Service with ASP.NET

➤ How to use a Web Service from a Windows Forms application

➤ How to use a Web Service from an ASP.NET client

➤ How to call Web Services asynchronously

➤ How to pass data across Web Services

While Web applications are a front end for the user to access the functionality of an application,
Web services are the front end for applications to access the functionality of an application. Web
services are server-side programs that listen for messages from client applications and return
specific information. This information may come from the Web service itself, from other com-
ponents in the same domain, or from other Web services.

This chapter does not go into the inner workings of Web services, but you will get enough
information to start creating and consuming simple ASP.NET Web services with the help of
Visual Studio.

WHERE TO USE WEB SERVICES

To get another view of what Web services are, you can distinguish between user-to-application
communication and application-to-application communication. Let’s start with a user-to-
application communication example: getting some weather information from the Web. Several
websites such as weather.msn.com and www.weather.com present weather information in an
easy-to-digest format for a human reader. Normally, these pages are read directly by a user.

638 ❘ CHAPTER 19 WEB SERVICES

If you wanted to create a rich client application to display the weather (application-to-application com-
munication), your application would have to connect to the website with a URL string containing the
city for which you want to know the weather. You would have to parse the resulting HTML message
returned from the website to get the temperatures and weather conditions, and then you could finally
display the information in an appropriate format for the rich client application.

That’s a lot of work, considering that you just want to get some temperature readings for a particular
city, and the process of getting the data from the HTML is not trivial because HTML data is designed to
be displayed in the Web browser; it’s not meant to be used by any other client-side business application.
Therefore, the data is embedded in the text and is not easily extracted, and you would have to rewrite
or adapt the client application to retrieve different data information (such as rainfall) from the same
Web page. Compared with using a Web browser, users can immediately pick out the data they need
and can overlook what they don’t need.

To get around the problem of processing HTML data, a Web service provides a useful means for
returning only the data requested. Just call a method on the remote server and get the information
needed, which can be used directly by the client application. At no point do you have to deal with the
preformatted text that is meant for the user interface, because the Web service presents the information
in XML format, and tools already exist to process XML data. The client application needs only to
call some methods of the .NET Framework XML classes to get the information. Better still, if you are
writing a client in C# for a .NET Web service, you don’t even need to write the code to do that — there
are tools that will generate C# code for you!

This sort of weather application is one example of how Web services can be used, but there are a
lot more.

A Hotel Travel Agency Application Scenario
How do you book your vacations? Instead of having a travel agency do all the work for you, you can
book your holiday on the Internet. On an airline’s website, you can look for possible flights and book
them. A Web search engine can be used to look for a hotel in the desired city. In many cases you can
also find a map showing how to get to the hotel. When you find the hotel’s home page, you navigate to
the booking form page and book the room. Then you could search out a car rental firm, and so on.

A lot of the work you have to do today involves finding the right websites with the help of search
engines, and then navigating these sites. Instead of going through all that, you could create a Home
Travel Agency application that uses Web services containing details about hotels, airlines, car rental
firms, and so on. Then you can present the client with an easy-to-use interface to deal with all aspects
of the vacation, including an early booking of a special musical event. With your mobile device on
location during your vacation, you can use the same Web services to get a map to some leisure-time
activities, and to get accurate information about cultural events or cinema programs, and so on.

A Book Distributor Application Scenario
Web services can also be useful for two companies that have a partnership. Assume that a book dis-
tributor wants to provide bookstores with information about books in stock. This can be accomplished
with a Web service. An ASP.NET application using the Web service can be created to offer this service
directly to users. Another client application of this service is a Windows application for the bookstore,

Application Architecture ❘ 639

which first checks the local stock and then that of the distributor. A salesperson can immediately
answer questions about delivery dates without having to check different stock information in different
applications.

Client Application Types
The client of a Web service can be a rich Windows application created using Windows Forms, WPF,
Silverlight, or an ASP.NET application using Web Forms. A Windows PC, a UNIX system, or a mobile
device can be used to consume (use) the Web service. With the .NET Framework, Web services can be
consumed in every application type.

APPLICATION ARCHITECTURE

What does an application using Web services actually look like? Calling Web services looks very similar
regardless of whether you develop ASP.NET or Windows applications, or applications for small devices
(as described in the application scenarios presented here). With all these application types, Web services
are an important technology.

Figure 19-1 illustrates a scenario showing how Web services can be used. Devices and browsers are
connected through the Internet to an ASP.NET application developed with Web Forms. This ASP.NET
application uses some local Web services and some other remote Web services that can be reached
across the network: portal Web services, application-specific Web services, and building-block Web
services. The following list should help to elucidate the meaning of these service types:

➤ Portal Web services — Offer services from different companies with the same subject matter.
This is an easy-to-use access point for multiple services.

➤ Application-specific Web services — Created just for the use of a single application.

➤ Building-block Web services — Those that can easily be used within multiple applications.

The Windows applications in Figure 19-1 can use the Web services directly without going through the
ASP.NET application.

Portal Services

Local Web
Services

Application
Specific Web

Services

Building Block
Web Services

Internet Boundary

Browsers

Devices

ASP.NET
Application

Windows
Applications

FIGURE 19-1

640 ❘ CHAPTER 19 WEB SERVICES

WEB SERVICES ARCHITECTURE

Web services can make use of the SOAP protocol, which is a standard defined by many companies. A
big advantage of Web services is their platform independence. However, Web services are not only a
useful technology when multiple platforms need to cooperate; they are also very useful for developing
.NET applications on both the client and the server side. The advantage here is that the client and the
server can emerge independently. A service description is created with a WSDL (Web Service Descrip-
tion Language) document that can be designed in a way to be independent of new versions of the Web
service, and therefore the client needn’t be changed.

Let’s look into the steps of the sequence in more detail.

Calling Methods and the Web Services Description Language
A WSDL document contains information about the methods a Web service supports and how they
can be called, parameter types passed to the service, and parameter types returned from the service.
Figure 19-2 shows the WSDL that is generated from the ASP.NET runtime. Appending the string ?wsdl

to the .asmx file returns a WSDL document.

FIGURE 19-2

It is not necessary to deal with this information directly. The WSDL document will be generated dynam-
ically with the WebMethod attribute, which you look at later. Adding the Web reference to the client

Web Services Architecture ❘ 641

application with Visual Studio causes a WSDL document to be requested. This WSDL document, in
turn, is used to create a client proxy with the same methods and arguments. With this proxy, the client
application has the advantage that it only needs to call the methods as they are implemented in the
server, because the proxy converts them to SOAP calls to make the call across the network.

The WSDL specification is maintained by the World Wide Web Consortium (W3C). You can read the
specification at the W3C website: www.w3.org/TR/wsdl.

Calling a Method

SOAP Message

SOAP Envelope

SOAP Header

SOAP Body

FIGURE 19-3

A SOAP message is the basic unit of communication between a client and
a server. To call a method on a Web service, the call must be converted
to the SOAP message as defined in the WSDL document. Figure 19-3
demonstrates the parts of a SOAP message. A SOAP envelope, as you
might guess, wraps all the SOAP information in a single block. The
SOAP envelope itself consists of two parts: a SOAP header and a SOAP
body. The optional header defines how the client and server should
process the body. The mandatory SOAP body includes the data that is
sent. Usually, information within the body is the method that is called
together with the serialized parameter values. The SOAP server sends
back the return values in the SOAP body of the SOAP message.

The following example shows what a SOAP message that is sent from
the client to the server looks like. The client calls the Web service method
ReverseString(). The string Hello World! is passed as an argument
to this method. You can see that the method call is inside the SOAP body, within the XML element
<soap:Body>. The body itself is contained within the envelope <soap:Envelope>. Before the start of
the SOAP message, you can see the HTTP header, because the SOAP message is sent with an HTTP

POST request.

It is not necessary to create such a message because that is done by the client proxy:

POST /Service1.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: 508
SOAPAction: "http://www.wrox.com/webservices/ReverseString"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<ReverseString xmlns="http://www.wrox.com/webservices">
<message>Hello World!</message>

</ReverseString>
</soap:Body>
</soap:Envelope>

642 ❘ CHAPTER 19 WEB SERVICES

The server answers with the SOAP message !dlroW olleH, as shown with the ReverseStringResult

XML element:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 446

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<ReverseStringResponse xmlns="http://www.wrox.com/webservices">
<ReverseStringResult>!dlroW olleH</ReverseStringResult>

</ReverseStringResponse>
</soap:Body>

</soap:Envelope>

The SOAP specification is maintained by the XML Protocol Working Group of the W3C
(www.w3.org/TR/soap).

WS-I Basic Profile
The SOAP specification and other specifications based on SOAP emerged over time. This brought
changes and many different versions that made it hard for interoperability. To cover this issue, the Web
Services Interoperability Organization was formed. This organization defines the requirements for a
Web service with the WS-I Basic Profile specifications. You can read the WS-I Basic Profile specifications
at http://www.ws-i.org. Web services developed with ASP.NET conform to Basic Profile 1.1, which is
defined in the document located at http://www.ws-i.org/Profiles/BasicProfile-1.1.html.

WEB SERVICES AND THE .NET FRAMEWORK

The .NET Framework makes it easy to create and consume Web services, using three major namespaces
that deal with Web services:

➤ System.Web.Services — Use its classes to create Web services.

➤ System.Web.Services.Description — You can describe Web services via WSDL.

➤ System.Web.Services.Protocols — You can create SOAP requests and responses.

NOTE You can create Web services with ASP.NET or with Windows
Communication Foundation (WCF). WCF is much more flexible than ASP.NET
Web services as it gives different options for hosting and is not bound to
ASP.NET, and supports different protocols and not just HTTP. An advantage of
ASP.NET Web services is that it’s a little easier to use. Also, WCF templates were
not available with the express edition of Visual Studio 2008. At the time of this
writing, this is not clear with Visual Studio 2010. Chapter 27 covers WCF.

Web Services and the .NET Framework ❘ 643

Creating a Web Service
To implement a Web service, you can derive the Web service class from System.Web.Services

.WebService. The WebService class provides access to ASP.NET Application and Session objects.
Using this class is optional, and you have to derive from it only if you need easy access to the properties
the class offers.

Properties for the class WebService are explained in the following table:

PROPERTY DESCRIPTION

Application Returns an HttpApplicationState object for the current request.

Context Returns an HttpContext object that encapsulates HTTP-specific information.
With this context, the HTTP header information can be read.

Server Returns an HttpServerUtility object. This class has some helper methods to
do URL encoding and decoding.

Session Returns an HttpSessionState object to store some state for the client.

User Returns a user object implementing the IPrincipal interface. With this interface,
you can get the name of the user and the authentication type.

SoapVersion Returns the SOAP version that is used with the Web service. The SOAP version
is encapsulated in the enumeration SoapProtocolVersion.

WebService Attribute
The subclass of WebService should be marked with the WebService attribute. The class
WebServiceAttribute has the following properties:

PROPERTY DESCRIPTION

Description A description of the service that will be used in the WSDL document.

Name Gets or sets the name of the Web service.

Namespace Gets or sets the XML namespace for the Web service. The default value is
http://tempuri.org, which is OK for testing, but before you make the service
public you should change the namespace.

WebMethod Attribute
All methods available from the Web service must be marked with the WebMethod attribute. Of
course, the service can have other methods that are not marked using WebMethod. Such methods
can be called from the WebMethods, but they cannot be called from the client. With the attribute
class WebMethodAttribute, the method will be callable from remote clients, and you can define
whether the response is buffered, for how long the cache should be valid, and whether the session

644 ❘ CHAPTER 19 WEB SERVICES

state should be stored with named parameters. The following table lists the properties of the
WebMethodAttribute class:

PROPERTY DESCRIPTION

BufferResponse Gets or sets a flag indicating whether the response should be buffered. The
default is true. With a buffered response, only the finished package is sent
to the client.

CacheDuration Sets the length of time that the result should be cached. If the same request
is made a second time, only the cached value will be returned if the request
is made during the period set by this property. The default value is 0, which
means the result will not be cached.

Description Used in the generation of service help pages for prospective consumers.

EnableSession A Boolean value indicating whether the session state is valid. The default is
false, so the Session property of the WebService class cannot be used for
storing session state.

MessageName By default, the name of the message is set to the name of the method.

TransactionOption Indicates the transaction support for the method. The default value is
Disabled.

WebServiceBinding Attribute
The attribute WebServiceBinding is used to mark the Web services interoperability conformance level
of the Web service. Its properties are described in the following table:

PROPERTY DESCRIPTION

ConformsTo Set to a value of the WsiProfile enumeration. WsiProfile can have
two values: BasicProfile1_1 when the Web service conforms to
Basic Profile 1.1, or None when no conformance is defined.

EmitConformanceClaims A Boolean property that defines whether the conformance claims
that are specified with the ConformanceClaims property should be
transmitted to the generated WSDL documentation.

Name Defines the name of the binding. By default, the name is the same as
the name of the Web service with the string Soap appended.

Location Defines the location of the binding information — for example,
http://www.wrox.com/DemoWebservice.asmx?wsdl.

Namespace Defines the XML namespace of the binding.

Creating a Simple ASP.NET Web Service ❘ 645

Client
To call a method, the client has to create an HTTP connection to the server of the Web service,
and send an HTTP request to pass a SOAP message. The method call must be converted to a SOAP
message. All this is done by the client proxy. The implementation of the client proxy is in the
SoapHttpClientProtocol class.

SoapHttpClientProtocol
The class System.Web.Services.Protocols.SoapHttpClientProtocol is the base class for the client
proxy. The Invoke() method converts the arguments to build a SOAP message that is sent to the Web
service. Which Web service is called is defined with the Url property.

The SoapHttpClientProtocol class also supports asynchronous calls with the BeginInvoke() and
EndInvoke() methods.

Alternative Client Protocols
Instead of using the SoapHttpClientProtocol class, other proxy classes can be used.
HttpGetClientProtocol and HttpPostClientProtocol just perform a simple HTTP GET or
HTTP POST request without the overhead of a SOAP call.

The HttpGetClientProtocol and HttpPostClientProtocol classes can be used if your solution uses
.NET on the client and the server. If you want to support different technologies, you have to use the
SOAP protocol.

Compare the following HTTP POST request with the SOAP call shown earlier in this chapter:

POST /WebServiceSample/Service1.asmx/ReverseString HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: length

message=string

The HTTP GET request is even shorter. The disadvantage of the GET request is that the size of the param-
eters sent is limited. If the size exceeds 1K, then you should consider using POST:

GET /WebServiceSample/Service1.asmx/ReverseString?message=string HTTP/1.1
Host: localhost

The overhead of the HttpGetClientProtocol and the HttpPostClientProtocol is smaller than that of
SOAP methods; the disadvantage here is that there is no support from Web services on other platforms
and no support for sending anything other than simple data.

CREATING A SIMPLE ASP.NET WEB SERVICE

In the following Try It Out, you create a simple Web service with Visual Studio.

646 ❘ CHAPTER 19 WEB SERVICES

TRY IT OUT Creating a Web Service Project

1. Create a new Web Service project by selecting File ➪ New ➪ Project, and choose the ASP.NET
Empty Web Application template, as shown in Figure 19-4. Name the project WebServiceSample
and click OK.

FIGURE 19-4

2. Add a new item, choose the Web Service template, and name the file to be created SampleSer-
vice.asmx, as shown in Figure 19-5.

How It Works

The files generated by the project and item templates are as follows:

➤ SampleService.asmx — This file holds your Web service class. All ASP.NET Web
services are identified with the .asmx extension. The file that has the source code is
SampleService.asmx.cs because the code-beside feature is used with Visual Studio.

➤ SampleService.asmx.cs — The item template generates a class SampleService in the file
SampleService.asmx.cs that derives from System.Web.Services.WebService. In this file,
you can also see some sample code showing how a method for a Web service should be
coded — it should be public and marked with the WebMethod attribute:

Creating a Simple ASP.NET Web Service ❘ 647

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

namespace WebServiceSample
{

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.ComponentModel.ToolboxItem(false)]
public class SampleService : System.Web.Services.WebService
{

[WebMethod]
public string HelloWorld()
{

return "Hello World";
}

}
}

Code snippet WebServiceSample/SampleService.asmx.cs

FIGURE 19-5

648 ❘ CHAPTER 19 WEB SERVICES

Adding a Web Method
The next thing to do is add a custom method to your Web service. In the following Try It Out, you
add a simple method — ReverseString() — that receives a string and returns the reversed string to the
client.

TRY IT OUT Adding a Method

1. Remove the method HelloWorld() with the complete implementation. Add the following code to
the file SampleService.asmx.cs.

[WebMethod]
public string ReverseString(string message)
{

return new string(message.Reverse().ToArray());
}

Code snippet WebServiceSample/SampleService.asmx.cs

2. Modify the example code from the file SampleService.asmx.cs as follows:

[WebService(Namespace = "http://www.wrox.com/BeginningCSharp/2010")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.ComponentModel.ToolboxItem(false)]
// To allow this Web Service to be called from script, using ASP.NET AJAX,
// uncomment the following line.
// [System.Web.Script.Services.ScriptService]
public class SampleService : System.Web.Services.WebService

Code snippet WebServiceSample/SampleService.asmx.cs

3. Compile the project.

How It Works

The ASP.NET runtime makes use of reflection to read some Web service–specific attributes, such as
[WebMethod], to offer the method as a Web service operation. The ASP.NET runtime also offers WSDL
to describe the service.

To uniquely identify the XML elements in the generated description of the Web service, an XML name-
space should be added. In the sample, the namespace http://www.wrox.com/webserviceswas added to the
class Service by using the attribute [WebService]. Of course, you can use any other string that uniquely
identifies the XML elements, such as the URL link to your company’s page. It is not necessary for the Web
link to really exist; it is just used for unique identification. If you use a namespace based on your company’s
Web address, you can almost guarantee that no other company is using the very same namespace.

If you don’t change the XML namespace, the default namespace used is http://tempuri.org. For learning
purposes, this default namespace is good enough, but you shouldn’t deploy a production Web service
using it.

Implementing a Windows Client ❘ 649

TESTING THE WEB SERVICE

Now you can test the service. Opening the file Service1.asmx in the browser (you can start it from
within Visual Studio 2010 by selecting Debug ➪ Start Without Debugging) lists all methods of the
service, as shown in Figure 19-6. In your service, the only method is ReverseString().

FIGURE 19-6

When you choose the link to the ReverseString method, a dialog appears for testing the Web service.
The test dialog has edit fields for every parameter you can pass with this method; here, it is only a
single parameter.

In this page, you also get information about what the SOAP calls from the client, and the responses
from the server, will look like (see Figure 19-7). The example shows SOAP and HTTP POST requests.

If you click the Invoke button after entering the string Hello Web Services! into the text box, you
receive the result shown in Figure 19-8 from the server.

The result is of type string, and, as expected, it is the reverse of the entered string.

IMPLEMENTING A WINDOWS CLIENT

The test is working, but you want to create a Windows client that uses the Web service. The client
must create a SOAP message that will be sent across an HTTP channel. It is not necessary to make this
message yourself. Visual Studio 2010 creates a proxy class that uses an HTTP channel from Windows
Communication Foundation (WCF) that does all the work behind the scenes.

NOTE You can read about WCF in Chapter 26.

650 ❘ CHAPTER 19 WEB SERVICES

FIGURE 19-7

FIGURE 19-8

Implementing a Windows Client ❘ 651

TRY IT OUT Creating a Client Windows Application

FIGURE 19-9

1. Add a new C# Windows Forms Application to the
existing solution WebServiceSample and name it
WindowsFormsClient. Add two text boxes and a button to
the form (see Figure 19-9). You will use the button’s click
event handler to invoke the Web service.

2. Add a service reference using the Project ➪ Add Service Ref-
erence. In this dialog, click the Discover button arrow and
select Services in Solution. The previously created service is
shown in the left view. Select SampleServiceSoap in the left
tree view. Before clicking OK, change the Namespace name
to WebServicesSample, as shown in Figure 19-10.

FIGURE 19-10

3. Until now you have not written a single line of code for the client. You designed a small user inter-
face, and used the Add Service Reference menu to create a proxy class. Now you just have to
create the link between the two. Add a Click event handler button1_Click() to the button and
add these two statements:

private void button1_Click(object sender, EventArgs e)
{

var client = new WebServicesSample.SampleServiceSoapClient();
textBox2.Text = client.ReverseString(textBox1.Text);

}
Code snippet WindowsFormsClient/Form1.cs

652 ❘ CHAPTER 19 WEB SERVICES

How It Works

FIGURE 19-11

In the Solution Explorer you can now see a new service reference,
WebServiceSample (see Figure 19-11). Click the Show All Files
button to see the WSDL document and the file Reference.cs

that includes the source code of the proxy. The Show All Files
button is the second one in the toolbar of the Solution Explorer.
When you move the mouse over the buttons, a tooltip gives you
information about each button.

What the Solution Explorer shows only when the Show
All Files button is clicked can be seen more easily in
the Class View (the new class that implements the client
proxy). This class converts method calls to the SOAP for-
mat. In Class View (see Figure 19-12), you will find a new
namespace with the name that was defined with the Web
Reference name. In this case, WebServiceSample was cre-
ated. The class SampleServiceSoapClient derives from
ClientBase<SampleServiceSoap> and implements the method of the Web service, ReverseString().

Double-click the SampleServiceSoapClient class to open the auto-generated Reference.cs file. Let’s look
into this generated code.

FIGURE 19-12

Implementing a Windows Client ❘ 653

The SampleServiceSoapClient class derives from the ClientBase<SampleServiceSoap> class. This base
class creates a SOAP message in the Invoke() method. SampleServiceSoap is an interface that defines all
the operations of the Web service.

[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel",

"4.0.0.0")]
public partial class SampleServiceSoapClient : ClientBase<SampleServiceSoap>,

SampleServiceSoap {

Code snippet WindowsFormsClient/Service References/WebServicesSample/Reference.svcmap/Reference.cs

The most important method is the method that the Web service supplies: ReverseString(). The method
here has the same parameter that you implemented on the server. The implementation of the client-side ver-
sion of ReverseString() calls the Invoke() method of the base class SoapHttpClientProtocol. Invoke()
creates a SOAP message using the method name ReverseString and the parameter message. You can find
this method in the file reference.cs:

public string ReverseString(string message) {
ReverseStringRequest inValue = new ReverseStringRequest();
inValue.Body = new ReverseStringRequestBody();
inValue.Body.message = message;
ReverseStringResponse retVal =

((SampleServiceSoap)(this)).ReverseString(inValue);
return retVal.Body.ReverseStringResult;

}

Code snippet WindowsFormsClient/Service References/WebServicesSample/Reference.svcmap/Reference.cs

Sending a SOAP request across HTTP is defined in the automatically created application configuration file
that defines a basicHttpBinding:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>

<bindings>
<basicHttpBinding>

<binding name="SampleServiceSoap" closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
allowCookies="false" bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard" maxBufferSize="65536"
maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
useDefaultWebProxy="true">
<readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384" maxBytesPerRead="4096"
maxNameTableCharCount="16384" />

<security mode="None">
<transport clientCredentialType="None" proxyCredentialType="None"
realm="" />

654 ❘ CHAPTER 19 WEB SERVICES

<message clientCredentialType="UserName" algorithmSuite="Default" />
</security>

</binding>
</basicHttpBinding>

</bindings>
<client>
<endpoint address="http://localhost:50300/SampleService.asmx"

binding="basicHttpBinding" bindingConfiguration="SampleServiceSoap"
contract="WebServicesSample.SampleServiceSoap" name="SampleServiceSoap" />

</client>
</system.serviceModel>

</configuration>

Code snippet WindowsFormsClient/app.config

The call to the service is done in the following statement with the help of the generated proxy class. With
this statement, you create a new instance of the proxy class. As shown in the implementation of the con-
structor, the Url property is set to the Web service:

var client = new WebServicesSample.SampleServiceSoapClient();

Code snippet WindowsFormsClient/Form1.cs

As a result of calling the ReverseString() method of the proxy class, a SOAP message is sent to the server,
and the Web service is called:

textBox2.Text = client.ReverseString(textBox1.Text);

Code snippet WindowsFormsClient/Form1.cs

FIGURE 19-13

Running the program produces output like that shown in Figure 19-13.

Calling the Service Asynchronously ❘ 655

CALLING THE SERVICE ASYNCHRONOUSLY

When you send a message across the network, you always have to be aware of network latency. If
the Web service is invoked synchronously, the client application is blocked until the call returns. This
may be fast enough in a local network, but you must pay attention to the production system’s network
infrastructure.

You can send messages to the Web service asynchronously. The client proxy creates not only syn-
chronous methods, but also asynchronous methods; but there’s a special issue with Windows applica-
tions. Because every Windows control is bound to a single thread, methods and properties of Windows
controls may only be called from within the creation thread. The proxy class of .NET 4 has some
special features for this issue, as shown in the generated proxy code.

TRY IT OUT Calling the Service Asynchronously

To use the asynchronous implementation of the proxy class, follow these steps:

1. Make a change to the generated proxy class by selecting the service reference WebServices-
Sample. Open the context menu and select Configure Service Reference. The dialog shown in
Figure 19-14 opens.

FIGURE 19-14

2. Check Generate asynchronous operations in the Service Reference Settings dialog.

3. To invoke the Web service asynchronously, change the implementation of the method
button1_Click (code follows). After the proxy is instantiated, add an event handler named
client_ReverseStringCompleted to the event ReverseStringCompleted. Next, invoke the

656 ❘ CHAPTER 19 WEB SERVICES

asynchronous method of the proxy ReverseStringAsync, and pass the Text property from
textBox1. With the asnyc method, a thread is created that makes the call to the Web service:

private void button1_Click(object sender, EventArgs e)
{

var client = new WebServicesSample.SampleServiceSoapClient();
client.ReverseStringCompleted += client_ReverseStringCompleted;
client.ReverseStringAsync(textBox1.Text);

}
}

Code snippet WindowsFormsClient/Form1.cs

4. Now implement the handler method client_ReverseStringCompleted:

void client_ReverseStringCompleted(object sender,
ReverseStringCompletedEventArgs e)

{
if (e.Error != null)
{

textBox2.Text = e.Result;
}
else
{

MessageBox.Show(e.Error.Message);
}

}
Code snippet WindowsFormsClient/Form1.cs

This method will be invoked when the Web service call is completed. With the implementation,
the Result property of the ReverseStringCompletedEventArgs parameter is passed to the Text

property of textBox2:

5. Now you can run the client once more to test the asynchronous call. You can also add a sleep
interval to the Web service implementation, so you can see that the UI of the client application
is not stalled while the Web service is invoked.

How It Works

In the code snippet that follows, you can see the asynchronous version of the method ReverseString().
With the asynchronous implementation of the proxy class, there’s always a method that can be invoked
asynchronously, and an event where you can define what method should be invoked when the Web service
method is finished.

The method ReverseStringAsync() only has the parameters that are sent to the server. The data received
from the client can be read by assigning an event handler to the event ReverseStringCompleted, which is
of type EventHandler<ReverseStringCompletedEventArgs>. This is a delegate whereby the second param-
eter (ReverseStringCompletedEventArgs) is created from the output parameters of the ReverseString()

method. The class ReverseStringCompletedEventArgs contains the return data from the Web service in
the Result property. This implementation works because of the SendOrPostCallback delegate, which
forwards the call to the correct thread of the Windows Forms control:

Calling the Service Asynchronously ❘ 657

public event System.EventHandler<ReverseStringCompletedEventArgs>
ReverseStringCompleted;

public void ReverseStringAsync(string message) {
this.ReverseStringAsync(message, null);

}

public void ReverseStringAsync(string message, object userState) {
if ((this.onBeginReverseStringDelegate == null)) {

this.onBeginReverseStringDelegate =
new BeginOperationDelegate(this.OnBeginReverseString);

}
if ((this.onEndReverseStringDelegate == null)) {

this.onEndReverseStringDelegate =
new EndOperationDelegate(this.OnEndReverseString);

}
if ((this.onReverseStringCompletedDelegate == null)) {

this.onReverseStringCompletedDelegate =
new SendOrPostCallback(this.OnReverseStringCompleted);

}
base.InvokeAsync(this.onBeginReverseStringDelegate, new object[] {

message}, this.onEndReverseStringDelegate,
this.onReverseStringCompletedDelegate, userState);

}

private void OnReverseStringCompleted(object state) {
if ((this.ReverseStringCompleted != null)) {

InvokeAsyncCompletedEventArgs e =
((InvokeAsyncCompletedEventArgs)(state));

this.ReverseStringCompleted(this,
new ReverseStringCompletedEventArgs(e.Results, e.Error,

e.Cancelled, e.UserState));
}

}
}
public partial class ReverseStringCompletedEventArgs :

AsyncCompletedEventArgs {

private object[] results;

public ReverseStringCompletedEventArgs(object[] results,
Exception exception, bool cancelled, object userState) :

base(exception, cancelled, userState) {
this.results = results;

}

public string Result {
get {

base.RaiseExceptionIfNecessary();
return ((string)(this.results[0]));

}
}

}

Code snippet WindowsFormsClient/Service References/WebServicesSample/Reference.svcmap/Reference.cs

658 ❘ CHAPTER 19 WEB SERVICES

IMPLEMENTING AN ASP.NET CLIENT

The same service now can be used from an ASP.NET client application. Referencing the service can be
done as it was with the Windows Forms application.

TRY IT OUT Creating an ASP.NET Client Application

FIGURE 19-15

1. Open the previously created Web service
WebServicesSample.

2. Add a new C# ASP.NET Empty Web Application to the
solution, and call it ASPNETClient.

3. Add a new Web form named Default.aspx, and add two
text boxes and a button to the Web form, as shown in
Figure 19-15.

4. Add a service reference to
http://localhost:50300/SampleService.asmx

in the same way you did with the Windows application.
Depending on your configuration, a different port number
might be required.

5. With the service reference added, a client proxy class is again generated. Add a Click event han-
dler to the button and write the following lines of code for this handler:

protected void Button1_Click(object sender, EventArgs e)
{

var client = new WebServicesSample.SampleServiceSoapClient();
TextBox2.Text = client.ReverseString(TextBox1.Text);

}
Code snippet ASPNETClient/Default.aspx.cs

FIGURE 19-16

6. Build the project. Select Debug ➪ Start Without Debugging
to start the browser, and enter a test message in the first text
box. When you press the button, the Web service is invoked,
and you get the reversed message returned in the second text
box, as shown in Figure 19-16. With a multiproject solu-
tion, you have to set the startup projects to the projects you
want started.

How It Works

The functionality of the proxy class with the Windows application
is exactly the same as with the Web application done earlier. Adding
a service reference creates a proxy class that is based on the WSDL
document. The proxy class makes the SOAP request to the service.

Passing Data ❘ 659

PASSING DATA

With the simple Web service developed earlier, only a simple string has been passed to the Web service.
Now you are going to add a method whereby weather information is requested from the Web service.
This information requires more complex data to be sent to and from the Web service.

TRY IT OUT Passing Data with a Web Service

1. Open the previously created Web service project WebServicesSample using Visual Studio. With
this Web service, define the types shown with the following code. The GetWeatherRequest and
GetWeatherResponse classes (see the following code snippets) define the documents to be sent to
and from the Web service. The enumerations TemperatureType and TemperatureCondition are
used within these classes.

ASP.NET Web services use XML serialization to convert objects to an XML representation. You
can use attributes from the namespace System.Xml.Serialization to influence how the generated
XML format should look.

public enum TemperatureType
{

Fahrenheit,
Celsius

}
public class GetWeatherRequest
{

public string City { get; set; };
public TemperatureType TemperatureType { get; set; };

}
Code snippet WebServiceSample/GetWeatherRequest.cs

public enum TemperatureCondition
{

Rainy,
Sunny,
Cloudy,
Thunderstorm

}

public class GetWeatherResponse
{

public TemperatureCondition Condition { get; set; };
public int Temperature { get; set; };

}
Code snippet WebServiceSample/GetWeatherResponse.cs

2. Add the Web service method GetWeather():

[WebMethod]
public GetWeatherResponse GetWeather(GetWeatherRequest req)
{

var resp = new GetWeatherResponse();
var r = new Random();

660 ❘ CHAPTER 19 WEB SERVICES

int celsius = r.Next(-20, 50);

if (req.TemperatureType == TemperatureType.Celsius)
resp.Temperature = celsius;

else
resp.Temperature = (212 - 32) / 100 * celsius + 32;

if (req.City == "Redmond")
resp.Condition = TemperatureCondition.Rainy;

else
resp.Condition = (TemperatureCondition)r.Next(0, 3);

return resp;
}

Code snippet WebServiceSample/SampleService.asmx.cs

FIGURE 19-17

This method receives the data defined with
GetWeatherRequest and returns data defined with
GetWeatherResponse. Within the implementation,
a random weather condition is returned (with the
exception of the home of Microsoft, Redmond, Wash-
ington, where it rains all week). For random weather
generation, the class Random from the System name-
space is used.

3. After building the Web service, create a new project
using the Windows Forms Application template and
name the application WeatherClient.

4. Modify the main dialog as shown in Figure 19-17.
The control embeds two radio buttons from which the
temperature type (Celsius or Fahrenheit) can be selected, and the city can be entered. Clicking the
Get Weather button invokes the Web service, where the result is shown in the Weather Condition
and Temperature TextBox controls.

The controls, with their names and the value for the Text property, are listed in the
following table:

CONTROL NAME TEXT PROPERTY

GroupBox groupBox1 Temperature Type

RadioButton radioButtonCelsius Celsius

RadioButton radioButtonFahrenheit Fahrenheit

Label labelCity City

TextBox textCity

Button buttonGetWeather Get Weather

Passing Data ❘ 661

CONTROL NAME TEXT PROPERTY

Label labelWeatherCondition Weather Condition

Label labelTemperature Temperature

TextBox textWeatherCondition

TextBox textTemperature

5. Add a reference to the Web service, similar to how it was done with the earlier client application
projects. Name the reference WeatherService.

6. Import the namespace WeatherClient.WeatherService with the client application.

7. Add a Click event handler to the button buttonGetWeather with the name OnGetWeather() using
the Properties dialog of the button.

8. Add the implementation to the OnGetWeather() method as shown:

private void OnGetWeather(object sender, EventArgs e)
{

var req = new GetWeatherRequest();
if (radioButtonCelsius.Checked)

req.TemperatureType = TemperatureType.Celsius;
else

req.TemperatureType = TemperatureType.Fahrenheit;
req.City = textCity.Text;

var client = new SampleServiceSoapClient();
GetWeatherResponse resp = client.GetWeather(req);
textWeatherCondition.Text = resp.Condition.ToString();
textTemperature.Text = resp.Temperature.ToString();

}
Code snippet WeatherClient/Form1.cs

Here, a GetWeatherRequest object is created that defines the request sent to the Web service.
The Web service is invoked by calling the GetWeather() method. This method returns a
GetWeatherResponse object with values that are read for display in the user interface.

FIGURE 19-18

9. Start the client application. Enter a city and click the
Get Weather button. If you are lucky, the real weather
is shown (see Figure 19-18).

How It Works

Passing data from and to an ASP.NET Web service makes
use of XML serialization. With XML serialization, all pub-
lic properties and public fields are serialized. The classes
GetWeatherRequest and GetWeatherResponse make use of
public properties. For XML serialization, the class needs to
be public and a public default constructor must be available.
If no constructor is added to the class (as is the case with

662 ❘ CHAPTER 19 WEB SERVICES

GetWeatherRequest and GetWeatherResponse), by default a default public constructor is created by the
compiler, which initializes all member fields of the class. Value types are initialized to 0 and reference types
to null.

Attribute classes that are defined in the namespace System.Xml.Serialization can be used to customize
the XML outcome from the serialization. The attribute class XmlIgnoreAttribute is used to ignore mem-
bers of the class. You can specify the attribute class XmlElementAttribute to rename the XML element
that is serialized, and you can use the XmlAttributeAttribute class to serialize an XML attribute instead
of an element.

Using an XML serializable type with service operations, XML schema information is added to the
WSDL document, and this information is used to create types for the client application when adding a
service reference.

SUMMARY

In this chapter you learned what Web services are, and you briefly looked at the protocols used with
them. To locate and run Web services, you have to use either or both of the following:

➤ Description — WSDL describes the methods and arguments.

➤ Calling — Platform-independent method calls are done with the SOAP protocol.

You saw how easy it is to create Web services with Visual Studio, where the WebService class is used
to define some methods with the WebMethod attribute. Creating the client that consumes Web ser-
vices is as easy as creating Web services — you add a Web reference to the client project and use the
proxy. The heart of the client is the SoapHttpClientProtocol class, which converts the method call to
a SOAP message. The client proxy you created offers both asynchronous and synchronous methods.
The client interface is not blocked when you use asynchronous methods until the Web service method
completes. You also learned how to create custom classes that define the data passed when you want to
transfer more than simple data. The next chapter shows how Web applications and Web services can
be deployed.

EXERCISES

The following exercises help you use the knowledge you gained in this chapter to create a new Web
service that offers a seat reservation system for a cinema.

1. Create a new Web service named CinemaReservation.

2. The ReserveSeatRequest and ReserveSeatResponse classes are needed to define the data sent to
and from the Web service. The ReserveSeatRequest class needs a member Name of type string

to send a name, and two members of type int to send a request for a seat defined with Row and
Seat. The class ReserveSeatResponse defines the data to be sent back to the client — that is, the
name for the reservation and the seat that is really reserved.

Exercises ❘ 663

3. Create a Web method ReserveSeat that requires a ReserveSeatRequest as a parameter and
returns a ReserveSeatResponse. Within the implementation of the Web service, you can use a
Cache object (see Chapter 18) to remember the seats that already have been reserved. If the
requested seat is available, return the seat and reserve it in the Cache object. If it is not available,
then take the next free seat. For the seats in the Cache object, use a two-dimensional array, as
shown in Chapter 5.

4. Create a Windows client application that uses the Web service to reserve a seat in the cinema.

Answers to Exercises can be found in Appendix A.

664 ❘ CHAPTER 19 WEB SERVICES

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Creating Web Ser-
vices with ASP.NET

ASP.NET Web services can be created within an ASP.NET Web project. A
service is defined using the attributes WebService and WebMethod.

Calling Web Ser-
vices

With the client application to invoke operations of a Web service, a proxy
can be created by selecting Add ➪ Service Reference in the Solution
Explorer. Adding the service reference makes use of the WSDL and creates
a proxy class.

Calling Web
Services asyn-
chronously

Using advanced options of the service reference, you can create asyn-
chronous methods to invoke the Web service in an asynchronous way. The
method with the Async prefix accepts input parameters to the Web service
method. When the service call completes, an event is fired whereby the
output parameters are received.

Passing data across
Web Services

For passing data other than simple data types to the Web service, a custom
class can be created. XML serialization is used to convert the objects to a
message that is sent across the wire.

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

20
Deploying Web Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to configure IIS for ASP.NET Web applications

➤ How to copy Visual Studio Web Sites

➤ How to publish Web applications

➤ How to create Windows Installer packages for Web applications

In the previous two chapters you learned to develop Web applications and Web services with
ASP.NET. For all these application types, different deployment options exist. You can copy
the Web pages, publish the website, or create an installation program. This chapter covers the
advantages and disadvantages of the different options, and how to accomplish these tasks.

INTERNET INFORMATION SERVICES

Internet Information Services (IIS) needn’t be installed for developing Web applications with
Visual Studio 2010 because Visual Studio 2010 has its own Web server: the Visual Web Devel-
opment Server. This is a simple Web server that runs only on the local machine. On the produc-
tion system, IIS is needed to run the Web application.

IIS is not available with Windows 7 Home Edition. On other editions, you can install IIS in the
same way that you install other Windows components. In the Control Panel, click Programs.
Here you can find a category Programs and Features with a link ‘‘Turn Windows features on
or off.’’ Click this link. One of the features of Windows is Internet Information Services, which
needs to be selected in order to install it. You can also ask your system administrator to install
IIS on your system.

The ASP.NET runtime needs to be configured with IIS to allow it to run ASP.NET Web appli-
cations. You can easily verify whether the ASP.NET runtime is configured by checking handler
mappings (see Figure 20-1) with the IIS Manager tool. If IIS is installed, you can find this tool

666 ❘ CHAPTER 20 DEPLOYING WEB APPLICATIONS

in the Administrative Tools with the menu entry Internet Information Services (IIS) Manager. In case
Administrative Tools is not configured to be directly available from your Start button, you can select
Control Panel ➪ Administrative Tools.

FIGURE 20-1

With the Internet Information Services (IIS) Manager, double-click to Handler Mappings. Scrolling
through the information, you can see that the *.aspx path is configured multiple times. You can
find multiple versions of the .NET Framework and also native as well as managed configura-
tions. The IsapiModule configuration for the .aspx extension defines the native configuration,
System.Web.UI.PageHandlerFactory, the .NET class that handles the request.

If the handler mappings to the ASP.NET runtime are not configured on your system, you can start the
program aspnet_regiis –i to install the file extensions and modules with IIS.

The main process of IIS is inetinfo.exe. It runs high-privileged with the System account. With the
IsapiModule configured, a request to an ASPX file is forwarded to a worker process (w3wp.exe). Dif-
ferent worker processes can be configured to run different versions of the .NET runtime. You can also
configure the user identity under which this process is running, and specify recycling options.

IIS CONFIGURATION

IIS must be configured before you run a Web application with it. In the following Try It Out, you create
a website with the Internet Information Services (IIS) Manager. To begin, your website needs a virtual
directory, which is the directory used by the client accessing the Web application. For example, in
http://server/mydirectory, mydirectory is a virtual directory. The virtual directory is completely

IIS Configuration ❘ 667

independent of the physical directory where the files are stored on the disk. For example, the physical
directory for mydirectory can be D:\someotherdirectory.

TRY IT OUT Creating a New Application Pool

1. Start the IIS Manager tool (see Figure 20-2). You can find this tool in the Control Panel, under
Administrative Tools.

FIGURE 20-2

2. In the tree view, select Application Pools, right-click it, and choose Add Application Pool from the
context menu.

3. The Add Application Pool dialog opens (see Figure 20-3). In the Name text box, enter Beginning
Visual C# App Pool, and then select the .NET Framework version v4. Click the OK button. Here
you configure the version of the .NET runtime. In case you use ASP.NET 3.5, 3.0, or 2.0, you can
use the same version number 2.0.50727.

4. After the application pool is created, you can configure advanced settings (see Figure 20-4) to
define the identity under which the process is running; whether, on a multi-core or many-core CPU
system, just specific CPUs should be used; and the number of worker processes that should run in
this pool. Advanced settings are available after you’ve selected the application pool, either from
the Actions category on the right side of Internet Information Services (IIS) Manager or from the
context menu.

668 ❘ CHAPTER 20 DEPLOYING WEB APPLICATIONS

FIGURE 20-3

FIGURE 20-4

How It Works

Application pools make it possible for different websites to run different versions of the ASP.NET runtime,
and to have different user accounts and different stability.

After you’ve configured an application pool, you can create a new Web application, as shown in the
following Try It Out.

Copying a Website ❘ 669

TRY IT OUT Creating a New Web Application

1. In the IIS Manager, select Default Web Site in the tree view.

2. Right-click and choose Add Application with the context menu. The Add Application dialog
opens (see Figure 20-5).

3. Enter the physical path for the website and the alias name BeginningVCSharpWebsite. Select the
application pool Beginning Visual C# App Pool that you just created.

FIGURE 20-5

4. Click the OK button.

Now the Web application is configured, and you can copy or publish Web applications from Visual Studio
to this website.

COPYING A WEBSITE

With Visual Studio 2010, you can copy files from a source website to a remote website. The source
website is the website of your Web application, which has been opened with Visual Studio. It is accessed
either from the local file system or from IIS, depending on how the Web application was created.
The remote website to which the files should be copied can be accessed using the file system, the FTP
protocol, or FrontPage Server Extensions on IIS.

Copying files can happen in both directions: from the source website to the remote website and vice
versa. In the next Try It Out, you use Visual Studio to copy a newly created Web application to the
website you configured earlier.

670 ❘ CHAPTER 20 DEPLOYING WEB APPLICATIONS

NOTE The Visual Studio menu to copy websites is only available from a Web
Site, but not a Web Project.

TRY IT OUT Copying a Website

1. With Windows 7 or Windows Vista, start Visual Studio 2010 with elevated admin rights. Copying
a website to the local IIS requires administrator rights. With Windows XP, you can start Visual
Studio normally if you’ve logged on to an account with administrative rights.

2. Create a new website with the menu File ➪ New Web Site and select the template ASP.NET Web
Site. Select the local file system as the location of this website. This creates a sample site with sev-
eral pages and styles.

3. Select Website ➪ Copy Web Site. The dialog shown in Figure 20-6 appears.

FIGURE 20-6

4. Click the Connect button at the top of the window shown in Figure 20-6. The Open Web Site
dialog opens.

5. Here you can select files to copy to the local file system, local IIS, FTP sites, and remote sites (those
that have FrontPage Server Extensions installed). Select Local IIS, and select the previously

Copying a Website ❘ 671

created website, BeginningVCSharpWebsite (see Figure 20-7). If you’re running a Windows Home
Edition, you can only copy the files to the local file system because IIS is not available.

FIGURE 20-7

6. In the Source Web site list, select the files you want to copy from Source Web Site to Remote
Web Site.

7. Click the Copy Selected Files button. This button is located in the middle between the Source
Web Site view and the Remote Web Site view and has an arrow. If you move the mouse over the
buttons, a tooltip appears that describes this button. The direction of the arrow shows in which
direction the files are copied, from the source to the remote site or vice versa. The button with
arrows pointing in both directions verifies which files are newer, and copies the newer files to the
other side.

8. Now all the selected files have been copied to the new website. You can open a browser and enter
the link http://localhost/BeginningVCSharpWebsite to get to the copied website.

How It Works

With the Copy Web Site tool, you can also select files to copy from the remote website to the source
website. Selecting the button Synchronize Selected Files shows arrows pointing in both directions; the
newer files from the remote website are copied to the source website, and the newer files from the source
website are copied to the remote website. This is a very useful option if you have a team Web server on
which other developers synchronize files. Synchronizing in both directions copies your newer files to the
team Web server and the files from your colleagues’ remote Web server to your local site.

672 ❘ CHAPTER 20 DEPLOYING WEB APPLICATIONS

When the files are just copied, you cannot be sure if the files can be compiled. Compilation happens when
the files are accessed by a browser. You can perform a precompilation of the website using the command-
line utility aspnet_compiler.exe.

Enter the command aspnet_compiler –v /BeginningVCSharpWebsite, and the website BeginningVCSharp-
Website is precompiled. This way, the first user doesn’t have to wait until the ASPX pages are compiled
because they already are.

You can find this utility in the directory of the .NET runtime.

PUBLISHING A WEB APPLICATION

With a Visual Studio 2010 Web Project, you also have the option to publish the Web application.
This is the best option if you are not self-hosting IIS and you need to publish the Web application to
a provider.

Publishing with Visual Studio 2010 gives you several different options:

➤ Publish to a file system.

➤ Publish to a server that has the FrontPage Server Extensions installed.

➤ Use FTP.

➤ Use 1-Click publishing, a new feature in Visual Studio 2010. The 1-Click option is only
available with hosting partners that support that feature, although the list of such partners is
already quite long and can be easily found.

In the next Try It Out, you use the new publish feature of Visual Studio to publish a Web application.

TRY IT OUT Publishing a Web Application

1. Open the Web Project EventRegistrationWeb that you created in Chapter 18.

2. Open the Package/Publish project settings as shown in Figure 20-8. Check the location where the
publish package will be created. Click the link Open Settings that is next to the setting ‘‘Include all
Databases configured in Deploy SQL Tab.’’

3. The Deploy SQL settings are shown (see Figure 20-9). Click the Import from Web.config button
to import the database connection string. The database referenced by the connection string can be
deployed as well. Verify the other settings. You can define a connection string to the destination
database server where the database data and schema should be written.

4. From the Visual Studio Build menu, choose the Publish menu entry. The Publish Web dialog
shown in Figure 20-10 opens. Check the settings of the publish method MSDeploy.Publish. This
is a 1-Click publish option that is available with several hosting providers. Click the link Click
Here to find a hosting company in your area. Instead of using this publishing option, you can
change the publish method to File System. Of course, if you use a hosting provider that supports
this publish option, you can use it to publish the Web application.

5. With the selection of publishing to the file system, the dialog shown in Figure 20-11 is shown.
Enter a local directory with the Target Location setting, and click the Publish button.

Publishing a Web Application ❘ 673

FIGURE 20-8

FIGURE 20-9

674 ❘ CHAPTER 20 DEPLOYING WEB APPLICATIONS

FIGURE 20-10

FIGURE 20-11

6. Verify the target location with the Windows Explorer and check the files that have been published.

Windows Installer ❘ 675

WINDOWS INSTALLER

You can also create a Windows installer program to install your Web application. Creating installation
programs is required if shared assemblies are needed by the application. Using installation programs
has the advantage that the virtual directory is configured with IIS, and you’re not required to create a
virtual directory manually. The person installing the Web application can start a setup.exe program,
and the complete setup is done automatically. Of course, administrative privileges are required to start
this program.

Creating a Setup Program
Visual Studio 2010 ships with the project type Web Setup Project to create installation programs for
Web applications. With Web Setup Project, the following editors are available: File System, Registry,
File Types, User Interface, Custom Action, and Launch Conditions. These editors were introduced in
Chapter 17 with Windows applications, so only those editors needed for Web applications are dis-
cussed here.

In the following Try It Out, you create a setup program that installs a Web application.

TRY IT OUT Creating a Setup Program

1. Open the Web application EventRegistrationWeb from Chapter 18 using Visual Studio 2010.

2. To the same solution add a new project of type Web Setup Project, as shown in Figure 20-12.
Name the project EventRegistrationWebSetup and click OK.

3. If the File System Editor is not opened after creating the project, open it. Select File System on Tar-
get Machine, and select Project ➪ Add ➪ Project Output. From the Project Output dialog, select
Content Files of the Web application and click OK.

4. In the File System Editor, select Web Application Folder. You can now configure the Web applica-
tion with the properties editor. The following table describes the properties:

PROPERTY DESCRIPTION

AllowDirectoryBrowsing An IIS configuration option. Setting this to
true allows browsing for files on the web-
site. The default value is false.

AllowReadAccess Set by default to true. To access ASPX
pages, read access is required.

AllowScriptSourceAccess By default, script source access is denied
with this property set to false.

AllowWriteAccess Write access is denied by default.

DefaultDocument Sets the home page of the website — for
example, Default.aspx

continues

676 ❘ CHAPTER 20 DEPLOYING WEB APPLICATIONS

(continued)
PROPERTY DESCRIPTION

ExecutePermissions The default value is set to vsdepScriptsOnly,
which allows access to ASP.NET pages but
does not allow custom executables to run on
the server. If custom executables should be
allowed to run on the server, then this option
can be set to vsdepScriptsAndExecutables.

LogVisits Set to true, client access logging is configured.

VirtualDirectory Sets the name of the virtual directory
that is configured with IIS.

FIGURE 20-12

5. Open the Launch Conditions Editor by selecting View ➪ Editor ➪ Launch Conditions. Launch
conditions define what products must be installed on the target system before the installation can
be done.

6. Check the launch conditions that are configured. The Search for IIS configuration verifies whether
IIS is installed on the target system by checking the registry key SYSTEM\CurrentControlSet

\Services\W3SVC\Parameters to get the IIS version. The launch condition IIS Condition

Windows Installer ❘ 677

confirms that the IIS version is at least 5.1, using the following condition that is added by default:
(IISMAJORVERSION >= "#5" AND IISMINORVERSION >= "#1") OR IISMAJORVERSION >= "#6"

7. Build the setup application by selecting Build ➪ Build EventRegistrationWebSetup.

8. In the directory of the setup project, you will find the setup.exe file and an installation package
named EventRegistrationWebSetup.msi.

Installing the Web Application
By starting the setup.exe program, you can install the Web application, as described in the following
Try It Out.

TRY IT OUT Installing a Web Application

1. Click setup.exe to start installing the Web application. With the User Account Control dialog,
click Yes to allow changes. The Setup Wizard opens (see Figure 20-13). Click Next.

FIGURE 20-13

2. On the Select Installation Address page (see Figure 20-14), rename the virtual directory to a name
that’s not already configured with IIS. Next, select the application pool that you created previously
(Beginning Visual C# App Pool), and click Next.

3. Confirm the installation by clicking Next in the Confirm Installation dialog. The next dialog
displays a progress bar while the installation is running.

4. The Installation Complete page (see Figure 20-15) opens after a successful installation. Click
Close.

678 ❘ CHAPTER 20 DEPLOYING WEB APPLICATIONS

FIGURE 20-14

FIGURE 20-15

5. Now you can start the website from the new virtual directory.

SUMMARY

This chapter described different options for deploying Web applications. The Copy Web Site tool
enables you to copy files to Web servers by using file shares, FTP, or FrontPage Server Extensions. You

Exercises ❘ 679

saw that synchronization of files can happen in both directions. Publishing Web applications is a new
feature from Visual Studio 2010 that you can use with 1-Click publishing and publishing to a directory,
an FTP server, or an IIS that has FrontPage Server Extensions installed. If you have administrative
rights (on the IIS) for publishing, you can install a setup that creates a new application within IIS. Setup
projects not only copy the ASP.NET pages and assemblies, but also create a virtual directory within IIS.

EXERCISES

1. What is the difference between copying and publishing a Web application? When should you
use each?

2. When is using a setup program preferable to copying a site?

3. What are the different options to publish a Web project and what are the requirements for
publishing options?

4. Publish the Web service from Chapter 19 to a virtual directory that you define with IIS.

Answers to Exercises can be found in Appendix A.

680 ❘ CHAPTER 20 DEPLOYING WEB APPLICATIONS

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

IIS configuration In order to run an ASP.NET Web application in IIS, IIS must be configured.
The handler mapping defines the classes that are invoked when files with
specific file extensions (such as .aspx) are requested. With the application
pool configuration, you define the .NET runtime version that is used.

Copying a website A simple option to publish a Web application is by using a copy. The menu to
copy websites is not available with Web projects, but only with Visual Studio
Web Sites. You can copy files both from the developer machine to the server
and vice versa.

Publishing a web
application

If you use a website hoster, a simple option to publish Web applications
could be a new option with Visual Studio 2010, 1-Click publishing. With the
publishing menu, you can also publish Web applications to FTP servers and
the file system. The database used by the Web application can be published
as well.

Windows Installer
for web applications

In case you need to create a Web application within IIS, a setup program can
do this. The Web Setup Project templates creates a Windows installer file
that not only copies the content of the Web application, but also creates a
virtual directory.

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

PART IV
Data Access

� CHAPTER 21: File System Data

� CHAPTER 22: XML

� CHAPTER 23: Introduction to LINQ

� CHAPTER 24: Applying LINQ

21
File System Data

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What a stream is and how .NET uses stream classes to access files

➤ How to use the File object to manipulate the file structure

➤ How to write to, and read from, a file

➤ How to read and write formatted data from and to files

➤ How to read and write compressed files

➤ How to serialize and deserialize objects

➤ How to monitor files and directories for changes

Reading and writing files are essential aspects of many .NET applications. This chapter shows
you how, touching on the major classes used to create, read from, and write to files, and the
supporting classes used to manipulate the file system from C# code. Although you won’t exam-
ine all of the classes in detail, this chapter goes into enough depth to give you a good idea of the
concepts and fundamentals.

Files can be a great way to store data between instances of your application, or they can
be used to transfer data between applications. User and application configuration settings can
be stored to be retrieved the next time your application is run. Delimited text files, such as
comma-separated files, are used by many legacy systems, and to interoperate with such systems,
you need to know how to work with delimited data. As you will see, the .NET Framework
provides you with the necessary tools to use files effectively in your applications.

STREAMS

All input and output in the .NET Framework involves the use of streams. A stream is an abstract
representation of a serial device. A serial device is something that stores data in a linear man-
ner and is accessed the same way: one byte at a time. This device can be a disk file, a network

684 ❘ CHAPTER 21 FILE SYSTEM DATA

channel, a memory location, or any other object that supports reading and writing to it in a linear
manner. Keeping the device abstract means that the underlying destination/source of the stream can
be hidden. This level of abstraction enables code reuse, and enables you to write more generic routines
because you don’t have to worry about the specifics of how data transfer actually occurs. Therefore,
similar code can be transferred and reused when the application is reading from a file input stream, a
network input stream, or any other kind of stream. Because you can ignore the physical mechanics of
each device, you don’t need to worry about, for example, hard disk heads or memory allocation when
dealing with a file stream.

There are two types of streams:

➤ Output — Output streams are used when data is written to some external destination, which
can be a physical disk file, a network location, a printer, or another program. Understanding
stream programming opens many advanced possibilities. This chapter focuses on file system
data, so you’ll only be looking at writing to disk files.

➤ Input — Input streams are used to read data into memory or variables that your program can
access. The most common form of input stream you have worked with so far is the keyboard.
An input stream can come from almost any source, but this chapter focuses on reading disk
files. The concepts applied to reading/writing disk files apply to most devices, so you’ll gain
a basic understanding of streams and learn a proven approach that can be applied to many
situations.

THE CLASSES FOR INPUT AND OUTPUT

The System.IO namespace contains almost all of the classes that you will be covering in this chapter.
System.IO contains the classes for reading and writing data to and from files, and you can reference this
namespace in your C# application to gain access to these classes without fully qualifying type names.
Quite a few classes are contained in System.IO, as shown in Figure 21-1, but you will only be working
with the primary classes needed for file input and output.

The classes covered in this chapter are described in the following table:

CLASS DESCRIPTION

File A static utility class that exposes many static methods for moving, copying,
and deleting files.

Directory A static utility class that exposes many static methods for moving, copying,
and deleting directories.

Path A utility class used to manipulate path names.

FileInfo Represents a physical file on disk, and has methods to manipulate this file.
For any reading from and writing to the file, a Stream object must be created.

DirectoryInfo Represents a physical directory on disk and has methods to manipulate this
directory.

The Classes for Input and Output ❘ 685

CLASS DESCRIPTION

FileSystemInfo Serves as the base class for both FileInfo and DirectoryInfo, making it
possible to deal with files and directories at the same time using polymor-
phism.

FileStream Represents a file that can be written to or read from, or both. This file can be
written to and read from asynchronously or synchronously.

StreamReader Reads character data from a stream and can be created by using a
FileStream as a base.

StreamWriter Writes character data to a stream and can be created by using a FileStream

as a base.

FileSystemWatcher The most advanced class you will examine in this chapter. It is used to moni-
tor files and directories, and it exposes events that your application can catch
when changes occur in these locations. This functionality has always been
missing from Windows programming, but now the .NET Framework makes it
much easier to respond to file system events.

Object
(System)

MarshalByRefObject
(System)

System
(System.IO)

FileStream
(System.IO)

Directory
(System.IO)

File
(System.IO)

Component
(System)

FileSystemWatcher
(System.IO)

FileSystemInfo
(System.IO)

FileInfo
(System.IO)

DirectoryInfo
(System.IO)

TextReader
(System.IO)

TextWriter
(System.IO)

StreamReader
(System.IO)

StreamWriter
(System.IO)

Path
(System.IO)

FIGURE 21-1

686 ❘ CHAPTER 21 FILE SYSTEM DATA

You’ll also look at the System.IO.Compression namespace, which enables you to read from and write
to compressed files, by using either GZIP compression or the Deflate compression scheme:

➤ DeflateStream — Represents a stream in which data is compressed automatically when writ-
ing, or uncompressed automatically when reading. Compression is achieved using the Deflate
algorithm.

➤ GZipStream — Represents a stream in which data is compressed automatically when writ-
ing, or uncompressed automatically when reading. Compression is achieved using the GZIP
algorithm.

Finally, you’ll explore object serialization using the System.Runtime.Serialization name-
space and its child namespaces. You’ll primarily be looking at the BinaryFormatter class in the
System.Runtime.Serialization.Formatters.Binary namespace, which enables you to serialize
objects to a stream as binary data, and deserialize them again.

The File and Directory Classes
The File and Directory utility classes expose many static methods for manipulating, surprisingly
enough, files and directories. These methods make it possible to move files, query and update attributes,
and create FileStream objects. As you learned in Chapter 8, static methods can be called on classes
without having to create instances of them.

Some of the most useful static methods of the File class are shown in the following table:

METHOD DESCRIPTION

Copy() Copies a file from a source location to a target location.

Create() Creates a file in the specified path.

Delete() Deletes a file.

Open() Returns a FileStream object at the specified path.

Move() Moves a specified file to a new location. You can specify a different name for the file
in the new location.

Some useful static methods of the Directory class are shown in the next table:

METHOD DESCRIPTION

CreateDirectory() Creates a directory with the specified path.

Delete() Deletes the specified directory and all the files within it.

GetDirectories() Returns an array of string objects that represent the names
of the directories below the specified directory.

The Classes for Input and Output ❘ 687

METHOD DESCRIPTION

EnumerateDirectories() Like GetDirectories(), but returns an
IEnumerable<string> collection of directory names.

GetFiles() Returns an array of string objects that represent the names
of the files in the specified directory.

EnumerateFiles() Like GetFiles(), but returns an IEnumerable<string> col-
lection of filenames.

GetFileSystemEntries() Returns an array of string objects that represent the names
of the files and directories in the specified directory.

EnumerateFileSystemEntries() Like GetFileSystemEntries(), but returns an
IEnumerable<string> collection of file and directory names.

Move() Moves the specified directory to a new location. You can
specify a new name for the folder in the new location.

The three EnumerateXxx() methods are new to .NET 4, and provide better performance than their
GetXxx() counterparts when a large amount of files or directories exist.

The FileInfo Class
Unlike the File class, the FileInfo class is not static and does not have static methods. This class is
only useful when instantiated. A FileInfo object represents a file on a disk or a network location, and
you can create one by supplying a path to a file:

FileInfo aFile = new FileInfo(@"C:\Log.txt");

NOTE Because you will be working with strings representing the path of a file
throughout this chapter, which means a lot of \ characters in your strings,
remember that you can precede a string value with @, which means that the string
will be interpreted literally. Thus, \ will be interpreted as \, and not as an escape
character. Without the @ prefix, you would need to use \\ instead of \ to avoid
having this character be interpreted as an escape character. In this chapter you’ll
stick to the @ prefix for your strings.

You can also pass the name of a directory to the FileInfo constructor, although in practical terms that
isn’t particularly useful. Doing this causes the base class of FileInfo, which is FileSystemInfo, to be
initialized with all the directory information, but none of the FileInfo methods or properties relating
specifically to files will work.

688 ❘ CHAPTER 21 FILE SYSTEM DATA

Many of the methods exposed by the FileInfo class are similar to those of the File class, but because
File is a static class, it requires a string parameter that specifies the file location for every method call.
Therefore, the following calls do the same thing:

FileInfo aFile = new FileInfo("Data.txt");

if (aFile.Exists)
Console.WriteLine("File Exists");

if (File.Exists("Data.txt"))
Console.WriteLine("File Exists");

In this code, a check is made to see whether the file Data.txt exists. Note that no directory information
is specified here, meaning that the current working directory is the only location examined. This direc-
tory is the one containing the application that calls this code. You’ll look at this in more detail a little
later, in the section ‘‘Path Names and Relative Paths.’’

Most of the FileInfo methods mirror the File methods in this manner. In most cases it doesn’t
matter which technique you use, although the following criteria may help you to decide which is
more appropriate:

➤ It makes sense to use methods on the static File class if you are only making a single method
call — the single call will be faster because the .NET Framework won’t have to go through
the process of instantiating a new object and then calling the method.

➤ If your application is performing several operations on a file, then it makes more sense to
instantiate a FileInfo object and use its methods — this saves time because the object will
already be referencing the correct file on the file system, whereas the static class has to find it
every time.

The FileInfo class also exposes properties relating to the underlying file, some of which can be manip-
ulated to update the file. Many of these properties are inherited from FileSystemInfo, and thus
apply to both the File and Directory classes. The properties of FileSystemInfo are shown in the
following table:

PROPERTY DESCRIPTION

Attributes Gets or sets the attributes of the current file or directory,
using the FileAttributes enumeration.

CreationTime, CreationTimeUtc Gets or sets the creation date and time of the current file,
available in coordinated universal time (UTC) and non-UTC
versions.

Extension Retrieves the extension of the file. This property is read-only.

Exists Determines whether a file exists. This is a read-only abstract
property, and is overridden in FileInfo and DirectoryInfo.

FullName Retrieves the full path of the file. This property is read-only.

LastAccessTime,
LastAccessTimeUtc

Gets or sets the date and time that the current file was last
accessed, available in UTC and non-UTC versions.

The Classes for Input and Output ❘ 689

PROPERTY DESCRIPTION

LastWriteTime,
LastWriteTimeUtc

Gets or sets the date and time that the current file was last written to,
available in UTC and non-UTC versions.

Name Retrieves the full path of the file. This is a read-only abstract property, and
is overridden in FileInfo and DirectoryInfo.

The properties specific to FileInfo are shown in the next table:

PROPERTY DESCRIPTION

Directory Retrieves a DirectoryInfo object representing the directory containing the
current file. This property is read-only.

DirectoryName Returns the path to the file’s directory. This property is read-only.

IsReadOnly Shortcut to the read-only attribute of the file. This property is also accessible
via Attributes.

Length Gets the size of the file in bytes, returned as a long value. This property is
read-only.

A FileInfo object doesn’t, in itself, represent a stream. To read or write to a file, a Stream object has
to be created. The FileInfo object aids you in doing this by exposing several methods that return
instantiated Stream objects.

The DirectoryInfo Class
The DirectoryInfo class works exactly like the FileInfo class. It is an instantiated object that repre-
sents a single directory on a machine. Like the FileInfo class, many of the method calls are duplicated
across Directory and DirectoryInfo. The guidelines for choosing whether to use the methods of File
or FileInfo also apply to DirectoryInfo methods:

➤ If you are making a single call, use the static Directory class.

➤ If you are making a series of calls, use an instantiated DirectoryInfo object.

The DirectoryInfo class inherits most of its properties from FileSystemInfo, as does FileInfo,
although these properties operate on directories instead of files. There are also two DirectoryInfo-
specific properties, shown in the following table:

PROPERTY DESCRIPTION

Parent Retrieves a DirectoryInfo object representing the directory containing the current
directory. This property is read-only.

Root Retrieves a DirectoryInfo object representing the root directory of the current
volume — for example, the C:\ directory. This property is read-only.

690 ❘ CHAPTER 21 FILE SYSTEM DATA

Path Names and Relative Paths
When specifying a path name in .NET code, you can use either absolute or relative path names. An
absolute path name explicitly specifies a file or directory from a known location — such as the C: drive.
An example of this would be C:\Work\LogFile.txt — this path defines exactly where the file is, with
no ambiguity.

Relative path names are relative to a starting location. By using relative path names, no drive or known
location needs to be specified. You saw this earlier, where the current working directory was the starting
point, which is the default behavior for relative path names. For example, if your application is running
in the C:\Development\FileDemo directory and uses the relative path LogFile.txt, the file references
would be C:\Development\FileDemo\LogFile.txt. To move ‘‘up’’ a directory, the .. string is used.
Thus, in the same application, the path ..\Log.txt points to the file C:\Development\Log.txt.

As shown earlier, the working directory is initially set to the directory in which your application is
running. When you are developing with VS or VCE, this means the application is several directories
beneath the project folder you created. It is usually located in ProjectName\bin\Debug. To access a file
in the root folder of the project, then, you have to move up two directories with ..\..\. You will see
this happen often throughout the chapter.

Should you need to, you can determine the working directory by using
Directory.GetCurrentDirectory(), or you can set it to a new path by using
Directory.SetCurrentDirectory().

The FileStream Object
The FileStream object represents a stream pointing to a file on a disk or a network path. While the
class does expose methods for reading and writing bytes from and to the files, most often you will
use a StreamReader or StreamWriter to perform these functions. That’s because the FileStream class
operates on bytes and byte arrays, whereas the Stream classes operate on character data. Character
data is easier to work with, but certain operations, such as random file access (access to data at some
point in the middle of a file), can only be performed by a FileStream object. You’ll learn more about
this later in the chapter.

There are several ways to create a FileStream object. The constructor has many different overloads,
but the simplest takes just two arguments: the filename and a FileMode enumeration value:

FileStream aFile = new FileStream(filename, FileMode.<Member>);

The FileMode enumeration has several members that specify how the file is opened or created. You’ll
see the possibilities shortly. Another commonly used constructer is as follows:

FileStream aFile = new FileStream(filename, FileMode.<Member>, FileAccess.<Member>);

The third parameter is a member of the FileAccess enumeration and is a way of specifying the purpose
of the stream. The members of the FileAccess enumeration are shown in the following table:

MEMBER DESCRIPTION

Read Opens the file for reading only

Write Opens the file for writing only

ReadWrite Opens the file for reading or writing

The Classes for Input and Output ❘ 691

Attempting to perform an action other than that specified by the FileAccess enumeration member will
result in an exception being thrown. This property is often used as a way to vary user access to the file
based on the user’s authorization level.

In the version of the FileStream constructor that doesn’t use a FileAccess enumeration parameter, the
default value is used, which is FileAccess.ReadWrite.

The FileMode enumeration members are shown in the next table. What actually happens when each of
these values is used depends on whether the filename specified refers to an existing file. Note that the
entries in this table refer to the position in the file that the stream points to when it is created, a topic
you’ll learn more about in the next section. Unless otherwise stated, the stream points to the beginning
of a file.

MEMBER FILE EXISTS BEHAVIOR NO FILE EXISTS BEHAVIOR

Append The file is opened, with the stream positioned
at the end of the file. Can only be used in
conjunction with FileAccess.Write.

A new file is created. Can only
be used in conjunction with
FileAccess.Write.

Create The file is destroyed, and a new file is created
in its place.

A new file is created.

CreateNew An exception is thrown. A new file is created.

Open The file is opened, with the stream positioned
at the beginning of the file.

An exception is thrown.

OpenOrCreate The file is opened, with the stream positioned
at the beginning of the file.

A new file is created.

Truncate The file is opened and erased. The stream is
positioned at the beginning of the file. The
original file creation date is retained.

An exception is thrown.

Both the File and FileInfo classes expose OpenRead() and OpenWrite() methods that make it easier to
create FileStream objects. The first opens the file for read-only access, and the second allows write-only
access. These methods provide shortcuts, so you do not have to provide all the information required in
the form of parameters to the FileStream constructor. For example, the following line of code opens
the Data.txt file for read-only access:

FileStream aFile = File.OpenRead("Data.txt");

The following code performs the same function:

FileInfo aFileInfo = new FileInfo("Data.txt");
FileStream aFile = aFileInfo.OpenRead();

File Position
The FileStream class maintains an internal file pointer that points to the location within the file where
the next read or write operation will occur. In most cases, when a file is opened, it points to the begin-
ning of the file, but this pointer can be modified. This enables an application to read or write anywhere

692 ❘ CHAPTER 21 FILE SYSTEM DATA

within the file, which in turn enables random access to a file and the capability to jump directly to a
specific location in the file. This can save a lot of time when dealing with very large files because you
can instantly move to the location you want.

The method that implements this functionality is the Seek() method, which takes two parameters.
The first parameter specifies how far to move the file pointer, in bytes. The second parameter specifies
where to start counting from, in the form of a value from the SeekOrigin enumeration. The SeekOrigin
enumeration contains three values: Begin, Current, and End.

For example, the following line would move the file pointer to the eighth byte in the file, starting from
the very first byte in the file:

aFile.Seek(8, SeekOrigin.Begin);

The following line would move the file pointer two bytes forward, starting from the current position.
If this were executed directly after the previous line, then the file pointer would now point to the tenth
byte in the file:

aFile.Seek(2, SeekOrigin.Current);

When you read from or write to a file, the file pointer changes as well. After you have read 10 bytes,
the file pointer will point to the byte after the tenth byte read.

You can also specify negative seek positions, which could be combined with the SeekOrigin.End

enumeration value to seek near the end of the file. The following seeks to the fifth byte from the end of
the file:

aFile.Seek(-5, SeekOrigin.End);

Files accessed in this manner are sometimes referred to as random access files because an application
can access any position within the file. The Stream classes described later access files sequentially and
do not allow you to manipulate the file pointer in this way.

NOTE .NET 4 introduces a new namespace called
System.IO.MemoryMappedFiles that includes types (such as MemoryMappedFile)
that provide an alternative means of random access to extremely large files. This
namespace is not covered in this chapter, but it’s worth investigating if this is a
scenario you are likely to encounter.

Reading Data
Reading data using the FileStream class is not as easy as using the StreamReader class, which you
will look at later in this chapter. That’s because the FileStream class deals exclusively with raw bytes.
Working in raw bytes makes the FileStream class useful for any kind of data file, not just text files. By
reading byte data, the FileStream object can be used to read files such as images or sound files. The
cost of this flexibility is that you cannot use a FileStream to read data directly into a string as you can
with the StreamReader class. However, several conversion classes make it fairly easy to convert byte
arrays into character arrays, and vice versa.

The Classes for Input and Output ❘ 693

The FileStream.Read() method is the primary means to access data from a file that a FileStream

object points to. This method reads the data from a file and then writes this data into a byte array.
There are three parameters, the first being a byte array passed in to accept data from the FileStream

object. The second parameter is the position in the byte array to begin writing data to — this is nor-
mally zero, to begin writing data from the file at the beginning of the array. The last parameter specifies
how many bytes to read from the file.

The following Try It Out demonstrates reading data from a random access file. The file you will read
from is actually the class file you create for the example.

TRY IT OUT Reading Data from Random Access Files

1. Create a new console application called ReadFile and save it in the directory
C:\BegVCSharp\Chapter21.

2. Add the following using directive to the top of the Program.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

Code snippet ReadFile\Program.cs

3. Add the following code to the Main()method:

static void Main(string[] args)
{

byte[] byData = new byte[200];
char[] charData = new Char[200];

try
{

FileStream aFile = new FileStream("../../Program.cs", FileMode.Open);
aFile.Seek(113, SeekOrigin.Begin);
aFile.Read(byData, 0, 200);

}
catch(IOException e)
{

Console.WriteLine("An IO exception has been thrown!");
Console.WriteLine(e.ToString());
Console.ReadKey();
return;

}

Decoder d = Encoding.UTF8.GetDecoder();
d.GetChars(byData, 0, byData.Length, charData, 0);

Console.WriteLine(charData);
Console.ReadKey();

}

694 ❘ CHAPTER 21 FILE SYSTEM DATA

4. Run the application. The result is shown in Figure 21-2.

FIGURE 21-2

How It Works

This application opens its own .cs file to read from. It does so by navigating two directories up the file
structure with the .. string in the following line:

FileStream aFile = new FileStream("../../Program.cs", FileMode.Open);

The two lines that implement the actual seeking and reading from a specific point in the file are as follows:

aFile.Seek(113, SeekOrigin.Begin);
aFile.Read(byData, 0, 200);

The first line moves the file pointer to byte number 113 in the file. This is the n of namespace in the
Program.cs file; the 113 characters preceding it are the using directives. The second line reads the next
200 bytes into the byte array byData.

Note that these two lines were enclosed in try...catch blocks to handle any exceptions that may
be thrown:

try
{

aFile.Seek(113, SeekOrigin.Begin);
aFile.Read(byData,0,100);

}
catch(IOException e)
{

Console.WriteLine("An IO exception has been thrown!");
Console.WriteLine(e.ToString());
Console.ReadKey();
return;

}

Almost all operations involving file I/O can throw an exception of type IOException. All production code
should contain error handling, especially when dealing with the file system. The examples in this chapter
all include a basic form of error handling.

Once you have the byte array from the file, you need to convert it into a character array so that you can
display it to the console. To do this, use the Decoder class from the System.Text namespace. This class is
designed to convert raw bytes into more useful items, such as characters:

Decoder d = Encoding.UTF8.GetDecoder();
d.GetChars(byData, 0, byData.Length, charData, 0);

The Classes for Input and Output ❘ 695

These lines create a Decoder object based on the UTF-8 encoding schema, which is the Unicode encoding
schema. Then the GetChars() method is called, which takes an array of bytes and converts it to an array
of characters. After that has been done, the character array can be written to the console.

Writing Data
The process for writing data to a random access file is very similar; a byte array must be created.
The easiest way to do this is to first build the character array you wish to write to the file. Next,
use the Encoder object to convert it to a byte array, very much as you used the Decoder object. Last,
call the Write() method to send the array to the file.

Here’s a simple example to demonstrate how this is done.

TRY IT OUT Writing Data to Random Access Files

1. Create a new console application called WriteFile and save it in the directory
C:\BegVCSharp\Chapter21.

2. Add the following using directive to the top of the Program.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

Code snippet WriteFile\Program.cs

3. Add the following code to the Main() method:
static void Main(string[] args)
{

byte[] byData;
char[] charData;

try
{

FileStream aFile = new FileStream("Temp.txt", FileMode.Create);
charData = "My pink half of the drainpipe.".ToCharArray();
byData = new byte[charData.Length];
Encoder e = Encoding.UTF8.GetEncoder();
e.GetBytes(charData, 0, charData.Length, byData, 0, true);

// Move file pointer to beginning of file.
aFile.Seek(0, SeekOrigin.Begin);
aFile.Write(byData, 0, byData.Length);

}
catch (IOException ex)
{

Console.WriteLine("An IO exception has been thrown!");
Console.WriteLine(ex.ToString());
Console.ReadKey();

696 ❘ CHAPTER 21 FILE SYSTEM DATA

return;
}

}

4. Run the application. It should run briefly and then close.

FIGURE 21-3

5. Navigate to the application directory — the file will have
been saved there because you used a relative path. This
is located in the WriteFile\bin\Debug folder. Open the
Temp.txt file. You should see text in the file, as shown in
Figure 21-3.

How It Works

This application opens a file in its own directory and writes a simple string to it. In structure, this example
is very similar to the previous example, except you use Write() instead of Read(), and Encoder instead
of Decoder.

The following line creates a character array by using the ToCharArray() static method of the String class.
Because everything in C# is an object, the text "My pink half of the drainpipe." is actually a string object
(albeit a slightly odd one), so these static methods can be called even on a string of characters:

CharData = "My pink half of the drainpipe.".ToCharArray();

The following lines show how to convert the character array to the correct byte array needed by the
FileStream object:

Encoder e = Encoding.UTF8.GetEncoder();
e.GetBytes(charData, 0, charData.Length, byData, 0, true);

This time, an Encoder object is created based on the UTF-8 encoding. You used Unicode for the decoding
as well, and this time you need to encode the character data into the correct byte format before you can
write to the stream. The GetBytes() method is where the magic happens. It converts the character array
to the byte array. It accepts a character array as the first parameter (charData in this example), and the
index to start in that array as the second parameter (0 for the start of the array). The third parameter is the
number of characters to convert (charData.Length — the number of elements in the charData array). The
fourth parameter is the byte array to place the data into (byData), and the fifth parameter is the index to
start writing from in the byte array (0 for the start of the byData array).

The sixth, and final, parameter determines whether the Encoder object should flush its state after com-
pletion. This reflects the fact that the Encoder object retains an in-memory record of where it was in the
byte array. This aids in subsequent calls to the Encoder object but is meaningless when only a single call is
made. The final call to the Encoder must set this parameter to true to clear its memory and free the object
for garbage collection.

After that, it is a simple matter of writing the byte array to the FileStream by using the Write() method:

aFile.Seek(0, SeekOrigin.Begin);
aFile.Write(byData, 0, byData.Length);

Like the Read() method, the Write() method has three parameters: the array to write from, the index in
the array to start writing from, and the number of bytes to write.

The Classes for Input and Output ❘ 697

The StreamWriter Object
Working with arrays of bytes is not most people’s idea of fun — having worked with the FileStream

object, you may be wondering whether there is an easier way. Fear not, for once you have a FileStream

object, you will usually wrap it in a StreamWriter or StreamReader and use its methods to manipulate
the file. If you don’t need the capability to change the file pointer to any arbitrary position, these classes
make working with files much easier.

The StreamWriter class enables you to write characters and strings to a file, with the class handling the
underlying conversions and writing to the FileStream object for you.

There are many ways to create a StreamWriter object. If you already have a FileStream object, then
you can use it to create a StreamWriter:

FileStream aFile = new FileStream("Log.txt", FileMode.CreateNew);
StreamWriter sw = new StreamWriter(aFile);

A StreamWriter object can also be created directly from a file:

StreamWriter sw = new StreamWriter("Log.txt", true);

This constructor takes the filename and a Boolean value that specifies whether to append to the file or
create a new one:

➤ If this is set to false, then a new file is created or the existing file is truncated and then
opened.

➤ If it is set to true, then the file is opened and the data is retained. If there is no file, then a new
one is created.

Unlike creating a FileStream object, creating a StreamWriter does not provide you with a similar
range of options — other than the Boolean value to append or create a new file, you have no option
for specifying the FileMode property as you did with the FileStream class. Nor do you have an option
to set the FileAccess property, so you will always have read/write privileges to the file. To use any of
the advanced parameters, you must first specify them in the FileStream constructor and then create a
StreamWriter from the FileStream object, as you do in the following Try It Out.

TRY IT OUT Writing Data to an Output Stream

1. Create a new console application called StreamWrite and save it in the directory
C:\BegVCSharp\Chapter21.

2. You will be using the System.IO namespace again, so add the following using directive near the
top of the Program.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

Code snippet StreamWrite\Program.cs

698 ❘ CHAPTER 21 FILE SYSTEM DATA

3. Add the following code to the Main() method:

static void Main(string[] args)
{

try
{

FileStream aFile = new FileStream("Log.txt", FileMode.OpenOrCreate);
StreamWriter sw = new StreamWriter(aFile);

bool truth = true;
// Write data to file.
sw.WriteLine("Hello to you.");
sw.WriteLine("It is now {0} and things are looking good.",

DateTime.Now.ToLongDateString());
sw.Write("More than that,");
sw.Write(" it’s {0} that C# is fun.", truth);
sw.Close();

}
catch(IOException e)
{

Console.WriteLine("An IO exception has been thrown!");
Console.WriteLine(e.ToString());
Console.ReadLine();
return;

}
}

4. Build and run the project. If no errors are found, it should quickly run and close. Because you are
not displaying anything on the console, it is not a very exciting program to watch.

5. Go to the application directory and find the Log.txt file. It is located in the
StreamWrite\bin\Debug folder because you used a relative path.

6. Open the file. You should see the text shown in Figure 21-4.

FIGURE 21-4

How It Works

This simple application demonstrates the two most important methods of the StreamWriter class, Write()
and WriteLine(). Both of them have many overloaded versions for performing more advanced file output,
but you used basic string output in this example.

The Classes for Input and Output ❘ 699

The WriteLine() method writes the string passed to it, followed immediately by a newline character. You
can see in the example that this causes the next write operation to begin on a new line.

Just as you can write formatted data to the console, you can also write formatted data to files. For example,
you can write out the value of variables to the file using standard format parameters:

sw.WriteLine("It is now {0} and things are looking good.",
DateTime.Now.ToLongDateString());

DateTime.Now holds the current date; the ToLongDateString() method is used to convert this date into an
easy-to-read form.

The Write() method simply writes the string passed to it to the file, without a newline character appended,
enabling you to write a complete sentence or paragraph using more than one Write() statement:

sw.Write("More than that,");
sw.Write(" it’s {0} that C# is fun.", truth);

Here, again, you use format parameters, this time with Write() to display the Boolean value truth — you
set this variable to true earlier, and its value is automatically converted into the string ‘‘True’’ for the
formatting.

You can use Write() and format parameters to write comma-separated files:

[StreamWriter object].Write("{0},{1},{2}", 100, "A nice product", 10.50);

In a more sophisticated example, this data could come from a database or other data source.

The StreamReader Object
Input streams are used to read data from an external source. Often, this will be a file on a disk or
network location, but remember that this source could be almost anything that can send data, such as
a network application, a Web service, or even the console.

The StreamReader class is the one that you will be using to read data from files. Like the StreamWriter

class, this is a generic class that can be used with any stream. In the next Try It Out, you again construct
it around a FileStream object so that it points to the correct file.

StreamReader objects are created in much the same way as StreamWriter objects. The most common
way to create one is to use a previously created FileStream object:

FileStream aFile = new FileStream("Log.txt", FileMode.Open);
StreamReader sr = new StreamReader(aFile);

Like StreamWriter, the StreamReader class can be created directly from a string containing the path to
a particular file:

StreamReader sr = new StreamReader("Log.txt");

TRY IT OUT Reading Data from an Input Stream

1. Create a new console application called StreamRead and save it in the directory
C:\BegVCSharp\Chapter21.

700 ❘ CHAPTER 21 FILE SYSTEM DATA

2. Import the System.IO namespace by placing the following line of code near the top of Program.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

Code snippet StreamRead\Program.cs

3. Add the following code to the Main() method:

static void Main(string[] args)
{

string line;

try
{

FileStream aFile = new FileStream("Log.txt", FileMode.Open);
StreamReader sr = new StreamReader(aFile);
line = sr.ReadLine();
// Read data in line by line.
while(line != null)
{

Console.WriteLine(line);
line = sr.ReadLine();

}
sr.Close();

}
catch(IOException e)
{

Console.WriteLine("An IO exception has been thrown!");
Console.WriteLine(e.ToString());
return;

}
Console.ReadKey();

}

4. Copy the Log.txt file, created in the previous example, into the StreamRead\bin\Debug directory.
If you don’t have a file named Log.txt, the FileStream constructor will throw an exception when
it doesn’t find it.

5. Run the application. You should see the text of the file written to the console, as shown in
Figure 21-5.

FIGURE 21-5

The Classes for Input and Output ❘ 701

How It Works

This application is very similar to the previous one, with the obvious difference being that it is reading a
file, rather than writing one. As before, you must import the System.IO namespace to be able to access the
necessary classes.

You use the ReadLine() method to read text from the file. This method reads text until a new line is found,
and returns the resulting text as a string. The method returns a null when the end of the file has been
reached, which you use to test for the end of the file. Note that you use a while loop, which ensures that
the line read isn’t null before any code in the body of the loop is executed — that way, only the genuine
contents of the file are displayed:

line = sr.ReadLine();
while(line != null)
{

Console.WriteLine(line);
strLine = sr.ReadLine();

}

Reading Data
The ReadLine() method is not the only way you can access data in a file. The StreamReader class has
many methods for reading data.

The simplest of the reading methods is Read(). It returns the next character from the stream as a posi-
tive integer value or a -1 if it has reached the end. This value can be converted into a character by using
the Convert utility class. In the preceding example, the main parts of the program could be rewritten
as follows:

StreamReader sr = new StreamReader(aFile);
int nChar;
nChar = sr.Read();
while(nChar != -1)
{

Console.Write(Convert.ToChar(nChar));
nChar = sr.Read();

}
sr.Close();

A very convenient method to use with smaller files is the ReadToEnd() method. It reads the entire file
and returns it as a string. In this case, the earlier application could be simplified to the following:

StreamReader sr = new StreamReader(aFile);
line = sr.ReadToEnd();
Console.WriteLine(line);
sr.Close();

While this may seem easy and convenient, be careful. By reading all the data into a string object, you
are forcing the data in the file to exist in memory. Depending on the size of the data file, this can be
prohibitive. If the data file is extremely large, then it is better to leave the data in the file and access it
with the methods of the StreamReader.

Another way to deal with large files, which is new to .NET 4, is to use the static File.ReadLines()

method. There are, in fact, several static methods of File that you can use to simplify reading and

702 ❘ CHAPTER 21 FILE SYSTEM DATA

writing file data, but this one is particularly interesting in that it returns an IEnumerable<string>

collection. You can iterate through the strings in this collection to read the file one line at a time. Using
this method, you can rewrite the previous example as follows:

foreach (string alternativeLine in File.ReadLines("Log.txt"))
Console.WriteLine(alternativeLine);

There are, as you can see, several different ways in .NET to achieve the same result — namely, reading
data from a file. Choose the technique that suits you best.

Delimited Files
Delimited files are a common form of data storage and are used by many legacy systems. If your appli-
cation must interoperate with such a system, you will often encounter the delimited data format. A
particularly common form of delimiter is the comma — for example, the data in an Excel spreadsheet,
an Access database, or a SQL Server database can be exported as a comma-separated value (CSV) file.

You’ve seen how to use the StreamWriter class to write such files using this approach; it is also easy to
read comma-separated files. You may remember from Chapter 5 the String class’s Split() method,
which is used to convert a string into an array based on a supplied separator character. If you specify a
comma as the separator, it creates a correctly dimensioned string array containing all of the data in the
original comma-separated string.

The next Try It Out shows how useful this can be. The example uses comma-separated values, load-
ing them into a List<Dictionary<string, string>> object. This example is quite generic, and you
may find yourself using the technique in your own applications if you need to work with comma-
separated values.

TRY IT OUT Working with Comma-Separated Values

1. Create a new console application called CommaValues and save it in the directory
C:\BegVCSharp\Chapter21.

2. Place the following line of code near the top of Program.cs. You need to import the System.IO

namespace for your file handling:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

Code snippet CommaValues\Program.cs

3. Add the following GetData() method into the body of Program.cs, before the Main() method:
private static List<Dictionary<string, string>> GetData(

out List<string> columns)
{

string line;
string[] stringArray;
char[] charArray = new char[] {’,’};
List<Dictionary<string, string>> data =

new List<Dictionary<string, string>>();
columns = new List<string>();

The Classes for Input and Output ❘ 703

try
{

FileStream aFile = new FileStream(@"..\..\SomeData.txt", FileMode.Open);
StreamReader sr = new StreamReader(aFile);

// Obtain the columns from the first line.
// Split row of data into string array
line = sr.ReadLine();
stringArray = line.Split(charArray);

for (int x = 0; x <= stringArray.GetUpperBound(0); x++)
{

columns.Add(stringArray[x]);
}

line = sr.ReadLine();
while (line != null)
{

// Split row of data into string array
stringArray = line.Split(charArray);
Dictionary<string, string> dataRow = new Dictionary<string, string>();

for (int x = 0; x <= stringArray.GetUpperBound(0); x++)
{

dataRow.Add(columns[x], stringArray[x]);
}

data.Add(dataRow);

line = sr.ReadLine();
}

sr.Close();
return data;

}
catch (IOException ex)
{

Console.WriteLine("An IO exception has been thrown!");
Console.WriteLine(ex.ToString());
Console.ReadLine();
return data;

}
}

4. Add the following code to the Main() method:
static void Main(string[] args)
{

List<string> columns;
List<Dictionary<string, string>> myData = GetData(out columns);

704 ❘ CHAPTER 21 FILE SYSTEM DATA

foreach (string column in columns)
{

Console.Write("{0,-20}", column);
}
Console.WriteLine();

foreach (Dictionary<string, string> row in myData)
{

foreach (string column in columns)
{

Console.Write("{0,-20}", row[column]);
}
Console.WriteLine();

}
Console.ReadKey();

}

5. Add a new text file called SomeData.txt by choosing Text File from the Project ➪ Add New Item
dialog.

6. Enter the following text into this new file:

ProductID,Name,Price
1,Spiky Pung,1000
2,Gloop Galloop Soup,25
4,Hat Sauce,12

Code snippet CommaValues\SomeData.txt

7. Run the application. You should see the text of the file written to the console, as shown in
Figure 21-6.

FIGURE 21-6

How It Works

Like the previous example, this application reads the file line by line into a string. However, because
you know this is a file containing comma-separated text values, you handle it differently. Not only
that, you actually store the values you read in a data structure.

First, you need to look at some of the comma-separated data itself:

ProductID,Name,Price
1,Spiky Pung,1000

The Classes for Input and Output ❘ 705

The first line holds the names of the columns of data; subsequent lines hold the data. Thus, your procedure
is to obtain the column names from the first line of the file and then retrieve the data in the remaining lines.

The GetData() method is declared as static, so you can call this method without creating an instance
of your class. This method returns a List<Dictionary<string, string>> object that you create and then
populate with data from the comma-separated text file. It also returns a List<string> object containing
the header names. The following lines initialize these objects:

List<Dictionary<string, string>> data = new List<Dictionary<string, string>>();
columns = new List<string>();

columns contains the column names from the first row of the comma-separated text file, and data holds
the values on subsequent rows.

You start by creating a FileStream object and then construct a StreamReader around that, as you did
in earlier examples. Then you can read the first line of the file and create an array of strings from that
one string:

line = sr.ReadLine();
stringArray = line.Split(charArray);

The Split() method shown in Chapter 5 accepts a character array — in this case, consisting of just ‘‘,’’ so
that stringArray will hold the array of strings formed from splitting line at each instance of ‘‘,’’. Because
you are currently reading from the first line of the file, and this line holds the names of the columns of data,
you need to loop through each string in stringArray and add it to columns:

for (int x = 0; x <= stringArray.GetUpperBound(0); x++)
{

columns.Add(stringArray[x]);
}

Now that you have the names of the columns for your data, you can read in the data. The code for this is
essentially the same as that for the earlier StreamRead example, except for the presence of the code required
to add Dictionary<string, string> objects to data:

line = sr.ReadLine();
while (line != null)
{

// Split row of data into string array.
stringArray = line.Split(charArray);
Dictionary<string, string> dataRow = new Dictionary<string, string>();

for (int x = 0; x <= stringArray.GetUpperBound(0); x++)
{

dataRow.Add(columns[x], stringArray[x]);
}

data.Add(dataRow);

line = sr.ReadLine();
}

For each line in the file, you create a new Dictionary<string, string> object and fill it with a row of data.
Each entry in this collection has a key corresponding to a column name, and a value that is the value of the
column for that row. The keys are extracted from the columns object you created earlier, and the values
come from the string array obtained using Split() for the line of text extracted from the data file.

706 ❘ CHAPTER 21 FILE SYSTEM DATA

Once you’ve read all the data in from the file, you close the StreamReader and return your data. The code
in the Main() method obtains the data from the GetData() method in variables called myData and columns,
and displays this information to the console. First, the name of each column is displayed:

foreach (string column in columns)
{

Console.Write("{0,-20}", column);
}
Console.WriteLine();

The -20 part of the formatting string {0,-20} ensures that the name you display is left-aligned in a column
of 20 characters — this helps to format the display.

Finally, you loop through each Dictionary<string, string> object in the myData collection and display
the values in that row, once again using the formatting string to format your output:

foreach (Dictionary<string, string> row in myData)
{

foreach (string column in columns)
{

Console.Write("{0,-20}", row[column]);
}
Console.WriteLine();

}

As you can see, it is simple to extract meaningful data from CSV files using the .NET Framework. This
technique is also easy to combine with the data access techniques you will learn in later chapters, mean-
ing that data from a CSV file can be manipulated just like any other data source (such as a database).
However, no information about the data types of the data is extracted from the CSV file. Currently,
you have just been treating all data as strings. For an enterprise-level business application, you need to
go the extra step of adding type information to the data you extract. This could come from additional
information stored in the CSV file, it could be configured manually, or it could be inferred from the
strings in the file, all depending on the specific application.

Even though XML, described in the next chapter, is a superior method of storing and transporting data,
CSV files are still quite common and will be for a long time. Delimited files such as comma-separated
files also have the advantage of being very terse, and therefore smaller than their XML counterparts.

Reading and Writing Compressed Files
Often when dealing with files, quite a lot of space is used up on the hard disk. This is particularly
true for graphics and sound files. You’ve probably come across utilities that enable you to compress
and decompress files, which are handy when you want to move them around or e-mail them. The
System.IO.Compression namespace contains classes that enable you to compress files from your code,
using either the GZIP or Deflate algorithm — both of which are publicly available and free for anyone
to use.

There is a little bit more to compressing files than just compressing them, though. Commercial
applications enable multiple files to be placed in a single compressed file, and so on. What you’ll be
looking at in this section is much simpler: saving text data to a compressed file. You are unlikely to

The Classes for Input and Output ❘ 707

be able to access this file in an external utility, but the file will be much smaller than its uncomp-
ressed equivalent!

The two compression stream classes in the System.IO.Compression namespace that you’ll look at
here, DeflateStream and GZipStream, work very similarly. In both cases, you initialize them with an
existing stream, which, in the case of files, will be a FileStream object. After this you can use them
with StreamReader and StreamWriter just like any other stream. All you need to specify in addition to
that is whether the stream will be used for compression (saving files) or decompression (loading files)
so that the class knows what to do with the data that passes through it. This is best illustrated with the
following example.

TRY IT OUT Reading and Writing Compressed Data

1. Create a new console application called Compressor and save it in the directory
C:\BegVCSharp\Chapter21.

2. Place the following lines of code near the top of Program.cs. You need to import the System.IO

namespace for your file handling and System.IO.Compression to use the compression classes:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.IO.Compression;

Code snippet Compressor\Program.cs

3. Add the following methods into the body of Program.cs, before the Main() method:

static void SaveCompressedFile(string filename, string data)
{

FileStream fileStream =
new FileStream(filename, FileMode.Create, FileAccess.Write);

GZipStream compressionStream =
new GZipStream(fileStream, CompressionMode.Compress);

StreamWriter writer = new StreamWriter(compressionStream);
writer.Write(data);
writer.Close();

}

static string LoadCompressedFile(string filename)
{

FileStream fileStream =
new FileStream(filename, FileMode.Open, FileAccess.Read);

GZipStream compressionStream =
new GZipStream(fileStream, CompressionMode.Decompress);

StreamReader reader = new StreamReader(compressionStream);
string data = reader.ReadToEnd();
reader.Close();
return data;

}

708 ❘ CHAPTER 21 FILE SYSTEM DATA

4. Add the following code to the Main() method:

static void Main(string[] args)
{

try
{

string filename = "compressedFile.txt";

Console.WriteLine(
"Enter a string to compress (will be repeated 100 times):");

string sourceString = Console.ReadLine();
StringBuilder sourceStringMultiplier =

new StringBuilder(sourceString.Length * 100);
for (int i = 0; i < 100; i++)
{

sourceStringMultiplier.Append(sourceString);
}
sourceString = sourceStringMultiplier.ToString();
Console.WriteLine("Source data is {0} bytes long.", sourceString.Length);

SaveCompressedFile(filename, sourceString);
Console.WriteLine("\nData saved to {0}.", filename);

FileInfo compressedFileData = new FileInfo(filename);
Console.WriteLine("Compressed file is {0} bytes long.",

compressedFileData.Length);

string recoveredString = LoadCompressedFile(filename);
recoveredString = recoveredString.Substring(

0, recoveredString.Length / 100);
Console.WriteLine("\nRecovered data: {0}", recoveredString);

Console.ReadKey();
}
catch (IOException ex)
{

Console.WriteLine("An IO exception has been thrown!");
Console.WriteLine(ex.ToString());
Console.ReadKey();

}
}

5. Run the application and enter a suitably long string. An example result is shown in Figure 21-7.

FIGURE 21-7

The Classes for Input and Output ❘ 709

6. Open compressedFile.txt in Notepad. The text is shown in Figure 21-8.

FIGURE 21-8

How It Works

In this example, you define two methods for saving and loading a compressed text file. The first of these,
SaveCompressedFile(), is as follows:

static void SaveCompressedFile(string filename, string data)
{

FileStream fileStream =
new FileStream(filename, FileMode.Create, FileAccess.Write);

GZipStream compressionStream =
new GZipStream(fileStream, CompressionMode.Compress);

StreamWriter writer = new StreamWriter(compressionStream);
writer.Write(data);
writer.Close();

}

The code starts by creating a FileStream object, and then uses it to create a GZipStream object. Note that
you could replace all occurrences of GZipStream in this code with DeflateStream — the classes work in
the same way. You use the CompressionMode.Compress enumeration value to specify that data is to be
compressed, and then use a StreamWriter to write data to the file.

LoadCompressedFile() mirrors the SaveCompressedFile() method. Instead of saving to a filename, it
loads a compressed file into a string:

static string LoadCompressedFile(string filename)
{

FileStream fileStream =
new FileStream(filename, FileMode.Open, FileAccess.Read);

GZipStream compressionStream =
new GZipStream(fileStream, CompressionMode.Decompress);

StreamReader reader = new StreamReader(compressionStream);
string data = reader.ReadToEnd();
reader.Close();
return data;

}

The differences are as you would expect — different FileMode, FileAccess, and CompressionMode enu-
meration values to load and uncompress data, and the use of a StreamReader to get the uncompressed text
out of the file.

The code in Main() is a simple test of these methods. It simply asks for a string, duplicates the string
100 times to make things interesting, compresses it to a file, and then retrieves it. In the example, the
opening stanza of Sir Gawain and the Green Knight repeated 100 times is 17,800 characters long, but

710 ❘ CHAPTER 21 FILE SYSTEM DATA

when compressed, it only takes up 446 bytes — that’s a compression ratio of around 40:1. Admittedly,
this is a bit of a cheat — the GZIP algorithm works particularly well with repetitive data, but it does
illustrate compression in action.

You also looked at the text stored in the compressed file. Obviously, it isn’t easily readable, which has
implications should you want to share data between applications, for example. However, because the
file was compressed with a known algorithm, at least you know that it is possible for applications to
uncompress it.

SERIALIZED OBJECTS

Applications, as you have seen, often need to store data on a hard disk. So far in this chapter, you’ve
looked at constructing text and data files piece by piece, but often that isn’t the most convenient way
of doing things. Sometimes it’s better to store data in the form that it is used in — namely, objects.

The .NET Framework provides the infrastructure to serialize objects in the System.Runtime

.Serialization and System.Runtime.Serialization.Formatters namespaces, with specific classes
implementing this infrastructure in namespaces below the latter. Two implementations are available to
you in the framework:

➤ System.Runtime.Serialization.Formatters.Binary— This namespace contains the class
BinaryFormatter, which is capable of serializing objects into binary data, and vice versa.

➤ System.Runtime.Serialization.Formatters.Soap— This namespace contains the class
SoapFormatter, which is capable of serializing objects into SOAP format XML data, and
vice versa.

In this chapter, you only look at BinaryFormatter because you have yet to learn about XML data. In
fact, use of the SoapFormatter formatter is somewhat discouraged, although still useful at times when
you want human-readable serialization. However, because these classes implement the IFormatter

interface, much of the discussion applies equally to both.

NOTE The IFormatter interface is also implemented by two other classes in the
.NET Framework. The first of these, ObjectStateFormatter, is used in ASP.NET
for viewstate serialization. The other, NetDataContractSerializer, is used for
serializing WCF data contracts.

The IFormatter interface provides the following methods:

METHOD DESCRIPTION

void Serialize(Stream stream, object

source)

Serializes source into stream

object Deserialize(Stream stream) Deserializes the data in stream and returns
the resultant object

Serialized Objects ❘ 711

Importantly, and conveniently for this chapter, these methods work with streams. That makes it
easy to tie these methods into the file access techniques already shown in this chapter — you can use
FileStream objects.

Serializing using BinaryFormatter is as simple as this:

IFormatter serializer = new BinaryFormatter();
serializer.Serialize(myStream, myObject);

Deserializing is equally easy:

IFormatter serializer = new BinaryFormatter();
MyObjectType myNewObject = serializer.Deserialize(myStream) as MyObjectType;

Obviously, you need streams and objects to work with, but the preceding holds true for pretty much all
circumstances. The following Try It Out shows how this works in practice.

TRY IT OUT Serializing and Deserializing Objects

1. Create a new console application called ObjectStore and save it in the directory
C:\BegVCSharp\Chapter21.

2. Add a new class called Product to the project, and modify the code as follows:

namespace ObjectStore
{

public class Product
{

public long Id;
public string Name;
public double Price;

[NonSerialized]
string Notes;

public Product(long id, string name, double price, string notes)
{

Id = id;
Name = name;
Price = price;
Notes = notes;

}

public override string ToString()
{

return string.Format("{0}: {1} (${2:F2}) {3}", Id, Name, Price,
Notes);

}
}

}
Code snippet ObjectStore\Product.cs

712 ❘ CHAPTER 21 FILE SYSTEM DATA

3. Place the following lines of code near the top of Program.cs. You need to import the System.IO

namespace for your file handling, and the other namespaces for serialization:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

Code snippet ObjectStore\Program.cs

4. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{

try
{

// Create products.
List<Product> products = new List<Product>();
products.Add(new Product(1, "Spiky Pung", 1000.0, "Good stuff."));
products.Add(new Product(2, "Gloop Galloop Soup", 25.0, "Tasty."));
products.Add(new Product(4, "Hat Sauce", 12.0, "One for the kids."));

Console.WriteLine("Products to save:");
foreach (Product product in products)
{

Console.WriteLine(product);
}
Console.WriteLine();

// Get serializer.
IFormatter serializer = new BinaryFormatter();

// Serialize products.
FileStream saveFile =

new FileStream("Products.bin", FileMode.Create, FileAccess.Write);
serializer.Serialize(saveFile, products);
saveFile.Close();

// Deserialize products.
FileStream loadFile =

new FileStream("Products.bin", FileMode.Open, FileAccess.Read);
List<Product> savedProducts =

serializer.Deserialize(loadFile) as List<Product>;
loadFile.Close();

Console.WriteLine("Products loaded:");
foreach (Product product in savedProducts)
{

Console.WriteLine(product);
}

}

Serialized Objects ❘ 713

catch (SerializationException e)
{

Console.WriteLine("A serialization exception has been thrown!");
Console.WriteLine(e.Message);

}
catch (IOException e)
{

Console.WriteLine("An IO exception has been thrown!");
Console.WriteLine(e.ToString());

}

Console.ReadKey();
}

5. Run the application. The result is shown in Figure 21-9.

FIGURE 21-9

6. Modify the code in Product.cs as follows:

namespace ObjectStore
{

[Serializable]
public class Product
{

...
}

Code snippet ObjectStore\Product.cs

7. Run the application again. The result is shown in Figure 21-10.

FIGURE 21-10

714 ❘ CHAPTER 21 FILE SYSTEM DATA

8. Open Products.bin in Notepad. The text is shown in Figure 21-11.

FIGURE 21-11

How It Works

This example created a collection of Product objects, saved the collection to disk, and then reloaded it.
The first time you ran the application, though, an exception was thrown because the Product object was
not marked as serializable.

The .NET Framework forces you to mark objects as serializable to enable them to be serialized. There are
several reasons for this, including the following:

➤ Some objects don’t serialize very well. They may require references to local data that only
exists while they are in memory, for example.

➤ Some objects might contain sensitive data that you wouldn’t want to be saved in an insecure
way or transferred to another process.

As shown in the example, marking an object as serializable is straightforward, using the Serializable

attribute:
namespace ObjectStore
{

[Serializable]
public class Product
{

...
}

Note that this attribute is not inherited by derived classes. It must be applied to each and every class that
you want to be able to serialize. It is also worth noting that the List<T> class you used to generate a
collection of Product objects has this attribute — otherwise, applying it to Product wouldn’t have helped
to make the collection serializable.

When the products collection was successfully serialized and deserialized (on the second attempt), another
important fact came to light. Only the Id, Name, and Price fields were reconstituted. This is because of
another attribute being used, NonSerialized:

[NonSerialized]
string Notes;

Monitoring the File System ❘ 715

Any member can be marked with this attribute and it will not be saved with other members. This can be
useful if, for example, just one field or property contains sensitive data.

You also looked at the resultant saved data in the example. Some of the data here is human-readable,
which may not be what you desire — or expect. The BinaryFormatter class makes no serious attempt to
shield your data from prying eyes. Of course, because you are using streams, it is relatively easy to intercept
the data as it is saved to disk or loaded, and apply your own obfuscating or encryption algorithms. The
same applies to compression — using the techniques from the last section, you could quite easily compress
object data as it is saved to disk.

There is a lot more to the subject of serialization, but you’ve covered enough information to get the basics.
One of the more advanced techniques that you might like to investigate is custom serialization using the
ISerializable interface, which enables you to customize exactly what data is serialized. This can be
important, for example, when upgrading classes subsequent to release. Changing the members exposed
to serialization can cause existing saved data to become unreadable, unless you provide your own logic to
save and retrieve data.

MONITORING THE FILE SYSTEM

Sometimes an application must do more than just read and write files to the file system. For example,
it may be important to know when files or directories are being modified. The .NET Framework has
made it easy to create custom applications that do just that.

The class that helps you to do this is the FileSystemWatcher class. It exposes several events that your
application can catch. This enables your application to respond to file system events.

The basic procedure for using the FileSystemWatcher is simple. First you must set a handful of prop-
erties, which specify where to monitor, what to monitor, and when it should raise the event that your
application will handle. Then you give it the addresses of your custom event handlers, so that it can call
these when significant events occur. Finally, you turn it on and wait for the events.

The properties that must be set before a FileSystemWatcher object is enabled are shown in the follow-
ing table:

PROPERTY DESCRIPTION

Path Must be set to the file location or directory to monitor.

NotifyFilter A combination of NotifyFilters enumeration values that specify what
to watch for within the monitored files. These represent properties of the
file or folders being monitored. If any of the specified properties change,
then an event is raised. The possible enumeration values are Attributes,
CreationTime, DirectoryName, FileName, LastAccess, LastWrite, Security,
and Size. Note that these can be combined using the binary OR operator.

Filter A filter specifying which files to monitor — for example, *.txt.

716 ❘ CHAPTER 21 FILE SYSTEM DATA

Once these are set, you must write event handlers for four events: Changed, Created, Deleted, and
Renamed. As shown in Chapter 13, this is simply a matter of creating your own method and assigning it
to the object’s event. By assigning your own event handler to these methods, your method will be called
when the event is fired. Each event will fire when a file or directory matching the Path, NotifyFilter,
and Filter property is modified.

Once you have set the properties and the events, set the EnableRaisingEvents property to true to begin
the monitoring. In the following Try It Out, you use FileSystemWatcher in a simple client application
to keep tabs on a directory of your choice.

TRY IT OUT Monitoring the File System

Here’s a more sophisticated example using much of what you have learned in this chapter.

1. Create a new Windows application called FileWatch and save it in the directory
C:\BegVCSharp\Chapter21.

2. Set the various form properties using those shown in the following table:

PROPERTY SETTING

FormBorderStyle FixedDialog

MaximizeBox False

MinimizeBox False

Size 302, 160

StartPosition CenterScreen

Text File Monitor

3. Using the properties from the following table, add the required controls to the form and set the
appropriate properties:

CONTROL NAME LOCATION SIZE TEXT

TextBox txtLocation 8, 26 184, 20

Button cmdBrowse 208, 24 64, 24 Browse...

Button cmdWatch 88, 56 80, 32 Watch!

Label lblWatch 8, 104 0, 13

Monitoring the File System ❘ 717

FIGURE 21-12

Ensure that you set the Enabled property of the
cmdWatch Button to False, because you can’t watch a
file before one has been specified, and set the AutoSize

property of lblWatch to True so you can see its con-
tents. Also add an OpenFileDialog control to the form,
setting its Name to FileDialog and its Filter to All

Files|*.*. When you are finished, your form should
look like the one in Figure 21-12.

4. Now that the form looks good, you can add some code
to make it do some work. First, add your usual using
directive for the System.IO namespace to the existing list of
using directives:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;

Code snippet FileWatch\Form1.cs

5. Add the FileSystemWatcher class to the Form1 class, as well as a delegate to facilitate changing the
text of lblWatch from different threads. To do this, add the following code to Form1.cs:

namespace FileWatch
{

partial class Form1 : Form
{

// File System Watcher object.
private FileSystemWatcher watcher;
private delegate void UpdateWatchTextDelegate(string newText);

6. Just after the InitializeComponent() method call in the form constructor, add the following
code. This code is needed to initialize the FileSystemWatcher object and associate the events to
methods that you are going to create next:

public Form1()
{

InitializeComponent();

this.watcher = new FileSystemWatcher();
this.watcher.Deleted +=

new FileSystemEventHandler(this.OnDelete);
this.watcher.Renamed +=

new RenamedEventHandler(this.OnRenamed);

718 ❘ CHAPTER 21 FILE SYSTEM DATA

this.watcher.Changed +=
new FileSystemEventHandler(this.OnChanged);

this.watcher.Created +=
new FileSystemEventHandler(this.OnCreate);

}

7. Add the following five methods to the Form1 class. The first method is used to update the
text in lblWatch asynchronously from the threads that will run the event handlers for the
FileSystemWatcher events. The other methods are the event handlers themselves.

// Utility method to update watch text.
public void UpdateWatchText(string newText)
{

lblWatch.Text = newText;
}

// Define the event handlers.
public void OnChanged(object source, FileSystemEventArgs e)
{

try
{

StreamWriter sw =
new StreamWriter("C:/FileLogs/Log.txt", true);

sw.WriteLine("File: {0} {1}", e.FullPath,
e.ChangeType.ToString());

sw.Close();
this.BeginInvoke(new UpdateWatchTextDelegate(UpdateWatchText),

"Wrote change event to log");
}
catch (IOException)
{

this.BeginInvoke(new UpdateWatchTextDelegate(UpdateWatchText),
"Error Writing to log");

}
}

public void OnRenamed(object source, RenamedEventArgs e)
{

try
{

StreamWriter sw =
new StreamWriter("C:/FileLogs/Log.txt", true);

sw.WriteLine("File renamed from {0} to {1}", e.OldName,
e.FullPath);

sw.Close();
this.BeginInvoke(new UpdateWatchTextDelegate(UpdateWatchText),

"Wrote renamed event to log");
}
catch (IOException)
{

this.BeginInvoke(new UpdateWatchTextDelegate(UpdateWatchText),
"Error Writing to log");

}
}

Monitoring the File System ❘ 719

public void OnDelete(object source, FileSystemEventArgs e)
{

try
{

StreamWriter sw =
new StreamWriter("C:/FileLogs/Log.txt", true);

sw.WriteLine("File: {0} Deleted", e.FullPath);
sw.Close();
this.BeginInvoke(new UpdateWatchTextDelegate(UpdateWatchText),

"Wrote delete event to log");
}
catch (IOException)
{

this.BeginInvoke(new UpdateWatchTextDelegate(UpdateWatchText),
"Error Writing to log");

}
}

public void OnCreate(object source, FileSystemEventArgs e)
{

try
{

StreamWriter sw =
new StreamWriter("C:/FileLogs/Log.txt", true);

sw.WriteLine("File: {0} Created", e.FullPath);
sw.Close();
this.BeginInvoke(new UpdateWatchTextDelegate(UpdateWatchText),

"Wrote create event to log");
}
catch (IOException)
{

this.BeginInvoke(new UpdateWatchTextDelegate(UpdateWatchText),
"Error Writing to log");

}
}

8. Add the Click event handler for the Browse button. The code in this event handler opens the Open
File dialog, enabling the user to select a file to monitor. Double-click the Browse button and enter
the following:

private void cmdBrowse_Click(object sender, EventArgs e)
{

if (FileDialog.ShowDialog() != DialogResult.Cancel)
{

txtLocation.Text = FileDialog.FileName;
cmdWatch.Enabled = true;

}
}

The ShowDialog() method returns a DialogResult enumeration value reflecting how the user
exited the File Open dialog (the user could have clicked OK or pressed the Cancel button). You
need to confirm that the user did not click the Cancel button, so you compare the result from the
method call to the DialogResult.Cancel enumeration value before saving the user’s file selection

720 ❘ CHAPTER 21 FILE SYSTEM DATA

to the TextBox. Finally, you set the Enabled property of the Watch button to true so that you can
watch the file.

9. Double-click the Watch button and add the following code to the Click event handler to launch
the FileSystemWatcher:

private void cmdWatch_Click(object sender, EventArgs e)
{

watcher.Path = Path.GetDirectoryName(txtLocation.Text);
watcher.Filter = Path.GetFileName(txtLocation.Text);
watcher.NotifyFilter = NotifyFilters.LastWrite |

NotifyFilters.FileName | NotifyFilters.Size;
lblWatch.Text = "Watching " + txtLocation.Text;
// Begin watching.
watcher.EnableRaisingEvents = true;

}

10. You must also ensure that the FileLogs directory exists for you to write data to. Add the fol-
lowing code to the Form1 constructor that will check whether the directory exists, and create the
directory if it does not already exist:

public Form1()
{

...

DirectoryInfo aDir = new DirectoryInfo(@"C:\FileLogs");
if (!aDir.Exists)

aDir.Create();
}

11. Create a directory called C:\TempWatch and a file in this directory called temp.txt.

12. Run the application. If everything builds successfully, click the Browse button and select
C:\TempWatch\temp.txt.

13. Click the Watch button to begin monitoring the file. The only change you will see in your applica-
tion is the label control showing that the file is being watched.

14. Using Windows Explorer, navigate to C:\TempWatch. Open temp.txt in Notepad, add some text
to the file, and save it.

15. Rename the file.

16. You can now check the log file to see the changes. Navigate to C:\FileLogs\Log.txt and open
the file in Notepad. You should see a description of the changes to the file you selected to watch,
as shown in Figure 21-13.

FIGURE 21-13

Monitoring the File System ❘ 721

How It Works

This application is fairly simple, but it demonstrates how the FileSystemWatcher works. Try playing with
the string you put into the monitor text box. If you specify *.* in a directory, it will monitor all changes in
the directory.

Most of the code in the application is related to setting up the FileSystemWatcher object to watch the
correct location:

watcher.Path = Path.GetDirectoryName(txtLocation.Text);
watcher.Filter = Path.GetFileName(txtLocation.Text);
watcher.NotifyFilter = NotifyFilters.LastWrite |

NotifyFilters.FileName | NotifyFilters.Size;
lblWatch.Text = "Watching " + txtLocation.Text;
// Begin watching.
watcher.EnableRaisingEvents = true;

The code first sets the path to the directory to monitor. It uses a new object you have not looked at yet:
System.IO.Path. This is a static class, much like the static File object. It exposes many static methods
to manipulate and extract information out of file location strings. You first use it to extract the directory
name the user typed in the text box, using the GetDirectoryName() method.

The next line sets the filter for the object. This can be an actual file, in which case it would only monitor the
file, or it could be something like *.txt, in which case it would monitor all the .txt files in the directory
specified. Again, you use the Path static object to extract the information from the supplied file location.

The NotifyFilter is a combination of NotifyFilters enumeration values that specify what constitutes
a change. In this example, you have indicated that if the last write time stamp, the filename, or the size
of the file changes, your application should be notified of the change. After updating the UI, you set the
EnableRaisingEvents property to true to begin monitoring.

Before that, however, you have to create the object and set the event handlers:

this.watcher = new FileSystemWatcher();
this.watcher.Deleted +=

new FileSystemEventHandler(this.OnDelete);
this.watcher.Renamed +=

new RenamedEventHandler(this.OnRenamed);
this.watcher.Changed +=

new FileSystemEventHandler(this.OnChanged);
this.watcher.Created +=

new FileSystemEventHandler(this.OnCreate);

That’s how you hook up the event handlers for the watcher object with the private methods you have
created. Here, you will have event handlers for the event raised by the watcher object when a file is deleted,
renamed, changed, or created. In your own methods, you decide how to handle the actual event. Note that
you are notified after the event takes place.

In the actual event handler methods, you simply write the event to a log file. Obviously, this could be
a more sophisticated response, depending on your application. When a file is added to a directory, you
could move it somewhere else or read the contents and fire off a new process using the information. The
possibilities are endless!

722 ❘ CHAPTER 21 FILE SYSTEM DATA

SUMMARY

In this chapter, you learned about streams and why they are used in the .NET Framework to access
files and other serial devices. You looked at the basic classes in the System.IO namespace, including
the following:

➤ File

➤ FileInfo

➤ FileStream

You saw that the File class exposes many static methods for moving, copying, and deleting files, and
FileInfo represents a physical file on disk, and has methods to manipulate this file. A FileStream

object represents a file that can be written to, read from, or both. You also explored StreamReader

and StreamWriter classes and saw how useful they are for writing to streams, and learned to read and
write to random files using the FileStream class. Building on that knowledge, you used classes in the
System.IO.Compression namespace to compress streams as you write them to disk, and learned how
to serialize objects to files. Finally, you built an entire application to monitor files and directories using
the FileSystemWatcher class.

In summary, you learned all of the following in this chapter:

➤ How to open a file, read from a file, and write to a file

➤ The difference between the StreamWriter and StreamReader classes and the FileStream class

➤ How to work with delimited files to populate a data structure

➤ Compressing and decompressing streams

➤ How to serialize and deserialize objects

➤ Monitoring the file system with the FileSystemWatcher class

EXERCISES

1. Which namespace enables an application to work with files?

2. When would you use a FileStream object to write to a file instead of using a StreamWriter object?

3. What methods of the StreamReader class enable you to read data from files and what does each
one do?

4. What class would you use to compress a stream by using the Deflate algorithm?

5. How would you prevent a class you have created from being serialized?

6. What events does the FileSystemWatcher class expose and what are they for?

7. Modify the FileWatch application you built in this chapter by adding the capability to turn the file
system monitoring on and off without exiting the application.

Answers to Exercises can be found in Appendix A.

Summary ❘ 723

� WHAT YOU HAVE LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Streams A stream is an abstract representation of a serial device that you can read
from or write to a byte at a time. Files are an example of such a device. There
are two types of streams — input and output — for reading from and writing
to devices, respectively.

File access classes There are numerous classes in the .NET Framework that abstract file system
access, including File and Directory for dealing with files and directo-
ries through static methods, and FileInfo and DirectoryInfo, which can
be instantiated to represent specific files and directories. The latter pair of
classes useful when you perform multiple operations on files and directories,
as those classes don’t require a path for every method call. Typical opera-
tions that you can perform on files and directories include interrogating and
changing properties, creating, deleting, and copying.

File paths File and directory paths can be absolute or relative. An absolute path gives
a complete description of a location starting from the root of the drive that
contains it; all parent directories are separated from child directories with
backslashes. Relative directories are similar, but start from a defined point in
the file system, such as the directory where an application is executing (the
working directory). To navigate the file system, you often use the .. parent
directory alias.

The FileStream

object
The FileStream object provides access to the contents of a file, both for
reading and writing purposes. It accesses file data at the byte level, and so
is not always the best choice for accessing file data. A FileStream instance
maintains a position byte index within a file so that you can navigate through
the contents of a file. Accessing a file at any point in this way is known as
random access.

Reading and writing
to streams

An easier way to read and write file data is to use the StreamReader and
StreamWriter classes in combination with a FileStream. These enable you
to read and write character and string data rather than working with bytes.
These types expose familiar methods for working with strings, including
ReadLine() and WriteLine(). Because they work with string data, these
classes make it easy to work with comma-delimited files, which are a com-
mon way to represent structured data.

Compressed files You can use the DeflateStream and GZipStream compressed stream
classes to read and write compressed data from and to files. These classes
work with byte data much like FileStream, but as with FileStream you can
access data through StreamReader and StreamWriter classes to simplify
your code.

724 ❘ CHAPTER 21 FILE SYSTEM DATA

TOPIC KEY CONCEPTS

Object serialization Often, you will want to store and retrieve data that represents the state of
an object. Rather than writing your own code to save and load property
values, you can instead use serialization techniques to save and load object
state automatically. To do this, you must mark the object type as serializable
with the Serializable attribute. You can also control how members are
serialized with other attributes, such as NonSerialized, which will prevent a
given member from being serialized.

Monitoring the file
system

You can use the FileSystemWatcher class to monitor changes to file sys-
tem data. You can monitor both files and directories, and provide a filter,
if required, to modify only those files that have a specific file extension.
FileSystemWatcher instances notify you of changes by raising events that
you can handle in your code.

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502266

22
XML

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ How to read and write Extensible Markup Language (XML)

➤ The rules that apply to well-formed XML

➤ How to validate your XML documents against two types of schema:
XSD and XDR

➤ How to use XML in your applications

➤ How to use .NET to use XML in your programs

➤ How to search through XML documents using XPath queries

Extensible Markup Language (XML) is a technology that has been receiving great attention for
the past few years. XML is not new, and it was certainly not invented by Microsoft for use in the
.NET environment, but Microsoft recognized the possibilities of XML early in its development.
Because of that you will see it performing a large number of duties in .NET, from describing the
configuration of your applications to transporting information between Web services.

XML is a way of storing data in a simple text format, which means that it can be read by nearly
any computer. As you’ve seen in some of the earlier chapters about Web programming, this
makes it a perfect format for transferring data over the Internet. It’s even not too difficult for
humans to read!

From the first versions of Visual Studio .NET it has been obvious that Microsoft is putting quite
a lot of effort into developing solutions that use XML. Today most applications in .NET use
XML in some form, from .config files for storing configuration details to XAML files used in
Windows Presentation Foundations. Even the new document formats introduced with Office
2007 are based on XML though the Office applications themselves are not .NET applications.

The ins and outs of XML can be very complicated, so you won’t look at every single detail here.
However, the basic format is very simple, and most tasks don’t require a detailed knowledge

726 ❘ CHAPTER 22 XML

of XML because Visual Studio typically takes care of most of the work — you will rarely have to write
an XML document by hand. Having said that, XML is hugely important in the .NET world because
it’s used as the default format for transferring data, so it’s vital to understand the basics.

XML DOCUMENTS

A complete set of data in XML is known as an XML document. An XML document could be a physical
file on your computer or just a string in memory. However, it has to be complete in itself, and it must
obey certain rules (described shortly). An XML document is made up of a number of different parts.
The most important of these are XML elements, which contain the actual data of the document.

XML Elements
XML elements consist of an opening tag (the name of the element enclosed in angled brackets, such as
<myElement>), the data within the element, and a closing tag (the same as the opening tag, but with a
forward slash after the opening bracket: </myElement>).

For example, you might define an element to hold the title of a book like this:

<book>Tristram Shandy</book>

If you already know some HTML, you might be thinking that this looks very similar — and you’d be
right. In fact, HTML and XML share much of the same syntax. The big difference is that XML doesn’t
have any predefined elements — you choose the names of your own elements, so there’s no limit to
the number of elements you can have. The most important point to remember is that XML — despite
its name — isn’t actually a language at all. Rather, it’s a standard for defining languages (known as
XML applications). Each language has its own distinct vocabulary — a specific set of elements that can
be used in the document, and the structure these elements are allowed to take. As you’ll shortly see,
you can explicitly limit the elements allowed in the XML document. Alternatively, you can allow any
elements, and have the program using the document determine for itself what the structure is.

Element names are case sensitive, so <book> and <BOOK> are considered different elements. This means
that if you attempt to close a <book> element using a closing tag that doesn’t have identical case (for
example, </BOOK>), your XML document won’t be legal. Programs that read XML documents and
analyze them by examining their individual elements are known as XML parsers, and they reject any
document that contains illegal XML.

Elements can also contain other elements, so you could modify the <book> element to include the author
as well as the title by adding two sub-elements:

<book>
<title>Tristram Shandy</title>
<author>Lawrence Sterne</author>

</book>

Overlapping elements aren’t allowed, so you must close all sub-elements before the closing tag of the
parent element. This means, for example, that you can’t do this:

<book>
<title>Tristram Shandy

XML Documents ❘ 727

<author>Lawrence Sterne
</title></author>

</book>

This is illegal because the <author> element is opened within the <title> element, but the closing
</title> tag comes before the closing </author> tag.

There’s one exception to the rule that all elements must have a closing element. It’s possible to have
‘‘empty’’ elements, with no nested data or text. In this case, you can simply add the closing tag imme-
diately after the opening element, like this:

<book></book>

Or you can use a shorthand syntax, adding the slash of the closing element to the end of the opening
element:

<book />

Attributes
As well as storing data within the body of the element, you can also store data within attributes, which
are added within the opening tag of an element. Attributes are in the form

name="value"

where the value of the attribute must be enclosed in either single or double quotes. For example:

<book title="Tristram Shandy"></book>

or

<book title=’Tristram Shandy’></book>

The preceding are both legal, but the following is not:

<book title=Tristram Shandy></book>

At this point, you may be wondering why you need both ways of storing data in XML. What is the
difference between the following?

<book>
<title>Tristram Shandy</title>

</book>

and

<book title="Tristram Shandy"></book>

In fact, there isn’t any earth-shattering, fundamental difference between the two. There isn’t really any
big advantage to using one over the other. Elements are a better choice if there’s a possibility that you’ll
need to add more information about that piece of data later — you can always add a sub-element or
an attribute to an element, but you can’t do that for attributes. Arguably, elements are more readable
and more elegant (but that’s really a matter of personal taste). Conversely, attributes consume less
bandwidth if the document is sent over a network without compression (with compression there’s not
much difference), and they are convenient for holding information that isn’t essential to every user of

728 ❘ CHAPTER 22 XML

the document. Probably the best advice is to use both, selecting whichever you’re most comfortable
with for storing a particular item of data, but there are no hard-and-fast rules.

The XML Declaration
In addition to elements and attributes, XML documents can contain a number of constituent parts.
These individual parts of an XML document are known as nodes. Elements, the text within elements,
and attributes are all nodes of the XML document. Many of these are important only if you really want
to delve deeply into XML. However, one type of node occurs in almost every XML document: the
XML declaration. If you include it, it must occur as the first node of the document.

The XML declaration is similar in format to an element but has question marks inside the angled
brackets. It always has the name xml, and it always has an attribute named version. Currently there
are two possible versions of XML: 1.0 (first edition) and 1.1 (second edition), but perhaps surprisingly
Visual Studio does not support the second edition. It should be said that the second edition adds very
little to XML that normal use on the Windows platform would demand, and the World Wide Web
Consortium (www.w3c.org) encourages you to use the first edition whenever possible. The simplest
possible form of the XML declaration is therefore as follows:

<?xml version="1.0"?>

Optionally, it can also contain the attributes encoding (with a value indicating the character set that
should be used to read the document, such as "UTF-16" to indicate that the document uses the 16-bit
Unicode character set) and standalone (with the value "yes" or "no" to indicate whether the XML doc-
ument depends on any other files). However, these attributes are not required, and you will probably
include only the version attribute in your own XML files.

Structure of an XML Document
One of the most important things about XML is that it offers a way of structuring data that is very
different from relational databases. Most modern database systems store data in tables that are related
to each other through values in individual columns. The tables store data in rows and columns — each
row represents a single record, and each column a particular item of data about that record. In contrast,
XML data is structured hierarchically, a little like the folders and files in Windows Explorer. Each doc-
ument must have a single root element within which all elements and text data is contained. If there is
more than one element at the top level of the document, then the document is not legal XML. However,
you can include other XML nodes at the top level — notably, the XML declaration. Therefore, this is
a legal XML document:

<?xml version="1.0"?>
<books>

<book>Tristram Shandy</book>
<book>Moby Dick</book>
<book>Ulysses</book>

</books>

The following, however, is not:

<?xml version="1.0"?>
<book>Tristram Shandy</book>

XML Documents ❘ 729

<book>Moby Dick</book>
<book>Ulysses</book>

Under the root element, you have a great deal of flexibility regarding how you structure the data.
Unlike relational data, in which every row has the same number of columns, there’s no restriction
on the number of sub-elements an element can have. In addition, although XML documents are often
structured similarly to relational data, with an element for each record, XML documents don’t need any
predefined structure at all. This is one of the major differences between traditional relational databases
and XML. Whereas relational databases always define the structure of the information before any data
can be added, information can be stored in XML without this initial overhead, which makes it a very
convenient way to store small blocks of data. As you will see shortly, it is quite possible to provide a
structure for your XML, but unlike the relational databases, no one will enforce this structure unless
you ask for it explicitly.

XML Namespaces
As you learned in Chapter 9, anyone can define their own C# classes, and anyone can define their own
XML elements, which leads to the obvious problem — how do you know which elements belong to
which vocabulary? In a word, namespaces. Just as you define namespaces to organize your C# types,
you use XML namespaces to define your XML vocabularies. This enables you to include elements from
a number of different vocabularies within a single XML document, without the risk of misinterpreting
elements because, for example, two different vocabularies define a <customer> element.

XML namespaces can be quite complex, so this section doesn’t go into great detail here, but the basic
syntax is simple. Specific elements or attributes are associated with a specific namespace using a prefix,
followed by a colon. For example, <wrox:book> represents a <book> element that resides in the wrox

namespace. How do you know what namespace wrox represents? For this approach to work, you
need to be able to guarantee that every namespace is unique. The easiest way to do this is to map the
prefixes to something already known to be unique, which is exactly what happens. Somewhere in your
XML document you need to associate any namespace prefixes with a Uniform Resource Identifier
(URI). URIs come in several flavors, but the most common type is simply a Web address, such as
www.wrox.com.

To identify a prefix with a specific namespace, use the xmlns:prefix attribute within an element, setting
its value to the unique URI that identifies that namespace. The prefix can then be used anywhere within
that element, including any nested child elements:

<?xml version="1.0"?>
<books>

<book xmlns:wrox="http://www.wrox.com">
<wrox:title>Beginning C#</wrox:title>
<wrox:author>Karli Watson</wrox:author>

</book>
</books>

You can use the wrox: prefix with the <title> and <author> elements because they are within the
<book> element, where the prefix is defined. However, if you tried to add this prefix to the <books>

element, the XML would be illegal, as the prefix isn’t defined for this element.

730 ❘ CHAPTER 22 XML

You can also define a default namespace for an element using the xmlns attribute:

<?xml version="1.0"?>
<books>

<book xmlns="http://www.wrox.com">
<title>Beginning Visual C#</title>
<author>Karli Watson</author>
<html:img alt="Cover Image" src="begvcsharp.gif"

xmlns:html="http://www.w3.org/1999/xhtml" />
</book>

</books>

Here, the default namespace for the <book> element is defined as "http://www.wrox.com". Everything
within this element will, therefore, belong to this namespace, unless you explicitly specify otherwise by
adding a different namespace prefix, as you do for the element (when you set it to the namespace
used by XML-compatible HTML documents).

Well-Formed and Valid XML
So far, we’ve been talking about legal XML. In fact, XML distinguishes between two forms of legality:
well-formed and valid. Documents that obey all the rules required by the XML standard itself are
said to be well-formed. If an XML document is not well-formed, parsers will be unable to interpret it
correctly, and will reject the document. To be well-formed, a document must conform to the following:

➤ Have one and only one root element

➤ Have closing tags for every element (except for the shorthand syntax mentioned previously)

➤ Not have any overlapping elements — all child elements must be fully nested within the
parent

➤ Have all attributes enclosed in quotes

This isn’t a complete list, by any means, but it does highlight the most common pitfalls made by pro-
grammers who are new to XML. However, XML documents can obey all these rules and still not be
valid. Remember that earlier it was mentioned that XML is not itself a language, but a standard for
defining XML applications. Well-formed XML documents simply comply with the XML standard;
to be valid, they also need to conform to any rules specified for the XML application. Not all parsers
check whether documents are valid; those that do are said to be validating parsers. To check whether a
document adheres to the rules of the application, you first need a way to specify what those rules are.

Validating XML Documents
XML supports two ways of defining which elements and attributes can be placed in a document and in
what order: Document Type Definitions (DTDs) and schemas.

DTDs
DTDs use a non-XML syntax inherited from the parent of XML and are gradually being replaced
by schemas. DTDs don’t allow you to specify the data types of the elements and attributes, so they
are relatively inflexible and not used that much in the context of the .NET Framework. Schemas,

XML Documents ❘ 731

conversely, are used frequently — they allow you to specify data types, and they are written in an
XML-compatible syntax. Unfortunately, schemas are very complex, and there are different formats for
defining them — even within the .NET world!

Schemas
There are two separate formats for schemas supported by .NET — XML Schema Definition language
(XSD) and XML-Data Reduced schemas (XDR).

XDR Schemas
The XDR schema definition is an older standard that is proprietary to Microsoft and is not
generally used or recognized by non-Microsoft parsers. XSD is an open standard, recommended
by the W3C, and so it is the definition presented here. Schemas can be either included within
your XML document or kept in a separate file. You actually need to be very familiar with
XML before you attempt to write a schema, but it is useful to be able to recognize a schema’s
main elements, so the basic principles are explained here. To aid in your understanding, you’ll
look at a sample XSD schema for this simple XML document, which contains basic details about
a couple of Wrox’s C# books. This XML can be found in the download code for this book as book.xml:

<?xml version="1.0"?>
<books>

<book>
<title>Beginning Visual C# 2010</title>
<author>Karli Watson</author>
<code>7582</code>

</book>
<book>

<title>Professional C# 2010</title>
<author>Simon Robinson</author>
<code>7043</code>

</book>
</books>

Code snippet book.xml

XSD Schemas
Elements in XSD schemas must belong to the namespace http://www.w3.org/2001/XMLSchema. If this
namespace isn’t included, the schema elements won’t be recognized.

To associate the XML document with an XSD schema in another file, you need to add a
schemalocation element to the root element:

<?xml version="1.0"?>
<books schemalocation="file://C:\Beginning Visual C#\Chapter 22\books.xsd">

.
</books>

Take a quick look at an example XSD schema:

<schema xmlns="http://www.w3.org/2001/XMLSchema">
<element name="books">

732 ❘ CHAPTER 22 XML

<complexType>
<choice maxOccurs="unbounded">

<element name="book">
<complexType>

<sequence>
<element name="title" />
<element name="author" />
<element name="code" />

</sequence>
</complexType>

</element>
</choice>
<attribute name="schemalocation" />

</complexType>
</element>

</schema>

The first thing to notice here is that the default namespace is set to the XSD namespace. This tells the
parser that all the elements in the document belong to the schema. If you don’t specify this namespace,
the parser will assume that the elements are just normal XML elements and won’t realize that it needs
to use them for validation.

The entire schema is contained within an element called <schema> (with a lowercase ‘‘s’’ — remember
that case is important!). Each element that can occur within the document must be represented by
an <element> tag. This element has a name attribute that indicates the name of the element. If the
element is to contain nested child elements, then you must include the <element> tags for these within
a <complexType> element. Inside this, you specify how the child elements must occur.

For example, you use a <choice> element to specify that any selection of the child elements can occur,
or <sequence> to specify that the child elements must appear in the same order as they are listed in the
schema. If an element can appear more than once (as the <book> element does), then you need to include
a maxOccurs attribute within its parent element. Setting this to "unbounded" means that the element can
occur unlimited times. Finally, any attributes must be represented by <attribute> elements, including
your schemalocation attribute, which tells the parser where to find the schema. Place this after the end
of the list of child elements.

Now that you’ve covered the basic theory behind XML, in the following Try It Out you can have
a go at creating XML documents. Fortunately, VS does a lot of the hard work for you. It even cre-
ates an XSD schema based on your XML document without you having to write a single line of
code!

TRY IT OUT Creating an XML Document in Visual Studio

Follow these steps to create an XML document:

1. Open VS and select File ➪ New ➪ File from the menu. If you don’t see this option, create a new
project, right-click the project in the Solution Explorer, and choose to add a new item. Then select
XML File from the dialog.

2. In the New File dialog, select XML File and click Add. VS creates a new XML document for you.
As Figure 22-1 shows, VS adds the XML declaration, complete with an encoding attribute (it also
colors the attributes and elements, but this won’t show up very well in black-and-white print).

XML Documents ❘ 733

FIGURE 22-1

3. Save the file by pressing Ctrl+S or by select-
ing File ➪ Save XMLFile1.xml from the menu.
VS asks you where to save the file and what
to call the file; save it in the Beginning Visual
C#\Chapter25 folder as GhostStories.xml.

4. Move the cursor to the line underneath the XML declaration, and type the text <stories>. Notice
how VS automatically puts the end tag in as soon as you type the greater than sign to close the
opening tag.

5. Type this XML file and then click Save:

<stories>
<story>

<title>A House in Aungier Street</title>
<author>

<name>Sheridan Le Fanu</name>
<nationality>Irish</nationality>

</author>
<rating>eerie</rating>

</story>
<story>

<title>The Signalman</title>
<author>

<name>Charles Dickens</name>
<nationality>English</nationality>

</author>
<rating>atmospheric</rating>

</story>
<story>

<title>The Turn of the Screw</title>
<author>

<name>Henry James</name>
<nationality>American</nationality>

</author>
<rating>a bit dull</rating>

</story>
</stories>

Code snippet Chapter22\GhostStories.xml

6. It is now possible to let Visual Studio create a schema that fits the XML you have written. Do this
by selecting the Create Schema menu option from the XML menu. Save the resulting XSD file by
clicking Save as GhostStories.xsd.

7. Return to the XML file and type the following XML before the ending </stories> tag:

<story>
<title>Number 13</title>
<author>

<name>M.R. James</name>
<nationality>English</nationality>

</author>
<rating>mysterious</rating>

</story>

734 ❘ CHAPTER 22 XML

You are now getting IntelliSense hints when you begin typing the starting tags. That’s because
Visual Studio knows to connect the newly created XSD schema to the XML file you are
typing.

8. It is possible to create this link between XML and one or more schemas in Visual Studio. Select
XML ➪ Schemas. That brings up the dialog shown in Figure 22-2. At the top of the long list of
schemas that Visual Studio recognizes, you will see GhostStories.xsd. To the left of it is a green
check mark, which indicates that this schema is being used on the current XML document.

FIGURE 22-2

NOTE The XSD dialog shown in Figure 22-2 includes a long list of schemas
recognized by VS, but it will not automatically remember schemas you’ve used. If
you are using a schema repeatedly and don’t want to browse for it every time
you need it, you can copy it to the following location: C:\Program Files\

Microsoft Visual Studio 10.0\Xml\Schemas". Any schema copied to that location
will show up on the Schemas dialog.

USING XML IN YOUR APPLICATION

Now that you know how to create XML documents, it is time to put this knowledge to use. The .NET
Framework includes a number of namespaces and classes that make it quite simple to read, manipulate,
and write XML. The following pages cover a number of these classes and examine how you can use
them to create and manipulate XML programmatically.

XML Document Object Model
The XML Document Object Model (XML DOM) is a set of classes used to access and manipulate
XML in a very intuitive way. The DOM is perhaps not the quickest way to read XML data, but as
soon as you understand the relationship between the classes and the elements of an XML document,
you will find it very easy to use.

The classes that make up the DOM can be found in the namespace System.Xml. There are several
classes and namespaces in this namespace, but this chapter focuses on only a few of the classes that
enable you to easily manipulate XML. These classes are described in Table 22-1.

Using XML in Your Application ❘ 735

TABLE 22-1: Common DOM Classes

CLASS DESCRIPTION

XmlNode Represents a single node in a document tree. It is the base of many of the classes
shown in this chapter. If this node represents the root of an XML document, you
can navigate to any position in the document from it.

XmlDocument Extends the XmlNode class, but is often the first object you use when using XML.
That’s because this class is used to load and save data from disk or elsewhere.

XmlElement Represents a single element in the XML document. XmlElement is derived from
XmlLinkedNode, which in turn is derived from XmlNode.

XmlAttribute Represents a single attribute. Like the XmlDocument class, it is derived from the
XmlNode class.

XmlText Represents the text between a starting tag and a closing tag.

XmlComment Represents a special kind of node that is not regarded as part of the document
other than to provide information to the reader about parts of the document.

XmlNodeList Represents a collection of nodes.

XmlDocument Class
Usually, the first thing your application will want to do with XML is read it from disk. As described
in Table 22-1, this is the domain of the XmlDocument class. You can think of the XmlDocument as an
in-memory representation of the file on disk. Once you have used the XmlDocument class to load a file
into memory, you can obtain the root node of the document from it and start reading and manipulating
the XML:

using System.Xml;
.
.
.

XmlDocument document = new XmlDocument();
document.Load(@"C:\Beginning Visual C#\Chapter 22\books.xml");

The two lines of code create a new instance of the XmlDocument class and load the file books.xml into it.
Remember that the XmlDocument class is located in the System.Xml namespace, and you should insert a
using System.Xml; in the using section at the beginning of the code.

In addition to loading and saving the XML, the XmlDocument class is also responsible for maintaining
the XML structure itself. Therefore, you will find numerous methods on this class that are used to
create, alter, and delete nodes in the tree. You will look at some of those methods shortly, but to present
the methods properly, you need to know a bit more about another class: XmlElement.

XmlElement Class
Now that the document has been loaded into memory, you want to do something with it. The
DocumentElement property of the XmlDocument instance you created in the preceding code returns

736 ❘ CHAPTER 22 XML

an instance of an XmlElement that represents the root element of the XmlDocument. This element is
important because it gives you access to every bit of information in the document:

XmlDocument document = new XmlDocument();
document.Load(@"C:\Beginning Visual C#\Chapter 22\books.xml");
XmlElement element = document.DocumentElement;

After you have the root element of the document, you are ready to use the information. The XmlElement
class contains methods and properties for manipulating the nodes and attributes of the tree. Let’s
examine the properties for navigating the XML elements first, shown in Table 22-2.

TABLE 22-2: XmlElement Properties

PROPERTY DESCRIPTION

FirstChild Returns the first child element after this one. If you recall the books.xml file
from earlier in the chapter, the root node of the document was called ‘‘books’’
and the next node after that was ‘‘book.’’ In that document, then, the first child
of the root node ‘‘books’’ is ‘‘book.’’

<books> @@la Root node
<book> @@la FirstChild

nodeFirstChild returns an XmlNode object, and you should test for the type of
the returned node because it is unlikely to always be an XmlElement instance.
In the books example, the child of the Title element is, in fact, an XmlText

node that represents the text Beginning Visual C#.

LastChild Operates exactly like the FirstChild property except that it returns the last
child of the current node. In the case of the books example, the last child of the
‘‘books’’ node will still be a ‘‘book’’ node, but it will be the node representing
the ‘‘Professional C# 2010’’ book.

<books> @@la Root node
<book> @@la FirstChild

<title>Beginning Visual C# 2010</title>
<author>Karli Watson</author>
<code>7582</code>

</book>
<book> @@la LastChild

<title>Professional C# 2010</title>
<author>Simon Robinson</author>
<code>7043</code>

</book>
</books>

ParentNode Returns the parent of the current node. In the books example, the ‘‘books’’ node
is the parent of both of the ‘‘book’’ nodes.

NextSibling Where FirstChild and LastChild properties return the leaf node of the
current node, the NextSibling node returns the next node that has the
same parent node. In the case of the books example, that means getting
the NextSibling of the title element will return the author element, and
calling NextSibling on that will return the code element.

HasChildNodes Enables you to check whether the current element has child elements without
actually getting the value from FirstChild and examining that against null.

Using XML in Your Application ❘ 737

Using the four properties from Table 22-2, it is possible to run through an entire XmlDocument, as shown
in the following Try It Out.

TRY IT OUT Looping through All Nodes in an XML Document

In this example, you are going to create a small Windows Forms application that loops through all the
nodes of an XML document and prints out the name of the element or the text contained in the element in
the case of an XmlText element. This code uses book.xml, which you saw in the ‘‘Schemas’’ section earlier;
if you didn’t create that file as you worked through that section, you can find it in the downloadable code
for this book.

FIGURE 22-3

1. Begin by creating a new Windows Forms
project by selecting File ➪ New ➪ Project.
In the dialog that appears, select Windows
➪ Windows Forms Application. Name the
project LoopThroughXmlDocument and press
Enter.

2. Design the form as shown in Figure 22-3 by
dragging a TextBox control and a Button con-
trol onto the form.

3. Name the TextBox control textBoxResult
and name the button buttonLoopThrough-
Document. Set the text box property Multiline

to true and the Scrollbars property to Vertical.

4. Double-click the button and enter the code that follows. Don’t forget to add using System.Xml;

to the using section at the top of the file.

private void buttonLoopThroughDocument_Click(object sender, EventArgs e)
{
XmlDocument document = new XmlDocument();
document.Load(@"C:\Beginning Visual C# 2010\Chapter 22\Books.xml");
textBoxResult.Text = FormatText(document.DocumentElement as XmlNode, "", "");

}

private string FormatText(XmlNode node, string text, string indent)
{
if (node is XmlText)
{

text += node.Value;
return text;

}

if (string.IsNullOrEmpty(indent))
indent = "";

else
{

text += "\r\n" + indent;
}

if (node is XmlComment)

738 ❘ CHAPTER 22 XML

{
text += node.OuterXml;
return text;

}

text += "<" + node.Name;
if (node.Attributes.Count > 0)
{
AddAttributes(node, ref text);

}
if (node.HasChildNodes)
{
text += ">";
foreach (XmlNode child in node.ChildNodes)
{

text = FormatText(child, text, indent + " ");
}
if (node.ChildNodes.Count == 1 &&

(node.FirstChild is XmlText || node.FirstChild is XmlComment))
text += "</" + node.Name + ">";

else
text += "\r\n" + indent + "</" + node.Name + ">";

}
else
text += " />";

return text;
}

private void AddAttributes(XmlNode node, ref string text)
{

foreach (XmlAttribute xa in node.Attributes)
{
text += " " + xa.Name + "=’" + xa.Value + "’";

}
}

Code snippet Chapter22\LoopThroughXmlDocument\Form1.cs

5. Run the application and click Loop. You should
get a result like the one shown in Figure 22-4.

How It Works

FIGURE 22-4

When you click the button, first the XmlDocument

method Load is called. This method loads the XML
from a file into the XmlDocument instance, which can
then be used to access the elements of the XML. Then
you call a method that enables you to loop through
the XML recursively, passing the root node of the
XML document to the method. The root element
is obtained with the property DocumentElement of
the XmlDocument class. Aside from the check for

Using XML in Your Application ❘ 739

null on the root parameter that is passed into the RecurseXmlDocument method, the first line to note is the
if sentence:

if (node is XmlText)
{

.
}

Recall that the is operator enables you to examine the type of an object, and it returns true if the
instance is of the specified type. Even though the root node is declared as an Xmlnode, that is merely
the base type of the objects you are going to work with. By using the is operator to test the type of the
objects, you are able to determine the type of the object at runtime and select the action to perform based
on that.

Inside the FormatText method you generate the text for the text box. You have to know the type of the
current instance of root because the information you want to display is obtained differently for different
elements: You want to display the name of XmlElements and the value of XmlText elements.

Changing the Values of Nodes
Before you examine how to change the value of a node, it is important to realize that very rarely is the
value of a node a simple thing. In fact, you will find that although all of the classes that derive from
XmlNode include a property called Value, it very rarely returns anything useful to you. While this can
feel like a bit of a letdown at first, you’ll find it is actually quite logical. Examine the books example
from earlier:

<books>
<book>

<title>Beginning Visual C# 4.0</title>
<author>Karli Watson</author>
<code>7582</code>

</book>
<book>

</books>

Every single tag pair in the document resolves into a node in the DOM. Remember that when you
looped through all the nodes in the document, you encountered a number of XmlElement nodes and
three XmlText nodes. The XmlElement nodes in this XML are <books>, <book>, <title>, <author>, and
<code>. The XmlText nodes are the text between the starting and closing tags of title, author, and code.
Though it could be argued that the value of title, author, and code is the text between the tags, that text
is itself a node; and it is that node that actually holds the value. The other tags clearly have no value
associated with them other than other nodes.

The following line is in the if block near the top of the code in the earlier FormatText method. It
executes when the current node is an XmlText node.

text += node.Value;

You can see that the Value property of the XmlText node instance is used to get the value of the node.

Nodes of the type XmlElement return null if you use their Value property, but it is possible to get
the information between the starting and closing tags of an XmlElement if you use one of two other

740 ❘ CHAPTER 22 XML

methods: InnerText and InnerXml. That means you are able to manipulate the value of nodes using
two methods and a property, as described in Table 22-3.

TABLE 22-3: Three Ways to get the Value of a Node

PROPERTY DESCRIPTION

InnerText Gets the text of all the child nodes of the current node and returns it as a
single concatenated string. This means if you get the value of InnerText
from the book node in the preceding XML, the string Beginning Visual C

2010#Karli Watson7582 is returned. If you get the InnerText of the title node,
only "Beginnning Visual C# 2010" is returned. You can set the text using this
method, but be careful if you do so because if you set the text of a wrong node
you may overwrite information you did not want to change.

InnerXml Returns the text like InnerText, but it also returns all of the tags. Therefore, if you
get the value of InnerXml on the book node, the result is the following string:

<title>Beginning Visual C# 2010</title><author>Karli Watson
</author><code>7582</code>

As you can see, this can be quite useful if you have a string containing XML that you
want to inject directly into your XML document. However, you are entirely respon-
sible for the string yourself, and if you insert badly formed XML, the application will
generate an exception.

Value The ‘‘cleanest’’ way to manipulate information in the document, but as mentioned
earlier, only a few of the classes actually return anything useful when you get the
value. The classes that will return the desired text are as follows:

XmlText
XmlComment
XmlAttribute

Inserting New Nodes
Now that you’ve seen that you can move around in the XML document and even get the values of the
elements, let’s examine how to change the structure of the document by adding nodes to the books
document you’ve been using until now.

To insert new elements in the list, you need to examine the new methods that are placed on the
XmlDocument and XmlNode classes, shown in Table 22-4. The XmlDocument class has methods that
enable you to create new XmlNode and XmlElement instances, which is nice because both of these
classes have only a protected constructor, which means you cannot create an instance of either directly
with new.

The methods in Table 22-4 are all used to create the nodes themselves, but after calling any of them you
have to do something with them before they become interesting. Immediately after creation, the nodes
contain no additional information, and they are not yet inserted into the document. To do either, you

Using XML in Your Application ❘ 741

should use methods that are found on any class derived from XmlNode (including XmlDocument and
XmlElement), described in the following table:

METHOD DESCRIPTION

AppendChild Appends a child node to a node of type XmlNode or a derived type. Remember
that the node you append appears at the bottom of the list of children of the
node on which the method is called. If you don’t care about the order of the chil-
dren, there’s no problem; if you do care, remember to append the nodes in the
correct sequence.

InsertAfter Controls exactly where you want to insert the new node. The method takes two
parameters — the first is the new node and the second is the node after which
the new node should be inserted.

InsertBefore Works exactly like InsertAfter, except that the new node is inserted before
the node you supply as a reference.

TABLE 22-4: Methods for Creating Nodes

METHOD DESCRIPTION

CreateNode Creates any kind of node. There are three overloads of the method, two of
which enable you to create nodes of the type found in the XmlNodeType

enumeration and one that enables you to specify the type of node to use as
a string. Unless you are quite sure about specifying a node type other than
those in the enumeration, use the two overloads that use the enumeration. The
method returns an instance of XmlNode that can then be cast to the appropriate
type explicitly.

CreateElement A version of CreateNode that creates only nodes of the XmlDocument variety.

CreateAttribute A version of CreateNode that creates only nodes of the XmlAttribute variety.

CreateTextNode Creates — yes, you guessed it — nodes of the type XmlTextNode

CreateComment This method is included here to highlight the diversity of node types that can
be created. This method doesn’t create a node that is actually part of the data
represented by the XML document, but rather is a comment meant for any
human eyes that might have to read the data. You can pick up comments when
reading the document in your applications as well.

In the Following Try It Out, you build on the previous example and insert a book node in the books.xml
document. There is no code in the example to clean up the document (yet), so if you run it several times
you will probably end up with a lot of identical nodes.

742 ❘ CHAPTER 22 XML

TRY IT OUT Creating Nodes

Follow these steps to add a node to the books.xml document:

1. Add a button beneath the existing button on the form and name it buttonCreateNode. Change its
Text property to Create Node.

2. Double-click the new button and enter the following code:

private void buttonCreateNode_Click(object sender, EventArgs e)
{
// Load the XML document.
XmlDocument document = new XmlDocument();
document.Load(@"C:\Beginning Visual C#\Chapter 22\Books.xml");

// Get the root element.
XmlElement root = document.DocumentElement;

// Create the new nodes.
XmlElement newBook = document.CreateElement("book");
XmlElement newTitle = document.CreateElement("title");
XmlElement newAuthor = document.CreateElement("author");
XmlElement newCode = document.CreateElement("code");
XmlText title = document.CreateTextNode("Beginning Visual C# 2008");
XmlText author = document.CreateTextNode("Karli Watson et al");
XmlText code = document.CreateTextNode("1234567890");
XmlComment comment = document.CreateComment("The previous edition");

// Insert the elements.
newBook.AppendChild(comment);
newBook.AppendChild(newTitle);
newBook.AppendChild(newAuthor);
newBook.AppendChild(newCode);
newTitle.AppendChild(title);
newAuthor.AppendChild(author);
newCode.AppendChild(code);
root.InsertAfter(newBook, root.FirstChild);

document.Save(@"C:\Beginning Visual C#\Chapter 22\Books.xml");
}

Code snippet Chapter22\InsertingNodes\Form1.cs

FIGURE 22-5

3. Run the application and click Create Node.
Then click Loop, and you should see the dia-
log shown in Figure 22-5.

There is one important type of node that you didn’t
create in the preceding example: the XmlAttribute.
That is left as an exercise at the end of the chapter.

How It Works

The code in the buttonCreateNode_Click method
is where all the creation of nodes happens. It

Using XML in Your Application ❘ 743

creates eight new nodes, four of which are of type XmlElement, three of type XmlText, and one of type
XmlComment.

All of the nodes are created with the method of the encapsulating XmlDocument instance. The XmlElement

nodes are created with the CreateElement method, the XmlText nodes are created with the CreateTextNode
method, and the XmlComment node is created with the CreateComment method.

After the nodes have been created, they still need to be inserted into the XML tree. This is done with the
AppendChild method on the element to which the new node should become a child. The only exception
to this is the book node, which is the root node of all of the new nodes. This node is inserted into the
tree using the InsertAfter method of the root object. Whereas all of the nodes that are inserted using
AppendChild always become the last node in the list of child nodes, InsertAfter enables you to position
the node where you want it.

Deleting Nodes
Now that you’ve seen how to create new nodes, all that is left is to learn how to delete them again. All
classes derived from XmlNode include two methods, shown in the following table, that enable you to
remove nodes from the document:

METHOD DESCRIPTION

RemoveAll Removes all child nodes in the node on which it is called. What is slightly less
obvious is that it also removes all attributes on the node because they are
regarded as child nodes as well.

RemoveChild Removes a single child in the node on which it is called. The method returns the
node that has been removed from the document, but you can reinsert it if you
change your mind.

The following short Try It Out extends the Windows Forms application you’ve been creating over the
past two examples to include the capability to delete nodes. For now, it finds only the last instance of
the book node and removes it.

TRY IT OUT Removing Nodes

The following steps enable you to find and remove the final instance of the book node:

1. Add a new button below the two that already exist and name it buttonDeleteNode. Set its Text
property to Delete Node.

2. Double-click the new button and enter the following code:

private void buttonDeleteNode_Click(object sender, EventArgs e)
{
// Load the XML document.
XmlDocument document = new XmlDocument();
document.Load(@"C:\Beginning Visual C# 2010\Chapter 22\Books.xml");

// Get the root element.

744 ❘ CHAPTER 22 XML

XmlElement root = document.DocumentElement;

// Find the node. root is the <books> tag, so its last child
// which will be the last <book> node.
if (root.HasChildNodes)
{
XmlNode book = root.LastChild;

// Delete the child.
root.RemoveChild(book);

// Save the document back to disk.
document.Save(@"C:\Beginning Visual C# 2010\Chapter 22\Books.xml");

}
}

Code snippet: Chapter22\RemovingNodes\Form1.cs

3. Run the application. When you click the Delete Node button and then the Loop button, the last
node in the tree will disappear.

How It Works

After the initial steps to load the XML into the XmlDocument object, you examine the root element to see
whether there are any child elements in the XML you loaded. If there are, then you use the LastChild

property of the XmlElement class to get the last child. After that, removing the element is as simple as
calling RemoveChild, passing in the instance of the element you wish to remove — in this case, the last
child of the root element.

Selecting Nodes
You now know how to move back and forth in an XML document, how to manipulate the values of
the document, how to create new nodes, and how to delete them again. Only one thing remains in this
chapter: how to select nodes without having to traverse the entire tree.

The XmlNode class includes two methods, described in Table 22-5, commonly used to select nodes
from the document without running through every node in it: SelectSingleNode and SelectNodes,
both of which use a special query language, called XPath, to select the nodes. You learn about that
shortly.

TABLE 22-5: Methods for Selecting Nodes

METHOD DESCRIPTION

SelectSingleNode Selects a single node. If you create a query that fetches more than one node,
only the first node will be returned.

SelectNodes Returns a node collection in the form of an XmlNodesList class

Using XML in Your Application ❘ 745

XPath
XPath is a query language for XML documents, much as SQL is for relational databases. It is used by
the two methods described in Table 22-5 that enable you to avoid the hassle of walking the entire tree
of an XML document. It does take a little getting used to, however, because the syntax is nothing like
SQL or C#.

NOTE XPath is quite extensive, and only a small part of it is covered here so you
can start selecting nodes. If you are interested in learning more, take a look at
www.w3.org/TR/xpath and the Visual Studio help pages.

To properly see XPath in action, you are going to use an XML file called Elements.xml which contains
a partial list of the chemical elements of the periodic table. You will find a subset of that XML listed
in the ‘‘Selecting Nodes’’ Try It Out example later in the chapter, and it can be found in the download
code for this chapter on this book’s website as Elements.xml.

Table 22-6 lists some of the most common operations you can perform with XPath. If nothing else is
stated, the XPath query example makes a selection that is relative to the node on which it is performed.
Where it is necessary to have a node name, you can assume that the current node is the <book> node in
the XML document.

TABLE 22-6: Common XPath Operations

PURPOSE XPATH QUERY EXAMPLE

Select the current node. .

Select the parent of the current node. ..

Select all child nodes of the current node. *

Select all child nodes with a specific name — in this case, title. title

Select an attribute of the current node. @Type

Select all attributes of the current node. @*

Select a child node by index — in this case, the second element
node.

element[2]

Select all the text nodes of the current node. text()

Select one or more grandchildren of the current node. element/text()

Select all nodes in the document with a particular name — in this
case, all mass nodes.

//mass

continues

746 ❘ CHAPTER 22 XML

TABLE 22-6 (continued)

PURPOSE XPATH QUERY EXAMPLE

Select all nodes in the document with a particular name and a
particular parent name — in this case, the parent name is element
and the node name is name.

//element/name

Select a node where a value criterion is met — in this case, the
element for which the name of the element is Hydrogen.

//element[name=’Hydrogen’]

Select a node where an attribute value criterion is met — in this
case, the Type attribute = Noble Gas.

//element[@Type=’Noble

Gas’]

In the following Try It Out, you’ll create a small application that enables you to execute and see the
results of a number of predefined queries, as well as enter your own queries.

TRY IT OUT Selecting Nodes

As previously mentioned, this example uses a new XML file called Elements.xml. You can download the
file from the book’s website or type it in from here:

<?xml version="1.0"?>
<elements>
<!--First Non-Metal-->
<element Type="Non-Metal">

<name>Hydrogen</name>
<symbol>H</symbol>
<number>1</number>
<specification>
<mass>1.007825</mass>
<density>0.0899 g/cm3</density>

</specification>
</element>
<!--First Noble Gas-->
<element Type="Noble Gas">

<name>Helium</name>
<symbol>He</symbol>
<number>2</number>
<specification>
<mass>4.002602</mass>
<density>0.1785 g/cm3</density>

</specification>
</element>
<!--First Halogen-->
<element Type="Halogen">

<name>Fluorine</name>
<symbol>F</symbol>
<number>9</number>
<specification>
<mass>18.998404</mass>
<density>1.696 g/cm3</density>

</specification>

Using XML in Your Application ❘ 747

</element>
<element Type="Noble Gas">

<name>Neon</name>
<symbol>Ne</symbol>
<number>10</number>
<specification>
<mass>20.1797</mass>
<density>0.901 g/cm3</density>

</specification>
</element>

</elements>

Code snippet: Chapter22\XpathQuery\Elements.xml

Save the XML file as Elements.xml. Remember to change the path to the file in the code that follows.
This example is a small query tool that you can use to test different queries on the XML provided with
the code.

Follow these steps to create a Windows Forms application with querying capability:

1. Create a new Windows Forms application and name it XPathQuery.

2. Create the dialog shown in Figure 22-6. Name the controls as shown in the figure, except for
the button, which should be named buttonExecute, and set the Scrollbars property of the
textBoxResult control to Vertical.

FIGURE 22-6

3. Right-click the form and choose View Code. Include the using directive:

using System.Xml;

4. Add a private field to hold the document, and initialize it in the constructor:
private XmlDocument document;

public Form1()
{

748 ❘ CHAPTER 22 XML

InitializeComponent();

document = new XmlDocument();
document.Load(@"C:\Beginning Visual C#\Chapter 22\Elements Subset.xml");

}

5. You need a few helper methods to display the result of the queries in the textBoxResult text box:

private void Update(XmlNodeList nodes)
{
if (nodes == null || nodes.Count == 0)
{

textBoxResult.Text = "The query yielded no results";
return;

}
string text = "";
foreach (XmlNode node in nodes)
{

text = FormatText(node, text, "") + "\r\n";
}
textBoxResult.Text = text;

}

6. Update the constructor to display the entire content of the XML file when the application starts:

public Form1()
{
InitializeComponent();

document = new XmlDocument();
document.Load(@"C:\Beginning Visual C#\Chapter 22\Elements Subset.xml");

Update(document.DocumentElement.SelectNodes("."));
}

7. Copy and paste the two methods FormatText and AddAttributes from the previous Try It Out
sections to the new project.

8. Finally, insert the code that executes whatever the user has entered in the text box:

private void buttonExecute_Click(object sender, EventArgs e)
{

try
{
XmlNodeList nodes = document.DocumentElement.SelectNodes(textBoxQuery.Text);
Update(nodes);

}
catch (Exception err)
{
textBoxResult.Text = err.Message;

}
}

Summary ❘ 749

9. Run the application and type the following query into the textBoxQuery text box to select the
element node that contains a node with the text ‘‘Hydrogen’’:

element[name=’Hydrogen’]

How It Works

The buttonExecute_Click method is the method performing the queries. Because you can’t know in
advance if the queries typed into the textBoxQuery are going to yield a single or multiple nodes, you must
use the SelectNodes method. This will either return an XmlNodeList object or throw one of the exceptions
regarding XPath if the query used is illegal.

The Update method is responsible for looping through the content of the XmlNodeList selected by
SelectNodes. It calls FormatText from the earlier examples with each of the nodes, and FormatText

is responsible for recursively traversing the node tree and creating readable text you can use in the
textBoxResult control.

In the exercises at the end of the chapter, you will find a number of additional XPath queries to try. Before
you enter them into the XPathQuery application to see the result, try to determine for yourself the query’s
outcome.

SUMMARY

In this chapter you learned about Extensible Markup Language (XML), a text format for storing and
retrieving data. You looked at the rules you need to obey to ensure that XML documents are well-
formed, and you learned how to validate them against XSD and XDR schemas.

After learning about the basics of XML, you saw how XML can be utilized through code using C# and
Visual Studio. Finally, you learned how to use XPath to make queries in the XML.

In the next chapter you will learn how to work with a very interesting query language: LINQ. This
language can also be used to query XML, but that is beyond the scope of this book. Before you move
on, however, try to complete the following exercises.

EXERCISES

1. Change the Insert example in the ‘‘Creating Nodes’’ Try It Out section to insert an attribute called
Pages with the value 1000 on the book node.

continues

750 ❘ CHAPTER 22 XML

2. Determine the outcome of the following XPath queries and then verify your results by typing the
queries into the XPathQuery application from the ‘‘Selecting Nodes’’ Try It Out. Remember that all
of your queries are being executed on the DocumentElement, which is the elements node.

//elements
element
element[@Type=’Noble Gas’]
//mass
//mass/..
element/specification[mass=’20.1797’]
element/name[text()=’Neon’]

3. On many Windows systems the default viewer of XML is a Web browser. If you are using Internet
Explorer you will see a nicely formatted view of the XML when you load the Elements.xml file into
it. Why would it not be ideal to display the XML from our queries in a browser control instead of a
text box?

Answers to Exercises can be found in Appendix A.

Summary ❘ 751

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

XML syntax XML documents are created from an XML declaration, XML namespaces,
XML elements and attributes. The XML declaration defines the XML
version. XML namespaces are used to define vocabularies and XML ele-
ments and attributes are used to define the XML document content.

Well-formed XML Well-formed XML is XML that adheres to the basic syntax rules of XML. A
document is said to be well-formed when there is precisely one root element,
and every element has a closing tag, no elements overlap other elements
(all child elements must be fully nested within the parent), and all attributes
enclosed in quotes. All XML readers can read well-formed XML – but very
few if any will allow you to read documents that are not well-formed. Strictly
speaking, if a document containing tags isn’t well-formed then it is not an
XML document.

Valid XML Valid XML is XML that is well-formed and can be validated by checking that
it can be generated from a schema. Ensuring that XML is valid is important
because it lets you make assumptions about the content of the XML doc-
ument, which allows you to work with documents that were generated by
others with the knowledge that the structure and names within the document
are exactly as expected.

XML schema XML schema is used to define the structure of XML documents. Schemas are
especially useful when you need to exchange information with third parties.
By agreeing on a schema for the data that is exchanged, you and the third
party will be able to check that the documents are valid.

XML in your programs XML is used extensively throughout the .NET world today, and the .NET
framework provides a host of classes for creating and manipulating XML.
You can use XML to store application configuration, persist data to disk,
send information across the wire, and so on.

XPath XPath is one of the possible ways to query data in XML documents. To use
XPath, you must be familiar with the structure of the XML document in order
to be able to select individual elements from it. Though XPath can be used
on any well-formed XML document, the fact that you must know the structure
of the document when you create the query means that ensuring that the
document is valid also ensures that the query will work from document to
document, as long as the documents are valid against the same schema.

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

23
Introduction to LINQ

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ Coding a LINQ query and the parts of a LINQ query statement

➤ Using LINQ method syntax versus LINQ query syntax

➤ Ordering query results, including ordering on multiple levels

➤ When and how to use LINQ aggregate operators

➤ Using projection to create new objects in queries

➤ Using the Distinct(), Any(), All(), First(), FirstOrDefault(),
Take(), and Skip() operators

➤ Group queries

➤ Set operators and joins

This chapter introduces Language Integrated Query (LINQ). LINQ is an extension to the
C# language introduced in C# 3.0, which preceded the C# 4 language supported in Visual
Studio 2010. LINQ solves the problem of dealing with very large collections of data, for
which you typically need to select a subset of the collection for the task your program is
performing.

In the past, this sort of work required writing a lot of looping code, and additional processing
such as sorting or grouping the found objects required even more code. LINQ frees you from
having to write this extra looping code to filter and sort. It enables you to focus on the objects
that matter to your program.

In addition to providing an elegant query language that enables you to specify exactly what
objects you are searching for, LINQ offers many extension methods that make it easy to sort,
group, and calculate statistics on your query results.

754 ❘ CHAPTER 23 INTRODUCTION TO LINQ

With LINQ, you can query many different data sources in C#, including objects, SQL databases, XML
documents, entity data models, and external applications such as Amazon Web services and corporate
directories. The LINQ syntax and methods shown in this chapter are the same for all the different
data sources. The LINQ providers for querying different sources are covered in the following chapter,
‘‘Applied LINQ.’’

LINQ is large enough that complete coverage of all its facilities and methods is beyond the scope
of a beginning book. However, you will see examples of all of the different types of operators and
statements you are likely to need as a user of LINQ, and you will be pointed to resources for more
in-depth coverage as appropriate.

FIRST LINQ QUERY

Let’s get started with an example. In the following Try It Out, you use LINQ to create a query to find
some data in a simple in-memory array of objects and print it to the console.

TRY IT OUT First LINQ Program

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application called 23-1-FirstLINQquery in the directory C:\BegVCSharp\

Chapter23, and then open the main source file Program.cs.

2. Notice that Visual C# 2010 includes the Linq namespace by default in Program.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

3. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

var queryResults =
from n in names
where n.StartsWith("S")
select n;

Console.WriteLine("Names beginning with S:");

foreach (var item in queryResults) {
Console.WriteLine(item);

}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
CodeSnippet 23-1-FirstLINQquery\Program.cs

First LINQ Query ❘ 755

4. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
names in the list beginning with S in the order they were declared in the array, as shown here:

Names beginning with S:
Smith
Smythe
Small
Singh
Samba
Program finished, press Enter/Return to continue:

Simply press Enter/Return to finish the program and make the console screen disappear. If you
used Ctrl+F5 (Start Without Debugging), you may need to press Enter/Return twice. That finishes
the program run.

How It Works

The first step is to reference the System.Linq namespace, which is done automatically by Visual C# 2010
when you create a project:

using System.Linq;

All the underlying base system support classes for LINQ reside in the System.Linq namespace. If you create
a C# source file outside of Visual C# 2010 or edit a previously existing Visual C# 2005 project, you may
have to add the using System.Linq statement manually.

The next step is to create some data, which is done in this example by declaring and initializing the array
of names:

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe", "Small",
"Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

This is a trivial set of data, but it is good to start with an example for which the result of the query is
obvious. The actual LINQ query statement is the next part of the program:

var queryResults =
from n in names
where n.StartsWith("S")
select n;

That is an odd-looking statement, isn’t it? It almost looks like something from a language other than C#,
and the from..where..select syntax is deliberately similar to that of the SQL database query language.
However, this statement is not SQL; it is indeed C#, as you saw when you typed in the code in Visual C#
2010 — the from, where, and select were highlighted as keywords, and the odd-looking syntax is perfectly
fine to the compiler.

The LINQ query statement in this program uses the LINQ declarative query syntax:

var queryResults =
from n in names
where n.StartsWith("S")
select n;

The statement has four parts: the result variable declaration beginning with var, which is assigned using a
query expression consisting of the from clause; the where clause; and the select clause. Let’s look at each
of these parts in turn.

756 ❘ CHAPTER 23 INTRODUCTION TO LINQ

Declaring a Variable for Results Using the var Keyword
The LINQ query starts by declaring a variable to hold the results of the query, which is usually done
by declaring a variable with the var keyword:

var queryResult =

As described in Chapter 14, var is a new keyword in C# created to declare a general variable type that
is ideal for holding the results of LINQ queries. The var keyword tells the C# compiler to infer the type
of the result based on the query. That way, you don’t have to declare ahead of time what type of objects
will be returned from the LINQ query — the compiler takes care of it for you. If the query can return
multiple items, then it acts like a collection of the objects in the query data source (technically, it is not
a collection; it just looks that way).

NOTE If you want to know the details, the query result will be a type that
implements the IEnumerable<> interface. The angle brackets (<>) following
IEnumerable indicate that it is a generic type. Generics are described in
Chapter 12.

In this particular case, the compiler creates an instance of
System.Linq.OrderedSequence<string, string>, a special LINQ data type that
provides an ordered list of strings (strings because the data source is a collection
of strings).

By the way, the name queryResult is arbitrary — you can name the result anything you want. It could
be namesBeginningWithS or anything else that makes sense in your program.

Specify Data Source: from Clause
The next part of the LINQ query is the from clause, which specifies the data you are querying:

from n in names

Your data source in this case is names, the array of strings declared earlier. The variable n is just a
stand-in for an individual element in the data source, similar to the variable name following a foreach

statement. By specifying from, you are indicating that you are going to query a subset of the collection,
rather than iterate through all the elements.

Speaking of iteration, a LINQ data source must be enumerable — that is, it must be an array or collec-
tion of items from which you can pick one or more elements to iterate through.

NOTE Enumerable means the data source must support the IEnumerable<>

interface, which is supported for any C# array or collection of items.

The data source cannot be a single value or object, such as a single int variable. You already have such
a single item, so there would be no point in querying it!

First LINQ Query ❘ 757

Specify Condition: where Clause
In the next part of the LINQ query, you specify the condition for your query using the where clause,
which looks like this:

where n.StartsWith("S")

Any Boolean (true or false) expression that can be applied to the items in the data source can be
specified in the where clause. Actually, the where clause is optional and can even be omitted, but in
almost all cases you will want to specify a where condition to limit the results to only the data you
want. The where clause is called a restriction operator in LINQ because it restricts the results of
the query.

Here, you specify that the name string starts with the letter S, but you could specify anything else about
the string instead — for example, a length greater than 10 (where n.Length > 10) or containing a Q
(where n.Contains("Q")).

Select Items: select Clause
Finally, the select clause specifies which items appear in the result set. The select clause looks
like this:

select n

The select clause is required because you must specify which items from your query appear in the
result set. For this set of data, it is not very interesting because you have only one item, the name, in
each element of the result set. You’ll look at some examples with more complex objects in the result
set where the usefulness of the select clause will be more apparent, but first, you need to finish the
example.

Finishing Up: Using the foreach Loop
Now you print out the results of the query. Like the array used as the data source, the results of a LINQ
query like this are enumerable, meaning you can iterate through the results with a foreach statement:

Console.WriteLine("Names beginning with S:");

foreach (var item in queryResults) {
Console.WriteLine(item);

}

In this case, you matched four names — Singh, Small, Smythe, and Samba — so that is what you dis-
play in the foreach loop.

Deferred Query Execution
You may be thinking that the foreach loop really isn’t part of LINQ itself — it’s only looping through
your results. While it’s true that the foreach construct is not itself part of LINQ, nevertheless, it is the
part of your code that actually executes the LINQ query! The assignment of the query results variable
only saves a plan for executing the query; with LINQ, the data itself is not retrieved until the results
are accessed. This is called deferred query execution or lazy evaluation of queries. Execution will be
deferred for any query that produces a sequence — that is, a list — of results.

758 ❘ CHAPTER 23 INTRODUCTION TO LINQ

Now, back to your code. Because you’ve printed out the results, let’s finish the program:

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

These lines just ensure that the results of the console program stay on the screen until you press a key,
even if you press F5 instead of Ctrl+F5. You’ll use this construct in most of the other LINQ examples
as well.

USING THE LINQ METHOD SYNTAX

There are multiple ways of doing the same thing with LINQ, as is often the case in programming. As
noted, the previous example was written using the LINQ query syntax; in the next example, you will
write the same program using LINQ’s method syntax (also called explicit syntax, but we’ll use the term
method syntax here).

LINQ Extension Methods
LINQ is implemented as a series of extension methods to collections, arrays, query results, and any other
object that implements the IEnumerable interface. You can see these methods with the Visual Studio
IntelliSense feature. For example, in Visual C# 2010, open the Program.cs file in the FirstLINQquery

program you just completed and type in a new reference to the names array just below it:

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe", "Small",
"Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

names.

Just as you type the period following names, you will see the methods available for names listed by the
Visual Studio IntelliSense feature.

The Where<> method and most of the other available methods are extension methods (as shown in the
documentation appearing to the right of the Where<> method, it begins with extension). You can see
that they are LINQ extensions by commenting out the using System.Linq directive at the top; you
will find that Where<>, Union<>, Take<>, and most of the other methods in the list no longer appear.
The for..where..select query expression you used in the previous example is translated by the C#
compiler into a series of calls to these methods. When using the LINQ method syntax, you call these
methods directly.

Query Syntax versus Method Syntax
The query syntax is the preferred way of programming queries in LINQ, as it is generally easier to
read and is simpler to use for the most common queries. However, it is important to have a basic
understanding of the method syntax because some LINQ capabilities either are not available in the
query syntax, or are just easier to use in the method syntax.

NOTE As the Visual C# 2010 online help recommends, use query syntax
whenever possible, and method syntax whenever necessary.

Using the LINQ Method Syntax ❘ 759

In this chapter, you will mostly use the query syntax, but the method syntax is pointed out in situations
where it is needed, and you’ll learn how to use the method syntax to solve the problem.

Most of the LINQ methods that use the method syntax require that you pass a method or function
to evaluate the query expression. The method/function parameter is passed in the form of a delegate,
which typically references an anonymous method.

Luckily, LINQ makes doing this much easier than it sounds! You create the method/function by using
a lambda expression, as described in Chapter 14.

Try this out in an actual program to see this more clearly.

TRY IT OUT Using LINQ Method Syntax

Follow these steps to create the example in Visual C# 2010:

1. You can either modify the FirstLINQQuery example or create a new console application called
23-2-LINQMethodSyntax in the directory C:\BegVCSharp\Chapter23. Open the main source file
Program.cs.

2. Again, Visual C# 2010 includes the Linq namespace automatically in Program.cs:

using System.Linq;

3. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

var queryResults = names.Where(n => n.StartsWith("S"));

Console.WriteLine("Names beginning with S:");

foreach (var item in queryResults) {
Console.WriteLine(item);

}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
CodeSnippet 23-2-LINQMethodSyntax\Program.cs

4. Compile and execute the program (you can just press F5). You will see the same output of names
in the list beginning with S, in the order they were declared in the array, as shown here:

Names beginning with S:
Smith
Smythe
Small
Singh
Samba
Program finished, press Enter/Return to continue:

760 ❘ CHAPTER 23 INTRODUCTION TO LINQ

How It Works

As before, the System.Linq namespace is referenced automatically by Visual C# 2010:

using System.Linq;

The same source data as before is created again by declaring and initializing the array of names:

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe", "Small", "Ruiz",
"Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

The part that is different is the LINQ query, which is now a call to the Where() method instead of a
query expression:

var queryResults = names.Where(n => n.StartsWith("S"));

The C# compiler compiles the lambda expression n => n.StartsWith("S")) into an anonymous method
that is executed by Where() on each item in the names array. If the lambda expression returns true for an
item, that item is included in the result set returned by Where(). The C# compiler infers that the Where()

method should accept string as the input type for each item from the definition of the input source (the
names array, in this case).

Well, a lot is going on in that one line, isn’t it? For the simplest type of query like this, the method syntax is
actually shorter than the query syntax because you do not need the from or select clauses; however, most
queries are more complex than this.

The rest of the example is the same as the previous one — you print out the results of the query in a foreach

loop and pause the output so you can see it before the program finishes execution:

foreach (var item in queryResults) {
Console.WriteLine(item);

}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

An explanation of these lines isn’t repeated here because that was covered in the ‘‘How It Works’’ section
following the first example in the chapter. Let’s move on now and explore how to use more of LINQ’s
capabilities.

ORDERING QUERY RESULTS

Once you have located some data of interest with a where clause (or Where() method invocation),
LINQ makes it easy to perform further processing — such as reordering the results — on the resulting
data. In the following Try It Out, you put the results from your first query in alphabetical order.

TRY IT OUT Ordering Query Results

Follow these steps to create the example in Visual C# 2010:

1. You can either modify the FirstLINQQuery example or create a new console application project
called 23-3-OrderQueryResults in the directory C:\BegVCSharp\Chapter23.

2. Open the main source file Program.cs. As before, Visual C# 2010 includes the using

System.Linq; namespace directive automatically in Program.cs.

orderby Clause ❘ 761

3. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

var queryResults =
from n in names
where n.StartsWith("S")
orderby n
select n;

Console.WriteLine("Names beginning with S ordered alphabetically:");

foreach (var item in queryResults) {
Console.WriteLine(item);

}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
CodeSnippet 23-3-OrderQueryResults\Program.cs

4. Compile and execute the program. You will see the names in the list beginning with S in alphabet-
ical order, as shown here:

Names beginning with S:
Samba
Singh
Small
Smith
Smythe
Program finished, press Enter/Return to continue:

How It Works

This program is nearly identical to the previous example, except for one additional line added to the query
statement:

var queryResults =
from n in names
where n.StartsWith("S")
orderby n
select n;

ORDERBY CLAUSE

The orderby clause looks like this:

orderby n

Like the where clause, the orderby clause is optional. Just by adding one line, you can order the results
of any arbitrary query, which would otherwise require at least several lines of additional code and

762 ❘ CHAPTER 23 INTRODUCTION TO LINQ

probably additional methods or collections to store the results of the reordered result, depending on
the sorting algorithm you chose to implement. If multiple types needed to be sorted, you would have to
implement a set of ordering methods for each one. With LINQ, you don’t need to worry about any of
that; just add one additional clause in the query statement and you’re done.

By default, orderby orders in ascending order (A to Z), but you can specify descending order (from
Z to A) simply by adding the descending keyword:

orderby n descending

This orders the example results as follows:

Smythe
Smith
Small
Singh
Samba

Plus, you can order by any arbitrary expression without having to rewrite the query; for example, to
order by the last letter in the name instead of normal alphabetical order, you just change the orderby

clause to the following:

orderby n.Substring(n.Length - 1)

This results in the following output:

Samba
Smythe
Smith
Singh
Small

NOTE The last letters are in alphabetical order (a, e, h, h, l). However, you will
notice that the execution is implementation-dependent, meaning there’s no
guarantee of order beyond what is specified in the orderby clause. The last letter
is the only letter considered, so, in this case, Smith came before Singh.

ORDERING USING METHOD SYNTAX

To add capabilities such as ordering to a query using the method syntax, you simply add a method
call for each LINQ operation you want to perform on your method-based LINQ query. Again, this is
simpler than it sounds, as shown in the following Try It Out.

TRY IT OUT Ordering Using Method Syntax

Follow these steps to create the example in Visual C# 2010:

1. You can either modify the 23-2-LINQMethodSyntax example, or create a new console applica-
tion project called 23-4-OrderMethodSyntax in the directory C:\BegVCSharp\Chapter23.

Ordering Using Method Syntax ❘ 763

2. Add the following code to the Main() method in Program.cs. As in all the examples, Visual C#
2010 automatically includes the reference to the System.Linq namespace.

static void Main(string[] args)
{

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

var queryResults = names.OrderBy(n => n).Where(n => n.StartsWith("S"));

Console.WriteLine("Names beginning with S:");

foreach (var item in queryResults) {
Console.WriteLine(item);

}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
CodeSnippet 23-4-OrderMethodSyntax\Program.cs

3. Compile and execute the program. You will see the names in the list beginning with S in alphabet-
ical order, as in the output from the previous example.

How It Works

This example is nearly identical to the previous method syntax example, except for the addition of the call
to the LINQ OrderBy() method preceding the call to the Where() method:

var queryResults = names.OrderBy(n => n).Where(n => n.StartsWith("S"));

As you may have seen from the IntelliSense when you typed the code in, the OrderBy() method returns an
IOrderedEnumerable, which is a superset of the IEnumerable interface, so you can call Where() on it just
as you can with any other IEnumerable.

NOTE The compiler infers that you are working with string data, so the data
types appear in IntelliSense as IOrderedEnumerable<string> and
IEnumerable<string>.

You need to pass a lambda expression to OrderBy() to tell it which function to use for ordering. You pass
the simplest possible lambda, n => n, because you do not need to order by anything other than the item
itself. In the query syntax, you do not need to create this extra lambda expression.

To order the items in reverse order, call the OrderByDescending() method:

var queryResults = names.OrderByDescending(n => n).Where(n => n.StartsWith("S"));

This produces the same results as the orderby n descending clause you used in the query syntax version.

764 ❘ CHAPTER 23 INTRODUCTION TO LINQ

To order by something other than the value of the item itself, you can change the lambda expression
passed to OrderBy(). For example, to order by the last letter in each name, you would use the lambda
n => n. Substring(n.Length-1) and pass it to OrderBy as shown here:

var queryResults =
names.OrderBy(n => n.Substring(n.Length-1)).Where(n => n.StartsWith("S"));

This produces the same results, ordered by the last letter in each name, as the previous example.

QUERYING A LARGE DATA SET

All this LINQ syntax is well and good, you may be saying, but what is the point? You can see the
expected results clearly just by looking at the source array, so why go to all this trouble to query some-
thing that is obvious by just looking? As mentioned earlier, sometimes the results of a query are not so
obvious. In the following Try It Out, you create a very large array of numbers and query it using LINQ.

TRY IT OUT Querying a Large Data Set

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application called 23-5-LargeNumberQuery in the directory
C:\BegVCSharp\Chapter23. As before, when you create the project, Visual C# 2010 already
includes the Linq namespace method in Program.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

2. Add the following code to the Main() method:

static void Main(string[] args)
{

int[] numbers = generateLotsOfNumbers(12345678);

var queryResults =
from n in numbers
where n < 1000
select n

;

Console.WriteLine("Numbers less than 1000:");
foreach (var item in queryResults)
{

Console.WriteLine(item);
}
Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
CodeSnippet 23-5-LargeNumberQuery\Program.cs

Querying a Large Data Set ❘ 765

3. Add the following method to generate the list of random numbers:

private static int[] generateLotsOfNumbers(int count)
{

Random generator = new Random(0);
int[] result = new int[count];
for (int i = 0; i < count; i++)
{

result[i] = generator.Next();
}
return result;

}

4. Compile and execute the program. You will see a list of numbers less than 1000, as shown here:

Numbers less than 1000:
714
24
677
350
257
719
584
Program finished, press Enter/Return to continue:

How It Works

As before, the first step is to reference the System.Linq namespace, which is done automatically by Visual
C# 2010 when you create the project:

using System.Linq;

The next step is to create some data, which is done in this example by creating and calling the
generateLotsOfNumbers() method:

int[] numbers = generateLotsOfNumbers(12345678);

private static int[] generateLotsOfNumbers(int count)
{

Random generator = new Random(0);
int[] result = new int[count];
for (int i = 0; i < count; i++)
{

result[i] = generator.Next();
}
return result;

}

This is not a trivial set of data — there are 12 million numbers in the array! In one of the exercises at the
end of the chapter, you will change the size parameter passed to the generateLotsOfNumbers() method
to generate variously sized sets of random numbers and see how this affects the query results. As you
will see when doing the exercises, the size shown here of 12,345,678 is just large enough for the pro-
gram to generate some random numbers less than 1,000, in order to have results to show for this first
query.

766 ❘ CHAPTER 23 INTRODUCTION TO LINQ

The values should be randomly distributed over the range of a signed integer (from zero to more than
two billion). By creating the random number generator with a seed of 0, you ensure that the same set of
random numbers is created each time and is repeatable, so you get the same query results as shown here,
but what those query results are is unknown until you try some queries. Luckily, LINQ makes those queries
easy!

The query statement itself is similar to what you did with the names before, selecting some numbers that
meet a condition (in this case, numbers less than 1,000):

var queryResults =
from n in numbers
where n < 1000
select n

The orderby clause isn’t needed here and would add extra processing time (not noticeably for this query,
but more so as you vary the conditions in the next example).

You print out the results of the query with a foreach statement, just as in the previous example:

Console.WriteLine("Numbers less than 1000:");

foreach (var item in queryResults) {
Console.WriteLine(item);

}

Again, output to the console and read a character to pause the output:

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

The pause code appears in all the following examples but isn’t shown again because it is the same for
each one.

It is very easy with LINQ to change the query conditions to explore different characteristics of the data
set. However, depending on how many results the query returns, it may not make sense to print all the
results each time. In the next section you’ll see how LINQ provides aggregate operators to deal with that
issue.

AGGREGATE OPERATORS

Often a query returns more results than you might expect. For example, if you were to change the
condition of the large-number query program you just created to list the numbers greater than 1,000,
rather than the numbers less than 1,000, there would be so many query results that the numbers would
not stop printing!

Luckily, LINQ provides a set of aggregate operators that enable you to analyze the results of a query
without having to loop through them all. The following table shows the most commonly used aggregate
operators for a set of numeric results such as those from the large-number query. These may be familiar
to you if you have used a database query language such as SQL.

Aggregate Operators ❘ 767

OPERATOR DESCRIPTION

Count() Count of results

Min() Minimum value in results

Max() Maximum value in results

Average() Average value of numeric results

Sum() Total of all of numeric results

There are more aggregate operators, such as Aggregate(), for executing arbitrary code in a manner
that enables you to code your own aggregate function. However, those are for advanced users and
therefore beyond the scope of this book.

NOTE Because the aggregate operators return a simple scalar type instead of a
sequence for their results, their use forces immediate execution of query results
with no deferred execution.

In the following Try It Out, you modify the large-number query and use aggregate operators to explore
the result set from the greater-than version of the large-number query using LINQ.

TRY IT OUT Numeric Aggregate Operators

Follow these steps to create the example in Visual C# 2010:

1. For this example, you can either modify the LargeNumberQuery example you just
made or create a new console project named 23-6-NumericAggregates in the directory
C:\BegVCSharp\Chapter23.

2. As before, when you create the project, Visual C# 2010 includes the Linq namespace method in
Program.cs. You just need to modify the Main() method as shown in the following code and in the
rest of this Try It Out. As with the previous example, the orderby clause is not used in this query.
However, the condition on the where clause is the opposite of the previous example (the numbers
are greater than 1,000 (n > 1000), instead of less than 1,000).

static void Main(string[] args)
{

int[] numbers = generateLotsOfNumbers(12345678);

Console.WriteLine("Numeric Aggregates");

var queryResults =
from n in numbers

768 ❘ CHAPTER 23 INTRODUCTION TO LINQ

where n > 1000
select n

;

Console.WriteLine("Count of Numbers > 1000");
Console.WriteLine(queryResults.Count());

Console.WriteLine("Max of Numbers > 1000");
Console.WriteLine(queryResults.Max());

Console.WriteLine("Min of Numbers > 1000");
Console.WriteLine(queryResults.Min());

Console.WriteLine("Average of Numbers > 1000");
Console.WriteLine(queryResults.Average());

Console.WriteLine("Sum of Numbers > 1000");
Console.WriteLine(queryResults.Sum(n => (long) n));

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
CodeSnippet 23-6-NumericAggregates\Program.cs

3. If it is not already present, add the same generateLotsOfNumbers() method used in the previous
example:

private static int[] generateLotsOfNumbers(int count)
{

Random generator = new Random(0);
int[] result = new int[count];
for (int i = 0; i < count; i++)
{

result[i] = generator.Next();
}
return result;

}

4. Compile and execute. You will see the count, minimum, maximum, and average values as
shown here:

Numeric Aggregates
Count of Numbers > 1000
12345671
Maximum of Numbers > 1000
2147483591
Minimum of Numbers > 1000
1034
Average of Numbers > 1000
1073643807.50298
Sum of Numbers > 1000
13254853218619179
Program finished, press Enter/Return to continue:

This query produces many more results than the previous example (more than 12 million). Using
orderby on this result set would definitely have a noticeable impact on performance! The largest

Aggregate Operators ❘ 769

number (maximum) in the result set is over 2 billion and the smallest (minimum) is just over one
thousand, as expected. The average is around one billion, near the middle of the range of possible
values. Looks like the Rand() function generates a good distribution of numbers!

How It Works

The first part of the program is exactly the same as the previous example, with the reference to the
System.Linq namespace, and the use of the generateLotsOfNumbers() method to generate the source data:

int[] numbers = generateLotsOfNumbers(12345678);

The query is the same as the previous example, except for changing the where condition from less than to
greater than:

var queryResults =
from n in numbers
where n > 1000
select n;

As noted before, this query using the greater-than condition produces many more results than the less-than
query (with this particular data set). By using the aggregate operators, you are able to explore the results of
the query without having to print out each result or do a comparison in a foreach loop. Each one appears
as a method that can be called on the result set, similar to methods on a collection type.

Look at the use of each aggregate operator:

➤ Count():
Console.WriteLine("Count of Numbers > 1000");
Console.WriteLine(queryResults.Count());

Count() returns the number of rows in the query results — in this case, 12,345,671 rows.

➤ Max():
Console.WriteLine("Max of Numbers > 1000");
Console.WriteLine(queryResults.Max());

Max() returns the maximum value in the query results — in this case, a number larger than
2 billion: 2,147,483,591, which is very close to the maximum value of an int (int MaxValue
or 2,147,483,647).

➤ Min():
Console.WriteLine("Min of Numbers > 1000");
Console.WriteLine(queryResults.Min());

Min() returns the maximum value in the query results — in this case, 1,034.

➤ Average():
Console.WriteLine("Average of Numbers > 1000");
Console.WriteLine(queryResults.Average());

Average() returns the average value of the query results, which in this case is
1,073,643,807.50298, a value very close to the middle of the range of possible values
from 1,000 to more than 2 billion. This is rather meaningless with an arbitrary set of large
numbers, but it shows the kind of query result analysis that is possible. You’ll look at a

770 ❘ CHAPTER 23 INTRODUCTION TO LINQ

more practical use of these operators with some business-oriented data in the last part of the
chapter.

➤ Sum():
Console.WriteLine("Sum of Numbers > 1000");
Console.WriteLine(queryResults.Sum(n => (long) n));

You passed the lambda expression n => (long) n to the Sum() method call to get the sum
of all the numbers. While Sum() has a no-parameter overload, like Count(), Min(), Max(),
and so on, using that version of the method call would cause an overflow error because
there are so many large numbers in the data set that the sum of all of them would be too
large to fit into a standard 32-bit int, which is what the no-parameter version of Sum()
returns. The lambda expression enables you to convert the result of Sum() to a long 64-bit
integer, which is what you need to hold the total of over 13 quadrillion without overflow:
13,254,853,218,619,179 lambda expressions enable you to perform this kind of fix-up
easily.

NOTE In addition to Count(), which returns a 32-bit int, LINQ also provides a
LongCount() method that returns the count of query results in a 64-bit integer.
That is a special case, however — all the other operators require a lambda or a
call to a conversion method if a 64-bit version of the number is needed.

QUERYING COMPLEX OBJECTS

The previous examples show how LINQ queries can work with lists of simple types, such as numbers
and strings. This section describes how to use LINQ queries with more complex objects. You’ll create
a simple Customer class with just enough information to create some interesting queries.

TRY IT OUT Querying Complex Objects

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application called 23-7-QueryComplexObjects in the directory
C:\BegVCSharp\Chapter23.

2. Before the start of the Program class in Program.cs, add the following short class definition for the
Customer class:

class Customer
{

public string ID { get; set; }
public string City { get; set; }
public string Country { get; set; }
public string Region { get; set; }
public decimal Sales { get; set; }

Querying Complex Objects ❘ 771

public override string ToString()
{

return "ID: " + ID + " City: " + City + " Country: " + Country +
" Region: " + Region + " Sales: " + Sales;

}
}

CodeSnippet 23-7-QueryComplexObjects\Program.cs

3. Add the following code to the Main() method of the Program class of Program.cs:

static void Main(string[] args)
{

List <Customer> customers = new List<Customer> {
new Customer { ID="A", City="New York", Country="USA",

Region="North America", Sales=9999 },
new Customer { ID="B", City="Mumbai", Country="India",

Region="Asia", Sales=8888 },
new Customer { ID="C", City="Karachi", Country="Pakistan",

Region="Asia", Sales=7777 },
new Customer { ID="D", City="Delhi", Country="India",

Region="Asia", Sales=6666 },
new Customer { ID="E", City="S~ao Paulo", Country="Brazil",

Region="South America", Sales=5555 },
new Customer { ID="F", City="Moscow", Country="Russia",

Region="Europe", Sales=4444 },
new Customer { ID="G", City="Seoul", Country="Korea", Region="Asia",

Sales=3333 },
new Customer { ID="H", City="Istanbul", Country="Turkey",

Region="Asia", Sales=2222 },
new Customer { ID="I", City="Shanghai", Country="China", Region="Asia",

Sales=1111 },
new Customer { ID="J", City="Lagos", Country="Nigeria",

Region="Africa", Sales=1000 },
new Customer { ID="K", City="Mexico City", Country="Mexico",

Region="North America", Sales=2000 },
new Customer { ID="L", City="Jakarta", Country="Indonesia",

Region="Asia", Sales=3000 },
new Customer { ID="M", City="Tokyo", Country="Japan",

Region="Asia", Sales=4000 },
new Customer { ID="N", City="Los Angeles", Country="USA",

Region="North America", Sales=5000 },
new Customer { ID="O", City="Cairo", Country="Egypt",

Region="Africa", Sales=6000 },
new Customer { ID="P", City="Tehran", Country="Iran",

Region="Asia", Sales=7000 },
new Customer { ID="Q", City="London", Country="UK",

Region="Europe", Sales=8000 },
new Customer { ID="R", City="Beijing", Country="China",

Region="Asia", Sales=9000 },
new Customer { ID="S", City="Bogotá", Country="Colombia",

Region="South America", Sales=1001 },
new Customer { ID="T", City="Lima", Country="Peru",

Region="South America", Sales=2002 }

772 ❘ CHAPTER 23 INTRODUCTION TO LINQ

};
var queryResults =

from c in customers
where c.Region == "Asia"
select c

;
Console.WriteLine("Customers in Asia:");
foreach (Customer c in queryResults)
{

Console.WriteLine(c);
}
Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
}

CodeSnippet 23-7-QueryComplexObjects\Program.cs

4. Compile and execute the program. The result is a list of the customers from Asia:

Customers in Asia:
ID: B City: Mumbai Country: India Region: Asia Sales: 8888
ID: C City: Karachi Country: Pakistan Region: Asia Sales: 7777
ID: D City: Delhi Country: India Region: Asia Sales: 6666
ID: G City: Seoul Country: Korea Region: Asia Sales: 3333
ID: H City: Istanbul Country: Turkey Region: Asia Sales: 2222
ID: I City: Shanghai Country: China Region: Asia Sales: 1111
ID: L City: Jakarta Country: Indonesia Region: Asia Sales: 3000
ID: M City: Tokyo Country: Japan Region: Asia Sales: 4000
ID: P City: Tehran Country: Iran Region: Asia Sales: 7000
ID: R City: Beijing Country: China Region: Asia Sales: 9000
Program finished, press Enter/Return to continue:

How It Works

In the Customer class definition, you use the C# automatic properties feature to declare public properties
(ID, City, Country, Region, Sales) for the Customer class without having to explicitly code private instance
variables and get/set code for each property:

class Customer
{

public string ID { get; set; }
public string City { get; set; }
. . .

The only extra method you bother to code for the Customer class is an override for the ToString() method
to provide a string representation for a Customer instance:

public override string ToString()
{

return "ID: " + ID + " City: " + City + " Country: " + Country +
" Region: " + Region + " Sales: " + Sales;

}

You will use this ToString() method to simplify printing out the results of the query.

Querying Complex Objects ❘ 773

In the Main() method of the Program class, you create a strongly typed collection of type Customer using
collection/object initialization syntax, to avoid having to code a constructor method and call the construc-
tor to make each list member:

List <Customer> customers = new List<Customer> {
new Customer { ID="A", City="New York", Country="USA",

Region="North America", Sales=9999 },
new Customer { ID="B", City="Mumbai", Country="India",

Region="Asia", Sales=8888 },
. . .

Your customers are located all over the world, with enough geographical information in your data to make
interesting selection criteria and groups for queries.

Still in the Main() method, you create the query statement — in this case, selecting the customers
from Asia:

var queryResults =
from c in customers
where c.Region == "Asia"
select c

;

This query should be very familiar to you by now — it’s the same from ... where ... select LINQ query
you have used in the other examples, except that each item in the result list is a full-fledged object (a
Customer), rather than a simple string or int. Next, you print out the results in a foreach loop:

Console.WriteLine("Customers in Asia:");
foreach (Customer c in queryResults)
{

Console.WriteLine(c);
}

This foreach loop is a little different from the ones in previous examples. Because you know you are
querying Customer objects, you explicitly declare the iteration variable c as type Customer:

foreach (Customer c in queryResults)

You could have declared c with the variable keyword var, and the compiler would have inferred that the
iteration variable should be of type Customer, but explicitly declaring it makes the code clearer to a human
reader.

Within the loop itself, you simply write

{
Console.WriteLine(c);

}

instead of explicitly printing out the fields of Customer because you added an override to the Customer class
for the ToString() method. If you had not provided a ToString() override, then the default ToString()
method would have simply printed the name of the type, like this:

Customers in Asia:
BegVCSharp_23_7_QueryComplexObjects.Customer
BegVCSharp_23_7_QueryComplexObjects.Customer
BegVCSharp_23_7_QueryComplexObjects.Customer
BegVCSharp_23_7_QueryComplexObjects.Customer
BegVCSharp_23_7_QueryComplexObjects.Customer

774 ❘ CHAPTER 23 INTRODUCTION TO LINQ

BegVCSharp_23_7_QueryComplexObjects.Customer
BegVCSharp_23_7_QueryComplexObjects.Customer
BegVCSharp_23_7_QueryComplexObjects.Customer
BegVCSharp_23_7_QueryComplexObjects.Customer
BegVCSharp_23_7_QueryComplexObjects.Customer
Program finished, press Enter/Return to continue:

Not what you want at all! Of course, you could always explicitly print the properties of Customer that you
are interested in:

Console.WriteLine("Customer {0}: {1}, {2}", c.ID, c.City, c.Country);

However, if you are interested in only a few properties of an object, it is inefficient to pull the entire object
into the query. Luckily, LINQ makes it simple to create query results that contain only the items you
need — via projection, which you will experiment with in the next section.

PROJECTION: CREATING NEW OBJECTS IN QUERIES

Projection is the technical term for creating a new data type from other data types in a LINQ query. The
select keyword is the projection operator, which you have used in previous examples. If you are famil-
iar with the SELECT keyword in the SQL data query language, you will be familiar with the operation of
selecting a specific field from a data object, as opposed to selecting the entire object itself. In LINQ, you
can do this as well — for example, to select only the City field from the Customer list in the previous
example, simply change the select clause in the query statement to reference only the City property:

var queryResults =
from c in customers
where c.Region == "Asia"
select c.City

;

That produces the following output:

Mumbai
Karachi
Delhi
Seoul
Istanbul
Shanghai
Jakarta
Tokyo
Tehran
Beijing

You can even transform the data in the query by adding an expression to the select, as shown here for
a numeric data type:

select n + 1

Or as shown here for a string data-type query:

select s.ToUpper()

However, unlike in SQL, LINQ does not allow multiple fields in a select clause. That means the line

select c.City, c.Country, c.Sales

Projection: Creating New Objects in Queries ❘ 775

produces a compile error (semicolon expected) because the select clause takes only one item in its
parameter list.

What you do in LINQ instead is to create a new object on-the-fly in the select clause to hold the results
you want for your query. You’ll do that in the following Try It Out.

TRY IT OUT Projection: Creating New Objects in Queries

Follow these steps to create the example in Visual C# 2010:

1. Modify 23-7-QueryComplexObjects, or create a new console application called 23-8-
ProjectionCreateNewObjects in the directory C:\BegVCSharp\Chapter23.

2. If you chose to create a new project, copy the code to create the Customer class and the initial-
ization of the customers list (List<Customer> customers) from the 23-7-QueryComplexObjects
example; this code is exactly the same as the code previously shown.

3. In the Main() method following the initialization of the customers list, enter (or modify) the query
and results processing loop as shown here:

var queryResults =
from c in customers
where c.Region == "North America"
select new { c.City, c.Country, c.Sales }

;
foreach (var item in queryResults)
{

Console.WriteLine(item);
}

CodeSnippet 23-8-ProjectionCreateNewObjects\Program.cs

4. The remaining code in the Main() method is the same as the previous examples.

5. Compile and execute the program. You will see the selected fields from the customers in North
America listed, like this:

{ City = New York, Country = USA, Sales = 9999 }
{ City = Mexico City, Country = Mexico, Sales = 2000 }
{ City = Los Angeles, Country = USA, Sales = 5000 }
Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as in the previous example. In the query,
you changed the requested region to North America just to mix things up a bit. The interesting change in
terms of projection is the parameter to the select clause:

select new { c.City, c.Country, c.Sales }

You use the C# anonymous-type creation syntax directly in the select clause to create a new unnamed
object type having the City, Country, and Sales properties. The select clause creates the new object.
This way, only these three properties are duplicated and carried through the different stages of processing
the query.

776 ❘ CHAPTER 23 INTRODUCTION TO LINQ

When you print out the query results, you use the same generic foreach loop code that you have used in
all the previous examples, except for the Customers query:

foreach (var item in queryResults)
{

Console.WriteLine(item);
}

This code is entirely generic; the compiler infers the type of the query result and calls the right methods for
the anonymous type without you having to code anything explicitly. You did not even have to provide a
ToString() override, as the compiler provided a default ToString() implementation that prints out the
property names and values in a manner similar to the object initialization itself.

PROJECTION: METHOD SYNTAX

The method syntax version of a projection query is accomplished by chaining a call to the LINQ
Select() method along with the other LINQ methods you are calling. For example, you can get the
same query result if you add the Select() method call to a Where() method call, as shown here:

var queryResults = customers.Where(c => c.Region == "North America")
.Select(c => new { c.City, c.Country, c.Sales });

While the select clause is required in the query syntax, you haven’t seen the Select() method before
because it isn’t needed in the LINQ method syntax unless you are actually doing a projection (changing
the type in the result set from the original type being queried).

The order of the method calls is not fixed because the return types from the LINQ methods all imple-
ment IEnumerable — you can call Select() on a Where() result or vice versa. However, the order may
be important depending on the specifics of your query. For example, you could not reverse the order of
Select() and Where() like this:

var queryResults = customers.Select(c => new { c.City, c.Country, c.Sales })
.Where(c => c.Region == "North America");

The Region property is not included in the anonymous type {c.City, c.Country, c.Sales } created
by the Select() projection, so your program would get a compile error on the Where() method, indi-
cating that the anonymous type does not contain a definition for Region.

However, if the Where() method were restricting the data based on a field included in the anonymous
type, such as City, there would be no problem — for example, the following query compiles and exe-
cutes without a problem:

var queryResults = customers.Select(c => new {c.City, c.Country, c.Sales })
.Where(c => c.City == "New York");

SELECT DISTINCT QUERY

Another type of query that those of you familiar with the SQL data query language will recognize is the
SELECT DISTINCT query, in which you search for the unique values in your data — that is, values that
are not repeated. This is a fairly common need when working with queries.

Suppose you need to find the distinct regions in the customer data used in the previous examples. There
is no separate region list in the data you just used, so you need to find the unique, nonrepeating list of

Any and All ❘ 777

regions from the customer list itself. LINQ provides a Distinct() method that makes it easy to find
this data. You’ll use it in the following Try It Out.

TRY IT OUT Projection: Select Distinct Query

Follow these steps to create the example in Visual C# 2010:

1. Modify the previous example, 23-8-ProjectionCreateNewObjects, or create a new console appli-
cation called 23-9-SelectDistinctQuery in the directory C:\BegVCSharp\Chapter23.

2. Copy the code to create the Customer class and the initialization of the customers list (List
<Customer> customers) from the 23-7-QueryComplexObjects example; the code is the same.

3. In the Main() method, following the initialization of the customers list, enter (or modify) the
query as shown here:

var queryResults = customers.Select(c => c.Region).Distinct();

CodeSnippet 23-9-SelectDistinctQuery\Program.cs

4. The remaining code in the Main() method is the same as in the previous example.

5. Compile and execute the program. You will see the unique regions where customers exist:

North America
Asia
South America
Europe
Africa
Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as in the previous example. In the query
statement, you call the Select() method with a simple lambda expression to select the region from the
Customer objects, and then call Distinct() to return only the unique results from Select():

var queryResults = customers.Select(c => c.Region).Distinct();

Because Distinct() is available only in method syntax, you make the call to Select() using method
syntax. However, you can call Distinct() to modify a query made in the query syntax as well:

var queryResults = (from c in customers select c.Region).Distinct();

Because query syntax is translated by the C# compiler into the same series of LINQ method calls as used
in the method syntax, you can mix and match if it makes sense for readability and style.

ANY AND ALL

Another type of query that you often need is for determining whether any of your data satisfies a certain
condition, or ensuring that all data satisfies a condition. For example, you may need to know whether
a product is out of stock (quantity is zero), or whether a transaction has occurred.

778 ❘ CHAPTER 23 INTRODUCTION TO LINQ

LINQ provides two Boolean methods — Any() and All() — that can quickly tell you whether a con-
dition is true or false for your data. That makes it easy to find the data, which you will do in the
following Try It Out.

TRY IT OUT Using Any and All

Follow these steps to create the example in Visual C# 2010:

1. Modify the previous example, 23-9-SelectDistinctQuery, or create a new console application
called 23-10-AnyAndAll in the directory C:\BegVCSharp\Chapter23.

2. Copy the code to create the Customer class and the initialization of the customers list
(List<Customer> customers) from the 23-7-QueryComplexObjects example; this code is the
same.

3. In the Main() method, following the initialization of the customers list and query declaration,
remove the processing loop and enter the code as shown here:

bool anyUSA = customers.Any(c => c.Country == "USA");
if (anyUSA)
{

Console.WriteLine("Some customers are in the USA");
}
else
{

Console.WriteLine("No customers are in the USA");
}

bool allAsia = customers.All(c => c.Region == "Asia");
if (allAsia)
{

Console.WriteLine("All customers are in Asia");
}
else
{

Console.WriteLine("Not all customers are in Asia");
}

CodeSnippet 23-10-AnyAndAll\Program.cs

4. The remaining code in the Main() method is the same as in the previous example.

5. Compile and execute the program. You will see the messages indicating that some customers are
in the U.S.A., but not all customers are in Asia:

Some customers are in the USA
Not all customers are in Asia
Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as in previous examples. In the first query
statement, you call the Any() method with a simple lambda expression to check whether the Customer
Country field has the value USA:

bool anyUSA = customers.Any(c => c.Country == "USA");

Ordering by Multiple Levels ❘ 779

The LINQ Any() method applies the lambda expression you pass to it — c => c.Country ==

"USA" — against all the data in the customers list, and returns true if the lambda expression is true for
any of the customers in the list.

Next, you check the Boolean result variable returned by the Any() method and print out a message indicat-
ing the result of the query (even though Any() is simply returning true or false, it is performing a query
to obtain the true/false result):

if (anyUSA)
{

Console.WriteLine("Some customers are in the USA");
}
else
{

Console.WriteLine("No customers are in the USA");
}

While you could make this message more compact with some clever code, it is more straightforward and
readable as shown here. As you would expect, the anyUSA variable is set to true because there are indeed
customers located in the U.S.A. in the data set, so you see the message "Some customers are in the USA".

In the next query statement you call the All() method with another simple lambda expression to determine
whether all the customers are located in Asia:

bool allAsia = customers.All(c => c.Region == "Asia");

The LINQ All() method applies the lambda expression against the data set and returns false, as you
would expect, because some customers are outside of Asia. You then print the appropriate message based
on the value of allAsia.

ORDERING BY MULTIPLE LEVELS

Now that you are dealing with objects with multiple properties, you might be able to envision a situa-
tion where ordering the query results by a single field is not enough. What if you wanted to query your
customers and order the results alphabetically by region, but then order alphabetically by country or
city name within a region? LINQ makes this very easy, as you will see in the following Try It Out.

TRY IT OUT Ordering By Multiple Levels

Follow these steps to create the example in Visual C# 2010:

1. Modify the previous example, 23-8-ProjectionCreateNewObjects, or create a new console appli-
cation called 23-11-MultiLevelOrdering in the directory C:\BegVCSharp\Chapter23.

2. Create the Customer class and the initialization of the customers list (List<Customer> customers)
as shown in the 23-7-QueryComplexObjects example; this code is exactly the same as in previous
examples.

3. In the Main() method, following the initialization of the customers list, enter the following query:
var queryResults =

from c in customers
orderby c.Region, c.Country, c.City
select new { c.ID, c.Region, c.Country, c.City }

;
CodeSnippet 23-11-MultiLevelOrdering\Program.cs

780 ❘ CHAPTER 23 INTRODUCTION TO LINQ

4. The results processing loop and the remaining code in the Main() method are the same as in
previous examples.

5. Compile and execute the program. You will see the selected properties from all customers ordered
alphabetically by region first, then by country, and then by city, as shown here:

{ ID = O, Region = Africa, Country = Egypt, City = Cairo }
{ ID = J, Region = Africa, Country = Nigeria, City = Lagos }
{ ID = R, Region = Asia, Country = China, City = Beijing }
{ ID = I, Region = Asia, Country = China, City = Shanghai }
{ ID = D, Region = Asia, Country = India, City = Delhi }
{ ID = B, Region = Asia, Country = India, City = Mumbai }
{ ID = L, Region = Asia, Country = Indonesia, City = Jakarta }
{ ID = P, Region = Asia, Country = Iran, City = Tehran }
{ ID = M, Region = Asia, Country = Japan, City = Tokyo }
{ ID = G, Region = Asia, Country = Korea, City = Seoul }
{ ID = C, Region = Asia, Country = Pakistan, City = Karachi }
{ ID = H, Region = Asia, Country = Turkey, City = Istanbul }
{ ID = F, Region = Europe, Country = Russia, City = Moscow }
{ ID = Q, Region = Europe, Country = UK, City = London }
{ ID = K, Region = North America, Country = Mexico, City = Mexico City }
{ ID = N, Region = North America, Country = USA, City = Los Angeles }
{ ID = A, Region = North America, Country = USA, City = New York }
{ ID = E, Region = South America, Country = Brazil, City = S~ao Paulo }
{ ID = S, Region = South America, Country = Colombia, City = Bogotá }
{ ID = T, Region = South America, Country = Peru, City = Lima }
Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as in previous examples. In this query you
have no where clause because you want to see all the customers, but you simply list the fields you want to
sort by in order in a comma-separated list in the orderby clause:

orderby c.Region, c.Country, c.City

Couldn’t be easier, could it? It seems a bit counterintuitive that a simple list of fields is allowed in the
orderby clause but not in the select clause, but that is how LINQ works. It makes sense if you realize that
the select clause is creating a new object but the orderby clause, by definition, operates on a field-by-field
basis.

You can add the descending keyword to any of the fields listed to reverse the sort order for that field. For
example, to order this query by ascending region but descending country, simply add descending following
Country in the list, like this:

orderby c.Region, c.Country descending, c.City

With descending added, you see following output:
{ ID = J, Region = Africa, Country = Nigeria, City = Lagos }
{ ID = O, Region = Africa, Country = Egypt, City = Cairo }
{ ID = H, Region = Asia, Country = Turkey, City = Istanbul }
{ ID = C, Region = Asia, Country = Pakistan, City = Karachi }
{ ID = G, Region = Asia, Country = Korea, City = Seoul }
{ ID = M, Region = Asia, Country = Japan, City = Tokyo }
{ ID = P, Region = Asia, Country = Iran, City = Tehran }
{ ID = L, Region = Asia, Country = Indonesia, City = Jakarta }

Group Queries ❘ 781

{ ID = D, Region = Asia, Country = India, City = Delhi }
{ ID = B, Region = Asia, Country = India, City = Mumbai }
{ ID = R, Region = Asia, Country = China, City = Beijing }
{ ID = I, Region = Asia, Country = China, City = Shanghai }
{ ID = Q, Region = Europe, Country = UK, City = London }
{ ID = F, Region = Europe, Country = Russia, City = Moscow }
{ ID = N, Region = North America, Country = USA, City = Los Angeles }
{ ID = A, Region = North America, Country = USA, City = New York }
{ ID = K, Region = North America, Country = Mexico, City = Mexico City }
{ ID = T, Region = South America, Country = Peru, City = Lima }
{ ID = S, Region = South America, Country = Colombia, City = Bogotá }
{ ID = E, Region = South America, Country = Brazil, City = S~ao Paulo }
Program finished, press Enter/Return to continue:

Note that the cities in India and China are still in ascending order even though the country ordering has
been reversed.

MULTI-LEVEL ORDERING METHOD SYNTAX: THENBY

Under the covers, things get a bit more complicated when you look at multi-level ordering using the
method syntax, which uses the ThenBy() method as well as OrderBy(). For instance, you get the same
query result as the example you just created with the following:

var queryResults = customers.OrderBy(c => c.Region)
.ThenBy(c => c.Country)
.ThenBy(c => c.City)
.Select(c => new { c.ID, c.Region, c.Country, c.City });

Now it is more apparent why a multifield list is allowed in the orderby clause in the query syntax; you
can see it is translated into a series of ThenBy() method invocations on a field-by-field basis. The order is
important in writing these method calls: You must begin with OrderBy() because ThenBy() is available
only on an IOrderedEnumerable interface, which is produced by OrderBy(). However, ThenBy() can
be chained to other ThenBy() method calls as many times as necessary. This is a clear case where the
query syntax is easier to write than the method syntax.

The descending sort order is specified by calling either OrderByDescending() if the first field is to be
sorted in descending order, or ThenByDescending() if any of the remaining fields are to be sorted in
descending order. To sort the country in descending order as in this example, the method syntax query
would be as follows:

var queryResults = customers.OrderBy(c => c.Region)
.ThenByDescending(c => c.Country)
.ThenBy(c => c.City)
.Select(c => new { c.ID, c.Region, c.Country, c.City });

GROUP QUERIES

A group query divides the data into groups and enables you to sort, calculate aggregates, and compare
by group. These are often the most interesting queries in a business context (the ones that really drive
decision-making). For example, you might want to compare sales by country or by region to decide
where to open another store or hire more staff. You’ll do that in the next Try It Out.

782 ❘ CHAPTER 23 INTRODUCTION TO LINQ

TRY IT OUT Using a Group Query

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application called 23-12-GroupQuery in the directory
C:\BegVCSharp\Chapter23.

2. Create the Customer class and the initialization of the customers list (List<Customer> customers)
as shown in the 23-7-QueryComplexObjects example; this code is exactly the same as previous
examples.

3. In the Main() method, following the initialization of the customers list, enter two queries:

var queryResults =
from c in customers
group c by c.Region into cg
select new { TotalSales = cg.Sum(c => c.Sales), Region = cg.Key }

;
var orderedResults =

from cg in queryResults
orderby cg.TotalSales descending
select cg

;
CodeSnippet 23-12-GroupQuery\Program.cs

4. Continuing in the Main() method, add the following print statement and foreach processing loop:

Console.WriteLine("Total\t: By\nSales\t: Region\n-----\t ------");
foreach (var item in orderedResults)
{

Console.WriteLine(item.TotalSales + "\t: " + item.Region);
}

5. The results processing loop and the remaining code in the Main() method are the same as in previ-
ous examples. Compile and execute the program. Here are the group results:

Total : By
Sales : Region
----- ------
52997 : Asia
16999 : North America
12444 : Europe
8558 : South America
7000 : Africa

How It Works

The Customer class and customers list initialization are the same as in previous examples.

The data in a group query is grouped by a key field, the field for which all the members of each group share
a value. In this example, the key field is the Region:

group c by c.Region

You want to calculate a total for each group, so you group into a new result set named cg:
group c by c.Region into cg

Take and Skip ❘ 783

In the select clause, you project a new anonymous type whose properties are the total sales (calculated
by referencing the cg result set) and the key value of the group, which you reference with the special group
Key:

select new { TotalSales = cg.Sum(c => c.Sales), Region = cg.Key }

The group result set implements the LINQ IGrouping interface, which supports the Key property. You
almost always want to reference the Key property in some way in processing group results, because it
represents the criteria by which each group in your data was created.

You want to order the result in descending order by TotalSales field so you can see which region has the
highest total sales, next highest, and so on. To do that, you create a second query to order the results from
the group query:

var orderedResults =
from cg in queryResults
orderby cg.TotalSales descending
select cg

;

The second query is a standard select query with an orderby clause, as you have seen in previous
examples; it does not make use of any LINQ group capabilities except that the data source comes from
the previous group query.

Next, you print out the results, with a little bit of formatting code to display the data with column headers
and some separation between the totals and the group names:

Console.WriteLine("Total\t: By\nSales\t: Region\n---\t ---");
foreach (var item in orderedResults)
{

Console.WriteLine(item.TotalSales + "\t: " + item.Region);
};

This could be formatted in a more sophisticated way with field widths and by right-justifying the totals, but
this is just an example so you don’t need to bother — you can see the data clearly enough to understand
what the code is doing.

TAKE AND SKIP

Suppose you need to find the top five customers by sales in your data set. You don’t know ahead of
time what amount of sales qualifies a customer to be in the top five so you can’t use a where condition
to find them.

Some SQL databases, such as Microsoft SQL Server, implement a TOP operator, so you can issue a
command like SELECT TOP 5 FROM ... to get the top five customers.

The LINQ equivalent to this operation is the Take() method, which takes the first n results in the query
output. In practical use this needs to be combined with orderby to get the top n results. However, the
orderby is not required, as there may be situations for which you know the data is already in the order
you want, or, for some reason, you want the first n results without caring about their order.

The inverse of Take() is Skip(), which skips the first n results, returning the remainder. Take() and
Skip() are called partitioning operators in LINQ documentation because they partition the result set
into the first n results (Take()) and/or its remainder (Skip()).

784 ❘ CHAPTER 23 INTRODUCTION TO LINQ

In the following Try It Out, you use both Take() and Skip() with the customers list data.

TRY IT OUT Working with Take and Skip

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application called 23-13-TakeAndSkip in the directory
C:\BegVCSharp\Chapter23.

2. Copy the code to create the Customer class and the initialization of the customers list
(List<Customer> customers) from the 23-7-QueryComplexObjects example.

3. In the Main() method, following the initialization of the customers list, enter this query:

//query syntax
var queryResults =

from c in customers
orderby c.Sales descending
select new { c.ID, c.City, c.Country, c.Sales }

;
CodeSnippet 23-13-TakeAndSkip\Program.cs

4. Enter two results processing loops, one using Take() and another using Skip():

Console.WriteLine("Top Five Customers by Sales");
foreach (var item in queryResults.Take(5))
{

Console.WriteLine(item);
}

Console.WriteLine("Customers Not In Top Five");
foreach (var item in queryResults.Skip(5))
{

Console.WriteLine(item);
}

5. Compile and execute the program. You will see the top five customers and the remaining cus-
tomers listed as shown here:

Top Five Customers by Sales
{ ID = A, City = New York, Country = USA, Sales = 9999 }
{ ID = R, City = Beijing, Country = China, Sales = 9000 }
{ ID = B, City = Mumbai, Country = India, Sales = 8888 }
{ ID = Q, City = London, Country = UK, Sales = 8000 }
{ ID = C, City = Karachi, Country = Pakistan, Sales = 7777 }
Customers Not In Top Five
{ ID = P, City = Tehran, Country = Iran, Sales = 7000 }
{ ID = D, City = Delhi, Country = India, Sales = 6666 }
{ ID = O, City = Cairo, Country = Egypt, Sales = 6000 }
{ ID = E, City = S~ao Paulo, Country = Brazil, Sales = 5555 }
{ ID = N, City = Los Angeles, Country = USA, Sales = 5000 }
{ ID = F, City = Moscow, Country = Russia, Sales = 4444 }
{ ID = M, City = Tokyo, Country = Japan, Sales = 4000 }
{ ID = G, City = Seoul, Country = Korea, Sales = 3333 }

First and FirstOrDefault ❘ 785

{ ID = L, City = Jakarta, Country = Indonesia, Sales = 3000 }
{ ID = H, City = Istanbul, Country = Turkey, Sales = 2222 }
{ ID = T, City = Lima, Country = Peru, Sales = 2002 }
{ ID = K, City = Mexico City, Country = Mexico, Sales = 2000 }
{ ID = I, City = Shanghai, Country = China, Sales = 1111 }
{ ID = S, City = Bogotá, Country = Colombia, Sales = 1001 }
{ ID = J, City = Lagos, Country = Nigeria, Sales = 1000 }
Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as in previous examples.

The main query consists of a from...orderby...select statement in the query syntax, like the ones you
have created previously in this chapter, except that there is no where clause restriction because you want
to get all of the customers (ordered by sales from highest to lowest):

var queryResults =
from c in customers
orderby c.Sales descending
select new { c.ID, c.City, c.Country, c.Sales }

This example works a bit differently than previous examples in that you do not apply the operator until
you actually execute the foreach loop on the query results, because you want to reuse the query results.
First, you apply Take(5) to get the top five customers:

foreach (var item in queryResults.Take(5))

Then, you apply Skip(5) to skip the first five items (what you already printed) and print the remaining
customers from the same original set of query results:

foreach (var item in queryResults.Skip(5))

The code to print out the results and pause the screen is the same as in previous examples, except for minor
changes to the messages, so it isn’t repeated here.

FIRST AND FIRSTORDEFAULT

Suppose you need to find an example of a customer from Africa in your data set. You need the actual
data itself, not a true/false value or the result set of all matching values.

LINQ provides this capability via the First() method, which returns the first element in a result set
that matches the criteria specified. If there isn’t a customer from Africa, then LINQ also provides a
method to handle that contingency without additional error handling code: FirstOrDefault().

In the following Try It Out, you use both First() and FirstOrDefault() with the customers list data.

TRY IT OUT Using First and FirstOrDefault

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application called 23-14-FirstOrDefault in the directory
C:\BegVCSharp\Chapter23.

786 ❘ CHAPTER 23 INTRODUCTION TO LINQ

2. Copy the code to create the Customer class and the initialization of the customers list
(List<Customer> customers) from the 23-7-QueryComplexObjects example.

3. In the Main() method following the initialization of the customers list, enter this query:

var queryResults = from c in customers
select new { c.City, c.Country, c.Region }
;

CodeSnippet 23-14-FirstOrDefault\Program.cs

4. Enter the following queries using First()and FirstOrDefault():

Console.WriteLine("A customer in Africa");
Console.WriteLine(queryResults.First(c => c.Region == "Africa"));

Console.WriteLine("A customer in Antarctica");
Console.WriteLine(queryResults.FirstOrDefault(c => c.Region == "Antarctica"));

5. Compile and execute the program. Here’s the resulting output:

A customer in Africa
{ City = Lagos, Country = Nigeria, Region = Africa }
A customer in Antarctica

Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as in previous examples.

The main query consists of a from...orderby...select statement in the query syntax, like the ones you
have created previously in this chapter, with no where or orderby clauses. You project the fields of interest
with the select statement — in this case, the City, Country, and Region properties:

var queryResults = from c in customers
select new { c.City, c.Country, c.Region }

;

Because the First() operator returns a single object value, not a result set, you do not need to create a
foreach loop; instead, you print out the result directly:

Console.WriteLine(queryResults.First(c => c.Region == "Africa"));

This finds a customer, and the result City = Lagos, Country = Nigeria, Region = Africa is printed out.
Next, you query for the Antarctica region using FirstOrDefault():

Console.WriteLine(queryResults.FirstOrDefault(c => c.Region == "Antarctica"));

This does not find any results, so a null (empty result) is returned and the output is blank. What would
have happened if you had used the First() operator instead of FirstOrDefault() for the Antarctica
query? You would have received the following exception:

System.InvalidOperationException: Sequence contains no matching element

Instead of FirstOrDefault(), it returns the default element for the list if the search criteria are not met,
which is a null for this anonymous type. For the Antarctica query, you would have received the exception.

The code to print out the results and pause the screen is the same as in previous examples, except for minor
changes to the messages.

Set Operators ❘ 787

SET OPERATORS

LINQ provides standard set operators such as Union() and Intersect() that operate on query results.
You used one of the set operators when you wrote the Distinct() query earlier.

In the following Try It Out, you add a simple list of orders that have been submitted by hypo-
thetical customers and use the standard set operators to match the orders up with the existing
customers.

TRY IT OUT Set Operators

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application called 23-15-SetOperators in the directory
C:\BegVCSharp\Chapter23.

2. Copy the code to create the Customer class and the initialization of the customers list
(List<Customer> customers) from the 23-7-QueryComplexObjects example.

3. Following the Customer class, add the following Order class:

class Order
{

public string ID { get; set; }
public decimal Amount { get; set; }

}
CodeSnippet 23-15-SetOperators\Program.cs

4. In the Main() method, following the initialization of the customers list, create and initialize an
orders list with the data shown here:

List<Order> orders = new List<Order> {
new Order { ID="P", Amount=100 },
new Order { ID="Q", Amount=200 },
new Order { ID="R", Amount=300 },
new Order { ID="S", Amount=400 },
new Order { ID="T", Amount=500 },
new Order { ID="U", Amount=600 },
new Order { ID="V", Amount=700 },
new Order { ID="W", Amount=800 },
new Order { ID="X", Amount=900 },
new Order { ID="Y", Amount=1000 },
new Order { ID="Z", Amount=1100 }

};

5. Following the initialization of the orders list, enter these queries:

var customerIDs =
from c in customers
select c.ID

;
var orderIDs =

from o in orders
select o.ID

;

788 ❘ CHAPTER 23 INTRODUCTION TO LINQ

6. Enter the following query using Intersect():

var customersWithOrders = customerIDs.Intersect(orderIDs);
Console.WriteLine("Customer IDs with Orders:");
foreach (var item in customersWithOrders)
{

Console.Write("{0} ", item);
}
Console.WriteLine();

7. Enter the following query using Except():

Console.WriteLine("Order IDs with no customers:");
var ordersNoCustomers = orderIDs.Except(customerIDs);
foreach (var item in ordersNoCustomers)
{

Console.Write("{0} ", item);
}
Console.WriteLine();

8. Finally, enter the following query using Union():

Console.WriteLine("All Customer and Order IDs:");
var allCustomerOrderIDs = orderIDs.Union(customerIDs);
foreach (var item in allCustomerOrderIDs)
{

Console.Write("{0} ", item);
}
Console.WriteLine();

9. Compile and execute the program. Here’s the output:

Customers IDs with Orders:
P Q R S T
Order IDs with no customers:
U V W X Y Z
All Customer and Order IDs:
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as previous examples. The new Order

class is similar to the Customer class, using the C# automatic properties feature to declare public properties
(ID, Amount):

class Order
{

public string ID { get; set; }
public decimal Amount { get; set; }

}

Like the Customer class, this is a simplified example with just enough data to make the query work.

Set Operators ❘ 789

You use two simple from...select queries to get the ID fields from the Customer and Order classes,
respectively:

var customerIDs =
from c in customers
select c.ID

;
var orderIDs =

from o in orders
select o.ID

;

Next, you use the Intersect() set operator to find only the customer IDs that also have orders in the
orderIDs result. Only the IDs that appear in both result sets are included in the intersect set:

var customersWithOrders = customerIDs.Intersect(orderIDs);

NOTE The set operators require the set members to have the same type in order
to ensure the expected results. Here, you take advantage of the fact that the IDs
in both object types are strings and have the same semantics (like foreign keys in
a database).

The printout of the result set takes advantage of the fact that the IDs are only a single character, so you use
Console.Write() with no WriteLine() call until the end of the foreach loop to make the output compact
and neat:

Console.WriteLine("Customer IDs with Orders:");
foreach (var item in customersWithOrders)
{

Console.Write("{0} ", item);
}
Console.WriteLine();

You use this same print logic in the remaining foreach loops.

Next, you use the Except() operator to find the order IDs that have no matching customer:

Console.WriteLine("Order IDs with no customers:");
var ordersNoCustomers = orderIDs.Except(customerIDs);

Finally, you use the Union() operator to find the union of all the customer ID and order ID fields:

Console.WriteLine("All Customer and Order IDs:");
var allCustomerOrderIDs = orderIDs.Union(customerIDs);

The IDs are output in the same order in which they appear in the customer and order lists, with duplicates
removed.

The code to pause the screen is the same as in previous examples.

The set operators are useful, but the practical benefit of using them is limited by the requirement that all
the objects being manipulated have the same type. The operators are useful in certain narrow situations
where you need to manipulate sets of similarly typed results; but in the more typical case where you

790 ❘ CHAPTER 23 INTRODUCTION TO LINQ

need to work with different related object types, you need a more practical mechanism designed to
work with different object types, such as the join statement.

JOINS

A data set such as the customers and orders list you just created, with a shared key field (ID), enables
a join query, whereby you can query related data in both lists with a single query, joining the results
together with the key field. This is similar to the JOIN operation in the SQL data query language; and
as you might expect, LINQ provides a join command in the query syntax, which you will use in the
following Try It Out.

TRY IT OUT Join Query

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application called 23-16-JoinQuery in the directory
C:\BegVCSharp\Chapter23.

2. Copy the code to create the Customer class, the Order class, and the initialization of the customers
list (List<Customer> customers) and orders list (List<Order> orders) from the previous
example; this code is the same.

3. In the Main() method, following the initialization of the customers and orders list, enter this
query:

var queryResults =
from c in customers
join o in orders on c.ID equals o.ID
select new { c.ID, c.City, SalesBefore = c.Sales, NewOrder = o.Amount,

SalesAfter = c.Sales+o.Amount };

CodeSnippet 23-16-JoinQuery\Program.cs

4. Finish the program using the standard foreach query processing loop you used in earlier
examples:

foreach (var item in queryResults)
{

Console.WriteLine(item);
}

5. Compile and execute the program. Here’s the output:

{ ID = P, City = Tehran, SalesBefore = 7000, NewOrder = 100, SalesAfter = 7100 }
{ ID = Q, City = London, SalesBefore = 8000, NewOrder = 200, SalesAfter = 8200 }
{ ID = R, City = Beijing, SalesBefore = 9000, NewOrder = 300, SalesAfter = 9300 }
{ ID = S, City = Bogotá, SalesBefore = 1001, NewOrder = 400, SalesAfter = 1401 }
{ ID = T, City = Lima, SalesBefore = 2002, NewOrder = 500, SalesAfter = 2502 }
Program finished, press Enter/Return to continue:

Exercises ❘ 791

How It Works

The code declaring and initializing the Customer class, the Order class, and the customers and orders lists
is the same as in the previous example.

The query uses the join keyword to unite each customer with their corresponding orders using the ID
fields from the Customer and Order classes, respectively:

var queryResults =
from c in customers
join o in orders on c.ID equals o.ID

The on keyword is followed by the name of the key field (ID), and the equals keyword indicates the cor-
responding field in the other collection. The query result only includes the data for objects that have the
same ID field value as the corresponding ID field in the other collection.

The select statement projects a new data type with properties named so that you can clearly see the
original sales total, the new order, and the resulting new total:

select new { c.ID, c.City, SalesBefore = c.Sales, NewOrder = o.Amount,
SalesAfter = c.Sales+o.Amount };

While you do not increment the sales total in the customer object in this program, you could easily do so
in the business logic of your program.

The logic of the foreach loop and the display of the values from the query are exactly the same as in
previous programs in this chapter.

SUMMARY

As you have seen, LINQ makes queries written in native C# quite easy and powerful. In the next
chapter, you will learn how to apply LINQ to query relational databases and work effectively with
large data sets.

There are too many LINQ methods in the method syntax to cover them all in a beginning book. For
more details and examples, explore the Microsoft online documentation on LINQ. For short examples
of every LINQ method, check out the ‘‘101 LINQ Samples’’ topic in the MSDN help (or online at
http://msdn2.microsoft.com/en-us/vcsharp/aa336746.aspx).

Eric White’s tutorial on functional programming at http://blogs.msdn.com/ericwhite/pages/
FP-Tutorial.aspx is a good source for functional programming in the context of LINQ. Also offered
is a comprehensive tutorial on the LINQ method syntax.

EXERCISES

1. Modify the first example program (23–1-FirstLINQquery) to order the results in descending order.

2. Modify the number passed to the generateLotsOfNumbers() method in the large number pro-
gram example (23–5-LargeNumberQuery) to create result sets of different sizes and see how query
results are affected.

continues

792 ❘ CHAPTER 23 INTRODUCTION TO LINQ

3. Add an orderby clause to the query in the large number program example
(23–5-LargeNumberQuery) to see how this affects performance.

4. Modify the query conditions in the large number program example (23–5-LargeNumberQuery) to
select larger and smaller subsets of the number list. How does this affect performance?

5. Modify the method syntax example (23–2-LINQMethodSyntax) to eliminate the where clause
entirely. How much output does it generate?

6. Modify the query complex objects program example (23–7-QueryComplexObjects) to select a dif-
ferent subset of the query fields with a condition appropriate to that field.

7. Add aggregate operators to the first example program (23–1-FirstLINQquery). Which simple
aggregate operators are available for this non-numeric result set?

Answers to Exercises can be found in Appendix A.

Exercises ❘ 793

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

What LINQ is and when to use it LINQ is a query language built into C#. Use LINQ to query
data from large collections of objects, XML, or databases.

Parts of a LINQ query A LINQ query includes the from, where, select, and orderby
clauses.

How to get the results of a LINQ query Use the foreach statement to iterate through the results from
a LINQ query.

Deferred execution LINQ query execution is deferred until the foreach statement
is executed.

Method syntax and query syntax Use the query syntax for simple LINQ queries, and method
queries for more advanced queries. For any given query, the
query syntax or the method syntax will give the same result.

Aggregate operators Use LINQ aggregate operators to obtain information about a
large data set without having to iterate through every result.

Projection Use projection to change the data types and create new
objects in queries.

Group queries Use group queries to divide data into groups, then sort, cal-
culate aggregates, and compare by group.

Ordering Use the orderby operator to order the results of a query.

Set operators Use the set operators Union(), Intersect(), and
Distinct() to find matching data in multiple result sets.

Joins Use the join operator to query related data in multiple col-
lections with a single query.

24
Applying LINQ

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ LINQ varieties

➤ Using LINQ with databases

➤ Navigating database relationships

➤ Using LINQ with XML

➤ Using LINQ to XML constructors

➤ Generating XML from databases

➤ Working with XML fragments

The previous chapter introduced LINQ (Language-Integrated Query) and showed how LINQ
works with objects. This chapter will teach you how to apply LINQ to queries and manipulate
data from different data sources such as databases and XML (Extensible Markup Language).

LINQ VARIETIES

Visual Studio 2010 and the .NET Framework 4 come with a number of built-in LINQ capabil-
ities that provide query solutions for different types of data:

➤ LINQ to Objects: Provides queries on any kind of C# in-memory object, such as arrays, lists,
and other collection types. All of the examples in the previous chapter use LINQ to Objects.
However, you can use the techniques you learn in this chapter with all of the varieties
of LINQ.

➤ LINQ to XML: Provides creation and manipulation of XML documents using the same syn-
tax and general query mechanism as the other LINQ varieties.

796 ❘ CHAPTER 24 APPLYING LINQ

➤ LINQ to ADO.NET: ADO.NET or Active Data Objects for .NET is an umbrella term that
includes all the different classes and libraries in .NET for accessing data in databases, such as
Microsoft SQL Server, Oracle, and others. LINQ to ADO.NET includes LINQ to Entities,
LINQ to DataSet, and LINQ to SQL.

➤ LINQ to Entities: The ADO.NET Entity Framework is the newest set of data interface classes
in .NET 4, recommended by Microsoft for new development. In this chapter you will add
an ADO.NET Entity Framework data source to your Visual C# project, then query it using
LINQ to Entities.

➤ LINQ to DataSet: The DataSet object was introduced in the first version of the .NET Frame-
work. This variety of LINQ enables legacy .NET data to be queried easily with LINQ.

➤ LINQ to SQL: This is an alternate LINQ interface for .NET 3.5, targeted mainly at Microsoft
SQL Server, that has been superseded by LINQ to Entities in .NET 4.

➤ PLINQ: PLINQ or Parallel LINQ extends LINQ to Objects with a parallel programming
library that can split up a query to execute simultaneously on a multicore processor.

With so many varieties of LINQ it is impossible to cover them all in a beginning book, so this chapter
shows you how to apply LINQ to the most common data sources of XML and relational database
entities. LINQ works very similarly for all data sources, so once you have learned to use two or three
LINQ varieties you will find it easy to apply LINQ to new data sources.

USING LINQ WITH DATABASES

SQL databases such as Microsoft SQL Server and Oracle are called relational databases. Relational
databases are built on an entity-relationship model, where an entity is the abstract concept of a data
object such as a customer, which is related to other entities such as orders and products (for example,
a customer places an order for products).

Relational databases use the SQL database language (SQL stands for Structured Query Language) to
query and manipulate their data. Traditionally, working with such a database required knowing at
least some SQL, either embedding SQL statements in your programming language or passing strings
containing SQL statements to API calls or methods in a SQL-oriented database class library.

Sounds complicated, doesn’t it? Well, the good news is that Visual Studio 2010 and the ADO.NET
Entity Framework can create C# objects to represent the entities in a database model, then handle
all the details of creating communicating with the SQL database for you! It translates your LINQ
queries to SQL statements automatically and enables you and your programs to work simply with
C# objects.

Creating the code to make a set of classes and collections that matches the structure of an existing
relational table structure is tedious and time-consuming, but with LINQ to Entities object-relational
mapping, the classes that match the database table are created automatically from the database itself so
you don’t have to, and you can start using the classes immediately.

Installing SQL Server and the Northwind Sample Data ❘ 797

INSTALLING SQL SERVER AND THE NORTHWIND SAMPLE DATA

To run the examples shown in this chapter, you must install Microsoft SQL Server Express, the
lightweight version of Microsoft SQL Server.

NOTE If you are familiar with SQL Server and have access to an instance of
Microsoft SQL Server 2005 Standard or Enterprise Edition with the Northwind
sample database installed, you may skip this installation, although you will have
to change the connection information to match your SQL Server instance. If you
have never worked with SQL Server, then go ahead and install SQL Server
Express.

Installing SQL Server Express 2008
Visual Studio 2010 and Visual C# 2010 Express Edition both include a copy of SQL Server Express,
the lightweight desktop engine version of SQL Server 2008.

If you have already installed Visual Studio 2010 or Visual C# 2010 Express but have not installed
SQL Server 2008 Express Edition, you can download and install it using the following URL:
http://www.microsoft.com/express/sql/default.aspx.

NOTE You cannot use Microsoft SQL Server Compact Edition with LINQ to
Entities. You must use SQL Server 2008 Express Edition instead.

Installing the Northwind Sample Database
The Northwind sample database for SQL Server is required for the examples in this chapter. It is not
included with Visual C# 2010 or SQL Server 2008 Express, but is available as a separate download
from Microsoft. You can find it by searching for ‘‘northwind sample database download’’ on Google
or a similar search site, or just go to the following URL:

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-

eebc53a68034&displaylang=en

The link downloads the installation file SQL2000SampleDb.msi.

Click Run to execute the .msi file, which installs the Northwind sample database files. Accept the
default options for the various install screens. When complete, the database files will be installed at
C:\SQL Server 2000 Sample Databases\NORTHWND.MDF.

NOTE The Northwind MDF filename is NORTHWND.MDF, with no ‘‘I.’’

798 ❘ CHAPTER 24 APPLYING LINQ

Keep this filename and path handy because you will refer to it later when creating the connection to the
database. That completes the installation of SQL Express and the sample data needed for this chapter.
Now you can have some fun with LINQ to Entities!

FIRST LINQ TO DATABASE QUERY

In the following Try It Out, you create a simple query to find a subset of customer objects in the North-
wind SQL Server sample data using LINQ to SQL, and print it to the console.

TRY IT OUT First LINQ to Database Query

Follow these steps to create the example in Visual C# 2010:

1. Create a new console application project called BegVCSharp_24_1_FirstLINQtoDatabaseQuery
in the directory C:\BegVCSharp\Chapter24.

2. Press OK to create the project.

3. To add the LINQ to Entities data source for the Northwind database, go to the Solution Explorer
pane, click the BegVCSharp_24_1_FirstLINQtoDataQuery C# project, and select Data ➪ Add
New Data Source . . .

4. In the Choose a Data Source Type dialog, select Database.

5. In the Choose a Database Model dialog, select Entity Data Model.

6. In the Choose Model Contents dialog, select Generate From Database.

7. In the Choose Your Data Connection dialog, select New Connection.

8. In the Connection Properties dialog, click the Browse button to the right of the Database File
Name (new or existing) text box, and browse to the C:\SQL Server 2000 Sample Databases\ direc-
tory where you installed the Northwind data and select NORTHWND.MDF as the database file. Click
OK to close the dialogs to finish importing the entity model.

9. In the Choose Your Database Objects dialog, expand the Tables control and check Customers,
Orders and Order Details. Click Finish and you will now see a diagram of your entity data objects
in a window labeled Model1.edmx, as shown in Figure 24-1.

10. Compile the project now so that the Customer object will be available when you start entering
code in the next step.

You can see the code for classes generated for your entity model by looking in the
Model1.designer.cs file, which appears underneath the Model1.edmx source file in the Solution
Explorer, similar to the way a form’s generated code is placed in <formname>.designer.cs.
However, just as with a form’s generated code, you should not modify the designer-generated
code, so it best not to open this code in the editor except when you want to verify a class name or
check a generated data type.

First LINQ to Database Query ❘ 799

FIGURE 24-1

11. Open the main source file Program.cs and add the following code to the Main() method:

static void Main(string[] args)
{

NORTHWNDEntities northWindEntities = new NORTHWNDEntities();

var queryResults = from c in northWindEntities.Customers
where c.Country == "USA"
select new {

ID=c.CustomerID,
Name=c.CompanyName,
City=c.City,
State=c.Region

};
foreach (var item in queryResults) {

Console.WriteLine(item);
};

Console.WriteLine("Press Enter/Return to continue..");
Console.ReadLine();

}
Code snippet BegVCSharp\Chapter24\BegVCSharp24_1_FirstLINQtoDatabaseQuery\Program.cs

800 ❘ CHAPTER 24 APPLYING LINQ

12. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
information for customers in the U.S.A. appear as shown here:

{ ID = GREAL, Name = Great Lakes Food Market, City = Eugene, State = OR }
{ ID = HUNGC, Name = Hungry Coyote Import Store, City = Elgin, State = OR }
{ ID = LAZYK, Name = Lazy K Kountry Store, City = Walla Walla, State = WA }
{ ID = LETSS, Name = Let’s Stop N Shop, City = San Francisco, State = CA }
{ ID = LONEP, Name = Lonesome Pine Restaurant, Ci.ty = Portland, State = OR }
{ ID = OLDWO, Name = Old World Delicatessen, City = Anchorage, State = AK }
{ ID = RATTC, Name = Rattlesnake Canyon Grocery, City = Albuquerque, State = NM
}
{ ID = SAVEA, Name = Save-a-lot Markets, City = Boise, State = ID }
{ ID = SPLIR, Name = Split Rail Beer & Ale, City = Lander, State = WY }
{ ID = THEBI, Name = The Big Cheese, City = Portland, State = OR }
{ ID = THECR, Name = The Cracker Box, City = Butte, State = MT }
{ ID = TRAIH, Name = Trail’s Head Gourmet Provisioners, City = Kirkland,
State = WA }

{ ID = WHITC, Name = White Clover Markets, City = Seattle, State = WA }
Press Enter/Return to continue...

Simply press Enter/Return to finish the program and make the console screen disappear. If you used
Ctrl+F5 (Start Without Debugging), you may need to press Enter/Return twice. That finishes the program
run. Now let’s look at how it works in detail.

How It Works

The code for this and all other examples in this chapter are similar to the examples described in the intro-
duction to LINQ in the previous chapter, using extension classes from the System.Linq namespace, which
is referenced by a using statement inserted automatically by Visual C# 2010 when you create the project:

using System.Linq;

The first step in using the LINQ to Entities classes is to create an instance of the ObjectContext object for
the particular database you are accessing, which is the class compiled from the .edmx file created in the data
source. This object is the gateway to your database, providing all the methods you need to control it from
your program. It also acts as a factory for creating the business objects that correspond to the conceptual
entities stored in your database (for example, customers and products).

In your project, the data context class is called NORTHWNDEntities, compiled from the Model1.edmx file.
Your first step in the Main() method is to create an instance of NORTHWNDEntities as shown here:

NORTHWNDEntities northWindEntities = new NORTHWNDEntities();

When you checked the Customers table into the Choose Your Database Objects pane, a Customer object
was added to the LINQ to Entities class in Model1.edmx, and a Customers member was added to the
northWindDataEntities object to enable you to query the Customer objects in the Northwind database.

The actual LINQ query statement makes a query using the Customers member of the northWindEntities

as the data source:
var queryResults = from c in northWindEntities.Customers

where c.Country == "USA"
select new {

ID=c.CustomerID,

Navigating Database Relationships ❘ 801

Name=c.CompanyName,
City=c.City,
State=c.Region

};

Customers is a typed LINQ table (System.Data.Linq.Table<Customer>), which is similar to a typed col-
lection of Customer objects (like a List<Table>), but implemented for LINQ to SQL and filled from the
database automatically. It implements the IEnumerable/IQueryable interfaces so it can be used as a LINQ
data source in the from clause just like any collection or array.

The where clause restricts the results to customers only in the U.S.A. The select clause is a projection,
similar to the examples you developed in the preceding chapter, that creates a new object having members
ID, Name, City, and State. Because you know the results are for the U.S.A. only, you can rename the Region
to State to more precisely display the results. Finally, you create a standard foreach loop like the ones you
wrote in Chapter 23:

foreach (var item in queryResults) {
Console.WriteLine(item);

};

This code uses the default generated ToString()method for each item to format the output for the
Console.WriteLine(item)so you see the values for each projected member instance in curly braces:

{ ID=WHITC, Name=White Clover Markets, City=Seattle, State=WA }

Finally, the example ends with code to pause the display so you can see the results:

Console.WriteLine("Press Enter/Return to continue..");
Console.ReadLine();

};

Now you have created a basic LINQ to SQL query that you can use as a base to build on for more complex
queries.

NAVIGATING DATABASE RELATIONSHIPS

One of the most powerful aspects of the ADO.NET Entity Framework is its capability to automatically
create LINQ to SQL objects to help you navigate relationships between related tables in the database.
In the following Try It Out, you add a related table to the LINQ to Entities class, add code to navigate
through the related data objects in the database, and print out their values.

TRY IT OUT Navigating LINQ to Entities Relationships

Follow these steps to create the example in Visual C# 2010:

1. Modify the project for the previous example BegVCSharp_24_1_FirstLINQtoDataQuery in the
directory C:\BegVCSharp\Chapter24 as shown in the following steps.

2. Open the main source file Program.cs. In the Main() method, add an Orders field to the select

clause in the LINQ query (don’t forget to add a comma following c.Region to separate the added
field from the rest of the list):

802 ❘ CHAPTER 24 APPLYING LINQ

static void Main(string[] args)
{

NorthwindDataContext northWindDataContext = new NorthwindDataContext();

var queryResults = from c in northWindDataContext.Customers
where c.Country == "USA"
select new {

ID=c.CustomerID,
Name=c.CompanyName,
City=c.City,
State=c.Region,
Orders=c.Orders

};

3. Modify the foreach clause to print the query results as shown:

foreach (var item in queryResults) {

Console.WriteLine(
"Customer: {0} {1}, {2}\n{3} orders:\tOrder ID\tOrder Date",

item.Name, item.City, item.State, item.Orders.Count
);
foreach (Order o in item.Orders) {

Console.WriteLine("\t\t{0}\t{1}", o.OrderID, o.OrderDate);
}

};

Console.WriteLine("Press Enter/Return to continue..");
Console.ReadLine();

}
Code snippet BegVCSharp\Chapter24\BegVCSharp_24_2_NavigatingDatabaseRelationships\Program.cs

4. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
information for customers in the U.S.A. and their orders as follows (this is the last part of the out-
put; the first part scrolls off the top of the console window):

Customer: Trail’s Head Gourmet Provisioners Kirkland, WA
3 orders: Order ID Order Date

10574 6/19/1997 12:00:00 AM
10577 6/23/1997 12:00:00 AM
10822 1/8/1998 12:00:00 AM

Customer: White Clover Markets Seattle, WA
14 orders: Order ID Order Date

10269 7/31/1996 12:00:00 AM
10344 11/1/1996 12:00:00 AM
10469 3/10/1997 12:00:00 AM
10483 3/24/1997 12:00:00 AM
10504 4/11/1997 12:00:00 AM
10596 7/11/1997 12:00:00 AM
10693 10/6/1997 12:00:00 AM
10696 10/8/1997 12:00:00 AM
10723 10/30/1997 12:00:00 AM
10740 11/13/1997 12:00:00 AM

Navigating Database Relationships ❘ 803

10861 1/30/1998 12:00:00 AM
10904 2/24/1998 12:00:00 AM
11032 4/17/1998 12:00:00 AM
11066 5/1/1998 12:00:00 AM

Press Enter/Return to continue...

As before, press Enter/Return to finish the program and make the console screen disappear.

How It Works

You modified your previous program instead of creating a new program from scratch so you did not have
to repeat all the steps to create the Model1.edmx data source file (note that the sample code has separate
projects, each with its own instance of Model1.edmx).

By checking the Orders table in from the Choose Your Data Objects dialog, you added the Order class to
the Model1.edmx source file to represent the Orders table in your mapping of the Northwind database.

Visual Studio 2010 detected the relationship in the database between Customers and Orders, adding an
Orders collection member to the Customer class to represent the relationship. All this was done automati-
cally, as when you add new controls to a form.

Next, you added the newly available Orders member to the select clause of the query:

select new {
ID=c.CustomerID,
Name=c.CompanyName,
City=c.City,
State=c.Region,
Orders=c.Orders
};

Orders is a special typed LINQ set (System.Data.Linq.EntitySet<Order>) that represents the relationship
between two tables in the relational database. It implements the IEnumerable/IQueryable interfaces so
it can be used as a LINQ data source itself or iterated with a foreach statement just like any collection
or array.

Like the Table object shown in the previous example, the EntitySet is similar to a typed collection of
Order objects (like a List<Order>), but only those orders submitted by a particular customer will appear
in the EntitySet member for a particular Customer instance.

The Order objects in the customer’s EntitySet member correspond to the order rows in the database
having the same customer ID as that customer’s ID.

Navigating the relationship simply involves building a nested foreach statement to iterate through each
customer and then each customer’s orders:

foreach (var item in queryResults) {

Console.WriteLine(
"Customer: {0} {1}, {2}\n{3} orders:\tOrder ID\tOrder Date",

item.Name, item.City, item.State, item.Orders.Count
);
foreach (Order o in item.Orders) {

Console.WriteLine("\t\t{0}\t{1}", o.OrderID, o.OrderDate);
}

};

804 ❘ CHAPTER 24 APPLYING LINQ

Rather than just use the default ToString()formatting, you format the output for readability so you can
show the hierarchy properly with the list of orders under each customer. The format string "Customer: {0}

{1}, {2}\n{3} orders:\tOrder ID\tOrder Date" has a placeholder for the name, city, and state of each
customer on the first line, and then prints a column header for that customer’s orders on the next line. You
use the LINQ aggregate Count()method to print the count of the number of that customer’s orders, and
then print out the order ID and order date on each line in the nested foreach statement:

Customer: White Clover Markets Seattle, WA
14 orders: Order ID Order Date

10269 7/31/1996 12:00:00 AM
10344 11/1/1996 12:00:00 AM

The formatting is still a bit rusty in that you see the time of the order when all that really matters is the date.

Now that you’ve successfully queried a database, it’s time to try a different kind of data source — XML!

USING LINQ WITH XML

LINQ to XML is not intended to replace the standard XML APIs such as XML DOM (Document
Object Model), XPath, XQuery, XSLT, and so on. If you are familiar with these APIs or currently need
to use them or learn them, you should continue to do so.

LINQ to XML supplements these standard XML classes and makes working with XML easier. LINQ
to XML gives you extra options for creating and querying XML data, resulting in simpler code and
quicker development for many common situations, especially if you are already using LINQ in your
other programs.

LINQ TO XML FUNCTIONAL CONSTRUCTORS

As shown in previous chapters, one of the themes in C# is easier construction of objects, with features
such as object initializers and anonymous types. LINQ to XML continues this theme by introducing
a new, easier way to create XML documents called functional construction in which the constructor
calls can be nested in a way that naturally reflects the structure of the XML document. In the following
Try It Out, you use functional constructors to make a simple XML document containing customers
and orders.

TRY IT OUT LINQ to XML Constructors

Follow these steps to create the example in Visual Studio 2010:

1. Create a new console application called BegVCSharp_24_3_LinqToXmlConstructors in the direc-
tory C:\BegVCSharp\Chapter24.

2. Open the main source file Program.cs.

3. Add a reference to the System.Xml.Linq namespace to the beginning of Program.cs as
shown here:

LINQ to XML Functional Constructors ❘ 805

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;

4. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{

XDocument xdoc = new XDocument(
new XElement("customers",

new XElement("customer",
new XAttribute("ID", "A"),
new XAttribute("City", "New York"),
new XAttribute("Region", "North America"),
new XElement("order",

new XAttribute("Item", "Widget"),
new XAttribute("Price", 100)

),
new XElement("order",

new XAttribute("Item", "Tire"),
new XAttribute("Price", 200)

)
),
new XElement("customer",

new XAttribute("ID", "B"),
new XAttribute("City", "Mumbai"),
new XAttribute("Region", "Asia"),
new XElement("order",

new XAttribute("Item", "Oven"),
new XAttribute("Price", 501)

)
)

)
);
Console.WriteLine(xdoc);

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
Code snippet BegVCSharp\Chapter24\BegVCSharp_24_3_ LinqToXmlConstructors\Program.cs

5. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
output shown here:

<customers>
<customer ID="A" City="New York" Region="North America">

<order Item="Widget" Price="100" />
<order Item="Tire" Price="200" />

</customer>

806 ❘ CHAPTER 24 APPLYING LINQ

<customer ID="B" City="Mumbai" Region="Asia">
<order Item="Oven" Price="501" />

</customer>
</customers>
Program finished, press Enter/Return to continue:

The XML document shown on the output screen contains a very simplified version of the customer/order
data you have seen in previous examples. Note that the root element of the XML document is <customers>,
which contains two nested <customer> elements. These in turn contain a number of nested <order> ele-
ments. The <customer> elements have two attributes, <City> and <Region>, and the <order> elements have
<Item> and <Price> attributes.

Press Enter/Return to exit the program and make the console screen disappear. If you used Ctrl+F5 (Start
Without Debugging), you may need to press Enter/Return twice.

How It Works

The first step is to reference the System.Xml.Linq namespace. All of the following examples in this chapter
require that you add this line to your program:

using System.Xml.Linq;

While the System.Linq namespace is included by default when you create a project, the System.Xml.Linq

namespace is not included; you must add this line explicitly.

Next are the calls to the LINQ to XML constructors XDocument(), XElement(), and XAttribute(), which
are nested inside one another as shown here:

XDocument xdoc = new XDocument(
new XElement("customers",

new XElement("customer",
new XAttribute("ID", "A"),
.

Note that the code here looks like the XML itself, where the document contains elements, and each element
contains attributes and other elements. Let’s look at each of these constructors in turn:

➤ XDocument(): The highest-level object in the LINQ to XML constructor hierarchy is
XDocument(), which represents the complete XML document. It appears in your code here:

static void Main(string[] args)
{

XDocument xdoc = new XDocument(
.

);

The parameter list for XDocument() is omitted in the previous code fragment so you can
see where the XDocument() call begins and ends. Like all the LINQ to XML constructors,
XDocument() takes an array of objects (object[]) as one of its parameters so that a number
of other objects created by other constructors can be passed to it. All the other constructors
you call in this program are parameters in the one call to the XDocument() constructor. The
first (and only) parameter you pass in this program is the XElement() constructor.

➤ XElement(): An XML document must have a root element, so in most cases the parameter
list of XDocument() will begin with an XElement object. The XElement() constructor

LINQ to XML Functional Constructors ❘ 807

takes the name of the element as a string, followed by a list of the XML objects contained
within that element. Here, the root element is "customers", which in turn contains a list of
"customer" elements:

new XElement("customers",
new XElement("customer",

.
),

.
)

The "customer" element does not contain any other XML elements. Instead, it contains three
XML attributes, which are constructed with the XAttribute() constructor.

➤ XAttribute(): Here you add three XML attributes to the "customer" element, named "ID",
"City", and "Region":

new XAttribute("ID", "A"),
new XAttribute("City", "New York"),
new XAttribute("Region", "North America"),

Because an XML attribute is by definition a leaf XML node containing no other XML
nodes, the XAttribute() constructor takes only the name of the attribute and its value as
parameters. In this case, the three attributes generated are ID="A", City="New York’’, and
Region="North America".

➤ Other LINQ to XML constructors: While you do not call them in this program, there are
other LINQ to XML constructors for all the XML node types, such as XDeclaration() for
the XML declaration at the start of an XML document, XComment() for an XML comment,
and so on. These other constructors are not used often but are available if you need them for
precise control over formatting an XML document.

Finishing up the explanation of the first example, you add two child "order" elements to the "customer"

element following the "ID", "City" and "Region" attributes:

new XElement("order",
new XAttribute("Item", "Widget"),
new XAttribute("Price", 100)

),
new XElement("order",

new XAttribute("Item", "Tire"),
new XAttribute("Price", 200)

)

These order elements have "Item" and "Price" attributes but no other children.

Next, you display the contents of the XDocument to the console screen:

Console.WriteLine(xdoc);

This prints out the text of the XML document using the default ToString() method of XDocument().

Finally, you pause the screen so you can see the console output, and then wait until the user presses Enter:

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

After that your program exits the Main() method, which ends the program.

808 ❘ CHAPTER 24 APPLYING LINQ

Constructing XML Element Text with Strings
The example you just performed formatted the XML with no text content in the elements. Often your
XML needs to have text content as well; this is very easy to do with the LINQ to XML XElement()

constructor. For example, to make the ID the text of the <customer> element instead of an attribute,
just pass a string in the parameters of the XElement() constructor instead of a nested XAttribute:

XDocument xdoc = new XDocument(
new XElement("customers",

new XElement("customer",
"AAAAAA",
new XAttribute("City", "New York"),
new XAttribute("Region", "North America")

),
new XElement("customer",

"BBBBBB",
new XAttribute("City", "Mumbai"),
new XAttribute("Region", "Asia")

)
);

This produces an XML document that looks like this:

<customers>
<customer City="New York" Region="North America">AAAAAA</customer>
<customer City="Mumbai" Region="Asia">BBBBBB</customer>

</customers>

The XElement() constructor concatenates all strings in the parameter list into the text section of
the element.

SAVING AND LOADING AN XML DOCUMENT

You may have noticed that when the XML document was displayed to the console screen with
Console.WriteLine(), it did not display the normal XML declaration that begins with <?xml

version="1.0". While you can create such a declaration explicitly with the XDeclaration()

constructor, you normally do not need to do so, as it is created automatically when you save an XML
document to a file with the LINQ to XML Save() method.

In addition, while constructing XML documents in your program is useful for understanding how
constructors work, it is not something you will do often. More typically, you load XML documents
from an external source such as a file.

You try both of these operations in the following Try It Out.

TRY IT OUT Saving and Loading an XML Document

Follow these steps to create the example in Visual Studio 2010:

1. Either modify the previous example or create a new console application called BegVCSharp_24–4-
SaveLoadXML in the directory C:\BegVCSharp\Chapter24.

2. Open the main source file Program.cs.

Saving and Loading an XML Document ❘ 809

3. Add a reference to the System.Xml.Linq namespace to the beginning of Program.cs as
shown here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;

This will already be present if you are modifying the previous example.

4. If not already present, add the XML document constructor and its nested XML element and
attribute calls from the preceding example to the Main() method in Program.cs:

static void Main(string[] args)
{

XDocument xdoc = new XDocument(
new XElement("customers",

new XElement("customer",
new XAttribute("ID", "A"),
new XAttribute("City", "New York"),
new XAttribute("Region", "North America"),
new XElement("order",

new XAttribute("Item", "Widget"),
new XAttribute("Price", 100)

),
new XElement("order",

new XAttribute("Item", "Tire"),
new XAttribute("Price", 200)

)
),

new XElement("customer",
new XAttribute("ID", "B"),
new XAttribute("City", "Mumbai"),
new XAttribute("Region", "Asia"),
new XElement("order",

new XAttribute("Item", "Oven"),
new XAttribute("Price", 501)

)
)

)
);

Code snippet BegVCSharp\Chapter24\BegVCSharp_24_4_ SaveLoadXml\Program.cs

5. After the XML document constructor code is added in the previous step, add the following code
to save, load, and display the XML document at the end of the Main() method in Program.cs:

string xmlFileName = @"c:\BegVCSharp\Chapter24\Xml\example2.xml";

xdoc.Save(xmlFileName);

XDocument xdoc2 = XDocument.Load(xmlFileName);

810 ❘ CHAPTER 24 APPLYING LINQ

Console.WriteLine("Contents of xdoc2:");
Console.WriteLine(xdoc2);

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}

6. Compile and execute the program (you can just press F5 for Start Debugging). You should see the
following output in the console window:

Contents of xdoc2:
<customers>
<customer ID="A" City="New York" Region="North America">

<order Item="Widget" Price="100" />
<order Item="Tire" Price="200" />

</customer>
<customer ID="B" City="Mumbai" Region="Asia">

<order Item="Oven" Price="501" />
</customer>

</customers>
Program finished, press Enter/Return to continue:

Press Enter/Return to finish the program and make the console screen disappear. If you used
Ctrl+F5 (Start Without Debugging) you may need to press Enter/Return twice.

How It Works

As before, the first step is to reference the System.Xml.Linq namespace. Next are the nested calls to the
LINQ to XML constructors XDocument(), XElement(), and XAttribute(). See the first example for an
explanation of these parts and other code repeated from the first example.

Following the creation of your XDocument() object, you specify a filename as a string and save the XML
document to a file with this call to the Save() method:

string xmlFileName = @"c:\BegVCSharp\Chapter24\Xml\example2.xml";

xdoc.Save(xmlFileName);

While in this particular case you save to a specified filename, the Save() method also has overloads to
save to a System.IO.TextWriter or a System.Xml.XmlWriter, which may be appropriate if you are writing
another program in which you are already using one of those classes to write to a file.

The Save() method also has an overload whereby you can specify SaveOptions to disable formatting (by
default, the XML document is saved with indentation and whitespace to make it look ‘‘pretty’’).

Now that you’ve saved the document to a file, you load it into a new XDocument instance called xdoc2:

XDocument xdoc2 = XDocument.Load(xmlFileName);

The XDocument.Load() method is static because it is a factory-type method that creates a new instance of
an XDocument; you can use this to load a document created by a completely different program.

Saving and Loading an XML Document ❘ 811

Next, you display the document just as you did before, only this time using the xdoc2 instance that you
loaded from the file. The rest of the program is the same as the previous example:

Console.WriteLine("Contents of xdoc2:");
Console.WriteLine(xdoc2);

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

Loading XML from a String
Sometimes instead of loading XML from a file, you receive XML sent from another application as a
string, through one or more of your methods. You can create XML documents from strings in LINQ
to XML by using the Parse() method:

XDocument xdoc = XDocument.Parse(@"
<customers>

<customer ID=""A"" City=""New York"" Region=""North America"">
<order Item=""Widget"" Price=""100"" />
<order Item=""Tire"" Price=""200"" />

</customer>
<customer ID=""B"" City=""Mumbai"" Region=""Asia"">

<order Item=""Oven"" Price=""501"" />
</customer>

</customers>
");

This produces the same result that loading the document from a file does. Just as with Load(), Parse()
is a class-level method that creates a new instance of an XDocument; you do not need to construct a new
XDocument object before calling the Parse() method.

NOTE While the string literal for the XML in the preceding example has double
quotation marks (""), in the actual contents of the string the quotation marks are
not double. The double quotation marks are just the convention for including
quotation marks in an @-quoted string literal.

Contents of a Saved XML Document
Use Internet Explorer to open the document you just saved with the previous example. Specify the full
path name C:\BegVCSharp\Chapter24\Xml\example2.xml in the address bar.

Note that the XML document declaration <?xml version="1.0" encoding="utf-8" ?> appears at the
beginning of the saved document even though it is not displayed when you simply print the XDocument

object to the screen using Console.Writeline(). You needn’t worry about the declaration and many
other XML details using the defaults supplied by LINQ to XML.

812 ❘ CHAPTER 24 APPLYING LINQ

NOTE The default encoding for XML documents in Windows is UTF-8 (8-bit
Unicode Transformation Format). You shouldn’t change this except in a very
unusual situation, such as creating an ASCII-encoded XML document that would
be consumed by a legacy program that doesn’t understand UTF-8. In that case,
you can either add an XDeclaration() object with the encoding set to ASCII to
the beginning of the parameter list for the XDocument() constructor, or set the
Declaration property of the XDocument:

xdoc.Declaration = new XDeclaration("1.0", "us-ascii", "yes");

WORKING WITH XML FRAGMENTS

Unlike some XML APIs, LINQ to XML works with XML fragments (partial or incomplete XML
documents) in very much the same way as complete XML documents. When working with a fragment,
you simply work with XElement as the top-level XML object instead of XDocument.

NOTE The only restriction on this is that you cannot add some of the more
esoteric XML node types that apply only to XML documents or XML fragments,
such as XComment for XML comments, XDeclaration for the XML document
declaration, and XProcessingInstruction for XML processing instructions.

In the following Try It Out, you load, save, and manipulate an XML element and its child nodes, just
as you did for an XML document.

TRY IT OUT Working with XML Fragments

Follow these steps to create the example in Visual Studio 2010:

1. Either modify the previous example or create a new console application called BegVCSharp_24–5-
XMLFragments in the directory C:\BegVCSharp\Chapter24.

2. Open the main source file Program.cs.

3. Add a reference to the System.Xml.Linq namespace to the beginning of Program.cs as
shown here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;

This will already be present if you are modifying the previous example.

Working with XML Fragments ❘ 813

4. Add the XML element without the containing XML document constructor used in the previous
examples to the Main() method in Program.cs:

static void Main(string[] args)
{

XElement xcust =
new XElement("customers",

new XElement("customer",
new XAttribute("ID", "A"),
new XAttribute("City", "New York"),
new XAttribute("Region", "North America"),
new XElement("order",

new XAttribute("Item", "Widget"),
new XAttribute("Price", 100)

),
new XElement("order",
new XAttribute("Item", "Tire"),
new XAttribute("Price", 200)

)
),
new XElement("customer",

new XAttribute("ID", "B"),
new XAttribute("City", "Mumbai"),
new XAttribute("Region", "Asia"),
new XElement("order",

new XAttribute("Item", "Oven"),
new XAttribute("Price", 501)

)
)

)
;

Code snippet BegVCSharp\Chapter24\BegVCSharp_24_5_ XmlFragments\Program.cs

5. After the XML element constructor code you added in the previous step, add the following code
to save, load, and display the XML element:

string xmlFileName = @"c:\BegVCSharp\Chapter24\Xml\example3.xml";
xcust.Save(xmlFileName);

XElement xcust2 = XElement.Load(xmlFileName);

Console.WriteLine("Contents of xcust:");
Console.WriteLine(xcust);

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}

6. Compile and execute the program (you can just press F5 for Start Debugging). You should see the
following output in the console window:

814 ❘ CHAPTER 24 APPLYING LINQ

Contents of XElement xcust2:
<customers>
<customer ID="A" City="New York" Region="North America">

<order Item="Widget" Price="100" />
<order Item="Tire" Price="200" />

</customer>
<customer ID="B" City="Mumbai" Region="Asia">

<order Item="Oven" Price="501" />
</customer>

</customers>
Program finished, press Enter/Return to continue:

Press Enter/Return to finish the program and make the console screen disappear. If you used
Ctrl+F5 (Start Without Debugging), you may need to press Enter/Return twice.

How It Works

Both XElement and XDocument inherit from the LINQ to XML XContainer class, which implements an
XML node that can contain other XML nodes. Both classes also implement Load() and Save(), so most
operations that can be performed on an XDocument() in LINQ to XML can also be performed on an
XElement instance and its children.

You simply create an XElement instance that has the same structure as the XDocument used in previous
examples but omits the containing XDocument. All the operations for this particular program work the
same with the XElement fragment.

XElement also supports the Load() and Parse() methods for loading XML from files and strings, respec-
tively.

GENERATING XML FROM DATABASES

XML is often used to communicate data between client and server machines or between ‘‘tiers’’ in a
multitier application. It is quite common to query for some data in a database, and then produce an
XML document or fragment from that data to pass to another tier. In the following Try It Out, you
create a query to find some data in the Northwind sample database, use LINQ to SQL to query the
data, and then use LINQ to XML classes to convert the data to XML.

TRY IT OUT Generating XML from Databases

Follow these steps to create the example in Visual Studio 2010:

1. Create a new console application called BegVCSharp_24_6_XMLfromDatabase in the directory
C:\BegVCSharp\Chapter24.

2. As described in the ‘‘First LINQ to Data Query’’ example at the start of this chapter, add a new
data source named Model1.edmx to the project, and then add a connection to the Northwind
sample database.

Generating XML from Databases ❘ 815

3. Compile your program so that the classes and properties defined in Model1.edmx will be available
via IntelliSense when editing the code in the next steps.

4. Open the main source file Program.cs.

5. Add a reference to the System.Xml.Linq namespace to the beginning of Program.cs as shown:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;

6. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{

NORTHWNDEntities northWindEntities = new NORTHWNDEntities();

XElement northwindCustomerOrders =
new XElement("customers",
from c in northWindEntities.Customers.AsEnumerable()
select new XElement("customer",

new XAttribute("ID", c.CustomerID),
new XAttribute("City", c.City),
new XAttribute("Company", c.CompanyName),
from o in c.Orders
select new XElement("order",

new XAttribute("orderID", o.OrderID),
new XAttribute("orderDay",

o.OrderDate.Value.Day),
new XAttribute("orderMonth",

o.OrderDate.Value.Month),
new XAttribute("orderYear",

o.OrderDate.Value.Year),
new XAttribute("orderTotal",

o.Order_Details.Sum(od => od.Quantity * od.UnitPrice))
) //end order

) // end customer
); // end customers

string xmlFileName =
@"C:\BegVCSharp\Chapter24\Xml\NorthwindCustomerOrders.xml";

northwindCustomerOrders.Save(xmlFileName);

Console.WriteLine("Successfully saved Northwind customer orders to:");
Console.WriteLine(xmlFileName);
Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
Code snippet BegVCSharp\Chapter24\BegVCSharp_24_6_ XMLfromDatabase\Program.cs

816 ❘ CHAPTER 24 APPLYING LINQ

7. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
following output:

Successfully saved Northwind customer orders to:
C:\BegVCSharp\Chapter24\Xml\NorthwindCustomerOrders.xml
Program finished, press Enter/Return to continue:

Simply press Enter/Return to exit the program and make the console screen disappear. If you used
Ctrl+F5 (Start Without Debugging), you may need to press Enter/Return twice.

How It Works

In Program.cs you added the reference to the System.Xml.Linq namespace in order to call the LINQ to
XML constructor classes.

As described in the first part of the chapter, you created a data source for the Northwind sample database
and then used Visual Studio 2010 to create a LINQ to Entities object model for the Northwind data. In the
main program, you created an instance of the Northwind data context class to use the following mapping:

NORTHWNDEntities northWindEntities = new NORTHWNDEntities();

Your LINQ to Entities query uses the Northwind data context Customers member as a data source and
drills down through the Customers, Orders, and Order Details tables to produce a list of all customer
orders. However, because of deferred execution for LINQ to Entities, you convert the intermediate result
to an in-memory LINQ to Objects enumerable type with the AsEnumerable() method on the Customer

object. Finally, the query results are projected in the select clause of the query into a nested set of LINQ
to XML elements and attributes:

XElement northwindCustomerOrders =
new XElement("customers",
from c in northWindDataContext.Customers.AsEnumerable()
select new XElement("customer",

new XAttribute("ID", c.CustomerID),
new XAttribute("City", c.City),
new XAttribute("Company", c.CompanyName),
from o in c.Orders
select new XElement("order",

new XAttribute("orderID", o.OrderID),
new XAttribute("orderDay",

o.OrderDate.Value.Day),
new XAttribute("orderMonth",

o.OrderDate.Value.Month),
new XAttribute("orderYear",

o.OrderDate.Value.Year),
new XAttribute("orderTotal",

o.Order_Details.Sum(od => od.Quantity * od.UnitPrice))
) //end order

) // end customer
); // end customers

To grab all the orders for a customer, you use a second LINQ query (from o in c.Orders. . .) nested inside
the first one (from c in northWindDataContext.Customers. . .).

You divide the OrderDate field into its month, date, and year components to make the XML easier to
query; you will see how this is used in the next example.

How to Query an XML Document ❘ 817

Finally, you save the generated XML to file as in the previous example:

string xmlFileName =
@"C:\BegVCSharp\Chapter24\Xml\NorthwindCustomerOrders.xml";

northwindCustomerOrders.Save(xmlFileName);

Console.WriteLine("Successfully saved Northwind customer orders to:");
Console.WriteLine(xmlFileName);

Now you will write a query against the XML file you just wrote to disk.

HOW TO QUERY AN XML DOCUMENT

Why would you need to do LINQ queries on an XML document? If your program receives XML
generated by another program, you may be looking for specific XML elements or attributes within the
received XML to determine how to process it. Your program may be concerned only with a subset of
the XML content, or you may need to count elements within the document, or you may need to search
for elements or attributes that satisfy a specific condition. LINQ queries provide a powerful solution
for situations like these.

To query an XML document, the LINQ to XML classes such as XDocument and XElement provide
member properties and methods that return LINQ-queryable collections of the LINQ to XML objects
contained within the XML document or fragment represented by that LINQ to XML class.

In the following Try It Out, you use these queryable member methods and properties on the XML
document you created in the previous example.

TRY IT OUT Querying an XML Document

Follow these steps to create the example in Visual Studio 2010:

1. Create a new console application called BegVCSharp_24–7-QueryXML in the directory
C:\BegVCSharp\Chapter24.

2. Open the main source file Program.cs.

3. Add a reference to the System.Xml.Linq namespace to the beginning of Program.cs as shown:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;

4. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{

string xmlFileName = @"C:\BegVCSharp\Chapter24\Xml\NorthwindCustomerOrders.xml";
XDocument customers = XDocument.Load(xmlFileName);

Console.WriteLine("Elements in loaded document:");

818 ❘ CHAPTER 24 APPLYING LINQ

var queryResult = from c in customers.Elements()
select c.Name;

foreach (var item in queryResult)
{

Console.WriteLine(item);
}
Console.Write("Press Enter/Return to continue:");
Console.ReadLine();

}
Code snippet BegVCSharp\Chapter24\BegVCSharp_24_7_QueryXML\Program.cs

5. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
following output:

Elements in loaded document:
customers
Press Enter/Return to continue:

6. Press Enter/Return to finish the program and make the console screen disappear. If you used
Ctrl+F5 (Start Without Debugging), you may need to press Enter/Return twice.

How It Works

As you read through the explanation for each query method, you modify the LINQ to XML query example
you just created to use it. Each of these queries returns a collection of LINQ to XML elements or attribute
objects having a Name property, so your select clause simply returns this name to be printed out in the
foreach loop:

var queryResult = from c in customers.Elements()
select c.Name;

foreach (var item in queryResult)
{

Console.WriteLine(item);
}

This type of code is what you might first use when developing or debugging a program to see what the
queries return. Later, you modify the output to display business results that would be more meaningful to
end users.

USING LINQ TO XML QUERY MEMBERS

This section looks at the LINQ to XML query members that are available to you. Then you can try
them out in turn, using the NorthwindCustomerOrders.xml file as a data source.

Elements()
The first LINQ to XML query method you used is the Elements() member of the XDocument class. This
member is also available in the XElement class.

Using LINQ to XML Query Members ❘ 819

Elements() returns the set of all first-level elements in the XML document or fragment. For a valid
XML document, such as the NorthwindCustomerOrders.xml file you just created, there is only one
first-level element, the root element, which is named customers:

<?xml version="1.0" encoding="utf-8" ?>
<customers>
.
</customers>

All other elements are children of customers, so Elements() returns just one element:

Elements in loaded document:
customers

An XML fragment may contain multiple first-level elements, but it is usually more useful to query the
child elements, which you look at next with the Descendants() member.

Descendants()
The next LINQ to XML query method is the Descendants() member of the XDocument class. This
member is also available in the XElement class.

Descendants() returns a flattened list of all the child elements (at all levels) in the XML document or
fragment. Try modifying the BegVCSharp_24–7-QueryXML example as follows:

Console.WriteLine("All descendants in document:");
queryResult =

from c in customers.Descendants()
select c.Name;

foreach (var item in queryResult)
{

Console.WriteLine(item);
}

Compile and execute. You will see the customer and order element names repeated in order as found
in the document:

All descendants in document:
customer
order
order
.
customer
order
.
customer
order
.
order
order
Press Enter/Return to continue:

The output will scroll off the screen, so you may not see the first part of it. This reflects the fact that
the NorthwindCustomerOrders.xml file contains only customer and order elements beneath the root
customers element:

820 ❘ CHAPTER 24 APPLYING LINQ

<?xml version="1.0" encoding="utf-8" ?>
<customers>
<customer .[{[SPACE]}]>
<order . />
<order . />
.
</customer>
<customer . . .>
<order . />
.

You can make the output more manageable by adding the LINQ Distinct() operator to the
results processing:

Console.WriteLine("All distinct descendants in document:");
var queryResult =

from c in customers.Descendants()
select c.Name;

foreach (var item in queryResult.Distinct())

This results in a list of only the distinct element names:

All distinct descendants in document:
customers
customer
order
Press Enter/Return to continue:

This is very useful for exploring a document structure the first time you start to work with it, but finding
all elements is not a problem you will often need to solve in finished production applications.

A more common scenario is needing to look for descendant elements with a particular name. The
Descendants() method has an overload that takes the desired element name as a string parameter, as
shown here:

Console.WriteLine("Descendants named ‘customer’:");
var queryResult =

from c in customers.Descendants("customer")
select c.Name;

foreach (var item in queryResult) // remove Distinct()
{

Console.WriteLine(item);
}

This returns just the customer elements:

Descendants named ‘customer’:
customer
customer
customer
.
customer
customer
Press Enter/Return to continue:

Clearly, this is a more generally useful query. By querying a list of elements of a known type, you can
then search for specific attributes, which you will look at next.

Using LINQ to XML Query Members ❘ 821

NOTE For the sake of completeness, you should know that LINQ to XML also
provides an Ancestors() method that is the converse of the Descendants()

method, returning the flattened list of all elements higher than the source element
in the tree structure of the XML document. This is not used nearly as often as the
Descendants() method because developers tend to start processing XML
documents at the root, descending from there to the leaf levels of the tree of
elements and attributes. The Parent property, which points to the single ancestor
one level up, is used more often.

Attributes()
The next LINQ to XML query method to look at is the Attributes() member. This returns all
the attributes of the currently selected element. To see how this method works, try modifying the
BegVCSharp_24–7-QueryXML example as follows:

Console.WriteLine("Attributes of descendants named ‘customer’:");
var queryResult =

from c in customers.Descendants("customer").Attributes()
select c.Name;

foreach (var item in queryResult)
{

Console.WriteLine(item);
}

Compile and execute. You should see the names of the attributes of the customer elements:

Attributes of descendants named ‘customer’:
ID
City
Company
ID
City
Company
.
ID
City
Company
ID
City
Company
Press Enter/Return to continue:

Again the output scrolls off the screen. This query has found the names of the attributes of the
customer elements:

<customer ID= . City= . Company= . >
<customer ID= . City= . Company= . >
<customer ID= . City= . Company= . >
.

822 ❘ CHAPTER 24 APPLYING LINQ

Like the Descendants() method, you can pass a specific name to Attributes() to search for. In addi-
tion, you don’t have to restrict the display to the name; you can display the attribute itself. Here is a
query that displays the attributes of a customer named Company:

Console.WriteLine("customer attributes named ‘Company’:");
var queryResult =

from c in customers.Descendants("customer").Attributes("Company")
select c;

foreach (var item in queryResult)
{

Console.WriteLine(item);
}

Compile and execute. You will see the attributes containing the companies for the customer elements:

.
Company="Toms Spezialitäten"
Company="Tortuga Restaurante"
Company="Tradiçao Hipermercados"
Company="Trail’s Head Gourmet Provisioners"
Company="Vaffeljernet"
Company="Victuailles en stock"
Company="Vins et alcools Chevalier"
Company="Die Wandernde Kuh"
Company="Wartian Herkku"
Company="Wellington Importadora"
Company="White Clover Markets"
Company="Wilman Kala"
Company="Wolski Zajazd"
Press Enter/Return to continue:

Here is another example, this time with the orders elements and the orderYear attribute:

Console.WriteLine("order attributes named ‘orderYear’:");
var queryResult =

from c in customers.Descendants("order").Attributes("orderYear")
select c;

foreach (var item in queryResult)
{

Console.WriteLine(item);
}

Compile and execute. Now you see the following:

.
orderYear="1998"
orderYear="1998"
orderYear="1998"
orderYear="1996"
orderYear="1997"
orderYear="1997"
orderYear="1998"
orderYear="1998"
orderYear="1998"
orderYear="1998"
Press Enter/Return to continue:

Summary ❘ 823

You can also get the value of the attribute specifically (here, the year) with the Value property:

Console.WriteLine("Values of order attributes named ‘orderYear’:");
var queryResult =

from c in customers.Descendants("order").Attributes("orderYear")
select c.Value;

foreach (var item in queryResult)
{

Console.WriteLine(item);
}

Compile and execute. You should see the following:

.
1996
1997
1997
1998
1998
1998
1998
Press Enter/Return to continue:

Now you can begin to ask specific questions: For example, what was the earliest year in which orders
were placed? You can answer that by using the same query but applying the Min() aggregate operator
on the result instead of the usual foreach loop:

var queryResult =
from c in customers.Descendants("order").Attributes("orderYear")
select c.Value;

Console.WriteLine("Earliest year in which orders were placed: {0}",
queryResults.Min());

Compile and execute to see the answer, 1996:

Earliest year in which orders were placed: 1996
Press Enter/Return to continue:

You can explore more specific questions in the exercises for this chapter.

SUMMARY

That finishes our exploration of LINQ with databases and XML. As you have seen, LINQ to XML
integrates the concepts of LINQ with an easy-to-use alternative XML API that enables quick integration
of XML into other programs that use LINQ. This makes queries on XML documents simple and
natural for programmers already familiar with LINQ in its other forms.

In this chapter, you learned how to construct XML documents with LINQ to XML functional con-
structors, and then how to load and save XML documents with LINQ to XML.

You mastered using LINQ to XML to work with incomplete XML documents (fragments), and learned
how to easily generate an XML document from a LINQ to SQL or LINQ to Objects query.

Finally, you learned how to query an existing XML document with LINQ to XML, and used advanced
LINQ features such as LINQ aggregate operators with LINQ to XML.

824 ❘ CHAPTER 24 APPLYING LINQ

EXERCISES

1. Create the following XML document using LINQ to XML constructors:

<employees>
<employee ID="1001" FirstName="Fred" LastName="Lancelot">

<Skills>
<Language>C#</Language>
$Calculus$

</Skills>
</employee>
<employee ID="2002" FirstName="Jerry" LastName="Garcia">

<Skills>
<Language>French</Language>
$Business$

</Skills>
</employee>

</employees>

2. Write a query against the NorthwindCustomerOrders.xml file you created to find the oldest cus-
tomers (those with orders placed in the first year of Northwind operation, 1996).

3. Write a query against the NorthwindCustomerOrders.xml file to find customers who have placed
individual orders over $10,000.

4. Write a query against the NorthwindCustomerOrders.xml file to find the lifetime highest-selling
customers — for example, companies with all orders totaling more than $100,000.

5. Use LINQ to Entities to display detail information from the Products and Employees tables in the
Northwind database.

6. Create a LINQ to Entities query to show the top-selling products in the Northwind database.

7. Create a group query to show top-selling products by country.

Answers to Exercises can be found in Appendix A.

Exercises ❘ 825

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

The different LINQ varieties Each of the different data sources in .NET has a LINQ variety or
‘‘flavor’’ that you can use to query its data.

How to query databases with
LINQ

You can generate a LINQ to Entities class for your database by
using the Data Source Configuration Wizard in Visual C# 2010
(select Data ➪ Add New Data Source).

How to navigate database
relationships with LINQ

LINQ to Entities classes include navigable instance members for
each related data entity (table) that you add to your data source.

How to easily construct XML
with LINQ

LINQ to XML includes very powerful functional constructors to
make XML documents from any LINQ query.

How to create XML from
databases

You can construct XML from databases by combining LINQ to Enti-
ties, LINQ to Objects, and LINQ to XML in a single query.

How to create XML files and
fragments

LINQ to XML includes methods to load and save XML to files and
to manipulate parts of XML documents easily.

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502266

PART V
Additional Techniques

� CHAPTER 25: Windows Presentation Foundation

� CHAPTER 26: Windows Communication Foundation

� CHAPTER 27: Windows Workflow Foundation

25
Windows Presentation
Foundation

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What is WPF?

➤ The anatomy of a basic WPF application

➤ WPF fundamentals

➤ Programming with WPF

In this book you have seen two main types of application: desktop applications, which users
run directly, and Web applications, which users access through a browser. You have created
these with two different sections of the .NET Framework: Windows Forms and ASP.NET pages.
These application types have their advantages and disadvantages. While desktop applications
give you more flexibility and responsiveness, Web applications can be accessed remotely by
many users at once.

However, in today’s computing environment, the boundaries between applications are becom-
ing increasingly blurred. With the advent of Web services and now the Windows Communica-
tion Foundation (WCF, which you’ll look at in Chapter 26), both desktop and Web applications
can operate in a more distributed way, exchanging data across local and global networks. In
addition, Web client applications (that is, browsers such as Internet Explorer or Firefox) can no
longer be seen as so-called ‘‘thin’’ clients that lack any functionality other than the simple dis-
play of information. The latest browsers, and the computers that run them, are capable of far
more than this.

In recent years there has been a gradual convergence toward a user experience singularity. Web
applications now typically use technologies such as JavaScript, Flash, Java applications, and
others, and increasingly behave like desktop applications. You only have to look at the capabil-
ities of, for example, Google Docs to see this in action. Conversely, desktop applications have

830 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

Desktop
Apps

Web
Apps

Unifying
Technologies

Singularity

FIGURE 25-1

become increasingly ‘‘connected,’’ with capabilities
ranging from the simple (automatic updates, online
help, and so on) through to the advanced (such as
online data sources and peer-to-peer networking).
This is illustrated in Figure 25-1.

Windows Presentation Foundation (WPF) is a unify-
ing technology that enables you to write applications
that bridge the desktop/Internet gap. A WPF appli-
cation, as you will see in this chapter, can run as a
desktop application or inside a browser as a Web
application. There is also a slimmed down version of
WPF, Silverlight, that you can use to add dynamic
content to Web applications.

In this chapter you learn about WPF and how
you can use it to create the next generation of
applications.

WHAT IS WPF?

WPF is a technology that enables you to write platform-independent applications with a clearly defined
split between design and functionality. It borrows and extends concepts and classes from many previous
technologies, including Windows Forms, ASP.NET, XML, data binding techniques, GDI+, and more.
If you have any experience building Web applications with the .NET Framework, then when you
first look at the code for a WPF application you will immediately notice many of these similarities. In
particular, WPF applications use a markup plus code-behind model similar to the one used in ASP.NET.
However, under the covers, there are as many differences as similarities, which combine to make WPF
an entirely new experience for both developers and users.

One of the key concepts of WPF development is an almost total separation of design and functionality.
This separation enables designers and C# developers to work together on projects with a degree of
freedom that has previously required advanced design concepts or third-party tools. This functionality
is to be welcomed by all — by small teams and hobbyist developers as well as huge teams of developers
and designers that work together on large-scale projects.

In the following sections, you’ll see how WPF benefits designers and developers and enables them to
work together.

WPF for Designers
The language used for user interface design in WPF is Extensible Application Markup Language
(XAML, pronounced zammel). This is similar to the markup language used in ASP.NET in that it
uses XML syntax and enables controls to be added to a user interface in a declarative, hierarchical

What Is WPF? ❘ 831

way. That is to say, you can add controls in the form of XML elements, and specify control properties
with XML attributes. You can also have controls that contain other controls, which is essential for
both layout and functionality.

XAML is, however, a much more powerful language than ASP.NET, and is not limited by the capa-
bilities of HTML when it is rendered for display to a user. XAML is designed with today’s powerful
graphics cards in mind, and as such it enables you to use all the advanced capabilities that these graphics
cards offer through DirectX 7 or later. The following lists some of these capabilities:

➤ Floating-point coordinates and vector graphics to provide layout that can be scaled, rotated,
and otherwise transformed with no loss of quality

➤ 2D and 3D capabilities for advanced rendering

➤ Advanced font processing and rendering

➤ Solid, gradient, and texture fills with optional transparency for UI objects

➤ Animation storyboarding that can be used in all manner of situations, including user-
triggered events such as mouse clicks on buttons

➤ Reusable resources that you can use to dynamically style controls

Much of this functionality is specifically targeted at Microsoft Vista and later operating systems (includ-
ing Windows 7, Windows Server 2008, and Windows Server 2008 R2), which have advanced graphical
capabilities accessible through the Aero interface. However, WPF applications can run on other oper-
ating systems such as Windows XP. A fallback rendering system built into the .NET Framework 4
runtime can render XAML (with an associated loss of performance) if the graphics card cannot for
some reason.

VS and VCE include capabilities for creating and styling XAML code, but the tool of choice for design-
ers is Microsoft Expression Blend (EB). This is a design and layout package that you can use to create
XAML files, which can then be used by developers to build applications. In fact, EB uses the same solu-
tion and project files as VS and VCE, so you can create a project in any of these environments and then
edit it in any of the others. In EB, all you need to do to edit a code-behind file is double-click on it in
the Files window — the equivalent of the Solution Explorer in VS and VCE. Figure 25-2 shows the EB
interface.

You can find out more and download a trial version of EB at http://microsoft.com/expression
/products/Blend_Overview.aspx. However, remember that you do not need EB to write WPF appli-
cations or edit XAML. Figure 25-3 shows the exact same project shown in Figure 25-2, but loaded
in VCE.

In VCE, the default display shows both the XAML (don’t worry too much about the code shown in the
XAML view for now) as well as a preview of the rendered XAML in two panes. The property editor is
also a little less intuitive.

The application can be launched from both environments with the same result, shown in Figure 25-4.

832 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

FIGURE 25-2

FIGURE 25-3

What Is WPF? ❘ 833

FIGURE 25-4

WPF for C# Developers
As shown in the previous section, developers can create projects and solutions that they can work on in
VS or VCE, and the same projects and solutions can be edited by designers in Expression Blend. Unlike
designers, though, developers spend most of their time working in VS or VCE.

WPF, as you learned in the introduction to this section, uses a code-behind mode much like ASP.NET.
For example, you can add an event handler to a Button control by adding a Click attribute to the
XML element representing the control. This attribute specifies the name of an event handler in the
code-behind file for the XAML page, which you can write in C#.

Note that you can also manipulate controls in a WPF application similarly to how Windows Forms
applications use programmatic techniques to lay out user interfaces. You can use code-behind to instan-
tiate a control, set its properties, add event handlers, and add the control to a window. This effectively
bypasses XAML completely. The code to do this will typically be a lot more long-winded than the
associated XAML declarative code, and you will lose the separation between design and functionality.
While the programmatic way of doing things is necessary in some situations, in general you should use
XAML to lay out controls in a user interface.

834 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

This chapter concentrates on the C# developer’s perspective. WPF is a subject that entire books have
been written about, so you will mostly be getting a quick initiation and a summary of possibilities.

ANATOMY OF A BASIC WPF APPLICATION

WPF is quite intuitive to use, and the best way to learn about it is to dive straight in and play.
Many of the techniques will instantly be familiar to you if you have worked through the rest of
this book.

In the following Try It Out you create a simple WPF application, and in the How It Works section that
follows you examine the code and results to learn more about how things fit together.

TRY IT OUT Creating a Basic WPF Application

1. Create a new WPF application called Ch25Ex01 and save it in the directory C:\BegVCSharp\

Chapter25.

2. Modify the code in MainWindow.xaml as follows:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Ch25Ex01.MainWindow"
Title="Color Spinner" Height="370" Width="270">
<Window.Resources>

<Storyboard x:Key="Spin">
<DoubleAnimationUsingKeyFrames BeginTime="00:00:00"

Storyboard.TargetName="ellipse1"
Storyboard.TargetProperty=

"(UIElement.RenderTransform).(TransformGroup.Children)[0].(RotateTransform.Angle)"
RepeatBehavior="Forever">
<SplineDoubleKeyFrame KeyTime="00:00:10" Value="360"/>

</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames BeginTime="00:00:00"

Storyboard.TargetName="ellipse2"
Storyboard.TargetProperty=

"(UIElement.RenderTransform).(TransformGroup.Children)[0].(RotateTransform.Angle)"
RepeatBehavior="Forever">
<SplineDoubleKeyFrame KeyTime="00:00:10" Value="-360"/>

</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames BeginTime="00:00:00"

Storyboard.TargetName="ellipse3"
Storyboard.TargetProperty=

"(UIElement.RenderTransform).(TransformGroup.Children)[0].(RotateTransform.Angle)"
RepeatBehavior="Forever">
<SplineDoubleKeyFrame KeyTime="00:00:05" Value="360"/>

</DoubleAnimationUsingKeyFrames>

Anatomy of a Basic WPF Application ❘ 835

<DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
Storyboard.TargetName="ellipse4"
Storyboard.TargetProperty=

"(UIElement.RenderTransform).(TransformGroup.Children)[0].(RotateTransform.Angle)"
RepeatBehavior="Forever">
<SplineDoubleKeyFrame KeyTime="00:00:05" Value="-360"/>

</DoubleAnimationUsingKeyFrames>
</Storyboard>

</Window.Resources>
<Window.Triggers>

<EventTrigger RoutedEvent="FrameworkElement.Loaded">
<BeginStoryboard Storyboard="{StaticResource Spin}"

x:Name="Spin_BeginStoryboard"/>
</EventTrigger>
<EventTrigger RoutedEvent="ButtonBase.Click" SourceName="goButton">
<ResumeStoryboard BeginStoryboardName="Spin_BeginStoryboard"/>

</EventTrigger>
<EventTrigger RoutedEvent="ButtonBase.Click" SourceName="stopButton">
<PauseStoryboard BeginStoryboardName="Spin_BeginStoryboard"/>

</EventTrigger>
</Window.Triggers>
<Window.Background>

<LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
<GradientStop Color="#FFFFFFFF" Offset="0"/>
<GradientStop Color="#FFFFC45A" Offset="1"/>

</LinearGradientBrush>
</Window.Background>
<Grid>

<Ellipse Margin="50,50,0,0" Name="ellipse5" Stroke="Black" Height="150"
HorizontalAlignment="Left" VerticalAlignment="Top" Width="150">
<Ellipse.Effect>

<BlurEffect Radius="10"/>
</Ellipse.Effect>
<Ellipse.Fill>

<RadialGradientBrush>
<GradientStop Color="#FF000000" Offset="1"/>
<GradientStop Color="#FFFFFFFF" Offset="0.306"/>

</RadialGradientBrush>
</Ellipse.Fill>

</Ellipse>
<Ellipse Margin="15,85,0,0" Name="ellipse1" Stroke="{x:Null}"
Height="80" HorizontalAlignment="Left" VerticalAlignment="Top"
Width="120" Fill="Red" Opacity="0.5"
RenderTransformOrigin="0.92,0.5" >
<Ellipse.Effect>

<BlurEffect/>
</Ellipse.Effect>
<Ellipse.RenderTransform>

<TransformGroup>
<RotateTransform Angle="0"/>

</TransformGroup>
</Ellipse.RenderTransform>

</Ellipse>

836 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

<Ellipse Margin="85,15,0,0" Name="ellipse2" Stroke="{x:Null}"
Height="120" HorizontalAlignment="Left" VerticalAlignment="Top"
Width="80" Fill="Blue" Opacity="0.5"
RenderTransformOrigin="0.5,0.92" >
<Ellipse.Effect>

<BlurEffect/>
</Ellipse.Effect>
<Ellipse.RenderTransform>

<TransformGroup>
<RotateTransform Angle="0"/>

</TransformGroup>
</Ellipse.RenderTransform>

</Ellipse>
<Ellipse Margin="115,85,0,0" Name="ellipse3" Stroke="{x:Null}"
Height="80" HorizontalAlignment="Left" VerticalAlignment="Top"
Width="120" Opacity="0.5" Fill="Yellow"
RenderTransformOrigin="0.08,0.5" >
<Ellipse.Effect>

<BlurEffect/>
</Ellipse.Effect>
<Ellipse.RenderTransform>

<TransformGroup>
<RotateTransform Angle="0"/>

</TransformGroup>
</Ellipse.RenderTransform>

</Ellipse>
<Ellipse Margin="85,115,0,0" Name="ellipse4" Stroke="{x:Null}"
Height="120" HorizontalAlignment="Left" VerticalAlignment="Top"
Width="80" Opacity="0.5" Fill="Green"
RenderTransformOrigin="0.5,0.08" >
<Ellipse.Effect>

<BlurEffect/>
</Ellipse.Effect>
<Ellipse.RenderTransform>

<TransformGroup>
<RotateTransform Angle="0"/>

</TransformGroup>
</Ellipse.RenderTransform>

</Ellipse>
<Button Height="23" HorizontalAlignment="Left" Margin="20,0,0,56"
Name="goButton" VerticalAlignment="Bottom" Width="75" Content="Go"/>

<Button Height="23" HorizontalAlignment="Left" Margin="152,0,0,56"
Name="stopButton" VerticalAlignment="Bottom" Width="75"
Content="Stop"/>

<Button Height="23" HorizontalAlignment="Left" Margin="85,0,86,16"
Name="toggleButton" VerticalAlignment="Bottom" Width="75"
Content="Toggle"/>

</Grid>
</Window>

Code snippet Ch25Ex01\MainWindow.xaml

Anatomy of a Basic WPF Application ❘ 837

FIGURE 25-5

3. Double-click the Toggle button in the design view
(shown highlighted in Figure 25-5, which has the
XAML view collapsed).

4. Modify the code in MainWindow.xaml.cs as fol-
lows (both the using statement and the new code
in the toggleButton_Click() event handler that
was added when you double-clicked the button):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Windows.Media.Animation;

namespace Ch25Ex01
{

/// <summary>
/// Interaction logic for MainWindow.xaml
/// </summary>
public partial class MainWindow : Window
{

public MainWindow()
{

InitializeComponent();
}

private void toggleButton_Click(object sender, RoutedEventArgs e)
{

Storyboard spinStoryboard = Resources["Spin"] as Storyboard;
if (spinStoryboard != null)
{

if (spinStoryboard.GetIsPaused(this))
{

spinStoryboard.Resume(this);
}
else
{

spinStoryboard.Pause(this);
}

}
}

}
}

Code snippet Ch25Ex01\MainWindow.xaml.cs

838 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

FIGURE 25-6

5. Execute the application and experiment with starting, stop-
ping, and toggling the animation. An example is shown in
Figure 25-6.

6. Create a new WPF Browser application called Ch25Ex01Web
and save it in the directory C:\BegVCSharp\Chapter25.

7. Change the value of the Title attribute of the <Page> element in
Page1.xaml to Color Spinner Web.

8. Open the MainWindow.xaml file from the Ch25Ex01 application
and copy all the code from the <Window> element in that file into
the <Page> element in Page1.xaml.

9. Change the <Window.Resources>, <Window.Triggers>,
and <Window.Background> elements to <Page.Resources>,
<Page.Triggers>, and <Page.Background> elements, respec-
tively (remember to change both the start and end tags for these
elements).

10. Remove the five <Ellipse.Effect> elements and their contents from Page1.xaml.

11. Copy the toggleButton_Click() event handler and the using statement for the System.Windows.

Media.Animation namespace from MainWindow.xaml.cs to Page1.xaml.cs.

12. Execute the Ch25Ex01Web application. The result is shown in Figure 25-7.

FIGURE 25-7

Anatomy of a Basic WPF Application ❘ 839

How It Works

In this example you created a simple application that results in spinning ellipses of color that you can start
or stop. Unfortunately, the black-and-white screenshots don’t convey the full effect, but when you run the
code yourself you should find the application at least somewhat aesthetically pleasing.

You added quite a lot of XAML code to achieve this result, but if you look a little closer you will notice
that a lot of it was repetitive code — required because there are four ellipses to animate. You may also
have noticed that you hardly added any C# code in the code-behind file, and that code was for only one of
the three buttons. The code was designed this way to illustrate two important points:

➤ Designers can create compelling user interfaces involving advanced graphical capabilities,
animation, and user interaction with nothing but XAML code.

➤ When required, you can achieve complete control over a XAML user interface from code-
behind.

You also saw how you can use the same code in a Web application as in a desktop application. A few
modifications were necessary, which you’ll look at later, but the essential functionality is the same in both
environments.

The code in this application demonstrates many features of WPF to introduce you to some key techniques.
To begin, you’ll look at the desktop application; then you look at the changes required for Web applica-
tions. First, look at the XAML for the desktop application, MainWindow.xaml, and the top-level element of
this code:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Ch25Ex01.MainWindow"
Title="Color Spinner" Height="370" Width="270">

...

</Window>

The <Window> element is used, unsurprisingly, to define a window. An application might consist of several
windows, each of which would be contained in a separate XAML file. This isn’t to say that a XAML file
always defines a window, though; XAML files can contain user controls, brushes and other resources,
Web pages, and more. There is even a XAML file in the Ch25Ex01 project that defines the application
itself — App.xaml. You’ll look at applications and the App.xaml file a little later in this chapter.

Back to MainWindow.xaml, notice that the <Window> element contains some fairly self-explanatory
attributes. There are two namespace declarations, one for the global namespace to be used for the XML
and one for the x namespace. Both of these are essential for WPF functionality and define the vocabulary
for the XAML syntax. Next is a Class attribute, taken from the x namespace. This attribute links the
XAML <Window> element to a partial class definition in the code behind, in this case Ch25Ex01.Window.
This is similar to the way things work in ASP.NET, with a class used for a page, and enables code-behind
to share the same code model as the XAML file, including controls defined by XAML elements, and so on.
Note that the x:Class attribute can be used only on the root element of a XAML file.

840 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

Three other attributes, Title, Height, and Width, specify the text to display in the title of the window,
and the dimensions (in pixels) to use for the window. These attributes map to properties of the
System.Windows.Window class, from which the Ch25Ex01.Window class is derived.

Several other properties of the System.Windows.Window class enable you to define additional functionality.
Many of these properties are more complex than the three used on the <Window> element — that is, they
aren’t, for example, simple strings or numbers. XAML syntax enables you to use nested elements to specify
values for these properties.

The syntax used for XAML to define objects, properties, and content is discussed in more detail in the
section ‘‘XAML Syntax.’’

For example, the Background property is defined in this code with a nested <Window.Background> element
as follows:

<Window.Background>
<LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">

<GradientStop Color="#FFFFFFFF" Offset="0"/>
<GradientStop Color="#FFFFC45A" Offset="1"/>

</LinearGradientBrush>
</Window.Background>

This code sets the Background property to an instance of the LinearGradientBruch class. In this case, the
brush defines a gradient that changes from white to a peach-like color from top to bottom.

There are two other ‘‘complex’’ properties defined in nested elements in this code: <Window.Resources>,
which defines the animation, and <Window.Triggers>, which defines triggers that control the animation.
Both of these properties, Resources and Triggers, are capable of far more than this, and are discussed in
more detail later in the chapter.

Before looking at the implementation of these properties, it’s worth jumping ahead to the <Grid> element.
The <Grid> element defines an instance of the System.Windows.Controls.Grid control. This is one of
several controls that you can use for layout in a WPF application. It enables you to position nested controls
using coordinates that can be relative to any of the four edges of a rectangle. Other controls enable you to
position controls in different ways. All the layout controls are described in the ‘‘Control Layout’’ section
later in this chapter.

The <Grid> element contains five <Ellipse> elements (System.Windows.Shapes.Ellipse controls) and
three <Button> elements (System.Windows.Controls.Button controls). These elements define the ellipses
used to display the spinning graphics in the application and the buttons used to control the application,
respectively.

The first <Ellipse> element is as follows:
<Ellipse Margin="50,50,0,0" Name="ellipse5" Stroke="Black" Height="150"
HorizontalAlignment="Left" VerticalAlignment="Top" Width="150">
<Ellipse.Effect>

<BlurEffect Radius="10"/>
</Ellipse.Effect>
<Ellipse.Fill>

<RadialGradientBrush>
<GradientStop Color="#FF000000" Offset="1"/>
<GradientStop Color="#FFFFFFFF" Offset="0.306"/>

Anatomy of a Basic WPF Application ❘ 841

</RadialGradientBrush>
</Ellipse.Fill>

</Ellipse>

This element defines an instance of the System.Windows.Shapes.Ellipse class, which is used to display an
ellipse shape, and sets several properties of this instance as follows:

➤ Name: An identifier to use for the control.

➤ Margin: Indicates the location of the shape defined by the Ellipse control in the grid that
contains it by specifying the margin around the shape. These measurements are given in pix-
els in this code. How this property maps to the actual location of the shape depends on the
HorizontalAlignment and VerticalAlignment properties.

➤ HorizontalAlignment and VerticalAlignment: Used to specify which edges of the rectangle
defined by Grid are used to lay out the shape. For example, values of Left and Bottom cause
the shape to be positioned relative to the bottom left of the grid.

➤ Height and Width: The dimensions of the shape.

➤ Stroke: The brush to use for the outline of the shape defined by the Ellipse control.

➤ Fill: The brush to use for the interior of the shape defined by the Ellipse control.

➤ Effect: A special effect to use when displaying the Ellipse control.

The brush used for the Fill property is a RadialGradientBrush. In this case, the brush specifies a gradient
from white (near the center of the ellipse) to black (at the edge).

The Effect property is set to use BlurEffect. This is one of two default effects that you can apply to
graphics in WPF. This effect blurs the shape with a magnitude defined by the BlurEffect.Radius property.
This effect is not available to Web applications, which is why you removed it in step 10. This is one of
several differences between desktop and Web applications.

NOTE You can define your own effects to apply to XAML items, but this is an
advanced technique not covered in this chapter.

Four more <Ellipse> elements in the code are very similar. Each of these elements defines one of the four
colored ellipses that are animated. The first of these elements is as follows:

<Ellipse Margin="15,85,0,0" Name="ellipse1" Stroke="{x:Null}"
Height="80" HorizontalAlignment="Left" VerticalAlignment="Top"
Width="120" Fill="Red" Opacity="0.5"
RenderTransformOrigin="0.92,0.5" >
<Ellipse.Effect>
<BlurEffect/>

</Ellipse.Effect>
<Ellipse.RenderTransform>
<TransformGroup>

<RotateTransform Angle="0"/>
</TransformGroup>

</Ellipse.RenderTransform>
</Ellipse>

842 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

This code looks a lot like the code for the previous ellipse, with the following differences:

➤ The Stroke property is set to {x:null}. In XAML, values enclosed in curly braces such as
this are called markup extensions and are used to provide values for properties that cannot be
reduced to simple strings in the XAML syntax. In this case, {x:null} specifies a null value
for the property, meaning that no brush is to be used for Stroke.

➤ An Opacity property is specified with a value of 0.5. This specifies that the ellipse is semi-
transparent.

➤ The Effect property uses a BlurEffect without a Radius attribute; in this case, the default
value of 5 is used for Radius.

➤ A RenderTransform property is specified. This property is set to a TransformGroup object with
a single transformation: RotateTransform. This transformation is used when the ellipse is ani-
mated. It has a single property specified, Angle. This is the angle, in degrees, through which
the ellipse is rotated, and is initially set to 0.

➤ RenderTransformOrigin is used to set a center point around which the ellipse will be rotated
by the RotateTransform transformation.

These last two properties relate to the animation defined in the XAML, which is defined by a
System.Windows.Media.Animation.Storyboard object. This object is defined in the <Window.Resources>

element, meaning that the Storyboard object will be available through the Resources collection of the
window. The code also defines an x:Key attribute, which enables the Storyboard object to be referenced
through Resources using a key:

<Window.Resources>
<Storyboard x:Key="Spin">

...
</Storyboard>

</Window.Resources>

The Storyboard object contains four DoubleAnimationUsingKeyFrames objects. These objects enable you
to specify that a property containing a double value should change over time, along with details to further
define this behavior. Each of the elements in this code defines the animation used by one of the colored
ellipses. For example, the animation for the ellipse1 ellipse examined earlier is as follows:

<DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
Storyboard.TargetName="ellipse1"
Storyboard.TargetProperty=

"(UIElement.RenderTransform).(TransformGroup.Children)[0]
.(RotateTransform.Angle)"

RepeatBehavior="Forever">
<SplineDoubleKeyFrame KeyTime="00:00:10" Value="360"/>

</DoubleAnimationUsingKeyFrames>

Without going into this element too deeply at this point, this specifies that the Angle property of the
RotateTransform transformation described previously should change from its initial value to a value of
360 over a time period of 10 seconds, and that this change should be repeated once complete. You’ll look
at animation in more detail in the ‘‘Animation’’ section of this chapter.

Anatomy of a Basic WPF Application ❘ 843

After the ellipse definitions there are three <Button> elements that define buttons (note that the Click

attribute was not shown in the code in the example; it was added by the IDE when you double-clicked the
button in step 3):

<Button Height="23" HorizontalAlignment="Left" Margin="20,0,0,56"
Name="goButton" VerticalAlignment="Bottom" Width="75"
Content="Go"/>

<Button Height="23" HorizontalAlignment="Left" Margin="152,0,0,56"
Name="stopButton" VerticalAlignment="Bottom" Width="75"
Content="Stop"/>

<Button Height="23" HorizontalAlignment="Left" Margin="85,0,86,16"
Name="toggleButton" VerticalAlignment="Bottom" Width="75"
Content="Toggle" Click="toggleButton_Click"/>

Each of these elements specifies the name, position, and dimensions of a Button object using the same
properties as the <Ellipse> elements shown earlier. They also have Content properties that determine
what is displayed in the content of the button — in this case, the string to display for the text on the
button. Buttons aren’t limited to displaying simple strings in this way, though; you could use embedded
shapes or other graphical content if you prefer. You’ll look at this in more detail in the ‘‘Control Styling’’
section later in this chapter.

The Click attribute on the toggleButton button defines an event handler method for the Click event. This
method, toggleButton_Click(), is actually a routed event handler. You’ll look at routed events in the
‘‘Routed Events’’ section later in this chapter. For now, you need to know that this event fires when you
click the button, and the event handler is then called.

In the event handler code, you start by obtaining a reference to the Storyboard object that defines the
animation. Earlier you saw that this object is contained in the Resources property of the containing Window

object, and that it uses the key Spin. The code that retrieves the storyboard should therefore come as no
surprise:

private void toggleButton_Click(object sender, RoutedEventArgs e)
{

Storyboard spinStoryboard = Resources["Spin"] as Storyboard;

Once obtained, and if the previous code doesn’t obtain a null value, the Storyboard.GetIsPaused()

method is used to determine whether the animation is currently paused or not. If it is, then a call
to Resume() is made; otherwise, Pause() is called. These methods resume or pause the animation,
respectively:

if (spinStoryboard != null)
{

if (spinStoryboard.GetIsPaused(this))
{

spinStoryboard.Resume(this);
}
else
{

spinStoryboard.Pause(this);
}

}
}

844 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

Note that all these methods require a reference to the object that contains the storyboard. This is because
storyboards themselves do not keep track of time. The window that contains a storyboard has its own
clock, which is used by the storyboard. By passing a reference to the window (using this), the storyboard
is able to gain access to this clock.

The other two buttons, goButton and stopButton, are not linked to any event handler methods in the code-
behind. Instead, their functionality is determined by triggers. In this example, three triggers are defined as
follows:

<Window.Triggers>
<EventTrigger RoutedEvent="FrameworkElement.Loaded">

<BeginStoryboard Storyboard="{StaticResource Spin}"
x:Name="Spin_BeginStoryboard"/>

</EventTrigger>
<EventTrigger RoutedEvent="ButtonBase.Click"

SourceName="goButton">
<ResumeStoryboard BeginStoryboardName="Spin_BeginStoryboard"/>

</EventTrigger>
<EventTrigger RoutedEvent="ButtonBase.Click"

SourceName="stopButton">
<PauseStoryboard BeginStoryboardName="Spin_BeginStoryboard"/>

</EventTrigger>
</Window.Triggers>

The first of these is a trigger that links the FrameworkElement.Loaded event (which fires when the appli-
cation is loaded) with a BeginStoryboard action. This action starts the Spin animation. Notice how the
Spin animation is referenced by using markup extension syntax with the code {StaticResource Spin}.
This syntax, used to reference resources in the containing window, is used frequently in WPF applications.
The BeginStoryboard action is given the name Spin_BeginStoryboard and is referenced in the other two
triggers, which link up the Click events of goButton and stopButton, respectively. These triggers use the
ResumeStoryboard and PauseStoryboard actions, which do exactly what their names suggest.

This code worked fine as a desktop application, but when you converted it to a Web application there were
several changes to be made. In fact, the example hid a few of these details from you by creating a new WPF
Browser application. For example, because certain security restrictions are associated with running code in
a browser, the WPF Browser application is equipped with a temporary key that you can use to sign your
application. This is necessary if you want to permit the application to perform actions that might otherwise
be forbidden in browser applications, such as accessing the local file system.

You probably also noticed that the <Window> root element of the desktop application is replaced with
a <Page> element in the Web application. This is because the capabilities exposed by a browser differ
slightly from the capabilities exposed by the host application that is used to run desktop applications.
WPF therefore used different classes to represent these differing hosts. However, as shown in the code, for
many things you can use identical code in the same environments. You’ll look at this in more detail later
in this chapter.

This completes the analysis of this example application. You’ve covered a lot of ground here, and have
learned a lot of new concepts very quickly, so it might be a good idea to take a breather at this point. The
remainder of this chapter describes the techniques you’ve seen here in more depth, formalizes the syntax
required, and looks at a few new things.

WPF Fundamentals ❘ 845

WPF FUNDAMENTALS

Hopefully, the example in the first part of this chapter has filled you with enthusiasm for WPF program-
ming. Although there are a lot of new concepts to get to a grip on, you have seen how the combination
of XAML and .NET code enables you to create dynamic applications very quickly. You have also seen
that it is possible, if you wish, to leave a lot of functionality, including the UI of your applications, in
the hands of designers who don’t require any knowledge of C#. Finally, you saw how you can create
desktop and Web applications with (more or less) the same code.

However, before you begin to create WPF applications for yourself, you should spend a little longer
on the basics. This section covers several topics that are fundamental to WPF applications, and looks
at the syntax required to implement them. You also learn about many additional possibilities that you
can investigate further in your own applications.

This section covers the following:

➤ XAML syntax

➤ Desktop and Web applications

➤ The Application object

➤ Control basics, including dependency properties, attached properties, routed events, and
attached events

➤ Control layout and styling

➤ Triggers

➤ Animation

➤ Static and dynamic resources

XAML Syntax
The example in the first part of this chapter introduced you to a lot of XAML syntax without formally
describing it. Many of the rules and possibilities were omitted there so you could focus on the gen-
eral structure and functionality. In this section you look at XAML in a little more detail so that you
understand how XAML files are assembled.

Object Element Syntax
The basic structure of a XAML file uses object element syntax to describe a hierarchy of objects with a
single root object that contains everything else. Object element syntax, as its name suggests, describes
an object (or struct) represented by an XML element. For example, you saw in the example how the
<Button> element was used to represent a System.Windows.Controls.Button object.

The root element of a XAML file always uses object element syntax, although as you saw in the earlier
example, the class used for the root object is defined not by the element name (<Window> or <Page>)
but by the x:Class attribute. This syntax is only used in the root element. For desktop applications,
the root element must inherit from System.Windows.Window, and for Web applications, it must inherit
from System.Windows.Controls.Page.

846 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

Many of the objects that you define using object element syntax are, in fact, controls, such as the Button
control used in the example.

Attribute Syntax
You have seen that in many cases where an element is used to represent an object (using object element
syntax), attributes are used to specify properties and events. For example, the <Button> element shown
earlier used attributes as follows:

<Button Height="23" HorizontalAlignment="Left" Margin="85,0,86,16"
Name="toggleButton" VerticalAlignment="Bottom" Width="75"
Content="Toggle" Click="toggleButton_Click"/>

Here, each attribute sets the value of a property of the toggleButton object, apart from Click, which
assigns a routed event handler to the Click event of toggleButton, and Name. These are all examples of
attribute syntax.

The Name attribute used here is a special case: It defines the identifier for the control so that you can
reference it from code-behind and other XAML code.

Attributes may be qualified with the base class that they refer to by using a period. For example,
the Button control inherits its Click event from ButtonBase, so you could rewrite the previous code
as follows:

<Button Height="23" HorizontalAlignment="Left" Margin="85,0,86,16"
Name="toggleButton" VerticalAlignment="Bottom" Width="75"
Content="Toggle" ButtonBase.Click="toggleButton_Click"/>

Note that this same syntax is also used for attached properties, which you’ll look at in the ‘‘Control
Basics’’ section of this chapter.

Property Element Syntax
In many cases you will want to use something more complicated than a simple string to initialize the
value of a property. In the example application, that was the case for the Fill properties you used,
which you set to various brush objects:

<Ellipse ...>
...
<Ellipse.Fill>

<RadialGradientBrush>
<GradientStop Color="#FF000000" Offset="1"/>
<GradientStop Color="#FFFFFFFF" Offset="0.306"/>

</RadialGradientBrush>
</Ellipse.Fill>

</Ellipse>

Here, the property is set by a child element that is named according to the following convention:

[Parent Element Name].[Property Name]

This is referred to as property element syntax.

WPF Fundamentals ❘ 847

Content Syntax
Many controls are in fact content presenters. This means that you supply the controls with content
that is displayed according to the control template. For example, the content you supply for a Button

control is displayed on the surface of the button. This can be text, as in the example, or it could be
something graphical.

With content syntax, you specify the content for a control simply by adding it as the content of the
element representing the control:

<Button ...>Go</Button>

This code is for a Button control that will display the text Go on itself when rendered. The example
used a simpler, but less flexible, way of doing this: It used an attribute called Content. The full content
syntax used here is necessary for more complex content such as the graphical content discussed in the
introduction to this section.

When you use complex content for a control, you can end up with complex nested hierarchies of XAML
code. For this reason, XAML enables controls to be styled by other, more subtle means. You learn more
about content presenters and styling in the ‘‘Control Styling’’ section.

Mixing Property Element Syntax and Content Syntax
A control on a XAML page that is formatted using object element syntax may include both property
element syntax and content syntax. If this is the case, then you must respect the following syntac-
tic rules:

➤ The elements used for property element syntax do not have to be contiguous — that is, you
can have an element that uses property element syntax followed by one that uses content syn-
tax followed by a third element that uses property element syntax.

➤ The elements (and text content, if applicable) used for content syntax must be
contiguous — that is, you cannot have text or an element that uses content syntax fol-
lowed by one that uses property element syntax followed by a third element that uses text or
content syntax.

The following code is therefore fine:

<Button ...>
<Button.Effect>

<BlurEffect Radius="10"/>
</Button.Effect>
Go
<Button.RenderTransform>

<RotateTransform Angle="20"/>
</Button.RenderTransform>

</Button>

848 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

However, the next bit of code won’t work because there are two places where content syntax is used
that are separated by an element that uses property element syntax:

<Button ...>
Don’t
<Button.Effect>

<BlurEffect Radius="10"/>
</Button.Effect>
Go

</Button>

Markup Extensions
The example showed how markup extensions can also be used for property values — for example, the
value {x:null}. Wherever curly braces ({}) are used, you are using markup extensions. These can be
used in both attribute syntax and property element syntax code.

All of the markup extensions in this chapter are specific to WPF. WPF-specific extensions include those
used for referencing resources and for data binding.

Desktop and Web Applications
The example shown earlier in this chapter demonstrated how a WPF application can run as both a
standalone desktop application and a Web application. You looked at both the WPF Application and
WPF Browser Application project templates as a starting point and added XAML and C# code to
complete your application. The WPF Application template compiled your project to an .exe file, and
the WPF Browser application compiled your project to an .xbap file.

NOTE XBAP (pronounced ex-bap) is an acronym for XAML Browser Application,
and Web applications that are created using WPF are often referred to as XBAP
applications.

Most of the differences between these application types are differences between the project (.csproj)
files. WPF Browser applications have some extra settings defined here, including settings to sign both
the application and the manifest for the application (for the security reasons mentioned earlier), and to
enable debugging in the browser. There is also, as mentioned earlier, a test certificate that you can use
for this signing. In a production environment you replace this certificate with one from your certifica-
tion authority.

Converting between desktop WPF and Web WPF applications can be a fiddly business, as you must
change quite a few settings, and (as shown in the example) certain changes are required to the XAML
code. These changes include changing <Window> elements to <Page> elements and removing func-
tionality such as bitmap effects. The best approach is usually to create separate projects, as in the
previous example.

WPF Fundamentals ❘ 849

The Application Object
In WPF, most applications (including all XBAP applications as well as desktop applications that use the
WPF Application template) include an instance of a class derived from System.Windows.Application.
In the example application you saw earlier, this object is defined by the App.xaml and App.xaml.cs files.
App.xaml for Ch25Ex01 is as follows:

<Application x:Class="Ch25Ex01.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="MainWindow.xaml">
<Application.Resources>

</Application.Resources>
</Application>

Code snippet Ch25Ex01\App.xaml

The syntax for the <Application> element is similar to the <Window> element discussed earlier, and
uses the x:Class attribute in the same way, to link the code to a partial class definition in the code-
behind.

The object defined by this code is the entry point for the WPF application. There can be
only one instance of this object, and it is accessible throughout your code by using the static
Application.Current property. The application object for an application is extremely useful for the
following reasons:

➤ It exposes numerous events that are raised at specific points during the lifetime of an applica-
tion. This includes the LoadCompleted event shown earlier, which is raised when an applica-
tion is loaded and rendered, the DispatcherUnhandledException event that occurs when an
unhandled exception is thrown, and many more.

➤ It contains methods that you can use to set or load cookies, locate and load resources,
and more.

➤ It has several properties that you can use to access, for example, application-scoped resources
(see the Static and Dynamic Resources section) and the windows in the application.

The events raised by the application object are probably the most useful feature in this list, and probably
the things you will use most often.

Control Basics
WPF supplies you with a wide array of controls that you can use to create applications. This chapter
provides a broad overview of WPF and what you can do with it, so rather than examine each of the
WPF controls in detail, you learn about them by seeing them in action.

850 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

The following is a list of the controls supplied by WPF:

Border Image Slider
BulletDecorator Label StatusBar
Button ListBox TabControl
Calendar ListView TextBlock
CheckBox ListView TextBox
ComboBox Menu ToolBar
ContextMenu MediaElement ToolTip
DataGrid PasswordBox TreeView
DatePicker Popup ViewBox
DocumentViewer ProgressBar
Expander RadioButton
FlowDocumentPageViewer RepeatButton
FlowDocumentReader RichTextBox
FlowDocumentScrollViewer ScrollBar
Frame ScrollViewer
GroupBox Separator

NOTE The control list does not include the WPF controls that are used for layout,
described later in this chapter.

Some of the controls shown here have very familiar names, and in fact they do very similar things
compared to their counterparts in Windows Forms and ASP.NET applications. For example, you have
already seen how the Button control can be used to render a button. Others are less familiar, and it is
worth experimenting to see what is possible.

These controls initially have a very basic look. To get the most out of them you have to style them,
which is arguably where the true power of WPF becomes evident, as you will see later in this chapter.
Apart from styling, there are several other features that WPF controls use. In this section you look at
the following:

➤ Dependency properties

➤ Attached properties

➤ Routed events

As with other desktop and Web application development, you can (and almost certainly will) create
your own controls. When you create a control you can use all of the features described here. The
following sections provide implementation examples.

Dependency Properties
A dependency property is a type of property used throughout WPF, in particular on controls, that gives
you functionality that extends ordinary .NET properties. To illustrate this, consider an ordinary .NET
property. When you create classes in .NET, you typically implement properties using very simple code
such as the following:

WPF Fundamentals ❘ 851

private string aStringProperty;

public string AStringProperty
{

get
{

return aStringProperty;
}
set
{

aStringProperty = value;
}

}

Here you have a public property that is backed by a private field. This simple implementation is abso-
lutely fine for most purposes but it doesn’t include much functionality other than basic access to state.
For example, if you wanted to add the AStringProperty to a control (ControlA) and you wanted
another control (ControlB) to respond to changes to the property, you would have to do the following:

1. Add the AStringProperty to ControlA using the code shown earlier.

2. Add an event to ControlA.

3. Add a method to ControlA to raise the event.

4. Add code to the set accessor of AStringProperty in ControlA to call the event raising
method.

5. Add code to ControlB to subscribe to the event exposed by ControlA.

NOTE There is no need to look at the code required to add and respond to
changes to a simple property here, as you have seen it several times in this book.

The problem with this approach is that there are no defined standards that you can follow to achieve
this result. Different developers might add code that achieves the same result in different ways. More-
over, this requires you to identify all the properties that you might want notifications for at the time
you develop the controls.

The WPF approach to this problem is to replace the simple property definition used in the earlier code
with a dependency property, and then to use formalized, structured techniques to expose property
change notifications. A dependency property is a property that is registered with the WPF property
system in such a way as to allow extended functionality. This extended functionality includes, but is
not limited to, automatic property change notifications. Specifically, dependency properties have the
following features:

➤ You can use styles to change the values of dependency properties.

➤ You can set the value of a dependency property by using resources or by data binding.

➤ You can change dependency property values in an animation.

852 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

➤ You can set dependency properties hierarchically in XAML — that is, a value for a depen-
dency property that you set on a parent element can be used to set the default value for the
same dependency property of its child elements.

➤ You can configure notifications for property value changes using a well-defined
coding pattern.

➤ You can configure sets of related properties so that they all update in response to a change to
one of them. This is known as coercion. The changed property is said to coerce the values of
the other properties.

➤ You can apply metadata to a dependency property to specify other behavior characteristics.
For example, you might specify that if a given property changes, then it may be necessary to
rearrange the user interface.

In practice, because of the way in which dependency properties are implemented, you may not notice
much of a difference compared to ordinary properties at first. However, when you create your own
controls, you will quickly find that a lot of functionality suddenly disappears when you use ordinary
.NET properties.

Because dependency properties are so prevalent in WPF, you will learn how to implement them later in
this chapter.

Attached Properties
An attached property is a property that is made available to each child object of an instance of the class
that defines the property. For example, imagine you have a class called Recipe that can contain child
objects that represent ingredients. You could define an attached property called Quantity in the Recipe
class definition that could then be used by each child. Note that child objects do not have to specify
values for attached properties.

The main reason to do this is that the XAML code you use to set values for attached properties is very
easy to understand:

<Recipe Name="Simple Vegetable Chili">
<TinOfKidneyBeans Recipe.Quantity="2" Mashed="true" />
<TinOfChoppedTomatoes Recipe.Quantity="2" />
<FreshChili Recipe.Quantity="5" Notes="Chopped fine, vary to taste." />
<Onion Recipe.Quantity="1" Notes="Chopped and fried in olive oil." />
<LBVPort Notes="Just a dash." />

</Recipe>

The syntax used here is a form of attribute syntax that you looked at earlier. Here, the attached prop-
erty is referred to using the name of the parent element, a period, and the name of the attached property.

In WPF, attached properties serve a variety of uses. You will see a lot of attached properties shortly,
when you look at how to position controls in the ‘‘Control Layout’’ section. You will learn how con-
tainer controls define attached properties that enable child controls to define, for example, which edges
of the container to dock to.

Routed Events
Because of its hierarchical nature, WPF applications often consist of controls that contain other con-
trols, which contain more controls, and so on. A routed event is a mechanism by which an event that

WPF Fundamentals ❘ 853

affects one control in a hierarchy can also be made to affect other events in the hierarchy, without
requiring complex code.

One excellent example of this is when you enable users to interact with your applications with the
mouse, which is of course extremely common. When a user clicks a button in your application, you
typically want to respond to the click event. One way to do this is familiar to you from Windows
Forms and ASP.NET development: Provide an event handler for an event that is exposed by the button,
and respond to the mouse click there.

While it might not seem so at first, this technique is actually quite limiting, and has led to some quite
confusing code — for example, in some Windows Forms applications. The reason is because some
mechanism is required to identify which control should respond to the mouse click by raising its click
event, and this may not immediately be obvious. In the simple example given here, should the click
event of the button be raised, or should the click event of the window that contains the button be
raised? If both the button and the window have event handlers and only one of these events is to be
raised, you probably want the button to raise the event. However, what if you want both events to be
raised, and to be raised in a specific order? With Windows Forms applications, you probably have to
write (possibly complex) custom code to achieve this.

The mouse click event for WPF controls, including Button and Window, is implemented as a routed
event, which circumvents this problem. Routed events are raised by all objects in a hierarchy in a
specific order, giving you complete control over how to respond to them.

For example, consider a Window that contains a Grid, which in turn contains a Rectangle. When you
click on the Rectangle, the following sequence of events occurs:

1. The mouse down event is raised on the Window.

2. The mouse down event is raised on the Grid.

3. The mouse down event is raised on the Rectangle.

(You might expect things to finish here, but the sequence continues . . .)

4. Another mouse down event is raised on the Rectangle.

5. Another mouse down event is raised on the Grid.

6. Another mouse down event is raised on the Window.

You can respond to the event at any point in the preceding sequence by adding an appropriate event
handler method. You can also choose to interrupt the sequence at any point in an event handler method,
but event handlers don’t interrupt the sequence by default. This means that you can trigger multiple
event handler methods from a single event (in this case, a single mouse down event).

When describing the sequence of events shown here, WPF introduces some useful terminology. As an
event moves down through the hierarchy of controls, it is said to be tunneling. On the way back up
through the hierarchy, it is bubbling.

In addition, wherever routed events are used in WPF, the event names enable you to tell whether the
event is a tunneling or bubbling event. All tunneling events start with the prefix Preview. For example,
the Window control has both a PreviewMouseDown and a MouseDown event. You can add handlers to one,
both, or none of these events as desired.

854 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

Figure 25-8 shows the preceding sequence in terms of which events are fired when, and how the event
is tunneled and bubbled through the control hierarchy.

WindowWindow.PreviewMouseDown1

2

3

6

5

4

Tunneling Bubbling

Tunneling Bubbling

Grid.PreviewMouseDown

Rectangle.PreviewMouseDown

Window.MouseDown

Grid.MouseDown

Rectangle.MouseDown

Grid

Rectangle

FIGURE 25-8

Routed event handlers have two parameters: the source of the event, and an instance of
RoutedEventArgs or a class that derives from RoutedEventArgs.

When you implement an event handler for a routed event, you can, if desired, set the Handled property
of the RoutedEventArgs object to true. If you do so, then no further processing takes place — that is,
no more event handlers will fire for the event.

RoutedEventArgs also exposes a property called Source, which enables you to tell which control raised
the event initially. This control is the one in which WPF initially detected the event, so in the scenario
illustrated in Figure 25-8, it will be the Rectangle control. This can be very useful, as parent controls
can determine which child control, if any, was clicked. Note that this ‘‘hit testing’’ is quite sophisticated.
WPF is capable of ignoring clicks on transparent regions of controls, for example, without you having
to do anything to enable this. Alternatively, you can create transparent controls that do respond to
mouse clicks, so you have a great deal of flexibility.

NOTE WPF differentiates between ‘‘transparent’’ and ‘‘null’’ regions of controls
when it comes to hit tests. Only transparent regions will respond to hit tests; null
regions will be ignored.

Routed events cover far more than just mouse clicks; you can use them for a wide variety of purposes,
including keyboard interaction, data binding, timers, and more. Attached events, which you’ll look at
shortly, make routed events even more useful.

The following Try It Out illustrates the situation described in this section and covers some additional
information about routed events.

WPF Fundamentals ❘ 855

TRY IT OUT Working with Routed Events

1. Create a new WPF application called Ch25Ex02 and save it in the directory C:\BegVCSharp

\Chapter25.

2. Modify the code in MainWindow.xaml as follows:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Ch25Ex02.MainWindow"
Title="Routed Events" Height="400" Width="800"
MouseDown="Generic_MouseDown" PreviewMouseDown="Generic_MouseDown"
MouseUp="Window_MouseUp">
<Grid Name="contentGrid" MouseDown="Generic_MouseDown"
PreviewMouseDown="Generic_MouseDown" Background="Azure">
<Rectangle Name="clickMeRectangle" Margin="10,10,0,0"

Height="23" HorizontalAlignment="Left" VerticalAlignment="Top"
Width="70" Stroke="Black" MouseDown="Generic_MouseDown"
PreviewMouseDown="Generic_MouseDown" Fill="CadetBlue" />

<Button Name="clickMeButton" Margin="0,10,10,0" Height="23"
HorizontalAlignment="Right" VerticalAlignment="Top" Width="70"
MouseDown="Generic_MouseDown"
PreviewMouseDown="Generic_MouseDown"
Click="clickMeButton_Click">Click Me</Button>

<TextBlock Name="outputText" Margin="10,40,10,10"
Background="Cornsilk" />

</Grid>
</Window>

Code snippet Ch25Ex02\MainWindow.xaml

3. Modify the code in MainWindow.xaml.cs as follows (note that depending on which IDE you are
using and how you entered the XAML code, empty event handler methods may have been added
for you automatically):

public partial class MainWindow : Window
{

...

private void Generic_MouseDown(object sender,
MouseButtonEventArgs e)

{
outputText.Text = string.Format(

"{0}Event {1} raised by control {2}. e.Source={3}\n",
outputText.Text,
e.RoutedEvent.Name,
sender.ToString(),
((FrameworkElement)e.Source).Name);

}

private void Window_MouseUp(object sender, MouseButtonEventArgs e)
{

outputText.Text = string.Format(
"{0}==========\n\n",
outputText.Text);

}

856 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

private void clickMeButton_Click(object sender, RoutedEventArgs e)
{

outputText.Text = string.Format(
"{0}Button clicked!\n==========\n\n",
outputText.Text);

}
}

Code snippet Ch25Ex02\MainWindow.xaml.cs

4. Run the application. When the application is running, click once on the rectangle in the top-left
corner, once in the light-blue area between the rectangle and the button, and once on the button.
Figure 25-9 shows the result.

FIGURE 25-9

How It Works

This example demonstrated how routed events are processed by highlighting the MouseDown and
PreviewMouseDown events that are exposed by all WPF controls. You also looked at what happens when
you include a button in the chain of events. The XAML code you used was already very simple, but to
examine the essential parts (in the context of this example) consider the following:

<Window
x:Class="Ch25Ex02.MainWindow" MouseDown="Generic_MouseDown"
PreviewMouseDown="Generic_MouseDown" MouseUp="Window_MouseUp">
<Grid Name="contentGrid" MouseDown="Generic_MouseDown"
PreviewMouseDown="Generic_MouseDown">
<Rectangle Name="clickMeRectangle" MouseDown="Generic_MouseDown"

PreviewMouseDown="Generic_MouseDown" />
<Button Name="clickMeButton" MouseDown="Generic_MouseDown"

PreviewMouseDown="Generic_MouseDown"
Click="clickMeButton_Click" />

<TextBlock Name="outputText" />
</Grid>

</Window>

WPF Fundamentals ❘ 857

Here, all the properties that don’t affect functionality have been removed so that you can concentrate on
the code that relates to routed event handling. Three event handlers are used, configured for events as
shown in the following table:

EVENT HANDLER EVENTS HANDLED

Generic_MouseDown() Window.PreviewMouseDown

Window.MouseDown

Grid.PreviewMouseDown

Grid.MouseDown

Rectangle.PreviewMouseDown

Rectangle.MouseDown

Window_MouseUp() Window.MouseUp

clickMeButton_Click() Button.Click

The event handler methods simply output information to the TextBlock control so that you can see what
is happening. The text output includes the event name, the control raising the event, and the source control
for the event as obtained from RoutedEventArgs.Source.

When you run the application, the first click you performed, which was on the Rectangle control, gave
you the sequence of events described before the Try It Out. The Generic_MouseDown() event handler was
called six times: three times for PreviewMouseDown tunneling events and three times for MouseDown bubbling
events. The event source in all cases was, as expected, the control that satisfied the hit test, which was the
Rectangle, clickMeRectangle. The Window_MouseUp() event handler was also called, after the other event
handlers, and added some text to separate this test from the next.

After that, you clicked between controls, which was actually a click on the background of the Grid control.
This time the Generic_MouseDown() event handler was called four times: twice for PreviewMouseDown

tunneling events and twice for MouseDown bubbling events. The event source here was the Grid

control, contentGrid, in all cases. Again, the Window_MouseUp() event handler was called after the
Generic_MouseDown() calls.

Finally, you clicked the Button control. This time Generic_MouseDown() was called only three times. Next,
the Button.Click event fired, resulting in a call to clickMeButton_Click(). Finally, the Window_MouseUp()

event handler was called.

In this final chain of events, the MouseDown event was handled by the button, and used to trigger
its Click event. The underlying implementation of the MouseDown event handler for the button was
used to set the Handled property of the RoutedEventArgs event arguments parameter to true. This
interrupted the flow of events such that the MouseDown event was not bubbled back up the control
hierarchy.

In case you were wondering, you looked at clicking on the Rectangle control (before the Try It Out) in
order to see how the Button control interrupts event routing.

858 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

Attached Events
The preceding example added a Button.Click event to the Button control on a page. You didn’t add
handlers to the Click event of Grid or Window because these two controls don’t have a Click event.
However, sometimes you might wish that they did.

For example, imagine you have a window containing 1,000 buttons and you want to handle the Click

event of each. You could have 1,000 event handlers, or you could simplify things by having a single,
shared event handler. Even with a single event handler, though, you have to associate it with each and
every Button.Click event.

WPF provides an alternative (better) way of dealing with this situation: attached events. By
using the attached events system, you can handle events on controls that don’t expose them, so
in the example discussed here you could handle the Button.Click event on the Grid that contains
the buttons — even though the Grid control doesn’t have a Click event. In fact, you handle
ButtonBase.Click, as ButtonBase is the class that defines the Click event that the Button control
inherits.

The syntax for this is the same attribute syntax used for attached properties:

<Grid Name="contentGrid" ButtonBase.Click="contentGrid_Click" ...>
<Button Name="button1" ...>Button1</Button>
<Button Name="button2" ...>Button2</Button>
...
<Button Name="button1000" ...>Button1000</Button>

</Grid>

In the event handler you get a reference to the Grid control in the sender parameter, and you can use the
RoutedEventArgs.Source property to determine which button was clicked, and respond accordingly.
This event is raised only when a button is clicked, not when you click the Grid control background,
because the Grid control has no Click event to raise.

Control Layout
So far in this chapter you have used the Grid element to lay out controls, primarily because that is
the control supplied by default when you create a new WPF application. However, you haven’t yet
examined the full capabilities of this class, nor have you learned about the other layout containers that
you can use to achieve alternative layouts. This section looks at control layout in more detail, as it is a
fundamental concept to grasp in WPF.

All content layout controls derive from the abstract Panel class. This class simply defines a container
that can contain a collection of objects that derive from UIElement. All WPF controls derive from
UIElement. You cannot use the Panel class directly for control layout, but you can derive from it if you
want to. Alternatively, you can use one of the following layout controls that derive from Panel:

➤ Canvas: This control enables you to position child controls any way you see fit. It doesn’t
place any restrictions on child control positioning, but nor does it provide any assistance in
child control positioning.

➤ DockPanel: This control enables you to dock child controls against one of its four edges. The
last child control fills the remaining space.

WPF Fundamentals ❘ 859

➤ Grid: You have seen how this control enables flexible positioning of child controls. What you
haven’t seen is how you can divide the layout of this control into rows and columns, which
enables you to align controls in a grid layout.

➤ StackPanel: This control positions its child controls in a sequential horizontal or vertical
layout.

➤ WrapPanel: This control positions its child controls in a sequential horizontal or vertical lay-
out as StackPanel, but rather than a single row or column of controls, this control wraps its
children into multiple rows or columns according to the space available.

You’ll look at how to use these controls in more detail shortly. First, however, there are a few basic
concepts to understand:

➤ How controls appear in stack order

➤ How to use alignment, margins, and padding to position controls and their content

➤ How to use the Border control

Stack Order
When a container control contains multiple child controls, they are drawn in a specific stack order.
You may be familiar with this concept from drawing packages. The best way to think of stack order is
to imagine that each control is contained in a plate of glass, and the container contains a stack of these
plates of glass. The appearance of the container, therefore, is what you would see if you looked down
from the top through these layers of glass. The controls contained by the container overlap, so what
you see is determined by the order of the glass plates. If a control is higher up the stack, then it will
be the control that you see in the overlap area. Controls lower down may be partially or completely
hidden by controls above them.

This also affects hit testing when you click on a window with the mouse. The target control will always
be the one that is uppermost in the stack when considering overlapping controls. The stack order of
controls is determined by the order in which they appear in the list of children for a container. The first
child in a container is placed on the lowest layer in the stack, and the last child on the topmost layer.
The children between the first and last child are placed on increasingly higher layers. The stack order
of controls has additional implications for some of the layout controls that you can use in WPF, as you
will see shortly.

Alignment, Margins, Padding, and Dimensions
Earlier examples showed how a combination of Margin, HorizontalAlignment, and VerticalAlignment

enables you to position controls in a Grid container. You have also seen how you can use Height

and Width to specify dimensions. These properties, along with Padding, which you haven’t looked at
yet, are useful for all of the layout controls (or most of them, as you will see), but in different ways.
Different layout controls can also set default values for these properties. You’ll see a lot of this by
example in subsequent sections, but before doing that it is worth covering the basics.

The two alignment properties determine how the control is aligned, but you haven’t yet looked at all
the values for these properties. HorizontalAlignment, for example, can be set to Left, Right, Center,
or Stretch. Left and Right tend to position controls to the left or right edges of the container, Center

860 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

positions controls in the middle, and Stretch changes the width of the control so that its edges reach
to the sides of the container. VerticalAlignment is similar, and has the values Top, Bottom, Center,
or Stretch.

Margin and Padding specify the space to leave blank around the edges of controls and inside the
edges of controls, respectively. Earlier examples used Margin to position controls relative to, for
example, the top-left corner of a Grid. This worked because with HorizontalAlignment set to Left and
VerticalAlignment set to Top, the control is positioned tight against the top-left corner, and Margin

inserted a gap around the edge of the control. Padding is used similarly, but spaces out the content of a
control from its edges. This is particularly useful for Border, as you will see in the next section. Both
Padding and Margin can be specified in four parts (in the form leftAmount, topAmount, rightAmount,
bottomAmount) or as a single value (a Thickness value).

Later, you will see how Height and Width are often controlled by other properties. For example, with
HorizontalAlignment set to Stretch, the Width property of a control changes as the width of its con-
tainer changes.

Border
The Border control is a very simple, and very useful, container control. It holds a single child, not
multiple children like the more complicated controls you’ll look at in a moment. This child will be
sized to completely fill the Border control. This may not seem particularly useful, but remember that
you can use the Margin and Padding properties to position the Border within its container, and the
content of the Border within the edges of the Border. You can also set, for example, the Background

property of a Border so that it is visible. You will see this control in action shortly.

Canvas
The Canvas control, as previously noted, provides complete freedom over control positioning. Another
thing about Canvas is that HorizontalAligment and VerticalAlignment properties used with a child
element will have no effect whatsoever over the positioning of those elements.

You can use Margin to position elements in a Canvas as per earlier examples, but a better way is to use
the Canvas.Left, Canvas.Top, Canvas.Right, and Canvas.Bottom attached properties that the Canvas

class exposes:

<Canvas ...>
<Button Canvas.Top="10" Canvas.Left="10" ...>Button1</Button>

</Canvas>

The preceding code positions a Button so that its top edge is 10 pixels from the top edge of the Canvas,
and its left edge is 10 pixels from the left edge of the Canvas. Note that the Top and Left properties take
precedence over Bottom and Right. For example, if you specify both Top and Bottom, then the Bottom

property is ignored.

Figure 25-10 shows two Rectangle controls positioned in a Canvas control, with the window resized
to two sizes.

WPF Fundamentals ❘ 861

FIGURE 25-10

NOTE All of the example layouts in this section can be found in the
LayoutExamples project in the downloadable code for this chapter.

One Rectangle is positioned relative to the top-left corner, and one is positioned relative to the bottom-
right corner. As you resize the window, these relative positions are maintained. You can also see the
importance of the stacking order of the Rectangle controls. The bottom-right Rectangle is higher up
in the stacking order, so when they overlap this is the control that you see.

The code for this example is as follows:

<Canvas Background="AliceBlue">
<Rectangle Canvas.Left="50" Canvas.Top="50" Height="40" Width="100"

Stroke="Black" Fill="Chocolate" />
<Rectangle Canvas.Right="50" Canvas.Bottom="50" Height="40" Width="100"

Stroke="Black" Fill="Bisque" />
</Canvas>

Code snippet LayoutExamples\CanvasWindow.xaml

DockPanel
The DockPanel control, as its name suggests, enables you to dock controls to one of its edges. This
sort of layout should be familiar to you, even if you’ve never stopped to notice it before. It is how,
for example, the Ribbon control in Word remains at the top of the Word window, or how the various
windows in VS and VCE are positioned. In VS and VCE you may also (intentionally or accidentally)
change the docking of windows by dragging them around.

DockPanel has a single attached property that child controls can use to specify the edge to which con-
trols dock: DockPanel.Dock. You can set this property to Left, Top, Right, or Bottom.

862 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

The stack order of controls in a DockPanel is extremely important, as every time you dock a control to
an edge you also reduce the available space of subsequent child controls. For example, you might dock
a toolbar to the top of a DockPanel and then a second toolbar to the left of the DockPanel. The first
control would stretch across the entire top of the DockPanel display area, but the second control would
only stretch from the bottom of the first toolbar to the bottom of the DockPanel along the left edge.

The last child control you specify will (usually) fill the area that remains after all the previous children
have been positioned. (You can control this behavior, which is why this statement is qualified.)

When you position a control in a DockPanel, the area occupied by the control may be smaller than the
area of the DockPanel that is reserved for the control. For example, if you dock a Button with a Width

of 100, a Height of 50, and a HorizontalAlingment of Left to the top of a DockPanel, then there will
be space to the right of the Button that isn’t used by other docked children. In addition, if the Button

control has a Margin of 20, then a total of 90 pixels at the top of the DockPanel will be reserved (the
height of the control plus the top and bottom margins). You need to take this behavior into account
when you use DockPanel for layout; otherwise, you may end up with unexpected results.

Figure 25-11 shows a sample DockPanel layout.

FIGURE 25-11

The code for this layout is as follows:

<DockPanel Background="AliceBlue">
<Border DockPanel.Dock="Top" Padding="10" Margin="5"

Background="Aquamarine" Height="45">
<Label>1) DockPanel.Dock="Top"</Label>

</Border>
<Border DockPanel.Dock="Top" Padding="10" Margin="5"

Background="PaleVioletRed" Height="45" Width="200">
<Label>2) DockPanel.Dock="Top"</Label>

</Border>
<Border DockPanel.Dock="Left" Padding="10" Margin="5"

Background="Bisque" Width="200">
<Label>3) DockPanel.Dock="Left"</Label>

</Border>

WPF Fundamentals ❘ 863

<Border DockPanel.Dock="Bottom" Padding="10" Margin="5"
Background="Ivory" Width="200" HorizontalAlignment="Right">
<Label>4) DockPanel.Dock="Bottom"</Label>

</Border>
<Border Padding="10" Margin="5" Background="BlueViolet">

<Label Foreground="White">5) Last control</Label>
</Border>

</DockPanel>

Code snippet LayoutExamples\DockPanelWindow.xaml

This code uses the Border control introduced earlier to clearly mark out the docked control regions in
the example layout, along with Label controls to output simple informative text. To understand the
layout, you must read it from top to bottom, looking at each control in turn:

1. The first Border control is docked to the top of the DockPanel. The total area taken up in the
DockPanel is the top 55 pixels (Height + 2 × Margin). Note that the Padding property does
not affect this layout, as it is inside the edge of the Border, but this property does control
the positioning of the embedded Label control. The Border control fills any available space
along the edge it is docked to if not constrained by Height or Width properties, which is why
it stretches across the DockPanel.

2. The second Border control is also docked to the top of the DockPanel, and takes up another
55 pixels from the top of the display area. This Border control also includes a Width prop-
erty, which causes the border to take up only a portion of the width of the DockPanel. It is
positioned centrally, as the default value for HorizonalAlignment in a DockPanel is Center.

3. The third Border control is docked to the left of the DockPanel and takes up 210 pixels of the
left of the display.

4. The fourth Border control is docked to the bottom of the DockPanel and takes up 30
pixels plus the height of the Label control it contains (whatever that is). This height is
determined by the Margin, Padding, and contents of the Border control, as it is not specified
explicitly. The Border control is locked to the bottom-right corner of the DockPanel, as it has
a HorizontalAlignment of Right.

5. The fifth and final Border control fills the remaining space.

Run this example and experiment with resizing content. Note that the further up the stacking order
a control is, the more priority is given to its space. By shrinking the window, the fifth Border control
can quickly be completely obscured by controls further up the stacking order. Be careful when using
DockPanel control layout to avoid this, perhaps by setting minimum dimensions for the window.

Grid
Grid controls can have multiple rows and columns that you can use to lay out child controls. You
have used Grid controls several times already in this chapter, but in all cases you used a Grid with a
single row and a single column. To add more rows and columns, you must use the RowDefinitions and
ColumnDefinitions properties, which are collections of RowDefinition and ColumnDefinition objects,
respectively, and are specified using property element syntax:

864 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

<Grid>
<Grid.RowDefinitions>

<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>
...

</Grid>

This code defines a Grid control with three rows and two columns. Note that no extra information
is required here; with this code, each row and column is dynamically resized automatically as the
Grid control resizes. Each row will be a third of the height of the Grid, and each column will be half
the width. You can display lines between cells in a Grid by setting the Grid.ShowGridlines property
to true.

You can control the resizing with the Width, Height, MinWidth, MaxWidth, MinHeight, and MaxHeight

properties. For example, setting the Width property of a column ensures that the column stays at that
width. You can also set the Width property of a column to *, which means ‘‘fill the remaining space
after calculating the width of all other columns.’’ This is actually the default. When you have multiple
columns with a Width of *, then the remaining space is divided between them equally. The * value can
also be used with the Height property of rows. The other possible value for Height and Width is Auto,
which sizes the row or column according to its content. You can also use GridSplitter controls to
enable users to customize the dimensions of rows and columns by clicking and dragging.

Child controls of a Grid control can use the attached Grid.Column and Grid.Row properties to specify
what cell they are contained in. Both these properties default to 0, so if you omit them, then the child
control is placed in the top-left cell. Child controls can also use Grid.ColumnSpan and Grid.RowSpan to
be positioned over multiple cells in a table, where the upper-left cell is specified by Grid.Column and
Grid.Row.

Figure 25-12 shows a Grid control containing multiple ellipses and a GridSplitter with the window
resized to two sizes.

FIGURE 25-12

WPF Fundamentals ❘ 865

The code used here is as follows:

<Grid Background="AliceBlue">
<Grid.ColumnDefinitions>

<ColumnDefinition MinWidth="100" MaxWidth="200" />
<ColumnDefinition MaxWidth="100" />
<ColumnDefinition Width="50" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition Height="50" />
<RowDefinition MinHeight="100" />
<RowDefinition />

</Grid.RowDefinitions>
<Ellipse Grid.Row="0" Grid.Column="0" Fill="BlanchedAlmond"

Stroke="Black" />
<Ellipse Grid.Row="0" Grid.Column="1" Fill="BurlyWood"

Stroke="Black" />
<Ellipse Grid.Row="0" Grid.Column="2" Fill="BlanchedAlmond"

Stroke="Black" />
<Ellipse Grid.Row="0" Grid.Column="3" Fill="BurlyWood"

Stroke="Black" />
<Ellipse Grid.Row="1" Grid.Column="0" Fill="BurlyWood"

Stroke="Black" />
<Ellipse Grid.Row="1" Grid.Column="1" Fill="BlanchedAlmond"

Stroke="Black" />
<Ellipse Grid.Row="1" Grid.Column="2" Fill="BurlyWood"

Stroke="Black" />
<Ellipse Grid.Row="1" Grid.Column="3" Fill="BlanchedAlmond"

Stroke="Black" />
<Ellipse Grid.Row="2" Grid.Column="0" Fill="BlanchedAlmond"

Stroke="Black" />
<Ellipse Grid.Row="2" Grid.Column="1" Fill="BurlyWood"

Stroke="Black" />
<Ellipse Grid.Row="2" Grid.Column="2" Fill="BlanchedAlmond"

Stroke="Black" />
<Ellipse Grid.Row="2" Grid.Column="3" Fill="BurlyWood"

Stroke="Black" />
<Ellipse Grid.Row="2" Grid.Column="2" Grid.ColumnSpan="2" Fill="Gold"

Stroke="Black" Height="50"/>
<GridSplitter Grid.RowSpan="3" Width="10" BorderThickness="2">

<GridSplitter.BorderBrush>
<SolidColorBrush Color="Black" />

</GridSplitter.BorderBrush>
</GridSplitter>

</Grid>

Code snippet LayoutExamples\GridWindow.xaml

This code uses various combinations of properties on the row and column definitions to achieve an
interesting effect when you resize the display, so it’s worth testing for yourself.

First, consider the rows. The top row has a fixed height of 50 pixels, the second row has a minimum
height of 100, and the third row fills the remaining space. This means that if the Grid has a height of
less than 150 pixels, then the third row will not be visible. When the Grid has a height of between 150

866 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

and 250 pixels, only the size of the third row will change, from 0 to 100 pixels. This is because the
remaining space is calculated as the total height minus the combined heights of rows that have a fixed
height. This remaining space is allocated between the second and third rows, but because the second
row has a minimum height of 100 pixels, it will not change its height until the total height of the Grid

reaches 250 pixels. Finally, when the height of the Grid is greater than 250, both the second and third
rows will share the remaining space, so their height will be both equal to and greater than 100 pixels.

Next, look at the columns. Only the third column has a fixed size, of 50 pixels. The first and second
columns share up to a maximum of 300 pixels. The fourth column will therefore be the only one to
increase in size when the total width of the Grid control exceeds 550 pixels. To work this out for
yourself, consider how many pixels are available to the columns and how they are distributed. First, 50
pixels are allocated to the third column, leaving 500 for the rest of the columns. The third column has
a maximum width of 100 pixels, leaving 400 between the first and fourth columns. The first column
has a maximum width of 200, so even if the width increases beyond this point, it will not consume any
more space. Instead, the fourth column will increase in size.

Note two additional points in this example. First, the final ellipse defined spans the third and fourth
columns to illustrate Grid.ColumnSpan. Second, a GridSplitter is provided to enable resizing of the
first and second columns. However, once the total width of the Grid control exceeds 550 pixels, this
GridSplitter will not be able to size these columns, as neither the first nor the second column can
increase in size.

The GridSplitter control is useful but it has a very dull appearance. This is one control that really
needs to be styled, or at least made invisible by setting its Background property to Transparent, for you
to make the most of it.

If you have multiple Grid controls in a window, you can also define shared size groups for rows or
columns by using the ShareSizeGroup property in row and/or column definitions, which you just set to
a string identifier of your choice. For example, if a column in a shared size group changes in one Grid

control, then a column in another Grid control in the same size group will change to match this size.
You can enable or disable this functionality through the Grid.IsSharedSizeScope property.

StackPanel
After the complexity of Grid, you may be relieved to discover that StackPanel is a relatively simple
layout control. You can think of StackPanel as being a slimmed down version of DockPanel, where
the edge to which child controls are docked is fixed for those controls. The other difference between
these controls is that the last child control of a StackPanel doesn’t fill the remaining space. However,
controls will, by default, stretch to the edges of the StackPanel control.

The direction in which controls are stacked is determined by three properties. Orientation can be set to
Horizontal or Vertical, and HorizontalAlignment and VerticalAlignment can be used to determine
whether control stacks are positioned next to the top, bottom, left, or right edge of the StackPanel.
You can even make the stacked controls stack at the center of the StackPanel using the Center value
for the alignment property you use.

WPF Fundamentals ❘ 867

FIGURE 25-13

Figure 25-13 shows two StackPanel controls, each of which
contains three buttons. The StackPanel controls are positioned
using a Grid control with two rows and one column.

The code used here is as follows:

<Grid Background="AliceBlue">
<Grid.RowDefinitions>

<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>
<StackPanel Grid.Row="0">

<Button>Button1</Button>
<Button>Button2</Button>
<Button>Button3</Button>

</StackPanel>
<StackPanel Grid.Row="1" Orientation="Horizontal">

<Button>Button1</Button>
<Button>Button2</Button>
<Button>Button3</Button>

</StackPanel>
</Grid>

Code snippet LayoutExamples\StackPanelWindow.xaml

When you use StackPanel layout, you often need to add scrollbars so that it is possible to view all the
controls contained in the StackPanel. This is another area where WPF does a lot of the heavy lifting
for you. You can use the ScrollViewer control to achieve this — simply enclose the StackPanel in this
control:

<Grid Background="AliceBlue">
<Grid.RowDefinitions>

<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>
<ScrollViewer>

<StackPanel Grid.Row="0">
<Button>Button1</Button>
<Button>Button2</Button>
<Button>Button3</Button>

</StackPanel>
</ScrollViewer>
<StackPanel Grid.Row="1" Orientation="Horizontal">

<Button>Button1</Button>
<Button>Button2</Button>
<Button>Button3</Button>

</StackPanel>
</Grid>

You can use more complicated techniques to scroll in different ways, or to scroll programmatically, but
often this is all you need to do.

868 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

WrapPanel
WrapPanel is essentially an extended version of StackPanel; controls that ‘‘don’t fit’’ are moved to
additional rows (or columns). Figure 25-14 shows a WrapPanel control containing multiple shapes,
with the window resized to two sizes.

FIGURE 25-14

An abbreviated version of the code to achieve this is shown here:

<WrapPanel Background="AliceBlue">
<Rectangle Fill="#FF000000" Height="50" Width="50" Stroke="Black"

RadiusX="10" RadiusY="10" />
<Rectangle Fill="#FF111111" Height="50" Width="50" Stroke="Black"

RadiusX="10" RadiusY="10" />
<Rectangle Fill="#FF222222" Height="50" Width="50" Stroke="Black"

RadiusX="10" RadiusY="10" />
...
<Rectangle Fill="#FFFFFFFF" Height="50" Width="50" Stroke="Black"

RadiusX="10" RadiusY="10" />
</WrapPanel>

Code snippet LayoutExamples\WrapPanelWindow.xaml

WrapPanel controls are a great way to create a dynamic layout that enables users to control exactly
how content should be viewed.

Control Styling
One of the best features of WPF is the complete control it provides designers over the look and feel
of user interfaces. Central to this is the capability to style controls however you want, in two or three
dimensions. Until now, you have been using the basic styling for controls that is supplied with .NET
3.5, but the actual possibilities are endless.

This section describes two basic techniques:

➤ Styles: Sets of properties that are applied to a control as a batch

➤ Templates: The controls that are used to build the display for a control

There is some overlap here, as styles can contain templates.

WPF Fundamentals ❘ 869

Styles
WPF controls have a property called Style (inherited from FrameworkElement) that can be set to an
instance of the Style class. The Style class is quite complex and is capable of advanced styling func-
tionality, but at its heart it is essentially a set of Setter objects. Each Setter object is responsible for
setting the value of a property according to its Property property (the name of the property to set) and
its Value property (the value to set the property to). You can either fully qualify the name you use in
Property to the control type (for example, Button.Foreground) or you can set the TargetType property
of the Style object (for example, Button) so that it is capable of resolving property names.

The following code, then, shows how to use a Style object to set the Foreground property of a
Button control:

<Button>
Click me!
<Button.Style>

<Style TargetType="Button">
<Setter Property="Foreground">

<Setter.Value>
<SolidColorBrush Color="Purple" />

</Setter.Value>
</Setter>

</Style>
</Button.Style>

</Button>

Obviously, in this case it would be far easier simply to set the Foreground property of the button in the
usual way. Styles become much more useful when you turn them into resources, because resources can
be reused. You will learn how to do this later in the chapter.

Templates
Controls are constructed using templates, which you can customize. A template consists of a hierarchy
of controls used to build the display of a control, which may include a content presenter for controls
such as buttons that display content.

The template of a control is stored in its Template property, which is an instance of the
ControlTemplate class. The ControlTemplate class includes a TargetType property that you
can set to the type of control for which you are defining a template, and it can contain a single control.
This control can be a container such as Grid, so this doesn’t exactly limit what you can do.

Typically, you set the template for a class by using a style. This simply involves providing controls to
use for the Template property in the following way:

<Button>
Click me!
<Button.Style>

<Style TargetType="Button">
<Setter Property="Template">

<Setter.Value>
<ControlTemplate TargetType="Button">

...
</ControlTemplate>

</Setter.Value>

870 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

</Setter>
</Style>

</Button.Style>
</Button>

Some controls may require more than one template. For example, CheckBox controls use one tem-
plate for a check box (CheckBox.Template) and one template to output text next to the check box
(CheckBox.ContentTemplate).

Templates that require content presenters can include a ContentPresenter control at the location
where you want to output content. Some controls, in particular those that output collections of items,
use alternative techniques, which aren’t covered in this chapter.

Again, replacing templates is most useful when combined with resources. However, as control styling
is a very common technique, it is worth looking at how to do it in a Try It Out.

TRY IT OUT Using Styles and Templates

1. Create a new WPF application called Ch25Ex03 and save it in the directory C:\BegVCSharp

\Chapter25.

2. Modify the code in MainWindow.xaml as follows:

<Window x:Class="Ch25Ex03.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Nasty Button" Height="150" Width="550">
<Grid Background="Black">

<Button Margin="20" Click="Button_Click">
Would anyone use a button like this?
<Button.Style>

<Style TargetType="Button">
<Setter Property="FontSize" Value="18" />
<Setter Property="FontFamily" Value="arial" />
<Setter Property="FontWeight" Value="bold" />
<Setter Property="Foreground">

<Setter.Value>
<LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5,1">

<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.0" Color="Purple" />
<GradientStop Offset="0.5" Color="Azure" />
<GradientStop Offset="1.0" Color="Purple" />

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Setter.Value>
</Setter>
<Setter Property="Template">

<Setter.Value>
<ControlTemplate TargetType="Button">

<Grid>

WPF Fundamentals ❘ 871

<Grid.ColumnDefinitions>
<ColumnDefinition Width="50" />
<ColumnDefinition />
<ColumnDefinition Width="50" />

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition MinHeight="50" />
</Grid.RowDefinitions>
<Ellipse Grid.Column="0" Height="50">

<Ellipse.Fill>
<RadialGradientBrush>

<RadialGradientBrush.GradientStops>
<GradientStop Offset="0.0" Color="Yellow" />
<GradientStop Offset="1.0" Color="Red" />

</RadialGradientBrush.GradientStops>
</RadialGradientBrush>

</Ellipse.Fill>
</Ellipse>
<Grid Grid.Column="1">

<Rectangle RadiusX="10" RadiusY="10">
<Rectangle.Fill>

<RadialGradientBrush>
<RadialGradientBrush.GradientStops>

<GradientStop Offset="0.0" Color="Yellow" />
<GradientStop Offset="1.0" Color="Red" />

</RadialGradientBrush.GradientStops>
</RadialGradientBrush>

</Rectangle.Fill>
</Rectangle>
<ContentPresenter Margin="20,0,20,0"
HorizontalAlignment="Center"
VerticalAlignment="Center" />

</Grid>
<Ellipse Grid.Column="2" Height="50">

<Ellipse.Fill>
<RadialGradientBrush>

<RadialGradientBrush.GradientStops>
<GradientStop Offset="0.0" Color="Yellow" />
<GradientStop Offset="1.0" Color="Red" />

</RadialGradientBrush.GradientStops>
</RadialGradientBrush>

</Ellipse.Fill>
</Ellipse>

</Grid>
</ControlTemplate>

</Setter.Value>
</Setter>

</Style>
</Button.Style>

</Button>
</Grid>

</Window>
Code snippet Ch25Ex03\MainWindow.xaml

872 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

3. Modify the code in MainWindow.xaml.cs as follows:

public partial class MainWindow : Window
{

...

private void Button_Click(object sender, RoutedEventArgs e)
{

MessageBox.Show("Button clicked.");
}

}
Code snippet Ch25Ex03\MainWindow.xaml.cs

4. Run the application and click the button once. Figure 25-15 shows the result.

FIGURE 25-15

How It Works

First, let me apologize for the truly nasty-looking button shown in this example. However, aesthetic con-
siderations aside, this example does show that you can completely change how a button looks in WPF
without a lot of effort. In changing the button template though, the functionality of the button remains
unchanged. That is, you can click on the button and respond to that click in an event handler.

You probably noticed that certain things you associate with Windows buttons aren’t implemented in the
template used here. In particular, there is no visual feedback when you roll over the button or when you
click it. This button also looks exactly the same whether it has focus or not. To achieve these missing
effects, you need to learn about triggers, which are the subject of the next section.

Before doing that, though, consider the example code in a little more detail, focusing on styles and tem-
plates and looking at how the template was created.

The code starts with ordinary code that you would use to display a Button control:

<Button Margin="20" Click="Button_Click">
Would anyone use a button like this?

This provides basic properties and content for the button. Next, the Style property is set to a Style object,
which begins by setting three simple font properties of the Button control:

WPF Fundamentals ❘ 873

<Button.Style>
<Style TargetType="Button">
<Setter Property="FontSize" Value="18" />
<Setter Property="FontFamily" Value="arial" />
<Setter Property="FontWeight" Value="bold" />

Next, the Button.Foreground property is set using property element syntax because a brush is used:

<Setter Property="Foreground">
<Setter.Value>
<LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5,1">

<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.0" Color="Purple" />
<GradientStop Offset="0.5" Color="Azure" />
<GradientStop Offset="1.0" Color="Purple" />

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Setter.Value>
</Setter>

The remainder of the code for the Style object sets the Button.Template property to a
ControlTemplate object:

<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="Button">

...
</ControlTemplate>

</Setter.Value>
</Setter>

</Style>
</Button.Style>

</Button>

The template code can be summarized as a Grid control that contains three cells in a single row. In turn,
these cells contain an Ellipse, a Rectangle, along with the ContentPresenter for the template, and
another Ellipse:

<Grid>
<Ellipse Grid.Column="0" Height="50">

...
</Ellipse>
<Grid Grid.Column="1">

<Rectangle RadiusX="10" RadiusY="10">
...

</Rectangle>
<ContentPresenter Margin="20,0,20,0"
HorizontalAlignment="Center"
VerticalAlignment="Center" />

</Grid>
<Ellipse Grid.Column="2" Height="50">

...
</Ellipse>

</Grid>

None of this code is particularly complicated, and you can analyze it further at your leisure.

874 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

Triggers
In the first example of this chapter you saw how triggers can be used to link events to actions.
Events in WPF can include all manner of things, including button clicks, application startup and
shutdown events, and so on. There are, in fact, several types of triggers in WPF, all of which inherit
from a base TriggerBase class. The type of trigger shown in the example was an EventTrigger. The
EventTrigger class contains a collection of actions, each of which is an object that derives from the
base TriggerAction class. These actions are executed when the trigger is activated.

Not a lot of classes inherit from TriggerAction in WPF, but you can, of course, define your own. You
can use EventTrigger to trigger animations using the BeginStoryboard action, manipulate storyboards
using ControllableStoryboardAction, and trigger sound effects with SoundPlayerAction. As this
latter trigger is mostly used in animations, you’ll look at it in the next section.

Every control has a Triggers property that you can use to define triggers directly on that control. You
can also define triggers further up the hierarchy — for example, on a Window object as shown earlier.
The type of trigger you will use most often when you are styling controls is Trigger (although you
will still use EventTrigger to trigger control animations). The Trigger class is used to set properties in
response to changes to other properties, and is particularly useful when used in Style objects.

Trigger objects are configured as follows:

➤ To define what property a Trigger object monitors, you use the Trigger.Property property.

➤ To define when the Trigger object activates, you set the Trigger.Value property.

➤ To define the actions taken by a Trigger, you set the Trigger.Setters property to a collec-
tion of Setter objects.

The Setter objects referred to here are exactly the same objects that you saw in the ‘‘Styles’’
section earlier.

For example, the following trigger would examine the value of a property called MyBooleanValue, and
when that property is true it would set the value of the Opacity property to 0.5:

<Trigger Property="MyBooleanValue" Value="true">
<Setter Property="Opacity" Value="0.5" />

</Trigger>

On its own this code doesn’t tell you very much, as it is not associated with any control or style. The
following code is much more explanatory, as it shows a Trigger as you would use it in a Style object:

<Style TargetType="Button">
<Style.Triggers>

<Trigger Property="IsMouseOver" Value="true">
<Setter Property="Foreground" Value="Yellow" />

</Trigger>
</Style.Triggers>

</Style>

This code would change the Foreground property of a Button control to Yellow when the
Button.IsMouseOver property is true. IsMouseOver is one of several extremely useful properties
that you can use as a shortcut to find out information about controls and control state. As its name
suggests, it is true if the mouse is over the control. This enables you to code for mouse rollovers. Other

WPF Fundamentals ❘ 875

properties like this include IsFocused, to determine whether a control has focus; IsHitTestVisible,
which indicates whether it is possible to click on a control (that is, it is not obscured by controls further
up the stacking order); and IsPressed, which indicates whether a button is pressed. The last of these
only applies to buttons that inherit from ButtonBase, whereas the others are available on all controls.

As well as the Style.Triggers property, you can also achieve a lot by using the ControlTemplate.

Triggers property. This enables you to create templates for controls that include triggers. This is how
the default Button template is able to respond to mouse rollovers, clicks, and focus changes with its
template. This is also what you must modify to implement this functionality for yourself.

Animation
Animations are created by using storyboards. The absolute best way to define animations is, without
a doubt, to use a designer such as Expression Blend. However, you can also define them by editing
XAML code directly, and by implication from code-behind (as XAML is simply a way to build a WPF
object model).

A storyboard is defined using a Storyboard object, which contains one or more timelines. You can
define timelines by using key frames or by using one of several simpler objects that encapsulate entire
animations. Complex storyboards may even contain nested storyboards.

As shown in the example, a Storyboard is contained in a resource dictionary, so you must identify it
with an x:Key property.

Within the timeline of a storyboard, you can animate properties of any element in your application
that is of type double, Point, or Color. This covers most of the things that you may want to change, so
it’s quite flexible. There are some things that you can’t do, such as completely replace one brush with
another, but there are ways to achieve pretty much any effect you can imagine given these three types.

Each of these three types has two associated timeline controls that you can use as children
of Storyboard. These six controls are DoubleAnimation, DoubleAnimationUsingKeyFrames,
PointAnimation, PointAnimationUsingKeyFrames, ColorAnimation, and ColorAnimationUsingKey

Frames. Every timeline control can be associated with a specific property of a specific control by using
the attached properties Storyboard.TargetName and Storyboard.TargetProperty. For example, you
would set these properties to MyRectangle and Width if you wanted to animate the Width property of
a Rectangle control with a Name property of MyRectangle. You would use either DoubleAnimation or
DoubleAnimationUsingKeyFrames to animate this property.

The Storyboard.TargetProperty property is capable of interpreting quite advanced syntax so that you
can locate the property you are interested in animating. In the example at the beginning of this chapter,
you used the following values for the two attached properties:

Storyboard.TargetName="ellipse1"
Storyboard.TargetProperty=
"(UIElement.RenderTransform).(TransformGroup.Children)[0]
.(RotateTransform.Angle)"

The control ellipse1 was of type Ellipse, and the TargetProperty specified the angle that the ellipse
was rotated through in a transformation. This angle was located through the RenderTransform property
of Ellipse, inherited from UIElement, and the first child of the TransformGroup object that was the

876 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

value of this property. This first child was a RotateTransform object, and the angle was the Angle

property of this object.

Although this syntax can be long-winded, it is straightforward to use. The most difficult thing is deter-
mining the base class from which a given property is inherited, although the object browser can help
you with that.

Next, you’ll look at the simple, non-key-frame animation timelines, and then move on to look at the
timelines that use key frames.

Timelines without Key Frames
The timelines without key frames are DoubleAnimation, PointAnimation, and ColorAnimation.
These timelines have identical property names, although the types of these properties vary
according to the type of the timeline (note that all duration properties are specified in the form
[days.]hours:minutes:seconds in XAML code):

PROPERTY DESCRIPTION

Name The name of the timeline, so that you can refer to it from other places.

BeginTime How long after the storyboard is triggered before the timeline starts.

Duration How long the timeline lasts.

AutoReverse Whether the timeline reverses when it completes and returns properties to their
original values. This property is a Boolean value.

RepeatBehavior Set this to a specified duration to make the timeline repeat as indicated — an
integer followed by x (for example, 5x) to repeat the timeline a set number of
times; or use Forever to make the timeline repeat until the storyboard is paused
or stopped.

FillBehavior How the timeline behaves if it completes while the storyboard is still continuing.
You can use HoldEnd to leave properties at the values they are at when the time-
line completes (the default), or Stop to return them to their original values.

SpeedRatio Controls the speed of the animation relative to the values specified in other prop-
erties. The default value is 1, but you can change it from other code to speed up
or slow down animations.

From The initial value to set the property to at the start of the animation. You can omit
this value to use the current value of the property.

To The final value for the property at the end of the animation. You can omit this
value to use the current value of the property.

By Use this value to animate from the current value of a property to the sum of the
current value and the value you specify. You can use this property on its own or
in combination with From.

WPF Fundamentals ❘ 877

For example, the following timeline will animate the Width property of a Rectangle control with a Name

property of MyRectangle between 100 and 200 over 5 seconds:

<Storyboard x:Key="RectangleExpander">
<DoubleAnimation Storyboard.TargetName="MyRectangle"
Storyboard.TargetProperty="Width" Duration="00:00:05"
From="100" To="200" />

</Storyboard>

Timelines with Key Frames
The timelines with key frames are DoubleAnimationUsingKeyFrames, PointAnimationUsingKeyFrames,
and ColorAnimationUsingKeyFrames. These timeline classes use the same properties as the timeline
classes in the previous section, except that they don’t have From, To, or By properties. Instead, they have
a KeyFrames property that is a collection of key frame objects.

These timelines can contain any number of key frames, each of which can cause the value being ani-
mated to behave in a different way. There are three types of key frames for each type of timeline:

➤ Discrete: A discrete key frame causes the value being animated to jump to a specified value
with no transition.

➤ Linear: A linear key frame causes the value being animated to animate to a specified value in
a linear transition.

➤ Spline: A spline key frame causes the value being animated to animate to a specified value in
a nonlinear transition defined by a cubic Bezier curve function.

There are therefore nine types of key frame objects: DiscreteDoubleKeyFrame, LinearDoubleKeyFrame,
SplineDoubleKeyFrame, DiscreteColorKeyFrame, LinearColorKeyFrame, SplineColorKeyFrame,
DiscretePointKeyFrame, LinearPointKeyFrame, and SplinePointKeyFrame.

The key frame classes have the same three properties as the timeline classes examined in the previous
section, apart from the spline key frames, which have one additional property:

PROPERTY USAGE

Name The name of the key frame, so that you can refer to it from other places.

KeyTime The location of the key frame expressed as an amount of time after the timeline
starts.

Value The value that the property will reach or be set to when the key frame is reached.

KeySpline Two sets of two numbers in the form cp1x,cp1y cp2x,cp2y that define the cubic
Bezier function to use to animate the property. (Spline key frames only.)

For example, you could animate the position of an Ellipse in a square by animating its Center prop-
erty, which is of type Point, as follows:

878 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

<Storyboard x:Key="EllipseMover">
<PointAnimationUsingKeyFrames Storyboard.TargetName="MyEllipse"

Storyboard.TargetProperty="Center" RepeatBehavior="Forever">
<LinearPointKeyFrame KeyTime="00:00:00" Value="50,50" />
<LinearPointKeyFrame KeyTime="00:00:01" Value="100,50" />
<LinearPointKeyFrame KeyTime="00:00:02" Value="100,100" />
<LinearPointKeyFrame KeyTime="00:00:03" Value="50,100" />
<LinearPointKeyFrame KeyTime="00:00:04" Value="50,50" />

</PointAnimationUsingKeyFrames>
</Storyboard>

Point values are specified in x,y form in XAML code.

Static and Dynamic Resources
Another great feature of WPF is the capability to define resources, such as control styles and tem-
plates, which you can reuse throughout your application. You can even use resources across multiple
applications if you define them in the right place.

Resources are defined as entries in a ResourceDictionary object. As its name suggests, this is a keyed
collection of objects. This is why you’ve used x:Key attributes in example code so far in this chapter
when you have defined resources: to specify the key associated with a resource. You can access
ResourceDictionary objects in a variety of locations. You could include resources local to a control,
local to a window, local to your application, or in an external assembly.

There are two ways to reference resources: statically or dynamically. Note that this distinction doesn’t
mean that the resource itself is in any way different. That is, you don’t define a resource as static or
dynamic; the difference is in how you use it.

Static Resources
You use static resources when you know exactly what the resource will be at design time, and you
know that the reference won’t change over the application’s lifetime. For example, if you define a
button style that you want to use for the buttons in your application, then you probably won’t want
to change it while the application runs. In this case, you should reference the resource statically. In
addition, when you use a static resource, the resource type is resolved at compile time, so performance is
very fast.

To reference a static resource, you use the following markup extension syntax:

{StaticResource resourceName}

For example, if you had a style defined for Button controls with an x:Key attribute of MyStyle, then
you could reference it from a control as follows:

<Button Style="{StaticResource MyStyle}" ...>...</Button>

Dynamic Resources
A property defined by using a dynamic resource can be changed at runtime to another dynamic
resource. This can be useful in a number of circumstances. Sometimes you want to give users

WPF Fundamentals ❘ 879

control over the general theme of your application, in which case you want resources to be allocated
dynamically. In addition, sometimes you are not aware of the key you require for a resource at
runtime — for example, if you dynamically attach to a resource assembly.

Dynamic resources therefore give you more flexibility than static resources. However, there is a down-
side. There is slightly more overhead related to the use of dynamic resources, so you should use them
sparingly if you want to optimize the performance of your applications.

The syntax required to reference a resource dynamically is very similar to that required to reference a
resource statically:

{DynamicResource resourceName}

For example, if you have a style defined for Button controls with a x:Key attribute of MyDynamicStyle,
you could reference it from a control as follows:

<Button Style="{DynamicResource MyDynamicStyle}" ...>...</Button>

Referencing Style Resources
Earlier, you saw how to reference a Style resource from a Button control, both statically and dynami-
cally. The Style resource used here might be in the Resources property of the local Window control, for
example:

<Window ...>
<Window.Resources>

<Style x:Key="MyStyle" TargetType="Button">
...

</Style>
</Window.Resources>
...

</Window>

Every Button control that you want to use this control must then refer to it in its Style property (stat-
ically or dynamically). Alternatively, you could define a style resource that is global to a given control
type. That is, the Style object will be applied to every control of a given type in your application. To
do this, merely omit the x:Key attribute:

<Window ...>
<Window.Resources>

<Style TargetType="Button">
...

</Style>
</Window.Resources>
...

</Window>

This is a great way to theme your applications. You can define a set of global styles for the various
control types that you use and they will be used everywhere.

You’ve covered a lot of ground in the last few sections, so it’s time to tie things together with an
example. In the next Try It Out, you modify the Button control from the previous Try It Out to use
triggers and animations, and define the style as a global, reusable resource.

880 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

TRY IT OUT Triggers, Animations, and Resources

1. Create a new WPF application called Ch25Ex04 and save it in the directory C:\BegVCSharp\

Chapter25.

2. Copy the code from MainWindow.xaml in Ch25Ex03 into MainWindow.xaml in Ch25Ex04, but
change the namespace reference on the Window element as follows:

<Window x:Class="Ch25Ex04.MainWindow"
Code snippet Ch25Ex04\MainWindow.xaml

3. Copy the Button_Click() event handler from MainWindow.xaml.cs in Ch25Ex03 into
MainWindow.xaml.cs in Ch25Ex04.

4. Add a <Window.Resources> child to the <Window> element and move the <Style> definition
from the <Button.Style> element to the <Window.Resources> element. Remove the empty
<Button.Style> element. The result is shown here (abbreviated):

<Window x:Class="Ch25Ex04.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Nasty Button" Height="150" Width="550">
<Window.Resources>

<Style TargetType="Button">
...

</Style>
</Window.Resources>
<Grid Background="Black">

<Button Margin="20" Click="Button_Click">
Would anyone use a button like this?

</Button>
</Grid>

</Window>

5. Run the application and verify that the result is the same as in the previous example.

6. Add Name attributes to the main Grid in the template and the Rectangle that contains the
ContentPresenter element as follows:

<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="Button">

<Grid Name="LayoutGrid">
<Grid.ColumnDefinitions>
...
<Grid Grid.Column="1">

<Rectangle RadiusX="10" RadiusY="10" Name="BackgroundRectangle">
<Rectangle.Fill>

...
</Rectangle.Fill>

WPF Fundamentals ❘ 881

</Rectangle>
...

</Grid>
...

</Grid>
</ControlTemplate>

</Setter.Value>
</Setter>

7. Add the following code to the <ControlTemplate> element, just before the </ControlTemplate> tag:

</Grid>
<ControlTemplate.Resources>

<Storyboard x:Key="PulseButton">
<ColorAnimationUsingKeyFrames BeginTime="00:00:00"

RepeatBehavior="Forever"
Storyboard.TargetName="BackgroundRectangle"
Storyboard.TargetProperty=

"(Shape.Fill).(RadialGradientBrush.GradientStops)[1].(GradientStop.Color)">
<LinearColorKeyFrame Value="Red" KeyTime="00:00:00" />
<LinearColorKeyFrame Value="Orange" KeyTime="00:00:01" />
<LinearColorKeyFrame Value="Red" KeyTime="00:00:02" />

</ColorAnimationUsingKeyFrames>
</Storyboard>

</ControlTemplate.Resources>
<ControlTemplate.Triggers>

<Trigger Property="IsMouseOver" Value="True">
<Setter TargetName="LayoutGrid" Property="Effect">

<Setter.Value>
<DropShadowEffect ShadowDepth="0" Color="Red"

BlurRadius="40" />
</Setter.Value>

</Setter>
</Trigger>
<Trigger Property="IsPressed" Value="True">
<Setter TargetName="LayoutGrid" Property="Effect">

<Setter.Value>
<DropShadowEffect ShadowDepth="0" Color="Yellow"
BlurRadius="80" />

</Setter.Value>
</Setter>

</Trigger>
<EventTrigger RoutedEvent="UIElement.MouseEnter">
<BeginStoryboard Storyboard="{StaticResource PulseButton}"

x:Name="PulseButton_BeginStoryboard" />
</EventTrigger>
<EventTrigger RoutedEvent="UIElement.MouseLeave">
<StopStoryboard

BeginStoryboardName="PulseButton_BeginStoryboard" />
</EventTrigger>

</ControlTemplate.Triggers>
</ControlTemplate>

882 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

8. Run the application and hover the mouse over the button. The button pulses and glows (see
Figure 25-16).

FIGURE 25-16

9. Click the button. The glow changes (see Figure 25-17).

FIGURE 25-17

How It Works

In this example you have done two things. First, you defined a global resource that is used to format all
buttons in the application (although there’s only one button in this case). Second, you added some features
to the style created in the previous Try It Out that make the button almost respectable. Specifically, you
have made it glow and pulsate in response to mouse rollover and click interaction.

Making the style a global resource was simply a matter of moving the <Style> element to the resources
section of the Window. You could have added an x:Key attribute, but because you didn’t there was no need
to set the Style property of the Button control on the page; the style was instantly global.

After making the style a resource, you proceeded to modify it. First, you added Name attributes to two of
the controls in the style. This was necessary so that you could refer to them from other code, which you do
in the animation and triggers for the control template that is part of the style.

Next, you added an animation as a local resource for the control template specified in the style. The ani-
mation Storyboard object was identified using the x:Key value of PulseButton:

<ControlTemplate.Resources>
<Storyboard x:Key="PulseButton">

The storyboard contains a ColorAnimationUsingKeyFrames element, as it will animate a color used in the
control template. The property to animate was the red color used as the outer color in the radial fill used in
the BackgroundRectangle control. Locating this property from the control required fairly complex syntax
for the Storyboard.TargetProperty attached property:

<ColorAnimationUsingKeyFrames BeginTime="00:00:00"
RepeatBehavior="Forever"
Storyboard.TargetName="BackgroundRectangle"
Storyboard.TargetProperty=

"(Shape.Fill).(RadialGradientBrush.GradientStops)[1].(GradientStop.Color)">

WPF Fundamentals ❘ 883

The timeline for the animation consisted of three key frames to animate the color from Red to Orange and
then back again over two seconds:

<LinearColorKeyFrame Value="Red" KeyTime="00:00:00" />
<LinearColorKeyFrame Value="Orange" KeyTime="00:00:01" />
<LinearColorKeyFrame Value="Red" KeyTime="00:00:02" />

</ColorAnimationUsingKeyFrames>
</Storyboard>

</ControlTemplate.Resources>

Adding the animation as a resource does not cause it to be performed. To do that you added two
EventTrigger triggers:

<EventTrigger RoutedEvent="UIElement.MouseEnter">
<BeginStoryboard Storyboard="{StaticResource PulseButton}"
x:Name="PulseButton_BeginStoryboard" />

</EventTrigger>
<EventTrigger RoutedEvent="UIElement.MouseLeave">

<StopStoryboard
BeginStoryboardName="PulseButton_BeginStoryboard" />

</EventTrigger>

This code uses the MouseEnter and MouseLeave events of the UIElement base class of the Button to control
the operation of the animation. MouseEnter causes animation to start through a BeginStoryboard element,
and MouseLeave causes it to stop through the StopStoryboard element.

Note that the storyboard resource is located using a static resource reference. This makes perfect sense
here because the storyboard is defined local to the control and you have no intention of changing it at
runtime.

You also defined two other triggers to provide a rollover and click glow by using the DropShadowEffect

effect. You made use of the IsMouseOver and IsPressed properties shown earlier in the chapter to
achieve this:

<Trigger Property="IsMouseOver" Value="True">
<Setter TargetName="LayoutGrid" Property="Effect">
<Setter.Value>

<DropShadowEffect ShadowDepth="0" Color="Red"
BlurRadius="40" />

</Setter.Value>
</Setter>

</Trigger>
<Trigger Property="IsPressed" Value="True">

<Setter TargetName="LayoutGrid" Property="Effect">
<Setter.Value>

<DropShadowEffect ShadowDepth="0" Color="Yellow"
BlurRadius="80" />

</Setter.Value>
</Setter>

</Trigger>

Here, the defined glow is small and red when the mouse hovers over the button, and larger and yellow
when the button is clicked.

884 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

PROGRAMMING WITH WPF

Now that you have covered all of the basic WPF programming techniques you can begin to create
applications of your own. Unfortunately, there isn’t enough space here to cover some of the other
great features of WPF, including the details of data binding and some great ways to format the display
of lists. However, it wouldn’t be right to stop here just when you are becoming familiar with WPF
programming. Therefore, you look at two more topics before finishing this chapter, chosen not for
their complexity but because they reflect tasks you are likely to often perform in WPF applications:

➤ How to create and use your own controls

➤ How to implement dependency properties on your controls

You will also work through a final example that illustrates more of the techniques covered in this
chapter, and just a small taste of WPF data binding.

WPF User Controls
WPF provides a set of controls that are useful in many situations. However, as with all the .NET devel-
opment frameworks, it also enables you to extend this functionality. Specifically, you can create your
own controls by deriving your classes from classes in the WPF class hierarchy.

One of the most useful controls you can derive from is UserControl. This class gives you all the basic
functionality that you are likely to require from a WPF control, and enables your control to snap in
beside the existing WPF control suite seamlessly. Everything you might hope to achieve with a WPF
control, such as animation, styling, templating, and so on, can be achieved with user controls.

You can add user controls to your project by using the Project ➪ Add User Control menu item.
This gives you a blank canvas (well, actually a blank Grid) to work from. User controls are defined
using the top-level UserControl element in XAML, and the class in the code-behind derives from the
System.Windows.Controls.UserControl class.

Once you have added a user control to your project, you can add controls to lay out the control and
code-behind to configure the control. When you have finished doing that, you can use it throughout
your application, and even reuse it in other applications.

One of the crucial things you need to know when creating user controls is how to implement depen-
dency properties. As shown earlier in this chapter, dependency properties are an essential part of WPF
programming. You won’t want to miss out on the functionality these properties provide when you
create your own controls.

Implementing Dependency Properties
You can add dependency properties to any class that inherits from System.Windows.DependencyObject.
This class is in the inheritance hierarchy for many classes in WPF, including all the controls and
UserControl.

To implement a dependency property to a class, you add a public, static member to your class definition
of type System.Windows.DependencyProperty. The name of this member is up to you, but best practice
is to follow the naming convention <PropertyName>Property:

public static DependencyProperty MyStringProperty;

Programming with WPF ❘ 885

It may seem odd that this property is defined as static, as you end up with a property that can be
uniquely defined for each instance of your class. The WPF property framework keeps track of things
for you, so you don’t have to worry about this for the moment.

The member you add must be configured by using the static DependencyProperty.Register() method:

public static DependencyProperty MyStringProperty =
DependencyProperty.Register(...);

This method takes between three and five parameters, as shown in the following table (in order, with
the first three parameters being the mandatory ones):

PARAMETER USAGE

string name The name of the property.

Type propertyType The type of the property.

Type ownerType The type of the class containing the property.

PropertyMetadata

typeMetadata

Additional property settings: the default value of the property and
callback methods to use for property change notifications and coer-
cion.

ValidateValueCallback

validateValueCallback

The callback method to use to validate property values.

NOTE There are other methods that you can use to register dependency
properties, such as RegisterAttached(), which you can use to implement an
attached property. You won’t look at these other methods in this chapter, but it’s
worth reading up on them.

For example, you could register the MyStringProperty dependency property using three parameters as
follows:

public class MyClass : DependencyObject
{

public static DependencyProperty MyStringProperty = DependencyProperty.Register(
"MyString",
typeof(string),
typeof(MyClass));

}

You can also include a .NET property that can be used to access dependency properties directly
(although this isn’t mandatory, as you will see shortly). However, because dependency properties
are defined as static members, you cannot use the same syntax you would use with ordinary prop-
erties. To access the value of a dependency property, you have to use methods that are inherited from
DependencyObject, as follows:

886 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

public class MyClass : DependencyObject
{

public static DependencyProperty MyStringProperty = DependencyProperty.Register(
"MyString",
typeof(string),
typeof(MyClass));

public string MyString
{

get { return (string)GetValue(MyStringProperty); }
set { SetValue(MyStringProperty, value); }

}
}

Here, the GetValue() and SetValue() methods get and set, respectively, the value of the
MyStringProperty dependency property for the current instance. These two methods are public, so
client code can use them directly to manipulate dependency property values. This is why adding a
.NET property to access a dependency property is not mandatory.

If you want to set metadata for a property, then you must use an object that derives from
PropertyMetadata, such as FrameworkPropertyMetadata, and pass this instance as the fourth
parameter to Register(). There are 11 overloads of the FrameworkPropertyMetadata constructor, and
they take one or more of the parameters shown in the following table:

PARAMETER TYPE USAGE

object defaultValue The default value for the property.

FrameworkPropertyMetadataOptions

flags

A combination of the flags (from the Framework

PropertyMetadataOptions enum) that you can use
to specify additional metadata for a property. For
example, you might use AffectsArrange to declare
that changes to the property might affect control lay-
out. This would cause the layout engine for a window to
recalculate control layout if the property changed. See
the MSDN documentation for a full list of the options
available here.

PropertyChangedCallback

propertyChangedCallback

The callback method to use when the property value
changes.

CoerceValueCallback

coerceValueCallback

The callback method to use if the property value is
coerced.

bool isAnimationProhibited Specifies whether this property can be changed by an
animation.

continues

Programming with WPF ❘ 887

(continued)

PARAMETER TYPE USAGE

UpdateSourceTrigger

defaultUpdateSourceTrigger

When property values are databound, this property
determines when the data source is updated, accord-
ing to values in the UpdateSourceTrigger enum. The
default value is PropertyChanged, which means that
the binding source is updated as soon as the prop-
erty changes. This is not always appropriate — for
example, the TextBox.Text property uses a value
of LostFocus for this property. This ensures that the
binding source is not updated prematurely. You can
also use the value Explicit to specify that the binding
source should only be updated when requested (by
calling the UpdateSource() method of a class derived
from DependancyObject).

A simple example of using FrameworkPropertyMetadata would be to use it simply to set the default
value of a property:

public class MyClass : DependencyObject
{

public static DependencyProperty MyStringProperty =
DependencyProperty.Register(
"MyString",
typeof(string),
typeof(MyClass),
new FrameworkPropertyMetadata("Default value"));

}

You have so far learned about three callback methods that you can specify, for property change notifi-
cation, property coercion, and property value validation. These callbacks, like the dependency property
itself, must all be implemented as public, static methods. Each callback has a specific return type and
parameter list that you must use on your callback method.

In the following Try It Out, you create and use a user control that has two dependency properties. You
will see how to implement callback methods for these properties in the user control code.

TRY IT OUT User Controls

1. Create a new WPF application called Ch25Ex05 and save it in the directory C:\BegVCSharp

\Chapter25.

2. Add a new user control to the application called Card and modify the code in Card.xaml as
follows:

888 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

<UserControl x:Class="Ch25Ex05.Card"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d"
d:DesignHeight="150" d:DesignWidth="100"
Height="150" Width="100" x:Name="UserControl"
FontSize="16" FontWeight="Bold">
<UserControl.Resources>

<DataTemplate x:Key="SuitTemplate">
<TextBlock Text="{Binding}"/>

</DataTemplate>
</UserControl.Resources>
<Grid>

<Rectangle Stroke="{x:Null}" RadiusX="12.5" RadiusY="12.5">
<Rectangle.Fill>

<LinearGradientBrush EndPoint="0.47,-0.167" StartPoint="0.86,0.92">
<GradientStop Color="#FFD1C78F" Offset="0"/>
<GradientStop Color="#FFFFFFFF" Offset="1"/>

</LinearGradientBrush>
</Rectangle.Fill>
<Rectangle.Effect>

<DropShadowEffect/>
</Rectangle.Effect>

</Rectangle>
<Label x:Name="SuitLabel"
Content="{Binding Path=Suit, ElementName=UserControl, Mode=Default}"
ContentTemplate="{DynamicResource SuitTemplate}"
HorizontalAlignment="Center" VerticalAlignment="Center"
Margin="8,51,8,60" />

<Label x:Name="RankLabel"
Content="{Binding Path=Rank, ElementName=UserControl, Mode=Default}"
ContentTemplate="{DynamicResource SuitTemplate}"
HorizontalAlignment="Left" VerticalAlignment="Top"
Margin="8,8,0,0" />

<Label x:Name="RankLabelInverted"
Content="{Binding Path=Rank, ElementName=UserControl, Mode=Default}"
ContentTemplate="{DynamicResource SuitTemplate}"
HorizontalAlignment="Right" VerticalAlignment="Bottom"
Margin="0,0,8,8" RenderTransformOrigin="0.5,0.5">
<Label.RenderTransform>

<RotateTransform Angle="180"/>
</Label.RenderTransform>

</Label>
<Path Fill="#FFFFFFFF" Stretch="Fill" Stroke="{x:Null}"
Margin="0,0,35.218,-0.077" Data="F1 M110.5,51 L123.16457,51 C116.5986,

76.731148 115.63518,132.69684 121.63533,149.34013 133.45299,
182.12018 152.15821,195.69803 161.79765,200.07669 L110.5,200 C103.59644,
200 98,194.40356 98,187.5 L98,63.5 C98,56.596439 103.59644,51 110.5,51 z">

Programming with WPF ❘ 889

<Path.OpacityMask>
<LinearGradientBrush EndPoint="0.957,1.127" StartPoint="0,-0.06">

<GradientStop Color="#FF000000" Offset="0"/>
<GradientStop Color="#00FFFFFF" Offset="1"/>

</LinearGradientBrush>
</Path.OpacityMask>

</Path>
</Grid>

</UserControl>
Code snippet Ch25Ex05\Card.xaml

3. Modify the code in Card.xaml.cs as follows:

public partial class Card : UserControl
{

public static string[] Suits = { "Club", "Diamond", "Heart", "Spade" };

public static DependencyProperty SuitProperty = DependencyProperty.Register(
"Suit",
typeof(string),
typeof(Card),
new PropertyMetadata("Club", new PropertyChangedCallback(OnSuitChanged)),
new ValidateValueCallback(ValidateSuit));

public static DependencyProperty RankProperty = DependencyProperty.Register(
"Rank",
typeof(int),
typeof(Card),
new PropertyMetadata(1),
new ValidateValueCallback(ValidateRank));

public Card()
{

InitializeComponent();
}

public string Suit
{

get { return (string)GetValue(SuitProperty); }
set { SetValue(SuitProperty, value); }

}

public int Rank
{

get { return (int)GetValue(RankProperty); }
set { SetValue(RankProperty, value); }

}

890 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

public static bool ValidateSuit(object suitValue)
{

string suitValueString = (string)suitValue;
if (suitValueString != "Club" && suitValueString != "Diamond"

&& suitValueString != "Heart" && suitValueString != "Spade")
{

return false;
}
return true;

}

public static bool ValidateRank(object rankValue)
{

int rankValueInt = (int)rankValue;
if (rankValueInt < 1 || rankValueInt > 12)
{

return false;
}
return true;

}

private void SetTextColor()
{

if (Suit == "Club" || Suit == "Spade")
{

RankLabel.Foreground = new SolidColorBrush(Color.FromRgb(0, 0, 0));
SuitLabel.Foreground = new SolidColorBrush(Color.FromRgb(0, 0, 0));
RankLabelInverted.Foreground =

new SolidColorBrush(Color.FromRgb(0, 0, 0));
}
else
{

RankLabel.Foreground = new SolidColorBrush(Color.FromRgb(255, 0, 0));
SuitLabel.Foreground = new SolidColorBrush(Color.FromRgb(255, 0, 0));
RankLabelInverted.Foreground =

new SolidColorBrush(Color.FromRgb(255, 0, 0));
}

}

public static void OnSuitChanged(DependencyObject source,
DependencyPropertyChangedEventArgs args)

{
((Card)source).SetTextColor();

}
}

Code snippet Ch25Ex05\Card.xaml.cs

4. Modify the code in MainWindow.xaml as follows:

<Window x:Class="Ch25Ex05.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Card Dealer" Height="600" Width="800">

<Grid Name="contentGrid" MouseLeftButtonDown="Grid_MouseLeftButtonDown"
MouseLeftButtonUp="Grid_MouseLeftButtonUp" MouseMove="Grid_MouseMove">

Programming with WPF ❘ 891

<Grid.Background>
<LinearGradientBrush EndPoint="0.364,0.128" StartPoint="0.598,1.042">

<GradientStop Color="#FF0D4F1A" Offset="0"/>
<GradientStop Color="#FF448251" Offset="1"/>

</LinearGradientBrush>
</Grid.Background>

</Grid>
</Window>

Code snippet Ch25Ex05\MainWindow.xaml

5. Modify the code in MainWindow.xaml.cs as follows:

public partial class MainWindow : Window
{

private Card currentCard;
private Point offset;
private Random random = new Random();

public MainWindow()
{

InitializeComponent();
}

private void Grid_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{

if (e.Source is Card)
{

currentCard = (Card)e.Source;
offset = Mouse.GetPosition(currentCard);
contentGrid.Children.Remove(currentCard);

}
else
{

currentCard = new Card
{

Suit = Card.Suits[random.Next(0, 4)],
Rank = random.Next(1, 13)

};
currentCard.HorizontalAlignment = HorizontalAlignment.Left;
currentCard.VerticalAlignment = VerticalAlignment.Top;
offset = new Point(50, 75);

}
contentGrid.Children.Add(currentCard);
PositionCard();

}

private void Grid_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{

currentCard = null;
}

private void Grid_MouseMove(object sender, MouseEventArgs e)
{

if (currentCard != null)
{

PositionCard();
}

}

892 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

private void PositionCard()
{

Point mousePos = Mouse.GetPosition(this);
currentCard.Margin =

new Thickness(mousePos.X - offset.X, mousePos.Y - offset.Y, 0, 0);
}

}
Code snippet Ch25Ex05\MainWindow.xaml.cs

6. Run the application. Click the surface of the window to add random cards, and click and drag to
reposition cards. When you click an existing card, it jumps to the top of the stack order. The result
is shown in Figure 25-18.

FIGURE 25-18

How It Works

This example created a user control with two dependent properties, and included client code to use the
control. This example covered plenty of ground, and the place to start looking at the code is the Card

control.

The Card control consists mostly of code that will be familiar to you from code you’ve seen earlier in
this chapter. The layout code uses nothing new, although you might agree that the result is a bit prettier

Programming with WPF ❘ 893

than the lurid button in the previous two examples. One thing that is completely new, though, is that this
control uses a small amount of data binding. With data binding, the property of a control is bound to a
data source, and as such encompasses a wide array of techniques. WPF makes it easy to bind properties to
all manner of data sources, such as database data, XML data, and (as used in this example) dependency
property values.

Specifically, the code in Card exposes two dependency properties, Suit and Rank, to client code, and binds
these properties to visual elements in the control layout. As a result, when you set Suit to Club, the word
Club is displayed in the center of the card. Similarly, the value of Rank is displayed in two corners of
the card.

You’ll look at the implementation of Suit and Rank in a moment. For now it is enough to know that
these properties are string and int values, respectively. It would have been possible to use, for example,
enumeration values for these properties, although that would have required a little more new code, so this
example keeps things as simple as possible by using basic properties.

To bind a value to a property you use binding syntax, which is a markup extension. This syntax means
that you specify the value of a property as {Binding ...}. There are various ways to configure binding in
this way. In the example, the binding for the SuitLabel label is configured as follows:

<Label x:Name="SuitLabel"
Content="{Binding Path=Suit, ElementName=UserControl, Mode=Default}"
ContentTemplate="{DynamicResource SuitTemplate}" HorizontalAlignment="Center"
VerticalAlignment="Center" Margin="8,51,8,60" />

Here, three properties are specified for the binding: Path (the name of the property), ElementName (the
element with the property), and Mode (how to perform the binding). Path and Element are quite straightfor-
ward; for now you can ignore Mode. The important point is that this specification binds the Label.Content

property to the Card.Suit property.

When you bind property values, you must also specify how to render the bound content, by using a data
template. In this example, the data template is SuitTemplate, referenced as a dynamic resource (although
in this case a static resource binding would also work fine). This template is defined in the user control
resources section as follows:

<UserControl.Resources>
<DataTemplate x:Key="SuitTemplate">
<TextBlock Text="{Binding}"/>

</DataTemplate>
</UserControl.Resources>

The string value of Suit is therefore used as the Text property of a TextBlock control. This same
DataTemplate definition is reused for the two rank labels — it doesn’t matter that Rank is an int; it is
transformed into a string when bound to the TextBlock.Text property.

NOTE Obviously, much more could be said about data binding and data
templates, but there simply isn’t space in this book to fill in the details. The
chapter summary will point you toward places where you can learn more about
this subject. As a final note, if you are using Expression Blend, you will find that
you can bind to data effectively without having to worry too much about the
XAML syntax, as it will take care of it for you.

894 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

For this data binding to work, you had to define two dependency properties using techniques you learned
in the previous section. These are defined in the code-behind for the user control as follows (they both have
simple .NET property wrappers, which there is no need to show here because of the simplicity of the code):

public static DependencyProperty SuitProperty =
DependencyProperty.Register(

"Suit",
typeof(string),
typeof(Card),
new PropertyMetadata(

"Club", new PropertyChangedCallback(OnSuitChanged)),
new ValidateValueCallback(ValidateSuit));

public static DependencyProperty RankProperty =
DependencyProperty.Register(

"Rank",
typeof(int),
typeof(Card),
new PropertyMetadata(1),
new ValidateValueCallback(ValidateRank));

Both dependency properties use a callback method to validate values, and the Suit property also has a
callback method for when its value changes. Validation callback methods have a return type of bool and
a single parameter of type object, which is the value to which the client code is attempting to set the
property. If the value is OK, then you should return true; otherwise, return false. In the example code,
the Suit property is restricted to one of four strings:

public static bool ValidateSuit(object suitValue)
{

string suitValueString = (string)suitValue;
if (suitValueString != "Club" && suitValueString != "Diamond"

&& suitValueString != "Heart" && suitValueString != "Spade")
{

return false;
}
return true;

}

This is quite brutal, and obviously an enumeration would be better here, but it has been avoided for reasons
outlined earlier. Similarly, the Rank property is restricted to a value between 1 (ace) and 12 (king):

public static bool ValidateRank(object rankValue)
{

int rankValueInt = (int)rankValue;
if (rankValueInt < 1 || rankValueInt > 12)
{

return false;
}
return true;

}

When the value of Suit changes, the OnSuitChanged() callback method is called. This method is responsi-
ble for setting the text color to red (for hearts and diamonds) or black (for clubs and spades). It does this
by calling a utility method on the source of the method call. This is necessary because the callback method
is implemented as a static method, but it is passed the instance of the user control that raised the event as
a parameter so that it can interact with it. The method called is SetTextColor():

Summary ❘ 895

public static void OnSuitChanged(DependencyObject source,
DependencyPropertyChangedEventArgs args)

{
((Card)source).SetTextColor();

}

The SetTextColor() method is private but is obviously still accessible from OnSuitChanged(), as they are
both members of the same class, despite being instance and static methods, respectively. SetTextColor()
simply sets the Foreground property of the various labels of the control to a solid-color brush that is either
black or red, depending on the Suit value:

private void SetTextColor()
{

if (Suit == "Club" || Suit == "Spade")
{

RankLabel.Foreground =
new SolidColorBrush(Color.FromRgb(0, 0, 0));

SuitLabel.Foreground =
new SolidColorBrush(Color.FromRgb(0, 0, 0));

RankLabelInverted.Foreground =
new SolidColorBrush(Color.FromRgb(0, 0, 0));

}
else
{

RankLabel.Foreground =
new SolidColorBrush(Color.FromRgb(255, 0, 0));

SuitLabel.Foreground =
new SolidColorBrush(Color.FromRgb(255, 0, 0));

RankLabelInverted.Foreground =
new SolidColorBrush(Color.FromRgb(255, 0, 0));

}
}

This is all you need to look at in the Card control. The client code, in MainWindow.xaml and
MainWindow.xaml.cs, is fairly simple. It uses some basic styling to give you a gradiated green background,
and plenty of event handling (using routed and attached routed events) to enable user interaction. There
are a couple of tricks — for example, how margins are used to position cards and how an offset is used so
that existing cards can be dragged from the point on which you click — but nothing that you shouldn’t be
able to figure out for yourself by reading through the code.

SUMMARY

In this chapter you have learned everything you need to know to start programming with WPF. You
have also seen, albeit briefly, some more advanced techniques that have given you a taste of what
more advanced WPF programming has to offer. WPF is a subject that is far too big to cover in a single
chapter, and if you are interested you will probably want to look at additional resources on this subject.
A good place to start is WPF Programmer’s Reference: Windows Presentation Foundation with C#
2010 and .NET 4 (Wrox, 2010) or Silverlight 3 Programmer’s Reference (Wrox, 2009) if you are
interested in more details about XAML in the Web environment. Silverlight is a particularly exciting
area to get involved with at the moment, and its capabilities are getting better all the time. As it is

896 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

essentially a subset of WPF for Web development, it is important to note that WPF and Silverlight skills
are very transferable.

Of course, you may prefer simply to play around with the available tools — in particular, Expres-
sion Blend — and see what you can achieve. The MSDN documentation will also assist you, although
because WPF is still so new there are noticeable gaps in this resource that you will have to look else-
where to fill.

There are some great websites around that you can check out for additional information. In particular,
see the community site for WPF at http://windowsclient.net/, and it is always worth keeping an eye
on Scott Guthrie’s blog at http://weblogs.asp.net/scottgu.

In this chapter you have covered the following:

➤ What WPF is and the impact it could potentially have on both desktop and Web software
development

➤ How WPF is designed so that designers and developers can work together on projects by
using both Expression Blend and VS or VCE

➤ What XAML is and how the basic syntax for XAML works, along with some terminology

➤ How to use the Application object

➤ How controls in WPF work, including concepts about dependency and attached properties
and routed and attached events

➤ How the layout system in WPF works and how you can use the various layout containers to
position controls

➤ Using styles and templates to customize how controls look and behave

➤ How to use triggers and animations to enhance the user experience

➤ How to define resources in internal or external resource dictionaries, and how to access
resources statically and dynamically

➤ How to create user controls with dependency properties

In the next chapter you’ll look at another technology that was introduced as recently as .NET 3.0: the
Windows Communication Foundation.

EXERCISES

1. You can use exactly the same XAML code for WPF desktop applications and WPF browser appli-
cations. True or false?

2. What technique would you use to enable child controls to set individual values for a property
defined on a parent? What syntax would you use in XAML to achieve this? Give an XAML example
in which two child Branch controls set different values for a LeafCount property defined by a par-
ent Tree control.

Exercises ❘ 897

3. Which of the following statements about dependency properties are true?

a. Dependency properties must be accessible through an associated .NET property.

b. Dependency properties are defined as public, static members.

c. You can only have one dependency property per class definition.

d. Dependency properties must be named using the naming convention <PropertyName>

Property .

e. You can validate the values assigned to a dependency property with a callback method.

4. Which layout control would you use to display controls in a single row or column?

5. Tunneling events in WPF are named in a specific way so that you can identify them. What is this
naming convention?

6. What property types can be animated?

7. When would you use a dynamic resource reference, rather than a static resource reference?

Answers to Exercises can be found in Appendix A.

898 ❘ CHAPTER 25 WINDOWS PRESENTATION FOUNDATION

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

What is WPF? WPF is Microsoft’s latest way to create both Windows and Web applications. It uses
a markup & code-behind model that allows a clear separation of design and func-
tionality, which makes it very useful when designers and developers must work
simultaneously on a project. The markup in WPF is called XAML. Designers will often
use Expression Blend to work on XAML.

XAML The syntax of XAML allows you to represent objects in markup. XAML is written in
XML, and uses markup extensions to provide WPF capabilities.

Controls WPF uses controls to build up a user interface, much like Windows Forms. WPF con-
trols use dependency properties to provide integration with various aspects of the
framework, such as change notification. Dependency properties can be attached to
objects other than those on which they are defined, providing contextual information
where required. Control events in WPF are usually routed events, which tunnel into
and bubble out of the control hierarchy of a WPF application.

Layout WPF supplies several layout controls that can contain other controls. Depending on
the type of layout you want, you can use the Canvas, DockPanel, Grid, StackPanel,
or WrapPanel layout control.

Styling You can style controls with Style objects, which primarily consist of Setter objects
that are applied to control properties. You can completely control the look and feel of
a control by changing its template, and you can respond to user interaction and data
changes with triggers.

Animation Properties can be animated over a range of values and a time period. You can use
key frames to define significant points in an animation, and start and stop animation
programmatically or through triggers.

Resources Resources, in particular styles and templates, can be defined for any scope — for
example, at the control, window, or application level scopes. You can access
resources with the StaticResource or DynamicResource markup extension, depend-
ing on whether the reference needs to change at runtime.

26
Windows Communication
Foundation

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What is WCF?

➤ WCF concepts

➤ WCF programming

In Chapter 19 you learned about Web services and how you can use them to provide simple
communication between applications. You saw how you could use HTTP GET and POST tech-
niques to exchange data with Web services, and how to use SOAP. Over the years since Web
services were first made available to .NET developers, it has become apparent that although
Web services are great, there is scope to extend this technology. Microsoft released the Web
Service Enhancements (WSE) add-on to address this. WSE enabled Web service developers to
include security for messages, routing techniques, and various other policies to improve Web
services. Again, though, there was room for improvement.

Another .NET technology, remoting, makes it possible to create instances of objects in one
process and use them from another process. Remoting makes this possible even if the object is
created on a computer other than the one that is using it. However, this technology still has its
problems. Remoting is limited, and it isn’t the easiest thing for a beginner programmer to learn.

Windows Communication Foundation (WCF) is essentially a replacement for both Web services
and remoting technology. It takes concepts such as services and platform-independent SOAP
messaging from Web services, and combines these with concepts such as host server applications
and advanced binding capabilities from remoting. The result is a technology you can think of as
a superset that includes both Web services and remoting, but that is much more powerful than
Web services and much easier to use than remoting. Using WCF, you can move from simple
applications to applications that use a service-oriented architecture (SOA). SOA means that you

900 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

decentralize processing and make use of distributed processing by connecting to services and data as
you need them across local networks and the Internet.

In this chapter, you learn about the principles behind WCF and how you can create and consume WCF
services from your application code.

NOTE You cannot create WCF services in Visual C# 2010 Express (VCE), but you
can in the full version of Visual Studio 2010 (VS). You can also create IIS-hosted
WCF services in Visual Web Developer 2010 Express, but in this chapter you’ll
use VS in order to see the full range of options.

WHAT IS WCF?

WCF is a technology that enables you to create services that you can access from other applications
across process, machine, and network boundaries. You can use these services to share functionality
across multiple applications, to expose data sources, or to abstract complicated processes.

As with Web services, the functionality that WCF services offer is encapsulated as individual methods
that are exposed by the service. Each method — or, in WCF terminology, each operation — has an
endpoint that you exchange data with in order to use it. At this point, WCF differs from Web services.
With Web services, you can only communicate with an endpoint with SOAP over HTTP. With WCF
services, you have a choice of protocols to use. You can even have endpoints that communicate through
more than one protocol, depending on the network that you connect to the service through and your
specific requirements.

In WCF, an endpoint can have multiple bindings, each of which specifies a means of communication.
Bindings can also specify additional information, such as what security requirements must be met to
communicate with the endpoint. A binding might require username and password authentication or
a Windows user account token, for example. When you connect to an endpoint, the protocol that the
binding uses affects the address that you use, as you will see shortly.

Once you have connected to an endpoint, you can communicate with it by using SOAP messages. The
form of the messages that you use depends on the operation you are using, and the data structures
that are required to send messages to, and receive messages from, that operation. WCF uses contracts
to specify all of this. You can discover contracts through metadata exchange with a service. This is
analogous to the way Web services use WSDL to describe their functionality. In fact, you can get
information about a WCF service in WSDL format, although WCF services can also be described in
other ways.

When you have identified a service and endpoint that you want to use, and after you know what binding
you use and what contracts to adhere to, you can communicate with a WCF service as easily as with
an object that you have defined locally. Communications with WCF services can be simple, one-way
transactions, request/response messages, or full-duplex communications that can be initiated from
either end of the communication channel. You can also use message payload optimization techniques,
such as Message Transmission Optimization Mechanism (MTOM) to package data if required.

WCF Concepts ❘ 901

The WCF service itself may be running in one of a number of different processes on the computer
where it is hosted. Unlike Web services, which always run in IIS, you can choose a host process that
is appropriate to your situation. You can use IIS to host WCF services, but you can also use Windows
services or executables. If you are using TCP to communicate with a WCF service over a local network,
there is no need even to have IIS installed on the PC that is hosting the service.

The WCF framework has been designed to enable you to customize nearly everything you have read
about in this section. However, this is an advanced subject and you will only be using the techniques
provided by default in .NET 4 in this chapter.

Now that you have covered the basics about WCF services, you will look in more detail at these con-
cepts in the following sections.

WCF CONCEPTS

This section describes the following aspects of WCF:

➤ WCF communication protocols

➤ Addresses, endpoints, and bindings

➤ Contracts

➤ Message patterns

➤ Behaviors

➤ Hosting

WCF Communication Protocols
As described earlier, you can communicate with WCF services through a variety of transport protocols.
In fact, four are defined in the .NET 4 Framework:

➤ HTTP: This enables you to communicate with WCF services from anywhere, including across
the Internet. You can use HTTP communications to create WCF Web services.

➤ TCP: This enables you to communicate with WCF services on your local network or across
the Internet if you configure your firewall appropriately. TCP is more efficient than HTTP
and has more capabilities, but it can be more complicated to configure.

➤ Named pipe: This enables you to communicate with WCF services that are on the same
machine as the calling code, but reside in a separate process.

➤ MSMQ: This is a queuing technology that enables messages sent by an application to be
routed through a queue to arrive at a destination. MSMQ is a reliable messaging technology
that ensures that a message sent to a queue will reach that queue. MSMQ is also inherently
asynchronous, so a queued message will only be processed when messages ahead of it in the
queue have been processed and a processing service is available.

These protocols often enable you to establish secure connections. For example, you can use the HTTPS
protocol to establish a secure SSL connection across the Internet. TCP offers extensive possibilities for
security in a local network by using the Windows security framework.

902 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

Figure 26-1 illustrates how these transport protocols can connect an application to WCF services in
various locations. This chapter describes all of these protocols except for MSMQ, which is a subject
requiring a more in-depth discussion.

Local Network Internet

PC

PC

PC

Process

Process

Process

Process

WCF Service

Web Server

Process

WCF Service

Web Server

Process

WCF Service

WCF ServiceMSMQ Queue

Application

MSMQ Named pipe HTTP

MSMQ

TCP TCP

FIGURE 26-1

In order to connect to a WCF service, you must know where it is. In practice, this means knowing the
address of an endpoint.

Addresses, Endpoints, and Bindings
The type of address you use for a service depends on the protocol that you are using. Service ad-
dresses are formatted for the three protocols described in this chapter (MSMQ is not covered) as
follows:

➤ HTTP — Addresses for the HTTP protocol are URLs of the familiar form
http://<server>:<port>/<service>. For SSL connections, you can also use
https://<server>:<port>/<service>. If you are hosting a service in IIS, <service>
will be a file with a .svc extension. (.svc files are analogous to the .asmx files used in Web
services.) IIS addresses will probably include more subdirectories than this example — that
is, more sections separated by / characters before the .svc file.

➤ TCP — Addresses for TCP are of the form net.tcp://<server>:<port>/<service>.

➤ Named pipe — Addresses for named pipe connections are similar but have no port number.
They are of the form net.pipe://<server>/<service>.

The address for a service is a base address that you can use to create addresses for
endpoints representing operations. For example, you might have an operation at
net.tcp://<server>:<port>/<service>/operation1.

WCF Concepts ❘ 903

For example, imagine you create a WCF service with a single operation that has bindings for all three
of the protocols listed here. You might use the following base addresses:

http://www.mydomain.com/services/amazingservices/mygreatservice.svc
net.tcp://myhugeserver:8080/mygreatservice
net.pipe://localhost/mygreatservice

You could then use the following addresses for operations:

http://www.mydomain.com/services/amazingservices/mygreatservice.svc/greatop
net.tcp://myhugeserver:8080/mygreatservice/greatop
net.pipe://localhost/mygreatservice/greatop

In .NET 4, it is possible to use default endpoints for operations, without having to explicitly configure
them. This simplifies configuration, especially in situations where you want to use standard endpoint
addresses, as in the preceding examples.

Bindings, as mentioned earlier, specify more than just the transport protocol that will be used by an
operation. You can also use them to specify the security requirements for communication over the
transport protocol, transactional capabilities of the endpoint, message encoding, and much more.

Because bindings offer such a great degree of flexibility, the .NET Framework provides some predefined
bindings that you can use. You can also use these bindings as starting points, tweaking them to obtain
exactly the type of binding you want — up to a point. The predefined bindings have certain capabilities
to which you must adhere. Each binding type is represented by a class in the System.ServiceModel

namespace. The following table lists these bindings along with some basic information
about them.

BINDING DESCRIPTION

BasicHttpBinding The simplest HTTP binding, and the default binding used by
Web services. It has limited security capabilities and no transac-
tional support.

WSHttpBinding A more advanced form of HTTP binding that is capable of using
all the additional functionality that was introduced in WSE.

WSDualHttpBinding Extends WSHttpBinding capabilities to include duplex commu-
nication capabilities. With duplex communication, the server can
initiate communications with the client in addition to ordinary
message exchange.

WSFederationHttpBinding Extends WSHttpBinding capabilities to include federation capa-
bilities. Federation enables third parties to implement single
sign-on and other proprietary security measures. This is an
advanced topic not covered in this chapter.

NetTcpBinding Used for TCP communications, and enables you to configure
security, transactions, and so on.

NetNamedPipeBinding Used for named pipe communications, and enables you to con-
figure security, transactions, and so on.

continues

904 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

(continued)

BINDING DESCRIPTION

NetPeerTcpBinding Enables broadcast communications to multiple clients, and is
another advanced class not covered in this chapter.

NetMsmqBinding and
MsmqIntegrationBinding

These bindings are used with MSMQ, which is not covered in
this chapter.

NetPeerTcpBinding Used for peer-to-peer binding, which is not covered in this
chapter.

WebHttpBinding User for Web services that use HTTP requests instead of SOAP
messages.

NetTcpContextBinding Similar to NetTcpBinding but allows context information to be
exchanged with SOAP headers.

BasicHttpContextBinding

and WSHttpContextBinding

Similar to BasicHttpBinding and WSHttpBinding, but allows
context information to be exchanged with HTTP cookies or
SOAP headers, respectively.

Many of the binding classes listed in this table have similar properties that you can use for additional
configuration. For example, they have properties that you can use to configure timeout values. You’ll
learn more about this when you look at code later in this chapter.

In .NET 4, endpoints have default bindings that vary according to the protocol used. These defaults are
shown in the following table:

PROTOCOL DEFAULT BINDING

HTTP BasicHttpBinding

TCP NetTcpBinding

Named pipe NetNamedPipeBinding

MSMQ NetMsmqBinding

Contracts
Contracts define how WCF services can be used. Several types of contract can be defined:

➤ Service contract — Contains general information about a service and the operations exposed
by a service. This includes, for example, the namespace used by service. Services have unique
namespaces that are used when defining the schema for SOAP messages in order to avoid
possible conflicts with other services.

➤ Operation contract — Defines how an operation is used. This includes the parameter and
return types for an operation method along with additional information, such as whether a
method will return a response message.

WCF Concepts ❘ 905

➤ Message contract — Enables you to customize how information is formatted inside SOAP
messages — for example, whether data should be included in the SOAP header or
SOAP message body. This can be useful when creating a WCF service that must integrate
with legacy systems.

➤ Fault contract — Defines faults that an operation may return. When you use .NET clients,
faults result in exceptions that you can catch and deal with in the normal way.

➤ Data contract — If you use complex types, such as user-defined structs and objects, as param-
eters or return types for operations, then you must define data contracts for these types. Data
contracts define the types in terms of the data that they expose through properties.

You typically add contracts to service classes and methods by using attributes, as you will see later in
this chapter.

Message Patterns
In the previous section, you saw that an operation contract can define whether an operation
returns a value. You’ve also read about duplex communications that are made possible by the
WSDualHttpBinding binding. These are both forms of message patterns, of which there are three types:

➤ Request/response messaging — The ‘‘ordinary’’ way of exchanging messages, whereby every
message sent to a service results in a response being sent back to the client. This doesn’t nec-
essarily mean that the client waits for a response, as you can call operations asynchronously
in the usual way.

➤ One-way, or simplex, messaging — Messages are sent from the client to the WCF operation,
but no response is sent. This is useful when no response is required. For example, you might
create a WCF operation that results in the WCF host server rebooting, in which case you
wouldn’t really want or need to wait for a response.

➤ Two-way, or duplex, messaging — A more advanced scheme whereby the client effectively
acts as a server as well as a client, and the server as a client as well as a server. Once set up,
duplex messaging enables both the client and the server to send messages to each other, which
may or may not have responses. This is analogous to creating an object and subscribing to
events exposed by that object.

You’ll see how these message patterns are used in practice later in this chapter.

Behaviors
Behaviors are a way to apply additional configuration that is not directly exposed to a client to services
and operations. By adding a behavior to a service, you can control how it is instantiated and used by
its hosting process, how it participates in transactions, how multithreading issues are dealt with in the
service, and so on. Operation behaviors can control whether impersonation is used in the operation
execution, how the individual operation affects transactions, and more.

In .NET 4 you can specify default behaviors at various levels, so that you don’t have to specify every
aspect of every behavior for every service and operation. Instead, you can provide defaults and override
settings where necessary, which reduces the amount of configuration required.

906 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

As this chapter is intended to give you a basic understanding of WCF services, you will only see the
most basic functionality of behaviors here.

Hosting
In the introduction to this chapter you learned that WCF services can be hosted in several different
processes. These possibilities are as follows:

➤ Web server — IIS-hosted WCF services are the closest thing to Web services that WCF offers.
However, you can use advanced functionality and security features in WCF services that are
much more difficult to implement in Web services. You can also integrate with IIS features
such as IIS security.

➤ Executable — You can host a WCF service in any application type that you can create in
.NET, such as console applications, Windows Forms applications, and WPF applications.

➤ Windows service — You can host a WCF service in a Windows service, which means that you
can use the useful features that Windows services provide. This includes automatic startup
and fault recovery.

➤ Windows Activation Service (WAS) — Designed specifically to host WCF services, WAS is
basically a simple version of IIS that you can use where IIS is not available.

Two of the options in the preceding list — IIS and WAS — provide useful features for WCF services
such as activation, process recycling, and object pooling. If you use either of the other two hosting
options, the WCF service is said to be self-hosted. This isn’t necessarily a bad thing, as you might not
require the additional functionality that the hosted environments offer. However, self-hosted services
do require you to write more code.

WCF PROGRAMMING

Now that you have covered all the basics, it is time to get started with some code. In this section you’ll
start by looking as a simple Web server–hosted WCF service and a console application client. After
looking at the structure of the code created, you’ll learn about the basic structure of WCF services and
client applications. Then you will look at some key topics in a bit more detail:

➤ Defining WCF service contracts

➤ Self-hosted WCF services

TRY IT OUT A Simple WCF Service and Client

1. Create a new WCF Service Application project called Ch26Ex01 in the directory
C:\BegVCSharp\Chapter26.

2. Add a console application called Ch26Ex01Client to the solution.

3. On the Build menu, click Build Solution.

4. Right-click the Ch26Ex01Client project in the Solution Explorer and select Add Service Reference.

5. In the Add Service Reference dialog, click Discover.

WCF Programming ❘ 907

6. When the development Web server has started and information about the WCF service has been
loaded, expand the reference to look at its details, as shown in Figure 26-2 (you may have a
different port number).

FIGURE 26-2

7. Click OK to add the service reference.

8. Modify the code in Program.cs in the Ch26Ex01Client application as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ch26Ex01Client.ServiceReference1;

namespace Ch26Ex01Client
{

class Program
{

static void Main(string[] args)
{

string numericInput = null;
int intParam;
do
{

Console.WriteLine(
"Enter an integer and press enter to call the WCF service.");

numericInput = Console.ReadLine();
}
while (!int.TryParse(numericInput, out intParam));

908 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

Service1Client client = new Service1Client();
Console.WriteLine(client.GetData(intParam));
Console.WriteLine("Press an key to exit.");
Console.ReadKey();

}
}

}
Code snippet Ch26Ex01Client\Program.cs

9. Right-click the Ch26Ex01Client project in the Solution Explorer and select Set as StartUp Project.

10. Run the application. If prompted, click OK to enable debugging in Web.config. Enter a number in
the console application window and press Enter. The result is shown in Figure 26-3.

FIGURE 26-3

11. Exit the application, right-click the Service1.svc file in the Ch26Ex01 project in the Solution
Explorer, and click View in Browser.

12. Review the information in the window (see Figure 26-4).

FIGURE 26-4

WCF Programming ❘ 909

13. Click the link at the top of the Web page for the service to view the WSDL. Don’t panic — you
don’t need to know what all the stuff in the WSDL file means!

How It Works

In this example you created a simple Web server–hosted WCF service and console application client. You
used the default VS template for a WCF service project, which meant that you didn’t have to add any code.
Instead, you used one of the operations defined in this default template, GetData(). For the purposes of
this example, the actual operation used isn’t important; here we are focusing on the structure of the code
and the plumbing that makes things work.

First, look at the server project, Ch26Ex01. This consists of the following:

➤ A Service1.svc file that defines the hosting for the service

➤ A class definition, CompositeType, that defines a data contract used by the service (located in
the IService1.cs code file)

➤ An interface definition, IService1, that defines the service contract and two operation con-
tracts for the service

➤ A class definition, Service1, that implements IService1 and defines the functionality of the
service (located in the Service1.svc.cs code file)

➤ A <system.serviceModel> configuration section (in Web.config) that configures the service

The Service1.svc file contains the following line of code (to see this code, right-click the file in the Solution
Explorer and select View Markup):

<%@ ServiceHost Language="C#" Debug="true" Service="Ch26Ex01.Service1"
CodeBehind="Service1.svc.cs" %>

Code snippet Ch26Ex01\Service1.svc

This is a ServiceHost instruction that is used to tell the Web server (the development Web server in this
case, although this also applies to IIS) what service is hosted at this address. The class that defines the
service is declared in the Service attribute, and the code file that defines this class is declared in the
CodeBehind attribute. This instruction is necessary in order to obtain the hosting features of the Web
server as defined in the previous sections.

Obviously, this file is not required for WCF services that aren’t hosted in a Web server. You’ll learn how
to self-host WCF services later in this chapter.

Next, the data contract CompositeType is defined in the IService1.cs file. You can see from the code that
the data contract is simply a class definition that includes the DataContract attribute on the class definition
and DataMember attributes on class members:

[DataContract]
public class CompositeType
{

bool boolValue = true;
string stringValue = "Hello ";

910 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

[DataMember]
public bool BoolValue
{

get { return boolValue; }
set { boolValue = value; }

}

[DataMember]
public string StringValue
{

get { return stringValue; }
set { stringValue = value; }

}
}

Code snippet Ch26Ex01\IService1.cs

This data contract is exposed to the client application through metadata (if you looked through the WSDL
file in the example you may have seen this). This enables client applications to define a type that can
be serialized into a form that can be deserialized by the service into a CompositeType object. The client
doesn’t need to know the actual definition of this type; in fact, the class used by the client may have a
different implementation. This simple way of defining data contracts is surprisingly powerful, and enables
the exchange of complex data structures between the WCF service and its clients.

The IService1.cs file also contains the service contract for the service, which is defined as an interface
with the ServiceContract attribute. Again, this interface is completely described in the metadata for
the service, and can be recreated in client applications. The interface members constitute the operations
exposed by the service, and each is used to create an operation contract by applying the OperationContract
attribute. The example code includes two operations, one of which uses the data contract you looked
at earlier:

[ServiceContract]
public interface IService1
{

[OperationContract]
string GetData(int value);

[OperationContract]
CompositeType GetDataUsingDataContract(CompositeType composite);

}

All four of the contract-defining attributes that you have seen so far can be further configured with
attributes, as shown in the next section. The code that implements the service looks much like any other
class definition:

public class Service1 : IService1
{

public string GetData(int value)
{

return string.Format("You entered: {0}", value);
}

WCF Programming ❘ 911

public CompositeType GetDataUsingDataContract(CompositeType composite)
{

if (composite == null)
{

throw new ArgumentNullException("composite");
}
if (composite.BoolValue)
{

composite.StringValue += "Suffix";
}
return composite;

}
}

Code snippet Ch26Ex01\Service1.svc.cs

Note that this class definition doesn’t need to inherit from a particular type, and doesn’t require any par-
ticular attributes. All it needs to do is implement the interface that defines the service contract. In fact, you
can add attributes to this class and its members to specify behaviors, but these aren’t mandatory.

The separation of the service contract (the interface) from the service implementation (the class) works
extremely well. The client doesn’t need to know anything about the class, which could include much more
functionality than just the service implementation. A single class could even implement more than one
service contract.

Finally, you come to the configuration in the Web.config file. Configuration of WCF services in config
files is a feature that has been taken from .NET remoting, and it works with all types of WCF services
(hosted or self-hosted) as well as clients of WCF services (as shown in a moment). The vocabulary of this
configuration is such that you can apply pretty much any configuration that you can think of to a service,
and you can even extend this syntax.

WCF configuration code is contained in the <system.serviceModel> configuration section of Web.config
or app.config files. In this example, there is not a lot of service configuration, as default values are used.
In the Web.config file, the configuration section consists of a single subsection that supplies overrides to
default values for the service behavior <behaviors>. The code for the <system.serviceModel> configura-
tion section in Web.config (with comments removed for clarity) is as follows:

<system.serviceModel>
<behaviors>

<serviceBehaviors>
<behavior>

<serviceMetadata httpGetEnabled="true"/>
<serviceDebug includeExceptionDetailInFaults="false"/>

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

Code snippet Ch26Ex01\Web.config

This section can define one or more behaviors in <behavior> child sections, which can be reused on mul-
tiple other elements. A <behavior> section can be given a name to facilitate this reuse (so that it can be
referenced from elsewhere), or can be used without a name (as in this example) to specify overrides to
default behavior settings.

912 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

NOTE If nondefault configuration were being used, you would expect to see a
<services> section inside <system.serviceModel>, containing one or more
<services> child sections. In turn, the <service> sections can contain child
<endpoint> sections, each of which (you guessed it) defines an endpoint for the
service. In fact, the endpoints defined are base endpoints for the service.
Endpoints for operations are inferred from these.

One of the default behavior overrides in Web.config is as follows:
<serviceDebug includeExceptionDetailInFaults="false"/>

This setting can be set to true to expose exception details in any faults that are transmitted to the client,
which is something you would usually allow only in development.

The other default behavior override in Web.config relates to metadata. Metadata is used to enable clients to
obtain descriptions of WCF services. The default configuration defines two default endpoints for services.
One is the endpoint that clients use to access the service, the other is an endpoint used to obtain metadata
from the service. This can be disabled in the Web.config file as follows:

<serviceMetadata httpGetEnabled="false"/>

Alternatively, you could remove this line of configuration code entirely, as the default behavior does not
enable metadata exchange.

If you try disabling this in the example it won’t stop your client from being able to access the service,
because it has already obtained the metadata it needed when you added the service reference. However,
disabling metadata will prevent other clients from using the Add Service Reference tool for this service.
Typically, Web services in a production environment will not need to expose metadata, so you should
disable this functionality after the development phase is complete.

Without metadata, another common way to access a WCF service is to define its contracts in a sepa-
rate assembly, which is referenced by both the hosting project and the client project. The client can then
generate a proxy by using these contracts directly, rather than through exposed metadata.

Now that you’ve looked at the WCF service code, it’s time to look at the client, and in particular at
what using the Add Service Reference tool actually did. You will notice in the Solution Explorer that
the client includes a folder called Service References, and if you expand that you will see an item called
ServiceReference1, which was the name you chose when you added the reference.

The Add Service Reference tool creates all the classes you require to access the service. This includes
a proxy class for the service that includes methods for all the operations exposed by the service
(Service1Client), and a client-side class generated from the data contract (CompositeType).

NOTE You can browse through the code that is generated by the Add Service
Reference tool if you want (by displaying all files in the project, including the
hidden ones), although at this point it’s probably best not to, because it contains
quite a lot of confusing code.

WCF Programming ❘ 913

The tool also adds a configuration file to the project, app.config. This configuration defines two things:

➤ Binding information for the service endpoint

➤ The address and contract for the endpoint

The binding information is taken from the service description, and in the client every single configurable
option is copied to the configuration file:

<configuration>
<system.serviceModel>

<bindings>
<basicHttpBinding>

<binding name="BasicHttpBinding_IService1"
closeTimeout="00:01:00" openTimeout="00:01:00"
receiveTimeout="00:10:00" sendTimeout="00:01:00"
allowCookies="false" bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536" maxBufferPoolSize="524288"
maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8"
transferMode="Buffered" useDefaultWebProxy="true">
<readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384" maxBytesPerRead="4096"
maxNameTableCharCount="16384" />

<security mode="None">
<transport clientCredentialType="None"
proxyCredentialType="None" realm="" />

<message clientCredentialType="UserName"
algorithmSuite="Default" />

</security>
</binding>

</basicHttpBinding>
</bindings>

Code snippet Ch26Ex01Client\app.config

This binding is used in the endpoint configuration, along with the base address of the service (which
is the address of the .svc file for Web server–hosted services) and the client-side version of the con-
tract IService1:

<client>
<endpoint address="http://localhost:51782/Service1.svc"

binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding_IService1"
contract="ServiceReference1.IService1"
name="BasicHttpBinding_IService1" />

</client>
</system.serviceModel>

</configuration>

The Add Service Reference tool has been very thorough here. In fact, most of this information isn’t
required. You could replace this configuration file with the following:

914 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

<configuration>
<system.serviceModel>
<client>

<endpoint address="http://localhost:51782/Service1.svc"
binding="basicHttpBinding"
contract="ServiceReference1.IService1"
name="BasicHttpBinding_IService1" />

</client>
</system.serviceModel>

</configuration>

Here, the whole <bindings> section as well as the bindingConfiguration attribute of the <endpoint>

element have been removed, which means that the client will use the default binding configuration.

However, for the purpose of learning about WCF services, seeing the thoroughness of the tool is quite
useful. It has shown you all of the settings that are included in the default BasicHtttpBinding binding.
You won’t look at WCF service configuration in great depth in this chapter, but you can already see that
some of them, such as the timeout settings, are quite easy to understand due to their explicit naming.

This example has covered a lot of ground, and it is worth summarizing what you have learned before
moving on:

➤ WCF service definitions:

➤ Services are defined by a service contract interface that includes operation contract
members.

➤ Services are implemented in a class that implements the service contract interface.

➤ Data contracts are simply type definitions that use data contract attributes.

➤ WCF service configuration:

➤ You can use configuration files (Web.config or app.config) to configure WCF ser-
vices.

➤ WCF Web server hosting:

➤ Web server hosting uses .svc files as service base addresses.

➤ WCF client configuration:

➤ You can use configuration files (Web.config or app.config) to configure WCF ser-
vice clients.

The following section explores contracts in more detail.

The WCF Test Client
In the previous Try It Out, you created both a service and a client in order to look at how the basic
WCF architecture works and how configuration of WCF services is achieved. In practice, though, the
client application you want to use may be complex, and it can be tricky to test services properly.

WCF Programming ❘ 915

To ease the development of WCF services, VS provides a test tool you can use to ensure that your
WCF operations work correctly. This tool is automatically configured to work with your WCF service
projects, so if you run your project the tool will appear. All you need to do is ensure that the service you
want to test (that is, the .svc file) is set to be the startup page for the WCF service project. Alternatively,
you can run the test client as a standalone application. You can find the test client on 64-bit operating
systems at C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\WcfTestClient.exe.

If you are using a 32-bit operating system, the path is the same except the root folder is Program Files.

The tool enables you to invoke service operations and inspect the service in some other ways. The
following Try It Out illustrates this.

TRY IT OUT Using the WCF Test Client

1. Open the WCF Service Application project from the previous Try It Out, Ch26Ex01.

2. Right-click the Service1.svc service in Solution Explorer and click Set As Start Page.

3. Right-click the Ch26Ex01 project in Solution Explorer and click Set As StartUp Project.

4. In Web.config, ensure that metadata is enabled:

<serviceMetadata httpGetEnabled="true"/>
Code snippet Ch26Ex01\Web.config

5. Run the application. The WCF test client appears, as shown in Figure 26-5 (it takes a moment or
two to add the service).

FIGURE 26-5

6. In the left pane of the test client, double-click Config File. The config file used to access the service
is displayed in the right pane, which is shown in Figure 26-6.

916 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

FIGURE 26-6

7. In the left pane, double-click the GetDataUsingDataContract() operation.

8. In the pane that appears on the right, change the value of BoolValue to True and StringValue to
Test String, and then click Invoke.

9. If a security prompt dialog appears, click OK to confirm that you are happy to send information
to the service.

10. The operation result appears, as shown in Figure 26-7.

FIGURE 26-7

11. Click the XML tab to view the request and response XML, shown in Figure 26-8.

WCF Programming ❘ 917

FIGURE 26-8

How It Works

In this example you used the WCF test client to inspect and invoke an operation on the service you created
in the previous Try It Out. The first thing you probably noticed was a slight delay while the service was
loaded. This is because the test client had to inspect the service to determine its capabilities. This discovery
uses the same metadata as the Add Service Reference tool, which is why you had to ensure that metadata
was available (it’s possible you experimented with disabling it in the previous Try It Out). Once discovery
was complete, you saw the service and its operations in the left pane of the tool.

Next, you looked at the configuration used to access the service. As with the client application from the
previous Try It Out, this was generated automatically from the service metadata, and contained exactly
the same code. You can edit this configuration file through the tool if you need to, by right-clicking on the
Config File item and clicking Edit with SvcConfigeditor.

Then you invoked an operation. The test client allows you to enter the parameters to use and invoke the
method, then displays the result, all without you writing any client code. You also saw how to view the
actual XML that was sent and received to obtain the result. This information is quite technical, but it can
be absolutely critical when debugging more complex services.

Defining WCF Service Contracts
The previous examples showed how the WCF infrastructure makes it easy for you to define contracts
for WCF services with a combination of classes, interfaces, and attributes. This section takes a deeper
look at this technique.

918 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

Data Contracts
To define a data contract for a service, you apply the DataContractAttribute attribute to a class
definition. This attribute is found in the System.Runtime.Serialization namespace. You can configure
this attribute with the following properties:

PROPERTY DESCRIPTION

Name Names the data contract with a different name than the name you use for the class
definition. This name will be used in SOAP messages and client-side data objects
that are defined from service metadata.

Namespace Defines the namespace that the data contract uses in SOAP messages.

Both of these properties are useful when you need interoperability with existing SOAP message for-
mats (as are the similarly named properties for other contracts), but otherwise you will probably not
require them.

Each class member that is part of a data contract must use the DataMemberAttribute attribute, which
is also found in the System.Runtime.Serialization namespace. This attribute has the following
properties:

PROPERTY DESCRIPTION

Name Specifies the name of the data member when serialized (the default is the
member name).

IsRequired Specifies whether the member must be present in a SOAP message.

Order An int value specifying the order of serializing or deserializing the member,
which may be required if one member must be present before another can
be understood. Lower Order members are processed first.

EmitDefaultValue Set this to false to prevent members from being included in SOAP mes-
sages if their value is the default value for the member.

Service Contracts
Service contracts are defined by applying the System.ServiceModel.ServiceContractAttribute

attribute to an interface definition. You can customize the service contract with the
following properties:

PROPERTY DESCRIPTION

Name Specifies the name of the service contract as defined in the <portType>

element in WSDL.

Namespace Defines the namespace of the service contract used by the <portType>

element in WSDL.

ConfigurationName The name of the service contract as used in the configuration file.

WCF Programming ❘ 919

PROPERTY DESCRIPTION

HasProtectionLevel Determines whether messages used by the service have explicitly
defined protection levels. Protection levels enable you to sign, or sign
and encrypt, messages.

ProtectionLevel The protection level to use for message protection.

SessionMode Determines whether sessions are enabled for messages. If you use ses-
sions, then you can ensure that messages sent to different endpoints of a
service are correlated — that is, they use the same service instance and
so can share state, etc.

CallbackContract For duplex messaging the client exposes a contract as well as the service.
This is because, as discussed earlier, the client in duplex communications
also acts as a server. This property enables you to specify which contract
the client uses.

Operation Contracts
Within interfaces that define service contracts, you define members as operations by applying the
System.ServiceModel.OperationContractAttribute attribute. This attribute has the following prop-
erties:

PROPERTY DESCRIPTION

Name Specifies the name of the service operation. The default is the member
name.

IsOneWay Specifies whether the operation returns a response. If you set this to true,
then clients won’t wait for the operation to complete before continuing.

AsyncPattern Set to true, the operation is implemented as two methods that you can
use to call the operation asynchronously: Begin<methodName>() and
End<methodName>().

HasProtectionLevel See the previous section.

ProtectionLevel See the previous section.

IsInitiating If sessions are used, then this property determines whether calling this
operation can start a new session.

IsTerminating If sessions are used, then this property determines whether calling this
operation terminates the current session.

Action If you are using addressing (an advanced capability of WCF services), then
an operation has an associated action name, which you can specify with
this property.

ReplyAction As above, but specifies the action name for the operation response.

920 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

Message Contracts
The earlier example didn’t use message contract specifications. If you use these, then you do
so by defining a class that represents the message and applying the MessageContractAttribute

attribute to the class. You then apply MessageBodyMemberAttribute, MessageHeaderAttribute,
or MessageHeaderArrayAttribute attributes to members of this class. All these attributes are in
the System.ServiceModel namespace. You are unlikely to want to do this unless you need a very
high degree of control over the SOAP messages used by WCF services, so details are not pro-
vided here.

Fault Contracts
If you have a particular exception type — for example, a custom exception — that you want to make
available to client applications, then you can apply the System.ServiceModel.FaultContractAttribute
attribute to the operation that might generate this exception. Again, this isn’t something you will want
to do in ordinary WCF use.

TRY IT OUT WCF Contracts

1. Create a new WCF Service Application project called Ch26Ex02 in the directory
C:\BegVCSharp\Chapter26.

2. Add a class library project called Ch26Ex02Contracts to the solution and remove the Class1.cs

file.

3. Add references to the System.Runtime.Serialization.dll and System.ServiceModel.dll assem-
blies to the Ch26Ex02Contracts project.

4. Add a class called Person to the Ch26Ex02Contracts project and modify the code in Person.cs as
follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Serialization;

namespace Ch26Ex02Contracts
{

[DataContract]
public class Person
{

[DataMember]
public string Name { get; set; }

[DataMember]
public int Mark { get; set; }

}
}

Code snippet Ch26Ex02Contracts\Person.cs

WCF Programming ❘ 921

5. Add a class called IAwardService to the Ch26Ex02Contracts project and modify the code in
IAwardService.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace Ch26Ex02Contracts
{

[ServiceContract(SessionMode=SessionMode.Required)]
public interface IAwardService
{

[OperationContract(IsOneWay=true,IsInitiating=true)]
void SetPassMark(int passMark);

[OperationContract]
Person[] GetAwardedPeople(Person[] peopleToTest);

}
}

Code snippet Ch26Ex02Contracts\IAwardService.cs

6. To the Ch26Ex02 project, add a reference to the Ch26Ex02Contracts project.

7. Remove IService1.cs and Service1.svc from the Ch26Ex02 project.

8. Add a new WCF service called AwardService to Ch26Ex02.

9. Remove the IAwardService.cs file from the Ch26Ex02 project.

10. Modify the code in AwardService.svc.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;
using Ch26Ex02Contracts;

namespace Ch26Ex02
{

public class AwardService : IAwardService
{

private int passMark;

public void SetPassMark(int passMark)
{

this.passMark = passMark;
}

922 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

public Person[] GetAwardedPeople(Person[] peopleToTest)
{

List<Person> result = new List<Person>();
foreach (Person person in peopleToTest)
{

if (person.Mark > passMark)
{

result.Add(person);
}

}
return result.ToArray();

}
}

}
Code snippet Ch26Ex02\AwardService.svc.cs

11. Modify the service configuration section in Web.config as follows:

<system.serviceModel>
<protocolMapping>
<add scheme="http" binding="wsHttpBinding"/>

</protocolMapping>
...

</system.serviceModel>

12. Open the project properties for Ch26Ex02. In the Web section, select Specific port and enter the
port number 51425, as shown in Figure 26-9.

FIGURE 26-9

WCF Programming ❘ 923

13. Add a new console project called Ch26Ex02Client to the solution and set it as the startup
project.

14. Add references to the System.ServiceModel.dll assembly and the Ch26Ex02Contracts project to
the Ch26Ex02Client project.

15. Modify the code in Program.cs in Ch26Ex02Client as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;
using Ch26Ex02Contracts;

namespace Ch26E02Client
{

class Program
{

static void Main(string[] args)
{

Person[] people = new Person[]
{

new Person { Mark = 46, Name="Jim" },
new Person { Mark = 73, Name="Mike" },
new Person { Mark = 92, Name="Stefan" },
new Person { Mark = 84, Name="George" },
new Person { Mark = 24, Name="Arthur" },
new Person { Mark = 58, Name="Nigel" }

};

Console.WriteLine("People:");
OutputPeople(people);

IAwardService client = ChannelFactory<IAwardService>.CreateChannel(
new WSHttpBinding(),
new EndpointAddress("http://localhost:51425/AwardService.svc"));

client.SetPassMark(70);
Person[] awardedPeople = client.GetAwardedPeople(people);

Console.WriteLine();
Console.WriteLine("Awarded people:");
OutputPeople(awardedPeople);

Console.ReadKey();
}

static void OutputPeople(Person[] people)
{

foreach (Person person in people)
{

Console.WriteLine("{0}, mark: {1}", person.Name, person.Mark);
}

924 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

}
}

}
Code snippet Ch26Ex02Client\Program.cs

16. Run the application. The result is shown in
Figure 26-10.

FIGURE 26-10

How It Works

In this example, you have created a set of contracts
in a class library project and used that class library in
both a WCF service and a client. The service, as in
the previous example, is hosted in a Web server.
The configuration for this service was reduced to the
bare minimum.

The main difference in this example is that no metadata was required by the client, as the client had access
to the contract assembly. Instead of generating a proxy class from metadata, the client obtained a reference
to the service contract interface through an alternative method. Another point to note about this example
is the use of a session to maintain state in the service, which requires the WSHttpBinding binding instead of
the BasicHttpBinding binding.

The data contract used in this example was for a simple class called Person, which has a string

property called Name and an int property called Mark. You used the DataContractAttribute and
DataMemberAttribute attributes with no customization, and there is no need to reiterate the code for this
contract here.

The service contract was defined by applying the ServiceContractAttribute attribute to the
IAwardService interface. The SessionMode property of this attribute was set to SessionMode.Required, as
this service requires state:

[ServiceContract(SessionMode=SessionMode.Required)]
public interface IAwardService
{

The first operation contract, SetPassMark(), is the one that sets state, and therefore has the IsInitiating

property of OperationContractAttribute set to true. This operation doesn’t return anything, so it is
defined as a one-way operation by setting IsOneWay to true:

[OperationContract(IsOneWay=true,IsInitiating=true)]
void SetPassMark(int passMark);

The other operation contract, GetAwardedPeople(), does not require any customization and uses the data
contract defined earlier:

[OperationContract]
Person[] GetAwardedPeople(Person[] peopleToTest);

}

Remember that these two types, Person and IAwardService, are available to both the service and the client.
The service implements the IAwardService contract in a type called AwardService, which doesn’t contain

WCF Programming ❘ 925

any remarkable code. The only difference between this class and the service class you saw earlier is that it
is stateful. This is permissible, as a session is defined to correlate messages from a client.

To ensure that the service uses the WSHttpBinding binding, you added the following the Web.config for
the service:

<protocolMapping>
<add scheme="http" binding="wsHttpBinding"/>

</protocolMapping>

This overrides the default mapping for HTTP binding. Alternatively, you could configure the service man-
ually and keep the existing default, but this override is much simpler. However, be aware that this type
of override is applied to all services in a project. If you have more than one service in a project, then you
would have to ensure that this binding is acceptable to each of them.

The client is more interesting, primarily because of this line of code:

IAwardService client = ChannelFactory<IAwardService>.CreateChannel(
new WSHttpBinding(),
new EndpointAddress("http://localhost:51425/AwardService.svc"));

The client application has no app.config file to configure communications with the service, and no proxy
class defined from metadata to communicate with the service. Instead, a proxy class is created through
the ChannelFactory<T>.CreateChannel() method. This method creates a proxy class that implements the
IAwardService client, although behind the scenes the generated class communicates with the service just
like the metadata-generated proxy shown earlier.

NOTE If you create a proxy class with ChannelFactory<T>.CreateChannel(), the
communication channel will, by default, time out after a minute, which can lead to
communication errors. There are ways to keep connections alive, but they are
beyond the scope of this chapter.

Creating proxy classes in this way is an extremely useful technique that you can
use to quickly generate a client application on-the-fly.

Self-Hosted WCF Services
So far in this chapter you have seen WCF services that are hosted in Web servers. This enables you
to communicate across the Internet, but for local network communications it is not the most efficient
way of doing things. For one thing, you need a Web server on the computer that hosts the service. In
addition, the architecture of your applications may be such that having an independent WCF service
may not be desirable.

Instead, you might want to use a self-hosted WCF service. A self-hosted WCF service is a service that
exists in a process that you create, rather than in the process of a specially made hosting application
such as a Web server. This means, for example, that you can use a console application or Windows
application to host your service.

To self-host a WCF service, you use the System.ServiceModel.ServiceHost class. You instantiate this
class with either the type of the service you want to host or an instance of the service class. You can

926 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

configure a service host through properties or methods, or (and this is the clever part) through a config-
uration file. In fact, host processes, such as Web servers, use a ServiceHost instance to do their hosting.
The difference when self-hosting is that you interact with this class directly. However, the configuration
you place in the <system.serviceModel> section of the app.config file for your host application uses
exactly the same syntax as the configuration sections you’ve already seen in this chapter.

You can expose a self-hosted service through any protocol that you like, although typically you will
use TCP or named pipe binding in this type of application. Services accessed through HTTP are more
likely to live inside Web server processes, because you get the additional functionality that Web servers
offer, such as security and other features.

If you want to host a service called MyService, you could use code such as the following to create an
instance of ServiceHost:

ServiceHost host = new ServiceHost(typeof(MyService));

If you want to host an instance of MyService called myServiceObject, you could code as follows to
create an instance of ServiceHost:

MyService myServiceObject = new MyService();
ServiceHost host = new ServiceHost(myServiceObject);

WARNING Hosting a service instance in a ServiceHost works only if you
configure the service so that calls are always routed to the same object instance.
To do this you must apply a ServiceBehaviorAttribute attribute to the service
class and set the InstanceContextMode property of this attribute to
InstanceContextMode.Single.

After creating a ServiceHost instance you can configure the service and its endpoints and binding
through properties. Alternatively, if you put your configuration in a .config file, the ServiceHost

instance will be configured automatically.

To start hosting a service once you have a configured ServiceHost instance, you use the
ServiceHost.Open() method. Similarly, you stop hosting the service through the ServiceHost.Close()
method. When you first start hosting a TCP-bound service, you may, if you have it enabled, receive a
warning from the Windows Firewall service, as it will block the TCP port by default. You must open
the TCP port for the service to begin listening on the port.

In the following Try it Out you use self-hosting techniques to expose some functionality of a WPF
application through a WCF service.

TRY IT OUT Self-Hosted WCF Services

1. Create a new WPF application called Ch26Ex03 in the directory C:\BegVCSharp\Chapter26.

2. Add a new WCF service to the project called AppControlService by using the Add New Item
Wizard.

WCF Programming ❘ 927

3. Modify the code in MainWindow.xaml as follows:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Ch26Ex03.MainWindow"
Title="Solar Evolution" Height="450" Width="430"
Loaded="Window_Loaded" Closing="Window_Closing">
<Grid Height="400" Width="400" HorizontalAlignment="Center"

VerticalAlignment="Center">
<Rectangle Fill="Black" RadiusX="20" RadiusY="20"
StrokeThickness="10">
<Rectangle.Stroke>

<LinearGradientBrush EndPoint="0.358,0.02"
StartPoint="0.642,0.98">
<GradientStop Color="#FF121A5D" Offset="0"/>
<GradientStop Color="#FFB1B9FF" Offset="1"/>

</LinearGradientBrush>
</Rectangle.Stroke>

</Rectangle>
<Ellipse Name="AnimatableEllipse" Stroke="{x:Null}" Height="0"
Width="0" HorizontalAlignment="Center"
VerticalAlignment="Center">
<Ellipse.Fill>

<RadialGradientBrush>
<GradientStop Color="#FFFFFFFF" Offset="0"/>
<GradientStop Color="#FFFFFFFF" Offset="1"/>

</RadialGradientBrush>
</Ellipse.Fill>
<Ellipse.Effect>

<DropShadowEffect ShadowDepth="0" Color="#FFFFFFFF"
BlurRadius="50"/>

</Ellipse.Effect>
</Ellipse>

</Grid>
</Window>

Code snippet Ch26Ex03\MainWindow.xaml

4. Modify the code in MainWindow.xaml.cs as follows:

using System.Windows.Shapes;
using System.ServiceModel;
using System.Windows.Media.Animation;

namespace Ch26Ex03
{

/// <summary>
/// Interaction logic for MainWindow.xaml
/// </summary>
public partial class MainWindow : Window
{

private AppControlService service;
private ServiceHost host;

928 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

public MainWindow()
{

InitializeComponent();
}

private void Window_Loaded(object sender, RoutedEventArgs e)
{

service = new AppControlService(this);
host = new ServiceHost(service);
host.Open();

}

private void Window_Closing(object sender,
System.ComponentModel.CancelEventArgs e)

{
host.Close();

}

internal void SetRadius(double radius, string foreTo,
TimeSpan duration)

{
if (radius > 200)
{

radius = 200;
}
Color foreToColor = Colors.Red;
try
{

foreToColor =
(Color)ColorConverter.ConvertFromString(foreTo);

}
catch
{

// Ignore color conversion failure.
}
Duration animationLength = new Duration(duration);

DoubleAnimation radiusAnimation = new DoubleAnimation(
radius * 2, animationLength);

ColorAnimation colorAnimation = new ColorAnimation(
foreToColor, animationLength);

AnimatableEllipse.BeginAnimation(Ellipse.HeightProperty,
radiusAnimation);

AnimatableEllipse.BeginAnimation(Ellipse.WidthProperty,
radiusAnimation);

((RadialGradientBrush)AnimatableEllipse.Fill).GradientStops[1]
.BeginAnimation(GradientStop.ColorProperty, colorAnimation);

}
}

}
Code snippet Ch26Ex03\MainWindow.xaml.cs

WCF Programming ❘ 929

5. Modify the code in IAppControlService.cs as follows:

[ServiceContract]
public interface IAppControlService
{

[OperationContract]
void SetRadius(int radius, string foreTo, int seconds);

}
Code snippet Ch26Ex03\IAppControlService.cs

6. Modify the code in AppControlService.cs as follows:

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
public class AppControlService : IAppControlService
{

private MainWindow hostApp;

public AppControlService(MainWindow hostApp)
{

this.hostApp = hostApp;
}

public void SetRadius(int radius, string foreTo, int seconds)
{

hostApp.SetRadius(radius, foreTo, new TimeSpan(0, 0, seconds));
}

}
Code snippet Ch26Ex03\AppControlService.cs

7. Modify the code in app.config as follows:

<configuration>
<system.serviceModel>

<services>
<service name="Ch26Ex03.AppControlService">

<endpoint address="net.tcp://localhost:8081/AppControlService"
binding="netTcpBinding"
contract="Ch26Ex03.IAppControlService" />

</service>
</services>

</system.serviceModel>
</configuration>

Code snippet Ch26Ex03\Web.config

8. Add a new console application to the project called Ch26Ex03Client.

9. Right-click the solution in the Solution Explorer and click Set StartUp Projects.

10. Configure the solution to have multiple startup projects, with both projects being started simulta-
neously, as shown in Figure 26-11.

930 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

FIGURE 26-11

11. Add references to System.ServiceModel.dll and Ch26Ex03 to the Ch26Ex03Client project.

12. Modify the code in Program.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ch26Ex03;
using System.ServiceModel;

namespace Ch26Ex03Client
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Press enter to begin.");
Console.ReadLine();
Console.WriteLine("Opening channel.");
IAppControlService client =

ChannelFactory<IAppControlService>.CreateChannel(
new NetTcpBinding(),
new EndpointAddress(

"net.tcp://localhost:8081/AppControlService"));
Console.WriteLine("Creating sun.");
client.SetRadius(100, "yellow", 3);
Console.WriteLine("Press enter to continue.");
Console.ReadLine();
Console.WriteLine("Growing sun to red giant.");
client.SetRadius(200, "Red", 5);

WCF Programming ❘ 931

Console.WriteLine("Press enter to continue.");
Console.ReadLine();
Console.WriteLine("Collapsing sun to neutron star.");
client.SetRadius(50, "AliceBlue", 2);
Console.WriteLine("Finished. Press enter to exit.");
Console.ReadLine();

}
}

}
Code snippet Ch26Ex03Client\Program.cs

13. Run the solution. If prompted, unblock the Windows Firewall TCP port so that the WCF can lis-
ten for connections.

14. When both the Solar Evolution window and the console application window are displayed, press
Enter in the console window. The result is shown in Figure 26-12.

FIGURE 26-12

15. Continue pressing Enter in the console window to continue the solar evolution cycle.

How It Works

In this example you have added a WCF service to a WPF application and used it to control the animation
of an Ellipse control. You have created a simple client application to test the service. Don’t worry too
much about the XAML code in this example if you are not familiar with WPF yet; it’s the WCF plumbing
that interests us here.

932 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

The WCF service, AppControlService, exposes a single operation, SetRadius(), which clients call to con-
trol the animation. This method communicates with an identically named method defined in the Window1

class for the WPF application. For this to work, the service needs a reference to the application, so you
must host an object instance of the service. As discussed previously, this means that the service must use a
behavior attribute:

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
public class AppControlService : IAppControlService
{

...
}

In Window1.xaml.cs, the service instance is created in the Windows_Loaded() event handler. This method
also begins hosting by creating a ServiceHost object for the service and calling its Open() method:

public partial class Window1 : Window
{

private AppControlService service;
private ServiceHost host;

...

private void Window_Loaded(object sender, RoutedEventArgs e)
{

service = new AppControlService(this);
host = new ServiceHost(service);
host.Open();

}

When the application closes, hosting is terminated in the Window_Closing() event handler.

The configuration file is again about as simple as it can be. It defines a single endpoint for the WCF service
that listens at a net.tcp address, on port 8081, and uses the default NetTcpBinding binding:

<service name="Ch26Ex03.AppControlService">
<endpoint address="net.tcp://localhost:8081/AppControlService"

binding="netTcpBinding"
contract="Ch26Ex03.IAppControlService" />

</service>

This matches up with code in the client app:

IAppControlService client =
ChannelFactory<IAppControlService>.CreateChannel(

new NetTcpBinding(),
new EndpointAddress(

"net.tcp://localhost:8081/AppControlService"));

When the client has created a client proxy class, it can call the SetRadius() method with radius, color,
and animation duration parameters, and these are forwarded to the WPF application through the service.
Simple code in the WPF application then defines and uses animations to change the size and color of the
ellipse.

This code would work across a network if you used a machine name, rather than localhost, and if the
network permitted traffic on the specified port. Alternatively, you could separate the client and host appli-
cation further, and connect across the Internet. Either way, WCF services provide an excellent means of
communication that doesn’t take much effort to set up.

Exercises ❘ 933

SUMMARY

In this chapter you looked at the basic techniques for using WCF services to communicate between
applications, processes, and computers. You started by learning what a WCF service is and how it
differs from a Web service or a remoting implementation, and the concepts that you need to know
about to use WCF services. You then looked at how to program WCF services, how to consume WCF
services in clients, and how to host WCF services in various ways.

What you have learned is the absolute minimum that you need in order to use WCF services in your
applications. This barely scratches the surface of what is possible, in particular with .config file
configuration and behaviors. The WCF framework enables you to integrate with advanced security
infrastructures, and communication can be customized in pretty much any way you can imagine.

If you want to learn more about WCF services, you might like to read Professional WCF 4 (Wrox,
available June 2010). In the next chapter, you look at the last of the major new technologies introduced
with .NET 3.5 (and greatly improved for .NET 4): Workflow Foundation.

EXERCISES

1. Which of the following applications can host WCF services?

a. Web applications

b. Windows Forms applications

c. Windows services

d. COM+ applications

e. Console applications

2. Which type of contract would you implement if you wanted to exchange parameters of type
MyClass with a WCF service? Which attributes would you require?

3. If you host a WCF service in a Web application, what extension will the base endpoint for the ser-
vice use?

4. When self-hosting WCF services, you must configure the service by setting properties and calling
methods of the ServiceHost class. True or false?

5. Provide the code for a service contract, IMusicPlayer, with operations defined for Play(), Stop(),
and GetTrackInformation(). Use one-way methods where appropriate. What other contracts
might you define for this service to work?

Answers to Exercises can be found in Appendix A.

934 ❘ CHAPTER 26 WINDOWS COMMUNICATION FOUNDATION

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

WCF fundamentals WCF provides a framework for creating and communicating with remote
services. It combines elements of the Web service and remoting architec-
tures along with new technologies to achieve this.

Communication
protocols

You can communicate with a WCF service by any one of several proto-
cols, including HTTP and TCP. This means that you can use services that
are local to your client application, or that are separated by machine or
network boundaries. To do this, you access a specific endpoint for the
service through a binding corresponding to the protocol and features that
you require. You can control these features, such as using session state
or exposing metadata, through behaviors. .NET 4 includes many default
settings to make it very easy to define a simple service.

Communication
payload

Typically, calls to responses from WCF services are encoded as SOAP
messages. However, there are alternatives, such as plain HTTP messages,
and you can define your own payload types from scratch if you need to.

Hosting WCF services may be hosted in IIS or in a Windows service, or they can be
self-hosted. Using a host such as IIS enables you to make use of the host’s
built-in capabilities, including security and application pooling. Self-hosting
is more flexible, but it can require more configuration and coding.

Contracts You define the interface between a WCF service and client code through
contracts. Services themselves, along with any operations they expose, are
defined with service and operation contracts. Data types are defined with
data contracts. Further customization of communications is achieved
with message and fault contracts.

Client applications Client applications communicate with WCF services by means of a proxy
class. Proxy classes implement the service contract interface for the ser-
vice, and any calls to operation methods of this interface are redirected to
the service. You can generate a proxy by using the Add Service Reference
tool, or you can create one programmatically through channel factory meth-
ods. In order for communications to succeed, the client must be configured
to match the service configuration.

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

27
Windows Workflow Foundation

WHAT YOU WILL LEARN IN THIS CHAPTER

➤ What a workflow is and how to execute one

➤ What an activity is

➤ How to create custom activities

➤ How to send an e-mail from an activity

Windows Workflow Foundation (WF) first appeared with .NET 3.0 and was revised with
.NET 3.5 to add some extra functionality to integrate it with Windows Communication
Foundation (WCF) more easily. In .NET 4, Workflow has been completely rewritten; while
the core concepts are the same, the implementation is entirely different. This chapter covers
Windows Workflow Foundation 4 (WF4).

A simplified definition of a workflow is ‘‘a collection of activities,’’ but that’s not an entirely
satisfying definition. It might be more useful to use an analogy instead.

When you’re writing a program, you use statements (such as if/else) and call functions
(Console.WriteLine), and no doubt execute some code within a loop. You can’t expect your
end users to understand programming, so they tell you what they want the system to do, and
you write the code to achieve those needs.

Now suppose for a moment that you could provide your end users with a vastly simplified pro-
gramming environment, one in which you pre-build the statements and control flow logic, and
all the end users need to do is plug these parts together to get what they want. That’s what
Workflow 4 can be used for. The statements and control logic are all called activities, and these
can be plugged together into a workflow.

936 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

HELLO WORLD

Every programming book needs a Hello World example and this one is no different. However, in this
example, rather than use a traditional programming language, instead this example uses Workflow 4. In
the following Try It Out, you’ll create a Workflow project, add an activity, and execute the workflow.

TRY IT OUT A Simple Workflow 4 Application

1. In Visual Studio 2010, create a new Workflow Console Application project. Ensure that .NET
Framework 4 is chosen in the drop-down at the top-middle section of the screen, as shown in
Figure 27-1.

FIGURE 27-1

2. From the Toolbox, drag and drop a WriteLine activity onto the main designer area.

3. Type ‘‘Hello Workflow World’’ in the text box (see Figure 27-2).

4. Run the application to see the output text.

How It Works

When the application runs, it executes the activities within the workflow. In this example you only have
a single activity that outputs some text; once that activity has completed, the workflow itself completes
and therefore the application exits. You will, of course, provide many more activities in a workflow that
perform much more useful tasks than writing a message to the console!

Workflows and Activities ❘ 937

FIGURE 27-2

WORKFLOWS AND ACTIVITIES

In the previous section, you saw a trivial example of a workflow that used a simple activity. A
workflow is a collection of activities, and the workflow defines the execution order of those activities.
The example used a sequential workflow, which is composed of multiple activities executed in
sequential order.

An activity is a unit of work, and two types of activity are available. The first is the simple variety you
just saw — the WriteLine activity. This activity performs one task only. The other type of activity is
a composite activity. There are several examples of these that you might be familiar with, such as the
While activity, which effectively contains other child activities.

A workflow, therefore, is similar to a program — it has simple activities that are akin to regular pro-
gramming language statements, control of flow activities similar to control of flow statements, and is
executed much like a program.

If a workflow is similar to a program, then can you create your own functions, like you would in
programming? Maybe you need a function that sends an e-mail, or one that writes data to an audit
trail. This is where custom activities come in — you can write these low-level areas of functionality and
users can simply plug these into a workflow. Now that’s cool!

Windows Workflow Foundation 4 provides many activities, and the following section discusses some
of these and shows you how they can be used within a workflow.

938 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

If Activity

FIGURE 27-3

This activity works in a similar manner to an if/else

statement in C#, and when executed it evaluates a
condition and then decides which path the workflow
should take based on that condition.

When you use an If activity, it appears within a work-
flow as shown in Figure 27-3.

The If activity contains a conditional expression that
is evaluated at runtime, and placeholders for the Then

and Else activities. The Condition property is an expression that evaluates to a Boolean value, so you
can include any valid expression here.

NOTE Workflow 4 includes an expression engine that uses Visual Basic syntax.
This might seem strange to a C# programmer, as VB is significantly different from
C#. However, that’s the case currently, so in order to use the built-in activities
you’ll have to learn enough VB to get by. Just remember to be extremely verbose
and omit any semicolons and you’ll be OK (ha ha!).

An expression can reference any variables defined in the workflow and access many static classes
available in the .NET Framework. So you could, for example, define an expression based on the
Environment.Is64BitOperatingSystem value, if that were crucial to some part of your workflow.
Naturally, you can define arguments that are passed into the workflow and that can then be evaluated
by an expression inside an If activity. We’ll cover arguments and variables later in the chapter.

While Activity

FIGURE 27-4

The While activity will be familiar to any program-
mer. It evaluates a condition and while that condition
is true, the body of that activity is executed (see
Figure 27-4).

While supports only one activity within the body,
but most programs require more than one state-
ment within any loop, so there must be some way
to add more statements, and indeed there is: the
Sequence activity.

Sequence Activity
This activity enables you to construct a list of other activities, and when executed it will start with the
first child activity and execute each child in turn (see Figure 27-5).

Arguments and Variables ❘ 939

FIGURE 27-5

The image in Figure 27-5 shows a Sequence activity that contains three
child activities — a WriteLine, a While, and another WriteLine. If this
workflow were executed, the initial message would be written out to the
console, then the while loop would execute, and finally another message
would be written to the console. Figure 27-5 also shows another useful
feature of the workflow designer, that being the ability to contract (and
expand) activities. In this case, the While activity has been contracted so
you can only see the name — the button on the right side of the activity
that shows two chevrons allows you to toggle the visibility of the activ-
ity’s contents.

This ability to expand and contract an activity is very useful when design-
ing large workflows, as you can contract parts of the workflow you are
not actively designing and zoom in on those you are working with.

There are other features of the workflow designer that make it easy to
work with. For example, on the bottom right of the designer is the set of
controls shown in Figure 27-6.

FIGURE 27-6

These controls (from left to right) enable you to zoom to 100%, zoom to
a custom level, fit the current workflow to the size of the screen, and show or
hide an overview window that displays a thumbnail of the workflow. In addition,
you can also double-click on a composite activity such as a While or an If, which
then hides all higher-level activities, leaving only the activity you clicked and its
children. A breadcrumb trail at the top left of the screen shows you where you
are (see Figure 27-7).

FIGURE 27-7

You can click on any item in the sequence, navigating to successively higher
levels in the workflow until you reach the top level.

ARGUMENTS AND VARIABLES

With any normal programming language you can use arguments to pass values into functions (and
retrieve responses), and within a function you can define and use variables as temporary storage. As
Workflow is effectively a programming language, the same constructs are available.

FIGURE 27-8

Before examining arguments and variables further, however, consider what a work-
flow actually consists of. If you display the Solution Explorer in Visual Studio 2010
and look at the solution created in the first part of this chapter, you’ll see the file
highlighted in Figure 27-8.

Double-clicking Workflow1.xaml will display the workflow in the designer. However,
this is just a regular XML file, so rather than double-click on it, right-click and choose
Open With. From the dialog that appears, choose XML Editor. This will open the file
and show the XML that makes up the workflow:

<Activity mc:Ignorable="sap"
x:Class="_01_HelloWorld.Workflow1"
mva:VisualBasic.Settings="Assembly references and imported

namespaces serialized as XML namespaces"

940 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

xmlns="http://schemas.microsoft.com/netfx/2009/xaml/activities"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:mv="clr-namespace:Microsoft.VisualBasic;assembly=System"
xmlns:mva="clr-namespace:Microsoft.
VisualBasic.Activities;assembly=System.Activities"
xmlns:s="clr-namespace:System;assembly=mscorlib"
xmlns:s1="clr-namespace:System;assembly=System"
xmlns:s2="clr-namespace:System;assembly=System.Xml"
xmlns:s3="clr-namespace:System;assembly=System.Core"
xmlns:sad="clr-namespace:System.Activities.Debugger;assembly=System.Activities"
xmlns:sap="http://schemas.microsoft.com/netfx/2009/xaml/activities/presentation"
xmlns:scg="clr-namespace:System.Collections.Generic;assembly=System"
xmlns:scg1="clr-namespace:System.
Collections.Generic;assembly=System.ServiceModel"
xmlns:scg2="clr-namespace:System.Collections.Generic;assembly=System.Core"
xmlns:scg3="clr-namespace:System.Collections.Generic;assembly=mscorlib"
xmlns:sd="clr-namespace:System.Data;assembly=System.Data"
xmlns:sd1="clr-namespace:System.Data;assembly=System.Data.DataSetExtensions"
xmlns:sl="clr-namespace:System.Linq;assembly=System.Core"
xmlns:st="clr-namespace:System.Text;assembly=mscorlib"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<WriteLine sad:XamlDebuggerXmlReader.FileName=
"U:\Code\01 HelloWorld\01 HelloWorld\Workflow1.xaml"
sap:VirtualizedContainerService.HintSize="209.6,200"
Text="Hello Workflow World" />

</Activity>

A lot of XML namespaces are referenced in the code, but the main part just shows a WriteLine activity
with a Text property.

FIGURE 27-9

To create arguments that are passed into a workflow, you can use the Argu-
ments designer within the workflow designer. This option appears at the
bottom left of the designer surface, as shown in Figure 27-9.

In the following Try It Out section, you’ll create an input argument and a variable and use these in a
simple workflow.

TRY IT OUT Using Arguments and Variables

1. Create a new Workflow Console Application project in Visual Studio 2010.

2. When the workflow is displayed, click the Arguments button and create a string argument as
shown in Figure 27-10. Set the name of the argument to Name, the direction to In, and its data
type to String.

3. Add a Sequence activity to the workflow, and then add a WriteLine activity to the Sequence and
type Name into the expression text box. Note that you shouldn’t include quotes, as this is now the
name of an argument and not a literal string.

4. Now click the Variables button and define a variable called _uppercaseName of type String. You’ll
use this variable to store the uppercase value of the Name argument.

Arguments and Variables ❘ 941

FIGURE 27-10

5. Drag an Assign activity onto the designer. Set the left-hand text box of the activity to
_uppercaseName and set the right-hand side to UCase(Name). This activity assigns a value to a
variable, and the value in this instance is a function call in VB that converts its parameter to an
uppercase string.

6. Drag a WriteLine activity onto the designer and set its text box to _uppercaseName.

7. Now switch to the MainProgram.cs file where you will create a value for the Name argument and
pass this into the workflow. You’ll see the following code in that file:

class Program
{

static void Main(string[] args)
{

WorkflowInvoker.Invoke(new Workflow1());
}

}

8. The preceding code needs to be modified to pass in a value for the Name argument. Change it
as follows:

class Program
{

static void Main(string[] args)

942 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

{
Dictionary<string, object> parms = new Dictionary<string, object>();
parms.Add("Name", "Morgan");
WorkflowInvoker.Invoke(new Workflow1(), parms);

}
}

Substitute your name if you wish!

9. Build and run the project. You should see two lines, one in uppercase.

How It Works

When this application executes it passes a string parameter into the workflow. The input parameter is
data-bound to the WriteLine activity and also the Assign activity, where it is altered by an expression
into an upper case version which is then stored into a local variable. This variable is used by the second
WriteLine activity.

If you were now to open the Workflow1.xaml file from the Try It Out section with the XAML editor,
you would see the definition of the argument towards the top of the file:

<x:Members>
<x:Property Name="Name" Type="InArgument(x:String)" />

</x:Members>

In addition, you would also see the definition of the variable within the sequence:

<Sequence.Variables>
<Variable x:TypeArguments="x:String" Name="_uppercaseName" />

</Sequence.Variables>

Just like variables within a regular program, variables in a workflow have a scope that defines when
they are available. Once the activity that defines the variable is completed, that variable is destroyed.

In the preceding code example, you created a dictionary of name/value pairs, and then added a value
to the dictionary with the key of Name. The key value you use here must match exactly the argument
definition; otherwise, the argument value will not be set correctly and your workflow could execute
without the appropriate data.

Another behavior of functions in a normal programming language is that you can return values from
them. Similarly, you can pass arguments into a workflow, but also pass arguments out too. In the same
way that you created a dictionary to pass values into a workflow, when a workflow completes, any
output arguments are returned in a dictionary.

An argument includes the notion of direction, which can be one of the following three values:

➤ In: The argument is passed in to the workflow.

➤ Out: The argument is returned from the workflow.

➤ In/Out: The argument is both passed into the workflow and returned from the workflow
when it completes.

Arguments and Variables ❘ 943

Only arguments defined as Out or In/Out will be returned when the workflow completes. In order to
read the values returned from the workflow, you can use the following code:

IDictionary<string,object> returnValues = WorkflowInvoker.Invoke(new Workflow1(),
parms);

Here, the returnValues variable is assigned a dictionary of name/value pairs that will contain all Out
and In/Out arguments defined on the workflow.

The following Try it Out shows how you can pass arguments into and out of a Workflow.

TRY IT OUT Returning Arguments

1. Create a new Workflow Console Application project in Visual Studio 2010.

2. Create a string argument on the workflow and define it as an In/Out argument called Person.

3. Drag a Sequence activity onto the workflow.

4. Drag a WriteLine activity onto the workflow and set its text expression as follows:
String.Format ("Person is called : {0}", Person)

NOTE This is VB and not C#; It’s an expression, so you won’t need a semicolon.

FIGURE 27-11

5. Drag an Assign activity onto the workflow. Set the left-hand
side to Person, and set the right-hand side to be the following
expression:

String.Format("You entered the name : {0}", Person)

You should end up with a workflow that looks like what is shown
in Figure 27-11.

6. Alter the main program.cs file so that it passes an argument
into the workflow and prints out the value of all Out or In/Out
arguments, as shown in the following snippet:

Dictionary<string, object> parms = new Dictionary<string, object>();
parms.Add("Person", "Morgan");

foreach (KeyValuePair<string, object> kvp in
WorkflowInvoker.Invoke(new Workflow1(), parms))

{
Console.WriteLine("{0} = {1}", kvp.Key, kvp.Value);

}

When executed, the workflow should output the value of the Person argument within the
workflow, and then a modified value should be written out from the preceding code. This proves
that an argument modified within a workflow will be passed out to the caller once the workflow
has completed.

944 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

How It Works

When this workflow executes it is passed an input argument. This argument is available whilst the work-
flow executes, and in this example is also returned from the workflow when it completes as it was defined
as an In/Out argument.

CUSTOM ACTIVITIES

So far this chapter has only used examples with built-in activities, but Workflow also permits custom
activities to be written, which are then used just like the built-in activities.

Earlier in the chapter you learned that there are two broad categories of activity types: singular activities
and composite activities. In this section, you’ll create both types.

An activity is scheduled for execution by the workflow (or parent activity) that owns it. What happens
next is largely up to the activity writer. In the case of the WriteLine activity, you could reasonably
expect to find a call to Console.WriteLine somewhere within the code for the activity.

When you write an activity you’ll typically override the Execute method in order to supply your custom
code. This method varies according to the base class used for the activity. These base classes and their
execute methods are shown in the following table.

BASE CLASS EXECUTE METHOD

AsyncCodeActivity IAsyncResult BeginExecute(AsyncCodeActivityContext,

AsyncCallback, object)

void EndExecute(AsyncCodeActivityContext,

IAsyncResult)

CodeActivity void Execute (CodeActivityContext)

NativeActivity void Execute (NativeActivityContext)

AsyncCodeActivity<TResult> IAsyncResult BeginExecute(AsyncCodeActivityContext,

AsyncCallback, object)

TResult EndExecute(AsyncCodeActivityContext,

IAsyncResult)

CodeActivity<TResult> TResult Execute (CodeActivityContext)

NativeActivity<TResult> void Execute (NativeActivityContext)

The simplest base class to use is CodeActivity, and there’s also a generic version of CodeActivity that
accepts a type argument — this is used as the return value from executing that activity. In the same way
that a workflow can return arguments, an activity might return a value after it has executed, and this

Custom Activities ❘ 945

data can be bound to within the workflow so that the output from one activity can form the input to
the next.

Suppose you want to use the current time within a workflow. You could create an activity that would
return a DateTime value, and when executed it would get this timestamp by calling DateTime.Now. Other
than writing out a string to the console, this is about as simple as an activity can get! The following Try
It Out walks through creating a custom activity.

TRY IT OUT Writing a Custom Activity

1. Create a new Workflow Console Application project in Visual Studio 2010.

2. Add a second project to the solution but use the Activity Library project template for this one. This
will create a default activity (Activity1.xaml), which you can remove from the project because it
will not be used at this point.

3. Add a new class called Timestamp to the class library. The following full code is needed:
using System;
using System.Activities;
namespace CustomActivities
{

public class Timestamp : CodeActivity<DateTime>
{

protected override DateTime Execute(CodeActivityContext context)
{

return DateTime.Now;
}

}
}

This defines the custom activity and provides an implementation of the appropriate Execute

method, which returns the current date/time value.

4. Compile the solution and then add a reference from the workflow project to the custom activity
project. This enables your custom activity to be used within the workflow project, and adds the
custom activity to the Toolbox.

5. Edit the main workflow and drag on a sequence activity. Define a variable of type DateTime on the
Sequence activity. Call this variable currentDateTime.

FIGURE 27-12

6. Drag on a Timestamp activity and display its
properties. You need to alter the Result prop-
erty to currentDateTime, which will assign
the result value of the activity to this variable.
Figure 27-12 shows the property value.

7. Drag on a WriteLine activity and set its
expression as follows:

String.Format ("The time read from the Timestamp activity is ‘{0}’",
currentDateTime)

8. Run the workflow. You should see output that describes the current date and time.

946 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

How It Works

When a workflow executes it runs each activity in turn. If the activity is derived from CodeActivity then
the Execute method will be called when the activity is scheduled to run. The activity here has a return
value that is set within the Execute method to the current date and time. In this Try It Out the value of
the Timestamp activity is stored in a workflow variable, which is then output to the console using the
WriteLine activity.

The Timestamp activity is about as simple as it gets. Typically, you’ll create activities that do a bit more
work within their Execute methods. An activity is generally a self-contained unit, much like a function
from a traditional programming language. Functions usually have one or more arguments, and usually
these arguments are passed into the function as parameters. Sometimes, however, the function will also
receive data via the current application context.

A good example is from ASP.NET. The static property available as HttpContext.Current gives
you access to various properties such as the current application state, the HttpRequest and the
HttpResponse. This object is defined by the ASP.NET processing pipeline and is then available to any
object called within that pipeline.

A similar facility exists within Workflow using the concept of extensions.

Workflow Extensions
An extension is simply an object that you want to be able to access from an activity within its Execute
method. Typically, you will define an interface for your extension, and your activity will code against
that interface. This enables you to replace the implementation of that extension without needing to
recode the entire activity.

As a concrete example, consider an activity that sends an e-mail. You could hard-code the e-mail
provider within the activity itself, but then it would only work with that provider. In this instance,
it would be beneficial to define an interface that the activity used, and then provide several implementa-
tions of that interface — one for sending mail using Outlook, another using Microsoft Exchange, and
so on. In short, you could extend the list of e-mail providers without ever changing the activity.

In order for an e-mail activity to be of any use, you also need to be able to define arguments that are
passed into that activity. You certainly wouldn’t want to hard-code the e-mail recipient, subject, or
body. Just as you did with the WriteLine activity, you would like to be able to define properties that
can be set on your activity. In order to do that, you need to use classes derived from the Argument class,
such as InArgument and OutArgument.

These argument classes are used in place of properties on an activity. The reason why the argument
types are used is related to how a workflow stores its state while it is executing, which is covered later
in the chapter. For now, go ahead and create your interface and custom activity.

TRY IT OUT Defining the ISendEmail Interface and Activity

1. Create a new Class Library project with Visual Studio 2010. Call this SharedInterfaces.

2. Add an interface to the library called ISendEmail, as shown here:
/// <summary>
/// Interface used by the SendEmail activity to send an email

Custom Activities ❘ 947

/// </summary>
public interface ISendEmail
{

/// <summary>
/// Sends an email
/// </summary>
/// <param name="sender">The person sending the email</param>
/// <param name="recipient">The recipient of the email</param>
/// <param name="subject">The subject</param>
/// <param name="body">The body</param>
void SendEmail(string sender, string recipient, string subject, string body);

}

3. Now add a second project to the solution. This time, choose an Activity Library and call it
CustomActivities. Delete the Activity1.xaml file that is automatically created for you.

4. Add a new class called SendEmail to the project. Define this as shown in the following example.
You’ll need to reference the SharedInterfaces project by the activity library in order to include
the definition of the ISendEmail interface:

public class SendEmail : NativeActivity
{

public InArgument<string> Sender { get; set; }
public InArgument<string> Recipient { get; set; }
public InArgument<string> Subject { get; set; }
public InArgument<string> Body { get; set; }
protected override void Execute(NativeActivityContext context)
{

context.GetExtension<ISendEmail>().SendEmail
(Sender.Get(context),Recipient.Get(context),
Subject.Get(context), Body.Get(context));

}
}

The activity defines four input arguments and uses these within the Execute method.

How It Works

When this activity executes it simply looks up the ISendEmail extension and calls its SendEmail method.
There is more functionality needed to get this to send an email, which is the subject of the next two Try It
Out sections.

When defining the arguments, you should use the generic InArgument<>, OutArgument<>, or
InOutArgument<> classes. Within the Execute method, the value of these arguments is retrieved from
the current execution context using the somewhat strange syntax Argument.Get(context). This is due
to how data is stored within a workflow.

In a traditional class with regular .NET properties, the data for that class is stored within the object
instance. This renders that data opaque to an external caller; in cases where this is an activity, it would
mean that to store a workflow instance on disk, each activity would need to be serialized in full before
the workflow could be stored on disk.

This was how Workflow 3.x worked, and it led to some workflows using a large amount of space on
disk. With the new model exposed by Workflow 4, only the data that has changed needs to be persisted,

948 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

as the context object passed to the activity can keep tabs on the actual values of those arguments. In
the SendEmail activity, data is only read from the context using the Get() method, so the state of the
workflow is maintained when this activity executes. For example, if you were to call the Set() method,
which changes the value of an argument, the workflow execution logic would have a flag set to indicate
that something was altered, enabling it to save just those changes to disk. This leads to much better
performance in Workflow 4 and potentially a much smaller footprint on disk.

In addition to maintaining the values of all arguments, the context object also includes a collection of
extensions. In the preceding code, you can retrieve the ISendEmail interface from the context object by
calling the GetExtension<> generic method. Here, you pass in the interface type you’re requesting, and
the lookup logic within this method will return the extension instance to the code so that you can then
call the SendEmail method on that extension.

The next step, as addressed in the following Try it Out, is to add the extension to the workflow,
and in order to do that you need to utilize another class from the workflow assemblies,
WorkflowApplication.

TRY IT OUT Using the WorkflowApplication Class

1. Add a third project to the solution. This should be a Workflow Console Application project. Once
added, set this as the startup project.

2. Add references to both the SharedInterfaces assembly and the CustomActivities assembly.

3. Add an implementation of the ISendEmail interface as shown here (this won’t send an e-mail, but
it will at least output the data to the console):

public class ConsoleSendEmail : ISendEmail
{

public void SendEmail(string sender, string recipient, string subject,
string body)
{

Console.WriteLine("Email to: {0}", recipient);
Console.WriteLine(" from: {0}", sender);
Console.WriteLine(" subject: {0}", subject);
Console.WriteLine(" body: {0}", body);

}
}

4. Add a SendEmail activity to the workflow and set all of the properties. The F4 key will display the
property grid for the selected activity.

5. Modify the Program.cs file and use the WorkflowApplication class to execute the workflow. This
class enables you to add extensions; the WorkflowInvoker does not.

class Program
{

static void Main(string[] args)
{

WorkflowApplication app = new WorkflowApplication(new Workflow1());
app.Extensions.Add(new ConsoleSendEmail());
ManualResetEvent finished = new ManualResetEvent(false);

Custom Activities ❘ 949

app.Completed = (completedArgs) => { finished.Set(); };
app.Run();
finished.WaitOne();

}
}

Here, you create the WorkflowApplication instance and then add the ConsoleSendEmail extension to
it. Then a ManualResetEvent is created and you attach to the Completed event that is raised when the
workflow completes. The workflow is then executed by calling the Run method, and you wait for it to
complete by waiting on the event. If you build and run the program, you should see some output on the
console matching the value of the properties you set on the SendEmail activity.

How It Works

When a workflow application executes, the extensions added to the application are stored in a collection
within the WorkflowApplication object. That object schedules execution of each activity, and when an
activity is executed, a context object is created and passed into the Execute method.

The type of context object varies according to which base class you have used for your activity. Because
the SendEmail activity derives from NativeActivity, it is able to call the GetExtension method in order to
retrieve any extensions added to the workflow application.

If you were to derive from CodeActivity, the context object passed into its Execute method would not
include access to any extensions — indeed, a code activity has very little access to any contextual informa-
tion, which is by design.

When you call Run on a workflow application, a thread pool thread is used to execute the work-
flow, thereby enabling your code to continue while the workflow executes in the background. The
preceding code synchronizes the main application with the completion of the workflow by using the
ManualResetEvent and setting this within the handler for the Completed event.

Having tested the preceding, you can confirm that the SendEmail activity is working, so now you could
create a real implementation of ISendEmail using the classes in the System.Net.Mail namespace. A
great resource for understanding this namespace can be found at www.systemnetmail.com.

Another alternative is to use Outlook in order to send an e-mail, which is just what this next example
will do.

TRY IT OUT Sending an E-mail Using Outlook

1. Add a third project to the solution. This should be a Workflow Console Application project. Once
added, set this as the startup project.

2. Add a reference to the Outlook object model. To do so, open the Add Reference dialog and
select the COM tab. Then scroll down until you find the Microsoft Outlook Object Library. The
machine used for this example has Microsoft Office 2007 installed, which has an internal version
number of 12.0, so that is what appears in the dialog shown in Figure 27-13.

950 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

FIGURE 27-13

3. Create a new class called OutlookSendEmail and type in the following code:

public class OutlookSendEmail : ISendEmail
{

public void SendEmail(string sender, string recipient, string subject,
string body)
{

Application app = new Application();
var mapi = app.GetNamespace("MAPI");
mapi.Logon(ShowDialog: false, NewSession: false);
var outbox = mapi.GetDefaultFolder(OlDefaultFolders.olFolderOutbox);

MailItem email = app.CreateItem(OlItemType.olMailItem);
email.To = recipient;
email.Subject = subject;
email.Body = body;
email.Send();

}
}

Note that in this instance you don’t specify the sender, as the e-mail will be sent using the profile
of the currently logged-in user.

4. Alter the Program.cs file to use this class as the e-mail extension:

app.Extensions.Add(new OutlookSendEmail());

You should remove the ConsoleSendEmail extension or simply comment it out.

Custom Activities ❘ 951

5. Run the program (and ensure that Outlook is running also). If you look into the Sent Items folder,
you should see your automatically generated e-mail. If so, congratulations, you’ve just sent your
first automated e-mail message!

How It Works

The OutlookSendEmail class uses the Outlook object model to create a new e-mail using the MailItem class.
In order to send an e-mail with Outlook, you need to construct an instance of the Application object and
then obtain a reference to the MAPI namespace.

If you don’t already have Outlook running, then you need to specify your username and password in the
call to Login. If it’s already running, then you can omit these parameters, and in this case it will use the
profile of the currently logged on user.

Once the MailItem has been created you can then specify the recipient by setting the To property. To send
to more than one recipient, you can add a semicolon between e-mail addresses. You then need to specify
the Body and Subject of the e-mail, and finally call Send(). If you wish to send a formatted e-mail, you can
alternatively use the HTMLBody property.

If you don’t see an e-mail in your outbox, or if you received an exception from the code, then you
need to be able to track down this exception. In order to do this, you can add some extra code to the
Program.cs file, as shown in the next Try it Out.

TRY IT OUT Processing Workflow Errors

In this example, you’ll see how to trap and process errors in a workflow.

1. Using the same project used for the preceding example, alter the Program.cs file so that it looks as
follows:

static void Main(string[] args)
{

WorkflowApplication app = new WorkflowApplication(new Workflow1());
app.OnUnhandledException = (e) =>

{
return UnhandledExceptionAction.Abort;

};
app.Extensions.Add(new OutlookSendEmail());
ManualResetEvent finished = new ManualResetEvent(false);
app.Completed = (completedArgs) => { finished.Set(); };
app.Aborted = (abortedEventArgs) =>

{
Console.WriteLine("Workflow Aborted.\r\n{0}",abortedEventArgs.Reason);
finished.Set();

};
app.Run();

952 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

finished.WaitOne();
}

The highlighted items have been added.

2. Run the application. If an exception occurs, it will be written to the console after a message stating
‘‘Workflow Aborted.’’

How It Works

When an unhandled exception occurs in a workflow, the first thing called is the OnUnhandledException

delegate. Here, you can choose the action to take: Abort, Cancel, or Terminate. This delegate is passed
an instance of the exception so you can decide what action to take based on the type of exception thrown.

If you choose to Abort the workflow, the Aborted delegate will subsequently be called. The default is to
Terminate the workflow.

Activity Validation
Many activities cannot function without their arguments being defined, and at present you have no
way to mark that a given argument is mandatory. You may have noticed an error message showing
up within the workflow designer when using some of the standard activities, as these have manda-
tory arguments.

FIGURE 27-14

In order to mark a property as required, you can use the [RequiredArgument]
attribute when you define the argument. When you add this to an argument,
you’ll see a red exclamation mark glyph to the right of the activity, as shown
in Figure 27-14.

This indicates that one or more properties have errors, and if you hover your cursor over the glyph, a
ToolTip will be displayed that describes the error. In the next Try It Out, you’ll update the SendMail

activity and mark all arguments as mandatory except for Sender.

TRY IT OUT Marking Arguments As Mandatory

1. Open the SendEmail.cs file and make the following changes:

public class SendEmail : NativeActivity
{

public InArgument<string> Sender { get; set; }
[RequiredArgument]
public InArgument<string> Recipient { get; set; }
[RequiredArgument]
public InArgument<string> Subject { get; set; }
[RequiredArgument]
public InArgument<string> Body { get; set; }
protected override void Execute(NativeActivityContext context)
{

context.GetExtension<ISendEmail>().SendEmail(Sender.Get(context),
Recipient.

Custom Activities ❘ 953

Get(context), Subject.Get(context), Body.Get(context));
}

}

2. Compile the application.

3. Open the Workflow1.xaml file and display the properties of the SendEmail activity. Alter one of
the properties that were attributed with [RequiredArgument] and tab off the text box. You should
see the error glyph and be able to hover over it to view the description.

4. Type a value into the required argument and tab off it again. The error message should be hidden.

How It Works

The workflow was designed to inspect activities and look for the RequiredArgument attribute. If any prop-
erties are found with this attribute that do not have a value defined then the designer class will adorn the
activity with an error glyph.

You’re nearly done with your custom activity. The last task is to create a custom designer that is used
to provide a design-time rendering of the activity.

Activity Designers
When an activity is dragged onto the design surface, the visual representation is provided by a designer.
Typically, this would have been a Windows Forms class, but with Visual Studio 2010 you can now use
XAML to define designers for activities.

XAML is discussed further in Chapter 22, so it isn’t all covered again here. Instead, this section con-
centrates on the important parts as far as custom activities are concerned.

The designer class for an activity is typically created in a separate assembly — it is only needed at design
time and not when the activity is executing. Visual Studio 2010 includes an Activity Designer Library
project type that provides enough functionality to get you started, and that’s what we’ll use in the
following example.

In addition to providing a visual representation of an activity, the designer can also be used to provide
data input fields within itself. Without a designer, all properties of an activity have to be set within
the property grid; however, with a custom designer you can opt to include some properties within the
design surface itself. This can provide a great design-time experience for the users of your activity.

In the following Try it Out, you’ll update the SendEmail activity again to add a custom designer.

TRY IT OUT Adding an Activity Designer

1. Open the earlier solution and then add a new Activity Designer Library project. Call it CustomAc-
tivities.Design.

2. This will create a blank designer for you called ActivityDesigner1. You can rename this designer
or add a new designer called SendEmailDesigner. Either way, you should end up with a designer
with a name similar to that of the activity it is used with.

954 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

3. The default XAML created provides an empty design surface to which you need to add some
text fields and labels. Add the following XAML to the designer XAML file — this defines a set
of columns and rows into which you’ll place the design elements:

<sap:ActivityDesigner x:Class="CustomActivities.Design.SendEmailDesigner"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:sap="clr-namespace:System.Activities.Presentation;
assembly=System.Activities.Presentation"
xmlns:sapv="clr-namespace:System.Activities.Presentation.View;
assembly=System.Activities.Presentation">
<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>
</Grid>

</sap:ActivityDesigner>

4. Add the elements that will be used onscreen to accept user input:
</Grid.RowDefinitions>
<TextBlock Text="Recipient"/>
<TextBox Text="{Binding ModelItem.Recipient}" Grid.Column="1"/>
<TextBlock Text="Subject" Grid.Row="1"/>
<TextBox Text="{Binding ModelItem.Subject}" Grid.Row="1" Grid.Column="1"/>
<TextBlock Text="Body" Grid.Row="2"/>
<TextBox Text="{Binding ModelItem.Body}" Grid.Row="2" Grid.Column="1"/>

</Grid>

These elements define a set of labels and text boxes that are data-bound to the underlying
activity — the ModelItem prefix is a synonym for the actual activity.

5. You need to associate the designer with the activity. The simplest way is by using the Designer

attribute. At the top of the SendEmail activity, add the following code:
using System.ComponentModel;
namespace CustomActivities
{

[Designer("CustomActivities.Design.SendEmailDesigner,
CustomActivities.Design")]
public class SendEmail : NativeActivity
{

The Designer attribute is read by Visual Studio and it is used to determine which designer is asso-
ciated with the activity, and which assembly contains the designer. The string used above is the
TypeName of the designer, and is typically entered as a string so as to avoid having to have an
assembly reference between the design assembly and the activity assembly.

6. Add a reference to the PresentationCore assembly from your main workflow assembly.
If you then compile the solution and open the workflow that contains the

Exercises ❘ 955

FIGURE 27-15

SendEmail activity, you should see something similar to that in
Figure 27-15.

7. This design is functional but not very attractive, and it could
benefit from some spacing around the fields. Change the XAML
as shown in the following example and you’ll get a better design result.
You can, of course, add color and graphics to liven up the design
experience further.

<Grid>
<Grid.Resources>

<Style TargetType="TextBlock">
<Setter Property="Margin" Value="0,2,4,2"/>
<Setter Property="VerticalAlignment" Value="Center"/>

</Style>
<Style TargetType="TextBox">

<Setter Property="Margin" Value="0,2,0,2"/>
</Style>

</Grid.Resources>
<Grid.ColumnDefinitions>

These resources define styles that are associated with the text blocks and text boxes. Here, these
styles simply apply a uniform margin and alignment so that the activity looks better onscreen.

How It Works

Visual Studio uses the Designer attribute to find a class associated with an activity. If it finds it, then that
class is used when showing the activity onscreen.

It is common to use data binding in XAML to link a visual class with a background class — in this instance,
the visual class is the designer and the background class is the activity.

SUMMARY

In this chapter, you have learned about Windows Workflow Foundation 4. In particular you learned
about the following:

➤ What a workflow is and how to execute one

➤ How to use some of the built-in activities

➤ How to create your own activities

EXERCISES

1. How would you create a composite activity?

2. Can you expose a workflow over WCF? If so, how?

3. How would you ensure that a workflow could be restarted from where it left off?

Answers to Exercises can be found in Appendix A.

956 ❘ CHAPTER 27 WINDOWS WORKFLOW FOUNDATION

� WHAT YOU HAVE LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Workflow fundamentals Workflows consist of Activities, and an Activity is similar to a statement
in a traditional programming language. You can write your own activities
and normally a workflow will consist of some inbuilt activities and some
custom activities.

If activity This can be used in a workflow to evaluate an expression and choose
one of two paths. The expression can be simple or complex, and can
reference variables and arguments as necessary.

While activity This activity allows you to define a loop inside a workflow. The condition
for the loop is an expression and the activity consists of a single child
activity, which will typically be a sequence so that you can add multiple
other activities into each iteration of the loop.

Sequence activity The Sequence activity allows you to execute a number of child activities
in strict top down order.

Arguments and variables You can pass arguments into and out of a workflow, and within a workflow
you can define variables which have global or local scope. Arguments
are defined by a data type, such as String or Int32 and also a direction.
Variables obey the same rules as they do in a traditional programming
language.

Workflow extensions Extensions can be used to change behavior at runtime without having to
change the workflow. An extension is typically written as an interface and
an implementation of that interface.

Activity validation You can define some properties of an Activity as mandatory. This allows
the end user to see which properties must have values defined and an
error glyph is shown on the user interface for any that are not complete.

Activity designers A designer can be used to augment the user interface of an activity, to
make it easier to use by an end user. The designer is XAML and you
can create any markup you wish to show the user interface for a custom
activity.

A
Exercise Solutions

There are no exercises in chapters 1 and 2.

CHAPTER 3 SOLUTIONS

Exercise 1

super.smashing.great

Exercise 2
b), as it starts with a number, and e), as it contains a full stop.

Exercise 3
No, there is no theoretical limit to the size of a string that may be contained in a string variable.

Exercise 4
The * and / operators have the highest precedence here, followed by +, <<, and finally +=. The prece-
dence in the exercise can be illustrated using parentheses as follows:

resultVar += (((var1 * var2) + var3) << (var4 / var5));

958 ❘ APPENDIX A EXERCISE SOLUTIONS

Exercise 5

static void Main(string[] args)
{

int firstNumber, secondNumber, thirdNumber, fourthNumber;
Console.WriteLine("Give me a number:");
firstNumber = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Give me another number:");
secondNumber = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Give me another number:");
thirdNumber = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Give me another number:");
fourthNumber = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("The product of {0}, {1}, {2}, and {3} is {4}.",

firstNumber, secondNumber, thirdNumber, fourthNumber,
firstNumber * secondNumber * thirdNumber * fourthNumber);

}

Note that Convert.ToInt32() is used here, which isn’t covered in the chapter.

CHAPTER 4 SOLUTIONS

Exercise 1

(var1 > 10) ˆ (var2 > 10)

Exercise 2
static void Main(string[] args)
{

bool numbersOK = false;
double var1, var2;
var1 = 0;
var2 = 0;
while (!numbersOK)
{

Console.WriteLine("Give me a number:");
var1 = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("Give me another number:");
var2 = Convert.ToDouble(Console.ReadLine());
if ((var1 > 10) ˆ (var2 > 10))
{

numbersOK = true;
}
else
{

if ((var1 <= 10) && (var2 <= 10))
{

numbersOK = true;
}
else

Chapter 4 Solutions ❘ 959

{
Console.WriteLine("Only one number may be greater than 10.");

}
}

}
Console.WriteLine("You entered {0} and {1}.", var1, var2);

}

Note that this can be performed better using different logic, for example:

static void Main(string[] args)
{

bool numbersOK = false;
double var1, var2;
var1 = 0;
var2 = 0;
while (!numbersOK)
{

Console.WriteLine("Give me a number:");
var1 = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("Give me another number:");
var2 = Convert.ToDouble(Console.ReadLine());
if ((var1 > 10) && (var2 > 10))
{

Console.WriteLine("Only one number may be greater than 10.");
}
else
{

numbersOK = true;
}

}
Console.WriteLine("You entered {0} and {1}.", var1, var2);

}

Exercise 3
The code should read:

int i;
for (i = 1; i <= 10; i++)
{

if ((i % 2) == 0)
continue;

Console.WriteLine(i);
}

Using the = assignment operator instead of the Boolean == operator is a very common mistake.

Exercise 4
static void Main(string[] args)
{

double realCoord, imagCoord;
double realMax = 1.77;
double realMin = -0.6;

960 ❘ APPENDIX A EXERCISE SOLUTIONS

double imagMax = -1.2;
double imagMin = 1.2;
double realStep;
double imagStep;
double realTemp, imagTemp, realTemp2, arg;
int iterations;
while (true)
{

realStep = (realMax - realMin) / 79;
imagStep = (imagMax - imagMin) / 48;
for (imagCoord = imagMin; imagCoord >= imagMax;

imagCoord += imagStep)
{

for (realCoord = realMin; realCoord <= realMax;
realCoord += realStep)

{
iterations = 0;
realTemp = realCoord;
imagTemp = imagCoord;
arg = (realCoord * realCoord) + (imagCoord * imagCoord);
while ((arg < 4) && (iterations < 40))
{

realTemp2 = (realTemp * realTemp) - (imagTemp * imagTemp)
- realCoord;

imagTemp = (2 * realTemp * imagTemp) - imagCoord;
realTemp = realTemp2;
arg = (realTemp * realTemp) + (imagTemp * imagTemp);
iterations += 1;

}
switch (iterations % 4)
{

case 0:
Console.Write(".");
break;

case 1:
Console.Write("o");
break;

case 2:
Console.Write("O");
break;

case 3:
Console.Write("@");
break;

}
}
Console.Write("\n");

}
Console.WriteLine("Current limits:");
Console.WriteLine("realCoord: from {0} to {1}", realMin, realMax);
Console.WriteLine("imagCoord: from {0} to {1}", imagMin, imagMax);

Console.WriteLine("Enter new limits:");
Console.WriteLine("realCoord: from:");
realMin = Convert.ToDouble(Console.ReadLine());

Chapter 5 Solutions ❘ 961

Console.WriteLine("realCoord: to:");
realMax = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("imagCoord: from:");
imagMin = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("imagCoord: to:");
imagMax = Convert.ToDouble(Console.ReadLine());

}
}

CHAPTER 5 SOLUTIONS

Exercise 1
Conversions a) and c) can’t be performed implicitly.

Exercise 2

enum color : short
{

Red, Orange, Yellow, Green, Blue, Indigo, Violet, Black, White
}

Yes, as the byte type can hold numbers between 0 and 255, so byte-based enumerations can hold 256
entries with individual values, or more if duplicate values are used for entries.

Exercise 3
static void Main(string[] args)
{

imagNum coord, temp;
double realTemp2, arg;
int iterations;
for (coord.imag = 1.2; coord.imag >= -1.2; coord.imag -= 0.05)
{

for (coord.real = -0.6; coord.real <= 1.77; coord.real += 0.03)
{

iterations = 0;
temp.real = coord.real;
temp.imag = coord.imag;
arg = (coord.real * coord.real) + (coord.imag * coord.imag);
while ((arg < 4) && (iterations < 40))
{

realTemp2 = (temp.real * temp.real) - (temp.imag * temp.imag)
- coord.real;

temp.imag = (2 * temp.real * temp.imag) - coord.imag;
temp.real = realTemp2;
arg = (temp.real * temp.real) + (temp.imag * temp.imag);

962 ❘ APPENDIX A EXERCISE SOLUTIONS

iterations += 1;
}
switch (iterations % 4)
{

case 0:
Console.Write(".");
break;

case 1:
Console.Write("o");
break;

case 2:
Console.Write("O");
break;

case 3:
Console.Write("@");
break;

}
}
Console.Write("\n");

}
}

Exercise 4
No, for the following reasons:

➤ End of statement semicolons are missing.

➤ 2nd line attempts to access a non-existent 6th element of blab.

➤ 2nd line attempts to assign a string that isn’t enclosed in double quotes.

Exercise 5

static void Main(string[] args)
{

Console.WriteLine("Enter a string:");
string myString = Console.ReadLine();
string reversedString = "";
for (int index = myString.Length - 1; index >= 0; index--)
{

reversedString += myString[index];
}
Console.WriteLine("Reversed: {0}", reversedString);

}

Exercise 6
static void Main(string[] args)
{

Console.WriteLine("Enter a string:");

Chapter 6 Solutions ❘ 963

string myString = Console.ReadLine();
myString = myString.Replace("no", "yes");
Console.WriteLine("Replaced \"no\" with \"yes\": {0}", myString);

}

Exercise 7

static void Main(string[] args)
{

Console.WriteLine("Enter a string:");
string myString = Console.ReadLine();
myString = "\"" + myString.Replace(" ", "\" \"") + "\"";
Console.WriteLine("Added double quotes around words: {0}", myString);

}

Or using String.Split():

static void Main(string[] args)
{

Console.WriteLine("Enter a string:");
string myString = Console.ReadLine();
string[] myWords = myString.Split(’ ‘);
Console.WriteLine("Adding double quotes around words:");
foreach (string myWord in myWords)
{

Console.Write("\"{0}\" ", myWord);
}

}

CHAPTER 6 SOLUTIONS

Exercise 1
The first function has a return type of bool, but doesn’t return a bool value.

The second function has a params argument, but this argument isn’t at the end of the argument list.

Exercise 2

static void Main(string[] args)
{

if (args.Length != 2)
{

Console.WriteLine("Two arguments required.");
return;

}
string param1 = args[0];
int param2 = Convert.ToInt32(args[1]);
Console.WriteLine("String parameter: {0}", param1);
Console.WriteLine("Integer parameter: {0}", param2);

}

964 ❘ APPENDIX A EXERCISE SOLUTIONS

Note that this answer contains code that checks that two arguments have been supplied, which wasn’t
part of the question but seems logical in this situation.

Exercise 3

class Program
{

delegate string ReadLineDelegate();

static void Main(string[] args)
{

ReadLineDelegate readLine = new ReadLineDelegate(Console.ReadLine);
Console.WriteLine("Type a string:");
string userInput = readLine();
Console.WriteLine("You typed: {0}", userInput);

}
}

Exercise 4

struct order
{

public string itemName;
public int unitCount;
public double unitCost;

public double TotalCost()
{

return unitCount * unitCost;
}

}

Exercise 5

struct order
{

public string itemName;
public int unitCount;
public double unitCost;

public double TotalCost()
{

return unitCount * unitCost;
}

public string Info()
{

return "Order information: " + unitCount.ToString() + " " + itemName +
" items at $" + unitCost.ToString() + " each, total cost $" +
TotalCost().ToString();

}
}

Chapter 7 Solutions ❘ 965

CHAPTER 7 SOLUTIONS

Exercise 1
This statement is only true for information that you want to make available in all builds. More often,
you will want debugging information to be written out only when debug builds are used. In this situa-
tion, the Debug.WriteLine() version is preferable.

Using the Debug.WriteLine() version also has the advantage that it will not be compiled into release
builds, thus reducing the size of the resultant code.

Exercise 2

static void Main(string[] args)
{

for (int i = 1; i < 10000; i++)
{

Console.WriteLine("Loop cycle {0}", i);
if (i == 5000)
{

Console.WriteLine(args[999]);
}

}
}

In VS, a breakpoint could be placed on the following line:

Console.WriteLine("Loop cycle {0}", i);

The properties of the breakpoint should be modified such that the hit count criterion is ‘‘break when
hit count is equal to 5000’’.

In VCE, a breakpoint could be placed on the line that causes the error, since you cannot modify the
properties of breakpoints in VCE in the above way.

Exercise 3
False. finally blocks always execute. This may occur after a catch block has been processed.

Exercise 4
static void Main(string[] args)
{

Orientation myDirection;
for (byte myByte = 2; myByte < 10; myByte++)
{

try
{

myDirection = checked((Orientation)myByte);
if ((myDirection < Orientation.North) ||

(myDirection > Orientation.West))

966 ❘ APPENDIX A EXERCISE SOLUTIONS

{
throw new ArgumentOutOfRangeException("myByte", myByte,

"Value must be between 1 and 4");
}

}
catch (ArgumentOutOfRangeException e)
{

// If this section is reached then myByte < 1 or myByte > 4.
Console.WriteLine(e.Message);
Console.WriteLine("Assigning default value, Orientation.North.");
myDirection = Orientation.North;

}

Console.WriteLine("myDirection = {0}", myDirection);
}

}

Note that this is a bit of a trick question. Since the enumeration is based on the byte type any byte

value may be assigned to it, even if that value isn’t assigned a name in the enumeration. In the above
code we generate our own exception if necessary.

CHAPTER 8 SOLUTIONS

Exercise 1
Public, private, and protected are real levels of accessibilty.

Exercise 2
False. You should never call the destructor of an object manually; the .NET runtime environment will
do this for you during garbage collection.

Exercise 3
No, you can call static methods without any class instances.

Exercise 4

+Drink()
+AddMilk()

+AddSugar()

+Milk

+Sugar

HotDrink

+Refill()
+Wash()

+Color
+Volume

«Interface»

ICup

+BeanType

CupOfCoffee

+LeafType

CupOfTeaICup ICup

FIGURE A-1

Chapter 9 Solutions ❘ 967

Exercise 5

static void ManipulateDrink(HotDrink drink)
{

drink.AddMilk();
drink.Drink();
ICup cupInterface = (ICup)drink;
cupInterface.Wash();

}

Note the explicit cast to ICup. This is necessary as HotDrink doesn’t support the ICup interface, but we
know that the two cup objects that might be passed to this function do. However, this is dangerous, as
other classes deriving from HotDrink are possible, which might not support ICup, but could be passed
to this function. To correct this we should check to see if the interface is supported:

static void ManipulateDrink(HotDrink drink)
{

drink.AddMilk();
drink.Drink();
if (drink is ICup)
{

ICup cupInterface = drink as ICup;
cupInterface.Wash();

}
}

The is and as operators used here are covered in Chapter 11.

CHAPTER 9 SOLUTIONS

Exercise 1
myDerivedClass derives from MyClass, but MyClass is sealed and can’t be derived from.

Exercise 2
By defining it as a static class or by defining all of its constructors as private.

Exercise 3
Non-creatable classes can be useful through the static members they possess. In fact, you can even get
instances of these classes through these members, as shown here:

class CreateMe
{

private CreateMe()
{
}

static public CreateMe GetCreateMe()
{

return new CreateMe();
}

}

968 ❘ APPENDIX A EXERCISE SOLUTIONS

Here, the public constructor has access to the private constructor, as it is part of the same class
definition.

Exercise 4
For simplicity, the following class definitions are shown as part of a single code file, rather than listing
a separate code file for each:

namespace Vehicles
{

public abstract class Vehicle
{
}
public abstract class Car : Vehicle
{
}
public abstract class Train : Vehicle
{
}
public interface IPassengerCarrier
{
}
public interface IHeavyLoadCarrier
{
}
public class SUV : Car, IPassengerCarrier
{
}
public class Pickup : Car, IPassengerCarrier, IHeavyLoadCarrier
{
}
public class Compact : Car, IPassengerCarrier
{
}
public class PassengerTrain : Train, IPassengerCarrier
{
}
public class FreightTrain : Train, IHeavyLoadCarrier
{
}
public class T424DoubleBogey : Train, IHeavyLoadCarrier
{
}

}

Exercise 5
using System;
using Vehicles;

namespace Traffic
{

class Program
{

Chapter 10 Solutions ❘ 969

static void Main(string[] args)
{

AddPassenger(new Compact());
AddPassenger(new SUV());
AddPassenger(new Pickup());
AddPassenger(new PassengerTrain());

}

static void AddPassenger(IPassengerCarrier Vehicle)
{

Console.WriteLine(Vehicle.ToString());
}

}
}

CHAPTER 10 SOLUTIONS

Exercise 1

class MyClass
{

protected string myString;

public string ContainedString
{

set
{

myString = value;
}

}

public virtual string GetString()
{

return myString;
}

}

Exercise 2

class MyDerivedClass : MyClass
{

public override string GetString()
{

return base.GetString() + " (output from derived class)";
}

}

Exercise 3
If a method has a return type, then it is possible to use it as part of an expression:

x = Manipulate(y, z);

970 ❘ APPENDIX A EXERCISE SOLUTIONS

If no implementation is provided for a partial method, then it will be removed by the compiler along
with all places where it is used. In the preceding code this would leave the result of x unclear because
no replacement for the Manipulate() method is available. It may be the case that without this method
you would simply want to ignore the entire line of code, but the compiler is not able to decide whether
this is what you’d want.

Methods with no return types are not called as part of expressions, so it is safe for the compiler to
remove all references to the partial method calls.

Similarly, out parameters are forbidden since variables used as an out parameter must be undefined
before the method call and will be defined after the method call. Removing the method call would
break this behavior.

Exercise 4

class MyCopyableClass
{

protected int myInt;

public int ContainedInt
{

get
{

return myInt;
}
set
{

myInt = value;
}

}

public MyCopyableClass GetCopy()
{

return (MyCopyableClass)MemberwiseClone();
}

}

The client code:
class Program
{

static void Main(string[] args)
{

MyCopyableClass obj1 = new MyCopyableClass();
obj1.ContainedInt = 5;
MyCopyableClass obj2 = obj1.GetCopy();
obj1.ContainedInt = 9;
Console.WriteLine(obj2.ContainedInt);

}
}

This code displays 5, showing that the copied object has its own version of the myInt field.

Chapter 10 Solutions ❘ 971

Exercise 5

using System;
using Ch10CardLib;

namespace Exercise_Answers
{

class Class1
{

static void Main(string[] args)
{

while(true)
{

Deck playDeck = new Deck();
playDeck.Shuffle();
bool isFlush = false;
int flushHandIndex = 0;
for (int hand = 0; hand < 10; hand++)
{

isFlush = true;
Suit flushSuit = playDeck.GetCard(hand * 5).suit;
for (int card = 1; card < 5; card++)
{

if (playDeck.GetCard(hand * 5 + card).suit != flushSuit)
{

isFlush = false;
}

}
if (isFlush)
{

flushHandIndex = hand * 5;
break;

}
}
if (isFlush)
{

Console.WriteLine("Flush!");
for (int card = 0; card < 5; card++)
{

Console.WriteLine(playDeck.GetCard(flushHandIndex + card));
}

}
else
{

Console.WriteLine("No flush.");
}
Console.ReadLine();

}
}

}
}

972 ❘ APPENDIX A EXERCISE SOLUTIONS

This code is looped as flushes are uncommon. You may need to press Return several times before a
flush is found in a shuffled deck. To verify that everything is working as it should, try commenting out
the line that shuffles the deck.

CHAPTER 11 SOLUTIONS

Exercise 1

using System;
using System.Collections;

namespace Exercise_Answers
{

public class People : DictionaryBase
{

public void Add(Person newPerson)
{

Dictionary.Add(newPerson.Name, newPerson);
}

public void Remove(string name)
{

Dictionary.Remove(name);
}

public Person this[string name]
{

get
{

return (Person)Dictionary[name];
}
set
{

Dictionary[name] = value;
}

}
}

}

Exercise 2
public class Person
{

private string name;
private int age;

public string Name
{

get
{

return name;
}

Chapter 11 Solutions ❘ 973

set
{

name = value;
}

}

public int Age
{

get
{

return age;
}
set
{

age = value;
}

}

public static bool operator >(Person p1, Person p2)
{

return p1.Age > p2.Age;
}

public static bool operator <(Person p1, Person p2)
{

return p1.Age < p2.Age;
}

public static bool operator >=(Person p1, Person p2)
{

return !(p1 < p2);
}

public static bool operator <=(Person p1, Person p2)
{

return !(p1 > p2);
}

}

Exercise 3
public Person[] GetOldest()
{

Person oldestPerson = null;
People oldestPeople = new People();
Person currentPerson;
foreach (DictionaryEntry p in Dictionary)
{

currentPerson = p.Value as Person;
if (oldestPerson == null)
{

oldestPerson = currentPerson;
oldestPeople.Add(oldestPerson);

}
else

974 ❘ APPENDIX A EXERCISE SOLUTIONS

{
if (currentPerson > oldestPerson)
{

oldestPeople.Clear();
oldestPeople.Add(currentPerson);
oldestPerson = currentPerson;

}
else
{
if (currentPerson >= oldestPerson)

{
oldestPeople.Add(currentPerson);

}
}

}
}
Person[] oldestPeopleArray = new Person[oldestPeople.Count];
int copyIndex = 0;
foreach (DictionaryEntry p in oldestPeople)
{

oldestPeopleArray[copyIndex] = p.Value as Person;
copyIndex++;

}
return oldestPeopleArray;

}

This function is made more complex by the fact that no == operator has been defined for Person, but the
logic can still be constructed without this. In addition, returning a People instance would be simpler,
as it is easier to manipulate this class during processing. As a compromise, a People instance is used
throughout the function, and then converted into an array of Person instances at the end.

Exercise 4

public class People : DictionaryBase, ICloneable
{

public object Clone()
{

People clonedPeople = new People();
Person currentPerson, newPerson;
foreach (DictionaryEntry p in Dictionary)
{

currentPerson = p.Value as Person;
newPerson = new Person();
newPerson.Name = currentPerson.Name;
newPerson.Age = currentPerson.Age;
clonedPeople.Add(newPerson);

}
return clonedPeople;

}

...
}

This could be simplified by implementing ICloneable on the Person class.

Chapter 12 Solutions ❘ 975

Exercise 5

public IEnumerable Ages
{

get
{

foreach (object person in Dictionary.Values)
yield return (person as Person).Age;

}
}

CHAPTER 12 SOLUTIONS

Exercise 1
a, b, and e: yes

c and d: no, although they can use generic type parameters supplied by the class containing them.

f: no

Exercise 2

public static double? operator *(Vector op1, Vector op2)
{

try
{

double angleDiff = (double)(op2.ThetaRadians.Value –
op1.ThetaRadians.Value);

return op1.R.Value * op2.R.Value * Math.Cos(angleDiff);
}
catch
{

return null;
}

}

Exercise 3
You can’t instantiate T without enforcing the new()constraint on it, which ensures that a public default
constructor is available:

public class Instantiator<T>
where T : new()

{
public T instance;

public Instantiator()
{

instance = new T();
}

}

976 ❘ APPENDIX A EXERCISE SOLUTIONS

Exercise 4
The same generic type parameter, T, is used on both the generic class and the generic method. You need
to rename one or both. For example:

public class StringGetter<U>
{

public string GetString<T>(T item)
{

return item.ToString();
}

}

Exercise 5
One way of doing this is as follows:

public class ShortCollection<T> : IList<T>
{

protected Collection<T> innerCollection;
protected int maxSize = 10;

public ShortCollection() : this(10)
{
}

public ShortCollection(int size)
{

maxSize = size;
innerCollection = new Collection<T>();

}

public ShortCollection(List<T> list) : this(10, list)
{
}

public ShortCollection(int size, List<T> list)
{

maxSize = size;
if (list.Count <= maxSize)
{

innerCollection = new Collection<T>(list);
}
else
{

ThrowTooManyItemsException();
}

}

protected void ThrowTooManyItemsException()
{

throw new IndexOutOfRangeException(
"Unable to add any more items, maximum size is " + maxSize.ToString()
+ " items.");

}

Chapter 12 Solutions ❘ 977

#region IList<T> Members

public int IndexOf(T item)
{

return (innerCollection as IList<T>).IndexOf(item);
}

public void Insert(int index, T item)
{

if (Count < maxSize)
{

(innerCollection as IList<T>).Insert(index, item);
}
else
{

ThrowTooManyItemsException();
}

}

public void RemoveAt(int index)
{

(innerCollection as IList<T>).RemoveAt(index);
}

public T this[int index]
{

get
{

return (innerCollection as IList<T>)[index];
}

set
{

(innerCollection as IList<T>)[index] = value;
}

}

#endregion

#region ICollection<T> Members

public void Add(T item)
{

if (Count < maxSize)
{

(innerCollection as ICollection<T>).Add(item);
}
else
{

ThrowTooManyItemsException();
}

}

978 ❘ APPENDIX A EXERCISE SOLUTIONS

public void Clear()
{

(innerCollection as ICollection<T>).Clear();
}

public bool Contains(T item)
{

return (innerCollection as ICollection<T>).Contains(item);
}

public void CopyTo(T[] array, int arrayIndex)
{

(innerCollection as ICollection<T>).CopyTo(array, arrayIndex);
}

public int Count
{

get
{

return (innerCollection as ICollection<T>).Count;
}

}

public bool IsReadOnly
{

get
{

return (innerCollection as ICollection<T>).IsReadOnly;
}

}

public bool Remove(T item)
{

return (innerCollection as ICollection<T>).Remove(item);
}

#endregion

#region IEnumerable<T> Members

public IEnumerator<T> GetEnumerator()
{

return (innerCollection as IEnumerable<T>).GetEnumerator();
}

#endregion
}

Exercise 6
No, it won’t. The type parameter T is defined as being covariant. However, covariant type parameters
can only be used as return values of methods, not as method arguments. If you try this out you will get
the following compiler error (assuming you use the namespace VarianceDemo):

Invalid variance: The type parameter ‘T’ must be contravariantly valid on
’VarianceDemo.IMethaneProducer<T>.BelchAt(T)’. ‘T’ is covariant.

Chapter 13 Solutions ❘ 979

CHAPTER 13 SOLUTIONS

Exercise 1
public void ProcessEvent(object source, EventArgs e)
{

if (e is MessageArrivedEventArgs)
{

Console.WriteLine("Connection.MessageArrived event received.");
Console.WriteLine("Message: {0}",

(e as MessageArrivedEventArgs).Message);
}
if (e is ElapsedEventArgs)
{

Console.WriteLine("Timer.Elapsed event received.");
Console.WriteLine("SignalTime: {0}",

(e as ElapsedEventArgs).SignalTime);
}

}

public void ProcessElapsedEvent(object source, ElapsedEventArgs e)
{

ProcessEvent(source, e);
}

Note that you need this extra ProcessElapsedEvent() method, as the ElapsedEventHandler dele-
gate can’t be cast to an EventHandler delegate. You don’t need to do this for the MessageHandler

delegate, as it has a syntax identical to EventHandler:

public delegate void MessageHandler(object source, EventArgs e);

Exercise 2
Modify Player.cs as follows (one modified method, two new ones — comments in the code explain
the changes):

public bool HasWon()
{

// get temporary copy of hand, which may get modified.
Cards tempHand = (Cards)hand.Clone();

// find three and four of a kind sets
bool fourOfAKind = false;
bool threeOfAKind = false;
int fourRank = -1;
int threeRank = -1;

int cardsOfRank;
for (int matchRank = 0; matchRank < 13; matchRank++)
{

cardsOfRank = 0;
foreach (Card c in tempHand)
{

if (c.rank == (Rank)matchRank)
{

980 ❘ APPENDIX A EXERCISE SOLUTIONS

cardsOfRank++;
}

}
if (cardsOfRank == 4)
{

// mark set of four
fourRank = matchRank;
fourOfAKind = true;

}
if (cardsOfRank == 3)
{

// two threes means no win possible
// (threeOfAKind will only be true if this code
// has already executed)
if (threeOfAKind == true)
{

return false;
}
// mark set of three
threeRank = matchRank;
threeOfAKind = true;

}
}

// check simple win condition
if (threeOfAKind && fourOfAKind)
{

return true;
}

// simplify hand if three or four of a kind is found, by removing used cards
if (fourOfAKind || threeOfAKind)
{

for (int cardIndex = tempHand.Count - 1; cardIndex >= 0; cardIndex--)
{

if ((tempHand[cardIndex].rank == (Rank)fourRank)
|| (tempHand[cardIndex].rank == (Rank)threeRank))

{
tempHand.RemoveAt(cardIndex);

}
}

}

// at this point the method may have returned, because:
// - a set of four and a set of three has been found, winning.
// - two sets of three have been found, losing.
// if the method hasn’t returned then either:
// - no sets have been found, and tempHand contains 7 cards.
// - a set of three has been found, and tempHand contains 4 cards.
// - a set of four has been found, and tempHand contains 3 cards.

// find run of four sets, start by looking for cards of same suit in the same
// way as before
bool fourOfASuit = false;

Chapter 13 Solutions ❘ 981

bool threeOfASuit = false;
int fourSuit = -1;
int threeSuit = -1;

int cardsOfSuit;
for (int matchSuit = 0; matchSuit < 4; matchSuit++)
{

cardsOfSuit = 0;
foreach (Card c in tempHand)
{

if (c.suit == (Suit)matchSuit)
{

cardsOfSuit++;
}

}
if (cardsOfSuit == 7)
{

// if all cards are the same suit then two runs
// are possible, but not definite.
threeOfASuit = true;
threeSuit = matchSuit;
fourOfASuit = true;
fourSuit = matchSuit;

}
if (cardsOfSuit == 4)
{

// mark four card suit.
fourOfASuit = true;
fourSuit = matchSuit;

}
if (cardsOfSuit == 3)
{

// mark three card suit.
threeOfASuit = true;
threeSuit = matchSuit;

}
}

if (!(threeOfASuit || fourOfASuit))
{

// need at least one run possibility to continue.
return false;

}

if (tempHand.Count == 7)
{

if (!(threeOfASuit && fourOfASuit))
{

// need a three and a four card suit.
return false;

}

// create two temporary sets for checking.
Cards set1 = new Cards();

982 ❘ APPENDIX A EXERCISE SOLUTIONS

Cards set2 = new Cards();

// if all 7 cards are the same suit...
if (threeSuit == fourSuit)
{

// get min and max cards
int maxVal, minVal;
GetLimits(tempHand, out maxVal, out minVal);
for (int cardIndex = tempHand.Count - 1; cardIndex >= 0; cardIndex--)
{

if (((int)tempHand[cardIndex].rank < (minVal + 3))
|| ((int)tempHand[cardIndex].rank > (maxVal - 3)))

{
// remove all cards in a three card set that
// starts at minVal or ends at maxVal.
tempHand.RemoveAt(cardIndex);

}
}
if (tempHand.Count != 1)
{

// if more then one card is left then there aren’t two runs.
return false;

}
if ((tempHand[0].rank == (Rank)(minVal + 3))

|| (tempHand[0].rank == (Rank)(maxVal - 3)))
{

// if spare card can make one of the three card sets into a
// four card set then there are two sets.
return true;

}
else
{

// if spare card doesn’t fit then there are two sets of three
// cards but no set of four cards.
return false;

}
}

// if three card and four card suits are different...
foreach (Card card in tempHand)
{

// split cards into sets.
if (card.suit == (Suit)threeSuit)
{

set1.Add(card);
}
else
{

set2.Add(card);
}

}

// check if sets are sequential.
if (isSequential(set1) && isSequential(set2))

Chapter 13 Solutions ❘ 983

{
return true;

}
else
{

return false;
}

}

// if four cards remain (three of a kind found)
if (tempHand.Count == 4)
{

// if four cards remain then they must be the same suit.
if (!fourOfASuit)
{

return false;
}
// won if cards are sequential.
if (isSequential(tempHand))
{

return true;
}

}

// if three cards remain (four of a kind found)
if (tempHand.Count == 3)
{

// if three cards remain then they must be the same suit.
if (!threeOfASuit)
{

return false;
}
// won if cards are sequential.
if (isSequential(tempHand))
{

return true;
}

}

// return false if two valid sets don’t exist.
return false;

}

// utility method to get max and min ranks of cards
// (same suit assumed)
private void GetLimits(Cards cards, out int maxVal, out int minVal)
{

maxVal = 0;
minVal = 14;
foreach (Card card in cards)
{

if ((int)card.rank > maxVal)
{

maxVal = (int)card.rank;
}

984 ❘ APPENDIX A EXERCISE SOLUTIONS

if ((int)card.rank < minVal)
{

minVal = (int)card.rank;
}

}
}

// utility method to see if cards are in a run
// (same suit assumed)
private bool isSequential(Cards cards)
{

int maxVal, minVal;
GetLimits(cards, out maxVal, out minVal);
if ((maxVal - minVal) == (cards.Count - 1))
{

return true;
}
else
{

return false;
}

}

CHAPTER 14 SOLUTIONS

Exercise 1
In order to use an object initializer with a class, you must include a default, parameterless constructor.
You could either add one to this class or remove the nondefault constructor that is there already. Once
you have done this you could use the following code to instantiate and initialize this class in one step:

Giraffe myPetGiraffe = new Giraffe
{

NeckLength = "3.14",
Name = "Gerald"

};

Exercise 2
False. When you use the var keyword to declare a variable, the variable is still strongly typed; the
compiler determines the type of the variable.

Exercise 3
You can use the Equals() method that is implemented for you. Note that you cannot use the == opera-
tor to do this, as this compares variables to determine if they both refer to the same object.

Exercise 4
The extension method must be static:

public static string ToAcronym(this string inputString)

Chapter 15 Solutions ❘ 985

Exercise 5
You must include the extension method in a static class that is accessible from the namespace that
contains your client code. You could do this either by including the code in the same namespace or by
importing the namespace containing the class.

Exercise 6
One way to do this is as follows:

public static string ToAcronym(this string inputString)
{

return inputString.Trim().Split(’ ‘)
.Aggregate<string, string>("",

(a, b) => a + (b.Length > 0 ?
b.ToUpper()[0].ToString() : ""));

}

Here the tertiary operator is used to prevent multiple spaces from causing errors. Note also that the
version of Aggregate() with two generic type parameters is required, as a seed value is necessary.

CHAPTER 15 SOLUTIONS

Exercise 1
The file Program.cs in a Windows Forms project contains the Main() method of the application. By
default this method looks similar to this:

[STAThread]
static void Main()
{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Form1());

}

The line

Application.EnableVisualStyles();

controls the visual style of the windows forms.

Please note this line does nothing on Windows 2000.

Exercise 2
The TabControl includes an event called SelectedIndexChanged that can be used to execute code when
the user moves to another tab page.

1. In the Windows Form designer, select the TabControl and add two tabs to the control.

2. Name the tabs Tab Three and Tab Four.

3. With the TabControl selected, add the event SelectedIndexChanged and go to the
code window.

986 ❘ APPENDIX A EXERCISE SOLUTIONS

4. Enter the following code:

private void tabControl1_SelectedIndexChanged(object sender,
EventArgs e)
{

string message = "You changed the current tab to ‘" +
tabControl1.SelectedTab.Text + "’ from ‘" +
tabControl1.TabPages[mCurrentTabIndex].Text + "’";
mCurrentTabIndex = tabControl1.SelectedIndex;
MessageBox.Show(message);

}

5. Add the private field mCurrentTabIndex to the top of the class as such:

partial class Form1 : Form
{
private int mCurrentTabIndex = 0;

6. Run the application.

By default the first tab that is displayed in a TabControl has index 0. You use this by setting the private
field mCurrentTabIndex to zero. In the SelectedIndexChanged method you build the message to display.
This is done by using the property SelectedTab to get the Text property of the tab that was just selected
and the TabPages collection to get the Text property of the tab pages specified by the mCurrentTabIndex
field. After the message is built, the mCurrentTabIndex field is changed to point to the newly selected
tab.

Exercise 3
By creating a class that is derived from the ListViewItem class you create something that can be used
in place of the ‘‘intended’’ ListViewItem class. This means that, even though the ListView itself doesn’t
know about the extra information on the class, you are able to store additional information on the
items displayed in the ListView directly on the items.

1. Create a new class named FQListViewItem:
using System;
using System.Collections.Generic;
using System.Text;
using System.Windows.Forms;

namespace ListView
{

class FQListViewItem : ListViewItem
{
private string mFullyQualifiedPath;
public string FullyQualifiedPath
{

get { return mFullyQualifiedPath; }
set { mFullyQualifiedPath = value; }

}
}

}

Chapter 16 Solutions ❘ 987

2. Find and change ListViewItem types to FQListViewItem types in the Form.cs file.

3. Find and change any reference to .Tag to .FullyQualifiedPath. In the
listViewFilesAndFolders_ItemActivate method, cast the selected item in the second
line to an FQListViewItem item as such:

string filename =
((FQListViewItem)lw.SelectedItems[0]).FullyQualifiedPath;

CHAPTER 16 SOLUTIONS

Exercise 1
To accomplish this, you are going to make one new property and two events. Start by creating the
property (private int maxLength = 32767):

public int MaxLength
{
get { return maxLength; }
set
{

if (value >= 0 && value <= 32767)
{
maxLength = value;
if (MaxLengthChanged != null)

MaxLengthChanged(this, new EventArgs());
textBoxText.MaxLength = value;

}
}

}

Next create the two new events:

public event System.EventHandler MaxLengthChanged;
public event System.EventHandler MaxLengthReached;

In the Form designer, select the TextBox and add an event handler for the TextChanged event. Here’s
the code:

private void txtLabelText_TextChanged(object sender, EventArgs e)
{
if (textBoxText.Text.Length >= maxLength)
{

if (MaxLengthReached != null)
MaxLengthReached(this, new EventArgs());

}
}

The maximum length of the text in a normal TextBox is the size of a System.Int32 type, but the default
is 32,767 characters, which normally is well beyond what is needed. In the property in step 2 above, you
check to see if the value is negative or above 32767 and ignore the change request if it is. If the value is
found to be acceptable, the MaxLength property of the TextBox is set and the event MaxLengthChanged
is raised.

988 ❘ APPENDIX A EXERCISE SOLUTIONS

The event handler txtLabelText_TextChanged checks if the maximum number of characters in the
TextBox is equal to or above the number specified in maxLength and raises the MaxLengthReached event
if it is.

Exercise 2
Start by selecting the three fields on the StatusBar and changing the value of Bold to false (unfold the
Font property to do this). Change the Enabled property of all three fields to True and then double-click
the Bold field and enter the following:

private void toolStripStatusLabelBold_Click(object sender, EventArgs e)
{
boldToolStripButton.Checked = !boldToolStripButton.Checked;

}

Double-click the Italic field and enter this text:
private void toolStripStatusLabelItalic_Click(object sender, EventArgs e)
{
italicToolStripButton.Checked = !italicToolStripButton.Checked;

}

Double-click the Underline field and enter this text:
private void toolStripStatusLabelUnderline_Click(object sender, EventArgs e)
{
underlineToolStripButton.Checked = !underlineToolStripButton.Checked;

}

The three click event handlers toggle the Checked property of the toolbar buttons. This results in the
CheckedChanged events being fired. These event handlers are responsible for doing all the work, and
you need to change them in such a way that the status text changes as well:

private void boldToolStripButton_CheckedChanged(object sender, EventArgs e)
{

Font oldFont, newFont;

bool checkState = ((ToolStripButton)sender).Checked;
oldFont = this.richTextBoxText.SelectionFont;

if (!checkState)
newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Bold);

else
newFont = new Font(oldFont, oldFont.Style | FontStyle.Bold);

richTextBoxText.SelectionFont = newFont;
richTextBoxText.Focus();

boldToolStripMenuItem.CheckedChanged -= new
EventHandler(boldToolStripMenuItem_CheckedChanged);

boldToolStripMenuItem.Checked = checkState;
boldToolStripMenuItem.CheckedChanged += new

EventHandler(boldToolStripMenuItem_CheckedChanged);

Chapter 16 Solutions ❘ 989

//StatusBar
if (!checkState)

toolStripStatusLabelBold.Font = new Font(toolStripStatusLabelBold.Font,
toolStripStatusLabelBold.Font.Style & ~FontStyle.Bold);

else
toolStripStatusLabelBold.Font = new Font(toolStripStatusLabelBold.Font,
toolStripStatusLabelBold.Font.Style | FontStyle.Bold);

}

private void italicToolStripButton_CheckedChanged(object sender, EventArgs e)
{
Font oldFont, newFont;

bool checkState = ((ToolStripButton)sender).Checked;
oldFont = this.richTextBoxText.SelectionFont;

if (!checkState)
newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Italic);

else
newFont = new Font(oldFont, oldFont.Style | FontStyle.Italic);

richTextBoxText.SelectionFont = newFont;
richTextBoxText.Focus();

italicToolStripMenuItem.CheckedChanged -= new
EventHandler(italicToolStripMenuItem_CheckedChanged);

italicToolStripMenuItem.Checked = checkState;
italicToolStripMenuItem.CheckedChanged += new

EventHandler(italicToolStripMenuItem_CheckedChanged);
//StatusBar

if (!checkState)
toolStripStatusLabelItalic.Font = new

Font (toolStripStatusLabelItalic. Font,
toolStripStatusLabelItalic.Font.Style & ~FontStyle.Italic);

else
toolStripStatusLabelItalic.Font = new

Font (toolStripStatusLabelItalic. Font,
toolStripStatusLabelItalic.Font.Style | FontStyle.Italic);

}

private void UnderlineToolStripButton_CheckedChanged(object sender, EventArgs e)
{
Font oldFont, newFont;

bool checkState = ((ToolStripButton)sender).Checked;
oldFont = this.richTextBoxText.SelectionFont;

if (!checkState)
newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Underline);

else

990 ❘ APPENDIX A EXERCISE SOLUTIONS

newFont = new Font(oldFont, oldFont.Style | FontStyle.Underline);

richTextBoxText.SelectionFont = newFont;
richTextBoxText.Focus();

underlineToolStripMenuItem.CheckedChanged -= new
EventHandler(underlineToolStripMenuItem_CheckedChanged);

underlineToolStripMenuItem.Checked = checkState;
underlineToolStripMenuItem.CheckedChanged += new

EventHandler(underlineToolStripMenuItem_CheckedChanged);

//StatusBar
if (!checkState)
toolStripStatusLabelUnderline.Font = new

Font(toolStripStatusLabelUnderline .Font,
toolStripStatusLabelItalic.Font.Style & ~FontStyle.Underline);

else
toolStripStatusLabelUnderline.Font = new

Font(toolStripStatusLabelUnderline.Font,
toolStripStatusLabelItalic.Font.

Style | FontStyle.Underline);
}

The event handlers now change the font of the StatusStrip panels to either Bold, Italic or Underline
when the toolbar buttons are checked and normal when they are not.

CHAPTER 17 SOLUTIONS

Exercise 1
ClickOnce deployment has the advantage that the user installing the application doesn’t need admin-
istrator privileges. The application can be automatically installed by clicking on a hyperlink. Also, you
can configure that new versions of the application can be installed automatically.

Exercise 2
The application manifest describes the application and required permissions, the deployment manifest
describes deployment configuration such as update policies.

Exercise 3
If administrator permissions are required by the installation program, the Windows Installer is needed
instead of ClickOnce deployment.

Exercise 4
File System Editor, Registry Editor, File Types Editor, User Interface Editor, Custom Actions Editor,
Launch Condition Editor.

Chapter 18 Solutions ❘ 991

CHAPTER 18 SOLUTIONS

Exercise 1
The LoginView control can be added to the master page to have this information available with every
content page. In the following code snippet you can see a LoggedInTemplate in the LoginView that
is shown when the user is logged in. The LoggedInTemplate contains a Label and a LinkButton. The
Label control with the id InfoLabel is used to show user information.

<asp:LoginView ID="LoginView1" runat="server">
<LoggedInTemplate>

<asp:Label ID="InfoLabel" runat="server" Text="Hello, User">
</asp:Label>

<asp:LinkButton ID="LinkButton1" runat="server"

OnClick="OnLogout">Logout</asp:LinkButton>
</LoggedInTemplate>

</asp:LoginView>

The Label is filled from code behind in the Page_Load event handler. The username can be accessed via
the Context property. User.Identity.Name returns the username.

protected void Page_Load(object sender, EventArgs e)
{

Control infoLabel = this.LoginView1.FindControl("InfoLabel");
if (infoLabel != null)

(infoLabel as Label).Text = "Welcome, " + Context.User.Identity.Name;
}

Exercise 2
The previous usage of the DropDownlist had a list of fix defined items to give a selection to the user.
Now a SqlDataSource that connects to the Events database is used instead:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
ConnectionString="<%$
ConnectionStrings:BegVCSharpEventsConnectionString %>"
SelectCommand="SELECT [Id], [Title], [Date] FROM [Events]
ORDER BY [Date]">

</asp:SqlDataSource>

And with the DropDownList control the DataSourceId referencing the SqlDataSource is set, and the
DataTextField references the Title from the SQL selection to display the title of the event:

<asp:DropDownList ID="dropDownListEvents" runat="server"
DataSourceID="SqlDataSource1" DataTextField="Title"
DataValueField="Id">

</asp:DropDownList>

Exercise 3
Creating a project from the menu File ➪ New Project ➪ ASP.NET Web Application creates a project
that has many items pre-created. You will find a master page named Site.Master. This master page

992 ❘ APPENDIX A EXERCISE SOLUTIONS

makes use of a style sheet named Site.css, which you can find in the folder Styles. Within the master
page a Menu control is used for site navigation. The files Default.aspx and About.aspx use the
master page and can be navigated to.

In the Account subfolder you can see several files which use authentication features such as Login.aspx,
Register.aspx, and ChangePassword.aspx.

You can start with this project and add your pages and functionality as needed.

CHAPTER 19 SOLUTIONS

Exercise 1
Create a new Web service by selecting File ➪ New ➪ Project, and choose the ASP.NET Empty Web
Application template. Name it CinemaReservation. Add a new Web service by selecting Project ➪ Add
New Item . . . , select the Web Service template and name it CinemaReservation.asmx.

Exercise 2
The classes should look similar to this code segment:

public class ReserveSeatRequest
{

public string Name { get; set; }
public int Row { get; set; }
public int Seat { get; set; }

}

public class ReserveSeatResponse
{

public string ReservationName { get; set; }
public int Row { get; set; }
public int Seat { get; set; }

}

Exercise 3
For all the seats an array reservedSeats should be declared, so you can remember reserved seats:

private const int maxRows = 12;
private const int maxSeats = 16;
private bool[,] reservedSeats = new bool[maxRows, maxSeats];

The implementation of the Web service method can look similar to the code shown. If the requested
seat is free, the seat is reserved and returned from the Web service. If the seat is not free, the next free
seat is returned.

[WebMethod]
public ReserveSeatResponse ReserveSeat(ReserveSeatRequest req)
{

ReserveSeatResponse resp = new ReserveSeatResponse();
resp.ReservationName = req.Name;
object o = HttpContext.Current.Cache["Cinema"];

Chapter 20 Solutions ❘ 993

if (o == null)
{

// fill seats with data from the database or a file...
HttpContext.Current.Cache["Cinema"] = reservedSeats;

}
else
{

reservedSeats = (bool[,])o;
}
if (reservedSeats[req.Row, req.Seat] == false)
{

reservedSeats[req.Row, req.Seat] = true;
resp.Row = req.Row;
resp.Seat = req.Seat;

}
else
{

int row;
int seat;
GetNextFreeSeat(out row, out seat);
resp.Row = row;
resp.Seat = seat;

}
return resp;

}

Exercise 4
Create a new Windows application and add a service reference to the Web service. The call to the
Web service is shown here:

private void OnRequestSeat(object sender, EventArgs e)
{

CinemaService.ReserveSeatRequest req =
new CinemaService.ReserveSeatRequest();

req.Name = textName.Text;
req.Seat = int.Parse(textSeat.Text);
req.Row = int.Parse(textRow.Text);

CinemaService.CinemaReservationSoapClient ws =
new CinemaService.CinemaReservationSoapClient();

CinemaService.ReserveSeatResponse resp =
ws.ReserveSeat(req);
MessageBox.Show(String.Format("Reserved seat {0} {1}",

resp.Row, resp.Seat));
}

CHAPTER 20 SOLUTIONS

Exercise 1
Copying the Website copies all files required to run the Web application. Visual Studio 2010 has a
dialog for a bi-directional copy. Newer files from the target server can be copied locally. If the source

994 ❘ APPENDIX A EXERCISE SOLUTIONS

code should not be copied to the target Web server, publishing allows creating assemblies, and then
you can copy just the assemblies to the target Web server.

Exercise 2
Copying the site requires that the virtual directory on the target server is already created. With a setup
program it is possible to create the virtual directory within IIS during setup.

Exercise 3
The options are to publish to a file system, to publish to a server with FrontPage Server Extensions, to
publish via FTP, and to publish with 1-Click publishing. Mainly this depends on the hosting option
you are using and what your provider offers. In all cases the virtual directory must have been created
on the server. Publishing to a file system you need to have access to the file system. This should be the
case if you are running IIS on your own. Publishing with FrontPage Server Extensions, these extensions
must be installed on the server. Publishing via FTP, and FTP server must be installed on the server.
Publishing via 1-Click, the provider must support this new publishing option.

Exercise 4
First use the IIS Management tool to create a Web application. Then use Visual Studio to copy the Web
service files to the server.

CHAPTER 21 SOLUTIONS

Exercise 1
System.IO

Exercise 2
You use a FileStream object to write to a file when you need random access to files, or when you are
not dealing with string data.

Exercise 3
➤ Peek(): Gets the value of the next character in the file but does not advance the file position

➤ Read(): Gets the value of the next character in the file and advances the file position

➤ Read(char[] buffer, int index, int count): Reads count characters into buffer, starting at
buffer[index]

➤ ReadLine(): Gets a line of text

➤ ReadToEnd(): Gets all text in a file

Chapter 22 Solutions ❘ 995

Exercise 4
DeflateStream

Exercise 5
Ensure that it doesn’t possess the Serializable attribute.

Exercise 6
➤ Changed: Occurs when a file is modified

➤ Created: Occurs when a file in created

➤ Deleted: Occurs when a file is deleted

➤ Renamed: Occurs when a file is renamed

Exercise 7
Add a button that toggles the value of the FileSystemWatcher.EnableRaisingEvents property.

CHAPTER 22 SOLUTIONS

Exercise 1
1. Double-click the Create Node button to go to the event handler doing the work.

2. Below the creation of the XmlComment, insert the following three lines:

XmlAttribute newPages = document.CreateAttribute("pages");
newPages.Value = "1000";

newBook.Attributes.Append(newPages);

Exercise 2
1. //elements — Returns all nodes in the document.

2. element — Returns every element node in the document but leaves the element root
node out.

3. element[@Type=’Noble Gas’] — Returns every element that includes an attribute with the
name Type, which has a value of Noble Gas.

4. //mass — Returns all nodes with the name mass.

5. //mass/.. — The .. causes the XPath to move one up from the selected node, which means
that this query selects all the nodes that include a mass node.

6. element/specification[mass=’20.1797’] — Selects the specification element that contains
a mass node with the value 20.1797.

996 ❘ APPENDIX A EXERCISE SOLUTIONS

7. element/name[text()=’Neon’] — To select the node whose contents you are testing, you can
use the text() function. This selects the name node with the text Neon.

Exercise 3
Recall that XML can be valid, well-formed, or invalid. Whenever you select part of an XML document,
you are left with a fragment of the whole. This means that there is a good chance that the XML you’ve
selected is in fact invalid XML on its own. Most XML viewers will refuse to display XML that isn’t
well-formed, so it is not possible to display the results of many queries directly in a standard XML
viewer.

CHAPTER 23 SOLUTIONS

Exercise 1

static void Main(string[] args)
{

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

var queryResults =
from n in names
where n.StartsWith("S")

orderby n descending
select n;

Console.WriteLine("Names beginning with S:");

foreach (var item in queryResults) {
Console.WriteLine(item);

}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}

Exercise 2
Sets smaller than 5,000,000 have no numbers < 1000:

static void Main(string[] args)
{

int[] arraySizes = { 100, 1000, 10000, 100000,
1000000, 5000000, 10000000, 50000000 };

foreach (int i in arraySizes) {
int[] numbers = generateLotsOfNumbers(i);
var queryResults = from n in numbers

where n < 1000
select n;

Chapter 23 Solutions ❘ 997

Console.WriteLine("number array size = {0}: Count(n < 1000) = {1}",
numbers.Length, queryResults.Count()

);
}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}

Exercise 3
Does not affect performance noticeably for n < 1000:

static void Main(string[] args)
{

int[] numbers = generateLotsOfNumbers(12345678);

var queryResults =
from n in numbers
where n < 1000
orderby n
select n

;

Console.WriteLine("Numbers less than 1000:");
foreach (var item in queryResults)
{

Console.WriteLine(item);
}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}

Exercise 4
Very large subsets such as n > 1000 instead of n < 1000 are very slow:

static void Main(string[] args)
{

int[] numbers = generateLotsOfNumbers(12345678);

var queryResults =
from n in numbers
where n > 1000
select n

;

Console.WriteLine("Numbers less than 1000:");
foreach (var item in queryResults)
{

Console.WriteLine(item);

998 ❘ APPENDIX A EXERCISE SOLUTIONS

}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}

Exercise 5
All the names are output because there is no query.

static void Main(string[] args)
{

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

var queryResults = names;

foreach (var item in queryResults) {
Console.WriteLine(item);

}

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}

Exercise 6

var queryResults =
from c in customers
where c.Country == "USA"
select c

;
Console.WriteLine("Customers in USA:");
foreach (Customer c in queryResults)
{

Console.WriteLine(c);
}

Exercise 7
static void Main(string[] args)
{

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

// only Min() and Max() are available (if no lambda is used)
// for a result set like this consisting only of strings
Console.WriteLine("Min(names) = " + names.Min());
Console.WriteLine("Max(names) = " + names.Max());

var queryResults =
from n in names
where n.StartsWith("S")
select n;

Chapter 24 Solutions ❘ 999

Console.WriteLine("Query result: names starting with S");
foreach (var item in queryResults)
{

Console.WriteLine(item);
}

Console.WriteLine("Min(queryResults) = " + queryResults.Min());
Console.WriteLine("Max(queryResults) = " + queryResults.Max());

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();
}

CHAPTER 24 SOLUTIONS

Exercise 1
Use the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;

namespace BegVCSharp_24_exercise1
{

class Program
{

static void Main(string[] args)
{

XDocument xdoc = new XDocument(
new XElement("employees",

new XElement("employee",
new XAttribute("ID", "1001"),
new XAttribute("FirstName", "Fred"),
new XAttribute("LastName", "Lancelot"),
new XElement("Skills",

new XElement("Language", "C#"),
new XElement("Math", "Calculus")
)

),
new XElement("employee",

new XAttribute("ID", "2002"),
new XAttribute("FirstName", "Jerry"),
new XAttribute("LastName", "Garcia"),
new XElement("Skills",

new XElement("Language", "French"),
new XElement("Math", "Business")
)

)
)

);

1000 ❘ APPENDIX A EXERCISE SOLUTIONS

Console.WriteLine(xdoc);

Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
}

}

Exercise 2
Use code similar to this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;

namespace BegVCSharp_24_exercises
{

class Program
{

static void Main(string[] args)
{

string xmlFileName =
@"C:\BegVCSharp\Chapter24\Xml\NorthwindCustomerOrders.xml";

XDocument customers = XDocument.Load(xmlFileName);

Console.WriteLine("Oldest customers: Companies with orders in 1996:");
var queryResults =

from c in customers.Descendants("customer")
where c.Descendants("order").Attributes("orderYear")

.Any(a => a.Value == "1996")
select c.Attribute("Company");

foreach (var item in queryResults)
{

Console.WriteLine(item);
}
Console.Write("Press Enter/Return to continue:");
Console.ReadLine();

}
}

}

Exercise 3
Here’s the code:

using System;
using System.Collections.Generic;

Chapter 24 Solutions ❘ 1001

using System.Linq;
using System.Xml.Linq;
using System.Text;

namespace BegVCSharp_24_exercises
{

class Program
{

static void Main(string[] args)
{

string xmlFileName =
@"C:\BegVCSharp\Chapter24\Xml\NorthwindCustomerOrders.xml";

XDocument customers = XDocument.Load(xmlFileName);

Console.WriteLine(
"Companies with individual orders totaling over $10,000");

var queryResults =
from c in customers.Descendants("order")
where Convert.ToDecimal(c.Attribute("orderTotal").Value) > 10000
select new { OrderID = c.Attribute("orderID"),

Company = c.Parent.Attribute("Company") };

foreach (var item in queryResults)
{

Console.WriteLine(item);
}
Console.Write("Program finished, press Enter/Return to continue:");
Console.ReadLine();

}
}

}

Exercise 4
Use the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;

namespace BegVCSharp_24_exercises
{

class Program
{

static void Main(string[] args)
{

string xmlFileName =
@"C:\BegVCSharp\Chapter24\Xml\NorthwindCustomerOrders.xml";

XDocument customers = XDocument.Load(xmlFileName);

Console.WriteLine("Lifetime highest-selling customers: "+
"Companies with all orders totaling over $100,000");

var queryResult =
from c in customers.Descendants("customer")

1002 ❘ APPENDIX A EXERCISE SOLUTIONS

where c.Descendants("order").Attributes("orderTotal")
.Sum(o => Convert.ToDecimal(o.Value)) > 100000

select c.Attribute("Company");

foreach (var item in queryResult)
{

Console.WriteLine(item);
}
Console.Write("Press Enter/Return to continue:");
Console.ReadLine();

}
}

Exercise 5
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace BegVCSharp_24_exercise1
{

class Program
{

static void Main(string[] args)
{

NORTHWNDEntities northWindEntities = new NORTHWNDEntities();

Console.WriteLine("Product Details");
var queryResults = from p in northWindEntities.Products

select new
{

ID = p.ProductID,
Name = p.ProductName,
Price = p.UnitPrice,
Discontinued = p.Discontinued

};
foreach (var item in queryResults)
{

Console.WriteLine(item);
}
Console.WriteLine("Employee Details");
var queryResults2 = from e in northWindDataContext.Employees

select new
{

ID = e.EmployeeID,
Name = e.FirstName+" "+e.LastName,
Title = e.Title

};
foreach (var item in queryResults2)
{

Console.WriteLine(item);
}
Console.WriteLine("Press Enter/Return to continue...");

Chapter 24 Solutions ❘ 1003

Console.ReadLine();

}
}

}

Exercise 6
Use code similar to this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace BegVCSharp_24_exercise6
{

class Program
{

static void Main(string[] args)
{

NORTHWNDEntities northWindEntities = new NORTHWNDEntities();

Console.WriteLine("Top-Selling Products (Sales over $50,000)");
var queryResults =
from p in northWindEntities.Products
where p.Order_Details.Sum(od => od.Quantity * od.UnitPrice) > 50000
orderby p.Order_Details.Sum(od => od.Quantity * od.UnitPrice) descending
select new
{

ID = p.ProductID,
Name = p.ProductName,
TotalSales = p.Order_Details.Sum(od => od.Quantity * od.UnitPrice)

};
foreach (var item in queryResults)
{

Console.WriteLine(item);
}

Console.WriteLine("Press Enter/Return to continue...");
Console.ReadLine();

}
}

}

Exercise 7
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace BegVCSharp_24_exercise7
{

1004 ❘ APPENDIX A EXERCISE SOLUTIONS

class Program
{

static void Main(string[] args)
{

NORTHWNDEntities northWindEntities = new NORTHWNDEntities();

var totalResults = from od in northWindEntities.Order_Details
from c in northWindEntities.Customers
where c.CustomerID == od.Order.CustomerID
select new
{

Product = od.Product.ProductName,
Country = c.Country,
Sales = od.UnitPrice * od.Quantity

};

var groupResults =
from c in totalResults
group c by new { Product = c.Product, Country = c.Country } into cg
select new {

Product = cg.Key.Product,
Country = cg.Key.Country,
TotalSales = cg.Sum(c => c.Sales)

}
;

var orderedResults =
from cg in groupResults
orderby cg.Country, cg.TotalSales descending
select cg

;

foreach (var item in orderedResults)
{

Console.WriteLine("{0,-12}{1,-20}{2,12}",
item.Country, item.Product, item.TotalSales.ToString("C2"));

}
Console.WriteLine("Press Enter/Return to continue...");
Console.ReadLine();

}
}

}

CHAPTER 25 SOLUTIONS

Exercise 1
False. Most of the code stays the same, but there are minor differences, such as having to use Page

controls in WPF browser applications and Window controls in WPF desktop applications.

Chapter 26 Solutions ❘ 1005

Exercise 2
You would use an attached property to do this. In XAML, attached properties are referred to using
attribute syntax with a fully qualified attribute name of the form <ParentClassName>.<AttributeName>.
The following code shows an example of this:

<Tree>
<Branch Tree.LeafCount="3" />
<Branch Tree.LeafCount="42" />

</Tree>

Exercise 3
Statements b) and e) are true. Statement a) is wrong because .NET properties are optional; c) is wrong
because there is no limit on the dependency properties you can have for a class, and d) is wrong because
this is a best practice naming convention, not a requirement.

Exercise 4
You would use the StackPanel control.

Exercise 5
The naming convention specifies that the name of the tunneling event is the same as that used for the
associated bubbling event, but with the prefix Preview.

Exercise 6
Strictly speaking this is a trick question, as you can animate any property type. However, to animate
property types other than double, Color, or Point, you would have to create your own timeline classes,
so it is generally a good idea to stick to these types.

Exercise 7
You use dynamic resource references to enable the resource reference to change at runtime, or when
you don’t know what the reference will be until runtime.

CHAPTER 26 SOLUTIONS

Exercise 1
All of the above

Exercise 2
A data contract, with DataContractAttribute and DataMemberAttribute attributes

1006 ❘ APPENDIX A EXERCISE SOLUTIONS

Exercise 3
Use the .svc extension

Exercise 4
That is one way of doing things, but it is usually easier to put all your WCF configuration in a separate
configuration file, either web.config or app.config.

Exercise 5

[ServiceContract]
public interface IMusicPlayer
{

[OperationContract(IsOneWay=true)]
void Play();

[OperationContract(IsOneWay=true)]
void Stop();

[OperationContract]
TrackInformation GetCurrentTrackInformation();

}

You would also want a data contract to encapsulate track information; TrackInformation in the
preceding code.

ANSWERS TO CHAPTER 27 EXERCISES

Exercise 1
A composite activity consists of two parts – the activity itself and also the designer (XAML) file that
defines the layout of the activity on screen. Composite activities typically derive from the NativeActivity
class, and expose a collection of sub-activities. As an example the Sequence activity has an Activities
property that is a collection of the child activities.

You need to override the Execute() method in order to schedule your child activities to run – you might
want to randomly choose an activity or run everything at the same time. The Execute() method is passed
an instance of the NativeActivityContext class, which you can use to schedule execution of the child
activities.

The last step is to create a designer that allows the user to drop activities into your activity. Here you
would use XAML to define the look and feel of the activity, and it’s often best to refer to the inbuilt
activities to see how they are implemented in order to re-use some of the XAML resources available
to you. If you download Reflector (http://reflector.red-gate.com) you can use the BAML viewer
add-in (search for this online) to decompile the resources that are used by the inbuilt assemblies in order
to see the XAML that is used to define custom composite activities.

Answers to Chapter 27 Exercises ❘ 1007

Exercise 2
Workflow 4 has several activities that allow you to expose a workflow as a WCF service. The easiest
route is to choose the ‘‘WCF Workflow Service Application’’ project type from the ‘‘WCF’’ item within
the new project dialog. You can then add in activities to process the incoming method call(s) and return
results to the caller as needed.

Exercise 3
Workflow has the concept of a Persistence service that allows you to save and reload a workflow
instance. When a workflow is idle (that is, it is waiting for some form of external input or a delay) it is
a candidate for persistence. If you have a persistence provider setup then the workflow will be saved into
that provider. There’s a SQL Server provider available in the box (see the SqlWorkflowInstanceStore

class available in the System.Activities.DurableInstancing assembly). It is not possible to persist a
workflow if you are running it under the WorkflowInvoker – you must host your workflow using the
WorkflowApplication or the WorkflowServiceHost class.

INDEX

Symbols
& (ampersand), bitwise operator, 64
/* . . .*/, comment syntax in C#, 33
//, comment syntax in C#, 33–34
:: operator, 373–375
?? operator (null coalescing operator), 336, 371
{} (curly brackets)

delimiting blocks of code, 32
markup extensions and, 848

| (pipes), bitwise operator, 64
<> (angle brackets), generic type syntax, 332
\ (backslash), use in escape sequences, 40
1-Click. See ClickOnce deployment

A
absolute paths, in file system, 690
abstract classes

class definitions, 210
vs. interfaces, 232–235
overview of, 195–196

abstract keyword
class definitions, 210
interface member definitions, 259
method definitions, 243
property definitions, 246

abstract members, 232
access classes, files, 686–687
access modifiers, for class definitions, 212
accessibility

access to properties, 188
protected, 195

accessors
adding property accessors with nonpublic accessibility,

260–261
interface member definitions and, 258
property definitions and, 244

activities, WF
adding activity designer, 953–955
custom, 944–945
defined, 935
defining ISendEmail interface and activity, 946–948
overview of, 937–939, 956

validating, 952
writing custom, 945–946

Add New Item Wizard, in VS and VCE, 226
Add Service Reference tool, 912–913
Add Style Rule editor, 610
addresses

input validation of e-mail addresses, 598–600
WCF communication protocols and, 902–903
in WCF service example, 913

Administrative tools, IIS Manager, 666
ADO.NET

C# and, 9
Entity Framework, 796, 801

advanced method parameters, 418
advertisements, Windows Installer and, 549
aggregate operators, LINQ

overview of, 766–767
using numeric operators, 767–770

Ajax postback
overview of, 593
UpdatePanel and, 593–595
UpdatePanel with triggers and, 595–597

aliases, namespaces and, 53
alignment, of WPF controls, 859–860
All(), LINQ queries, 777–779
alphabetical order, ordering LINQ query

results by, 760–762
Anchor property, 450
anchoring Windows controls, 449–451
angle brackets <>, generic type syntax, 332
animation, WPF

overview of, 875–876, 898
timelines with key frames, 877–878
timelines without key frames, 876–877
using, 880–883

anonymous methods
event handlers and, 389
lambda expressions and, 429–431
overview of, 400

anonymous types
defined, 442
using, 410–412

Any(), LINQ queries, 777–779
Application object, WPF, 849
application pool, creating, 667–668

1009

application state – assignment operators

application state, 605
applications

common types in C#, 9
creating basic WPF application, 834–838
Debug and Release options for building, 156
desktop and Web applications in WPF, 848
event-driven, 200
.NET Framework, 12
overview of, 409–410
uninstalling, 571
using XML in, 734
writing, 5, 7–8
XML, 726

applications, client
for class library, 272–274
WCF, 934

applications, console
creating, 18–21
defined, 13–14
structure of, 34–35

applications, Web. See also ASP.NET
architecture of, 639
C# and, 9
comparing with desktop applications, 829
creating, 669
deploying. See deploying Web applications
installing, 677–678
overview of, 578
scenarios, 638–639
WPF and, 848

applications, Windows Forms
creating, 24–28
defined, 14

applications, Windows OSs
C# and, 9
creating, 24–28
deploying. See deploying Windows applications
developing. See Windows Forms
OOP in, 201–204
SDI and MDI interfaces, 497

application-specific Web services, 639
application-to-application communication, 637
architecture, Web services, 639, 640
arguments, WF

making mandatory, 952–953
overview of, 939–940, 956
returning from workflows, 943–944
using, 940–943

ArrayList, 320–323
arrays

arrays of arrays, 115–116
comparing with advanced collections,

279–284
comparing with collections, 278
declaring, 110–111
foreach loops used with, 113
multidimensional, 113–115

overview of, 110
using, 111–112

as operator
for conversions, 326–327
overview of, 329

ASP.NET
adding site navigation, 617–619
Ajax postbacks, 593–595
C# and, 9
checking for required input and e-mail address,

598–600
client-side state management, 601–603
configuring authentication, 619–623
configuring GridView control, 633–634
creating login page, 624–625
creating master page, 613–614
creating new database, 626–628
creating strongly typed previous page, 590–593
creating Web page with, 579–587
creating Web services with, 642
defining style classes, 610–611
defining styles for elements, 606–610
displaying user input, 589–591
IIS Manager tool, 666
master pages, 611–612
overview of, 577
postbacks, 588–589
reading/writing to SQL Sever database, 626
runtime, 578
security controls, 623–624
server controls, 586–588
server-side state management, 603–606
site navigation, 616
state management, 600–601
styles, 606
using CreateUser Wizard, 625–626
using GridView to display data, 628–633
using master pages, 614–616
using UpdatePanels with triggers, 595–597
validating input, 597–598
XAML compared with, 831

ASP.NET Web services
adding methods to, 648
calling asynchronously, 655–657
creating, 664
creating project for, 646–647
implementing ASP.NET client for, 658
implementing Windows client for, 649–654
testing, 649

assemblies, CIL code stored in, 5–6
assertions, breaking and, 168–169
assignment operators

assigning fixed values, 39
assigning variables, 44
bitwise shift operators and, 67
Boolean, 62
overview of, 50

1010

asynchronous implementation – C# enhancements

asynchronous implementation, of Web services,
655–657, 664

attached events, WPF, 858
attached properties, WPF, 852
attributes

XAML, 846
XML, 727–728

Attributes() member, LINQ to XML, 821–823
authentication

configuring, 619–623
Forms authentication, 624
overview of, 619

authorization, 619, 622–623
automatic properties, 253

B
base classes

calling overridden or hidden base class methods,
255–257

DictionaryBase class, 291–292
hiding base class methods, 254–255
inheritance and, 194–195
interface members implemented on, 259–260
WF activities and, 944

base keyword, 220–221, 255–256
base type, arrays, 110
Beginning HTML, XHTML, CSS, and JavaScript

(Ducket), 611
behaviors, WCF

overview of, 905–906
in WCF service example, 911–912

binary operators
?? operator (null coalescing operator), 336
assignment, 57
Boolean assignment, 62
Boolean comparison, 60–61
mathematical, 45–46
operator overloading and, 309, 311
overview of, 45

bindings, WCF
communication protocols and, 903–904
overview of, 900
in WCF service examples, 913–914, 924–925

bitwise operators
bitwise shift operators, 67
overview of, 64–67

blocks of code, 32, 126
block-structured language, C# as, 32
bool type

Boolean logic and, 59
simple types, 38

Boole, George, 59
Boolean logic

assignment operators, 62
bool types and, 36

comparison (relational) operators, 60–61
conditional operators, 61–62
overview of, 59–60
using, 63–64

Border control, WPF, 860
boxing, type comparisons, 303–305
branching
if statements, 70–74
overview of, 69–70
switch statements, 74–77
ternary (conditional) operator and, 70
variable scope and, 140

break command, interrupting loops, 87–88
break mode debugging

breakpoints, 166–168
Call Stack window, 174–175
entering break mode, 166
Immediate and Command windows, 173–174
monitoring variable content, 170–172
other options for entering break mode, 168–169
overview of, 166, 184
stepping through code, 172–173

breakpoints, in debugging, 166–168
Breakpoints window, 167
browsers, HTML support in, 578
bubbling, through WPF controls, 853
building-block Web services, 639
buttons
Button control, 453
defined, 496
event handlers added to, 455
events of Button control, 453–454
properties of Button control, 453
working with, 454–455

C
C#

application types, 9
console application structure, 34–35
defining classes, 209–212
LINQ as extension to, 753
overview of, 12
syntax, 32–34, 57
what it is, 8–9

C# enhancements
advanced method parameters, 418
anonymous methods, 429–430
anonymous types, 409–410
collection initializers, 404–405
defining and using extension methods, 426–429
dynamic lookup, 413–414
dynamic types, 414
extension methods, 424–426
IDynamicMetaObjectProvider, 417–418
initializers, 402

1011

C# enhancements – Class View window

C# enhancements (continued)
lambda expression parameters, 434
lambda expression statement bodies, 434–435
lambda expressions, 429
lambda expressions and collections, 436–437
lambda expressions as delegates and expression trees,

435–436
lambda expressions for anonymous methods,

430–431
named parameters, 420–421, 424
object initializers, 402–404
optional parameters, 418–420, 424
overview of, 401
type inference, 407–409
using anonymous types, 410–412
using dynamic types, 414–417
using initializers, 405–407
using lambda expressions with collections, 437–439
using named and optional parameters, 421–424
using simple lambda expressions, 431–434

C# programs
creating console applications, 18–21
development environments for, 14
Error List window, 23–24
overview of, 13
Properties window, 23
Solution Explorer and, 22–23
VCE as development environment, 17
VS as development environment, 14–17
Windows Forms applications, 24–28

C++
C# compared with, 8–9
similarity of C# syntax to, 32
templates, 331, 333

Cab Project template, VS (Visual Studio 2010), 547
cabinet files, MSI files, 553
cache, server-side state management, 605–606
Call Hierarchy window, VS

for navigating code, 224
overview of, 274–275

Call Stack window, VS, 174–175
calling functions, 126
calling methods, 641–642
calling Web services, 664
camelCase, 42
Canvas control, WPF, 858, 860–861
Card class

adding to class module, 268–269
in class module, 264

Cascading Style Sheets. See CSS (Cascading Style
Sheets)

case sensitivity
C# syntax, 34
variable names and, 41

casting variables, 96
catch, in try . . .catch . . .finally, 176–178
char types, 38

CheckBoxes
CheckBox control, 464–465
events, 466
GroupBox control, 466–467
properties, 466
using, 467–470

CheckListBoxes, 477. See also ListBoxes
CIL (Common Intermediate Language), 5
class diagrams

adding class members from, 249–250
in VS, 227–228
writing class libraries, 265

class keyword, 209–210
class libraries

adding clients to, 390–397
adding collections to, 288–291
adding deep copying to, 301–302
adding operator overloading to, 313–318
client application for, 272–274
expanding, 389–390
modifying to use generic collection class, 350–351
in VS, 228–232
writing, 265–266

class members. See also classes
abstract/nonabstract, 232
adding fields to classes, 252
adding members from class diagram, 249–250
adding methods to classes, 250–251
adding properties to classes, 251–252
automatic properties, 253
Call Hierarchy window and, 274–275
calling overridden or hidden base class methods,

255–257
field definitions, 242
hiding base class methods, 254–255
instances, 207
interface members compared with, 257
member definitions, 241–242
method definitions, 242–243
nested type definitions, 257
overview of, 241
partial class definitions, 261–262
partial method definitions, 262–264
property definitions, 244–246
refactoring, 252–253
static, 191–192
virtual, 195

class module
adding Card class, 268–269
adding Deck class, 269–272
adding Suit and Rank enumerations, 266–268
Card class in, 264
client application, 272–274
Deck class in, 265
overview of, 264
writing class libraries, 265–266

Class View window, VS/VCE, 222–224

1012

classes – Common Language Runtime (CLR)

classes
abstract, 195–196
adding constructors to, 217–218
adding destructors to, 218
benefits of generic, 332
class diagrams, 227–228
class libraries, 228–232
Class View window in VS/VCE, 222–224
collection classes, 278
constructor execution sequence, 218–222
contained, 198–199
defining, 213–215
defining generic, 256–261, 351–353, 356–361
defining in C#, 209–212
defining style classes, 610–611
exception, 375
generic, 371
inheriting from generic classes, 361–362
interface definition, 212–213
interfaces and, 193
interfaces vs. abstract classes, 232–235
Object Browser in VS/VCE, 224–225
objects and, 187
overview of, 207, 209
polymorphism and, 196–197
shallow copying vs. deep copying, 237
static classes, 192
structs compared with, 201, 235–237
System.Object and, 215–217
VS/VCE for adding, 226–227

classes, abstract
defining classes, 210
vs. interfaces, 232–235
overview of, 195–196

classes, base
calling overridden or hidden methods, 255–257
DictionaryBase class, 291–292
hiding methods, 254–255
inheritance and, 194–195
interface members implemented on, 259–260
WF activities and, 944

ClickOnce deployment
configuring publishing options for, 538–539
creating/using application updates, 545–546
defining security requirements, 537–538
installing application using, 543–545
options for deploying applications, 533
overview of, 534
preparing application for, 535–536
Publish Wizard and, 539–543
publishing Web applications, 670
signing ClickOnce manifests, 536–537

client applications
for class library, 272–274
WCF, 934

clients
implementing for ASP.NET Web service, 649–654, 658

using simple WCF service and client, 906–908
Web services, 639, 645

client-side state management
cookies for, 602–603
overview of, 601
view state for, 601–602

Clone(), deep copying and, 300–301
CLR (Common Language Runtime)

included in .NET Framework, 4
managed code and, 6

code
blocks of, 32, 126
managed, 6–7
native vs. compiled, 5
navigating in VS, 224
reusable, 126
simple, nonverbose, 161
stepping through, 172–173

CodeActivity base class, WF, 944
collection classes, 278, 350–351
collection initializers, 404–407
CollectionBase class, 285
collections

adding deep copying to class library, 301–302
adding indexers to, 286–288
adding to class library, 288–291
arrays compared with advanced collections, 279–284
class definition and, 284–285
deep copying and, 299–301
defining, 329
generic, 332, 371
implementing an iterator for, 295–297
indexers and, 286
iterators and, 293–295, 297–298
keyed collections and IDictionary interface, 291–293
lambda expressions and, 436–437
in OOP, 199
overview of, 277–278
sorting, 320–321
System.Collection.Generics namespace, 333,

340–341
using, 278–279
using lambda expressions with, 437–439

ColumnHeader, adding to Columns collection of
ListView control, 484

COM (Component Object Model), 413
Command window, break mode debugging from,

173–174
command-line parameters, 144–146, 154
comma-separated values (CSV)

overview of, 702
working with, 702–706

comments, in C#, 33–34
Common Intermediate Language (CIL), 5
Common Language Runtime (CLR)

included in .NET Framework, 4
managed code and, 6

1013

Common Type system (CTS) – controls

Common Type system (CTS), 4
communication, Web services and, 637
communication payload, WCF, 934
communication protocols, WCF, 901–902, 934
comparison operators

Boolean, 60
operator overloading and, 311

comparisons
bool types and, 59
overview of, 277

comparisons, type
boxing and unboxing, 303–305
is operator, 305
overview of, 303, 329
using is operator, 305–308

comparisons, value
adding operator overloading to class libraries,

313–318
IComparable and IComparer interfaces, 318–320
operator overloading, 308–313
overview of, 308, 329
sorting collections, 320–321
sorting lists, 321–324

compilers
C#, 32
compiling code, 5

complex objects, LINQ queries, 770–774
complex types

arrays, 110
arrays of arrays, 115–116
declaring arrays, 110–111
declaring enumerations, 103–104
defining structs, 107–108
enumerations, 102–103
foreach loops used with arrays, 113
multidimensional arrays, 113–115
overview of, 102
string manipulation, 116–118
structs, 107
using arrays, 111–112
using auto-completion in VS, 119–121
using enumerations, 105–107
using structs, 108–109

Component Object Model (COM), 413
components, Windows Installer, 548–549
composite controls, 522
compressed files

GZIP compression, 686, 706
overview of, 723
reading/writing, 706–710

computer programs, 31
Condition column, in Breakpoints window, 167
conditional (ternary) operators

Boolean, 61–62
branching and, 70
common use of, 80
overview of, 45

console applications
creating, 18–21
defined, 13–14
structure of, 34–35

Console.WriteLine(), 157
const keyword, 76
constants, 75–76
constrained types, 354–356
constructors

adding to classes, 217–218
execution sequence for, 218–222
initialization of, 220
instance constructors, 192
life cycle of objects and, 190–191
static constructors, 191–192

constructors, LINQ to XML
constructing XML element text with strings, 808
overview of, 804–807

containment, of object instance, 198–199
content pages, 611
content presenters, WPF controls, 847
content syntax, in XAML, 847–848
ContextMenuStrip, 498
continue command

infinite loops and, 89
interrupting loops, 87–88

contracts, WCF
defining service contracts, 917–925
overview of, 900, 934
types of, 904–905

contravariance, 368–369
controls, server

ASP.NET, 586–588
overview of, 586
postback and, 588
tables for arranging, 580
validating, 597–600
Web servers, 636

controls, Windows Forms
anchoring, docking, and snapping, 449–451
buttons. See buttons
creating custom, 522–523
debugging user controls, 527
events generated by, 451–453
ImageLists. See ImageLists
ListBoxes. See ListBoxes
ListViews. See ListViews
overview of, 448
properties of, 448–449
RadioButtons. See RadioButtons
RichTextBoxes. See RichTextBoxes
TabControls. See TabControls
TextBoxes. See TextBoxes

controls, WPF
alignment, margins, padding, and dimensions of,

859–860
attached properties, 852

1014

conversion – debugging

basics of, 849–850
Border control, 860
Canvas control, 860–861
as content presenters, 847
dependency properties, 850–852
DockPanel control, 861–863
Grid control, 863–866
implementing dependency properties, 884–887
layout of, 858–859
list of, 850
overview of, 898
routed events, 852–854
stack order of, 859
StackPanel control, 866–867
styling, 868–869
templates, 869–870
using styles and templates, 870–873
working with routed events, 855–857
WrapPanel control, 868

conversion, type
convert commands, 99–100
explicit conversion, 95–99
how it works, 49
implicit conversion, 94–95
overview of, 94
using, 101–102

conversion operators, overloading, 324–326
conversions
as operator for, 326–327
overloading conversion operators, 324–326
overview of, 277, 324

convert commands, for explicit conversion, 99–100
cookies, state management and, 602
Copy Web Site tool, 671–672
copying objects, shallow copying vs. deep copying, 237
copying web sites, Web application deployment via,

669–672, 680
covariance, 367–368
CreateUserWizard control, 625–626
CSS (Cascading Style Sheets)

defining style classes, 610–611
defining styles for elements, 606–610
styling Web pages with, 606

CSV (comma-separated values)
overview of, 702
working with, 702–706

CTS (Common Type system), 4
custom controls, 522–523, 532
custom exceptions

adding to class libraries, 375–377
overview of, 375, 400

D
data

displaying using GridView control, 628–633
functions exchanging, 130–131, 134–136

parameters and return values vs. global data,
142–143

data, file system
delimited files (CSV), 702
DirectoryInfo class, 689
File and Directory classes, 686–687
file pointers indicating file position, 691–692
FileInfo class, 687–689
FileStream object, 690–691
I/O classes, 684–686
monitoring, 715–721
overview of, 683
path names and relative paths, 690
reading data from input stream, 699–701
reading data from random access files, 693–695
reading data with FileStream object, 692–693
reading data with StreamReader class, 701–702
reading/writing compressed data, 707–710
reading/writing compressed files, 706–707
serializing/deserializing objects, 710–715
StreamReader object, 699
streams, 683–684
StreamWriter object, 697
working with CSV files, 702–706
writing data to output stream, 697–699
writing data to random access files, 695–696

data access
LINQ (Language Integrated Query). See LINQ

(Language Integrated Query)
XML. See XML (eXtensible Markup Language)

data contracts, WCF
defining, 918–919
overview of, 905
in WCF service examples, 909–910, 924

data source, in LIN, 756
data structures. See structs
databases. See also LINQ to SQL

creating SQL Server database, 626–628
first LINQ to database query, 798–801
generating XML from, 814–817, 825
LINQ used with, 796
navigating LINQ to Entities relationships, 801–804
querying, 825
reading from/writing to, 626, 636
security configuration and, 621

Debug configuration, 156
Debug toolbar, 166, 173
Debug.Assert(), 168–169
debugging. See also error handling

in break mode, 166–169
Call Stack window and, 174–175
diagnostic output, 164–166
exception handling, 182–183
Immediate and Command windows and, 173–174
monitoring variable content, 170–172
in nonbreak (normal) mode, 157
outputting debugging information, 158

1015

debugging – documents

debugging (continued)
overview of, 155
stepping through code, 172–173
testing Web services, 649
tracepoints and, 163–164
user controls, 527
in VS and VCE, 156–157
writing text to output window, 158–163

Debug.WriteLine(), 158, 162–163
Deck class, 265, 269–272
declaring variables

arrays, 110–111
assignment operators and, 44
enumerations, 103–104
overview of, 36

decrement operators, 46
deep copying

adding to class library, 301–302
collections, 299–301
vs. shallow copying, 237

default constructors, 190
default keyword, 354
deferred query execution, LINQ, 757–758
Deflate algorithm, 706
delegates

calling functions, 149–152
defining generic, 366
EventHandler and EventHandler<T> types, 388
lambda expressions as, 435–436
overview of, 154
restrictions on event handlers specified by, 377
for storing references to functions, 149

delimited files (CSV)
overview of, 702
working with, 702–706

dependency properties, WPF
controls and, 850–852
implementing, 884–887

deploying Web applications
copying web sites, 669–672
creating application, 669
creating application pool, 667–668
creating Web Setup Project, 675–677
IIS and, 665–667
installing applications, 677–678
overview of, 665
publishing applications, 672–674
Windows Installer for, 675

deploying Windows applications
ClickOnce. See ClickOnce deployment
MDI Editor example. See MDI Editor project
overview of, 533–534
VS setup and deployment project types, 546–547
VS setup editors and, 556
Windows Installer and, 547–550

deployment, xcopy, 533

Descendants() member, LINQ to XML query
members, 819–821

designers
activity designers in WF, 953, 956
adding activity designer, 953–955
benefits of XAML to, 839
WPF for, 830–833

desktop applications. See also applications; Windows
applications

compared with Web applications, 829
WPF and, 848

destructors
adding to classes, 218
life cycle of objects and, 191

developers, WPF for C# developers, 833–834
development environments, for C# programs

overview of, 14
VCE as, 17
VS as, 14–17

development tools, VCE, 10
dialog boxes

adding, 562–563
configuring, 562–563
Confirm Installation, 569–570
Disk Cost dialog and, 568
displaying/arranging open, 520–522
license agreement, 567
Read Me dialog, 566–567
Welcome dialog, 566

dialog-based applications, types of Windows
applications, 512

dictionaries, 329
Dictionary<K,V> type, 349–350
DictionaryBase class, 291–292
dimensions, WPF controls, 859–860
directives, preprocessor, 35
directories, MDI Editor, 551
Directory class, 686–687
DirectoryInfo class, 689
disk space, Disk Cost dialog and, 568
disposable objects, 194
distribution media, for MDI Editor, 551
.dll (library) files

CIL assemblies and, 5–6
class libraries and, 229–232

DLR (Dynamic Language Runtime), 414
do loops, 78–80
Dock property, 450–451
docking, Windows controls, 449–451
DockPanel control

overview of, 858
WPF, 861–863

Document Object Model (DOM), 734–735
Document Type Definitions (DTDs), 730–731
documents, XML

creating with VS, 732–734
looping through all nodes of, 737–739

1016

DOM (Document Object Model) – events

overview of, 726
querying, 817–818
saving and loading, 808–811
structure of, 728–729
validating, 730–732
viewing contents of saved, 811–812

DOM (Document Object Model), 734–735
DTDs (Document Type Definitions), 730–731
duplex (two-way) patterns, WCF messages, 905
dynamic keyword, 414
Dynamic Language Runtime (DLR), 414
dynamic lookup

defined, 442
IDynamicMetaObjectProvider, 417–418
overview of, 413–414
using dynamic types, 414–417

dynamic resources, WPF, 878–879
dynamic types

overview of, 414
using, 414–417

dynamic variables, 413

E
EB (Expression Blend), 832–833
editors

Add Style Rule editor, 610
file system. See File System Editor
File Types Editor, 560–561
Launch Condition Editor, 676–677
MDI. See MDI Editor project
Modify Style editor, 610
Registry Editor, 556
User Interface Editor, 561–565

elements
array entries as, 110
defining styles for, 606–610

elements, XML
constructing element text with strings, 808
overview of, 726–727
root element, 728–729

Elements() member, LINQ to XML query
members, 818–819

<Ellipse> element, in WPF application,
840–842

else if statements, 73–74
e-mail

input validation of e-mail addresses, 598–600
ISendEmail interface and activity, 946–948
sending using Outlook, 949–951

endpoints, WCF communication, 903–904, 913
Entity Framework, ADO.NET, 796, 801
entity-relationship model, 796
entry point function, 127
enum keyword, 103
enumerable data sources, LINQ and, 756–757

enumerations
declaring, 103–104
overview of, 102–103
using, 105–107

error handling. See also debugging
listing and configuring exceptions, 181
notes on exception handling, 182–183
overview of, 175
processing workflow errors, 951–952
try . . .catch . . .finally, 176–177
types of errors, 155, 184
using exception handling, 177–181

Error List window
disappearing at runtime, 170
overview of, 23–24
VS development features, 17

escape sequence
string literals, 43
using, 39–40

event handlers
adding to buttons, 455
adding to ImageList control, 486–491
adding to LabelTextBox, 525–527
adding to TextBoxes, 460–464
anonymous methods, 389
defined, 377
event-driven applications and, 200
EventHandler and EventHandler<T> types, 388
LabelTextBox control, 529–530
menus, 502–503
multipurpose, 385–388
overview of, 400
return values and, 388–389
ToolStrip control, 507–509
using, 378–380
for WPF routed events, 857

event-driven applications, 200
EventHandler type, 388
EventHandler<T> type, 388
events

attached events in WPF, 858
Button control, 453–454
CheckBox control, 466
defining, 380–385, 400
event handling, 378–380
event-driven applications, 200
EventHandler and EventHandler<T> types, 388
handling menu events, 502–503
ListBox control, 478–479
ListView control, 481, 484
multipurpose event handlers, 385–388
overview of, 377–378
RadioButton control, 465–466
raising, 377
return values and event handlers, 388–389
RichTextBox control, 472
routed events in WPF, 854–858

1017

events – files

events (continued)
TextBox control, 458–459
ToolStripMenuItem, 501–502
Windows controls, 451–453

exceptions, 184, 375–377. See also error handling
executables (.exe)

CIL assemblies and, 5–6
WCF hosting and, 906

explicit conversion
convert commands for, 99–100
defined, 94
overview of, 95–99

explicit syntax. See method syntax, LINQ
export, Import and Export Settings Wizard in VS, 14–15
Express Products, Visual Studio 2010, 11
Expression Blend (EB), 832–833
expression trees, lambda expressions as, 435–436
expressions

assignment operators, 50
mathematical operators, 45–50
namespaces and, 51–54
operator precedence, 51
overview of, 45

expressions, lambda
for anonymous methods, 429–431
collections and, 436–437
defined, 443
as delegates and expression trees, 435–436
overview of, 429
parameters, 434
statement bodies, 434–435
using simple lambda expression, 431–434
using with collections, 437–439

Extensible Application Markup Language. See XAML
(Extensible Application Markup Language)

eXtensible Markup Language. See XML (eXtensible
Markup Language)

extension methods
defined, 443
defining and using, 426–429
LINQ, 758
overview of, 424–426

extensions
FrontPage Server Extensions, 670, 672
markup extensions, 842, 848
setting file extensions, 560–561
workflow extensions, 946

extern keyword, 243

F
F5 (debug), 21, 156
fatal errors, 155
fault contracts, WCF

defining service contracts, 919
overview of, 905

fields
adding to classes, 252
defining, 242
OOP, 188–189
refactoring class members, 252–253
using, 246–249

file access classes
File and Directory classes, 686–687
overview of, 723

File class, 686
File menu

merging, 518–520
properties, 517

file system data
delimited files (CSV), 702
DirectoryInfo class, 689
File and Directory classes, 686–687
file pointers indicating file position, 691–692
FileInfo class, 687–689
FileStream object, 690–691
I/O classes, 684–686
monitoring, 715–721
overview of, 683
path names and relative paths, 690
reading data from input stream, 699–701
reading data from random access files, 693–695
reading data with FileStream object, 692–693
reading data with StreamReader class, 701–702
reading/writing compressed data, 707–710
reading/writing compressed files, 706–707
serializing/deserializing objects, 710–715
StreamReader object, 699
streams, 683–684
StreamWriter object, 697
working with CSV files, 702–706
writing data to output stream, 697–699
writing data to random access files, 695–696

File System Editor
adding files to Installer package, 558–559
adding items to special folders, 557
deploying Web applications, 675
file properties, 557–558
overview of, 556–557

File Transfer Protocol (FTP), 670, 672
File Types Editor

creating actions during deployment, 560
overview of, 559–560
setting file extensions, 560–561

FileInfo class, 687–689
files. See also file system data

access classes, 686–687, 723
adding to Installer package, 558–559
cabinet files, 553
compressed, 706–710, 723
.dll (library) files, 5–6, 229–232
file extensions, 560–561
file pointers, 691–692

1018

FileStream object – goto command

manifest files, in ClickOnce deployment, 534, 536–537
needed for MDI Editor, 551
random access, 692–697
setting file properties during deployment, 557–558

FileStream object
file pointers indicating file position, 691–692
overview of, 690–691, 723
reading data, 692–695
writing data, 695–697

FileSystemWatcher class, 715–721
finally, in try . . .catch . . .finally, 176–178
First(), LINQ queries, 785–786
FirstOrDefault(), LINQ queries, 785–786
floating-point values, 37
flow control

bitwise operators, 64–67
Boolean logic and, 59–62
branching, 69–70
do loops, 78–80
goto statement, 68–69
if statements, 70–74
infinite loops, 88–89
interrupting loops, 87–88
looping and, 77–78
for loops, 83–87
operator precedence and, 68
overview of, 59
switch statements, 74–77
ternary (conditional) operator for, 70
using Boolean operators, 63–64
while loops, 80–82

folders
adding items to special folders during deployment, 557
selecting for installation packages, 568–569

for loops, 83–87
foreach clause, LINQ, 757
foreach loops

addressing elements of arrays, 113
IEnumberable interface and, 293

forms. See Windows Forms
Forms authentication, 619, 624
Forms Designer, 447
fragments, XML, 812–814, 825
from clause, LINQ, 756
FrontPage Server Extensions, 670, 672
FTP (File Transfer Protocol), 670, 672
function overloading, 147–148
functional (or procedural) programming, 186
functional construction, LINQ to XML, 804
functions

defining and using, 126–128
delegates, 149
exchanging data with, 130–131, 133–134
Main() function, 143–144
out parameters, 136–137
overloading, 147–148
overview of, 125–126

parameter arrays, 132–133
parameter matching, 132
parameters, 130
parameters and return values vs. global data, 142–143
reference and value parameters, 134–136
return values, 128–130
structs, 146–147
using command-line arguments, 144–146
using delegates to call functions, 149–152
variable scope, 137–140
variable scope in other structures, 140–142

G
GAC (global assembly cache), 6
garbage collection, 6–7
generics

?? operator, 336
constraining types, 354–356
contravariance, 368–369
covariance, 367–368
default keyword, 354
defined, 201
defining generic classes, 256–261, 351–353, 356–361
defining generic delegates, 366
defining generic interfaces, 364
defining generic methods, 364–366
defining generic operators, 362–363
defining generic structs, 363–364
defining generic types, 351
Dictionary<K,V> type, 349–350
inheriting from generic classes, 361–362
List<T> type, 341–343
modifying class library to use generic collection class,

350–351
nullable types, 333–334
operators and nullable types, 334–335
overview of, 331
sorting and searching generic lists, 343–344
sorting and searching List<T>, 345–349
System.Collection.Generics namespace, 340–341
using, 333
using nullable types, 336–340
variance and, 366–367
what they are, 332–333

get
accessors in property definition, 244
interface member definitions and, 258

GetCopy(), 299
global assembly cache (GAC), 6
global keyword, 374
global namespace, 52–53
global namespace qualifier, 374
goto command

flow control and, 68–69
interrupting loops, 87–88

1019

Grid control – inheritance

Grid control, WPF, 859, 863–866
<Grid> element

laying out WPF controls, 858
in WPF application, 840–842

GridView control
configuring, 633–634
displaying data with, 628–633

group queries, LINQ, 781–783
GroupBox control, 466–467
GZIP compression, 686, 706

H
Hejlsberg, Anders, 401
Hello World program, 936–937
hidden methods, base class

calling, 256–257
hiding, 254–255

Hit Count column, in Breakpoints window, 167–168
hosting, WCF

instructions in service example, 909
overview of, 906, 934
self-hosted services, 926–932

HTML
master pages and, 611
Web programming and, 577

HTTP
addresses, 902
default bindings, 904
stateless nature of, 600
WCF communication protocols, 901
Web applications based on, 577

HttpGetClientProtocol, 645
HttpPostClientProtocol, 645
Hungarian notation, 41

I
ICloneable interface

adding deep copying to class library, 301–302
shallow copying vs. deep copying, 237

ICollection interface
CollectionBase class exposing, 285
DictionaryBase class and, 291–292
System.Collection class, 278

IComparable interface
sorting and searching generic lists, 343–344
sorting collections, 320–321
sorting lists, 321–324
for value comparisons, 318–320

IComparer interface
sorting and searching generic lists, 343–344
sorting collections with, 320–321
sorting lists, 321–324
for value comparisons, 318–320

IDEs (Integrated Development Environments)
debugging changes at runtime, 170
defined, 12
development with, 10
entering break mode, 166

IDictionary interface
key values for indexing collections, 291–293
System.Collection class, 278

IDisposable interface, 194
IDynamicMetaObjectProvider, 417–418
IEnumberable interface
CollectionBase class and, 285
DictionaryBase class and, 291–292
foreach loops and, 293
LINQ and, 756–757
System.Collection class, 278

If activity, WF, 938, 956
if statements
else if statements, 73–74
overview of, 70–71
using, 71–73

IFormatter interface, 710–711
IIS (Internet Information Services)

configuring, 666–667, 680
overview of, 665–666
WCF hosting and, 906

IIS Manager
Administrative tools, 677–678
creating application pool with, 667–668
creating new application with, 669

IList interface
CollectionBase class exposing, 285
indexers and, 286
System.Collection class, 278

ImageLists. See also ListViews
adding event handlers to, 486–491
ImageList control, 484–485

Immediate window, 173–174
implicit conversion, 46, 94–95
Import and Export Settings Wizard, VS, 14–15
increment operators, 46
indentation, C# syntax, 32
indexers

adding to collection, 286–288
for collections, 286
keyed collections and IDictionary interface, 291–293

inetinfo.exe, 666
infinite loops

constructor definition and, 221–222
flow control and, 88–89

inheritance
class inheritance, 194–196
from generic classes, 361–362
interface inheritance, 213
overview of, 207

1020

initializers – lambda expressions

initializers
collection initializers, 404–405
defined, 442
object initializers, 402–404
overview of, 402
using, 405–407

input stream
overview of, 684
reading data from, 699–701

input validation, ASP.NET
checking for required input and e-mail address,

598–600
overview of, 597–598, 636

instance constructors, 192
instance members, of classes, 187, 207
instantiation, of objects, 187
integer literals, 42
integers

simple types, 36–37
two’s complement, 65–66

Integrated Development Environments (IDEs)
debugging changes at runtime, 170
defined, 12
development with, 10
entering break mode, 166

IntelliSense, 10
interface keyword, 212
interface members, 232–233
interfaces

vs. abstract classes, 232–235
adding property accessors with nonpublic accessibility,

260–261
class definition and, 211–212
CollectionBase class and, 285
definition of, 212–213
DictionaryBase class and, 291–292
explicit interface member implementation, 260
generic, 364
ICloneable interface, 237, 301–302
IComparable interface. See IComparable interface
IComparer interface. See IComparer interface
IDisposable interface, 194
IEnumberable interface. See IEnumberable interface
IFormatter interface, 710–711
implementing in classes, 258–260
interface members, 257–258
ISendEmail interface, 946–948
IService interface, 908
overview of, 193–194, 207
polymorphism and, 197–198
SDI and MDI interfaces, 497
System.Collection class, 278
User Interface Editor. See User Interface Editor

internal classes, 210–211
internal keyword

class definitions, 210
class member definitions, 242

interface definition, 212
interface member definitions, 257

Internet Information Services. See IIS (Internet
Information Services)

interrupting loops, 87–88
Intersect(), LINQ set operators, 787
invariance, 367
I/O classes, 684–686
is operator

type comparisons with, 305
using, 305–308

ISendEmail interface and activity, WF, 946–948
IService interface, 908
iterations
foreach clause in LINQ, 757
LINQ and, 756

iterators
for collections, 293–295, 297–298
implementing, 295–297
overview of, 329

J
Java, similarity of C# syntax to, 32
JavaScript, dynamic lookup and, 413
JIT (just-in-time) compilers, 5
joins, LINQ queries and, 790–791
just-in-time (JIT) compilers, 5

K
key frames, WPF animation and, 876–878
keyed collections, IDictionary interface and, 291–293
key-value pairs, Dictionary<K,V> type, 349–350

L
labels

defined, 496
Label and LinkLabel control, 456

LabelTextBoxes
adding event handlers to, 525–527, 529–530
creating, 523–524
extending, 527–528
properties of LabelTextBox control, 524–525, 528

lambda expressions
for anonymous methods, 429–431
collections and, 436–437
defined, 443
as delegates and expression trees, 435–436
overview of, 429
parameters, 434
statement bodies, 434–435
using simple lambda expression, 431–434
using with collections, 437–439

1021

languages – ListViews

languages
block-structured language, 32
C#. See C#
C++. See C++
CIL (Common Intermediate Language), 5
CLR (Common Language Runtime), 4, 6
DLR (Dynamic Language Runtime), 414
SQL (Structured Query Language), 796
strongly typed, 407
type-safe, 9
UML (Unified Modeling Language), 187–188
WSDL (Web Services Description Language), 640–641,

900
XAML. See XAML (Extensible Application Markup

Language)
XML. See XML (eXtensible Markup Language)

languages, query
LINQ. See LINQ (Language Integrated Query)
XPath, 745–746

large datasets, LINQ queries, 764–766
Launch Condition Editor

deploying Web applications, 676–677
VS setup editors, 561

layout, WPF controls, 858–859, 898
lazy evaluation, LINQ queries, 757–758
libraries, class

adding client to, 390–397
adding collection to, 288–291
adding deep copying to, 301–302
adding operator overloading to, 313–318
client application for, 272–274
expanding, 389–390
modifying to use generic collection class, 350–351
in VS, 228–232
writing for class module, 265–266

libraries, .dll (library) files and, 5–6, 229–232
license agreement, MDI Editor, 567
linking, in .NET Framework, 8
LinkLabels, 456
LINQ (Language Integrated Query)

aggregate operators, 766–767
any and all queries, 777–779
C# and, 9
clauses, 756–757
creating first LINQ query, 754–755
declaring variables, 756
deferred query execution, 757–758
extension methods, 758
First() and FirstOrDefault(), 785–786
group queries, 781–783
join queries, 790–791
lambda expressions and, 429
orderby clause, 761–762
ordering query results, 760–764
ordering query results by multiple levels, 779–781
overview of, 753–754
projection (creating new objects in queries), 774–776

query syntax vs. method syntax, 758–759
querying complex objects, 770–774
querying large dataset, 764–766
SELECT DISTINCT queries, 776–777
set operators, 787–790
Take() and Skip(), 783–785
using method syntax, 759–760
using numeric aggregate operators, 767–770
using with databases. See LINQ to SQL
using with XML. See LINQ to XML
varieties of, 795–796

LINQ to ADO.NET, 796
LINQ to DataSet, 796
LINQ to Entities, 796, 801–804, 825
LINQ to Objects, 795
LINQ to SQL

generating XML from databases, 814
installing SQL Server for example application,

797–798
navigating database relationships, 801–804
overview of, 796
queries, 798–801

LINQ to XML
Attributes() member, 821–823
constructing XML element text with strings, 808
constructors, 804–807
contents of saved XML documents, 811–812
Descendants() member, 819–821
Elements() member, 818–819
generating XML from databases, 814–817
loading XML from strings, 811
overview of, 795, 804
query members, 818
querying XML documents, 817–818
saving and loading XML documents, 808–811
working with XML fragments, 812–814

List<T> type
overview of, 341–342
sorting and searching, 345–349
using, 342–343

ListBoxes
defined, 496
events, 478–479
ListBox control, 477
methods, 478–479
properties, 477–478
working with, 479–481

lists
sorting, 321–324
sorting and searching generic, 343–344

ListViewItem class, 484
ListViews. See also ImageLists
ColumnHeader added to Columns collection, 484
defined, 496
events, 481, 484
ListView control, 481
ListViewItem class, 484

1022

literal values – Message Transmission Optimization Mechanism (MTOM)

methods, 481, 484
properties, 481–483

literal values
assigning, 39
overview of, 42
string literals, 43

logic errors, 155
Login control, 623–625
login page, 624–625
login.aspx page, Forms authentication, 624
lollipop syntax, for interfaces, 193
lookup, dynamic

defined, 442
dynamic types, 414
IDynamicMetaObjectProvider, 417–418
overview of, 413–414
using dynamic types, 414–417

looping
avoiding infinite loops, 221–222
do loops, 78–80
foreach loops and, 293
foreach loops used with arrays, 113
infinite loops, 88–89
interrupting loops, 87–88
for loops, 83–87
overview of, 77–78
through all nodes of XML Document, 737–739
unary operators and, 47
variable scope and, 140–142
while loops, 80–82

M
Main() function

overview of, 143–144
Write() function compared with, 128

managed code
CLR and, 6
garbage collection and, 6–7

Mandelbrot sets, 85
manifest files, in ClickOnce deployment, 534, 536–537
margins, WPF controls, 859–860
markup extensions

WPF, 848
XAML, 842

master pages, ASP.NET
creating, 613–614
overview of, 611–612, 636
using, 614–616

mathematical operators
manipulating variables, 47–50
overview of, 45–47

Maxima(), 161
MaxVal(), 161–162
MDI (Multiple Document Interface)

building MDI applications, 513–516

creating MDI applications, 532
creating MDI text editor, 516–518
types of Windows applications, 497, 512–513

MDI child, 513
MDI containers, 513
MDI Editor project

building the project, 565–566
configuring, 555
Confirm Installation dialog, 569–570
creating and using updates, 545–546
creating Windows Installer project for, 552
File System Editor and, 556–559
File Types Editor and, 559–561
Installation Complete dialog, 571
installing using ClickOnce, 543–545
installing using Windows Installer, 566
Launch Condition Editor, 561
license agreement dialog, 567
optional files, 568
overview of, 556
planning installation, 556
preparing for deployment, 535–536
prerequisites for installation, 554
progress indicator during installation, 570
project properties, 553
Read Me dialog, 566–567
running application after installation, 571
selecting installation folder, 568–569
uninstalling application, 571
User Interface Editor, 561–565
VS setup editors and, 556
Welcome page, 566

members, class. See class members
Membership API, 619
membership providers, 619
menus

adding functionality to, 501–502
combining ToolStrip and MenuStrip controls, 498
creating manually, 499–501
handling menu events, 502–503
MenuStrip control, 498, 532
merging, 518–520
properties of menu items, 517
properties of ToolStripMenuItem, 501
using MenuStrip control, 498–499

MenuStrip control. See also menus
combining ToolStrip and MenuStrip controls, 498
overview of, 498, 532

Merge Module Project template, VS (Visual
Studio 2010), 546

message contracts, WCF
defining service contracts, 919
overview of, 905

message patterns, WCF, 905
Message Transmission Optimization Mechanism

(MTOM), 900

1023

metadata – .NET Framework

metadata
CIL assemblies and, 6
in WCF service example, 912

method parameters, named and optional
defined, 442
guidelines for, 424
overview of, 420–421
using, 421–424

method syntax, LINQ
ordering by multiple levels, 781
ordering query results, 762–764
for projection, 776
vs. query syntax, 758–759
using, 759–760

methods
adding to ASP.NET Web service, 648
adding to classes, 250–251
advanced method parameters, 418
calling overridden or hidden methods, 255–257
calling Web service methods, 641–642
creating XML nodes, 741
defining, 242–243
defining generic, 364–366
deleting XML nodes, 743
Directory class, 686–687
File class, 686
vs. functions, 126
hiding base class methods, 254–255
ListBox control, 478–479
ListView control, 481, 484
named parameters, 420–421
object, 189
optional parameters, 418–420
partial method definitions, 262–264
selecting XML nodes, 744
System.Object , 215–217
using, 246–249
using named and optional parameters, 421–424

methods, anonymous
event handlers and, 389
lambda expressions and, 429–431
overview of, 400

methods, extension
defined, 443
defining and using, 426–429
LINQ, 758
overview of, 424–426

methods, static
Directory class, 686–687
File class, 686
method definitions, 243

Microsoft Expression Blend (EB), 832–833
Microsoft Installer (MSI) database, 548, 553
Microsoft Outlook, 949–951
Microsoft Windows Installer. See Windows

Installer
Modify Style editor, 610

monitoring
file system, 715–721
variable content, 170–172

Mono, 4
mouse click event, for WPF controls, 853
MSI (Microsoft Installer) database, 548, 553
MSMQ

default bindings, 904
WCF communication protocols, 901

MTOM (Message Transmission Optimization
Mechanism), 900

multidimensional arrays, 113–115
Multiple Document Interface. See MDI (Multiple

Document Interface)
multipurpose event handlers, 385–388

N
named method parameters

defined, 442
guidelines for, 424
overview of, 420–421
using, 421–424

named pipes
addresses, 902
default bindings, 904
WCF communication protocols, 901

namespace keyword, 52
namespaces

:: operator for accessing types in, 373
global namespace qualifier, 374
overview of, 51–54
qualifying, 400
Web service, 642
XML, 729–730

naming conventions
functions, 127
paths, 690
variables, 40–42

native code, vs. compiled code, 5
navigation, LINQ to Entities, 801–804
navigation, web site

adding, 617–619
overview of, 616

navigation controls, 616, 636
nested types, 257
.NET Compact Framework, 4
.NET Framework

assemblies, 5–6
CIL and JIT and, 5
exception types, 181
garbage collection, 6–7
linking and, 8
managed code, 6
remoting, 899
serialization and, 714

1024

new keyword – operators

Web services and, 642
what is contained in, 4–5
what it is, 3–4
writing applications with, 5, 7–8

new keyword, 258
nodes, XML

changing values of, 739–740
creating, 742–743
inserting, 740–741
looping through all nodes of XML Document,

737–739
removing, 743–744
selecting, 744, 746–749

nonabstract members, in abstract classes, 232
nonbreak (normal) mode debugging

diagnostic output vs. tracepoints, 164–166
outputting debugging information, 158
overview of, 157
tracepoints, 163–164
writing text to output window, 158–163

noncreateable constructor, 217
nondefault constructors, 190, 217
normal (nonbreak) mode debugging

diagnostic output vs. tracepoints, 164–166
outputting debugging information, 158
overview of, 157
tracepoints, 163–164
writing text to output window, 158–163

null coalescing operator (?? operator), 336
nullable types

defined, 371
overview of, 333–334
reference types vs. value types, 201
using, 336–340

numbers
LINQ numeric aggregate operators, 767–770
simple types, 36–37

O
Object Browser, VS/VCE, 224–225
object initializers

overview of, 402–404
using, 405–407

objects
disposable, 194
everything is an object, 189–190
life cycle of, 190–191, 207
methods, 189
object element syntax in XAML, 845–846
overview of, 207
properties and fields, 188–189
querying complex, 770–774
relationships between, 198
shallow copying vs. deep copying, 237
what they are, 187–188

objects, serialized
overview of, 710–711
serializing/deserializing objects, 711–715

one-way (simplex) patterns, WCF messages, 905
OOP (object oriented programming)

:: operator and global namespace qualifier, 373–375
adding clients to class libraries, 390–397
adding custom exceptions to class libraries,

375–377
anonymous methods, 389
collections, 199
constructors, 190–191
containment of object instance, 198–199
custom exceptions, 375
defining events, 381–385
destructors, 191
disposable objects, 194
event definition, 380
event handling, 378–380
EventHandler and EventHandler<T> types, 388
events, 200, 377–378
everything is an object, 189–190
expanding class libraries, 389–390
inheritance, 194–196
interfaces, 193–194
life cycle of objects, 190
methods, 189
multipurpose event handlers, 385–388
.NET Framework and, 4
operator overloading, 200
overview of, 185–187
polymorphism, 196–198
properties and fields, 188–189
reference types vs. value types, 201
relationships between objects, 198
return values and event handlers, 388–389
static and instance class members, 191–192
techniques, 192
what an object is, 187–188
Windows applications and, 201–204

operands
operator overloading and, 311
overview of, 45

operation contracts, WCF
defining service contracts, 919
overview of, 904
in WCF service examples, 910, 924

operations, WCF, 900
operator overloading

adding to class libraries, 313–318
conversion operators and, 324–326
in OOP, 200
value comparisons and, 308–313

operator precedence, 51, 68
operators

aggregate operators in LINQ, 766–770
categories of, 45

1025

operators – PLINQ (Parallel LINQ)

operators (continued)
generic, 362–363
nullable types and, 334–335
operator overloading, 200
overloading conversion operators, 324–326
precedence, 51, 68

operators, assignment
assigning fixed values, 39
bitwise shift operators and, 67
Boolean, 62
overview of, 50
variable assignment, 44

operators, bitwise
bitwise shift operators, 67
overview of, 64–67

operators, Boolean
assignment operators, 62
bool types and, 36
comparison (relational) operators, 60–61
conditional operators, 61–62
overview of, 59–60
using, 63–64

operators, comparison
Boolean, 60
operator overloading and, 311

operators, conditional (ternary)
Boolean, 61–62
branching and, 70
common use of, 80
overview of, 45

operators, mathematical
manipulating variables with, 47–50
overview of, 45–47

operators, unary
Boolean, 61
looping and, 47
mathematical operators, 45–46
operator overloading and, 309–311
overview of, 45

optional method parameters
defined, 442
guidelines for, 424
overview of, 418–420
using, 421–424

orderby clause, LINQ, 761–762
ordering query results, LINQ

method syntax for, 762–764
by multiple levels, 779–781
orderby clause, 761–762
overview of, 760–761

out parameters, 136–137
Outlook, 949–951
output stream

overview of, 684
writing data to, 697–699

Output window
diagnostic output vs. tracepoints, 164–166

overview of, 157, 184
writing debugging information to, 158–163

overflow, variable, 97–99
overflow checking context, 97–99, 100
overloading conversion operators, 324–326
overloading functions, 147–148
overloading operators. See operator overloading
overridden methods, 255–257
override keyword

calling overridden base class methods, 255–257
generic operators, 362–363
hiding overridden base class methods, 254–255
method definitions, 243
property definitions, 246

P
packages

package files, 553
Windows Installer, 548–549

padding, WPF controls, 859–860
Parallel LINQ (PLINQ), 796
parameter arrays, 132–133
parameters

advanced method parameters, 418
command-line, 144–146, 154
functions accepting, 130
generic, 371
vs. global data, 142–143
lambda expressions, 434
named parameters, 420–421, 424
optional parameters, 418–420, 424
out parameters, 136–137
overview of, 154
parameter matching when calling functions, 132
by reference and by value, 132–134
using named and optional parameters, 421–424

params keyword, 132–133
parent (base) class, inheritance and, 194–195
Parse(), XML documents from string, 811
partial classes, 261–262
partial keyword

partial class definitions, 261–262
partial method definitions, 262–264

partial methods, 262–264
partitioning operators, in LINQ, 783
PascalCase

function names in, 127
namespaces in, 52
overview of, 42

passing data, with Web services, 659–662
paths, file

names, 690
overview of, 723

planning package installation, 550–551, 556
PLINQ (Parallel LINQ), 796

1026

polymorphism – public keyword

polymorphism, 196–198, 207
Portal Web services, 639
postbacks, ASP.NET

Ajax postback, 593–595
creating strongly typed previous page, 590–593
displaying user input, 589–591
overview of, 588–589, 636
using UpdatePanels with triggers, 595–597

preprocessor directives, 35
prerequisites, installation package, 554
PreviousPageType directive, 590–593
private keyword

class member definitions, 241
interface member definitions, 257

private properties, 188–189
programming

basic description of a program, 31
functional (or procedural), 186
WCF, 906
Web. See ASP.NET
Windows. See Windows Forms
WPF, 884

programming, object-oriented
:: operator and global namespace qualifier,

373–375
adding clients to class libraries, 390–397
adding custom exceptions to class libraries,

375–377
anonymous methods, 389
collections, 199
constructors, 190–191
containment of object instance, 198–199
custom exceptions, 375
defining events, 381–385
destructors, 191
disposable objects, 194
event definition, 380
event handling, 378–380
EventHandler and EventHandler<T> types, 388
events, 200, 377–378
everything is an object, 189–190
expanding class libraries, 389–390
inheritance, 194–196
interfaces, 193–194
life cycle of objects, 190
methods, 189
multipurpose event handlers, 385–388
.NET Framework and, 4
operator overloading, 200
overview of, 185–187
polymorphism, 196–198
properties and fields, 188–189
reference types vs. value types, 201
relationships between objects, 198
return values and event handlers, 388–389
static and instance class members, 191–192
techniques, 192

what an object is, 187–188
Windows applications and, 201–204

programming languages
C# as block-structured language, 32
.NET Framework and, 4

progress indicator, during installation, 570
projection (creating new objects in queries), LINQ

method syntax for, 776
overview of, 774–775
SELECT DISTINCT queries, 776–777
using, 775–776

properties
adding property accessors with nonpublic

accessibility, 260–261
adding to classes, 251–252
automatic, 253
Button control, 453
CheckBox control, 466
defining, 244–246
DirectoryInfo class, 689
File menu items, 517
FileInfo class, 688–689
installation package project, 553
LabelTextBox control, 524–525, 528
ListBox control, 477–478
ListView control, 481–483
in OOP, 188–189
property element syntax in XAML, 846–848
RadioButton control, 465
refactoring class members, 252–253
RichTextBox control, 470–471
setting file properties during deployment,

557–558
StatusStrip control, 509–510
System.Runtime.Serialization, 918
TabControl control, 491–492
TextBox control, 457–458
ToolStrip control, 504
ToolStripMenuItem, 501
using, 246–249
Windows controls, 448–449
XmlElement class, 735–737

Properties window
disappearing at runtime, 170
overview of, 23
VS development features, 16–17

protected keyword
accessibility, 195
class member definitions, 242
interface member definitions, 257

public keyword
class definition, 210
class member definition, 241
interface definition, 212
interface member definition, 257
method definition, 243

1027

public properties – runtime

public properties, 188–189
Publish Wizard, 539–543
publishing applications. See also deploying Windows

applications
configuring, 538–539
Publish Wizard, 539–543
Web applications, 672–674, 680

Python, 413

Q
qualified names, 52
query languages

LINQ. See LINQ (Language Integrated Query)
XPath, 745–746

query members, LINQ to XML
Attributes() member, 821–823
Descendants() member, 819–821
Elements() member, 818–819
overview of, 818

query syntax, LINQ
in deferred query execution, 757–758
vs. method syntax, 758–759
ordering by multiple levels, 779–781
ordering query results, 760–762
querying complex objects, 770–774
querying large datasets, 764–766
using projection, 775–776

R
RAD (rapid application development) model, 447
RadioButtons

events, 465–466
properties, 465
RadioButton control, 464–465
selection controls. See RadioButtons
using, 467–470

raising events, 377
random access files

overview of, 692
reading data from, 693–695
writing data to, 695–697

Rank enumerations, 266–268
rapid application development (RAD) model, 447
Read(), FileStream class, 693
read access, to properties, 188
Read Me dialog, MDI Editor, 566–567
reading data

with FileStream class, 692–693
from input stream, 699–701
from random access files, 693–695
reading/writing compressed files, 706–710
with StreamReader class, 701–702
to streams, 723

ReadLine(), StreamReader class, 701–702
readonly keyword, 242
read-only properties, 188
ref keyword, 148
refactoring class members, 252–253
reference types

boxing and unboxing, 303–305
delegates for storing, 149–152
as operator for converting type to, 326
passing parameters by reference, 134–136
vs. value types, 201

reflection, dynamic lookup and, 413
Registry Editor, VS setup editors, 556
RegularExpressionValidator control, 598
relational databases, 796
relational operators. See comparison operators
relationships, between objects

collections, 199
containment, 198–199
overview of, 198, 207

relative paths, file system data, 690
Release configuration, building applications, 156
remoting, WCF as replacement for, 899
request/response patterns, WCF messages, 905
RequiredFieldValidator control, 597, 598
resources, CIL assemblies and, 6
resources, WPF

dynamic, 878–879
overview of, 898
referencing style resources, 879
static, 878
using, 880–883

resources, WPF dynamic, 878–879
restriction operator, LINQ where clause as, 757
return command, interrupting loops, 87
return keyword, 128–130
return values

event handlers and, 388–389
exchanging data using functions, 128–130
vs. global data, 142–143
overview of, 154

reusable code, functions and, 126
RichTextBoxes

events, 472
properties, 470–471
RichTextBox control, 470
using, 472–476

roles, 620
rollbacks, Windows Installer and, 549
root element, XML documents, 728–729
routed events, WPF controls

overview of, 852–854
working with, 855–857

Ruby, 413
runtime, ASP.NET, 578

1028

schemas – simplex (one-way) patterns

S
schemas, XML

overview of, 751
validating XML documents, 731–732

scope, variable
in other structures, 140–142
overview of, 137, 154
using, 137–140

ScriptManager object, 594–595
SDI (Single Document Interface), Windows applications,

497, 512–513
sealed classes, 210
searches

generic lists, 343–344
List<T>, 345–349

security, ASP.NET
authentication configuration, 619–623
creating login page, 624–625
security controls, 623–624
using CreateUser Wizard, 625–626

security requirements, in ClickOnce deployment,
537–538

Security Setup Wizard, 620
SEH (structured exception handling), 176
select clause, LINQ, 757
SELECT DISTINCT queries, LINQ, 776–777
select keyword, 774
selection controls

CheckBoxes. See CheckBoxes
defined, 496
RadioButtons. See RadioButtons

self-hosted services, WCF, 906, 926–932
self-repair, Windows Installer and, 549
semantic errors, 155
Sequence activity, WF, 938–939, 956
serial devices, stream as abstract representation of, 683
serialized objects

overview of, 710–711
serializing/deserializing objects, 711–715

server controls
ASP.NET, 586–588
overview of, 586
postback and, 588

server-side state management, 603–606
application state, 605
cache, 605–606
overview of, 603
session state, 603–604

service contracts, WCF
defining, 918–920
overview of, 904
in WCF service examples, 910–911, 924–925
working with, 920–925

service-oriented architecture (SOA), 899
services, WCF

Add Service Reference tool for accessing, 912–913

bindings in, 913–914
configuration details, 911–912
definition of, 910–911
self-hosted services, 925–926
using simple WCF service and client, 906–908
working with self-hosted services, 926–932

services, Web
adding methods to, 648
application architecture, 639
application scenarios, 638–639
architecture of, 640
C# and, 9
calling asynchronously, 655–657, 664
calling methods, 641–642, 664
client applications, 639
clients, 645
creating, 643, 646–647
implementing ASP.NET client, 658
implementing Windows client for, 649–654
.NET Framework and, 642
overview of, 637
passing data with, 659–662, 664
testing, 649
WCF as replacement for, 899
WebMethod attribute, 643–644
WebService attribute, 643
WebServiceBinding attribute, 644
where to use, 637–638
WSDL, 640–641
WS-I basic profile, 642

session state, server-side state management, 603–604
set

accessors in property definition, 244
interface member definitions and, 258

set operators, LINQ queries, 787–790
setup editors, VS

File System Editor, 556–559
File Types Editor, 559–561
Launch Condition Editor, 561
overview of, 556
User Interface Editor, 561–565

setup files, MSI files, 553
Setup Project template, VS, 546
Setup Wizard, VS, 547
setup.exe, 677
shallow copying

vs. deep copying, 237
with GetCopy(), 299

shortcut keys, setting for menu items, 500
signature, of functions, 126, 148
Silverlight, 830
simple types, 36–40

non-numeric types, 38
numbers, 36–37
type conversion and, 95
using, 38–40

simplex (one-way) patterns, WCF messages, 905

1029

Single Document Interface (SDI) – syntax

Single Document Interface (SDI), Windows applications,
497, 512–513

site navigation, ASP.NET
adding, 617–619
overview of, 616

Skip(), LINQ queries, 783–785
snaplines, using, 450
snapping, Windows controls, 449–451
SOA (service-oriented architecture), 899
SOAP

calling Web service methods, 641–642
converting method calls to SOAP message, 645
Web services and, 640

SOAP body, 641
SOAP envelope, 641
SOAP header, 641
SoapHttpClientProtocol, 645
Solution Configurations drop-down list, 156
Solution Explorer

overview of, 22–23
VS development features, 16

solutions, VS, 11
Sort(), ArrayList, 320–323
sorting

collections, 320–321
generic lists, 343–344
List<T>, 345–349

specifying condition, for LINQ where clause, 757
SQL (Structured Query Language), 796
SQL Server

creating new database, 626–628
installing for LINQ database example, 797–798
reading from/writing to SQL Sever database, 626, 636
security configuration and, 621

stack order, WPF controls, 859
StackPanel control, 859, 866–867
state, object, 188
state management

client-side, 601–603
overview of, 600–601, 636
server-side, 603–606

statement bodies, lambda expressions, 434–435
statements, C# code, 32
static class members, 191–192, 207
static classes, 192
static constructors, 191–192
static functions, 128
static methods
Directory class, 686–687
File class, 686
method definitions, 243

static resources, WPF, 878
status bars

properties, 509–510
StatusStrip control, 532
working with, 510–512

StatusStrip control. See status bars

stepping through code, 172–173
storyboards, animation and, 875
StreamReader class

overview of, 699
reading data from input stream, 699–701
reading data with, 701–702

streams
file system data and, 683–684
overview of, 723
types of, 684

StreamWriter class
overview of, 697
writing data to output stream, 697–699

string literals
assigning, 40
overview of, 43

strings
loading XML from, 811
manipulating, 116–118
simple types, 38
working with, 119–121

strongly typed classes, 278
strongly typed language, 407
strongly typed page, 590–593
struct keyword, 107
structs

classes compared with, 201, 235–237
defining, 107–108
functions, 146–147
generic, 363–364
overview of, 107
using, 108–109

structured exception handling (SEH), 176
Structured Query Language (SQL), 796
styles, ASP.NET

defining, 606–610
defining style classes, 610–611
overview of, 606

styles, WPF
controls, 898
overview of, 868–869
referencing style resources, 879
using, 870–873

suffixes, variable types and, 42
Suit enumerations, 266–268
switch statements

overview of, 74–76
using, 76–77

symbolic information, Debug configuration, 156
syntax, C#, 32–34, 57
syntax, XAML

attribute syntax, 846
content syntax, 847–848
object element syntax, 845–846
overview of, 845
property element syntax, 846–848

1030

System namespace – types

System namespace, 340
System.Array class, 278–279
System.Collection class, 278
System.Collection.Generics namespace, 333,

340–341
System.Exception, 375
System.IO namespace, 684
System.IO.Compression, 686, 707
System.IO.MemoryMappedFiles, 692
System.Linq, 340
System.Object

interfaces not inheriting from, 213
methods, 215–217
shallow copying vs. deep copying, 237

System.Runtime.Serialization, 710, 918
System.ServiceModel, 918–919
System.Text, 340
System.Web, 642

T
TabControls

defined, 496
properties, 491–492
TabControl control, 491
working with, 492–494

Take(), LINQ queries, 783–785
TCP

addresses, 902
default bindings, 904
WCF communication protocols, 901

templates, WPF
overview of, 869–870
using, 870–873

ternary (conditional) operators
Boolean, 61–62
branching and, 70
common use of, 80
overview of, 45

testing ASP.NET Web service, 649
text editors, creating MDI text editor, 516–518
TextBoxes. See also LabelTextBoxes; RichTextBoxes

defined, 496
event handlers added, 460–464
events, 458–459
properties, 457–458
TextBox control, 457
working with, 459–460

ThenBy(), LINQ method syntax, 781
this keyword, calling overridden or hidden base class

methods, 256–257
ThrowException(), 180–181
timelines, WPF animation and, 876–878
toolbars

combining ToolStrip and MenuStrip controls, 498
Debug toolbar, 173

event handlers for, 507–509
extending, 505–507
items of ToolStrip control, 504–505
properties, 504
ToolStrip control, 503–504, 532
VS Toolbox toolbar, 16

Toolbox toolbar, VS development features, 16
ToolStrip control. See also toolbars

combining ToolStrip and MenuStrip controls, 498
items of, 504–505
overview of, 503–504, 532

ToolStripButton, 504
ToolStripComboBox, 505
ToolStripDropDown, 498
ToolStripDropDownButton, 505
ToolStripLabel, 504
ToolStripMenuItem

adding functionality to menus, 501–502
overview of, 498
properties, 501

ToolStripProgressBar, 505
ToolStripSeparator, 498, 499, 505
ToolStripTextBox, 505
Trace.Assert(), 168–169
tracepoints

diagnostic output vs. tracepoints, 164–166
in nonbreak (normal) mode debugging, 163–164

Trace.WriteLine(), 158, 162–163
triggers, ASP.NET, 595–597
triggers, WPF

overview of, 872, 874–875
using, 880–883

try . . .catch . . .finally
error handling, 176–177
notes on exception handling, 182–183

tunneling, through WPF controls, 853
two’s complement, integer storage and, 65–66
two-way (duplex) patterns, WCF messages, 905
type comparisons

boxing and unboxing, 303–305
is operator, 305
overview of, 303, 329
using is operator, 305–308

type conversion
convert commands for explicit conversion, 99–100
explicit conversion, 95–99
how it works, 49
implicit conversion, 94–95
overview of, 94
using, 101–102

type inference, 407–409, 442
types

:: operator for accessing, 373
constraining, 354–356
dynamic, 414–417
generic, 351, 371
nested, 257

1031

types – value comparisons

types (continued)
.NET Framework and, 4
objects created from, 187
reference types vs. value types, 201
variable, 36

types, anonymous
defined, 442
using, 409–412

types, complex
arrays, 110
arrays of arrays, 115–116
declaring arrays, 110–111
declaring enumerations, 103–104
defining structs, 107–108
enumerations, 102–103
foreach loops used with arrays, 113
multidimensional arrays, 113–115
overview of, 102
string manipulation, 116–118
structs, 107
using arrays, 111–112
using auto-completion in VS, 119–121
using enumeration, 105–107
using structs, 108–109

types, dynamic
overview of, 414
using, 414–417

types, nullable
defined, 371
overview of, 333–334
reference types vs. value types, 201
using, 336–340

types, reference
boxing and unboxing, 303–305
delegates for storing, 149–152
as operator for converting type to, 326
passing parameters by reference, 134–136
vs. value types, 201

types, simple, 36–40
non-numeric types, 38
numbers, 36–37
type conversion and, 95
using, 38–40

types, value
boxing and unboxing, 303–305
nullable types, 333–334
passing parameters by value, 134
reference types vs. value types, 201

type-safe languages, 9

U
u (unsigned variables), 37
UAC (User Account Control), 677
UI elements, VS development and, 10
UIElement, WPF controls deriving from, 858

UML (Unified Modeling Language), 187–188
unary operators

Boolean, 61
looping and, 47
mathematical operators, 45–46
operator overloading and, 309–311
overview of, 45

unbounded types, 354
unboxing, type comparisons, 303–305
underlying types, enumerations and, 103
Unicode Value, of string literals, 43
Unified Modeling Language (UML), 187–188
Uniform Resource Identifier (URI), 729
uninstalling

applications, 571
Windows Installer and, 550

Union(), LINQ set operators, 787
unsigned variables (u), 37
UpdatePanel control, 595–597
updates, ClickOnce deployment and, 545–546
URI (Uniform Resource Identifier), 729
User Account Control (UAC), 677
user controls

debugging, 527
overview of, 522

user controls, WPF
implementing dependency properties on, 884–887
overview of, 884
using, 887–895

user input
how it works, 49
postbacks displaying, 589–591
validation of, 598–600

User Interface Editor
adding additional dialogs, 563–565
configuring default dialogs with, 562–563
overview of, 561
starting, 562

user-to-application communication, Web services and,
637

using statement
namespaces and, 54
for simple, nonverbose code, 161

V
validation

overview of, 636
WF activities, 952, 956
XML documents, 730–732, 751

validation controls, ASP.NET
checking for required input and e-mail address,

598–600
overview of, 597–598

value comparisons
adding operator overloading to class libraries,

313–318

1032

value types – VS (Visual Studio 2010)

IComparable and IComparer interfaces, 318–320
operator overloading, 308–313
overview of, 308, 329
sorting collections, 320–321
sorting lists, 321–324

value types
boxing and unboxing, 303–305
nullable types, 333–334
passing parameters by value, 134
reference types vs. value types, 201

values, literal
assigning, 39
overview of, 42
string literals, 43

values, return
event handlers and, 388–389
exchanging data using functions, 128–130
vs. global data, 142–143
overview of, 154

var keyword
declaring variables in LINQ queries, 756
type inference and, 408–409

variable declaration
arrays, 110–111
enumerations, 103–104
in LINQ queries, 756
overview of, 44

variable scope
in other structures, 140–142
overview of, 137, 154
using, 137–140

variables
arrays, 110
arrays of arrays, 115–116
complex types, 102
constants, 75–76
declaring and assigning, 44
declaring arrays, 110–111
declaring enumerations, 103–104
declaring in LINQ queries, 756
dynamic, 413–414
enumerations, 102–103, 105–107
explicit conversion, 95–100
foreach loops used with arrays, 113
implicit conversion, 94–95
literal values, 42–44
mathematical operators manipulating, 47–50
monitoring variable content, 170–172
multidimensional arrays, 113–115
naming, 40–42
overview of, 35–36, 93
reference types vs. value types, 201
simple types, 36–40
string manipulation, 116–118
structs, 107–108
type conversion and, 94, 101–102
using arrays, 111–112

using auto-completion in VS, 119–121
using structs, 108–109

variables, WF
overview of, 939–940, 956
using, 940–943

variance
contravariance, 368–369
covariance, 367–368
defined, 371
overview of, 366–367

VCE (Visual C# 2010 Express)
adding classes, 226–227
Class View window, 222–224
Command and Immediate window, 173–174
console applications, 18–21
debugging in, 156–157
development environments for C# programs, 17
development tools, 10
monitoring variable content, 170
Object Browser window, 224–225
options for entering break mode, 168–169
VS compared with, 13
Watch window, 171–172
writing application using .NET Framework, 5
XAML and, 832

vectors, 345–349
verbatim strings, 43–44
view state, client-side state management, 601
virtual keyword

interface member definitions, 259
method definitions, 243
property definitions, 246

virtual members, of base classes, 195
Visual Basic, 447
Visual C# 2010 Express. See VCE (Visual C# 2010

Express)
Visual Studio 2010. See VS (Visual Studio 2010)
Visual Web Developer 2010 Express, 10
void keyword, 128
VS (Visual Studio 2010)

adding classes, 226–227
adding members from class diagram, 249–250
Call Hierarchy, 224
class diagrams, 227–228
Class View window, 222–224
Command and Immediate window, 173–174
creating console applications, 18–21, 936
creating first LINQ query, 754–755
debugging in, 156–157
as development environments for C# programs, 14–17
entering break mode, 167–168
Express Products, 11
features supporting .NET development, 10–11
File System Editor, 556–559
File Types Editor, 559–561
Launch Condition Editor, 561
monitoring variable content, 170

1033

VS (Visual Studio 2010) – WF (Windows Workflow Foundation)

VS (Visual Studio 2010) (continued)
Object Browser window, 224–225
setup and deployment project types, 546–547
setup editors, 556
solutions, 11
tracepoints, 163–164
User Interface Editor, 561–565
VCE compared with, 13
Visual Web Development Server, 665
Watch windows, 171–172
WCF service test client, 914–917
writing application using .NET Framework, 5
XAML and, 832

W
W3C (World Wide Web Consortium)

SOAP specification, 642
WSDL standard, 641

WAS (Windows Activation Service), 906
Watch window(s), monitoring variable content, 171–172
WCF (Windows Communication Foundation)

Add Service Reference tool, 912–913
addresses, endpoints, and bindings, 902–904
behaviors, 905–906
bindings in service example, 913–914
class definition for service example, 910–911
communication protocols, 901–902
components of server project, 908
concepts, 901
configuration details for service example, 911–912
contracts, 904–905
creating Web services with, 642
data and service contracts in service example, 909–910
defining service contracts, 920–925
host instructions in service example, 909
hosting, 906
message patterns, 905
overview of, 899–901
programming, 906
self-hosted services, 925–926
service contracts, 917–920
using simple WCF service and client, 906–908
using WCF test client, 915–917
WCF test client, 914–915
WF (Windows Workflow Foundation) integration

with, 935
working with self-hosted services, 926–932

WCF test client
overview of, 914–915
using, 915–917

Web applications. See also ASP.NET
architecture, 639
C# and, 9
compared with desktop applications, 829
creating, 669

deploying. See deploying Web applications
installing, 677–678
overview of, 578
scenarios, 638–639
WPF and, 848

Web browsers, HTML support in, 578
Web Forms, 10
Web pages, creating simple page, 579–587
Web programming

ASP.NET. See ASP.NET
deploying Web applications. See deploying Web

applications
Web services. See Web services

Web server controls, 636
Web Service Enhancements (WSE), 899
Web services

adding methods to, 648
application architecture, 639
application scenarios, 638–639
architecture, 640
C# and, 9
calling asynchronously, 655–657, 664
calling methods, 641–642, 664
client applications, 639
clients, 645
creating, 643, 646–647
implementing ASP.NET client, 658
implementing Windows client for, 649–654
.NET Framework and, 642
overview of, 637
passing data with, 659–662, 664
testing, 649
WCF as replacement for, 899
WebMethod attribute, 643–644
WebService attribute, 643
WebServiceBinding attribute, 644
where to use, 637–638
WSDL, 640–641
WS-I basic profile, 642

Web Services Description Language (WSDL), 640–641,
900

Web Services Interoperability (WS-I) basic profile, 642
Web Setup Project template, VS, 546, 675–677
web sites, copying as means of Web application

deployment, 669–672
web.config

configuration details for WCF service example,
911–912

master pages and, 612
security configuration and, 621–622

WebMethod attribute, 643–644
WebService attribute, 643
WebServiceBinding attribute, 644
Welcome dialog, MDI Editor, 566
well-formed XML, 730, 751
WF (Windows Workflow Foundation), 934

activity designers, 953

1034

where clause – Windows Forms

activity validation, 952
adding activity designer, 953–955
arguments and variables, 939–940
custom activities, 944–945
defining ISendEmail interface and activity, 946–948
Hello World program, 936–937
making argument mandatory, 952–953
overview of, 935
processing workflow errors, 951–952
returning arguments from workflow, 943–944
sending e-mail using Outlook, 949–951
using arguments and variables, 940–943
workflow extensions, 946
WorkflowApplication class, 948–949
workflows and activities, 937–939
writing custom activity, 945–946

where clause, LINQ, 757
While activity, WF, 938, 956
while loops, 80–82
whitespace characters, C# syntax, 32
<Window> element, in WPF application, 839–840
<Window.resources> element, in WPF application,

842–843
windows, tracking, 520–522
windows, VS

Breakpoints window, 167
Call Hierarchy window and, 274–275
Call Stack window, 174–175
Class View window, 222–224
Error List window, 17, 23–24, 170
Immediate and Command windows, 173–174
Object Browser window, 224–225
Output window, 157
Properties window, 16–17, 23, 170
Watch windows, 171–172
writing text to output window, 158–163

Windows Activation Service (WAS), 906
Windows applications

C# and, 9
creating, 24–28
deploying. See deploying Windows applications
developing. See Windows Forms
OOP in, 201–204
SDI and MDI interfaces, 497

Windows authentication, 619
Windows clients, implementing for ASP.NET Web

service, 649–654
Windows Communication Foundation. See WCF

(Windows Communication Foundation)
Windows Forms

anchoring, docking, and snapping controls, 449–451
Button control, 453
ColumnHeader added to Columns collection of

ListView, 484
controls, 448
event handlers added to buttons, 455
event handlers added to ImageList control, 486–491

event handlers added to TextBox control, 460–464
events generated by controls, 451–453
events of Button control, 453–454
events of CheckBox control, 466
events of ListBox control, 478–479
events of ListView control, 481, 484
events of RadioButton control, 465–466
events of RichTextBox control, 472
events of TextBox control, 458–459
GroupBox control, 466–467
ImageList control, 484–485
Label and LinkLabel control, 456
ListBox and CheckedListBox controls, 477
ListView control, 481
ListViewItem class, 484
methods of ListBox control, 478–479
methods of ListView control, 481, 484
overview of, 447–448
properties of Button control, 453
properties of CheckBox control, 466
properties of controls, 448–449
properties of ListBox control, 477–478
properties of ListView control, 481–483
properties of RadioButton control, 465
properties of RichTextBox control, 470–471
properties of TabControl control, 491–492
properties of TextBox control, 457–458
RadioButton and CheckBox controls, 464–465
RichTextBox control, 470
TabControl control, 491
TextBox control, 457
using RadioButton and CheckBox controls, 467–470
using RichTextBox control, 472–476
VS development and, 10
working with buttons, 454–455
working with ListBox control, 479–481
working with TabControl control, 492–494
working with TextBox control, 459–460

Windows Forms, advanced features
adding functionality to menus, 501–502
application types that can be programmed for

Windows, 512–513
creating controls, 522–523
creating LabelTextBox control, 523–524
creating MDI applications, 513–516
creating MDI text editor, 516–518
creating menus manually, 499–501
debugging user controls, 527
event handlers added to LabelTextBox control,

525–527, 529–530
event handlers for ToolStrip control, 507–509
extending LabelTextBox control, 527–528
extending toolbars, 505–507
handling menu events, 502–503
items of ToolStrip control, 504–505
menus and toolbars, 498
MenuStrip control, 498

1035

Windows Forms – writing data

Windows Forms, advanced features (continued)
merging menus, 518–520
overview of, 497–498
properties of LabelTextBox, 528
properties of LabelTextBox control, 524–525
properties of StatusStrip control, 509–510
properties of ToolStrip control, 504
properties of ToolStripMenuItem, 501
StatusStrip control, 509–510
ToolStrip control, 503–504
tracking windows, 520–522
using MenuStrip control, 498–499
working with StatusStrip control, 510–512

Windows Forms applications
creating, 24–28
defined, 14

Windows Installer
advantages of, 549–550
building the project, 565–566
configuring, 555
creating a Windows Installer project, 552
deploying Web applications, 675, 680
MDI project. See MDI Editor project
options for deploying applications, 533
overview of, 547–548
packages, features, and components, 548–549
planning installation, 550–551

Windows OSs, XAML targeted to, 832
Windows Presentation Foundation. See WPF

(Windows Presentation Foundation)
Windows service, 906
Windows Workflow Foundation. See WF (Windows

Workflow Foundation)
<Window.Triggers> element, in WPF application,

844
Wordpad, 503
workflow extensions, 956
Workflow Foundation. See WF (Windows Workflow

Foundation)
WorkflowApplication class, 948–949
workflows, WF

defined, 935
overview of, 937–939
processing workflow errors, 951–952
simple workflow example, 936–937
workflow extensions, 946

World Wide Web Consortium (W3C)
SOAP specification, 642
WSDL standard, 641

WPF (Windows Presentation Foundation)
alignment, margins, padding, and dimensions of

controls, 859–860
animation, 875–876
Application object, 849
attached events, 858
attached properties, 852
attribute syntax in XAML, 846

Border control, 860
for C# developers, 833–834
Canvas control, 860–861
content syntax in XAML, 847–848
control basics, 849–850
control layout, 858–859
control styling, 868–869
control templates, 869–870
creating basic WPF application, 834–838
dependency properties, 850–852
for designers, 830–833
desktop and Web applications and, 848
DockPanel control, 861–863
dynamic resources, 878–879
fundamentals, 845
Grid control, 863–866
<Grid> and <Ellipse> elements, 840–842
implementing dependency properties, 884–887
markup extensions, 848
object element syntax in XAML, 845–846
overview of, 829–830
programming, 884
property element syntax in XAML, 846–848
referencing style resources, 879
routed events, 852–854
stack order of controls, 859
StackPanel control, 866–867
static resources, 878
timelines with key frames, 877–878
timelines without key frames, 876–877
triggers, 874–875
user controls, 884, 887–895
using styles and templates, 870–873
using triggers, animations, and resources, 880–883
<Window> element, 839–840
<Window.resources> element, 842–843
<Window.Triggers> element, 844
working with routed events, 855–857
WrapPanel control, 868
XAML code and, 839
XAML syntax, 845

WrapPanel control, WPF, 859, 868
Write()

defining functions, 127
FileStream class, 695
Main() function compared with, 128
StreamWriter class, 699

write access, to properties, 188
WriteLine(), StreamWriter class, 699
writing data

with FileStream class, 695–697
to output stream, 697–699
to random access files, 695–696
reading/writing compressed files, 706–707
to streams, 723

1036

WSDL (Web Services Description Language) – XSD (XML Schema Definition)

WSDL (Web Services Description Language), 640–641,
900

WSE (Web Service Enhancements), 899
WS-I (Web Services Interoperability) basic profile, 642

X
XAML (Extensible Application Markup Language)

attribute syntax, 846
capabilities of, 831–832
code in sample WPF application, 839
content syntax, 847–848
EB (Expression Blend) and, 832–833
object element syntax, 845–846
overview of, 898
property element syntax, 846–848
syntax, 845
VS and VCE and, 832
for WPF interface, 830

XAML Browser Applications (.xbap), 848
XAttribute(), LINQ to XML constructors, 808
.xbap files (XAML Browser Applications), 848
xcopy deployment, 533
XDeclaration(), LINQ to XML constructors, 808
XDocument(), LINQ to XML constructors, 808, 810
XDR (XML-Data Reduced schemas), 731
XElement(), LINQ to XML constructors, 808
XML (eXtensible Markup Language)

attributes, 727–728
creating nodes, 742–743
creating XML document in VS, 732–734
declaration, 728
documents, 726
DOM classes, 734–735
elements, 726–727
generating XML from databases, 814–817
LINQ to. See LINQ to XML
looping through all nodes of XML Document,

737–739

namespaces, 729–730
node insertion, 740–741
node removal, 743–744
node selection, 744
node values, 739–740
overview of, 725
removing nodes, 743–744
selecting nodes, 746–749
structure of XML documents, 728–729
syntax, 751
validating XML documents, 730–732
Web services and, 648
Web services using XML serialization, 659–662
well-formed, 730
XmlDocument class, 735
XmlElement class, 735–737
XPath query language, 745–746

XML applications, 726
XML declaration, 728
XML documents

creating with VS, 732–734
looping through all nodes of, 737–739
overview of, 726
querying, 817–818
saving and loading with LINQ to XML, 808–811
structure of, 728–729
validating, 730–732
viewing contents of saved documents with LINQ to

XML, 811–812
XML fragments, 812–814, 825
XML Schema Definition (XSD), 731–732
XML-Data Reduced schemas (XDR), 731
XmlDocument class, 735
XmlElement class, 735–737
XmlNode class, 741
XPath

operations, 745–746
overview of, 745, 751
selecting nodes, 746–749

XSD (XML Schema Definition), 731–732

1037

Related Wrox Books

Beginning ASP.NET 4: in C# and VB
ISBN: 978-0-470-50221-1
This introductory book offers helpful examples and step-by-step format and has code examples written in both C# and Visual
Basic. With this book you will gradually build a Web site example that takes you through the processes of building basic ASP.NET
Web pages, adding features with pre-built server controls, designing consistent pages, displaying data, and more.

Beginning Visual Basic 2010
ISBN: 978-0-470-50222-8
This book not only shows you how to write Windows applications, Web applications with ASP.NET, and Windows mobile and
embedded CE apps with Visual Basic 2010, but you’ll also get a thorough grounding in the basic nuts-and-bolts of writing good code.
You’ll be exposed to the very latest VB tools and techniques with coverage of both the Visual Studio 2010 and .NET 4 releases.

Professional ASP.NET 4: in C# and VB
ISBN: 978-0-470-50220-4
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4 and
offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After a fast-
paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of ASP.NET 4.
You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional C# 4 and .NET 4
ISBN: 978-0-470-50225-9
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and framework with C#,
working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on all the newest capabilities of C# 4.

Professional Visual Basic 2010 and .NET 4
ISBN: 978-0-470-50224-2
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this is
your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need, including .NET
features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debugging, Visual Studio
features, and ASP.NET web programming.

Professional Visual Studio 2010
ISBN: 978-0-470-54865-3
Written by an author team of veteran programmers and developers, this book gets you quickly up to speed on what you can expect from
Visual Studio 2010. Packed with helpful examples, this comprehensive guide examines the features of Visual Studio 2010, and walks you
through every facet of the Integrated Development Environment (IDE), from common tasks and functions to its powerful tools.

Visual Studio 2010 and .NET 4 Six-in-One
ISBN: 978-0-470-49948-1
This comprehensive resource offers a single resource for all you need to know to get productive with .NET 4. This reviews all the
important features of .NET 4, including .NET charting and ASP.NET charting, ASP.NET dynamic data and jQuery, and F#. The coverage
is divided into six distinctive parts for easy navigation and offers a practical approach and complete examples.

WPF Programmer’s Reference: Windows Presentation Foundation with C# 2010 and .NET 4
ISBN: 978-0-470-47722-9
Written by a leading expert on Microsoft graphics programming, this richly illustrated book provides an introduction to WPF development
and explains fundamental WPF concepts. It is packed with helpful examples and progresses through a range of topics that gradually
increase in their complexity.

Visual Basic 2010 Programmer’s Reference
ISBN: 978-0-470-49983-2
Visual Basic 2010 Programmer’s Reference is a language tutorial and a reference guide to the 2010 release of Visual Basic.
The tutorial provides basic material suitable for beginners but also includes in-depth content for more advanced developers.

 $44.99 USA
 $53.99 CANProgramming Languages / C# (.Net)

Learn programming with C#
2010 and the .NET framework

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Beginning with C# 2010 programming basics such as variables, flow
control, and object oriented programming, this invaluable book then
moves into web and Windows programming and data access (databases
and XML). All the while, the expert team of authors focuses on the
tools that you need to program C#, the Visual C# 2010 develop-
ment environment in Visual Studio® 2010. The step-by-step instruc-
tions and constructive examples featured throughout the book will
show you how to program confidently with useful code in C# 2010.

Beginning Visual C# 2010:

• Explains basic C# 2010 syntax, including variables and expressions

• Reviews generics and explains how to define and use them

• Covers Windows® programming and Windows Forms

• Examines language enhancements, Lambda expressions,
and extension methods

• Shows how to deploy Windows applications

• Discusses XML and provides an introduction to LINQ

• Delves into debugging and error handling

• Demonstrates useful techniques for WPF and WCF

Karli Watson is an author and a consultant for Infusion.

Christian Nagel is an author, Microsoft Regional Director, and software architect
with more than 20 years of experience.

Jacob Hammer Pedersen is an author and senior application developer at
Elbek & Vejrup, Denmark.

Jon D. Reid is Software Engineering Manager at Metrix LLC.

Morgan Skinner is a consultant for Microsoft UK.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

	Beginning Visual C# 2010
	About the Authors
	Contents
	Introduction
	WHO THIS BOOK IS FOR
	WHAT’S NEW IN THIS EDITION
	HOW THIS BOOK IS STRUCTURED
	WHAT YOU NEED TO USE THIS BOOK
	CONVENTIONS
	SOURCE CODE
	ERRATA
	P2P.WROX.COM

	Part I: The C# Language
	Chapter 1: Introducing C#
	WHAT IS THE .NET FRAMEWORK?
	WHAT IS C#?
	VISUAL STUDIO 2010
	SUMMARY

	Chapter 2: Writing a C# Program
	THE DEVELOPMENT ENVIRONMENTS
	CONSOLE APPLICATIONS
	WINDOWS FORMS APPLICATIONS
	SUMMARY

	Chapter 3: Variables and Expressions
	BASIC C# SYNTAX
	BASIC C# CONSOLE APPLICATION STRUCTURE
	VARIABLES
	EXPRESSIONS
	SUMMARY

	Chapter 4: Flow Control
	BOOLEAN LOGIC
	THE GOTO STATEMENT
	BRANCHING
	LOOPING
	SUMMARY

	Chapter 5: More About Variables
	TYPE CONVERSION
	COMPLEX VARIABLE TYPES
	STRING MANIPULATION
	SUMMARY

	Chapter 6: Functions
	DEFINING AND USING FUNCTIONS
	VARIABLE SCOPE
	THE MAIN() FUNCTION
	STRUCT FUNCTIONS
	OVERLOADING FUNCTIONS
	DELEGATES
	SUMMARY

	Chapter 7: Debugging and Error Handling
	DEBUGGING IN VS AND VCE
	ERROR HANDLING
	SUMMARY

	Chapter 8: Introduction to Object-Oriented Programming
	WHAT IS OBJECT-ORIENTED PROGRAMMING?
	OOP TECHNIQUES
	OOP IN WINDOWS APPLICATIONS
	SUMMARY

	Chapter 9: Defining Classes
	CLASS DEFINITIONS IN C#
	SYSTEM.OBJECT
	CONSTRUCTORS AND DESTRUCTORS
	OOP TOOLS IN VS AND VCE
	CLASS LIBRARY PROJECTS
	INTERFACES VERSUS ABSTRACT CLASSES
	STRUCT TYPES
	SHALLOW COPYING VERSUS DEEP COPYING
	SUMMARY

	Chapter 10: Defining Class Members
	MEMBER DEFINITIONS
	ADDITIONAL CLASS MEMBER TOPICS
	INTERFACE IMPLEMENTATION
	PARTIAL CLASS DEFINITIONS
	PARTIAL METHOD DEFINITIONS
	EXAMPLE APPLICATION
	THE CALL HIERARCHY WINDOW
	SUMMARY

	Chapter 11: Collections, Comparisons, and Conversions
	COLLECTIONS
	COMPARISONS
	CONVERSIONS
	SUMMARY

	Chapter 12: Generics
	WHAT ARE GENERICS?
	USING GENERICS
	DEFINING GENERIC TYPES
	VARIANCE
	SUMMARY

	Chapter 13: Additional OOP Techniques
	THE :: OPERATOR AND THE GLOBAL NAMESPACE QUALIFIER
	CUSTOM EXCEPTIONS
	EVENTS
	EXPANDING AND USING CARDLIB
	SUMMARY

	Chapter 14: C# Language Enhancements
	INITIALIZERS
	TYPE INFERENCE
	ANONYMOUS TYPES
	DYNAMIC LOOKUP
	ADVANCED METHOD PARAMETERS
	EXTENSION METHODS
	LAMBDA EXPRESSIONS
	SUMMARY

	Part II: Windows Programming
	Chapter 15: Basic Windows Programming
	CONTROLS
	THE BUTTON CONTROL
	THE LABEL AND LINKLABEL CONTROLS
	THE TEXTBOX CONTROL
	THE RADIOBUTTON AND CHECKBOX CONTROLS
	THE RICHTEXTBOX CONTROL
	THE LISTBOX AND CHECKEDLISTBOX CONTROLS
	THE LISTVIEW CONTROL
	THE TABCONTROL CONTROL
	SUMMARY

	Chapter 16: Advanced Windows Forms Features
	MENUS AND TOOLBARS
	TOOLBARS
	SDI AND MDI APPLICATIONS
	BUILDING MDI APPLICATIONS
	CREATING CONTROLS
	SUMMARY

	Chapter 17: Deploying Windows Applications
	DEPLOYMENT OVERVIEW
	CLICKONCE DEPLOYMENT
	VISUAL STUDIO SETUP AND DEPLOYMENT PROJECT TYPES
	MICROSOFT WINDOWS INSTALLER ARCHITECTURE
	CREATING AN INSTALLATION PACKAGE FOR THE MDI EDITOR
	BUILDING THE PROJECT
	INSTALLATION
	SUMMARY

	Part III: Web Programming
	Chapter 18: ASP.NET Web Programming
	OVERVIEW OF WEB APPLICATIONS
	ASP.NET RUNTIME
	CREATING A SIMPLE PAGE
	SERVER CONTROLS
	ASP.NET POSTBACK
	ASP.NET AJAX POSTBACK
	INPUT VALIDATION
	STATE MANAGEMENT
	STYLES
	MASTER PAGES
	SITE NAVIGATION
	AUTHENTICATION AND AUTHORIZATION
	READING FROM AND WRITING TO A SQL SERVER DATABASE
	SUMMARY

	Chapter 19: Web Services
	WHERE TO USE WEB SERVICES
	APPLICATION ARCHITECTURE
	WEB SERVICES ARCHITECTURE
	WEB SERVICES AND THE .NET FRAMEWORK
	CREATING A SIMPLE ASP.NET WEB SERVICE
	TESTING THE WEB SERVICE
	IMPLEMENTING A WINDOWS CLIENT
	CALLING THE SERVICE ASYNCHRONOUSLY
	IMPLEMENTING AN ASP.NET CLIENT
	PASSING DATA
	SUMMARY

	Chapter 20: Deploying Web Applications
	INTERNET INFORMATION SERVICES
	IIS CONFIGURATION
	COPYING A WEBSITE
	PUBLISHING A WEB APPLICATION
	WINDOWS INSTALLER
	SUMMARY

	Part IV: Data Access
	Chapter 21: File System Data
	STREAMS
	THE CLASSES FOR INPUT AND OUTPUT
	SERIALIZED OBJECTS
	MONITORING THE FILE SYSTEM
	SUMMARY

	Chapter 22: XML
	XML DOCUMENTS
	USING XML IN YOUR APPLICATION
	SUMMARY

	Chapter 23: Introduction to LINQ
	FIRST LINQ QUERY
	USING THE LINQ METHOD SYNTAX
	ORDERING QUERY RESULTS
	ORDERBY CLAUSE
	ORDERING USING METHOD SYNTAX
	QUERYING A LARGE DATA SET
	AGGREGATE OPERATORS
	QUERYING COMPLEX OBJECTS
	PROJECTION: CREATING NEW OBJECTS IN QUERIES
	PROJECTION: METHOD SYNTAX
	SELECT DISTINCT QUERY
	ANY AND ALL
	ORDERING BY MULTIPLE LEVELS
	MULTI-LEVEL ORDERING METHOD SYNTAX: THENBY
	GROUP QUERIES
	TAKE AND SKIP
	FIRST AND FIRSTORDEFAULT
	SET OPERATORS
	JOINS
	SUMMARY

	Chapter 24: Applying LINQ
	LINQ VARIETIES
	USING LINQ WITH DATABASES
	INSTALLING SQL SERVER AND THE NORTHWIND SAMPLE DATA
	FIRST LINQ TO DATABASE QUERY
	NAVIGATING DATABASE RELATIONSHIPS
	USING LINQ WITH XML
	LINQ TO XML FUNCTIONAL CONSTRUCTORS
	SAVING AND LOADING AN XML DOCUMENT
	WORKING WITH XML FRAGMENTS
	GENERATING XML FROM DATABASES
	HOW TO QUERY AN XML DOCUMENT
	USING LINQ TO XML QUERY MEMBERS
	SUMMARY

	Part V: Additional Techniques
	Chapter 25: Windows Presentation Foundation
	WHAT IS WPF?
	ANATOMY OF A BASIC WPF APPLICATION
	WPF FUNDAMENTALS
	PROGRAMMING WITH WPF
	SUMMARY

	Chapter 26: Windows Communication Foundation
	WHAT IS WCF?
	WCF CONCEPTS
	WCF PROGRAMMING
	SUMMARY

	Chapter 27: Windows Workflow Foundation
	HELLO WORLD
	WORKFLOWS AND ACTIVITIES
	ARGUMENTS AND VARIABLES
	CUSTOM ACTIVITIES
	SUMMARY

	Appendix A: Exercise Solutions
	CHAPTER 3 SOLUTIONS
	CHAPTER 4 SOLUTIONS
	CHAPTER 5 SOLUTIONS
	CHAPTER 6 SOLUTIONS
	CHAPTER 7 SOLUTIONS
	CHAPTER 8 SOLUTIONS
	CHAPTER 9 SOLUTIONS
	CHAPTER 10 SOLUTIONS
	CHAPTER 11 SOLUTIONS
	CHAPTER 12 SOLUTIONS
	CHAPTER 13 SOLUTIONS
	CHAPTER 14 SOLUTIONS
	CHAPTER 15 SOLUTIONS
	CHAPTER 16 SOLUTIONS
	CHAPTER 17 SOLUTIONS
	CHAPTER 18 SOLUTIONS
	CHAPTER 19 SOLUTIONS
	CHAPTER 20 SOLUTIONS
	CHAPTER 21 SOLUTIONS
	CHAPTER 22 SOLUTIONS
	CHAPTER 23 SOLUTIONS
	CHAPTER 24 SOLUTIONS
	CHAPTER 25 SOLUTIONS
	CHAPTER 26 SOLUTIONS
	ANSWERS TO CHAPTER 27 EXERCISES

	Index

